q

Check for
updates

Fingerprinting Bluetooth Low Energy
Devices via Active Automata Learning

Andrea Pferscher®™) and Bernhard K. Aichernig

Institute of Software Technology, Graz University of Technology, Graz, Austria
{apfersch,aichernig}@ist.tugraz.at

Abstract. Active automata learning is a technique to automatically
infer behavioral models of black-box systems. Today’s learning algo-
rithms enable the deduction of models that describe complex system
properties, e.g., timed or stochastic behavior. Despite recent improve-
ments in the scalability of learning algorithms, their practical applicabil-
ity is still an open issue. Little work exists that actually learns models of
physical black-box systems. To fill this gap in the literature, we present a
case study on applying automata learning on the Bluetooth Low Energy
(BLE) protocol. It shows that not the size of the system limits the appli-
cability of automata learning. Instead, the interaction with the system
under learning, is a major bottleneck that is rarely discussed. In this
paper, we propose a general automata learning architecture for learn-
ing a behavioral model of the BLE protocol implemented by a physical
device. With this framework, we can successfully learn the behavior of
five investigated BLE devices. The learned models reveal several behav-
ioral differences. This shows that automata learning can be used for
fingerprinting black-box devices, i.e., identifying systems via their spe-
cific learned models. Based on the fingerprint, an attacker may exploit
vulnerabilities specific to a device.

Keywords: Active automata learning - Model inference -
Learning-based testing - Fingerprinting - Bluetooth Low Energy - IoT

1 Introduction

Bluetooth is a key communication technology in many different fields. Currently,
it is assumed that 4.5 billion Bluetooth devices are shipped annually and that
the number will grow to 6.4 billion by 2025 [9]. This growth mainly refers to the
increase of peripheral devices that support Bluetooth Low Energy (BLE). With
BLE, Bluetooth became also accessible for low-energy devices. Hence, BLE is a
vital technology in the Internet of Things (IoT).

The amount of heterogeneous devices in the IoT makes the assurance of
dependability a challenging task. Additionally, the insight into IoT components
is frequently limited. Therefore, the system under test must be considered as a
black-box. Enabling in-depth testing of black-box systems is difficult, but can
© Springer Nature Switzerland AG 2021

M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 524-542, 2021.
https://doi.org/10.1007/978-3-030-90870-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_28&domain=pdf
http://orcid.org/0000-0002-3484-5584
https://doi.org/10.1007/978-3-030-90870-6_28

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 525

be achieved with model-based testing techniques. Garbelini et al. [17] success-
fully used a generic model of the BLE protocol to detect security vulnerabilities
of BLE devices via model-based fuzzing. However, their work states that the
creation of such a comprehensive model was challenging since the BLE proto-
col has high degrees of freedom. In practice, the creation of such a model is an
error-prone process and is usually not feasible.

To overcome the problem of model availability, learning-based testing tech-
niques have been proposed [4]. In learning-based testing, we use automata learn-
ing algorithms to automatically infer a behavioral model of a black-box system.
The learned model could then be used for further verification. Motivated by
promising results of learning-based testing, various automata learning algorithms
have been proposed to extend learning for more complex system properties like
timed [6,32] or stochastic behavior [30]. However, few of these algorithms have
been evaluated on systems in practice.

In this paper, we present a case study that applies active automata learning
on real physical devices. Our objective is to learn the behavioral model of the
BLE protocol implementation. For this, we propose a general automata-learning
framework that automatically infers the behavioral model of BLE devices. Our
presented framework uses state-of-the-art automata learning techniques. We
adapt these algorithms considering practical challenges that occur in learning
real network components.

In our case study, we present our results on learning five different BLE
devices. Based on these results, we stress two different findings. First, we observe
that the implementations of the BLE stacks differ from device to device. Using
this observation, we show that active automata learning can be used to identify
black-box systems. That is, our proposed framework generates a fingerprint of a
BLE device. Second, the presented performance metrics show that not only does
the system’s size influences the performance of the learning algorithm. Addition-
ally, the creation of a deterministic learning setup creates a significant overhead
which has an impact on the efficiency of the learning algorithm, since we have
to repeat queries and wait for answers.

The contribution of this paper is threefold: First, we present our developed
framework that enables learning of BLE protocol implementations of peripheral
devices. Second, we present the performed case study that evaluates our frame-
work on real physical devices. The framework including the learned models is
available online! [22]. Third, we propose how our presented technique can be
used to fingerprint black-box systems.

The paper is structured as follows. Section 2 discusses the used modeling for-
malism, active automata learning, and the BLE protocol. In Sect. 3, we propose
our learning architecture, followed by the performed evaluation based on this
framework in Sect.4. Section 5 discusses related work and Sect. 6 concludes the

paper.

! https://github.com/apferscher/ble-learning.

https://github.com/apferscher/ble-learning

526 A. Pferscher and B. K. Aichernig

2 Preliminaries

2.1 Mealy Machines

Mealy machines represent a neat modeling formalism for systems that create
observable outputs after an input execution, i.e., reactive systems. Moreover,
many state-of-the-art automata learning algorithms and frameworks [18,20] sup-
port Mealy machines. A Mealy machine is a finite state machine, where the states
are connected via transitions that are labeled with input actions and the cor-
responding observable outputs. Starting from an initial state, input sequences
can be executed and the corresponding output sequence is returned. Definition
1 formally defines Mealy machines.

Definition 1 (Mealy machine). A Mealy machine is a 6-tuple M = (Q, qo, I,
0,6, \) where

- Q is the finite set of states

— qo 18 the initial state

— I is the finite set of inputs

- O is the finite set of outputs

- 0:Q x I — Q is the state-transition function
- A:Q x I — O is the output function

To ensure learnability, we require M to be deterministic and input-enabled.
Hence, § and A are total functions. Let S be the set of observable sequences,
where a sequence s € S consists of consecutive input/output pairs (i1,01),...,
(43,0i)y -y (in,0n) with i; € I, 0; € O, i < n and n € N defining the length of the
sequence. We define s; € I'* as the corresponding input sequence of s, and sp €
O* maps to the output sequence. We extend é and A for sequences. The state
transition function §* : Q x I* — @ gives the reached state after the execution
of the input sequence and the output function * : Q x I* — O* returns the
observed output sequence. We define two Mealy machines M = (Q, qo, I, O, §, \)
and M’ = (Q’,q},1,0,0",N) as equal if Vs; € IT* : X*(qo, $;) = N*(q), si), 1.e.
the execution of all input sequences lead to equal output sequences.

