
Concise Outlines for a Complex Logic:
A Proof Outline Checker for TaDA

Felix A. Wolf, Malte Schwerhoff(B), and Peter Müller

Department of Computer Science, ETH Zurich, Zurich, Switzerland
{felix.wolf,malte.schwerhoff,peter.mueller}@inf.ethz.ch

Abstract. Modern separation logics allow one to prove rich properties
of intricate code, e.g. functional correctness and linearizability of non-
blocking concurrent code. However, this expressiveness leads to a com-
plexity that makes these logics difficult to apply. Manual proofs or proofs
in interactive theorem provers consist of a large number of steps, often
with subtle side conditions. On the other hand, automation with ded-
icated verifiers typically requires sophisticated proof search algorithms
that are specific to the given program logic, resulting in limited tool
support that makes it difficult to experiment with program logics, e.g.
when learning, improving, or comparing them. Proof outline checkers fill
this gap. Their input is a program annotated with the most essential
proof steps, just like the proof outlines typically presented in papers.
The tool then checks automatically that this outline represents a valid
proof in the program logic. In this paper, we systematically develop a
proof outline checker for the TaDA logic, which reduces the checking
to a simpler verification problem, for which automated tools exist. Our
approach leads to proof outline checkers that provide substantially more
automation than interactive provers, but are much simpler to develop
than custom automatic verifiers.

1 Introduction

Standard separation logic enables the modular verification of heap-manipulating
sequential [25,33] and data-race free concurrent programs [4,24]. More recently,
numerous separation logics have been proposed that enable the verification of
fine-grained concurrency by incorporating ideas from concurrent separation logic,
Owicki-Gries [28], and rely-guarantee [15]. Examples include CAP [7], iCAP [40],
CaReSL [42], CoLoSL [32], FCSL [37], GPS [43], RSL [45], and TaDA [35] (see
Brookes et al. [3] for an overview). These logics are very expressive, but chal-
lenging to apply because they often comprise many complex proof rules. E.g. our
running example (Fig. 1) consists of two statements, but requires over 20 rule
applications in TaDA, many of which have non-trivial instantiations and sub-
tle side conditions. This complexity seems inevitable for challenging verification
problems involving, e.g. fine-grained concurrency or weak memory.

The complexity of advanced separation logics makes it difficult to develop
proofs in these logics. It is, thus, crucial to have tools that check the validity
c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 407–426, 2021.
https://doi.org/10.1007/978-3-030-90870-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_22&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_22

408 F. A. Wolf et al.

of proofs and automate parts of the proof search. One way to provide this tool
support is through proof checkers, which take as input a nearly complete proof
and check its validity. They typically embed program logics into the higher-
order logic of an interactive theorem prover such as Coq. Proof checkers exist,
e.g. for RSL [45] and FCSL [37]. Alternatively, automated verifiers take as input
a program with specifications and devise the proof automatically. They typi-
cally combine existing reasoning engines such as SMT solvers with logic-specific
proof search algorithms. Examples are Smallfoot [2] and Grasshopper [31] for
traditional separation logics, and Caper [8] for fine-grained concurrency.

Proof checkers and automated verifiers strike different trade-offs in the design
space. Proof checkers are typically very expressive, enabling the verification of
complex programs and properties, and produce foundational proofs. However,
existing proof checkers offer little automation. Automated verifiers, on the other
hand, significantly reduce the proof effort, but compromise on expressiveness
and require substantial development effort, especially, to devise custom proof
search algorithms.

It is in principle possible to increase the automation of proof checkers by
developing proof tactics, or to increase the expressiveness of automated verifiers
by developing stronger custom proof search algorithms. However, such develop-
ments are too costly for the vast majority of program logics, which serve mostly
a scientific or educational purpose. As a result, adequate tool support is very
rare, which makes it difficult for developers of such logics, lecturers and students,
as well as engineers to apply, and gain experience with, such logics.

To remedy the situation, several tools took inspiration from the idea of proof
outlines [1,27], formal proof skeletons that contain the key proof steps, but omit
most of the details. Proof outlines are a standard notation to present program
proofs in publications and teaching material. Proof outline checkers such as
Starling [46] and VeriFast [14] take as input a proof outline and then check
automatically that it represents a valid proof in the program logic. They provide
automation for proof steps for which good proof search algorithms exist, and can
support expressive logics by requiring annotations for complex proof steps. Due
to this flexibility, proof outline checkers are especially useful for experimenting
with a logic, in situations where foundational proofs are not essential.

In this paper, we present Voila, a proof outline checker for TaDA [35], which
goes beyond existing proof outline checkers and automated verifiers by support-
ing a substantially more complex program logic, handling fine-grained concur-
rency, linearizability, abstract atomicity, and other advanced features. We believe
that our systematic development of Voila generalizes to other complex logics. Our
contributions are as follows:

– The Voila proof outline language, which supports a large subset of TaDA and
enables users to write proof outlines very similar to those used by the TaDA
authors [34,35] (Sect. 3).

– A systematic approach to automate the expansion of a proof outline into a
full proof candidate via a normal form and heuristics (Sect. 5). Our approach
automates most proof steps (20 out of 22 in the running example from Fig. 1).

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 409

– An encoding of the proof candidate into Viper [22], which checks its validity
without requiring any TaDA-specific proof search algorithms (Sect. 6).

– The Voila proof outline checker, the first tool that supports specification for
linearization points, provides a high degree of automation, and achieves good
performance (Sect. 7). Our submission artifact with the Voila tool ready-to-
use can be found at [49], and the Voila source repository is located at [48].

