
Two Mechanisations of WebAssembly 1.0

Conrad Watt1(B), Xiaojia Rao2, Jean Pichon-Pharabod1, Martin Bodin2,3,
and Philippa Gardner2

1 University of Cambridge, Cambridge, UK
conrad.watt@cl.cam.ac.uk

2 Imperial College London, London, UK
3 Inria, Rocquencourt, France

Abstract. WebAssembly (Wasm) is a new bytecode language supported
by all major Web browsers, designed primarily to be an efficient com-
pilation target for low-level languages such as C/C++ and Rust. It is
unusual in that it is officially specified through a formal semantics. An
initial draft specification was published in 2017 [14], with an associated
mechanised specification in Isabelle/HOL published by Watt that found
bugs in the original specification, fixed before its publication [37].

The first official W3C standard, WebAssembly 1.0, was published
in 2019 [45]. Building on Watt’s original mechanisation, we introduce
two mechanised specifications of the WebAssembly 1.0 semantics, writ-
ten in different theorem provers: WasmCert-Isabelle and WasmCert-Coq.
Wasm’s compact design and official formal semantics enable our mecha-
nisations to be particularly complete and close to the published language
standard. We present a high-level description of the language’s updated
type soundness result, referencing both mechanisations. We also describe
the current state of the mechanisation of language features not previously
supported: WasmCert-Isabelle includes a verified executable definition
of the instantiation phase as part of an executable verified interpreter;
WasmCert-Coq includes executable parsing and numeric definitions as
on-going work towards a more ambitious end-to-end verified interpreter
which does not require an OCaml harness like WasmCert-Isabelle.

Keywords: Mechanised specification · Type soundness · WasmCert

1 Introduction

WebAssembly (Wasm) is a new bytecode language, primarily designed as a com-
pilation target for low-level languages such as C/C++ and Rust. It is supported
by all major Web browsers, allowing programs compiled to Wasm to be embed-
ded in Web pages and executed client-side. Because a Web site may attempt
to execute arbitrary Wasm code in a visitor’s browser, the language is designed
around strict principles of encapsulation. A Wasm program is made up of one
or more modules, which can only interact with the wider system through explic-
itly declared imports and exports. Moreover, the language defines a strict, static
type system, and all programs must be type-checked before execution.
c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 61–79, 2021.
https://doi.org/10.1007/978-3-030-90870-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_4&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_4

62 C. Watt et al.

Wasm’s official specification includes a formal semantics for the language,
with a precise statement of the intended type soundness property. This formal
approach to specification is unusual for a language created by industry. It was
first published in an initial draft in 2017 [14], and then in the official standard,
called WebAssembly 1.0 (Wasm 1.0), in 2019 [45].

Our goal is to develop a mechanised specification of Wasm 1.0 and verify the
associated type soundness result. Many people have explored the mechanisation
of real-world language specifications, especially using the Isabelle/HOL and Coq
theorem provers; see Sect. 5 on related work. The accurate mechanisation of
a standard can be difficult because the language may be huge and continually
evolving (e.g. JavaScript [5]), underspecified (e.g. C [24]), and/or tricky to state
precisely (e.g. relaxed memory concurrency [3]). Wasm 1.0 is an interesting target
for mechanised specification because it is small, stable and formally specified.

We present two mechanised specifications of Wasm 1.0: WasmCert-Isabelle,
written in the Isabelle/HOL theorem prover, and WasmCert-Coq, in the Coq
theorem prover1. We prove type soundness for both specifications. Our work
builds directly on Watt’s mechanised specification in Isabelle/HOL of the 2017
draft semantics [37], which discovered and corrected bugs in the original spec-
ification and the statement of type soundness [37]. The Wasm 1.0 standard
currently cites Watt’s old work as the source of the language’s type sound-
ness proof [45]. Watt’s mechanisation follows a methodology for establishing
trust in mechanised specification, developed as part of the JSCert project, a
Coq-mechanisation of JavaScript [5]. Watt’s mechanised specification of Wasm’s
type checker and the runtime semantics is line-by-line close to the standard, an
achievement made easier by Wasm’s formal semantics. In addition, a separate
type checker and executable interpreter are mechanised, with the type checker
proven correct with respect to the mechanised type system, and the interpreter
proven correct with respect to mechanised runtime semantics. These executable
definitions are independently tested using the official test suite.

We pool our substantial experience with Wasm and mechanised language
specification to develop our Wasm 1.0 mechanised specification. Our contribu-
tions are:

– WasmCert-Isabelle: our Isabelle/HOL mechanisation of the Wasm 1.0 seman-
tics which extends and refactors the mechanisation of Watt [37], including
the type soundness proof, type checker, and interpreter, to Wasm 1.0. This
includes a number of editorial changes to the runtime semantics (Sect. 2), and
an additional condition in the statement of type soundness (Sect. 3). We also
give a verified mechanisation of the instantiation phase of the Wasm execu-
tion, which was not included in the 2017 draft semantics nor Watt’s original
mechanisation (Sect. 4). This work is also reported in Watt’s PhD thesis [38].

– WasmCert-Coq: our fresh Coq mechanisation of the Wasm 1.0 semantics,
which closely follows the structure of WasmCert-Isabelle. We include a mech-
anised proof of type soundness and document the common high-level proof

1 Our mechanisations are distributed under open source licences on GitHub [36].

Two Mechanisations of WebAssembly 1.0 63

structure between the mechanisations (Sect. 3). We also include executable
mechanisations of WebAssembly’s numeric operations and binary decoding
phase, which were not formalised in the 2017 draft semantics nor mechanised
by Watt, and are not yet handled by WasmCert-Isabelle (Sect. 4). We also
report on progress towards the verification of a more ambitious end-to-end
executable interpreter which does not require an OCaml harness (see below).

We summarise our WasmCert-Isabelle and WasmCert-Coq specifications,
contrasting them with Watt’s original work. We mark ✗ to indicate a feature
or proof which is not included, ✓ to mark a feature or proof which has been
fully mechanised, ✓✓ to indicate that a feature is accompanied by a verified exe-
cutable definition capable of OCaml extraction, and ✓✓+ to indicate additionally
that the executable definition has been validated through full end-to-end execu-
tion of the Wasm 1.0 test suite.

