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Abstract. This paper presents a formally verified quantifier elimination
(QE) algorithm for first-order real arithmetic by linear and quadratic vir-
tual substitution (VS) in Isabelle/HOL. The Tarski-Seidenberg theorem
established that the first-order logic of real arithmetic is decidable by QE.
However, in practice, QE algorithms are highly complicated and often
combine multiple methods for performance. VS is a practically successful
method for QE that targets formulas with low-degree polynomials. To
our knowledge, this is the first work to formalize VS for quadratic real
arithmetic including inequalities. The proofs necessitate various contri-
butions to the existing multivariate polynomial libraries in Isabelle/HOL.
Our framework is modularized and easily expandable (to facilitate inte-
grating future optimizations), and could serve as a basis for developing
practical general-purpose QE algorithms. Further, as our formalization
is designed with practicality in mind, we export our development to SML
and test the resulting code on 378 benchmarks from the literature, com-
paring to Redlog, Z3, Wolfram Engine, and SMT-RAT. This identified
inconsistencies in some tools, underscoring the significance of a verified
approach for the intricacies of real arithmetic.

Keywords: Virtual substitution · Quantifier elimination · Real-closed
fields · Theorem proving

1 Introduction

Quantifier elimination (QE) is the process of transforming quantified formulas
into logically equivalent quantifier-free formulas. In this paper, we consider QE
for the first-order logic of real arithmetic (FOLR), so quantifiers range over the
real numbers. The Tarski-Seidenberg theorem proves that QE is admissible for
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the theory of real-closed fields [25,29]. Real quantified statements arise in a
number of application domains, including geometry, chemistry, life sciences, and
the verification of cyber-physical systems (CPS) [27]. Many of the applications
which require QE are safety-critical [18,19]; accordingly, it is crucial to have both
efficient and formally verified support for QE to trust the resulting decisions.

Unfortunately, QE algorithms are quite intricate, which makes it difficult to
formally verify their correctness. In practice, this necessitates the use of unveri-
fied tools. For example, the theorem prover KeYmaera X [8], which is designed
to formally verify models of CPS (such as planes and surgical robots) uses Math-
ematica/Wolfram Engine and/or Z3 as blackbox solvers for QE. While these are
admirable tools, they are unverified, and their use introduces a weak link [7] into
what would otherwise be a (fully verified [1]) trustworthy proof.

To help fill this gap, we formally verify linear and quadratic virtual substi-
tution (VS) due to Weispfenning [30,32], which focuses on QE for a quantified
variable x occurring in polynomials f(x) of at most degree 2 in x, although vari-
ations [12,31] handle higher degree polynomials. Linear and quadratic VS are of
practical significance. They serve to improve QE [17] and SMT tools and are the
basis of the experimentally successful [28] Redlog solver [6]. To our knowledge,
ours is the first formally verified algorithm for VS with quadratic inequalities.

As we focus on correct and practical VS, we export our verified Isabelle/HOL
code to SML for experimentation. We test our exported formalization of the
equality VS algorithm (Sect. 3.2) and of the general VS algorithm (Sect. 3.3).
We compare to four tools that implement real QE: Redlog, SMT-RAT [5], Z3
[14], and Wolfram Engine. With 304 examples, we solve more examples than
SMT-RAT in quantifier elimination mode (solves 191) and come close to virtual
substitution in Wolfram Engine (solves 322). The remaining tools solve almost
all examples; this is to be expected given that those tools have been optimized
and fine-tuned (some for decades) and use efficient general-purpose fallback QE
algorithms when VS does not succeed. However, as we found 137 inconsistencies
in other solvers, it is significant that ours is the only VS implementation with
associated correctness proofs (assuming the orthogonal challenge of correct code
generation from Isabelle [10]).

Our formalization is approximately 23,000 lines in Isabelle/HOL and is avail-
able on the Archive of Formal Proofs (AFP) [22].

2 Related Work

The fastest known QE algorithm is Cylindrical Algebraic Decomposition
(CAD)[4], which has not yet been fully formally verified. There are few general-
purpose formally verified QE algorithms, and there appears to exist a tradeoff
between the practicality of an algorithm and the ease of formalization. Mah-
boubi and Cohen verified Tarski’s original QE algorithm [3] and McLaughlin
and Harrison have a proof-producing QE procedure based on Cohen-Hörmander
[13]; unfortunately, Tarski’s algorithm and Cohen-Hörmander both have non-
elementary complexity, which limits the computational feasibility of these for-
malizations.
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There has already been some work on formally verified VS: Nipkow [16] for-
mally verified a VS procedure for linear equations and inequalities. The building
blocks of FOLR formulas, or “atoms”, in Nipkow’s work only allow for linear
polynomials

∑
i aixi ∼ c, where ∼ ∈ {=, <}, the xi’s are quantified variables

and c and the ai’s are real numbers. These restrictions ensure that linear QE
can always be performed, and they also simplify the substitution procedure and
associated proofs. Nipkow additionally provides a generic framework that can be
applied to several different kinds of atoms (each new atom requires implementing
several new code theorems in order to create an exportable algorithm). While
this is an excellent theoretical framework—we utilize several similar constructs
in our formulation—we create an independent formalization that is specific to
general FOLR formulas, as our main focus is to provide an efficient algorithm
in this domain. Specializing to one type of atom allows us to implement several
optimizations, such as our modified DNF algorithm, which would be unwieldy
to develop in a generic setting.

