
Cost-Based Lightweight Storage
Automatic Decision for In-Database

Machine Learning

Shuangshuang Cui1, Hongzhi Wang1,2(B), Haiyao Gu1, and Yuntian Xie1

1 Harbin Institute of Technology, Harbin, China
{20S103244,wangzh,1190201423,1181400603}@stu.hit.edu.cn

2 Peng Cheng Laboratory, Shenzhen, China

Abstract. Storage structure decision for a database aims to automat-
ically determine the effective storage structure according to the data
distribution and workload. With the integration of machine learning and
database becoming closer, complex machine learning tasks are directly
executed in database, and need the support of efficient storage structure.
The existing storage decision methods are mainly oriented to common
workloads and rely on the decision of experienced DBAs, which has low
efficiency and high risk of error. Thus, an automated storage structure
decision method for in-database machine learning is urgently needed. We
propose a cost-based lightweight row-column storage automatic decision
system. To the best of our knowledge, this is the first storage structure
selection for machine learning tasks. Extensive experiments show that
the accuracy of the storage structure above 90%, shorten the task exe-
cution time by about 85%, and greatly reduce the risk of decision error.

Keywords: AI for DB · Row and column storage · Data partition

1 Introduction

In-database machine learning can lead to orders-of-magnitude performance
improvements over current state-of-the-art analytics systems [1]. Complex
machine learning tasks require efficient storage structures support. However,
The existing decision of storage structure mainly depends on experienced DBAs
[2], they make no quantitative analysis of the cost of the storage structures. It
is difficult for them to make sure that their experience is correct, and there is a
great risk of wasting resources and failing in the execution of tasks [3]. There is
an urgent need for a solution that can provide automatic storage structure deci-
sion for DBAs and even ordinary database users. There are three challenges: (1)
How to partition workloads to make feature extraction most efficient? (2) How
to establish a cost model for the storage structure? (3) How to select features
and collect relevant feature data efficiency?

– We propose a cost-based intelligent decision system for row and column stor-
age for machine learning in database. To the best of our knowledge, this is
the first storage structure selection system for machine learning (Sect. 2).

c© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 119–126, 2021.
https://doi.org/10.1007/978-3-030-90888-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_10

120 S. Cui et al.

– We propose a data partitioning algorithm for machine learning task load in
database, which is beneficial to increase the data scale in machine learning
and improve the accuracy of the model. (Sect. 3.1)

– We propose a feature selection method for machine learning load and a storage
engine performance acquisition algorithm, which can help inexperienced users
to efficiently decide the appropriate storage structure. (Sect. 3.2 to 3.3)

2 System Overview

The core problem of automating the decision on the least cost storage structure
is when and how to preprocess and extract features, and how to build the cost
model and apply it. We use the read and write execution time of the workload
as the cost parameter (Fig. 1).

Fig. 1. Workflow of row-column storage intelligent decision method.

Architecture. The goal of the row and column storage decision system is to
design the storage structure with the least cost for ML workload. The data
preparation module mainly includes data partitioning and feature selection. The
model application module is consists of module training and module adjusting.

Workflow. Too heavy machine learning workload can lead to efficiency prob-
lems. Thus, We first solve the data partitioning problem. As for the cost of
the row and column storage structure, the key problem lies in the extraction of
task features and generation of training data. We select five features that can
most affect the execution efficiency and explain the reason. We also design a
performance acquisition algorithm. Finally, the model is training.

3 Data Preparation

3.1 Data Partition

Since the excessive workload of machine learning in database, large-scale data
will cause efficiency problems if preprocessed directly. The data partitioning
algorithm can be specially oriented to non-uniformly distributed workload with
addition of weighting factors for attributes, It can add weights to the workload
according to the user’s specific attributes.

The main function of Algorithm 1 is deviding large-scale data. The key idea
of the algorithm is described as follows: First, get a certain m-dimension data

Cost-Based Lightweight Storage Automatic Decision 121

Algorithm 1. Data partition
input: T : the data table; K: the number of partition; Fi,j : the jthe element of the file

of i in F ; an: the weighting factor;Tm:m dimension data selected from T ;
Output: F :generated file;
1: n ← |T |
2: num ← n/k
3: Tm ← random(T,m)
4: for i : 1 → m do
5: for j : 1 → n do
6: Tm ← Tm ∗ an

7: end for
8: end for
9: for i : 1 → m do

10: for j : 1 → num do
11: Fi,j ← Tm[num ∗ i + j]
12: end for
13: end for
14: return F ;

from the table to get the n ∗m-dimension matrix. Then, calculate the N data of
each dimension of the m-dimension according to the weighting factor. According
to the result of the weighted calculation, we can get the n∗1-dimension weighted
result Tm. Finally, sort the result and divide it evenly into k areas.

Algorithm Complexity. The algorithm line 4–8 is executed m ∗ n times, and
the line 9–13 is executed m ∗ num times. So the total time complexity is O(n).

