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Abstract. Metric Temporal Logic (MTL) and Timed Propositional
Temporal Logic (TPTL) are prominent real-time extensions of Linear
Temporal Logic (LTL). In general, the satisfiability checking problem
for these extensions is undecidable when both the future U and the past
S modalities are used. In a classical result, the satisfiability checking for
MITL[U,S], a non-punctual fragment of MTL[U,S], is shown to be decid-
able with EXPSPACE complete complexity. Given that this notion of
non-punctuality does not recover decidability in the case of TPTL[U,S],
we propose a generalization of non-punctuality called non-adjacency for
TPTL[U,S], and focus on its 1-variable fragment, 1-TPTL[U,S]. While
non-adjacent 1-TPTL[U,S] appears to be a very small fragment, it is
strictly more expressive than MITL. As our main result, we show that the
satisfiability checking problem for non-adjacent 1-TPTL[U,S] is decidable
with EXPSPACE complete complexity.

1 Introduction

Metric Temporal Logic (MTL) and Timed Propositional Temporal Logic (TPTL)
are natural extensions of Linear Temporal Logic (LTL) for specifying real-time
properties [3]. MTL extends the U and S modalities of LTL by associating a
timing interval with these. aUIb describes behaviours modeled as timed words
consisting of a sequence of a’s followed by a b which occurs at a time within
(relative) interval I. On the other hand, TPTL uses freeze quantification to store
the current time stamp. A Freeze quantifier with clock variable x has the form
x.ϕ. When it is evaluated at a point i on a timed word, the time stamp τi at i is
frozen in x, and the formula ϕ is evaluated using this value for x. Variable x is
used in ϕ in a constraint of the form T − x ∈ I; this constraint, when evaluated
at a point j, checks if τj − τi ∈ I, where τj is the time stamp at point j.
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For example, the formula Fx.(a∧F(b∧T −x ∈ [1, 2]∧F(c∧T −x ∈ [1, 2])))1

asserts that there is a point in future where a holds and in its future within inter-
val [1, 2], b and c occur, and the former occurs before the latter. This property
is not expressible in MTL[U,S] [4,18]. Moreover, every property in MTL[U,S]
can be expressed in 1-TPTL[U,S]. Thus, 1-TPTL[U,S] is strictly more expressive
than MTL[U,S]. Unfortunately, both the logics have an undecidable satisfiability
problem, making automated analysis for these logics theoretically impossible.

Exploring natural decidable variants of these logics has been an active area
of research since the advent of these logics [2,8–10,21–23]. One line of work
restricted itself to the future only fragments MTL[U] and 1-TPTL[U] which have
both been shown to have decidable satisfiability over finite timed words, under a
pointwise interpretation [7,17]. The complexity however is non-primitive recur-
sive. Reducing the complexity to elementary has been challenging. One of the
most celebrated of such logics is the Metric Interval Temporal Logic (MITL[U,S])
[1], a subclass of MTL[U,S] where the timing intervals are restricted to be non-
punctual (i.e. intervals of the form 〈x, y〉 where x < y). The satisfiability checking
for MITL formulae is decidable with EXPSPACE complete complexity [1]. While
non-punctuality helps to recover the decidability of MTL[U,S], it does not help
TPTL[U,S]. The freeze quantifiers of TPTL enables us to trivially express punc-
tual timing constraints using only the non-punctual intervals: for instance the
1-TPTL formula x.(aU(a∧T −x ∈ [1,∞)∧T −x ∈ [0, 1])) uses only non-punctual
intervals but captures the MTL formula aU[1,1]b. Thus, a more refined notion of
non-punctuality is needed to recover the decidability of 1-TPTL[U,S].

Contributions. With the above observations, to obtain a decidable class of
1-TPTL[U,S] akin to MITL[U,S], we revisit the notion of non-punctuality as it
stands currently. As our first contribution, we propose non-adjacency, a refined
version of non-punctuality. Two intervals, I1 and I2 are non-adjacent if the supre-
mum of I1 is not equal to the infimum of I2. Non-adjacent 1-TPTL[U,S] is the
subclass of 1-TPTL[U,S] where, every interval used in clock constraints within
the same freeze quantifier is non-adjacent to itself and to every other timing
interval that appears within the same scope. (Wlog, we consider formulae in
negation normal form only.) The non-adjacency restriction disallows punctual
timing intervals: every punctual timing interval is adjacent to itself. It can be
shown (Theorem 2) that non-adjacent 1-TPTL[U,S], while seemingly very restric-
tive, is strictly more expressive than MITL and it can also express the counting
and the Pnueli modalities [9]. Thus, the logic is of considerable interest in prac-
tical real-time specification. See the full version for an example.

Our second contribution is to give a decision procedure for the satisfiability
checking of non-adjacent 1-TPTL[U,S]. We do this in two steps. 1) We introduce
a logic PnEMTL which combines and generalises the automata modalities of [11,
22,23] and the Pnueli modalities of [9,10,21], and has not been studied before to
the best of our knowledge. We show that a formula of non-adjacent 1-TPTL[U,S]
can be reduced to an equivalent formula of non-adjacent PnEMTL (Theorem 5).
1 Here T is a special symbol denoting the timestamp of the present point and x is the
clock that was frozen when x. was asserted.
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2) We prove that the satisfiability of non-adjacent PnEMTL is decidable with
EXPSPACE complete complexity (Theorem 6). For brevity, some of the proof
details are omitted here and can be found in the full version [13].

Related Work and Discussion. Much of the related work has already been
discussed. MITL with counting and Pnueli modalities has been shown to have
EXPSPACE-complete satisfiability [20,21]. Here, we tackle even more expressive
logics: namely non-adjacent 1-TPTL[U,S] and non-adjacent PnEMTL. We show
that EXPSPACE-completeness of satisfiability checking is retained in spite of
the additional expressive power. These decidability results are proved by equi-
satisfiable reductions to logic EMITL0,∞ of Ho [11]. As argued by Ho, it is quite
practicable to extend the existing model checking tools like UPPAAL to logic
EMITL0,∞ and hence to our logics too.

Addition of regular expression based modalities to untimed logics like LTL
has been found to be quite useful for practical specification; even the IEEE
standard temporal logic PSL has this feature. With a similar motivation, there
has been considerable recent work on adding regular expression/automata based
modalities to MTL and MITL. Raskin as well as Wilke added automata modalities
to MITL as well as an Event-Clock logic ECL [22,23] and showed the decidability
of satisfaction. The current authors showed that MTL[U,SNP ] (where U can use
punctual intervals but S is restricted to non-punctual intervals), when extended
with counting as well as regular expression modalities preserves decidability of
satisfaction [12,14–16]. Recently, Ferrère showed the EXPSPACE decidability
of MIDL which is LTL[U] extended with a fragment of timed regular expres-
sion modality [5]. Moreover, Ho has investigated a PSPACE-complete fragment
EMITL0,∞ [11]. Our non-adjacent PnEMTL is a novel extension of MITL with
modalities which combine the features of EMITL [11,22,23] and the Pnueli
modalities [9,10,21].

