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Abstract. ω-regular energy games are two-player ω-regular games augmented
with a requirement to avoid the exhaustion of a finite resource, e.g., battery or
disk space. ω-regular energy games can be reduced to ω-regular games by encod-
ing the energy level into the state space. As this approach blows up the state
space, it performs poorly. Moreover, it is highly affected by the chosen energy
bound denoting the resource’s capacity. In this work, we present an alternative
approach for solving ω-regular energy games, with two main advantages. First,
our approach is efficient: it avoids the encoding of the energy level within the state
space, and its performance is independent of the engineer’s choice of the energy
bound. Second, our approach is defined at the logic level, not at the algorithmic
level, and thus allows solving ω-regular energy games by seamless reuse of exist-
ing symbolic fixed-point algorithms for ordinary ω-regular games. We base our
work on the introduction of energy μ-calculus, a multi-valued extension of game
μ-calculus. We have implemented our ideas and evaluated them. The empirical
evaluation provides evidence for the efficiency of our work.

1 Introduction

Energy games model a requirement to avoid the exhaustion of an initially available
resource, e.g., disk space or battery capacity, and they have been studied extensively
in the context of verification and synthesis, e.g., [11,19–21]. They are formalized as
weighted two-player turn-based games with the quantitative objective to keep the energy
level, the accumulated sum of an initial credit and weights of transitions traversed thus
far, non-negative in each prefix of a play. As such, they induce a decision problem that
checks for the existence of a finite initial credit sufficient for winning, and an optimiza-
tion problem for the minimum initial credit. They may be viewed as safety games with
an additional quantitative objective. Nevertheless, they have also been generalized to
ω-regular games with energy objectives [20,21], which are the focus of our work.

The work [11] has introduced an upper bound c that specifies the maximal energy
level allowed to be accumulated throughout a play. Intuitively, c denotes the capacity of
the relevant resource. Given such finite bound c, ω-regular energy games can be reduced
to ordinary ω-regular games via a naive encoding: one may introduce new system vari-
ables that encode the energy level, and add the requirement that these variables always
represent a non-negative value. A major problem with this naive encoding approach
is that it blows up the state space by a factor of c, even when it is not necessary. For
illustration, assume the engineer sets an upper bound c, but the tightest bound sufficient
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for winning is c0 < c. The naive encoding will still consider log(c) additional Boolean
variables, although it is not required. Note that this scenario is realistic as it is difficult
to estimate the tightest energy bound sufficient for winning.

In this work, we present an alternative approach for solving ω-regular energy
games, with two main advantages. First, our approach is efficient: it avoids the
encoding of the energy level within the state space, and its performance is inde-
pendent of the engineer’s choice of the capacity bound c. Second, our approach
is defined at the logic level, not at the algorithmic level, and thus allows to solve
ω-regular energy games by seamless reuse of existing symbolic fixed-point algo-
rithms for ordinary ω-regular games.

Specifically, we introduce energy μ-calculus, a multi-valued extension of game
μ-calculus, μ-calculus over symbolic game structures [10,23,35]. Game μ-calculus
extends propositional logic with modal operators and least and greatest fixed-point
operators. For every ω-regular condition ϕ, there exists a game μ-calculus formula that
defines a symbolic fixed-point algorithm for computing the set of states that win ϕ [4].

Importantly, the standard game μ-calculus and our new energy μ-calculus share
the same syntax, but they differ in their semantics. While a game μ-calculus formula
characterizes a set of states, an energy μ-calculus formula, interpreted with an energy
bound c ∈ N, returns a function that maps states to {0, . . . , c} ∪ {+∞}. Intuitively,
whereas a game μ-calculus formula computes the set of winning states, an energy μ-
calculus formula computes a function that maps a state s to the minimal initial credit
with which the system can win from s, while keeping the energy level non-negative,
and further maps s to +∞ if no such initial credit exists.

Remark 1. Although we focus on bounded energy games, our approach can be used
to solve ω-regular energy games with no bound on the accumulated energy level (i.e.,
c = +∞). In the technical report [7], we show that every ω-regular energy game admits
a sufficient finite bound cf ∈ N that can be calculated from the game parameters. That
is, a bound cf for which, if the system can win from state s with a bound c = +∞,
then it can also win with the bound c = cf , and with the same initial credit. This fact is
independent of the use of energy μ-calculus.

We have implemented and integrated both methods, naive encoding and energy μ-
calculus, into Spectra, a specification language and GR(1) synthesis environment [1,
39]. GR(1) [10] is a popular assume-guarantee winning condition that, roughly speak-
ing, expresses the schematic requirement: “if assertions a1, . . . , am hold infinitely often,
then assertions g1, . . . , gn must hold infinitely often as well”. As GR(1) subsumes other
important ω-regular winning conditions, specifically safety, reachability, Büchi, and
generalized Büchi [29], our implementation allows us to empirically evaluate the effi-
ciency of our approach over different ω-regular energy games. Our implementation
of naive encoding employs the standard Binary Decision Diagram [16] (BDD) based
solver of Spectra. The efficient implementation of energy μ-calculus employs Algebraic
Decision Diagrams (ADDs) [8,27]. While BDDs symbolically represent assertions and
thus sets of states, ADDs extend BDDs to symbolically represent functions that map
states to values (in our case, to energy levels). Both are implemented in the CUDD
library [45].
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The remainder of the paper is organized as follows. In Sect. 2 we present an exam-
ple. In Sect. 3 we provide notations and relevant background. In Sect. 4 we present the
semantics of energy μ-calculus and our main theorem. In Sect. 5 we present an empir-
ical evaluation of our approach. Related work is discussed in Sect. 6 and Sect. 7 con-
cludes. Proofs for all claims and extended discussions appear in a technical report [7].

