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Abstract. Cyber-Physical Systems (CPSs) are widely adopted in
safety-critical domains, raising great demands on their quality assurance.
However, the application of formal verification is limited due to the con-
tinuous dynamics of CPSs. Instead, simulation-based falsification, which
aims at finding a counterexample to refute the system specification, is a
more feasible and hence actively pursued approach. Falsification adopts
an optimization approach, treating robustness, given by the quantitative
semantics of the specification language (usually Signal Temporal Logic
(STL)), as the objective function. However, similarly to traditional test-
ing, in the absence of found counterexamples, falsification does not give
any guarantee on the system safety. To fill this gap, in this paper, we pro-
pose a confidence measure that estimates the probability that a formal
specification is indeed not falsifiable, by relying on the information encap-
sulated in the simulation data collected during falsification. Methodolog-
ically, we approximate the robustness domain by feeding simulation data
into a Gaussian Process (GP) Regression process; we then do a minimiza-
tion sampling on the trained GP, and then estimate the probability that
all the robustness values inferred from these sampled points are positive;
we take this probability as the confidence measure. We experimentally
study the properties of monotonicity and soundness of the proposed con-
fidence measure. We also apply the measure to several state-of-the-art
falsification algorithms to assess the maximum confidence they provide
when they do not find a falsifying input, and the stability of such confi-
dence across different repetitions.

Keywords: Confidence estimation · Hybrid system falsification ·
Gaussian process regression · Surrogate model

1 Introduction

Cyber-Physical Systems (CPS) are characterized by the combination of physical
systems having continuous dynamics, and discrete digital controllers; for this,
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they are also called hybrid systems. CPSs are often employed in safety-critical
domains, making their quality assurance of paramount importance. However, the
continuous dynamics of hybrid systems makes their automated formal verifica-
tion extremely difficult, if not impossible. Therefore, academia and industry have
been pursuing the more feasible approach of falsification [13,22,29,30,33,36,37]
that, instead of trying to prove a formal specification, attempts to find a coun-
terexample showing its violation. Specifically, given a model M taking input
signal u and producing output signal M(u), and a formal specification ϕ (a
temporal formula), the falsification problem consists in finding a falsifying input,
i.e., an input signal u such that M(u) violates ϕ.

The common approach to solve the falsification problem is to turn it into an
optimization problem (also called optimization-based falsification), by exploiting
the quantitative robust semantics of temporal formulas [14,19]. Robust semantics
extends the classical Boolean satisfaction relation w |= ϕ by assigning a value
�w, ϕ� ∈ R∪{∞,−∞} (i.e., robustness) that tells not only whether ϕ is satisfied
or violated (by the sign), but also how robustly the formula is satisfied or violated.
Optimization-based falsification algorithms iteratively generate inputs with the
aim of finding an input with negative robustness. Several optimization-based
falsification algorithms have been developed [1,3,10,13,18,29,33,35–38].

Given a specification ϕ, a falsification algorithm either returns an input signal
falsifying ϕ, or it reports that the search was unsuccessful if no such input was
found. As usual in testing (falsification is a particular type of search-based testing
approach), in the latter case, we do not know whether the specification ϕ is really
not falsifiable, or the algorithm did not explore the search space enough. In such
a case, a practitioner would like to have some estimate of the real absence of a
falsifying input (and so of the satisfaction of ϕ).

To this aim, in this paper, we propose a confidence measure for hybrid sys-
tem falsification. The definition of the measure starts from the observation that,
as output, a falsification algorithm also provides the set of input signals that
have been sampled during the search, together with their corresponding robust-
ness values. Starting from these data1, we try to estimate the likelihood that
no falsifying input exists in the unexplored search space. The construction of
the confidence measure is as follows. We first train, using Gaussian Process
Regression [31], a Gaussian Process (GP) from the falsification data, acting as
a surrogate model of the real robustness function, i.e., it provides an estimation
of the robustness. Then, we sample in the GP the points that have the mini-
mum values, as these are the points that have the higher probability to identify
negative robustness. We then compute the cumulative probability that these
surrogate sampled data are all positive, i.e., that the approximated robustness is
always positive, and so the specification is not falsified. We take this probability
as the confidence value estimating how likely it is that the specification holds.

1 Note that we assume that the confidence measure is computed starting from non-
falsifying inputs only. The measure does not make sense if at least one falsifying
input is used for its computation; in that case, there is no need of the confidence
measure, as we know that the specification is falsifiable.
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We performed a series of experiments to assess to what extent the proposed
confidence measure guarantees some desired properties:

– monotonicity : the confidence measure should not decrease as new falsifica-
tion data (i.e., inputs with corresponding robustness values) are being added.
A monotonically increasing measure does not prematurely assess high confi-
dence, and so it can be reliably used to decide whether enough falsification
search has been performed; it can also be used as a stopping criterion during
the falsification search itself. In classical coverage criteria for software testing,
increasing monotonicity is implicitly guaranteed, because the test require-
ments are known in advance, and so any new test input can only increase the
coverage (when an uncovered test requirement is covered) or at most leave it
unchanged. For our confidence measure, increasing monotonicity cannot be
guaranteed, as it is always possible to find a new input signal that drastically
changes the derived Gaussian Process and so the computed confidence. How-
ever, we will experimentally show that the measure can efficiently account
for the unexplored search space and that monotonicity is guaranteed to some
extent.

