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Preface

This book gathers 16 papers on the square of opposition, related to the 6th World
Congress on the Square of Opposition which took place at the Orthodox Academy
of Crete, November 1–5, 2018.

The square of opposition is a logical structure coming from Aristotelian logic.
The topic has been continuously studied for 2000 years. Even Frege, one of the
founders of modern mathematical logic, has contributed to the topic.

During the second half of the twentieth century, research on the topic was
revived. New extensions and generalization of the square of opposition were sug-
gested, far beyond Aristotle’s traditional logic. These advances were accompanied
by different configurations (triangle, rhombus, hexagon, octagon, polyhedra, and
multi-dimensional objects) that were conceived to illustrate the new theories.

These theories found exciting applications in many fields, ranging from met-
alogic to highway code, through economics, music, physics, color theory, and
theology.

The research in this field is interdisciplinary but anchored on a clear and precise
logical theory, symbolized by the traditional diagram of the square of opposition.
The theory of the square of opposition is at the same time a traditional and original
topic that included new interpretations of the past theories, discoveries on the logical
theory, and modern applications in a variety of spheres.

All these aspects are present in this book, with chapters displaying novel aspects
of the theory of opposition and its variations that are embraced in a mainstream
research project that revitalizes the theory of the square of opposition.

We thank all the contributors to this volume and the work of the referees who
have critically analyzed the papers, leading to improved versions.

Rio de Janeiro, Brazil Jean-Yves Beziau

Patras, Greece Ioannis Vandoulakis
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The Square of Opposition: Past, Present,
and Future

Jean-Yves Beziau and Ioannis Vandoulakis

Abstract We first explain the origin and development of the theory of opposition,
its generalization to many concepts, and figures of opposition, particularly the
hexagon of opposition. We also survey the organization of a series of events on
the topic since 2007 in Montreux. We then talk in details about the sixth edition of
the world congress on the square emphasizing the fact that it was organized at the
Orthodox Academy of Crete. In the third part, we discuss the bright future of the
theory.
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2 J.-Y. Beziau and I. Vandoulakis

1 The Square of Opposition: A Diagram and a Theory

The square of opposition is a diagram going back to Apuleius (Peri Hermeneias)
and Boethius (De Silogismo Categorico) based on some ideas by Aristotle (De
Interpretatione 6–7, 17 b 17–26 and Prior Analytics I.2, 25 a 1–25) (for details
see [32]). The expression “square of opposition” is used today not only to talk about
this diagram but also about the theory surrounding it, whose original diagram is just
a primitive print.

There are two crucial aspects of the SQUARE theory: on the one hand, the visual
aspect, and on the other hand, the logical aspect. The visual aspect is related to
geometry, originally a square, and the logical aspect to the notion of opposition,
hence the terminology “square of opposition.”

Opposition is a single notion (about the concept of notion, see [5]), the reason
why the singular is used, although the theory includes three kinds of opposition:
contradiction, contrariety, and subcontrariety. These three oppositions are presented
in a unified logical framework in the theory of opposition. These are logical
concepts involving truth and falsity, going beyond the truth/falsity dichotomy, not
by introducing a third value but by combination and interaction of these two values.

These three kinds of opposition were originally defined on the basis of propo-
sitions. Two propositions are contradictory iff (if and only if) they cannot be true
together and cannot be false together, contrary iff they can be false together but not
true together, and subcontrary iff they can be true together but not false together.
The square of opposition was indeed an essential part of the theory of categorical
proposition, giving an architecture, a classification of Aristotelian propositions
(Fig. 1).
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Fig. 1 Apuleius’s reconstructed square

But this structure can easily be extended to concepts conceived extensionally
or intensionally. For example, extensionally contradiction corresponds to the set-
theoretical notion of complementation. This variation to concepts is important and
gives rise to numerous applications of the square to deontic notions (prohibition,
obligation, and the like) (Fig. 2), color classification, music concepts, and many
other topics. The square of opposition theory has evolved in particular through this
conceptual appraisal, not by the development of new forms of opposition.

Fig. 2 Deontic traffic sign
square of opposition

Another significative step in the development of the theory is the versatility of
the relations between the three kinds of opposition and the notion of subalternation
which escorts these relations. These variations are naturally produced by the
geometrical aspect of the theory. From a square we can go to a hexagon, octagon,
decagon, a cube, a dodecahedron, and so forth.
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A central geometrical figure which emerged and turned out to be a central key
to the theory is however the hexagon [3]. The hexagonal theory of opposition was
mainly promoted by Robert Blanché (but see [21]). And the basis of Blanché’s
hexagonal theory is the triangle of contrariety, which is the heart of the hexagon.
Blanché developed his theory at the end of the 1950s. He published a paper in the
Journal of Symbolic Logic [15], but his main work on the topic, his book Structures
intellectuelles - Essai sur l’organisation systématique des concepts, was published
in 1966 [16]. His theory did not have much impact. His book has up to now not been
translated into English or into another foreign language except Brazilian Portuguese
(Fig. 3).

Fig. 3 Brazilian version of
Blanché’s book. (Cover by
Sergio Kon of the Book by
Robert Blanché Estruturas
intelectuais: ensaio sobre a
organização sistemática dos
conceitos. Reproduction
courtesy of EDITORA
PERSPECTIVA, https://
editoraperspectiva.com.br/
produtos/estruturas-
intelectuais/)

The theory of the square was revived by the first author when he wrote in 2003 the
paper “New light on the square of oppositions and its nameless corner,” published in
the logic journal of the Russian Academy of Sciences in Moscow [2], introducing:

• Coloring.
• A three-dimensional object which is a combination of three hexagons.
• An octagon which like the hexagon is the combination of two dual figures of

opposition, a square of contrariety and a square of subcontrariety (Fig. 4).

https://editoraperspectiva.com.br/produtos/estruturas-intelectuais/
https://editoraperspectiva.com.br/produtos/estruturas-intelectuais/
https://editoraperspectiva.com.br/produtos/estruturas-intelectuais/
https://editoraperspectiva.com.br/produtos/estruturas-intelectuais/
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Fig. 4 Octagon of opposition generalizing Blanché’s hexagon. (Photos courtesy of Jean-Yves
Beziau)

He was then in touch with both Alessio Moretti, a French-Italian student who
did a PhD with him on the topic in Neuchâtel, developing in particular the
theory of n-opposition [23] corresponding to the third point and Hans Smessaert,
a Belgian linguist much interested in polyhedra. Since then these two gentlemen
have constantly been working on the topic (e.g., see [18, 24, 25, 29, 30]). They
were present at the first World Congress on the Square of Opposition (SQUARE)
organized by the first author in Montreux in 2007 [7, 8] and also at the sixth edition
organized by both authors in Crete in 2018.

Between these two events, there were the second edition of the SQUARE in
Corsica in 2010 [6], the third in Beirut in 2012 [10], the fourth at the Vatican in 2014
[11, 12], and the fifth in Easter Island in 2016 [13]. Many distinguished scholars
from logic, mathematics, philosophy, computer science, semiotics, theology, and
psychology have participated in these events, among them: Pierre Cartier, Pascal
Engel, Jan Woleński, Larry Horn, Terence Parsons, Dale Jacquette (Fig. 5), Stephen
Read, Peter Schroeder-Heister, Wolfgang Lenzen, and John Woods.
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Fig. 5 Dale Jacquette at the third SQUARE in Beirut. (Photos courtesy of Jean-Yves Beziau)

2 The Sixth World Congress on the Square of Opposition:
Crete 2018

Most of the papers included in this book are related to talks presented at the sixth
edition of the World Congress on the Square of Opposition which took place at
the Orthodox Academy of Crete (OAC) in the picturesque Kolymbari village, near
Chania, in Crete, November 1–5, 2018. Other papers that were presented at this
event were published in a special issue of Logica Universalis edited by the first
author and Jens Lemanski [14].

The idea of organizing the event at the OAC in Crete is due to the second author.
He was born in Crete and had already organized an event at this academy. The two
authors of the present paper and editors of this book were the main organizers of
the event (Fig. 6), supported, besides the OAC, on the one hand by Jens Lemanski,
from the Institute of Philosophy of the University of Hagen in Germany, and on the
other hand by Petros Stefaneas and Ioannis Kriouvrekis, both from the Department
of Applied Mathematics, of the National Technical University of Athens.
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Fig. 6 I.Vandoulakis and J.-Y.Beziau organizers of the sixth SQUARE. (Photos courtesy of the
Orthodox Academy of Crete)

The Orthodox Academy of Crete was created in 1968 and functions under
the auspices of the Ecumenical Patriarchate. It is a research, education, and
conference center aiming at promoting the dialog between faith, science, and culture
and inspired by the Platonic tradition of συμϕιλoσoϕει̃ν (symphilosophein –
philosophizing together). The academy participates in EU (European Union) and
national research projects and is a member of the Ecumenical Association of
Academies and the Laity Centres in Europe (Oikosnet Europe).

The academy hosts a unique Museum of Cretan Herbs that includes about
6000 herbs of the collection of Cretan herbs, gathered by the French professor of
botany Jacques Zaffran, who dedicated his life to the scientific study of the rich
flora and especially the endemic species of Crete. Some of them, for instance,
the dittany of Crete (Origanum dictamnus), is mentioned by Aristotle in his work
History of Animals (612a4) and his pupil Theophrastus in his work Enquiry into
Plants (9.16.1). Many important events have been organized by the OAC including
international conferences related to philosophy, theology, environmental studies,
physics, biology, medicine, computer science, bioethics, and social issues.

The event on the square was organized shortly after the commemoration of the
50th anniversary of the academy and its award of the silver medal by the Academy
of Athens. The event lasted for 5 days, starting Wednesday, November 1, 2018,
and ending Sunday, November 5, 2018, with invited talks, contributing talks, and
tutorials.

On Friday, November 3rd afternoon, an excursion was organized in the old
Venetian town and harbor of Chania (La Canea). The Venetian architecture is quite
visible from the first moment since, historically, after the Arabs and Byzantines,
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Crete was conquered by Venetians in 1252. Chania is a place where different
civilizations of the East and West have flourished throughout the centuries and left
their impact visible today in every step. Besides the Venetian part of the city, there
is the Jewish Quarter with the Etz Hayyim Synagogue, and the Turkish part called
Splantzia with a maze of narrow streets leading to the Venetian port with the Mosque
of Kioutsouk Hassan, the oldest Ottoman building in Crete, erected in 1645.

The excursion also included the seventeenth-century Monastery of Agia Triada
(Holy Trinity) in the Akrotiri peninsula built by two brothers Jeremiah-Ioannis and
Laurentius-Lucas of the Venetian noble Zancaroli family. The church is built in
the Byzantine architectural cruciform style with three domes with two large Doric-
style columns and one smaller, Corinthian-style column on either side of the main
entrance. The facade bears an inscription in Greek, which is dated to 1631.

The Holy Trinity typically forms a triangle of contrariety, called “Shield of the
Trinity” or Scutum Fidei in the Western Christian tradition (see [19]). This trinity
was one of the reasons why the fourth edition of the SQUARE was organized at
the Pontifical Lateran University in the Vatican in 2014 where the participants were
welcomed by Bishop Enrico dal Covol, the rector of this university, nicknamed the
“Pope University” (cf. [11, 12]).

Amazingly, this triangle can be recognized in the façade of the Monastery of
Agia Triada (Fig. 7). This incidence can be possibly explained by the fact that the
Zancaroli brothers were converted from the Catholic to the Greek Orthodox faith
and were familiar with both religious cultures.

Fig. 7 Monastery of Agia Triada Tsangarolon (of the Zancaroli family) in the Akrotiri peninsula
represents fantastic blend of features of different architectural traditions. On its façade, the triangle
of contrariety can be recognized. (Photos courtesy of the Orthodox Academy of Crete)
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3 The Square of Opposition: An Ongoing Open Project

The adventures of the square of opposition will go on. The seventh edition of
SQUARE is scheduled to be held in Leuven, in Belgium in 2022 (organized by
KU Leuven, it was delayed due the COVID-19 pandemic) (Fig. 8) and the eighth
edition on the Island of Madeira, Portugal.

Fig. 8 The seventh SQUARE will take place in KU Leuven, Belgium, Sept 2022. (Photo courtesy
of Jacques Riche)

The future of the square of opposition looks bright, capturing more and more
the interest of a great variety of scholars. The theory of opposition grows in depth
and complexity and spreads over all fields of knowledge with extensive applications.
Much work can be developed concerning the history of the square, its philosophical,
logical, mathematical, and semiotic aspects.

Regarding the history of the square, the full story, within various cultures and
traditions, still needs to be explored and told [9]. This can be done in different ways.
We plan in particular to publish a “diagrammatic book” on the square, collecting the
most significant diagrams of the history of the square with lengthy commentaries.
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The square has flourished and will be flourishing indefinitely by its internal
structure of opposition that grows and expands in many directions like any
mathematical theory. There is a continuous interaction between geometrical objects,
logical structures and all kinds of concepts. The theory has been applied in particular
to color theory [20], music theory (see [26] and Fig. 9), quantum physics [28],
painting theory [17], analogy [4, 27], and Kant’s theory of antinomies [22].

Fig. 9 The hexagon of music

The reason to call the present book The Exoteric Square of Opposition is that in
the future we expect to have more mysterious things going on, both at the theoretical
level and at the level of applications. Then we will publish another book that will be
entitled The Esoteric Square of Opposition.

The SQUARE project can be considered as a symbol of successful interdis-
ciplinarity. The reason for its success is that it is based on a simple, yet rich,
structure understandable by everybody. As with the chess game, there is a good
balance/contrast between the simplicity of the basic rules and the complexity of
what it is possible to do with these rules. The SQUARE can be seen as a kind
of chess game of thought. However, it is a game with no losers, opening infinite
possibilities.

This game, this theory, is based on logic, logic which is the foundation of
rationality. The SQUARE theory is a good expression/reflection of the four aspects
of the Logos: reasoning, relation, science, and language, that can themselves be
represented by the four-theory of oppositions with a tetrahedron (of subcontrariety),
the 3-simplex (Fig. 10).
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Fig. 10 The tetrahedron of
the Logos

The organization of the sixth SQUARE in Greece was important for symbolic
reasons. First, because the idea of the square was born in Greece in the work of
Aristotle. Moreover to have that event in Crete was even more impressive, due to the
fact that Crete is the origin of the Greek civilization. There were born the alphabet
and Zeus. And in Crete there is Plato’s cave and the Labyrinth, two fundamental
philosophical symbols.

Crete is the cradle of the Minoan civilization, a Bronze Age Aegean civilization
that represents the first advanced civilization in Europe. Several writing systems go
back to the Minoan period, most of which remain still undeciphered, such as the
Linear A script and the script on the Phaistos disc.

Crete is also associated with the semi-mythical philosopher and poet Epimenides
of Knossos or Phaistos (seventh or sixth century BC), famous for his Epimenides
paradox (“Cretans, always liars”), origin of the liar paradox (for a recent appraisal
of this paradox, see [31]). According to Diogenes Laërtius, Epimenides met
Pythagoras in Crete, and they went to the cave called Dictaeon Antron (the Psychro
cave) of Mount Ida, where Zeus was raised by a goat named Amalthea. This cave is
known to be the origin of one of the most famous texts of philosophy: the Allegory
of the Cave by Plato (see [1]).

Crete is also famous for the labyrinth, as Arthur Evans called the Knossos
palace, because of its architectural complexity. According to the myth, King
Minos commanded the skillful craftsman Daedalus (the name �αίδαλoς connotes
“labyrinth”) to construct a monumental building of interconnected rooms – a
labyrinth (λαβύρινθoς) – to imprison Minotaur (a monster with the body of a
man and the head of a bull). Minotaur’s original name has obvious cosmological
connotations: Asterion, which is the ruler of the stars; Minotaur also has a
connotation to the constellation of Taurus.
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The labyrinth is an ambiguous concept and construction that allows a double
interpretation. From inside, it is a disorientating, chaotic construction; a man is
imprisoned in it and unable to understand its structure and to find a way out of it; he
is entrapped in a repetitious pattern of wrong choices. From outside or above, it is a
sophisticated ordered construction of admirable complexity. Thus, the labyrinth is a
metaphor that combines two opposite visions: overt chaotic complexity (internally)
vs. underlying order (externally), imprisonment vs. freedom, confusion vs. clarity,
multitude vs. unity, and limited perception vs. overall comprehension. The labyrinth
pattern also appears in non-European cultures, for instance, in Indian manuscripts
and esoteric Buddhist texts, such as the Chakravyuha that refers to a military
formation narrated in the Hindu epic Mahabharata. A prehistoric petroglyph on a
riverbank in Goa shows a labyrinthine pattern that has been dated to circa 2500 BC.
All these shows that the pattern of the labyrinth is one of the oldest symbols of
human civilization (see [33]).

In the European philosophical tradition, the labyrinth was also conceptualized in
dynamic terms and used as a metaphor for mental processes. According to Gottfried
Wilhelm Leibniz (1646–1716), there are “two famous labyrinths where our reason
very often goes astray”:

(i) The problem of human freedom.
(ii) The structure of the continuum.

In the twentieth century, the computer scientist and Pulitzer Prize-winner
Douglas R. Hofstadter represented the mind by the metaphor of an ant colony, i.e., a
labyrinth of rooms, with endless rows of doors flinging open and slamming shut; a
network of intricate domino chains, branching apart and rejoining, with little timed
springs to stand the dominoes back up.

The SQUARE helps us circulate along the labyrinth of thought and to escape the
cave’s darkness and illusion to reach understanding (Fig. 11).
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Fig. 11 Escaping the cave with the labyrinth of thought
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Division of Entities and Foundations
of Reality: Aristotle’s Ontological Square

Gianluigi Segalerba

Abstract In my paper, I analyse some aspects regarding Aristotle’s interpretation
of the organisation of ontology. In my opinion, Aristotle is looking for a new
ontology in many of his works. Hence, in his investigation, Aristotle aims to
discover the correct components of the ontology and to put these components in their
due ontological place. Being qua being, categories, substance among the categories,
universals, form, matter and so on are analysed and defined by Aristotle throughout
his works.

In this analysis, I concentrate my attention on two schemes of reality which, in
Aristotle, precede, at least as regards some aspects, the other structures of reality.
These schemes, which constitute the first frame of reality, are the two-district
scheme and the four-domain scheme. The two-district scheme is the structure of
reality composed by individual entities and by universal entities; the four-domain
scheme consists in the structure of reality composed by individual substantial
entities, individual non-substantial entities, universal substantial properties and uni-
versal non-substantial properties. The four-domain scheme, which is representable
in the form of the ontological square, is an extension of the two-district scheme.

The mentioned districts and domains correspond to Aristotle’s realms of reality.
These realms are mutually incompatible in the sense that any entity can belong
only to one of these realms, but they are not mutually isolated, since, for exam-
ple, individual entities are instances of the corresponding universal entities. The
discovery, explanation and analysis of these schemes are keys to determining the
position of the different entities in the reality. Without a correct understanding of
the position of the entities in the reality, no ontology can function correctly. For
example, entities which have, in the reality, the position of instances must always
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be distinguished from entities which, within the reality, do not have the position
of instances; individual entities must always be distinguished by common entities
and by universals. Through the distinction regarding entities which are instances
and entities which are not instances, Aristotle is opening the fields of existence to
different realms of entities. Not only does numerically one entity exist, universal
entities exist too.

Ontological square (four-domain scheme) and two-district scheme represent the
basic structure, the very framework of Aristotle’s ontology, since they are the
general rule of Aristotle’s ontology. Any interpretation of ontology which does not
respect the distinction existing between entities and which is expressed through
these schemes leads to the collapse of the ontology itself or paves the way for
this collapse, as witnessed, for example, by the Third Man regress. The inquiry on
Aristotle’s four-domain scheme is completed by a comparison between Aristotle’s
position and the positions of E. J. Lowe’s ontological square.

I contend that Aristotle interprets individual entities as instances of properties
(or as instantiated properties). The basic status of the individual entity consists
in its being an instance of a property. Furthermore, Aristotle considers universal
properties as being programmes/dispositions concretised in the individual entities
(at least as regards biological properties). Within Aristotle’s ontology, the particular
existence field of the instances is always constituted by individuals (by individual
entities), while the whole field of existence is constituted both by individuals (by
individual entities) and by universal properties. Hence, reality does not consist
exclusively of individuals. Properties, at least biological properties like “being
man” or “being animal”, are programmes/dispositions being concretised through
their instances. Their existence does not depend on the existence of one particular
instance; it does not depend, likewise, on the existence of a determined plurality, but
it does depend on the existence of at least one instance: properties do not transcend
the dimension of the individual entities.

In order to explain the consequences deriving from a misunderstanding of the
realms of reality, I analyse the arguments of “the One Over Many” and of the “Third
Man” from Aristotle’s lost work De Ideis. In the Third Man Argument, it becomes
clear that, if within an ontology an entity, which is not an instance, is interpreted as
an instance, the consequence of this mistake is the collapse of the whole ontology.

Keywords Realms of reality · Aristotle · Categories · Metaphysics · De Ideis ·
Typological ontology · Two-district ontology · Four-domain ontology ·
Ontological square · Substance · Universal properties · Individuals ·
Particulars · Universals · Lowe · Kung · Liske · One Over Many · Third Man
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1 Introduction

In my essay, I analyse some aspects of Aristotle’s ontology. The description of
the four domains of entities in Categories 2 and of the two districts of entities
in Categories 5 will serve to introduce Aristotle’s strategy of differentiation of
entities. The difference between entities which are instances and entities which
are not instances will prove to be one of the foundations of Aristotle’s ontology.
The basic structure of individuals as instances of properties will emerge, in this
study, as the fundamental status of individuals themselves. Individuals are not
simply individuals: they are, constitutively, instances of something. Aristotle does
not accept a theory of bare substratum: every individual is an individual something.1

In many passages of his works (e.g. in Categories 5, 3b10–21; in Metaphysics
Zeta 8, 1033b19–1034a8; and in Metaphysics Zeta 13, 1038b34–1039a3), Aristotle
distinguishes entities being (having the ontological status of) a “this something
(τóδε τι)” or being (having the ontological status of) a “this such (τóδε τoιóνδε)”
from entities being (having the ontological status of) a “quality (πoιóν)” or being
(having the ontological status of) a “such (τoιóνδε)”. Entities having the ontological
status of “this something/this such”, on the one hand, and entities having the
ontological status of “quality” and of “such”, on the other hand, constitute realms of
reality which should not be confused with each other. These kinds of entities belong
to realms of reality that are reciprocally incompatible.

Aristotle aims to put order in the ontology. The general distinction existing
between entities which are instances and entities which are not instances serves
to determine the ontological realm to which the different entities belong. Moreover,
this distinction serves to avoid any confusion between types of entities. In particular,
through his distinction strategy, Aristotle is opening spaces of reality for determined

1 At the beginning of my contribution, I would like to mention three studies which I regard as
central for my way of analysing Aristotle’s texts: Joan Kung’s essay Aristotle on Thises, Suches
and the Third Man Argument; Michael-Thomas Liske’s book Aristoteles und der aristotelische
Essentialismus: Individuum, Art, Gattung; and Edward Jonathan Lowe’s book The Four-Category
Ontology. A Metaphysical Foundation for Natural Science. I would like to briefly introduce the
themes dealt with in the mentioned pieces of research that have proved to be the most important
ones for me. Kung’s article opened a new view of Aristotle for me with her inquiry on the presence
of a typological ontology in Aristotle. Kung interprets the difference between individuals and
universals as a difference of types of entities. Liske’s book gave me new perspectives regarding
the aspects that can be assigned to Aristotelian essences as vital forces. Lowe’s investigation gave
me, through his interpretation of a four-category ontology, a new way of interpreting Aristotle’s
strategy of differentiation between entities in Categories 2 and a new way of connecting Aristotle’s
ontology to the discovery of models for natural sciences. As regards my interpretation of Aristotle’s
relation between particular and universal and between object and concept, I gained important ideas
while analysing G. Frege’s works Über Begriff und Gegenstand, Funktion und Begriff, Über Sinn
und Bedeutung and Die Grundlagen der Arithmetik. Eine logisch-mathematische Untersuchung
über den Begriff der Zahl. The responsibility for the interpretation which I present in my paper is,
of course, mine alone.
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entities. He is opening realms of reality for entities which, although they are not
instances, are nonetheless real entities. One of the foundations of reality and one
of the general rules of ontology are represented in Aristotle by the two-district
scheme, which is constituted by individual entities and by universal entities and
by the four-domain scheme – a complexification of the two-district scheme –
which is constituted by individual substantial entities, individual non-substantial
entities, universal substantial properties and universal non-substantial properties.
Both schemes imply an opposition between the entities composing them. A precise
opposition exists between the two districts, on the one hand, and between the
four domains, on the other hand, since their features are mutually incompatible.
Any entity of the reality can, respectively, only belong to one of the districts and,
correspondingly, only to one of the domains. Any entity can be either individual
or universal, on the one hand; it can be only individual substantial, or individual
non-substantial, or universal substantial, or universal non-substantial, on the other
hand. Incompatibility does not mean isolation between districts or between domains,
though, since individual entities are instances of the corresponding universal
entities.

A new conception of opposition should therefore be introduced in the interpre-
tation of Aristotle. This new concept of opposition, which precedes every other
possible opposition, is the concept of the ontological square of opposition (i.e.
the concept of the ontological four-domain opposition) and of the ontological two-
district opposition.

The opposition between different entities, both substantial and non-substantial
individuals, on the one hand, and substantial and non-substantial universals, on the
other hand, steadily shows up in Aristotle’s works. Without the correct interpretation
of this basic opposition, which requires a correct ontological distinction, there is no
space for any entity, and there is no space for other forms of opposition.

The ontological square of oppositions should become, in my opinion, the first
authentic square of opposition in Aristotle, inasmuch as it represents the most
general rule of ontology: no ontology is possible without this distinction, and
everything stops if this distinction is not respected. Without the ontological square,
there is, for Aristotle, no beginning of ontology.

Correspondingly, the regress of the Third Man shows that the mistake represented
by regarding entities which cannot be instances as if they actually were instances
provokes the collapse of the whole ontology. Hence, the correct interpretation of the
status of the entities will turn out to be indispensable for the cohesion and coherence
of the ontology. Aristotle’s ontological enterprise possesses, therefore, different
aspects which are always mutually interconnected. The investigation into the
components of ontology, the determination of the features of these components and
the analysis of the consequences which occur if the features of these components
are not correctly interpreted are part of the same ontological strategy: without a
general distinction between individual and universal and without respecting the
incompatibility between individual and universal, there is no way of preventing the
collapse of the ontology.
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A healthy ontology, first of all, ought to be able to distinguish between entities
which are individual/particular and entities which are universal/common. Thus, it
ought to be able to distinguish between entities which are, as regards their own
position in the reality, instances and entities which are not instances (but have, that
notwithstanding, a position in the reality). On the basis of Aristotle’s insistence on
this difference,2 I believe that it is legitimate to say that this differentiation capacity
is one of the most important requirements of a healthy ontology. Of course, the
mentioned ontological schemes do not represent the whole of Aristotle’s ontology
because they are only one of the foundations of it. The other ontological fields
represented, for instance, by being qua being, by the categories, by substance as
category and by the functions of potentiality and actuality are still to be explored.

2 Terminology, Definitions, Translations

Before directly dealing with Aristotle’s ontological project, I shall specify the
translations of the main concepts of Aristotle which will be addressed in this study.
Moreover, I shall share a few remarks on my interpretation of Aristotle’s substance,
since substance will be mentioned in the essay. Due to the centrality of this concept
for Aristotle’s ontology, I feel it is appropriate to comment briefly on my own
interpretation of substance.

(a) In this text, the ancient Greek word “oὐσία” will be translated with “substance”.
(b) In this text, the ancient Greek expression “τo` τί ἦν εἶναι” will be translated

with “essence”.
(c) In this text, the ancient Greek expression “τóδε τι” will be translated with “this

something”.3

(d) I am of the opinion that substance (oὐσία), in the main, signifies4:

• Entity belonging to the biological field and being able to independently exist,
like an individual man, an individual horse and an individual tree5; substance
corresponds, therefore, to the complex organisms, to the complex entities of
the biological dimension like animals and plants.

2 See footnote 49 for a partial list of Aristotle’s passages in which the incompatibility between
particulars (and related concept) and universals (and related concepts) is asserted.
3 For an analysis of the expression “τóδε τι”, I refer to J. A. Smith’s essay Tóde ti in Aristotle.
4 The values for substance that are being mentioned in my essay are not the only ones that
Aristotle’s concept assumes. I refer to my study Semantik und Ontologie: Drei Studien zu
Aristoteles for my positions regarding the different values substance can, in my opinion, have.
5 As regards the value of substance as organism, see, for example, Categories 4, 1b27–28 (man and
horse); Categories 5, 2b13–14 (tree); and Metaphysics Zeta 7, 1032a18–19 (man and plant).
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This is, in my interpretation, the sense that should be attributed to the first
substance of the Categories.6 In other works of Aristotle such as in De Anima,7

substance can either maintain this value8 or assume the following value:

• Form, essence and soul of an entity belonging to the biological field;
substance is, in this case, the factor that directs the individual entity during its
own life and that leads the whole individual entity to its own development9

(the soul of the individual man e.g. directs the whole life of the individual
man and leads the whole individual man to his own development).10 Within
the biological dimension, essence, soul, nature, form and substance of the
living entity are to be seen, in my opinion, as different expressions for the
same entity.

(e) The terms “individual” and “particular”, whenever they refer to the realm of
reality of the instances, are, in this text, reciprocally interchangeable.

(f) Property is, in this study, universal property. Universal property is a programme
for realisation in the instances, without being itself an instance.

6 As regards the editions, the translations and the commentaries regarding Aristotle’s works, I only
mention editions, translations and commentaries corresponding to the works of Aristotle which are
actually quoted in my essay. The editions of Aristotle’s works which I used for my analysis are
the following ones: for the Categories I used the edition of L. Minio-Paluello. For the lost work
De Ideis, I used the edition of W. D. Ross contained in the volume Aristotelis Fragmenta Selecta.
Recognovit Brevique Adnotatione Instruxit W. D. Ross and the edition of D. Harlfinger contained
in W. Leszl, Il “De Ideis” di Aristotele e la teoria platonica delle idee. Edizione critica del testo a
cura di Dieter Harlfinger; G. Fine in her book On Ideas: Aristotle’s Criticism of Plato’s Theory of
Forms follows the edition of D. Harlfinger as regards the passages of De Ideis which will be quoted
and analysed in my essay. For the Metaphysics I used the edition of W. Jaeger and the edition of
W. D. Ross.
7 I consulted the following translations of Aristotle’s works: for the Categories I consulted the
translation of J. L. Ackrill; for De Ideis I consulted the translation of G. Fine; for the whole
Metaphysics I consulted the translation of W. D. Ross (contained in Barnes J. (ed.), The Complete
Works of Aristotle. The Revised Oxford Translation, Volume Two) and the translation of H.
Tredennick; for the books Gamma and Delta of the Metaphysics, I consulted the translation of
Ch. Kirwan; for the books Mu and Nu of the Metaphysics, I consulted the translation of J. Annas.
I would like to add that I consulted these translations without, however, entirely following any of
them. I always tried to find my own translation of the texts of Aristotle which are quoted in my
analysis. I of course assume the responsibility for my translations.
8 As regards the particular question of the continuity or discontinuity, in Aristotle, of the
interpretation of substance, I limit myself to the following remarks: I do not agree with all the
positions maintaining the presence of a caesura between Aristotle’s interpretation of substance in
the Categories, on the one hand, and Aristotle’s interpretation of substance in the central books of
the Metaphysics, on the other hand. The value of substance as an individual entity belonging to the
biological field is, in my opinion, never abandoned as a primary value for substance by Aristotle.
This value of substance remains, at least in my opinion, a primary value for substance (i.e. it is not
relegated to a secondary role).
9 See, for these values of substance, the chapter De Anima II 1.
10 See, for example, the chapter De Anima II 1 as regards the value of substance as form, soul and
essence of a living entity.
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(g) The concepts “universal” and “universal property”, in this text, are either
equivalent, or “universal” represents a name, a linguistic deputy for “universal
property”. In either case, the problem of the existence or non-existence of
universals in Aristotle depends, in my opinion, on the question whether in
Aristotle universal properties exist or not, as I shall thereafter reveal.

