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Abstract. In this survey paper, we describe a framework for assertion-
based verification of quantum circuits by applying model checking tech-
niques for quantum systems developed in our previous work, in which:

– Noiseless and noisy quantum circuits are modelled as operator- and
super-operator-valued transition systems, respectively, both of which
can be further represented by tensor networks.

– Quantum assertions are specified by a temporal extension of
Birkhoff-von Neumann quantum logic. Their semantics is defined
based on the following design decision: they will be used in verifi-
cation of quantum circuits by simulation on classical computers or
human reasoning rather than by quantum physics experiments (e.g.
testing through measurements);

– Algorithms for reachability analysis and model checking of quantum
circuits are developed based on contraction of tensor networks. We
observe that many optimisation techniques for computing relational
products used in BDD-based model checking algorithms can be gen-
eralised for contracting tensor networks of quantum circuits.

Keywords: Quantum logic circuits · Verification · Assertion ·
Temporal logic · Model checking · Reachability · Tensor network

1 Introduction

Assertion-based verification (ABV) is a key methodology for functional
verification of classical logic circuits and has been widely adopted in hardware
industry. A major characteristic of ABV is that assertions are used for specifying
design intent at a high level of abstraction and thus are ideal for using across
multiple verification processes [10]. An example application procedure of ABV
was described in [4] as follows:
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1. A specification language such as PSL (Property Specification Language, IEEE
1850 standard) or SVA (SystemVerilog Assertions) is used to write the asser-
tions specifying the desired hardware properties.

2. Verification is performed by formal methods or in a dynamic manner where
a simulator monitors the device under verification (DUV) and reports when
and where assertions are violated.

3. The information on assertion violation can be used in the debugging process.

Verification of quantum circuits is emerging as an important issue duo to
the rapid growth in the size of quantum computing hardware. A majority of
the current research has been devoted to equivalence checking of combinational
quantum circuits using various quantum generalisations of BDDs (Binary Deci-
sion Diagrams), such as QuIDD [24,25], and QMDD [6,22]. Recently, sequential
circuit models are emerging to play an important role in quantum computing
and information processing; examples include quantum memories [18], quantum
feedback networks [12], and RUS (Repeat-Until-Success) quantum circuits [3]. A
hardware description language was defined in [23] for specification of sequential
quantum photonic circuits. An algorithm for equivalence checking of sequential
quantum circuits is presented in [28]. One can expect that as more and more
sophisticated quantum hardware be physically realisable, more and more compli-
cated verification problems will appear for quantum circuits, and assertion-based
verification (ABV) will become an indispensable technology in future design
automation for quantum computing (QDA).

Model Checking Quantum Systems: Essentially, assertion-based verifica-
tion (ABV) of logic circuits can be seen as an important application of temporal
logic and model checking. Research on extending model checking for quantum
system has been conducted in the last fifteen years. Early work aimed at ver-
ification of quantum communication protocols [1,8,11]. Targeting applications
in analysis and verification of quantum programs [29], several model checking
techniques for quantum automata, quantum Markov chains and super-operator
valued Markov chains have been developed in [9,20,33,36] (see [31] for a more
systematic exposition). However, a big gap between these quantum model check-
ing techniques and their practical applications in verification of quantum circuits
is still to be filled in. For near term applications, we believe that the following
two challenges are crucial:

– Challenge I - Finding compact representations of quantum circuits: As a
compact representation, BDDs have played a key role in successful appli-
cations of model checking in verification of classical circuits [5]. As pointed
out before, several quantum generalisations of BDDs have been employed in
equivalence checking of quantum circuits. On the other hand, tensor networks
- a mathematical tool successfully applied in simulation of quantum physical
system for decades - have been widely used in simulation of large quantum cir-
cuits on classical computers in the last few years [15,17,19,21,27]. These rep-
resentations should be helpful in implementing a more efficient model checker
for quantum circuits.
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– Challenge II - Identifying useful properties that can be checked by the cur-
rent technology : The previous research pursued theoretical generality and thus
targeted checking general reachability and temporal logic properties of quan-
tum systems. But a model checker (implemented on a classical computer) for
such a purpose must be highly inefficient and only applicable to quantum
circuits of very small sizes and depths. Thus, for realistic and in particular,
near-term applications, we need to identify a class of simpler properties that
can be efficiently checked by a current model checker for quantum systems.