– soundness: intuitively, the confidence should also depend on “how robustly” a
specification holds. Given two specifications that are both non-falsifiable, the
one that is more robust should lead to higher confidence than the less robust
one. Take the example of a car system, and two specifications requiring that
the “speed is always less than 120” and “speed is always less than 150”;
intuitively, in the absence of a falsifying input, the confidence of the latter
specification should not be lower than that of the former one (given that a
falsification approach has been run for both with the same budget).

In the experiments, we will also use the confidence measure to assess the
performance of existing falsification algorithms, which implement different search
strategies. Namely, we will check the confidence provided by three falsification
algorithms (Random search, CMAES, and MCTS) executed with the same budget;
moreover, we will also check their stability, i.e., how much the confidence measure
changes in repeated runs.

Paper Structure. Section 2 provides the necessary background. Section 3 intro-
duces the problem and overviews the approach to compute the proposed con-
fidence measure, whose phases are described in Sect. 4. Section 5 presents the
experiments done to assess the measure. Finally, Sect. 6 reviews related work,
and Sect. 7 concludes the paper.

2 Background

We here review the basic concepts and approaches of hybrid system falsification.

System Model. Let T ∈ R≥0 be a positive real. An M -dimensional signal
with a time horizon T is a function w : [0, T ] → R

M . We treat the system
model as a black box, i.e., its behaviors are only observed from inputs and their
corresponding outputs. Formally, a system model, with M -dimensional input and
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N -dimensional output, is a function M that takes an input signal u : [0, T ] →
R

M and returns a signal M(u) : [0, T ] → R
N . Here the common time horizon

T ∈ R≥0 is arbitrary. The process of obtaining a system output signal M(u),
given an input signal u, is called simulation.

Specifications. In this work, we adopt Signal Temporal Logic (STL) as our
specification language to formalize properties that should be satisfied by the
system. We introduce the syntax and semantics in the following.

Definition 1 (STL syntax). We fix a set Var of variables. In Signal Temporal
Logic (STL), atomic propositions and formulas are defined as follows, respec-
tively: α ::≡ f(x1, . . . , xN ) > 0, and ϕ ::≡ α | ⊥ | ¬ϕ | ϕ ∧ ϕ | ϕ UI ϕ. Here f is
an N -ary function f : RN → R, x1, . . . , xN ∈ Var, and I is a closed non-singular
interval in R≥0, i.e. I = [a, b] or [a,∞) where a, b ∈ R and a < b. Other common
connectives such as →,	, �I (always) and ♦I (eventually), are introduced as
abbreviations: ♦Iϕ ≡ 	 UI ϕ and �Iϕ ≡ ¬♦I¬ϕ.

Definition 2 (Robust semantics). Let w : [0, T ] → R
N be an N -dimensional

signal, and t ∈ [0, T ). The t-shift wt of w is the signal wt : [0, T−t] → R
N defined

by wt(t′) := w(t + t′). Let w : [0, T ] → R
|Var| be a signal, and ϕ be an STL

formula. We define the robustness �w, ϕ� ∈ R∪{∞,−∞} as follows, by induction
on the construction of formulas.

�
and

⊔
denote infimums and supremums of

real numbers, respectively. Their binary version 
 and � denote minimum and
maximum.

�w, f(x1, · · · , xN ) > 0� := f
(
w(0)(x1), · · · ,w(0)(xN )

)

�w,⊥� := −∞ �w,¬ϕ� := −�w, ϕ�
�w, ϕ1 ∧ ϕ2� := �w, ϕ1� 
 �w, ϕ2�

�w, ϕ1 UI ϕ2� :=
⊔

t∈I∩[0,T ]

(
�wt, ϕ2� 
 �

t′∈[0,t)�w
t′
, ϕ1�

)

The original STL semantics is Boolean, given by a binary relation |= between
signals and formulas. The robust semantics refines the Boolean one as follows:
�w, ϕ� > 0 implies w |= ϕ, and �w, ϕ� < 0 implies w �|= ϕ, see [19, Prop. 16].

In the following, given a fixed specification ϕ, we denote as Ru the robustness
of an input signal u to the specification ϕ, i.e., Ru = �M(u), ϕ�.

