
Z3str4: A Multi-armed String Solver

Federico Mora1(B), Murphy Berzish2, Mitja Kulczynski3, Dirk Nowotka3,
and Vijay Ganesh2

1 University of California, Berkeley, USA
fmora@cs.berkeley.edu

2 University of Waterloo, Waterloo, Canada
3 Kiel University, Kiel, Germany

Abstract. We present Z3str4, a new high-performance string SMT
solver for a rich quantifier-free first-order theory of strings and length
constraints. These kinds of constraints have found widespread applica-
tion in analysis of string-intensive programs in general, and web appli-
cations in particular. Three key contributions underpin our solver: first,
a novel length-abstraction algorithm that performs various string-length
based abstractions and refinements along with a bit-vector backend; sec-
ond, an arrangement-based solver with a bit-vector backend; third, an
algorithm selection and constraint-sharing architecture which leverages
the above-mentioned solvers along with the Z3 sequence (Z3seq) solver.
We perform extensive empirical evaluation over 20 different industrial
and randomly-generated benchmarks with over 120,000+ instances, and
show that Z3str4 outperforms the previous best solvers, namely, CVC4,
Z3seq, and Z3str3 in both total solved instances and total runtime.

Keywords: SMT · String solvers · Program analysis

1 Introduction

Security and reliability of string-intensive programs, especially web applications,
is a significant problem that has received considerable attention in recent years
by both industrial and academic researchers. A variety of analysis, testing, and
verification methods have been proposed to address this problem [4,11,15,19,25,
33,35,36,40], many of which depend on a string solver. As researchers continually
improve their analysis tools and find new applications for string solvers, the
demand for even more efficient solvers grows unabated.

To be used for these applications, string solvers must support a rich
quantifier-free first-order theory TS over string (a.k.a. word) equations, functions
such as string concatenation and integer to string conversion, predicates such as
string containment, and linear integer arithmetic over string length. Unfortu-
nately, satisfiability problems for the theory TS of strings (and its fragments)
are generally hard. Specifically, the satisfiability problem for even the smallest
interesting fragment of TS , namely, the quantifier-free theory of word equations,
is NP-hard and is in PSPACE [32]; the full theory TS is undecidable [20]; and the

c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 389–406, 2021.
https://doi.org/10.1007/978-3-030-90870-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_21&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_21

390 F. Mora et al.

question of decidability of the quantifier-free first-order theory of word equations
and arithmetic over length remains open, despite many attempts to solve it over
the last 50 years [31].

Despite their difficulty, much research has been done on practical algorithms
for solving string constraints obtained from many real-world analysis, testing,
verification, and synthesis applications [19,28,35,40]. Examples of such solvers
include HAMPI [25], Stranger [42], Z3 sequence (Z3seq) [18], CVC4 [27], Norn [2],
Trau [1], S3 [39], Z3str2 [43], and Z3str3 [9], each with varying strengths and
weaknesses. Precisely because solving string formulas is believed to be hard in
general, solver designers have come up with a diverse set of practical algorithms
that incorporate a variety of tradeoffs. Some of these methods work well for
pure word equations, but not so well for integer constraints over string length.
Other methods work well for a mix of word equations and integer constraints,
but perform poorly on more complicated constraints involving functions such as
substring or predicates like contains. This diversity of algorithms presents an
opportunity for effective algorithm selection.

Amadini [3] provides extensive documentation of this diversity, and clas-
sifies approaches to string constraint solving into three main categories:
automata-based, word-based, and unfolding-based approaches. Automata-based
approaches use finite automata to represent string variables and constraints.
Word-based approaches reason about systems of word equations directly, while
unfolding-based approaches expand string variables over the sequences of charac-
ters they represent. Solvers such as CVC4 [6], Z3str3 [9], and Z3seq [18] follow the
word-based approach and implement a variety of algebraic proof rules, reduc-
tions, and axiomatizations for string formulas. Stranger [42] is an automata-
based tool that uses reachability analysis together with finite automata repre-
sentations of string constraints. The HAMPI tool [25] uses an unfolding-based
approach, wherein the maximum length of each string variable is fixed a priori
and solved using a reduction to bit-vector formulas.

We leverage this opportunity to apply algorithm selection for solvers, and
introduce a new string solver, Z3str4, that incorporates two novel solver algo-
rithms and several optimization methods aimed at algorithm selection. Z3str4
outperforms the previous best solvers, namely, CVC4, Z3seq, and the baseline
Z3str3 overall on a diverse suite of 120,000+ industrial and randomly-generated
instances from 20 different benchmarks (most of which were obtained from com-
peting teams), on the basis of total number of instances solved and run time.

Contributions. We make the following contributions in this paper.

1. A Length Abstraction Solver. We present a length abstraction algorithm
for solving string formulas based on abstractions and refinements of integer
constraints. The algorithm iteratively refines an integer over-approximation of
the input formula until it converges to the correct answer (See Subsect. 3.1).

2. An Arrangement Solver with a Bit-Vector Backend. We extend
an existing arrangement method [9] for string solving via a conflict-driven
clause learning-style abstraction-refinement string-to-bit-vector algorithm.

Z3str4: A Multi-armed String Solver 391

This hybrid approach combines the efficiency of an unfolding-based strat-
egy with the ability of a word-based algorithm to reason about string terms
of unbounded length (See Subsect. 3.1).

3. Z3str4’s Arm Selection Architecture. We propose a variant of algorithm
selection, arm selection, that selects sequences of algorithms to run on an
input query. When one algorithm times out or gives up, the next algorithm is
called immediately. Our arm selection method considers static and dynamic
features. Additionally, algorithms within an arm can share constraints for
additional performance benefits (See Subsect. 3.2).

