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Abstract. Fairness is crucial for neural networks which are used in
applications with important societal implication. Recently, there have
been multiple attempts on improving fairness of neural networks, with
a focus on fairness testing (e.g., generating individual discriminatory
instances) and fairness training (e.g., enhancing fairness through aug-
mented training). In this work, we propose an approach to formally ver-
ify neural networks against fairness, with a focus on independence-based
fairness such as group fairness. Our method is built upon an approach
for learning Markov Chains from a user-provided neural network (i.e., a
feed-forward neural network or a recurrent neural network) which is guar-
anteed to facilitate sound analysis. The learned Markov Chain not only
allows us to verify (with Probably Approximate Correctness guarantee)
whether the neural network is fair or not, but also facilities sensitivity
analysis which helps to understand why fairness is violated. We demon-
strate that with our analysis results, the neural weights can be optimized
to improve fairness. Our approach has been evaluated with multiple mod-
els trained on benchmark datasets and the experiment results show that
our approach is effective and efficient.

1 Introduction

In recent years, neural network based machine learning has found its way into
various aspects of people’s daily life, such as fraud detection [25], facial recogni-
tion [47], self-driving [13], and medical diagnosis [56]. Although neural networks
have demonstrated astonishing performance in many applications, there are still
concerns on their dependability. One desirable property of neural networks for
applications with societal impact is fairness [2]. Since there are often societal
biases in the training data, the resultant neural networks might be discrimina-
tive as well. This has been demonstrated in [53]. Fairness issues in neural net-
works are often more ‘hidden’ than those of traditional decision-making software
programs since it is still an open problem on how to interpret neural networks.

Recently, researchers have established multiple formalization of fairness
regarding different sub-populations [9,21, 24, 28]. These sub-populations are often
© Springer Nature Switzerland AG 2021

M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 83-102, 2021.
https://doi.org/10.1007/978-3-030-90870-6_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_5

84 B. Sun et al.

determined by different values of protected features (e.g., race, religion and
ethnic group), which are application-dependent. To name a few, group fair-
ness requires that minority members should be classified at an approximately
same rate as the majority members [9,24], whereas individual discrimination
(a.k.a. causal fairness) states that a machine learning model must output approx-
imately the same predictions for instances which are the same except for certain
protected features [21,28]. We refer readers to [51] for detailed definitions of fair-
ness. In this work, we focus on an important class of fairness called independence-
based fairness, which includes the above-mentioned group fairness.

Recently, there have been multiple attempts on analyzing and improving
fairness of neural networks, with a focus on fairness testing (e.g., generating
individual discriminatory instances) and fairness training (e.g., enhancing fair-
ness through augmented training). Multiple attempts [4,27,54,58] have been
made on testing machine learning models against individual discrimination,
which aims to systematically generate instances that demonstrate individual
discrimination. While these approaches have impressive performance in terms of
generating such instances, they are incapable of verifying fairness. Another line
of approaches is on fairness training [3,12,14,16,28,36], this includes approaches
which incorporate fairness as an objective in the model training phase [3,12,16],
and approaches which adopt heuristics for learning fair classifiers [36]. While
the experiment results show that these approaches improve fairness to certain
extent, they do not guarantee that the resultant neural networks are fair.

In this work, we investigate the problem of verifying neural networks against
independence-based fairness. Our aim is to design an approach which allows us
to (1) show evidence that a neural network satisfies fairness if it is the case;
(2) otherwise, provide insights on why fairness is not satisfied and how fair-
ness can be potentially achieved; (3) provide a way of improving the fairness
of the neural network. At a high-level, our approach is designed as follows.
Given a neural network (i.e., either a feed-forward or recurrent neural network),
we systematically sample behaviors of the neural network (e.g., input/output
pairs), based on which we learn a Markov Chain model that approximates the
neural network. Our algorithm guarantees that probabilistic analysis based on
the learned Markov Chain model (such as probabilistic reachability analysis)
is probably approximately correct (hereafter PAC-correct) with respect to any
computational tree logic (CTL [11]) formulae. With the guarantee, we are thus
able to verify fairness property of the neural network. There are two outcomes.
One is that the neural network is proved to be fair, in which case the Markov
Chain is presented as an evidence. Otherwise, sensitivity analysis based on the
Markov Chain is carried out automatically. Such analysis helps us to understand
why fairness is violated and provide hints on how the neural network could be
improved to achieve fairness. Lastly, our approach optimizes the parameters of
the ‘responsible’ neurons in the neural network and improve its fairness.

We have implemented our approach as a part of the SOCRATES frame-
work [45]. We apply our approach to multiple neural network models (includ-
ing feed-forward and recurrent neural networks) trained on benchmark datasets
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which are the subject of previous studies on fairness testing. The experiment
results show that our approach successfully verifies or falsifies all the models.
It also confirms that fairness is a real concern and one of the networks (on
the German Credit dataset) fails the fairness property badly. Through sensi-
tivity analysis, our approach locates neurons which have the most contribution
to the violation of fairness. Further experiments show that by optimizing the
neural parameters (i.e., weights) based on the sensitivity analysis result, we can
improve the model’s fairness significantly whilst keeping a high model accuracy.