Outline. Section 2 gives an overview of the TaDA logic and illustrates our app-
roach. Section 3 presents the Voila proof outline language, and Sect. 4 summa-
rizes how we verify proof outlines. We explain how we automatically expand a
proof outline into a proof candidate in Sect. 5 and how we encode a proof can-
didate into Viper in Sect. 6. In Sect. 7, we evaluate our technique by verifying
several challenging examples, discuss related work in Sect. 8, and conclude in
Sect. 9.

The full version of our paper [47] contains a substantial appendix with
many further details, including: the full version and Viper encoding of our run-
ning example, with TaDA levels (omitted from this paper, but supported by
Voila) and nested regions; additional inference heuristics; general Viper encod-
ing scheme; encoding of a custom guard algebra; and a substantial soundness
sketch.

2 Running Example and TaDA Overview

Figure 1 shows our running example: a TaDA proof outline for the lock procedure
of a spinlock. As in the original publication [35], the outline shows only two out of
22 proof steps and omits most side conditions. We use this example to introduce
the necessary TaDA background, explain TaDA proof outlines, and illustrate the
corresponding Voila proof outline.

2.1 Regions and Atomicity

TaDA targets shared-memory concurrency with sequentially consistent memory.
TaDA programs manipulate shared regions, data structures that are concurrently
modified according to a specified protocol (as in rely-guarantee reasoning [15]).
A shared region such as Lockr(x, s) is an abstraction over the region’s content,
analogous to abstract predicates [30] in traditional separation logic. In our exam-
ple (lines 1–2), the lock owns memory location x (denoted by separation logic’s
points-to predicate x �→ _), and its abstract state s is 0 or 1, indicating whether
it is unlocked or locked. Here, the abstract state and the content of the memory
location coincide, but they may differ in general. The subscript r uniquely iden-
tifies a region instance. Note that TaDA’s region assertions are duplicable, such
that multiple threads may obtain an instance of the Lockr resource and invoke
operations on the lock.

Lines 3–5 define the protocol for modifications of a lock as a labeled transition
system. The labels are guards – abstract resources that restrict when a transition

410 F. A. Wolf et al.

Fig. 1. TaDA spinlock example with shared region Lock; adapted with only minor
changes from TaDA [35]. The lock region (lines 1–2) comprises a single memory loca-
tion, whose value is either 0 (available) or 1 (acquired). Guard G allows locking and
unlocking (lines 3–4), and is unique (line 5). The proof outline (lines 6–22) shows a
CAS-based lock operation with atomic specifications. An enclosing region (CAPLock
in da Rocha Pinto et al. [35], verifiable by Voila and shown in the full paper [47] then
establishes the usual lock semantics. Levels (denoted by λ in TaDA) are omitted from
the discussion in this paper, but supported by Voila and included in the full paper [47].

may be taken. Here, guard G allows both locking and unlocking (lines 3–4), and is
unique (line 5). Most lock specifications use duplicable guards to allow multiple
threads to compete for the lock; in this example, the usual lock semantics is
established by an enclosing region (CAPLock [35]; see the full paper [47]).

Lines 6–22 contain the proof outline for the lock procedure, which updates a
lock x from an undetermined state – it can seesaw between locked and unlocked
due to environment interference – to the locked state. Importantly, this update
appears to be atomic to clients of the spinlock. These properties are expressed
by the atomic TaDA triple (lines 6, 7, and 22)

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 411

Fig. 2. Simplified versions of two key TaDA rules used in Fig. 1. MakeAtomic estab-
lishes an atomic triple (conclusion) for a linearizable block of code (premise), which
includes checking that a state update complies with the region’s transition system:
TR(G)∗ is the reflexive, transitive closure of the transitions that G allows. UpdateRe-
gion identifies a linearization point, for instance, a CAS statement. If successful, the
diamond tracking resource r �⇒ � is exchanged for the witness tracking resource
r �⇒ (x, y) to record the performed state update; otherwise, the diamond resource
is kept, such that the operation can be attempted again.

Atomic triples (angle brackets) express that their statement is linearizable [13].
The abstract state of shared regions occurring in pre- and postconditions of
atomic triples is interpreted relative to the linearization point, i.e. the moment
in time when the update becomes visible to other threads (here, when the CAS
operation on line 14 succeeds). The interference context s 0, 1 is a special
binding for the abstract region state that forces callers to guarantee that the
environment keeps the lock state in {0, 1} until the linearization point is reached
(a vacuous restriction in this case).

The precondition of the triple states that an instance of guard G for region
r, [G]r, is required to execute lock(x). The postcondition expresses that, at the
linearization point, the lock’s abstract state was changed from unlocked (s = 0)
to locked (Lockr(x, 1)). In general, callers must assume that a region’s abstract
state may have been changed by the environment after the linearization point
was reached; here, however, the presence of the unique guard [G]r enables the
caller of lock to conclude (by the transition system) that the lock remains locked.

2.2 TaDA Proof Outline

Lines 6–22 of the proof outline in Fig. 1 show the main proof steps; Fig. 2 shows
simplified versions of the applied key TaDA rules. MakeAtomic establishes an
atomic triple by checking that a block of code is atomic w.r.t. a shared region
abstraction (hence the change from non-atomic premise triple, written with curly
braces, to an atomic conclusion triple). UpdateRegion identifies the lineariza-
tion point inside this code block. Rule MakeAtomic requires that the atomicity
context, a set A of pending updates, of the premise triple includes any region

412 F. A. Wolf et al.

updates performed by the statement of the triple (there can be at most one
such update per region). In the proof outline, this requirement is reflected on
line 8, which shows the intended update of the lock’s state: r : s ∈ {0, 1} � 1
(following TaDA publications, we omitted the tail of the atomicity context from
the outline). MakeAtomic checks that the update is allowed by the region’s
transition system with the available guards (the rule’s second premise in Fig. 2),
but the check is omitted from the proof outline. Then MakeAtomic temporar-
ily exchanges the corresponding guard [G]r for the diamond tracking resource
r �⇒ � (line 9), which serves as evidence that the intended update was not yet
performed.