Watt 2018 WasmCert-Isabelle WasmCert-Coq

Wasm 1.0 refactorings ✗ ✓ ✓

type system ✓✓+ ✓✓+ ✓✓

runtime semantics ✓✓+ ✓✓+ ✓✓

type soundness proof ✓ ✓ ✓

binary decoding ✗ ✗ ✓✓

numeric ops ✗ ✗ ✓✓

instantiation ✗ ✓✓+ ✓

The 2017 draft semantics and Watt’s original mechanisation did not cover
three main areas of the language: the binary decoding phase, where a Wasm
program distributed as bytecode is decoded into the program AST; numeric
operations, most notably floating-point operations; and the instantiation phase,
which runs after decoding but prior to execution and performs linking and state
allocation. Watt’s extracted interpreter relied on an OCaml harness to fill in
these three areas with unverified implementations. WasmCert-Isabelle continues
to model the decoding phase and numeric operations as uninterpreted func-
tions, but mechanises the Wasm 1.0 specification of instantiation and alloca-
tion, including a verified executable implementation, thus significantly reducing
the size of the unverified OCaml harness. This implementation was non-trivial
due to the standard’s circular definition of instantiation (see Sect. 4). We vali-
date WasmCert-Isabelle’s extracted interpeter against the Wasm 1.0 official test
suite [39].

WasmCert-Coq takes a more ambitious approach to its in-progress verified
interpreter. It uses CompCert’s mechanised int and float libraries [7,8] to imple-
ment Wasm 1.0 numerics, and the Parseque parser combinator library [1,2] to
mechanise Wasm 1.0’s binary decoding phase. It provides an executable inter-
preter and type checker, both proven correct with respect to the mechanised

64 C. Watt et al.

semantics. It includes a mechanisation of the instantiation phase and an associ-
ated mechanised implementation, not yet shown to be correct. We consider this
proof to be high-priority future work, along with end-to-end testing using the
Wasm 1.0 test suite.

2 Wasm 1.0 Core Semantics

We describe the runtime semantics and type system of Wasm 1.0, highlighting
where Wasm 1.0 diverges from the draft formalisation [14] and summarising the
WasmCert-Isabelle and WasmCert-Coq mechnaisations of this core semantics.

2.1 Core Concepts

Values. Wasm operations manipulate values of four fundamental value types:
i32, i64, f32, and f64. These are 32- and 64-bit integers and floats, respectively.
Every program value in Wasm has one of these types. Functions are not first-
class, and must be called in a first-order, fully applied manner, with a limited
mechanism for dynamic dispatch which incurs additional runtime checks.

The Stack. Wasm is a stack-based language. Each function call is associated with
its own value stack, abstractly represented as a list of values, and operations
within the call will push and pop values to/from the stack in the course of
computation. Wasm’s stack is governed by a course-grained dataflow type system
similar to that of the Java Virtual Machine [22], which ensures that the shape
of the stack is statically known at every program point. The value stack only
contains values - the function’s return address is not programmatically accessible.

Modules. The module is Wasm’s unit of compilation. A module contains a list
of Wasm function declarations, as well as declarations of “global” state which
is accessible to any function (described below). Modules may share global state
with each other through a system of explicit imports and exports.

Globals. Wasm modules may declare or import global variables. A global variable
has a statically declared value type, and is accessible by any function within the
module. A global variable may be exported, allowing it to be accessible through
other modules. Individual Wasm functions may also declare local variables, which
are scoped to their declaring function, and are either initialised with one of the
function arguments, or default to 0 otherwise.

Memory. Wasm modules may declare or import a memory. A Wasm memory
is a simple buffer of bytes. A value may be stored in memory: this converts the
value to a list of bytes and stores it at a provided offset. Similarly, a value may
be loaded from memory, by interpreting the list of bytes at a provided offset as a
value of the requested type. Wasm guarantees that this process always succeeds
and is stable in both directions - unlike C, values have no trap representations.

Two Mechanisations of WebAssembly 1.0 65

Table. Wasm modules may declare or import a function table. Functions stored
in the table can be called by dynamic dispatch, although the function’s type
signature must be checked at runtime.

Control Flow. Within a function, Wasm does not provide any arbitrary goto
instruction. Instead, Wasm provides explicit block, loop, and if labelled/scoped
constructs, together with a br (break) instruction which may target any enclos-
ing label. This style of control flow is sometimes called semi-structured, and is
common in higher-level languages such as Java and JavaScript. Wasm’s label
constructs (block, loop, if) are explicitly type-annotated with the shape of the
value stack at their beginning and end, to preserve the invariant that all control
flow paths to a program point result in the same stack shape, and to simplify
type checking. Control may only be transferred out of a function through a call
to another function, or through a return to the calling function.

2.2 Abstract Syntax

We give a brief overview of Wasm’s abstract syntax. In formal definitions, some
components are greyed out (here is an example) to indicate that we do not
describe them in detail. While we must partially elide some definitions for space
reasons, they are included in full in our mechanisations, and the exhaustive
pen-and-paper formalism can be found in the Wasm 1.0 specification [45].

Figure 1 contains the formal definitions of Wasm’s core abstract syntax. In
the abstract syntax it suffices to model static immediates as natural numbers,
although they are often concretely restricted to a 32-bit range. Many parts of the
Wasm state are referenced through immediates representing De Bruijn indices,
rather than through explicit names. The four value types are self-explanatory.
Function types are used by control constructs and functions in Wasm, which
must be explicitly type-annotated to describe how the shape of the value stack
changes across their execution. The pre-execution validation pass checks that
these annotations are correct. An annotation ft describes the shape of the top
of the stack before and after execution of the construct/function.