2.2 Active Automata Learning

In automata learning, we learn a behavioral model of a system based on a set
of execution traces. Depending on the generation of these traces, we distin-
guish between two techniques: passive and active learning. Passive techniques
reconstruct the behavioral model from a given set of traces, e.g., log files. Conse-
quently, the learned model can only be as expressive as the provided traces.
Active techniques, instead, actively query the system under learning (SUL).
Hence, actively learned models are more likely to cover rare events that can-
not be observed from ordinary system monitoring.

Many current active learning algorithms build upon the L* algorithm pro-
posed by Angulin [7]. The original algorithm learns the minimal deterministic

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 527

finite automaton (DFA) of a regular language. Angluin’s seminal work intro-
duces the minimally adequate teacher (MAT) framework, which comprises two
members: the learner and the teacher. The learner constructs a DFA by ques-
tioning the teacher, who has knowledge about the SUL. The MAT framework
distinguishes between membership and equivalence queries. Using membership
queries, the learner asks if a word is part of the language, which can be either
answered with yes or no by the teacher. Based on these answers, the learner
constructs an initial behavioral model. The constructed hypothesis is then pro-
vided to the teacher in order to ask if the DFA conforms to the SUL, i.e. the
learner queries equivalence. The teacher answers to equivalence queries either
with a counterexample that shows non-conformance between the hypothesis and
the SUL or by responding yes to affirm conformance. In the case that a coun-
terexample is responded, the learner uses this counterexample to pose new mem-
bership queries and construct a new hypothesis. This procedure is repeated until
a conforming hypothesis is proposed.

The L* algorithm has been extended to learn Mealy machines of reactive
systems [19,21,27]. To learn Mealy machines, membership queries are replaced
by output queries. For this, the learner asks for the output sequence on a given
sequence of inputs. We assume that the teacher has access to the SUL in order
to execute inputs and observe outputs.

In practice, we cannot assume a perfect teacher who provides the shortest
counterexample that shows non-conformance between the hypothesis and the
SUL. To overcome this problem, we use conformance testing to substitute equiv-
alence queries. For this, we need to define a conformance relation between the
hypothesis and the SUL based on testing. Tretmans [33] introduces an implemen-
tation relation Z imp S, which defines conformance between an implementation
7 and a specification S. In model-based testing, Z would be a black-box system
and S a formal specification in terms of a model, e.g., a Mealy machine. Fur-
thermore, he denotes that 7 passes t if the execution of the test ¢t on Z leads
to the expected results. Based on a test suite T's that adequately represents the
specification S, Tretmans defines the conformance relation as follows.

Zimp S &Vt Ts:1 passest (1)

Informally, Z conforms to S, if Z passes all test cases. We apply this confor-
mance relation for conformance testing during learning. In learning, we try to
verify if the learned hypothesis H conforms to the black-box SUL Z, i.e., if the
relation H imp 7 is satisfied. Furthermore, we assume that Z can be represented
by the modeling formalism of H. Based on the definition of equivalence of Mealy
machines, Tappler [29] stresses that Z imp H < H imp Z holds. Therefore, we
can define the conformance relation for learning Mealy machines based on a test
suite T' C I* as follows.

Himp T <Vt € T N (¢2tt) = Ni(dE 1) 2)

528 A. Pferscher and B. K. Aichernig

central peripheral
advertisements | [. .
<«——— | advertising !
el scan_req R Rid
, scanning 1
(St S scan-rsp___ _ ______]
l connection_req _
cTTToTT T
1 « e .
itiating ! i
, e g_ \ |e---____Connectionrsp ________|
1 {length, feature, version, MTU}_req
cTTTETTT \ . FTTTETT TN
1 . length, feature, version, MTU} _rs 1 .
1 connection | [« {length, feature, version, MTU Lrsp +| 1 connection
1 ! 1
! (master) | (legacy/secure) pairing_req o (slave) |
1)
. _(legacy/secure) pairingrsp____ |
y y

Fig. 1. Communication between a BLE central and peripheral to establish connection.
The sequence diagram is adapted from [17].

2.3 Bluetooth Low Energy

The BLE protocol is a lightweight alternative to the classic Bluetooth pro-
tocol, specially designed to provide a low-energy alternative for IoT devices.
The Bluetooth specification [10] defines the connection protocol between two
BLE devices according to different layers of the BLE protocol stack. Based on
the work of Garbelini et al. [17], Fig.1 shows the initial communication mes-
sages of two connecting BLE devices on a more abstracted level. We distinguish
between the peripheral and the central device. In the remainder of this paper,
we refer to the central device simply as central and to the peripheral device as
peripheral. The peripheral sends advertisements to show that it is available for
connection with a central. According to the BLE specification, the peripheral
is in the advertising state. If the central scans for advertising devices it is in
the scanning state. For this, the central sends a scan request (scan_req) to the
peripheral, which response with a scan response (scan_rsp). In the next step,
the central changes from the scanning to the initiating state by sending the
connection request (connection_req). If the peripheral answers with a connection
response (connection_rsp), the peripheral and central enter the connection state.
The BLE specification defines now the central as master and the peripheral as
slave. After the connection, the negotiation on communication parameters starts.
Both the central and peripheral can request features or send control packages.
These request and control packages include maximum package length, maxi-
mum transmission unit (MTU), BLE version, and feature exchanges. As noted
by Garbelini et al. [17], the order of the feature requests is not defined in the
BLE specification and can differ for each device. After this parameter negotia-
tion, the pairing procedure starts by sending a pairing request (pairing_req) from
the central to the peripheral, answered by a pairing response (pairing_rsp). The

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 529

BLE protocol distinguishes two pairing procedures: legacy and secure pairing.
In the remainder of this paper, we will only consider secure pairing requests.

abstract concrete BLE
input A\ __input .\ packet _
Learning ” - - BLE
Algorithm Mapper P BLE central P peripheral
abstract ~—— concrete ~——— BLE
output output packet

Fig. 2. Similar to the interface of Tappler et al. [31] we create a learning architecture
to execute abstract queries on the BLE peripheral.