Inside the loop, an application of UpdateRegion identifies the CAS (line 14)
as the linearization point. The rule requires the diamond resource in its precon-
dition (line 11), modifies the shared region (lines 12–16), and case-splits in its
postcondition: if the update failed (line 19) then the diamond is kept for the next
attempt; otherwise (line 18), the diamond is exchanged for the witness tracking
resource r �⇒ (0, 1), which indicates that the region was updated from abstract
state 0 to 1. At the end of MakeAtomic (lines 21–22), the witness resource is
consumed and the desired abstractly atomic postcondition is established, stating
that the shared region was updated from 0 to 1 at the linearization point.

2.3 Voila Proof Outline

Figure 3 shows the complete proof outline of our example in the Voila proof
outline language, which closely resembles the TaDA outline from Fig. 1. In par-
ticular, the region declaration defines a region’s interpretation, abstract state,
and transition system, just like the initial declarations in Fig. 1. The subsequent
proof outline for procedure lock annotates the same two rule applications as the
TaDA outline and a very similar loop invariant. The Voila proof outline verifies
automatically via an encoding into Viper, but the outline is expressed completely
in terms of TaDA concepts; it does not expose any details of the underlying
verification infrastructure. This means that our tool automatically infers the
additional 20 rule applications, and all omitted side conditions, thereby closing
the gap between the user-provided proof outline and a corresponding full-fledged
proof.

3 Proof Outline Language

Proof outlines annotate programs with rule applications of a given program
logic. These annotations indicate where to apply rules and how to instantiate
their meta-variables. The goal of a proof outline is to convey the essential proof
steps; ideally, consumers of such outlines can then construct a full proof with
modest effort. Consumers may be human readers [27], or tools that automatically
check the validity of a proof outline [14,21,46]; our focus is on the latter.

The key challenge of designing a proof outline language is to define annota-
tions that accomplish this goal with low annotation overhead for proof outline

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 413

Fig. 3. The Voila proof outline of our example, strongly resembling the TaDA proof
outline from Fig. 1. id is the type of region identifiers; primitive types are passed by
value, structs by reference. Logical variables are introduced using a question mark;
e.g. x.val�→?v binds the logical variable v to the value of the location x.val. &&
denotes separating conjunction.

authors. To approach this challenge systematically, we classify the rules of the
program logic (here: TaDA) into three categories: (1) For some rules, the program
prescribes where and how to apply them, i.e. they do not require any annota-
tions. We call such rules syntax-driven rules. An example in standard Hoare logic
is the assignment rule, where the assignment statement prescribes how to manip-
ulate the adjacent assertions. (2) Some rules can be applied and instantiated in
many meaningful ways. For such rules, the author of the proof outline needs to
indicate where or how to apply them through suitable annotations. Since such
rules often indicate essential proof steps, we call them key rules. In proof outlines
for standard Hoare logic, the while-rule typically requires an annotation how to
apply it, namely the loop invariant. The rule of consequence typically requires
an annotation where and how to apply it, e.g. to strengthen the precondition of a
triple or to weaken its postcondition. (3) The effort of authoring a proof outline
can be greatly reduced by applying some rules heuristically, based on informa-
tion already present in the outline. We call such rules bridge rules. Heuristics
reduce the annotation overhead, but may lead to incompleteness if they fail; a
proof outline language may provide annotations to complement the heuristics in
such situations, slightly blurring the distinction between key and bridge rules.

414 F. A. Wolf et al.

E.g. the Dafny verifier [20] applies heuristics to guess termination measures for
loops, but also offers an annotation to provide a measure manually, if necessary.

The rule classification depends on the proof search capabilities of the veri-
fication tool that is used to check the proof outline. We use Viper [22], which
provides a high degree of automation for standard separation logic and, thus,
allows us to focus on the specific aspects of TaDA.

In the rest of this section, we give an overview of the Voila proof outline
language and, in particular, discuss which TaDA rules are supported as syntax-
driven, key, and bridge rules. Voila’s grammar can be found in the full paper [47],
showing that Voila strongly resembles TaDA, but requires fewer technical details.

Expressions and Statements. Voila supports all of TaDA’s programming lan-
guage constructs, including variables and heap locations, primitive types and
operations thereon, atomic heap reads and writes, loops, and procedure calls.
Consequently, Voila supports the corresponding syntax-driven TaDA rules.

Background Definitions. Voila’s syntax for declaring regions and transitions
closely resembles TaDA, but e.g. subscripts are replaced by additional param-
eters, such as the region identifier r. A region declaration defines the region’s
content via an interpretation assertion, and its value via a state function. The
latter may refer to region parameters, as well as values bound in the interpre-
tation, such as v in the example from Fig. 3. The region’s transition system is
declared by introducing the guards and the permitted actions, i.e. transitions.
Voila includes several built-in guard algebras (adopted from Caper [8]); addi-
tional ones can be encoded, see the full paper [47]. A region declaration intro-
duces a corresponding region predicate, which has an additional out-parameter
that yields the region’s abstract state (e.g. s in the precondition of procedure
lock in Fig. 3), as defined by the state function. We omit this out-parameter
when its value is irrelevant.

Specifications. Voila proof outlines require specifications for procedures, and
invariants for loops; we again chose a TaDA-like syntax for familiarity. Explicit
loop invariants are required by Viper, but also enable us to automatically instan-
tiate certain bridge rules (see framing in Sect. 5).