We briefly describe Wasm instructions. The (t.const c) instruction pushes
the value c of type t onto the value stack. The stackop instructions provide
pure operations for pushing and popping values to and from the value stack.
For example, the i32.add instruction pops two i32 values from the stack and
pushes the i32 result of their unsigned wrap-around addition. The validation
pass ensures that instructions only pop values which are guaranteed to be on
the stack at that program point.

The local and global instructions deal with accessing local and global vari-
ables. For example, (local.get i) pushes the current value of the i-th declared
local variable of the function onto the stack, while (global.set i) pops a value
from the stack and assigns it to the i-th declared global variable of the module.

The (t.load) instruction pops an i32 value from the stack to use as an index
into the module’s memory, and pushes a value of type t that is deserialised from
the bytes at that location. The (t.store) instruction pops a value of type t and

66 C. Watt et al.

Fig. 1. Wasm abstract syntax

an i32 index, and serialises the value into bytes at that location in memory.
Both of these instructions have slight variant behaviours which are configured
using intra-instruction flags, the details of which we elide. The indices provided
to these instructions are dynamically bounds-checked against the size/length of
the module’s memory. The current size of memory can be explicitly checked
through memory.size, and grown through memory.grow.

Wasm provides only semi-structured control flow constructs. Its block, loop,
and if instructions define break targets. Code within the body of one of these
constructs can target the construct with one of the br family of instructions,
which works like the break instruction of a higher-level language, with br if
and br table being forms of conditional break. Multiple nested constructs are
allowed, with (br k) instruction breaking to the k-th enclosing label.

The (call k) instruction calls the k-th function declared or imported by the
current module. The (call indirect k) instruction is Wasm’s dynamic dispatch
call. It pops an i32 index j from the stack, and the function stored in the table at
index j is called. The static index k references a type annotation declared by the
module, and the dynamically indexed function is checked to have this type anno-
tation. Execution is halted with an error if the check fails. The return instruction
ends the current call, and returns control to the caller, possibly pushing values
onto the caller’s stack corresponding to the function’s output type.

Two Mechanisations of WebAssembly 1.0 67

The top-level Wasm module contains the declarations of globally-scoped state
(functions, globals, memories, tables). Functions must carry an explicit type
annotation, which is encoded as an immediate i referencing a canonical list of
function types held by the module. This indirection to a canonical list was newly
introduced in Wasm 1.0 to shift the abstract syntax of the language to more
closely mirror its bytecode format, which has a distinguished “types” declaration
section. Globals must declare whether they are mutable, their value type, and
an optional initialiser expression which is executed at start-up. Memories and
tables must declare their minimum and maximum sizes (although currently only
the memory can be grown, the table size will be used by future features [41]).
Note that in Wasm 1.0 a module may only declare/import at most one memory
and one table in total, although this restriction will be lifted in future.

2.3 Runtime Semantics

WebAssembly’s runtime semantics is specified in terms of a small-step reduction
of configurations. A Wasm configuration is of the form S;F ; e∗, where S is the
execution-wide store, F is the frame of the current function, and e∗ is the code
fragment comprising the list of intructions currently under execution.

(store) S ::= { funcs :: finst∗, globs :: ginst∗, mems :: minst∗, tabs :: tinst∗ }
(frame) F ::= { locs :: v∗, inst::=inst }

The store contains all the module state which has been created in the
course of execution. Its fields hold the runtime representations of the globally-
scoped state declared by the constituent modules of the executing program
(see Sect. 2.2). We elide the precise definitions of these components, but their
structures are runtime versions of the static declarations made by the module, as
shown in Fig. 1. The frame holds information relevant to the currently executing
function. It holds the current values of local variables (in a list representation),
and the instance. The instance tracks which components of the store are in scope
for the current function (because they were declared/imported by the function’s
enclosing module). We elide the further details of its formal structure.

The value stack is not given explicitly as part of Wasm’s runtime configu-
ration. Instead, the value stack is represented in each reduction rule through a
leading list of const instructions. For example, the reduction rule for i32.add is:

S;F ; (i32.const j)(i32.const k)(i32.add) ↪→ S;F ; (i32.const (j + k))

This reduction rule represents the consumption of two stack values j and k
by the i32.add instruction, and the production of the stack value j + k. This
computation leaves the store S and the frame F unchanged.

This configuration was refactored in the move from the draft specification to
the Wasm 1.0 standard. Originally, the frame was not an explicit component of
the configuration. Instead, all executing instances were held as an additional list
field in the store, and reduction was parameterised by an integer indexing this
list, denoting the instance used by the current executing code fragment.

68 C. Watt et al.

Mechanisation. Our mechanisations of the Wasm 1.0 runtime semantics, the
executable interpreter and the correctness proof can be found as follows:

Mechanisation of the reduction rules which define the runtime semantics:

WasmCert-{Isabelle/Coq}: reduce in {wasm.thy/opsem.v}
Mechanisation of an executable interpreter:

WasmCert-Isabelle: wasm interpreter.thy
WasmCert-Coq: interpreter func.v

Proof that the interpreter is sound with respect to the reduction rules:
WasmCert-Isabelle: wasm interpreter properties.thy
WasmCert-Coq: interpreter func sound.v

WasmCert-Isabelle’s interpreter definitions and proofs are based on those
of Watt [37]. We refactor the interpreter to use the Wasm 1.0 definition of
configuration, as discussed above. Orthogonally, we significantly simplify the
Isabelle/HOL proof of interpreter soundness, removing ∼800 lines of code from
the original proof due to better use of high-level Isabelle tactics.

2.4 Validation

Wasm programs must be validated before they can be executed. The validation
involves a type-checking pass which checks the correctness of function and block
type annotations, and enforces the following properties for code in the module:

– Operations which pop from the value stack (such as i32.add) are guaranteed
that the value stack will contain the values necessary to allow the pop;

– Operations which access state using a static index are checked to ensure that
the index is in the bounds, e.g. every (global.get i) instruction is checked to
ensure that at least i + 1 global variables have been declared/imported;

– br instructions must target an enclosing label construct, and the shape of the
value stack at the point of the br must match construct’s type annotation.

