
BanditFuzz: Fuzzing SMT Solvers
with Multi-agent Reinforcement Learning

Joseph Scott1(B) , Trishal Sudula1 , Hammad Rehman1 ,
Federico Mora2 , and Vijay Ganesh1

1 University of Waterloo, Waterloo, ON, Canada
{joseph.scott,trishal.sudula,harehman,vijay.ganesh}@uwaterloo.ca

2 University of California, Berkeley, USA
fmora@berkeley.edu

Abstract. We present BanditFuzz, a multi-agent reinforcement learning
(RL) guided performance fuzzer for state-of-the-art Satisfiability Mod-
ulo Theories (SMT) solvers. BanditFuzz constructs inputs that expose
performance issues in a set of target solvers relative to a set of reference
solvers, and is the first performance fuzzer that supports the entirety of
the theories in the SMT-LIB initiative. Another useful feature of Bandit-
Fuzz is that users can specify the size of inputs they want, thus enabling
developers to construct very small inputs that zero-in on a performance
problem in their SMT solver relative to other competitive solvers. We
evaluate BanditFuzz across 52 logics from SMT-COMP ’20 targeting
competition-winning solvers against runner-ups. We baseline BanditFuzz
against random fuzzing and a single agent algorithm and observe a sig-
nificant improvement, with up to a 82.6% improvement in the margin of
PAR-2 scores across baselines on their respective benchmarks. Further-
more, we reached out to developers and contributors of the CVC4, Z3,
and Bitwuzla solvers and provide case studies of how BanditFuzz was
able to expose surprising performance deficiencies in each of these tools.

1 Introduction

In recent years, efficient Satisfiability Modulo Theories (SMT) solvers have dra-
matically impacted many areas of software engineering and security. Applications
of these tools range from program analysis [13,19,24], synthesis [39,44], model
checking [1,14,26], test case generation [12], and neural network verification [25],
to name just a few.

With efficient SMT solvers being the catalyst for numerous developments
in academia and industry, there is an insatiable demand for evermore power-
ful solvers. To this end, researchers have spent decades optimizing these tools.
Regrettably, despite these advances, SMT solvers are prone to hard-to-find per-
formance deficiencies. While the worst-case complexity of the problems solved by

This work was supported in part by NSF grants CNS-1739816 and CCF-1837132, by
the DARPA LOGiCS project under contract FA8750-20-C-0156, by the iCyPhy center,
and by gifts from Intel, Amazon, and Microsoft.

c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 103–121, 2021.
https://doi.org/10.1007/978-3-030-90870-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_6&domain=pdf
http://orcid.org/0000-0002-4145-1612
http://orcid.org/0000-0002-1266-6673
http://orcid.org/0000-0001-5637-4325
http://orcid.org/0000-0002-0725-9213
http://orcid.org/0000-0002-6029-2047
https://doi.org/10.1007/978-3-030-90870-6_6


104 J. Scott et al.

SMT solvers can be very high, they can be frustratingly slow on relatively simple
formulas. Such performance deficiencies can be due to developer oversight (e.g.,
missing rewrite rules or unoptimized code and data structures) or the result
of hard-to-entangle interactions of solver heuristics. If solvers are to continue
to impact industry and fuel further research, it is imperative that there be an
initiative to find and eliminate such performance deficiencies where possible.

In this paper, we make a case for the use of software performance fuzzing [28,
45,47] to systematically find such deficiencies in state-of-the-art SMT solvers.
Software fuzzing techniques have had tremendous impacts in making SMT
Solvers more robust [7,10,34,48,49], and there is no reason why performance
fuzzers cannot have a similar impact. While it is still a relatively a new field,
performance fuzzing is already showing promise in many domains despite the dif-
ficulty of the problem of finding suitable inputs that expose performance issues
in programs-under-test [23,27].

This paper presents the BanditFuzz tool, a performance fuzzer that supports
the entirety of the theories in SMT-LIB. We define the notion of “performance
issue”, in the SMT solver setting, in a relative sense. That is, we say that solver
A is less performant on an input I relative to solver B, if solver B (that supports
the same input language as A) can solve I significantly faster. This is very nat-
ural, since if both solvers-under-test are not able to solve an input, it doesn’t
unambiguously point to a performance issue in either. However, when one solver
is significantly faster than a competing one on a given input, there is no question
that the slower solver has a performance issue.

How BanditFuzz Works: The input to BanditFuzz is a set of target solvers,
a set of reference solvers, and a constraint (e.g., size of input desired, the input
language of the solvers), and its output is a single benchmark or test input, such
that a quantity we refer to as the “performance margin” between the target
solver and reference solver is maximized (the tool is designed to be run over
multiple processes to create a benchmark suite). Intuitively, the performance
margin can be defined as difference between the runtimes (or PAR-2 scores [31])
of a target and a reference solver on a given input.

Internally, BanditFuzz uses a two-agent reinforcement learning (RL) method
to mutate a randomly-generated input such that over time the performance
margin between a target and a reference solver is maximized. More precisely,
first an input benchmark is randomly-generated and queried across all solvers.
One of the agents learns how to mutate a benchmark by inserting and replacing
the grammatical constructs of the SMT-LIB language, respecting the size con-
straints set forth by the user. More precisely, this agent manages an exploration
vs. exploitation trade-off between trying new grammatical constructs (explore)
vs. inserting ones that have been shown to increase the performance margin
(exploit). The other agent manages the exploration vs. exploitation trade-off
between generating new inputs (explore) or mutating the best-observed input
(exploit). Fuzzers, including single-agent RL fuzzers, are notorious for getting
stuck in local minima [16,17,29,41]. This two-agent RL method, by contrast,
may avoid getting stuck in local minima.



BanditFuzz: Fuzzing Solvers with RL 105

Contributions

Specifically, we make the following contributions in this paper:

1. BanditFuzz: A Multi-agent RL Performance Fuzzing Algorithm. To
the best of our knowledge, BanditFuzz is the first multi-agent RL performance
fuzzing algorithm for SMT solvers that supports the entirety of SMT-LIB.
The BanditFuzz tool includes two agents, one which learns how to mutate the
best observed input [42] and another to help prevent the tool getting stuck
in a local minimum (Sect. 3).