4. Extensive Experimental Results. We combine the above-mentioned new
methods as well as the Z3seq solver in an arm selection architecture, and call
the resulting solver Z3str4. We present an extensive experimental evaluation
of Z3str4 against three other state-of-the-art solvers, namely, CVC4, Z3seq,
and Z3str3. Z3str4 outperforms all these solvers overall. Results and code
are available at https://z3str4.github.io (See Sect. 4).
We also performed extensive evaluations against other well-known solvers
such as S3, S3P, Norn, Trau, Stranger, and Ostrich. Unfortunately, all
these solvers suffer from either significant soundness issues (Trau, S3, Norn,
Ostrich) producing incorrect results, robustness issues, or crashes (S3P, Trau,
Norn, Ostrich), or do not support relevant functions/predicates or Boolean
operators that are part of the SMT-LIB 2.6 standard (e.g., Stranger does not
support arbitrary string disequalities). Hence, we report on them only very
briefly in Sect. 4.

2 Formal Background

In this section, we provide a brief overview of the input language accepted by
Z3str4 and the logical theory TS considered in this paper.

2.1 Logical Theory TS

For further details on the syntax and semantics of this theory, we refer the reader
to the SMT-LIB standard [8].

Syntax. The Z3str4 solver accepts input in the SMT-LIB format [8] follow-
ing the current published standard for the theory of strings, and can handle
quantifier-free formulas over Boolean combinations of string, integer, and reg-
ular expression (regex) formulas and terms. Atomic formulas handled by the
string solver include string equalities and disequalities, regular expression mem-
bership, and extended string predicates such as contains, prefixof, suffixof,
etc. Atomic formulas over integers, which may include inequalities, are handled
by Z3’s arithmetic solver. Boolean combinations of atomic formulas are handled
by Z3’s core solver in conjunction with the string and arithmetic solvers in a
DPLL(T)-style approach. A summary of the basic syntax of the theory TS is
presented in Fig. 1. (We note that while we do support regex constraints, we
shall not discuss them any further in this paper.)

392 F. Mora et al.

F ::= Atom | F ∧ F | F ∨ F | ¬F
Atom ::= tstr = tstr | Aint | Aext | Are

Are ::= tstr ∈ RE
Aint ::= tint = tint | tint < tint

Aext ::= contains(tstr, tstr) | prefix(tstr, tstr) | suffix(tstr, tstr)
tint ::= m | v | len(tstr) | tint + tint | m · tint | indexof(tstr, tstr, tint) |

str.to int(tstr) where m ∈ Conint & v ∈ V arint

tstr ::= s | v | tstr · tstr | str.from int(tint) | replace(tstr, tstr, tstr) |
charAt(tstr, tint) | substr(tstr, tint, tint) where s ∈ Constr & v ∈ V arstr

Fig. 1. The syntax of the quantifier-free first-order theory TS .

Semantics. String terms are composed of a finite (possibly empty) ordered
sequence of characters taken from a finite alphabet, such as ASCII or Unicode.
The expression tstr ·tstr denotes string concatenation. For a string term w, len(w)
denotes the length of w as an integer number of characters. The empty string
denoted by ε has a length of 0. Operations that refer to the index of a particular
character or substring within another string use a zero-based index, that is, the
first character of a string has an index of zero. The term str.to int interprets a
string as an integer by treating it as a non-negative number in base 10, possibly
with leading zeroes. If the string represents a negative number or contains non-
digit characters, the value is taken as -1. The term str.from int converts a
non-negative integer to the shortest possible string representing it in base 10. If
the integer is negative, the value is taken as the empty string. Z3str4 supports
constraints over regular expressions, but we do not focus on regular expressions
in this paper and instead refer the interested reader to [10].

The satisfiability problem for the quantifier-free theory TS is to decide
whether there exists an assignment of some constant in Constr to every string
variable in V arstr and some constant in Conint to every integer variable in
V arint such that the formula evaluates to true. A formula is satisfiable (SAT) if
such an assignment exists, and is unsatisfiable (UNSAT) if no such assignment
exists.

3 Z3STR4 Components and Architecture

In this section, we describe the architecture of Z3str4 and each of its compo-
nents. Input to the Z3str4 solver is given as an SMT-LIB formula, and the
output is one of SAT, UNSAT, or UNKNOWN. Z3str4 is built on top of Z3
and reuses its parser and core architecture. Once parsed, the formula is passed
to Z3str4’s arm selection procedure, which makes use of a series of “probes”
to analyze the formula and decide which of its arms is most appropriate for the
given input. Each arm can call the novel length abstraction solver, the updated
arrangement solver, and/or Z3’s existing sequence solver in some predetermined
order, as shown in Fig. 2. Z3str4 moves to the next solver in the predetermined

Z3str4: A Multi-armed String Solver 393

Conjunctive Arm Non-Conjunctive Arm

Non-Word
equation Arm

Regex Arm

Conjunctive
fragment?

LAS

ARR

SEQ

SEQ

ARR

LAS

SEQSEQ

ARR

Majority
word equa-

tions?

Majority
regex?start

no

yes

yes

no yes no

Fig. 2. Architecture of the Z3str4 tool. The red boxes indicate probes, and the blue
boxes indicate algorithms. (Color figure online)

order when the current solver gives up. Solvers decide when to give up by using
dynamic difficulty estimation, which we describe in Subsect. 3.2.

3.1 Novel Solver Algorithms in Z3str4

In this section, we describe the component algorithms of Z3str4.

Z3str4’s Length Abstraction Solver. We first describe a novel solving algo-
rithm, called LAS, which uses an unfolding-based approach like HAMPI but
overcomes the bounded length limitation by searching for length assignments.
We begin with an overview of LAS’s pseudocode in Algorithm 1, and then
describe the subroutines it depends on in more detail. LAS takes in a conjunc-
tion φ of string literals, and returns either an assignment that satisfies φ or
UNSAT. LAS begins by calling MultisetCheck at line 1. This subroutine can
quickly determine UNSAT for many kinds of string constraints. If this check does
not determine that the input is UNSAT, then LAS constructs θlia, an integer
abstraction of φ, and enters its main solving loop. Every iteration of the loop
updates θlia; the loop executes until either θlia is found to be UNSAT at line
5, or a satisfying string model is found at line 9. When θlia is SAT, we use a
satisfying integer model, σlia, to reduce φ to a bit-vector query, θbv, and then
check if θbv is SAT. If θbv is found to be SAT, at line 8, then we get a satisfy-
ing model, translate it to a satisfying string model, and return it as a solution.
If θbv is found to be UNSAT, then we get an UNSAT core, update our length
abstraction θlia, and repeat.