The typing judgement for a Wasm code fragment has the shape C � e∗ : ft,
associating a list of Wasm expressions e∗ with a function type ft in typing context
C. The definition of the typing context and some selected typing rules are shown
in Fig. 2. The typing context C tracks the types of state (e.g. global variables)
which have been declared by the enclosing module and are available in the current
environment, as well as currently in-scope label (for br) and return (for return)
targets. We elide the full definitions of some fields of the typing context which
are not required to understand the examples in this paper. The local component
of the context C holds the types of the declared local variables as a list which is
indexed by instructions such as local.get. The label component of C holds the list
of break targets currently defined by the enclosing program context. Its structure
is a list of stack types (list of list of value types). Each stack type represents the
required shape of the stack at the point the break target is broken to. The syntax
{label t∗2} ⊕ C in the typing of block describes the addition of the entry t∗2 to

Two Mechanisations of WebAssembly 1.0 69

the left of C’s label list. When a block is targetted by br, execution jumps to the
end of the block, so the block’s output type is inserted into the label context. The
br instruction counts outwards through enclosing contexts to determine its break
target, and therefore requires its input type to match the required type of the k-
th enclosing label. The return component of C functions similarly. When typing
a function, the return component is set to the output type of the function, and is
used for typing the return instruction. Note though that the return component is
optional. When typing a top-level configuration, the return type is set to empty,
to denote that the code inside cannot return out of the top level.

Mechanisation. Our mechanisations of the inductive typing rules of the Wasm
type system (see Fig. 2) can be found as follows:

WasmCert-Isabelle: b e typing in wasm.thy
WasmCert-Coq: be typing in typing.v

Mechanisation of an executable type checker:
WasmCert-Isabelle: wasm checker.thy
WasmCert-Coq: type checker.v

Proof that the type checker is correct with respect to the typing rules:
WasmCert-Isabelle: wasm checker properties.thy
WasmCert-Coq: type checker reflects typing.v

Fig. 2. Selected typing rules.

3 Wasm 1.0 Type Soundness

The Wasm typing judgement described above is used by the standard as the basis
of a standard statement of syntactic type soundness [46]. This involves defining
an extended typing rule for runtime configurations [30] of the form �c S;F ; e∗ :
t∗. This judgement associates a configuration with a stack type (using the typing
judgement of Sect. 2.4 as we will see below), and the type soundness properties
state that execution will either diverge, terminate with a runtime error (such as
division by zero), or terminate with a value stack corresponding to the type t∗.
Judgement definitions are found in our mechanisations here:

WasmCert-Isabelle: wasm.thy WasmCert-Coq: typing.v

70 C. Watt et al.

We give the high-level structure of important judgements, and the type sound-
ness theorems. As previously mentioned, the formal definitions of the configura-
tion and frame were refactored as part of the move from the draft specification to
Wasm 1.0, with knock-on effects for the definitions of the associated judgements.

Configuration Validity. This is the top-level judgement in defining type sound-
ness.

�s S : ok S; ε �loc F ; e∗ : t∗

�c S;F ; e∗ : t∗

Premise �s S : ok tracks well-formedness conditions on the store that must be
preserved as language invariants (e.g. memories may not exceed their max size).

Local Validity. This types an instruction sequence under a given function frame.

S �f F : C S;C � e∗ : ε → t∗

S; ε �loc F ; e∗ : t∗

The typing context C under which the instruction sequence is typed is deter-
mined by the frame validity judgement defined below. Note that instruction
sequence typing is defined via a slightly extended version of the judgement shown
in Sect. 2.4, which is also parameterised by the store. This extension is necessary
to type certain intermediate reducts which appear during execution.

Frame Validity. This judgement associates a frame with a type context.

(typeof(v) = tv)n F.locs = vn S �i F.inst : C

S �f F : C[local := tnv]

The premise S �i F.inst : C builds an initial type context with the parts of
the store that are in scope according to the instance component of frame F (full
details elided). The context associated with the frame in the conclusion of the
frame validity judgement is built from this initial type context, extended with
the types of the local variables held by the frame. The premise (typeof(v) = tv)n

abuses superscript notation to indicate that vn is related to tnv by an element-wise
mapping of the typeof relation.

Theorem 1 (preservation).
If �c S;F ; e∗ : t∗ and S;F ; e∗ ↪→ S′;F ′; e′∗, then �c S′;F ′; e′∗ : t∗ and S ≺s S′
WasmCert-Isabelle: preservation in wasm soundness.thy
WasmCert-Coq: t preservation in type preservation.v

Theorem 2 (progress).
If �c S;F ; e∗ : t∗, then is-terminal(e∗) ∨ ∃S′F ′e′. S;F ; e∗ ↪→ S′;F ′; e′∗.

WasmCert-Isabelle: progress in wasm soundness.thy
WasmCert-Coq: t progress in type progress.v

Two Mechanisations of WebAssembly 1.0 71

The ≺s relation used when stating preservation is called store extension, and is an
additional strengthening of the type soundness statement in the 1.0 specification,
compared to that of Haas et al. [14]. Its presence in the preservation property
enforces that the store cannot have elements removed as a result of execution
(can only grow), and that previously allocated global state cannot change its
type (even if the configuration would remain well-typed overall).

We first address the proof of the preservation property. In order for the
induction to succeed, the inductive hypothesis must be strengthened so that
instead of considering only the type preservation of a top-level configuration, we
consider the type preservation of an arbitrary program fragment.

