
The Probabilistic Termination Tool
Amber

Marcel Moosbrugger1(B) , Ezio Bartocci1 , Joost-Pieter Katoen2 ,
and Laura Kovács1
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Abstract. We describe the Amber tool for proving and refuting the
termination of a class of probabilistic while-programs with polynomial
arithmetic, in a fully automated manner. Amber combines martingale
theory with properties of asymptotic bounding functions and imple-
ments relaxed versions of existing probabilistic termination proof rules to
prove/disprove (positive) almost sure termination of probabilistic loops.
Amber supports programs parameterized by symbolic constants and
drawing from common probability distributions. Our experimental com-
parisons give practical evidence of Amber outperforming existing state-
of-the-art tools.
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1 Introduction

Probabilistic programming obviates the need to manually provide inference meth-
ods and enables rapid prototyping [13]. Automated formal verification of prob-
abilistic programs, however, is still in its infancy. Our tool Amber provides a
step towards solving this problem when it comes to automating the termination
analysis of probabilistic programs, which is an active research topic [1,6,7,9–
12,14,16]. Probabilistic programs are almost-surely terminating (AST) if they
terminate with probability 1 on all inputs. They are positively AST (PAST) if
their expected runtime is finite [5]. We describe Amber, a fully automated soft-
ware artifact to prove/disprove (P)AST. Proving (P)AST is a notoriously diffi-
cult problem; in fact it is harder than proving traditional program termination
[15]. Amber supports the analysis of a class of polynomial probabilistic programs.
Programs in the supported class consist of single loops whose body is a sequence
of random assignments with acyclic variable dependencies. Moreover, Amber’s
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Fig. 1. The Amber input syntax. C[V ] denotes the set of polynomials in V (program
variables) with coefficients from C (constants). The power operator is ‘**’.

programming model supports programs parametrized by symbolic constants and
drawing from common probability distributions. To automate termination anal-
ysis, Amber automates relaxations of various existing martingale-based proof
rules ensuring (non-)(P)AST [8] and combines symbolic computation with asymp-
totic bounding functions. Amber certifies (non-)(P)AST without relying on user-
provided templates/bounds over termination conditions. Our experiments demon-
strate Amber outperforming the state-of-the-art in the automated termination
analysis of probabilistic programs (Sect. 3).

Related Work. The tools MGen [6] and LexRSM [1] use linear programming tech-
niques to certify PAST and AST, respectively. The recent tools Absynth [20],
KoAT2 [18] and ecoimp [2] can establish upper bounds on expected costs, there-
fore also on expected runtimes, and thus certify PAST. While powerful on respec-
tive AST/PAST domains, we note that none of the aforementioned tools support
both proving and disproving (P)AST. Amber is the first tool able to prove and
disprove (P)AST. Our recent work introduces relaxations of existing proof rules
for probabilistic (non-)termination together with automation techniques based
on asymptotic bounding functions [19]. We utilize these proof rule relaxations
in Amber and extend the technique of asymptotic bounding functions to pro-
grams drawing from common probability distributions and including symbolic
constants.

Contributions. This tool demonstration paper describes what Amber can do
and how it can be used for certifying (non-)(P)AST.

– We present Amber, a fully automatic open-source software artifact1 for cer-
tifying probabilistic (non-)termination (Sect. 2).

– We exhaustively compare Amber to related tools and report on our experi-
mental findings (Sect. 3).

– We provide a benchmark suite of 50 probabilistic programs as a publicly
available repository of probabilistic program examples (Sect. 3).

1 https://github.com/probing-lab/amber.

https://github.com/probing-lab/amber
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Fig. 2. Two programs supported by Amber, with symbolic constants c, x0, e ∈ R
+;

Program 2a is PAST, program 2b is AST but not PAST and program 2c is not AST.

2 Usage and Components

Programming Model. Amber supports analyzing the probabilistic termina-
tion behavior of a class of probabilistic programs involving polynomial arithmetic
and drawing from common probability distributions, parameterized by symbolic
constants which represent arbitrary real numbers. All symbolic constants are
assumed to be positive. Negative constants can be modeled with the explicit
use of “-’’. The grammar in Fig. 1 defines the input programs to Amber. Inputs
consist of an initialization part and a while-loop, whose guard is a polynomial
inequality over program variables. The initialization part is a sequence of assign-
ments either assigning (symbolic) constants or values drawn from probability
distributions. Within the loop body, program variables are updated with either
(i) a value drawn from a distribution or (ii) one of multiple polynomials over
program variables with some probability. Additional to the structure imposed
by the grammar in Fig. 1, input programs are required to satisfy the following
structural constraint: each variable updated in the loop body depends at most lin-
early on itself and at most polynomially on variables preceding. On a high-level,
this constraint enables the use of algebraic recurrence techniques for probabilis-
tic termination analysis [19]. Despite the syntactical restrictions, most existing
benchmarks on automated probabilistic termination analysis [19] and dynamic
Bayesian networks [3] can be encoded in our programming language. Figure 2
shows three example programs for which Amber is able to automatically infer
the respective termination behavior.