In this survey paper, we describe a framework for assertion-based veri-
fication (ABV) of quantum circuits by applying model checking techniques for
quantum systems developed in our previous work, in which quantum circuits are
represented by tensor networks, and assertions about quantum circuits are spec-
ified using a simple temporal extension of Birkhoff-von Neumann quantum logic.
The paper is organised as follows. Basic models of quantum circuits are reviewed
in Sect. 2. To address Challenge I, we introduce tensor network representation
of quantum circuits in Sect. 3. The reason for using tensor networks is that algo-
rithms for reachability analysis and model checking of quantum circuits can be
conveniently implemented by contraction of tensor networks. More importantly,
we observe that many optimisation techniques for computing relational products
used in BDD-based model checking algorithms can be generalised for contract-
ing tensor networks of quantum circuits. Challenge II is gradually addressed in
Sects. 4 to 6. In Sect. 4, we first show how a basic property, namely reachability,
of quantum circuits can be checked. To specify more general properties, a simple
temporal logic is defined in Sect. 5 as our assertion language. This language is
chosen because it is actually useful for practical applications and at the same
time, checking assertions written in it is much easier than for other assertion
languages, as shown in Sect. 6. Furthermore, its semantics will be defined based
on the following design decision: the target application is verification of quan-
tum circuits by simulation on classical computers (or human reasoning) rather
than by quantum physics experiments (e.g. testing through measurements). We
hope that focusing on this more realistic target, a model checker can be built for
practical use in verification and debugging of near term quantum hardware.

2 Quantum Logic Circuits

For convenience of the audience, let us start from a brief review of the basics
of quantum computing, with the emphasis on several basic models of quantum
circuits.

2.1 Combinational Quantum Circuits

Traditional combinational circuits are made from logic gates acting on wires.
Combinational quantum circuits are quantum counterparts of them and made
up of quantum (logic) gates, which are modelled by unitary operators.
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Qubits (Quantum Bits): The quantum counterpart of a bit is a qubit. A
state of a single qubit is represented by a 2-dimensional unit column vector
(α, β)T , where T stands for transpose, and complex numbers α, β satisfy the
normalisation condition ‖α‖2 + ‖β‖2 = 1. It can be conveniently written in
the Dirac’s notation as |ψ〉 = α|0〉 + β|1〉 with |0〉 = (1, 0)T , |1〉 = (0, 1)T

corresponding to classical bits 0 and 1, respectively. Intuitively, this qubit is
in a superposition of 0 and 1. In general, we use q, q1, q2, ... to denote qubit
variables. Graphically, they can be thought of as wires in a quantum circuit.
A state of n qubits q1, ..., qn is then written as a 2n-dimensional unit complex
vector (α0, α1, ..., α2n−1)T or in the Dirac’s notation:

|ψ〉 =
∑

x∈{0,1}n

αx|x〉 =
∑

x1,...,xn

αx1,...,xn
|x1, ..., xn〉 (1)

where its norm ‖|ψ〉‖ =
√∑

x |αx|2 = 1, and we exchangeably use an n-bit
string x = x1...xn ∈ {0, 1}n and integer x =

∑n
i=1 xi · 2i−1.

Quantum Gates: A gate on a single qubit is modelled by a 2 × 2 complex
matrix U . In general, a gate on n qubits is described by a 2n ×2n unitary matrix

U = (Ux,y)x,y∈{0,1}n . (2)

The output of U on an input |ψ〉 is quantum state |ψ′〉. Its mathematical repre-
sentation as a vector is obtained by standard matrix multiplication |ψ′〉 = U |ψ〉.
To guarantee that |ψ′〉 is always unit, U must be unitary in the sense that
U†U = I, where U† is the adjoint of U obtained by transposing and then com-
plex conjugating U . We often write G ≡ U [q1, ..., qn] for gate U acting on qubits
q1, ..., qn.

Example 1. 1. The following are several frequently used single-qubit gates:

(a) Hadamard gate: H = 1√
2

(
1 1
1 −1

)
;

(b) The Pauli matrices: X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

2. Let q1, q2 be qubits. Then CNOT (controlled-X) gate C[q1, q2] is a two-qubit
gate with q1 as the control qubit and q2 as the target qubit and defined by the

4 × 4 matrix C =
(

I 0
0 I

)
, where I is the 2 × 2 identity matrix.

Combinational Quantum Circuits: A combinational quantum circuit is a
sequence of quantum gates: C ≡ G1...Gm, where m ≥ 1 and G1, ..., Gm are
quantum gates.

Example 2. The quantum circuit Z[q1]H[q2]C[q1, q2]Y [q1]H[q2] consisting of
five quantum gates is visualised in Fig. 1.
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q1 Z • Y

q2 H X H

Fig. 1. A combinational quantum circuit.