2 Preliminaries

Let Σ be a finite set of propositions, and let Γ = 2Σ \ ∅. A word over Σ is a
finite sequence σ = σ1σ2 . . . σn, where σi ∈ Γ . A timed word ρ over Σ is a finite
sequence of pairs (σ, τ) ∈ Σ × R≥0; ρ = (σ1, τ1) . . . (σn, τn) ∈ (Σ × R≥0)∗ where
τ1 = 0 and τi ≤ τj for all 1 ≤ i ≤ j ≤ n. The τi are called time stamps. For
a timed or untimed word ρ, let dom(ρ) = {i|1 ≤ i ≤ |ρ|} where |ρ| denotes the
number of (event, timestamp) pairs composing the word ρ, and σ[i] denotes the
symbol at position i ∈ dom(ρ). The set of timed words over Σ is denoted TΣ∗.
Given a (timed) word ρ and i ∈ dom(ρ), a pointed (timed) word is the pair ρ, i.
Let Iint (Inat) be the set of open, half-open or closed time intervals, such that
the end points of these intervals are in Z ∪ {−∞,∞} (N ∪ {0,∞}, respectively).
We assume familiarity with LTL.

Metric Temporal Logic (MTL). MTL is a real-time extension of LTL where
the modalities (U and S) are guarded with intervals. Formulae of MTL are built
from Σ using Boolean connectives and time constrained versions UI and SI of
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the standard U,S modalities, where I ∈ Inat. Intervals of the form [x, x] are
called punctual; a non-punctual interval is one which is not punctual. Formulae
in MTL are defined as follows. ϕ ::= a |
 |ϕ ∧ ϕ | ¬ϕ | ϕUIϕ | ϕSIϕ, where
a ∈ Σ and I ∈ Inat. For a timed word ρ = (σ1, τ1)(σ2, τ2) . . . (σn, τn) ∈ TΣ∗, a
position i ∈ dom(ρ), an MTL formula ϕ, the satisfaction of ϕ at a position i of ρ,
denoted ρ, i |= ϕ, is defined below. We discuss the time constrained modalities.

• ρ, i |= ϕ1UIϕ2 iff ∃j > i, ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1∀i < k < j,
• ρ, i |= ϕ1SIϕ2 iff ∃j < i, ρ, j |= ϕ2, τj − τi ∈ I, and ρ, k |= ϕ1∀j < k < i.

The language of an MTL formula ϕ is defined as L(ϕ) = {ρ|ρ, 1 |= ϕ}. Using
the above, we obtain some derived formulae: the constrained eventual operator
FIϕ ≡ trueUIϕ and its dual is GIϕ ≡ ¬FI¬ϕ. Similarly HIϕ ≡ trueSIϕ. The
next operator is defined as ⊕Iϕ ≡ ⊥UIϕ. The non-strict versions of F,G are
respectively denoted Fw and Gw and include the present point. Symmetric non-
strict versions for past operators are also allowed. The subclass of MTL obtained
by restricting the intervals I in the until and since modalities to non-punctual
intervals is denoted MITL. We say that a formula ϕ is satisfiable iff L(ϕ) �= ∅.

Theorem 1. Satisfiability checking for MTL[U,S] is undecidable [2]. Satisfiabil-
ity Checking for MITL is EXPSPACE-complete [1].

Time Propositional Temporal Logic (TPTL). The logic TPTL also extends
LTL using freeze quantifiers. Like MTL, TPTL is also evaluated on timed words.
Formulae of TPTL are built from Σ using Boolean connectives, modalities U and
S of LTL. In addition, TPTL uses a finite set of real valued clock variables X =
{x1, . . . , xn}. Let ν : X → R≥0 represent a valuation assigning a non-negative
real value to each clock variable. The formulae of TPTL are defined as follows.
Without loss of generality we work with TPTL in the negation normal form.
ϕ ::= a | ¬a |
 | ⊥ | x.ϕ | T−x ∈ I | x−T ∈ I | ϕ∧ϕ | ϕ∨ϕ | ϕUϕ | ϕSϕ | Gϕ | Hϕ,
where x ∈ X, a ∈ Σ, I ∈ Iint. Here T denotes the time stamp of the point where
the formula is being evaluated. x.ϕ is the freeze quantification construct which
remembers the time stamp of the current point in variable x and evaluates ϕ.

For a timed word ρ = (σ1, τ1) . . . (σn, τn), i ∈ dom(ρ) and a TPTL formula
ϕ, we define the satisfiability relation, ρ, i, ν |= ϕ with valuation ν of all the
clock variables. We omit the semantics of Boolean, U and S operators as they
are similar to those of LTL.

• ρ, i, ν |= a iff a ∈ σi, and ρ, i, ν |= x.ϕ iff ρ, i, ν[x ← τi] |= ϕ
• ρ, i, ν |= T − x ∈ I iff τi − ν(x) ∈ I, and ρ, i, ν |= x − T ∈ I iff ν(x) − τi ∈ I
• ρ, i, ν |= Gϕ iff ∀j > i, ρ, j, ν |= ϕ, and
• ρ, i, ν |= Hϕ iff ∀j < i, ρ, j, ν |= ϕ

Let 0 = (0, 0, . . . , 0) represent the initial valuation of all clock variables. For
a timed word ρ and i ∈ dom(ρ), we say that ρ, i satisfies ϕ denoted ρ, i |= ϕ
iff ρ, i, 0 |= ϕ. The language of ϕ, L(ϕ) = {ρ|ρ, 1 |= ϕ}. The Pointed Lan-
guage of ϕ is defined as Lpt(ϕ) = {ρ, i|ρ, i |= ϕ}. Subclass of TPTL that uses
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only 1 clock variable (i.e. |X| = 1) is known as 1-TPTL. The satisfiabil-
ity checking for 1-TPTL[U,S] is undecidable, which is implied by Theorem 1
and the fact that 1-TPTL[U,S] trivially generalizes MTL[U,S]. As an exam-
ple, the formula ϕ = x.(aU(bU(c ∧ T − x ∈ [1, 2]))) is satisfied by the timed
word ρ = (a, 0)(a, 0.2)(b, 1.1)(b, 1.9)(c, 1.91)(c, 2.1) since ρ, 1 |= ϕ. The word
ρ′ = (a, 0)(a, 0.3)(b, 1.4)(c, 2.1)(c, 2.5) does not satisfy ϕ. However, ρ′, 2 |= ϕ: if
we start from the second position of ρ′, we assign ν(x) = 0.3, and when we reach
the position 4 of ρ′ with τ4 = 2.1 we obtain T − x = 2.1 − 0.3 ∈ [1, 2].

3 Introducing Non-adjacent 1-TPTL and PnEMTL

In this section, we define non-adjacent 1-TPTL and PnEMTL logics. Let x denote
the unique freeze variable we use in 1-TPTL.

Non-Adjacent 1-TPTL is defined as a subclass of 1-TPTL where adjacent
intervals within the scope of any freeze quantifier is disallowed. Two intervals
I1, I2 ∈ Iint are non-adjacent iff sup(I1) = inf(I2) ⇒ sup(I1) = 0. A set Ina

of intervals is non-adjacent iff any two intervals in Ina are non-adjacent. It
does not contain punctual intervals other than [0, 0] as every punctual inter-
val is adjacent to itself. For example, the set {[1, 2), (2, 3], [5, 6)} is not a non-
adjacent set, while {[0, 0], [0, 1), (3, 4], [5, 6)} is. Let Ina denote a set of non-
adjacent intervals with end points in Z∪{−∞,∞}. See full version for an exam-
ple specification using this logic. The freeze depth of a TPTL formula ϕ, fd(ϕ)
is defined inductively. For a ptopositional formula prop, fd(prop) = 0. Also,
fd(x.ϕ) = fd(ϕ) + 1, and fd(ϕ1Uϕ2) = fd(ϕ1Sϕ2) = fd(ϕ1 ∧ ϕ2) = fd(ϕ1 ∨ ϕ2) =
Max(fd(ϕ1), fd(ϕ2)), fd(G(ϕ)) = fd(H(ϕ)) = fd(ϕ).