(h) In my analysis, when I use the concept “property”, I refer mostly to properties
belonging to the biological field, such as “being man” and “being horse” (for
properties corresponding to species – in these cases, to the species “man”
and to the species “horse”), on the one hand, and such as “being animal”
(for properties corresponding to genera), on the other hand. Hence, property
mainly refers to substantial biological properties. Aristotle considers, in my
opinion, all biological properties as properties belonging to reality (i.e. they do
not correspond to mere instruments of classification invented by the speaking
subjects). The property “being man” exists, even though it does not exist at the
same ontological level as the ontological level at which the instances of this
same property (e.g. individual men) exist.

(i) By using the concept “property” in my analysis, I am not referring to fictitious
properties. The properties that I refer to are properties belonging to the objective
reality. These properties exist independently of their being acknowledged, or
of their being thought of, or of their being known by a (thinking, speaking,
knowing) subject; these kinds of properties exists independently of whichever
subject.

(j) I consider terms like “universals”, “common entities”, “that which is said
universally”, “that which belongs universally” and “that which is predicated
in common”, which can be found, for example, in Metaphysics Zeta 13, as
reciprocally equivalent; they refer to universal entities and are opposed to
individual entities.

(k) Through the distinction between the realm of individual entities and the realm
of universal entities, Aristotle establishes a typological ontology consisting
of individuals as instances of universal properties, on the one hand, and of
universal properties, on the other hand.

3 Division of Entities: Aristotle’s Ontological Square

Coming now to the ontological organisation of the entities, I would like, first of
all, to say that this organisation precedes any particular property and any particular
entity we could have in the reality. Independent of which properties, in particular,
exist (we could have in the reality, e.g. other biological properties and, as a
consequence, other biological species than those we actually have), we shall have,
all the same, the organisation of reality expressed in the two districts and in the four
domains together with the reciprocal relations which hold, respectively, between the
entities belonging to the two districts and between the entities belonging to the four
domains of the whole field of existence.
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Aristotle steadily works on the discovery of the basic ontological structures:
the curtains of this ontological enterprise are opened in different works, so that
the interpretative reconstruction of Aristotle’s strategy must be built on the basis
of different passages from different works. This aspect, of course, makes the
analysis of the structure of reality in Aristotle much more difficult than if Aristotle’s
observations were concentrated in the same work. On the other hand, the fact that
Aristotle’s observations concerning the very foundations of reality are present in
different works is a testament to the importance, for Aristotle, of the discovery of
the foundations of ontology and to the relevance of the correct interpretation of these
foundations.11

The passage corresponding to Categories 2, 1a20–1b9, can be illuminating as
regards the division and organisation of reality12:

Of the entities some are said of a subject, but are in no subject (Tω̃ν o̓́ντων τα` με`ν καθ’
ὑπoκειμένῳ τινo`ς λέγεται, ἐν ὑπoκειμένῳ δε` oὐδενί ἐστιν), as, for example, man is
said of a subject, the individual man, but is in no subject; some entities, then, are in a
subject, but are said of no subject (τα` δε` ἐν ὑπoκειμένῳ μέν ἐστι, καθ’ ὑπoκειμένoυ

δε` oὐδενo`ς λέγεται) – I call in a subject that which, being in something not as a part,
cannot exist separately from that which it is in – (ἐν ὑπoκειμένῳ δε` λέγω o̔̀ ἔν τινι

μη` ὡς μέρoς ὑπάρχoν ἀδύνατoν χωρι`ς εἶναι τoυ̃ ἐν ᾧ ἐστίν), as, for example, the
individual knowledge of grammar is in a subject, the soul, but is said of no subject; and
the individual white is in a subject, the body – for every colour is in a body –, but is said
of no subject, some entities, then, are both said of a subject and in a subject (τα` δε` καθ’
ὑπoκειμένoυ τε λέγεται και` ἐν ὑπoκειμένῳ ἐστίν), as, for example, knowledge is in a
subject, the soul, and is also said of a subject, knowledge of grammar; some entities, then,
neither are in a subject nor are said of a subject (τα` δε` oὔτε ἐν ὑπoκειμένῳ ἐστι`ν oὔτε

καθ’ ὑπoκειμένoυ λέγεται), like, for example, the individual man or the individual horse
(oἷoν o̔ τι`ς

,̧
ανθρωπoς ἢ o̔ τι`ς ἵππoς) – for none of such entities either is in a subject or is

said of a subject. Entities that are individual and numerically one (ἁπλω̃ς δε` τα`
,̧
ατoμα και`

ἓν ἀριθμῷ) are generally said of no subject (κατ’ oὐδενo`ς ὑπoκειμένoυ λέγεται), but
nothing prevents that some of them are in a subject (ἐν ὑπoκειμένῳ δε` ἔνια oὐδε`ν κωλύει

εἶναι): for the individual knowledge of grammar is one of the entities in a subject.

The structure of reality is organised in four different subdivisions:

(i) Entities which are said of a subject, but which are not in a subject (an example
is man – man is predicated of the individual men).

11 I used the following commentaries of Aristotle’s works: for the De Ideis, I used W. Leszl’s
Il “De Ideis” di Aristotele e la teoria platonica delle idee. Edizione critica del testo a cura di
Dieter Harlfinger and G. Fine’s On Ideas: Aristotle’s Criticism of Plato’s Theory of Forms; for
the Categories I used J. L. Ackrill’s Aristotle’s Categories and De Interpretatione, Translated with
Notes; for the whole Metaphysics, I used W. D. Ross’ Aristotle’s Metaphysics. A Revised Text
with introduction and commentary by W. D. Ross; for Metaphysics Gamma and Delta, I used Ch.
Kirwan’s Aristotle Metaphysics. Books Γ , Δ, and E.
12 Within my essay, I shall not entirely quote the original text of Aristotle; I only quote those
expressions and those concepts of Aristotle’s text which, in my opinion, are the most relevant
ones.
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(ii) Entities which are in a subject but which are not said of a subject (examples
are individual knowledge of grammar or individual white – the individual
knowledge of grammar is in the soul; the individual white is in the body).

(iii) Entities which are said of a subject and which are in a subject (an example
is knowledge – knowledge is in the soul and is said of the knowledge of
grammar).

(iv) Entities which are not in a subject and which are not said of a subject (examples
are the individual man or the individual horse).

The entity being said of a subject constitutes an essential property of the subject
to which it is referred, whereas the entity being in a subject does not constitute an
essential property of the subject. The feature “being numerically one” belongs both
to what neither is in a subject nor is said of a subject and to what is in a subject but
is not said of a subject. We can observe the presence of a differentiation between
entities which are numerically one and, therefore, are individual and entities which
are not numerically one and, therefore, are not individual.

4 Lowe’s Ontological Square

The comparison of Aristotle’s ontological construction with the ontological con-
struction proposed by Lowe is, in my opinion, relevant for the understanding of
Aristotle’s ontological scheme. Lowe derives his own ontological square directly
from Aristotle’s division of entities in Categories 213; his own ontological scheme
(compared with Aristotle’s) is as follows14:

13 See, for example, The Possibility of Metaphysics: Substance, Identity, and Time, pp. 203–204,
The Four-Category Ontology: A Metaphysical Foundation for Natural Science, p. 21, and More
Kinds of Being: A Further Study of Individuation, Identity, and the Logic of Sortal Terms, pp.
8–11.
14 See, for Lowe’s description of the four-category ontology, Chaps. 1 and 2 of The Four-Category
Ontology: A Metaphysical Foundation for Natural Science. See also Lowe’s More Kinds of Being:
A Further Study of Individuation, Identity, and the Logic of Sortal Terms (Lowe describes, in the
paragraph New Developments of the Introduction of this last book, his conversion to the four-
category ontology as the most significant change in his metaphysical thinking since the writing
of his book Kinds of Being). Lowe’s meditation represents an example of a four-domain scheme.
Different schemes of ontology are represented, in the contemporary ontology, by D. M. Armstrong,
who presents a two-domain scheme constituted by individual entities and by universal entities
(see Universals & Scientific Realism, Volume I: Nominalism and Realism; Volume II: A Theory of
Universals) and by K. Campbell, who presents an ontology of tropes (see Abstract Particulars). A
comparison of Aristotle’s ontology with these ontological interpretations must, unfortunately, be
reserved for a further analysis.

http://doi.org/10.1007/978-3-030-90823-2_1
http://doi.org/10.1007/978-3-030-90823-2_2
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• Lowe’s individual substances (objects)15 = Aristotle’s entities which are in a
subject and are not said of a subject.

• Lowe’s property/relation instances (modes) = Aristotle’s entities which are in a
subject but which are not said of a subject.

• Lowe’s substantial universals (kinds) = Aristotle’s entities which are said of a
subject but which are not in a subject.

• Lowe’s non-substantial universals (property/relations)16 = Aristotle’s entities
which are said of a subject and which are in a subject17.

Substances represent the basis of the whole reality, since every other domain of
entities depends, either directly or indirectly, on substances for its own existence.

I think that Lowe’s interpretation of reality as consisting of substantial and
non-substantial universals, on the one hand, and of individual substances and
property/relation-instances, on the other hand, represents a highly valuable instru-
ment in understanding the relation existing between individual entities and universal
entities in Aristotle, in spite of the fact that Lowe’s square is, actually, not a
commentary of Aristotle’s ontological positions.

Likewise, Lowe’s interpretation of substantial and non-substantial universals as
dispositions, on the one hand, and of individual substances and of property/relation
instances as occurrences,18 on the other hand, corresponds, in my opinion, to
Aristotle’s aims when Aristotle speaks of individual entities like the individual man
and of properties like being man. In particular, Lowe’s concept of dispositions as
a complex of properties which determine the individual entities having them can

15 There are probably some differences between Aristotle and Lowe as regards the interpretation of
substance and of natural kinds; for example, Lowe interprets gold as a natural kind (see The Four-
Category Ontology. A Metaphysical Foundation for Natural Science, p. 21), whereas I am not
sure that Aristotle would consider gold as being a natural kind. The important aspect of similarity
between Aristotle and Lowe nonetheless consists in the suggestion that a basic framework exists
already before the concrete appearance of entities in the reality. This framework precedes anything
else. Moreover, Lowe’s distinction between disposition and occurrence corresponds, at least in
certain aspects, to Aristotle’s distinction between potentiality and actuality, between potential
faculties of entities and actualisation of these faculties. Both thinkers individuate in the structure
of reality a field of actualisations/occurrences, i.e. of concrete cases of laws (e.g. of natural laws),
and a field of potentialities/dispositions, which constitutes the general range of possibilities for
the concretisations. This second field of reality is the range of laws constituting the frame of
reality of which individuals/particulars are the concretisation. Reality is not only made up of
individual/particular cases; there is a realm of reality constituted by general laws which direct
the existence of the individual entities.
16 See The Four-Category Ontology. A Metaphysical Foundation for Natural Science, p. 22.
17 I tend to agree with Lowe’s square, but I do not think that substantial individuals are instances
of kinds; I consider them as instances of properties. Substantial individuals are, in my opinion,
members of kinds, since they are instances of properties defining the corresponding kinds. The
substantial individual “man” is an instance of the property “being man”, which delimits the kind
“man”.
18 See, for the definition of the concepts “occurrence/occurrent” and “disposition/dispositional”,
The Four-Category Ontology: A Metaphysical Foundation for Natural Science, Chap. 1.

http://doi.org/10.1007/978-3-030-90823-2_1
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correspond, in my opinion, to Aristotle’s conception of biological properties as
programmes for the development of the biological entity.19

The scheme of a four-category ontology20 as such represents a model of
metaessentialism applied to the structure of the reality21: no matter which entities
we can meet (men, dinosaurs, Martians and so on), the deep structure of the four
domains is always present; it precedes every particular nature; it precedes any
manifestation, any presence and any appearance of concrete entities. This structure
is the framework of reality as such.

5 A Proposal of Adaptation of Lowe’s Scheme

In order to adapt Lowe’s ontological scheme to my previous distinctions of Aristo-
tle’s entities, I would propose the following four-domain scheme for Aristotle:

(i) Substances (in the sense of entities belonging to the biological realm – men,
horses, trees and so on).

(ii) Non-substantial individual entities (like particular qualities and particular
quantities).

(iii) Universal substantial properties (like being man, being horse, being tree)22.
(iv) Universal non-substantial properties (like being a quality, being a quantity)23.

While Lowe, if I have correctly understood his positions, considers individual
substances as instances of kinds, it seems to me that Aristotle considers substances
as instances of universal substantial properties and as members of species and genera

19 Within Lowe’s ontological scheme, the relationships between the entities of the different
categories are instantiation, characterisation and exemplification (actually, Lowe presents different
schemes showing slight differences in terminology with each other in his book The Four-Category
Ontology: A Metaphysical Foundation for Natural Science). Individual entities (both individ-
ual substances and property/relation instances) instantiate, respectively, substantial universals
(kinds and non-substantial universals (properties/relations)). Individual substances are charac-
terised by property/relation instances (modes). Substantial universals (kinds) are characterised
by non-substantial universals (properties/relations). Furthermore, individual substances exemplify
non-substantial universals (properties/relations). As regards Aristotle’s square and as regards
the relations within Aristotle’s works between particulars/individuals and universals (universal
properties), I use the concept “instantiation” as applying to the result of the concretisation of a
property (the essence) in its instances.
20 For my analysis, I prefer to use concepts like “four-domain scheme” in order to avoid any
interference between the four mentioned categories of Lowe and the categories of Aristotle.
21 I use the word “metaessentialism” in order to express that the deep structure of reality consists
of the four domains of substantial instances, non-substantial instances, universal kinds and non-
substantial universals.
22 These entities express the essential identification of substances.
23 These entities express the essential identification of the instances of non-substantial entities.
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(kinds).24 As I shall afterwards show in relation to some aspects of Aristotle’s
defence of the validity of the principle of contradiction, I believe that Aristotle
considers reality as being immediately composed of properties: properties are one
of the bearing structures of his ontology. Instances are always to be seen, in my
opinion, in their immediate connection to their essential properties. In general,
individual entities are instantiated properties for Aristotle. They belong to kinds
but are, as such, instances of properties defining kinds.

Universal substantial properties determine kinds (species and genera) in the sense
that they represent the condition, for possible members of the kinds, for belonging
or not belonging to a determined kind. For example, the property “being man”
determines the kind (the species) “man” and distinguishes the kind (the species)
“man” from all other species (kinds); the property “being man”, furthermore,
represents the condition for belonging or not belonging to the species “man”.
Individual entities which are men belong to the species “man”; individual entities
which are not men do not belong to this same species.

I believe that the conception of the ontological square can represent a useful
extension of the conception of the typological ontology, which is introduced
by Aristotle in order to free the ontology from the dangers of the Third Man
regress. I think that Aristotle’s introduction of the typological ontology, in general,
and Aristotle’s insistence on the incompatibility existing between features of the
individual entities and features of the universal entities, in particular, correspond to
Aristotle’s aims of describing a healthy ontology. A healthy ontology has, among
its characteristics, the presence of the distinction between the entities which are
instances and the entities which are not instances. Both the two-district ontology
and the four-domain ontology constitute the framework of the reality, which is, as
such, independent of the concrete entities present in the reality. Before any entity
whatsoever appears in the world, the deep structure of reality is already constituted,
in Aristotle’s view, by the two districts:

(a) Individual entities.
(b) Universal properties.

and by the four domains:

(i) Substances.
(ii) Non-substantial instances.

(iii) Universal substantial properties.
(iv) Universal non-substantial properties.

These divisions of entities are useful both to understand the description of reality
Aristotle aims to reach and the interpretation of reality Aristotle wishes to avoid. In
particular, no confusion between entities which are instances and entities which are

24 Universal substantial properties individuate through their own definition the corresponding
kinds. Kinds (both species and genera) function, in my opinion, as classes of the individual entities.
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not instances can be accepted; the mistake represented by confusing the realms of
reality with each other means the destruction of the whole ontology.25

Any entity appearing in the world belongs to one of these districts and to one of
these domains. An entity must not necessarily belong to precisely one of these two
districts and of these four domains, but any entity whatsoever certainly belongs to
one, and only one, of these districts and to one, and only one, of these domains. The
conditions for the way of presence in the reality of the entities are given: any entity
will belong to one, and only one, of these fields.

6 Foundations: Two-District Ontology

The general aim of Aristotle’s ontology, in my opinion, consists in assigning the
individual entities, on the one hand, and universal properties, on the other hand,
to the right realms of existence. At the same time, Aristotle aims to correctly
determine the relation of a substance with the factor that constitutes the essence
of the substance itself. This factor does not constitute an entity which exists apart
or is separated from the entities to which it is related. The factor due to which any
entity whatsoever is essentially that which it is, is not a further entity existing apart
or being separated from the first entity. The problems that are to be dealt with by
Aristotle are, therefore, the following ones:

(i) The general determination of the ontological realms of the different entities.
(ii) The determination of the realm of existence of the universal properties and, in

particular, of the essences of the individual entities.

As we shall see, the realms of reality of the individual entities and of the universal
properties are mutually incompatible. The corresponding kinds of entities should
not be confounded with each other. The organisation of entities consists, therefore,
in the following realms of reality:

(a) Realm of the individual entities.
(b) Realm of the universal properties.

I would like to mention, first of all, Aristotle’s differentiation between universals
and particulars expressed in Metaphysics Beta 4, 999b33–1000a1:

For there is no difference between saying numerically one or saying particular: for we call
the particular in this way, the numerically one, but we call universal what is said of these26

(τo` γα`ρ ἀριθμῷ ἓν ἢ τo` καθ’ ἕκαστoν λέγειν διαφέρει oὐθέν. oὕτω γα`ρ λέγoμεν τo`
καθ’ ἕκαστoν, τo` ἀριθμῷ ἕν, καθóλoυ δε` τo` ἐπι` τoύτων).

The division of entities which we meet in this passage is the following one:

25 Of course, incompatibility between realms of reality does not mean mutual isolation between
these realms.
26 That is, of these particulars.
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• Particular is the same thing as numerically one.
• What is predicable of a plurality of particulars is the universal. The universal is

something belonging to a plurality or is predicated of a plurality.

The existence of a universal presupposes the existence of a plurality to which it is
referred. Universals are, therefore, distinguished from, or opposed to, the entities
that are numerically one.27 The presence of and the difference between the two
realms of reality begins, therewith, to loom.

In order to now give a more articulated example of Aristotle’s typological
ontology than the previous one, I am going to quote the text Categories 5, 3b10–
21, where the differentiation between first substance and second substance can be
observed. In this text, Aristotle’s strategy of differentiating:

• between entities that are instances of properties, and that, therefore, are numeri-
cally one, on the one hand,

• and entities that only express the essential identification28 of the entities which
are instances of properties, without being themselves instances of properties and
without being, therefore, themselves numerically one or particular, on the other
hand,

comes to light:

Every substance seems to signify a this something (α̃σα δε` oὐσία δoκει̃ τóδε τι

σημαίνειν). Certainly, as regards the first substances, it is indisputable and true that it
signifies a this something (τóδε τι): for the entity revealed is individual (

,̧
ατoμoν) and

numerically one (ἓν ἀριθμῷ). But, as regards the second substances, it appears, on the
one hand, because of the form of the name, whenever one speaks of man or of animal,
that a second substance likewise signifies a this something (ἐπι` δε` τω̃ν δευτέρων oὐσιω̃ν

φαίνεται με`ν o̔μoίως τῷ σχήματι τη̃ς πρoσηγoρίας τóδε τι σημαίνειν); this is not
really true, but, rather, it signifies a certain quality (πoιóν τι), – for the subject is not, as the
primary substance is, one (oὐ γα`ρ ἕν ἐστι τo` ὑπoκείμενoν), but the man and the animal
are said of many entities (κατα` πoλλω̃ν o̔

,̧
ανθρωπoς λέγεται και` τo` ζῷoν); – however,

it does not signify simply a certain quality, as the white does; the white signifies nothing

27 For a further consideration of the function of a universal, see, for example, this passage contained
in Metaphysics Delta 26, 1023b29–32: “For the universal, and that which is said in a whole way,
as being a whole (τo` με`ν γα`ρ καθóλoυ, και` τo` o̔́λως λεγóμενoν ὡς o̔́λoν τι o̓́ν), is universal in
the sense that it contains many entities because it is predicated of each (oὕτως ἐστι` καθóλoυ ὡς

πoλλα` περιέχoν τῷ κατηγoρει̃σθαι καθ’ ἑκάστoυ), and because all, each respectively, are one
(και` ἓν ἅπαντα εἶναι ὡς ἕκαστoν), for example man, horse, God, because they are all animals
(oἷoν

,̧
ανθρωπoν ἵππoν θεóν, διóτι ἅπαντα ζῷα)”. Universals are both containers of entities and

units of measurement of the entities themselves.
28 With the expression “essential identification”, I mean the function, exercised by a second
substance or by a universal, of expressing the essence of an entity without therewith expressing
the whole composition of the essence. A second substance like man expresses the essential
identification of the individual man, since it expresses the name of the essence of the individual
man. A second substance like animal expresses a less informative essential identification of the
individual animal, since the individual animal is identified not specifically, but only generically, by
animal. See Categories 5, 2b7–14, and 2b29–34 for the comparison between giving the account of
the species and giving the account of the genus of an entity.
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but a quality, but the species and the genus determine the quality concerning substance (τo`
δε` εἶδoς και` τo` γένoς περι` oὐσίαν τo` πoιo`ν ἀφoρίζει), – for they signify substance of a
certain quality (πoια`ν γάρ τινα oὐσίαν σημαίνει).

In the text we can observe Aristotle’s intention of assigning the features of τóδε τι

only to entities which are numerically one. Entities which are not numerically one
are excluded from this range of entities. Furthermore, we can observe the following
contrapositions between the features belonging to first substances and the features
belonging to second substances:

• First substance is this something, is numerically one, signifies a τóδε τι and is
individual.

• Second substance is not this something, is said of many entities, is not numeri-
cally one and signifies a πoιóν.

This text conveys different contents which are of great importance. Aristotle is
focussing on a determined feature of a substance qua substance in general and
not qua substance of a particular kind. The following correlation between the first
substances and the features belonging to the first substances qua first substances
holds:

(x)(first substance (x) → individual and numerically one (x) → this something
(τóδε τι)(x)29)

This implication holds for every substance qua substance, no matter which particular
substance is dealt with. The following correspondence holds:

• Instance↔ numerically one.30

As regards second substances qua second substances, the following correlation
between the second substances and their own features holds:

(x)(second substance (x)→ not numerically one (x)→ not this something (not τóδε

τι)(x)→ quality (πoιóν)(x))

We reach, therefore, the following results:

• What is said of many is not numerically one.
• Since entities being said of many are not numerically one, they cannot be put in

the same realm of entities together with the entities that are numerically one; they
belong to another realm of reality.

• Second substances are not individual entities existing besides the entities of
which they are predicated. They presuppose the existence of the entities of

29 It should be noted that entities which are in something and are not said of something are
numerically one and individual too, without themselves being a τóδε τι (see Categories 2, 1b6–9).
30 This correspondence holds not only for substances but also for every individual entity, that is, it
is not limited to the category of substance.
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which they are predicated: their existence presupposes the existence of the first
substances.

• Second substances express the way of being of the entities of which they are
predicated: they are a sort of synthesis of the complex of properties of the
individual substances.

• The quality which is signified by the second substance is not simply a quality;
it expresses a substance of a certain quality. Aristotle does not want second
substances to be reduced to qualities. The position of the second substances in
the field of reality is different from the position of mere qualities.31

The proposition:

– Socrates is man.

assigns to Socrates the essential property “being man”. Socrates instantiates the
property “being man”: the proposition states that the property “being man” is
instantiated in Socrates. The essential property “being man” attributed to Socrates
is not a numerically one entity existing besides Socrates. Being man exists as
a universal property having a determined content of faculties. This property is
inscribed in the reality as one of the properties individuating biological species.
The property is not a further man; it is the complex of dispositions which, if there is
a man, will be instantiated by this man.

By drawing a distinction between entities that have the ontological structure of
“this something (τóδε τι)”32 or of “this such (τóδε τoιóνδε)”,33 on the one hand,
and entities that have the ontological position of “such (τoιóνδε)”34 or, alternatively,
of “quality (πoιóν)”,35 on the other hand, Aristotle is, in my opinion, aiming to draw
a distinction between different fields of existence. Likewise, he is aiming to assign
the entities to their own realm of reality. Hence, Aristotle is not therewith aiming to
exclude either universal properties or universals from the field of existence.

31 The relation between first substances and second substances could be interpreted, among other
things, as a relation of dependence from the first substances on the second substances. The first
substance Socrates would depend on the second substance for its being something. I do not agree,
though, with this hypothesis. I think that a first substance is immediately an instantiated property.
To be is to be something. To exist, for any first substance, is to be an instantiated property of
a determined biological kind. There is no individual entity which first of all exists and only
thereafter is a determined property; if an individual entity exists, it is an instantiated property.
Existence cannot be detached or distinguished from the act of instantiating a complex of biological
properties. Biological entities are the complex of properties contained in their own soul; without
these properties they do not exist.
32 See, for example, Categories 5, 3b10–21; Metaphysics Beta 6, 1003a8–9; and Metaphysics Zeta
13, 1038b34–1039a3.
33 See, for example, Metaphysics Zeta 8, 1033b19–1034a8.
34 See, for example, Metaphysics Beta 6, 1003a8–9; Metaphysics Zeta 8, 1033b19–1034a8; and
Metaphysics Zeta 13, 1038b34–1039a3.
35 See, for example, Categories 5, 3b10–21.
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7 Instances and Properties

Generally speaking, every individual entity is an instance of a property. There is no
individual bare entity; there is no individual entity that can be neutral in relation to
all its properties. For an individual entity, to exist means instantiating a property or a
complex of properties. This property or this complex of properties is the essence of
the individual entity itself; without essence there is no entity. Individual entities are
never bare entities. Individual entities are instances which, as instances, constitute
the realisation of a determinate range of properties. Instances cannot assume and
lose any property since they cannot lose their essential properties. If they were to
lose their essential properties, they would disappear from the realms of existence.
Furthermore, they are not an addition of accidental properties. There is, on the
contrary, a complex of constitutive properties which makes up the individual entity
and is the way of existence of the individual entity.

The property “being man” can exist, in spite of the absence of a particular
instance or in spite of the disappearance of a particular instance. This same property,
though, like every other biological property, cannot exist if there is no instance of it.
There are no non-instantiated properties in Aristotle.36 First substances constitute
instances of properties (the individual man Socrates represents, e.g. an instance of
the property “man”). Both entities, that is, substances and properties, exist; they do
not belong, nonetheless, to the same field of existence. As such when it comes to
their ontological status, first substances are instances of properties. Properties are –
at least biological properties – programmes (dispositions) which, once instantiated,
direct every aspect of the development of an entity.

The fields of entities which are numerically one and entities which are not
numerically one are rigidly distinguished from each other. Reality is divided in two
fields:

(i) Individuals.
(ii) Universals.

Universals (at least universals corresponding to a biological class) and second
substances37 possess the following features:

• They correspond to a class (the universal “man” corresponds to the class of men).
• They refer to a property that is instantiated by the individual entities (the universal

“man” corresponds to the property “being man”, which is instantiated in every
member of the class “man”).

36 Aristotle’s refusal of the existence of non-instantiated properties can be found in Categories 11,
14a6–10.
37 Since both second substances and universals are predicated of a plurality of entities (see the
quoted passage of Categories 5, 3b10–21 and, for example, De Interpretatione 7, 17a38–b1) and
since “man”, for example, can be both a second substance and a universal, I think that second
substances and universals can be considered as equivalent, at least as regards universals expressing
names of biological species and genera.
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• If they are considered as classes, they have, as their own extension, the individual
entities that belong to the class.

• If they are considered as the reference to an intension, they are the name of the
property that states the condition for belonging to a class38.

• They are not instances (universals belong to a realm of reality which is different
from the realm of reality to which the individual entities belong; individual
entities and universals – or individual entities and properties as programmes for
instances – belong to different realms of reality).

• They are, furthermore, immanent to the plurality and not transcendent in relation
to the plurality, that is, universals must have at least one instance in order to
exist39.

• They presuppose the existence of the instances of which they are predicated.

8 Some Remarks on the Relevance of the Essence
in Aristotle’s Ontological System

The status of the individual entities being instances of properties has been men-
tioned. Instances have determined properties as their own essences: the general
structure of instances/properties is the kernel of reality. It is relevant for the analysis
of Aristotle’s vision of ontology to analyse some consequences that follow in the
event that the principle of contradiction does not hold (Metaphysics Gamma 4,
1007a20–33), so that we can observe Aristotle’s absolute refusal of the hypothesis
that existence of the essence is jeopardised. Properties and essences turn out to be
indispensable within ontology:

And in general, those who use this argument do away with substance and essence (oὐσίαν

και` τo` τί ἦν εἶναι). For it is necessary that they say that all attributes are accidents, and
that there is no being essentially man or being essentially animal. For, if being essentially
man (τι o̔̀περ ἀνθρώπῳ εἶναι) is something, this will not be being not man (μη` ἀνθρώπῳ
εἶναι) or not being man (μη` εἶναι ἀνθρώπῳ) (and yet these are negations of it); for that
which it meant was one thing, and this was the substance of something (τινoς oὐσία).
Signifying substance is that, for it, the essence is not something else (τo` δ’ oὐσίαν

σημαίνειν ἐστι`ν o̔́τι oὐκ
,̧
αλλo τι τo` εἶναι αὐτῷ). But if, for it, being essentially man

is either being essentially not man or essentially not being man (εἰ δ’ ἔσται αὐτῷ τo` o̔́περ

ἀνθρώπῳ εἶναι ἢ o̔́περ μη` ἀνθρώπῳ εἶναι ἢ o̔́περ μη` εἶναι ἀνθρώπῳ), the essence will
be something else (

,̧
αλλo τι ἔσται), so that it is necessary for them to say that there will

not be such notion of anything,40 but that all attributes are accidental; for in this aspect

38 See, for example, Categories 5, 2a14–19: species and genera as second substances are the
entities to which first substances belong. See also Metaphysics Delta 26, 1023b29–32 for the
function of the universal as the entity which contains a plurality of entities.
39 For the difference which exists between immanent universals and transcendent universals, I
refer to the analyses of Armstrong in Universals & Scientific Realism, Volume I: Nominalism and
Realism, p. 128.
40 That is, there is no essence.
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substance and accident are distinguished from each other: for the white is accidental to
the man, since man is white, but he is not what white is (τo` γα`ρ λευκo`ν τῷ ἀνθρώπῳ
συμβέβηκεν o̔́τι ἔστι με`ν λευκo`ς ἀλλ’ oὐχ o̔́περ λευκóν).

If there is no principle of contradiction, there is no essence. Since this consequence
is unacceptable, the principle of contradiction must retain its validity. In the case
of the non-validity of the principle of contradiction, any content of essence is
annulled, as it can be seen on the basis of the example represented by the essence
of man. Actually, properties as such completely disappear since their contents are
annulled by the non-validity of the principle of contradiction. Aristotle sees reality
as consisting of properties. Reality is organised in properties, which are essences
of determined individual entities. Aristotle is so convinced of this structure that he
uses it as the basis of the validity of the principle of contradiction: a reality without
properties is simply not acceptable. Reality would remain without properties if the
principle of contradiction had no validity.

If the essence of man has a determined content, the essence of man will be this
determined content. If the principle of contradiction does not have validity, the
essence of man will be the negations, too, of this content, that is, it will be the
essence of being not man or it will be the essence of not being man, that is, it will
have a content of properties which is other than the original essence of man and
which is incompatible with the original essence of man. Every essential content is
therewith annulled: essence as essence does not exist. In general, the content of any
property whatsoever collapses (the collapse of the principle of contradiction is not
only a problem for the essences, it is a problem regarding all properties as such).