Falsification Approaches. Falsification consists in synthesizing input signals
to find one that violates the system specification. The targets of falsification,
i.e., input signals u : [0, T ] → R

M , are time-variant continuous functions. In
practice, synthesizing such continuous signals is infeasible. Hence, practitioners
employ parametrized representations to characterize the signals [13,16,26]; a
commonly used representation is piecewise constant. A piecewise constant sig-
nal u : [0, T ] → R

M has a hyperparameter c, such that during each interval
[ (i−1)T

c , iT
c ] (i ∈ 1, . . . , c), u(t) is a constant. In this way, a finite number c · M

of parameters is used to identify a signal u. We will identify with Ω the (c · M)-
dimensional hyperrectangle identifying the input space (also search space) used
for falsification.

Various approaches have been proposed to solve the falsification problem.
The naive one is by uniformly random sampling input signals u in the input
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space Ω, and check if the corresponding output signal M(u) violates the specifi-
cation ϕ. A more efficient but greedy algorithm is by exploiting the STL robust
semantics and turning falsification into an optimization problem that minimizes
the robustness �M(u), ϕ�; the process stops when a negative robustness result
�M(u), ϕ� is observed (i.e., a falsifying input u has been found), or the search
budget (in terms of number of simulations) expires.

In order to solve the optimization problem, stochastic optimization algo-
rithms, such as hill climbing, are employed, because they work efficiently with
black box objective functions, like �M(u), ϕ� in our case. These algorithms adopt
various metaheuristic strategies so that they can efficiently explore the search
space and achieve optimal solutions. For instance, CMAES [23] is an evolu-
tionary search-based method that focuses on exploitation. A more recent work
MCTS [36] employs Monte-Carlo Tree Search to achieve a balance between
exploration and exploitation of the search space. We refer readers to [8] for
a more comprehensive survey of different optimization-based falsification algo-
rithms. Also mature tools, such as Breach [13] and S-TaLiRo [3], have been
developed.

3 Problem Definition and Overview of the Proposed
Approach

In this work, we tackle the problem of characterizing the likelihood that a formal
specification is indeed non-falsifiable, given that a falsification algorithm has
tried to falsify it using a given set of input signals, all giving positive robustness.

Definition 3 (Confidence Estimation Problem). The confidence estima-
tion problem is formally defined as follows:

– Given: a finite set T = {〈u∗
1,Ru∗

1
〉, . . . , 〈u∗

N ,Ru∗
N

〉} of pairs, where each u∗
i ∈

Ω is a point in the input space Ω, and Ru∗
i

∈ R≥0 is the robustness (a positive
real) of u∗

i .
– Return: the likelihood that, for all points u′ ∈ Ω, it holds Ru′ > 0.

This problem is in general undecidable: first, the robustness computation
R(u) = �M(u), ϕ� relies on a black box model M, in which the robustness
values of unexplored points are not predictable (i.e., R is unknown); moreover,
there are infinitely many unexplored points in the search space Ω, regardless of
the size of T , since Ω is a continuous domain.

Overview of the Proposed Approach for Confidence Estimation. We
provide an overview of the proposed approach in Fig. 1. We assume that a falsi-
fication algorithm has been run for some time with the aim of falsifying a given
specification for a given system, without success (i.e., no falsifying input has been
found). The proposed approach takes as input the produced falsification data
T , consisting of a set of system inputs u∗ and their robustness values Ru∗ , as
defined in Definition 3. These data, after being normalized, are fed into a Gaus-
sian Process (GP) Regression process to train a GP as a surrogate of robustness
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Fig. 1. The proposed GP regression-based confidence estimation approach for hybrid
system falsification

function R. Using the obtained GP, we want to estimate the probability that
there exists no point having negative robustness. First, we need to identify the
points with lower values in the GP (so approximating lower robustness values),
as these are those that can actually reduce the probability; to do this, we perform
a global sampling method to collect a set of points that have low values, and then
perform a local search starting from these points with the aim of finding points
with even lower values. Starting from the found points, we apply an established
method [6] to compute the probability that all these points still approximate
positive robustness values. The approach outputs a confidence value conf ∈ [0, 1]
that indicates how likely the system satisfies the system specification.

4 Confidence Estimation via Gaussian Process Regression

In this section, we explain all the phases of the process shown in Fig. 1. In
Sect. 4.1, we first explain how we derive a Gaussian Process (GP) from the falsi-
fication data. Then, in Sect. 4.2, we describe how we sample from the obtained
GP, and derive a confidence measure from the sampled data.