Fig. 1. An illustration of the energy augmented obstacle evasion example

2 An Illustrative Example

To demonstrate the differences between our approach and naive encoding, we consider
an energy augmented variant of the obstacle evasion specification, a popular benchmark
from the literature inspired by robotic mission planning [22,28,40]. Consider a single
cell sized robot (the system) and a 2 × 2 cells sized obstacle (the environment), both
moving on a 10 × 10 grid. The robot is smaller and more agile; it moves twice upon
each step of the obstacle. The obstacle chases the robot (always tries to get closer to it),
and the robot must evade the obstacle so that collision will never occur.

Importantly, in our energy augmented variant, the robot has a c-capacity battery.
A charger placed in cell (1, 1) can charge the battery by m energy units, and each
move of the robot consumes k energy units. Thus, in addition to satisfying the different
winning conditions we list below, the robot should behave such that its battery is never
empty, i.e., it keeps its energy non-negative at all times. See an illustration in Fig. 1,
and an excerpt of a Spectra specification in Listing 1. The full specification is available
from [2].

The above defines legal transitions for the players and thus defines a game structure
and a safety game. That is, a game in which as long as the environment takes valid tran-
sitions, the system must take valid transitions as well. Hence, the winning condition for
a safety game is merely (1) true. We further consider the following ω-regular winning
conditions that we formulate in Linear Temporal Logic [43] (LTL).

(2) F(a), where a is the assertion: the robot is at cell (10, 10). In words, the robot must
visit cell (10, 10).

(3) GF(a) where a is the assertion: the robot is at cell (10, 10). In words, the robot
must visit cell (10, 10) infinitely often.

(4)
∧4

i=1 GF(ai) where ai is the assertion: the robot is at the i-th corner. In words, the
robot must visit all grid corners infinitely often.
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(5) GF(b) → ∧4
i=1 GF(ai) where b is the assertion: the obstacle is at most 4 cells away

from the robot, and each ai is the assertion: the robot is at the i-th corner. In words,
if, infinitely often, the obstacle is close to the robot (4 cells or less), then the robot
must visit all corners infinitely often.

1 spec MovingObstacle
2

3 env Int(1..9)[2] ob; //obstacle’s location
4 env boolean obWait;
5 sys Int(1..10)[2] ro; // robot’s location
6

7 asm initiallyObstacleAtLowerRightCorner: (ob[0]=9) & (ob
[1]=9);

8 asm initiallyObWaitFalse: !obWait;
9 gar initiallyRobotAtZero: (ro[0]=1) & (ro[1]=1);

10

11 asm obWaitSwitches:
12 G (obWait -> next(!obWait)) & (!obsWait -> next(obsWait));
13 asm obstacleDoesNotMoveWhenWaits:
14 G obWait -> (next(ob[0])=ob[0] & next(ob[1])=ob[1]);
15 asm obstacleChasesRobot: // see full spec
16 asm ObstacleMovesToAdjacentCell: // see full spec
17

18 gar RobotMovesToAdjacentCell: // see full spec
19 gar RobotAvoidsObtacle: // see full spec
20 gar RobotDoesNotGetCaught: // see full spec
21

22 // Pay 5 energy units for every move of the robot
23 weight -5 ( ro[0]!=next(ro[0]) | ro[1]!=next(ro[1]) );
24 // Gain 35 energy units when moving to location (1,1)
25 weight 35 ( next(ro[0]=1 & ro[1]=1) );

Listing 1. Excerpt of Energy-enriched Obstacle Evasion specification in Spectra, with k = 5 and
m = 35.

Formulas (1)–(5) are instances of safety, reachability, Büchi, generalized
Büchi [29], and GR(1) [10] winning conditions, respectively, all of which are exam-
ples of ω-regular winning conditions.

Recall that we seek an efficient technique for solving ω-regular energy games that
enables the reuse of existing algorithms. We turn to discuss how our approach addresses
these two goals, using the energy-augmented obstacle evasion problem.

Efficiency of Energy μ-Calculus. In contrast to naive encoding, the algorithm that
an energy μ-calculus formula prescribes considers only the intermediate energy values
revealed during the computation. In particular, this implies that we avoid the encoding
of the energy levels within the state space. For illustration, with energy μ-calculus, each
of the energy-augmented obstacle evasion specifications employs a total of 17 variables,
excluding reachability (winning condition (2)) that employs 18 variables (all specifica-
tions are available from [2]). However, the naive encoding approach adds �log c� vari-
ables to the specification, on top of these 17–18 variables. Note that with our approach,
the number of variables is not dependent on the chosen bound c.
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Furthermore, the described feature reduces the size of the data structures the solver
employs. For illustration, assume that when solving the reachability game, some fixed-
point iteration of the algorithm constructs an ADD that maps a state s to the energy
value e. This means that, so far, the algorithm discovered that e energy units are suf-
ficient for reaching cell (10, 10) from s (ensuing iterations might improve this value).
The corresponding iteration of a naive-encoding-based solver will create a BDD that
accepts all valuations (s, e′), e′ ≥ e. Hence, naive encoding creates rather large BDDs
that depend on the energy bound, which is costly. In contrast, the size of the ADD we
use depends on the size of the range of the function it represents, i.e., we only consider
the actual energy values revealed during the computation.

