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Abstract. Despite the wide attention to federated learning (FL) in
the literature, the existing studies mostly focus on supervised feder-
ated learning under the horizontally partitioned local dataset setting.
This paper will study the unsupervised FL under the vertically par-
titioned dataset setting. Accordingly, we propose the vertically dataset
partitioned federated principal component analysis (VFedPCA) method,
which reduces the dimensionality across the joint datasets over all the
clients and extracts the principal component feature information for
downstream data analysis. VFedPCA features efficient local computa-
tion, communication efficiency, and privacy-preserving. Further, we study
two communication topologies. The first is a server-client topology where
a semi-trusted server coordinates the federated training, while the sec-
ond is the fully-decentralized topology which eliminates the requirement
of the server by allowing clients to communicate with their neighbors.
Extensive experiments conducted on real-world datasets justify the effi-
cacy of VFedPCA under vertical partitioned FL setting.

Keywords: Principal component analysis · Federated learning ·
Vertical distributed data

1 Introduction

Federated learning (FL) [15] has been receiving increasing attention in the liter-
ature, which enables collaborative machine learning in a communication-efficient
and privacy-preserving way. FL provides a general-purpose collaborative learning
framework, which consists of a coordinating central server and multiple partic-
ipating clients with their local datasets, e.g., organizations (cross-silo setting)
or devices (cross-device setting). More recent FL methods also propose fully-
decentralized learning, where clients directly communicate with their neighbors.
It eliminates the need of the coordinating server which can sometimes expose
security and privacy risks to the collaborative training [26]. During the FL train-
ing, the raw local datasets of all clients are kept locally and restricted to be
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exchanged or transferred over network for privacy-preserving purpose. Instead,
it suffices to communicate only intermediate training variables (e.g., local gra-
dients or local model parameters). Due to its generality and superiority in the
privacy-preserving aspect, FL paves its way to a growing number of application
areas. Nevertheless, most existing FL methods focus almost exclusively on the
supervised learning problems under the horizontally distributed local dataset
setting. As far as we know, unsupervised FL learning under the settings of ver-
tically distributed datasets has yet to be well explored.

In fact, the vertically partitioned local dataset setting is common in many
practical applications [16]. Under this setting, different clients hold a local par-
tition of features, instead of samples as in the horizontally partitioned setting. It
naturally arises when the features/attributes describing the same group of enti-
ties are collected and stored among multiple clients. For example, the financial
features of a person can split among multiple financial companies s/he has dealt
with, e.g., banks, credit card companies, stock market. Similar to the horizon-
tal FL setting, it is important to collaboratively train the model based on all
clients’ data partition to maximize the global model performance. For example,
when a bank refers to a machine learning (ML) model for deciding whether to
grant a loan application of a customer, it is ideal for the model training to take
account into all the financial records of the customer, not only the transactions
history held by this bank. It is apparent from the example that raw local datasets
should not be exchanged because the vertically partitioned datasets can contain
sensitive information, i.e., the financial status of the customer. Furthermore,
unsupervised learning is practically appealing because it need not the labels for
model training. The labels can be expensive and time-consuming to mark, and
even require domain expertise [13,19]. The label can also contain sensitive infor-
mation, which will incur privacy leakage if not handled properly, especially under
the vertically partitioned setting where the labels need to be shared among all
clients [5,8].