2. Empirical Evaluation. We provide an implementation of the performance
fuzzer BanditFuzz [42] and lift it to the entirety of the theories in the SMT-
LIB initiative, namely, Arrays, Bit-Vectors, Booleans, Floating-Point, Inte-
gers, Reals, Strings, Uninterpreted Functions, and all combinations thereof
in both quantified and quantifier-free logics (Sects. 3, 5, 6). To test Bandit-
Fuzz, we perform an extensive empirical evaluation across all 52 logics that
were tested in SMT-COMP ’20, with the aim of finding benchmarks where
competition winners are slow relative to runner up solvers. We provide to
the community a set of 1500 benchmarks across all logics, exposing relative
performance issues in state-of-the-art competition-winning SMT Solvers. To
validate the efficiency of BanditFuzz, we baseline it against random fuzzing
and observe BanditFuzz to consistently outperform random fuzzing by up to
a 82.6% increase in PAR-2 margins (Sects. 3 and 5).

3. Case studies of BanditFuzz with Solver Developers. To further demon-
strate the usefulness of BanditFuzz, we include three case studies of Bandit-
Fuzz being used by solver developers and contributors. Specifically, develop-
ers were able to use BanditFuzz to find performance issues in the Z3 [15],
CVC4 [3], and Bitwuzla [32,33] SMT Solvers (Sect. 3).

The rest of this paper is structured as follows: Sect. 2 provides the necessary
background on reinforcement learning, SMT, and software fuzzing. Section 3
gives a technical description of BanditFuzz. Section 5 describes how to use Ban-
ditFuzz, Sect. 6 gives an experimental evaluation of BanditFuzz over 52 from the
SMT-LIB community, Sect. 7 goes over case studies with solver developers using
BanditFuzz, Sect. 8 mentions threats to the validity of BanditFuzz, and Sect. 10
concludes the paper and discusses future work.

2 Background on Reinforcement Learning

In this section, we provide the necessary background and terminology of Rein-
forcement Learning, Satisfiability Modulo Theories, and Software Fuzzing for
this paper.



106 J. Scott et al.

2.1 Reinforcement Learning

There is a large literature on reinforcement learning and we refer the reader
to the book by Sutton et al., on this topic [46]. In RL, an agent navigates an
environment by taking actions to maximize the received reward. The multi-
armed bandit (MAB) problem is a well-known RL problem based on a Markov
Decision Process with a single state and a finite set of actions A. Since there is
only a single state, MABs can be solved using computationally cheap algorithms
relative to algorithms for other RL problems [46]. The agent solving the MAB
computes an approximation of the probability distribution of rewards R over
A. In the context of MAB, actions are often referred to as arms (or bandits).
The term ’bandit’ comes from gambling, as the arm or lever of a slot machine
is referred to as a one-armed bandit, and MABs refer to several slot machines.
The goal of the MAB agent is to maximize its reward by playing a sequence of
actions (e.g., selecting which band/lever to pull).

In practice, MAB problems are commonly modelled so rewards are sampled
from an unknown Bernoulli distribution (e.g., rewards are in {0, 1}). The MAB
agent attempts to approximate the expected value of reward from the Bernoulli
distribution for each action in A. Over time, the agent uses these distributions to
form a policy – a stochastic process of how to select actions from A. This policy
must remain privy to the exploration/exploitation trade-off, i.e., an MAB algo-
rithm selects every action an infinite number of times, but selects the action(s)
with the highest expected reward more frequently.

There are several algorithms for the MAB problem. In this paper, we exclu-
sively consider Thompson Sampling. In Thompson Sampling, an agent maintains
a Beta distribution for each action in the action space A. Beta distributions
are derived from Gamma distributions, and have a long history with numerous
applications. We refer the reader to Gupta et al. on Beta and Gamma distri-
butions [20]. In the context of Thompson Sampling, a Beta distribution acts as
continuous model of the expected value of a Bernoulli distribution. It is main-
tained by two shape parameters α the samples of 1, and β the samples of 0,
from the underlying Bernoulli distribution. The agent selects an action by sam-
pling each action’s Beta distribution and greedily picks the action based on the
maximum over the sampled values. Upon taking the action, α is incremented on
reward, otherwise β is incremented. For more on Thompson sampling we refer
to Russo et al. [40].

2.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) solvers are decision problems on first-order
theories such as integers, bit-vectors, arrays, floating-point, and strings that are
particularly suitable for verification, program analysis, and testing. The SMT-
LIB provides a standardized syntax and semantics for several first-order theories
and logics [4]. In this paper, we use the following acronyms (given in brackets),
optionally in combination, to refer to various SMT-LIB logics: Quantifier Free
(QF), Theory of Arrays (A), Uninterpreted Functions (UF), Bit-Vectors (BV),



BanditFuzz: Fuzzing Solvers with RL 107

Target Solvers

Reference Solvers

Generator
Constraints

BanditFuzz Architecture Diagram

Generate new
benchmark OR

Mutate best
observed?

Mutator

Generator
Agent

Agent

Target/Reference
Solvers

Performance
Analyzer

Benchmark

Agent Feedback Agent Feedback

Benchmark Suite

Fig. 1. Architecture Diagram of BanditFuzz. The BanditFuzz tool deploys two
unique agents: one is a mutator agent that learns how to mutate the best observed
input, while the other agent aims to assist in the prevention of getting stuck in local
minima. Both agents learn an action selection policy in a feedback loop based on the
empirically collected data over the course of running the target and reference solvers
over the generated benchmarks.

Floating-Point (FP), Strings (S), Integers (I), Reals (R), or mixed (IR). Further,
arithmetic over I and R can be linear (e.g., LIA, LRA), or nonlinear (e.g., NIA,
NRA), or difference logics (IDL, RDL). For combinations of such, their order
appears in the order they are written above. Each theory defines various oper-
ators/functions, predicates, terms, sorts, and generalized keywords (e.g., assert,
check-sat, Int, Float32). For a full list of these, as well as more details on syntax
and semantics, we refer to the SMT-LIB standard [4].