2.2 Noisy Quantum Circuits

Fault-tolerant quantum computing is still out of the current technology’s reach.
To model noisy implementation of quantum circuits, we recall that a mixed state
of an n-qubit system is an ensemble {(|ψi〉, pi)} of its pure states, meaning that
this system is in state |ψi〉 with probability pi. Mathematically, this mixed state
can be described by a 2n ×2n matrix, called a density matrix, ρ =

∑
i pi|ψi〉〈ψi|,

where 〈ψi| is the conjugate transpose of |ψi〉 and thus a 2n-dimensional row
vector. In particular, a pure state |ψ〉 can be identified with the outer product
|ψ〉〈ψ|. Then a noisy n-qubit gate can be modelled by a super-operator, often
called a quantum channel in quantum information literature, which is a linear
map E : ρ → E(ρ) from 2n × 2n density matrices to themselves. A convenient
way of representing E is the Kraus operator-sum form:

E(ρ) =
∑

i

EiρE†
i (3)

for any density matrix ρ, where {Ei} is a set of 2n × 2n matrices satisfying
the normalisation condition

∑
i E†

i Ei = I2n . In particular, an idea n-qubit gate
modelled by a unitary operator U can be seen as a super-operator U : ρ 	→ UρU†.

Example 3. Several canonical noises on a single qubit are:

1. Bit flip: This noise flips the state of a qubit from |0〉 to |1〉 and vice versa with
probability 1−p, and is modelled by super-operator Nbf (ρ) = pρ+(1−p)XρX.

2. Phase flip: This noise changes the phase of a qubit (that is, applies phase
operator Z on the qubit) with probability 1 − p, and is modelled by the super-
operator Npf (ρ) = pρ + (1 − p)ZρZ.

3. Bit-phase flip: This noise applies Pauli operator Y on a qubit with probability
1 − p: Nbpf (ρ) = pρ + (1 − p)Y ρY . Note that it is essentially a combination
of a bit-flip and a phase flip because Y = iXZ.

2.3 Dynamic Quantum Circuits

Quantum Measurement: The output of a combinational quantum circuit is a
quantum state, which cannot be observed directly from the outside. To read out
the outcome of computation, we have to perform a measurement at the end of
the circuit. Mathematically, a quantum measurement on n qubits is described by
a family M = {Mm} of 2n × 2n matrices such that

∑
m M†

mMm = I2n , where m
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denotes different possible outcomes. If one performs M on the qubits in state |ψ〉,
then outcome m is obtained with probability pm = ‖Mm|ψ〉‖2 and subsequently
the state of these qubits will be changed to Mm|ψ〉√

pm
. More generally, if the n-

qubit system is in a mixed state ρ, then outcome m is obtained with probability
pm = tr(M†

mMmρ) and its state will be changed to MmρM†
m

pm
. For example, the

measurement in the computational basis is defined as M = {Mx : x ∈ {0, 1}n}
with Mx = |x〉〈x|, and if it is performed on the qubits in a pure state (1), then
outcome x ∈ {0, 1}n is obtained with probability |αx|2 and subsequently the
qubits will be in basis state |x〉.
Dynamic Quantum Circuits: Quantum measurements are not only used
for readout of the computational outcome at the end of a quantum circuit as
described above. They may also occur at the middle of a quantum circuit where
the measurement outcomes are used to conditionally control subsequent steps of
the computation. This kind of circuits are called dynamic quantum circuits [7]
and have been realised in several hardware platforms for quantum computing.
Formally, they are inductively defined as follows (see [29], p. 38):

– (Noiseless or noisy) quantum gates are dynamic quantum circuits;
– If C1, C2 are dynamic quantum circuits, so is C1;C2; and
– If M = {Mm} a measurement on qubits q1, ..., qn, and for each possible out-

come m, Cm a dynamic quantum circuit , then if (�m · M [q1, ..., qn] = m →
Cm) fi is a dynamic quantum circuit. Intuitively, this conditional circuit per-
forms measurement M on qubits q1, ..., qn, and then the subsequent compu-
tation is selected based on the measurement outcome: if the outcome is m,
then the corresponding circuit Cm follows.

Quantum teleportation is a simple example of dynamic quantum circuits.
Another example is the dynamic circuit for quantum phase estimation shown
as Fig. 1 in [7].

Example 4. Quantum teleportation is a protocol for transmitting quantum
information (e.g. the exact state of an atom or photon) via only classical com-
munication but with the help of previously shared quantum entanglement between
the sender and receiver. It is one of the most surprising examples where entangle-
ment helps to accomplish a certain task that is impossible in the classical world.
The quantum circuit teleporting a single qubit is shown in Fig. 2.

|ψ • H
M1 •
M2 •(|00 + |11 )√

2
XM2 ZM1 |ψ

Fig. 2. Quantum teleportation circuit
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2.4 Sequential Quantum Circuits

As is well-known, almost all practical digital devices contain (classical) sequen-
tial circuits. The output value of a combinational circuit is a function of only the
current input value. In contrast, the output value of a sequential circuit depends
on not only the external input value but also on the stored internal informa-
tion. All quantum circuits considered in the previous subsections are combi-
national. However, several recent applications introduce a sequential model of
quantum circuits, including quantum memories [18], quantum feedback networks
[12], and RUS (Repeat-Until-Success) quantum circuits [3]. A synchronous model
of sequential quantum circuit was defined in [28] and can be visualised as Fig. 3,
which looks similar to its classical counterpart, except:

– The combinational part of a classical sequential circuit is modelled by a
Boolean function; whereas the combinational part of a sequential quantum
circuit is a unitary operator or a super-operator, depending on whether noise
occurs in it.