Under the circumstances, this paper will concentrate on principal compo-
nent analysis (PCA), which is one of the most fundamental and useful unsu-
pervised learning task with multiple clients holding the vertically partitioned
datasets under the FL framework. PCA plays a pivotal role in high-dimensional
data analysis by extracting principal components, which are uncorrelated and
ordered, with the leading ones retaining most of the data variations [18]. Very
recently, federated PCA is studied on the sample-wise distributed (also known
as horizontally distributed) data [9,10]. However, to the best of our knowledge,
there is no federated PCA tailored to the feature-wise distributed (also known as
vertically distributed) data. The two data distribution settings, though seemed
subtle, has fundamental difference as summarized in the review [23]. To this
end, we propose a vertically partitioned federated PCA method, abbreviated
VFedPCA, which features computational efficiency, communication efficiency
and privacy-preserving. In VFedPCA, clients keep their datasets local and only
requires the communication of model parameters. Such model exchange suffices
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to occur periodically to reduce communication overhead. Within each commu-
nication round, clients run the computationally efficient local power iteration
[1,11,17], and the warm-start power iteration method can further improve per-
formance. Furthermore, we consider the relationship between each independent
subset and the full set based on the weight ratio of eigenvalue. Subsequently,
we supplement the weight scaling method to further improve the accuracy and
performance of the algorithm. In addition, we consider both of two settings: (1)
a centralized server coordinates the learning, and (2) the fully decentralized set-
ting which eliminates the need of the server. In summary, the main contributions
of this paper are below:

1. We first attempt to study PCA under the vertically-partitioned FL setting.
2. We propose VFedPCA, featuring computational efficiency, communication

efficiency, and privacy-preserving. VFedPCA comes with two variants: one
requires a central server for coordination and the other performs fully decen-
tralized learning where a client communicates directly with its neighbors.

3. Extensive experiments on real datasets justify the favorable features of VFed-
PCA under the vertically-partitioned FL setting, while maintaining accuracy
similar to unseparated counterpart dataset.

2 Notations and Background

2.1 Notation

We use boldfaced lower-case letters, e.g., x, to denote vectors and boldfaced
upper-case letters, e.g., X, to denote matrix. The superscript is associated with
the number of iterations, e.g., Xt denotes the decision variable at iteration t,
while the subscript is associated with indices of different parties, e.g., the data
matrix Xi ∈ Rn×pi denotes the i-th party that has pi variables (i.e., features)
and n samples (i.e., users). We use X∗ to denote a dual space and ‖x‖ denotes
the standard Euclidean norm for the vector ‖x‖. For image dataset, the data
matrix Xi ∈ Rn×m×m is the i-th party’s input dimension, where m denotes the
pixel size. The summary of the used symbols in this paper is shown in Table 1.

Table 1. Summary of frequently used notation

Notation Description Notation Description

n Number of samples m Number of features

p Partitions l Local iterations

t Federated communications fi The features of the i-th party

si The samples of the i-th party αi The eigenvalue of the i-th party

ai The eigenvector of the i-th party ωi The weight of the i-th party

u The federated eigenvector uG The gobal eigenvector
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2.2 PCA and Power Iteration

In this subsection, we describe the basic PCA setup and present the centralized
power iteration. Let X ∈ Rm×n be the data matrix. The goal of PCA is to
find the top eigenvectors of the symmetric positive semidefinite (PSD) matrix
A = 1

nXX� ∈ Rm×m, which is the covariance matrix. We assume that the
target matrix A has eigenvalues 1 ≥ α1 ≥ α2 · · · ≥ αm ≥ 0 with corresponding
normalized eigenvectors a1,a2, · · · ,am, then Aa = αa. In general, Aka = αka
for all k = 1, ...,m, which is the basis of the power iteration method. Let α(0)

be an approximation to an eigenvector of A, and a(0) as an initial vector. The
power method [21] estimates the top eigenvector by repeatedly applying the
update step below:

ω = Aa(k−1),a(k) =
ω

‖ω‖ , (1)

where at each iteration, a(k) will get closer to the top principal eigenvector a1.
When k → ∞, a(k) will converge to a1.

Recently, [17] has proposed a distributed SVD algorithm based on the
local power iteration, which incorporates the periodic communication for
communication-efficiency. The LocalPower method can save communication by
l times without much impact on the accuracy. To guarantee the convergence,
they partition the data matrix X randomly. They assume the local correlation
matrix Ai = 1

si
XiX�

i is a good approximation to the global correlation matrix
A = 1

nXX�, which is equivalent to ‖A−Ai‖ ≤ ρ‖A‖, where Ai ∈ Rsi×m is the
i-th partition, ρ bounds the difference between Ai and A, which is assumed as
small as ε . However, our setting allows all parties to independently calculate the
principal component vector based on the basic PCA method, and derive the fed-
erated principal component vector in the global center according to the weights
of the parties, which can reduce the complexity of communication calculations
and ensure the privacy of participants.