2.3 Software Fuzzing

Software fuzzing is a vast and active field of research. We refer to a recent survey
that provides an overview of the field [28]. A fuzzer is a program that automat-
ically generates inputs for a target program-under-test. A fuzzer is blackbox if it
does not have access to the program-under-test. Fuzzers that are model-based,
implement a generator which samples from the space of well-formed inputs. A
mutation is a mapping from the space of inputs to the space of inputs.



108 J. Scott et al.

3 BanditFuzz: A Multi-agent RL-Guided Performance
Fuzzer

In this section, we describe the BanditFuzz fuzzing framework. BanditFuzz lever-
ages reinforcement learning (RL) to guide a random fuzzer through a space of
inputs. The architecture of BanditFuzz is presented in Fig. 1.

BanditFuzz takes as input a set T of target solvers, a set R of reference
solvers and a set of constraints (e.g., size of the generated test input desired,
and the SMT language L of the solvers in T and R (we refer to this as Gen-
erator Constraints in Fig. 1), and outputs a benchmark I that maximizes the
performance margin between the solvers in T and R. The output of BanditFuzz
is a benchmark or benchmark suite.

3.1 The Performance Margin

Formally, BanditFuzz solves a search problem to find a solver input I over the
language L that maximizes the performance margin between T and R

max
I∈L

φ(T,R, I)

where φ is a scoring function. In this paper, we will exclusively consider a scoring
function of the PAR-2 score margin between the best performing target solver
and worst performing reference solver. More formally, we score each input I with
respect to T,R as follows:

φ(T,R, I) = min
t∈T

(PAR-2(t, I)) − max
r∈R

(PAR-2(r, I))

where the PAR-2 function returns twice the wallclock timeout if the solver fails to
solve the input, otherwise, the wallclock runtime. PAR-2 is a useful metric that
quantifies a tools’ performance over a benchmark suite and is used to deter-
mine winners in the SAT competitions [31]. These calculations correspond to
the ‘Performance Analyzer’ in Fig. 1.

3.2 BanditFuzz: The Multi-agent RL-Based Fuzzing Algorithm

This tool paper presents an implementation of the BanditFuzz algorithm with
three key improvements. First, BanditFuzz supports all theories in the SMT-LIB
standard [4] and all their combined corresponding logics. The action set of the
mutator agent is the set of grammatical constructs across all enabled logics.

The second major change is that this tool is now multi-agent. The BanditFuzz
tool includes a second agent to assist in preventing the tool from getting stuck
in local minima, which is a major problem in fuzzing in general [16,17,29,41]. A
key contribution of this paper is an additional agent with the following action
set: {Mutate the best observed benchmark, Randomly Sample from L}. The
previous approach had a fixed alternation scheme of randomly sampling and
mutating the best observed input, which posteriori, resulted in the algorithm



BanditFuzz: Fuzzing Solvers with RL 109

frequently getting stuck in local minima, as it is oblivious to all previously col-
lected empirical data. The second agent uses a similar reward signal if the most
recent benchmark improves on the best observed benchmark, reward is received,
otherwise no reward is received.

3.3 The Original BanditFuzz Algorithm vs. The Current Version

The original BanditFuzz fuzzing algorithm proposed by Scott et al. [42] is a
mutational fuzzer that leverages single-agent RL method to find performance
deficiencies in the quantifier-free floating-point and quantifier free-string logics.
Specifically, the original algorithm learns how to make a fuzzing mutation (i.e.,
a minimal modification to an input seed). The key differences between their
tool and the one presented here are the following: first, the current version of
BanditFuzz uses a multi-agent RL method that avoids getting stuck in local
minima that afflicted their tool, and second, the current version supports the
entirety of SMT-LIB, whereas the previous one only supported floating-point
and strings.

4 Implementation and Engineering

In this section, we discuss some of the implementation and the engineering
of BanditFuzz. The BanditFuzz tool is written in Python3 and contains 5,000
lines of code. BanditFuzz is lightweight with minimal dependencies and can be
installed in seconds.

Input/Output: Reference/Target solvers are provided to BanditFuzz as paths to
an executable file which acts as an interface to the solver. These executable
files will run internally within BanditFuzz during its main runtime loop. The
generator constraints are command-line arguments bounding formula sizes with
several theory specific constraints (e.g., bit-width, UF arity, etc.). The output of
BanditFuzz is a directory of benchmarks with timing and memory analysis. A
single run BanditFuzz will produce a single benchmark. To build a benchmark
suite, BanditFuzz can safely be run in parallel and tested on several major cloud
computing environments (e.g., AWS). We provide an interface that allows for
this to be done via the command line.

Generator: The generator module is responsible for producing well-formed SMT-
LIB inputs. Internally, BanditFuzz an Abstract Syntax Tree (AST) data struc-
ture to represent a benchmark. Each AST is asserted with root nodes of a boolean
sort and positive arity. Each AST is populated by randomly sampling from the
set constructs of the required sort with leaf nodes of variables or theory literals.
All ASTs are full with respect to the maximum depth specified by the user.

Mutator: A mutator is a python method that takes as input a benchmark and
a grammatical construct. The output is a perturbation of the input benchmark
that contains a novel occurrence of the input construct. The mutator works by
constructing the set nodes of the input construct’s sort and then uniformly at



110 J. Scott et al.

random replaces the selected construct with the input construct. The mutator
then applies a procedure to ensure the resulting benchmark remains well-formed
as the node replacement may result in an arity change. This is done by deleting
or generating new subtrees that are consistent with the generator constraints.
Like the generator, the resulting AST from the mutator is full with respect to
the maximum depth.

Agents: We use a context-free MAB approach in this paper for our agent, namely
Thompson Sampling. However, in principle, this can be lifted to several more
RL paradigms. Our agent implementation is lightweight and makes a single
external API call (i.e., the NumPy beta distribution sampling method [21]).
Furthermore, unlike several RL paradigms, our MAB solution only has a single
hyper-parameter, the exponential decay of the observed empirical mean.