3 Learning Setup

Our objective is to learn the behavioral model of the BLE protocol implemented
by the peripheral device. The learning setup is based on active automata learn-
ing, assuming that unusual input sequences reveal characteristic behavior that
enables fingerprinting. According to Sect. 2.3, we can model the BLE protocol as
a reactive system. Tappler et al. [31] propose a learning setup for network compo-
nents. Following a similar architecture, we propose a general learning framework
for the BLE protocol. Figure 2 depicts the four components of the learning inter-
face: learning algorithm, mapper, BLE central and BLE peripheral.

The applied learning algorithm is an improved variant of the L* algorithm.
Since L* is based on an exhaustive input exploration in each state, we assume
that it is beneficial for fingerprinting. Rivest and Schapire [24] proposed the
improved L* version that contains an advanced counterexample processing. This
improvement might reduce the number of required output queries. Considering
that the BLE setup is based on Python, we aim at a consistent learning frame-
work integration. At present, AALPY [20] is a novel active learning library that
is also written in Python. AALPY implements state-of-the-art learning algo-
rithms and conformance testing techniques, including the improved L* variant
that is considered here. Since the framework implements equivalence queries via
conformance testing, we assume that the conformance relation defined in Eq. 2
holds. To create a sufficient test suite, we combine random testing with state
coverage. The applied test-case generation technique generates for each state
in the hypothesis niest input traces. The generated input traces of length njey
comprise the input prefixes to the currently considered state concatenated with
a random input sequence.

Learning physical devices via a wireless network connection introduces prob-
lems that hamper the straightforward application of the learning algorithm.
We observe two main problems: package loss and non-deterministic behavior.
Both problems required adaptions of the AALPY framework. Package loss might
be critical for packages that are necessary to establish a connection. To over-
come unexpected connection losses, we assume that the scanning and connection
requests are always answered by corresponding responses of the peripheral. If we
do not receive such a response, we assume that the request was lost and report

530 A. Pferscher and B. K. Aichernig

a connection error. In the case of a connection error, we repeat the performed
output query. To guarantee termination, the query is only repeated up to nerror
times. After nepor repetitions, we abort the learning procedure.

We pursue an akin procedure for non-deterministic behavior. Non-
determinism might occur due to the loss or delay of responses. In Sect. 4, we
discuss further causes of non-deterministic behavior that we experienced during
learning. If we observe non-determinism, we repeat the output query. Again we
define an upper limit for a repeating non-deterministic behavior by a maximum
of Nyondet query executions.

The applied learning algorithm requires that the SUL is resettable since it is
expected that every output query is executed from the initial state of the SUL.
The learning library AALPY can perform resetting actions before and after the
output query execution. We denote the method that is called before executing
the output query as pre and the method after the output query as post. We
assume that the peripheral can be reset by the central by sending a scan_req.
To ensure a proper reset before executing the output query, a scan request is
performed in the pre method.

Besides the reset, we have to consider that some peripherals might enter a
standby state in which they stop advertising. This could be the case, e.g., if
the peripheral does not receive any expected commands from the central after a
certain amount of time. The main problem of a peripheral entering the standby
state is that the central might not be able to bring back the peripheral to the
advertising state. To prevent the peripheral from entering the standby state, we
send keep-alive messages in the pre and post method. These keep-alive messages
include a connection request followed by a scan request. To ensure a proper state
before executing the output query, we check for connection errors during the
keep-alive messages as previously described.

The mapper component serves as an abstraction mechanism. Considering a
more universal input and output alphabet, we learn a behavioral model on a more
abstract level. The learning algorithm, therefore, generates output queries that
comprise abstract input sequences. The mapper receives these abstract inputs
and translates them to concrete inputs that can be executed by the central.
After the central received a concrete input action, the central returns the cor-
responding concrete output. This concrete output is then taken by the mapper
and translated to a more abstract output that is used by the learning algorithm
to construct the hypothesis.

The abstracted input alphabet to learn the behavior of the BLE proto-
col implementations is defined by I4 = {scan_req, connection_req, length_req,
length_rsp, feature_req, feature_rsp, version_req, mtu_req, pairing_req}. The abstract
inputs of I are then translated to concrete BLE packages that can be sent
by the central to the peripheral. For example, the abstract input length_req is
translated to a BLE control package including a corresponding valid command
of the BLE protocol stack. For the construction of the BLE packages we use the
Python library SCAPY [26]. In SCAPY syntax the BLE package for the length_req
can be defined as BTLE/BTLE_DATA/BTLE_CTRL/LL_LENGTH_REQ(params).

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 531

Considering the input/output definition of reactive systems, it may be
unusual to include responses in the input alphabet. For our setup, we included
the feature and length response as inputs. In Sect. 2.3, we explained that after the
connection request of the central, also the peripheral might send control pack-
ages or feature requests. To explore more behavior of the peripheral, we have to
reply to received requests from the peripheral. In a learning setup, the inputs
feature_rsp and length_rsp are responses from the central to received outputs
from the peripheral that contain requests. For learning an expressive behavioral
model, we consider responses to feature and length requests, i.e. feature_rsp and
length_rsp, as additional inputs.

Regarding translation of outputs, the mapper returns the received BLE pack-
ages conforming to the SCAPY syntax. One exception applies to the response on
scan_req, where two possible valid responses are mapped to one scan response
(ADV). In the BLE protocol it is possible that one input might lead to multiple
responses that are distributed via individual BLE packages. For the creation of a
single output, the mapper collects several responses in a set. The collected out-
puts in the set are then concatenated in alphabetical order to one output string.
This creates deterministic behavior, even though packages might be received in a
different order. We repeat the collection of BLE package responses at least npb,
times. If after n_.- responses no convincing response has been returned, we con-
tinue listening for responses. We define a response as convincing, if the received
package contains more than a BLE data package, i.e. BTLE/BTLE_DATA. How-
ever, the maximum number of listening attempts is limited by n>P . If we do not
receive any BLE package after nisP. | the mapper returns the empty output which
is denoted by the string EMPTY. As previously mentioned, the assumption of
an empty response is not valid for scan and connection requests. In the case of
nP empty responses, we perform the described connection-error handling.