Reuse of Existing Algorithms. In Sect. 4, we will prove that if a game μ-calculus
formula ψ solves games with an ω-regular winning condition ϕ, then when interpreted
according to the energy μ-calculus semantics, ψ computes a function that solves the
minimum credit problem for the energy augmented game. That is, a function that maps
a state s to the minimal initial credit with which the system wins from s.

To demonstrate this property, consider the Büchi condition GF(a) (winning condi-
tion (3) above). The following game μ-calculus formula solves Büchi games with target
states a:

(1)

That is, ψGF(a) computes the set of all states from which the system can enforce
infinitely many visits of the robot to cell (10, 10).

Relying on our main theorem, we replace each occurrence of the modal operator
in Eq. 1 with the new operator , and obtain the following energy μ-calculus formula
that solves Büchi-energy games with target states a:

(2)

That is, Eq. 2 defines the energy function that maps each state to the minimal initial
credit sufficient for the system to reach cell (10, 10) infinitely often, while keeping the
energy level non-negative.

Most importantly, the above formulas induce algorithms. Algorithm 1 is a symbolic
fixed-point algorithm that implements Eq. 1 according to the game μ-calculus’ seman-
tics following [10]. Likewise, Algorithm 2 is a symbolic fixed-point algorithm that
implements Eq. 2 according to the energy μ-calculus’ semantics. We see that energy
μ-calculus allows the seamless reuse of existing game μ-calculus formulas and thus
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automatically transforms the fixed-point algorithms they prescribe into algorithms that
take also the energy constraints into account. Indeed, our implementation, in Spectra,
takes advantage of this seamless reuse. We use the same template code for both imple-
mentations.

3 Preliminaries

We provide relevant and concise definitions that are sufficient for the readability of the
paper. Extended discussions and further definitions that are needed for the proof of our
main theorem are given in the technical report [7].

For a set of Boolean variables V , a state s ∈ 2V , is a truth assignment to V , an
assertion φ is a propositional formula over V , s |= φ denotes that s satisfies φ, and
V ′ denotes the set {v′ | v ∈ V} of primed variables. We denote by p(s) ∈ 2V′

the
primed version of the state s ∈ 2V , obtained by replacing each v ∈ s with v′ ∈ V ′. For
V =

⋃k
i=1 Vi and truth assignments si ∈ 2Vi , we use (s1, . . . , sk) as an abbreviation for

s1∪. . .∪sk. Thus, we may replace expressions, e.g., s ∈ 2V , s |= ϕ, p(s), and f(s) with
(s1, . . . sk) ∈ 2V , (s1, . . . , sk) |= ϕ, p(s1, . . . , sk), and f(s1, . . . , sk), respectively. We
denote by s|Z the projection of s ∈ 2V to Z ⊆ V , i.e., s|Z := s ∩ Z .

Games, Game Structures, and Strategies. We consider an infinite game played
between an environment player (env ) and a system player (sys) on a finite weighted
directed graph as they move along its transitions. In each round of the game, the envi-
ronment plays first by choosing a valid input, and the system plays second by choosing
a valid output. Each such step consumes or reclaims energy, according to the weight
function. The goal of the system is to satisfy the winning condition while keeping the
energy level non-negative, regardless of the actions of the environment.

Formally, an energy game is symbolically represented by a weighted game structure
(WGS) Gw, that extends a game structure (GS) G [10,42] with a weight function ws.
It consists of the following components:

• V = {v1, . . . , vn}: A finite set of Boolean variables.
• X ⊆ V: A set of input variables controlled by the environment player (env ).
• Y = V \ X : A set of output variables controlled by the system player (sys).
• ρe: An assertion over V ∪ X ′ that defines the environment’s transitions. The envi-

ronment uses ρe to relate a state over V to possible next inputs over X ′.
• ρs: An assertion over V ∪V ′ = V ∪X ′ ∪Y ′ that defines the system’s transitions. The

system uses ρs to relate a state over V and an input over X ′ to possible next outputs
over Y ′.

• ϕ: The ω-regular winning condition of the system.
• ws: a partial weight function, symbolically represented as pairs of the form (ρ, a)

where ρ is an assertion over V ∪ V ′, and a ∈ Z.

A state t is a successor of s if (s, p(t)) |= ρe ∧ ρs. The rounds of a game on Gw

form a sequence of states σ = s0s1 . . . called a play, which satisfies the following
conditions: (1) Consecution: for each i ≥ 0, si+1 is a successor of si. (2) Maximality:
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if σ is finite, then either it ends with a deadlock for the environment: σ = s0 . . . sk, and
there is no input value sX ∈ 2X such that (sk, p(sX )) |= ρe, or it ends with a deadlock
for the system: σ = s0 . . . sksX where sX ∈ 2X , (sk, p(sX )) |= ρe, and there is no
output sY ∈ 2Y such that (sk, p(sX ), p(sY)) |= ρs. A play σ wins w.r.t. ϕ if it ends in
an environment deadlock, or it is infinite and satisfies ϕ.

A strategy for the system player is a function gsys : (2V)+ × 2X → 2Y . Roughly
speaking, the system employs a strategy gsys to repeatedly choose outputs given the
sequence of states traversed so far, and a new input. A strategy gsys wins from state s
w.r.t. energy bound c if for any play σ from s, consistent with the strategy, (1) σ wins
for the system w.r.t. ϕ and (2) the energy level remains non-negative during the play,
given that whenever it exceeds the upper bound c, it is truncated to c. For a WGS, Gw,
we denote by W c

sys the set of all states s such that there exists a strategy gsys that wins
from s. We omit c and write Wsys in case of a GS G.