Recall that specifications in TaDA are written as atomic or non-atomic
triples, and include an interference context and an atomicity context. Voila sim-
plifies the notation significantly by requiring these contexts only for abstractly-
atomic procedure specifications; for all statements and rule applications, they are
determined automatically, despite changing regularly during a proof. For pro-
cedures with abstractly-atomic behavior (modifier abstract_atomic), the inter-
ference context is declared through the interference clause. E.g. for procedure
lock from Fig. 3, it corresponds to TaDA’s interference context s 0, 1 .

Key Rules. In addition to procedure and loop specifications, Voila requires
user input only for the following fundamental TaDA rules: UpdateRegion,
MakeAtomic, UseAtomic, and OpenRegion; applications of all other rules

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 415

are automated. Since they capture the core ideas behind TaDA, these rules are
among the most complex rules of the logic and admit a vast proof search space.
Therefore, their annotation is essential, for both human readers [34,35] and auto-
matic checkers. As seen in Fig. 3, the annotations for these key rules include only
the used region and, for updates, the used guard; all other information present
in the corresponding TaDA rules is derived automatically.

Bridge Rules. All other TaDA rules are applied automatically, and thus have
no Voila counterparts. This includes all structural rules for manipulating triple
atomicity (e.g. AWeakening1, AExists), interference contexts (e.g. Substitu-
tion, AWeakening2), and levels (e.g. AWeakening3). Their applications are
heuristically derived from the program, applications of key rules, and adjacent
triples. TaDA’s frame rule is also automatically applied by leveraging Viper’s
built-in support for framing, combined with additional encoding steps to sat-
isfy TaDA’s frame stability side condition. Finally, TaDA entailments are bridge
rules when they can be automated by the used verification tool. For Viper, this is
the case for standard separation logic entailments, which constitute the majority
of entailments to perform. To support TaDA’s view shifts [6,34] – entailments
similar to the classical rule of consequence, but involving arbitrary definitions of
regions and guard algebras – Voila provides specialized annotations.

4 Proof Workflow

Our approach, and corresponding implementation, enables the following work-
flow: users provide a proof outline and possibly some annotations for complex
entailments, but never need to insert any other rule. Hence, if the outline sum-
marizes a valid proof, verification is automatic, without a tedious process of
manually applying additional rules. If the outline is invalid, our tool reports
which specification (e.g. loop invariant) it could not prove or which key rule
application it could not verify, and why (e.g. missing guard).

Achieving this workflow, however, is challenging: by design, proof outlines
provide the important proof steps, but are not complete proofs. Consider, e.g.
the TaDA and Voila outlines from Fig. 1 and Fig. 3, respectively. Applying
UpdateRegion produces an atomic triple in its conclusion, whereas the while-
rule requires a non-atomic triple for the loop body. A complete proof needs
to perform the necessary adjustment through additional applications of bridge
rules, which are not present in the proof outlines, and thus need to be inferred.

Our workflow is enabled by first expanding proof outlines into proof can-
didates, in two main steps: step 1 automatically inserts the applications of all
syntax-driven rules; step 2 expands further by applying heuristics to insert bridge
rule applications. The resulting proof candidate contains the applications of all
rules of the program logic. Afterwards, we check that the proof candidate corre-
sponds to a valid proof, by encoding it as a Viper program that checks whether
all proof rules are applied correctly. Our actual implementation deviates slightly
from this conceptual structure, e.g. because Viper does not require one to make
the application of syntax-driven rules, framing, and entailment checking explicit.

416 F. A. Wolf et al.

5 Expanding Proof Outlines to Proof Candidates

Automatically expanding a proof outline is ultimately a proof search problem,
with a vast search space in case of complex logics such as TaDA. Our choice
of key rules (and corresponding annotations) reduces the search space, but it
remains vast, due to TaDA’s many structural rules that can be applied to almost
all triples. To further reduce the search space, without introducing additional
annotation overhead, we devised (and enforce) a normal form for proof candi-
date triples. Our normal form allows us to define heuristics for the application of
bridge rules locally, based only on adjacent rule applications, without having to
inspect larger proof parts. This locality reduces the search space substantially,
and enables us to automatically close the gap between user-provided proof out-
line and finally verified proof candidate. In our running example, our heuristics
infer 20 out of 22 rule applications.

It might be helpful to consider an analogy with standard Hoare logic: its
rule of consequence can be applied to each Hoare triple. A suitable normal form
could restrict proofs to use the rule of consequence only at the beginning of the
program and for each loop (as in a weakest-precondition calculus). A heuristic
can then infer the concrete applications, in particular, the entailments used in
the rule application, treating the rule as a bridge rule.

Normal Form. Our normal is established by a combination of syntactic checks
and proof obligations in the final Viper encoding. Its main restrictions are as fol-
lows: (1) All triples are either exclusively atomic or non-atomic, which enables
us to infer the triple kinds from statements and key rule applications. Due to
this restriction, Voila cannot express specifications that combine atomic and
non-atomic behaviors. However, such specifications do not occur frequently (see
Sect. 5.2.3 in [34] for an example) and could be supported via additional anno-
tations. (2) All triple preconditions, as well as the postconditions of non-atomic
triples, are stable, i.e. cannot be invalidated by (legal) concurrent operations.
In contrast, TaDA requires stability only for certain assertions. Our stronger
requirement enables us to rely on stability at various points in the proof instead
of having to check it – most importantly, when Viper automatically applies
its frame rule. To enforce this restriction, we eagerly stabilize assertions through
suitable weakening steps. (3) In atomic triples, the state of every region is bound
by exactly one interference quantifier (), which simplifies the manipulation of
interference contexts, e.g. for procedure calls. To the best of our knowledge, this
restriction does not limit the expressiveness of Voila proofs. (4) Triples must
hold for a range of atomicity contexts A, rather than just a single context.
This stronger proof obligation rules out certain applications of MakeAtomic
– which we have seen only in contrived examples – but it increases automation
substantially and improves procedure modularity.