The BLE central component comprises the adapter implementation and the
physical central device. We use the Nordic nRF52840 USB dongle as central.
Our learning setup requires to stepwise send BLE packages to the peripheral
device. For this, our implementation follows the setup proposed by Garbelini et
al. [17]. We use their provided firmware for the Nordic nRF52840 System on a
Chip (SoC) and adapted their driver implementation to perform single steps of
the BLE protocol.

The BLE peripheral represents the black-box device that we want to learn,
i.e., the SUL. We assume that the peripheral is advertising and only interacts
with our central device. For learning, we require that the peripheral is resettable
and that the reset can be initiated by the central. After a reset, the peripheral
should be again in the advertising state.

532 A. Pferscher and B. K. Aichernig

4 FEvaluation

We evaluated the proposed automata learning setup for the BLE protocol in
a case study consisting of five different BLE devices. The learning framework
is available online® [22]. The repository contains the source code for the BLE
learning framework, the firmware for the Nordic nRF52840 Dongle and Nordic
nRF52840 Development Kit, the learned automata, and the learning results.

Table 1. Evaluated BLE devices

Company (Board) SoC Application

Cypress (CYSCPROTO-063-BLE) CYBLE-416045-02 | Find Me Target
Nordic (decaWave DWM1001-DEV) nRF52832 Nordic GATTS
Texas Instruments (LAUNCHXL-CC2640R2) | CC2640R2 Project Zero

Texas Instruments (LAUNCHXL-CC2650) CC2650 Project Zero
Cypress (Raspberry Pi 4 Model B) CYW43455 BlueZ GATT Server®

* https://scribles.net /creating-ble-gatt-server-uart-service-on-raspberry-pi/

4.1 BLE Devices

Table 1 lists the five investigated BLE devices. In the remainder of this section,
we refer to the BLE devices by their SoC identifiers. All evaluated SoCs support
the Bluetooth v5.0 standard [10]. To enable a BLE communication, we deployed
and ran an example of a BLE application on the SoC. The considered BLE
applications were either already installed by the semiconductor manufacturer or
taken from examples in the semiconductor’s specific software development kits.
In the case of the CYW43455 (Raspberry Pi), an example code from the internet
was used.

4.2 BLE Learning

For our learning setup, we used the Python learning library AALPY [20] (version
1.0.1). For the composition of the BLE packages, we used a modified version
of the Python library ScAPY [26] (version 2.4.4). The used modifications are
now available on ScApPy v2.4.5. All experiments were performed with Python
3.9.0 on an Apple MacBook Pro 2019 with an Intel Quad-Core i5 operating
at 2.4 GHz and with 8 GB RAM. As BLE central device, we used the Nordic
nRF52840 Dongle. The deployed firmware for the USB dongle was taken from
the SWEYNTOOTH repository [16].

Learning the communication protocol in use by interacting with a non-
simulated physical device may cause unexpected behavior, e.g., the loss of trans-
mitted packages. This erroneous behavior can cause missing responses or non-
deterministic behavior. To adapt the AALPY framework for such a real-world

2 https://github.com/apferscher/ble-learning.

https://scribles.net/creating-ble-gatt-server-uart-service-on-raspberry-pi/
https://github.com/apferscher/ble-learning

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 533

setup, we modified the implementation of the equivalence oracle and the used
caching mechanism. These modifications of our framework handle connection
errors and non-deterministic outputs according to our explanation in Sect. 3. For
this, we set the maximum number of consecutive connection errors nerror = 20
and the number of consecutive non-deterministic output queries to npondet = -
Our experiments show that this parameters setup created a stable and fast learn-
ing setup.

For conformance testing, we copied the class StatePrefixEqQOracle from
AALPY and added our error handling behavior. The number of performed
queries per state is set to ngesy = 10 and the number of performed inputs per
query is set to nje, = 10. We stress that the primary focus of this paper was
to generate a fingerprint of the investigated BLE SoCs. Therefore, it was suffi-
cient to perform a lower number of conformance tests. However, we recommend
increasing the number of conformance tests if a more accurate statement about
conformance of the model to the SUL is required.

Table 2. Learning results of four out of five evaluated BLE SoCs

CYBLE-416045-02 | nRF52832 | CC2650 | CYW43455
States 3 5 5 11
Total time in minutes (min) |25.86 151.47 49.63 209.43
Learning (min) 20.42 85.43 36.57 | 159.66
Conformance checking (min) |5.44 66.04 13.06 | 49.77
Output Queries 243 406 405 891
Output Query Steps 729 1461 1458 4131
Conformance Tests 30 50 50 111
Conformance Test Steps 330 580 580 1403
Connection Errors 555 913 910 2071
Non-Deterministic Queries | 0 1 0 0

In Sect.3, we explained that a sent BLE message could lead to multiple
responses. These responses can be distributed over several BLE packages. Hence,
our central listens for a minimum number of responses n,.. , but stops listen-
ing after n™P_ attempts. For our learning setup, we set for all SoCs n.>> = 20

max min
and noP = 30. Experiments during our evaluation show that this setup enables
stable and fast learning for all SoCs. However, we decided to create a differ-
ent parameter setup for the scan request. The parameter setup depends on the
purpose of the request. We distinguish between two cases. In the first case, we
perform the scan request to reset the SUL. On the one hand, we want to continue
fast if we receive a response, therefore, n-b = 5. On the other hand, we want to
be sure that the SUL is properly reset, therefore nj-> = 100. The second case
occurs during learning where the scan request is included as an input action in

534 A. Pferscher and B. K. Aichernig

an output query. For this purpose, we decrease the parameters to n,.., =5 and
npb = 20, since the query is repeated in case of a missing response.