Lemma 1 (fragment preservation).
Assuming S;F ; e∗ ↪→ S′;F ′; e′∗

�s S : ok
S �f F : C
S;C[label := larb, return := rarb] � e∗ : tf

we have S ≺s S′

�s S′ : ok
S′ �f F ′ : C
S′;C[label := larb, return := rarb] � e′∗ : tf

WasmCert-Isabelle: types preserved e2 in wasm properties.thy

WasmCert-Coq:
t preservation e,
reduce inst unchanged,
store extension reduce

in type preservation.v

Note the inclusion of S ≺s S′ in the conclusion, which as discussed is a new
proof obligation introduced as part of the move to Wasm 1.0. The proof proceeds
by induction on the definition of the reduction relation ↪→. The arbitrary label
component larb appended to the type context C indicates that the code fragment
e∗ is potentially only well-typed when embedded inside some larger context of
labelled control flow constructs (i.e. block, loop, if). The arbitrary return com-
ponent rarb indicates that the code is potentially only well-typed when embedded
within a function definition with some arbitrary return type. We can then show
that this stronger property implies the top-level preservation property. A similar
generalisation must be made in proving the progress property:

Lemma 2 (fragment progress).
Assuming S;C[label := larb, return := rarb] � e∗ : t∗ → t′∗

C � v∗ : ε → t∗

∀Lk. e∗
= Lk[return]
∀i Lk. e∗ = Lk[br i] =⇒ i < k
∀v′∗. e∗
= v′∗

e∗
= trap
�s S : ok
S �f F : C

we have ∃S′ F ′ e′∗. S;F ; v∗ e∗ ↪→ S′;F ′; e′∗

72 C. Watt et al.

WasmCert-Isabelle: progress e in wasm properties.thy
WasmCert-Coq: t progress e in type progress.v

The proof proceeds by induction on the definition of expression typing. A
number of restricting assumptions must be included, beyond those necessary for
preservation, for the induction to succeed. Assumption ∀Lk. e∗
= Lk[return]
restricts the induction to only consider program fragments which are not return-
ing to a calling context. Assumption ∀i Lk. e∗ = Lk[br i] =⇒ i < k similarly
restricts the induction to only consider program fragments which are break-
ing to a label within the program fragment itself, and not the label of any
enclosing context. The Lk symbol denotes an evaluation context made up of k
label constructs (block, loop, if). Failing to disregard these cases would make
the induction hypothesis too weak, so they must be handled through separate
proofs.

Lemma 3 (return progress).
Assuming S; ε �loc F ; e∗ : t∗ we have ∀Lk. e∗
= Lk[return]

WasmCert-Isabelle: progress e1 in wasm properties.thy
WasmCert-Coq: s typing lf br in type progress.v

Lemma 4 (br progress).
Assuming S; ε �loc F ; e∗ : t∗ and e∗ = Lk[br i] we have i < k

WasmCert-Isabelle: progress e2 in wasm properties.thy
WasmCert-Coq: s typing lf return in type progress.v

These two lemmas are proven by induction on k, the label depth of the
current evaluation context. The first lemma states that if the current frame has
no return type set (denoted by ε), then the code fragment may not contain a
return instruction. The second lemma states that a br instruction cannot attempt
to jump outside the current frame, and so must target one of the labels inside
the frame. These two lemmas show that the cases not handled by fragment
progess are prevented by the type system from occurring at the top level of a
program execution, so the lemmas together imply the top-level progress property.

4 Wasm 1.0 Full Semantics

The core runtime semantics and type checker for the W3C Wasm 1.0 stan-
dard, described in Sect. 2, is a refactoring of the 2017 draft semantics [14]. The
full semantics of Wasm 1.0 significantly extends this draft semantics to include
formal specifications of the binary decoding, the numerics and the instantiation
phase. We describe our two mechanisations of these extensions: in Isabelle/HOL,
we mechanise the instantiation using an OCaml harness for the binary encoding
and numerics; and, in Coq, we mechanise the extentions in full, using established
Coq libraries for the binary encoding and numerics. In this way, for the first time,
we present a fully mechanised specification of the Wasm 1.0 standard.

Two Mechanisations of WebAssembly 1.0 73

Binary Decoding. Wasm modules are distributed in a bytecode format. Web
browsers type check, compile, and instantiate Wasm code in a streaming man-
ner as the files are downloaded to the user’s browser [9]. Abstractly, it is spec-
ified that the Wasm binary format can be decoded into the module AST of
Fig. 1, and subsequent phases of execution are defined over that AST [43]. In
WasmCert-Coq, we make use of the Parseque [1] Coq library to mechanise the
binary decoding phase of Wasm in an executable way. Parseque is more power-
ful than strictly necessary for our purposes. It is designed for parsing “complex
recursive grammars” [2] whereas Wasm’s binary grammar is fairly flat. How-
ever, using Parseque’s alternative combinator gives us an off-the-shelf way to
build an executable definition of the binary format which has close line-by-line
correspondence to the Wasm 1.0 formal specification. Our Coq definitions (not
including library code) come to ∼800 lines of non-comment, non-whitespace code
(binary format parser.v). We have not attempted an analogous mechanisation
in WasmCert-Isabelle, although it would be interesting future work.

Numeric Operations. We provide executable numeric definitions in
WasmCert-Coq by linking with CompCert’s integer and float libraries. The
Wasm specification defers many of the definitions of its floating point opera-
tions to the IEEE 754 floating point standard, which is also the basis of the
CompCert mechanisation. Wasm 1.0 does, however, define its integer opera-
tions directly. We prove a number of “sanity lemmas” for the integer operations
which check that CompCert’s definitions match those of the Wasm 1.0 specifica-
tion. Our Coq numeric definitions and proofs together (excluding library code)
come to ∼1500 lines of non-comment, non-whitespace code (numerics.v). As
future work, we might exhaustively mechanise Wasm’s integer operation spec-
ification, and prove it equivalent to the definitions of CompCert. WasmCert-
Isabelle instead abstracts its numeric operations, and relies on an OCaml imple-
mentation of numerics provided by the WebAssembly Community Group [40]
when extracting its interpreter.

Instantiation. Instantiation is a phase in the execution of a Wasm program
which takes place after type-checking but before runtime evaluation. During
instantiation, module imports are satisfied, and the state corresponding to mod-
ule declarations (e.g. new memories, global variables) are created in the global
store.

In the Wasm 1.0 standard [45], instantiation is fully formalised. The defini-
tion of instantiation is given by a large collection of inductive rules which do
not directly describe an algorithm for instantiation. In essence, the specifica-
tion defines a relational predicate which takes an initial state, a module to be
instantiated, its provided imports, and an output state, and evaluates to true if
and only if an instantiation operation in the initial state results in the output
state. It does not give an algorithmic procedure for building the output state
from the initial state. In fact, the standard’s definition of instantiation contains
deliberate circularities, which make direct execution of the definition unlikely.