4.1 Building a Surrogate Model of the Robustness Function
via Gaussian Process Regression

A Gaussian Process (GP) is a generalization of Gaussian distribution (a.k.a.
normal distribution) from single/multiple variables to continuous domains [31].
While a Gaussian distribution characterizes the probability distribution of a
finite set of variables, a GP models the distribution of infinite variables in a
continuous domain, i.e., sampling from a GP derives a function instance in the
domain. Formally, a GP over a continuous domain Ω is defined as a collection of
random variables Xt indexed by t ∈ Ω, such that any finite set X = {Xt | t ∈ Ω}
of those variables compose a multivariate Gaussian distribution X ∼ N (μ,Σ),
where μ and Σ are the mean vector and the covariance matrix of the distribu-
tion, respectively. The correlation between two variables Xti ,Xtj ∈ X is reflected
by their covariance Σi,j—the larger |Σi,j | is, the more highly Xti and Xtj are
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Fig. 2. Gaussian Process regression for the approximation of the robustness function

correlated. In a GP, the covariance between two variables Xti and Xtj is depen-
dent on the (Euclidean) distance of their indices ti and tj—the closer ti and tj
are, the larger the covariance is. This is implemented by the covariance func-
tion (a.k.a. kernel) K : Ω × Ω → R of GP, whose complicated definition will be
elaborated later.

GP regression consists in deciding the covariance function of a GP, by learn-
ing from the observed data, so that the distributions of unknown variables can
be predicted, based on Bayes’ rules [31, §2.1]. Unlike other regression frameworks
(e.g., deep learning), the prediction for an unknown point made by the GP pro-
vides a Gaussian distribution, i.e., a mean and a variance, rather than a single
value, so we can exploit this information to derive our confidence measure.

The prerequisite of GP regression is that the function that we want to approx-
imate guarantees the following assumption [31].

Assumption 1. Two points that are geometrically closer in the input space
have also closer output values.

In general, the assumption is reasonable for any robustness function, as a
small tuning of input signals usually leads to a small change of the system outputs
and so of the robustness value; such assumption is common in different works
on testing of CPSs [2,9,32]. So, we can apply GP regression for approximating
the robustness function. Figure 2 shows the GP regression we apply to learn a
surrogate model for the robustness function R from the falsification data T =
{〈u∗

1, Ru∗
1
〉, . . . , 〈u∗

N ,Ru∗
N

〉} in Definition 3. The process is elaborated in the
following.

GP Prior. A GP is uniquely identified by a mean function m and a covariance
function K, denoted as R ∼ GP(m,K). To determine m and K, a commonly-
used approach is to first specify two parametrized function templates, and then
fit the parameters based on training data. Conventionally, the mean function m
can simply be a constant; here we use 0. The selection of the covariance function
K is more sophisticated, as it is required to guarantee Assumption 1. Widely-
used choices for K include squared exponential kernel, Matérn kernel and so on
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(see a discussion in [31, §4.2]). In this work, we follow a typical selection, namely,
the squared exponential kernel, shown as follows:

K(ui,uj | θf , θl) = θf exp
(

−|ui − uj |2
2θ2l

)

where θf , θl ∈ R are tunable hyperparameters. Initially (the left part of Fig. 2),
these parameters have arbitrary values θ0f and θ0l and identify a function K0; by
this function, we obtain an initial GP prior R ∼ GP0(m,K0).

Training. The parameter tuning process aims at finding the optimal values θoptf ,
θoptl for θf , θl, such that, under θoptf and θoptl , the likelihood of the occurrence of
the falsification data T (in Definition 3) is maximized. This method is referred
to as maximum likelihood estimation (MLE), shown as follows:

θoptf , θoptl = arg max
θf ,θl

P
(
Ru∗

1
, . . . ,Ru∗

N
| θf , θl

)
(1)

where P is the probability density function of the multivariate Gaussian distribu-
tion of

[
Ru∗

1
. . . Ru∗

N

]
(see [31, §2.2 and §5] for more details). This problem can

be solved by a numerical optimization solver, such as Quasi-Newton method [7].

GP Posterior. Given the decision of hyperparameters θf and θl, we can fix
our GP posterior for the robustness function R (the right part of Fig. 2) as
R ∼ GP(m,K). By this, the posterior distribution of any unknown point u ∈ Ω
is inferred as follows, according to Bayes’ rules [31, §2.2 and §A.2]:

Ru ∼ N (μ, σ2) μ = ΣuΣ−1
u∗ Ru∗ σ2 = K(u,u) − ΣuΣ−1

u∗ ΣT
u (2)

where Σu =
[
K(u,u∗

1) . . . K(u,u∗
N )

]
, Σu∗ =

[ K(u∗
1 ,u∗

1) ... K(u∗
1 ,u∗

N )

...
. . .

K(u∗
N ,u∗

1) K(u∗
N ,u∗

N )

]

, and

Ru∗ =
[
Ru∗

1
. . . Ru∗

N

]
. Ru identifies the inferred distribution for the robustness

of u.

4.2 Confidence Estimation

In this section, we describe how we derive a confidence measure on the result
of falsification, based on the surrogate GP posterior we obtained in Sect. 4.1.
Accordingly, the problem introduced in Definition 3 is reformulated in terms of
GP as follows:

Definition 4 (Confidence Estimation Based on GP Posterior)

– Given: the GP posterior R ∼ GP(m,K);
– Return: the likelihood that any inferred distribution Ru (for all u ∈ Ω) is

positive.