The remaining of the paper is organized as follows. In Sect. 2, we review rele-
vant background and define our problem. In Sect. 3, we present each step of our
approach in detail. In Sect. 4, we evaluate our approach through multiple exper-
iments. We review related work in Sect. 5 and conclude in Sect. 6. For appendix,
please refer to the extended version of this paper [50].

2 Preliminary
In this section, we review relevant background and define our problem.

Fairness. For classification problems, a neural network N learns to predict a
target variable O based on a set of input features X. We write Y as the prediction
of the classifier. We further write F¥ C X as a set of features encoding some
protected characteristics such as gender, age and race. Fairness constrains how
N makes predictions. In the literature, there are multiple formal definitions of
fairness [9,21,24,28]. In this work, we focus on independence-based fairness,
which is defined as follows.

Definition 1 (Independence-based Fairness (strict)). A neural network
N satisfies independence-based fairness (strict) if the protected feature F' is sta-
tistically independent to the prediction Y. We write L as the prediction set and
we have VI € L, Vf;, f; € F such that i # j,

PY =I|F=fi)=PY =I1|F=f;) (1)

The definition states that, N’s prediction is independent of the protected feature
F. This definition is rather strict and thus unlikely to hold in practice. The
following relaxes the above definition by introducing a positive tolerance &.

Definition 2 (Independence-based Fairness). Let N be a neural network
and & be a positive real-value constant. N satisfies independence-based fairness,
with respect to &, if and only if, VI € LV f;, f; € F such that i # j,

|PY =1|F=fi)-P(Y =1|F=fj)] <¢ (2)

Intuitively, the above definition states that N is fair as long as the probability
difference is within the threshold &. In the following, we focus on Definition 2 as
it is both more general and more practical compared to Definition 1.
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Ezample 1. Let us take the network trained on the Census Income dataset [18]
as an example. The dataset consists of 32k training instances, each of which
contains 13 features. The task is to predict whether an individual’s income
exceeds $50K per year. An example instance x with a prediction y will be
2:(35302830120400),y: (0). Note that all features are categor-
ical (i.e., processed using binning). Among all features, gender, age and race
are considered protected features. The model N trained based on the dataset
is in the form of a six-layer fully-connected feed-forward neural network. The
following is a fairness property defined based on the protected feature gender.

|PY =1|F =male)— P(Y =1| F = female)| <0.1 (3)

Intuitively, the difference in the probability of predicting 1, for males and females,
should be no more than 10%.

Our Problem. We are now ready to define our problem.

Definition 3 (The verification problem). Let N be a neural network. Let
¢ be an independence-based fairness property (with respect to protected feature
F and a threshold £). The fairness verification problem is to verify whether N
satisfies ¢ or not.

One way of solving the problem is through statistical model checking (such
as hypothesis testing [40]). Such an approach is however not ideal. While it is
possible to conclude whether N is fair or not (with certain level of statistical
confidence), the result often provides no insight. In the latter case, we would
often be interested in performing further analysis to answer questions such as
whether certain feature or neuron at a hidden layer is particularly relevant to the
fairness issue and how to improve the fairness. The above-mentioned approach
offers little clue to such questions.

3 Owur Approach

In this section, we present details of our approach. Our approach is shown in
Algorithm 1. The first step is to learn a Markov Chain D which guarantees that
probabilistic analysis such as probabilistic reachability analysis based on D is
PAC-correct with respect to V. The second step is to apply probabilistic model
checking [39] to verify D against the fairness property ¢. In the third step, if the
property ¢ is not verified, sensitivity analysis is performed on D which provides
us information on how to improve N in terms of fairness. That is, we improve the
fairness of the model by optimizing the neuron weights based on the sensitivity
analysis results.

Note that our approach relies on building an approximation of the neural net-
work in the form of Markov Chains. There are three reasons why constructing
such an abstraction is beneficial. First, it allows us to reason about unbounded
behaviors (in the case of a cyclic Markov Chains, which can be constructed from
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recurrent neural networks as we show below) which are known to be beyond the
capability of statistical model checking [40]. Second, the Markov Chain model
allows us to perform analysis such as sensitivity analysis (e.g., to identify neu-
rons responsible for violating fairness) as well as predict the effect of changing
certain probability distribution (e.g., whether fairness will be improved), which
are challenging for statistical methods. Lastly, in the case that the fairness is
verified, the Markov Chain serves as a human-interpretable argument on why
fairness is satisfied.

In the following, we introduce each step in detail. We fix a neural network N
and a fairness property ¢ of the form |P(Y =1|F = f;) - P(Y =1|F = f;)| <
&. We use the neural network trained on the Census Income dataset (refer to
Example 1) as a running example.