If the principle of contradiction has no validity, then there is no possibility of
existence for properties and for essences. The individual entity cannot have an
essence, since no essence has a determined content. We have no essences, so that
we cannot have individual entities that are determined by essences. Any individual
entity whatsoever, in the absence of validity for the principle of contradiction, would
be, in general, essentially f, but it would be not f, too. Therefore, there would be no
sense in speaking of an essence that should determine the entity as such and that
should differentiate this individual entity from other entities in the reality.

Actually, within an ontological condition characterised by the absence of validity
of the principle of contradiction, there is simply no sense in speaking of differences
between entities, since, as everything can have every property and everything can be
denied every property, there is no way of distinguishing the entities from each other.
There is no difference at all any longer between entities, because there is no longer
any determined property content.

Aristotle’s use of concepts like essence and substance implies that he has an
ontological scheme that contains properties, plurality, distinguishable plurality and
entities as instances of essences. In other words, using the concept of essence
within one of the defence strategies for the validity of the principle of contradiction,
Aristotle does not use only essence. He also uses a whole apparatus of entities and of
concepts connected to essence. There are essences, for Aristotle, since Aristotle has
considered individual entities as being, as such, instances of properties. Determined
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properties are essences since individual entities are instances of them. The status of
individual entities as instances of properties is indispensable so that properties are
regarded as being essences of determined entities.

By resorting to the essence in order to defend the validity of the principle of
contradiction, Aristotle is resorting to a constituent of reality that, in his opinion,
cannot be refused in a healthy ontology; an ontological system cannot function
without essences. Reality would no longer be reality if the essence disappears.
Reality is constituted of properties, which are essences of determined entities.
No matter which entities we have in the reality, essences exist. No matter which
individual entities exist, individual entities have essences. If the consequence of
the fall of the principle of contradiction is that essence and substance of entities
disappear, this consequence should be refused so that the principle of contradiction
could maintain its own validity. Substance and essence are simply not expendable
in a healthy ontological system: they belong to the very structure of reality.

9 Metaphysics Mu 10: Instances and Universals

Coming back to particular entities and to universals, the passage contained in
Metaphysics Mu 10, 1087a4–21 provides more insight into Aristotle’s strategy on
the relations which exist between particulars and universals. Thanks to this passage,
we can see that the structure of instances and universals corresponds to the very
foundations of reality. Aristotle’s strategy consists, in my opinion, in showing that
reality is composed both of individuals and of universals. Moreover, the status
of individuals is shown to be that of “instances of . . . ”. The interpretation of
individuals as instances of properties aims to show the modality of relation between
individuals and properties:

And now, all these difficulties follow with good reason, whenever they make the ideas out
of elements (o̔́ταν ἐκ στoιχείων τε πoιω̃σι τα`ς ἰδέας) and maintain that a separated unity
exists apart from the substances which have the same form (παρα` τα`ς τo` αὐτo` εἶδoς

ἐχoύσας oὐσίας [και` ἰδέας] ἕν τι ἀξιω̃σιν εἶναι κεχωρισμένoν); but if, as in the case
of the elements of speech (ὥσπερ ἐπι` τω̃ν τη̃ς ϕωνη̃ς στoιχείων), nothing prevents that
many alphas and betas exist41 (πoλλα` εἶναι τα`

,̧
αλφα και` τα` βη̃τα), and if nothing prevents

that no alpha itself and no beta itself exist apart from the many42 (μηθε`ν εἶναι παρα` τα`

πoλλα` αὐτo`
,̧
αλφα και` αὐτo` βη̃τα), in consequence of this there will be infinite similar43

syllables44 (ἔσoνται ἔνεκά γε τoύτoυ
,̧
απειρoι αἱ o̔́μoιαι συλλαβαί). The statement that

all knowledge is universal (καθóλoυ), so that it is necessary both that the principles of
entities (τα`ς τω̃ν o̓́ντων ἀρχα`ς) are universal (καθóλoυ) and are not separated substances

41 Alternative translation: “nothing prevents that the alphas and the betas are many”.
42 That is, “apart from the many alphas and betas”.
43 Alternative translation: “same”.
44 Alternative translation: “the similar (same) syllables will be infinite”.



Division of Entities and Foundations of Reality: Aristotle’s Ontological Square 35

(oὐσίας κεχωρισμένας),45 presents indeed, of all the points that were mentioned, the
greatest difficulty, nonetheless the statement is, in a sense, true, but, in a sense, it is not
true. For knowledge, like knowing, has two senses (ἡ γα`ρ ἐπιστήμη, ὥσπερ και` τo`
ἐπίστασθαι, διττóν), one of which is in potentiality (τo` με`ν δυνάμει), the other of which
is in actuality (τo` δε` ἐνεργείᾳ). The potentiality, being, as matter, universal and indefinite,
deals, then, with the universal and indefinite (ἡ με`ν oὖν δύναμις ὡς ὕλη [τoυ̃] καθóλoυ

oὖσα και` ἀóριστoς τoυ̃ καθóλoυ και` ἀoρίστoυ ἐστίν); but the actuality, being definite,
deals with a definite entity, being a this something, it deals with a this something (ἡ δ’
ἐνέργεια ὡρισμένη και` ὡρισμένoυ, τóδε τι oὖσα τoυ̃δέ τινoς); the sight, accidentally,
sees universal colour, though, because this colour which it sees is colour (ἀλλα` κατα`

συμβεβηκo`ς ἡ o̓́ψις τo` καθóλoυ χρω̃μα o̔ρᾷ o̔̀τι τóδε τo` χρω̃μα o̔̀ o̔ρᾷ χρω̃μά ἐστιν)
and this alpha which the grammarian studies is alpha (και` o̔̀ θεωρει̃ o̔ γραμματικóς, τóδε

τo`
,̧
αλφα

,̧
αλφα)...

Many aspects of this passage deserve an appropriate analysis. At the moment,
though, I am interested in the relation existing between particulars and universals.
In this passage the structure of the entities as instances of universals is proposed as
the solution to the problem of the relationship between particulars and universals.
Individual entities have the structure of “this alpha” or of “this colour”. This
structure gives, in my opinion, a solution to the question concerning the connection
between particulars and universals. The status of the individual entity is the status of
“instance of . . . ”. The particular entity is interpreted as an instance of a universal;
any individual entity is a τóδε τι, a this something, in the sense that it is an instance
(τóδε) of a property (τι).

Aristotle’s example of the individual colour and of the individual alpha can be
extended, in my opinion, to every instance which belongs to reality; every individual
entity is the concretisation of a property. The individual alpha is an alpha, the
individual colour is a colour. As an extension of this organisation, the individual
man is a man, that is, the individual man is the instance of the universal “man” and
of the property “being man”. We have, therefore, the following reality elements:

• Universal properties such as “being an alpha” or “being a colour”.
• Instances of properties such as “the individual alpha” or “the individual colour”.
• Universals as properties or as predicates that represent properties, that are names

of properties (the universal “man” represents the property “being man”; it is a
deputy for the property “being man”).

The predication of the universals is the consequence of the instantiation of a property
in a particular entity and in a plurality of entities. Since a plurality of entities
instantiates a property, the universal corresponding to this property can be predicated
of the members of this plurality.

45 Aristotle must avoid the ontological constellation in which entities have universal principles.
In the concretised reality, everything is individual; the principles of individual entities must be
individual (e.g. see Metaphysics Lambda 5, 1071a19–29).
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The field of instances is represented by particular entities.46 However, even the
field of existence of substantial and non-substantial universals possesses a right
of citizenship in the reality. Substantial and non-substantial universals – like the
universals “man” and “colour” – exist (they are not constructions of the mind; the
mind finds them; the mind does not invent them).47 The field of instances is certainly
always represented by particulars. This notwithstanding, the whole field of existence
is constituted by both particulars and universals, even though the universals’ way of
existence is different from that of the instances.

Particulars and universals belong to mutually different realms of reality. They
correspond to reciprocally different ontological realms. Universals are the elements
of the laws of reality, whereas individuals are the elements of the corresponding
concretisations of the laws of reality. We thus have the following realms of reality:

• Individuals/particulars as instances of properties, numerically one entity48.
• Universal properties, not numerically one entity49.

46 It does not matter, in the present context, whether the substance is a material or an immaterial
one. Both material substances and immaterial substances are individual. The status of being
individual is the common aspect they possess. The difference between realms of reality is
constituted, in Aristotle, by the difference between individual entities and universal entities, not
by the difference between material substances and immaterial substances.
47 At least as regards biological properties, biological species and biological genera, Aristotle
seems to consider these entities as indestructible. Biological species and genera are eternal (see
De Generatione Animalium II 1, 731b22–732a1). Biological properties are already given in the
reality. Individual biological entities will instantiate this or that property; individual biological
entities will not necessarily instantiate a determined property, but the range of the properties they
concretise is already given in the reality.
48 The feature “being numerically one” could be applied to the universal properties, too, even
though, in this case, any universal property would be a numerically one entity existing at another
level than the level at which each of the instances exists. However, Aristotle is ready to attribute the
feature of being numerically one exclusively to the instances; to be numerically one is considered
by Aristotle, at least in the contexts mentioned in this study, as equivalent to the status of instance.
49 The difference between individuals and universals represents, in my opinion, one of the
foundations of Aristotle’s ontological system. It represents a way for avoiding the Third Man
regress. Aristotle’s intention of avoiding the Third Man regress is, in my opinion, both one of
the origins and one of the mainsprings of the particular way in which Aristotle’s ontological and
predicative systems are built. Throughout the Categories, the De Interpretatione, the Sophistical
Refutations, the Posterior Analytics and the Metaphysics, there are many assertions that, in my
opinion, can witness this aim, since these assertions express the attention paid by Aristotle in
order that any confusion whatsoever between individuals (and features belonging to individuals
qua individuals) and universals (and features of universals qua universal) could be avoided. The
oppositions and incompatibilities are, for example:

– Between τóδε τι and πoιóν (first substance and second substance, Categories 5, 3b10–21).
– Between entities which are numerically one and entities which are not numerically one,

generally (i.e. concerning not only substances but also, e.g. qualities, as in Categories 2).
– Between entities which are numerically one and entities which are not numerically one (as

regards the different values for substance – first substance and second substance – Categories
5, 3b10–21).

– Between particular and universal (De Interpretatione 7, 17a38–b1).
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The system of relationships between entities is fundamental. Aristotle shows,
through this system, that particular entities, regardless of whether they are substan-
tial or non-substantial entities, are always concretisations of properties. No matter
which entities we concretely have, we have, in any case, this organisation of entities
in individuals as instances and in universal properties.

The ontological model in Aristotle is therefore constituted not only by individual
entities but also by programmes for instantiation in the instances. Every individual
entity is, as regards its ontological position, an instance of something (i.e. it cannot
be considered only as an individual entity, its position as an instance is ontologically
basic), while every universal property is a potentiality for realisation in its instances
(i.e. it cannot be detached by its being a potentiality for instantiation; it does not exist
without instances; it is immanent and not transcendent in relation to its instances).

– Between τóδε τι and τoιóνδε (Sophistical Refutations 22, 178b36-179a10).
– Between entities which are apart from many and entities which hold of many (i.e. contraposition

between ideas and universals and mutual incompatibility between ideas and universals)
(Posterior Analytics I 11, 77a5–9).

– Between particular/numerically one and universal (Metaphysics Beta 4, 999b33–1000a1).
– Between universals and substances (Metaphysics Beta 6, 1003a5–17).
– Between common entities and τóδε τι (Metaphysics Beta 6, 1003a8–9).
– Between substance as τóδε τι and common entities as signifying a τoιóνδε (Metaphysics Beta

6, 1003a8–9).
– Between τóδε τoιóνδε and τoιóνδε (Metaphysics Zeta 8, 1033b19–26).
– Between substance and universal (Metaphysics Zeta 13, 1038b8–16).
– Between entities universally said and substance (Metaphysics Zeta 13, 1038b8–16).
– Between entities which belong universally and substance (Metaphysics Zeta 13, 1038b35).
– Between entities predicated in common and τóδε τι (Metaphysics Zeta 13, 1038b35-1039a1).
– Between τóδε τι and τoιóνδε (Metaphysics Zeta 13, 1038b34–1039a3).
– Between universals and the feature of existing separately besides the particulars (Metaphysics

Zeta 16, 1040 b25–27).
– Between substance and one over many (Metaphysics Zeta 16, 1040b16–1041a5).
– Between substance and predicate (Metaphysics Iota 2, 1053b16–24).
– Between this something and universal (Metaphysics Mu 10).

These incompatibilities aim to avoid, for example, the risk of the Third Man regress, since they pose
a rigid border between entities that are instances and, therefore, are individual and numerically
one, on the one hand, and entities that are not instances and are not numerically one, on the
other hand; they also avoid other incongruencies which could appear if the realms of reality are
not distinguished from each other. An incongruency is, for example, the fact that, if the entity
predicated in common were interpreted as a this something, then an entity like Socrates would
be a plurality (see Metaphysics Beta 6, 1003a9–12). Another incongruency is, for example, the
fact that if the universal is interpreted as being the substance of an entity, the plurality of all the
entities of which the universal is substance will be annulled (see Metaphysics Zeta 13, 1038b9–15).
Thus, the Third Man is not the only consequence of an incorrect interpretation of the foundations
of ontology; further grounds of destruction of ontology are explained by Aristotle. The Third
Man regress is undoubtedly the most striking one, but there are also other incongruences. The
realms of reality of individual entities and of entities that are not individual must, therefore, be
rigidly distinguished from each other. I refer to Kung’s article for further elements regarding this
distinction (see especially pp. 207–208).
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10 On Properties

In order to deal now with the subject of properties, I think that, for Aristotle,
within the biological dimension, the complex of properties which makes up, for
example, the property “being man”, has a determined content of capacities and
of faculties which is realised in the instances of this complex of properties. This
complex of properties holds universally for all instances of the property (i.e. for
all members of the species). The content of the properties is a programme of
life development for all members of a species. This content, which directs any
development of the individual, is transmitted through the generation. For whichever
instance of a biological property we have, this instance will concretise in itself the
property corresponding to the essence of the instance. Hence, the content of the
biological property will be always identical for every member of a biological species
corresponding to the property (there does not appear to be any concept of evolution
in Aristotle).

The property will universally hold for all members of the species. This is
the sense in which, at least within the biological dimension, universal properties
exist; they are programmes which, if instantiated, will always direct the whole
development process of the instances, thus bringing about – under normal circum-
stances – individuals with the same life development and with the same faculties.
They are universal since they are, as programmes, identical for every individual
entity instantiating them. Hence, they hold in the same way for all their instances.
Therefore, they hold universally for all the instances. The universal property is not,
itself, an instance; it is the complex of faculties that will be realised in an individual.

In a healthy ontology, universal properties should not be regarded as being
instances. An entity’s being universal implies a completely different position in
the reality in comparison with the position of individuals. One of the problems
we are compelled to face when we discuss the concept of universal in Aristotle
is the question regarding the existence or non-existence of universals in Aristotle.
I personally think that the question we have to face should rather be whether
properties which hold universally exist or do not exist in Aristotle. This means that
the question should rather be whether a property such as “being man”, which is
identical for every man, exists or does not exist in Aristotle’s view. If, for Aristotle,
a property that is identical for a given plurality exists (e.g. if an identical property
“being man” exists), then, as a consequence of the existence of this property, the
universal that corresponds to the property exists (in this case, if an identical property
“being man” exists, then the universal “man” exists).

In other words, any question regarding the existence of universals should be
methodologically preceded, in my opinion, by the question of whether universal
properties (at least universal properties belonging to the biological field) exist. In
this case, individuals instantiating the same universal property (e.g. individuals
instantiating the property “being man” or the property “being animal”) are con-
nected with each other by a sameness relationship (i.e. individuals are specifically
or generically the same; they are, of course, not numerically the same). In the event
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that these properties do not exist, individuals are not connected with each other by
any sameness relationship.

I believe, therefore, that the central question should not look at the existence
or non-existence of universals. The primary question ought rather to determine the
way properties are interpreted by Aristotle. The question regarding the existence or
non-existence of universal properties is decisive for the destiny of universals. The
existence of universals proves to be, in my opinion, a consequence of the existence
of universal properties. Conversely, the non-existence of universals would turn out
to be a consequence of the non-existence of universal properties.

Aristotle, in my opinion, pleads for the existence of universal properties like
being man or being animal.50 I think that, for Aristotle, properties, at least biological
properties, constitute the natural world; they are rooted into the natural world. Every
instance of a biological property is the same (specifically or generically) as every
other instance of the same biological property. Every instance of the biological
property “being man” is specifically the same as every other instance of the property
“being man”. It is the same in the sense that, under normal conditions, it possesses
the same functions determining the species “man” as every other instance of the
property “being man”. Every instance of the biological property “being animal”
is generically the same as every other instance of the property “being animal”.
It is the same in the sense that, under normal conditions, it possesses the same
functions determining the genus “animal” as every other instance of the property
“being animal”.

I think that the existence of universal properties in Aristotle could find support in
Aristotle’s texts like De Generatione et Corruptione II 6, where Aristotle pleads for
the existence of a nature which dictates an identical development for the members
of the same biological class. All members of a biological class have and will have,
under normal conditions, the same development because they instantiate the same
biological property (e.g. all men instantiate the biological property “being man”, and
all men have, under normal circumstances, the same life development and the same
faculties). Biological properties are not and should not be deemed as classifications
invented by speaking subjects. Properties corresponding to natural species (and to
natural genera) and natural species as the natural species “horse” or the natural
species “man” exist, in Aristotle’s view, in a mind-independent way.

50 As regards the problem of the existence or non-existence of universals, I do not think that
Aristotle’s assertions expressing what the universal is not, prove that Aristotle therewith aims to
deny the very existence of universals. Aristotle rather aims to explain the ontological features that
a universal, or an entity which is universally said, or an entity which belongs universally cannot
have, such as being substance, being the substance of an entity or existing separately (e.g. see
Metaphysics Zeta 13 and Metaphysics Zeta 16). In my opinion, Aristotle does not plead for the
non-existence of universals. Saying what the universal is not, is not the same, in my opinion, as
saying that the universal does not exist. I think that Aristotle’s strategy consists in eliminating,
from the features belonging to universals qua universals, all the features which wrong ontological
positions have attributed to the universals themselves. Aristotle’s aim consists (at least in my
opinion) in denying the existence of the wrong features of universals qua universals, not in denying
the existence of universals as such.
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Every biological property corresponding to a species or to a genus is a potential
programme which is concretised, realised and actualised in its instances. As a
consequence, instances belonging to a species or to a genus have an identical
development. The uniformity of development of the members belonging to a
biological class attests the existence of a universal nature that is the same for all
members of the biological class. This nature is universal since it is identical for
every member of the class, so that it holds in the same way for all the member
of the class. The universal nature is a complex of faculties which will be realised,
under normal circumstances, whenever an individual entity instantiating that nature
exists.51

11 Aristotle’s Polemical Targets: The One over Many
Argument and the Third Man Argument

The divisions of entities in the ontological square (i.e. in the four domains) and in the
two districts ought to be respected. If these divisions are not respected, the collapse
of ontology follows. I would now like to analyse some arguments of Aristotle’s lost
work De Ideis, to show which consequences arise if the distinction between realms
of reality is not respected. For this purpose, I am going to consider the One Over
Many Argument and the Third Man Argument.52 The argument of the One Over
Many gives an answer to the problem of the uniform predication of predicates such
as “man” and “animal”. The contents of the argument are the following ones (see
De Ideis 80.9–16)53:

They also use such an argument to establish that there are ideas. If each of the many men
is man, and if each of the many animals is animal, and the same applies in the other cases;
and if, in the case of each of them, there is not something which is predicated, itself, of
itself (και` oὐκ ἔστιν ἐϕ’ ἑκάστoυ αὐτω̃ν αὐτo` αὑτoυ̃ τι κατηγoρoύμενoν),54 but there

51 In my opinion, Aristotle’s analyses on the nature, on the life development and on the faculties of
biological entities, exposed in texts like Metaphysics Zeta 7, 8; De Generatione et Corruptione II 6;
Physics II 1, 7, 8; and De Anima II 1, 2, 3, 4, suggest that, in Aristotle’s view, these entities follow
a determined development which holds true for every entity of the same species. The identity of
the development of the members of a species is the consequence of the existence of a determined
line of development for all the members of a species. A species is individuated by a property like
being man, which entails a determined identical programme of development for every member of
the species.
52 I decided to analyse not only the Third Man Argument but also the One Over Many Argument
in order to show the elements of continuity in the interpretation of predication maintained by the
positions criticised by Aristotle.
53 For studies concerning the De Ideis, see, for example, the book of W. Leszl Il “De Ideis” di
Aristotele e la teoria platonica delle idee. Edizione critica del testo a cura di Dieter Harlfinger
and the book of G. Fine On Ideas: Aristotle’s Criticism of Plato’s Theory of Forms.
54 This sentence implies, in my opinion, that no entity is what it is in virtue of itself. Therefore, no
member of the given plurality (in this particular case, no member of the plurality of men and no
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is something which is predicated of all of them, without being the same as any of them
(ἀλλ’ ἔστι τι o̔̀ κατα` πάντων αὐτω̃ν κατηγoρει̃ται oὐδενι` αὐτω̃ν ταὐτo`ν o̓́ν),55 then it
exists this which is besides the particular beings, separated from them and everlasting (εἴη,̧
αν τoυ̃τo56 παρα` τα` καθ’ ἕκαστα o̓́ντα o̓̀ν κεχωρισμένoν αὐτω̃ν ἀίδιoν).

For it is in every case predicated in the same way (o̔μoίως) of all the numerically successive
particulars. And what is a one in addition to many, separated56 from them, and everlasting (o̔̀
δε` ἕν ἐστιν ἐπι` πoλλoι̃ς κεχωρισμένoν τε αὐτω̃ν και` ἀίδιoν), this is an idea. Therefore,
there are ideas.

As regards the logic of the argument, the argument, in my opinion, functions in the
following way:

(i) A plurality of entities has a property.
(ii) An entity corresponding to the property of the plurality is predicated in the

same way of all members of the plurality and is different from all members of
the plurality (since this entity is predicated in the same way of the members
of the given plurality, this entity is different from all the members of the given
plurality).

Then:

(iii) An entity exists which is besides the members of the plurality, which is
separated from these members and which is everlasting.

(iv) The entity that is separated from the members of the plurality, that is one entity
in addition to the members of the plurality and that is everlasting coincides, as
regards its own features, with the idea and its own features.

(v) Therefore, ideas exist.

Since the entity is predicated in the same way of the entities of which it is predicated,
then this same entity cannot be other than separated, everlasting and one in addition
to many. The predicated entity must be neutral in relation to the given plurality of
which it is predicated; therefore, it must be outside this plurality.

The entity which is predicated exists, no matter whether the particular members
of the plurality exist or not. The ascription of everlastingness is a testament to this

member of the plurality of animals) is the property which is predicated of it, in virtue of itself (in
this particular case, no man and no animal of the given pluralities are men or animal in virtue of
themselves). The predicated entity is always something else in relation to the entity (to the entities)
of which it is predicated (a related question regards the aspect because of which the predicated
entity is different from the entities of which it is predicated).
55 The entity which is predicated is different from the members of the plurality. It does not coincide
with the members of the plurality. The presence of the difference between the entity which is
predicated and the members of the plurality of which it is predicated is common to Aristotle too,
since, for example, second substances are different from first substances and universals are different
from the particulars of which they are predicated. The question is, though, that the sense of this
difference is explained in different ways in this argument and in Aristotle’s. In the argument, the
difference consists, for example, in the separation of the entity predicated, whereas, for Aristotle,
the difference consists in both universals and second substances not being instances.
56 Aristotle’s statements in Metaphysics Zeta 1, 1028a18–34 oppose this concept of separation.
The properties attributed to the substance are not separable from the substance. Only substance
possesses the feature of existing separately.
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entity’s complete independence of the particular members of the plurality, and it
represents the guarantee that a predication will always be uniform as regards the
future predication of the future individual entities.57 The entity which is predicated
in the present argument must transcend, and actually transcends, the particular
entities of which it is predicated.58

Throughout the argument, the attempt at building conditions for a uniform
predication is clearly expressed. The reason why the predicated entity is not a
member of the plurality of which it is predicated and the reason why the plurality
is not self-predicated in each individual case of the plurality lie in the necessity of
establishing a uniformity of predication. This uniformity would not be the case:

• Both if an entity of the plurality were predicated of the entities of the plurality,
since the relationship of the entity which is predicated with itself would not be
the same as the relationship between the entity which is predicated and the other
components of the plurality, there would be a privileged predication in the case of
the self-predication of an entity and a secondary predication in all the other cases
of the plurality itself. Thus, there would not be any uniformity of predication in
all the cases of the plurality.59

• And if a self-predication in every case of the plurality takes place – since the
entity which is predicated would change in every case – the entity “a” would be
predicated of the entity “a”, the entity “b” would be predicated of the entity “b”,
and so forth.60

57 At the basis there is a different interpretation of the conditions for uniformity of predication,
a different interpretation of the concept of group, a different interpretation of properties and a
different interpretation of the conditions for belonging to a group.
58 In the quoted passage from Categories 5, second substances like man (which is predicated of a
plurality of entities):

– Are not a this something.
– Are not individual.
– Are not numerically one.
– Are a quality (connected to substance).

In the argument of the One Over Many, the entity predicated (like man):

– Is besides the particular beings.
– Is not identical with any member of the plurality of which it is predicated.
– Is separated from the particular beings.
– Is everlasting.

The two interpretations of predication are completely different from each other, since the
presuppositions of the two ontologies are different from each other.
59 In other words, the entity could not be predicated in the same way of the members of the plurality,
if it were itself a member of the plurality.
60 I think that those who maintain the validity of the One Over Many Argument for the existence
of ideas, against whom Aristotle’s criticism is directed in the De Ideis, aim to exclude both the
hypothesis of a generalised self-predication (i.e. every single member of the plurality would be
predicated of itself) and the hypothesis that one of the entities of the plurality is predicated of all the
members of the plurality. They exclude both hypotheses since, in both cases, the predication would
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Therefore, a new entity should be found which can show a neutral relationship
towards the plurality. This neutrality can exist only if the entity which is predicated
exists besides the plurality itself and only if the entity which is predicated is different
from any member of the given plurality. The uniformity of predication is guaranteed
by the existence of the entity besides the plurality. If the entity is predicated in
the same way of a plurality of entities, this entity must be besides the plurality;
therefore it must be separated from the plurality. Hence, the predicated entity is
an entity that is one in addition to the plurality.61 In order to have a uniformity of
predication, a further entity, separated from the plurality, is needed.62 The existence
of the uniformity of predication is presupposed throughout the argument.

Within this argument, the interpretation of the conditions for uniformity of
predication is compelled to assume the existence of an entity which is separated
from the entities of the plurality. This interpretation is compelled to assume the
existence of an entity which is besides the members of the plurality. The new entity
is, therefore, added to the given plurality. The difference between the entities of the
given plurality and the predicated entity consists in the everlastingness of the entity
which is predicated. The entity which is predicated does not belong to another realm
of reality which could be comparable to the realm to which, for example, Aristotle’s
second substances belong.

Further elements regarding the interpretation of uniformity of predication can
be gained from the Third Man Argument. Moreover, thanks to the Third Man

not be uniform. If the predication has to be uniform, the entity which is predicated of the plurality
must be outside the plurality; it cannot belong to the plurality. It must be, therefore, separated from
the plurality itself. It is in general correct that the entity predicated is different from the entities of
which it is predicated; in my opinion, Aristotle would nonetheless object to this position that this
difference should be individuated in the entity’s predicated belonging to another realm of reality
than that to which the members of the plurality belong. To say that the predicated entity is different
from the members of the given plurality is not enough; the way of difference ought to be clarified,
since problems can begin right here.
61 Within this particular interpretation of the predication of an entity, the condition for the
uniformity of predication as such requires that the entity predicated is outside the plurality. If
the entity which is predicated belonged to the plurality, the predication could not be the same for
all entities (we would have a self-predication in one case). Hence, the entity which is predicated of
the plurality cannot be the same as any entity whatsoever belonging to the given plurality.
62 Ontological elements and conditions for the uniformity of predication are different from each
other within this system and within Aristotle’s system. The universal is not an entity in addition to
and on the same level as the given plurality of which the universal is predicated. The universal is
an entity belonging to a different realm of reality in comparison with the given plurality. On the
contrary, as we can see from the Third Man Argument, the predicated entity belongs to the same
realm of reality of the given plurality of which the predicated entity is predicated. One can count the
entity which is predicated of the plurality and the members of the plurality as though they belonged
to the same class; one can put them together. This cannot happen in the case of the universal;
universals, common entities that which are said universally, that which belong universally and that
which is predicated in common (these are entities which can be found, for instance, in the chapters
Metaphysics Beta 6 and Zeta 13), belong to a realm of reality which is different from the realm
of reality to which the entities having the ontological status of substance and of this something
belong; the two kinds of entities cannot belong to the same realm of reality.
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Argument, we can see how the false interpretation of the status of the predicated
entity directly leads to the infinite multiplication of entities and, therewith, to
the collapse of the whole ontology. Hence, we can see the reasons why it is
indispensable to correctly determine the field of existence to which any entity
belongs. The contents of the Third Man Argument are the following ones (see De
Ideis, 84.22–85.3)63:

The third man is also proved in this way. If what is predicated truly of some plurality
of entities is also another entity besides the entities of which it is predicated (εἰ τo`
κατηγoρoύμενóν τινων πλειóνων ἀληθω̃ς και` ἔστιν

,̧
αλλo παρα` τα` ὧν κατηγoρει̃ται),

being separated from them (κεχωρισμένoν αὐτω̃ν) (for this is what those who posit
the ideas think they prove: for this is why, according to them, there is a man-itself
(αὐτoάνθρωπoς), because the man is predicated truly of the particular men, these being
a plurality, and it is another entity than the particular men (o̔́τι o̔

,̧
ανθρωπoς κατα` τω̃ν

καθ’ ἕκαστα ἀνθρώπων πλειóνων o̓́ντων ἀληθω̃ς κατηγoρει̃ται και`
,̧
αλλoς τω̃ν καθ’

ἕκαστα ἀνθρώπων ἐστίν)) – but if this is so, there will be a third man (ἔσται τις τρίτoς,̧
ανθρωπoς). For if the man predicated is another entity than the entities of which it is
predicated ((εἰ γα`ρ

,̧
αλλoς o̔ κατηγoρoύμενoς ὧν κατηγoρει̃ται)), and subsists on its

own (κατ’ ἰδίαν ὑφεστώς), and if the man is predicated both of the particulars and of the
idea (κατηγoρει̃ται δε` κατά τε τω̃ν καθ’ ἕκαστα και` κατα` τη̃ς ἰδέας o̔

,̧
ανθρωπoς), then

there will be a third man besides the particulars and the idea (ἔσται τις τρίτoς
,̧
ανθρωπoς

παρά τε τo`ν καθ’ ἕκαστα και` τη`ν ἰδέαν). In this way, there will also be a fourth man
predicated of this, of the idea, and of the particulars, and in the same way also a fifth, and
this on to infinity.