Implementation and Usage. Amber is implemented in python3 and relies
on the lark-parser2 package to parse its input programs. Further, Amber uses
the diofant3 package as its computer-algebra system. To compute closed-form
expressions for statistical moments of monomials over program variables only
depending on the loop counter, Amber uses the tool Mora [4]. However, for effi-
cient integration within Amber, we reimplemented and adapted the Mora func-
tionalities exploited by Amber (Mora v2), in particular by employing dynamic

2 https://github.com/lark-parser/lark.
3 https://github.com/diofant/diofant.

https://github.com/lark-parser/lark
https://github.com/diofant/diofant
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programming to avoid redundant computations. Altogether, Amber consists of
∼2000 lines of code. Figure 3 shows Amber’s output when run on the program
from Fig. 2a. Amber can be used through a Docker container [17] or installed
locally. Detailed installation and usage instructions are available at https://
github.com/probing-lab/amber.

Run with Docker. Amber can be used through a Docker container [17] by
running: $ docker run -ti marcelmoosbrugger/amber
Amber can be run on our 2d bounded random walk benchmark with:
$ ./amber benchmarks/past/2d bounded random walk

Fig. 3. The output of Amber when run on the program from Fig. 2a.

Local Installation.First, clone the repository by running the following command
in your terminal: $ git clone git@github.com:probing-lab/amber.git
Change directories to Amber’s root folder and make sure python3.8 and the
package manager pip are installed on your system. All required python packages
can be installed by running $ pip install -r requirements.txt
Create an input program (see Sect. 2) and save it in the benchmarks folder for
example with the file name my-benchmark. Amber can now be run with respect
to the input program benchmarks/my-benchmark with the following command:
$ python ./amber.py --benchmarks benchmarks/my-benchmark.

Components. Figure 4 illustrates Amber’s main components. Amber uses
four existing probabilistic termination proof rules [6,9,12,16] and their relax-
ations [19]. Additionally, Amber extends the algorithms for these relaxations to
further support drawing from common probability distributions and symbolic

https://github.com/probing-lab/amber
https://github.com/probing-lab/amber
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Fig. 4. Main components of Amber and interactions between them.

constants (cf. Fig. 1). After parsing the input program, Amber initializes the
four proof rule relaxations and determines their applicability [19]. Amber then
executes applicable proof rules consecutively and reports the analysis result con-
taining potential witnesses for (non-)(P)AST. The proof rule algorithms require
the computation of asymptotic bounding functions which is implemented in the
Bound Store component.

3 Evaluation

Experimental Setup. Amber and our benchmarks, are publicly available
at https://github.com/probing-lab/amber. The output of Amber is an answer
(“Yes’’, “No’’ or “Maybe’’) to PAST and AST, together with a potential wit-
ness. We took all 39 benchmarks from [19] and extended them by 11 new pro-
grams to test Amber’s capability to handle symbolic constants and drawing from
probability distributions. The 11 new benchmarks are constructed from the 39
original programs, by adding noise drawn from common probability distribu-
tions and replacing concrete constants with symbolic ones. As such, we conduct
experiments using a total of 50 challenging benchmarks, involving polynomial
arithmetic, probability distributions and symbolic constants. Further, we com-
pare Amber not only against Absynth and MGen (as in [19]), but also evaluate
Amber in comparison to the recent tools LexRSM [1], KoAT2 [18] and ecoimp [2].
Note that MGen can only certify PAST and LexRSM only AST. Moreover, the
tools Absynth, KoAT2 and ecoimp mainly aim to find upper bounds on expected
costs. Tables 1, 2 and 3 summarize our experimental results, with benchmarks
separated into PAST (Table 1), AST but not PAST (Table 2), and not AST
(Table 3). Benchmarks marked with * are part of our 11 new examples. In every
table, ✓ (✗) marks a tool (not) being able to certify the respective termination
property. Moreover, NA symbolizes that a benchmark is out-of-scope for a tool,
for instance, due to not supporting some distributions or polynomial arithmetic.
All benchmarks have been run on a machine with a 2.6 GHz Intel i7 (Gen 10)

https://github.com/probing-lab/amber
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Table 1. 27 programs which are PAST.

