
Business Processes Meet Spatial Concerns:
The sBPMN Verification Framework

Rim Saddem-Yagoubi1(B), Pascal Poizat2,3, and Sara Houhou3,4,5

1 COSYS-ESTAS, Univ Gustave Eiffel, IFSTTAR, Univ Lille,
59650 Villeneuve d’Ascq, France

rim.saddem@ifsttar.fr
2 Université Paris Lumières, Université Paris Nanterre, 92000 Nanterre, France

3 Sorbonne Université, CNRS, LIP6, 75005 Paris, France
{pascal.poizat,sara.houhou}@lip6.fr

4 Biskra University, LINFI Laboratory, Biskra, Algeria
5 LIRMM, CNRS & Université de Montpellier, 34095 Cedex 5 Montpellier, France

Abstract. BPMN is the standard for business process modeling. It
includes a rich set of constructs for control-flow, inter-process commu-
nication, and time-related concerns. However, spatial concerns are left
apart while being essential to several application domains. We propose
a comprehensive extension of BPMN to deal with this. Our proposal
includes an integrated notation, a first-order logic semantics of the exten-
sion, and tool-supported verification means through the implementation
of the semantics in TLA+. Our tool support and our model database are
open source and freely available online.

Keywords: Business processes · Spatial concerns · Formal semantics ·
Verification · Tool · BPMN · First-order logic · TLA+

1 Introduction

The Business Process Model and Notation (BPMN) [11] is the de facto stan-
dard notation for the modeling of business processes. This rich notation includes
features to support different aspects to be taken into account when designing
a process model. This includes, among others, specifying the control flow, the
inter-process communication, and time-related concerns.

Yet, a conventional process model may suit one’s needs in a given context and
not in other ones (think of rules for allowing, or not, attendance to conferences
based on the COVID-related status of the hosting country). A context sensitive
approach to business process modeling also offers the ability to adapt the process
behaviours to changing contexts [14]. Coined by Schilit and Theimer [16] in
1994, the term “context” has been given a generic definition by Dey [6] in 2001
as “any information that can be used to characterize the situation of an entity”.
Transferring this definition to the business process management domain, a useful

This work was supported by project PARDI ANR-16-CE25-0006.
c© Springer Nature Switzerland AG 2021
M. Huisman et al. (Eds.): FM 2021, LNCS 13047, pp. 218–234, 2021.
https://doi.org/10.1007/978-3-030-90870-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90870-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-90870-6_12

Business Processes Meet Spatial Concerns 219

definition of a business process context could be “the minimum set of variables
containing all relevant information that impact the design and execution of a
business process” [13]. Saidani and Nurcan further identify in [14] four important
kinds of contexts: location, time, resource, and organisation-related contexts. As
a contextual factor, location is widely discussed as part of research related to
mobile applications and it has wider implications for process management [13].

Without a first-class treatment for the location context in process modelling,
one would have to rely on an abstraction of it, e.g., using non-determinism to
model conditional branching based on the current state of this context. This
is known to yield over-approximation issues. For illustration purposes, let us
suppose a process where a robot has to treat rooms in a power-plant or fields
in a farm. For this, one relies on a looping workflow pattern, where the robot
performs several tasks while there is still at least a place to deal with. Our case
study, below, is an instance of this. With support for the location context, it is
possible, first, to represent the state of the world (the power-plant rooms or the
fields, and their status) and, second, to exit the loop when all places have been
treated. Without this support, the fact that there is still, or not, a place to deal
with would be modelled using non-determinism. One would then have a possible
infinite run, where there is always a place left to treat, making it impossible to
perform verification without using bounded analysis (up to some length of runs)
or fairness constraints. In line with this, we focus here on the impact of the
location-related context in the design and the execution of business processes.

Contributions. Our contributions in this direction are threefold. First, (1.) we
propose an extension of the BPMN standard notation in order to take into
account location-related (which we call spatial) concerns, (2.) we define a formal
execution semantics for this extension, and (3.) we provide the process designers
with tools for the automated verification of their extended process models.

With respect to (1.), we support the modeling of control flows based on loca-
tion constraints, of process mobility, and of the action of processes on their envi-
ronment. In this work we assume that only the processes at hand have the pos-
sibility to change this environment (i.e., the environment cannot independently
evolve). We made the choice to extract the specification of the location-related
context into a specific structure that is then attached to the process model for
verification. This makes the modelling of processes more generic, maintainable,
and extensible as one can very simply change the context of use of a process to
see the impact on its correctness. This structure, that we call space structure,
describes all components of a location context: places (called basic locations),
possible moves between places, and logical groups of places (called group loca-
tions) that can evolve over time and with the action of the processes. All our
extensions rely on the standard BPMN extension mechanisms. The usual pro-
cess design tools can hence be used to model extended processes (in practice,
we use Camunda for this). Our extensions can be “forgotten” by verification or
execution tools not supporting them. But using our own tooling (see below, 3.)
the process designers will be able to go beyond standard BPMN verification and
check also models in presence of location extensions.

220 R. Saddem-Yagoubi et al.

Fig. 1. BPMN subset being supported. Extension points are colored in green. (Color
figure online)

With respect to (2.), we follow the approach in [8] and extend its first-order
logic execution semantics for BPMN1 towards taking into account our exten-
sions. This is achieved structurally on the different extension constructs (space
structure initial configuration, processes initial locations, extended inclusive and
exclusive gateways, tasks for process mobility or for acting on the context).