Game μ-Calculus over Game Structures. We consider the logic of the game μ-
calculus over GSs [10] below.

Definition 1 (game μ-calculus: syntax). Let V be a set of Boolean variables, and let
Var = {X,Y, . . .} be a set of relational variables. The formulas of game μ-calculus
(in positive form) are built as follows:

where v ∈ V ,X ∈ Var , and μ and ν denote the least and greatest fixed-point operators,
respectively.

We denote by Lμ the set of all formulas generated by the grammar of Definition 1.
We further denote by Lsys

μ (resp. Lenv
μ ) the subset of Lμ that consists of all formulas

in which the modal operator (resp. ) does not occur. We will refer to Lsys
μ (resp.

Lenv
μ ) formulas as sys-μ (resp. env -μ) formulas.

Given a game structure G = 〈V,X ,Y, ρe, ρs, ϕ〉 and a valuation E : Var → (2V →
{0, 1}), the semantics of a game μ-calculus formula ψ with variables from V , [[ψ]]GE ,1

is a subset of 2V . Intuitively, (resp. ) is the set of states from which the system
(resp. environment) can force reaching a state in ψ’s semantics in a single step. μ and
ν are the least and greatest fixed-points, respectively. For a complete definition of the
game μ-calculus semantics see, e.g., [10].

We say that a (closed) game μ-calculus formula ψ matches an ω-regular winning
condition ϕ, if for every GS G = 〈V,X ,Y, ρe, ρs, ϕ〉, [[ψ]]G = Wsys . That is, ψ com-
putes the set of states from which the system has a winning strategy. De Alfaro et al. [4]
have shown that every ω-regular condition ϕ has a matching formula ψ ∈ Lsys

μ .

BDDs and ADDs. A Binary Decision Diagram (BDD) [16] is a DAG representation of
an assertion. The non-leaves nodes of a BDD are labeled with variable names, and its
edges and leaves are labeled with true/false. A BDD B represents an assertion ρ if

1 If all of the relational variables in ψ are bound by fixed-point operators, i.e., ψ is a closed
formula, we may omit E from the semantic brackets.
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B’s accepting branches (i.e. branches that end with a true-labeled leaf) correspond to
the satisfying assignments of ρ. BDDs allow applying Boolean operators over assertions
efficiently, and further satisfaction queries [17].

An Algebraic Decision Diagram (ADD) [8,27] is a DAG representation of a func-
tion that maps states to values. ADDs differ from BDDs in that their leaves are labeled
with values from some domain (Z, in our case).

Our implementation of energy μ-calculus relies on the use of ADDs.

4 Energy μ-Calculus over Weighted Game Structures

We are now ready to introduce energy μ-calculus, the underlying novel logic behind
our efficient solution for ω-regular energy games. Energy μ-calculus is a multi-valued
extension of the modal game μ-calculus over GSs [10,23]. We define its syntax and
semantics, interpreted w.r.t. a finite upper bound c, and prove our main theorem: if ψ
matches an ω-regular condition ϕ, then with the energy μ-calculus semantics, ψ solves
energy ϕ-games.

Syntax of an Energy μ-Calculus Formula. Let Leμ denote the set of formulas gener-
ated by the following grammar:

Definition 2 (Energy μ-calculus: syntax). Let V be a set of Boolean variables, and let
Var = {X,Y, . . .} be a set of relational variables. The syntax of energy μ-calculus (in
positive form) is as follows:

where v ∈ V and X ∈ Var .

We denote by Lsys
eμ (resp. Lenv

eμ ) the subset of Leμ that consists of all formulas in

which (resp. ) does not occur. Further, let ψE ∈ Leμ denote the energy μ-calculus
formula obtained from ψ ∈ Lμ by replacing all occurrences of and with and

, respectively. Here, we focus on Lsys
eμ formulas as those solve energy ω-regular

games for the system.2

Lsys
eμ Semantics Overview. We now define the semantics of a formula ψE ∈ Lsys

eμ . ψE is
valuated w.r.t. a WGS Gw = 〈V,X ,Y, ρe, ρs, ϕ, ws〉, and a finite upper bound c ∈ N.
We write Gw(c) as a shorthand for the pair 〈Gw, c〉. The semantics [[ψE]]G

w(c) is an
energy function that maps states of Gw to initial amounts of credit.3 Hence, the range
of the function [[ψE]]G

w(c) is the set of energy credits E (c) := [0, c] ∪ {+∞}, and thus

[[ψE]]G
w(c) is an element of the set of energy functions EF (c) := E (c)2

V
.

To define the semantics [[ψE]]G
w(c) in a precise manner, we need to define the seman-

tics of the meet ∧ and join ∨ operators, and of the energy controllable predecessor
operator . We start with the meet and join operators.

2 For a discussion of Lenv
eµ we refer the reader to [7].

3 Assuming at this stage, for simplicity, that ψE has no free variables.
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Meet ∧ and join ∨ Semantics. The semantics of these operators is induced by a partial
ordering of EF (c), the set of energy functions, and a linear ordering of the set of c-
bounded energy credits E(c) = [0, c] ∪ {+∞}. For x, y ∈ E(c), we write x � y if
y ≤ x (equivalently, y = min{x, y}). Although seemingly unnatural, this design choice
is not only technically justified (as we shall explain later), but also intuitive, considering
our purposes, due to the next reasoning.