Performance Analyzer: We include a performance analyzer to monitor the sub-
processes’ resource consumption (e.g., wall-clock runtimes and memory). Pro-
cesses are killed if they violate the user’s constraints. When calling solvers, tar-
get solvers are run first under the provided constraints. Afterward, reference
solvers are ran using a dynamic timeout scheme based best-observed perfor-
mance margin. This prevents wasting time on the reference solvers when it is no
longer possible for the current benchmark to have a higher margin than the best
observed.

5 Using the BanditFuzz Fuzzing Framework

In this section, we demonstrate how to use BanditFuzz. The BanditFuzz package
has two core tools:

– smtfuzz – A fuzzer (i.e., a tool that generates inputs to a program-under-
test) for all SMT-LIB theories. In principle, this fuzzer can be used in any
fuzzing context, but in this paper it is the core fuzzer in BanditFuzz’s fuzzing
algorithm.

– banditfuzz – An implementation of the BanditFuzz performance fuzzing
algorithm. This program calls smtfuzz in a loop and inherits all of its com-
mand line arguments.

5.1 Using smtfuzz

The smtfuzz tool generates random Abstract Syntax Trees (ASTs) based on the
enabled theories. smtfuzz is designed to be extremely flexible. Users can modify
the problem size easily by setting the --num-asserts and --depth parameters
to increase the number of assertions and size of each assertion respectively. The
generator in smtfuzz supports all core theories in the SMT-LIB initiative [4].
Each theory can be enabled by setting its respective flag. smtfuzz will auto-
matically set the problem’s logic based on the enabled theories (Table 1 and
Fig. 2).



BanditFuzz: Fuzzing Solvers with RL 111

Table 1. Sample of generator arguments for the BanditFuzz tool

Argument Description

--num-asserts Set the number of assertions in the generated benchmark

--depth Set the depth of each asserting AST

--num-vars The number of theory variables

-q --quantifiers Enable quantifiers

-a --arrays Enable arrays

-uf --uninterpreted-functions Enable uninterpreted functions

-str --strings Enable strings

-fp --floating-point Enable floating-point

-bv --bit-vectors Enable bit-vectors

-int --integer Enable integers

-r --real Enable reals

-8 -16 -32 -64 -128 -256 Bit width for bit-vectors and floating-point arithmetic

-l --linear Enforce integer and real constraints to be linear

$ smtfuzz -qf -bv -fp - uf --num-asserts 1 --num-vars 1 --num-ufs 1

(set-logic QF_UFBVFP)

(declare-const bool_0 Bool)

(declare-const fp_0 (_ FloatingPoint 8 24))

(declare-const bv_0 (_ BitVec 32))

(declare-fun uf_0 (Bool (_ BitVec 32) Bool Bool (_ FloatingPoint 8 24)) Bool)

(assert (uf_0 (fp.isPositive (fp.roundToIntegral RTZ fp_0)) (bvsub (bvsmod bv_0

#x2ad75270 ) (bvxnor bv_0 #x3a990975 )) (fp.isNaN (fp.abs fp_0)) (bvuge (bvor bv_0

bv_0) (bvnor #x0a1b63c9 #x52911167 )) (fp.roundToIntegral RTN (fp.neg (fp #b1

#b11110100 #b11000100101000110101000)))))

(check-sat)

(exit)

Fig. 2. Example usage of smtfuzz to generate a benchmark in the logic of QF UFBVFP

5.2 Using banditfuzz

The banditfuzz script is an implementation of the BanditFuzz algorithm and
uses smtfuzz as its primary fuzzer. Furthermore, it has four key additional
arguments:

1. --target-solvers – The set of executables that BanditFuzz will try to
expose relative performance deficiencies on.

2. --reference-solvers – The set of reference executables that BanditFuzz
will try to expose relative performance deficiencies with respect to.

3. --query-timeout – This parameter is the wallclock timeout of each query of
a solver on an input benchmark.

4. --global-timeout – This parameter is the global timeout of banditfuzz.
When this time is met, banditfuzz will return the benchmark that had
the highest performance margin between the target solvers and the reference
solvers.



112 J. Scott et al.

6 Empirical Evaluation

In this section, we present an evaluation of BanditFuzz vs. standard performance
fuzzing algorithms.

6.1 Experimental Setup

Experimental Objective: Here we describe our evaluation of BanditFuzz
against random fuzzing and previous similar work by Scott et al. [42]. The objec-
tive of the experiment is as follows: given the same amount of resources, which
of the three tools maximizes the performance margin for a given target solver
vs. a set of reference solvers over all the 52 logics used in SMT-COMP ’20.
For target solvers, we choose the most performant solvers from SMT-COMP ’20
competition, and as reference solvers we used the runner-up solver(s) from the
same track in the competition. In the case where a solver was not able to run in
our setup, often due to environmental hard-codings, we replace it with the next
most performant alternative.

Baselines: As baselines, we use random fuzzing (i.e., smtfuzz from Sect. 5 in
a loop) and the original performance fuzzer by Scott et al. [42] when possible
since it is limited to floating-point and string logics. While there are many other
fuzzers for SMT Solvers [10,34,48,49], they are mostly aimed at finding errors
and not performance issues.

Other general purpose fuzzers like AFL [52] and PerfFuzz [27] are built
around bit-string manipulation. We attempted to use these tools but, as we
suspected, neither were able to produce a well-formed input given significant
amounts of resources. Unfortunately, it is known that general purpose bit-string
fuzzers do not to scale to programs with strict grammars like SMT Solvers,
despite the fact that AFL has some capacity to add custom grammar [51].

Computational Environment: All experiments were performed on the Com-
pute Canada computing service [2], a CentOS V7 cluster of Intel Xeon Proces-
sor E5-2683 running at 2.10 GHz with 8 GB of memory. Wallclock runtimes are
rounded to the nearest second.

Generator: Fuzzers were set to generate benchmarks with 5 variables per sort,
5 assertions, and a maximum depth of 3 in logics that were neither just linear,
just arrays, bit-vectors, nor just uninterpreted functions. Otherwise 10 variables,
10 assertions, and depth 5 was used. We use bit-widths of 64.