2.3 Federated Learning

FL is data-private collaborative learning, where multiple clients jointly train
a global ML model with the help of a central coordination server. The goal
of FL is achieved through the aggregation of intermediate learning variables,
while the raw data of each customer is stored locally without being exchanged
or transferred. According to different data partition structures, the distribution
can be generally categorized into two regimes, namely horizontally and verti-
cally partitioned data [7]. Currently, there is relatively less attention paid to the
vertically partitioned data. Most of the existing cross-silo FL work is based on
the supervised datasets, including trees [4], linear and logistic regression [20,25],
and neural networks [15]. These supervised FL works rely on the labels, which
are expensive to acquire and require domain expertise. For example, diabetes
patients may wish to contribute to the FL with their everyday health monitor
data like glucose level and blood press. Since patients lack advanced medical
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expertise, their local data are often unlabeled without a medical expert’s evalu-
ation. As far as we know, the current work on the unlabelled data and vertical
learning has yet to be explored. The only existing related papers focus on the
semi-supervised FL [12] and weakly-supervised FL [14], respectively.

3 Federated-PCA on Privacy-Preserving
Vertical-Partitioned Data

In this section, we first formulate the problem of federated PCA on the verti-
cally partitioned dataset. Then, we propose the VFedPCA algorithm to collabo-
ratively extract principal components with the participation of all clients, while
ensuring privacy by avoiding sharing of raw local datasets. Our method devises
the local power iteration for efficient local computation, along with periodic
communication for better communication efficiency.

In particular, we consider two types of communication topologies. The first
is the server-clients topology, which follows the most existing FL methods by
introducing a semi-trusted server to coordinate the training. The second is the
fully-decentralized topology, where the clients communicate in a peer-to-peer
manner with their neighbors. It eliminates the need of the server, which itself
can be malicious and sometimes considered unpractical provided that such a
semi-trusted server exists.

3.1 Problem Formulation

Let X ∈ Rm×n be the data matrix, which have m features and n samples, we
partition X into p clients as X = [X1,X2, · · ·Xp]�, where Xi ∈ Rfi×n contains fi
features of X and

∑p
i=1 fi = m. Let S = 1

mX�X ∈ Rn×n. Let Z = XU� ∈ Rm,
which can be considered as the coordinate of the projection along the direction
given by U. Note that Var(Z) = U�SU, where S is the covariance matrix. Our
purpose is to find the leading k-dimensional subspace such that the projection
of the data onto the subspace has the largest variance. The problem could be
formulated as follows:

max
U∈Rm×k,U�U=I

‖U�SU‖ = αGU�
GUG = αG, (2)

where αG are the leading eigenvalues of S and UG are the eigenvectors corre-
sponding to αG. Our aim is to minimize the distance between the global eigen-
vector UG that is computed as if all features were centralized together, and each
client’s Ui, as follows

min
UG,Ui∈Rm×k

dist(UG,Ui), for all i = 1, ..., p. (3)

We define the squared χ-distance [3] as the distance between UG and Ui by:

dist(UG,Ui) :=
m∑

j=1

k∑

h=1

((UG)j,h − (Ui)j,h)2

(UG)j,h + (Ui)j,h
, (4)
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where UG is the leading eigenvectors of the global covariance matrix S, and Ui

is the leading eigenvectors of each client’s (say i-th) local covariance matrix.

3.2 Local Power Method

Let us consider the data partition among p clients. In each client, we use power
iteration algorithm (also known as the power method) to produce the greatest
(in absolute value) eigenvalue of Ai = 1

fi
x�

i xi, and a nonzero vector ai, which is
a corresponding eigenvector of αi, i.e. Aiai = αiai. For l = 1, 2 · · ·L, each client
will compute locally until convergence by

al+1
i =

Aial
i

‖Aial
i‖

, (5)

where the vector al
i is multiplied by the matrix Ai and normalized at every

iteration. Throughout the paper, we use l ∈ [L] to denote local iterations and
reserve t ∈ [T ] to denote global rounds.