By design, our normal form prevents Voila from constructing certain TaDA
proofs. However, the only practical limitation is that Voila does not support
TaDA’s combination of atomic and non-atomic behavior in a single triple. As

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 417

far as we are aware, all other normal form restrictions do not limit expressiveness
for practical examples, or can be worked around in systematic ways.

Heuristics. We employ five main heuristics: to determine when to change triple
atomicity, to ensure stable frames by construction, to compute atomicity con-
text ranges, to compute levels, and to compute interference contexts in procedure
body proofs. All heuristics are based on inspecting adjacent rule applications and
their proof state. We briefly discuss the first three heuristics here, and refer read-
ers to the full paper [47] for the remaining two heuristics. There, we give a more
detailed explanation, and illustrate our heuristics in the context of our running
example. (1) Changing triple atomicity corresponds to an application of (at least)
TaDA rule AWeakening1, necessary when a non-atomic composite statement
(e.g. the while statement in Fig. 1) has an abstract-atomic sub-statement (e.g.
the atomic CAS in Fig. 1). We infer all applications of this rule. (2) A more com-
plex heuristic is used in the context of framing: TaDA’s frame rule requires the
frame, i.e., the assertion preserved across a statement, to be stable. For simple
statements such as heap accesses, it is sound to rely on Viper’s built-in support
for framing. For composite statements with arbitrary user-provided footprints
(assertions such as a loop invariant describing which resources the composite
statement may modify), we greedily infer frame rule applications that attempt to
preserve all information outside the footprint. The inferred applications are later
encoded in Viper such that the resulting frame is stable, by applying suitable
weakening steps. (3) Atomicity context ranges are heuristically inferred from
currently owned tracking resources and level information. Atomicity contexts
are not manipulated by a specific TaDA rule, but they need to be instantiated
when applying rules: most importantly, TaDA’s procedure call rule, but also e.g.
MakeAtomic and UpdateRegion (see Fig. 2).

In our experience, our heuristics fail only in two scenarios: the first are con-
trived examples, concerned with TaDA resources in isolation, not properties of
actual code – where they fail to expand a proof outline into a valid proof. More
relevant is the second scenario, where our heuristics yield a valid proof that Viper
then fails to verify because it requires entailments that Viper cannot discharge
automatically. To work around such problems when they occur, Voila allows pro-
grammers to provide additional annotations to indicate where to apply complex
entailments.

Importantly, a failure of our heuristics does not compromise soundness: if
they infer invalid bridge rule applications, e.g. whose side conditions do not
hold, the resulting invalid proof candidates are rejected by Viper in the final
validation.

6 Validating Proof Candidates in Viper

Proof candidates – i.e. the user-provided program with heuristically inserted
bridge rule applications – do not necessarily represent valid proofs, e.g. when
users provide incorrect loop invariants. To check whether a proof candidate

418 F. A. Wolf et al.

actually represents a valid proof, we need to verify (1) that each rule is applied
correctly, in particular, that its premises and side conditions hold, and (2) that
the property shown by the proof candidate entails the intended specification. To
validate proof candidates automatically, we use the existing Viper tool [22]. In
this section, we give a high-level overview of how we encode proof candidates
into the Viper language.

Viper Language. Viper uses a variation of separation logic [29,38] whose asser-
tions separate access permissions from value information: separation logic’s
points-to assertion x.f �→ v is expressed as acc(x.f) && x.f == v, and separa-
tion logic predicates [30] are similarly split into a predicate (abstracting over
permissions) and a heap-dependent function (abstracting over values). Well-
definedness checks ensure that the heap is accessed only under sufficient permis-
sions. Viper provides a simple imperative language, which includes in particular
two statements to manipulate the verification state: exhale A asserts all log-
ical constraints in assertion A, removes the permissions in A from the current
state (or fails if the permissions are not available) and assigns non-deterministic
values to the corresponding memory locations (to reflect that the environment
could now modify them); inhale A analogously assumes constraints and adds
permissions.

Fig. 4. Excerpt of the Viper encoding of regions; general case (left), and for the lock
region from Fig. 3 (right). The encoding function is denoted by double square brackets;
overlines denote lists; foreach loops are expanded statically. Type T is the type of the
state expression S, which is inferred. Actions A do not induce any global declarations.
The elements of struct types and type id are encoded as Viper references (type Ref).
The unfolding expression temporarily unfolds a predicate into its definition; it is
required by Viper’s backend verifiers. The struct type cell from Fig. 3 is encoded as
a Viper reference with field val (in Viper, all objects have all fields declared in the
program).

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 419

Regions and Assertions. TaDA’s regions introduce various resources such as
region predicates and guards. We encode these into Viper permissions and pred-
icates as summarized in Fig. 4 (left). Each region R gives rise to a correspond-
ing predicate, which is defined by the region interpretation. A region’s abstract
state may be accessed by a Viper function R_State, which is defined based on
the region’s state clause, and depends on the region predicate. Moreover, we
introduce an abstract Viper predicate R_g for each guard g of the region.

These declarations allow us to encode most TaDA assertions in a fairly
straightforward way. E.g. the assertion Lockr(x, s) from Fig. 1 is encoded as
a combination of a region predicate and the function yielding its abstract state:
Lock(r,x) && Lock_State(r,x) == s . We encode region identifiers as references
in Viper, which allows us to use the permissions and values of designated fields
to represent resources and information associated with a region instance. E.g.
we use the permission acc(r.diamond) to encode the TaDA resource r �⇒ �.