With respect to (3.), our approach is based on two steps. An extended process
model is first transformed into a TLA+ representation of it. Then, given this
representation and the TLA+ implementation of the (2.) semantics, the model-
checker from the TLA+ tool-suite is used to perform verification of both standard
process properties (safety, soundness) and location-related ones. Our tools and
the models we use for evaluation are open source and available online [12].

BPMN Primer. The subset of BPMN that we support is given in Fig. 1. The
main instrument to control the flow in processes are gateways. Parallel gateways
(AND) require that all incoming flows are active and give control to all out-
going flows. Exclusive (XOR) and event-based (EB) gateways only require one
of the incoming flows to be active and activate only one of the outgoing flows
based either on a condition (for XOR) or some event (for EB, here message
reception). The inclusive gateway (OR) has a more complex semantics. First,
several outgoing flows can be activated at a time, based on conditions. Second,
it requires that the maximum possible number of incoming flows are active (this
may require waiting for some time before more incoming flows are activated,
even if one is already active). Inter-process message-based communication can
be achieved using send tasks (ST) or message throwing events (MEE at the
end of a process, TMIE otherwise), and receive tasks (RT) or message catching
events (MSE at the start of a process, CMIE otherwise). Activities are subject to
boundary events either interrupting or not (the former interrupt the activity, the
1 As far as time-related elements are concerned, we take the first, non-deterministic,

semantics given in [8].

Business Processes Meet Spatial Concerns 221

F1

F2

F3

R1

R2

base

F4

F5

F6 M

(a) Context 1.

F1

F2

F3

R1

R2

base

F4

F5

F6 M

(b) Context 2.

F1

F2

F3

R1

R2

base

F4

F5

F6 M

(c) Context 3.

Fig. 2. Case study – location contexts.

latter activate some flow branch without interrupting the activity). We refer the
reader to [11] for more detailed information on the BPMN notation and to [8]
for more discussion on the, complex, inclusive gateway.

Case Study. Figures 2 and 3 present the case study we use to illustrate our pro-
posal and to perform verification. The outcomes of verification on more examples
are synthesized in Sect. 3. This model is a simplified version of a collaborative
process model where a controller (Controller), a crop planting robot (Planter),
and a watering robot (Sprayer, not taken into account here) have to plant crops
and water several fields spread over both banks of a river.

The context of the collaboration is the river and its banks, with three different
instances given in Figs. 2a–2c. Places (basic locations) are either fields (F1 to F6),
river (R1 and R2), bridge (B), or mountain (M). There is also the base (base)
from which our collaboration peers will operate and move. Over these places
we may define logical groups of locations (of simply, group locations) for the
places where to plant crops (toPlant), the places to water (toWater), the places
with crops (planted), and the watered places (watered). Finally, we have possible
moves around the location context, based on roads and bridge. All together, basic
locations, group locations, and possible moves, make up possible space structures
to be associated to location-aware processes. Please note that in practice the
location structures are of course not denoted using pictures but rather as a set
of information extending the BPMN element for the process collaboration:

<bpmn:collaboration id="s006Robots2"><bpmn:extensionElements>
<camunda:properties>

<camunda:property name="base-locations"
value="[base,F1,F2,F3,F4,F5,F6,R1,R2,B,M]" />

<camunda:property name="group-locations"
value="[toPlant,planted,toWater,watered]" />

<camunda:property name="transitions"
value="[(base,F1),(F1,base),(F1,F2),(F2,F1),(F2,F3),...,(M,F6)]" />

<camunda:property name="initial-space"
value="{toPlant:[F1,F2,F3,F4,F5,F6],

planted:[], toWater:[], watered:[]}" />
</camunda:properties>

</bpmn:extensionElements></bpmn:collaboration>

222 R. Saddem-Yagoubi et al.

Fig. 3. Crop planting collaboration.

In Fig. 3 we have a BPMN collaboration that has been extended with the
extensions we propose. In green we show which elements are extended (in addi-
tion to the whole collaboration, as seen before, and the processes’ pool lanes
extended to denote where the processes start). In blue we use notes to give, as
comments, extensions that are indeed also stored as extension elements in the
XML source BPMN file. We remind that since we use BPMN extension mecha-
nisms, these extensions can be directly entered in BPMN design tools. The whole
model (diagram and source file, with extensions) is available from [12].

The controller starts by activating the planter. It then checks if there are
still some places where to plant crops. If so it sets znc to be any of these. In
our extension checking some location-related constraint and setting accordingly
a location variable is done at once using a space condition, znc: any toPlant
(set znc to be any of the places in group toPlant). Then the controller sends
a message to the planter ordering it to get there and waits to receive either
an acknowledgement or the information that there is some problem. In the first
case the controller registers that the place is now planted using an update action,
removing znc from group toPlant and adding it to groups planted and toWater.
If there is a problem, then the controller interrupts the planter and stops.

On its side, the planter starts upon activation by the controller and, after
starting its engine, it enters the in operation sub-process. In this sub-process,
it loops on receiving an order to move (it has then access to the shared znc
information), checking if znc can be reached from its current location (using
reachable, denoting places that are reachable, in the space condition _: any znc
and reachable), and accordingly either moving to znc using a move action and
sending an acknowledgement to the controller, or signalling a problem. Upon
interruption by the controller, the loop stops and the planter tries to get back
to the base (again, using a space condition to check if this is possible).