Table2 shows learning results for four out of the five investigated SoCs.
Results of CC2640R2 are not included, since we were not able to learn a deter-
ministic model of CC2640R2 using the defined input alphabet. We discuss pos-
sible reasons for the non-deterministic behavior later. For all other SoCs, we
learned a deterministic Mealy machine using the complete input alphabet.

We required for each SUL one learning round, i.e. we did not find a counterex-
ample to conformance between the initially created hypothesis and the SUL. The
learned behavioral models range from a simpler structure with only three states
(CYBLE-416045-02) to more complex behavior that can be described by eleven
states (CYW43455).

The learning of the largest model regarding the number of states
(CYW43455) took approximately 3.5h, whereas the smallest model (CYBLE-
416045-02) could be learned in less than half an hour. We observed that the total
runtime for SoCs with a similar state space (nRF52832 and CC2650) significantly
differs. The results presented in Table 2 show that learning the nRF52832 took
three times as long as learning the CC2650, where both learned models have five
states. The difference in runtime indicates that the scalability of active automata
learning does not merely depends on the input alphabet size and state space of
the SUL. Rather, we assume that the overhead to create a deterministic learning
setup, e.g. repeating queries or waiting for answers, also influences the efficiency
of active automata learning.

Conforming to the state space, the number of performed output queries and
steps increases. Rather unexpected, also the number of connection errors seems
to align with the complexity of the behavioral model. Therefore, we assume that
message loss regularly occurs in our learning setup. The comparison between
the number of performed output queries, including conformance tests, and the
observed connection errors show that more connection errors occur than output
queries are performed. Since an output query would have been repeated after
a connection error, we assume that we observe more connection errors in the
resetting procedure. This creates our conjecture that a decent error-handling
resetting procedure is required to ensure that the SUL is reset to the initial state
before the output query is executed. Furthermore, we observe fewer connection
errors and non-determinism during the output queries. Hence, we assume that
our proposed learning setup appropriately resets the SUL.

Figure 3 shows the learned model of the nRF52832 and Fig. 4 of the CC2650.
To provide a clear and concise representation, we merged and simplified transi-
tions. The unmodified learned models of all SoCs considered in this case study are
available online®. The comparison between the learned models of the nRF52832
(Fig. 3) and the CC2650 (Fig.4) shows that even models with the same number
of states describe different BLE protocol stack implementations. We highlighted
in red for both models the transitions that show a different behavior on the
input length_rsp. The nRF52832 responds to an unrequested length response

3 https://github.com/apferscher/ble-learning.

https://github.com/apferscher/ble-learning

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 535

only with a BLE data package and then completely resets the connection pro-
cedure. Therefore, executing an unexpected length response on the nRF52832
leads to the initial state akin to the performance of a scan request. The CC2650,
instead, reacts to an unrequested length response with a response containing the
package LL_LUNKNOWN_RSP and remains in the same state.

Using the learning setup of Sect. 3, we could not learn the CC2640R2. Inde-
pendent from the adaption of our error handling parameters, we always observed
non-deterministic behavior. More interestingly, the non-deterministic behavior
could repeatedly be observed on the following output query.

connection_req - pairing_req - length_rsp - length_req - feature_req

In earlier stages of the learning procedure, we observed the following output
sequence after the execution of the inputs.

LL_LENGTH-REQ-SM_PAIRING_RSP-BTLE_DATA-LL_.LENGTH_RSP-LL_FEATURE_RSP

scan_req/ADV
length rsp/DATA

scan_req/ADV

scan_req/ADV
length_rsp/DA

length_rsp/DATA

version_req/LL_VERSION_IND can_req/ADV

mtu_req/ATT_MTU_RSP
i length_rsp/DATA

version_reg/D

‘mtu_req/ATT ERROR RSP

Fig. 3. Simplified learned model of the nRF52832. Inputs are lowercased and outputs
are capitalized. For a clear presentation, received outputs are abbreviated, and input
and outputs are summarized by the +-symbol.

connection_req/DATA

scan_req/ADV

ersion_req/LL_VERSION_IND

connection_req/DATA

Fig. 4. Simplified learned model of the CC2650.

536 A. Pferscher and B. K. Aichernig

Table 3. The non-deterministic behavior of the CC2640R2 BLE SoC disabled learning
considering the entire input alphabet. The table shows the results of learning with a
reduced input alphabet.

no pairing_req | no length_req | no feature_req
States 6 11 11
Total time (min) 54.17 88.76 87.15
Learning time (min) 40.83 61.57 60.28
Conformance checking time (min) | 13.34 27.19 26.87
Output Queries 390 705 704
Output Query Steps 1499 3141 3136
Conformance Tests 61 110 110
Conformance Test Steps 710 1370 1370
Connection Errors 978 1657 1628
Non-Deterministic Queries 7 1 0

Later in learning, we never again received any feature response for the input
feature_req if we executed this output query. The observed outputs always cor-
responded to the following sequence.

LL_.LENGTH-REQ - SM_PAIRING_RSP - BTLE_DATA - LL_LLENGTH_RSP - BTLE_DATA

If we remove one of the inputs pairing_req, length_req or feature_req, our learn-
ing setup successfully learned a deterministic model. Table 3 shows the learning
results for the CC2640R2 with the adapted input alphabets. Compared to the
results in Table2, we observe more non-deterministic behavior, which led to
repetitions of output queries.

4.3 BLE Fingerprinting

The comparison of the learned models shows that all investigated SoCs behave
differently. Therefore, it is possible to uniquely identify the SoC. The advantage
of active automata learning, especially using L*-based algorithms, is that every
input is queried in each state to uniquely identify a state of the model. The
collected query information can then be used to fingerprint the system. A closer
look at the models shows that even short input sequences sufficiently fingerprint
the SoC.

In our BLE learning setup, we noticed that for each learned model, an initial
connection request leads to a new state. Table 4 shows the observable outputs for
each input after performing the initial connection request connect_req, i.e., the
table shows the outputs that identify the state for the corresponding SoC. We
determine that the set of observable outputs after an initial connection request
is different for every SoC.