Rule Applications. Proof candidates are tree structures,
where each premise of a rule application R is established as
the conclusion of another rule application, as illustrated on
the right. To check the validity of a candidate, we check the
validity of each rule application. For rules that are natively
supported by Viper (e.g. the assignment rule), Viper performs all necessary
checks. Each other rule application is checked via an encoding into the following
sequence of Viper instructions: (1) Exhale the precondition Pc of the conclusion
to check that the required assertion holds. (2) Inhale the precondition Pp of the
premise since it may be assumed when proving the premise. (3) After the code s
of the premise, exhale the postcondition Qp of the premise to check that it was
established by the proof for the premise. (4) Inhale the postcondition Qc of the
conclusion. Steps 2 and 3 are performed for each premise of the rule. Moreover,
we assert the side conditions of each rule. If a proof candidate is invalid, e.g.
composes incompatible rules, one of the checks above fails and the candidate is
rejected.

Using this encoding of rule applications as building blocks, we can assemble
entire procedure proofs as follows: for each procedure, we inhale its precondition,
encode the rule application for its body, and then exhale its postcondition.

Example: Stabilizing Assertions. Recall that an assertion A is stable if and only
if the environment cannot invalidate A by performing any legal region updates.
In practice, this means that the environment cannot hold a guard that allows
it to change the state of a region in a way that violates A. The challenge of
checking stability as a side-condition is to avoid higher-order quantification over
region instances and guards, which is hard to automate. We address this chal-
lenge by eagerly stabilizing assertions in the Viper encoding, i.e. we weaken
Viper’s verification state such that the remaining information about the state
is stable. We achieve this effect by first assigning non-deterministic values to
the region state and then constraining these to be within the states permitted

420 F. A. Wolf et al.

Fig. 5. Timings in seconds for successful (left table) and failing (right table) verification
runs; lines of code (LOC) are given for Voila programs and exclude proof annotations.
Stg/Wk denote strong/weak Voila specifications; Cpr abbreviates Caper. Programs
include spin and ticket locks, counters (Ctr), and client programs (Cl) using the proven
specifications. Errors (Err) were seeded in loop invariants (L), postconditions (P), code
(C), and region specifications (R).

by the region’s transition system, taking into account the guards the environ-
ment could hold. The Viper code for stabilizing instances of Lock can be found
in the full paper [47].

7 Evaluation

We evaluated Voila on nine benchmark examples from Caper’s test suite, with
the Treiber’s stack [41] variant BagStack being the most complex example, and
report verification times and annotation overhead. Each example has been ver-
ified in two versions: a version with Caper’s comparatively weak non-atomic
specifications, and another version with TaDA’s strong atomic specifications;
see Sect. 8 for a more detailed comparison of Voila and Caper. An additional
example, CounterCl, demonstrates the encoding of a custom guard algebra not
supported in Caper (see the full paper [47]). To evaluate performance stability,
we seeded four examples with errors in the loop invariant, procedure postcon-
dition, code, and region specification, respectively. Our benchmark suite is rela-
tively small, but each example involves nontrivial specifications. To the best of
our knowledge, no other (semi-)automated tool is able to verify similarly strong
specifications.

Performance. Figure 5 shows the runtime for each example in seconds. All mea-
surements were carried out on a Lenovo W540 with an Intel Core i7-4800MQ
and 16GB of RAM, running Windows 10 x64 and Java HotSpot JVM 18.9
x64; Voila was compiled using Scala 2.12.7. We used a recent checkout of Viper
and Z3 4.5.0 x64 (we failed to compile Caper against newer versions of Z3). Each
example was verified ten times (on a continuously-running JVM); after removing

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 421

the highest and lowest measurement, the remaining eight values were averaged.
Caper (which compiles to native code) was measured analogously.

Overall, Voila’s verification times are good; most examples verify in under
five seconds. Voila is slower than Caper and its logic-specific symbolic execution
engine, but it exhibits stable performance for successful and failing runs, which is
crucial in the common case that proof outlines are developed interactively, such
that the checker is run frequently on incorrect versions. As demonstrated by
the error-seeded versions of TLockCl and BagStack, Caper’s performance is less
stable.

Another interesting observation is that strong specifications typically do not
take significantly longer to verify, although only they require the full spectrum of
TaDA ingredients and make use of TaDA’s most complex rules, MakeAtomic
and UpdateRegion. Notable exceptions are: BagStack, where only the strong
specification requires sequence theory reasoning; and TLock and BoundedCtr,
whose complex transition systems with many disjunctions significantly increase
the workload when verifying atomicity rules such as MakeAtomic.

Automation. Voila’s annotation overhead, averaged over the programs with
strong specifications from Fig. 5, is 0.8 lines of proof annotations (not count-
ing declarations and procedure specifications; neither for Caper) per line of
code, which demonstrates the high degree of automation Voila achieves. Caper
has an average annotation overhead of 0.13 for its programs from Fig. 5, but
significantly weaker specifications. Verifying only the latter in Voila does not
reduce annotation overhead significantly since Voila was designed to support
TaDA’s strong specifications. The overhead reported for encodings into interac-
tive theorem provers such as Coq [10,17,18,45] is typically much higher, ranging
between 10 and 20.