The main features of the ideas are within the argument as follows:

63 The question of the consistency or of the inconsistency of Plato’s argument in the Parmenides
cannot, unfortunately, be discussed in the present context, since the analysis of this question would
require at least a whole study. On the problem of the inconsistency or consistency of the Third
Man Argument as it is exposed in the Parmenides (the argument should perhaps be called the
“Third Large Argument” due to the example which Plato actually uses in his text), I only wish to
say, in the present context, that I side with the line of interpretation began by W. Sellars and then
followed (with modifications), for example, by S. M. Cohen, by H. Teloh – D. J. Louzecky and
by G. Fine. I consider the argument as consistent, since I too think that the non-identity premise
should be interpreted as “If x is F, then x is not identical with the F-ness by virtue of which it is
F” (see Sellars’ Vlastos and the “Third Man”, p. 418). Hence, if F-ness is F, it can be identical
with itself. The non-identity premise only implies that F-ness is not identical with the F-ness due to
which the first F-ness is F. Therefore, I do not agree with Vlastos’ thesis of the inconsistency of the
argument (see The Third Man Argument in the Parmenides). In the present context, however, I focus
exclusively on Aristotle’s version of the argument as it is reported by Alexander of Aphrodisias.
I shall specifically deal with Plato’s argument and with the problems connected to it in another
study. The majority of the studies on the regress deals either with Plato’s version or with Aristotle’s
version. I would like, therefore, in the present context to express my deep gratitude both to G. Fine’
analysis of the argument contained in her book On Ideas: Aristotle’s Criticism of Plato’s Theory
of Forms, since she examines both Plato’s and Aristotle’s version of the argument, and to I. M.
Vandoulakis, who in his article Plato’s “Third Man” Paradox: its Logic and History investigated
Plato’s version of the argument, Proclus’ observations regarding Plato’s argument and Aristotle’s
version of the argument.
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(a) The entity which is predicated is something different from the plurality of which
it is predicated (“if what is predicated truly of some plurality of entities is also
another entity besides the entities of which it is predicated”).64

(b) The entity which is predicated is separated from the plurality of which it is
predicated (“being separated from them”).65

(c) The entity which is predicated has an independent existence (“it subsists on its
own”).66

(d) The idea is itself a subject of predication, that is, it is not only predicated of
other entities but is a subject of predication, too (“if the man is predicated both
of the particulars and of the idea”).67

Within the argument, the property of separation for the entity which is predicated is
mentioned. This is an important point, since Aristotle contends that only substances
are separated, whereas other entities do not possess this particular feature.68 In
this argument an entity which is predicated of a plurality of entities is separated
from the plurality, while, in Aristotle, a universal never exists separately from the
particulars.69

Coming now to the general reconstruction of the Third Man Argument, the
premises which are necessary to produce the Third Man regress seem to be the
following ones (in spite of the fact that they are not clearly expressed or are not
expressed at all in the argument itself):

• One over many: whenever a plurality of entities is f,70 they are f in virtue of
having some one entity, the f, truly predicated of them71.

• Non-identity: the entity which is predicated of a plurality of entities is an entity
which is besides the entities of which it is predicated (this premise implies,
together with the one-over-many premise, that nothing which is f is f in virtue
of itself. For the entity predicated, due to which the members of the plurality

64 Universals are different from the entities of which they are predicated. To be different, though,
can have different meanings and different implications.
65 Universals are not separated from the entities of which they are predicated.
66 Universals do not have an independent existence.
67 This implies that the idea is itself a bearer of the property. Universals are not bearers of the
properties which they assign to the entities of which they are predicated.
68 See, for example, Metaphysics Zeta 1, 1028a33–34, and Physics I 2, 185a31–32.
69 See, for example, Metaphysics Zeta 16, 1040b26–27.
70 Actually, as the text of Metaphysics Zeta 6, 1031b28–30 testifies, we can already have an infinite
regress if we divide entity and essence and if we then attribute an essence to the essence itself. An
infinite regress can be provoked just beginning with one entity alone; there is no need of a plurality
of entities. A regress to the infinite can be produced also beginning with only one entity, provided
that the essence of an entity is given an essence which is considered as divided from the first
essence. Hence, we can have a regress to the infinite, if we do not correctly interpret the position
of the essence in the reality, regarding essence, for example, as an entity which has an essence too.
71 This premise is, in my opinion, expressed only partially, since it is not clearly said that the
plurality of entities possessing a property depends on the fact that one and the same entity is
predicated of these entities.
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have a determined property, is always different from the members of the given
plurality. Hence, the cause of the members of a plurality being f is due to an
entity which is different from all the members of the plurality).72

• Property exemplification73: the entity which is predicated of a given plurality of
entities which are f is itself f.

Through the application of the premises represented by the non-identity and by the
property exemplification, a regress to the infinite can be reached. The logic of the
argument functions, in my opinion, in the following way:

• There is a plurality possessing a property “f” (“man”).
• In correspondence with the first given plurality having the property “f” (e.g.

the property “man”), there is an entity, “f-itself” (e.g. “man-itself”), which is
predicated of this given plurality (this is due to the one-over-many premise).

• The “f-itself” (e.g. “man-itself”), which is predicated of the first plurality, is
different from all the entities of which it is predicated (this difference is due
to the non-identity premise).

• The f-itself (e.g. “man-itself”) independently exists of that of which it is
predicated (the entity which is predicated is separated from all the members of
the given plurality due to the fact that the entity is different from all the members
of the plurality).

• Therefore, there is an entity besides the first given plurality.
• This entity is itself “f” (e.g. the entity which is predicated of the first plurality is

itself man due to the property-exemplification premise).
• The f-itself is not f in virtue of itself (it is f in virtue of something else; this is due

to the non-identity premise).
• Therefore, there will be another entity (“the third man” besides the first given

plurality and the first predicated entity). This entity is predicated of the first
plurality and of the first predicated entity (due to a further application of the
one-over-many premise).

• Thus, there will be another entity besides the first plurality and besides the entity
that corresponds to the first predicated entity.

• This new entity is itself f (this is due to the property-exemplification premise).
• Because of the non-identity premise, the new predicated entity is not f in virtue

of itself (it is f in virtue of something else).
• There will then be another entity (a fourth man), which is predicated of the first

given plurality, of the first predicated entity and of the second predicated entity.

72 We are compelled to complete this premise.
73 Usually, this premise is named with the expression “self-predication” or “self-exemplification”.
I prefer to use the expression “property exemplification”; the entity which is predicated of the given
plurality is itself a concretisation of the property which is attributed to the given plurality through
the predication of this entity.
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Through further applications of the one-over-many premise, of the property-
exemplification premise and of the non-identity premise, an infinite regress and an
infinite multiplication of entities come about.

A different reconstruction of the argument could be the following one:

1. For the premise of the one over many, if there is a given plurality with a property
f, there is an entity, f itself, which is predicated of the plurality.

2. This entity is f, for the premise of the property exemplification.
3. This entity is not f in virtue of itself (it is f in virtue of something else), for the

premise of the non-identity.
4. There is, therefore, another entity, which is predicated of the first plurality and

of the first predicated entity, in virtue of which the first plurality and the first
predicated entity (the first f-itself) are f, for the one-over-many premise.

5. For the property-exemplification premise, the new entity, too, which is predicated
of the first plurality and of the first predicated entity, is f.

6. For the non-identity premise, the second predicated entity is not f in virtue of
itself (it is f in virtue of something else).

7. There will be, then, another entity, which is predicated of the first plurality, of the
first predicated entity and of the second predicated entity, for the one-over-many
premise.

8. Through further applications of the one-over-many premise, of the property-
exemplification premise and of the non-identity premise, an infinite regress is
brought about.

It follows that, in order to explain a plurality (or also a single entity) having a
property, one must introduce an infinite series of entities. This contrasts with one
of the reasons for introducing ideas, which consisted in giving a unique factor (the
idea) explaining a plurality having a property. Two kinds of critiques can, therefore,
be expressed against those who maintain the existence of ideas:

• Epistemologically, it can be said that in order to know a property possessed by a
plurality of entities, one must know an infinite series of entities. Instead of being
instruments to explain reality, ideas make reality not understandable, since one
has to know an infinite number of entities in order to know the concrete entities.

• Ontologically, one can say that, if there is an entity in virtue of which a plurality
has a property, then there will be an infinite series of things in virtue of which a
plurality has the same property.

In general, through the argument, it is shown that if there is one idea, then there are
infinite ideas. Ideas were introduced, though, in order to find a unitary explanation
of entities possessing a property.74 Therefore, if ideas cannot represent a unitary
explanation, ideas are to be abandoned.75

74 See, for example, Phaedo 100b1-e4.
75 In different passages of his works, Aristotle explains what the universal is not. For example,
Metaphysics Zeta 13 and Metaphysics Zeta 16 determine what universals, entities which belong
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Aristotle refuses, in Categories 5, 3b10–21, as a feature of the entity which
is predicated, the property exemplification of the predicated entity itself. Second
substances are not individual entities themselves, that is, they are not instances of
the properties that the second substances themselves express. This strategy clearly
shows his intention to distance himself from the ontological incongruities which
lead to the Third Man regress. Since the entity which is predicated is not a τóδε

τι but it is exclusively a πoιóν, it follows that the predicated entity cannot be the
property it expresses; it only corresponds to a property without being this property,
without instantiating this property. Both the ontological square (i.e. the four-domain
division) and the two-district division accomplish the ontological duty consisting in
the distinction of instances from non-instances.

Aristotle’s refusal of the hypothesis that entities predicated in common have the
status of this something, as we can see in Metaphysics Zeta 13, 1038b35–1039a1, is
part of the same strategy. Aristotle does not accept that the entity which is predicated
is itself an instance of the property it represents.

The difference existing between individual entities and entities predicated
should, therefore, be correctly interpreted. The difference between members of
the plurality and the entities which are predicated of the plurality in the argument
of the One Over Many and in the argument of the Third Man is not the kind
of difference which should exist between members of the plurality and entities
which are predicated of the plurality. The correct difference between subjects of
predication and predicated entities is exclusively the difference between individuals
and universals, i.e. between the realms of reality represented, respectively, by
instances and by non-instances.

Right ontology is not only a matter of stating the presence of a difference between
entities but also a matter of correctly determining the sense of this difference. The
difference of universals or of second substances in comparison with the entities
of which they are predicated does not consist in the everlastingness, or in being
separated, or in being besides the members of the plurality. Moreover, entities which
are predicated do not subsist on their own. Aristotle puts the root of the difference
of universals and of second substances in their not being instances of the property
they assign to the members of the plurality of which they are predicated.

12 Conclusions

The distinction of entities in instances and non-instances, which can be expressed
through the two-district scheme or through the four-domain scheme, is the very
basis of Aristotle’s ontology: without the determination of the right position in the

universally, entities predicated in common and entities said universally, are not. Aristotle’s strategy
concerning what the universal is not is as important as his strategy concerning what the universal
is: an incorrect interpretation of universals could provoke a multiplication of entities.
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reality of the entities, no interpretation of the entities can function. The concept of
the typological ontology, which can be extended and specified into the four-domain
ontology, represents, in my opinion, the basic organisation of Aristotle’s ontology.
The distinction between individual entities and universal properties pre-exists to
any particular concrete entities and to any concrete state of affairs. Entities will
always have a determined place in the framework of the typological ontology. The
relations between the fields of the framework will always be the relations between
the different entities.

The main items of Aristotle’s new ontological proposal are as follows:

• Individual entities are instances of universal properties.
• Reality is organised in the scheme of a typological ontology which divides

the entities into individual entities as instances of essences and into properties
constituting the essences of the individual entities.

• Universals are properties or are predicates representing names of properties (the
universal “man” represents the property – is the deputy for the property – “being
man”).

• The fact that universals are predicated of a plurality of individuals is the
consequence of these individuals instantiating the same universal property.

The central differentiation of Aristotle’s ontology regards, in my opinion,
individuals as instances of properties, on the one hand, and properties as
programmes which are realised in their instances, on the other hand. The elements
and features belonging to the opposition between individuals as instances and
properties as programmes are the following ones:

• Individuals, substance (first substance), numerically one, this something, this
such.

• Universals (universal properties), such, quality, not numerically one, universal,
common, universally said, predicated in common, second substances.

At least as regards the biological field, every individual (every individual entity) is
the instance of a property that represents the essence (i.e. the way of existence) of
the instance itself. The individual entity “Socrates” is the instance of the property
“being man” (i.e. it is the result of the process of instantiation of this same property).

The field of instances, in Aristotle, is always represented by individuals, while the
whole field of existence is constituted by both individuals and universal properties
(universals), even though the way of existence for universals is different from the
way of existence possessed by instances of properties. As a consequence of this
difference, individuals and universal properties exist in different realms of reality;
they correspond to different ontological types. We have a two-district ontology, i.e.
a kind of typological ontology.

• The realm of instances is constituted, as such, by individual entities (by numer-
ically one entities). Individual entities, at least individual biological entities,
are immediately instances of properties. They are concretised, instantiated
properties. The very status of individual entities consists in their being instances
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of properties. For Aristotle, no bare entity exists. To exist, for an individual
biological entity, is to concretise a determined complex of biological properties.
These biological properties will dictate the life development of the corresponding
individual entity. Without these properties, the individual entity does not exist.

• The realm of existence contains both individuals (individual entities) and univer-
sal properties (universal entities). The realm of instances does not exhaust the
field of existence; it is only a part of it. Hence, in Aristotle’s ontology, not only
particular entities exist.

The scheme of the two-district ontology can be further specified in the four domains
represented by individual substantial entities, individual non-substantial entities,
universal substantial properties and universal non-substantial properties.
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between universal and particular, affirmative and negative and connected (muttas. ila)
or disjunctive propositions. In Sect. 7, Chap. 1, of al-Qiyās (pp. 361–372), he goes
further by considering hypothetical connected propositions where the clauses are
themselves quantified propositions of the form A, E, I and O. When combining
their A, E, I or O clauses in all possible ways, he lists 16 universal hypothetical
affirmative propositions, 16 universal negatives, 16 particular affirmatives and 16
particular negatives and says that the logical relations of contradiction, contrariety,
subcontrariety and subalternation hold between all these hypothetical propositions.

In this paper, I will analyse the logical relations between all of these quantified
hypothetical connected propositions. Now given the import of all affirmative
propositions and the lack of import of all negative ones in Avicenna’s frame, both in
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1 Introduction

Avicenna’s hypothetical logic contains two parts, which are very different from
each other. The first one uses conditional and disjunctive propositions and states
the usual Stoic indemonstrables called by Avicenna the istithnā’i syllogisms plus
some variants. The second one is entirely new because it quantifies over con-
nected (conditional) and disjunctive propositions. This last theory adds new moods
containing quantified disjunctive, conditional and predicative propositions to the
usual syllogistic moods. Avicenna introduces universal and particular hypothetical
connected propositions as well as disjunctive propositions, containing predicative
elements. But he also uses all A, E, I and O predicative propositions as clauses of
these quantified conditional and disjunctive propositions. He provides the complete
lists of all these propositions and says that all of them obey the relations of the
square of oppositions.

The problem is then the following: what are the logical relations between
these quantified hypothetical propositions? Which propositions are contradictories?
Which ones are contrary or subcontrary to each other? What propositions are the
subalterns of what other ones?

In what follows, I will formalize the aforementioned propositions by taking into
account Avicenna’s conceptions and I will show that one can construct several
octagons of different kinds, which can be assembled two by two giving rise to figures
with 16 vertices each.

2 The Quantified Hypothetical Propositions

The hypothetical system that we are considering here is the one where the hypo-
thetical propositions, whether connected (muttasil) or disjunctive, are quantified.
The connected propositions are those which contain ‘if . . . then’. Among these
propositions, we will consider only the implicative (luzūmı̄) propositions, which
express a relation of following from. We won’t consider what Avicenna calls the
ittifāqı̄ ones, where there is no such relation of following from and whose truth
conditions are different from those of the implicative ones.

The quantified hypothetical implicative propositions are expressed as follows:

– Ac: Whenever (kullamā) A is B, then H is Z ([2], p. 265).
– Ec: Never if A is B, then H is Z ([2], p. 280).
– Ic: It happens that (qad yakūn) when every A is B, then every H is Z ([2], p. 278).
– Oc: Not whenever A is B, then H is Z.
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In these sentences, the expressions ‘whenever’ (kullamā), ‘it happens that’ (qad
yakūn), ‘never’ (laysa al-battata) and ‘not whenever’ (laysa kullamā) express the
universal affirmative quantifier, the particular affirmative quantifier, the universal
negative quantifier and the particular negative quantifier, respectively.

Now how can one formalize these quantified propositions?
The usual formalizations stated by Rescher, for instance, are the following (where

‘t’ stands for time and ‘At’ is read as ‘A is true in t’):

“A (U.A.)
{
(t) (At ⊃ Ct)

(t) ∼ (At& ∼ Ct)

E (U.N.) (t) ∼ (At&Ct)

I (P.A.) (∃t) (At&Ct)

O (P.N.) (∃t) (At& ∼ Ct)” ([11], p. 51,Rescher’s notation)
The two pairs of contradictories are, as usual, the pairs A/O and E/I.

Rescher says that the universal quantifier, for instance, is expressed by the word
‘always’ and means ‘at all times’ or ‘in all cases’ ([11], p. 52). He also says that
the conditional used in both A and E is the ‘Diodorian implication “If A, then
C”, [which] amounts to “At each and every time t: If A-at-t, then C-at-t”’ ([11],
p. 50). This Diodorian implication is opposed by Łukasiewicz to the Philonian
implication, which is a material implication (see [9], p. 15). In Avicenna’s view,
there must be a semantic or causal link between the antecedent and the consequent
of the implication, especially when it is a real implication – called a luzūm – i.e. a
relation of following from, which makes the consequent really follow semantically
or causally from the antecedent.

In addition, since the word used by Avicenna in this particular context is not
the word ‘time’, but the word h. āl (plural ah. wāl), which could be translated by
‘situation’ or ‘state’ or ‘case’, we can slightly modify these formalizations by
making the quantifiers range not on times but rather on situations or state. We get
thus the following formalizations [where the letter ‘c’ in Ac, Ec, Ic and Oc, stands
for ‘connected’]:

– Ac : (∀s) (Ps→ Qs)
– Ic : (∃s) (Ps ∧ Qs)
– Ec = ~ Ic = ~ (∃s) (Ps ∧ Qs)
– Oc = (∃s) (Ps ∧ ~ Qs) (see [4])

However, the above formalization of Ac does not validate Ac conversion, nor
Darapti and Felapton, which are both held by Avicenna in his hypothetical logic
too. For the hypothetical Darapti is expressed as follows:

– Whenever C is D, then H is Z.
– Whenever C is D, then A is B.

Therefore, it happens that when H is Z, then A is B.

If we formalize Ac as above, Darapti is formalized as follows (where ‘P’ stands
for ‘C is D’, ‘R’ for ‘H is Z’ and ‘Q’ for ‘A is B’): ‘(∀s)(Ps → Rs) ∧ (∀s)(Ps →
Qs)]→ (∃s)(Rs ∧ Qs)’.
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Unfortunately, this formula is not valid. So the formalization of the Ac propo-
sitions should be revised in order to validate this mood, and to validate Darapti
Felapton and Ac conversion, which are all admitted by Avicenna.

So the problem is the following: how should one account for the validity of these
two moods and of Ac conversion in Avicenna’s hypothetical logic? To answer this
question, let us first consider what Avicenna himself says in his various texts.

In al-Qiyās, Sect. 5, Chap. 4, while analysing the hypothetical propositions,
Avicenna says what follows:

‘When we say: “If A is B, then H is Z”, we assume from this (nūjibu min hād. ha)
that at any time where “A is B” is the case and when A is B then H is Z, as if the
fact that H is Z follows the fact that A is B, in so far as in effect A is B (min hayt.hu
huwa kā‘inun A [huwa] B), and it does not contain other conditions such as those
that “whenever” contains, which we will mention’. ([2], p. 263.8–9, my emphasis).

Thus he stresses the idea that the antecedent of the conditional proposition
containing ‘if . . . then’ (where ‘if’ translates the Arabic particle in) must be true
in order for the proposition itself to be true. This particle expresses the strongest
kind of conditional, which Avicenna calls luzūm, i.e. a real implication, where the
consequent really follows from the antecedent. In the end of the quotation, he says
that the word ‘whenever’ (kullamā) involves further conditions, which, he says,
will be mentioned [afterwards]. But he does not say that the above condition does
not apply to the connected propositions containing ‘whenever’. Now, one of the
conditions involved in the sentences containing ‘whenever’ (kullamā) is already
mentioned a few lines before the above quotation, where Avicenna claims ‘If what
is said is “whenever this is so”, then the proposition is a connected universal
(fa al-qad. ı̄yya muttas. ila kullı̄ya)’ ([2], p. 263.3, my emphasis). So this condition
is universality, that is, when someone uses this word, he expresses a universal
proposition, which is not always the case with propositions containing only the
expression ‘if . . . then’.

One page later in the same chapter, he returns back to the word ‘kullamā’ and
gives further precisions about what he means by this word, for he claims:

‘When we say “Whenever C is B, then H is Z” we don’t only mean by
“whenever” the generalizing of what is intended (ta‘amı̄m al-murād), so that what
is expressed is like saying “Every time where C is B, then H is Z”; rather it
involves generalizing every situation (or state: h. āl) connected (yaqtarinu) to the
sentence “Every C is B” so that any situation or condition related to [that sentence],
which makes “C is B” true (mawjūdan) cannot do so without also making “H
is Z” true. For it might happen that the antecedent is something that does not
occur repeatedly (laysa lahu takarrurun wa ‘awdun); rather it is something that is
certain (thābitun) and true (mawjūdun), not intended (lā murāda lahu)’. (al-Qiyās,
p. 265.1–5, emphasis added).

So here too, he seems to stress the idea that a sentence containing ‘whenever’
requires the truth of the antecedent, for the conditional is true if the consequent is
true in all cases where the antecedent is itself true.

Elsewhere, he says, talking about the universal affirmative hypothetical proposi-
tion:

http://doi.org/10.1007/978-3-030-90823-2_4
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‘The universal hypothetical proposition is universal if the consequent follows
every positing (kulla wad. ‘in) of the antecedent, not only by what is intended (lā
fi al-murādi faqat), but in the [real] states (fı̄ al-ah. wāl) . . . that is, in all states that
require assuming (farad. a) the antecedent . . . ’ (al-Qiyās, p. 272.14–15).

This being so, we could consider that the Ac propositions should be formalized
by adding what Wilfrid Hodges calls the ‘augment’ (See [8]). The formalization of
Ac would thus be the following: Ac: ‘(∃s)Ps ∧ (∀s)(Ps→ Qs)’.

Thus formalized, Ac is comparable to the categorical A with import. With this
formalization, Ac conversion, Darapti and Felapton are all valid. Naturally, Oc must
be formalized accordingly. As to Ec, it does not need an augment. Consequently the
formalizations of the hypothetical conditional propositions should be the following:

– Ac : (∃s)Ps ∧ (∀s) (Ps → Qs)

– Ec : (∀s) (Ps →∼ Qs)

– Ic : (∃s) (Ps ∧ Qs)

– Oc : ~[(∃s)Ps ∧ (∀s)(Ps→ Qs)] [ = ~(∃s)Ps ∨ (∃s)(Ps ∧ ~Qs)] (see [5])1

With these formalizations in mind, let us now consider the quantified proposi-
tions whose elements are themselves quantified.

3 The Quantified Hypothetical Propositions with Quantified
Clauses

In al-Qiyās, Sec. 7 ([2], pp. 361–373), Avicenna presents four lists of quantified
hypothetical conditional propositions whose clauses are themselves quantified. At
pages 374–384, he presents the disjunctive propositions with quantified elements.
He also says that the four relations of the square of oppositions hold for these
quantified propositions in what follows:

And you know [what] contradiction, contrariety, subcontrariety and subalternation [signify],
so we don’t need to tell you again about them, for they are defined as they are in the case of
the predicative propositions ([2], p. 362.6).

So we can reasonably assume that all the oppositional relations between Ac,
Ec, Ic and Oc (where the letter ‘c’ stands for ‘connected’, which translates the
word muttas. il used by Avicenna) are valid in the hypothetical logic too. These
relations are all defined in al-‘Ibāra (De Interpretatione) (see [1], pp. 47–48), where
Avicenna defines all the relations of the classical square of oppositions (though

1 Despite the fact that some people criticized this formalization (see [12]), it seems to be the only
one to be able to account adequately for all of Avicenna’s claims and proofs (see [6])
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without drawing the square). Since as we just saw they are also evoked in this
section of al-Qiyās, we can say that Avicenna validates them even in his hypothetical
logic. But this validation is not obvious, if we take into account Avicenna’s further
explanations about the equivalences between some Ac and Ec propositions with
opposed consequents. These explanations raise problems for they presuppose that
the Ec propositions imply the Ac ones when the two propositions have the same
antecedents but opposed consequents. For instance, the Ec proposition ‘Never if
every A is B, then every C is D′ (laysa al-battata idhā kāna kull A B fa-kull C
D) implies, according to him, the Ac proposition ‘Whenever every A is B, then
not every C is D′ (Kullamā kāna kull A B, fa-laysa kull C D) ([2], p. 366). But
this implication is not correct, when we formalize the propositions as above, since
‘(∀s)(Ps → ~Qs)’ does not imply ‘(∃s)Ps ∧ (∀s)(Ps → ~Qs)’, even if this Ac does
imply that Ec. But if Ac does not contain the augment, the implication does hold as
Avicenna says, for then the two propositions would both be expressed as ‘(∀s)(Ps
→ ~Qs)’. Unfortunately, in that case, i.e. if Ac is formalized as ‘(∀s)(Ps → ~Qs)’,
then neither contrariety, subcontrariety and subalternation, nor Ac conversion, nor
Darapti and Felapton hold, unlike what Avicenna says. So if we choose one of
these formalizations, but not the other one, Avicenna’s claims become incompatible
with each other and the whole system would be inconsistent. Consequently, if one
wishes to account for all Avicenna’s claims, one has to admit both formalizations
of Ac and to distinguish them clearly, since Ac with the augment validates all the
relations of the square, Ac conversion plus all third figure moods, while Ac without
the augment validates the equivalences between some Ec and some Ac propositions
stated by Avicenna, the equivalences between some Ac propositions and some A
disjunctive ones and the principle of contraposition, i.e. the following equivalence:
‘(∀s)(Ps→ Qs) ≡ (∀s)(~Qs→ ~Ps)’, which is also admitted by Avicenna (see [2],
p. 385).

Now since the logical relations are validated by the Ac which contains the aug-
ment, let us provide the corresponding formalizations. Otherwise, no Aristotelian
relation apart from contradiction holds, and we would have no figure at all, just
as in modern logic; neither the square nor any other figure holds for the usual
formalizations of the categorical quantified propositions.

Let us now provide the four lists. The 16 Ac propositions are the following:

1. Whenever Every A is B, then Every C is D.
2. Whenever Every A is B, then Some C is D.
3. Whenever Some A is B, then Every C is D.
4. Whenever Some A is B, then Some C is D.
5. Whenever No A is B, then No C is D.
6. Whenever No A is B, then Not every C is D.
7. Whenever Not every A is B, then No C is D.
8. Whenever Not every A is B, then Not every C is D.
9. Whenever Every A is B, then Not No C is D.

10. Whenever Every A is B, then Not every C is D.
11. Whenever Some A is B, then No C is D.
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12. Whenever Some A is B, then Not every C is D.
13. Whenever No A is B, then Every C is D.
14. Whenever No A is B, then Some C is D.
15. Whenever Not every A is B, then Some C is D.
16. Whenever Not every A is B, then Every C is D ([2], pp. 363–364).

The 16 Ec propositions are the following:

1. Never when Every A is B, then Every C is D.
2. Never when Every A is B, then Some C is D.
3. Never when Some A is B, then Every C is D.
4. Never when Some A is B, then Some C is D.
5. Never when No A is B, then No C is D.
6. Never when No A is B, then Not every C is D.
7. Never when Not every A is B, then No C is D.
8. Never when Not every A is B, then Not every C is D.
9. Never when Every A is B, then No C is D.

10. Never when Every A is B, then Not every C is D.
11. Never when Some A is B, then No C is D.
12. Never when No A is B, then Every C is D.
13. Never when No A is B, then Some C is D.
14. Never when Not every A is B, then Every C is D.
15. Never when Not every A is B, then Some C is D.
16. Never when Some A is B, then Not every C is D ([2], pp. 364–365).

While the 16 Ic propositions are the following:

1. It happens that when Every A is B, then Every C is D.
2. It happens that when Every A is B, then Some C is D.
3. It happens that when Some A is B, then Every C is D.
4. It happens that when Some A is B, then Some C is D.
5. It happens that when No A is B, then No C is D.
6. It happens that when No A is B, then Not every C is D.
7. It happens that when Not every A is B, then No C is D.
8. It happens that when Not every A is B, then Not every C is D.
9. It happens that when Every A is B, then No C is D.

10. It happens that when Some A is B, then No C is D.
11. It happens that when Every A is B, then Not every C is D.
12. It happens that when Some A is B, then Not every C is D.
13. It happens that when No A is B, then Every C is D.
14. It happens that when Not every A is B, then Every C is D.
15. It happens that when No A is B, then Some C is D.
16. It happens that when Not every A is B, then Some C is D ([2], pp. 369–370).

And the 16 Oc propositions are the following:

1. Not whenever Every A is B, then Every C is D.
2. Not whenever Every A is B, then Some C is D.
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3. Not whenever Some A is B, then Every C is D.
4. Not whenever Some A is B, then Some C is D.
5. Not whenever No A is B, then No C is D.
6. Not whenever Not Every A is B, then No C is D.
7. Not whenever No A is B, then Every C is D.
8. Not whenever Not Every A is B, then Not every C is D.
9. Not whenever Every A is B, then No C is D.

10. Not whenever Every A is B, then Not every C is D.
11. Not whenever Some A is B, then No C is D.
12. Not whenever Some A is B, then Not every C is D.
13. Not whenever No A is B, then Every C is D.
14. Not whenever No A is B, then Some C is D.
15. Not whenever Not Every A is B, then Every C is D.
16. Not whenever Not Every A is B, then Some C is D ([2], pp. 370–371).

4 How to Formalize these Propositions

How can we formalize these propositions? We will name the quantified clauses
by their usual vowels A, E, I and O and add numerals to distinguish between the
antecedents and the consequents. Thus, in each proposition:

– Every A is B = A1; Every C is D = A2.
– Some A is B = I1; Some C is D = I2.
– No A is B = E1; No C is D = E2.
– Not every A is B = O1; Not every C is D = O2.

Given this device, we can formalize the different kinds of propositions as
appears in the sequel. However, before providing the formalizations, let us first
clarify the notation that we will use. First we will call the universal affirmative
hypothetical propositions Ac, the universal negative hypothetical ones Ec, the
particular affirmative hypothetical ones Ic and the particular negative hypothetical
ones Oc (where c stands for ‘connected’). Their clauses, which are categorical
quantified propositions, will be called as usual A, E, I and O. Second our notation
is the following (where the small letters stand for the clauses):

All Ac propositions are noted as follows: Aaa, Aai, Aii and so on.
All Ec propositions are noted as follows: Eaa, Eae, Eai and so on.
All Ic propositions are noted as follows: Iaa, Iae, Iai and so on.
All Oc propositions are noted as follows: Oaa, Oae, Oai and so on.