3.2 Feature Selection

To select the features that represent the cost of the storage engine’s selection,
we analyzed and validated data patterns and workload-related characteristics.
The influence of feature selection on performance prediction is shown in Table 1.

Table 1. Influence of feature selection on performance prediction.

(1) Key field size and non-key field size: The storage operates in blocks, and the
data size of single row affects the amount of data in a block.

(2) the number of fixed-length fields and variable-length fields: the database
system often has different processing methods for fixed-length fields and
variable-length fields, which will affect the performance prediction.

122 S. Cui et al.

(3) The number of rows involved in a single operation: The single-row amortized
performance of a batch operation in the storage engine is higher than that
of single-row operation.

3.3 Data Collection

The features we choose are the ones that most affect performance prediction,
so it is more difficult to capture. We develop the storage engine performance
data collection algorithm. Line 2–37 of the algorithm are executed in the row
storage database. In line 31–22, data schema is generated randomly and the
related performance data required are calculated. For each selected field, its type
is assigned randomly as fixed-length or variable-length. Its length is randomly
generated according to the following formula: x = x0 + Exponential(λ), where
x is the length to be defined for the field in the new table, and x0 is the length
of the field defined in the original table.

Line 11–15 and Line 20–24 calculate the key field size and non-key field size,
the number of fixed length field, and the number of variable length field of the
new data schema. Line 23 creates a new table based on the above information.
Line 24–30 executes m insertions and records the average insertion time. Line
31–36 executes k random look-up query statements, recording the number of
rows returned each time and query time.

Complexity Analysis. It is considered that the execution time of each query
operation is O(1), the total time complexity is O(n2).

4 Storage Decision Model

In the model application stage, there are two difficulties, i.e. how to establish a
cost model for the collected performance data and select an appropriate model
for training. We attempt to solve these problems in this section.

Cost Model. We use the performance data to train the cost model. We analyze
the performance data collected above and design the cost model. For a given
workload and data schema S, our model calculates the cost of row and column
storage respectively as shown below:

Costrow(S) = W1 ∗ Vrow−insert(S) + W2 ∗ Vrow−select(S)

Costcolumn(S) = W1 ∗ Vcolumn−insert(S) + W2 ∗ Vcolumn−select(S)

Where W1 denotes the number of insert in the workload, W2 denotes the
number of select in the workload, and Vx denotes the predicted value.

Model Training. The advantage of in-datdabase machine learning is efficient. It
requires the training process of cost model to be efficient while ensuring accuracy.
We chose XGBoost learners [4] to train the regression model, which is a tradeoff
between performance and prediction accuracy for lightweight.

1 a - total key field size; b - total non-key field size; c - the number of fixed-length
fields; d - the number of variable-length fields.

Cost-Based Lightweight Storage Automatic Decision 123

Algorithm 2. Storage engine performance data acquisition
input: Table: original data; n: the number of schema to be generated; m: the number

of insert; k: the number of select.
Output: Srow−insert: insert execution time in row; Srow−select: select e time in row

storage; Scolumn−insert: insert time in column; Scolumn−select: select time in column.
1: Srow−insert, Srow−select, Scolumn−insert and Scolumn−select ← ∅
2: for i : 1 → n do
3: a, b, c and d ← 0;
4: D ← ∅;
5: D ← D ∪ Table.KeyF ieldSet;
6: p ← randomInt(0, |Table.NonKeyFieldSet|);
7: A ← random select p elements from Table.NonKeyFieldSet;
8: D ← D ∪ A;
9: for each column Ci ∈ D do

10: Ci.type ← random select fromfixed − length, variable − length
11: if Ci.type == fixed − length then
12: c ← c + 1;
13: else
14: d ← d + 1;
15: end if
16: Ci.length ← random select from [Table.getF ieldLength(Ci),+∞);
17: if Ci ∈ Table.KeyF ieldSet then
18: a ← a + Ci.length;
19: else
20: b ← b + Ci.length;
21: end if
22: end for
23: create new table Table2 with D
24: timeInsert ← 0;
25: for j : 1 → m do
26: insert Table.row[j] into Table2;
27: timeInsert ← timeInsert + the execution time of line29;
28: end for
29: timeInsert ← timeInsert/m;
30: Srow−insert ← Srow−insert ∪ {(a, b, c, d, 1, timeInsert)}
31: for j : 1 → k do
32: random execute a select statement of SQL on Table2;
33: timeSelect ← the execution time of line35;
34: count ← the number of rows returned in line35;
35: Srow−select ← Srow−select ∪ {(a, b, c, d, count, timeSelect)}
36: end for
37: end for
38: repeat line2 to line37 in column − database
39: return Srow−insert, Srow−select, Scolumn−insert, Scolumn−select;

Loss Function. The loss function adopts the common loss function of XGBoost
model, and its general form is as follows:

Obj(t) =
n∑

i=1

l(yi, y
(t−1)
i + ft(xi)) + Ω(ft) + constant

124 S. Cui et al.

The first term describes the training error, and the l function is used to
measure the error between the predicted value and the true value. yi is the true
value, y

(t−1)
i is the predicted value of the model obtained from the previous t−1

rounds of training, and ft(xi) is the function to be trained in the t round.