8 Related Work

We compare Voila to three groups of tools: automated verifiers, focusing on
automation; proof checkers, focusing on expressiveness; and proof outline check-
ers, designed to strike a balance between automation and expressiveness. Closest
to our work in the kind of supported logic is the automated verifier Caper [8],
from which we drew inspiration, e.g. for how to specify region transition systems.
Caper supports an improved version of CAP [7], a predecessor logic of TaDA.
Caper’s symbolic execution engine achieves an impressive degree of automation,
which, for more complex examples, is higher than Voila’s. Caper’s automation
also covers slightly more guard algebras than Voila. However, the automation
comes at the price of expressiveness, compared to Voila: postconditions are often
significantly weaker because the logic does not support linearizability (or any
other notion of abstract atomicity). E.g. Caper cannot prove that the spinlock’s
unlock procedure actually releases the lock. As was shown in Sect. 7, Caper is
typically faster than Voila, but exhibits less stable performance when a program
or its specifications are wrong.

422 F. A. Wolf et al.

Other automated verifiers for fine-grained concurrency reasoning are Small-
footRG [5], which can prove memory safety, but not functional correctness,
and CAVE [44], which can prove linearizability, but cannot reason about non-
linearizable code (which TaDA and Voila can). VerCors [26] combines a concur-
rent separation logic with process-algebraic specifications; special program anno-
tations are used to relate concrete program operations to terms in the abstract
process algebra model. Reasoning about the resulting term sequences is auto-
mated via model checking, but is non-modular. Summers et al. [39] present an
automated verifier for the RSL family of logics [9,10,45] for reasoning about
weak-memory concurrency. Their tool also encodes into Viper and requires very
few annotations because proofs in the RSL logics are more stylized than in TaDA.

A variety of complex separation logics [9,10,12,16,19,23,37,43,45] are sup-
ported by proof checkers, typically via Coq encodings. As discussed in the intro-
duction, such tools strike a different trade-off than proof outline checkers: they
provide foundational proofs, but typically offer little automation, which hampers
experimenting with logics.

Starling [46] is a proof outline checker and closest to Voila in terms of the
overall design, but it focuses on proofs that are easy to automate. To achieve
this, it uses a simple instantiation of the Views meta-logic [6] as its logic. Star-
ling’s logic does not enable the kind of strong, linearizability-based postcondi-
tions that Voila can prove (see the discussion of Caper above). Starling generates
proof obligations that can be discharged by an SMT solver, or by GRASShop-
per [31] if the program requires heap reasoning. The parts of an outline that
involve the heap must be written in GRASShopper’s input language. In con-
trast, Voila does not expose the underlying system, and users can work on the
abstraction level of TaDA.

VeriFast [14] can be seen as an outline checker for a separation logic with
impressive features such as higher-order functions and predicates. It has no dedi-
cated support for fine-grained concurrency, but the developers manually encoded
examples such as concurrent stacks and queues. VeriFast favors expressiveness
over automation: proofs often require non-trivial specification adaptations and
substantial amounts of ghost code, but the results typically verify quickly.

9 Conclusion

We introduced Voila, a novel proof outline checker that supports most of TaDA’s
features, and achieves a high degree of automation and good performance. This
enables concise proof outlines with a strong resemblance of TaDA.

Voila is the first deductive verifier that can reason automatically about a
procedure’s effect at its linearization point, which is essential for a wide range
of concurrent programs. Earlier work either proves much weaker properties (the
preservation of basic data structure invariants rather than the functional behav-
ior of procedures) or requires substantially more user input (entire proofs rather
than concise outlines).

We believe that our systematic approach to developing Voila can be gen-
eralized to other complex logics. In particular, encoding proof outlines into an

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 423

existing verification framework allows one to develop proof outline checkers effi-
ciently, without developing custom proof search algorithms. Our work also illus-
trates that an intermediate verification language such as Viper is suitable for
encoding a highly specialised program logic such as TaDA. During the develop-
ment of Voila, we uncovered and fixed several soundness and modularity issues in
TaDA, which the original authors acknowledged and had partly not been aware
of. We view this as anecdotal evidence of the benefits of tool support that we
described in the introduction.

Voila supports the vast majority of TaDA’s features; most of the others can be
supported with additional annotations. The main exception are TaDA’s hybrid
assertions, which combine atomic and non-atomic behavior. Adding support for
those is future work. Other plans include an extension of the supported logic,
e.g. to handle extensions of TaDA [11,36].

Acknowledgements. We thank the anonymous referees of this paper, and earlier
versions thereof, for suggesting many improvements to the explanation of our work. We
are also thankful to Thomas Dinsdale-Young and Pedro da Rocha Pinto for instructive
discussions about their work, TaDA, and for feedback on Voila.

References

1. Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and Concurrent
Programs. Texts in Computer Science. Springer, Cham (2009). https://doi.org/10.
1007/978-1-84882-745-5

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192_6

3. Brookes, S., O’Hearn, P.W.: Concurrent separation logic. SIGLOG News 3(3), 47–
65 (2016)

4. Brookes, S.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida,
N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 16–34. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28644-8_2

5. Calcagno, C., Parkinson, M., Vafeiadis, V.: Modular safety checking for fine-grained
concurrency. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 233–
248. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-2_15

6. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: POPL, pp. 287–300. ACM
(2013)

7. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2_24

8. Dinsdale-Young, T., da Rocha Pinto, P., Andersen, K.J., Birkedal, L.: Caper -
automatic verification for fine-grained concurrency. In: Yang, H. (ed.) ESOP 2017.
LNCS, vol. 10201, pp. 420–447. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-54434-1_16

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-74061-2_15
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-662-54434-1_16

424 F. A. Wolf et al.

9. Doko, M., Vafeiadis, V.: A program logic for C11 memory fences. In: Jobstmann,
B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 413–430. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_20

10. Doko, M., Vafeiadis, V.: Tackling real-life relaxed concurrency with FSL++. In:
Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 448–475. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54434-1_17