6.2 Results

Using the aforementioned experimental setup, we evaluated BanditFuzz against
random fuzzing across 52 logics from the SMT-COMP ’20. Tables 2, 3 summa-
rizes our experimentation against random fuzzing across all 52. The first column
in these tables denote the logic of the experiment, the second and third column
denote the solver that was targeted and referenced respectively. The fourth and



BanditFuzz: Fuzzing Solvers with RL 113

fifth column denotes the cumulative PAR-2 margin across 25 runs of random
fuzzing and BanditFuzz respectively. The sixth column reports improvement
of BanditFuzz over random fuzzing based on the absolute difference between
their PAR-2 margins. We observe BanditFuzz to consistently outperform ran-
dom fuzzing across all 52, with up to a 82.6% improvement in PAR-2 margin in
the UFLIA logic.

To visually illustrate the benchmark testing suites generated by BanditFuzz,
we include a cactus plot on the highly industrial logic of QF BV in Fig. 3. A
cactus plot is a visualization of a solver’s performance on a benchmark suite the
X-axis represents the number of benchmarks solved and the Y-axis represents
time (in seconds) taken per benchmark. Every benchmark is the resultant of
run a complete run of the tool. In SMT-COMP ’20, the SMT Solver Bitwuzla
had a strong performance, winning numerous gold medals including the QF BV
track over competing solvers CVC4, Z3, MathSAT, and Yices. However, the
cactus plot clearly shows that Bitwuzla is least performant on the benchmarks
produced by BanditFuzz by an extremely large margin.

In Table 4, we further compare against previous work by Scott et al. [42]. We
baseline BanditFuzz against this work on the only two logics it supports, QF S
and QF FP. We observe that BanditFuzz consistently outperforms against the
baseline and achieves a maximum possible score in both logics, while the baseline
fails to do so.

7 Case Studies with Solver Developers

In this section, we provide some case studies of BanditFuzz and how it enabled
developers to find surprising performance deficiencies in state-of-the-art SMT
solvers.

7.1 CVC4, Bitwuzla, and SymFPU

We contacted the developers of CVC4, Bitwuzla, and the SymFPU bit-blaster [9]
for floating-point problems. While CVC4 and Bitwuzla have significantly dif-
ferent underlying bit-vector engines, they both utilize the SymFPU tool for
bit-blasting floating-point operations. To this end, we proposed an experiment
where we target both CVC4 and Bitwuzla (the target solvers) against Z3 (the
reference).

The resulting benchmarks showcase performance issues in the SymFPU bit-
blaster and possibly the CVC4 and Bitwuzla solvers themselves. We ran an
analogous experiment to what was described in Sect. 6, with a 2400 s wallclock
timeout over a 24 h period. BanditFuzz produced 25 benchmarks that signifi-
cantly separated Bitwuzla and CVC4 from Z3 on the logic of QF FP. On these
benchmarks that BanditFuzz produced, Z3 had a PAR-2 score of 3,018 s, while
CVC4 and Bitwuzla had 91,408 s and 120,000 s respectively1.

1 BitwuzlatimedoutonallbenchmarksproducedbyBanditFuzz.



114 J. Scott et al.

Table 2. Table of results comparing BanditFuzz to Random fuzzing across logics of
SMT-COMP ’20. The improvement column is the percentage improvement of Bandit-
Fuzz over Random Fuzzing. Rows are sorted alphabetically by logic.

Logic Target Reference PAR-2 performance margin

improvement on

Random BanditFuzz Baseline [%]

ABVFP CVC4 Z3 2, 716 5, 579 105

ABVFPLRA CVC4 Z3 21, 376 60, 000 181

ALIA CVC4 Z3 4, 238 11, 340 168

ANIA CVC4 Z3 34, 883 60, 000 72

AUFLIA CVC4 Z3 34, 229 60, 000 75

AUFLIRA CVC4 Z3 7, 650 30, 428 298

AUFNIA CVC4 Z3 279 753 170

AUFNIRA CVC4 Z3 7, 967 16, 949 113

BV CVC4 Z3 50, 561 60, 000 19

BVFP CVC4 Z3 319 758 138

BVFPLRA CVC4 Z3 50, 844 60, 000 18

FP CVC4 Z3 3, 700 10, 674 188

FPLRA CVC4 Z3 15, 325 49, 528 223

LIA CVC4 Z3 5, 635 19, 050 238

LRA CVC4 Z3 11, 184 25, 560 129

NIA CVC4 Z3 48, 752 60, 000 23

NRA CVC4 Z3 27, 066 60, 000 122

QF ABV Bitwuzla Yices2 16, 280 45, 814 181

QF ABVFP Bitwuzla CVC4 48, 484 60, 000 24

QF ABVFPLRA CVC4 COLIBRI 1, 652 4, 431 168

QF ALIA Yices2 Z3 17, 670 60, 000 240

QF ANIA CVC4 Z3 34, 444 60, 000 74

QF AUFBV Yices2 Bitwuzla 5, 375 14, 704 174

QF AUFLIA Yices2 CVC4 21, 836 56, 345 158

QF AUFNIA CVC4 Z3 35, 817 60, 000 68

QF AX Yices2 CVC4 3, 251 5, 153 59

In discussions with Aina Niemetz and Mathias Preiner, members of CVC4
and Bitwuzla teams: “In general, the benchmarks produced by BanditFuzz can
be super helpful for us to figure out what’s missing in our solvers”. For exam-
ple, in their Bitwuzla tool, BanditFuzz found several benchmarks where the
rewrite level (-rwl) was configured to be too high. Furthermore, Martin Brain,
the author of SymFPU, said: “BanditFuzz is interesting because it gives us an
abundant supply of something valuable but previously very rare; small bench-
marks with significant performance differentials.”



BanditFuzz: Fuzzing Solvers with RL 115

Table 3. Table of results comparing BanditFuzz to Random fuzzing across logics of
SMT-COMP ’20. The improvement column is the percentage improvement of Bandit-
Fuzz over Random Fuzzing. Rows are sorted alphabetically by logic.