Algorithm 1: verify_repair(N, ¢, pe, ud) Algorithm 2: learn(N, S, ¢, §)

1 Fix the set of states S; 1 W:=0;
2 Learn DTMC D by 2 Aw = 0;
learn(N, S, 55,1 — /1 — pd); 3 do
3 Estimate P(Y =1 | F = f;) Vf; € F} 4 generate new sample
4 Verify ¢ against &; if ¢ is verified then trace w
5 L return “Verified” and D; 5 W:i=W + w;
6 else 6 update Aw (p, q) for all
7 Conduct sensitivity analysis on D; pESandgeS;
8 Perform automatic repair of N; 7 update H (n);
9 return N'; 8 while Jp € S,n, < H(n)

Output: Aw

3.1 Step 1: Learning a Markov Chain

In this step, we construct a Discrete-Time Markov Chain (DTMC) which approx-
imates N (i.e., line 2 of Algorithm 1). DTMCs are widely used to model the
behavior of stochastic systems [10], and they are often considered reasonably
human-interpretable. Example DTMCs are shown in Fig.1. The definition of
DTMC is presented in [50]. Algorithm 2 shows the details of this step. The over-
all idea is to construct a DTMC, based on which we can perform various analysis
such as verifying fairness. To make sure the analysis result on the DTMC applies
to the original N, it is important that the DTMC is constructed in such a way
that it preserves properties such as probabilistic reachability analysis (which is
necessary for verifying fairness as we show later). Algorithm 2 is thus base on
the recent work published in [10], which develops a sampling method for learn-
ing DTMC. To learn a DTMC which satisfies our requirements, we must answer
three questions.

(1) What are the states S in the DTMC? The choice of S has certain con-
sequences in our approach. First, it constrains the kind of properties that we
are allowed to analyze based on the DTMC. As we aim to verify fairness, the
states must minimally include states representing different protected features,
and states representing prediction outcomes. The reason is that, with these
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states, we can turn the problem of verifying fairness into probabilistic reach-
ability analysis based on the DTMC, as we show in Sect. 3.2. What additionally
are the states to be included depends on the level of details that we would like to
have for subsequent analysis. For instance, we include states representing other
features at the input layer, and states representing the status of hidden neu-
rons. Having these additional states allows us to analyze the correlation between
the states and the prediction outcome. For instance, having states representing
a particular feature (or the status of a neuron of a hidden layer) allows us to
check how sensitive the prediction outcome is with respect to the feature (or
the status of a neuron). Second, the choice of states may have an impact on
the cost of learning the DTMC. In general, the more states there are, the more
expensive it is to learn the DTMC. In Sect. 4, we show empirically the impact
of having different sizes of S. We remark that to represent continuous input fea-
tures and hidden neural states using discrete states, we discretize their values
(e.g., using binning or clustering methods such as Kmeans [42] based on a user-
provided number of clusters). In our approach, for fairness verification only task,
we include protected features and prediction outcomes. For sensitivity analysis
task, we further include other features and hidden neural states.

(2) How do we identify the transition probability matriz? The answer is to
repeatedly sample inputs (by sampling based on a prior probability distribu-
tion) and then monitor the trace of the inputs, i.e., the sequence of transitions
triggered by the inputs. After sampling a sufficiently large number of inputs,
the transition probability matrix then can be estimated based on the frequency
of transitions between states in the traces. In general, the question of estimat-
ing the transition probability matrix of a DTMC is a well-studied topic and
many approaches have been proposed, including frequency estimation, Laplace
smoothing [10] and Good-Turing estimation [26]. In this work, we adopt the fol-
lowing simple and effective estimation method. Let W be a set of traces which
can be regarded as a bag of transitions. We write n, where p € S to denote the
number transitions in W originated from state p. We write n,, where p € S and
q € S to be the number of transitions observed from state p to ¢ in W. Let m
be the total number of states in S. The transition probability matrix Ay, (esti-
%‘:’ if ng #0

mated based on W) is: Aw (p,q) = { 1 . Intuitively, the probability

otherwise
of transition from state p to ¢ is estimated as the number of transitions from
p to q divided by the total number of transitions taken from state p observed
in W. Note that if a state p has not been visited, Aw (p, q) is estimated by %;
otherwise, Aw (p, q) is estimated by Z—":

(8) How do we know that the estimated transition probability matriz is accu-
rate enough for the purpose of verifying fairness? Formally, let Ay, be the tran-
sition probability matrix estimated as above; and let A be the actual transition
probability matrix. We would like the following to be satisfied.