If al
i is an eigenvector of Ai, its corresponding eigenvalue is given by

αl
i =

Ai(al
i)

�al
i

(al
i)�al

i

, (6)

where al
i and αl

i represent the largest eigenvector and eigenvalue of the i-th
client, respectively.

3.3 Federated Communication

Each client uploads the eigenvector at
i and the eigenvalue αt

i to the central sever.
First, the server computes the weight ωi of each client. Then, the server merges
all clients’ results and computes the federated eigenvector ut

ωt
i =

αt
i∑p

i=1 αt
i

,ut = ωt
1a

t
1 + ωt

2a
t
2 + · · · ωt

pa
t
p, (7)

where ωt
i is the weight of the i-th client and ut is the shared projection feature

vector by merging all clients’ at
i’s.

3.4 Sever-Clients Architecture

All clients share parameters with the help of the central coordination server.
In our setting, this third-client coordinator can be trusted, which means that
it will honestly conduct the designated functionality and will not attempt to
breach the raw data of any clients. After adjusting the new parameters, this
federated-parameter is returned to all clients. Then, each client calculates locally
based on this new federated-parameter. Moreover, this “communication-and-
local-computation” cycle is iterative. The framework of this model is shown in
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Fig. 1. The framework of VFedPCA with central server.

Fig. 1. The algorithm is summarized in Algorithm 1. The key steps of this method
are as follows:

Local Training: All clients perform local power method independently. Each
client first calculates the covariance matrix A. Subsequently, the largest eigen-
vector a and eigenvalue α are calculated (see steps 4–10 of Algorithm 1);

Model Integration: The central server calculates the weight ωi occupied by
each client in the federated model by receiving the eigenvalue αi of each client,
and then combines the received eigenvector ai, i ∈ {1, · · · p}, to derive a feder-
ated feature vector ut, where the communication is cyclical (see steps 12–16 of
Algorithm 1);

Parameters Broadcasting and Updating: The central coordination server
broadcasts the aggregated parameters ut to the p clients. Each client updates
local eigenvector with the new returned federated feature vector ut (see step 17
of Algorithm 1). The advantage of this model is relatively more efficient, although
it relies on the help of the server which can be potentially malicious.

3.5 Local Power Iteration with Warm Start

The general power iteration algorithm starts with an initialization vector a(0),
which may be an approximation to the dominant eigenvector or a random unit
vector. Here, we initialize the algorithm from a “warm-start” vector a(0), which
is based on the federated vector from the previous communication round. It
is natural to reach convergence faster after consecutive iterations, which will
reduce the actual running time and improve the performance of the local power
iteration algorithm in Sect. 3.2. The algorithm is summarized in Algorithm2.
The main step is as follows:

Local Training: Each node uses the federated feature vector u as the initialize
value to perform local power method, then calculate the k + 1 to 2k eigenvector
a and eigenvalue α and send to the server (see steps 2–8 of Algorithm 2).
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Algorithm 1: VFedPCA Learning with Central Server
1 ⇒ Run on the i-th node

2 Input: Data {x1,x2, · · · ,xfi} ∈ Rn×fi belongs to client i
3 Output: Federated principal eigenvector u

4 Initial: Let x = 0, a
(0)
i ∈ Rn randomly

5 for l=1 to L do
6 while each client i, i = {1, 2 · · · p} do

7 al+1
i =

Aia
l
i

‖Aia
l
i‖ , αl

i =
Ai(a

l
i)

�al
i

(al
i)

�al
i

8 end

9 Send (αl
i,a

l
i) to the central server.