Ω(f) = γT + 1/2λ‖ω‖2

Where T represents the number of leaf nodes, and ω represents the fraction
of leaf nodes. The model training objective requires that the prediction error
should be as small as possible.

Lightweight. To make the model more widely used, it is required that the model
must be lightweight and migratable. We package the two proposed methods, and
design the odbc interface, which can connect to database directly.

5 Experiments

5.1 Accuracy Evaluation

Table 2. Comparison of model accuracy.

Our model Reference model

Insert Select Insert Select

Row-oriented 95.04% 91.40% 97.25% 90.07%

Column-oriented 92.18% 96.77% 92.37% 93.65%

The experimental database is selected as OpenGauss1.1.0 [7]. The TPC-H public
dataset was selected as benchmark. accuracy = 1− (Vpredict −Vtruth)/Vtruth [8],
where the Vpredict is the time predicted. And the Vtruth is the value of execution
time of database feedback. The accuracy of our models are above 90% (Table 2).
We compare the accuracy with the model proposed Wei et al. [5]. Under the row-
oriented, the accuracy of our insert model is 2.21% lower than theirs. Because
they use LSM storage engine, which has superior write performance.

5.2 Feature Section Effectiveness Evaluation

We test five selected features to verify the validity of selected features. Due to
the length of the paper, the process of verifying the influence of “non-key field
length” on SQL execution time is listed. Under the premise of controlling a single
variable, we set the key field length = 16, the number of fixed-length fields and
variable-length fields = 5. We record the predicted value in row/column storage
with the change of non-key field length. The results are shown in Fig. 2.

Although the predicted time of each models somewhat fluctuates, it generally
increases with the augment of the length of non-key fields, because the storage
engine operates on a block, and non-key fields affect the size of single row data. It
affects the amount of data in a block which affects the execution time of the SQL
in turn. It meets the expectation of feature selection, and the feature extraction
time is the fastest while ensuring the model accuracy.

Cost-Based Lightweight Storage Automatic Decision 125

(a) insert under row model (b) select under row model

(c) insert under column model (d) select under column model

Fig. 2. The relationship between time predicted and non-key fields’ length

5.3 Compare the Applicable Workloads of Row/Column Model

Fig. 3. Insert and select execution time predicted of row and column storage structure

We design the experiment repeats 100 times. Each time randomly generating
data schema features, and comparing the predicted time values given by the row
and column storage model.

The results (Fig. 3) show row storage require less execution time and pre-
dicted results more consistently under the vast majority of insertion and selec-
tion loads. This fully demonstrates the importance and necessity of analysing
the storage cost quantitatively.

5.4 Comparisons on Various Workloads

The experimental results were normalized, and the experimental results were
shown in Fig. 4.

126 S. Cui et al.

Under transactional and transactional mixed workloads, row storage is
selected according to experience, and the model recommendation structure is
consistent with experience. Under analytical and analytical mixed workloads,
the application of the model recommendation structure will result in approxi-
mately 85% performance improvement.

Fig. 4. Performance comparison between the storage structure selected in experience
and the storage structure recommended by the model under different workloads.

6 Conclusions

This paper proposes a cost-based intelligent decision for row-column storage,
so that the database can efficiently choose a storage structure suitable for the
data even when the performance of the database is unknown. From experimen-
tal results, using the method proposed in this paper to determine the storage
structure can shorten the task execution time by about 85%, greatly reduce the
risk of decision errors, and greatly improve the efficiency of task execution. In
the future, we plan to verify our proposed algorithm on more row and column
storage databases to further enhance the generalization ability of the model.

Acknowledgements. This paper was supported by NSFC grant (U1866602,
71773025). The National Key Research and Development Program of China
(2020YFB1006104).

References

1. Olteanu, D.: The relational data borg is learning. PVLDB 13(12), 3502–3515 (2020)
2. De Marchi, F., Lopes, S., Petit, J.-M., Toumani, F.: Analysis of existing databases

at the logical level: the DBA companion project. ACM SIGMOD Rec. 32(1), 47–52
(2003)

3. Park, Y., Zhong, S., Mozafari, B.: Quicksel: quick selectivity learning with mixture
models. In: Proceedings of the 2020 SIGMOD (2020)

4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD (2016)

5. Wang, H., Wei, Y., Yan, H.: Automatic storage structure selection for hybrid work-
load (2020)

	Cost-Based Lightweight Storage Automatic Decision for In-Database Machine Learning
	1 Introduction
	2 System Overview
	3 Data Preparation
	3.1 Data Partition
	3.2 Feature Selection
	3.3 Data Collection

	4 Storage Decision Model
	5 Experiments
	5.1 Accuracy Evaluation
	5.2 Feature Section Effectiveness Evaluation
	5.3 Compare the Applicable Workloads of Row/Column Model
	5.4 Comparisons on Various Workloads

	6 Conclusions
	References