MultisetCheck is a heuristic that analyzes several static properties of atomic
string formulas, and returns false if these formulas are UNSAT based on these
properties. As an illustrative example, consider the word equation 0 · X = X · 1.
In order for this equation to be true, it is necessary that whatever value is
assigned to X, the number of occurrences of each character on both sides must
be equal. Since X appears on both sides exactly once, we can “cancel” it and

394 F. Mora et al.

Algorithm 1: LAS Solver in Z3str4

Data: Conjunction of theory literals φ
Result: Satisfying model or UNSAT

1 if ¬ MultisetCheck(φ) then
2 return UNSAT

3 end
4 θlia ← AbstractLengths(φ)
5 while LIACheck(θlia) = SAT do
6 σlia ← GetModel(θlia)
7 θbv ← ReduceToBV(φ, σlia)

8 if BVCheck(θbv) = SAT then
9 return TranslateModel(GetModel(θbv))

10 else
11 γlia ← Refine(GetUnsatCore(θbv), σlia)

12 θlia ← θlia ∧ γlia

13 end

14 end
15 return UNSAT

consider the remaining characters that appear in constant strings on each side.
The left-hand side has a 0, but no 1s, and the right-hand side has a 1, but no
0s. From this we can conclude that the original equation must be false, since
there is no way to assign X such that both sides have the same number of 0s or
1s. The MultisetCheck subroutine evaluates this heuristic by constructing the
multisets of variables and characters that appear on each side of the equation
and comparing them appropriately.

AbstractLengths takes the input query φ and returns an initial linear integer
arithmetic length abstraction. The length abstraction contains simple length
facts about the theory atoms in φ. For example, for the string equation s = t,
we would assert len(s) = len(t); for prefix(s, t), we would assert len(s) ≤ len(t).

ReduceToBV takes a string formula f and an integer assignment σ (for string
lengths and integer variables), and returns a bit-vector formula that is SAT iff
f ∧ σ is SAT. For example, given the formula X = Y , where X and Y are
string variables, and the integer assignment σ(len(X)) = 2 ∧ σ(len(Y)) = 2,
ReduceToBV would generate X1 = Y1 ∧ X2 = Y2, where all Xi and Yi are 8-
bit bit-vector variables. In this case, we say that the implied length constraint
len(X) = len(Y) caused the bit-vector equations X1 = Y1 and X2 = Y2. This
bit-vector reduction is like that used by the HAMPI solver—we refer the reader
to Ganesh et al. [25] for more details.

LIACheck and BVCheck take a linear integer arithmetic formula and bit-vector
formula, respectively, and return either SAT or UNSAT. These two subroutines
correspond to calling a linear integer arithmetic and bit-vector SMT solver,
respectively. We implement this by calling a subsolver for the appropriate theory
inside of Z3. For a concrete example, BVCheck(X1 = Y1 ∧ X2 = Y2), where the
input formula is as described above, would return SAT.

Z3str4: A Multi-armed String Solver 395

GetModel can only be used after a call to LIACheck or BVCheck that
returned SAT. This subroutine returns a satisfying model from the previous
solver. For example, calling GetModel after the call to BVCheck above, could
return σbv(X1) = 11000001 ∧ σbv(X2) = 11000010 ∧ σbv(Y1) = 11000001 ∧
σbv(Y2) = 11000010. TranslateModel takes a bit-vector model and returns the
corresponding string model. For example, given the bit-vector assignment σbv,
TranslateModel would return σs(X) = “ab” ∧ σs(Y) = “ab”.

GetUnsatCore can only be used after a call to LIACheck or BVCheck that
returned UNSAT. This subroutine returns a conjunction of theory literals that
is a subset of the input, and is UNSAT.

Refine takes the UNSAT core of a bit-vector reduction θbv and the integer
model θlia that produced θbv, and returns a length constraint that will at least
block the length assignment θlia. In many cases, Refine does better and blocks
more than one assignment. This is formalized in Theorem 1. To get an intuition
for how refine works, we first walk through an example. Consider the input query
X · X · Y = Y · 1 · 2 · X ∧ Y = X · 3 with the length assignments len(X) = 2 and
len(Y) = 3. In this case θbv would be

X1 = Y1 ∧ X2 = Y2 ∧ X1 = Y3 ∧ X2 = 1 ∧ Y1 = 2 ∧ Y2 = X1 ∧ Y3 = X2

∧ Y1 = X1 ∧ Y2 = X2 ∧ Y3 = 3

where Xi and Yi are characters at position i of X and Y , respectively. An
UNSAT core for θbv would be X2 = 1 ∧ Y3 = X2 ∧ Y3 = 3. Given this UNSAT
core, Refine will generate the constraint len(X · X) �= len(Y · 1) ∨ len(X · X ·
Y) �= len(Y · 1 · 2 · X) ∨ len(Y) �= len(X · 3), which simplifies to 2 · len(X) �=
len(Y)+1 when taking into account the initial length abstraction. In other words,
Refine creates a constraint that ensures that the same pairs of characters in an
UNSAT core are never aligned again. These lessons are general when the bit-
vector queries do not contain disjunctions and when the counterexamples fall
on concatenation boundaries. If Refine is unable to learn a general lesson, as
described in Theorem 1, it will negate θlia.

Theorem 1 (Simple, General Refine). Let φbv be the bit-vector reduction
of a word equation X1 · ... ·Xn = Y 1 · ... ·Y m for some length assignment. Suppose
C := Xi = Yj ∧ ...∧Xl = Yk is a bit-vector UNSAT core for φbv, where every Xa

and Yb are the characters at positions len(X1 · ... ·Xa) and len(Y 1 · ... ·Y b) of the
word equation, respectively, and let Clen be C but with every bit-vector equality
replaced with the corresponding length constraint that caused each equality in φbv:

Clen := len(X1 · ... ·Xi) = len(Y 1 · ... ·Y j)∧ ...∧ len(X1 · ... ·X l) = len(Y 1 · ... ·Y k).

Then any lengths that satisfy Clen will cause an UNSAT bit-vector reduction.