– Certain measurements are needed at the end of qubits q1, ..., qk to readout
classical information from their outputs.

q1

A combinational quantum circuit

...
...qk

qk+1 >
...

...
...qk+l >

Fig. 3. A sequential quantum circuit

2.5 Quantum Transition Systems as a Model of Quantum Circuits

A classical circuit can be conveniently described by a transition relation [5]. Simi-
larly, quantum circuits discussed above can be modelled by a quantum transition
system defined as follows.

Definition 1 (Quantum Transition Systems). A quantum transition sys-
tem (QTS) for a circuit with n qubits consists of:

1. a finite set L of locations, and an initial location l0 ∈ L;
2. a set T of transitions:

– each transition τ ∈ T is a triple τ = 〈l, l′, E〉, often written as τ = l
E→ l′

where l, l′ ∈ L are the pre- and post-locations of τ , respectively, and E is
a super-operator on 2n × 2n density matrices,

satisfying the normalisation condition:
∑

{|tr[E(ρ)] : l
E→ l′ ∈ T |} = 1 for

each l ∈ L and 2n × 2n density matrix ρ, where {| · |} stands for a multi-set,
and trace tr(A) of a matrix A is the sum of the entries on the diagonal of A.
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In particular, for a noiseless quantum circuit, every transition l
E→ l′ is simply

defined by a 2n × 2n matrix E such that E(ρ) = EρE† for all density matrices
ρ; for example, each quantum gate is defined as a unitary matrix U , and in a
quantum measurement M = {Mm}, each branch corresponding to an outcome
m can be described by the measurement operator Mm.

Example 5. The circuit of quantum teleportation in Fig. 2 can be modelled by
the QTS in Fig. 4, where quantum operations are visualised by edges; for example,
CX 1,2 on edge l0 → l1 denotes a CNOT on qubits 1 and 2, and M2,1 on edge
l2 → l4 means that a measurement is performed on qubit 2 and outcome 1 is
obtained.

Remark 1. QTS’s were first introduced in [9,14] where they are called quantum
Markov chains. They were also used in defining invariants of quantum programs
[34].

3 Tensor Network Representation of Quantum Circuits

In the last section, quantum circuits were defined in the traditional vector and
matrix language of quantum mechanics. The shift from representing quantum
circuits by matrices to tensor networks was proposed in [21] by identifying the
following benefits in simulation of quantum circuits on classical computers: (i)
quantum circuits can be arbitrarily partitioned into subcircuits; (ii) subcircuits
can be simulated in arbitrary orders; and (iii) simulation results of subcircuits
can be combined in arbitrary orders. From these benefits, the reader might
already notice that the advantage of tensor network representation of quan-
tum circuits over matrices is very much similar to that of BDD representation
of classical circuits over truth tables (i.e. Boolean matrices). In this section, we
briefly review the basic idea of tensor networks and show how they can be used
to represent quantum circuits.

l0 l1 l2

l3

l4 l6

l5

l7

l8

l9

l10

l11

l12

l13

l14

CX1,2 H1

M
2,
0

M
2,1

I

X3

M
1,
0

M1,1

M1,1

M
1,
0

I

Z3

I

Z3

Fig. 4. A QST for quantum teleportation
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3.1 Tensor Networks

A tensor is a multi-dimensional array of complex numbers. We only consider a
special class of tensors suitable for representing quantum circuits. A tensor with
an index set �q = {q1, ..., qn} is a mapping T : {0, 1}�q → C. We often write T = T�q

or Tq1,...,qn
to indicate the indices. For two tensors T�p,�r and T�q,�r sharing indices

�r, their contraction is defined as a tensor T�p,�q
�
= Contract(T�p,�r, T�q,�r) by

T�p,�q(�a,�b) =
∑

�c∈{0,1}�r

T�p,�r(�a,�c) · T�q,�r(�b,�c) (4)

for any �a ∈ {0, 1}�p and �b ∈ {0, 1}�q. Then a tensor network is a hyper-graph
H = (V,E), where a subset E0 ⊆ E is chosen as open edges, and each vertex
v ∈ V is associated with a tensor of which the hyper-edges incident to v are
the indices. Thus, the hyper-edges between two vertices represent the indices
shared by the two adjacent tensors. By contracting connected tensors in H, we
can obtain a tensor TH with E0 as its index set. It is easy to see that TH is
independent of the order of contractions.