Theorem 2. Non-Adjacent 1-TPTL[U,S] is more expressive than MITL[U,S]. It
can also express the Counting and the Pnueli modalities of [9,10].

The straightforward translation of MITL into TPTL in fact gives rise to non-
adjacent 1-TPTL formula. Let ̂I abbreviate T − x ∈ I. E.g. MITL formula
aU[2,3](bU[3,4]c) translates to x.(aU( ̂[2, 3] ∧ x.(bU( ̂[3, 4] ∧ c))). It has been previ-

ously shown that F[x.(a ∧ F(b ∧ (̂1, 2) ∧ F(c ∧ (̂1, 2))))], which is in fact a formula
of non-adjacent 1-TPTL, is inexpressible in MTL[U,S] [18]. The Pnueli modality
PnI(φ1, . . . , φk) expresses that there exist positions i1 ≤ . . . ≤ ik within (rela-
tive) interval I where each ij satisfies φj . This is equivalent to the non-adjacent
1-TPTL formula x.(F(Î∧φ1∧F(Î∧φ2∧F(. . .)))). Similarly the (simpler) counting
modality can also be expressed.

Pnueli EMTL: There have been several attempts to extend logic MTL[U] with
regular expression/automaton modalities [5,11,14,23]. We use a generalization
of these existing modalities to give the logic PnEMTL. For any finite automaton
A, let L(A) denote the language of A.

Given a finite alphabet Σ, formulae of PnEMTL have the following syntax:
ϕ ::= a |ϕ ∧ ϕ | ¬ϕ |Fk

I1,...,Ik
(A1, . . . ,Ak+1)(S) | Pk

I1,...,Ik
(A1, . . . ,Ak+1)(S)

where a ∈ Σ, I1, I2, . . . Ik ∈ Inat and A1, . . . Ak+1 are automata over 2S where
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S is a set of formulae from PnEMTL. Fk and Pk are the new modalities called
future and past Pnueli Automata Modalities, respectively, where k is the arity
of these modalities.

Let ρ = (a1, τ1), . . . (an, τn) ∈ TΣ∗, x, y ∈ dom(ρ), x≤y and S =
{ϕ1, . . . , ϕn} be a given set of PnEMTL formulae. Let Si be the exact sub-
set of formulae from S evaluating to true at ρ, i, and let Seg+(ρ, x, y, S) and
Seg−(ρ, y, x, S) be the untimed words SxSx+1 . . . Sy and SySy−1 . . . Sx respec-
tively. Then, the satisfaction relation for ρ, i0 satisfying a PnEMTL formula ϕ is
defined recursively as follows:

• ρ, i0|=Fk
I1,...,Ik

(A1, . . . ,Ak+1)(S) iff ∃i0≤i1≤i2 . . . ≤ik≤n s.t.
k
∧

w=1
[(τiw

−τi0 ∈ Iw) ∧ Seg+(ρ, iw−1, iw, S) ∈ L(Aw)] ∧ Seg+(ρ, ik, n, S) ∈
L(Ak+1)

• ρ, i0 |= Pk
I1,I2,...,Ik

(A1, . . . ,Ak,Ak+1)(S) iff ∃i0≥i1≥i2 . . . ≥ik≥n s.t.
k
∧

w=1
[(τi0−τiw

∈ Iw) ∧ Seg−(ρ, iw−1, iw, S) ∈ L(Aw)] ∧ Seg−(ρ, ik, n, S) ∈
L(Ak+1).

Language of any PnEMTL formula ϕ, as L(ϕ) = {ρ|ρ, 1 |= ϕ}. The Pointed Lan-
guage of ϕ is defined as Lpt(ϕ) = {ρ, i|ρ, i |= ϕ}. Given a PnEMTL formula ϕ,
its arity is the maximum number of intervals appearing in any F ,P modality
of ϕ. For example, the arity of ϕ = F2

I1,I2
(A1,A2,A3)(S1) ∧ P1

I1
(A1,A2)(S2) for

some sets of formulae S1, S2 is 2. For the sake of brevity, Fk
I1,...,Ik

(A1, . . . ,Ak)(S)
denotes Fk

I1,...,Ik
(A1, . . . ,Ak,Ak+1)(S) where automata Ak+1 accepts all the

strings over S. We define non-adjacent PnEMTL, as a subclass where every
modality Fk

I1,...,Ik
and Pk

I1,...,Ik
is such that {I1, . . . , Ik} is a non-adjacent set of

intervals.
EMITL of [23] (and variants of it studied in [5,11,14,15]) are special cases

of the non-adjacent PnEMTL modality where the arity is restricted to 1 and
the second automata in the argument accepts all the strings. Hence, automaton
modality of [23] is of the form FI(A)(S). Let EMITL0,∞ denote the logic EMITL
extended with F and P modality where the timing intervals are restricted to be
of the form 〈l,∞) or 〈0, u〉.

We conclude this section defining size of a temporal logic formula.

Size of Formulae. Size of a formula ϕ denoted by |ϕ| is a measure of how
many bits are required to store it. The size of a TPTL formula is defined as the
sum of the number of U, S and Boolean operators and freeze quantifiers in it.
For PnEMTL formulae, |op| is defined as the number of Boolean operators and
variables used in it. |(Fk

I1,...,Ik
(A1, . . . ,Ak+1)(S)| =

∑

ϕ∈S

(|ϕ|) + |A1|+ . . . +|Ak+1|

where |A| denotes the size of the automaton A given by sum of number of its
states and transitions.
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4 Anchored Interval Word Abstraction

All the logics considered here have the feature that a sub-formula asserts timing
constraints on various positions relative to an anchor position; e.g. the position
of freezing the clock in TPTL. Such constraints can be symbolically represented
as an interval word with a unique anchor position and all other positions carry
a set of time intervals constraining the time stamp of the position relative to the
time stamp of the anchor. See interval word κ in Fig. 1. We now define these
interval words formally. Let Iν ⊆ Iint. An Iν-interval word over Σ is a word κ of
the form a1a2 . . . an ∈ (2Σ∪{anch}∪Iν )∗. There is a unique i ∈ dom(κ) called the
anchor of κ and denoted by anch(κ). At the anchor position i, ai ⊆ Σ ∪ {anch},
and anch ∈ ai. Let J be any interval in Iν . We say that a point i ∈ dom(κ) is a
J-time restricted point if and only if, J ∈ ai. i is called time restricted point if
and only if either i is J-time restricted for some interval J in Iν or anch ∈ ai.

From Iν-interval word to Timed Words: Given a Iν-interval word κ =
a1 . . . an over Σ and a timed word ρ = (b1, τ1) . . . (bm, τm), the pointed timed
word ρ, i is consistent with κ iff dom(ρ) = dom(κ), i = anch(κ), for all j ∈
dom(κ), bj = aj ∩ Σ and for j �= i, I ∈ aj ∩ Iν implies τj − τi ∈ I. Thus, κ and
ρ, i agree on propositions at all positions, and the time stamp of a non-anchor
position j in ρ satisfies every interval constraint in aj relative to τi, the time
stamp of anchor position. Time(κ) denotes the set of all the pointed timed words
consistent with a given interval word κ, and Time(Ω) =

⋃

κ∈Ω

(Time(κ)) for a set

of interval words Ω. Note that the “consistency relation” is a many-to-many
relation.