Proof. Construct the same UNSAT core up to renaming of bit-vector variables.
��

The main loop of Algorithm 1 returns UNSAT when there are no integer
solutions to explore, and it returns SAT if a satisfying bit-vector model is found.

396 F. Mora et al.

At a high-level, this algorithm is correct because Refine never blocks length
assignments that could lead to a satisfying bit-vector reduction, and because
every bit-vector model corresponds to a string model. Unfortunately, Algorithm 1
is not guaranteed to terminate.

Z3str4’s Arrangement Solver with a Bit-vector Backend. The arrange-
ment solver invoked by Z3str4 is a variant of the one implemented in the Z3str3
solver [9]. The key modification is the introduction of a bit-vector backend which
is invoked after arrangement reduction has finished. The bit-vector backend re-
uses many of the components of LAS, but it follows the conflict-driven clause
learning architecture of Z3str2 [43] and Z3str3.

Solving Strings via Arrangements. We briefly describe the arrangement
solver for completeness, and refer the reader to previous papers [9,43] on this
topic for a more thorough description. The core idea behind the arrangement
technique is the reduction of string equations to simpler string equations until the
formula is in “solved form”: a conjunction of equations of the form X = t, where
X is a string variable that appears in the input formula, t is a concatenation
of string constants and possibly fresh string variables, and every variable in the
input formula appears exactly once. See Section 4.3 of Ganesh et al. [21] for
the complete, original definition of solved form. When considering an equality
between strings, the arrangement technique introduces a disjunction of formulas
describing the possible relationships between variables on the left-hand side and
right-hand side of the equation. For example, for the equality A · B = X · Y ,
there are three possible relationships between A and X: either A and X have the
same length, or A is shorter than X, or A is longer than X. The arrangement
technique expresses the possible relationships with the following three implied
formulas: either A = X and B = Y , or A · X1 = X and B = X1 · Y for a fresh
string variable X1, or A = X · X2 and X2 · B = Y for a fresh string variable
X2. These three formulas are asserted as a disjunction to the core solver, which
chooses one branch to explore. The solver continues to reduce and explore the
resulting formulas until either (1) it has reduced the entire formula to solved
form or (2) it encounters an overlap. We describe the use of the novel bit-vector
backend for both cases and define overlaps in the next two paragraphs.

ReduceToBV for Solved Form. The arrangement solver makes use of the
same subroutines for reduction of strings to bit-vectors (ReduceToBV, BVCheck,
GetModel, and TranslateModel) described for LAS. The bit-vector reduction is
invoked after arrangement reduction completes and the integer constraints have
been solved by Z3’s arithmetic theory solver. That is, the bit-vector backend
is used as the model construction algorithm once the solver has found a set of
formulas in solved form. If the bit-vector reduction returns UNSAT, we block
the corresponding assignment in Z3’s core solver and instruct it to continue
the search with a different length assignment or a different arrangement. This
repeats until Z3str4 converges to the correct answer and returns SAT, or the
core solver finds a top-level conflict and returns UNSAT. Note that unlike LAS,

Z3str4: A Multi-armed String Solver 397

F ::= Atom | F ∧ F | ¬G | Aint ∨ Aint | ¬Aint

G ::= G ∨ G | ¬F
Atom ::= tstr = tstr | Aint | Aext

Aint ::= tint = tint | tint < tint

Aext ::= prefix(tstr, tstr) | suffix(tstr, tstr)
tint ::= m | v | len(tstr) | tint + tint | m · tint

where m ∈ Conint & v ∈ V arint

tstr ::= s | v | tstr · tstr | charAt(tstr, tint)
where s ∈ Constr & v ∈ V arstr

Fig. 3. Context-free grammar for conjunctive fragment.

which invokes the arithmetic solver as a procedure, the arrangement solver uses
the string and integer theory integration approach described previously [43].

ReduceToBV for Overlaps. An important weakness of Z3str3’s arrangement
solver is that it cannot handle word equations which have the same variable
occurring on both the left hand and right hand side of an equation, referred to as
an overlapping variable. Consider the equation 0·X = X ·0. Z3str3’s solver would
detect the existence of an overlapping variable and return UNKNOWN. However,
Z3str4 easily handles such equations. Observe that once string variable lengths
have been fixed, string equations can still be reduced to bit-vectors even if they
contain overlapping variables. For example, again considering 0 · X = X · 0, if
the arithmetic solver proposes the candidate model len(X) = 2, the bit-vector
reduction would reduce X to the 8-bit bit-vector characters x1x2 and solve the
bit-vector equation 0x1x2 = x1x20, finding it satisfiable with solution X = 00.

3.2 Algorithm Selection and Clause Sharing

We now describe how the component algorithms of Z3str4 are combined using
the arm selection procedure and the clause-sharing mechanism. The arm selec-
tion method uses static features of the instance to determine which of the three
solver algorithms to invoke and in what order. Dynamic difficulty estimation
determines when to move to the next solver in order.

Static Arm Selection. The input formula φ is first passed to Z3’s simplifier
and term rewriting procedure. The algorithm selection procedure then follows
a three-tiered sequence of checks for static features, illustrated in Fig. 2. The
order and choice of solvers to use was determined by a combination of empirical
results and experimentation. First, if any regex constraints appear in the input
formula φ, the arrangement solver is used. Otherwise, if a majority of top-level
formulas in the input are not word equations, the sequence solver is used. Finally,
the algorithm selection procedure calls the ConjunctiveFragment subroutine.
This subroutine returns TRUE if the query is in the language generated by the
grammar in Fig. 3, and FALSE otherwise. We call this language the conjunctive
fragment. When a query is in the conjunctive fragment, we call LAS first, fol-
lowed by the arrangement solver and the sequence solver. When a query is not

398 F. Mora et al.

in the conjunctive fragment, we call the sequence solver first, followed by the
arrangement solver and the LAS solver.

The conjunctive fragment is effective because queries in the language are
guaranteed to reduce to conjunctions of bit-vector equations when lengths are
fixed (formalized in Theorem 2). This means that every iteration of LAS is quick
(bit-vector solvers are efficient in this fragment), and LAS is more likely to learn
general lessons (see Theorem 1).