Logic Target Reference PAR-2 performance margin

improvement on

Random BanditFuzz Baseline [%]

QF BV Bitwuzla CVC4 22, 142 52, 681 138

QF BVFP Bitwuzla CVC4 29, 949 60, 000 100

QF BVFPLRA CVC4 COLIBRI 23, 053 55, 228 140

QF FP Bitwuzla COLIBRI 37, 692 60, 000 59

QF FPLRA COLIBRI CVC4 2, 030 4, 053 100

QF LIA CVC4 Yices2 3, 217 5, 399 68

QF LIRA Yices2 CVC4 1, 795 7, 584 323

QF LRA CVC4 Yices2 4, 571 14, 184 210

QF NIA CVC4 Yices2 32, 540 60, 000 84

QF NIRA CVC4 Yices2 8, 348 32, 509 289

QF NRA Yices2 CVC4 22, 861 60, 000 162

QF S CVC4 Z3str4 35172 60, 000 71

QF SLIA CVC4 Z3str4 3, 956 15, 381 289

QF UF Yices2 Z3 5, 607 15, 362 174

QF UFBV Yices2 Bitwuzla 34, 315 60, 000 75

QF UFFP Bitwuzla COLIBRI 12, 909 20, 373 58

QF UFLIA Yices2 CVC4 1, 696 2, 428 43

QF UFLRA Yices2 Z3 8, 431 26, 529 215

QF UFNIA CVC4 Yices2 3, 864 13, 564 251

QF UFNRA Yices2 CVC4 53, 374 60, 000 12

UF CVC4 Z3 3, 469 13, 368 285

UFBV CVC4 Z3 37, 751 60, 000 59

UFLIA CVC4 Z3 174 868 399

UFLRA CVC4 Z3 1, 567 5, 159 229

UFNIA CVC4 Z3 5, 671 17, 419 207

UFNRA CVC4 Z3 17, 219 60, 000 248

7.2 Z3 String Solver

We also released the BanditFuzz tool to the developers of the Z3str4 string
solver [5,6], so that they could independently use it to expose performance issues
in their solver. The Z3str4 team used BanditFuzz to find performance deficien-
cies in experimental builds of their solver, namely Z3str4-ACF and Z3str4-NCF
(the target solvers) against CVC4 and Z3seq [15]. They were able to produce
thousands of benchmarks demonstrating performance separations. Mitja Kul-
czynski, one of the authors of Z3str4, observed: “BanditFuzz is extremely easy
to use! When targeting Z3str4-NCF, BanditFuzz was able to find benchmarks in
the form of disjunctions over substring operations. While this issue was already
known to us, BanditFuzz provided us with a benchmark suite to improve our tool.



116 J. Scott et al.

Fig. 3. Cactus plot for targeting Bitwuzla (winner of SMT-COMP ’20 in the QF BV
division) against reference runner-up solvers that competed in the division. The X-
axis represents the number of benchmarks solved and the Y-axis represents time (in
seconds) taken.

Furthermore, when targeting Z3str4-ACF, BanditFuzz found a class of bench-
marks of conjunctions of str.at where the solver was extremely slow. This was
completely unknown to us!”

8 Threats to Validity

One major drawback of BanditFuzz and many other blackbox fuzzing approach
is the inability to determine how many unique issues have been discovered. For
example, in recent work by Winterer et al. [49] thousands of soundness bugs
were reported, but upon inspection the total number of resolved issues was less.
However, in our discussions with solver developers (Sect. 7), it was reported to
us the benchmarks returned by BanditFuzz were not all of a common cause. In
fact, in both case studies, while several of the discovered performance issues by
BanditFuzz have been discussed and fixed by developers, several still have open
issues.

With the recent advances in reinforcement learning, it is natural to wonder
if the idea of BanditFuzz can be lifted to more powerful algorithms (e.g., deep



BanditFuzz: Fuzzing Solvers with RL 117

Q learning, actor critic, etc.). While these model-based techniques can be very
powerful, relative to MAB algorithms, they require significantly more data to
train effective agents (i.e., tens of thousands of steps on simple environments).
As BanditFuzz aspires to generate benchmarks that take a significant amount
of time to solve, a single environmental step can take several minutes.

9 Related Work

The work that is most similar to this paper is by Scott et al. [42]. In Sects. 1, 3,
6 of this paper we highlight the novel contributions on of this work. Specifically,
our tool uses a multi-agent RL method over the single-agent by Scott et al.,
and hence has a lower propensity to get stuck in local minima. Additionally, we
support all of SMT-LIB, while their tool only supports floating point and strings.
Another closely related tool is PerfFuzz which is a bit-string performance fuzzer.

Table 4. Table of select results comparing BanditFuzz to the work of Scott et al.
[42] across select logics. The improvement column is the percentage improvement of
BanditFuzz over the baseline. (The previous code framework by Scott et al. [42] only
supports two logics QF FP and QF S. When evaluating outside of these logics, we
baseline by using the BanditFuzz code base with the second agent disabled.)

Logic Target Reference PAR-2 performance margin

improvement on

Scott et al. [42] BanditFuzz Baseline [%]

QF FP Bitwuzla COLIBRI 51,893 60,000 14.4

QF S CVC4 Z3str4 53,231 60,000 11.9

ABVFPLRA CVC4 Z3 46,237 60,000 25.9

ANIA CVC4 Z3 54,120 60,000 10.3

AUFLIRA CVC4 Z3 22,314 30,428 30.7

FP CVC4 Z3 9,109 10,674 15.8

FPLRA CVC4 Z3 31,808 49,528 43.5

LIA CVC4 Z3 17,009 19,050 11.3

LRA CVC4 Z3 16,098 25,560 45.4

NRA CVC4 Z3 39,116 60,000 42.1

QF ALIA Yices2 Z3 35,912 60,000 50.2

QF ANIA CVC4 Z3 56,198 60,000 6.5

QF AUFBV Yices2 Bitwuzla 11,103 14,704 27.9

QF BVFPLRA CVC4 COLIBRI 47,180 55,228 15.7

QF LIRA Yices2 CVC4 3,152 7,584 82.6

QF NIA CVC4 Yices2 58,199 60,000 3.0

QF NIRA CVC4 Yices2 17,009 32,509 62.6

QF NRA Yices2 CVC4 42,188 60,000 34.9

QF UFLRA Yices2 Z3 22,092 26,529 18.3

QF UFNIA CVC4 Yices2 9,917 13,564 31.1

UFNIA CVC4 Z3 14,282 17,419 19.8

UFNRA CVC4 Z3 27,901 60,000 73.0



118 J. Scott et al.

However, PerfFuzz is not grammar-aware and hence is unlikely to produce well-
formed SMT formulas.