Business Processes Meet Spatial Concerns 223

We were able to model spatial concerns in our collaboration. But what about
correctness? Can the collaboration processes reach termination (black circles in
the rightmost part of Fig. 3)? Are all fields planted at the end? Let us consider
the contexts. If the planter starts on the right bank then the left one cannot
be planted due to the one-way bridge (Fig. 2a). If the planter starts on the left
bank (Fig. 2b) or if the bridge is two-way (Fig. 2c) then all fields can be planted.

This case study illustrates several points. First, a process model can operate
on (or be adapted to) different space structures. Conversely, a space structure can
be used with many processes (we have used one with several variants of the crop
planting collaboration). This is made possible by separating the specifications of
the context and of the processes, and then integrating them. Further, we have
seen that, switch two variants of a process or two variants of a space structure
and correctness may no longer hold. In the sequel we will see how to give a
formal semantics to our extensions and support their verification using tools.

Outline. The formal part of the paper is developed in Sect. 2, addressing the
presentation of the models underlying the semantics, and then the semantics
itself. The implementation of the semantics in TLA+, verification, and evaluation
are then presented in Sect. 3. This section also includes a short introduction to
the TLA+ language and verification framework. Related work is given in Sect. 4,
and we end with conclusions and perspectives in Sect. 5.

2 Formal Semantics

In this section, we first give the formal models for extended BPMN diagrams.
Then, we present their formal semantics. It follows the “token game” given (in
natural language) in Chap. 13 of the standard [11] and builds on the semantics
for basic BPMN given in [8]. Hence, we will focus on points of extensions only.

2.1 Formal Models for Space BPMN

As we have seen earlier, space structures represent contexts with base locations,
group locations, and possible moves. Hence the following definition.

Definition 1 (Space Structure). A space structure is a tuple S = (B,G,→)
where B is the set of base locations, G is the set of group locations, and →⊆
B×B denotes all possible moves between base locations. Further, we require that
B ∩ G = ∅ and (b, b) ∈→ for every b in B.

Space structures may represent different kinds of location-based contexts such
as countries and administrative or epidemiological statuses, offices and security
levels, or agricultural environments as in our case study where, B = {F1, . . . ,M},
G = {toPlant, toWater, planted,watered}, and {(F2,F2), (F2,F5)} ⊂→. The set of
all locations is denoted by L = B ∪ G, →∗ denotes the transitive closure of →,
and b1 → b2 denotes that (b1, b2) ∈→.

224 R. Saddem-Yagoubi et al.

Notation. In the sequel, definitions are taken given a space structure S =
(B,G,→) and a set of variables V such that V ∩ L = ∅.

Space formulas are used to denote a subset of the base locations (see their
interpretation in Def. 10). They are central to our extension as they are used
both in conditions on conditional sequence flows (CSF) and in mobility actions.

Definition 2 (Space Formula). The set of (space) formulas over S and V,
denoted by Form, is the smallest set generated by {true, v, b, g, not f , f1 or f2,
here, reachable} for v ∈ V, b ∈ B, g ∈ G, and f, f1, f2 ∈ Form. Further,
f1 and f2 is defined as not (not f1 or not f2).

Space actions are extensions of BPMN (abstract) tasks that can represent
either a move or the update of the context by some process. Additionally, we use
a specific pass action for tasks that are not related to the spatial concerns.

Definition 3 (Space Action). The set of (space) actions over S and V,
denoted by Action, is the smallest set generated by {move(f), update(u,G−, G+),
pass} for f ∈ Form, u ∈ V, G− ⊆ G, G+ ⊆ G, and G− ∩ G+ = ∅.

Informally (the formal semantics is given in Def. 11), move(f) denotes that
the process of interest moves to a location satisfying f and update(u,G−, G+)
denotes the update of the context by removing some locations (retrieved by
evaluating u) from all groups in G− and adding them to all groups in G+.

We may now give definitions for processes, which are represented using
graphs with typed nodes and edges. Types correspond to the BPMN elements
(see Fig. 1, e.g., XOR for exclusive gateways): TNodes = {AT,RT, ST,NSE,
MSE, TSE,CMIE, TMIE, TICE,MBE, TBE,NEE, TEE,MEE,AND,
OR,XOR,EB, SP, P} and TEdges = {NSF,CSF,DSF,MF}. Definitions 4
and 5 are taken (and restructured) from [8]. Definition 6 integrates our exten-
sions.

Definition 4 (Graph). A graph is a tuple ρ = (N,E, source, target) where N
is the set of nodes, E (with N ∩ E = ∅) is the set of edges, and source/target :
E → N denote the source/target of an edge.

Definition 5 (BPMN Graph). A BPMN graph is a tuple ρ̂ = (ρ, catN , catE ,
R,M,msgt) where ρ is a graph, catN : N → TNodes gives the type of a node (NT

denoting the set {n ∈ N | catN (n) ∈ T}), catE : E → TEdges gives the type of an
edge (ET denoting the set {e ∈ E | catE(e) ∈ T}), R : N{SP,P} → 2N∪E gives
the set of nodes and edges which are directly contained in a container (process
or sub-process), M is the set of message types, and msgt : E{MF} → M gives
the message associated to a message flow.

Definition 6 (Space BPMN Graph). A space BPMN graph is a tuple ρ◦ =
(ρ̂,S,V, cvar, ckind, ccond,≺, act) where ρ̂ is a BPMN graph, S is a space struc-
ture, V is a set of variables, cvar : E{CSF} → V, ckind : E{CSF} → {any, all},
and ccond : E{CSF} → Form are total functions that assign respectively a

Business Processes Meet Spatial Concerns 225

variable, a kind (denoting how to associate the interpretation of a space for-
mula to a condition variable), and a space formula to each conditional edge,
≺⊆ E{CSF} ×E{CSF}, is a relation ordering the conditional sequence flows out-
going from a conditional gateway, and act : N{AT} → Action is a total function
that assigns an action to each abstract task.