Theorem 2 (Conjunctive Fragment). Let L be the language generated by
the grammar in Fig. 3. If ϕ ∈ L is an input query, then LAS will always call
ReduceToBV such that it produces a conjunction of bit-vector equations.

Proof. LAS receives conjunctions of theory literals from the core solver (φ from
Algorithm 1 is a solution to the Boolean abstraction of the input query ϕ).
Show by induction on the grammar L that equality, prefix and suffix predicates
must always appear under an even number of negations. Finally, show that
theory literals that use these predicates will reduce to a conjunction of bit-vector
equations iff they appear under an even number of negations. ��

Dynamic Difficulty Estimation. Rather than giving solvers a fixed time bud-
get, we give up on them when it is unlikely that they will terminate. We call this
process of monitoring the internal state of a solver and determining when to give
up dynamic difficulty estimation. We incorporated dynamic difficulty estimation
into the Z3 sequence solver and LAS.

At a high level, the Z3 sequence solver works as a sequence of checks: if a check
fails, then a corresponding action is taken (for example, asserting an implied
formula) and the process repeats; if all checks pass, then the query is solved. In
total, the sequence solver has 20 of these checks. We observe that queries that are
“easy” for the sequence solver rarely fail later checks. Our difficulty estimation
monitor, therefore, keeps track of the current latest failing check, and we give up
when the latest failing check is the ith check, where i can be specified as a solver
parameter. Empirically, we find the best check to give up on to be the second to
last check, branch nqs. Additionally, we found that monitoring the number of
automata propagations and calls to solve eq performs similarly well.

LAS generates a bit-vector query that is solved by an external bit-vector
solver. We measure two main aspects of LAS’s state: the number of times
ReduceToBV has been called, and the amount of time taken by each bit-vector
check. We find that the benefit of each successive iteration diminishes rapidly,
and that the time taken by the bit-vector solver tends to increase with each suc-
cessive call (due to finding larger integer models). We fix the maximum number
of iterations and the maximum time budget for a bit-vector check. When the
solver exceeds either limit, we move to the next solver. Empirically, LAS solves
most queries in the conjunctive fragment in under five iterations.

Constraint Sharing in Z3str4. When Z3str4 switches from one solver to
the next, it is useful to propagate information. This ensures that subsequent
solvers will not get “stuck” exploring the same search space. We implemented a

Z3str4: A Multi-armed String Solver 399

mechanism in Z3’s SMT architecture wherein a theory solver can indicate during
the search that one or more constraints are to be shared to future solvers in the
event that it fails. Specifically, the LAS solver and arrangement solver both share
blocked length assignments learned during the search. The only requirement for
this to remain sound and complete is that each shared constraint must be implied
by the original input formula and cannot contain any new variables that do not
appear in the original formula.

4 Performance Evaluation

In this section, we report on the performance of Z3str4 and how it compares
against state-of-art solvers, CVC4, Z3seq, and Z3str3, over 20 different bench-
mark suites obtained from industrial applications as well as solver developers.

Description of Benchmark Suites. We evaluated Z3str4 and competing
solvers over 20 benchmark suites containing 120366 instances covering a wide
range of applications. This is, to the best of our knowledge, the largest and most
comprehensive collection of instances known for testing string solvers. Most of
these suites were curated by solver developers or industrial users.

Of the 20 suites we used in our experimental evaluation, 16 are from various
published sources, while one (BanditFuzz) is previously unpublished. The follow-
ing benchmark suites come from well-known applications: Kaluza [35], PyEx [34],
SMTLIB25 [7], PISA [37], IBM AppScan [43], Leetcode Strings [1], Sloth [22],
Cashew [13], JOACO [38], Kausler [24]. The following suites were published by
solver developers: Z3str3 Regression [9], Norn [2], Woorpje Word Equations [16],
Trau Light [1], Stranger [42], StringFuzz [12], Automatark [10], stringfuzz-regex-
generated [10], and stringfuzz-regex-transformed [10].

Competing String Solvers. We compared Z3str4 against three leading string
solvers, namely CVC4 [6], Z3str3 [9], and Z3seq [18].1 We used the following
criteria in determining which solvers to compare against: all of them had to be
reasonably efficient on a diverse set of benchmarks, support the entirety of the
string theory as standardized by the SMT-LIB initiative, be robust (have zero
or very few crashes), and be reliable (have zero or very few wrong answers).

We also performed detailed evaluation of many other solvers, including S3,
S3P [39], Norn [2], Trau, Z3-Trau [1], Ostrich [14], and Stranger [42]. Unfortu-
nately, these solvers suffer from either significant soundness issues (S3, Norn,
Trau, Ostrich), robustness issues (Trau, S3, Norn, Ostrich), or do not support
string operations used in the benchmarks (Norn does not support the entire
SMT-LIB input language; Ostrich does not support string length; Stranger does
not support arbitrary string disequalities). Hence, we had to exclude them from
our experimental evaluation. For example, Z3-Trau had more than 3,500 sound-
ness errors and over 500 segmentation faults on our benchmarks.
1 We used the binary version of CVC4 1.8 from cvc4.github.io. For Z3str3 and Z3seq,

we used the commit #7e7360dd0c04cdee95c3f74a59908209742c5212 of the official
repository of the Z3 solver (github.com/Z3Prover/z3).

https://cvc4.github.io/
https://github.com/Z3Prover/z3

400 F. Mora et al.

Table 1. Cumulative results. Timeout = 20 s. Total time includes all solved, time-
out, unknown and error instances. “Virtual Best Z3str4” represents perfect selection
between Z3seq, LAS, and our novel arrangement solver. “Virtual Best Overall” repre-
sents perfect selection between CVC4, Z3seq, Z3str3, and Z3str4.

CVC4 Z3seq Z3str3 Z3str4 Virtual Best

Z3str4

Virtual best

overall

sat 68386 69853 59663 71842 74012 74096

unsat 43897 43783 41198 44597 44659 44923

unknown 40 50 949 170 454 113

timeout 8043 6680 18556 3757 1241 1234

soundness error 0 0 9 0 0 0

program crashes 0 0 0 0 0 0

Total correct 112283 113636 100852 116439 118671 119019

Time (s) 187941.021 176134.056 391379.159 107456.964 50996.414 44527.707

Time w/o

timeouts (s)

27080.148 42534.056 20259.159 32316.964 23843.007 19289.888

Test Environment. All experiments were performed on a server running
Ubuntu 18.04.4 LTS with two AMD EPYC 7742 processors and 2TB RAM
using the ZaligVinder [26] benchmarking framework. We extended ZaligVinder
with the ability to cross-validate models produced for SAT instances between
solvers. The timeout for solving an instance was set at 20 s.