Fuzzing and Fuzzing SMT Solvers: Software fuzzing is a large field of
research, and we refer to the survey by Manes et al. as a basis for the cur-
rent research [28]. There are tools and fuzzers for finding bugs in specific SMT
theories [7,10,11,30,30,35].

Machine Learning for Fuzzing: Bottinger et al. [8] introduce a deep Q learn-
ing algorithm for fuzzing model-free inputs. Godefroid et al. [18] use neural
networks to learn an input grammar over complicated domains such as PDF
and then use the learned grammar for model-guided fuzzing. Woo et al. [50] and
Patil et al. [36] used MAB algorithms to select configurations of global hyper-
parameters of fuzzing software. Rebert et al. [38] used MABs to select from a
list of valid inputs seeds to fuzz on.

Machine Learning and SMT Solvers: Other works have leveraged machine
learning to learn models relating to SMT solving performance. Healy et al. lever-
aged supervised learning for analyzing SMT solver performance in the context
of software verification [22]. The MachSMT solver leverages machine learning
SMT Solver algorithm selection [43] and the MelodySolver leverages reinforce-
ment learning for online algorithm selection [37].

10 Conclusions

In this paper, we present BanditFuzz, a performance fuzzer for SMT Solvers.
BanditFuzz is the first multi-agent RL-based performance fuzzer to support all
of SMT-LIB and leverages reinforcement learning to find relative performance
deficiencies in state-of-the-art SMT Solvers. We evaluated BanditFuzz across
52 logics from SMT-COMP ’20 targeting competition-winning solvers against
runner-up solvers. We compare BanditFuzz against random fuzzing and a single-
agent tool with up to a 82.6% improvement in the margin of PAR-2 score on the
UFLIA logic. We further provide several case studies demonstrating the utility of
BanditFuzz to state-of-the-art SMT solver developers.

Acknowledgements. We would like to thank the following solver developers for their
collaboration and feedback on BanditFuzz: Martin Brain, Aina Niemetz, and Mathias
Preiner of the Bitwuzla and CVC4 teams, as well as Mitja Kulczynski and Murphy
Berzish who developed Z3str4.

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. Int. J. Softw. Tools Technol. Transf.
11(1), 69–83 (2009)

2. Baldwin, S.: Compute Canada: advancing computational research. In: Journal of
Physics: Conference Series, vol. 341, p. 012001. IOP Publishing (2012)



BanditFuzz: Fuzzing Solvers with RL 119

3. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14 http://www.cs.stanford.edu/ barrett/pubs/BCD+
11.pdf

4. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB). www.SMT-LIB.org (2016)

5. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
55–59. IEEE (2017)

6. Berzish, M., Mora, F., Kulczynski, M., Nowotka, D., Ganesh, V.: Z3str4 string
solver: system description. In: SMT-COMP 2020 (2020)

7. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018,
Part II. LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96142-2 6

8. Böttinger, K., Godefroid, P., Singh, R.: Deep reinforcement fuzzing. arXiv preprint
arXiv:1801.04589 (2018)

9. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for floating-point
problems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019, Part I. LNCS, vol. 11427,
pp. 79–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 5

10. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Proceed-
ings of the 7th International Workshop on Satisfiability Modulo Theories, pp. 1–5.
ACM (2009)

11. Bugariu, A., Müller, P.: Automatically testing string solvers. In: International Con-
ference on Software Engineering (ICSE), 2020. ETH Zurich (2020)

12. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. ACM Trans. Inf. Syst. Secur. (TISSEC) 12(2),
10 (2008)

13. Calzavara, S., Grishchenko, I., Maffei, M.: Horndroid: practical and sound static
analysis of android applications by SMT solving. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 47–62. IEEE (2016)

14. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2011)

15. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

16. Duchene, F.: Fuzz in the dark: genetic algorithm for black-box fuzzing. In: Black-
Hat (2013)

17. Gerlich, R., Prause, C.R.: Optimizing the parameters of an evolutionary algorithm
for fuzzing and test data generation. In: 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), pp. 338–345.
IEEE (2020)

18. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: machine learning for input fuzzing.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pp. 50–59. IEEE Press (2017)

19. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
ACM SIGPLAN Not. 43(6), 281–292 (2008)

20. Gupta, A.K., Nadarajah, S.: Handbook of Beta Distribution and its Applications.
CRC Press, Boca Raton (2004)

21. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://SMT-LIB.org/
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
http://arxiv.org/abs/1801.04589
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1007/978-3-540-78800-3_24


120 J. Scott et al.

22. Healy, A., Monahan, R., Power, J.F.: Predicting SMT solver performance for soft-
ware verification. In: Dubois, C., Masci, P., Méry, D. (eds.) Proceedings of the
Third Workshop on Formal Integrated Development Environment, F-IDE@FM
2016, Limassol, Cyprus, November 8, 2016. EPTCS, vol. 240, pp. 20–37 (2016).
https://doi.org/10.4204/EPTCS.240.2

23. Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-
world performance bugs. ACM SIGPLAN Not. 47(6), 77–88 (2012)

24. Junker, M., Huuck, R., Fehnker, A., Knapp, A.: SMT-based false positive elimi-
nation in static program analysis. In: Aoki, T., Taguchi, K. (eds.) ICFEM 2012.
LNCS, vol. 7635, pp. 316–331. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34281-3 23

25. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017, Part I. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

26. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. Form. Methods Syst. Des. 48(3), 175–205 (2016)

27. Lemieux, C., Padhye, R., Sen, K., Song, D.: PerfFuzz: automatically generating
pathological inputs. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pp. 254–265 (2018)