P(Div(A, Aw) > €) < 6 (4)
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where € > 0 and § > 0 are constants representing accuracy and confidence;
Div(A, Aw) represents the divergence between A and Ay ; and P is the proba-
bility. Intuitively, the learned DTMC must be estimated such that the probability
of the divergence between Ay, and A greater than e is no larger than the con-
fidence level 4. In this work, we define the divergence based on the individual
transition probability, i.e.,

PEpe S |Ap.q) — Aw(p,q)| > €) <0 (5)

qes

Intuitively, we would like to sample traces until the observed transition proba-
bilities Aw (p,q) = % are close to the real transition probability A(p,q) to a
P

certain level for all p, ¢ € S. Theorem 1 in the recently published work [10] shows
that if we sample enough samples such that for each p € S, n, satisfies

2 o

where §' = %, we can guarantee the learned DTMC is sound with respect to IV

in terms of probabilistic reachability analysis. Formally, let H(n) = Zlog(Z)[3—

1 npg 2 ¢

(mazy|5 — 524| — 3€)?),

2. 2.1 1 nyg
m 2 log(5) [ = (mazd|5 - P

Theorem 1. Let (S,I, Aw) be a DTMC where Ay is the transition probability
matrix learned using frequency estimation based on n traces W. For 0 < e <
land 0 < d <1, if for allp € S, n, > H(n), we have for any CTL property 1,

P(|v(A,¢) = v(Aw,9)| > €) <8 (7)
where Y(Aw, ) is the probability of Aw satisfying 1.

Appendix A.3 in [50] provides the proof. Intuitively, the theorem provides a
bound on the number of traces that we must sample in order to guarantee that
the learned DTMC is PAC-correct with respect to any CTL property, which
provides a way of verifying fairness as we show in Sect. 3.2.

We now go through Algorithm 2 in detail. The loop from line 3 to 8 keeps
sampling inputs and obtains traces. Note that we use the uniform sampling by
default and would sample according to the actual distribution if it is provided.
Next, we update Ay as explained above at line 6. Then we check if more samples
are needed by monitoring if a sufficient number of traces has been sampled
according to Theorem 1. If it is the case, we output the DTMC as the result.
Otherwise, we repeat the steps to generate new samples and update the model.

Example 2. In our running example, for simplicity assume that we select gender
(as the protected feature) and the prediction outcome to be included in S and
the number of clusters is set to 2 for both layers. Naturally, the two clusters
identified for the protected feature are male and female (written as ‘M’ and ‘F”)
and the two clusters determined for the outcome are ¢ < 50K’ and ¢ > 50K’.
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Fig. 1. Sample learned DTMCs

A sample trace is w = (Start,M’,* > 50K’), where Start is a dummy state
where all traces start. Assume that we set accuracy ¢ = 0.005 and confidence
level § = 0.05. Applying Algorithm 2, 2.85K traces are generated to learn the
transition matrix Ay . The learned DTMC D is shown in Fig. 1a.

3.2 Step 2: Probabilistic Model Checking

In this step, we verify N against the fairness property ¢ based on the learned
D. Note that D is PAC-correct only with respect to CTL properties. Thus it
is infeasible to directly verify ¢ (which is not a CTL property). Our remedy
is to compute P(Y =1 | F = f;) and P(Y = 1| F = f;) separately and then
verify ¢ based on the results. Because we demand there is always a state in .S
representing F' = f; and a state representing Y = [, the problem of computing
P(Y =1| F = f;) can be reduced to a probabilistic reachability checking prob-
lem 1, i.e., the probability of reaching the state representing ¥ = [ from the
state representing F' = f;. This can be solved using probabilistic model checking
techniques. Probabilistic model checking [39] of DTMC is a formal verification
method for analyzing DTMC against formally-specified quantitative properties
(e.g., PCTL). Probabilistic model checking algorithms are often based on a com-
bination of graph-based algorithms and numerical techniques. For straightfor-
ward properties such as computing the probability that a U (Until), F (Finally)
or G(Globally) path formula is satisfied, the problem can be reduced to solving
a system of linear equations [39]. We refer to the readers to [39] for a complete
and systematic formulate of the algorithm for probabilistic model checking.

Ezxample 3. Figure 1b shows a DTMC learned from a recurrent neural network
trained on Jigsaw Comments dataset (refer to details on the dataset and net-
work in Sect. 4.1). The protected features is race. For illustration purpose, let us
consider three different values for race, i.e., White (W), Black (B) and Others
(0). For the hidden layer cells, we consider LSTM cell 1 only and cluster its
values into two groups, represented as two states hy and hs. The output has two
categories, i.e., Toxic (T) and Non-Toxic (NT). The transition probabilities are
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shown in the figure. Note that the DTMC is cyclic due to the recurrent hidden
LSTM cells in the network. We obtained P(Y = ‘T’| F = ‘W’) by probabilistic
model checking as discussed above. The resultant probability is 0.0263. Simi-
larly, P(Y = ‘T’| F = ‘B’) and P(Y = ‘T’| F = ‘O’) are 0.0362 and 0.0112
respectively.

Next we verify the fairness property ¢ based on the result of probabilistic
model checking. First, the following is immediate based on Theorem 1.