4.1 Overall Evaluation

Table 1 shows a summary of the results for all 20 benchmark sets, and is
read as follows: the line “(un)sat” counts the number of instances classified
(un)satisfiable, “Unknown” counts the number of instances where a solver
returned UNKNOWN, and “Timeout” counts the number of instances where
a solver exceeded its wall-time limit of 20 s. We also include the number of
errors and crashes observed for each solver. “Total correct” counts the number
of correctly classified instances. “Time” measures the total wall time to solve
all instances, including timeouts, unknowns, and errors. The last line shows the
total time excluding all timeouts. The rightmost columns of Table 1 present the
“virtual best solvers:” hypothetical tools that always run the fastest solver for
every query from an input set of solvers. The first virtual best solver, “Virtual
Best Z3str4,” selects between the algorithms within Z3str4’s portfolio (Z3seq,
LAS, and our novel arrangement solver). The second virtual best solver, “Vir-
tual Best Overall,” depicts perfect selection among the state-of-the-art solvers
(CVC4, Z3seq, Z3str3, and Z3str4). The same data is visually depicted as a
cactus plot in Fig. 4. A detailed view containing the cumulative results for each
benchmark group is available at https://z3str4.github.io.

Overall, Z3str4 outperforms CVC4, Z3str3, and Z3seq, solving more
instances and having a lower total solving time than every other solver and
with no errors or crashes. Z3str4 solves 4156 more cases than CVC4, 2803
more cases than Z3seq, and 15587 more cases than Z3str3. Including timeouts,

https://z3str4.github.io

Z3str4: A Multi-armed String Solver 401

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000 110,000 120,000

0

20,000

40,000

Solved instances

T
im

e
(s
ec
on

ds
)

CVC4 Z3seq Z3str3
Z3str4 Virtual Best Z3str4 Virtual Best Overall

Fig. 4. Cactus plot of string solvers on all benchmarks. Timeout = 20 s. Timeout,
unknown, and error instances excluded.

Z3str4 is 75% faster than CVC4, 64% faster than Z3seq, and 264% faster than
Z3str3. Z3str4 approaches the overall virtual best solver in terms of number
of queries solved (97.83%) and comes the closest in terms of total time taken
(141%). Notably, our algorithm selection strategy approaches the optimal selec-
tion strategy for our portfolio of solvers (“Virtual Best Z3str4”) and solves only
2232 fewer instances. The overall results indicate that Z3str4 is highly effective
at solving a wide variety of practical string instances.

4.2 Performance Analysis of Components of Z3STR4

To evaluate our architecture and to better understand our component algo-
rithms, we categorize the queries by the arm they are assigned to and com-
pare our component algorithms on the queries they are meant to do well on
versus the queries they are not meant to do well on. There are 35345 regex
queries, 42522 higher-order queries, 15113 conjunctive queries, and 23643 non-
conjunctive queries. We exclude 3743 queries that are solved by the simplifier.

LAS Performance Analysis. We hypothesize that LAS will do comparatively
better in the conjunctive fragment because it will learn more general lessons
and its underlying bit-vector solver will be quicker every iteration. Empirically
this hypothesis holds: LAS solves more queries per second compared to the
arrangement solver in the conjunctive fragment (1128.5%) than it does outside
the conjunctive fragment (904.6%). These high percentages are largely due to
dynamic difficulty estimation, which lets LAS return unknown before wasting
too much time on a query. Overall, we find that LAS is extremely effective in
the conjunctive fragment, especially when used as the first solver in an arm.

Arrangement Solver Performance Analysis. The arrangement solver
with our novel bit-vector backend significantly improves performance over the

402 F. Mora et al.

arrangement solver without the bit-vector backend, both in terms of time and
number of instances solved. Without the bit-vector backend, the arrangement
solver solves 72417 instances in 423949.163 s; with the bit-vector backend, the
arrangement solver solves 107401 instances (148.3% of the queries without) in
262047.893 s (61.8% of the time without).

Sequence Solver Performance Analysis. Empirically, we find that the
sequence solver is best when most constraints are not word equations. In this
fragment, the sequence solver solves 39639 cases in 74565.085 s, while the next
best solver, the arrangement solver, solves only 31376 (79.1%) in 220076.933 s
(295.1% of the sequence solver’s time).

Impact of Clause Sharing. Clause sharing significantly reduces the amount of
time taken and slightly increases the number of solved instances. In particular,
over all benchmarks, with clause sharing turned off, Z3str4 solves 15 fewer cases
and takes 2201.790 more seconds (102% of the time taken with clause sharing).

5 Related Work

Theory and Practice of String Solvers. Makanin showed in 1977 that the
theory of quantifier-free word equations was decidable [30]. Plandowski later
showed that this problem was in PSPACE [32]. Continuing the aforementioned
thread of research, Ganesh et al. proved that satisfiability for quantified word
equations with a single quantifier alternation is undecidable, as well as that
satisfiability of the quantifier-free SMT-LIB theory of strings, including string-
integer conversion, is also undecidable [20,21]. Many extensions to the theory of
word equations have been shown to be undecidable [17,20,23,29,30,32].

HAMPI [25] is one of the first string solvers that used the idea of reducing
fixed-length string constraints to bit-vectors. While highly effective, HAMPI does
not support unbounded string variables, as many newer tools now do. Z3str4’s
arrangement and length abstraction solvers use a similar reduction to bit-vectors,
but do so in an abstraction refinement fashion that enables them to support
constraints with arbitrary-length string variables. An interesting detail about
Z3str4’s method for fixing string variable lengths is that it uses Z3’s arith-
metic solver to obtain length assignments for input string constraints that are
consistent with input length constraints.