2.2 Semantics for Space BPMN: States and Initial State

The semantics relies on the notion of state of the space BPMN graph, which is
defined in terms of state markings, edge markings, and space configuration.
Notation. In the sequel, definitions are taken given a space BPMN graph ρ◦ =
(ρ̂,S,V, cvar, ckind, ccond,≺, act) with S = (B,G,→) and L = B ∪ G.

Definition 7 (Space Configuration). A (space) configuration c is a couple
of substitutions (σ, subs), σ being a variable to base locations substitution (σ :
V → 2B) and subs being a group to base locations substitution (subs : G → 2B).

The set of all configurations (of a space BPMN graph ρ◦) is denoted by
Configs. We note σ⊥ the empty variable configuration (∀v ∈ V, σ⊥(v) = ∅).
Given a configuration c = (σ, subs), σ[v �→ B], denotes the update of σ by
associating B to v (i.e., σ[v �→ B] is σ(v′) for each v′ in V \ {v} and B for v).
Accordingly, subs[g �→ B], denotes the update of subs by associating B to g.

Among the variables, we have process locations, i.e., we have a variable
locp ∈ V for each p in N{P}, and σ(locp) gives the location of a process p.
A configuration encompasses (in σ) the current values of variables – including
the location of processes – and (in subs) the state of the relation between group
and base locations. To become a state, a configuration is completed with the
current marking of the BPMN graph nodes and edges.

Note that here we assume a model of shared variables (e.g. the znc variable in
our example). This is driven by formalization convenience. Local variables with
values exchanged using communication (messages) is part of our perspectives.

Definition 8 (State). A state is a triple s = (mn,me, c) where mn : N → N

(node marking), me : E → N (edge marking), and c is a configuration.

The set of all states (of a space BPMN graph ρ◦) is denoted by States. One
of them is the state in which the graph starts its execution: its initial state.

Definition 9 (Initial state). The initial state of a space BPMN Graph ρ◦ is
a state so = (mn0,me0, c0 = (σ0, subs0)) such that only processes and their start
events are marked (∀n ∈ N,mn0(n) = 1 if ∃p ∈ N{P}, n ∈ N{NSE,MSE,TSE} ∩
R(p), and 0 otherwise), no edge is marked (∀e ∈ E,me0(e) = 0), and σ0 is set
only for the start locations of processes (∀v ∈ V, either ∃p ∈ N{P},∃locp,0 ∈
B, v = locp ∧ σ0(v) = {locp,0} or σ0(v) = ∅).

The initial locations for processes (the locp,0) and subs0 are parameters of
the model and, hence, of its verification. In our example, for the context in
Fig. 2b, we had all fields to plant and the planter starting in F1 (or in base, with
base → F1). This means that the configuration in the initial state is such that
σ0(locPlanter) = {F1} (or {base}) and subs0(toPlant) = {F1, . . . ,F6}.

226 R. Saddem-Yagoubi et al.

2.3 Semantics for Space BPMN: Formulas and Actions

Having defined configurations, it is now possible to give a semantics to formulas
and actions. Let us begin with the former.

Definition 10 (Formula Interpretation). The interpretation of a formula
f with reference to a configuration c = (σ, subs) and a process p, is denoted by
||f ||pc (|| _ ||__ : Form×N{P} ×Configs → 2B) and defined as: ||true||pc = B (all
base locations), ||v||pc = σ(v) (value of a variable), ||b||pc = {b} (base location),
||g||pc = subs(g) (current locations of a group), ||not f ||pc = B\ ||f ||pc (difference),
||f1 or f2||pc = ||f1||pc ∪ ||f2||pc (union), ||here||pc = σ(locp), and ||reachable||pc =
{b ∈ B | σ(locp) →∗ b} (reachable locations).

In our example we use formula znc and reachable in the planter. Its interpre-
tation is the intersection of σ{znc} and of the locations that are reachable from
the planter location. This is not empty only if znc is reachable, which is what
we want to express. Let us now come to the actions.

Definition 11 (Actions Evaluation). The evaluation of an action a over
a configuration c = (σ, subs) and a process p is denoted by [[a]]pc ([[_]]__ :
Action × N{P} × Configs → Configs) and defined as follows:

– [[move(f)]]pc = c′ where c′ is c if ||f and reachable||pc = ∅ and c′ is (σ[locp �→
{b}], subs) with {b ∈ ||f and reachable||pc} otherwise.

– [[update(u,G−, G+)]]pc = (σ, subs′) where subs′(g) is subs(g)\σ(u) if g ∈ G−,
subs(g) ∪ σ(u) if g ∈ G+, and subs(g) otherwise (remind that G− ∩ G+ = ∅)

– [[pass]]pc = c

Action move(f) does nothing if f corresponds to no reachable locations sat-
isfying it, otherwise one of the locations is chosen and the process location is
updated accordingly. Action update(u,G−, G+) updates groups in G− and G+

respectively adding/removing locations in u. Action pass does nothing.
In our example the planter tries to move to its base at the end. Using condi-

tion _: base and reachable, it checks before that this is indeed possible. Without
checking this (suppose there is no exclusive gateway) trying move(base) if the
base is not reachable would make the process block on this task.