Let us now consider the formalizations of the different Ac propositions. These
are the following:

1. (∃s)A1s ∧ (∀s) (A1s → A2s) [noted Aaa]
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2. (∃s)A1s ∧ (∀s) (A1s → I2s) [noted Aai]

3. (∃s) I1s ∧ (∀s) (I1s → A2s) [noted Aia]

4. (∃s) I1s ∧ (∀s) (I1s → I2s) -----

5. (∃s)E1s ∧ (∀s) (E1s → E2s) ------

6. (∃s)E1s ∧ (∀s) (E1s → O2s) -----

7. (∃s)O1s ∧ (∀s) (O1s → E2s)

8. (∃s)O1s ∧ (∀s) (O1s → O2s)

9. (∃s)A1s ∧ (∀s) (A1s → E2s)

10. (∃s)A1s ∧ (∀s) (A1s → O2s)

11. (∃s) I1s ∧ (∀s) (I1s → E2s)

12. (∃s) I1s ∧ (∀s) (I1s → O2s)

13. (∃s)E1s ∧ (∀s) (E1s → A2s)

14. (∃s)E1s ∧ (∀s) (E1s → I2s)

15. (∃s)O1s ∧ (∀s) (O1s → I2s)

16. (∃s)O1s ∧ (∀s) (O1s → A2s)

The Ec propositions noted Eaa, Eae, Eai, etc. . . . are formalized as follows:

1. (∀s) (A1s →∼ A2s) [= (∀s) (A1s → O2s) ] [ noted Eaa]

2. (∀s) (A1s →∼ I2s) [= (∀s) (A1s → E2s) ] [ noted Eai]

3. (∀s) (I1s →∼ A2s) [= (∀s) (I1s → O2s) ] [ noted Eia]

4. (∀s) (I1s →∼ I2s) [= (∀s) (I1s → E2s)] -----

5. (∀s) (E1s →∼ E2s) [= (∀s) (E1s → I2s)] -----

6. (∀s) (E1s →∼ O2s) [= (∀s) (E1s → A2s)] -----
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7. (∀s) (O1s →∼ E2s) [= (∀s) (O1s → I2s)]

8. (∀s) (O1s →∼ O2s) [= (∀s) (O1s → A2s)]

9. (∀s) (A1s →∼ E2s) [= (∀s) (A1s → I2s)]

10. (∀s) (A1s →∼ O2s) [= (∀s) (A1s → A2s)]

11. (∀s) (I1s →∼ E2s) [= (∀s) (I1s → I2s)]

12. (∀s) (E1s →∼ A2s) [= (∀s) (E1s → O2s)]

13. (∀s) (E1s →∼ I2s) [= (∀s) (E1s → E2s)]

14. (∀s) (O1s →∼ A2s) [= (∀s) (O1s → O2s)]

15. (∀s) (O1s →∼ I2s) [= (∀s) (O1s → E2s)]

16. (∀s) (I1s →∼ O2s) [= (∀s) (I1s → A2s)]

As to the Ic propositions, they are noted Iaa, Iai, Iae, etc. . . . and formalized as
follows:

1. (∃s) (A1s ∧ A2s) [noted Iaa]

2. (∃s) (A1s ∧ I2s) [noted Iai]

3. (∃s) (I1s ∧ A2s) [noted Iia]

4. (∃s) (I1s ∧ I2s) -----

5. (∃s) (E1s ∧ E2s) -----

6. (∃s) (E1s ∧O2s) ----

7. (∃s) (O1s ∧ E2s)

8. (∃s) (O1s ∧O2s)

9. (∃s) (A1s ∧ E2s)

10. (∃s) (I1s ∧ E2s)

11. (∃s) (A1s ∧O2s)
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12. (∃s) (I1s ∧O2s)

13. (∃s) (E1s ∧ A2s)

14. (∃s) (O1s ∧ A2s)

15. (∃s) (E1s ∧ I2s)

16. (∃s) (O1s ∧ I2s)

And the Oc propositions are noted Oaa, Oai, Oae, and so on, and formalized as
follows:

1. ∼ [(∃s)A1s ∧ (∀s) (A1s → A2s) ] [ noted Oaa]

2. ∼ [(∃s)A1s ∧ (∀s) (A1s → I2s) ] [ noted Oai)]
3. ∼ [(∃s) I1s ∧ (∀s) (I1s → A2s) ] [ noted Oia]

4. ∼ [(∃s) I1s ∧ (∀s) (I1s → I2s)] -----

5. ∼ [(∃s)E1s ∧ (∀s) (E1s → E2s)] -----

6. ∼ [(∃s)E1s ∧ (∀s) (E1s → O2s)] -----

7. ∼ [(∃s)O1s ∧ (∀s) (O1s → E2s)]

8. ∼ [(∃s)O1s ∧ (∀s) (O1s → O2s)]

9. ∼ [(∃s)A1s ∧ (∀s) (A1s → E2s)]

10. ∼ [(∃s)A1s ∧ (∀s) (A1s → O2s)]

11. ∼ [(∃s) I1s ∧ (∀s) (I1s → E2s)]

12. ∼ [(∃s) I1s ∧ (∀s) (I1s → O2s)]

13. ∼ [(∃s)E1s ∧ (∀s) (E1s → A2s)]

14. ∼ [(∃s)E1s ∧ (∀s) (E1s → I2s)]

15. ∼ [(∃s)O1s ∧ (∀s) (O1s → I2s)]

16. ∼ [(∃s)O1s ∧ (∀s) (O1s → A2s)]
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Now what are the logical relations between all these propositions? How can we
calculate the exact number of pairs inside the whole set of propositions? How can
we determine the logical relations between the members of each of these pairs? Can
we find some additional relations apart from the classical contradictions Ac/Oc and
Ec/Ic, contrarieties Ac/Ec, subcontrarieties Ic/Oc and subalternations Ac/Ic and
Ec/Oc? This will be examined in the next section.

5 The Logical Relations Between these Propositions

To calculate the number of pairs between the 64 propositions, we will first consider
the pairs of propositions of different kinds (for instance, the pairs Ac/Ec or Ac/Ic,
etc.), and then we will calculate the pairs of propositions of the same kind, for
instance, the pairs Ac/Ac or Ec/Ec propositions, whose clauses are different.

Since there are four kinds of propositions in total, namely, Ac, Ec, Ic and
Oc propositions, we have six possible combinations between these four kinds,
when each element of the combination is different from the other one. The six
combinations are the following: Ac/Ec, Ac/Ic, Ac/Oc, Ec/Ic, Ec/Oc and Ic/Oc.
In all these cases, we have 16 × 16 × 2 = 512 ordered pairs for each kind of
combination, i.e. 16 Ac/Ec, 16 Ec/Ac, 16 Ac/Ic, etc. So the total number of ordered
pairs of the different propositions is the following: 512 × 6 = 3072. But we will
show below that we need only the number of unordered pairs (= 1536) despite the
asymmetric character of subalternation.

Let us first show how to do the calculation of the ordered pairs, and then we
will get the unordered pairs just by dividing this number by 2. Take the 16 Ac
propositions, numbered 1, 2, 3, etc., and the 16 Ec propositions, numbered 1′, 2′, 3′,
etc., then the total number of ordered pairs Ac/Ec is the following2:

(1,1′); (1,2′); (1,3′); (1,4′); (1,5′); (1,6′); (1,7′); (1,8′); (1,9′); (1,10′); (1,11′);
(1,12′); (1,13′); (1,14′); (1,15′); (1,16′)

(1′,1); (1′,2); (1′,3); (1′,4); (1′,5); (1′,6); (1′,7); (1′,8); (1′,9); (1′,10); (1′,11);
(1′,12); (1′,13); (1′,14); (1′,15); (1′,16)

(2,1′); (2,2′); (2,3′); (2,4′); (2,5′); (2,6′); (2,7′); (2,8′); (2,9′); (2,10′); (2,11′);
(2,12′); (2,13′); (2,14′); (2,15′); (2,16′)

(2′,1); (2′,2); (2′,3); (2′,4); (2′,5); (2′,6); (2′,7); (2′,8); (2′,9); (2′,10); (2′,11);
(2′,12); (2′,13); (2′,14); (2′,15); (2′,16)

- - - - - -
- - - - - -
- - - - - -
(16,1′); (16,2′); (16,3′); (16,4′); (16,5′); (16,6′); (16,7′); (16,8′); (16,9′); (16,10′);

(16,11′); (16,12′); (16,13′); (16,14′); (16,15′); (16,16′).

2 We only give here the first lines plus the very last lines just to give an idea about the method of
calculus.



Logical Oppositions in Avicenna’s Hypothetical Logic 65

(16′,1); (16′,2); (16′,3); (16′,4); (16′,5); (16′,6); (16′,7); (16′,8); (16′,9); (16′,10);
(16′,11); (16′,12); (16′,13); (16′,14); (16′,15); (16′,16)

The same calculus applies to all the pairs Ac/Ic, Ac/Oc, Ec/Ic, Ec/Oc and Oc/Ic.
But we don’t need ordered pairs, i.e. the pairs such that (1,1′) �= (1′,1). All we

need is the number of unordered pairs, i.e. the pairs such that {1,1′} = {1′,1}. So
the real number of pairs needed for this kind of combinations is 3072/2= 1536. Let
us explain this more clearly. We are talking here about the Aristotelian relations of
contradiction, contrariety, subcontrariety and subalternation. To these we will add
the independence relation, but we will not consider equivalence relations, which do
not occur in the square. Now the Aristotelian relations are all symmetrical, except
subalternation (about which more will be said below), and the independence relation
is also symmetrical. For instance, contradiction is a valid exclusive disjunction, and
the exclusive disjunction is symmetrical, since ‘(P ∨ Q) ≡ (Q ∨ P)’. Likewise
contrariety is the validity of a negated conjunction, and since the conjunction
is also commutative, the following equivalence holds: ‘~(P ∧ Q) ≡ ~(Q ∧ P)’.
Subcontrariety is the validity of an inclusive disjunction, and this disjunction too
is commutative, since ‘(P ∨ Q) ≡ (Q ∨ P)’. As to the independence relation, it is
symmetrical, for if a proposition is independent from another one, the other one is
also independent from it, since independence means that the propositions can be
both true or both false or one of them is true while the other one is false, regardless
of their order.

What remains is subalternation. This relation is indeed asymmetric, since it is an
implication whose antecedent is a universal proposition and whose consequent is
a particular one. And as all implications, it is not symmetrical, since ‘(P → Q) �
(Q → P)’. Still when we find a subalternation between two propositions (e.g. ‘Ac
→ Ic’), the relation that we get when we change the order of the two propositions
cannot be another subalternation, since the two propositions considered here are not
equivalent, given the way we have formalized them; it cannot be a subcontrariety
either, since two propositions related by a subalternation can be false together, nor
can it be a contrariety, since both such propositions can be true together, and it
cannot be an independence relation, since there is no case where the consequent (e.g.
Ic, here) is false while the antecedent (e.g. Ac, here) is true. So the only remaining
possibility is that the ordered pair (Ic, Ac) expresses a non-implication. This means
that once we know that the relation between the members of the ordered pair (Ac, Ic)
is a subalternation, we know that the relation between the members of the ordered
pair (Ic, Ac) is a non-implication, provided the two propositions are not equivalent,
which is the case with the propositions of Avicenna’s lists. This is why we only need
unordered pairs, even if one of the relations is asymmetric.

But we have to add the number of unordered pairs between the propositions of
the same kind, namely, all the unordered pairs A/A, E/E, I/I and O/O. For these too,
the calculus should not be based on the following formula:

m!
(m–n)!
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which calculates the number of ordered pairs. Rather we need to use the formula
below (where m = 16 and n = 2), which provides the number of unordered pairs:

This is ‘the formula for the number of n-element subsets of a set of m elements’,3

i.e. in our case, the combination of all pairs inside the set of 16 propositions,
regardless of the order of their elements. Note that the calculus with this formula
does not count the pairs of identical propositions, i.e. the pairs {1,1}, {2,2}, etc.,
since we don’t need these pairs, because we are not searching for equivalences.

This calculus can be applied to the unordered pairs Ac/Ac, Ec/Ec, Ic/Ic and
Oc/Oc.

For instance, for the Ac/Ac pairs, when the propositions are numbered 1, 2, 3, 4,
. . . , 16, the lines are the following:
{1,2}; {1,3}; {1,4}; {1,5}; {1,6}; {1,7}; {1,8}; {1,9}; {1,10}; {1,11}; {1,12}; {1,13};

{1,14}; {1,15}; {1,16}
{2,3}; {2,4}; {2,5}; {2,6}; {2,7}; {2,8}; {2,9}; {2,10}; {2,11}; {2,12}; {2,13}; {2,14};

{2,15}; {2,16}4
{3,4}; {3,5}; {3,6}; {3,7}; {3,8}; {3,9}; {3,10}; {3,11}; {3,12}; {3,13}; {3,14};

{3,15}; {3,16}.
- - - - - -
- - - - -
- - - -
{14,15}; {14,16}
{15,16}
Likewise we have 120 Ec/Ec pairs, 120 Ic/Ic pairs and 120 Oc/Oc pairs, which

means that the total number of such unordered pairs between the same kind of
propositions is the following: 120 × 4 = 480 pairs.

If we consider the logical relations between these 480 unordered pairs and
between the 1536 previous unordered pairs of propositions, we get the following
number of pairs: 1536 + 480 = 2016, the members of which are related by
Aristotelian relations or independence ones.

We must thus consider all these relations between the 64 propositions in order to
find out which ones are Aristotelian, i.e. are either contradictions or contrarieties
or subcontrarieties or subalternations. These Aristotelian relations are defined as
follows:

1. Two propositions α and β are contradictory if and only if they are never true nor
false together (i.e. if and only if ‘α ∨ β’ is valid = tautological).

3 This is the explanation given by one of the referees, whom I thank for his valuable remarks and
suggestions.
4 Note here that we have omitted {2,2}, for the reasons evoked above.
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2. Two propositions α and β are contrary if and only if they are never true together
but can be false together (i.e. if ‘~(α ∧ β)’ is valid).

3. Two propositions α and β are subcontrary if and only if they are never false
together but can be true together (i.e. if ‘α ∨ β’ is valid).

4. The proposition β is the subaltern of the proposition α if and only if when α is
true, β is true too, and when β is false, α is false too (i.e. if ‘α→ β’ is valid).

The remaining relations between pairs of propositions will be considered as cases
of independence, where the two elements of the same pair can be both true together,
both false together or one of them is true while the other one is false. In these cases,
no specific link between these propositions holds, and no deduction can be made
starting from one or the other of the propositions. As to the non-implications, they
are just parallel to the subalternations and will not be mentioned in the figures below,
since they are never mentioned in the classical squares, hexagons or octagons.

Let us start by the most obvious relation, namely, contradiction. It is clear that
contradiction holds between all Ac and Oc propositions and between all Ec and Ic
propositions with the same clauses. Since we have 16 propositions for each kind of
quantified propositions, we will have 16 pairs of contradictories Ac/Oc and 16 pairs
Ec/Ic. So we get 32 pairs of contradictories.

Likewise, we can say that the other Aristotelian relations hold between the
propositions which have the same clauses. This means that:

All Ac and Ec propositions with the same clauses are contrary. So here too, we
should have 16 pairs of contrarieties, at first sight.

All Ic and Oc propositions with the same clauses are subcontrary, which means that
we should have 16 pairs of subcontrarieties, at first sight.

All Ac propositions imply the Ic propositions with the same clauses, which gives
rise to 16 subalternations, at first sight.

All Ec propositions imply the Oc propositions with the same clauses, which also
gives rise to 16 other subalternations, at first sight.

This leads to the following number of relations: 32 pairs of contradictories
+16 pairs of contrarieties +16 pairs of subcontrarieties +32 subalternations = 96
Aristotelian relations between the propositions with the same clauses. But we could
also have contrarieties, subcontrarieties and subalternations between propositions
which do not have the same clauses, as we will see below.

The combinations between the 16 Ac propositions and the 16 Oc propositions
and between the 16 Ec propositions and the 16 Ic propositions give rise to one
contradiction in each line. The remaining pairs in these combinations of the different
Ec and Ic and Ac and Oc are either contrarieties or subcontrarieties or independence
relations. To illustrate this, let us provide the first line of the combinations Ic/Ec.
This line is the following:

Iaa/Eaa; Iaa/Eai; Iaa/Eia; Iaa/Eii; Iaa/Eee; Iaa/Eeo; Iaa/Eoe; Iaa/Eoo; Iaa/Eae;
Iaa/Eao; Iaa/Eie; Iaa/Eea; Iaa/Eeo; Iaa/Eoa; Iaa/Eoi; Iaa/Eio.

In this line, only the first pair (in bold) is a pair of contradictories. The
other ones are either independent propositions or pairs of contraries. The pairs of
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contraries (in italics) are Iaa/Eai, Iaa/Eia and Iaa/Eii. All the remaining relations
are independence relations. We can thus see from the start that the independence
relations are much more numerous than the Aristotelian ones.

The same holds with the 15 other lines where there is exactly one contradiction
and some contrarieties or subcontrarieties depending on the line and the propositions
involved plus many independence relations. The contrarieties, subcontrarieties and
subalternations can hold between propositions which do not have the same clauses,
unlike the contradictions.

Likewise, the propositions which are of the same kind (both being Ac propo-
sitions, for instance) but have opposed consequents can be either contrary or
subcontrary, as claimed by Avicenna in the following passage, where talking
about Ac propositions with contradictory consequents, he says that they are not
contradictory but rather contrary:

. . .Thus the universal affirmatives whose consequents are contradictory are [themselves]
contrary, for they [can be] both false but they are not contradictory. This is so because
one of these affirmatives has the power of a universal negative, which is opposed to the
[previous] universal by contrariety ([2], p. 368.15–17).

Elsewhere, he says, talking about the two particular propositions:

. . . The opinion according to which the contradiction of the consequents makes the
conditional [propositions] contradictory is false, for these particulars can be true together.
But the power of the negative one is the power of an affirmative whose consequent is
contradictory to that of the affirmative, while the power of the affirmative one is that of
a negative whose consequent is contradictory to that of the negative one. So they are two
affirmatives with two contradictory consequents and they are true together, [or] they are two
negatives with also [two contradictory consequents] and they are both true ([2], p. 371.14–
17).

Thus he stresses the subcontrariety of the two particular propositions whose
consequents are contradictory, while their antecedents are the same. So the Ic
propositions whose consequents are contradictory can be true together, according
to him, and the same can be said about the Oc propositions whose consequents are
contradictory, when their antecedents are the same.

Let us first state the usual Aristotelian relations between all these propositions.
The 32 usual pairs of contradictories Ac/Oc and Ec/Ic are the following:

Aaa/Oaa, Aai/Oai, Aao/Oao, Aae/Oae, Aii/Oii, Aia/Oia, Aie/Oie, Aio/Oio,
Aee/Oee, Aea/Oea, Aei/Oei, Aeo/Oeo, Aoa/Ooa, Aoe/Ooe, Aoi/Ooi, Aoo/Ooo,
Eaa/Iaa, Eae/Iae, Eai/Iai, Eao/Iao, Eea/Iea, Eee/Iee, Eei/Iei, Eeo/Ieo, Eia/Iia, Eie/Iie,
Eii/Iii, Eio/Iio, Eoa/Ioa, Eoe/Ioe, Eoi/Ioi, Eoo/Ioo.

The 16 pairs of usual contraries Ac/Ec, where the contrary propositions have the
same clauses, are the following:

Aaa/Eaa; Aee/Eee; Aii/Eii; Aoo/Eoo; Aae/Eae; Aao/Eao; Aai/Eai; Aea/Eea;
Aei/Eei; Aeo/Eeo; Aia/Eia; Aie/Eie; Aio/Eio; Aoa/Eoa; Aoi/Eoi; Aoe/Eoe.

The 16 pairs of usual subcontrarieties Ic/Oc, where the propositions have the
same clauses, are the following:

Iaa/Oaa, Iae/Oae, Iai/Oai, Iao/Oao, Iea/Oea, Iee/Oee, Iei/Oei, Ieo/Oeo, Iia/Oia,
Iie/Oie, Iii/Oii, Iio/Oio, Ioa/Ooa, Ioe/Ooe, Ioi/Ooi, Ioo/Ooo.
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The 16 usual subalternations between Ac and Ic propositions with the same
clauses are the following:

Aaa → Iaa; Aai → Iai; Aao → Iao; Aae → Iae; Aee → Iee; Aea → Iea;
Aei → Iei; Aeo → Ieo; Aii → Iii; Aia → Iia; Aie → Iie; Aio → Iio; Aoo → Ioo;
Aoa→ Ioa; Aoe→ Ioe; Aoi→ Ioi.

Those between the Ec and Oc propositions with the same clauses are the
following:

Eaa → Oaa; Eae → Oae; Eai → Oai; Eao → Oao; Eea → Oea; Eee → Oee;
Eei → Oei; Eeo → Oeo; Eia → Oia; Eie → Oie; Eii → Oii; Eio → Oio;
Eoa→ Ooa; Eoe→ Ooe; Eoi→ Ooi; Eoo→ Ooo.

But the number of pairs is far bigger than that, as the calculations above show.
At first sight, the number of contradictory pairs should remain the same (= 32),
since all contradictory propositions must have the same clauses and since the change
of the order of the clauses does not add anything. But we should find other pairs
of contrarieties, of subcontrarieties and of subalternations between propositions
which do not have the same clauses. And this must be checked by verifying what
kind of relation holds between these propositions where the clauses are not the same.

So let us first check what would be these contrarieties and the pairs of propo-
sitions involved. It seems obvious that the following Ac and Ec propositions are
contrary:

Aaa/Eai; Aaa/Eia; Aaa/Eii; Aee/Eeo; Aee/Eoe; Aee/Eoo; Aae/Eao; Aae/Eie;
Aae/Eio; Aao/Eio; Aai/Eii; Aea/Eei; Aea/Eoa; Aea/Eoi; Aei/Eoi; Aeo/Eoo; Aia/Eii;
Aie/Eio; Aoa/Eoi; Aoe/Eoo.

For since the consequent of the Ec proposition is either the contrary or the
contradictory of the consequent of the Ac proposition, they cannot be true together.
Given that the antecedents of the Ec propositions are either the same as those of
the Ac ones or subaltern to those of the Ac ones, the whole Ac and Ec propositions
can never be true together. They are thus contrary. For instance, let us take as an
example the pair Aai/Eii (in bold in the list). This pair can be stated as follows:

(∃s)A1s ∧ (∀s) (A1s → I2s) / (∀s) (I1s →∼ I2s)

It is not a contradictory pair because its clauses are different. But can it be a
pair of contrary propositions? These Ac and Ec propositions would be contrary if
they can never be true together but could be false together. Consider, for instance,
the case where the Ac proposition is true; this means that its main conjunction is
true; so A1s is true. Consequently its usual subaltern, namely, I1s, which is here the
antecedent of the Ec proposition, must be true too. But if we want the Ac proposition
to be true, its second conjunct, namely, ‘(∀s)(A1s → I2s)’, should be true too, and
since the antecedent of this conditional is true, its consequent (viz. I2s) must be true.
Unfortunately, in this case, its contradictory (= ~ I2s), which is the consequent of
the Ec proposition must be false, which means that the whole Ec proposition is false
(its antecedent being itself true). So the two propositions cannot be true together.

Likewise, we could show that when the Ec proposition is true, the Ac proposition
cannot be true. Consider the case where it is the Ec proposition that is supposed true;
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we get the following line of the table (where we consider two situations s1 and s2):

{
(A1s1 ∨ A1s2) ∧ [(A1s1 → I2s1) ∧ (A1s2 → I2s2)] / [(I1s1 →∼ I2s1) ∧ (I1s2 →∼ I2s2)]

0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 1 1

This line shows that if the two conditionals formalizing the Ec proposition are
true and if their consequents are true, whatever truth value their antecedents may
have, then I2s1 and I2s2 must both be false, in which case both A1s1 and A1s2
must be false in order for the two conditionals of the Ac proposition to be true.
In this case, the disjunction in the left side is also false, which means that when
the Ec proposition is true, then the Ac proposition is false. If we consider that
the disjunction is true, this means that one of the two propositions A1s1 and A1s2
should be true; but if one of them is true and if one of the I propositions (I2s1
and I2s2) is false, then one of the conditionals of the Ac proposition would be false;
consequently the whole conjunction would be false too. So whatever supposition we
make, we always have a case of falsity under one proposition whenever the other
proposition is true, which means that they can never be true together.

They could however be false together, as is shown by the following line of the
table, where the formula corresponding to Ac in the left side is false together with
the one corresponding to Ec in the right side:

{
(A1s1 ∨ A1s2) ∧ [(A1s1 → I2s1) ∧ (A1s2 → I2s2)] / [(I1s1 →∼ I2s1) ∧ (I1s2 →∼ I2s2)]

1 1 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 0

The same proof holds for all similar pairs given above. We can thus say that the
20 pairs above are all pairs of contrary propositions.

Consequently, their contradictories are subcontrary. The pairs of subcontrary
propositions are the following:

Oaa/Iai; Oaa/Iia; Oaa/Iii; Oee/Ieo; Oee/Ioe; Oee/Ioo; Oao/Iao; Oae/Iie; Oae/Iio;
Oao/Iio; Oai/Iii; Oea/Iei; Oea/Ioa; Oea/Ioi; Oia/Iii; Oei/Ioi; Oeo/Ioo; Oie/Iio;
Ooa/Ioi; Ooe/Ioo.

However, the following Ac and Ec propositions are independent:
Aii/Eia; Aii/Eaa; Aii/Eai; Aoo/Eoe; Aoo/Eee; Aoo/Eoo; Aao/Eae; Aao/Eie;

Aai/Eaa; Aia/Eaa; Aai/Eia; Aia/Eaa; Aia/Eai; Aei/Eea; Aei/Eoa; Aeo/Eee;
Aeo/Eoe; Aie/Eae; Aie/Eao; Aio/Eie; Aio/Eao; Eio/Eae; Aoa/Eei; Aoa/Eea;
Aoe/Eee; Aoe/Eeo; Aoi/Eoa; Aoi/Eea; Aoi/Eei.

For take, for instance, the following pair: Aeo/Eoe (in bold in the list above).
This pair of propositions is formalized as follows: (∃s) E1s ∧ (∀s)(E1s ⊃ O2s) /
(∀s)(O1s ⊃ ~E2s).

If we consider two situations, the formalization is the following:
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(E1s1 ∨ E1s2) ∧ [(E1s1 → O2s1) ∧ (E1s2 → O2s2)] / [(O1s1 →∼ E2s1) ∧ (O1s2 →∼ E2s2)]

0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 Line 1

1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 Line 2

1 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 1 Line 3

1 1 0 1 1 1 1 1 0 1 0 1 0 0 0 1 1 1 Line 4

Now when we test the possible values of these propositions, we find that the four
lines above show that the two propositions can be false together [when both E1s1
and E1s2 are false and ~ E2s1 is false too (Line 1)] and that they can also be true
together [when E1s1 is true while E1s2 is false (Line 2)] or one of them can be
true while the other one is false, for instance, when E1s1 is true while O2s1 is false
and ~ E2s1 is true while O1s2 is false (Line 3) or when E1s1 is true while ~E2s1 is
false (Line 4). Likewise, all other pairs of the above group are independent, since
the propositions involved have the same kind of sstructure.

Consequently, their contradictories are also independent, for from the fact that
‘p’ and ‘q’ are independent, we can deduce that ‘~p’ and ‘~q’ are independent too,
given that they too can be either both true or both false or one of them is true while
the other one is false.

So the following Oc and Ic propositions are independent too:
Oii/Iia; Oii/Iaa; Oii/Iai; Ooo/Ioe; Ooo/Iee; Ooo/Ioo; Oao/Iae; Oao/Iie; Oai/Iaa;

Oia/Iaa; Oai/Iia; Oia/Iaa; Oia/Iai; Oei/Iea; Oei/Ioa; Oeo/Iee; Oeo/Ioe; Oie/Iae;
Oie/Iao; Oio/Iie; Oio/Iao; Oio/Iae; Ooa/Iei; Ooa/Iea; Ooe/Iee; Ooe/Ieo; Ooi/Ioa;
Ooi/Iea; Ooi/Iei.

Can we have other contrarieties between other kinds of propositions?
As stressed by Avicenna in the quotations above ([2], p. 368), two Ac propo-

sitions can be contrary when their consequents are contradictory. We can add the
same claim for the propositions whose consequents are contrary. So the following
pairs of propositions should be contrary:

Aaa/Aae; Aaa/Aao; Aaa/Aio; Aaa/Aie; Aai/Aie; Aae/Aia; Aae/Aii; Aae/Aai;
Aai/Aie; Aao/Aia; Aee/Aea; Aee/Aei; Aee/Aoa; Aee/Aoi; Aea/Aeo; Aea/Aoo;
Aea/Aoe; Aia/Aie; Aia/Aio; Aie/Aii; Aoa/Aeo; Aoa/Aoo; Aoa/Aoe; Aoe/Aei;
Aoe/AoiIn these pairs of propositions, the consequents are sometimes contradictory
as in the pair ‘Aaa/Aao’ but they can also be contrary as in the pair ‘Aaa/Aae’.
In both cases, when the antecedent of both propositions is the same and is true,
the second proposition cannot be true, given that its consequent is either the
contradictory of the consequent of the other one or its contrary. If the antecedents
are not the same, but are both true, and the consequents are either contradictory or
contrary to each other, as in the pairs ‘Aaa/Aio’ or ‘Aae/Aia’, the same holds for in
these cases, if the antecedent of ‘Aaa’ is true, the antecedent of ‘Aio’, which is an
I proposition, i.e. a subaltern of A, will be true too, but when the consequent of the
first Ac proposition is true, the consequent of the second Ac proposition, which is
an O proposition, will be false, being the contradictory of the first consequent. This
means that the two Ac propositions can never be true together. We can formalize
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these two Ac propositions as follows: (∃s) A1s ∧ (∀s)(A1s → A2s) / (∃s) I1s ∧
(∀s)(I1s→ O2s).

If we consider only one situation, we get the following formulas, where if the
first Ac (in the left) is true, the second Ac (in the right) cannot be true:

[A1s1 ∧ (A1s1 → A2s1) ]/[ I1s1 ∧ (I1s1 → O2s1)]
1 1 1 1 1 1 0 1 0 0

If on the other hand, the second Ac proposition is true, can the first Ac be
true? The following lines of the table show that this too cannot hold, whether the
antecedent of the first Ac (in the left) is false or true, as shown in the two lines
below:

[A1s1 ∧ (A1s1 → A2s1) ]/[ I1s1 ∧ (I1s1 → O2s1)]
0 0 0 1 0 1 1 1 1 1
1 0 1 0 0 1 1 1 1 1

So these two Ac propositions cannot be true together. However, they can be false
together, as shown by the following line:

[A1s1 ∧ (A1s1 → A2s1) ]/[ I1s1 ∧ (I1s1 → O2s1)]
0 0 0 1 1 1 0 1 0 0

They are thus contrary. The same can be said about all the pairs of the same group
mentioned above. These contrarieties are added to the usual ones and involve only
Ac propositions.

As a consequence, the following pairs of Oc propositions are pairs of subcontrary
propositions, since when two propositions are contrary, their contradictories are
subcontrary:

Oaa/Oae; Oaa/Oao; Oaa/Oio; Oaa/Oie; Oai/Oie; Oae/Oia; Oae/Oii; Oae/Oai;
Oai/Oie; Oao/Oia; Oee/Oea; Oee/Oei; Oee/Ooa; Oee/Ooi; Oea/Oeo; Oea/Ooo;
Oea/Ooe; Oia/Oie; Oia/Oio; Oie/Oii; Ooa/Oeo; Ooa/Ooo; Ooa/Ooe; Ooe/Oei;
Ooe/Ooi.

All these propositions are negative particular propositions. Their subcontrariety
confirms what is stressed by Avicenna in the quotation above to the effect that
some Oc propositions are subcontrary. They can thus be true together, whether their
antecedents are the same or related by subalternation, while their consequents are
either contrary or contradictory.

Some contrarieties hold between some Ac and Ic propositions. These are the
following:

Aaa/Iae; Aaa/Iao; Aae/Iaa; Aae/Iai; Aai/Iae; Aao/Iaa; Eea/Iee; Eea/Ieo; Aee/Iea;
Aee/Iei; Aei/Iee; Aeo/Iea; Aia/Iie; Aia/Iio; Aii/Iie; Aio/Iia; Aie/Iia; Aie/Iii; Aoa/Ioe;
Aoa/Ioo; Aoe/Ioa; Aoe/Ioi; Aoo/Ioa; Aoi/Ioe.
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The Ac and Ic propositions involved are those where the antecedents are
the same, while the consequents are either contradictory or contrary. For if the
antecedent of the Ac proposition is true, it is also true in the Ic proposition, but
if the consequent of the Ac proposition is true, the consequent of the Ic proposition
cannot be true, since it is contradictory or contrary to that first consequent. So both
propositions can never be true together. However they can be false together if the
two antecedents of both propositions are false. So these propositions are contrary.

Consequently, their contradictories are subcontrary. These subcontrarieties are
the following:

Oaa/Eae; Oaa/Eao; Oae/Eaa; Oae/Eai; Oai/Eae; Oao/Eaa; Iea/Eee; Iea/Eeo;
Oee/Eea; Oee/Eei; Oei/Eee; Oeo/Eea; Oia/Eie; Oia/Eio; Oii/Eie; Oio/Eia; Oie/Eia;
Oie/Eii; Ooa/Eoe; Ooa/Eoo; Ooe/Eoa; Ooe/Eoi; Ooo/Eoa; Ooi/Eoe.