Proposition 1. Let D = (5,1, Aw) be a DTMC learned using Algorithm 2.
Let P(Y = 1| F = f;) be the probability computed based on probabilistic model
checking D and P,(Y = 1| F = f;) is the actual probability in N. We have

P(|P(Y=1|F=f)-P(Y=1l|F=f)]>¢ <6

Theorem 2. Let X be an estimation of a probability X, such that P(|X —X,| >
€) < 4. Let Z be an estimation of a probability Z; such that P(|Z — Z| > €) < 4.
We have P(|(X — Z) — (Xy — Zt)| > 2¢€) < 28 — §2.

Appendix A.4 in [50] provides the proof. Hence, given an expected accuracy pe
and a confidence level pd on fairness property ¢ , we can derive € and § to be
used in Algorithm 2 as: e = & and § = 1—+/1 — pd. We compute the probability
of P(Y =1|F = f;) and P(Y =[|F = f;) based on the learned D (i.e., line 3 of
Algorithm 1). Next, we compare |P(Y =1 |F = f;) = P(Y = 1| F = f;)| with &.
If the difference is no larger than &, fairness is verified. The following establishes
the correctness of Algorithm 1.

Theorem 3. Algorithm 1 is PAC-correct with accuracy pe and confidence ud,
if Algorithm 2 is used to learn the DTMC D.

Appendix A.5 in [50] provides the proof.

The overall time complexity of model learning and probabilistic model check-
ing is linear in the number of traces sampled, i.e., O(n) where n is the total
number of traces sampled. Here n is determined by H(n) as well as the prob-
ability distribution of the states. Contribution of H(n) can be determined as
O(%) based on Eq.6, where m is the total number of states. In the first
case, for a model with only input features and output predictions as states, the
probability of reaching each input states are statistically equal if we apply uni-
form sampling to generate IID input vectors. In this scenario the overall time
complexity is O(%). In the second case, for a model with states repre-
senting the status of hidden layer neurons, we need to consider the probability
for each hidden neuron states when the sampled inputs are fed into the network
N. In the best case, the probabilities are equal, we denote m’ as the maximum

number of states in one layer among all layers included, the complexity is then
O( m’ logm

ne? log ud
defined state is never reached) no matter what the input is. Since the probability
distribution among the hidden states are highly network-dependent, we are not

able to estimate the average performance.

). In the worst case, certain neuron is never activated (or certain pre-
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Example 4. In our running example, with the learned Ay, of D as shown in
Fig. la, the probabilities as P(Y = 1 |F = ‘F’) = 0.8483 and P(Y =1|F =
‘M’) = 0.8796. Hence, |P(Y = 1|F = ‘F))— P(Y = 1|F = ‘M’)| = 0.0313. Next,
we compare the probability difference against the user-provided fairness criteria
£ If £ = 0.1, N satisfies fairness property. If £ = 0.02, N fails fairness. Note that
such a strict criteria is not practical and is used for illustration purpose only.

3.3 Step 3: Sensitivity Analysis

In the case that the verification result shows ¢ is satisfied, our approach outputs
D and terminates successfully. We remark that in such a case D can be regarded
as the evidence for the verification result as well as a human-interpretable expla-
nation on why fairness is satisfied. In the case that ¢ is not satisfied, a nat-
ural question is: how do we improve the neural network for fairness? Existing
approaches have proposed methods for improving fairness such as by training
without the protected features [55] (i.e., a form of pre-processing) or training
with fairness as an objective [16] (i.e., a form of in-processing). In the following,
we show that a post-processing method can be supported based on the learned
DTMC. That is, we can identify the neurons which are responsible for violat-
ing the fairness based on the learned DTMC and “mutate” the neural network
slightly, e.g., adjusting its weights, to achieve fairness.

We start with a sensitivity analysis to understand the impact of each prob-
abilistic distribution (e.g., of the non-protected features or hidden neurons) on
the prediction outcome. Let F' be the set of discrete states representing different
protected feature values. Let I represent a non-protected feature or an internal
neuron. We denote I; as a particular state in the DTMC which represents certain
group of values of the feature or neuron. Let [ represent the prediction result
that we are interested in. The sensitivity of I (with respect to the outcome 1) is
defined as follows.

sensitivity(I) = Zireach(so, I;) * reach(1;,1) * {flgz}uép (reach(f,I;) — reach(g, I;))
where reach(s, s’) for any state s and s’ represents the probability of reaching
s’ from s. Intuitively, the sensitivity of I is the summation of the ‘sensitivity’
of every state I;, which is calculated as max; (reach(f, I;) —reach(g, Ii)), ie.,
the maximum probability difference of reaching I; from all possible protected
feature states. The result is then multiplied with the probability of reaching
I; from start state Sy and the probability of reaching ! from I;. Our approach
analyzes all non-protected features and hidden neurons and identify the most
sensitive features or neurons for improving fairness in step 4.