28. Manes, V.J., et al.: Fuzzing: art, science, and engineering. arXiv preprint
arXiv:1812.00140 (2018)

29. Manès, V.J., Kim, S., Cha, S.K.: Ankou: guiding grey-box fuzzing towards combi-
natorial difference. In: Proceedings of the ACM/IEEE 42nd International Confer-
ence on Software Engineering, pp. 1024–1036 (2020)

30. Mansur, M.N., Christakis, M., Wüstholz, V., Zhang, F.: Detecting critical bugs in
SMT solvers using blackbox mutational fuzzing. arXiv preprint arXiv:2004.05934
(2020)

31. Heule, M., Matti Järvisalo, M.S.: Sat race 2019 (2019). http://sat-race-2019.ciirc.
cvut.cz/

32. Niemetz, A., Preiner, M.: Bitwuzla at the SMT-COMP 2020. CoRR
abs/2006.01621 (2020). https://arxiv.org/abs/2006.01621

33. Niemetz, A., Preiner, M.: Ternary propagation-based local search for more bit-
precise reasoning. In: 2020 Formal Methods in Computer Aided Design, FMCAD
2020, Haifa, Israel, September 21–24, 2020, pp. 214–224. IEEE (2020). https://doi.
org/10.34727/2020/isbn.978-3-85448-042-6 29

34. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
Proceedings of the 15th International Workshop on Satisfiability Modulo Theories,
SMT, pp. 24–28 (2017)

35. Niemetz, A., Preiner, M., Biere, A.: Model-based API testing for SMT solvers. In:
Brain, M., Hadarean, L. (eds.) Proceedings of the 15th International Workshop on
Satisfiability Modulo Theories, SMT 2017), affiliated with the 29th International
Conference on Computer Aided Verification, CAV 2017, Heidelberg, Germany, July
24–28, 2017, p. 10 (2017)

36. Patil, K., Kanade, A.: Greybox fuzzing as a contextual bandits problem. arXiv
preprint arXiv:1806.03806 (2018)

37. Pimpalkhare, N., Mora, F., Polgreen, E., Seshia, S.A.: MedleySolver: online SMT
algorithm selection. In: Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831,
pp. 453–470. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80223-
3 31

https://doi.org/10.4204/EPTCS.240.2
https://doi.org/10.1007/978-3-642-34281-3_23
https://doi.org/10.1007/978-3-642-34281-3_23
https://doi.org/10.1007/978-3-319-63387-9_5
http://arxiv.org/abs/1812.00140
http://arxiv.org/abs/2004.05934
http://sat-race-2019.ciirc.cvut.cz/
http://sat-race-2019.ciirc.cvut.cz/
https://arxiv.org/abs/2006.01621
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_29
http://arxiv.org/abs/1806.03806
https://doi.org/10.1007/978-3-030-80223-3_31
https://doi.org/10.1007/978-3-030-80223-3_31


BanditFuzz: Fuzzing Solvers with RL 121

38. Rebert, A., et al.: Optimizing seed selection for fuzzing. In: USENIX Security
Symposium, pp. 861–875 (2014)

39. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015, Part II. LNCS, vol. 9207, pp. 198–216. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21668-3 12

40. Russo, D.J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z., et al.: A tutorial on
Thompson sampling. Found. Trends R© Mach. Learn. 11(1), 1–96 (2018)

41. Saavedra, G.J., Rodhouse, K.N., Dunlavy, D.M., Kegelmeyer, P.W.: A review of
machine learning applications in fuzzing. arXiv preprint arXiv:1906.11133 (2019)

42. Scott, J., Mora, F., Ganesh, V.: BanditFuzz: fuzzing SMT solvers with reinforce-
ment learning. UWSpace. http://hdl.handle.net/10012/15753 (2020)

43. Scott, J., Niemetz, A., Preiner, M., Nejati, S., Ganesh, V.: MachSMT: a machine
learning-based algorithm selector for SMT solvers. In: TACAS 2021, Part II. LNCS,
vol. 12652, pp. 303–325. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-72013-1 16

44. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 313–326 (2010)

45. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Pearson Education, London (2007)

46. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

47. Takanen, A., Demott, J.D., Miller, C.: Fuzzing for Software Security Testing and
Quality Assurance. Artech House, USA (2008)

48. Winterer, D., Zhang, C., Su, Z.: On the unusual effectiveness of type-aware operator
mutations for testing SMT solvers. Proc. ACM Program. Lang. 4(OOPSLA), 1–25
(2020)

49. Winterer, D., Zhang, C., Su, Z.: Validating SMT solvers via semantic fusion. In:
PLDI, pp. 718–730 (2020)

50. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational
fuzzing. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pp. 511–522. ACM (2013)

51. Zalewski, M.: afl-fuzz: making up grammar with a dictionary in hand (2015).
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html

52. Zalewski, M.: American Fuzzing Lop (2015)

https://doi.org/10.1007/978-3-319-21668-3_12
http://arxiv.org/abs/1906.11133
http://hdl.handle.net/10012/15753
https://doi.org/10.1007/978-3-030-72013-1_16
https://doi.org/10.1007/978-3-030-72013-1_16
https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html

	BanditFuzz: Fuzzing SMT Solvers with Multi-agent Reinforcement Learning
	1 Introduction
	2 Background on Reinforcement Learning
	2.1 Reinforcement Learning
	2.2 Satisfiability Modulo Theories
	2.3 Software Fuzzing

	3 BanditFuzz: A Multi-agent RL-Guided Performance Fuzzer
	3.1 The Performance Margin
	3.2 BanditFuzz: The Multi-agent RL-Based Fuzzing Algorithm
	3.3 The Original BanditFuzz Algorithm vs. The Current Version

	4 Implementation and Engineering
	5 Using the BanditFuzz Fuzzing Framework
	5.1 Using smtfuzz
	5.2 Using banditfuzz

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Case Studies with Solver Developers
	7.1 CVC4, Bitwuzla, and SymFPU
	7.2 Z3 String Solver

	8 Threats to Validity
	9 Related Work
	10 Conclusions
	References