2.4 Semantics for Space BPMN: Execution Semantics

In order to maintain traceability with the standard [11], we use a token-based
approach. The movement of tokens is based on node types. We define an execu-
tion model based on two predicates (St, Ct) for each node type which correspond
to, respectively, the enabling of the node to start its execution, and the enabling
of the node to complete its execution. When not specified, the predicate is true.

The formal execution semantics is given in Table 1. The semantics of the
elements in Fig. 1 and not in Table 1 is kept from [8]. We consider that mn and
mn′ (resp. me and me′) denote two successive markings of a node (resp. edge)

Business Processes Meet Spatial Concerns 227

Table 1. Space BPMN semantics (extensions to [8]).

n ∈ N{XOR}

Ct(n)
def≡ ∃ei ∈ inSF (n), me(ei) ≥ 1 ∧ me′(ei) = me(ei) − 1

∧ ∃eo1 ∈ out{CSF }(n), ||ccond(eo1)||procOf(n)
c = ∅

∧ ∀eo2 ∈ out{CSF }(n), eo2 ≺ eo1 ⇒ ||ccond(eo2)||procOf(n)
c = ∅

∧ me′(eo1) = me(eo1) + 1

∧ ∃v ∈ V, v = cvar(eo1)

∧ ckind(v) = all

⇒ σ′ = σ[v �→ ||ccond(eo1)||procOf(n)
c]

∧ ckind(v) = any

⇒ ∃x ∈ ||ccond(eo1)||procOf(n)
c , σ′ = σ[v �→ x]

∧ � ({ei, eo1}) ∧ Ξsubs

∨ ∧ ∀eo1 ∈ out{CSF }(n), ||ccond(eo1)||procOf(n)
c = ∅

∧ ∃eo2 ∈ out{DSF }(n), me′(eo2) = me(eo2) + 1

∧ � ({ei, eo2}) ∧ Ξσ
subs

n ∈ N{OR}

Ct(n)
def≡ In+(n) = ∅

∧ ∀ei ∈ In+(n), me′(ei) = me(ei) − 1

∧ ∀ez ∈ In−(n),

∀ee ∈ (PreE(n, ez) \ ignoreE(n)), me(ee) = 0

∧ ∀nn ∈ (PreN (n, ez) \ ignoreN (n)), mn(nn) = 0

∧ ∃es ⊆ out{CSF }(n) ∧ es = ∅
∧ ∃eo ∈ out{CSF }(n) \ es, ||ccond(eo)||procOf(n)

c = ∅
∧ ∀eo ∈ es, ||ccond(eo)||procOf(n)

c = ∅
∧ me′(eo) = me(eo) + 1

∧ ∃v ∈ V, v = cvar(eo)

∧ ckind(v)= all

⇒ σ′ = σ[v �→ ||ccond(eo)||procOf(n)
c]

∧ ckind(v)= any

⇒ ∃x ∈ ||ccond(eo)||procOf(n)
c , σ′ = σ[v �→ x]

∧ � (In+(n) ∪ es) ∧ Ξsubs

∨ ∧ ∀eo1 ∈ out{CSF }(n), ||ccond(eo1)||procOf(n)
c = ∅

∧ ∃eo2 ∈ out{DSF }(n), me′(eo2) = me(eo2) + 1

∧ � (In+(n) ∪ {eo2}) ∧ Ξσ
subs

n ∈ N{AT }

St(n)
def≡ ∃ei ∈ inSF (n), me(ei) ≥ 1

∧ me′(ei) = me(ei) − 1 ∧ mn′(n) = mn(n) + 1 ∧ � ({n, ei}) ∧ Ξσ
subs

Ct(n)
def≡ mn(n) ≥ 1

∧ mn′(n) = mn(n) − 1

∧ ∀eo ∈ outSF (n), me′(eo) = me(eo) + 1

∧ c′ = [[act(n)]]procOf(n)
c

∧ act(n) = move(f) ⇒ ||f and reachable||procOf(n)
c = ∅

∧ act(n) = pass ∧ �({n} ∪ outSF (n)) ∧ Ξσ
subs

∨ act(n) = move(f) ∧ �({n} ∪ outSF (n)) ∧ Ξsubs

∨ act(n) = update(u, G−, G+) ∧ �({n} ∪ outSF (n)) ∧ Ξσ

in the execution semantics. Accordingly c = (σ, subs) and c′ = (σ′, subs′) denote
two successive configurations. � is a predicate that denotes marking equality but
for nodes and edges given as parameter, �(X) means “nothing changes but for

228 R. Saddem-Yagoubi et al.

X”: �(X) ≡ ∀n ∈ N \ X,mn′(n) = mn(n)∧ ∀e ∈ E \ X,me′(e) = me(e). In the
same way, we define Ξσ ≡ σ′ = σ, Ξsubs ≡ subs′ = subs, and Ξσ

subs ≡ Ξσ ∧Ξsubs.
In the semantics we use helper functions: in/out : N → 2E give the

incoming/outgoing edges of a node, in(n) = {e ∈ E | target(e) = n} and
out(n) = {e ∈ E | source(e) = n}. A family of functions inT (resp. outT) :
N → 2E is used to combine in (resp. out) with ET , inT (n) = in(n) ∩ ET

and outT (n) = out(n) ∩ ET . The type set for sequence flows, SF , is defined
as {NSF,CSF,DSF}. procOf : N → N{P} gives the container process of
a given node, procOf (n) = p if and only if n ∈ R+(p), with R+ being the
transitive closure of R. Further, to deal with the complex semantics of the
OR gateway, and formalize in a correct way its definition in [11], we use some
more functions: In− : N → E gives the unmarked incoming edges of a node:
In−(n) = {e ∈ inSF (n) | me(e) = 0}. In+ : N → E gives the marked incoming
edges of a node: In+(n)

def
= {e ∈ inSF (n) | me(e) ≥ 1}. PreN : N × E → 2N ,

gives the predecessor nodes of an edge such that npre is in PreN (n, e) if there
is a path from npre to e that never visits n. Accordingly, PreE : N × E → 2E

gives predecessor edges. ignoreE : N → 2E gives the predecessor edges of the
marked incoming edges of a given node: ignoreE(n) =