The problem in Definition 4 asks for the tail probability of a given GP; the exact
answer of the problem is hard in general, and is still actively pursued in the
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Algorithm 1. Confidence estimation
Require: The R ∼ GP(m, K) obtained in Sect. 4.1 and its input space Ω
Require: H: the number of points to randomly sample from GP
Require: h: the number of top-h sampled points to use for local search, s.t. h � H
Ensure: conf: the confidence value that the specification holds

1: function EstimateConfidence(GP, Ω, H, h)
2: collect a set U of u ∈ Ω by randomly sampling H points in Ω
3: sort all u ∈ U ascendingly by lowBound(u) and take the first h ones {u1, . . . ,uh}

4: for i ∈ {1, . . . , h} do
5: u′

i ← arg min
u∈Ω

lowBound(u) starting from ui � local search

6: Ru′
1
, . . . ,Ru′

h
∼ N (μ, Σ) s.t.,

{
μ ← ΣuΣ−1

u∗ Ru∗

Σ ← K(u,u) − ΣuΣ−1
u∗ ΣT

u

� see Eq. 2

7: return conf ← MvnCdf
(〈Ru′

1
, . . . ,Ru′

h
〉, [0, ∞)

)

GP community [24,27,28]. Since our work mainly aims at giving a hint of how
likely it is that there exists no counterexample in the falsification search space,
an approximation of the tail probability is enough. In this section, we introduce
a sampling-based approach to approximate the likelihood (i.e., the confidence
measure) as defined in Definition 4.

The process of confidence estimation is shown in Algorithm 1.
It requires the GP posterior GP obtained in Sect. 4.1 with its input space Ω,

and two natural numbers H,h ∈ N
+ such that h � H. The algorithm consists in

a minimization sampling phase, and a cumulative probability calculation phase;
at the end, it returns a confidence value conf ∈ [0, 1] that indicates how likely it
is that there exists no counterexample in Ω. In the following, we elaborate on
the process.

Minimization Sampling. The likelihood in Definition 4 is decided by its dual
problem, i.e., the likelihood that there exists u ∈ Ω whose Ru is negative. To
answer this problem, we need to collect the points in Ω, whose inferred robustness
values have a considerable probability to be negative, and then calculate their
cumulative probability distribution. Since Ω is continuous, there could exist
infinitely many such points, and hence it is impossible to involve all of them.
However, our work mainly aims at giving an approximation of the likelihood, so
it suffices to select a finite set of points from Ω as representatives for that class of
points. To this aim, we construct a new function lowBound(u) = μ(u)−1.96σ(u),
that is, the 95% lower confidence bound of the posterior distribution of Ru in
Eq. 2 (see an illustration in the GP posterior in Fig. 2). Intuitively, if lowBound(u)
is lower than 0, there is still a considerable probability that Ru is negative;
otherwise, we consider that Ru is unlikely to be negative.

Therefore, this phase consists of an optimization process, taking lowBound(u)
as the objective function to be minimized. In order to derive comprehensive
and precise estimation, we adopt a hybrid optimization approach that combines
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global search and local search. First, in the global search, we perform a com-
prehensive random sampling in Ω (Line 2) and sort the H points ascendingly
according to their 95% lower confidence bound lowBound(u) (Line 3); we select
the first h sampled points to perform a further minimization process (Line 3).
Namely, we take each of the h sampled points as a starting point to perform a
local search, aiming at finding new points that have even lower confidence bound
(Line 5); we use these points to construct a multivariate Gaussian distribution,
based on the definition of GP (Line 6).

Cumulative Probability Calculation. Given the constructed multivariate
Gaussian distribution Ru′

1
, . . . ,Ru′

k
∼ N (μ,Σ) in Line 6, we can apply existing

methods to calculate the probability that Ru′
1
, . . . ,Ru′

k
are all positive. There

have been a line of works doing this; in our work, we adopt the state-of-the-art,
that is, a minimax tilting-based approach [6] to calculate the probability. The
function MvnCdf in Line 7 shows the interface of [6]: it takes as input the
multivariate Gaussian distribution, i.e., its mean and covariance matrix, and the
range in which the distribution is expected to locate; it returns a value conf,
that indicates how likely the multivariate Gaussian distribution distributes in
the given range.

5 Experimental Evaluation

We here describe the experiments we conducted to evaluate the proposed con-
fidence measure. We first present the experiments settings in Sect. 5.1; then, in
Sect. 5.2, we analyze experimental results using a series of research questions.

5.1 Experiment Settings

As benchmarks, we selected three Simulink models and seven STL specifications
defined for them, that are commonly used, in particular in falsification compe-
titions [11,16,17]. Table 1 reports the benchmarks and the corresponding speci-
fications. The specification ID identifies the corresponding model. A description
of the models and of their specifications is as follows.