3.2 Representing Quantum States and Quantum Gates

The tensor representation of quantum states is straightforward. A pure state
|ψ〉 of n qubits q1, ..., qn given in Eq. (1) can be represented by a tensor
T|ψ〉

�
= Tq1,...,qn

with Tq1,...,qn
(x1, ..., xn) = αx1,...,xn

for any x1, ..., xn ∈ {0, 1}.
Furthermore, a mixed state of n qubits q1, ..., qn given as a 2n×2n density matrix
ρ = (ρx,y)x,y∈{0,1}n can be represented by a tensor Tρ

�
= Tq1,...,qn,q′

1,...,q′
n
, where

for any x, y ∈ {0, 1}n:

Tq1,...,qn,q′
1,...,q′

n
(x, y) = ρx,y. (5)

Similar to the tensor representation (5) of a density matrix, a (noise-
less) quantum gate U on n qubits q1, ..., qn given as unitary matrix (2)
can be straightforwardly represented by a tensor TU

�
= Tq1,...,qn,q′

1,...,q′
n

with
Tq1,...,qn,q′

1,...,q′
n
(x, y) = Ux,y for any x, y ∈ {0, 1}n. To present a tensor repre-

sentation of a noisy quantum gate E on n qubits q1, ..., qn, we assume that it is
given in the Kraus representation (3), and define its matrix representation as

ME =
∑

i

Ei ⊗ E∗
i

�
= (Mx,y,x′,y′)x,y,x′,y′∈{0,1}n (6)

where E∗ stands for the conjugate of E; that is, if E = (Ex,y), then E∗ =(
E∗

x,y

)
, and E∗

x,y is the conjugate of complex number Ex,y for any x, y ∈ {0, 1}n.
Furthermore, if for each qubit qi, we introduce a new copy pi, then ME can
be represented by a tensor TE

�
= Tq1,...,qn,p1,...,pn,q′

1,...,q′
n,p′

1,...,p′
n
, where for any

x, y, x′, y′ ∈ {0, 1}n:

Tq1,...,qn,p1,...,pn,q′
1,...,q′

n,p′
1,...,p′

n
(x, y, x′, y′) = Mx,y,x′,y′ . (7)
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3.3 Representing Quantum Circuits

Now we can present a tensor network representation of quantum circuits by
assembling the ingredients given in the previous subsections. Suppose we are
given a combinational or sequential quantum circuit C modelled as a quantum
transition system. If we replace each (noiseless or noisy) gate in C by its tensor
representation, then we obtain a tensor network representation of C. Further-
more, one can compute its tensor TC by contraction (4). Moreover, if |ψ〉 or ρ
is an input to C, then the tensor representation of output C|ψ〉 or C(ρ) can be
computed as contraction Contract(T|ψ〉, TC) or Contract(Tρ, TC), respectively.
When computing the tensor of a noisy quantum circuit, it is often more effi-
cient to use contraction in combination with the following lemma, which gives
a way for computing the matrix representations of the sequential and parallel
compositions of noisy quantum gates: the matrix representation of the sequential
(respectively, parallel) composition of two noisy quantum gates is the multipli-
cation (respectively, tensor product) of their matrix representation.

Lemma 1. For any super-operators E and F , we have ME◦F = MFME and
ME⊗F = MF ⊗ ME .

3.4 Optimisations for Tensor Network Contraction

It is obvious that computation required in the contraction of tensor networks of
quantum circuits tends to be exponential in the growth of the number of qubits
and the depth of circuits. In the last few years, many optimisation techniques
have been proposed in the tensor network-based algorithms for simulation of
quantum circuits on classical computers [15,17,19,21,27]. The main reason for
employing tensor networks rather than large matrices in simulation of quantum
circuits is that tensor networks can exploit the regularity and locality in the
structure of quantum circuits. Essentially, the basic idea is similar to that of
optimisation strategies in BDD-based algorithms (although this similarity has
not been explicitly pointed out in the literature). We believe that more BDD-
optimisations can be adapted to computing tensor networks of quantum circuits,
in particular when combined with their QST representations defined in Subsect.
2.5; for example, Lemma 1 enables us to generalise the partitioning technique
in verification of classical circuits (see [5], Sect. V) to the case of noisy quantum
circuits. For this purpose, we introduced a decision-diagram style data structure,
called TDD (Tensor Decision Diagram), and showed that various operations of
tensor networks essential in their applications can be conveniently implemented
in TDDs [16].