Example. Let κ = {a, b, (−1, 0)}{b, (−1, 0)}{a, anch}{b, [2, 3]} be an interval
word over the set of intervals {(−1, 0), [2, 3]}. Consider timed words ρ and ρ′

s.t. ρ = ({a, b}, 0)({b}, .5), ({a}, .95)({b}, 3), ρ′ = ({a, b}, 0)({b}, 0.8)({a}, 0.9)
({b}, 2.9).

Then ρ, 3 as well as ρ′, 3 are consistent with κ while ρ, 2 is not. Likewise, for
the timed word ρ′′ = ({a, b}, 0), ({b}, 0.5), ({a}, 1.1)({b}, 3), ρ′′, 3 is not consis-
tent with κ as τ1 − τ3 /∈ (−1, 0), as also τ4 − τ3 /∈ [2, 3].

Let Iν , I ′
ν ⊆ Iint. Let κ = a1 . . . an and κ′ = b1 . . . bm be Iν and I ′

ν-interval
words, respectively. κ is similar to κ′, denoted by κ ∼ κ′ if and only if,

(i) dom(κ) = dom(κ′), (ii) for all i ∈ dom(κ), ai ∩ Σ = bi ∩ Σ, and
(iii)anch(κ) = anch(κ′). Additionally, κ is congruent to κ′, denoted by κ ∼= κ′, iff
Time(κ) = Time(κ′). I.e., κ and κ′ abstract the same set of pointed timed words.

Collapsed Interval Words. The set of interval constraints at a position can
be collapsed into a single interval by taking the intersection of all the intervals
at that position giving a Collapsed Interval Word. Given an Iν-interval word
κ = a1 . . . an, let Ij = aj ∩Iν . Let κ′ = Col(κ) be the word obtained by replacing
Ij with

⋂

I∈Ij
I in aj , for all j∈dom(κ). Note that κ′ is an interval word over

CL(Iν) = {I|I =
⋂

I ′, I ′ ⊆ Iν}. Note that if for any j, the set Ij contains two
disjoint intervals (like [1, 2] and [3, 4]) then Col(κ) is undefined. It is clear that
Time(κ) = Time(κ′). An interval word κ is called collapsed iff κ = Col(κ).
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{a, anch} {a, b, [−1, 1]} {a, b, [−1, 1]} {b, [−1, 1]}{a, (−1, 0)}{a, b, (−2, 2)[−1, 1]}

{a, anch} {a, b, [−1, 1]} {a, b, [−1.1]} {b, [−1, 1]}{a, (−1, 0)}{a, b, [−1, 1]}
first([-1,1]) first[(-1,0)], last[(-1,0)] last([-1,1])

κ

Col(κ)

{a, anch} {a, b} {a, b} {b, [−1, 1]}{a, (−1, 0)}{a, b, [−1, 1]}
first([-1,1]) first[(-1,0)], last[(-1,0)] last([-1,1])

Norm(κ)

Fig. 1. Point within the triangle has more than one interval. The encircled points are
intermediate points and carry redundant information. The required timing constraint
is encoded by first and last time restricted points of all the intervals (within boxes).

Normalization of Interval Words. An interval I may repeat many times in
a collapsed interval word κ. Some of these occurrences are redundant and we
can only keep the first and last occurrence of the interval in the normalized form
of κ. See Fig. 1. For a collapsed interval word κ and any I ∈ Iν , let first(κ, I)
and last(κ, I) denote the positions of first and last occurrence of I in κ. If κ
does not contain any occurrence of I, then both first(κ, I) = last(κ, I) = ⊥. We
define, Boundary(κ) = {i|i∈dom(κ)∧∃I∈Iν s.t. (i = first(κ, I)∨i = last(κ, I)∨i =
anch(κ))}

The normalized interval word corresponding to κ, denoted Norm(κ), is
defined as κnor = b1 . . . bm, such that (i) κnor ∼ Col(κ), (ii) for all I ∈
CL(Iν), first(κ, I) = first(κnor, I), last(κ, I) = last(κnor, I), and for all points
j ∈ dom(κnor) with first(κ, I) < j < last(κ, I), j is not a I-time constrained
point. See Fig. 1. Hence, a normalized word is a collapsed word where for any
J ∈ CL(Iν) there are at most two J-time restricted points. This is the key prop-
erty which will be used to reduce 1-TPTL to a finite length PnEMTL formulae.

Lemma 1. κ ∼= Norm(κ). Note, Norm(κ) has at most 2×|Iν |2+1 restricted
points.

The proof follows from the fact that κ ∼= Col(κ) and since Col(κ) ∼ Norm(κ),
the set of timed words consistent with any of them will have identical untimed
behaviour. For the timed part, the key observation is as follows. For some interval
I ∈ Iν , let i′ = first(κ, I), j′ = last(κ, I). Then for any ρ, i in Time(κ), points i′

and j′ are within the interval I from point i. Hence, any point i′ ≤ i′′ ≤ j′ is also
within interval I from i. Thus, the interval I need not be explicitly mentioned
at intermediate points. The full proof can be found in the full version.

5 1-TPTL to PnEMTL

In this section, we reduce a 1-TPTL formula into an equisatisfiable PnEMTL
formula. First, we consider 1-TPTL formula with a single outermost freeze quan-
tifier (call these simple TPTL formulae) and give the reduction. More complex
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formulae can be handled by applying the same reduction recursively as shown
in the first step. For any set of formulae S, let

∨

S denote
∨

s∈S

s. A TPTL for-

mula is said to be simple if it is of the form x.ϕ where, ϕ is a 1-TPTL formula
with no freeze quantifiers. Let Iν ⊆ Iint. Let ψ = x.ϕ be a simple Iν-TPTL
formula and let CL(Iν) = Iν . We construct a PnEMTL formula φ, such that
ρ, i |= ψ ⇐⇒ ρ, i |= φ. We break this construction into the following steps:

1) We construct an LTL formula α s.t. L(α) contains only Iν-interval words and
ρ, i |= ψ iff ρ, i ∈ Time(L(α)). Let A be the NFA s.t. L(A) = L(α). Let W be
the set of all Iν-interval words.

2) We partition W into finitely many types, each type, capturing a certain rel-
ative ordering between first and last occurrences of intervals from Iν as well
as anch. Let T (Iν) be the finite set of all types.

3) For each type seq ∈ T , we construct an NFA Aseq such that L(Aseq) =
Norm(L(A) ∩ Wseq), where Wseq is the set of all the Iν-interval words of type
seq.

4) For every type seq, using the Aseq above, we construct a PnEMTL formula
φseq such that, ρ, i |= φseq if and only if ρ, i ∈ Time(L(Aseq)). The desired φ =

∨

seq∈T (Iν)

φseq. Hence, Lpt(φ) =
⋃

seq∈T
Time(L(Aseq)) = Time(L(A)) = Lpt(ψ).

1a) Simple TPTL to LTL over Interval Words: As above, ψ = x.ϕ. Consider
an LTL formula α = F[LTL(ϕ) ∧ anch ∧ ¬(F(anch) ∨ P(anch))] ∧ G(

∨

Σ) over
Σ′ = Σ ∪ Iν ∪ {anch}, where LTL(ϕ) is the LTL formula obtained from ϕ by
replacing clock constraints T − x ∈ I with I and x − T ∈ I with −I. Then all
words in L(α) are Iν-interval words.

Theorem 3. For any timed word ρ, i ∈ dom(ρ), and any clock valuation v,
ρ, i, v |= ψ ⇐⇒ ρ, i ∈ Time(L(α)).