Table 1. Specifications. For each one, we list a set of parameters ω1, . . . , ω5 for RQ2;
the default parameter used in RQ1 and RQ3 is indicated by ωd

Spec. ID STL formula ωi (i = 1, . . . , 5) ωd

AT1 �[0,30] (speed < ωi) {135, 140, 145, 150, 155} ω3

AT2 �[0,10] (speed < 50) ∨ ♦[0,30] (rpm > ωi) {500, 750, 1000, 1250, 1500} ω4

AT3 �[0,29](speed < 100) ∨ �[29,30](speed > ωi) {57, 59, 61, 63, 65} ω2

AT4 �[0,30](rpm < 4770 ∨ �[0,1](rpm > ωi)) {200, 300, 400, 500, 600} ω1

FFR1 ¬ ♦[0,5] x, y ∈ [3.9 + ωi, 4.1 − ωi] ∧ ẋ, ẏ ∈ [−0.5, 0.5] {0.01, 0.03, 0.05, 0.07, 0.09} ω1

FFR2 ¬♦[0,5]�[0,2](x, y ∈ [1.5 + ωi, 1.7 − ωi]) {0, 0.02, 0.04, 0.06, 0.08} ω2

AFC1 �[11,50](controller mode = 1 → μ < ωi) {0.25, 0.3, 0.35, 0.4, 0.45} ω2
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– Automatic Transmission (AT) [25] models an automotive system that has
two input signals, throttle ∈ [0, 100] and brake ∈ [0, 325], and three out-
puts signals, gear , speed , and rpm. The specifications consider system safety:
requirements on speed (AT1, AT3), on rpm (AT4), or their relation (AT2).

– Free Floating Robot (FFR) [9] models a robot operating in a 2D space. It has
four input signals u1, u2, u3, u4 ∈ [−10, 10] representing the boosters, and four
output signals that represent the coordinates x, y of the robot position, and
their one-order derivatives ẋ, ẏ. The specifications specify kinetic properties
for the robot: FFR1 requires the robot to pass an area around the point (4, 4)
under an input constraint, and FFR2 requires the robot to stay in a given
area for at least 2 s.

– Abstract Fuel Control (AFC) [26] takes two input signals, Pedal Angle ∈
[8.8, 70] and Engine Speed ∈ [900, 1100], and outputs a ratio μ reflecting the
deviation of air-fuel-ratio from its reference value. A requirement (AFC1) of
the system is that μ shouldn’t deviate too much from the reference value.

Specifications are parameterized by a parameter ωi; we set it to five different
values to have specifications of different complexity for the experiments.

Software and Hardware Specifications. Our experiments rely on
Breach [13] to interface Simulink and compute STL robustness. The experi-
ments have been executed on an AWS EC2 c4.2xlarge instance (2.9 GHz Intel
Xeon E5-2666 v3, 15 GB RAM). The code and all the experimental results are
available online at https://github.com/choshina/GPConfidence.

5.2 Evaluation

We assess the viability of the proposed confidence measure using three research
questions, described as follows.

RQ1. Does the confidence measure monotonically increase?
As explained in Sect. 1, a confidence measure, in order to be reliable, should

be monotonically increasing, i.e., it should not decrease as new falsification data
is considered. As previously explained, this cannot be theoretically guaranteed by
the proposed metric, as it is always possible to find a new input that drastically
changes the learned GP. Therefore, we here want to assess to what extent the
proposed metric is monotonically increasing. For each benchmark (using the
default value ωd), we have randomly sampled an increasing number of points
in Ω; then, for each set of sampled points T , we have computed the minimum
robustness and the confidence measure.

Figure 3 shows, for each benchmark, how the minimum robustness value
(right axis and red plot) and the confidence measure (left axis and blue plot)
change by increasing the size of T .2 The plots show the intervals of sizes of T in
which the confidence measure changes significantly, before stabilizing to a given

2 Since computing the confidence measure can take up to 30 s, we have computed it
only for some sizes of |T |.

https://github.com/choshina/GPConfidence
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Fig. 3. RQ1 – Experimental results on monotonicity

value. We observe that, in most of the cases (i.e., AT1, AT2, AT3, FFR1, and
FFR2), the measure is quite monotonic, with few oscillations for lower number
of simulations (e.g., FFR2); these initial oscillations are expected, because the
precision of the GP depends on the number of elements of the training data. For
some cases, instead, the confidence measure remains high for some time at the
beginning (i.e., AT4 and AFC1) and then stabilizes at a lower value. For AFC1,
the reason is that the minimum robustness is always very low; so, with more
observations, the GP learns such low robustness, and so the confidence on the
absence of a falsifying input decreases. For AT4, the main decrease in confidence
occurs due to big drops in minimum robustness. A way to increase the confidence
also in the presence of low robustness would be to add more training data, so
that the GP can get a better estimation; this is not applicable in our context,
because we rely only on the falsification data. However, in the next research
question, we show that the confidence metric is still reliable.
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Answer to RQ1: Most of the time, the confidence measure is reliable, as
it does not decrease (significantly) with increasing number of simulations.
However, in some cases, the measure is fluctuating for a lower number of
simulations, due to big changes in minimum robustness.