4 Reachability Analysis of Quantum Circuits

We now start to consider the verification problem of quantum circuits. Many
model checking problems about classical circuits (and other systems) can be
reduced to a reachability problem. Reachability plays a similar role in model
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checking quantum systems [31]. In this section, as a basis of verification tech-
niques for quantum circuits, let us focus on reachability of a simplest ver-
sion of quantum transition systems, namely a quantum Markov chain [35],
which is defined as a pair C = 〈H, E〉, where H is a finite-dimensional Hilbert
space as the system’s state space, and E is a quantum operation (or super-
operator) in H depicting transition of the system’s state. Roughly speaking,
if the initial state is ρ, then the quantum Markov chain behaves as follows:
ρ → E(ρ) → · · · → En(ρ) → En+1(ρ) → · · · .

4.1 Adjacency and Reachability

As in the classical case, a graph structure is helpful for reachability analysis in
quantum Markov chain C. Let us first recall several notations needed to define
such a graph structure. For any X ⊆ H, let span(X) stand for the subspace
spanned by X, i.e. the smallest subspace of H containing Y . The support supp(A)
of an operator A on H is the subspace spanned by the eigenvectors of A associated
with non-zero eigenvalues. For a family {Xi} of subspaces of Hi, we define their
join as

∨

i

Xi = span

(
⋃

i

Xi

)
. (8)

In particular, we write X1 ∨ X2 for the join of two subspaces X1 and
X2. The image of a subspace X of H under E is defined as E(X) =∨

|ψ〉∈X supp(E(|ψ〉〈ψ|)), where |ψ〉〈ψ| is the density operator corresponding to
pure state |ψ〉.

Definition 2 (Adjacency Relation). Let |ϕ〉, |ψ〉 ∈ H be pure states and ρ, σ
be mixed states (i.e. density matrices) in H. Then

1. |ϕ〉 is adjacent to |ψ〉 in C, written |ψ〉 → |ϕ〉, if |ϕ〉 ∈ supp(E(|ψ〉〈ψ|)).
2. |ϕ〉 is adjacent to ρ, written ρ → |ϕ〉, if |ϕ〉 ∈ E(supp(ρ)).
3. σ is adjacent to ρ, written ρ → σ, if supp(σ) ⊆ E(supp(ρ)).

Then as in classical graph theory, a path from a state ρ to a state σ in C is
a sequence ρ0 → ρ1 → · · · → ρn (n ≥ 0) of adjacent states such that ρ0 = ρ and
ρn = σ. For any two states ρ and σ, if there is a path from ρ to σ then we say
that σ is reachable from ρ in C.

Definition 3 (Reachable Subspace). For any state ρ in H, its reachable
space in C is the subspace of H spanned by the states reachable from ρ:

RC(ρ) = span{|ψ〉 ∈ H : |ψ〉 is reachable from ρ in C}.

The following theorem from [37] gives a useful characterisation of reachable
subspaces. It is essentially a generalisation of Kleene closure in relational algebra.



34 M. Ying

Theorem 1. Let d = dimH. Then for any state ρ in H, we have:

RC(ρ) =
d−1∨

i=0

supp
(
E i(ρ)

)
= supp

(
d−1∑

i=0

E i(ρ)

)
(9)

where E i is the ith power of E; that is, E0 = I (the identity operation in H) and
E i+1 = E ◦ E i for i ≥ 0.

The reachable subspace R(ρ) can be viewed also as the least fixed point of
quantum predicate transformer (see [30], Sect. 8.4) T : S(H) → S(H) defined by
T (X) = sup ρ ∨ E(X) for any X ∈ S(H).

4.2 Computing Reachable Subspaces

Based on Theorem 1, we can develop an algorithm for computing reachable
subspaces in quantum Markov chain C using the tensor network representation
of super-operator E , with the help of the following:

Lemma 2. Let |Ψ〉 =
∑

k |kk〉 be the (unnormalised) maximally entangled state
in H ⊗H. Then (E(A)⊗ I)|Ψ〉 = ME(A⊗ I)|Ψ〉, where I is the identity operator
on H.

The basic idea of the algorithm is as follows. Define state |η〉 =
∑d−1

i=0 E i(ρ)
in H and state |Φ〉 = (η⊗I)|Ψ〉 in H⊗H. Repeatedly using Lemma 2, we obtain:

|Φ〉 =
d−1∑

i=0

(
E i(ρ) ⊗ I

)
|Ψ〉 =

d−1∑

i=0

M i
E(ρ ⊗ I)|Ψ〉.