Program A
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2d bounded random walk ✓ ✗ NA NA ✗ ✗

biased random walk const ✓ ✓ ✓ ✓ ✓ ✓

biased random walk exp ✓ ✗ ✓ ✗ ✗ ✗

biased random walk poly ✓ ✗ ✗ NA ✗ ✗

binomial past ✓ ✓ ✓ ✓ ✓ ✓

complex past ✓ ✗ NA NA ✗ ✗

consecutive bernoulli trails ✓ ✓ ✓ ✓ ✓ ✓

coupon collector 4 ✓ ✗ ✓ ✓ ✓ ✓

coupon collector 5 ✓ ✗ ✓ ✓ ✓ ✓

dueling cowboys ✓ ✓ ✓ ✓ ✓ ✓

exponential past 1 ✓ NA NA NA ✗ NA

exponential past 2 ✓ NA NA NA ✗ NA

geometric ✓ ✓ ✓ ✓ ✓ ✓

geometric exp ✗ ✗ ✗ ✗ ✗ ✗
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linear past 1 ✓ ✗ ✗ ✗ ✗ ✗

linear past 2 ✓ ✗ NA ✗ ✗ ✗

nested loops NA ✓ ✗ ✓ ✓ ✓

polynomial past 1 ✓ ✗ NA NA ✗ ✗

polynomial past 2 ✓ ✗ NA NA ✗ ✗

sequential loops NA ✓ ✗ ✓ ✓ ✓

tortoise hare race ✓ ✓ ✓ ✓ ✓ ✓

dependent dist* NA NA NA NA ✗ ✓

exp rw gauss noise* ✓ NA NA NA NA NA

gemoetric gaussian* ✓ NA NA NA NA NA

race uniform noise* ✓ ✗ ✓ ✓ ✗ ✓

symb 2d rw* ✓ ✗ NA NA ✗ ✗

uniform rw walk* ✓ ✓ ✓ ✓ ✓ ✓

Total ✓ 23 9 11 12 11 13

processor and 32 GB of RAM and finished within a timeout of 50 s, where most
experiments terminated within a few seconds.

Experimental Analysis. Amber successfully certifies 23 out of the 27 PAST
benchmarks (Table 1). Although Absynth, KoAT2 and ecosimp can find expected
cost upper bounds for large programs [2,18,20], they struggle on small programs
whose termination is not known a priori. For instance, they struggle when a
benchmark probabilistically “chooses’’ between two polynomials working against
each other (one moving the program state away from a termination criterion and
one towards it). Our experiments show that Amber handles such cases success-
fully. MGen supports the continuous uniform distribution and KoAT2 the geomet-
ric distribution whose support is infinite. With these two exceptions, Amber is
the only tool supporting continuous distributions and distributions with infinite
support. To the best of our knowledge, Amber is the first tool certifying PAST
supporting both discrete and continuous distributions as well as distributions
with finite and infinite support. Amber successfully certifies 12 benchmarks to
be AST which are not PAST (Table 2). Whereas the LexRSM tool can certify
non-PAST programs to be AST, such programs need to contain subprograms
which are PAST [1]. The well-known example of symmetric 1D random walk,
contained in our benchmarks, does not have a PAST subprogram. Therefore,
the LexRSM tool cannot establish AST for it. In contrast, Amber using the
Supermartingale Rule can handle these programs. To the best of our knowledge,
Amber is the first tool capable of certifying non-AST for polynomial proba-
bilistic programs involving drawing from distributions and symbolic constants.
Amber is also the first tool automating (non-)AST and (non-)PAST analysis in
a unifying manner.
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Table 2. 14 programs which are AST and
not necessarily PAST.

Program A
m
b
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r
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fair in limit random walk NA NA

gambling ✓ ✗

symmetric 2d random walk ✗ NA

symmetric random walk constant 1 ✓ ✗

symmetric random walk constant 2 ✓ ✗

symmetric random walk exp 1 ✓ ✗

symmetric random walk exp 2 ✓ NA

symmetric random walk linear 1 ✓ ✗

symmetric random walk linear 2 ✓ ✗

symmetric random walk poly 1 ✓ NA

symmetric random walk poly 2 ✓ NA

gaussian rw walk* ✓ NA

laplacian noise* ✓ NA

symb 1d rw* ✓ NA

Total ✓ 12 0

Table 3. 9 programs which are not
AST.

Program Amber

biased random walk nast 1 ✓

biased random walk nast 2 ✓

biased random walk nast 3 ✓

biased random walk nast 4 ✓

binomial nast ✓

polynomial nast ✗

binomial nast noise* ✓

symb nast 1d rw* ✓

hypergeo nast* ✓

Total ✓ 8

Experimental Summary. Tables 1, 2 and 3 demonstrate that (i) Amber out-
performs the state-of-the-art in certifying (P)AST, and (ii) Amber determines
(non-)(P)AST for programs with various distributions and symbolic constants.

4 Conclusion

We described Amber, an open-source tool for analyzing the termination behav-
ior for polynomial probabilistic programs, in a fully automatic way. Amber com-
putes asymptotic bounding functions and martingale expressions and is the first
tool to prove and disprove (P)AST in a unifying manner. Amber can analyze
continuous, discrete, finitely- and infinitely supported distributions in polyno-
mial probabilistic programs parameterized by symbolic constants. Our experi-
mental comparisons give practical evidence that Amber can (dis)prove (P)AST
for a substantially larger class of programs than state-of-the-art tools.
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