Chaieb [2] extends Nipkow’s work to quadratic equalities. His formalizations
are not publicly available, but he generously provided us with the code. While
this was helpful for reference, we chose to build on a newer Isabelle/HOL poly-
nomial library, and we focus on VS as an exportable standalone procedure,
whereas Chaieb intrinsically links VS with an auxiliary QE procedure.

Other related work includes some unverified solvers. For example, some work
has been done in constraint solving with falsification: RSolver [21] was designed
for hybrid systems verification and can find concrete counterexamples for fully
quantified existential QE problems on compact domains. dReal [9] is based on
similar ideas and slightly relaxes the notion of satisfiability to δ-satisfiability.
Constraint solving has also been considered in SMT-solving with Z3’s nlsat [11],
which uses CDCL to decide systems of nonlinear inequalities and equations.

3 The Virtual Substitution Algorithm

Informally (and broadly) speaking, VS discretizes the QE problem by solving for
the roots of one or more low-degree polynomials f1(x), . . . , fn(x). VS focuses on
these roots and the intervals around them to identify and substitute appropriate
representative “sample points” for x into the rest of the formula. However, these
sample points may contain fractions, square roots, and/or other extensions of the
logical language, and so they must be substituted “virtually”: That is, VS creates
a formula in FOLR proper that models the behavior of the direct substitution,
which would be outside of FOLR. VS applies in two cases: an equality case and
a general case. We formalize both, and discuss each in turn.

Remark 1. The VS algorithms need to work for multivariate polynomials. But
as the VS correctness proofs show the equivalence is true for every real value of
the free variables, they often implicitly treat all but one variable as having fixed
(but arbitrary) real values. That is why most correctness lemmas (but not the
top-level algorithmic constructions) suffice for univariate polynomials with real
coefficients. We utilize this trick to simplify difficult proofs for general VS.
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3.1 Example

Example 1. Say that we want to perform QE on the formula ∃x.(x2 = 2∧xy2 +
2y +1 = 0). One might notice that x2 = 2 forces x = ±√

2 and accordingly wish
to substitute. Direct substitution yields the following expression: (

√
2y2+2y+1 =

0 ∨ −√
2y2 + 2y + 1 = 0). However, as its mention of the

√· operator makes it
an illegal FOLR formula, we will need some further tricks.

Cleverly, VS finds that
√

2y2+2y+1 = 0 is logically equivalent to y2·(2y+1) ≤
0 ∧ 2y4 − (2y + 1)2 = 0, which is a FOLR formula1. Similarly, VS identifies a
FOLR formula that is logically equivalent to −√

2y2 + 2y + 1 = 0. Then, VS
returns the following quantifier-free FOLR formula which is logically equivalent
to ∃x.(x2 = 2 ∧ xy2 + 2y + 1 = 0):

(
(y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)

∨ (−y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)
)
.

Remark 2. If instead our starting formula were ∃x.∃y.(x2 = 2∧xy2+2y+1 = 0),
where now y is quantified, then (following the same method as above) VS would
identify the following logically equivalent FOLR formula with fewer variables:

∃y.
(
(y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)

∨ (−y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0)
)
.

(1)

Unfortunately, here we are left with a quantified formula with no linear or
quadratic equations or inequalities. As we are thus outside of the fragment of
FOLR that standard VS applies to, at this point we would want to outsource (1)
to a general-purpose QE algorithm (like CAD) to eliminate the quantifier on y.

Example 1 was relatively simple, because it involved a quadratic equation
with constant coefficients for x. However, nothing in our reasoning was limited
to constant coefficients: To perform QE on ∃x.(x2 = c∧xy2 +2y +1 = 0), where
c is a polynomial in the variable z, we could handle substituting x = ±√

c in
the exact same way as for x = ±√

2, but the answer must distinguish the case
of c ≥ 0 symbolically. More difficult is the generalization to inequalities, which
seemingly require uncountably infinitely many values to be virtually substituted.
We first turn to the general equality case, and then discuss inequalities.

3.2 Equality Virtual Substitution Algorithm

Let a, b and c be arbitrary polynomials with real coefficients that do not mention
the variable x. Consider the formula ∃x.(ax2 + bx + c = 0 ∧ F ). There are three
possible cases: Either a 
= 0, or a = 0 and b is nonzero, or all of a, b, c are zero

1 Notice that if y = 0, then both
√

2y2 + 2y + 1 = 0 and y2 · (2y + 1) ≤ 0 ∧ 2y4 −
(2y +1)2 = 0 are false. If instead y �= 0, then

√
2y2 +2y +1 = 0 is true exactly when√

2 = −(2y + 1)/y2, or exactly when −(2y + 1)/y2 ≥ 0 ∧ 2y4 − (2y + 1)2 = 0, which
is logically equivalent to y2 · (2y + 1) ≤ 0 ∧ 2y4 − (2y + 1)2 = 0, as desired.
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(so ax2 + bx + c = 0 is uninformative). Letting F r
x denote the substitution of

x = r for x in F , and solving for the roots of ax2 + bx+ c, we have the following:

∃x.(ax2 + bx + c = 0 ∧ F ) ←→
(
(a = 0 ∧ b = 0 ∧ c = 0 ∧ ∃x.F ) ∨
(a = 0 ∧ b 
= 0 ∧ F−c/b

x ) ∨
(a 
= 0 ∧ b2 − −4ac ≥ 0 ∧ (F (−b+

√
b2−−4ac)/(2a)

x ∨ F (−b−√
b2−−4ac)/(2a)

x ))
)
.