We study sufficient initial credits from the system’s perspective. Hence, the ≤-
smaller element y is preferable to the ≤-larger element x, and thus y is declared to
be �-larger. In particular, +∞ is the �-minimal (worst) element from the system’s per-
spective, as it indicates that no initial credit is sufficient for winning. In summary, x � y
if y is better (i.e. smaller) than x.

The ordering of E(c) transfers to EF (c). We say that f � g if for every state
s, f(s) � g(s) (iff f(s) ≥ g(s)). As for E(c), this definition matches the intuition
that g is better than f if it maps each state to a ≤-smaller credit. In particular, the
minimal (worst) element is the function that maps each state to +∞, denoted f+∞.
This function indicates that the system cannot win from any state, regardless of its initial
credit. Likewise, the maximal element is the function f0 defined by ∀s ∈ 2V(f0(s) =
0). Now, the meet ∧ (resp. join ∨) of two functions f and g is the maximal (resp.
minimal) function that is �-smaller (resp. �-larger) than f and g:

f ∧ g = h such that ∀s ∈ 2V(h(s) = max{f(s), g(s)}),
f ∨ g = h such that ∀s ∈ 2V(h(s) = min{f(s), g(s)}).

To avoid confusion, we clarify that max and min always relate to the natural ordering
≤. For example, max{1, 4} = 4. We shall use the notations max� and min� to denote
maximal and minimal elements w.r.t. the �-ordering.

Energy Controllable Predecessor Semantics. We turn to discuss the semantics of the
energy controllable predecessor operator . Recall that we aim to use Lsys

eμ formulas
to compute the minimal initial credits with which the system can win w.r.t. the given
ω-regular winning condition. Hence, given an energy function f , is the energy
function that maps each state s to the minimal credit with which the system can force
reaching a state t, in a single step, with energy level at least f(t). To define prop-
erly, first, we analyze the next restricted case. We consider a single possible transition
(s, t), and ask: if (s, t) is the ensuing step of the play, what credit is sufficient for the
system to take this step and end with energy level at least e = f(t)? We denote this
value by ECc(s, t, e), and note that it depends on the weight function ws, and on the
transition relations ρe and ρs, as follows:

• If (s, p(t|X )) �|= ρe, the step (s, t) is losing for the environment. Hence, all credits
are sufficient and thus ECc(s, t, e) = 0 in this case.

• If (s, p(t)) |= ρe ∧ ¬ρs, the step (s, t) is losing for the system. Hence, all credits are
insufficient and thus ECc(s, t, e) = +∞ in this case.

• If e = +∞, then no finite credit is sufficient. Hence, ECc(s, t, e) = +∞ in this
case.
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• If c+ws(s, p(t)) < e, then no c-bounded credit is sufficient to achieve energy level
at least e. Hence, ECc(s, t, e) = +∞ in this case as well.

• In any other case, any initial credit larger than e−ws(s, p(t)) is sufficient. Hence, in
any case not listed above, ECc(s, t, e) = max{0, e−ws(s, p(t))}.

The above single-step analysis enables us to define properly. For a state s, we
consider all possible inputs. For each input tX ∈ 2X , we find the best possible output
tY ∈ 2Y , i.e. the output that minimizes ECc(s, t = (tX , tY), f(t)). Then, intuitively,
we define to be the value obtained by the best output for the worst input, as
we formally define below.

Definition 3 (Energy controllable predecessor operator). For all WGSs 〈G,ws〉,
upper bounds c ∈ N, energy functions f ∈ EF (c), and states s ∈ 2V ,

ECpresys(f)(s) := max
tX ∈2X

[ min
tY∈2Y

ECc(s, (tX , tY), f(tX , tY))]

where ECc : 2V × 2V × E (c) → E (c) and for all s, t ∈ 2V , and e ∈ E (c),

ECc(s, t, e)=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if (s, p(t)) �|= ρe

+∞, if (s, p(t)) |= ρe∧¬ρs,

or e = +∞,

or e−ws(s, p(t)) > c

max{0, e−ws(s, p(t))}, otherwise

Example 1. Consider the game structure depicted in Fig. 2, in which the environment
player controls variable x and the system controls variable y. Take c = 10 and g ∈
EF (c) such that4

g(!x, !y) = 0, g(x, !y) = 1, and g(x, y) = g(!x, y) = +∞.

What is ECpresys(g)(!x, y)?
There are two possible inputs, x and !x. For the input x we have:

• ECc((!x, y), (x, y), g(x, y) = +∞) = +∞.
• ECc((!x, y), (x, !y), g(x, !y) = 1) = 4.

And for the input !x:

• ECc((!x, y), (!x, y), g(!x, y) = +∞) = +∞.
• ECc((!x, y), (!x, !y), g(!x, !y) = 0) = 1.

Therefore,

ECpresys(g)(!x, y) = max{min{+∞, 4},min{+∞, 1}} = 4.

The value 4 is obtained as follows: the environment provides the input x, and thus
the system can choose between +∞ and 4. The system chooses the preferable
energy amount 4, and correspondingly outputs !y. Consequently, ECpresys(g)(!x, y) =
ECc((!x, y), (x, !y), g(x, !y) = 1) = 4.

4 Standardly, we use !x to denote that we assign the value false to x. Hence, as an example,
(!x, y) formally represents the state {y}.
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Semantics of a ψE ∈ Lsys
eμ formula. We are finally ready to define the semantics of

Lsys
eμ formulas.

