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Abstract. There is an enormous demand for Explainable Artificial
Intelligence to obtain human-understandable models. For example,
advertisers are keen to understand what makes video ads successful. In
our investigation, we have analysed heterogeneous visual, auditory, and
textual content features from YouTube video ads. This paper proposes
a two-stage anchoring-and-adjustment approach. In the first stage, we
search for the optimum penalized value in the regularization path of
Lasso that maximizes the number of Significant Features (SFs). After
that, we improve the quality of SFs by dropping features with high
Variance-Inflation-Factor (VIF) because high VIF often makes a spurious
set of SFs. Experiments show that, compared to the one-stage approach
without the adjustment stage, our proposed two-stage approach results
in a smaller number of SFs but a higher ability to identify true features
that appeal to ad viewers from human evaluation. Furthermore, our app-
roach can identify much more SFs while maintaining similar prediction
accuracy as what Lasso and Elastic-net can obtain.

Keywords: Explainable models · Content features · Anchoring-and-
adjustment · Variance-inflation-factor · Significance test

1 Introduction

Recently, there is an enormous demand for Explainable Artificial Intelligence
(XAI) methods [4], as decision-makers often need to fully understand what fac-
tors drive the outcomes in many practical applications.

This paper proposes a two-stage anchoring-and-adjustment approach to
improve the quality of Significant Features (SFs). In the first stage, we maximize
the number of the candidate of SFs by adopting SFLasso [10] and SFLasso-SI
(Selective Inference) [9] that search for the optimum penalized value λ in the
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regularization path of Lasso [14] that maximizes the number of SFs. Considering
two opposing factors: model size (i.e., the number of active variables) and the
correlations among the active variables, SFLasso-SI chooses λ, generating the
biggest number of SFs via statistical significance test using SI [7,13] in training
data. After that, we further improve the quality of SFs by dropping features
with high Variance-Inflation-Factor (VIF), which measures the amount of cor-
relation with other features, because high VIF can inflate either the magnitude
of coefficients or its variance, and thus often makes a spurious set of SFs.

Post-hoc explainability approach typically runs complex DNN first for high
prediction accuracy and then runs the post model to explain the first model’s
prediction by selecting input features (DeepLIFT [11], L2X [2], and ACD [12]).
Given that our data have small observations, which would not be enough to train
DNN, we extend Lasso, an intrinsic explainable model. This allows us to do a
statistical test for selecting features using recently developed selective inference.

Most Lasso variants focus on improving prediction accuracy, such as Elastic-
net[16], and Enumerate Lasso [3] or finding more or better active variables, but
not finding more SFs. Recently, SFLasso [10], and SFLasso-SI [9] was developed
to find the maximum number of SFs.

OLS post-Lasso [1] proposed to rerun OLS with the active variables resulted
from Lasso. However, this naive approach results in many false SFs [5,7,13].
Covariance Test [8] pioneered for significance test after variable selection when
signal variables are not too correlated with noise variables [5]. For more general
explanatory variables, Lee et al. [7] derived closed-form p-values for selected
active variables after fitting Lasso with a fixed value of hyperparameter λ. While
this selective inference can exclude some false SFs, we screen such false SFs using
VIF iteration to drop highly correlated features with other explanatory variables.

Experiments using YouTube video ads show that, compared to the one-stage
approach without adjustment stage (SFLasso-SI), our proposed two-stage app-
roach (SFLasso-SI+VIF) results in a smaller number of SFs but much higher
accuracy in identifying true features that appeal to ad viewers from human
evaluation. Furthermore, our approach can identify more SFs while maintaining
similar prediction accuracy as Lasso and Elastic-net can obtain.

2 Proposed Two-Stage Anchoring-and-Adjustment
Approach

Anchoring-and-Adjustment heuristic is one of the strategies to estimate unknown
quantities starting with information one does know and then adjust until an
acceptable value is reached [15]. To find many true features, we propose a two-
stage anchoring-and-adjustment method in the framework of the Explainability
maximized method.