Conditions such as b2 − 4ac ≥ 0 are needed to ensure (−b±√
b2 − 4ac)/(2a) are

well-defined; these are symbolic formulas unless a, b, c are concrete numbers.
Similarly as in Example 1, if we were to substitute F

−c/b
x , F

(−b+
√

b2−4ac)/(2a)
x ,

and F
(−b−√

b2−4ac)/(2a)
x directly (for polynomials a, b, and c that do not involve

x), the resulting formula would no longer be in FOLR. Instead, VS avoids directly
dividing polynomials or taking square roots with equivalent rewritings in FOLR.
This involves two procedures: one for fractions, and one for square roots.

To virtually substitute a fraction p/q of polynomials where q 
= 0 into the
atom

∑n
i=0 aix

i ∼ 0, where ∼ ∈ {=, <,≤, 
=} and each ai is an arbitrary poly-
nomial expression not involving x, it suffices to normalize the denominator of
the LHS, with the caveat that we must not flip the direction of the inequality
for < and ≤ atoms by normalizing by a value that might be negative. When
n is even, qn ≥ 0 under any possible valuation, so normalizing by qn does not
flip the inequality. Alternatively, if n is odd, qn+1 ≥ 0. We formalize this in our
linear_substitution function (see [23, Appendix A.1]).

Next, we consider substituting x =
√

c into an atom
∑n

i=0 aix
i ∼ 0, where c

is an arbitrary polynomial expression not involving x that satisfies c ≥ 0, each
ai is an arbitrary polynomial expression not involving x, and ∼ ∈ {=, <,≤, 
=}.
Its direct substitution can be separated out into even and odd exponents:

n∑

i=0

ai · (
√

c)i =
n/2∑

i=0

a2ic
i +

n/2∑

i=0

a2i+1c
i
√

c

Now our polynomial has the form A + B
√

c, where A and B and c are symbolic
polynomial expressions not involving x. Then, we have the following cases:

A + B
√

c = 0 ←→ AB ≤ 0 ∧ A2 − B2c = 0

A + B
√

c < 0 ←→ (A < 0 ∧ B2c − A2 < 0) ∨ (B ≤ 0 ∧ (A < 0 ∨ A2 − B2c < 0))

A + B
√

c ≤ 0 ←→ (A ≤ 0 ∧ B2c − A2 ≤ 0) ∨ (B ≤ 0 ∧ A2 − B2c ≤ 0)

A + B
√

c 
= 0 ←→ −AB < 0 ∨ A2 − B2c 
= 0

The equivalences for = and 
= atoms are derived from the observation that if
B 
= 0, A + B

√
c = 0 can be solved to find

√
c = −A/B, which holds iff

A2 = B2c and −A/B ≥ 0. The inequality cases involve casework to determine
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when polynomial A is negative and dominates B
√

c as A2 > B2c, and when B
is negative and B

√
c dominates A as B2c > A. We formalize the VS procedure

for quadratic roots in quadratic_sub (see [23, Appendix A.2]).

3.3 General Virtual Substitution Algorithm

As we have seen, QE very naturally leads to finitely many cases (discretizes) for
formulas that involve quadratic equality atoms (we call this the equality case).
The VS algorithm for the general case, which also handles inequality atoms,
is more involved, because, unlike equalities, inequalities may have uncountably
many solutions. General VS only directly applies to a very specific fragment
of FOLR formulas: conjunctions of polynomials that are at most quadratic in
the variable of interest. However, we can extend general VS to apply to more
formulas with the help of a disjunctive normal form (DNF) transformation.

As a simple example, consider the formula ∃x.(p < 0 ∧ q < 0), where p and
q are the univariate quadratic polynomials (in variable x) depicted in Fig. 1.
Noting that the roots of p and q cannot possibly satisfy the strict inequalities,
we partition the number line into ranges in between these zeros.

Fig. 1. Two quadratics, their roots (black
dots) and off-roots (red x’s) (Color figure
online)

We recognize a key property: In
each of the ranges between the roots
of p, q, the signs of both p and q do
not change. Since the ranges cover all
roots of p, q, the truth value of the
formula at a single point in a range
is representative of the truth value of
the formula on the entire range. To
discretize the QE problem, we need
only pick one sample point for each
range.

However, we want to pick appropriate sample points for any possible p and
q. The points we pick as representatives are called the off-roots, which occur ε
units away from the roots, where ε > 0 is arbitrarily small. We additionally need
a representative for the leftmost range, which we represent with the point −∞,
where −∞ is arbitrarily negative. Of course, we cannot directly substitute ε and
−∞: they are not real numbers! However, we can virtually substitute them.

Negative Infinity. Given any formula F , the VS of −∞ should satisfy the
equivalence F−∞

x ←→ ∃y. ∀x<y. F (x) (where y does not occur in F ). Intu-
itively, this says that −∞ acts as if it is arbitrarily negative (so less than the x
component of all roots of the polynomials in F ) and captures information for the
leftmost range on the real number line in any valuation of the non-x variables.

If formula ∃y. ∀x<y. ax2 + bx + c = 0 is true, where a, b, c are polynomials
that do not involve x, then ax2 + bx + c = 0 holds at infinitely many x; since
nonzero polynomials have finitely many roots, this can only happen if ax2+bx+c
is the zero polynomial in x, i.e., it holds that:
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(ax2 + bx + c = 0)−∞
x ←→ a = 0 ∧ b = 0 ∧ c = 0 (2)

The negation of (2) captures the behavior of 
= atoms. For < atoms, note
that the sign value at −∞ is dominated by the leading coefficient, so:

(ax2 + bx + c < 0)−∞
x ←→ a < 0 ∨ (a = 0 ∧ (b > 0 ∨ (b = 0 ∧ c < 0)))

Finally, (ax2 + bx+ c ≤ 0)−∞
x ←→(ax2 + bx+ c = 0)−∞

x ∨ (ax2 + bx+ c < 0)−∞
x .