Ezample 5. In our running example, based on the learned DTMC D shown in
Fig. 1a, we perform sensitivity analysis as discussed above. We observe that
feature 9 (i.e., representing ‘capital gain’) is the most sensitive, i.e., it has the
most contribution to the model unfairness. More importantly, it can be observed
that the sensitivities of the neurons vary significantly, which is a good news as
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it suggests that for this model, optimizing the weights of a few neurons may
be sufficient for achieving fairness. Figure3 in Appendix A.6 in [50] shows the
sensitively analysis scatter plot.

3.4 Step 4: Improving Fairness

In this step, we demonstrate one way of improving neural network fairness based
on our analysis result, i.e., by adjusting weight parameters of the neurons identi-
fied in step 3. The idea is to search for a small adjustment through optimization
techniques such that the fairness property is satisfied. In particular, we adopt the
Particle Swarm Optimization (PSO) algorithm [37], which simulates intelligent
collective behavior of animals such as flocks of birds and schools of fish. In PSO
multiple particles are placed in the search space and the optimization target is
to find the best location, where the fitness function is used to determine the best
location. We omit the details of PSO here due to space limitation and present
it in Appendix A.7 in [50].

In our approach, the weights of the most sensitive neurons are the subject
for optimization and thus are represented by the location of the particles in the
PSO. The initial location of each particle is set to the original weights and the
initial velocity is set to zero. The fitness function is defined as follows.

fitness = Probgiss + a(1 — accuracy) (8)

where Probg;rs represents the maximum probability difference of getting a
desired outcome among all different values of the sensitive feature; accuracy is
the accuracy of repaired network on the training dataset and constant parameter
a € (0,1) determines the importance of the accuracy (relative to the fairness).
Intuitively, the objective is to satisfy fairness and not to sacrifice accuracy too
much. We set the bounds of weight adjustment to (0,2), i.e., 0 to 2 times of
the original weight. The maximum number of iteration is set to 100. To further
reduce the searching time, we stop the search as soon as the fairness property is
satisfied or we fail to find a better location in the last 10 consecutive iterations.

Ezample 6. In our running example, we optimize the weight of ten most sensi-
tive neurons using PSO for better fairness. The search stops at the 137 iteration
as no better location is found in the last 10 consecutive iterations. The resul-
tant probability difference among the protected features dropped from 0.0313 to
0.007, whereas the model accuracy dropped from 0.8818 to 0.8606.

4 Implementation and Evaluation

Our approach has been implemented on top of SOCRATES [45], which is a
framework for experimenting neutral network analysis techniques. We conducted
our experiments on a machine with 1 Dual-Core Intel Core i5 2.9GHz CPU and
8GB system memory.
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Table 1. Fairness verification results

Dataset | Feature | # States | # Traces | Max Prob. Diff. | Result | Time
Census | Race 8 12500 0.0588 PASS 4.13s
Census | Age 12 23500 0.0498 PASS |6.31s
Census | Gender | 5 2850 0.0313 PASS |0.98s
Credit | Age 11 22750 0.1683 Fail 6.72s
Credit |Gender | 5 2850 0.0274 PASS |1.01s
Bank | Age 12 27200 0.0156 PASS |6.33s
Jigsaw | Religion | 10 35250 0.0756 PASS 29.6m
Jigsaw | Race 7 30550 0.0007 PASS |27.3m

4.1 Experiment Setup

In the following, we evaluate our method in order to answer multiple research
questions (RQs) based on multiple neural networks trained on 4 datasets adopted
from existing research [4,28,54,58], i.e., in addition to the Census Income [18]
dataset as introduced in Example 1, we have the following three datasets. First is
the German Credit [19] dataset consisting of 1k instances containing 20 features
and is used to assess an individual’s credit. Age and gender are the two protected
features. The labels are whether an individual’s credit is good or not. Second
is the Bank Marketing [17] dataset consisting of 45k instances. There are 17
features, among which age is the protected feature. The labels are whether the
client will subscribe a term deposit. Third is Jigsaw Comment [1] dataset. It
consists of 313k text comments with average length of 80 words classified into
toxic and non-toxic. The protected features analysed are race and religion.

Following existing approaches [4,28,54,58], we train three 6-layer feed-forward
neural networks (FFNN) on the first three dataset (with accuracy 0.88, 1 and
0.92 respectively) and train one recurrent neural network, i.e., 8-cell Long Short
Term Memory (LSTM), for the last dataset (with accuracy 0.92) and analyze their
fairness against the corresponding protected attributes. For the LSTM model, we
adopt the state-of-the-art embedding tool GloVe [44]. We use the 50-dimension
word vectors pre-trained on Wikipedia 2014 and Gigaword 5 dataset.