2.1 Anchoring Stage Using Explainability Maximized Method

Lasso penalizes non-zero coefficients by adding a regularization term λ in the
objective function of OLS as follows: minβ ‖ y − Xβ ‖22 +λ ‖ β ‖1, where
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Fig. 1. Visualization of anchoring and adjustment

X ∈ R
n×p (e.g., visual objects, text), y ∈ R

n (e.g., the number of likes of
YouTube video ads), and β ∈ R

p is a vector of regression coefficient. Figure 1
shows that as λ decreases, the number of active variables increases, but the
correlation among the active variables also increases (i.e., the mean of the inverse
of VIF decreases). This relationship suggests that too big or too small values
of λ are not good at identifying SFs. When λ is very big (e.g., Lasso, Elastic-
net), only a small number of active variables is generated, so multicollinearity is
not likely to happen. However, only a few active variables result in even fewer
SFs. On the other hand, when λ is very small (e.g., λ = 0 for OLS), there are
many active variables, so the correlation among active variables is high. This
multicollinearity reduces the number of SFs.

Considering those two competing forces, one can expect that the maximum
number of SFs is likely to occur at some point of λ where there is a good enough
number of active variables while the correlation among x variables is not too
high. Based on the above behaviors, SFLasso and SFLasso-SI search for the
optimum penalized value in the regularization path of Lasso that maximizes the
number of SFs as follows. f(λ) = max

∑p
i=1 I(p-valueβi

≤ 0.05), where I = 1 if
p-valueβi

≤ 0.05 or I = 0 otherwise. For a given λ, the SFLasso selects active
variables A with non-zero coefficients that minimize the objective function. For
the testing of each selected variable’s significance, while SFLasso runs OLS with
the selected active variables and uses p-value, SFLasso-SI applies the selective
inference [7,13]. The selective test does more conservative test by making false
SFs insignificant [5,7,13]. Then, the number of SFs is counted. This process is
repeated within a range of λ values. Finally, the λ that generates the maximum
number of SFs is chosen.
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2.2 Adjustment Stage

While SFLasso-SI finds many SFs, SFLasso-SI might include false SFs because it
tends to choose features with an inflated magnitude of the coefficient to pass the
significance test. James et al. [6] suggested that VIF that exceeds 10 indicates a
problematic amount of multicollinearity. To adjust the solution of SFLasso-SI,
we drop the feature with the highest VIF in the active variable set if the VIF
is higher than 10. Note that we do not drop all the features with VIF greater
than 10 at one time because the VIF of a focal variable is affected by the other
variables. Usually, once a variable with very high VIF is dropped, VIFs for the
remaining variables become much smaller. Then, we drop another feature with
the highest VIF among the remaining x variables. We repeat this VIF iteration
until the highest VIF becomes less than 10.

Figure 1 illustrates the adjustments from the three anchoring points from
OLS, SFLasso-SI, and Lasso-SI. As OLS has many highly correlated variables,
dropping the most correlated variables by VIF iteration reduces the variance of
the coefficient, resulting in increases in the number of SFs. However, for SFLasso-
SI, which is likely to generate false SFs with inflated coefficients, VIF iteration
is likely to reduce the number of SFs. This reduction is the evidence to show
that the correlation among active x variables of SFLasso-SI contributes to the
inflation of magnitude of the coefficient in the numerator more than that of its
variance in the denominator in the t-statistics, leading to some false SFs being
included in the set of SFs. Lastly, Lasso-SI often has a few SFs due to the small
number of active variables, making a low correlation among active x variables.
Therefore, the highest VIF is often smaller than the threshold (10), resulting in
no adjustment.

3 Empirical Evaluation

We conduct experiments using YouTube video ads. We divide our datasets into
the training (70%), validation (15%), and test (15%) sets (Table 1). We extract
visual objects, speech tones, and spoken words. We use a bag-of-words model
to count word frequency. We include features with occurrences of more than 5
across video ads. The first block in Table 2 shows the result of World Vision US
YouTube videos. The first 4 models run only the first anchoring stage without
VIF iteration. Among these 4 models, SFLasso-SI identifies the biggest number

Table 1. Size of training, variables, and unmatched ratio

# train (n) # vars (p) Unmatched ratio (%)

World Vision US 370 1,629 21.42

World Vision CA 318 1,374 25.98
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(68) of SFs. The next 4 models do the second adjustment stage by doing the VIF
iterations. As expected, our proposed SFLasso-SI+VIF generates a smaller num-
ber of SFs than SFLasso-SI but the biggest number of SFs among all other com-
peting models that go through the VIF iteration. Furthermore, SFLasso-SI+VIF
shows a similar prediction accuracy (RMSE) level with other predictability max-
imized methods such as Lasso+VIF. Table 3 shows that our SFLasso-SI+VIF
outperforms all the other models in the F1 score. In particular, compared to
SFLasso-SI, adding VIF iteration improve precision substantially from 26 to 69
for the US and from 28 to 63 in Canada, while recall increases only slightly
in Canada. The recall is low across all models, which means that identifying
truly appealing features among video content features is a challenging problem.
Nevertheless, the VIF iteration helps improve the quality of identified SFs (i.e.,
higher precision).