A closer look at the observable outputs shows that a combination of only two
observable outputs is enough to identify the SoC. We highlight in Table4 two

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 537
Table 4. The investigated SoCs can be identified by only a single model state that is
reached after performing an initial connection request. The columns of the table present
the outputs that are observed when the input (row) is executed in the connection state.
The observable outputs show that only two inputs are required to distinguish the SoCs.

CYBLE-416045-02 | nRF52832 CC2640R2 CC2650 CYW43455
scan_req ADV ADV ADV ADV ADV
connect_req | BTLE_DATA SM_HDR/RAW LL_.LENGTH_REQ | BTLE_DATA LL_FEATURE_REQ
length_req | LLLUNKNOWN_RSP | LL_.LENGTH_RSP LL_.LENGTH_RSP |LL_.UNKNOWN_RSP | LL_.LENGTH_RSP
length_rsp | LLLUNKNOWN_RSP | BTLE_DATA BTLE_DATA LL_.UNKNOWN_RSP | LL_.REJECT_RSP
feature_req | LL.FEATURE_RSP | LL_FEATURE_RSP LL_.FEATURE_RSP | LL_.FEATURE_RSP |LL_FEATURE_RSP
feature_rsp | LL_.REJECT_RSP LL_.UNKNOWN_RSP | BTLE_DATA BTLE_DATA LLLENGTH_REQ
version_req | LL_.VERSION_IND | LL_.VERSION_IND BTLE_DATA LL_.VERSION_IND |LL_VERSION_IND
mtu_req ATT_MTU_RSP ATT_MTU_RSP ATT_MTU_RSP ATT_MTU_RSP BTLE_DATA
pairing_req | SM_FAILED SM_PAIRING SM_PAIRING SM_PAIRING BTLE_DATA

possible output combinations that depict the fingerprint of a SoC. We note that
also other output combinations are possible. We can now use the corresponding
inputs to generate a single output query that uniquely identifies one of our
investigated SoCs. Under the consideration that a scan request resets the SoC,
we define the fingerprinting for the five SoCs output query as follows.

scan_req - connection_req - feature_rsp - scan_req - connection_req - version_req

The execution of this output query leads to a different observed output sequence
for each of the five investigated SoCs. For example, the corresponding output
sequence for the nRF52832 is

ADV - SM_HDR - LL.LUNKNOWN_RSP - ADV - SM_HDR - LL_-VERSION_IND,
whereas the sequence for the CC2650 is
ADV - BTLE_DATA - BTLE_DATA - ADV - BTLE_DATA - LL_VERSION_IND.

The proposed manual analysis serves as a proof of concept that active
automata learning can be used for fingerprinting BLE SoCs. Obviously, the found
input sequences for fingerprinting are only valid for the given SoCs. For other
SoCs, a new model should be learned to identify a possibly extended set of input
sequences for fingerprinting. We note that this fingerprinting sequence could also
be found rather fast by random test execution. The advantage of using automata
learning for fingerprinting is that the models only have to be created once. Based
on these behavioral models, we could create new fingerprinting sequences if we
consider further SoCs. For this, is not required to test the prior investigated
SoCs. However, we recommend replacing the manual analysis with an automatic
conformance testing technique between the models akin to Tappler et al. [31].

5 Related Work

Celosia and Cunche [11] also investigated fingerprinting BLE devices, however,
their proposed methodology is based on the Generic Attribute Profile (GATT),

538 A. Pferscher and B. K. Aichernig

whereas our technique also operates on different layers, e.g. the Link Layer (LL),
of the BLE protocol stack. Their proposed fingerprinting method is based on
a large dataset containing information that can be obtained from the GATT
profile, like services and characteristics.

Argyros et al. [8] discuss the combination of active automata learning and
differential testing to fingerprint the SULs. They propose a framework where
they first learn symbolic finite automata of different implementations and then
automatically analyze differences between the learned models. They evaluated
their technique on implementations of TCP, web application firewalls, and web
browsers. A similar technique was proposed by Tappler et al. [31] investigating
the Message Queuing Telemetry Transport (MQTT) protocol. However, their
motivation was not to fingerprint MQTT brokers, but rather test for inconsis-
tencies between the learned models. These found inconsistencies show discrep-
ancies to the MQTT specification. Following an akin idea, but motivated by
security testing, several communication protocols like TLS [25], TCP [13], SSH
[15] or DTLS [14] have been learning-based tested. In the literature, these tech-
niques are denoted as protocol state fuzzing. To the best of our knowledge, none
of these techniques interacted with an implementation on an external physical
device, but rather interacted via localhost or virtual connections with the SULs.

One protocol state fuzzing technique on physical devices was proposed by
Stone et al. [28]. They detected security vulnerabilities in the 802.11 4-Way
handshake protocol by testing Wi-Fi routers. Aichernig et al. [3] propose an
industrial application for learning-based testing of measurement devices in the
automotive industry. Both case studies emphasize our observation that non-
deterministic behavior hampers the inference of behavioral models via active
automata learning. Other physical devices that have been learned are bank cards
[1] and biometric passports [2]. The proposed techniques use a USB-connected
smart card reader to interact with the cards. Furthermore, Chalupar et al. [12]
used Lego® to create an interface to learn the model of a smart card reader.

6 Conclusion

Summary. In this paper, we presented a case study on learning-based testing
of the BLE protocol. The aim of this case study was to evaluate learning-based
testing in a practical setup. For this, we proposed a general learning architecture
for BLE devices. The proposed architecture enabled the inference of a model
that describes the behavior of a BLE protocol implementation. We evaluated
our presented learning framework in a case study consisting of five BLE devices.
The results of the case study show that the active learning of a behavioral model
is possible in a practicable amount of time. However, our evaluation showed
that adaptions to state-of-the-art learning algorithms, such as including error-
handling procedures, were required for successful model inference. The learned
models depicted that implementations of the BLE stack vary significantly from
device to device. This observation confirmed our hypothesis that active automata
learning enables fingerprinting of black-box systems.