10 end
11 ⇒ Run on central coordination server
12 for t=1 to T do

13 Receive (αt
i,a

t
i) = (αl

i,a
l
i) from n clients

14 for i = 1 to p do
15 ωt

i ← αt
i and ut ← Merge(ωt

i ,a
t
i) by eq.(7)

16 end
17 Broadcast and update eigenvector ut ← ut+1

18 end

This method considers the use of an adaptive loop idea which allows com-
munication between clients to reduce the error to a certain extent, especially for
the case where the error between the general federated result u and the global
result uG is large.

3.6 Weight Scaling Method

The federated result may be sometimes not beneficial to all clients. In general,
the client with the larger eigenvalue has a greater influence on the federated
result, which hints a natural intuition that following the direction of the clients
with larger eigenvalues tends to reach the global consensus faster and costs less
communication rounds. Inspired by this intuition, we introduce a weight scaling
factor to further improve the federation communication. The improved weight
scaled federated average is formulated by

ut = (1 + ηt
1)ω

t
1a

t
1 + · · · + (1 + ηt

�p/2�)ω
t
1a

t
�p/2�

+ (1 − ηt
�p/2�+1)ω

t
1a

t
�p/2�+1 · · · (1 − ηt

p)ω
t
pa

t
p,

(8)

where
∑�p/2�

i=1 ηt
i =

∑p
i=�p/2�+1 ηt

i . In brief, we gradually increase the impact of
the first half of the clients with larger eigenvalues, while further decrease the
impact of the clients of the second half with smaller eigenvalues. The algorithm
is summarized in Algorithm 3. The main step is as follows:

Model Integration: The central server calculates the weight ωi occupied by
each client in the federated model based on the received eigenvalue αi of each
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Algorithm 2: Local Power Iteration with Warm Start
1 ⇒ Run on the i-th node

2 Initial: Let a
(0)
i = u -warm-start

3 for l=1 to L do
4 while each client i, i = {1, 2 · · · p} do

5 al+1
i =

Aia
l
i

‖Aia
l
i‖ αl

i =
Ai(a

l
i)

�al
i

(al
i)

�al
i

6 end

7 Send (αl
i,a

l
i) to the central server.

8 end

Algorithm 3: Weight Scaling Method
1 ⇒ Run on central collaborative server
2 for t=1 to T do
3 Receive αt

i,a
t
i from n clients

4 for i = 1 to p do
5 ωt

i ← αt
i by eq.(7), ηt

i = η
6 ut ← Merge(ηt

i , ω
t
i ,a

t
i) by eq. (8)

7 end

8 end

client, and then adds η parameter to further adjust the weight scale of each
client. Then, it combines the received eigenvector ai, i ∈ {1, · · · p}, to derive
a federated feature vector ut (i.e., steps 2–8 of Algorithm 3). This method is
especially suitable for situations where some clients have a larger weight in the
federated process.

3.7 Fully Decentralized Architecture

In this variant, we eliminate the need of the central server, where all clients
only share principal component parameters with each other, and compute the
results locally. The framework of this model is shown in Fig. 2. The algorithm is
summarized in Algorithm 4. The main step of this method is as follows:

Parameters Communication and Updating: Communication among clients
is connected and share intermediate results of the parameters αi and ai. Each
client obtains the extracted final data based on calculating the weights ωi’s
occupied by all clients and updates locally (see steps 3–5 of Algorithm 4).

This model circumvents the need for third-client agencies to help participants
further reduce some external risks, especially for two-client scenarios. However,
the principal components of all clients need to be calculated independently, and
the computing efficiency will be greatly affected.
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3.8 Complexity Analysis

In each client, let L be the total number of local iterations, which only depends on
the eigen-gap Δ after full passes over the data between the top two eigenvalues of
Ai. In Algorithm 1, let T be the total number of federated aggregations executed
by the server.

Theorem 1 (Local Iteration Complexity). After O( 1
Δ log n

ε ) steps, the local
power method can achieve ε-accuracy.