The Z3 theorem prover [18] is a DPLL(T)-based SMT solver for theory com-
binations over first-order logic. Z3 includes an arithmetic solver for linear inte-
ger arithmetic, and a sequence solver that supports word-based reasoning over
strings. Z3str4 uses Z3’s sequence (Z3seq) solver as part of both arms consid-
ered during its algorithm selection. The Z3str3 solver [9] is based on Z3 and the
previous Z3str2 solver [43]. It uses a reduction known as the arrangement tech-
nique to convert word equations into simpler formulas until a so-called “solved
form” is reached. Z3str4 uses a version of Z3str3 that has been extended with a
string-to-bit-vector reduction, better heuristics for handling formulas with “over-
lapping variables” which Z3str3 (and Z3str2) have difficulties dealing with, and

Z3str4: A Multi-armed String Solver 403

the ability to share certain learned clauses between invocations of the solver.
The CVC4 solver [6] handles constraints over the theory of strings and arith-
metic using an algebraic approach, and uses a similar DPLL(T) architecture
to Z3. Norn [2] is an automata-based solver that solves integer arithmetic con-
straints using finite automata and then represents word equations with finite
automata that have been restricted with respect to concrete length constraints.
Stranger [42] is another automata-based approach, but based on a static analysis
technique that determines possible solutions of a string variable while travers-
ing an automaton. Ostrich [14] implements another technique using transducers
to solving string constraints. A stand-alone solver named Trau [1] uses an app-
roach which looks for simple patterns inside the input formula within a CEGAR
framework.

Algorithm Selection for Solvers. SATZilla [41] is a portfolio-based algorithm
selection strategy for Boolean SAT problems that uses many features of a SAT
formula to predict the performance of each SAT solver in its portfolio and decide
which solver to use for a given instance. SATZilla uses machine learning to train
a predictive model of solver performance. FastSMT [5] uses machine learning
to choose Z3 probes and tactics, a form of fine-grained method selection. After
training on queries from one domain, the FastSMT generated strategy can be
used to speed up the performance of Z3 on subsequent queries from that domain.
FastSMT has been successfully applied to formulas which include bitvectors,
integer arithmetic, and real arithmetic. We differ from FastSMT in that they are
limited to existing probes, while we designed our own, and we also use dynamic
information in addition to static features.

6 Conclusion and Future Work

We presented a new string solver, Z3str4, which supports the entirety of the
SMT-LIB standard for strings. Z3str4 includes two novel algorithms for solv-
ing string constraints: a length abstraction algorithm and an arrangement solver
with a string-to-bit-vector backend. Both of these algorithms use a variety of
abstractions and refinements combined with a bit-vector reduction. We also
describe an arm selection architecture which uses static features of an instance
and dynamic information about solver state to get the best out of each algorithm.
We demonstrated the performance of Z3str4 over a comprehensive evaluation
of 20 industrial and randomly-generated benchmarks and over 120,000 individual
instances, showing that Z3str4 outperforms leading string solvers.

As a future extension to this work, we plan to revisit the method by which
algorithm selection is performed. Currently, the algorithm selection architec-
ture is limited to choosing between fixed “arms” which have been hard-coded.
Machine learning may give us the opportunity to learn a more sophisticated func-
tion for algorithm selection. Furthermore, we plan to improve the way in which
constraints are shared between different algorithms within an arm by exploring
the tradeoffs between constraint size and number of shared constraints.

404 F. Mora et al.

Acknowledgments. We thank the anonymous reviewers whose comments and sug-
gestions greatly improved our paper. This work was supported in part by NSF grants
CNS-1739816 and CCF-1837132, by the DARPA LOGiCS project under contract
FA8750-20-C-0156, by the iCyPhy center, and by gifts from Intel, Amazon, and
Microsoft.

References

1. Abdulla, P.A., et al.: TRAU: SMT solver for string constraints. In: 2018 Formal
Methods in Computer Aided Design (FMCAD), pp. 1–5. IEEE (2018)

2. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462–469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 29

3. Amadini, R.: A survey on string constraint solving (2020)
4. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies

using SMT. In: Bjørner, N., Gurfinkel, A. (eds.) 2018 Formal Methods in Computer
Aided Design, FMCAD 2018, Austin, TX, USA, 30 October–2 November 2018, pp.
1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8602994

5. Balunovic, M., Bielik, P., Vechev, M.: Learning to solve SMT formulas. In: Ben-
gio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R.
(eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 10337–
10348. Curran Associates, Inc. (2018). http://papers.nips.cc/paper/8233-learning-
to-solve-smt-formulas.pdf

6. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

7. Barrett, C., Fontaine, P., Niemetz, A., Preiner, M., Schurr, H.J.: SMT-LIB
benchmarks. https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks. commit
11f52315

8. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

9. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware
heuristics. In: 2017 Formal Methods in Computer Aided Design (FMCAD), pp.
55–59. IEEE (2017)

10. Berzish, M., et al.: An SMT solver for regular expressions and linear arithmetic over
string length. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12760, pp.
289–312. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81688-9 14

11. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 27

12. Blotsky, D., Mora, F., Berzish, M., Zheng, Y., Kabir, I., Ganesh, V.: StringFuzz:
a Fuzzer for string solvers. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018.
LNCS, vol. 10982, pp. 45–51. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-96142-2 6

13. Brennan, T., Tsiskaridze, N., Rosner, N., Aydin, A., Bultan, T.: Constraint normal-
ization and parameterized caching for quantitative program analysis. In: Bodden,
E., Schäfer, W., van Deursen, A., Zisman, A. (eds.) Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, Pader-
born, Germany, 4–8 September 2017, pp. 535–546. ACM (2017). https://doi.org/
10.1145/3106237.3106303

https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.23919/FMCAD.2018.8602994
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
http://papers.nips.cc/paper/8233-learning-to-solve-smt-formulas.pdf
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks
www.SMT-LIB.org
https://doi.org/10.1007/978-3-030-81688-9_14
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1007/978-3-319-96142-2_6
https://doi.org/10.1145/3106237.3106303
https://doi.org/10.1145/3106237.3106303