Recall that we need to sample inputs to learn a DTMC. In the case of first
three datasets, inputs are sampled by generating randomly values within the
range of each feature (in IID manner assuming a uniform distribution). In the
case of the Jigsaw dataset, we cannot randomly generate and replace words
as the resultant sentence is likely invalid. Inspired by the work in [7,33,41],
our approach is to replace a randomly selected word with a randomly selected
synonym (generated by Gensim [46]).

4.2 Research Questions and Answers

RQ1: Is our Approach Able to Verify Fairness? We systematically apply our
method to the above-mentioned neural networks with respect to each protected
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feature. Our experiments are configured with accuracy pe = 0.01, confidence
level 46 = 0.1 (i.e., € = 0.005, § = 0.05) and fairness criteria £ = 10% (which is
a commonly adopted threshold [6]). Furthermore, in this experiment, the states
in the DTMC S are set to only include those representing the protected feature
and different predictions. Table 1 summarizes the results. We successfully ver-
ify or falsify all models. Out of eight cases, the model trained on the German
Credit dataset fails fairness with respect to the feature age (i.e., the maximum
probability difference among different age groups is 0.1683 which is greater than
& = 10%). Furthermore, the model trained on the Jigsaw dataset shows some
fairness concern with respect to the feature religion (although the probablity
different is still within the threshold). This result shows that fairness violation
could be a real concern.

RQ2: How Efficient is our Approach? We answer the question using two mea-
surements. The first measurement is the execution time. The results are shown
in the last column in Table 1. For the six cases of FFNN, the average time taken
to verify a network is around 4.25s, with a maximum of 6.72s for the model
trained on German Credit on feature age and a minimum of 0.98 s for the model
trained on the Census Income dataset on feature gender. For the two cases of
LSTM networks, the average time taken is 30 min. Compared with FFNN, veri-
fying an LSTM requires much more time. This is due to three reasons. Firstly, as
mentioned in Sect. 4.1, sampling texts requires searching for synonyms. This is
non-trivial due to the large size of the dictionary. Secondly, during sampling, we
randomly select instances from the training set and apply perturbation to them
in order to generate new samples. However, most of the instances in the Jig-
saw training set does not contain the sensitive word. This leads to an increased
number of traces needed to learn a DTMC. Thirdly, the LSTM model takes
much more time to make a prediction than that by FFNN in general. It is also
observed that for all the cases, the execution time is proportional to the number
of traces used in DTMC model learning (as discussed in our time complexity
analysis). The other measurement is the number of traces that we are required
to sample using Algorithm 2. For each model and protected feature, the num-
ber of traces generated in Algorithm 2 depends on number of categorical values
defined for this protected feature and the number of predictions. That is, more

D
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Table 2. Fairness improvement g 1,000 [{ —— Analysis /
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o nlogn

Dataset | Max probability Accuracy 8 200 /

difference g

g 100

German | 0.1683 — 0.1125 1.0 — 0.9450 é 100 200 500

Census | 0.0588 — 0.0225 0.8818 — 0.8645

- #States
Jigsaw | 0.0756 +— 0.0590 0.9166 — 0.9100

Fig. 2. Execution times vs number of
states
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categories and predictions result in more states in the learn a DTMC model,
which subsequently lead to more traces required. Furthermore, the number of
traces required also depends on the probabilistic distribution from each state in
the model. As described in Algorithm 2, the minimum number of traces tran-
siting from each state must be greater than H(n). This is evidenced by results
shown in Table 1, where the number of traces vary significantly between models
or protected features, ranging from 2K to 35 K. Although the number of traces
is expected to increase for more complicated models, we believe that this is not
a limiting factor since the sampling of the traces can be easily paralleled.

We further conduct an experiment to monitor the execution time required
for the same neural network model with a different numbers of states in the
learned DTMC. We keep other parameters (i.e., pe, ud and ¢) the same. Note
that hidden neurons are not selected as states to reduce the impact of the state
distribution. We show one representative result (based on the mode trained on
the Census Income dataset with attribute race as the protected feature) in Fig. 2.
As we can see the total execution time is bounded by nlogn which tally with
our time complexity analysis in Sect. 3.

RQ3: Is our Approach able to Improve Fairness and is the Sensitivity Analysis
Useful? The question asks whether the sensitivity analysis results based on the
learned DTMC can be used to improve fairness. To answer this question, we
systematically perform sensitivity analysis (on both the input features and the
hidden neurons) and optimize the weights of the neurons which are sensitive to
fairness. We focus on three cases, i.e., the FFNN model trained on the German
Credit model w.r.t age and on the Census Income model w.r.t race and the
LSTM model trained on the Jigsaw comments w.r.t religion, as the maximum
probability difference for these three cases (as shown in Table 1) is concerning
(i.e., > 5%). For the former two, we optimize the weights of the top-10 sensitive
neurons (including the first layer neurons representing other features). For the
LSTM model, we optimize top-3 sensitive cells (due to the small number of cells).
Table 2 shows the fairness improvement as well as the drop in accuracy. It can
be observed that in all three cases we are able to improve the fairness whilst
maintaining the accuracy at a high-level. Note that the parameter « is set to 0.1
in these experiments and it can be used to achieve better fairness or accuracy
depending the user requirement.