Proof Sketch. Note that for any timed word ρ and i ∈ dom(ρ), ρ, i, [x ← τi] |= ϕ
is equivalent to ρ, i |= ψ since ψ = x.ϕ. Let κ be any Iν-interval word over Σ
with anch(κ) = i. It can be seen that if κ, i |= LTL(ϕ) then for all ρ, i ∈ Time(κ)
we have ρ, i |= ψ. Likewise, if ρ, i |= ψ for a timed word ρ, then there exists some
Iν-interval word over Σ such that ρ, i ∈ Time(κ) and κ, i |= LTL(ϕ).

Illustrated on an example, if ψ = x.ϕ and ϕ = F(x ∈ I ∧a). Then ρ, i |= ϕ iff
there exists a point j within an interval I from i, where a holds. Now consider
α = Fw[(I ∧a)∧anch∧¬(F(anch)∨P(anch))]∧Gw(

∨

Σ) whose language consists
of interval words κ such that there is a point ahead of the anchor point i where
both a and I holds. Clearly, words in Time(κ) are such that they contain a point
j > i within an interval I from point i where a holds. Hence, ρ, i |= ψ if and
only if ρ, i ∈ Time({κ | κ, i |= LTL(ϕ)}). Moreover, κ ∈ L(α) if and only if
κ, i |= LTL(ϕ) and anch(κ) = i. The full proof is in the full version.

1b) LTL to NFA over Collapsed Interval Words. It is known that for any
LTL[U,S] formula, one can construct an equivalent NFA with at most exponen-
tial number of states [6]. We reduce the LTL formula α to an equivalent NFA
Aα = (Q, init, 2Σ′

, δ′, F ) over Iν-interval words, where Σ′ = 2Σ∪Iν∪{anch}. From
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Aα, we construct an automaton A = (Q, init, 2Σ′
, δ, F ) s.t. L(A) = Col(L(Aα)).

Automaton A is obtained from Aα by replacing the set of intervals I on the
transitions by the single interval

⋂

I. In case ∃I1, I2 ∈ I s.t. I1 ∩ I2 = ∅ (i.e.
with contradictory interval constraints), the transition is omitted in A. This
gives L(A) = Col(L(Aα)).

2) Partitioning Interval Words. We discuss here how to partition W , the
set of all collapsed Iν-interval words, into finitely many classes. Each class is
characterized by its type given as a finite sequences seq over Iν ∪ {anch}.
For any collapsed w ∈ W , its type seq gives an ordering between anch(w),
first(w, I) and last(w, I) for all I ∈ Iν , such that, any I ∈ Iν appears at most
twice and anch appears exactly once in seq. For instance, seq = I1I1anchI2I2
is a sequence different from seq′ = I1I2anchI2I1 since the relative orderings
between the first and last occurrences of I1, I2 and anch differ in both. Let
the set of types T (Iν) be the set of all such sequences; by definition, T (Iν)
is finite. Given w ∈ W , let Boundary(w) = {i1, i2, . . . , ik} be the positions
of w which are either first(w, I) or last(w, I) for some I ∈ Iν or is anch(w).
Let w ↓Boundary(w) be the subword of w obtained by projecting w to the posi-
tions in Boundary(w), restricted to the sub alphabet 2Iν ∪ {anch}. For exam-
ple, w = {a, I1}{b, I1}{c, I2}{anch, a}{b, I1}{b, I2}{c, I2} gives w ↓Boundary(w) as
I1I2anchI1I2. Then w is in the partition Wseq iff w ↓Boundary(w)= seq. Clearly,
W =

⋃

seq∈T (Iν)
Wseq. Continuing with the example above, w is a collapsed

{I1, I2}-interval word over {a, b, c}, with Boundary(w) = {1, 3, 4, 5, 7}, and
w∈Wseq for seq = I1I2anchI1I2, while w /∈ Wseq′ for seq′ = I1I1anchI2I2.

3) Construction of NFA for each type: Let seq be any sequence in T (Iν). In
this section, given A = (Q, init, 2Σ′

, δ, F ) as constructed above, we construct an
NFA Aseq = (Q×{1, 2, . . . |seq|+1}∪{⊥}, (init, 1), 2Σ′

, δseq, F ×{|seq|+1}) such
that L(Aseq) = Norm(L(A) ∩ Wseq). Thus,

⋃

seq∈T (Iν)
L(Aseq) = Norm(L(A)).

Thus,
⋃

seq∈T (Iν)
Time(L(Aseq)) = Time(Norm(L(A))) = Time(L(A)) = L(ψ).

Intuitively, the second element of the state makes sure that only normalized
words of type seq are accepted. From (q, j), Aseq is allowed to read a set S ⊆ Σ
(containing no time interval or anch and hence an unrestricted point) or it can
read a set S ∪{I} where S ⊆ Σ and J = seq[j] (containing time interval/anchor
seq[j]). In case of latter, the Aseq ends up with a state of the form (q′, j + 1) if

and only if there is a transition in A of the form q
S∪J→ q′. In case of the former,

it non-determinstically proceeds to a state (q′, j) if and only if, in automaton A,
there is a transition of the form q

S→ q′ or q
S∪J→ q′ where first(J,w) has already

been read and last(J,w) is yet to be read in the future (that is, ∃j′′j′, j′ < j ≤
j′′ ∧ seq[j′] = seq[j′′] = J). The detailed construction as well as the proof for
Lemma 2 can be found in the full version. Let Wseq denote set of Iν-interval
words of type seq.

Lemma 2. L(Aseq) = Norm(L(A) ∩ Wseq). Hence,
⋃

seq∈T (Iν)

L(Aseq) =

Norm(L(A)).
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Fig. 2. Figure representing set of runs AI1anchI3I4 of type Qseq where each Si ⊆ Σ
and each sub-automaton Qi has only transitions without any intervals. Here Qseq =

T1T2T3T4, for 1 ≤ i ≤ 4, Ti = (pi−1
Si∪{Ii}→ qi), I2 = {anch}.

Our next step is to reduce the NFAs Aseq corresponding to each type seq to
PnEMTL. The words in L(Aseq) are all normalized, and have at most 2|Iν | + 1-
time restricted points. Thanks to this, its corresponding timed language can be
expressed using PnEMTL formulae with arity at most 2|Iν |.
4) Reducing NFA of each type to PnEMTL: Next, for each Aseq we construct
PnEMTL formula φseq such that, for a timed word ρ with i ∈ dom(ρ), ρ, i |= φseq

iff ρ, i∈Time(L(Aseq)). For any NFA N = (St,Σ, i, F in,Δ), q ∈ Q F ′ ⊆ Q,
let N [q, F ′] = (St,Σ, q, F ′,Δ). For brevity, we denote N [q, {q′}] as N [q, q′]. We
denote by Rev(N), the NFA N ′ that accepts the reverse of L(N). The right/left
concatenation of a∈Σ with L(N) is denoted N ·a and a·N respectively.

Lemma 3. We can construct a PnEMTL formula φseq with arity ≤ |Iν |2 and size
O(|Aseq||seq|) containing intervals from Iν s.t. ρ, i |= φseq iff ρ, i ∈ Time(L(Aseq)).