11. D’Osualdo, E., Farzan, A., Gardner, P., Sutherland, J.: TaDA live: compo-
sitional reasoning for termination of fine-grained concurrent programs. CoRR
arXiv:1901.05750 (2019)

12. Frumin, D., Krebbers, R., Birkedal, L.: ReLoC: a mechanised relational logic for
fine-grained concurrency. In: LICS, pp. 442–451. ACM (2018)

13. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

14. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5_4

15. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP Congress,
pp. 321–332 (1983)

16. Jung, R., Krebbers, R., Jourdan, J., Bizjak, A., Birkedal, L., Dreyer, D.: Iris from
the ground up: a modular foundation for higher-order concurrent separation logic.
J. Funct. Program. 28, e20 (2018)

17. Kaiser, J., Dang, H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: reasoning about release-acquire consistency in Iris. In: ECOOP, LIPIcs,
vol. 74, pp. 17:1–17:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

18. Klein, G., et al.: seL4: formal verification of an OS kernel. In: SOSP, pp. 207–220.
ACM (2009)

19. Krebbers, R., et al.: MoSeL: a general, extensible modal framework for interactive
proofs in separation logic. PACMPL 2(ICFP), 77:1–77:30 (2018)

20. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

21. Mooij, A.J., Wesselink, W.: Incremental verification of Owicki/Gries proof outlines
using PVS. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp.
390–404. Springer, Heidelberg (2005). https://doi.org/10.1007/11576280_27

22. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

23. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8_16

24. O’Hearn, P.W.: Resources, concurrency and local reasoning. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 49–67. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28644-8_4

25. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0_1

https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
http://arxiv.org/abs/1901.05750
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/11576280_27
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/3-540-44802-0_1

Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA 425

26. Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 191–209. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2_12

27. Owicki, S.S.: Axiomatic proof techniques for parallel programs. Outstanding Dis-
sertations in the Computer Sciences, Garland Publishing, New York (1975)

28. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976)

29. Parkinson, M.J., Summers, A.J.: The relationship between separation logic and
implicit dynamic frames. Logical Meth. Comput. Sci. 8(3:01), 1–54 (2012)

30. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: POPL, pp.
247–258. ACM (2005)

31. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 124–139. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54862-8_9

32. Raad, A., Villard, J., Gardner, P.: CoLoSL: concurrent local subjective logic. In:
Vitek, J. (ed.) ESOP 2015. LNCS, vol. 9032, pp. 710–735. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46669-8_29

33. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74. IEEE Computer Society (2002)

34. da Rocha Pinto, P.: Reasoning with time and data abstractions. Ph.D. thesis,
Imperial College London, UK (2016)

35. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9_9

36. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P., Sutherland, J.: Modular ter-
mination verification for non-blocking concurrency. In: Thiemann, P. (ed.) ESOP
2016. LNCS, vol. 9632, pp. 176–201. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49498-1_8

37. Sergey, I., Nanevski, A., Banerjee, A.: Mechanized verification of fine-grained con-
current programs. In: PLDI, pp. 77–87. ACM (2015)

38. Smans, J., Jacobs, B., Piessens, F.: Implicit dynamic frames: combining dynamic
frames and separation logic. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol.
5653, pp. 148–172. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03013-0_8

39. Summers, A.J., Müller, P.: Automating deductive verification for weak-memory
programs. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp.
190–209. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_11

40. Svendsen, K., Birkedal, L.: Impredicative concurrent abstract predicates. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 149–168. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8_9

41. Treiber, R.K.: Systems programming: coping with parallelism. Technical Report
RJ 5118, IBM Almaden Research Center (1986)

42. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reason-
ing in a logic for higher-order concurrency. In: Morrisett, G., Uustalu, T. (eds.)
International Conference on Functional Programming (ICFP), pp. 377–390. ACM
(2013)

43. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. In: OOPSLA, pp. 691–707. ACM (2014)

https://doi.org/10.1007/978-3-319-72308-2_12
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-662-46669-8_29
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-662-49498-1_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1007/978-3-319-89960-2_11
https://doi.org/10.1007/978-3-642-54833-8_9

426 F. A. Wolf et al.

44. Vafeiadis, V.: Automatically proving linearizability. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 450–464. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14295-6_40

45. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: OOPSLA, pp. 867–884. ACM (2013)

46. Windsor, M., Dodds, M., Simner, B., Parkinson, M.J.: Starling: lightweight con-
currency verification with views. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 544–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63387-9_27

47. Wolf, F.A., Schwerhoff, M., Müller, P.: Concise outlines for a complex logic: a proof
outline checker for TaDA (full paper). CoRR arXiv:2010.07080 (2020)

48. Wolf, F.A., Schwerhoff, M., Müller, P.: The Voila source repository. https://github.
com/viperproject/voila

49. Wolf, F.A., Schwerhoff, M., Müller, P.: Concise outlines for a complex logic: a proof
outline checker for TaDA (2021). https://doi.org/10.5281/zenodo.5137791

https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-319-63387-9_27
https://doi.org/10.1007/978-3-319-63387-9_27
http://arxiv.org/abs/2010.07080
https://github.com/viperproject/voila
https://github.com/viperproject/voila
https://doi.org/10.5281/zenodo.5137791

	Concise Outlines for a Complex Logic: A Proof Outline Checker for TaDA
	1 Introduction
	2 Running Example and TaDA Overview
	2.1 Regions and Atomicity
	2.2 TaDA Proof Outline
	2.3 Voila Proof Outline

	3 Proof Outline Language
	4 Proof Workflow
	5 Expanding Proof Outlines to Proof Candidates
	6 Validating Proof Candidates in Viper
	7 Evaluation
	8 Related Work
	9 Conclusion
	References