Definition 4 (Lsys
eμ : semantics). The semantics [[ψE]]G

w(c)
D ∈ EF (c) of ψE ∈ Lsys

eμ w.r.t.
a WGS Gw = 〈V,X ,Y, ρe, ρs, ϕ, ws〉, a finite upper bound c ∈ N, and a valuation
D : Var → EF (c) over EF (c), is inductively defined as follows:5

• For v ∈ V , [[v]]Gw(c)
D = fv and [[¬v]]G

w(c)
D = f¬v where

fv(s) =

{
0, if s � v

+∞, if s � v
; f¬v(s) =

{
+∞, if s � v

0, if s � v
.

• For X ∈ Var , [[X]]G
w(c)

D = D(X).
• [[ψE

1 ∨ ψE
2 ]]

Gw(c)
D = [[ψE

1 ]]
Gw(c)
D ∨ [[ψE

2 ]]
Gw(c)
D .

• [[ψE
1 ∧ ψE

2 ]]
Gw(c)
D = [[ψE

1 ]]
Gw(c)
D ∧ [[ψE

2 ]]
Gw(c)
D .

• .

• [[
⎧
⎪⎪⎨

⎪⎪⎩

μ
ν

⎫
⎪⎪⎬

⎪⎪⎭

XψE
1 ]]

Gw(c)
D =

⎧
⎪⎪⎨

⎪⎪⎩

lfp
gfp

⎫
⎪⎪⎬

⎪⎪⎭

(λf.[[ψE
1 ]]

Gw(c)
D[X �→f ]) =

⎧
⎪⎪⎨

⎪⎪⎩

max�
min�

⎫
⎪⎪⎬

⎪⎪⎭

[hi],

where
⎧
⎪⎪⎨

⎪⎪⎩

h0 = f+∞
h0 = f0

⎫
⎪⎪⎬

⎪⎪⎭

, hi+1 = [[ψE
1 ]]

Gw(c)
D[X �→hi]

, and D[X �→ hi] denotes the valu-

ation that is like D except that it maps X to hi.

Note that the semantics is well-defined, as greatest and least fixed-points of
λf.[[ψE

1 ]]
Gw(c)
D[X �→f ] exist. This fact holds since Lsys

eμ formulas are monotone: if f � g,

then [[ψE]]G
w(c)

D[X �→f ] � [[ψE]]G
w(c)

D[X �→g].
As we mentioned earlier, we order E(c) and EF (c) by � (rather than by the seem-

ingly more natural ordering f ≤ g ⇔ ∀s ∈ 2V(f(s) ≤ g(s))) due to a technical
reason. This design choice maintains correspondence between the values of ψ ∈ Lsys

μ

and ψE ∈ Lsys
eμ . Importantly, it keeps the classification of μ and ν formulas as live-

ness and safety properties [12]. For illustration, for p ∈ V , consider the μ-formula
that matches the p-states reachability winning condition [29]. If

we had chosen to use ≤ instead of �, we would have needed to take the ν-formula
to solve energy augmented p-states reachability whereas, unnaturally,

the formula would match the p-states safety winning condition [29].
The ordering � enables our main result:

Theorem 1 (Lsys
eμ : correctness). Let ψϕ ∈ Lsys

μ be a closed formula that matches the
ω-regular winning condition ϕ of the WGS, Gw = (G,ws). Then, for all states s ∈ 2V :
(1) if [[ψE

ϕ]]
Gw(c)(s) �= +∞ then [[ψE

ϕ]]
Gw(c)(s) is the minimum initial credit for which

the system wins from s w.r.t. c inGw; (2) otherwise, s does not win for the system w.r.t. c.

Note that Theorem 1 solves the decision problem (s ∈ W c
sys iff [[ψE

ϕ]]
Gw(c)(s) �=

+∞), and the minimum credit problem (return [[ψE
ϕ]]

Gw(c)(s)).

5 We may drop the valuation D from the semantic brackets for closed formulas.
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Fig. 2. A weighted game structure. The environment controls variable x (red arrows), and the sys-
tem controls variable y (blue arrows). Edge-weights appear in parentheses. (Color figure online)

Complexity. A straightforward implementation of [[ψE
ϕ]]

Gw(c) gives an algorithm to
solve the decision and minimum credit problems in O((|2V |(c + 1))q) symbolic steps,
where q is the largest number of nested fixed-point operators in the energy μ-calculus
formula ψϕ. Nevertheless, using the techniques proposed in [14] and [24] for faster
computation of fixed-points, we can reduce this time complexity into O((|2V |(c +
1))	d/2
+1) symbolic steps, where d is the alternation depth of ψϕ.6 Although this
worst-case time complexity is equal to the time complexity of the naive encoding app-
roach, the evaluation we present in Sect. 5 shows that energy μ-calculus performs sig-
nificantly better.

We conclude this section with an example for a valuation of an Lsys
eμ -formula.

Example 2 Consider again the game structure depicted in Fig. 2. The environment
player controls variable x, and the system controls variable y. For illustration, from
state (x, y), the environment can provide both possible inputs, x and !x. The system has
no legal response for x (and thus it leads to a system-deadlock), but for the input !x, it
can respond with y, which consumes 1 “energy units”, but not with !y.

Consider the reachability winning condition with target !x∧!y. The game μ-calculus
formula that matches our winning condition is . We set an energy

bound c = 10, and following Theorem 1 compute . The
fixed-point valuation is presented in the following table.

