
Crowdsourcing Software Vulnerability
Discovery: Models, Dimensions, and Directions

Mortada Al-Banna1(B), Boualem Benatallah1, Moshe C. Barukh1, Elisa Bertino2,
and Salil Kanhere1

1 UNSW, Sydney, Australia
m.al-banna@unsw.edu.au

2 Purdue University, West Lafayette, USA

Abstract. Software systems prove indispensable amongst a variety of fields.
With our increasing reliance on them coupled with their heightened complex-
ity, the demand for protection increases as well. In this article, we explore how
crowdsourcing could be used for vulnerability discovery. We examine the mod-
els of crowdsourcing that has been applied in vulnerability discovery, identify
dimensions of this crowdsourced task, and discuss applicable concerns and future
research directions.

Keywords: Crowdsourcing · Security · Vulnerability discovery · Bug-bounty

1 Introduction

A vulnerability is a security flaw that arises from system design, implementation, or
maintenance (e.g., SQL injection vulnerability, and memory corruption vulnerability).
By exploiting these vulnerabilities, malicious parties could gain unauthorized access to
protected resources. Software systems are becoming increasingly complexwithmodern-
day development distributed across multiple heterogeneous, autonomous, and evolving
cloud services. Furthermore, the reliance on third-party software (e.g., cloud, open-APIs,
and external libraries) make it difficult for in-house IT experts to deal with inherent risks
of using external software. To overcome vulnerability issues, organizations rely on sev-
eral methods (e.g., automated tools, penetration testing firms, and crowdsourced vulner-
ability discovery). In this paper, we specifically examine how vulnerability management
can be improved with crowdsourcing.

Crowdsourcing harnesses the wisdom of large communities working independently
to solve problems, much as open source does for software development. Several crowd-
sourcing platforms have emerged like Crowdflower, Innocentive, TopCoder, Kaggle, and
uTest. Some platforms use crowdsourcing for tasks that require skilled workers (e.g.,
Web design, testing, Web development tasks, and R&D challenges).

In a crowdsourced vulnerability discovery program (also known as a bug bounty),
software providers (who could be the task requester here) submit vulnerability discovery
tasks to a community of security professionals (henceforth referred to as SecPros).

© Springer Nature Switzerland AG 2021
W. Zhang et al. (Eds.): WISE 2021, LNCS 13080, pp. 3–13, 2021.
https://doi.org/10.1007/978-3-030-90888-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90888-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-90888-1_1


4 M. Al-Banna et al.

SecPros play the role of the attackers and compete to discover and report vulnerabilities.
Software providers then evaluate the outcomes andmay reward SecPros that submit valid
vulnerabilities. Rewards can be monetary, gifts, reputation badges, etc. Crowdsourcing
vulnerability discovery could be considered economical compared to hiring full-time
SecPros or relying on penetration testing firms, giving its higher volume of output in a
shorter time [1]. It has been observed that malicious parties are more agile in exploiting
vulnerabilities than software providers are in repairing them1. It thus makes sense to
harness the power of a crowd of SecPros to discover vulnerabilities as quickly as possible
following what Linus’ Law stated, “given enough eyeballs, all bugs are shallow” [2].
Additionally, diversity in expertise of SecPros is also highly desired. Empirical studies
have confirmed that SecPros with different backgrounds, skills and interests tend to
discover different vulnerabilities [3].

Previous research has investigated crowdsourcing models and dimensions in general
areas like software engineering [4]. Crowdsourcing vulnerability discovery differ from
general crowdsourcing in the following (i) tasks are open-ended, as the requester does
not know how many vulnerabilities will be discovered (ii) although it is competition
based crowdsourcing but there may be multiple winners; (iii) the crowd participants
need to possess very specific and specialized skills compared to participants in general
crowd tasks; (iv) tasks (and data) are by nature very sensitive and require special agree-
ments regarding privacy, intellectual property and data protection; (v) some commonly
used quality assurance techniques, such as redundancy or voting, do not make sense, as
information about vulnerabilities are sensitive and remains so until the vulnerability is
remediated; and (vi) rewards are different since there might be different tiers for rewards
tailored according to the severity of the vulnerability (e.g., high severity vulnerabilities
pay higher reward). Previous research has found that the lack of knowledge tomanage the
task is one of the pre-adoption concerns that organizations have in regard to crowdsourc-
ing vulnerability discovery [5]. This article provides an understanding of crowdsourced
vulnerability discovery. We identify crowdsourcing models and key dimensions to char-
acterize vulnerability discovery tasks. We also discuss future research directions, that
we believe will help in the advancement of the field.