In Isabelle/HOL, we formalize that our virtual substitution of −∞ satisfies
the desired equivalence (on R using Remark 1) in the following lemma:

lemma infinity_evalUni: shows "(∃ y. ∀ x<y. aEvalUni At x) =

(evalUni (substNegInfinityUni At) x)"

To explain this lemma, we need to take a slight detour and discuss a few struc-
tural details of our framework (which is discussed in greater detail in Sect. 4).
The datatype atomUni contains a triple of real numbers (which represent the
coefficients of a univariate quadratic polynomial) and a sign condition:

datatype atomUni = LessUni "real*real*real" | EqUni "real*real*real"

| LeqUni "real*real*real" | NeqUni "real*real*real"

The aEvalUni function has type atomUni ⇒ real ⇒ bool ; that is, it takes a
sign condition with a triple of real numbers (a, b, c) and a real number x and
evaluates whether ax2 + bx+ c satisfies the sign condition. The evalUni function
has type atomUni fmUni ⇒ real ⇒ bool, where an atomUni fmUni is a formula
that involves conjunctions and disjunctions of elements of type atomUni (and
“True” and “False”). That is, the evalUni function takes such a formula and a
real number and evaluates whether the formula is true at the real number. Thus,
infinity_evalUni states that, given At of type atomUni, with tuple (a, b, c) and
sign condition ∼ ∈ {<,=,≤, 
=}, At−∞

x holds iff ∃y.∀x<y.ax2 + bx + c ∼ 0. This
captures the desired equivalence.

Infinitesimals. Given arbitrary r (not containing x), VS for r + ε for variable
x should capture the equivalence F r+ε

x ←→ ∃y>r.∀x∈(r, y]. F (x), where F does
not contain y. Intuitively, this says that (in any valuation of the non-x variables)
r+ε captures information for the interval between r and the next greatest x-root.

For = and 
= atoms, we proceed in the same manner as we did with −∞, as
(r, y] contains infinitely many points and only the zero polynomial has infinitely
many solutions. As before, ≤ atoms turn into disjunctions of the inequality and
equality representations at r + ε. We are left only to consider < atoms.

Consider (p<0)r+ε
x where p = ax2 + bx + c with polynomials a, b, c not con-

taining x, and an arbitrary r not containing x. Notice that if (p<0)r
x, then

because polynomials are continuous, we can choose a small enough y so that
∀x∈(r, y]. p<0. If instead (p = 0)r

x, then consider the partial derivative of p
evaluated at r. If ∂p

∂x (r) is negative, then ∃y>r.∀x∈(r, y]. p<0 holds, because p is
decreasing in x locally after x=r. If ∂p

∂x (r) is positive, then ∃y>r.∀x∈(r, y]. p<0
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does not hold, because p is increasing in x after x=r. If ∂p
∂x (r) is zero, then to

ascertain whether ∃y>r.∀x∈(r, y]. p<0, we will need to check higher derivatives.
This pattern forms the following recurrence, with the base case (p < 0)r+ε

x =
(p < 0)r

x for polynomials p of degree zero:

(p < 0)r+ε
x

def= (p < 0)r
x ∨ (

(p = 0)r
x ∧ ((∂p/∂x) < 0)r+ε

x

)

We use the VS algorithm from Sect. 3.2 to characterize (p < 0)r
x and (p = 0)r

x.
In Isabelle/HOL, we show that given a quadratic root r, the virtual substi-

tution of r + ε satisfies the desired equivalence in the following theorem (on R

using Remark 1; we have an analogous lemma for linear roots r):

lemma infinitesimal_quad:

fixes A B C D:: "real"

assumes "D �=0"

assumes "C≥0"

shows "(∃ y::real>((A+B * sqrt(C))/(D)).

∀ x::real ∈{((A+B * sqrt(C))/(D))<..y}. aEvalUni At x)

= (evalUni (substInfinitesimalQuadraticUni A B C D At) x)"

Note that {r<..y} in Isabelle stands for the range (r, y]. This says that, given
At of type atomUni, with tuple (a, b, c) and sign condition ∼ ∈ {<,=,≤, 
=}, Atr+ε

x

holds iff ∃y > r.∀x ∈ (r, y].ax2 + bx + c ∼ 0, which is the desired equivalence.

The General VS Theorem. Now that we have explained virtually substitut-
ing −∞ and infinitesimals, we are ready to state the general VS theorem.

Let F be a formula of the following shape, where each ai, bi, ci, and di is a
polynomial that is at most quadratic in variable x:

F =
(∧

ai = 0
)

∧
(∧

bi < 0
)

∧
(∧

ci ≤ 0
)

∧
(∧

di 
= 0
)

.