⋃

e+∈In+(n)

PreE(n, e+).

ignoreN : N → 2N gives the predecessor nodes of the marked incoming edges of
a given node: ignoreN (n) =

⋃

e+∈In+(n)

PreN (n, e+).

Let us now describe Table 1.

Space Formulas and Gateways. Gateways are atomic hence define only the
Ct predicate. A XOR gateway may complete by choosing one of its outgoing
conditional flows eo1 whose formula is satisfied (its interpretation, Def. 10, is
not empty). In case there are several such transitions, we follow the BPMN
standard and use ordering (≺) so that only the first one is activated. If there is
no such flow, the default sequence flow outgoing from the gateway (if it exists)
is activated. When a conditional flow is activated, its variable is updated at the
same time. Depending on the condition kind (any or all), either a single location
from the formula interpretation or all of them are taken to update σ(v).

An OR gateway has some differences wrt. a XOR gateway. First it requires
that no more ongoing flow ez can be activated before completing (lines 3–5 of
Ct). Second, all outgoing conditional flows whose conditions are satisfied are
activated (lines 6–8 of Ct are used to get the maximal set es of such flows).

Space Actions and Abstract Tasks. Actions are associated to abstract tasks
which can start if at least one of their incoming flows is active. The completion of
these tasks depends on the evaluation of their action (Def. 11) in order to change
the configuration (c to c′), either σ for moves or subs for updates. For move(f),
we require that there is at least one reachable location in the interpretation of f .

Business Processes Meet Spatial Concerns 229

fbpmn
sbpmn2tla

TLC

BPMN
model

user properties
in TLA+

TLA+
representation

TLA+
theories

counter-example
TLC trace

fbpmn
log2html

generic properties
in TLA+

Fig. 4. Tool support (blue: model-specific, green: non model-specific).

3 Implementation and Verification

In this section, we present the implementation of our approach in a tool suite,
sBPMN, enabling the verification of extended BPMN models and the animation
of counter-examples. sBPMN is a part in a more general project about BPMN
verification [12]. It works as presented in Fig. 4.

The user first designs an extended BPMN model using any modeler with
support for BPMN extension mechanisms (we use Camunda). This model corre-
sponds to Definition 5 with extensions information for Definition 6 (extensions
to BPMN) and Definition 9 (initial state parameter). In practice, the space
structure and the initial value of the subs relation are associated to the process
diagram (as shown in page 5), initial locations are associated to processes, and
conditional information and actions are associated respectively to conditional
flows and to abstract tasks. A TLA+ representation of this model is retrieved
using the fbpmn command with option sbpmn2tla. Given this representation, the
TLA+ implementation of the semantics, and the TLA+ encoding of generic and
user given model-specific properties, the TLC model checker from the TLA+

tool box (freely available at http://lamport.azurewebsites.net/tla/tla.html) is
used to perform verification. If some properties are not satisfied, TLC outputs
a counter-example trace that is then transformed using the fbpmn command
with option log2html into an HTML+JS page enabling the user to animate the
counter example on the BPMN model, step by step, to understand the error(s).
We provide users with a script, sfbpmn-check, that performs all steps in Fig. 4
in a transparent way (see [12], under scripts/).

3.1 Implementing the Semantics and Encoding Models in TLA+

TLA+ [9] is a formal specification language based on untyped Zermelo-Fraenkel
set theory for specifying data structures, and on the temporal logic of actions
(TLA) for specifying dynamic behaviors. TLA+ allows one to specify symbolic
transition systems with variables and actions. An action is a transition predicate
between a state and a successor state. It is an arbitrary first-order predicate
with quantifiers, set and arithmetic operators, and functions, and where quoting
denotes the value of variables in the successor state.

http://lamport.azurewebsites.net/tla/tla.html

230 R. Saddem-Yagoubi et al.

This is in phase with our St and Ct predicates. Further, the expression and
action fragment of TLA+ contains first-order logic, that we use to express the
semantics. Hence, the encoding of the semantics in TLA+ is straightforward
(up to the TLA+ concrete syntax of course). For example, the TLA+ implemen-
tation for the semantics of XOR nodes is given in Fig. 5. The comprehensive
TLA+ theories for the semantics is available at [12] under theories/stla.

Fig. 5. Semantics of XOR nodes in TLA+ (part of).

3.2 Properties and Verification

TLC is an explicit-state model checker that checks both safety and liveness prop-
erties specified in LTL. This logic includes operators � and ♦ that respectively
denote that, in all executions, a property F must always hold (�F) or that it
must hold at some instant in the future (♦F). In our framework, properties are
either properties that are generic to all process models, or user given properties
specific to a given process model (see Fig. 6).