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 539

Discussion. We successfully applied active automata learning to reverse engi-
neer the behavioral models of BLE devices. Despite the challenges in creating
a reliable and general learning framework to learn a physical device, the BLE
interface creation only needs to be done once. Our proposed framework, which is
also publicly available [22], can now be used for learning the behavioral models
of many BLE devices. Our presented learning results show that in practice the
scalability of active automata learning not only depends on the efficiency of the
underlying learning algorithm but also on the overhead due to SUL interaction.
All of the learned models show behavioral differences in the BLE protocol stack
implementations. Therefore, we can use active automata learning to fingerprint
the underlying SoC of a black-box BLE device. The possibility to fingerprint the
BLE could be a possible security issue, since it enables an attacker to exploit spe-
cific vulnerabilities, e.g. from a BLE vulnerability collection like SWEYNTOOTH
[17]. Compared to the BLE fingerprinting technique of Celosia and Cunche [11],
our proposed technique is data and time efficient. Instead of collecting 13 000
data records over five months, we can learn the models within hours.

Future Work. To the best of our knowledge, the learned models do not show any
security vulnerabilities. However, for future work, we plan to consider further
levels of the BLE protocol stack, e.g., the encryption-key exchange in the pairing
procedure. Considering these levels of the BLE stack might reveal security issues.
Related work [13,14,25,28] has shown that automata learning can successfully be
used to detected security vulnerabilities. Therefore, learning the security-critical
behavior of the BLE protocol might be interesting for further security analysis
and testing.

Our proposed method was inspired by the work of Garbelini et al. [17], since
their presented fuzz-testing technique demonstrated that model-based testing is
applicable to BLE devices. Instead of creating the model manually, we showed
that learning a behavioral model of the BLE protocol implemented on a physical
device is possible. For future work, it would be interesting to use our learned
models to generate test cases for fuzzing. We are currently working on extending
our proposed learning framework for learning-based fuzzing of the BLE protocol.
For this, we follow a similar technique that we proposed on fuzzing the MQTT
protocol via active automata learning [5].

We find that the non-deterministic behavior of the BLE devices hampered
the learning of deterministic models. Instead of workarounds to overcome non-
deterministic behavior, we could learn a non-deterministic model. We already
applied non-deterministic learning on the MQTT protocol [23]. Following a sim-
ilar idea, we could learn a non-deterministic model of the BLE protocol.

Acknowledgment. This work is supported by the TU Graz LEAD project “Depend-
able Internet of Things in Adverse Environments” and by the Austrian Research Pro-
motion Agency (FFG), project “LearnTwins”. We would like to thank Maximilian
Schuh for providing support for the BLE devices and the authors of the SWEYNTOOTH
paper for creating an open-source BLE interface. Furthermore, we thank the anony-
mous reviewers for their useful remarks.

540

A. Pferscher and B. K. Aichernig

References

10.

11.

12.

. Aarts, F., de Ruiter, J., Poll, E.: Formal models of bank cards for free. In: Sixth

IEEE International Conference on Software Testing, Verification and Validation,
ICST 2013 Workshops Proceedings, Luxembourg, Luxembourg, 18-22 March 2013,
pp. 461-468. IEEE Computer Society (2013). https://doi.org/10.1109/ICSTW.
2013.60

Aarts, F., Schmaltz, J., Vaandrager, F.: Inference and abstraction of the biometric
passport. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp.
673-686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-
0-54

Aichernig, B.K., Burghard, C., Korosec, R.: Learning-based testing of an indus-
trial measurement device. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2019. LNCS,
vol. 11460, pp. 1-18. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
20652-9_1

. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.:

Model learning and model-based testing. In: Bennaceur, A., Hahnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits.
LNCS, vol. 11026, pp. 74-100. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-96562-8_3

Aichernig, B.K., Mugkardin, E., Pferscher, A.: Learning-based fuzzing of IoT mes-
sage brokers. In: 14th IEEE Conference on Software Testing, Verification and Val-
idation, ICST 2021, Porto de Galinhas, Brazil, April 12-16, 2021, pp. 47-58. IEEE
(2021). https://doi.org/10.1109/ICST49551.2021.00017

Aichernig, B.K., Pferscher, A., Tappler, M.: From passive to active: learning timed
automata efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou, D. (eds.)
NFM 2020. LNCS, vol. 12229, pp. 1-19. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-55754-6_1

Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87106 (1987). https://doi.org/10.1016,/0890-5401(87)90052-6

. Argyros, G., Stais, 1., Jana, S., Keromytis, A.D., Kiayias, A.: Sfadiff: automated

evasion attacks and fingerprinting using black-box differential automata learning.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.)
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, Vienna, Austria, 24-28 October 2016, pp. 1690-1701. ACM (2016).
https://doi.org/10.1145/2976749.2978383

Bluetooth SIG: Market update. https://www.bluetooth.com/wp-content/uploads/
2021/01/2021-Bluetooth_Market_Update.pdf. Accessed 6 June 2021

Bluetooth SIG: Bluetooth core specification v5.2. Standard (2019). https://www.
bluetooth.com/specifications/specs/core-specification/

Celosia, G., Cunche, M.: Fingerprinting Bluetooth-Low-Energy devices based on
the generic attribute profile. In: Liu, P., Zhang, Y. (eds.) Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-Things,
IoT S&PQCCS 2019, London, UK, 15 November 2019, pp. 24-31. ACM (2019).
https://doi.org/10.1145/3338507.3358617

Chalupar, G., Peherstorfer, S., Poll, E., de Ruiter, J.: Automated reverse engi-
neering using Lego®. In: Bratus, S., Lindner, F.F. (eds.) 8th USENIX Work-
shop on Offensive Technologies, WOOT 2014, San Diego, CA, USA, 19 August
2014. USENIX Association (2014). https://www.usenix.org/conference/woot14/
workshop-program /presentation/chalupar

https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1109/ICSTW.2013.60
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-642-16558-0_54
https://doi.org/10.1007/978-3-030-20652-9_1
https://doi.org/10.1007/978-3-030-20652-9_1
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1007/978-3-319-96562-8_3
https://doi.org/10.1109/ICST49551.2021.00017
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2976749.2978383
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/wp-content/uploads/2021/01/2021-Bluetooth_Market_Update.pdf
https://www.bluetooth.com/specifications/specs/core-specification/
https://www.bluetooth.com/specifications/specs/core-specification/
https://doi.org/10.1145/3338507.3358617
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar

Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning 541

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Fiterau-Brogtean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454-471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6_25

Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K.,
Somorovsky, J.: Analysis of DTLS implementations using protocol state fuzzing. In:
Capkun, S., Roesner, F. (eds.) 29th USENIX Security Symposium, USENIX Secu-
rity 2020, 12-14 August 2020, pp. 2523-2540. USENIX Association (2020). https://
www.usenix.org/conference/usenixsecurity20/presentation/fiterau- brostean
Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdog-
mus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, 10-14
July 2017, pp. 142-151. ACM (2017). https://doi.org/10.1145/3092282.3092289
Garbelini, M.E., Wang, C., Chattopadhyay, S., Sun, S., Kurniawan, E.: Sweyn-
Tooth - unleashing mayhem over bluetooth low energy. https://github.com/
Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks. Accessed 5 May
2021

Garbelini, M.E., Wang, C., Chattopadhyay, S., Sun, S., Kurniawan, E.: Sweyn-
tooth: unleashing mayhem over Bluetooth Low Energy. In: Gavrilovska, A., Zadok,
E. (eds.) 2020 USENIX Annual Technical Conference, USENIX ATC 2020, 15—
17 July 2020, pp. 911-925. USENIX Association (2020). https://www.usenix.org/
conference/atc20/presentation/garbelini

Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Pasdreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487-495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_32

Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: Ninth IEEE International High-Level Design
Validation and Test Workshop 2004, Sonoma Valley, CA, USA, November 10—
12, 2004, pp. 95-100. IEEE Computer Society (2004). https://doi.org/10.1109/
HLDVT.2004.1431246, https://ieeexplore.ieee.org/xpl/conhome/9785/proceeding
Muskardin, E., Aichernig, B.K., Pill, I., Pferscher, A., Tappler, M.: AALpy: an
active automata learning library. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS,
vol. 12971, pp. 67-73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
88885-5_5

Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Tech-
nical University of Dortmund, Germany (2003). https://d-nb.info/969717474 /34
Pferscher, A.: Fingerprinting Bluetooth Low Energy via active automata learning.
https://github.com/apferscher/ble-learning. Accessed 10 May 2021

Pferscher, A., Aichernig, B.K.: Learning abstracted non-deterministic finite state
machines. In: Casola, V., De Benedictis, A., Rak, M. (eds.) ICTSS 2020. LNCS,
vol. 12543, pp. 52—69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64881-7_4

Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299-347 (1993). https://doi.org/10.1006/inco.1993.1021

de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In:
Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security
2015, Washington, D.C., USA, August 12-14, 2015, pp. 193—-206. USENIX Asso-
ciation (2015). https://www.usenix.org/conference/usenixsecurityl5/technical-
sessions/presentation/de-ruiter

https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1145/3092282.3092289
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://github.com/Matheus-Garbelini/sweyntooth_bluetooth_low_energy_attacks
https://www.usenix.org/conference/atc20/presentation/garbelini
https://www.usenix.org/conference/atc20/presentation/garbelini
https://doi.org/10.1007/978-3-319-21690-4_32
https://doi.org/10.1109/HLDVT.2004.1431246
https://doi.org/10.1109/HLDVT.2004.1431246
https://ieeexplore.ieee.org/xpl/conhome/9785/proceeding
https://doi.org/10.1007/978-3-030-88885-5_5
https://doi.org/10.1007/978-3-030-88885-5_5
https://d-nb.info/969717474/34
https://github.com/apferscher/ble-learning
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1007/978-3-030-64881-7_4
https://doi.org/10.1006/inco.1993.1021
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

542

26.

27.

28.

29.

30.

31.

32.

33.

A. Pferscher and B. K. Aichernig

S, R.R., R, R., Moharir, M., G, S.: Scapy - a powerful interactive packet manipu-
lation program. In: 2018 International Conference on Networking, Embedded and
Wireless Systems (ICNEWS), pp. 1-5 (2018). https://doi.org/10.1109/ICNEWS.
2018.8903954

Shahbaz, M., Groz, R.: Inferring mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207-222. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05089-3_14

McMahon Stone, C., Chothia, T., de Ruiter, J.: Extending automated protocol
state learning for the 802.11 4-Way handshake. In: Lopez, J., Zhou, J., Soriano,
M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 325-345. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99073-6_16

Tappler, M.: Learning-based testing in networked environments in the presence of
timed and stochastic behaviour. Ph.D. thesis, TU Graz (2019). https://mtappler.
files.wordpress.com /2019 /12 /thesis.pdf

Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L*-based
learning of Markov decision processes. In: ter Beek, M.H., Mclver, A., Oliveira, J.N.
(eds.) FM 2019. LNCS, vol. 11800, pp. 651-669. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-30942-8_38

Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: ICST 2017, Tokyo, Japan, March 13-17, 2017,
pp. 276-287. IEEE (2017). https://doi.org/10.1109/ICST.2017.32

Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn — learning
timed automata from tests. In: André, E., Stoelinga, M. (eds.) FORMATS 2019.
LNCS, vol. 11750, pp. 216-235. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29662-9_13

Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol.
4949, pp. 1-38. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78917-8_1

https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1109/ICNEWS.2018.8903954
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-319-99073-6_16
https://mtappler.files.wordpress.com/2019/12/thesis.pdf
https://mtappler.files.wordpress.com/2019/12/thesis.pdf
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1007/978-3-030-30942-8_38
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1

	Fingerprinting Bluetooth Low Energy Devices via Active Automata Learning
	1 Introduction
	2 Preliminaries
	2.1 Mealy Machines
	2.2 Active Automata Learning
	2.3 Bluetooth Low Energy

	3 Learning Setup
	4 Evaluation
	4.1 BLE Devices
	4.2 BLE Learning
	4.3 BLE Fingerprinting

	5 Related Work
	6 Conclusion
	References