However, when the antecedent of the Ic proposition is the subaltern of the
antecedent of the Ac one, even if their consequents are contrary or contradictory,
they are not themselves contrary; rather they are independent. So the following pairs
of propositions are not contrary, since they can be true together:

Aaa/Iie; Aaa/Iio; Aae/Iii; Aae/Iia; Aai/Iie; Aao/Iia; Aea/Ioe; Aea/Ioo; Aee/Ioi;
Aee/Ioa; Aei/Ioe; Aeo/Ioa.

Take, for instance, the first pair, namely, Aaa/Iie. This pair can be expressed as
follows:

(∃s) A1s ∧ (∀s) (A1s → A2s) / (∃s) (I1s ∧ E2s) .

When we consider two situations, we get the following formulas:

(A1s1 ∨ A1s2) ∧ [(A1s1 → A2s1) ∧ (A1s2 → A2s2) ]/[ (I1s1 ∧ E2s1) ∨ (I1s2 ∧ E2s2)]

0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0

The line of the table shows that the two propositions can be true together. So they
are not contrary; likewise for all similar pairs listed with this one. These pairs can
also be false together (precisely when both A1s1 and A1s2 are false, while A2s1 is
true and I1s1 and I1s2 are both false), and one of them can be true while the other
one is false (precisely when A1s1, A1s2, A2s1, A2s2, I1s1 and I2s1 are all true, while
E2s1 and E2s2 are both false for the first case, and when A1s1 and A1s2 are false,
while I1s1 and E2s1 are both true). So they are independent.

Consequently, their contradictories should also be independent. These pairs of
independent propositions are the following:

Oaa/Eie; Oaa/Eio; Oae/Eii; Oae/Eia; Oai/Eie; Oao/Eia; Oea/Eoe; Oea/Eoo;
Oee/Eoi; Oee/Eoa; Oei/Eoe; Oeo/Eoa.

Some contrarieties hold also between Ic and Ec propositions such as the
following:

Iaa/Eia; Iaa/Eai; Iaa/Eii; Iae/Eao; Iae/Eie; Iae/Eio; Iai/Eii; Iao/Eio; Iea/Eei;
Iea/Eoa; Iea/Eoi; Iei/Eoi; Iia/Eii; Iia/Eaa; Iia/Eai; Iie/Eio; Iee/Eoe; Iee/Eeo; Iee/Eoo;
Ieo/Eoo; Ioa/Eoi; Ioe/EooTake, for instance, the pair Iaa/Eia (in bold in the list), its
formalization is the following:
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(∃s) (A1s ∧ A2s) / (∀s) (I1s →∼ A2s)

If we consider only one situation, we get the following formula:

(A1s1 ∧ A2s1) / (I1s1 →∼ A2s1)

1 1 1 1 0 0 [Line 1] (prop 1 : true, prop 2 : false)
1 0 0 1 1 1 [Line 2] (prop 1 : false, prop 2 : true)
0 0 1 1 0 0 [Line 3] (both props : false)

The values under the propositions in Line 1 show that when the first proposition
is true, the second one cannot be true, since its antecedent is true but its consequent
is false. If on the other hand we suppose that the second proposition is true as in
Line 2, then the first one cannot be true, since in that case, Line 2 shows that when
~A2s1 is true, its contradictory A2s1 is false; consequently the whole conjunction in
the left side will be false; if both ~A2s1 and I1s1 are false, then A1s1 must be false
too, since it implies I1s1, which makes the whole conjunction false.

However, these propositions can be false together, as shown in Line 3, since
when I1s1 is true, A1s1, which implies it, can be false, in which case, the whole
conjunction in the left is false, together with the conditional in the right.

Consequently their contradictories are subcontrary. These pairs of subcontrari-
eties are the following:

Eaa/Iia; Eaa/Iai; Eaa/Iii; Eai/Iii; Eee/Ioe; Eee/Ieo; Eee/Ioo; Eeo/Ioo; Eae/Iao;
Eae/Iie; Eae/Iio; Eao/Iio; Eea/Iei; Eea/Ioa; Eea/Ioi; Eei/Ioi; Eie/Iio; Eoa/Ioi; Eia/Iii;
Eoe/Ioo; Eia/Iai; Eia/Iaa; Eie/Iio; Eia/Iii; Eoa/Iei.

Likewise, the following Ac and Oc propositions are contrary:
Aaa/Oai; Aae/Oao; Aea/Oei; Aee/Oeo; Aia/Oii; Aie/Oio; Aoa/Ooi; Aoe/Ooo.
Consequently, their contradictories are subcontrary:
Oaa/Aai; Oee/Aeo; Oae/Aao; Oie/Aio; Oea/Aei; Ooa/Aoi; Ooe/Aoo; Oia/Aii.
However, the remaining Ic and Ec propositions and Ac and Oc propositions are

independent, for instance, the following: Iaa/Eee; Iaa/Eeo; Iaa/Eoe; Iaa/Eoo; Iai/Eia;
Iee/Eii; Aaa/Oee; Aaa/Oeo; etc.

As we can see, there are much less contrarieties Ac/Oc than contrarieties Ic/Ec.
This is so because the structures of the Ac and Oc propositions are different from
the structures of the propositions Ic and Ec.

As to the subalternations, apart from the usual ones which we already mentioned,
we find the following subalternations between these Ac and Ic propositions:

Aaa → Iai; Aaa → Iia; Aaa → Iii; Aai → Iii; Aao → Ioo; Aae → Iio;
Aae→ Iao; Aae→ Iio; Aae→ Iie; Aee→ Ieo; Aee→ Ioe; Aee→ Ioo; Aea→ Iei;
Aea→ Ioi; Aea→ Ioa; Aeo→ Ioo; Aia→ Iii; Aie→ Iio; Aoa→ Ioi; Aoe→ Ioo;
Aoa→ Ioi; Aei→ Ioi.

Consequently, by contraposition, we can say that the contradictories of their con-
sequents, which are Ec propositions, imply the contradictories of their antecedents,
i.e. their Oc subalterns:
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Eai → Oaa; Eia → Oaa; Eii → Oaa; Eii → Oai; Eoo → Iao; Eio → Oae;
Eao → Oae; Eio → Oae; Eie → Oae; Eeo → Oee; Eoe → Oee; Eoo → Oee;
Eei → Oea; Eoi → Oea; Eoa → Oea; Eoo → Oeo; Eii → Oia; Eio → Oie;
Eoi→ Ooa; Eoo→ Ooe; Eoi→ Ooa; Eoi→ Oei.

However, the following Ac and Ic propositions are independent:
Aai/Iaa; Aai/Iia; Aao/Iae; Aao/Iie; Aeo/Ioe; Aeo/Iee; Aia/Iaa; Aia/Iai; Aii/Iia;

Aii/Iaa; Aii/Iai; Aie/Iea; Aie/Iao; Aio/Iae; Aio/Iao; Aio/Iie; Aoa/Iea; Aoa/Iei;
Aoe/Iee; Aoi/Iei; Aoi/Iea; Aoo/Iee; Aoo/Ieo; Aoo/IoeFor instance, the first pair is
formalized as follows: (∃s)A1s ∧ (∀s)(A1s→ I2s) / (∃s)(A1s ∧ A2s).

With two situations, we get the following formulas:

{
(A1s1 ∨ A1s2) ∧

[
(A1s1 → I2s1) ∧ (A1s2 → I2s2)

]}
/
[
(A1s1 ∧ A2s1) ∨ (A1s2 ∧ A2s2)

]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [Line 1]

0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 [Line 2]

1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 [Line 3]

1 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 1 [Line 4]

Thus the two propositions can be true together when all propositions are true as
in Line 1; they can be false together when A1s1 and A1s2 are both false; one of
them can be false while the other one is true, for instance, when A1s1, A1s2, I2s1
and I2s2 are true while A2s1 and A2s2 are false as in Line 3 or when A1s1 is true
while I2s1 and A2s1 are both false, as in Line 4. Note that with one situation this last
case is not available. But Avicenna’s formulas are quantified, so one should take
into account the formula with two situations because they show more clearly the
relations between all kinds of propositions.

Likewise, all similar pairs, i.e. the pairs of propositions where the consequent of
Ac is a particular proposition while the second element of Ic is a universal one, are
independent. The same thing can be said about the pairs where the Ac propositions
have a particular antecedent or a particular antecedent and a particular consequent,
while the Ic propositions have one or more universal elements.

Consequently, the pairs Oc/Ec, whose clauses are the contradictories of those
of the pairs Ac/Ic above, are also independent for the same reasons. These are the
following pairs:

Oai/Eaa; Oai/Eia; Oao/Eae; Oao/Eie; Oeo/Eoe; Oeo/Eee; Oia/Eaa; Oia/Eai;
Oii/Eia; Oii/Eaa; Oii/Eai; Oie/Eea; Oie/Eao; Oio/Eae; Oio/Eao; Oio/Eie; Ooa/Eea;
Ooa/Eei; Ooe/Eee; Ooi/Eei; Ooi/Eea; Ooo/Eee; Ooo/Eeo; Ooo/EoeNow we can
have subalternations between some Ac propositions and some Ec ones as in the
following list:

Aaa → Eao; Aaa → Eae; Aae → Eai; Aae → Eaa; Aea → Eeo; Aai → Eae;
Aao→ Eaa; Aee→ Eei; Aia→ Eio; Aia→ Eie; Aie→ Eii; Aie→ Eia; Aii→ Eie;
Aio → Eia; Aea → Eeo; Aee → Eea; Aee → Eei; Aei → Eee; Aeo → Eea;
Aoa → Eoo; Aoa → Eoe; Aoe → Eoi; Aoe → Eoa; Aoi → Eoe; Aoo → Eoa;
Aoa→ Eoe.
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Consequently, by contraposition, we have the following subalternations between
Ic and Oc propositions:

Iae → Oai; Iaa → Oao; Iae → Oai; Iee → Oei; Iea → Oeo; Iei → Oee;
Ieo→ Oea; Iia→ Oio; Iie→ Oii; Iao→ Oaa; Iae→ Oaa; Iai→ Oae; Iaa→ Oae;
Iio→ Oia; Iie→ Oia; Iii→ Oie; Iia→ Oie; Ioo→ Ooa; Ioe→ Ooa; Ioi→ Ooe;
Ioa→ Ooe; Ieo→ Oea; Iea→ Oee; Ioa→ Ooo; Ioe→ Ooi; Ioe→ Ooa.

Consequently, the following subalternations between Ac and Oc propositions
hold too:

Aaa → Oao; Aaa → Oae; Aaa → Oie; Aaa → Oio; Aai → Oae; Aai → Oie;
Aae → Oai; Aae → Oii; Aae → Oaa; Aao → Oaa; Aao → Oia; Aee → Oei;
Aee → Oea; Aee → Ooa; Aee → Ooi; Aea → Oeo; Aea → Oee; Aei → Oee;
Aei → Ooe; Aeo → Ooa; Aia → Oio; Aia → Oie; Aie → Oii; Aie → Oia;
Aie → Oai; Aii → Oie; Aii → Oae; Aio → Oia; Aio → Oaa; Aoa → Ooo;
Aoa → Ooe; Aoa → Oee; Aoe → Ooi; Aoe → Ooa; Aoi → Ooe; Aoi → Oee;
Aoo→ Ooa; Aoo→ Oea.

There are subalternations between Ac propositions alone as in the following list:
Aaa → Aai; Aae → Aao; Aea → Aei; Aee → Aeo; Aia → Aii; Aie → Aio;

Aoe→ Aoo; Aoa→ Aoi.
By contraposition, we have the following subalternations between Oc proposi-

tions alone:
Oai → Oaa; Oao → Oae; Oei → Oea; Oeo → Oee; Oii → Oia; Oio → Oie;

Ooo→ Ooe; Ooi→ Ooa.
The subalternations between Ec propositions alone are the following:
Eao → Eae; Eai → Eaa; Eao → Eae; Eeo → Eee; Eei → Eea; Eia → Eaa;

Eie→ Eae; Eii→ Eia; Eii→ Eai; Eii→ Eaa; Eio→ Eae; Eio→ Eie; Eoa→ Eea;
Eoe→ Eee; Eoi→ Eea Eoi→ Eoa; Eoo→ Eee; Eoo→ Eeo; Eoo→ Eoe.

By contraposition, we get the following subalternations between their contradic-
tory Ic propositions alone as in the following:

Iaa → Iai; Iaa → Iia; Iaa → Iii; Iai → Iii; Iae → Iao; Iae → Iie; Iae → Iio;
Iee → Ieo; Iee → Ioe; Iee → Ioo; Iea → Ioa; Iea → Iei; Iea → Ioi; Ieo → Ioo;
Iea→ Ioi; Iia→ Iii; Iie→ Iio; Ioe→ Ioo; Ioa→ Ioi.

However, the remaining Ic propositions are independent as, for instance, the
following: Iaa/Iee, Iae/Iea, Iio/Ioi, etc.

The subalternations between Oc propositions alone are the following:
Oai → Oaa; Oao → Oae; Oei → Oea; Oeo → Oee; Oii → Oia; Oio → Oie;

Ooo→ Ooe; Ooi→ Ooa.
However, the following pairs of Ac propositions are not related by subalternation;

rather they are all independent:
Aaa/Aia; Aaa/Aii; Aaa/Aea; Aaa/Aee; Aaa/Aei; Aaa/Aeo; Aaa/Aoa; Aaa/Aoi;

Aaa/Aoe; Aaa/Aoo; Aai/Aea; Aai/Aee; Aai/Aao; Aai/Aea; Aai/Aei; Aai/Aeo;
Aai/Aio; Aai/Aoa; Aai/Aoe; Aai/Aoi; Aai/Aoo; Aae/Aio; Aae/Aea; Aae/Aei;
Aae/Aoi; Aae/Aie; Aae/Aoa; Aao/Aea; Aao/Aei; Aao/Aoi; Aao/Aoa; Aao/Aie;
Aao/Aio; Aia/Aee; Aia/Aeo; Aia/Aoe; Aia/Aoo; Aia/Aea; Aia/Aei; Aia/Aoi;
Aia/Aoa; Aii/Aee; Aii/Aoe; Aii/Aoo; Aii/Aeo; Aii/Aao; Aii/Aio; Aii/Aea; Aii/Aei;
Aie/Aea; Aie/Aei; Aie/Aoi; Aie/Aoa; Aio/Aea; Aio/Aei; Aio/Aoi; Aio/Aoa;
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Aee/Aoe; Aee/Aoo; Aee/Aae; Aee/Aao; Aee/Aie; Aee/Aio; Aeo/Aoe; Aeo/Aoo;
Aeo/Aae; Aeo/Aao; Aeo/Aie; Aeo/Aio; Aeo/Aoi; Aoe/Aae; Aoe/Aao; Aoe/Aie;
Aoe/Aio; Aoo/Aae; Aoo/Aao; Aoo/Aie; Aoo/Aio; Aoo/Aei; Aoo/Aoi; Aea/Aoi;
Aea/Aoa; Aei/Aeo; Aei/Aoa.

The propositions in these pairs can be either both true or both false, or one
of them is true while the other one is false. Take, for instance, the first pair of
propositions, namely, Aaa/Aia. When formalized, this pair is expressed as follows:

(∃s)A1s ∧ (∀s) (A1s → A2s) / (∃s) I1s ∧ (∀s) (I1s → I2s)

If we consider two situations, we get the following formulas:

{(A1s1 ∨ A1s2) ∧ [(A1s1 → A2s1) ∧ (A1s2 → A2s2)]} / {(I1s1 ∨ I1s2) ∧ [(I1s1 → A2s1) ∧ (I1s2 → A2s2)]} .

The first line of the table shows that there is no subalternation between the first
proposition and the second one, since there is a case of falsity:

{(A1s1 ∨ A1s2) ∧ [(A1s1 → A2s1) ∧ (A1s2 → A2s2)]} ⊃ {(I1s1 ∨ I1s2) ∧ [(I1s1 → A2s1) ∧ (I1s2 → A2s2)]} .

1 1 0 1 1 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0

But the two propositions can also be true together, when all their elements are
true, and they can be false together when ‘A1s1 ∨ A1s2’ and ‘I1s1 ∨ I1s2’ are both
false, and the first one can be false while the second one is true when ‘A1s1 ∨ A1s2’
is false while ‘I1s1 ∨ I1s2’ is true and both ‘A2s1’ and ‘A2s2’ are true.

The same can be said about all the pairs above, where the first proposition does
not imply the second one despite what one might think.

Consequently their contradictories give rise to the same number of independent
pairs.

6 The Octagons of Oppositions with these Propositions

Given that all 64 propositions are distinct from each other, we can first construct 8
octagons5 by combining 2 Ac propositions with 2 Ec propositions, 2 Ic propositions
and 2 Oc propositions, for each octagon.

We will thus have at first sight the simplest kind of octagons, which we will call
‘octagons of kind 1’, namely, the ones containing Ac, Ec, Ic and Oc propositions.
These are the following eight octagons:

5 In modal logic, the analysis was made in terms of hexagons rather, since the bilateral possible
and its negation have been added to the usual vertices of the modal square (see [3]).
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1. Ac (1+2); Ec (1+2); Ic (1+2); Oc (1+2)
2. Ac (3+4); Ec (3+4); Ic (3+4); Oc (3+4)
3. Ac (5+6); Ec (5+6); Ic (5+6); Oc (5+6)
4. Ac (7+8); Ec (7+8); Ic (7+8); Oc (7+8)
5. Ac (9+10); Ec (9+10); Ic (9+10); Oc (9+10)
6. Ac (11+12); Ec (11+16); Ic (11+12); Oc (11+12)
7. Ac (13 + 14); Ec (12 + 13); Ic (13+15); Oc (12+13)
8. Ac (15+16); Ec (15 +14); Ic (14+16); Oc (15 +14)

These will be called the first kind of octagons. We will see in the sequel that they
are comparable to the see [10] for Buridan’s modal octagon.

Then, we can construct a second kind of octagons which contain some Ac
propositions, their Ec subalterns and the contradictories of both. These are the
following (of kind 2):

1. Ac (1 + 2); Ec (10+9); Ic (11+9); Oc (1+2)
2. Ac (3+4); Ec (16+11); Ic (12+10); Oc (3+4)
3. Ac (5+6); Ec (13+12); Ic (15+13); Oc (5+6)
4. Ac (7+8); Ec (15+14); Ic (16+14); Oc (7+8)
5. Ac (9+10); Ec (2+1); Ic (2+1); Oc (9+10)
6. Ac (11+12); Ec (4+3); Ic (4+3); Oc (11+12)
7. Ac (13+14); Ec (6+5); Ic (6+5); Oc (13+14)
8. Ac (15+16); Ec (7+8); Ic (7+8); Oc (15+16)

Likewise, we can construct octagons with Ic propositions, their Oc subalterns
and the contradictories of both. We can also construct a third kind of octagons with
four Ac props (2 Ac props+ their Ac subalterns) and their Oc contradictories. These
are the following (of kind 3):

1. Ac (1 + 2 + 3 + 4); Oc (1 + 2 + 3 + 4)
2. Ac (5 + 6 + 7 + 8); Oc (5 + 6 + 7 + 8)
3. Ac (9 + 10 + 11 + 12); Oc (9 + 10 + 11 + 12)
4. Ac (13 + 14 + 15 + 16); Oc (13 + 14 + 15 + 16)

We can also have two Ac props, their two Ac contraries, plus their contradicto-
ries. These are the following (of kind 4):

1. Ac (1 + 3 + 9 + 11) + their Oc contradictories
2. Ac (5 + 7 + 13 + 16) + their Oc contradictories

The Ic propositions (2 Ic props+ their Ic subalterns) and their Ec contradictories
give rise to the following octagons (of kind 5):

1. Ic (1 + 2 + 3 + 4); Ec (1 + 2 + 3 + 4)
2. Ic (5 + 6 + 7 + 8); Ec (5 + 6 + 7 + 8)
3. Ic (9 + 10 + 11 + 12); Ec (9 + 10 + 11 + 16)
4. Ic (13 + 14 + 15 + 16); Ec (12 + 13 + 14 + 15).
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In kind 1, we can have the following examples of octagons (Fig. 1):

Fig. 1 Octagon1

Octagons Ac, Ec, Ic, Oc (2 of each).
Octagons Ac, Ec, Ic, Oc (2 of each) (Fig. 2).
In kind 2, we have the following examples (Figs. 3 and 4):

Fig. 2 Octagon 2

Octagons Ac+ their Ec subalterns+ contradictories

Octagons Ac+ their Ec subalterns+ their contradictories
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Fig. 3 Octagon 3

In that same kind 2 of octagons, we can have octagons containing Ic propositions,
their Oc subalterns and their contradictories. For instance, the following octagon
meets these conditions (Fig. 5):

Octagons Ic+Oc subalterns+ their contradictories

These octagons have the same structure as the ones above in terms of the logical
relations they contain and the number of independent propositions, since they all
contain five subalternations in each side but the propositions of Line 2 do not imply
those of Line 3. Therefore, they are all of the kind of Buridan’s modal octagon.

Fig. 4 Octagon 4

Fig. 5 Octagon 5
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Fig. 6 Octagon 6

The octagons of kind 3 contain four Ac and four Oc. They are exemplified by the
following (Fig. 6):

Octagons 4 Ac+ their contradictories

These octagons are very different from the preceding ones, since they contain
only two squares relating the top propositions to the bottom ones by the contra-
dictions. It is a really new figure which we don’t find in any of the medieval or
the modern writings. The independent propositions in it are more numerous than in
a usual Buridan’s kind of octagons. Apart from the contradictions, whose number
is the same as in the above octagons, there are exactly four subalternations, two
contrarieties and two subcontrarieties.

Fig. 7 Octagon 7

Fig. 8 Octagon 8
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Another example of this third kind of octagons is the following (Fig. 7):

Octagons 4 Ac+ their contradictories

The main characteristic of this kind of octagons is that the subalternations hold
only between the propositions of Line 1 and 2 and those of Lines 3 and 4. No
other subalternation holds. We can say that this kind of octagons is the ‘lightest’
kind, since it contains much more independent relations and much less Aristotelian
relations than the other kinds of octagons.

On the other hand, we can also have two Ac propositions and their two contrary
Ac propositions plus their contradictories. The octagons constructed with these
propositions are of kind 4. The following are examples of this kind 4 of octagons
(Fig. 8):

Octagons 2 Ac+ 2Ac (contraries)+ their contradictories

Fig. 9 Octagon 9

This kind of octagons relates the two propositions of the second and third lines
in both sides by subalternations, unlike the other kinds of octagons above, where
the subalternations never hold between Lines 2 and 3. In addition, there are also
subalternations between Lines 1 and 3 and between Lines 2 and 4 in both sides,
together with subalternations between Lines 1 and 4 in both sides. However, unlike
the octagons of kinds 1 and 2, this kind of octagons does not contain subalternations
between Lines 1 and 2 and between Lines 3 and 4.

We can also have the following octagons (Fig. 9):

Octagons 2Ac+ 2Ac (contraries)+ their contradictories
In addition, we have kind 5 of octagons where the propositions involved are

Ic propositions and their Ec contradictories. These octagons are illustrated by the
following (Fig. 10):

Octagons 4Ic+ their Ec contradictories
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Fig. 10 Octagon 10

This kind too is like Buridan’s modal octagon, for the propositions of Lines 2
and 3 are independent while the propositions of Lines 1 and 2, 1 and 3, 1 and 4, 2
and 4 and 3 and 4 are all related by subalternations in both sides.

Another example of such octagons is the following (Fig. 11):

Octagons 4 Ic+ their contradictories

Fig. 11 Octagon 11

So we can say that most octagons are of Buridan’s kind (See [10]), but some of
them, like octagons 8 and 9 of kind 4 above, are of Johnson-Hacker’s kind (see [7]),
while some others, like the octagons 6 and 7 of kind 3 above, are different from all
kinds of known octagons.

In Buridan’s kind of octagons, the propositions in the second and the third
lines are independent. But in Johnson-Hacker’s kind of octagons, both the first
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and the second lines’ propositions and the third and fourth lines’ propositions
are independent, while the propositions of the second and third lines are related
by subalternations in both sides. In the latter kind of octagons, there are less
Aristotelian relations and more independent propositions than in the former.

In the third kind of octagons, there are much more independent relations and
much less Aristotelian ones than in the two other kinds. This kind of octagons
contains only two squares which relate the top left propositions with the bottom
right ones and the top right ones with the bottom left propositions. As far as I know,
no octagon of that kind is evoked in the literature. So it seems to be an entirely new
kind of octagons.

Note, however, that none of these octagons is drawn by Avicenna himself. I have
drawn them on the basis of what Avicenna says about the relations of the square and
the propositions themselves, but Avicenna never combined these propositions in his
text to construct octagons or any other kind of figures. Nevertheless, these figures
complement Avicenna’s analysis because they show very clearly all the relations
that hold between all kinds of propositions. So drawing them does not in any sense
distort the text. Rather it makes it more precise and much clearer.

Now, we can also combine these octagons two by two and construct figures of 16
vertices, to see what relations this figure can contain. This will be done in the next
section.

7 Combining the Octagons Two by Two

Let us start by the two octagons containing four Ac and four Ic propositions and
their contradictories. The propositions involved can be Ac and Ic propositions plus
their contradictories.

Let us consider the following four Ac propositions and their contradictories:

–

(∃s)A1s ∧ (∀s) (A1s ⊃ A2s) [= AAA] / ∼ [(∃s)A1s ∧ (∀s) (A1s ⊃ A2s) ] [ =∼ (AAA)]–

(∃s)A1s ∧ (∀s) (A1s ⊃ I2s) [= AAI] / ∼ [(∃s)A1s ∧ (∀s) (A1s ⊃ I2s) ] [ =∼ (AAI)]–

(∃s) I1s ∧ (∀s) (I1s ⊃ A2s) [= IIA] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ A2s) ] [ =∼ (IIA)]–

(∃s) I1s ∧ (∀s) (I1s ⊃ I2s) [= III] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ I2s) ] [ =∼ (III)]

And the following four Ic propositions and their contradictories:
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– (∃s) (A1s ∧ A2s) [= AA] / ∼ (∃s) (A1s ∧ A2s) [= A ∼ A]

– (∃s) (A1s ∧ I2s) [= AI] / ∼ (∃s) (A1s ∧ I2s) [= A ∼ I]

– (∃s) (I1s ∧ A2s) [= IA] / ∼ (∃s) (I1s ∧ A2s) [= I ∼ A]

– (∃s) (I1s ∧ I2s) [= II] / ∼ (∃s) (I1s ∧ I2s) [= I ∼ I]

With these propositions, which have given rise to 2 octagons of Buridan’s kind,
we can construct a complex figure grouping these 2 octagons and containing 16
vertices. This figure is the following (Fig. 12):

In this figure, as we can see, the biggest amount of Aristotelian relations is found
at the bottom and the top, while the middle of the figure is relatively empty. This
is due to the fact that the octagons grouped in this figure are of Buridan’s kind,
since in these octagons, the relations between the second and the third lines are
independence relations.

Now what happens if we choose other kinds of octagons and group them?
Let us, for instance, consider these eight Ac propositions and their contradicto-

ries.

Fig. 12 The first figure with 16 vertices (two octagons)
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The propositions and their contradictories are the following:

– (∃s)A1s ∧ (∀s) (A1s → A2s) [= AAA] / ∼ [(∃s)A1s ∧ (∀s) (A1s → A2s) ] [ =∼ (AAA)]

– (∃s)A1s ∧ (∀s) (A1s ⊃ I2s) [= AAI] / ∼ [(∃s)A1s ∧ (∀s) (A1s → I2s) ] [ =∼ (AAI)]

– (∃s) {I}1s ∧ (∀s) (I1s ⊃ A2s) [= IIA] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ A2s) ] [ =∼ (IIA)]

– (∃s) I1s ∧ (∀s) (I1s ⊃ I2s) [= III] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ I2s) ] [ =∼ (III)]

– (∃s)A1s ∧ (∀s) (A1s ⊃ E2s) [= AAE] / ∼ [(∃s)A1s ∧ (∀s) (A1s ⊃ E2s) ] [ =∼ (AAE)]

– (∃s)A1s ∧ (∀s) (A1s ⊃ O2s) [= AAO] / ∼ [(∃s)A1s ∧ (∀s) (A1s ⊃ O2s) ] [ =∼ (AAO)]

– (∃s) I1s ∧ (∀s) (I1s ⊃ E2s) [= IIE] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ E2s) ] [ =∼ (IIE)]

– (∃s) I1s ∧ (∀s) (I1s ⊃ O2s) [= IIO] / ∼ [(∃s) I1s ∧ (∀s) (I1s ⊃ O2s) ] [ =∼ (IIO)]

The first four Ac propositions are contrary to the last ones. Consequently
their contradictories are subcontrary. But what are the relations between the other
propositions in the figure?

Let us construct it and see if it has the same structure as Fig. 12. The figure looks
like the following (Fig. 13):

Fig. 13 The second figure with 16 vertices (two octagons)
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This figure is different from the above one, since the biggest amount of
Aristotelian relations is in the middle, while the top and the bottom of the figure
contain less Aristotelian relations. This is so because of the kind of propositions
involved, which are those which gave rise to both the third and new kind of octagons
and to Johnson-Hacker’s kind of octagons, whose structures are different from that
of Buridan’s modal octagon.

There are certainly much more things to say about the nature of the two figures
and their differences, but this would extend the limits of this paper, which focuses
on Avicenna’s propositions and their relations, without entering into more details
with regard to the kind of geometrical figures that they lead to.

As a matter of fact, these octagons and figures containing 16 vertices are just
a sample of all the possible combinations that the propositions above can lead to.
Absolutely speaking, we could have much more kinds of figures which would have
12 (one octagon plus one square), 14 (one octagon plus one hexagon), 18 (three
hexagons), 24 (three octagons) and so on. But the analysis of such figures is not
our aim here. It could be the subject of another paper, specifically dedicated to the
geometry of oppositions.

As we said above, Avicenna himself never draw any kind of figure although he
provided the definitions of all the relations and showed in this part of his text some
awareness of the presence of Aristotelian relations that hold between various kinds
of propositions and are not limited to the usual relations between Ac, Ec, Ic and
Oc propositions. As we saw above, he does hold subalternations between some Ac
and Ec propositions, contrarieties between some Ac propositions, subcontrarieties
between some Oc propositions and so on. What I did in this paper is just systematize
all these relations and group them inside some geometrical figures. But more can be
done if we just focus on the geometrical figures themselves.

8 Conclusion

The oppositions between the quantified hypothetical conditionals give rise to several
octagons and several other figures containing 16 vertices or more. The octagons are
of various kinds: some are like Buridan’s modal octagon, while others are more like
Johnson-Hacker’s octagon. But there is a third and new kind of octagons, which
contains much more independent relations and much less Aristotelian ones and has
never been evoked in the literature, as far as I know. This kind of octagons seems
thus radically new and original. It is an additional kind of octagons, which enriches
the analysis of this specific figure.

As to the figures containing 16 vertices, they are different with regard to their
relations, depending on the propositions they contain. Some of them relate the
propositions of the middle, while other ones relate rather the top and bottom ones.
All these figures and other possible ones deserve a more detailed analysis which
could be made in another paper specifically dedicated to the theory of oppositions in
general. One can combine the octagons with squares or with hexagons, which would
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give rise to figures of different sizes. This is interesting for the theory of oppositions
in general, but we cannot say that it has been explored at length by Avicenna himself,
who did not draw any figure. This is why I did not enter into more details with
regard to these different kinds of figures in the analysis above and just provided a
minimal account of these possibilities. But one can see Avicenna’s propositions as
a historical basis for a great number of geometrical figures of different sizes.
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Incommensurability and Inapplicability
of the Squares of Opposition
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Abstract The relations expressed through the “Traditional Square” stand partially
refuted. This refutation may be attributed to whether our universe of discourse
does or does not contain referents (truth conditions). In this paper, seven worlds
concerning these truth conditions are proposed. These worlds are considered as
separate paradigms. It is argued that the squares so formed are incommensurable. In
addition to this, the paper also develops the notion of inapplicability (with respect
to the relation of “contradiction”) in the squares.