2 Models for Crowdsourcing Vulnerability Discovery

The concept of crowdsourcing vulnerability discovery is relatively new. NetScape in
1995 launched the first official program2. Since then, several big companies (e.g.,
Google, Facebook, and Microsoft) have adopted the same concept and launched their
ownprograms.Moreover, several targeted crowdsourcing platforms for vulnerability dis-
covery have been established such as BugCrowd (bugcrowd.com), Cobalt (cobalt.io),
and Synack (synack.com). Additionally, cyber security competitions are regularly held
(Pwn2Own, Pwnium, and Pwn0rama). In the following, we examine the models that
involve responsible disclosure of vulnerabilities.Wedo not consider unregulatedmarkets
for vulnerabilities (e.g., Black, or Grey markets).

1 https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-thr
eat-report-july-2019-june-2020.

2 www.theregister.co.uk/2016/02/22/bug_bounty_feature.

https://www.cyber.gov.au/acsc/view-all-content/reports-and-statistics/acsc-annual-cyber-threat-report-july-2019-june-2020.
http://www.theregister.co.uk/2016/02/22/bug_bounty_feature


Crowdsourcing Software Vulnerability Discovery 5

2.1 Direct Vulnerability Discovery

In this model, the organization (software vendor or provider) makes an open call,
describes the scope and rules of the task. SecPros can then perform vulnerability testing
and submit a report describing the vulnerabilities they have discovered. The organiza-
tion then verifies the legitimacy of the submitted vulnerability reports and determines
the proper reward if any. In this model, there is no time frame for accepting submis-
sions (i.e., open duration), unless the organization decides to terminate the program or
migrate to another model. In this model, organization is fully responsible for managing
the crowdsourced vulnerability discovery program.

An example for direct vulnerability discovery programs is Mozilla bug bounty pro-
gram3. They provide monetary rewards ranging from 500 USD for medium vulnerabili-
ties to more than 10,000 USD for exceptional vulnerabilities. Mozilla also provides non-
monetary incentives such as expressing gratitude on the hall of fame. Mozilla SecPros
submit vulnerability reports directly to Mozilla and the Bounty Committee assesses the
legitimacy of the submission, determines the severity of the vulnerability and its eligi-
bility for reward. From the date of its initiation (in 2004) Mozilla bug bounty program
has paid out over 1.6 million dollars.

2.2 Platform Managed Vulnerability Discovery

This model is gaining increasing popularity. In this model, the platform providers (e.g.,
Bugcrowd, Cobalt, Synack, Hackerone and Bounty Factory) are responsible for man-
aging the community of SecPros to perform the task: providing reputation policies
to motivate SecPros (e.g., through gamification, badges), providing SecPros selection
strategies and communicating with them, providing guidance to both the organization
and SecPros, and managing rewards. Some platforms provide the choice of launching a
program for a certain period of time (e.g., before launching a new software product), or
keep the program running for an unspecified period.

An example of this model is Bugcrowd, which is a platform that was founded in
2012 and currently maintains a community of around 22,000 SecPros. Bugcrowd ranks
SecPros according to their performance, based on indicators such as number of discov-
ered vulnerabilities, quality of submitted reports and impact of discovered vulnerabili-
ties. The platform provides support for handling vulnerability report submissions (e.g.,
filtering ineligible reports, such as duplicate and out-of-scope vulnerabilities reports).
Bugcrowd also offers organizations the option to either run an on-going program (e.g.,
Heroku program), or a time-boxed program (e.g., Aruba Networks program), and to
define the criteria of selecting the SecPros to be invited to participate.