Fig. 2. The framework of fully decentralized (peer-to-peer) VFPCA learning

Algorithm 4: Fully decentralized VFedPCA learning
1 ⇒ Run on the i-th node
2 Parameters communication between connected clients
3 for i = 1 to p do

4 ωl
i ← αl

i, a
l ← Merge(ωl

i, a
l
i)

5 Update eigenvector al
i ← al

6 end

Remark 1. We show the proof in the appendix1. According to Theorem 1, the
normalized iterate Aia

l
i

‖Aial
i‖

is an ε-accurate estimate of the top principal compo-

nent. Hence, the total local power iterations complexity is O( 1
Δ log n

ε ).

4 Experimental Results

This section will empirically evaluate the proposed method. In the experiments,
we utilized four groups of real-world datasets: 1) structured datasets from differ-
ent domains [6]; 2) medical image dataset [24]; 3) Face image dataset [2]; 4) Gait
1 Link to Appendix: https://www.comp.hkbu.edu.hk/∼ymc/papers/conference/

wise21/appendix.pdf.

https://www.comp.hkbu.edu.hk/~ymc/papers/conference/wise21/appendix.pdf
https://www.comp.hkbu.edu.hk/~ymc/papers/conference/wise21/appendix.pdf
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image dataset [22]. The feature and sample size information of all datasets are
summarized in Table 2. In addition, illustrative images of the image dataset are
shown in Figs. 3, 4 and 5, respectively. In all experiments, we measure the com-
munication cost by calculating the bits of all the variables transmitted through-
out the algorithm execution. As a preliminary study, we set T = 1, i.e., one-shot
communication between the clients and the server, in our experiments, unless
otherwise stated.

4.1 Experiment on Structured Dataset

Semi-synthetic Datasets. We use 8 structured datasets from different
domains, which are the real data that are publicly available at the UCI Machine
Learning Repository [6]. We compare the communication cost and estimation
error by the different settings of p and l based on the feature-wise setting. We
change the number of partitions p= 3,5,10, p= 10,50,100, and the local iterations
l= 5,10,20, l= 50,100,200, and we vary the number of communication period to

Table 2. Summary of datasets

Dataset # of features # of samples

College 9 990

GlaucomaM 54 196

PimaIndiansDiabetes 33 351

Musk 166 476

Vehicle 18 846

Sonar 60 208

Swarm 2400 2000

TCGA 20500 800

DeepLesion 262144 100

Face 10000 225

CASIA 65536 240

Fig. 3. The DeepLesion dataset. Fig. 4. The YaleFace dataset
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Fig. 5. The CASIAGait database.

t= 5, t= 10. The number of each client’s features is split and configured accord-
ing to the different settings of p.

Communication Cost and Estimation Error In this part, we simulate the
communication between the clients and the server on a single machine, where
the CPU time are wall-clock time.

– The effect of local feature size. In Fig. 6, we fix l= 10 and l= 100 but
change the number of involved clients p= 3, 5, 10 and p= 10, 50, 100. Then,
we plot the distance error and the running time cost between the global
eigenvector and the federated eigenvector with the different partitions p. In
all experiments, compared with the un-communicated situation, the distance
error after the communication has been significantly reduced and convergence
has been achieved. It can be observed that the smaller p will lead to less
communication cost.

(a) t (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. The distance error (left vertical axis) and the running time (right vertical axis)
of Algorithm 1 with respect to the number of parties on structured datasets: (a) College,
(b) GlaucomaM, (c) PimaIndiansDiabetes, (d) Musk, (e) Vehicle, (f) Sonar, (g) Swarm,
and (h) TCGA, where l= 10, p= 3, 5, 10 for (a)–(f), and l= 100, p= 10, 50, 100 for
(g)–(h).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. The distance error (left vertical axis) and the running time (right vertical axis)
of Algorithm 1 with respect to the number of local iterations on structured datasets: (a)
College, (b) GlaucomaM, (c) PimaIndiansDiabetes, (d) Musk, (e) Vehicle, (f) Sonar,
and (g) Swarm (h) TCGA; For (a)–(f), p= 5, l= 5, 10, 20; for (g)–(h), p= 50, 100,
l= 50, 100, 200.