Table 2. Results from models - World Vision US and Canada

λ α RMSE RMSE VIF VIF #act #sig
(train) (test) Mean Max

US OLS 0.0 0.57 2840.62 1374.35 106505.60 368 0

Lasso-SI 37.9 44.40 202.95 1.27 1.66 4 2

Elastic-SI 285.8 0.1 44.04 204.13 1.69 4.00 6 1

SFLasso-SI 0.6 20.77 209.29 3.78 30.15 151 68

OLS+VIF 23.65 219.56 5.50 9.79 237 16

Lasso-SI+VIF 44.40 202.95 1.27 1.66 4 2

Ela-SI+VIF 44.04 204.13 1.69 4.00 6 1

SF-SI+VIF 20.99 207.47 3.35 9.57 144 26

CA OLS 0.0 2.20 3622.45 664.79 139282.80 316 0

Lasso-SI 140.7 148.82 277.41 1.13 1.17 3 1

Elastic-SI 1406.6 0.1 148.82 277.41 1.13 1.17 3 0

SFLasso-SI 2.7 87.85 302.01 2.96 18.28 107 58

OLS+VIF 58.29 468.40 5.66 9.58 218 15

Lasso-SI+VIF 148.82 277.41 1.13 1.17 3 1

Ela-SI+VIF 148.82 277.41 1.13 1.17 3 0

SF-SI+VIF 65.85 295.85 2.70 9.64 102 27

OLS identifies zero SF. Through the VIF iteration (threshold 10), many
highly correlated variables are dropped from 368 to 237. As a result, 16 SFs
are identified. This VIF process confirms that multicollinearity hides SFs. On
the contrary, Lasso-SI and Elastic-SI drop many variables due to the mismatch
between train and validation data. As a result, only 4 (Lasso-SI) and 6 (Elastic-
SI) features are active, and only 2 (Lasso-SI) and 1 (Elastic-SI) features have
significance. Since VIF is already low enough (i.e., smaller than threshold 10),
there are no additional variables to be dropped with VIF criteria. Therefore,
Lasso-SI+VIF and Elastic-SI+VIF do not gain additional SFs. As discussed
earlier, SFLasso-SI finds the biggest number (68) of SFs by trading off the reduc-
tion in the amount of correlation against the size of active features. Specifically,
SFLasso-SI still keeps 151 active variables after dropping many correlated vari-
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Table 3. Results from human evaluation

US Canada

Precision Recall F1 Precision Recall F1

OLS 0 0 0 0 0 0

Lasso-SI 50.00 0.19 0.37 100.00 0.20 0.39

Elastic-SI 0.00 0.00 0.00 0.00 0.00 0.00

SFLasso-SI 26.47 3.36 5.96 27.59 3.16 5.66

OLS+VIF 43.75 1.31 2.54 53.33 1.58 3.07

Lasso-SI+VIF 50.00 0.19 0.37 100.00 0.20 0.39

Ela-SI+VIF 0.00 0.00 0.00 0.00 0.00 0.00

SFLasso-SI+VIF 69.23 3.36 6.41 62.96 3.35 6.37

ables. As a result, its max VIF is about 30, which substantially reduces OLS
(106,505), while it keeps much more active variables than Lasso-SI (151 vs. 4).