For the former, we reuse the TLA+ implementation given in [8] for the prop-
erties defined by [5]: (1) safety, (2) soundness and (3) message-relaxed soundness.
A collaboration is safe if no sequence flow holds more than one token. A col-
laboration is sound if all processes are sound and there are no undelivered mes-
sages, a process being sound if it can reach a state where nothing but its events
are active. Finally, message-relaxed soundness is soundness without taking into
account undelivered messages (tokens on message flows). For the model-specific
properties, the user can rely on the elements in states (Def. 8), namely node and
edge markings, variable substitution (including process locations) and group
substitution. Examples of such properties are given in Fig. 6.

3.3 Experiments

Experiments were conducted on a 3.5GHz Intel Core i7 processor (dual core)
laptop with 16 GB of memory and running MacOS. Results for a selection of

Business Processes Meet Spatial Concerns 231

Fig. 6. Generic and model-specific properties in TLA+.

models from our model database (available from [12], under models/) are pre-
sented in Table 2. The first column is the reference of the example in our model
database. The characteristics of a model are: number of participants, number of
nodes (incl. gateways), number of flow edges (sequence or message flows). When
there is communication, we use a bag communication asynchronous model [8].
The results of the verification then follow. First, data on the resulting transition
system are given: number of states, number of transitions, and depth (length
of the longest sequence of transitions that the model checker had to explore).
For each of the correctness properties presented above, we indicate if the model
satisfies it. Lastly, the accumulated time for the verification of the properties is
given (the time to transform BPMN models to TLA+ transformation is negligi-
ble). We selected these five properties since they include BPMN specific generic
ones [5], model-specific ones, and cover the safety vs liveness spectrum.

The first model, s004, is a single crop planting process with a loop (find a
zone to be planted, move to it, plant it, and mark it to be sprayed) that exits
when there are no such zones. Model s006 is our example given in Fig. 3. In this
model (and other ones), the id of the end at base TEE is PlanterEndInBase and
is used in verification (see property User1 in Fig. 6). Model s007 is a variant
of model s006 where the context is updated in the planter rather than in the
controller. Further, the planter uses the here space formula in the update action
rather than znc. Model s008 is the full model (with processes inspired by s007),

232 R. Saddem-Yagoubi et al.

Table 2. Experimental results (the space structure is the one in Fig. 2b).

Ref. Characteristics Com. LTS size Validity Total
Proc. Nodes (gw.) SF/MF model States Trans. Depth (1) (2) (3) (4) (5) time

s004 1 6 (1) 5/0 None 34 34 34 � � � � � <1 s

s006 2 32 (7) 30/5 Bag 276 437 118 � � � × � 2 s

s007 2 31 (7) 29/5 Bag 67 104 31 � � � � � 1 s

s008 3 67 (16) 74/10 Bag 4898 16263 53 � � � � � 8 m 31 s

s009 2 33 (7) 31/5 Bag 296 472 123 � � � × � 3 s

with both robots and two parallel robot-specific sub-processes in the controller.
Finally, s009 is a variant of model s006 where the system does not stop upon an
unreachable zone to plant, rather the zone is moved to a notTreated group.

Experiments show that our tool supports the verification of BPMN models
with the different extensions we propose and is rather fast, even in presence of
loops. Verification takes less than a few seconds for most models. It should be
noted that property (1) being a safety property, it requires the whole state space
to be constructed when the model satisfies the formula. With model s008 we can
see the impact of non-determinism in the model, as we have both intra-process
concurrency (two parallel sub-processes in the controller), inter-process concur-
rency (three peers with message communication), and existential quantification
over the movements of the processes (planter and sprayer can move to several
places each time). Still, verification is achieved in reasonable time.

4 Related Work

Context awareness and context modelling is widely studied in different domains
such as Web systems, mobile applications, ubiquitous computing, and business
process engineering [15]. Most approaches that support context awareness for
Business Process Management (BPM) provide a categorization of contextual
information [2,13–15]. Location is there stressed as an essential element.

A classification of contextual information into categories, that include geo-
graphical ones, is proposed in [2], with each category referring to multiple context
values. The location model, in our work, is represented by the space structure.
Many information reported in [1] were useful to identify its elements. Two kinds
of coordinate systems, geometric and symbolic coordinates, are mentioned in [1].
Our space structure relies on the latter, with basic locations. According to [1],
for symbolic coordinates and in order to allow spatial reasoning, explicit infor-
mation about the spatial relations between pairs of symbolic coordinates has to
be provided. This led in our approach to two instances of such relations: a static
one, the → relation, and a dynamic one, the subs relation in configurations.

A survey on spatial models of context information is given in [1], yet without
an appropriate model for locations in BPM. The only context modeling approach
for BPM we are aware of is [15]. It includes location as a context entity with

Business Processes Meet Spatial Concerns 233

two attributes, zipcode and city. This is subsumed by our approach as these
attributes, and their relations, can be represented using the → and subs relations.

Our space structure could be implemented with the data-related constructs
of BPMN. Still, this would be cumbersome in comparison to a domain-specific
extension like ours. This would also harm the separate reuse of contexts and
process models which is made possible by our integration. While there are tools
to animate BPMN models with data [4], there is a lack of tools for their verifica-
tion. Choosing an intermediary expressiveness level, with just the data required
for spatial concerns, made verification amenable in our approach. The approach
presented in [3] presents interesting perspectives in terms of verification. This
approach operates with to distinct databases: a static one (catalog) and an evolv-
ing one (repository). Since we deal with environments evolving as a result of the
action of processes, we would have to study whether group locations could be
treated as part of the catalog and the subs relation as part of the repository.