Proof. Let seq = I1 I2 . . . In, and Ij = anch for some 1≤j≤n. Let Γ = 2Σ and
Qseq = T1 T2 . . . Tn be a sequence of transitions of Aseq where for any 1 ≤ i ≤ n,

Ti = pi−1
S′

i→ qi, S′
i = Si ∪ {Ii}, Si ⊆ Σ, pi−1 ∈ Q × {i − 1}, qi ∈ Q × {i}. Let

q0 = (init, 1). We define RQseq as set of accepting runs containing transitions
T1 T2 . . . Tn. Hence the runs in RQseq are of the following form:

T0,1 T0,2 . . . T0,m0 T1 T1,1 . . . T1,m1 T2 · · · · · · Tn−1,1 Tn−1,2 . . . Tn Tn,1 . . .
Tn+1 where the source of the transition T0,1 is q0 and the target of the transition
Tn+1 is any accepting state of Aseq. Moreover, all the transitions Ti,j for 0 ≤
i ≤ n, 1 ≤ j ≤ ni are of the form (p′ Si,j→ q′) where Si,j ⊆ Σ and p′, q′ ∈ Qi+1.
Hence, only T1, T2, . . . Tn are labelled by any interval from Iν . Moreover, only
on these transitions the counter (second element of the state) increments. Let
Ai = (Qi, 2Σ , qi−1, {pi−1}, δseq) ≡ Aseq[qi−1, pi−1] for 1 ≤ i ≤ n and An+1 =
(Qn+1, 2Σ , qn, Fseq, δseq)≡A[qn, F ]. Let WQseq be set of words associated with
any run in RQseq. In other words, any word w in WQseq admits an accepting
run on A which starts from q0 reads letters without intervals (i.e., symbols of
the form S ⊆ Σ)ends up at p0, reads S′

1, ends up at q1 reads letters without
intervals, ends up and p1, reads S′

2 and so on. Refer Fig. 2 for illustration. Hence,
w ∈ WQseq if and only if w ∈ L(A1).S′

1.L(A2).S′
2. · · · .L(An).S′

n.L(An+1).
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Let A′
k = Sk−1 · Ak · Sk for 1≤k≤n+1, with S0 = Sn+1 = ε2. Let

ρ = (b1, τ1) . . . (bm, τm) be a timed word over Γ . Then ρ, ij ∈ Time(WQseq)

iff ∃ 0≤i1≤i2≤ . . . ≤ij−1≤ij≤ij+1≤ . . . ≤in≤m s.t.
j−1
∧

k=1

[(τik
−τij

∈ Ik) ∧

Seg−(ρ, ik+1, ik, Γ ) ∈ L(Rev(A′
k))] ∧

n
∧

k=j

[(τik
−τij

∈ Ik) ∧ Seg+(ρ, ik, ik+1, Γ ) ∈

L(A′
k)], where i0 = 0 and in+1 = m. Hence, by semantics of Fk

and Pk modalities, ρ, i ∈ Time(WQseq) if and only if ρ, i|=φqseq where
φqseq = Pj

Ij−1,...,I1
(Rev(A′

1), . . . ,Rev(A′
j))(Γ ) ∧ Fn−j

Ij+1,...,In
(A′

j+1, . . . ,A
′
n+1)(Γ ).

Let State−seq be set of all possible sequences of the form Qseq. As Aseq

accepts only words which has exactly n time restricted points, the number
of possible sequences of the form Qseq is bounded by |Q|n. Hence any word
ρ, i ∈ Time(L(Aseq)) iff ρ, i |= φseq where φseq =

∨

qseq∈State−seq

φqseq. Disjuncting

over all possible sequences seq∈T (Iν) we get formula φ and the following lemma.

Lemma 4. Let L(A) be the language of Iν-interval words definable by a NFA
A. We can construct a PnEMTL formula φ s.t. ρ, i |= φ iff ρ, i ∈ Time(L(A)).

Note that, if ψ is a simple 1-TPTL formula with intervals in Iν , then the equiv-
alent PnEMTL formula φ constructed above contains only interval in CL(Iν).
Hence, we have the following theorem.

Theorem 4. For a simple non-adjacent 1-TPTL formula ψ containing intervals
from Iν , we can construct a non-adjacent PnEMTL formula φ, s.t. for any valu-
ation v, ρ, i, v|=ψ iff ρ, i|=φ where, |φ| = O(2Poly(|ψ|)) and arity of φ is O(|Iν |2).

This is a consequence of Theorem 3, Lemma 2 and Lemma 4. A formal proof
appears in the full version For the complexity: The size LTL formula α constructed
from ψ (in 1a))) is linear in ψ. The translation from LTL formula α to NFA A has a
complexity O(2|α|) = O(2|ψ|). Let Iμ = CL(Iν). Hence, |Iμ| = O(|Iν |2). The size
of Aseq is O(|seq|×2(|ψ|)) = O(2Poly(|ψ|)) as |seq| ≤ 2×|Iμ| = O(|Iν |2) = O(|ψ|2).
Next, |φseq| = O(|Aseq||seq|) = O(2Poly(|ψ|)). |T (Iν)| = O(2Poly(n)). Hence,
|φ| = O(2Poly(n,|Q|)) = O(2Poly(|A|)). Moreover, the arity of φ is also bounded
by 2 × |CL(Iν)|. Note that, |CL(Iν)| ≤ |Iν |2. Moreover, CL(Iν) is non-adjacent iff
Iν is. This result is lifted to a (non-simple) 1-TPTL formula ψ as follows: for each
occurrence of a subformula x.ϕi in ψ, introduce a new propositional variable ai

and replace x.ϕi with ai. After replacing all such, we are left with the outermost

freeze quantifier. Conjunct
m
∧

i=1

Gw(ai ↔ x.ϕi) to the replaced formula obtaining a

simple 1-TPTL formula ψ′, equisatisfiable to ψ. Apply the procedure above to each
of the m + 1 conjuncts of ψ′ resulting in m + 1 equivalent non-adjacent PnEMTL
formulae ϕ′

i. The conjunction of ϕ′
i is the non-adjacent PnEMTL formula equisat-

isfiable with ψ, giving Theorem 5.
2 We A′

k instead of Ak in the formulae below due to the strict inequalities in the
semantics of PnEMTL modalities.
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Theorem 5. Any non-adjacent 1-TPTL formula ψ with intervals in Iν , can
be reduced to a non-adjacent PnEMTL, φ, with |φ| = 2Poly(|ψ|) and arity of
φ = O(|Iν |2) such that ψ is satisfiable if and only if φ is.

6 Satisfiability Checking for Non-adjacent PnEMTL

Theorem 6. Satisfiability Checking for non-adjacent PnEMTL and non- adja-
cent 1-TPTL are decidable with EXPSPACE complete complexity.

The proof is via a satisfiability preserving reduction to logic EMITL(0,∞) result-
ing in a formula whose size is at most exponential in the size of the input
non-adjacent PnEMTL formula. Satisfiability checking for EMITL0,∞ is PSPACE
complete [11]. This along with our construction implies an EXPSPACE decision
procedure for satisfiability checking of non-adjacent PnEMTL. The EXPSPACE
lower bound follows from the EXPSPACE hardness of sublogic MITL. The same
complexity also applies to non-adjacent 1-TPTL, using the reduction in the pre-
vious section. We now describe the technicalities associated with our reduction.
We use the technique of equisatisfiability modulo oversampling [12,16]. Let Σ
and OVS be disjoint set of propositions. Given any timed word ρ over Σ, we
say that a word ρ′ over Σ ∪ OVS is an oversampling of ρ if |ρ| ≤ |ρ′| and when
we delete the symbols in OVS from ρ′ we get back ρ. Intuitively, OVS are set
of propositions which are used to label oversampling points only. Informally, a
formulae α is equisatisfiable modulo oversampling to formulae β if and only if
for every timed word ρ excepted by β there exists an oversampling of ρ accepted
by α and, for every timed word ρ′ accepted by α its projection is accepted by
α. Note that when |ρ′| > |ρ|, ρ′ will have some time points where no proposition
from Σ is true. These new points are called oversampling points. Moreover, we
say that any point i′ ∈ dom(ρ′) is an old point of ρ′ corresponding to i iff i′ is
the ith point of ρ′ when we remove all the oversampling points. For the rest of
this section, let φ be a non-adjacent PnEMTL formula over Σ. We break down
the construction of an EMITL0,∞ formula ψ as follows.