74 C. Watt et al.

An explanatory note in the standard indicates that a concrete implementation is
expected to perform an additional pre-processing pass over the module to break
this circularity [44].

The full definitions of module allocation and instantiation are too large and
interconnected to other areas of the specification to summarise here, but we
sketch the main source of definitional circularity in Fig. 3. The conclusion of the
rule states that instantiating the module in global store S with the provided
imports results in a global store S′ (among other outputs which we elide for
brevity). The store S′ is obtained from the allocmodule abstract operation in
the premise, which additionally requires the input v∗

inits, the values obtained by
evaluating the global variable initialisers (see Sect. 2.2). However, the global
initialisers are specified as being evaluated in the context of the global store S′.
Therefore, the value of v∗

inits is defined as depending on the result of allocmodule,
which itself takes v∗

inits as input—a circularity! In reality, the evaluation of the
global initialisers only depends on a subset of the effects of allocmodule, in such
a way that a concrete algorithm can pre-process the module to identify the parts
of module allocation that global initialiser evaluation will depend on, perform
part of the abstract allocmodule operation, evaluate global initialisers using the
partial result, and then finish off the rest of the operation. This pre-pass is made
simpler by the fact that the evaluation of a global initialiser is only allowed to
depend on the values of imported (hence previously initialised) global variables.
The specification deliberately chooses not to define this tiered process concretely.

Fig. 3. Illustrating a circularity in the Wasm 1.0 instantiation definition.

In both WasmCert-Isabelle and WasmCert-Coq, we mechanise the stan-
dard’s inductive definition of instantiation, and create an executable definition
of instantiation which performs the pre-processing pass sketched by the stan-
dard’s explanatory note to break the circularity of the instantiation definition.
In WasmCert-Isabelle, we prove these two definitions equivalent. By integrating
the executable definition with our verified interpreter, we eliminate a significant
amount of Watt’s original unverified OCaml harness [37]. The WasmCert-Isabelle
definitions and proofs represent ∼1650 lines of non-comment, non-whitespace
code. WasmCert-Coq’s definitions (currently without correctness proof) repre-
sent ∼800 lines of non-comment, non-whitespace code.

WasmCert-Isabelle: wasm module.thy, wasm module checker.thy, and
wasm instantiation.thy

WasmCert-Coq: instantiation.v

Two Mechanisations of WebAssembly 1.0 75

We also validate the WasmCert-Isabelle interpreter against the official Wasm
1.0 end-to-end test suite, containing ∼17,810 tests, which we pass without
error [39]. Testing the Coq-extracted interpreter end-to-end is left for future
work.

5 Related Work

There is a wide body of existing work on the mechanised specification of pro-
gramming language semantics [31]. It is usual for such specificication based on an
interactive theorem prover to target an interesting language core or abstraction
for mechanisation, due to the ambiguity, complexity, or size of the full language
definition. In contrast, we are able to closely follow the whole of the Wasm 1.0
semantics directly, as stated in the standard, a task made tractable by its com-
pact design and official formalisation. Xuan presents a partial Coq-mechanisation
of Wasm in his M.Sc project, independently named WasmCert [15]. We have been
given permission to use the WasmCert name. As already discussed, we build on
Watt’s Isabelle/HOL mechanisation [37].

Norrish presents a mechanisation of a fragment of C in HOL [26]. The Comp-
Cert project [23] has a mechanisation of a large fragment of C in Coq, called
Clight [4], making simplifying assumptions regarding some details of the C mem-
ory model which are not relevent to the CompCert compilation correctness proof.
Lee et al. mechanise in Twelf [29] an “internal language” with “equivalent expres-
sive power” to Standard ML, the semantics of which they formalise via elaora-
tion [21]. CakeML [19,35] includes a mechanised semantics in HOL4 for a large
fragment of Standard ML (minus functors). OCaml Light [27] is a mechanised
semantics in HOL4 of a core subset of OCaml. Jinja [18] and JavaS [34] pro-
vide mechanised fragments of Java. JSCert [5] is a Coq-mechanised specification
of a large subset of ECMAScript 5, handling all core constructs but leaving
out “library objects” such as Array and Number. Guha et al. give a JavaScript
semantics through elaboration to a mechanised semantics in Coq of a core cal-
culus [13].

More lightweight approaches are possible: e.g. the K framework [32] used
to define term-rewriting models of significant fragments of C [10], Java [6],
JavaScript [28], and PHP [11]; Cerberus [24] which defines an elaboration seman-
tics for a large fragment of C with a core calculus defined in the Lem specifica-
tion language [25]; and JaVerT, an analysis tool for JavaScript programs [12,33],
where the semantics of JavaScript is defined by a elaboration to a simpler inter-
mediate language.

6 Conclusion and Future Work

We hope our mechanisation of Wasm 1.0 will replace Watt’s mechanisation of the
original Wasm draft [37] as the canonical source for the Wasm 1.0 type soundness
proof. We also hope for further adoption of our work by the WebAssembly Com-
munity Group, with our mechanisations endorsed in the same way that certain

76 C. Watt et al.

developer tools and compilers for Wasm are already hosted under their official
banner. Wasm 1.0 is in the process of being extended with a number of new fea-
ture proposals. We intend to keep our mechanisations abreast of these changes,
and hope that early mechanisation will be valuable for in-progress features.

Our immediate future priority for WasmCert-Coq is to complete the final
proofs and engineering to enable us to extract a verified end-to-end inter-
preter which does not use an unverified OCaml harness as is currently used
in WasmCert-Isabelle. This would require us to complete the verification of the
WasmCert-Coq instantiation implementation. We would also like to do indepen-
dent testing of the end-to-end interpreter using the Wasm 1.0 test suite. Our
priority for WasmCert-Isabelle is to mechanise Wasm’s binary decoding phase
and numeric operations, again with the aim of providing a verified end-to-end
interpreter.