2.3 Cyber Security Contests

In this model, software providers, platforms or security concerned organizations submit
tasks for the discovery of vulnerabilities in a contest which is usually bound over a
short period of time and a certain location. SecPros submit discovered vulnerabilities to

3 www.mozilla.org/en-US/security/bug-bounty.

http://www.mozilla.org/en-US/security/bug-bounty


6 M. Al-Banna et al.

the organizers of the contest who will be responsible to assess submissions for validity
and to determine the winner of the contest (e.g., according to severity of discovered
vulnerabilities).

Pwn2Own is one of the most famous cyber security contests. It usually runs annually
in conjunction with the CanSecWest security conference. SecPros eligible to participate
must be registered and available on-site at the time of the contest. SecPros need to exploit
a series of undisclosed vulnerabilities to compromise a system (e.g., computer or mobile
phone). SecPros, participating in the contest, get quite the media cove rage and high
rewards (e.g., total prizes for Pwn2Own2017 were around 800,000 dollars).

Table 1. Dimensions for characterizing crowdsourcing vulnerability discovery

3 Dimensions of Crowdsourcing Vulnerability Discovery

To compare, contrast and appreciate the underlying design of each of the models, we
reviewed literature and the current implementations of crowdsourcing vulnerability dis-
covery and identified eight dimensions that characterize these models (as shown in
Table 1). We build upon other models that employ the use of crowdsourcing more
generally [4, 6]. The identified dimensions can be used to describe not only the current
models for crowdsourcing vulnerability discovery but also possible variations. Examples
for each model are illustrated in Table 2.



Crowdsourcing Software Vulnerability Discovery 7

3.1 Crowd Size

Greater number of participating SecPros means a higher probability that vulnerabilities
will be discovered and reported [2, 3]. The burden to manage the crowd and verify the
legitimacy of submitted vulnerability reports also increases [7]. In the direct model, the
potential number of SecPros participating is large since the task is open for everyone.
While for the platform managed model, the potential number is medium to small, since
the organization controls the number of SecPros invited to participate and is limited by
the size of the community maintained by the platform. On the other hand, in the contest
model the potential number of SecPros are small since it is restricted by the capacity of
the venue where the cyber security contest is held.

3.2 Incentives

It has been observed that the crowd is motivated by money, fame and glory, and passion
[6, 8, 9]. In the direct vulnerability discovery model, a combination of money, fame and
glory and passion is relied upon. SecPros, in addition to acquiring cash rewards, usually
are mentioned in the hall of fame or gratitude page (e.g., Facebook white hat program).
On the other hand, for the platformmanagedmodel,money and passion play an important
factor in motivating SecPros. Additionally, platforms tend to rely on gamifications and
ranking SecPros according to their contributions to increase the level of engagement
(e.g., Hackerone leader board). For the cyber security contest model, the most important
incentives are money, fame and glory since such contests often attract large attention
from the media compared to other models.

3.3 Duration of the Task

In the direct model, the task duration is not time-boxed and hence SecPros may submit
vulnerability reports at any time (ideally as soon as a vulnerability is discovered before
other SecPros). In the platform managed model, the organization has the choice of
running a time-boxed or open-ended program. Whereas, in the contest model the task
is time-boxed which may indicate that it is the fastest form, but sometimes SecPros
lean toward vulnerability hoarding (i.e., discovering vulnerabilities beforehand and not
disclosing them until the time of the contest). Google stated that one of the reasons
for terminating the Pwnium contest was to “remove the incentives for bug hoarding”4.
On the other hand, it has been discovered that running the task for longer time give
SecPros more time to discover vulnerabilities and potentially increase the number of
vulnerabilities submitted [3].

3.4 Task Context

To perform vulnerability discovery tasks, SecPros may require information to help
them on their quest (e.g., test dataset, instructions how to bypass a security mecha-
nism, or source code of the software). Information about the software and development
environment has been proven to be important to help SecPros to perform the task [9].