1) Add oversampling points at every integer timestamp using ϕovs below,
2) Flatten the PnEMTL modalities to get rid of nested automata modalities,

obtaining an equisatisfiable formula φflat,
3) With the help of oversampling points, assert the properties expressed by

PnEMTL subformulae φi of φflat using only EMITL formulae,
4) Get rid of bounded intervals with non-zero lower bound, getting the required

EMITL0,∞ formula ψi. Replace φi with ψi in φflat getting ψ.

Let Last = G⊥ and LastTS = G⊥ ∨ (⊥U(0,∞)
). Last is true only at the last
point of any timed word. Similarly, LastTS, is true at a point i if there is no next
point i + 1 with the same timestamp τi. Let cmax be the maximum constant
used in the intervals appearing in φ.

1) Behaviour of Oversampling Points. We oversample timed words over
Σ by adding new points where only propositions from Int holds, where Int ∩
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Σ = ∅. Given a timed word ρ over Σ, consider an extension of ρ called ρ′, by
extending the alphabet Σ of ρ to Σ′ = Σ ∪ Int. Compared to ρ, ρ′ has extra
points called oversampling points, where ¬

∨

Σ (and
∨

Int) hold. These extra
points are added at all integer timestamps, in such a way that if ρ already has
points with integer time stamps, then the oversampled point with the same
time stamp appears last among all points with the same time stamp in ρ′. We
will make use of these oversampling points to reduce the PnEMTL modalities
into EMITL0,∞. These oversampling points are labelled with a modulo counter
Int = {int0, int1, . . . , intcmax−1}. The counter is initialized to be 0 at the first
oversampled point with timestamp 0 and is incremented, modulo cmax, after
exactly one time unit till the last point of ρ. Let i ⊕ j = (i + j)%cmax. The
oversampled behaviours are expressed using the formula ϕovs: {¬F(0,1)

∨

Int ∧

F[0,1)int0}∧ {
cmax−1

∧

i=0

Gw{(inti∧F(
∨

Σ)) → (¬F(0,1)(
∨

Int)∧F(0,1](inti⊕1∧(¬
∨

Σ)∧

LastTS))}. to an extension ρ′ given by ext(ρ) = ρ′ iff (i)ρ can be obtained from
ρ′ by deleting oversampling points and (ii)ρ′ |= ϕovs. Map ext is well defined as
for any ρ, ρ′ = ext(ρ) if and only if ρ′ can be constructed from ρ by appending
oversampling points at integer timestamps and labelling kth such oversampling
point (appearing at time k−1) with intk%cmax.

2) Flattening. Next, we flatten φ to eliminate the nested Fk
I1,...,Ik

and Pk
I1,...,Ik

modalities while preserving satisfiability. Flattening is well studied [11,12,16,19].
The idea is to associate a fresh witness variable bi to each subformula φi

which needs to be flattened. This is achieved using the temporal definition
Ti = Gw((

∨

Σ ∧φi) ↔ bi) and replacing φi with bi in φ, φ′′
i = φ[bi/φi], where Gw

is the weaker form of G asserting at the current point and strict future. Then,
φ′

i = φ′′
i ∧ Ti ∧

∨

Σ is equisatisfiable to φ. Repeating this across all subformulae
of φ, we obtain φflat = φt ∧T over the alphabet Σ′ = Σ ∪W , where W is the set
of the witness variables, T =

∧

i Ti, φt is a propositional logic formula over W .
Each Ti is of the form Gw(bi ↔ (φf ∧

∨

Σ)) where φf = Fn
I1,...,In

(A1, . . . ,An+1)(S)
(or uses Pn

I1,...,In
) and S ⊆ Σ′. For example, consider the formula φ =

F2
(0,1)(2,3)(A1,A2,A3)({φ1, φ2}), where φ1 = P2

(0,2)(3,4)(A4, A5, A6)(Σ), φ2 =
P2
(1,2)(4,5)(A7, A8, A9)(Σ). Replacing the φ1, φ2 modality with witness proposi-

tions b1, b2, respectively, we get φt = F2
(0,1)(2,3)(A1, A2, A3)({b1, b2}) ∧ T , where

T = Gw(b1 ↔ (
∨

Σ ∧ φ1)) ∧ Gw(b2 ↔ (
∨

Σ ∧ φ2)), A1, A2, A3 are automata
constructed from A1,A2,A3, respectively, by replacing φ1 by b1 and φ2 by b2 in
the labels of their transitions. Hence, φflat = φt ∧ T is obtained by flattening
the Fk

I1,...,Ik
,Pk

I1,...,Ik
modalities.

3) Obtaining equisatisfiable EMITL formula ψf for the PnEMTL formula
φf in each Ti = Gw(bi ↔ (φf ∧

∨

Σ)). The next step is to replace all the
PnEMTL formulae occurring in temporal definitions Ti. We use oversampling to
construct the formula ψf : for a timed word ρ over Σ, i ∈ dom(ρ), there is an
extension ρ′ = ext(ρ) over an extended alphabet Σ′, and a point i′ ∈ dom(ρ′)
which is an old point corresponding to i such that ρ′, i′ |= ψf iff ρ, i |= φf .
Consider φf = Fn

I1,...,In
(A1, . . . ,An+1)(S) where S ⊆ Σ′. Wlg, we assume:
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• [Assumption1]: inf(I1) ≤ inf(I2) ≤ . . . ≤ inf(In) and sup(I1) ≤ . . . ≤ sup(In).
This is wlog, since the check for Aj+1 cannot start before the check of Aj in
case of Fn

I1,...,In
modality (and vice-versa for Pn

I1,...,In
modality) for any 1 ≤ j ≤

n.
• [Assumption 2]: Intervals I1, . . . In−1 are bounded intervals. Interval In may

or may not be bounded. This is also wlog3.

Let ρ = (a1, τ1) . . . (an, τn) ∈ TΣ∗, i ∈ dom(ρ). Let ρ′ = ext(ρ) be defined by
(b1, τ ′

1) . . . (bm, τ ′
m) with m ≥ n, and each τ ′

i is a either a new integer times-
tamp not among {τ1, . . . , τn} or is some τj . Let i′ be an old point in ρ′ cor-
responding to i. Let i′0 = i′ and i′n+1 = |ρ′|. ρ, i |= φf iff cond ≡ ∃i′ ≤
i′1 ≤ . . . ≤ i′n+1

n
∧

g=1
(τ ′

i′
g

− τ ′
i′∈Ig ∧ ρ′, i′g|=

∨

Σ ∧ Seg+(ρ′, i′g−1, i
′
g, S

′)∈L(A′
g)) ∧

Seg+(ρ′, i′n, i′n+1, S
′)∈L(A′

n+1) where for any 1 ≤ j ≤ n + 1, A′
j is the automata

built from Aj by adding self loop on ¬
∨

Σ (oversampling points) and S′ =
S ∪ {¬

∨

Σ}. This self loop makes sure that A′
j ignores(or skips) all the over-

sampling points while checking for Aj . Hence, A′
j allows arbitrary interleaving

of oversampling points while checking for Aj . Hence, for any g, h ∈ dom(ρ)
with g′, h′ being old action points of ρ′ corresponding to g, h, respectively,
Segs(ρ, g, h, S)∈L(Ai) iff Segs(ρ′, g′, h′, S ∪ {¬

∨

Σ}) ∈ L(A′
i) for s ∈ {+,−}.