RQ2. Is the confidence measure sound?
We claim that a confidence measure is sound if it is related to the difficulty of

falsifying a specification, which can be assessed by the minimum robustness that
is achieved by a falsification algorithm. Therefore, we expect that the lower the
minimum robustness is, the lower the confidence should be. To assess to what
extent the proposed confidence measure is sound, we compare the confidence
results for the different instantiations of a specification type in Table 1; indeed,
these represent similar problems that, however, can have different values of mini-
mum robustness (as the specification is more or less demanding). Concretely, for
each specification type and for each of the different values of the parameter ωi,
we have run random sampling for 2000 simulations, and we have collected the
minimum robustness and the confidence measure over the simulations. Then, for
each specification type, we have selected the minimum number of simulations for
which, in at least one instantiation of ωi, the confidence measure reaches 100%
(or we select the maximum number 2000 if none of them reaches 100%), and we
take this number of simulations to compare the results of the specification type:
in this way, we can observe whether there are actually differences, and we avoid
the saturation effect that may be obtained by using a lot of simulations in which
the results converge to the same value.

Table 2 reports, for each specification type, results of the different instantia-
tions, in terms of minimum robustness (minRob), confidence measure (conf), and
confidence computation time (in secs); results are sorted increasingly by minRob.

Table 2. RQ2 – Experimental results on soundness. conf is in %; time is in secs.

AT1 AT2 AT3 AT4

ωi minRob conf time ωi minRob conf time ωi minRob conf time ωi minRob conf time

ω1 5.12 39.23 22.8 ω5 33.42 0 30 ω5 4.82 82.52 22.4 ω3 355.44 56.59 29.9

ω2 10.06 97.77 26.3 ω4 34.55 0.01 33.4 ω3 5.56 93.89 19.6 ω4 445.41 87.62 30.9

ω3 13.6 49.93 24.2 ω3 43.72 0 27.9 ω4 6.24 89.67 21.4 ω5 466.57 85.86 26.6

ω4 18.1 100 23.43 ω2 250 26.33 29.3 ω2 7.13 93.34 22.5 ω2 473.54 90.79 30.6

ω5 22.41 100 26.6 ω1 500 88.92 29.7 ω1 9.6 97.45 23.4 ω1 608.4 91.99 28.5

FFR1 FFR2 AFC1

ωi minRob conf time ωi minRob conf time ωi minRob conf time

ω5 0.21 99.28 20 ω3 0.01 1.27 23.2 ω1 0.03 1.84 0.3

ω3 0.49 99.95 20.3 ω1 0.02 11.17 21.2 ω2 0.08 10.48 0.3

ω2 0.5 90.84 21.5 ω2 0.03 2.53 20.2 ω3 0.13 99.95 0.2

ω1 0.58 98.88 24.2 ω4 0.07 47.23 16.8 ω4 0.18 100 0.3

ω4 0.64 92.37 23.1 ω5 0.08 0.91 21.1 ω5 0.23 100 0.3
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We note that, overall, the metric is sound because, given a specification type,
lower confidence values are obtained for lower robustness. Usually, large change
in confidence occurs when there is a big percentage change in robustness, such
as AT2, where the maximum value of minRob is 21.3% bigger than the minimum
value, and the difference in confidence is 88.92 perc. points. In some cases, the
variance of conf across the instantiations is not too high, as in AT3, AT4, and
FFR1 (differences of 14.93, 35.4, and 9.11 perc. points); we notice that, in these
cases, the percentage change of robustness is small (0.99%, 0.36%, and 2.04%).

Answer to RQ2: Overall, the confidence measure is sound as it is related
to the difficulty of the specification, measured by the minimum robustness.

RQ3. What is the confidence provided by different falsification algorithms?
We are here interested in investigating what is the confidence provided by

different falsification algorithms (i.e., implementing different search strategies)
when they are not able to falsify. We took three representative algorithms:
Random search that performs pure exploration, CMAES [23] that is a greedy app-
roach that favours exploitation, and MCTS [36] that provides a balance between
exploration and exploitation. We have applied the three algorithms (for 2000
simulations) to three benchmark specifications (AT3, FFR1, and AFC1 instan-
tiated with ωd as reported in Table 1); we repeated the experiments 10 times.