Keywords Square of opposition · Existential import · Kuhn · Paradigm ·
Incommensurability · Thought experiment
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1 Background

The traditional square of opposition is a brilliant tool to understand relation(s)
between propositions. Although the relation(s) expressed in the square are debated
and contested, there are two points, which are settled now. First, Aristotle gave
us (assertoric) propositions, worked extensively on their interrelations but has not
represented it diagrammatically [12], in the form of a square in De Interpretatione
(or anywhere else) [1, 21, 33]. Second, the oldest depiction of the traditional
square of opposition is found in Apuleius of Maduara’s commentary (called Peri
Hermeneias) on De Interpretatione [18, 19]. Buridan (among others, in the medieval
period) has extensively used this tool [32] to teach Aristotelian propositions and his
syllogistic.
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In the nineteenth century, the developments in logic brought down traditional
square from its stellar reputation. Some accepted relations between propositions
(like contrary, sub-contrary, and subaltern) were rejected (after Boolean interpreta-
tion of propositions [9]) though the “square” (due to the relation of “contradiction”)
was not entirely overthrown. The revised square, so formed, is formidable and the
relation of “contradiction” remains as the common link between both the squares.
It has almost become a commonplace to conceive the revised square as a chastened
traditional square. In this paper, I challenge this commonplace conception. In other
words, I argue that the traditional and revised squares belong to separate paradigms,
rather the former being supplanted by the latter. Furthermore, the squares are
incommensurable, and the relation of ‘contradiction’ is found inapplicable in some
instances.

This article is divided as follows: In the first part, we re-examine the debates
associated with the transformation of traditional square into the revised square.
This takes into account the relations expressed in both the squares along with
the formulation of propositions and its meaning. In the second section, after
providing a summary of Kuhnian conceptions of “normal science,” “paradigms,”
and “incommensurability,” we establish the traditional and revised squares as
separate paradigms using the notion of possible worlds. In the third section, we
show that the squares are incommensurable. The concluding section of the paper
devises some thought experiments to show that the relation of “contradiction” does
not hold in certain paradigms.

2 The Controversy of Squares

The controversies related to the squares are manifold. In this section, I briefly
discuss a few of the problems to understand the difficulty associated with it.

2.1 Transformation of Traditional to Revised Square

An agreed depiction of the Traditional Square of Opposition as found in Parsons’
[26] is as follows (Fig. 1):



Incommensurability and Inapplicability of the Squares 91

Fig. 1 The Traditional
Square of Opposition contrariesA E

OI

contradictories

subcontraries

subalternssubalterns

Every S is P No S is P

Some S is P Some S is not P

In the Traditional Square, A and E are contraries, i.e., they cannot both be true,
though they can be false together. I and O are sub-contraries, which mean that they
cannot be false together, although they can be true together. A and O along with
E and I are contradictories; thus, they can neither be true nor be false together.
Whereas A and I together with E and O form subaltern pairs, and hence, if A/E
is true, then I/O is true and if I/O is false, then A/E is false, respectively, but not
vice versa. It is often argued that these relations stood intuitively correct before the
“orthodox criticisms” [37] of modern logic came to fore.

In modern logic, statements are often replaced by their symbolic interpretation
using insights from Peano and Frege [29]. These symbolic interpretations and
representations had helped logic enormously to grow as a system of reasoning.
Symbolically, the Aristotelian propositions are represented as follows:

A, i.e., “Every S is P” is represented as (∀x)[Sx → Px]
E, i.e., “No S is P” is represented as (∀x)[Sx → ¬Px]
I, i.e., “Some S is P” is represented as (∃x)[Sx ∧ Px]

O, i.e., “Some S is not P” is represented as (∃x)[Sx ∧ ¬Px]
Now suppose, if the subject class is empty, then Sx will be false. If Sx is false,

then A and E will be true because a false proposition implies any proposition
whatsoever. However, their subaltern counterparts, namely I and O will be false,
since a conjunction is false if at least one of its conjuncts is false. Thus, we obtain
A and E as true, whereas I and O as false. With this, the relations of subalternation,
contrariety, and sub-contrariety fall flat.

It is plain from the above that none of the relations (from the traditional square)
survived except contradiction. The revised square first formalized in the functional
calculus of Frege’s Begriffsschrift [10] is as under (Fig. 2):
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Fig. 2 The Revised Square
of Opposition

contradictories

Some S is P

I O

EA
Every S is P No S is P

Some S is not P

2.2 Some Problems

Parsons [27] mentions the problem as follows. In the Traditional Square, the
particular negative proposition O is expressed as “Some S is not P.” This is a
diachronic and lingual error, attributed to Boëthius, who used “Not every S is P”
and “Some S is not P” synonymously while translating Greek to Latin. If we accept
the above equivalence, then “Every S is P” which can be vacuously true leads
to “Some S is not P” true as well, after applying subalternation—contradiction—
subalternation, respectively.

In other words, if the subject term is empty, then “Every S is P” is vacuously
true, but its subaltern “Some S is P” will be false since S is empty. If “Some S is P”
is false, its contradictory “No S is P” is going to be true. Again, if “No S is P” is
true, then its subaltern “Some S is not P” has to be true. This defies the relation of
contradiction.

Parsons offer at least a couple of defense to the above anomaly, which I found
important here. First that a universal proposition is vacuously true if its subject term
is empty is a natural language nuance [of English language] which is not endorsed
by many logicians. Second, a particular negative proposition needs to be symbolized
as the conjunction of “Some S is S” and “Some S is not P,” which will be false, if
there are no Ss [27].

Read while criticizing Łukasiewicz is correct in pointing out that Aristotle
commonly (though not invariably) expresses the O proposition as “Not every S is
P” (or as he usually puts it: “P does not belong to every S”), and he treats “P does
not belong to every S” as equivalent to “P does not belong to some S.” Moreover,
Aristotle places no requirement that the terms be non-empty.Moreover, “Existential
commitment goes with quality, not quantity, thus satisfying all the demands of the
[Traditional] Square of Opposition” [30].

Recently, Corkum has suggested that the existential import of universal affir-
mations and the semantic profile of predications with empty terms follow from
mereological truth conditions. For example, “Socrates is pale” is true just in case
“Socrates” is a part of the mereological sum of pale things [3]. Strawson defended
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the traditional Square by suggesting that proposition whose subject term is empty is
neither true nor false [37]. In his painstaking survey on this problem from George
Boole to P.F. Strawson, Wu has opined that the problem [of existential import] lies
in the gap between “logic” as pure abstraction and “logic” as a method applied to
existence or human experience [40].

There is no unified approach among the logicians about the question of existential
import. A discussion between Uchenko and Northrop, who are at loggerheads,
represented two powerful intuitions. Uchenko believed that the question of internal
consistency is relative to information at hand. Therefore, the notion of correct
and incorrect remains system dependent [38]. On the other hand, for Northrop,
consistency is a consequence of certain formal principles that cannot vary from
system to system [24, 25]. Thus, two separate interpretations cannot be consistent
together.

2.3 Summary

The problem of existential import is perennial, and the discussion is endless. In this
section, we witnessed that the problems associated with the traditional square started
with the symbolic interpretation of propositions. These symbolic interpretations
need further justifications or add-ons to reinstate the traditional square [3, 26, 27, 30]
or we end up with a cross of opposition [36]. There is a widespread belief that
Aristotle’s logic is not equipped to deal with empty terms, despite this belief being
erroneous and baseless [30]. Given the above state of affairs, it is unlikely that there
can ever be a solution to this stalemate. However, there is a way to address this
impasse. In what follows, I endeavor to show that the above two systems are not
inconsistent, but rather they belong to two separate paradigms.

3 The Paradigms of Squares

Thomas Kuhn is the most celebrated “philosopher of science” and his signature
theory of “paradigm” is an influential one. In a general sense, “paradigm” can be
understood as the commonly accepted views of a particular discipline or an area at
a given time [17]. Kuhn also called it “disciplinary matrix” [16]. In this section, I
first briefly introduce the Kuhnian notions of “normal science,” “paradigms,” and
“incommensurability” (along with some other related notions) and then apply the
notion of “paradigms” to the squares.
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3.1 Kuhnian Notions

According to Kuhn, “[a] “normal science” means research firmly based upon one
or more past scientific achievements, achievements that some particular scientific
community acknowledges for a time as supplying the foundation for its further
practice” [17]. Thus, normal science is an established body of work to do science
(or any enquiry). The purpose of normal science is “puzzle-solving.” Kuhn uses the
term “puzzle” to distinguish it from “problem” as the latter may not have a solution,
but the former has.

Furthermore, he declares, “I shall henceforth refer to as ‘paradigms’, a term
that relates closely to normal science. By choosing it, I mean to suggest that
some accepted examples of actual scientific practice—examples which include
law, theory, application, and instrumentation together—provide models from which
spring particular coherent traditions of scientific research” [17]. He has used the
notion of paradigm in several ways [20]. However, there are two senses [5]—it can
best be understood. The first is the broad way, where a paradigm is understood as a
package of ideas and methods, which, when combined, makes up both a view of the
world and a way of doing science. Second is the narrow way, where a paradigm is
understood as an exemplar of a field of study.

Normal science is often questioned and challenged with the passage of time and
new developments, although the fundamental ideas of the paradigm remain intact.
With these, scientists endeavor to expand and extend the paradigm theoretically
and experimentally. But, there are times, when a “puzzle” resists a solution. This
is called as an “anomaly.” Every science faces such challenges. If such resistance
is enduring and scientists are unable to find solutions, they start losing faith in the
paradigm. This is called as a “crisis” situation.

According to Kuhn, the rejection of a paradigm takes place if the following
two conditions are satisfied. First, a critical mass of anomalies has arisen. Second,
a rival paradigm has appeared [5]. The rival paradigm offers solutions to the
problem—the problem becomes a puzzle again and subsequently solved—and the
rival paradigm is established as the new normal science. Interestingly, Kuhn points
out that, “since new paradigms are born from old ones, they ordinarily incorporate
much of the vocabulary and apparatus, both conceptual and manipulative, that
the traditional paradigm had previously employed. But they seldom employ these
borrowed elements in quite the traditional way [17].” The old “normal science” and
the new “normal science” may have some commonalities. But, even if concepts,
ideas, and (some) principles in the ousted paradigm seemingly match with that of the
new paradigm—the paradigms are “incommensurable.” Kuhn puts it beautifully as,
“Two men who perceive the same situation differently but nevertheless employ the
same vocabulary in its discussion must be using words differently. They speak, that
is, from what I have called ‘incommensurable’ viewpoints [17].” If we undertake a
study of the “squares,” we find that the “traditional square” was a “normal science”
and a “paradigm,” which was challenged and rejected by a rival “paradigm” of the
“modern square.”
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Before analyzing the “squares,” it is prudent to review Aristotle’s original
propositions which gave us the traditional square. We know that Aristotle repre-
sented universal affirmative, universal negative, particular affirmative, and particular
negative as “P belongs to all S,” “P belongs to no S,” “P belongs to some S,” and
“P does not belongs to some S,” respectively. Moreover, he did consider singular
and indefinite propositions [30], which are absent in the modern interpretation
and analysis. The rewording of particular negative proposition by Boëthius is an
unintended slip, Strawson’s defense is a correction in vain and the interpretation of
Łukasiewicz is a misapprehension labeled against Aristotle [26, 27, 30, 31].

It is important to note here that the assertoric propositions considered by
Aristotle and the modern interpretation of propositions following Boole and others,
is unalike. In other words, they are constituents of different paradigms. The
application of the principles of one paradigm on another is unfair and incorrect. For
instance, both Euler and Venn used circles to test the validity of syllogisms. They
have over-lapping circles. However, they work on different principles. Moktefi and
Shin points out that “Euler uses circles to divide the space into subdivisions that
are assumed to exist and which are topologically related in the same way as the
classes they represent do . . . In Venn diagrams, however, none of the subdivisions is
assumed to exist. Strictly speaking, Venn does not represent the classes at all, but
rather compartments, which when marked, tells whether the corresponding class
is empty or occupied” [23]. Thus, Euler and Venn diagrams belong to separate
paradigms even though they use “closed curves.” Similarly, assertoric propositions
of Aristotle and the categorical propositions expounded by Boëthius (and taken over
by the Booleans) are different from each other.

Moreover, there is a coherent account of [assertoric] syllogistic propositions
which satisfies all the relationships in the traditional square of opposition and at the
same time allows the inclusion of empty and universal terms [30, 31]. The existential
commitments of the traditional logicians as compared to moderns are dissimilar as
well. In this context, Keynes has outlined four possible views one can adopt for an
analysis of the subject and predicate terms in these propositions [11]. They are as
follows:

1. Every proposition implies the existence of both its subject and predicate terms.
2. A proposition implies the existence of those things denoted by its subject term

only.
3. No proposition necessarily implies the existence of things denoted either by its

subject term or by its predicate term.
4. Universal propositions do not imply the existence of objects denoted by their

subject term, but the particular propositions do.

Of the four positions listed above, modern logicians or those with the revised
square adopt the fourth view. In contrast, if we endorse either of the views except
the fourth one, the resultant is the traditional square. The solution to the problem
of existential import is to some extent a matter of convention and we are guided
partly by the ordinary usage of language and partly by considerations of logical
convenience and suitability [11]. Moreover, the purpose of logic is not to mirror all
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of the subtleties of natural language [27]. The point here is to understand that unless
we consider the traditional and the modern squares as two separate paradigms,
which came out of two separate set of beliefs and principles—there is no way out.

3.2 Possible Worlds

Keynes analysis of subject predicate terms is remarkable. On these lines, and
further expanding this idea, let us consider possible worlds delimiting certain truth
conditions. Suppose a possible world can have only subject true but predicate true
or false. Similarly, there can be world, where both subject and predicate are true.
Thus, different lexicons give access to different sets of possible worlds, largely but
never entirely over-lapping [14]. Following this trail, I propose the following seven
possible worlds and their truth conditions:

STPTF-World. S is always True and P can be either True or False
PTSTF-World. P is always True and S can be either True or False
SFPTF-World. S is always False and P can be either True or False
PFSTF-World. P is always False and S can be either True or False
STPT-World. S is always True and P is always True
SFPF-World. S is always False and P is always False
STFPTF-World. S and P can be either True or False

In the above worlds, we have different underlying assumptions. Thus, the way
of doing science (or logic) in STPTF-World will also be different from that of
SFPTF-World. However, since they are guided by ideas where we find some
similarities and dissimilarities, it is an attractive proposition, to compare and
contrast them. Let us see what we will get then.

In STPTF-World, there are two possibilities—STPT and STPF. In STPT, A and
I will be true, whereas E and O will be false. In STPF, A and I will be false, while
E and O will be true. The relationship of contrariety and sub-contrariety will be
replaced by contradiction since neither they can be false together nor can they be
true together, respectively. The following is the state of affairs it portrays (Fig. 3):

Fig. 3 STPTF-World

contradictoriesI
Some S is P Some S is not P

O

EA

contradictories

contradictories

subalterns

No S is PEvery S is P

subalterns



Incommensurability and Inapplicability of the Squares 97

In PTSTF-World, there are two possibilities—PTST and PTSF. In PTST, A
and I will be true, whereas E and O will be false. But in PTSF, A and E will be
true, while I and O will be false. The relationship of contrariety sub-contrariety and
subalternation are gone and what is left is the revised square.

The SFPTF-World has two possibilities, namely SFPT and SFPF. These are the
truth conditions of the revised square. Thus, we will obtain nothing but the relation
of contradictory omitting contrariety, sub-contrariety, and subaltern.

In PFSTF-World, there are two possibilities—PFST and PFSF. In the first
possibility, A and I are false, whereas E and O are true. In the second, A and E
are true, while I and O are false. Thus, this PFSTF-World too goes with the revised
square and rejects contrariety sub-contrariety and subalternation.

These three subsequent worlds depict the same state of affairs, i.e., the revised
square (Fig. 4):

Fig. 4 PTSTF, SFPTF,
PFSTF World A E

OI

contradictories

Some S is P Some S is not P

No S is PEvery S is P

It must be noted here that even if the worlds represented by PTSTF, SFPTF,
and PFSTF form the revised square, they belong to separate paradigms. Moreover,
the truth conditions so reached have also followed a separate trajectory. We
must disillusion ourselves from considering the above three paradigms as one (or
identical) after obtaining an indistinguishable end result, i.e., the revised square.

In STPT-World, however, there is only one condition. Here, A and I will be true
and E and O will be false. This gives us two results. First, there will be no relation
of subalternation. Second, the contrariety and sub-contrariety will be replaced by
contradiction. Here is its depiction (Fig. 5):
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Fig. 5 STPT-World
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In SFPF-World, also there is one condition. Here, A and E will be true and I and
O will be false. This also gives us two results. First, there will be contrariety and
sub-contrariety relations. Second, the relation of subalternation will be replaced by
contradiction. The Square so formed has the following depiction (Fig. 6):

Fig. 6 SFPF-World Every S is P

contrariesA E

OI

contradictoriescontradictories contradictories

subcontraries

No S is P

Some S is not PSome S is P

The reason behind carrying out the above exercise is not to show the formation
of a variety of squares but rather to illustrate them as sprouting from different truth
conditions, which must be considered as separate paradigms. Here, we can also see
that none of them gave rise to the traditional square. One may be tempted to argue
that if we consider the STFPTF-World, it will form the traditional square as well.
STFPTF truth conditions (i.e., a combination of STPT, STPF, SFPT, and SFPF) will
not form the traditional square but rather it will form the revised square, due to the
presence of SFPT and SFPF conditions.
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3.3 Summary

The point of this exercise is significant and relevant to this study. It is surprising to
note that none of the truth conditions actually drew the traditional square. Kuhn
remarks, “a lexicon which gives access to one set of possible worlds also bars
access to others [14].” I will bring this issue later (in the next section). In this
section, we found the following: First, the STPTF-World has contradictories and
contradictories replacing the contraries and sub-contraries. Along with this, the
relation of subalternation holds. Second, PTSTF, SFPTF, and PFSTF Worlds have
contradictories only replacing the other three relations. Third, STPT-World has
contradictories, contradictories replacing the contraries and sub-contraries and con-
tradictories replacing subalterns as well. Fourth, SFPF-World has contradictories,
contradictories replacing subalterns whereas the contraries and sub-contraries hold.
I reiterate that the above six possible worlds (leaving STFPTF as it is a combination
of all) are considered as separate paradigms, even though one may find certain
similarities. The question, ‘Why should we consider these as separate paradigms,
when there are certain similarities?’ is answered in the following section, where we
undertake to show these separate paradigms are incommensurable.

4 The Incommensurability of Squares

According to Kuhn, “if two theories [T1 and T2] are incommensurable, they must be
stated in mutually untranslatable languages [13].” Incommensurabilty in a linguistic
sense (though incorrectly) means incomparability. Precisely, if two theories T1 and
T2 are incommensurble, it means that they do not have a common denominator
and thus, they are impossible to measure. Incommensurability, like paradigm, is
another outstanding thesis of Kuhn’s philosophy of science and a central tenet
[7]. Kuhn distinguishes between “incommensurability” and “incomparability” and
states “Most readers of my text have supposed that when I spoke of theories as
incommensurable, I meant that they could not be compared. But “incommensura-
bility” is a term borrowed from mathematics, and it there has no such implication.
The hypotenuse of an isosceles right triangle is incommensurable with its side, but
the two can be compared to any required degree of precision. What is lacking is not
comparability but a unit of length in terms of which both can be measured directly
and exactly [15].”

Kuhn has clarified and refined his notion of “incommensurabilty” in three
stages [34]. It can be divided into early, middle, and later periods. He has further
differentiated the notions of commensurability, comparability, communicability
with sufficient rigor and argued that “incommensurable” does not mean that two or
more theories are incomparable or impossible to communicate [13]. Briefly, they
can be divided into two types [13–17, 34, 35]—Taxonomic incommensurability
and Methodological incommensurability. The former refers to conceptual changes
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whereas the latter evaluates the epistemic values. In this section, I attempt to show
that the traditional and revised squares are both taxonomically and methodologically
incommensurable.

4.1 Taxonomic Incommensurability

In the last section, we have seen that none of the truth conditions (or Worlds) could
endorse the traditional square. It must be understood that in the creation of possible
Worlds, we took the modern symbolic interpretation into consideration. Any act of
examining the equivalences of two theories (T1 and T2) requires translating their
consequences into a neutral observation language [8]. The Boolean interpretation
(1,0) or the symbolic representation (T/F) is not in complete harmony with the
Aristotelian framework as presented in De Interpretatione. Thus, it not only fails
to account for the traditional square but also shows the absence of a common
denominator.

The squares are compared since they deal with propositions. However, whether
these propositions can be classified under the same category is debated. The Squares
are compared because (the relation of) “contradiction” is a shared opposition found
in both of them. It must be understood that “contradiction” too comes in varying
degrees. It is one thing to say “Not every S is P” contradicts “Every S is P” and
it is another thing when we say “Some S is not P” contradicts “Every S is P.” The
squares are compared because logicians think that existential import is a common
ground for examining resemblance. An affirmative proposition having a referent is
not the same as Particular (Existential) propositions are having referents. Moreover,
the absence of referent results in truth-value equals false cannot be compared with
neither true nor false (or having undetermined truth-value) propositions. Therefore,
Wreen opines that “the notion of existential import is itself confused, and should be
banished from logical theory” [39].

In science, or any organized structure of knowledge accumulation, a seeker
abreast her/himself with new terms and concepts after a breakthrough, invention, or
revolution. S/he may not be in a position to make sense of such terms and concepts
before. For example, wireless communication may not have been conceived in the
thirteenth century B.C.E. even by the most brilliant minds of that time. Similarly,
historians or ratiocinators can understand certain conceptions of the past by erasing
and deleting conceptions in vogue, which may be the reason for unnecessary
aberrations. This is akin to what Kuhn calls, incommensurability in terms of
ineffability [17]. It is also stated that “the frequent insistence upon the fulfillment of
requirements concerning such things as existence and universality has blinded us to
the genuine restriction on the square of opposition” [4]. It must be clear that equating
the two squares is a taxonomic failure, as it will be if we equate the proposed seven
possible worlds.
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4.2 Methodological Incommensurability

Two or more theories are methodically incommensurable if they do not have
a standard measure, and such theories are compared by weighing historically
developing values, not following fixed, definitive rules [35]. Consider the following
questions and statements:

1. Is conversion by limitation acceptable?
2. Is DARAPTI a valid syllogism?
3. Why did Aristotle considered only three figures?
4. Why Aristotle called the first figure perfect?
5. Aristotle’s logic is not equipped to deal with empty terms.
6. The traditional square can be saved with the help of presupposition.
7. The revised square supplants the traditional square.
8. The traditional square is only intuitively correct.

The above questions as well as statements are theory-laden. These questions were
addressed several times and the statements were challenged in the last century by
those, who awe their allegiance to Aristotle. However, as Kuhn points out that reality
or truth is paradigm relative and paradigm dependent, moreover, scientists work in
different worlds [17]. In such a scenario, what is proposed by the members of one
world will fall flat on the deaf ears of members of another world. Neither their beliefs
and principles remain the same nor do they speak the same language. Kuhn further
remarks that “the claim that two theories are incommensurable is then the claim that
there is no language, neutral, or otherwise, into which both theories, conceived as
sets of sentences, can be translated without residue or loss [13].”

4.3 Summary

The traditional square of opposition is compared to the revised square based on its
scope, acceptability, applicability, accuracy, and so on. These comparisons cannot
have a unanimous acceptance or rejection. Aristotle’s logic is not inconsistent but
has clear-cut boundaries in its capacity to account for arguments and propositions
both of the everyday and scientific language [22]. A system cannot be evaluated
on the basis of the principles and norms of another system. A comparison of
Aristotle’s logic from the standpoint of modern formal logic is an invitation to both
taxonomic and methodological incommensurability. Thus, the comparison between
incommensurable squares is also unfounded and unwarranted. Kuhn himself admits,
“In applying the term “incommensurability” to theories, I had intended only to insist
that there was no common language within which both could be fully expressed and
which could therefore be used in a point-by-point comparison between them [15].”
In this section, we have argued that similarities between different systems do not
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necessarily permit commensurability. In the next section, we consider some cases
where none of the relations present in any of the squares is applicable.

5 The Inapplicability of Squares

Until now, we have gathered that the relation of “contradiction” is common between
squares. The seven worlds proposed in this paper, too, warrant its ubiquitousness.
It not only acts as a link but is also a certain truth condition (or an opposition
principle) in any paradigm. In this section, we strive to show that the opposition
of “contradiction” does not hold in specific situation(s) or paradigm(s). For this, I
devise the following four thought experiments.

5.1 Prof. Wascot vs. Prof. Palton

Imagine a class of undergraduates, studying Basic Physics, say, PHY101. Prof.
Wascot is wave theorist, and Prof. Palton, who accepts the particle nature of light,
are the course instructors. Some classes are taken by Prof. Wascot to energetically
impart the fundamentals of wave theory, whereas other classes are taken by Prof.
Palton to teach students the wonders of particle theory.

According to Prof. Wascot, the following truth conditions are acceptable:

(a) Every light is/are waves—True
(b) No light is/are waves—False
(c) Some light is/are waves—True
(d) Some light is/are not waves—False

However, according to Prof. Palton, the following truth conditions are accept-
able:

(e) Every light is/are waves—False
(f) No light is/are waves—True
(g) Some light is/are waves—False
(h) Some light is/are not waves—True

It can be very well seen that the course instructors belong to rival paradigms and
are incommensurable. However, this does not end the misery of students, as they
have to go through all that, in a single semester. The students may not be confused
whether light is a particle or wave, but they are concerned about who is setting
the questions in the end semester examination. It is a standard practice that both
instructors ask some questions. Mr. Sarry Horton, the nephew of the Dean, found
out that Prof. Wascot sets all the questions on odd places, and the questions of the
even place are by Prof. Palton. The objective section of the question paper looks like
this:
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Instruction Indicate which of the following statements are true or false by writing
T or F. You will score one mark for every correct answer but will go on to lose a
half mark for every incorrect response.

(1) Every light is/are waves
(2) No light is/are waves
(3) Some light is/are waves
(4) Some light is/are not waves

To score full marks in the above section, a student needs to answer all these
questions in affirmation. Similarly, if all the questions on odd places are set by Prof.
Palton and the even place’s questions are by Prof. Wascot, then the answer to all
these questions must have been a denial. In both these situations, we do away with
the relation of “contradiction.”

5.2 Prof. Mind vs. Prof. Head

A deductive logician, Prof. Mind, and an inductive logician Prof. Head are in the
midst of a discussion.
Prof. Mind—“Isn’t it true that inductive arguments are invalid?”
“No. They are either strong or weak”, said, Prof. Head.
“Yes, they are invalid” said, Prof. Mind, “as the truth of the premises never
guarantee the truth of the conclusion.”
Prof. Head responds, “Well, inductive arguments do not compete to be valid or
invalid. Validity is not a parameter of inductive arguments. One cannot say an
inductive argument is valid or invalid as it will be akin to commit a category
mistake.”
Prof. Mind argues, “Look, Prof. Head, ultimately, all we are talking about is nothing
but arguments. It is high time you realize that inductive arguments are invalid first,
then they are either strong or weak.” Mr. Sarry Horton from Prof. Wascot and Prof.
Palton’s class happens to pass by and is already planning what to answer in case
this question comes in the end semester examination, and he knows who sets the
question. Now, consider the following statements:

(a) All inductive arguments are invalid.
(b) No inductive arguments are invalid.
(c) Some inductive arguments are invalid.
(d) Some inductive arguments are not invalid.

They can all be true or false at the same time if we allow Prof. Mind and Prof.
Head to take charge of odd and even cases, respectively and vice versa. Nevertheless,
we do away with contradiction, in this case too.
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5.3 Tomato vs. Tomato

New Jersey recognizes the tomato as the state vegetable, and Tennessee adopted the
tomato as the official state fruit. Whether the rich tomato is a fruit or a vegetable
is an age old question. However, it has a simple answer. Tomatoes are both. They
are fruits as they develop from the flower of a tomato plant. The same goes for
cucumbers, beans, peppers, pumpkins, peas, etc. So, tomatoes are fruits—is a
botanical classification. However, tomatoes are widely used as vegetables. Thus,
tomatoes being vegetable is a culinary classification. Moreover, in the United States
of America, tomatoes are taxed as vegetables to endorse the social construct of
everyday language and people’s mindset.

I just forgot to mention that Mr. Sarry Horton’s father is a Chef, his mother is
a Botanist, his sister is a fun-loving individual who loves to laugh at the “tomato
fiasco” and his grandfather was a Supreme Court judge. When I asked Sarry—
“What do you think . . . ”, he stopped me in between, yelling “Nothing holds!”.

5.4 HEisenberg vs. HeIsenberg

A high school Physics class would tell us, Heisenberg uncertainty principle states
that we cannot determine the position and momentum of a (sub-atomic) particle
at the same time. However, we can separately determine them as such. When
HEisenberg asked HeIsenberg (in Sarry’s dream),

(i) The momentum of all particles can be determined—T/F?
(ii) The momentum of no particle can be determined—T/F?

(iii) The momentum of some particles can be determined—T/F?
(iv) The momentum of some particles cannot be determined—T/F?

Then, HeIsenberg answered (or re-questioned) HEisenberg (in Sarry’s dream)
as follows:

(v) The position of all particles can be determined—T/F?
(vi) The position of no particle can be determined—T/F?

(vii) The position of some particles can be determined—T/F?
(viii) The position of some particles cannot be determined—T/F?

The answers to the above questions depend on—“what we are trying to determine”
rather than “what can be determined.” This is one of the striking aspects of the
difference between quantum physics, which is conceptually different from classical
physics [6]. HEisenberg vs. HeIsenberg not only tell us that “contradiction” is not
obtained in this paradigm but also that (i) and (iv) or (v) and (viii) is a “dialetheia”
[28]. I do wonder whether any of these propositions from (i) to (viii) is/are “glut” (a
sentence, which is both true and false) and/or “gap” (a sentence which is neither true
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nor false) at the same time. Nonetheless, I am not discussing this point any further,
as it is beyond the scope of present work. However, this can be an avenue for further
research.

5.5 Summary

We can devise and develop many more thought experiments like this. In such
situations, we fail to rescue the relation of contradiction (or any relation of
opposition what-so-ever), even if we know that these are separate paradigms, which
are incommensurable. The PHY101 class is a paradigm, so is the logic in general,
or Mr. Sarry Horton. HEisenberg vs. HeIsenberg is a double (or multiple) paradigm.
Nevertheless, they all have one thing in common—the inability to accommodate the
relation of “contradiction.”

6 Conclusion

The history of squares or logic, in general, has seen various developments, which
went on to question the established norms. Revisions, therefore, are an integral
part of any system. Kuhn’s thesis, in a nutshell, tells us that established norms are
normal science. It has a puzzle-solving capacity. In the wake of new developments,
challenges are posed, and there is a state of crisis due to the inability of normal
science to address the threats of new questions. Rival paradigms compete with
each other for supremacy. Once a paradigm can address the challenges posed, it
is established as the new normal science. The past and the present paradigms are
entirely different worlds. They are incommensurable since they are not only based
on a different set of beliefs and principles but are also lacking a common ground.
But, incommensurabilty is not the end of the road; it is instead a requirement to
grow as “humanity did not begin its intellectual journey already possessing all the
concepts and methodological tools that would ever be required, incommensurability
becomes a requirement for progress [2].”