6 The alternation depth [24,41] of a formula ψ ∈ Lµ is the number of alternations between
interdependent, nested least and greatest fixed-point operators in ψ. For the formal definition,
see, e.g., [29, Chapter 10].
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The computation reaches a fixed-point after three iterations, and thus g3 maps each
state to the minimal initial credit sufficient for the system to force reaching (!x, !y).
Note that the energy bound c = 4 is a sufficient bound and that W 4

sys = W 10
sys . Yet,

importantly, the unnecessarily high energy bound we chose, c = 10, does not cause an
overhead, and we did not perform additional redundant computations.

5 Evaluation

To evaluate our approach for solving ω-regular energy games, we implemented it in the
Spectra specification language and GR(1) synthesis environment [1,39], while model-
ing energy functions via ADDs, using the CUDD package [45].7

Adding support for energy μ-calculus in Spectra allowed us to evaluate our app-
roach over different types of ω-regular winning conditions, since the GR(1) winning
condition supported by Spectra subsumes safety, reachability, Büchi, and general-
ized Büchi. For illustration, GR(1) games are solved by the game μ-calculus formula

. A Büchi winning condi-
tion is a restricted GR(1) condition that merely requires: “g1 holds infinitely often”.
Thus, with m = 0 and n = 1, the GR(1) game μ-calculus formula is contracted into

, the game μ-calculus formula that matches the Büchi con-
dition (recall Eq. 1).

We consider the following research questions:

RQ1. Is our approach better than naive encoding in terms of performance?
RQ2. Is the performance of our approach affected by the chosen energy bound?

Below we describe the experiments we performed to address RQ1 and RQ2. All
relevant materials and means to reproduce the experiments are available in [2].

Corpus. Our corpus for the experiments includes two families of specifications. First,
we created specifications based on the energy augmented obstacle evasion problem we
described in Sect. 2. Recall that each movement of the robot consumes k energy units
and a charger in cell (1, 1) charges the robot by m units. For each of the winning condi-
tions from Sect. 2, safety, reachability, Büchi, generalized Büchi, and GR(1), and each
energy bound c = 102, · · · , 106, we created 30 realizable specifications by randomly
choosing values for the parameters k and m. As c gets larger, we considered more pos-
sible values for k and m and thus created specifications with larger weights.

Second, we created energy-augmented specifications based on the arbiter problem
from SYNTCOMP20.8 The basic arbiter (the system) grants requests from 10 different
clients (the environment). It can grant only a single request at each turn, and a request
remains pending until it is granted.

7 Our implementation, just like the standard realizability check of Spectra, uses the direct
O((|2V |(c + 1))q) time algorithm, rather than the O((|2V |(c + 1))�d/2�+1) approach. Note
that a recent evaluation shows that, in practice, the later induces only a minor improvement,
and can even be harmful for some instances [25].

8 2020 reactive synthesis competition http://www.syntcomp.org.

http://www.syntcomp.org
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On top of the basic specification, we impose the following energy weights. client0
is a preferable client. Hence, we penalize the arbiter by c energy units for the bad event:
postponing a request by client0. Furthermore, we penalize the arbiter by k energy units
for the bad event: postponing a request by client i, i > 0. Finally, we reward the arbiter
by m energy units for the good event: granting a request from any client. See an excerpt
of the Spectra specification in Listing 2. The full specification is available from [2].

1 spec Arbiter
2

3 env boolean[10] request;
4 sys Int(0..10) grant; //grant=10 denotes: no grant
5

6 asm reqUntilGrant: G forall i in Int(0..9) .
7 (request[i] & grant!=i) -> (next(request[i]));
8

9 gar NoVacousGrants:
10 G forall i in Int(0..9) . (grant=i) -> request[i];
11

12 // Pay 100 for forcing client 0 to wait
13 weight -100 (request[0] & grant!=0);
14

15 // Pay 10 for forcing any other client to wait
16 weight -10 (request[1] & grant!=1);
17 // ... repeated for each client from 1 to 9 - see full spec
18 weight -10 (request[9] & grant!=9);
19

20 // Gain 90 for every grant granted
21 weight 90 (grant!=10);

Listing 2. Energy-enriched Arbiter specification in Spectra, with c = 100, k = 10, and m = 90.

We remark that our arbiter specification demonstrates a usage of energy that may
seem different than the intuitive energy consumption and accumulation demonstrated in
our obstacle evasion example. Here we use energy to synthesize a controller that must
balance bad behaviors (that are perhaps unpreventable) with good behaviors. Otherwise,
the controller will run out of “energy”.

In addition to the basic safety arbiter specification (i.e., winning condition (1)
true), we consider the following instances of reachability, Büchi, generalized Büchi,
and GR(1).

(2) F(a) where a is: only client0 requests have been granted for 10 consecutive steps.
(3) GF(a) where a is: client0 does not request, or its request is granted.
(4)

∧9
i=0 GF(ai) where ai is: client i does not request, or its request is granted.

(5) GF(b) → ∧9
i=0 GF(ai) where b is: client0 does not request, and each ai is the

assertion: client i does not request, or its request is granted.

As in the obstacle evasion specifications, for each winning condition and energy
bound c = 102, . . . , 106, we created 30 realizable arbiter specifications by randomly
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choosing values for the parameters k and m. Again, as c gets larger, we considered
more possible values for k and m and thus created specifications with larger weights.

Table 1. A comparison of median realizability checking running times (sec.) for naive encoding
(NE) and for energy μ-calculus (EμC), over different ω-regular winning conditions and with
growing energy bounds.