Figure 4 reports how the confidence measure changes across the 10 repeti-
tions. We observe that higher confidence is usually obtained by Random: since it
explores more, it can provide more distributed data for GP learning, so obtain-
ing a better GP (with less uncertainty). On the contrary, CMAES obtains low
confidence as it does not explore enough and so the GP learning does not have
training data for large parts of the search space in which the uncertainty of the
GP will be high. MCTS can obtain good results when it explores enough (as in

Fig. 4. Confidence comparison between different falsification algorithms
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FFR1 and AFC1), but sometimes it can be too greedy (as in AT3) and so it
obtains low confidence. Regarding the variance of the results, we observe that
CMAES is the one with the highest variance, as different search trials can lead to
different search paths and so different confidence values; also Random has some
variance across the results, but not as much as CMAES. MCTS is the more stable
approach, as the balance between exploration and exploitation leads most of the
times to the same search paths, and so to the same confidence values.

Answer to RQ3: Falsification approaches that provide enough exploration
lead to higher confidence. MCTS is the more stable algorithm.

6 Related Work

Gaussian processes and Gaussian process regression are widely applied in differ-
ent contexts. In statistics, GP regression, usually referred to as Kriging methods,
is used to build surrogate models for measuring the probability of rare events,
e.g., [5,21,34]. These works usually develop new sampling techniques to derive
rare events probability using limited numbers of observations, and have been
widely applied in engineering domains. Theoretical explorations in tail probabil-
ity of GPs have been heavily conducted in the statistics community [24,27,28].
In general, this is a hard problem and research efforts are still on-going; achieve-
ments so far usually limit GP to certain types, e.g., Brownian motion.

In falsification, GP regression has been mainly used for guiding the search
process, and not for confidence estimation as done in this paper. Deshmukh
et al. [9] apply Bayesian optimization, an optimization approach derived from
GP regression, to falsification, and investigates a dimension reduction technique.
Akazaki [2] uses it for the falsification of conditional properties �Iϕcond → ϕsafe

in which the antecedent ϕcond must be satisfied in order to be able to violate
the property; GP regression is used to guide the search towards input satisfying
ϕcond . Silvetti et al. [32] use GP regression to approximate the STL semantics
and so identify the inputs that have higher probability to have lower robustness.
Apart from falsification, also in the more general context of search-based testing
(SBT), the usage of GP regression has been recently advocated [20] for speeding
up the search. However, to the best of our knowledge, no work in falsification or
SBT uses GP regression for confidence estimation on the final result.

Our confidence measure has similarities with coverage criteria used in test-
ing, as they both aim at giving a confidence on the absence of faults. The main
difference is that coverage criteria fix a set of test requirements that need to
be covered, and the coverage level acts as a confidence value; in our case, the
confidence measure does not specify what needs to be covered, but implicitly
considers the coverage of the input space. Coverage criteria have been proposed
for falsification. Dokhanchi et al. [12] define coverage based on the blocks of
Simulink models, and integrate the coverage level as part of the objective func-
tion of the falsification problem. Dreossi et al. [15] use “star discrepancy” as a



GP-Based Confidence Estimation for Hybrid System Falsification 345

measure of input space coverage, and use it to guide the falsification search. Adi-
moolam et al. [1] classify inputs according to their robustness values, and define
coverage based on the clustered inputs. All these works use coverage as a means
for guiding the search, but they do not explicitly use it as a confidence measure.
Although our confidence measure is not a coverage criterion, it has some good
properties as monotonicity that would allow to also use it as stopping criterion
for falsification; this usage of the measure is part of our future work.

In the verification community, other approaches provide some type of confi-
dence on the verification results. For example, in probabilistic model checking [4,
Chapter 10], the probability that a given property holds can be estimated; the
approach is, however, much different from ours, as it operates on much simpler
models as Markov chains.

7 Conclusion

In this paper, we have proposed a confidence measure that, in case a falsifica-
tion algorithm has terminated without returning any falsifying input, estimates
the probability that the specification is indeed non-falsifiable. The measure is
computed by first performing a Gaussian Process (GP) Regression process that
learns the robustness function from the falsification data, and by then deriving
from it the probability that no falsifying input exists.

In this work, we have considered one particular kernel function for GP; as
future work, we plan to investigate whether other kernel functions provide better
results. The proposed approach works better if the fitness landscape is smooth
(see Assumption 1); however, in some cases, the fitness landscape of the robust-
ness could be quite complicated, in particular when output signals of different
magnitudes are used in the specification (called the scale problem in [37–39]); as
future work, we plan to devise techniques that mitigate the scale problem, and
so make it easier to learn the robustness function.

The approach is applicable to hybrid systems in which Assumption 1 holds,
i.e., those for which the Gaussian approximation is suitable. While this usually
holds for continuous dynamics, it may not hold when discrete modes (e.g., states
of a hybrid automaton) are involved. As future work, we plan to perform a much
larger empirical evaluation to try to properly characterize the systems in which
the assumption holds, and so the confidence measure is more trustworthy.
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