Note that the question, “ρ, i |= φf?”, is now reduced to checking cond on ρ′.

Checking the conditions for ρ, i |= φf . Let Ig = 〈lg, ug〉 for any 1 ≤
g ≤ n (Here, 〈〉 denotes half-open, closed, or open). We discuss only the
case where {I1, . . . , In} are pairwise disjoint and inf(I1) �= 0 in φf =
Fn

I1,...,In
(A1, . . . ,An+1)(S). The case of overlapping intervals can be found in

the full version. The disjoint interval assumption along with [Assumption 1]
implies that for any 1 ≤ g ≤ n, ug−1 < lg. By construction of ρ′, between
i′g−1 and i′g, we have an oversampling point kg. The point kg is guaranteed to
exist between i′g−1 and i′g, since these two points lie within two distinct non-
overlapping, non-adjacent intervals Ig−1 and Ig from i′. Hence their timestamps
have different integral parts, and there is always a uniquely labelled oversampling
point kg with timestamp �τ ′

i′
g−1

� between i′g−1 and i′g for all 1≤g≤n. Let for all

1≤g≤n + 1, A′
g = (Qg, 2S , initg, Fg, δ

′
g). Let the unique label for kg be intjg

. For
any 1 ≤ g ≤ n, we assert that the behaviour of propositions in S between points
i′g−1 and i′g (of ρ′) should be accepted by A′

g. This is done by splitting the run
at the oversampling point kg(labelled as intjg

) with timestamp τ ′
kg

= �τ ′
i′
g−1

�,
i′g−1 < kg < i′g.

(1) Concretely, checking for cond, for each 1 ≤ g ≤ n, we start at i′g−1 in ρ′, from
the initial state initg of Ag, and move to the state (say qg) that is reached
at the closest oversampling point kg. Note that we use only Ag (we disallow
the ¬

∨

Σ self loops) to move to the closest oversampling point.

3 Unbounded intervals can be eliminated using Fk
I1,I2,...,Ik−2,[l1,∞)[l2,∞)(A1, . . . ,Ak+1)≡

Fk
I1,I2,...,Ik−2,[l1,cmax)[l2,∞)(A1, . . . ,Ak+1)∨Fk−1

I1,I2,...,Ik−2,[l2,∞)(A1, . . . ,Ak−1,Ak · Ak+1).
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(2) Reaching qg from initg we have read a behaviour between i′g−1 and kg; this
must to the full behaviour, and hence must also be accepted by A′

g(we use A′
g

instead of Ag to ignore the oversampling points that could be encountered
while checking the latter part). Towards this, we guess a point i′g which is
within interval Ig from i′, such that, the automaton A′

g starts from state qg

reading intkg
and reaches a final state in Fg at point i′g. Then indeed, the

behaviour of propositions from S between i′g−1 and i′g respect A′
g, and also

τ ′
i′
g

− τ ′
i′ ∈ Ig.

(1) amounts to Seg+(ρ′, i′g−1, kg, S)∈L(Ag[initg, qg]) · intjg
. This is defined by

the formula ψ+
g−1,intjg ,Qg

which asserts Ag+1[initg, qg] · intjg
from point i′g−1

to the next nearest oversampling point kg where intjg
holds.

(2) amounts to checking from point i, within interval Ig in its future, the exis-
tence of a point i′g such that Seg−(ρ′, i′g, kg, S)∈L(Rev(intjg

· A′
g[qg, Fg])).

This is defined by the formula ϕ−
g,intjg ,qg

which asserts Rev(intjg
· A′

g[qg, Fg]),
from point i′g to an oversampling point kg which is the earliest over-
sampling point s.t. i′g−1 < kg < i′g. For cond, we define the formula

ψ = F[0,1)intj0 ∧
n
∨

g=1
[ψ+

g−1,intjg ,qg
∧ ψ−

g,intjg ,qg
] ∧ ψ+

n .

• For 1 ≤ g ≤ n, ψ+
g−1,intjg ,qg

= FIg
(
∨

Σ∧F(Ag[initg, qg] ·{intjg
})(S∪{intjg

})),
• ψ+

n = FIn
(
∨

Σ ∧ F(An+1 · {Last})(S ∪ {Last})), and
• For 1 ≤ g ≤ n, ψ−

g,intjg ,qg
= FIg

(
∨

Σ ∧ P(Rev(intjg
· Ag[qg, Fg]))(S ∪ {intjg

})).

Note that there is a unique point between i′g−1 and i′g labelled intjg
. This is

because, τ ′
i′
g

− τ ′
i′
g−1

< τ ′
i′
g

− τ ′
i′ ≤ cmax. Hence, we can ensure that the meeting

point for the check (1) and (2) is indeed characterized by a unique label. Note
that there is exactly one point labeled inty from any point within future cmax or
past cmax time units (by ϕovs). This is the reason we used the counter modulo
cmax to label the oversampling points. We encourage the readers to see the
Fig. 3. The full EMITL formula ψf , is obtained by disjuncting over all n length
sequences of states reachable at oversampling points kg between i′g−1 and i′g, and
all possible values of the unique label intjg

∈ Int holding at point kg.

4) Converting the EMITL to EMITL0,∞: We use the reduction from EMITL to
equivalent EMITL0,∞ formula [16]. In ψf , only the F operators are timed with
intervals of the form 〈l, u〉 where l > 0 and u �= ∞, but the FI and PI modalities
are untimed. We can reduce these time intervals into purely lower bound (〈l,∞))
or upper bound (〈0, u〉) constraints using these oversampling points, preserving
satisfiability, by reduction showed in [16] Chap. 5 lemma 5.5.2 Page 90–91.

The above 4 step construction shows that (i) the equisatisfiable EMITL0,∞
formula ψ is of the size (O(|φ|Poly(n)) where, n is the arity φ. (ii) For a non-
adjacent 1-TPTL formula γ, applying the reduction in Sect. 5 yields φ of size
O(2Poly|γ|) and, arity of φ = O(|γ|2). Also, after applying the reduction of
Sect. 6 by plugging the value of |φ| from and its arity from (ii) in (i), we get the
EMITL0,∞ formula ψ of size O(2Poly(|γ|)∗Poly(n)) = O(2Poly(|γ|)).
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Fig. 3. Figure showing elimination of F2 modality from temporal definition of the form
Gw(b ↔ F2

(1,2),(3,4)(A1, A2, A3)(Σ
′). This is done by (i) checking for the first part of A1,

A1,1, from present point to the next oversampling point at timestamp �τi	, labelled,
intj , (ii) jumping to a non-deterministically chosen point within (1, 2) and asserting
the remaining part of A1 skipping oversampling points, A′

1,2, in reverse till intj , (iii)
Following the steps similar to (i) and (ii) for checking A2 but starting the check of first
part of A2 from the point chosen in (ii).

7 Conclusion

We generalized the notion of non-punctuality to non-adjacency in TPTL. We
proved that satisfiabilty checking for non-adjacent 1-variable fragment of TPTL
is EXPSPACE Complete. This gives us a strictly more expressive logic than
MITL while retaining its satisfaction complexity. An interesting open problem
is to compare the expressive power of non-adjacent 1-TPTL with that of MITL
with Pnueli modalities (and hence Q2MLO) of [10]. We also leave open the
satisfiabilty checking problem for non-adjacent TPTL with multiple variables.
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