4 blog.chromium.org/2015/02/pwnium-v-never-ending-pwnium.html.

http://blog.chromium.org/2015/02/pwnium-v-never-ending-pwnium.html


8 M. Al-Banna et al.

In the direct model, the organization shares publicly available information. In the
platform managed model, the organization is more comfortable sharing information
(e.g., credentials to bypass web proxy, test accounts, access to staging environment),
especially if the vulnerability discovery program is private (i.e., could be visible only to
invited SecPros). In the contest model, little context (e.g., the software for testing and
general rules) is provided in the beginning (as the task information is available publicly),
but further information could be supplied on-demand to SecPros at the contest venue
(e.g., access to the system through the network, entry points that can be used to simulate
the attack). Task Management.

3.5 Task Management

Managing tasks includesmanaging vulnerability description reports (e.g., identifying out
of scope reports, identifying duplicates, storing reports securely), communicating with
SecPros (e.g., requesting clarification, requesting proof of concept), managing rewards
(e.g., payments to SecPros, managing the hall of fame and gratitude pages). In the direct
model, the organization is responsible for managing the task. In the platform managed
model, the task is managed by the platform. In the contest model, the task could be
managed by the organization, the platform or combination of both.

3.6 Selecting Security Professionals

Different vulnerability discovery tasks require that SecPros have different sets of skills,
knowledge, and expertise (e.g.,Web application vulnerabilities require knowledge about
the software itself, networking protocols,Web frameworks, and the types ofWeb vulner-
abilities). Hence, it is important to select qualified SecPros. Previous research identified
the indicators to the expertise of SecPros participating in the crowdsourced task of vul-
nerability discovery [10]. Also, it has been discovered that selecting SecPros with high
skill diversity help discover more diverse vulnerability types [8].

In the direct model, the SecPros self-select themselves, although organizations may
sometimes impose entry conditions (e.g., Mozilla bug bounty guidelines require that
no employee of the Mozilla foundation or affiliated service provider is eligible to par-
ticipate). Whereas, in the platform managed model, the platform maintains SecPros’
profiles including details provided by the SecPros themselves (e.g., certification, pub-
lic professional profiles) along with their ongoing platformmeasured performance (e.g.,
number of vulnerabilities discovered, ranking against other SecPros). Organizationsmay
invite SecPros within the community according to certain criterion (e.g., allow only the
top 100 ranked SecPros, allow only CISSP certified SecPros). In the contest model,
although SecPros self-select themselves to participate in the task, entry conditions may
be imposed (e.g., traveling to the contest location).



Crowdsourcing Software Vulnerability Discovery 9

3.7 Information Protection

Major privacy concerns arise when software providers are required to share data that is
needed for vulnerability discovery. Evenwhen providing anonymized (or synthetic) data,
it is still possible that sensitive data be leaked by mistake or inferred via aggregation and
correlation analysis. Other privacy threats may arise when the system has a vulnerability
that would grant access to private information (e.g., a software glitch in the bicycle-
sharing program Citi-Bike leaked customer details by accident, which led to a breach
of privacy policies). Vulnerability description reports need to be protected as well, since
their disclosure before discovered vulnerabilities are repaired could be damaging to
organizations.

In the direct model, organizations rely on special controls to protect sensitive data
from malicious attackers (e.g., automated tools to monitor access and report to internal
staff for response and encrypting or masking sensitive data). In the platform managed
model, since tasks are released to members of a closed community, all members of the
community must consent to the terms and conditions imposed by the platform before
participating in tasks. Moreover, since the number of invited SecPros is known, the
organizations can provide proxy access to the task environment and monitor all the
network traffic when SecPros are accessing the system in order to block any suspicious
activity. In addition, a staging environment could be used for vulnerability testing (e.g.,
Movember bug bounty program run with Bugcrowd allowed SecPros to access a staging
environment for vulnerability discovery). Similarly, in the contest model a prearranged
environment is setup and SecPros agree to the terms and conditions before participating
in tasks.