Bound 102 103 104 105 106

Method NE EμC NE EμC NE EμC NE EμC NE EμC

Obstacle Evasion true 3.5 1.6 5.6 1.7 6.7 1.8 76.9 1.7 timeout 1.6

F(a) 1.3 0.6 1.8 0.4 3.0 0.4 58.0 0.4 timeout 0.4

GF(a) 27.3 23.3 89.7 16.2 72.2 16.0 213.1 16.6 timeout 17.6

∧4
i=1GF(ai) 17.4 10.0 45.6 10.1 34.7 7.4 147.8 8.3 timeout 7.8

GF(b) → ∧4
i=1GF(ai) 179.3 55.1 235.2 44.4 523.7 45.1 timeout 45.0 timeout 49.3

Arbiter true 0.1 0.1 0.2 0.1 1.1 0.1 45.8 0.1 timeout 0.1

F(a) 1.9 0.3 5.7 0.2 21.1 0.2 90.0 0.2 timeout 0.2

GF(a) 0.1 0.1 0.2 0.1 1.1 0.1 47.0 0.1 timeout 0.1

∧9
i=0GF(ai) 1.7 0.7 8.1 0.5 28.2 1.0 130.3 0.6 timeout 0.5

GF(b) → ∧9
i=0GF(ai) 0.3 0.1 0.5 0.1 1.5 0.1 53.3 0.1 timeout 0.1

Overall, our corpus includes 750 energy obstacle evasion specifications and 750
energy arbiter specifications.

Experiment Setup and Results. For each ω-regular winning condition (safety, reacha-
bility, Büchi, generalized Büchi, GR(1)) and for each energy bound (c = 102, . . . , 106),
we applied Spectra realizability check over the corresponding 30 specifications with
each of the two methods, naive encoding (NE) and energy μ-calculus (EμC). We used a
timeout of 10 min. We performed all experiments on a rather ordinary laptop with Intel
i7-9750H processor, 32GB RAM, running windows 10, using a single processor.

Table 1 reports the median running times we obtained (in sec.). Columns titled
NE present naive encoding results, and columns titled EμC present energy μ-calculus
results. For example, for the 30 obstacle evasion specifications with Büchi winning con-
dition and energy bound c = 105, the median running time of a realizability check is
213.1 s with naive encoding, and only 16.6 s with energy μ-calculus. Correspondingly,
the cell on row ‘Obstacle Evasion/GF(a)’, column ‘105/NE’ reads 213.1, and on row
‘Obstacle Evasion/GF(a)’, column ‘105/EμC’ reads 16.6.

To compute the median values, we assigned timeout executions with a distinguished
maximal value. Cells that read ‘timeout’ indicate that the distinguished maximal value
is the median value, i.e., at least 15/30 executions failed to return within 10 min.

Observations. To answer RQ1, we see that our approach outperforms naive encoding
by far. In all experiments, our approach presents better results than naive encoding,
sometimes by several orders of magnitude.

To answer RQ2, we see that with energy μ-calculus, the increase in the energy
bound had no effect on the performance of the realizability check. In contrast, with naive
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encoding, when increasing the bound, the realizability check is dramatically affected
and quickly becomes infeasible.

Overall, while the naive encoding method reached the 10 min timeout for 365 (of
the 1500) specifications, energy μ-calculus reached the timeout with only one of these
1500 specifications.

6 Related Work

Energy games were introduced in [19] and solved in [11,13,19]. To tackle ω-regular
energy games, Chatterjee and Doyen studied energy parity games [20]. Of these,
only [11] considers also a finite bound over the accumulated energy level, and none
provides an implementation or an evaluation. Interestingly, essentially, the algorithms
of [11,13,19] can be seen as a special case of our results, limited to safety games (i.e.,
applying the energy μ-calculus formula .

Multi-valued and quantitative extensions of the μ-calculus logic exist in the litera-
ture (e.g. [3,15,26,30,31]). Some extensions were introduced to solve generalizations
of ω-regular games: probabilistic concurrent ω-regular games [6], and imperfect infor-
mation ω-regular games [44]. Surprisingly, perhaps, none of these extensions subsumes
energy μ-calculus. Some do not consider edge-weights [15,30,31]. Moreover, rather
than addition of weights, the approach in [3] employs the max operator, and the app-
roach in [26] employs weight multiplication.

ADDs have been used for the analysis of probabilistic models (e.g., [5,9,32,36,
37]). ADDs have also been studied in the context of game solving: an ADD-based parity
solver is described in [18] and is implemented and evaluated in [33]; an ADD-based,
symbolic fixed-point algorithm for (safety-only) energy games appears in [38].

7 Conclusion

We presented efficient means to solve ω-regular energy games, which relies on energy
μ-calculus, a novel multi-valued extension of the modal game μ-calculus. Our tech-
nique avoids the encoding of the energy level within the state space, and allows the
reuse of existing algorithms that solve ω-regular winning conditions.

We have implemented our technique in the Spectra specification language and syn-
thesis environment. The experiments we presented provided evidence showing that
energy μ-calculus is an efficient and scalable technique for solving energy games.

Future Work. Game μ-calculus has not only been used to compute the sets of the win-
ning states, but also to synthesize winning strategies; see, e.g., [10,34]. Thus, in addi-
tion to solving the decision and the minimum credit problems, we believe that energy
μ-calculus can augment game μ-calculus-based strategy synthesis with energy. That is,
as future work, we consider how finite memory winning strategies may be extracted
from the intermediate energy functions of the fixed-point iterations.
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