Z3str4: A Multi-armed String Solver 405

14. Chen, T., Hague, M., Lin, A.W., Rümmer, P., Wu, Z.: Decision procedures for
path feasibility of string-manipulating programs with complex operations. In: Pro-
ceedings of the ACM on Programming Languages, vol. 3, no. POPL, pp. 1–30
(2019)

15. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

16. Day, J.D., Ehlers, T., Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: On
solving word equations using SAT. In: Filiot, E., Jungers, R., Potapov, I. (eds.)
RP 2019. LNCS, vol. 11674, pp. 93–106. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-30806-3 8

17. Day, J.D., Ganesh, V., He, P., Manea, F., Nowotka, D.: The satisfiability of word
equations: decidable and undecidable theories. In: Potapov, I., Reynier, P.-A. (eds.)
RP 2018. LNCS, vol. 11123, pp. 15–29. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-00250-3 2

18. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

19. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database
applications. In: ISSTA, pp. 151–162 (2007)

20. Ganesh, V., Berzish, M.: Undecidability of a theory of strings, linear arithmetic
over length, and string-number conversion. CoRR arXiv:1605.09442 (2016). http://
arxiv.org/abs/1605.09442

21. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012.
LNCS, vol. 7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39611-3 21

22. Hoĺık, L., Janku, P., Lin, A.W., Rümmer, P., Vojnar, T.: String constraints with
concatenation and transducers solved efficiently. In: PACMPL, vol. 2, no. POPL,
pp. 4:1–4:32 (2018). https://doi.org/10.1145/3158092

23. Jez, A.: Recompression: a simple and powerful technique for word equations. In:
Proceedings of STACS, LIPIcs, vol. 20, pp. 233–244 (2013)

24. Kausler, S., Sherman, E.: Evaluation of string constraint solvers in the context
of symbolic execution. In: Proceedings of ASE - IEEE/ACM, pp. 259–270. ACM
(2014)

25. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA 2009, pp. 105–116 (2009). https://doi.
org/10.1145/1572272.1572286

26. Kulczynski, M., Manea, F., Nowotka, D., Poulsen, D.B.: The power of string solv-
ing: simplicity of comparison. In: Proceedings of AST (2020)

27. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

28. Lin, A.W., Majumdar, R.: Quadratic word equations with length constraints,
counter systems, and Presburger arithmetic with divisibility. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 352–369. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 21

https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-30806-3_8
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-030-00250-3_2
https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1605.09442
http://arxiv.org/abs/1605.09442
http://arxiv.org/abs/1605.09442
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1145/3158092
https://doi.org/10.1145/1572272.1572286
https://doi.org/10.1145/1572272.1572286
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-030-01090-4_21

406 F. Mora et al.

29. Lin, A.W., Barceló, P.: String solving with word equations and transducers:
towards a logic for analysing mutation XSS. In: Bod́ık, R., Majumdar, R. (eds.)
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, 20–22 Jan-
uary 2016, pp. 123–136. ACM (2016). https://doi.org/10.1145/2837614.2837641

30. Makanin, G.: The problem of solvability of equations in a free semigroup. Math.
Sbornik 103, 147–236 (1977). English transl. in Math USSR Sbornik 32 (1977)

31. Matiyasevich, Y.: The connection between Hilbert’s tenth problem and systems of
equations between words and lengths. Semin. Math., V. A. Steklov Math. Inst.,
Leningrad 8, 61–67 (1968). translation from Zap. Nauchn. Semin. Leningr. Otd.
Mat. Inst. Steklov 8, 132–144 (1968)

32. Plandowski, W.: An efficient algorithm for solving word equations. In: Proceedings
of the 38th Annual ACM Symposium on Theory of Computing STOC 2006, pp.
467–476 (2006). https://doi.org/10.1145/1132516.1132584

33. Redelinghuys, G., Visser, W., Geldenhuys, J.: Symbolic execution of programs with
strings. In: Proceedings of the South African Institute for Computer Scientists and
Information Technologists Conference, SAICSIT 2012, pp. 139–148 (2012). https://
doi.org/10.1145/2389836.2389853

34. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
Up DPLL(T) string solvers using context-dependent simplification. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

35. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic
execution framework for JavaScript. In: Proceedings of the 2010 IEEE Symposium
on Security and Privacy, SP 2010, pp. 513–528. IEEE Computer Society, Wash-
ington (2010). https://doi.org/10.1109/SP.2010.38

36. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and
dynamic analysis framework for JavaScript. In: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp. 488–498.
ACM, New York (2013). https://doi.org/10.1145/2491411.2491447

37. Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based
on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 22(4), 33:1–
33:33 (2013). https://doi.org/10.1145/2522920.2522926

38. Thomé, J., Shar, L.K., Bianculli, D., Briand, L.: An integrated approach for effec-
tive injection vulnerability analysis of web applications through security slicing
and hybrid constraint solving. IEEE TSE 46(2), 163–195 (2018)

39. Trinh, M.T., Chu, D.H., Jaffar, J.: S3: a symbolic string solver for vulnerability
detection in web applications. In: Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1232–1243 (2014)

40. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Ferrante, J., McKinley, K. (eds.) PLDI, pp. 32–41. ACM
(2007)

41. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. CoRR arXiv:1111.2249 (2011)

42. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: an automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12002-2 13

43. Zheng, Y., et al.: Z3str2: an efficient solver for strings, regular expressions, and
length constraints. Formal Meth. Syst. Des. 50(2–3), 249–288 (2017)

https://doi.org/10.1145/2837614.2837641
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1145/2389836.2389853
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1109/SP.2010.38
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2522920.2522926
http://arxiv.org/abs/1111.2249
https://doi.org/10.1007/978-3-642-12002-2_13
https://doi.org/10.1007/978-3-642-12002-2_13

	Z3str4: A Multi-armed String Solver
	1 Introduction
	2 Formal Background
	2.1 Logical Theory TS

	3 Z3str4 Components and Architecture
	3.1 Novel Solver Algorithms in Z3str4
	3.2 Algorithm Selection and Clause Sharing

	4 Performance Evaluation
	4.1 Overall Evaluation
	4.2 Performance Analysis of Components of Z3str4

	5 Related Work
	6 Conclusion and Future Work
	References