Our work opens the door to a number of applications. We are currently
investigating the integration of WasmCert-Coq with the Iris framework [17],
developing a higher-order mechanised program logic for a Wasm host language
to explore language-interoperable reasoning. WasmCert-Coq could be linked to
CompCert’s IRs [8], to provide verified compilation both to and from Wasm.
WasmCert-Isabelle could be linked to the Isabelle/HOL port of the CakeML
verified compiler [16,20]. It could also be linked with a Java mechanisation such
as Jinja [18], in order to investigate the expressivity of WebAssembly’s hotly-
debated in-progress extension of Garbage-Collected Types [42]. In summary, we
believe that WasmCert-Isabelle and WasmCert-Coq each have the potential to
become the foundation of many different mechanisation projects for Wasm 1.0.

Acknowledgement. Watt, Pichon-Pharabod, Bodin, and Gardner were supported
by the EPSRC grant REMS: Rigorous Engineering for Mainstream Systems
(EP/K008528/1). Watt and Pichon-Pharabod were supported by the VeTSS/NCSC
grant Mechanising Concurrent WebAssembly (G105616 RI2).

Watt was supported by a Peterhouse Research Fellowship and a Google PhD Fel-
lowship in Programming Technology and Software Engineering. Rao was supported by
an Imperial College London, Department of Computing, Doctoral Scholarship Award.
Pichon-Pharabod was supported by the ERC grant Engineering with Logic and Veri-
fication: Mathematically Rigorous Engineering for Safe and Secure Computer Systems
(789108). Bodin and Gardner were supported by the EPSRC fellowship VeTSpec: Ver-
ified Trustworthy Software Specification (EP/R034567/1).

References

1. Allais, G.: Parseque (2017). https://github.com/gallais/parseque
2. Allais, G.: Agdarsec - total parser combinators. In: JFLA 2018 (2018)
3. Batty, M., Memarian, K., Nienhuis, K., Pichon-Pharabod, J., Sewell, P.: The prob-

lem of programming language concurrency semantics. In: Vitek, J. (ed.) ESOP
2015. LNCS, vol. 9032, pp. 283–307. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46669-8 12

4. Blazy, S., Leroy, X.: Mechanized semantics for the Clight subset of the C language.
J. Autom. Reason. 43(3), 263–288 (2009). https://doi.org/10.1007/s10817-009-
9148-3. https://hal.inria.fr/inria-00352524

https://github.com/gallais/parseque
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1007/s10817-009-9148-3
https://doi.org/10.1007/s10817-009-9148-3
https://hal.inria.fr/inria-00352524

Two Mechanisations of WebAssembly 1.0 77

5. Bodin, M., et al.: A trusted mechanised JavaScript specification. In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2014, pp. 87–100. Association for Computing Machinery, New
York (2014). https://doi.org/10.1145/2535838.2535876

6. Bogdanas, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2015, pp. 445–456. Association for Computing Machinery,
New York (2015). https://doi.org/10.1145/2676726.2676982

7. Boldo, S., Jourdan, J.H., Leroy, X., Melquiond, G.: Verified compilation of floating-
point computations. J. Autom. Reason. 54(2), 135–163 (2015). http://xavierleroy.
org/publi/floating-point-compcert.pdf

8. Boldo, S., Melquiond, G.: Flocq: A unified library for proving floating-point algo-
rithms in coq. In: 2011 IEEE 20th Symposium on Computer Arithmetic, pp. 243–
252 (2011). https://doi.org/10.1109/ARITH.2011.40

9. Bynens, M.: Loading webassembly modules efficiently (2018). https://developers.
google.com/web/updates/2018/04/loading-wasm

10. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, pp. 533–544. Association for Com-
puting Machinery, New York (2012). https://doi.org/10.1145/2103656.2103719

11. Filaretti, D., Maffeis, S.: An executable formal semantics of PHP. In: Jones, R.
(ed.) ECOOP 2014. LNCS, vol. 8586, pp. 567–592. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44202-9 23

12. Fragoso Santos, J., Maksimović, P., Sampaio, G., Gardner, P.: Javert 2.0: compo-
sitional symbolic execution for javascript. Proc. ACM Program. Lang. 3(POPL)
(2019). https://doi.org/10.1145/3290379

13. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14107-2 7

14. Haas, A., et al.: Bringing the web up to speed with WebAssembly. In: Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation. ACM (2017)

15. Huang, X.: A mechanized formalization of the webassembly specification in coq.
In: RIT Computer Science (2019)

16. Hupel, L., Zhang, Y.: Cakeml. Archive of Formal Proofs, March 2018. https://isa-
afp.org/entries/CakeML.html. Formal proof development

17. Jung, R., Krebbers, R., Jourdan, J.H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28 (2018)

18. Klein, G., Nipkow, T.: A machine-checked model for a java-like language, virtual
machine, and compiler. ACM Trans. Program. Lang. Syst. 28(4), 619–695 (2006).
https://doi.org/10.1145/1146809.1146811

19. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2014, pp. 179–191. Association
for Computing Machinery, New York (2014). https://doi.org/10.1145/2535838.
2535841

20. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: Principles of Programming Languages (POPL), pp. 179–191.
ACM Press (2014). https://doi.org/10.1145/2535838.2535841. https://cakeml.org/
popl14.pdf

https://doi.org/10.1145/2535838.2535876
https://doi.org/10.1145/2676726.2676982
http://xavierleroy.org/publi/floating-point-compcert.pdf
http://xavierleroy.org/publi/floating-point-compcert.pdf
https://doi.org/10.1109/ARITH.2011.40
https://developers.google.com/web/updates/2018/04/loading-wasm
https://developers.google.com/web/updates/2018/04/loading-wasm
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1007/978-3-662-44202-9_23
https://doi.org/10.1145/3290379
https://doi.org/10.1007/978-3-642-14107-2_7
https://isa-afp.org/entries/CakeML.html
https://isa-afp.org/entries/CakeML.html
https://doi.org/10.1145/1146809.1146811
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://cakeml.org/popl14.pdf
https://cakeml.org/popl14.pdf