Table 4. Significant features - World Vision US

OLS (0/0)

Lasso-SI (1/2) 〈visual objects〉mammal 〈spoken words〉water

Elastic-SI (0/1) 〈visual objects〉mammal

SFLasso-SI (18/68) 〈visual objects〉indoor man sky tree grass boy woman girl

people smiling field road mountain beach plant athleticGame

bed house orange eating red room snow suit militaryUniform old

box chicken tattoo 〈speech tones〉joy 〈spoken words〉action
address area believe bone call continue doctor Donna famine

gift happen heart information involve kid leader leave letter

life local make people poverty problem program reach really

right sense sponsor stand stop teacher vital water wonderful

worker

OLS+VIF (7/16) 〈visual objects〉tree animal little 〈spoken words〉hope leave

end challenge man teacher sit cool plan follow ready malaria

development

Lasso-SI+VIF (1/2) 〈visual objects 〉 mammal 〈spoken words〉 water

Elastic-SI+VIF (0/1) 〈visual objects〉mammal

SFLasso-SI+VIF (18/26) 〈visual objects〉ground tree rollingcredits boy little window

smiling playing eating 〈spoken words〉 action day god

happen information kid leader main make plan problem right

Sabina stand stop vital wonderful

More importantly, the max VIF of SFLasso-SI is still relatively high com-
pared to the suggested threshold (30 > 10). After several VIF iterations until its
threshold, our proposed SFLasso-SI+VIF obtains only 26 SFs among 144 active
variables. Surprisingly, more than half of the initial SFs are gone. This is because
SFLasso-SI favours the inflated magnitudes of the coefficient to maximize the
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number of SFs. This VIF iteration substantially improves the identified SFs’
quality by cutting off the false SFs with such inflated coefficients.

Our SFLasso-SI+VIF identifies much more SFs than OLS+VIF (26 vs.
16), although SFLasso-SI+VIF uses a smaller number of active variables than
OLS+VIF (144 vs. 237). Note that the max VIFs in both are lower than 10.
This surprising result can be explained by the difference in the initial anchor-
ing set of active variables. While OLS+VIF starts with all the 368 variables,
SFLasso-SI+VIF does with 144 active variables from SFLasso-SI. The correla-
tion structure among variables is complex. VIF measures the total redundancy
of a focal x variable with the rest of the active variables. Depending on the set
of active variables, VIF iteration can journey very different paths and result in
very different final sets of active variables and SFs. This result emphasizes (1)
the important role of the first anchoring stage to identify many candidates of
SFs, and (2) the second adjustment stage to drop false SFs via VIF iteration.
Table 4 shows the SFs from each model. Although SFLasso-SI+VIF identifies
smaller SFs than SFLasso-SI (26 vs. 68), both models include the same number
(18) of true features. In other words, SFLasso-SI+VIF has a higher quality (i.e.,
precision) of SFs (69 vs. 26).

Table 5. Deleted false SFs and added true SFs by VIF iteration - World Vision US

False significant features (48) True significant
features (5)

〈visual objects〉indoor man sky woman girl people field road
mountain beach plant athleticGame bed house orange red
room snow suit militaryUniform old box chicken tattoo
〈speech tones〉joy 〈spoken words〉address bone call doctor
Donna famine heart information involve leave letter life local
people poverty program reach really sense sponsor teacher
water worker

〈visual
objects〉ground
rollingcredits little
〈spoken words〉day
god

The next question is how SFLasso-SI+VIF can achieve higher accuracy in hit-
ting truly appealing features to ad viewers than SFLasso-SI, although SFLasso-
SI+VIF identifies a smaller number of SFs than SFLasso-SI. As discussed above,
SFLasso-SI tends to have false SFs with inflated coefficients. Through the VIF
iteration, 48 false SFs are excluded, as seen in Table 5. The visual objects
‘indoor’, ‘man’, and ‘sky’ are examples. As a result, precision increases. Fur-
thermore, recall that high VIF can increase the coefficient variance, leading to
the insignificance of a focal feature. In other words, high VIF can hide true
features. Hence, the VIF process help reveal true features. The visual objects
‘ground’, ‘little’, and ‘rolling credits’ and the spoken words ‘day’ and ‘god’ are
those features. These additions improve recall as well as precision. In summary,
the second adjustment stage via the VIF iterations increases identified SFs by
excluding false SFs and adding new true features. The results on World Vision
Canada are similar to those on World Vision US.
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4 Conclusion

In this paper, we propose a two-stage anchoring-and-adjustment approach. In the
first stage, we adopt the recently developed SFLasso-SI to find many candidates
of SFs. After then, through the VIF iterations, we adjust SFs by dropping false
SFs and adding true SFs. Human evaluations show that our proposed two-stage
approach achieves higher accuracy in identifying true features than SFLasso-
SI without the VIF iterations. Furthermore, our approach maintains similar
prediction accuracy as what Lasso and Elastic-net can obtain.
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