Intellectual Property leakage could result in the loss of competitive advantage, which
may in turn result in financial losses (e.g., leakage of IP cost Sony millions of dollars
in the latest Sony security breach incident). An organization may share sensitive intel-
lectual property (e.g., source code for review, or access to an unreleased application)
with SecPros. To protect IP, organizations in the direct model, limits access to public
and restricted information to avoid potential risks, albeit this comes at a cost of reduced
capabilities of the SecPros in performing vulnerability discovery. On the other hand, in
the platform managed model the platform may choose to only disclose to SecPros with
verified identities and backgrounds. In addition, SecPros are bound to sign nondisclo-
sure agreements (NDAs). Similarly, in the contest model, all SecPros need to register to
participate in the contest (i.e., verifying their identities) and sign NDAs before participa-
tion. Another possible solution to mitigate IP leakage is to split the task into micro tasks
(e.g., modules of the system to be tested for vulnerabilities). By having access to only
small chunks of code or modules of the software, SecPros will not be able to deduce
the overall functionality of the system. In a similar context, LaToza et al. suggested
a methodology to decompose programming work into micro tasks and found that the
benefit of decomposing the task outweigh the overhead [11].



10 M. Al-Banna et al.

Table 2. Examples of crowdsourcing vulnerability discovery models

3.8 Legal Terms

Relying on the crowd to discover vulnerabilities is governed by legal terms that represents
a contract between SecPros and organizations. Missing detailed legal terms would cause
inconvenience for both parties and it especially puts the SecPros at greater risks if the
task is governed by the anti-hacking laws only [12]. In the direct model, organizations
explicitly state legal terms as a binding contract (e.g., Microsoft have detailed legal
terms and conditions stating what are the SecPros authorized to do, the obligations of
the SecPro and what are the conditions in which Microsoft would take legal actions).
In the platform managed programs, the platform has legal binding terms in addition
to the legal terms the organization has (e.g., Hackerone has their own legal terms and
conditions and the organization running the program can add their own legal terms).
In the contest model, the organization and the SecPro will be under more specific and
direct legal contract (e.g., SecPros to sign agreements to be able to participate).

4 Discussion and Future Research Directions

Reflecting on the above analysis, we identify a range of possible future research
directions:

4.1 Improving the Quality of Vulnerability Tasks Descriptions and Reports

Ensuring the clarity and completeness of the task description is important to allow
SecPros to perform the task properly [13], platforms may employ machine learning



Crowdsourcing Software Vulnerability Discovery 11

models to assess task description quality regarding clarity, specificity and complete-
ness. This may involve textual analytics and machine learning algorithms that gauge the
effectiveness of crowd task postings. Additionally, the verification and repair of vulner-
abilities would be delayed if poorly written reports are submitted, as it would take more
time to identify and understand the problems. This is exemplified in an incident where a
SecPro exploited a vulnerability in Facebook to prove its legitimacy after being rejected
due to quality issues5.

It would also be interesting to investigate natural language processing (NLP) tech-
niques to review the submitted vulnerability reports, and to possibly provide warnings
or suggestions to improve the quality of the report prior to submission. One aspect worth
investigating is whether the vulnerability described in the submitted report is within the
scope of the task and notifying the SecPro before the report is submitted. This will min-
imize the number of invalid reports the organization may receive. Another interesting
approach would be to rely on the crowd to provide feedback and enhance quality, or
even to verify the legitimacy of the vulnerability reports. Allowing SecPros to assess
and comment on the reports could help improve the quality of the vulnerability reports.
In a similar context, Top-Coder relies on the crowd to provide code review for submitted
software6. In the same context but by different approach, Su and Pan proposed a platform
where administrators can collaborate on vulnerability report verification [14].