5 Conclusion and Perspectives

We have proposed a BPMN extension for spatial concerns. Its principles are
indeed applicable to other notations such as UML activity diagrams. This widens
the use of this family of notations to systems where mobile processes act on their
environment. Through the definition of a first-order semantics, its implementa-
tion in TLA+, and an automated model transformation, we made it possible to
check both the usual process properties (safety, soundness) and context-specific
properties. When properties are not satisfied by models, our tools generate
counter-examples that are animated on the BPMN models. Our tools and model
database are open source and available online at [12].

A first perspective of this work is to consider that the actions of processes
can modify the possible moves in the spatial context. We already partially sup-
port this through the definition and updates of group locations, but modifying
the → relation itself would add more expressiveness. By now, processes share
the variables set by the evaluation of conditional flows. An extension would be
to have also a local perspective of variables, and use message payloads to share
them. Taking into account that the environment can evolve by itself (or under
the action of processes not being modelled) is also an interesting perspective.
This could be achieved, for example, with a specification of possible evolutions
to be taken into account at verification time in conjunction with the properties
of interest. Indeed, while we use here LTL (with TLA+ extensions to address
model-specific properties), we could also study the use of LTL extensions to spa-
tial concerns [7,10]. In this work, we base on the BPMN execution semantics
given in [8] with the non-deterministic treatment for time-related elements given
there. Another perspective concerns taking into account the second semantics
for time given in [8], and study the interplay between time and space. A last
perspective is to integrate an optimization aspect to the models, enabling pro-
cesses to choose their path based on more complex, optimizing strategies, rather
than on space formulas only.

234 R. Saddem-Yagoubi et al.

Acknowledgements. The authors would like to thank Markus Alexander Kuppe and
Philippe Quéinnec for their help with TLA+ and the TLA+ Toolbox.

References

1. Bettini, C., et al.: A survey of context modelling and reasoning techniques. Perva-
sive Mob. Comput. 6(2), 161–180 (2010)

2. Born, M., Kirchner, J., Müller., J.P.: Context-driven business process modelling.
In: Proceedings of the Joint Workshop on Advanced Technologies and Techniques
for Enterprise Information Systems (2009)

3. Calvanese, D., Ghilardi, S., Gianola, A., Montali, M., Rivkin, A.: Formal modeling
and SMT-based parameterized verification of data-aware BPMN. In: Proceedings
of the International Conference on Business Process Management (2019)

4. Corradini, F., Muzi, C., Re, B., Rossi, L., Tiezzi, F.: MIDA: multiple instances
and data animator. In: Proceedings of the International Conference on Business
Process Management (2018)

5. Corradini, F., et al.: A classification of BPMN collaborations based on safeness
and soundness notions. In: Proceedings of the International Workshop on Expres-
siveness in Concurrency and of the Workshop on Structural Operational Semantics
(2018)

6. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7
(2001)

7. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the International Conference on Hybrid Systems: Computation and Control (2015)

8. Houhou, S., Baarir, S., Poizat, P., Quéinnec, P., Kahloul, L.: A first-order logic
verification framework for communication-parametric and time-aware BPMN col-
laboration. Inf. Syst. 101765 (2021, in press). https://doi.org/10.1016/j.is.2021.
101765

9. Lamport, L.: Specifying Systems. The TLA+ Language and Tools for Hardware
and Software Engineers, Addison-Wesley, Boston (2002)

10. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties with SSTL. Log. Methods
Comput. Sci. 14(4), 1–38 (2018)

11. OMG Group: Business process modeling notation (2013). http://www.omg.org/
spec/BPMN/2.0.2

12. Poizat, P., et al.: fbpmn repository (2021). https://github.com/pascalpoizat/
fbpmn

13. Rosemann, M., Recker, J.: Context-aware process design exploring the extrinsic
drivers for process flexibility. In: Proceedings of the CAISE 2006 Workshop on
Business Process Modelling, Development, and Support (2006)

14. Saidani, O., Nurcan, S.: Towards context aware business process modelling. In:
Proceedings of the CAiSE 2007 Workshop on Business Process Modeling, Devel-
opment, and Support (2007)

15. Saidani, O., Rolland, C., Nurcan, S.: Towards a generic context model for BPM.
In: Proceedings of the Annual Hawaii International Conference on System Sciences
(2015)

16. Schilit, B.N., Theimer, M.M.: Disseminating active map information to mobile
hosts. IEEE Netw. 8(5), 22–32 (1994)

https://doi.org/10.1016/j.is.2021.101765
https://doi.org/10.1016/j.is.2021.101765
http://www.omg.org/spec/BPMN/2.0.2
http://www.omg.org/spec/BPMN/2.0.2
https://github.com/pascalpoizat/fbpmn
https://github.com/pascalpoizat/fbpmn

	Business Processes Meet Spatial Concerns: The sBPMN Verification Framework
	1 Introduction
	2 Formal Semantics
	2.1 Formal Models for Space BPMN
	2.2 Semantics for Space BPMN: States and Initial State
	2.3 Semantics for Space BPMN: Formulas and Actions
	2.4 Semantics for Space BPMN: Execution Semantics

	3 Implementation and Verification
	3.1 Implementing the Semantics and Encoding Models in TLA+
	3.2 Properties and Verification
	3.3 Experiments

	4 Related Work
	5 Conclusion and Perspectives
	References