78 C. Watt et al.

21. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of standard
ML. In: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2007, pp. 173–184. Association
for Computing Machinery, New York (2007). https://doi.org/10.1145/1190216.
1190245

22. Leroy, X.: Java bytecode verification: an overview. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 265–285. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44585-4 26

23. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009). https://doi.org/10.1145/1538788.1538814

24. Memarian, K., et al.: Into the depths of C: elaborating the de facto standards.
In: Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2016, pp. 1–15. Association for Comput-
ing Machinery, New York (2016). https://doi.org/10.1145/2908080.2908081

25. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-
neering of real-world semantics. In: Proceedings of the 19th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2014, pp. 175–188. ACM,
New York (2014). https://doi.org/10.1145/2628136.2628143

26. Norrish, M.: C formalised in HOL. Technical report (1998)
27. Owens, S.: A sound semantics for OCamllight. In: Drossopoulou, S. (ed.) ESOP

2008. LNCS, vol. 4960, pp. 1–15. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78739-6 1

28. Park, D., Stefănescu, A., Roşu, G.: KJS: A complete formal semantics of
JavaScript. In: Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2015, pp. 346–356. Association
for Computing Machinery, New York (2015). https://doi.org/10.1145/2737924.
2737991

29. Pfenning, F., Schürmann, C.: System description: twelf — a meta-logical frame-
work for deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

30. Pierce, B.C.: Types and Programming Languages, 1st edn. The MIT Press, Cam-
bridge (2002)

31. Ringer, T., Palmskog, K., Sergey, I., Gligoric, M., Tatlock, Z.: QED at large: a
survey of engineering of formally verified software. Found. Trends Program. Lang.
5(2-3), 102–281 (2019). https://doi.org/10.1561/2500000045

32. Rou, G., erbănută, T.F.: An overview of the K semantic framework. J. Logic Alge-
braic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.012.
http://www.sciencedirect.com/science/article/pii/S1567832610000160. Membrane
computing and programming

33. Santos, J.F., Maksimović, P., Grohens, T., Dolby, J., Gardner, P.: Symbolic execu-
tion for JavaScript. In: Proceedings of the 20th International Symposium on Prin-
ciples and Practice of Declarative Programming, PPDP 2018. Association for Com-
puting Machinery, New York (2018). https://doi.org/10.1145/3236950.3236956

34. Syme, D.: Proving Java type soundness. In: Alves-Foss, J. (ed.) Formal Syntax
and Semantics of Java. LNCS, vol. 1523, pp. 83–118. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48737-9 3

35. Tan, Y.K., Owens, S., Kumar, R.: A verified type system for CakeML. In: Proceed-
ings of the 27th Symposium on the Implementation and Application of Functional
Programming Languages. IFL 2015. Association for Computing Machinery, New
York (2015). https://doi.org/10.1145/2897336.2897344

https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1145/1190216.1190245
https://doi.org/10.1007/3-540-44585-4_26
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2908080.2908081
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1007/978-3-540-78739-6_1
https://doi.org/10.1007/978-3-540-78739-6_1
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1561/2500000045
https://doi.org/10.1016/j.jlap.2010.03.012
http://www.sciencedirect.com/science/article/pii/S1567832610000160
https://doi.org/10.1145/3236950.3236956
https://doi.org/10.1007/3-540-48737-9_3
https://doi.org/10.1145/2897336.2897344

Two Mechanisations of WebAssembly 1.0 79

36. WasmCert: WasmCert (2021). https://github.com/WasmCert
37. Watt, C.: Mechanising and verifying the WebAssembly specification. In: Proceed-

ings of the 7th ACM SIGPLAN International Conference on Certified Programs
and Proofs, CPP 2018, pp. 53–65. Association for Computing Machinery, New
York (2018). https://doi.org/10.1145/3167082

38. Watt, C.: Mechanising and evolving the formal semantics of WebAssembly: The
Web’s new low-level language (2021, not yet published)

39. WebAssembly Community Group: tests (2020). https://github.com/
WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/test

40. WebAssembly Community Group: Webassembly (2020). https://github.com/
WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/

41. WebAssembly Community Group: bulk-memory-operations (2021). https://
github.com/WebAssembly/bulk-memory-operations

42. WebAssembly Community Group: GC (2021). https://github.com/WebAssembly/
gc

43. WebAssembly Working Group: Binary format (2019). https://www.w3.org/TR/
2019/REC-wasm-core-1-20191205/#binary-format%E2%91%A0

44. WebAssembly Working Group: Instantiation (2019). https://www.w3.org/TR/
2019/REC-wasm-core-1-20191205/#instantiation%E2%91%A1

45. WebAssembly Working Group: Webassembly core specification (2019). https://
www.w3.org/TR/2019/REC-wasm-core-1-20191205/

46. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (1994). https://doi.org/10.1006/inco.1994.1093

https://github.com/WasmCert
https://doi.org/10.1145/3167082
https://github.com/WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/test
https://github.com/WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/test
https://github.com/WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/
https://github.com/WebAssembly/spec/tree/704d9d9e9c861fdb957c3d5e928f1d046a31497e/
https://github.com/WebAssembly/bulk-memory-operations
https://github.com/WebAssembly/bulk-memory-operations
https://github.com/WebAssembly/gc
https://github.com/WebAssembly/gc
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-format%E2%91%A0
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#binary-format%E2%91%A0
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#instantiation%E2%91%A1
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/#instantiation%E2%91%A1
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://www.w3.org/TR/2019/REC-wasm-core-1-20191205/
https://doi.org/10.1006/inco.1994.1093

	Two Mechanisations of WebAssembly 1.0
	1 Introduction
	2 Wasm 1.0 Core Semantics
	2.1 Core Concepts
	2.2 Abstract Syntax
	2.3 Runtime Semantics
	2.4 Validation

	3 Wasm 1.0 Type Soundness
	4 Wasm 1.0 Full Semantics
	5 Related Work
	6 Conclusion and Future Work
	References