4.2 Protecting Against Intellectual Property Leakage

It is also important to investigate task decomposition techniques in order to ensure that
SecPros will not have full access to the source code, or full view of the functionality of
the software. However, an important challenge is to identify what types of vulnerabilities
could be discovered in isolation and which types require complete view of the source
code. As an example, buffer overflow and over-boundmemory reads could be considered
as vulnerabilities that could be discovered in isolationwhile business logic vulnerabilities
may not be that straightforward. Investigating the different types of vulnerabilities, and
how their discovery could be facilitated is an important research direction.

An additional interesting research direction would be to investigate what type of
vulnerability discovery model would be most suitable for the type of software being
tested. As an example, the direct model would bemore suitable for open-source software
since the IP leakage concerns would be minimized.

4.3 Crowdsourcing Vulnerability Discovery Quality Analytics

Although a wealth of information about SecPros and organizations are available (e.g.,
profiles, achievement portfolios, work history), most remains largely unharnessed.

Apossible research direction is tomodel and capture the SecPros’ behavioral patterns
as a summary in terms of both aggregated work metrics (e.g., reputation scores, aver-
age time spent on tasks, number of unaccepted vulnerability reports) and semantically

5 techcrunch.com/2013/08/18/security-researcher-hacks-mark-zuckerbergs-wall-to-prove-his-
exploit-works.

6 www.topcoder.com.

http://techcrunch.com/2013/08/18/security-researcher-hacks-mark-zuckerbergs-wall-to-prove-his-exploit-works/
http://www.topcoder.com


12 M. Al-Banna et al.

meaningful behavior categories (e.g., honest, deceiver or colluding). Recent empiri-
cal research has discovered various categories of crowd workers (e.g., ineligible, fast
deceivers, smart deceivers, gold start preys) [15].

In order to predict the quality of the vulnerability report, it is important to investigate
non-intrusive and statistical analysis techniques over the SecPros’ activity history for
given task types. A key issue that is not considered in existing techniques is uncertainty
related to predicting performance of new SecPros (i.e., cold start case). Relying on
indicators extracted from various sources (e.g., activities in SecPro communities like
BlackHat7, contribution to open-source projects in GitHub), it would be possible to
“predict” the quality of submitted vulnerability discovery reports anddetect themalicious
behavior of the SecPros.

Using dynamic access control based on the allocation of “roles” is an interesting
direction to investigate. For instance, a SecPro who is not known to a vulnerability
discovery platform is allocated to the “untrusted” role. Their trust level can increase as
the platform collects more information about them (e.g., task performance or reputation
in external platforms). Moreover, the trust level would also increase as the SecPros
improve their reputation score (e.g., discovering new vulnerabilities and disclosing them
responsibly, or acquiring some achievement on other platforms). On the other hand, if
SecPros did not adhere to the guidelines or best practices, then their trust would decrease.

Another interesting research direction is to investigate how to combine crowdsourc-
ing with machine automation to improve vulnerability discovery. Votipka et al. char-
acterized the process of vulnerability discovery [9]. A possible direction is investigate
which phases of the process will benefit from automation and which phases will be ben-
efit from human computation, as well investigation of hybrid (i.e., combing human and
machine computation [16]). As an example, tasks like information gathering and attack
surface detection can take advantage from automation. This can save time and effort for
SecPros who can focus on other tasks like vulnerability recognition.

5 Conclusion

There are several models for crowdsourcing vulnerability discovery and these mod-
els are characterized by different dimensions. Understanding the models and dimen-
sions for crowdsourcing vulnerability discovery helps practitioners make informed deci-
sions when adopting this approach. It also paves the way for researchers to conduct a
deeper investigation of the area if crowdsourcing is to have the same kind of impact in
vulnerability discovery that it has in other fields.