Thus, state |Φ〉 can be computed by contracting the tensor network represen-
tations of ME , ρ and |Ψ〉. Finally, we can find the Schmidt decomposition of
|Φ〉: |Φ〉 =

∑
j pj |j〉 ⊗ |j′〉, where pj > 0 for all j. Then the reachable sub-

space RC(ρ) = span{|j〉} is computed. Of course, the optimisation techniques
for contracting tensor networks discussed in Sect. 3.4 can be applied here and
combined with Lemma 1 when E comes from (sequential and parallel) composi-
tions of smaller super-operators on subsystems.

5 Temporal Quantum Logic

Now let us move on to consider the verification problem for a more general
class of properties of quantum circuits. To specify these properties, we define
an assertion language for quantum circuits in this section. We choose to simply
use Birkhoff-von Neumann quantum logic [2] for specifying static behaviour of
quantum circuits. To specify their behaviour over time, however, we need to
introduce a temporal extension of Birkhoff-von Neumann logic. Several other
temporal logics have been defined in the literature [1,9,26,33,38] that are able
to specify some sophisticated properties of quantum circuits than this logic. But
we decide to adopt this simple temporal logic because its model checking can be
much more efficiently implemented and may find practical applications in the
early stages of quantum design automation.
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5.1 Birkhoff-von Neumann Quantum Logic

Birkhoff-von Neumann logic is a propositional logic for reasoning about (static
properties of) quantum systems. We assume an alphabet consisting of:

– a set AP of atomic propositions, ranged over by metavariables X,X1,X2, ...;
and

– propositional connectives ¬ (negation) and ∧ (conjunction).

Given a Hilbert space H as the state space of the quantum circuit under consid-
eration. We write S(H) for the set of its closed subspaces. It is well-known that
(S(H),∩,∨,⊥) is an orthomodular lattice with inclusion ⊆ as its ordering, where
∩,∨ and ⊥ stand for intersection, join defined in Eq. (8), and orthocomplement,
i.e. X⊥ = {|ψ〉 : |ψ〉 is orthogonal to all |ϕ〉 ∈ X}. Then atomic propositions are
interpreted as subspaces of H, i.e. elements of S(H), and connectives ¬,∧ are
interpreted as ⊥ and ∩, respectively. For each logical formula A, its semantics
�A� is a subspace of H, meaning that the circuit’s current state is within the
region �A�, and ¬A indicates that the probability that the circuit’s state enters
the region �A� is zero. We can define ∨ (disjunction) by A ∨ B := ¬(¬A ∧ ¬B),
and it is easy to see that �A∨B� = �A�∨�B� with the symbol ∨ in the right-hand
side being join. Moreover, satisfaction of a proposition A by a pure state |ψ〉 or
a mixed state ρ is simply defined as follows:

ϕ |= A iff ϕ ∈ �A�, ρ |= A iff supp(ρ) ⊆ �A�. (10)

5.2 Computation Tree Quantum Logic

A temporal extension of quantum logic can be naturally defined. For the lim-
itation of space, we only consider computation tree quantum logic CTQL. Its
syntax is the same as that of classical computation tree logic CTL:

– State formulas: Φ::= A | ∃ϕ | ∀ϕ | ¬Φ | Φ1 ∧ Φ2

– Path formulas: ϕ::= OΦ | Φ1UΦ2

except that A stands here for a propositional formula in Birkhoff-von Neumann
quantum logic rather than a classical (two-valued) proposition.

Simulation-Based Semantics: We define the semantics of CTQL with the
following design decision: our verification of quantum circuits will be done by
simulation on a classical computer. Therefore, no actual quantum measurement
is performed for checking whether a quantum state |ϕ〉 or ρ is in a subspace
X, i.e. |ϕ〉 |= X or ρ |= X according to Eq. (10), and thus no quantum state
decaying happens. Let S = 〈H, L, l0, T 〉 be a QTS. Then a configuration of
S is a pair (l, ρ), where l ∈ L is a location and ρ is a quantum state in H.
We write C(S) for the set of configurations of S. A sequence π = (l1, ρ1)(l2, ρ2)
· · · (li−1, ρi−1)(li, ρi) · · · of configurations is a path in S if there exists a sequence

l1
E1→ l2

E2→ ...
Ei−1→ li

Ei→ · · · of transitions such that ρi+1 = Ei(ρi) for all i. We
often write π[i] = (li+1, ρi+11) for i ≥ 1. Then the satisfaction relation in CTL
can be straightforwardly generalised to CTQL:
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Definition 4. 1. Satisfaction (l, ρ) |= Φ for state formulas is defined as follows:
(a) (l, ρ) |= A iff supp(ρ) ⊆ �A�;
(b) (l, ρ) |= ∃ϕ iff π |= ϕ for some path π starting in (l, ρ);
(c) (l, ρ) |= ∀ϕ iff π |= ϕ for all paths π starting in (l, ρ);
(d) (l, ρ) |= ¬Φ iff ρ �|= Φ;
(e) (l, ρ) |= Φ1 ∧ Φ2 iff (l, ρ) |= Φ1 and (l, ρ) |= Φ2.