Let R(p) denote the set of symbolic expressions of the form (g1 + g2
√

g3)/g4
that, as in Sect. 3.2, are roots of the polynomial p in x, where the gi’s are poly-
nomials not involving x. For the zero polynomial, let R(0) = ∅. Note that, as
in Sect. 3.2, the gi’s come with certain well-definedness checks that we retain
implicitly in the construction (for example, g4 
= 0 and g3 ≥ 0). We now define:

A =
⋃

R(ai) B =
⋃

R(bi) C =
⋃

R(ci) D =
⋃

R(di)

Then we obtain the following QE equivalence, where for simplicity we elide the
relevant crucial well-definedness checks (cross-reference [19, Theorem 21.1]):

(∃x.F ) ←→ F−∞
x ∨

∨

r∈A∪C

F r
x ∨

∨

r∈B∪C∪D

F r+ε
x (3)

Intuitively, this formula states that if there is a particular x that satisfies F ,
then it must be the case that x is one of the equality roots from A ∪ C, or that
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x falls in one of the particular ranges (including −∞ as a range) obtained by
partitioning the number line by the roots in B ∪ C ∪ D.

Equation (3) can be optimized further by eliding C from the off-roots:

(∃x.F ) ←→ F−∞ ∨
∨

r∈A∪C

F r
x ∨

∨

r∈B∪D

F r+ε
x . (4)

Intuitively, this optimization holds because polynomials are continuous. More
precisely, if F has the shape F = (p≤0 ∧ G), and if r is an x-root of p, then r
already satisfies p≤0 in any valuation of the non-x variables, so including r + ε
as a sample point on account of p≤0 is redundant. It is possible that G contains
some atom q < 0 or q 
= 0 where r is an x-root of q. In this case, r+ε will already
be a sample point on account of q, and we do not need to add it in on account
of p. Alternatively, if G does not contain such a q, then, in any valuation of the
non-x variables, it is impossible for G to be satisfied by r+ ε and not r, meaning
that it is redundant to include r + ε as a sample point on account of G.

The general QE theorem is proved in Isabelle/HOL as the following, using
Remark 1 to restrict to the univariate case and avoid well-definedness formulas:

theorem general_qe:

defines "R ≡ {(=), (<), (≤), (�=)}"

assumes "∀ rel∈R. finite (Atoms rel)"

defines "F ≡ (λx. ∀ rel∈R. ∀ (a,b,c)∈(Atoms rel). rel (a*x2+b*x+c) 0)"

defines "Fε ≡ (λr. ∀ rel∈R. ∀ (a,b,c)∈(Atoms rel). ∃ y>r. ∀ x∈{r<..y}.
rel (a*x2+b*x+c) 0)"

defines "F inf ≡ (∀ rel∈R. ∀ (a,b,c)∈(Atoms rel). ∃ x. ∀ y<x.

rel (a*y2+b*y+c) 0)"

defines "roots ≡ (λ(a,b,c).
if a=0 ∧ b �=0 then {-c/b} else

if a �=0 ∧ b2-4*a*c≥0 then {(-b+sqrt(b2-4*a*c))/(2*a)}

∪ {(-b-sqrt(b2-4*a*c))/(2*a)} else {})"

shows "(∃ x. F(x)) = (F inf ∨
(∃ r∈⋃

(roots ‘ (Atoms (=) ∪ Atoms (≤))). F r) ∨
(∃ r∈⋃

(roots ‘ (Atoms (<) ∪ Atoms (�=))). Fε r))"

Here, ‘ is the Isabelle/HOL syntax for mapping a function over a set. This
theorem says that if a finite-length formula F is of the requisite shape, then there
exists an x satisfying F iff F is satisfied at −∞ (captured by Finf), or there is a
root r of one of the = or ≤ atoms where F r holds, or if there is a root r of one
of the < or 
= atoms where Fε r holds. The proof is quite lengthy and involves a
significant amount of casework; however, because we are working with univariate
polynomials thanks to Remark 1, this casework mostly reduces to arithmetic
computations and basic real analysis for univariate polynomials, and some of
what we need, such as properties of discriminants and continuity properties of
polynomials, is already formalized in Isabelle/HOL’s standard library.
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3.4 Top Level Algorithms

We develop several top-level algorithms that perform these VS procedures on
multivariate polynomials; these are described in more detail in [23, Appendix
B]. Crucially, each features its own proof of correctness. For example, for the
VSEquality algorithm, which performs equality VS repeatedly, we have:

theorem VSEquality_eval: "∀ xs. eval (VSEquality ϕ) xs = eval ϕ xs"

Here, the eval function expresses the truth value of the (multivariate) input
formula given a valuation xs, represented as a list of real numbers. Since we
quantify over all possible valuations and express that they are the same before
and after running the algorithm, we prove the soundness of VSEquality. The
correctness of this theorem only relies on Isabelle/HOL’s trusted core.

As our algorithms are general enough to handle formulas with high degree
polynomials where VS does not apply, we cannot assert that the result is quan-
tifier free (it might not be). To demonstrate the practical usefulness of these
algorithms, we export our code to SML and experimentally show that these
algorithms solve many benchmarks. The code exports rely on the correctness of
Isabelle/HOL’s code export, which ongoing work is attempting to establish [10].

4 Framework

We turn to a discussion of our framework, which is designed with two key goals in
mind: First, perform VS as many times as possible on any given formula. Second,
reduce unwieldy multivariate proofs to more manageable univariate ones.

4.1 Representation of Formulas

We define our type for formulas in the canonical datatype fm :

datatype (atoms: ’a) fm = TrueF | FalseF | Atom ’a

| And "’a fm" "’a fm" | Or "’a fm" "’a fm" | Neg "’a fm"

| ExQ "’a fm" | AllQ "’a fm" | ExN "nat" "’a fm" | AllN "nat" "’a fm"

As in Nipkow’s previous work [16], we use De Bruijn indices to express the
variables: That is, the 0th variable represents the innermost quantifier, and vari-
ables greater than the number of quantifiers represent the free variables.