– The effect of local iterations. In Fig. 7, we fix p= 5 and p= 100, but
change the number of local power iterations to l= 5, 10, 20 and l= 50, 100,
200. Then, we plot the distance error and the running time cost between
the global eigenvector and the federated eigenvector with the different local
iterations l. All experimental results show that, after the communication, the
error eventually decreases and the algorithm converges. It can also be seen
that the result will remain stable when l is up to 20.

– The effect of warm-start power iterations. In Fig. 8, we fix p= 5 and
local power iterations l= 100. Then, we plot the distance error between the
global eigenvector and the federated eigenvector after communications t= 5.
Experimental results show the trend that the error further decreases and
converges.

– The effect of η. In Fig. 8, we fix p= 5 and local power iterations l= 100.
Then, we plot the distance error between the global eigenvector and the fed-
erated eigenvector after iterations t= 5, 10. Experimental results show the
trend that the error further decreases and converges compared with the one
without using the adjustment factor η.

(a) (b) (c) (d)

Fig. 8. The distance error of Algorithms 2 and 3 with respect to the number of local
iterations on structured datasets: (a) College, (b) GlaucomaM, where p= 5, l= 100.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. The final results of comparative experiment on image datasets: YaleFace
(center-light and surprised), CasiaGait (sequence 1 and 10) and DeepLesion, where
(a) PCA on the un-split data, (b) VFedPCA on the split data, (c) PCA on the isolated
data. Image segmentation (k = 10) results: (d) PCA on the un-split data, (e) VFedPCA
on the split data, (f) PCA on the isolated data.

4.2 Case Studies

Medical Image Dataset. The DeepLesion dataset [24] is a CT slices collec-
tion from 4427 unique patients, which contains a variety of lesions (e.g., lung
nodules, liver lesions). We selected 100 samples from the dataset and each image
is normalized to an 512 × 512 gray image. We set p= 8 clients, re-split the fea-
tures, and assign them equally to each client. We used the commonly clustering
method: k-means, with the number k= 20 of clusters.

Yale Face Dataset. We use the Yale Face Dataset [2], which contains 165
grayscale images of 15 subjects. Each subject configures 11 different facial expres-
sions and n= 15 samples for each facial expression, where each face image is nor-
malized to a 100×100 gray image and we set p= 10 clients. We use the k-means
with k= 10.

Gait Estimation. The CASIA is a gait database [22] for gait recognition,
including 20 persons. We have image sequences, 4 sequences for each of the three
directions and n= 20 samples for each direction, where each image is resized to
the 256 × 256 scale. We set p= 16 clients. We used the k-means with k= 10.

Comparative Results. We first perform PCA on image datasets.
Figure 9 (a)(b)(c) show that the final images after federating is almost the same
as the final images after un-split image data. Then, to further verify that the
final image results extract useful features, we also perform the clustering exper-
iment on the image dataset. Figure 9 (d)(e)(f) show the clustering result (also
known as image segmentation) after using the federated PCA method, which
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also shows improvement over the isolated PCA (i.e., independently run PCA on
splitted local datasets). It will help each client to further perform local training
tasks.

5 Concluding Remarks

In this paper, we have proposed VFedPCA algorithm, which can obtain a col-
laborative model that improves over the local models learned separately by each
client. Through extensive comparative studies on various tasks, we have verified
that the collaborative model achieves comparative accuracy with the centralized
model as if the dataset were un-splitted. In addition, we propose two strategies,
i.e., the local power iteration warm start method and the weight scaling method,
to further improve the performance and accuracy of the model. In terms of the
federated communication, the full decentralized model has lower communication
cost and more flexible application value.

From the practical point of view, it is not uncommon that there exists a non-
linear relationship between various data, especially for the image data, most
of which possess a non-linear relationship. Under the circumstances, the PCA
method which is essentially linear is inapplicable to find an appropriate repre-
sentative direction. In the future, we will therefore study the vertical federated
kernel PCA learning on datasets with the different types of non-linearity.
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