RQ4: How does our Approach Compare with FExisting Alternatives? The most
relevant tools that we identify are FairSquare [6] and VeriFair [9]. FairSquare
and VeriFair use numerical integration to verify fairness properties of machine
learning models including neural networks. FairSquare relies on constraint solv-
ing techniques and thus it is difficult to scale to large neural networks. Veri-
Fair is based on adaptive concentration inequalities. We evaluate our approach
against these two tools on all eight models. For FairSquare and VeriFair, we
follow the setting of independent feature distribution and check for demographic
parity [9]. For both tools, we set ¢ = 0.15 as suggested and keep other param-
eters as default. As both FairSquare and VeriFair are designed to compare two
groups of sub-populations, for those protected features that have more than two
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Table 3. Comparison with FairSquare, VeriFair and Statistical Model Checking (SMC)

Dataset | Prot. Feat. | FairSquare VeriFair SMC Ours

Result | Time | Result | Time Result | Time | Result | Time
Census | Race - T.0. | Pass |2.33s Pass |0.81s |Pass |0.93s
Census | Age — T.O. |Pass |37.14s |Pass |0.74s |Pass |0.81s
Census | Gender — T.0. |Pass |2.19s Pass |0.69s |Pass |0.89s
Credit | Age — T.O. |Pass |39.29s |Pass |0.78s |Pass |0.90s
Credit | Gender — T.0. | Pass |8.23s Pass |0.70s |Pass |0.82s
Bank Age — T.0O. | Pass |245.34s|Pass |0.66s |Pass |0.97s
Jigsaw | Religion — - — - Pass 14.9m | Pass 15.3m
Jigsaw | Race — — — - Pass 14.2m | Pass 14.5m

categories, we perform binning to form two groups. For the six FFNN models,
we set timeout value to be 900s following the setting in VeriFair. As shown in
Table 3, FairSquare is not able to scale for large neural network and for all FFNN
models it fails to verify or falsify the model in time. Both VeriFair and our app-
roach successfully verified all six FFNN models. But our approach completes the
verification within 1s for all models while VeriFair takes 62 times more execu-
tion time than our approach on average. For the RNN models trained on Jigsaw
dataset, neither FairSquare nor VeriFair is able to analyze them. FairSquare sup-
ports only loop-free models and, hence, it cannot handle RNN models. Although
VeriFair is able to handle RNN networks in general, it does not support text clas-
sifiers. To evaluate the overhead introduced by constructing DTMCs in our app-
roach, we further compare our approach with statistical model checking (SMC).
In this experiment, we generate the same amount of samples as required by our
approach for each scenario and directly perform statistical model checking. The
result is shown in 3 column SMC. Compared with our approach, it is observed
that most of the time were taken by sampling and inference and the overhead
of building DTMCs is around 2.4% on average. Hence, compared with existing
solutions, our approach is more efficient than FairSquare and VeriFair and can
support RNN-based text classifiers. Furthermore, the overhead of constructing
DTMCs is negligible.

5 Related Work

Neural network verification. There have been multiple approaches proposed to
verify the robustness of neural networks utilizing various techniques, i.e., abstrac-
tion [23,29,48], SMT sovler [32,34,35], MILP and LP [22,52], symbolic execu-
tion [57] and many others [15,20,31,38]. Besides [6] and [9] that we addressed in
RQ4, [28] and [43] studied fairness property of text classifiers. Unlike ours, they
focus on text classifiers only and their performance on RNN is unknown.

Fairness testing and improvement. There have been an impressive line of
methods proposed recently on machine learning model fairness testing and
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improvement. THEMIS [8,27], AEQUITAS [54], Symbolic Generation (SG) [4]
and ADF [58], are proposed to generate discriminatory instances for fairness
testing. There are also existing proposals on fairness training [3,12,14, 16,28, 36].
Our work instead focuses on post-processing where a trained model is repaired
based on sensitivity analysis results to improve fairness.

Machine learning model repair. There have been multiple approaches proposed to
repair machine learning models based on various technologies, i.e., [49] leverages
SMT solving, [30] is based on advances in verification methods, [5] is guided by
input population and etc. Unlike these methods, our work focuses on fairness
repair and supports FFNN and RNN by design.

6 Conclusion

In this work, we proposed an approach to formally verify neural networks against
fairness properties. Our work relies on an approach for leaning DTMC from
given neural network with PAC-correct guarantee. Our approach further per-
forms sensitivity analysis on the neural network if it fails the fairness property
and provides useful information on why the network is unfair. This result is then
used as a guideline to adjust network parameters and achieve fairness. Compar-
ing with existing methods evaluating neural network fairness, our approach has
significantly better performance in terms of efficiency and effectiveness.
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