We have two constructors for each type of quantifier: ExQ F (resp. AllQ F) indi-
cates a single existential (universal) quantifier, and ExN n F (resp. AllN n F) rep-
resents a block of n existential (universal) quantifiers. These representations are
interchangeable and converted back and forth in our algorithm; we include the
block representation for variable ordering heuristics (see [23, Appendix C.3]).

We utilize the multivariate polynomial library [26] to define our atoms:

datatype atom = Less "real mpoly" | Eq "real mpoly" | Leq "real mpoly"

| Neq "real mpoly"
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Each atom is normalized without loss of generality, so that the atom Less p

means p < 0, Eq p means p = 0, and so on.
For example, the FOLR formula ∀x.((∃y.xa = y2b)∧¬(∀y.5x2 ≤ y)) is repre-

sented in our framework as follows, where Const n represents the constant n ∈ R,
and Var i represents the ith variable:

AllQ (And (ExQ (Atom (Eq (Var 1 * Var 2 - (Var 0)^2 * Var 3))))
(Neg (AllQ (Atom (Leq (Const 5 * (Var 1)^2 - Var 0)))))).

Note that we could restrict ourselves to the �,¬,∨,∃ connectives and norma-
lize ≤ and 
= atoms to combinations of < and = atoms, and we could still express
all of FOLR. We avoid this for two reasons: because it would linearly increase
the size of the formula, and because we want to handle ≤ atoms in the optimized
way discussed in Sect. 3.3 (see (4)). We do, however, allow for the normalization
of p = q into p − q = 0. This does not affect the size of the formula, and can
afford simplifications: For example, x3 +x2 +x+1 = x3 becomes x2 +x+1 = 0.

4.2 Modified Disjunctive Normal Form

Nipkow’s prior work [16] avoided incurring cases where linear VS does not apply
by constraining atoms to be linear. In order to develop a general-purpose VS
method which can be used, e.g., as a preprocessing method for CAD, we must
reason about cases where VS fails to perform QE for a specific quantifier, and still
continue the execution of the algorithm to the remaining quantifiers to simplify
the formula as much as possible. To help with this, we implement a modified
disjunctive normal form (DNF) that allows expressions to involve quantifiers.

Contextual Awareness. Let us analyze how to increase the informational
content in a formula with respect to a quantified variable of interest.

Say we wish to perform VS to eliminate variable x in the formula ∃x.F , where
F is not necessarily quantifier free. In linear time, we remove all negations from
the formula by converting it into negation normal form. We can then normalize
∃x.F into the following form, where the An,i’s are (quantifier-free) atoms:

∃x.
∨

n

(∧

i

An,i ∧
∧

j

(∀y.Fn,j

) ∧
∧

k

(∃z.Fn,k

))
.

This normalization procedure is similar to standard DNF, as it handles quan-
tified formulas as if they were atomic formulas. We can distribute the existential
quantifier across the disjuncts, which results in the equivalent formula:

∨

n

∃x.
( ∧

i

An,i ∧
∧

j

(∀y.Fn,j) ∧
∧

k

(∃z.Fn,k)
)
. (5)

Now we run the VS algorithm, i.e. the input to VS is a conjunction of atomic
formulas and quantified formulas in the shape of (5). Notice that if equality
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VS applies to atom An,i, then the relevant roots can be substituted into the
quantified formulas Fn,j and Fn,k, but roots from Fn,j or Fn,k cannot be substi-
tuted into An,i since they feature quantified variables which are undefined in the
broader context. So, our informational content is greatest when the number of
An,i atoms is maximized and the sizes of the Fn,j and Fn,k are minimized.

Innermost Quantifier Elimination. The innermost quantifier has an associ-
ated formula which is entirely quantifier free (and thus has no Fn,j and Fn,k). As
such, we opt to perform VS recursively, starting with the innermost quantifier
and moving outwards, hoping that VS is successful and the quantifier-free prop-
erty is maintained. This is not always optimal. Consider the following formula:

∃x.(x = 0 ∧ ∃y. xy3 + y = 0).

If we attempt to perform quadratic VS on the innermost y quantifier, it is cubic
and will fail. However, performing VS on the x quantifier first fixes x = 0, which
converts the cubic xy3+y = 0 equality into the linear y = 0. So, an (unoptimized)
run of inside-out VS would produce ∃y.y = 0, and we could completely resolve
the QE query by running VS again.

Reaching Under Quantifiers. We would like to recover usable information
from the Fn,k formulas to increase the informational content going into our
QE algorithm. It would be ideal if we could “reach underneath” the existential
binders and “pull out” the atoms from the formulas. We can achieve this through
a series of transformations. Let k range from 0 to Kn. If we pull out each exis-
tential quantifier one by one, we get the following formula, which is equivalent
to formula (5):

∨

n

∃z0. · · · ∃zKn
.∃x.

( ∧

i

An,i ∧
∧

j

(∀y.Fn,j) ∧
∧

k

Fn,k

)

This works because the rest of the conjuncts do not mention the quantified
variable zk and adjacent existential quantifiers can be swapped freely (without
changing the logical meaning of the formula).

We can then recursively unravel the formulas Fn,k, moving as many exis-
tential quantifiers as possible to the front. Our implementation does this via a
bottom-up procedure, starting underneath the innermost existential quantifier
and building upwards, normalizing the formula into the form:

∨

n

∃z0. · · · ∃zKn
.∃x.