2. Satisfaction π |= ϕ for path formulas is defined as follows:
(a) π |= OΦ iff π[1] |= Φ;
(b) π |= Φ1UΦ2 iff there exists i ≥ 0 such that π[i] |= Φ2 and π[j] |= Φ1 for

all 0 ≤ j < i.
3. We say that S with initial state ρ satisfies Φ, written (S, ρ) |= Φ, if (l0, ρ) |= Φ.

Remark 2. The above simulation-based semantics is fundamentally different
from the measurement-based semantics of quantum temporal logics considered in
the previous literature where the system’s state is disturbed by a measurement,
and the system’s next step starts from the post-measurement state.

6 Model Checking Quantum Circuits

In this section, we show how model checking can be used in verification of the
properties of quantum circuits specified in temporal logic CQTL introduced in
the last section.

6.1 CTQL Model Checking

Indeed, classical CTL model checking techniques can be adapted to solve the
following:

– CTQL model checking problem: Given a QTS S = 〈H, L, l0, T 〉, an initial
state ρ and a CTQL state formula Φ. Check (S, ρ) |= Φ?

The basic idea is to construct a classical transition system Sρ from a QTS
with an initial state ρ so that the above CTQL model checking problem is reduced
to a CTL model checking problem. We construct Sρ = 〈C(S)ρ,⇒, (l0, ρ), L〉 as
follows:

– Transition relation ⇒ between configurations (l, ρ), (l′, ρ′) ∈ C(S) is defined
by

(l, ρ) ⇒ (l′, ρ′) iff for some E : l
E→ l′ and ρ′ = E(ρ); (11)

– We define C(S)ρ as the set of configurations reachable from (l0, ρ) through
⇒;

– Configuration (l0, ρ) is defined as the initial state of Sρ;
– Propositional symbols A in CTQL are interpreted as propositions in Birkhoff-

von Neumann quantum logic and thus their semantics �A� are subspaces of
H. However, in CTL for classical transition system Sρ, they are considered
as classical two-valued propositions, and labelling function L interprets A as
follows: for each (l, σ) ∈ C(S)ρ,

A ∈ L(l, σ), i.e. (l, σ) |= A iff supp(ρ) ⊆ �A�. (12)
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The following simple lemma establishes a connection between CTQL for a
QTS S and CTL for the classical transition system Sρ defined from S with an
initial state ρ.

Lemma 3. For any CTQL state formula Φ, any QTS S and any quantum state
ρ in S,

(S, ρ) |= Φ iff Sρ |= Φ. (13)

Note that in the left-hand side of (13), Φ is treated as a CTQL formula, but
in the right-hand side, it is seen as a CTL formula in which atomic propositions
A are interpreted by labelling function L defined in Eq. (12).

Based on Lemma 3, whenever C(S)ρ is finite, then CTL model checking
algorithms together with computations of (11) and (12) can be used to check
whether Sρ |= Φ or not. However, it is possible that C(S)ρ is infinite. In this case,
we can apply bounded model checking to check the configurations reachable from
(l0, ρ) through ≤ k steps.

6.2 Assertion-Based Verification of Quantum Circuits

The above discussion indicates that assertions about quantum circuits written in
CTQL can be verified by CTL model checking with some extra computations. It
is well-known that a major practical hurdle in model checking applied to verifying
classical circuits is the state space explosion problem. As one can imagine, this
problem unavoidably occurs in the case of quantum circuits. The tensor network
representation of quantum circuits discussed in Sect. 3, together with various
partitioning techniques for quantum transition systems defined in Sect. 2.5 that
exploit the locality in the circuits, can be a remedy to this issue. More explicitly,
it is very helpful in computing reachable configurations C(S)ρ and the labelling
function (12). The symbolic representation of quantum circuits using matrix-
valued Boolean expressions proposed in [32] should also be useful.

7 Conclusion

In this paper, we presented a framework for assertion-based verification of quan-
tum circuits by model checking with the help of tensor networks. The verified
properties are qualitative assertions written in a temporal extension of Birkhoff-
von Neumann quantum logic. This modest aim of verifying only qualitative asser-
tions is identified mainly for the reason that the verification algorithm can be
more efficiently implemented and thus is actually useful in short-term practical
applications. To check quantitative assertions (with probabilities) for quantum
systems, some techniques have been developed in [9,31,36,38], but the involved
computation are overwhelming. To remedy this seemingly inevitable inefficiency
of verifying quantum circuits on classical computers, we also tried to develop
quantum algorithms for model checking quantum systems [13].
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