References

1. Finifter, M., Akhawe, D., Wagner, D.: An empirical study of vulnerability rewards programs.
In: Proceedings of the 22Nd USENIX Conference on Security, pp. 273–288 (2013)

2. Maillart, T., Zhao,M.,Grossklags, J., Chuang, J.: Given enough eyeballs, all bugs are shallow?
Revisiting Eric Raymond with bug bounty programs. J. Cybersecur. 3, 81–90 (2017)

7 www.blackhat.com.

http://www.blackhat.com


Crowdsourcing Software Vulnerability Discovery 13

3. Zhao, M., Grossklags, J., Liu, P.: An empirical study of web vulnerability discovery
ecosystems. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security - CCS 2015, pp. 1105–1117 (2015)

4. LaToza, T., van der Hoek, A.: Crowdsourcing in software engineering: models, motivations,
and challenges. IEEE Softw. 33(1), 74–80 (2016)

5. Al-Banna, M., Benatallah, B., Schlagwein, D., Bertino, E., Barukh, M.: Friendly hackers to
the rescue: how organizations perceive crowdsourced vulnerability discovery. In: Pacific Asia
Conference on Information Systems (PACIS) (2018)

6. Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. IEEE Eng.
Manag. Rev. 38(3), 38 (2010)

7. Laszka, A., Zhao, M., Grossklags, J.: BanishingMisaligned Incentives for Validating Reports
in Bug-Bounty Platforms, pp. 161–178. Springer, Cham (2016)

8. Zhao, M., Grossklags, J., Chen, K.: An exploratory study of white hat behaviors in a web
vulnerability disclosure program. In: Proceedings of the 2014 ACM Workshop on Security
Information Workers - SIW 2014, pp. 51–58 (2014)

9. Votipka, D., Stevens, R., Redmiles, E., Hu, J., Mazurek, M.: Hackers vs. testers: a comparison
of software vulnerability discovery processes. In: 2018 IEEE Symposium on Security and
Privacy (SP), pp. 374–391 (2018)

10. Al-Banna, M., Benatallah, B., Barukh, M.C.: Software security professionals: expertise indi-
cators. In: 2016 IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC), pp. 139–148 (2016)

11. LaToza, T.D., Ben Towne, W., Adriano, C.M., van der Hoek, A.: Microtask programming. In:
Proceedings of the 27thAnnualACMSymposiumonUser Interface Software andTechnology
- UIST 2014, pp. 43–54 (2014)

12. Gamero-Garrido, A., Savage, S., Levchenko, K., Snoeren, A.C.: Quantifying the pressure of
legal risks on third-party vulnerability research. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security - CCS 2017, pp. 1501–1513 (2017)

13. Zhao, M., Laszka, A., Grossklags, J.: Devising effective policies for bug-bounty platforms
and security vulnerability discovery. J. Inf. Policy 7, 372 (2017)

14. Su, H.-J., Pan, J.-Y.: Crowdsourcing platform for collaboration management in vulnerability
verification. In: 2016 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS), pp. 1–4 (2016)

15. Gadiraju, U., Kawase, R., Dietze, S.: Understanding malicious behavior in crowdsourcing
platforms: the case of online surveys. In: 33rd Annual ACM Conference on Human Factors
in Computing Systems, pp. 1631–1640 (2015)

16. Krivosheev, E., Casati, F., Baez, M., Benatallah, B.: Combining crowd and machines for
multi-predicate item screening. Proc. ACM Hum.-Comput. Interact. 2(CSCW), 1–18 (2018)


	Crowdsourcing Software Vulnerability Discovery: Models, Dimensions, and Directions
	1 Introduction
	2 Models for Crowdsourcing Vulnerability Discovery
	2.1 Direct Vulnerability Discovery
	2.2 Platform Managed Vulnerability Discovery
	2.3 Cyber Security Contests

	3 Dimensions of Crowdsourcing Vulnerability Discovery
	3.1 Crowd Size
	3.2 Incentives
	3.3 Duration of the Task
	3.4 Task Context
	3.5 Task Management
	3.6 Selecting Security Professionals
	3.7 Information Protection
	3.8 Legal Terms

	4 Discussion and Future Research Directions
	4.1 Improving the Quality of Vulnerability Tasks Descriptions and Reports
	4.2 Protecting Against Intellectual Property Leakage
	4.3 Crowdsourcing Vulnerability Discovery Quality Analytics

	5 Conclusion
	References