( ∧

i

An,i ∧
∧

j

∀y.Fn,j

)

On paper, these transformations are simple as they involve named quantified
variables; however, because our implementation uses a locally nameless form for
quantifiers with DeBruijn indices, shifting an existential quantifier requires a
“lifting” procedure A↑ which increments all the variable indices in A by one.
This allows for the following conversion: A ∧ ∃z.F ←→ ∃z.((A↑) ∧ F ).
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4.3 Logical Evaluation

Our proofs show that the input formula and the output formula (after VS) are
logically equivalent, i.e., have the same truth value under any valuation. This
needs a method of “plugging in” the real-valued valuation into the variables of
the polynomials. Towards this, we define the eval function, which accumulates
new values into the valuation as we go underneath quantifiers, and the aEval

function, which homomorphically evaluates a polynomial at a valuation.
When proving correctness, we focus our attention on one quantifier at a time.

By Remark 1, correctness of general VS follows when considering a formula F
with a single quantifier, where F contains only polynomials of at most degree
two (otherwise general VS does not apply). With these restrictions, we can sub-
stitute a valuation into the non-quantified variables, transforming multivariate
polynomials into univariate polynomials. For example, let a, b, and c be arbitrary
multivariate polynomials that do not mention variable x. Let p̂ = γ(p) denote
the evaluation of polynomial p at valuation γ (p̂ is a real number). We obtain
the following conversion between multivariate and univariate polynomials:

eval (ax2 + bx + c = 0) γ ←→ evalUni (âx2 + b̂x + ĉ = 0) x̂

As such, we develop an alternative VS algorithm for univariate polynomials,
where atoms are represented as triples of real-valued coefficients (as seen in
Sect. 3.3), and show that under this specific valuation, the multivariate output
is equivalent per valuation with the output of the univariate case. Thus, we finish
the proof of the multivariate case by lifting the proof for the univariate case.

4.4 Polynomial Contributions

We build on the polynomials library [26], which was designed to support executa-
ble multivariate polynomial operations. This choice naturally comes with trade-
offs, and a number of functions and lemmas that we needed were missing from
the library. For example, we needed an efficient way to isolate the coefficient of
a variable within a polynomial, which we define in the isolate_variable_sparse

function. The following particularly critical lemma rewrites a multivariate poly-
nomial in R[a1, . . . , an, x] as a nested polynomial R[a1, . . . , an][x], i.e., a univari-
ate polynomial in x with coefficients that are polynomials in R[a1, . . . , an]:

lemma sum_over_degree: "(p :: real mpoly)

= (
∑

i≤degree p x. isolate_variable_sparse p x i * Var x^i)"

This is needed rather frequently within VS, as we often seek to re-express poly-
nomials with respect to a single quantified variable of interest, and although it
is mathematically quite obvious, its verification was somewhat involved.

Additionally, to utilize the variables within polynomials as DeBruijn indices,
we implemented various lifting and substitution operations. These include the
liftPoly and lowerPoly variable reindexing functions. These and other contri-
butions to the polynomials library are discussed in [23, Appendix B.4].
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5 Experiments

The benchmark suite consists of 378 QE problems in category CADE09 collected
from 94 examples [20], and category Economics with 45 QE problems [15].

CADE09 and Economics examples were converted into decision problems,
powers were flattened to multiplications, and CADE09 were additionally rewrit-
ten to avoid polynomial division. For sanity checking, we also negated the
CADE09 examples [20]. We run on commodity hardware.2 The benchmark exam-
ples, as well as all scripts to rerun the experiments are in [24].

Tools. We compare the performance of a) our VSEquality (E), VSGeneral (G),
VSLucky (L), and VSLEG (LEG) algorithms [23, Appendix B] to b) Redlog [6]
snapshots 2021–04-133 (RE) and 2021–07-164 (R�, which includes bug fixes for
contradictions we reported to Redlog developers), c) SMT-RAT 21.055 [5] quan-
tifier elimination (S-QE�) and satisfiability checking (S-SATE), d) the SMT
solver Z3 4.8.106 [14] (Z3), and e) Wolfram Engine 12.3.1(W-VS, W-QE). All
tools were run in Docker containers on Ubuntu 18.04 with 8GB of memory and
6 CPU cores. Tool syntax translations from SMT-LIB format were done prior to
benchmarking: For our VS algorithms, examples were translated to SML data
structures and compiled with MLton7; as a result, measurements do not include
parsing. For W-VS and W-QE, examples were translated into Wolfram syntax,
including configuration options restricting QE to quadratic virtual substitution
in W-VS. For S-QE�, check-sat was replaced with eliminate-quantifiers.

Results. Each example has a timeout of 30 s. Figure 2 summarizes the perfor-
mance on the CADE09 and Economics examples in terms of the cumulative
time needed to solve (return “true”, “false”, “sat”, or “unsat”) the fastest n
problems with a logarithmic time axis: more problems solved and a flatter curve
is better.

Wolfram Engine solves all problems in the CADE09 category, closely trailed
by Redlog, Z3. The near constant computation time offset of Redlog in compari-
son to Z3, SMT-RAT, and Wolfram Engine may be attributable to the additional
step of entering an SMT REPL. Our verified VSEquality (E), VSGeneral (G),
VSLucky (L), and VSLEG (LEG) algorithms rank in performance between the
basic quantifier elimination implementation in SMT-RAT (S-QE�), virtual sub-
stitution in Wolfram Engine (W-VS), full SMT approaches (S-SATE, Z3), and
combined virtual substitution plus CAD implementations (R�, W-QE). The
reduced startup time of our algorithms is attributable to the omitted pars-
ing step. Overall, VSEquality and VSLucky solve examples fast, but the wider

2 MacBook Pro 2019 with 2.6 GHz Intel Core i7 (model 9750H) and 32 GB memory
(2667 MHz DDR4 SDRAM).

3
https://sourceforge.net/projects/reduce-algebra/files/snapshot 2021-04-13/.

4
https://sourceforge.net/projects/reduce-algebra/files/snapshot 2021-07-16/.

5
https://github.com/ths-rwth/smtrat/releases/tag/21.05.

6
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.10.

7
http://mlton.org/.

https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-04-13/
https://sourceforge.net/projects/reduce-algebra/files/snapshot_2021-07-16/
https://github.com/ths-rwth/smtrat/releases/tag/21.05
https://github.com/Z3Prover/z3/releases/tag/z3-4.8.10
http://mlton.org/
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Fig. 2. Cumulative time to solve fastest n problems (flatter and more is better) (Color
figure online)

applicability of VSGeneral and VSLEG allows them to solve considerably more
examples. Though we have already implemented a number of optimizations for
VS [23, Appendix C] we do not expect to outperform prior tools at this stage,
as many of them have been optimized over a period of many years.

A comparison of duration per problem is in Fig. 3. Though there is consider-
able overlap between VSEquality, VSGeneral, and VSLucky, mutually exclusive
sets of solved examples (and considerable performance differences on a number
of examples) foreshadow the performance achievable with the combined VSLEG
algorithm.

Contradictions. In Fig. 4, we compare the CADE09 results to the results on
negated CADE09 examples to highlight contradictions between answers (e.g.,
both A and ¬A are claimed to be true). Wolfram Engine and Z3 answer consis-
tently on both formula sets, and solve (almost) all examples. Redlog, the main
VS implementation, in RE and previous versions in general does not perform well

Fig. 3. CADE09 duration per problem (color indicates duration, lighter is better)
(Color figure online)



Verified Quadratic Virtual Substitution for Real Arithmetic 215

Fig. 4. CADE09 consistency comparison between original and negated formula: color
indicates discrepancies within tools (green : answer on original and negated formula
agree, dark-blue : only original solved, light-blue : only negated solved, red+long :
contradictory answers (both formulas unsat/proved or both sat/disproved), empty:
both timeout/unknown) (Color figure online)

on the negated formulas and reports 96 contradictory answers; the contradictory
examples were shared with the developers and triggered several bug fixes that are
now available in R� (no contradictions found on the benchmark set). SMT-RAT
performs better than RE on the negated formulas, but in satisfiability mode contra-
dicts itself on 41 examples by silently ignoring quantifiers in the input; in quantifier
elimination mode, SMT-RAT supports quantifiers and does not report contradic-
tions, but SMT-RAT then incurs a significant performance loss (S-SATE reports
359 answers while S-QE� only solves 187). No contradictions were found across
tools, i.e., whenever a tool’s answers were consistent internally, the answers agreed
with those of other tools. Our VSLEG algorithm has similar performance for prov-
ing and disproving in terms of absolute number of solved examples, but combin-
ing proving and disproving would still solve more examples than just one question
individually (as for S-QE� and W-VS).

In summary, the performance of our verified virtual substitution QE on the
benchmark set is encouraging. The number of solved examples is close to other
VS implementations (304 examples by our VSLEG vs. 322 by W-VS) and the
cumulative solving time reveals that the majority of examples are solved fast.

6 Conclusion and Future Work

We verify linear and quadratic virtual substitution for real arithmetic; our algo-
rithms are provably correct up to Isabelle/HOL’s trusted core and code export.
Developing practical verified VS in Isabelle/HOL required significant low-level
improvements and extensions to Isabelle’s multivariate polynomials library. Our
extensive experiments both reveal the benefits of our current optimizations and
indicate room for future improvements. Further optimizations to the polynom-
ial libraries, such as efficient coefficient lookup for polynomials using red black
trees, would be welcome. Expanding our framework to handle formulas that
involve polynomial division would also be of practical significance. Continuing
to develop our formalization with such improvements is of especial significance
given that our experiments found long-standing errors in existing unverified real
arithmetic tools. This demonstrates that, even if verification were not a virtue
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in and of itself, real arithmetic is so subtle that formal verification is the best
way toward an implementation that is both useful and correct in practice.

Acknowledgment. We wish to thank Fabian Immler for his substantial contributions
at CMU to the polynomial theories of Isabelle/HOL and regret that his current industry
position precludes our ability to include him as a coauthor. Thank you also to the
anonymous FM reviewers for their useful feedback.
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axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE. LNCS, vol. 9195, pp. 527–538. Springer (2015). https://doi.org/
10.1007/978-3-319-21401-6 36

9. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE. LNCS, vol. 7898, pp. 208–214. Springer
(2013). https://doi.org/10.1007/978-3-642-38574-2 14

10. Hupel, L., Nipkow, T.: A verified compiler from Isabelle/HOL to CakeML. In:
Ahmed, A. (ed.) ESOP. LNCS, vol. 10801, pp. 999–1026. Springer (2018). https://
doi.org/10.1007/978-3-319-89884-1 35

11. Jovanovic, D., de Moura, L.M.: Solving non-linear arithmetic. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR. LNCS, vol. 7364, pp. 339–354. Springer (2012).
https://doi.org/10.1007/978-3-642-31365-3 27
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