Squares too are no exception. Aristotle’s (“assertoric”) propositions, we consider
today (i.e., “categorical” propositions as translated by Boëthius) are not (exactly)
the same as they were in his era. Similarly, the paradigms of traditional and
modern logicians are dissimilar and have no (exactly) equivalent explanations
or notions to equate. Some examples at the cusp of two different worlds poses
questions, which are intriguing to the residents of any world. We (may thus,) need
a new and evolved vocabulary (including diagrams) to explain these concepts. The
squares and the oppositions expressed are not handy in many cases. I reiterate the
findings of this paper in the following three statements. First, the traditional and the
revised square belong to two separate paradigms. Second, they are taxonomically
and methodologically incommensurable. Third, none of the relations (including
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“contradiction”) expressed in any of the squares holds in certain situations as shown
by thought experiments. In addition to this, I disclaim that this paper (or any of its
part) argues that the traditional and modern squares cannot be compared, as “even a
complete incommensurability of two theories does not make them incomparable
by various objective standards” [7]. The squares are comparable and so is its
“contradiction.”
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The Square of Opposition as a
Framework for Stephen Langton’s
Theological Solutions

Marcin Trepczyński

Abstract In some texts of the prominent medieval thinker Stephen Langton
(1150/55–1228), whose main theological works are being edited these days, it is
possible to point out solutions based on the square of opposition. Although it is not
clear whether he had such a structure in mind as a geometric representation, in his
analyses devoted to God’s will, he introduced from three to four options representing
possible states of will connected by such relations as contradiction, contrariety and
the relationships set up by the possible distributions of logical values. Regardless of
whether he knew the square of opposition, it is argued that this was the framework
of his theological solutions. The power of the square of opposition in theological
consideration is also seen in the example of the problem of predestination and the
problem of theodicy. Finally, the “square of will” based on Langton’s analyses is
further developed to a “hexagon of will”.

Keywords Square of opposition · Stephen Langton · Predestination · Theodicy ·
Contradiction · Contrariety
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1 Introduction

The aim of this chapter is to present how the medieval thinker Stephen Langton
(1150/55–1228) used the square of opposition as a basis for his theological
considerations and to underline the significance of this structure in his thought. At
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the same time, it is an occasion to analyse an interesting example of the application
of the square and to further develop such an example to a hexagon,1 as well as to
take a deeper look at this interesting author whose works are today being brought to
audiences from their manuscripts.

Stephen Langton was a very prominent person at the turn of the twelfth and
thirteenth centuries. He was a very famous, appreciated and influential (cf. [7, 14])
master of theology at the University of Paris, where he lectured until 1206. He was
called “Doctor Nominatissimus”, so “Excellent”, “Famous” or “Outstanding”. In
1206, he was appointed as cardinal by Pope Innocent III, and in 1207 (after 2 years
of disputes around elections), the Pope ordained him archbishop of Canterbury,
although—because of those tensions—he was only able to travel to England after 6
years, in 1213. Then, he became involved in a struggle of the barons against King
John Lackland and—to bring both sides to peace—he proposed a draft of the future
Magna Carta Libertatum (The Great Charter of Liberties) signed by the King in
1215, being the most important document issued in medieval ages in England (cf.
[10, 15–26], [3, 832–835]). Let us note that he is the first person mentioned in
the Great Charter by the King. It is also likely that he is an author of the famous
sequence of Pentecost Come, Holy Spirit (Veni Sancte Spiritus) (cf. [10, 39–41]).
What is more, he is believed to have divided the Bible into chapters in the way that
it is used today.

Finally, the ongoing study shows that he was a brilliant and very original
theologian, often conducting philosophical considerations and using many advanced
logical tools, which we can find especially in his short Summa2 and Theological
Questions.3 In the introduction to the partial edition of Langton’s Summa, S. Ebbe-
sen remarks that “there is plenty of logic—semantic theory, theory of inference, and
not least, use of the eadem ratione principle”. As regards this specific tool of logic
mentioned at the end, Ebbesen explains that:

This principle, which is ever-present though never explicitly formulated, states that if some
proposition of inference, p, is true or valid, then q is so too unless it can be shown that q
differs from p in some relevant respect. In particular, if the truth or validity of p is defended
by appeal to some rule, it must be shown that the rule does not apply to q or that there is
some other relevant difference if q is to be declared less acceptable than p. [15, 574–576]

The same can be said about Langton’s Theological Questions, where we find a
great number of examples of reasoning introduced by the phrase “eadem ratione”
or “pari ratione”, based on the mentioned principle.4 Furthermore, there are many
syllogisms and considerations in which Langton analyses possible arguments,

1 As described by R. Blanché [5] and developed by J.-Y. Béziau [4] and many collaborators.
2 It is an unfinished work, barely started; see the partial edition: [1].
3 See the first book: Stephen Langton, Quaestiones Theologiae, Liber I, eds. R. Quinto and
M. Bieniak, Oxford University Press, Oxford 2014 and two recently published volumes of the
third book (hereinafter: QT) [11], [12], [13].
4 Only in q. 1 of QT do we find six arguments based on this principle: p. 237, ll. 45–48, p. 238,
ll. 63–67, ll. 79–83, p. 241, ll. 150–153, ll. 156–161, ll. 164–168.
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pointing out premises and conclusions and for example showing that an argument
(inference) is not valid, but a conclusion is true or that a conclusion is false, despite
the fact that a premise is true or that the argument is invalid and something else
should be inferred.5 We should also add that an important basis for many of his
solutions is semiotic theory, within which such relationships as suppositio, signifi-
catio, consignificatio, copulatio, appellatio, notatio, and connotatio are discerned
and used in a very sophisticated manner (cf. [15, 579–583]).6

Unfortunately, probably due to his political and pastoral involvement, his works
were not widely distributed in his time and were not well known (cf. [3, 811]),
despite the fact that he influenced many important scholars and was a famous and
recognised person. Furthermore, even today only some of his works are edited
and published. One of his most important works, beside his short Summa and
commentaries to the Sentences of Peter Lombard7 as well as to the Epistles of Saint
Paul, is the already mentioned collection of more than two hundred Theological
Questions.8 The first book of these questions was published in 2014 by Riccardo
Quinto and Magdalena Bieniak at Oxford University Press. A complete critical
edition of consequent questions is now being prepared as part of a large project at
the University of Warsaw.9 Let us underline that except for some selected questions
edited in the twentieth century, the majority of Langton’s questions existed only
in manuscripts, whereas—in comparison to his Summa and commentaries—they
contain definitely wider and deeper analyses of the discussed problems, also from
the logical point of view. These special features of Quaestiones Theologiae provide
much richer and more interesting material, also for logical investigations, and should
be the main resource for studies of his thought.

One of Langton’s theological questions published in 2014 is q. 17 on God’s will.
In fact, the editors identified three different texts of Langton on this topic and after
a thorough analysis claimed that they were not three versions of the same question,
but three separate questions, which were subsequently marked as: q. 17, q. 17*, and
q. 17**. In the last two questions, Langton analyses examples of sentences referring
to what God wants and what God does not want (respectively, “God wants him
to sin”/“God doesn’t want him to sin” and “God doesn’t want him to be bad”),
discerning contradictions and contrarieties. It will be shown that the framework

5 From the many examples, let us recall for example the following two statements: Non ualet prima
argumentatio. Deberet enim inferre “(. . . )” (QT, q. 1, p. 239, ll. 107–108); Solutio. Prima uera,
conclusio falsa. Set ex hac sequitur conclusio “(. . . )”, set hec falsa; et hec uera. . . (QT, q. 13b,
p. 232, ll. 12–14).
6 An example of such an utterance from q. 62c: Set hoc uerbum iudicare’ duas habet significationes
prout copulat iudicium auctoritatis: (1) in una copulat pure iudicium auctoritatis nichil conno-
tando, et secundum hoc dicitur de tota trinitate; set de hac significatione nichil ad presens; (2) in
alia significatione copulat iudicium auctoritatis et connotat ministerium [11, 247, ll. 138–144].
7 See the edition [6].
8 Cf. [10, 161–166] and cf. also the updated working catalogue of the questions published at the
project website: http://langton.uw.edu.pl/theological-questions (access: 31.12.2021).
9 See http://langton.uw.edu.pl (access: 31.12.2021).

http://langton.uw.edu.pl/theological-questions
http://langton.uw.edu.pl
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of these considerations was the square of opposition. This presentation will be
supplemented with Langton’s remarks on this topic, formulated in the commentary
to the Sentences, but there will be no links to his Summa, as Doctor Nominatissumus
had not addressed those problems in this work.

2 Langton’s Logical Structures in Questions on God’s Will

The first passage of q. 17* referring to relationships based on the square of
opposition can be found in Chap. 4, namely:

Dicimus quod utraque istarum est falsa: “deus uult istum peccare”, “deus non uult istum
peccare”, ita quod hec uox non uult’ sit una dictio; nec sunt contradictorie, immo utraque
affirmatiua. Set si non’ – uult’ sint due dictiones, tunc uera est ultima. Quod dicitur “Nolo
mortem peccatoris” exponi debet: idest “non uolo”. (QT, q. 17*, c. 4, resp., p. 376, v. 60–
64)

Fig. 1 Langton’s logical
structure in q. 17*

We say that both of the following are false: “God wants him to sin”, “God doesn’t want him
to sin” in a way that this phrase “doesn’t want” is one word; they are also not contradictory,
and they are both affirmative. But if “doesn’t” – “want” are two words, then the latter
[sentence] is true. When it is said “I don’t-want (nolo) the sinner’s death” should be exposed
as “I don’t want (non volo)”.

At this stage, Langton states that the relationship between “God wants him to
sin” and “God doesn’t want him to sin” is not a contradiction. Furthermore, both
sentences are false. He also adds that there is another sentence negating the first one
and states that this sentence is true. Finally, let us see that these three sentences are
based on three options of using Latin verbs which express one’s will:

• volo (I want)
• nolo (I do-not-want or I want not)
• non volo (I do not want, which according to Langton’s suggestions could be

understood as it is not true that I want)

Hence, Langton offers here a complex relationship between three sentences
with the possible distribution of logical values and information that two of those
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sentences (which are both affirmative) are not contradictory. The situation described
by Langton is presented in Fig. 1.

Let us compare this first passage from q. 17* with a short passage on the same
topic from q. 17**, Chap. 5:

Vnde hec duplex: “deus non uult istum esse malum”, quia si hec non uult’ sit oratio, uera
est, cum eius contradictoria sit falsa; si est tertia persona huius uerbi nolo’, falsa est, quia
sequeretur quod deus uellet eius contrarium. (QT, q. 17**, c. 5, resp., p. 380–381, v. 57–61)

(. . .) From this, this [sentence] “God doesn’t want him to be bad” has two meanings,
because if this “doesn’t want” is a sentence (is complex), it is true, as its contradictory
is false; if it is the third person of the verb “to want-not”, it is false, as it entails that God
would want what is contrary to this.

Fig. 2 Langton’s logical structure in q. 17**

Although in this passage Langton analyses different sentences than in q. 17*,
they are based on the same structure and have a very similar meaning. Just as in
the previous example, Langton uses three predicates: volo, non volo, and nolo and
offers a distribution of possible logical values of the sentences based on those three
options. But this time he also precisely names the relationships between them. In
the first case, he is talking about contradiction. And in the case of the sentence
with the second meaning of non vult, he points out that then God would want
something contrary, so in this situation one does not negate that God wants x to
be bad, but one says that God wants x to be good (as bad and good are contrary
terms). We should underline that Langton speaks here about the contrariety of terms
and does not explicitly mention a contrariety between sentences. However, it seems
that it is crucial to make a distinction by using different names for these different
relations (contrariety and contradiction), and as these two contrary terms are used
as arguments of the same formula “God wants x to be . . . ”, we can transpose it
onto the relationship between the sentences. The situation given in q. 17** has been
presented in Fig. 2.
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Now, let us take into account that in q. 17* Langton continues his analysis. In the
argument that opens Chap. 5 (v. 69–72), he shows that the relationship among volo,
nolo, and non volo is the same as among “likes” (placet), “dislikes” (discplicet), and
“doesn’t like” (non placet). Hence, Langton states “when this sentence God dislikes
sin’ is true, so similarly this [sentence] Sin happens when God doesn’t want it’ and
also this [sentence] God doesn’t want him to sin’ in a way that “doesn’t want” is
one word, which has been negated before”.

In his answer to this argument (v. 73–80), he explains that “to like” (placere) can
be understood in two ways: as “to want” (velle) taken strictly and as “to tolerate”
(approbare). And similarly, “to dislike” (displicere) may be understood as “to not
want” (nolle). According to this meaning, these two sentences “God doesn’t want a
sin to happen” (deo nolente fit peccatum) and “God dislikes this sin” (deo displicet
hoc peccatum) are false. But the situation is different when we say that God does
not like it (deo non placet). Hence, Langton discerns two meanings of placet (which
refer, respectively, to velle and to approbare) and distinguishes displicet (which
corresponds to nolle) and non placet (which results from the negation of placet
understood through velle). Finally, Langton points out that when “to like” can stand
for “to tolerate” and “not to like” can stand for “to reprobate” (reprobare). He
underlines that when we say that God dislikes sin, in fact, we say that he reprobates

Fig. 3 Langton’s developed
logical structure in q. 17*

Fig. 4 Langton’s merged
logical structure (qq. 17* and
17**)
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it, because he hates it, so he does not want it, but not in an “active” way, as when we
understand “dislikes” as “one word”.

Thanks to this substitution, Langton obtains a similar structure, isomorphic to
that presented in Fig. 1, with some defined relationship and with the distribution of
possible logical values. This structure is shown in Fig. 3.

In order to collect all the information delivered by Langton about such a structure,
we can merge the figures based on considerations from q. 17* and q. 17** and thus
Figs. 2 and 3. We obtain the picture presented in Fig. 4:

Finally, we can add that in the Commentary to the Sentences,10 Langton discerns
two meanings of non vult, using an example similar to the one presented in q. 17**
and referring to the concept of reprobation, as in q. 17*. He briefly analyses here a
short reasoning: “God doesn’t want x to be bad. Hence: God wants the contrary of
this”. Langton shows that if we treat non vult as two words, then “God wants x to
be good” is false, as x can be reprobated. But when we treat it as one word based
on the form nolo in the third person, “as we would say: nult”, then the reasoning
presented works.

3 Towards the Square

We can find four options in Langton’s considerations, which can be presented as the
four corners of the square of opposition and which properly meet the standards of
the four conventional corners of A, E, I, and O (cf. [4, 5–6]). Within this square are
two relations described and named correctly, namely, contrariety (between A and E
corners) and contradiction (between A and O corners).

What is more, Doctor Nominatissimus provides a possible distribution of logical
values, which specifies the relation between the corners I and O: they “may be both
true”, so in fact it can be identified as a subcontrariety. Furthermore, this distribution
shows that it is possible that the relationship between A and I and the relationship
between E and O are subalternations, and when we take into account the content of
these corners, it indeed turns out that the sentences corresponding to A and I, such
as “God wants x” and “God tolerates x” (or “it is not the case that God wants not
x”), remain in the relationship of a subalternation and similarly in the case of the
sentences “God wants not x” and “it is not that God wants x”, corresponding to E
and O.

Therefore, it seems that Langton delivered all the information sufficient to
reconstruct his square of opposition in a complete version, which can be presented
as Fig. 5.

10 Stephen Langton, Commentarius in Sententias, lib. I, d. 45, c. 7, n. 411: “Hoc non valet: Deus
non vult hoc; ergo vult eius contrarium. Secundum quod sunt due dictiones: non vult, quia non
vult istum esse malum. Tamen hec falsa: vult istum esse bonum. Sit, quod reprobus sit. Set
secundum quod est una dictio huius verbi nolo tertia persona, acsi dicatur nult, bene sequitur”
(Der Sentenzkommentar. . . , p. 63).
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However, a question may be posed: why has Langton not named other relations?
He could not only have named the I–O relationship as a subcontrariety, but he could
also have explicitly mentioned that there was a contradiction between E and I (so
between nolo-corner and approbo-corner) and the subalternation between the pairs
A–I and E–O. He could do this, as he was well educated in logic and familiar with
such concepts.

Fig. 5 Langton’s completed
square (based on qq. 17* and
17**)

We cannot be sure about the reasons of this “negligence”, but there is a hypothesis
that can explain it. In q. 17**, there is a passage referring to a different topic, but
containing the following useful hint:

Si autem queratur pro quo fiat suppositio cum dicitur “quod deus permittat hoc etc.”, potius
logica est questio quam theologica, nec spectat ad theologum hoc inquirere, set tantum
modum loquendi et causam dicti esplanare (QT, q. 17**, c. 4, resp., p. 380, v. 51–52).

It means that within his Theological Questions, Langton is not interested in
addressing logical problems directly. When he perceives something as rather a
logical question than a theological one, he stops, as it should not be expected that
a theologian will investigate such topics deeply. Langton needs logic to the extent
that it is useful in explaining some theological problems. So, he limits the logical
considerations to the extent that they suffice as a tool for the theological discussion.
Therefore, we can guess that he was not interested in presenting a complete structure
of the four mentioned options, but just sketched those relationships which he needed
to explain the difference between the similar notions.

However, let us remember that Langton mentioned all the substantial elements
needed to complete such a square. And what is more, a deep understanding of those
elements is needed to provide such subtle solutions as he did. This is why, in my
opinion, the square was a logical framework on which he based his considerations.
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4 The Significance for Theology

The square discerning four possible states of will mentioned above (let us call it “the
square of will”) is very powerful in discussions on several important theological
problems.

The examples used by Langton in questions on God’s will: “God doesn’t want
x to sin” or “God doesn’t want x to be bad”, as well as his explicit reference
to the theological concept of reprobation, indicate that the square is useful to
explain the problem of predestination. Langton himself addressed this issue in
several theological questions transmitted in various versions (q. 13b, q. 13c, q. 13*,
q. 14, q. 15a, q. 15b, q. 15*a, q. 15*c), and in some of these texts, he discussed
several problems concerning reprobation. However, we should underline that he
had not considered it in respect to God’s will, as he had in q. 17* and q. 17**,
which should not be very surprising if we take into account that in the most
common theological textbook of his time, which was also the basic material for
his work, namely the Sentences of Peter Lombard, predestination and reprobation
are considered in terms of God’s prescience.11 A similar situation can be found
in William of Auxerre’s Summa aurea (which followed some of Langton’s ideas),
despite the fact that William quoted St. Augustine’s “will-laden” definition.12 It was
St. Thomas Aquinas who finally combined the concept of reprobation with God’s
will again, saying in the question on predestination that “reprobation includes the
will to permit a person to fall into sin”.13 Nevertheless, as it was said, Langton set
up a distinct link between will and reprobation in two questions devoted to God’s
will (in q. 17* directly and in q. 17** indirectly). And in the examples from Doctor
Nominatissimus, we can see that the square of will makes it easy to understand two
key statements supported by some medieval theologians and generally by Catholic
theology:

1. When someone is reprobated by God, it does not mean that God wills for this
person to be condemned (this would be the nolo corner—E), but it is not true that
God wills to save this person (non volo corner—O). It just means that this person
did not obtain enough grace to be saved.

2. The theory of double predestination is excluded. According to this theory, either
the volo corner (A) or nolo corner (E) must be applied to each person, so if it
is not true that God wants someone to be saved, then it means that God wills to

11 Peter Lombard, Quattuor Libri Sententiarum, lib. I, dist. XL, cap. 2: “reprobatio e converso
intelligenda est praescientia iniquitatis quorundam et praeparatio damnationis eorundem” [9, 286].
12 William of Auxerre, Summa aurea, lib. I, tr. IX, c. 3, q. 2: “Diffinit enim A u g u s t i n u s super
Epistolam ad Romanos reprobationem hoc modo: reprobare est nolle misereri, et nolle misereri est
non apponere gratiam in presenti et dampnare in futuro” [8, 184].
13 Thomas Aquinas, Summa theologiae, I pars, q. 23, a. 3, resp. [14]).
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have someone condemned. To understand this theory, one has to understand the
difference between the situation of the nolo corner (E) and the situation of the
non vult corner (O).

The second problem (both theological and philosophical) to which the square
of will based on Langton’s analyses can be successfully applied is the problem
of theodicy, which is absent in the considerations of Doctor Nominatissimus, but
which—despite being called this in modern times14—has been present in Catholic
theology since late antiquity, thanks to St. Augustine.15 In discussions devoted to
this topic, it is very important to include both following possibilities: (1) that God
tolerates some evil, although he has no active will this evil to happen and (2) and
that God does not want some evil, but at the same time he has no active will this
evil not to happen (because then this evil simply could not happen). This is crucial
for the Catholic solution according to which God never wants any evil to happen
but may tolerate it (according to St. Augustine, in order to draw from that evil some
good). This situation is represented by two bottom corners taken together (I and O),
namely approbo and non volo (reprobo) corners. The square of will shows clearly
that (Fig. 6):

Fig. 6 The square of will used to discuss, respectively, the problem of predestination and the
problem of theodicy

14 The term “theodicy” was introduced by G.W. Leibniz in Essais de thodice sur la bont de Dieu,
la libert de l’homme et l’origine du mal, published in 1710.
15 Cf. St. Augustine, Enchiridion ad Laurentium liber unus (de fide, spe et caritate liber unus), III,
11: “For the Omnipotent God, whom even the heathen acknowledge as the Supreme Power over
all, would not allow any evil in his works, unless in his omnipotence and goodness, as the Supreme
Good, he is able to bring forth good out of evil” (St. Augustine, Handbook on Faith, Hope, and
Love, transl. A.C. Outler, Grand Rapids, MI, Christian Classics Ethereal Library, generated online
2019, p. 7 [2]).
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1. approbo situation (I) is different from volo situation (A) and similarly that non
volo (reprobo) situation (O) differs from nolo (E).

2. approbo situation (I) and non volo (reprobo) situation (O) can be both true at the
same time, whereas volo (A) and nolo (E) situations cannot be true but can be
false at the same time.

The use of the square of will not only helps to visualise the differences between
those situations and these specific relationships among them but also assures that
such theological solutions are based on logically correct conceptual structures.
Furthermore, the four options, represented by four corners of the square, linked
together by specific relationships are in fact necessary to solve both mentioned
problems. This is because without discerning those options one will not understand
that negation of the state of will does not mean another state of will with some
opposite object, but rather absence of will.

5 The Hexagon of Will

Finally, as a kind of supplement, it is worth pointing out that it is possible to develop
the square of will to obtain the hexagon which includes additional options for
some positive state of will, so having some active will (let us call it “voluntas mea
excitat”), and of a negative one, when there is no act of will (let us call it “voluntas
mea non excitat”). An example of such hexagon has been presented in Fig. 7.

The hexagon clearly presents two triangles of contrarieties. The one where two
contrary states of active will (vertices A and E), so V(x, s) and V(x, ¬s), are opposed
to the situation in which there is no act of will (Y): ¬V(x, ¬s) ∧ ¬V(x, s), and

Fig. 7 The hexagon of will. For V(x, s)—x wants s to happen, where x is a person and s is a state
of affairs
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another one where two contrary states in which there is no active will (I and O):
¬V(x, ¬s) and ¬V(x, s) are opposed to the situation of some act of will (U): V(x, s)
∨ V(x, ¬s).

6 Conclusions

To conclude, let us briefly collect the most important remarks:

1. Stephen Langton had not drawn any square and had not pointed out explicitly all
the square relations.

2. He mentioned necessary elements to easily complete the square.
3. We cannot guess whether he had in mind some square as a geometric repre-

sentation. However, he considered a structure with four arguments combined by
logical relations.

4. No matter what Langton imagined, the square of opposition was a framework
for his theological solution, as such logical structure is necessary to formulate
answers that he delivered.

5. The square is very useful or even necessary as a framework to solve some of
theological problems like those connected with predestination or theodicy.
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The Limits of the Square: Hegel’s
Opposition to Diagrams in Its Historical
Context

Valentin Pluder

Abstract The square of opposition hardly appears in German texts on logic from
the early to mid-nineteenth century. This cannot be due to a lack of awareness of
the square, for although it only appears occasionally in works from this period,
these rare appearances present highly elaborate variations of it or show its historical
development. But this is, almost without exception, the case only in works about the
history of logic (Biese, Prantl, Rabus, Ueberweg) or in school textbooks (Fischer,
Gockel, Jäger, Troxler, Lindner, Waitz). This might seem like a lot of references,
but in fact these works only represent a small minority of the numerous logics that
were published in German during this period. The absence of the square should not
be taken as a sign of critical attitudes towards the logical relations represented by it;
the opposite is more likely. As part of the Aristotelian heritage of traditional logic,
the content of the square may have been considered so obvious that there was no
need for further illustration. Logic was believed to have been perfected or nearly
perfected for 2000 years, after all. Diagrams that use circles, rather than the square,
can be found more often. However, this was probably not because they showed new
logical content but because the practice of showing old content using circles was
quite new at this time. The lack of interest in diagrams among the more orthodox
logicians was not counterbalanced by an increased use by the non-orthodox ones.
For example, neither circles nor squares are to be found in the works of Hegel.
But Hegel at least discusses, through the lens of his Science of Logic, the limits
to the use of diagrams in the context of the relations traditionally represented by
the square of opposition. This paper aims to clarify the arguments that draw an
opposition between Hegel’s logic and diagrams like the square, in the light of his
place within nineteenth-century German logic.
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1 Introduction

The subject of this paper is the square of opposition in nineteenth-century German
works on logic, with a particular emphasis on Hegel’s attitude towards diagrams
like the square. More precisely, the period between 1810 and 1870 will be explored.
The 1870s marked the start of a period of great changes in logic, culminating in the
publication of Frege’s Begriffsschrift [6] in 1879. It is therefore quite clear why 1870
has been picked as an end point. Beginning with 1810 is rather more arbitrary. The
transcript of Kant’s Lectures on Logic was published in 1800 [17], and this would
also have made a good starting point given the text’s influence on ideas of logic.
Hegel’s Wissenschaft der Logik (Science of Logic), a work that contrasts sharply
with Kant’s relatively traditional theory of logic, was published a decade later: the
first volume in 1812 [9], followed by the second volume in 1816 [10] and the revised
and expanded second edition of the first volume in 1831 [11]. My investigation starts
with the second decade of the nineteenth century because it is focused on Hegel’s
approach to diagrams. The aim is to establish why Hegel refused to use diagrams in
his logic; given the constraints of space, I do not seek here to explain or justify his
logic as a whole. Furthermore, the square of opposition is considered primarily with
regard to its diagrammatic form and only secondarily with regard to its content.

The paper starts by examining the historical context. In this initial section, I firstly
ask where exactly the square can be found between 1810 and 1870. As it turns
out, the square is relatively rare during this period, and so – secondly – I consider
why this might be the case. The following section focuses on Hegel. After a short
examination of Hegelianism, Hegel’s concept of the concept is briefly outlined. This
is followed by a presentation of his critique of diagrams in his Science of Logic.

2 The Historical Context

2.1 Where to Find the Square?

A good place to start might be to look at some numbers. Between 1810 and 1870,
at least 420 books on logic (and probably more) were published in German. This
includes multiple editions but excludes Latin texts on logic written by German-
speaking writers and, of course, all journal articles and suchlike. Out of these at
least 420 books, I have only searched 120, so the following numbers are based only
on this sample. The square can be found in 19 books by 11 authors. Nine of these
books are works on the history of logic ([2], p.107; [21], pp.654, 677, 692, 694, 697;
[22], p.271; [23], pp.14, 45, 417; [24], pp.22, 23, 208, 258; [26], pp.287, 305; [32],
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pp.136, 164; [33], pp.160, 161; [34], p.175) and seven are schoolbooks ([5], p.98;
[8], p.63; [16], p.47; [19], p.92; [25], p.61; [31], p.285; [35], p.56). There are few
surprises in the way the square is presented in the schoolbooks. The names of the
relations between the categorical propositions are mainly kept in Latin, except for
in the textbook by Troxler, which is in German (Figs. 1 and 2).

In most cases, the categorical propositions are arranged in the square as shown
in the diagrams above. Only Trendelenburg, in his 1836 schoolbook on logic,
swapped round the positions of the E and O propositions as a result of his study
of Aristotle ([30], p.51). He was followed in this by Drobisch, who changed his
square accordingly in the second edition of his New Presentation of Logic; in his
first edition, also published in 1836, he had the square arranged the standard way
([3], p.40) (Fig. 3).

Fig. 1 Latin square from a
schoolbook by F. Fischer,
1838 ([5], p.98). (Figure
gratefully taken from the
scans provided by the
Münchner
DigitalisierungsZentrum
(www.digitale-
sammlungen.de))

Fig. 2 German square from a schoolbook by I.P.V. Troxler, 1829 ([31], p.285). (Figure grate-
fully taken from the scans provided by the Münchner DigitalisierungsZentrum (www.digitale-
sammlungen.de))

http://www.digitale-sammlungen.de
http://www.digitale-sammlungen.de
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Fig. 3 Square with changed
corner by M.W. Drobisch,
1851 ([4], p.76) . (Figure
gratefully taken from the
scans provided by the
Münchner
DigitalisierungsZentrum
(www.digitale-
sammlungen.de))

From the late 1850s onwards, a wide range of different squares can be found
in books on the history of logic: from early Greek versions – for example, from
Ammonius Hermeiou (c. 435–517) – to sophisticated scholastic versions, like one
from Johannis Dullaert (c. 1480–1513) representing different kinds of hypothetical
judgement (Figs. 4 and 5).

Fig. 4 Greek square from Prantl’s History of Logic, 1855 ([21], p.654)

In summary, the square is relatively rare between 1810 and 1870 in the examined
sample. It is found almost exclusively in reproductive works, like schoolbooks or
books on the history of logic. It seems to be considered dead wood, since nobody
works with the square or investigates its diagrammatic form. Even the change of the
E and O corners by Drobisch is not motivated by his own ideas about the square but
only by a desire to read Aristotle correctly.

http://www.digitale-sammlungen.de
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Fig. 5 Square for hypothetical judgements from Prantl’s History of Logic, 1870 ([24], p.258).
(Figure gratefully taken from the scans provided by the Münchner DigitalisierungsZentrum
(www.digitale-sammlungen.de))

http://www.digitale-sammlungen.de
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2.2 Why Is the Square So Rare?

There are, of course, many possible explanations for the relative rareness of the
square in this period of German philosophy. One reason could be that the logicians
of this time were simply unfamiliar with it. Or, on the contrary, they might have
thought it was too obvious to merit mentioning. Alternatively, it is possible that the
logicians thought that logic and diagrams like the square did not go well together.

The first explanation that they were unfamiliar with the square can be ruled out,
not only because of the presence of sophisticated squares in books on the history of
logic but also because of the very rudimentary squares that can be found in footnotes
without any further explanations of what they are supposed to illustrate e.g. [2].,
p.107, or [30], p.51. The authors must have assumed that their readers would have
no problem understanding what was meant by a square in the context of logic.

The second explanation for the rareness of the square is far more convincing:
it was deemed so obvious that no one bothered to take a closer look. This idea
corresponds to a very common view of logic in the German-speaking world up
until the end of the nineteenth century. Schopenhauer, to name just one example,
claimed that Aristotle had already described logic to an ‘extent of perfection’ ([28],
p.357) that left barely anything more to add in order to bring it to the state it had
attained in the nineteenth century, when logic was ‘rightly regarded as an exclusive,
self-subsisting, self-contained, finished, and perfectly safe branch of knowledge, to
be scientifically treated by itself alone and independently of everything else’ ([29],
§9/p.46). The belief that logic is a science that had already been brought close to
perfection in the ancient world and that there was hardly anything new to be found
in this field was famously phrased by Kant, who remarked on the fact that ‘since
the time of Aristotle it [logic] has not had to go a single step backwards [ . . . ].
What is further remarkable about logic is that until now it has also been unable
to take a single step forward, and therefore seems to all appearance to be finished
and complete’ ([18], p.Bviii/p.106). Against this background, most logicians must
have thought it unnecessary to explain something as self-evident as the square of
opposition. Of course, there were exceptions to the widely held view that no changes
in logic were needed because there had been no fundamental changes in logic since
Aristotle. Hegel, for example, drew the opposite conclusion. Like Kant, he believed
that logic had not taken a step forward since Aristotle. But unlike Kant, Hegel did
not conclude from this that logic was completed early on. Rather, he saw all the more
urgent necessity for a ‘total reworking’ of it ([12], p.31; cf. [11], pp.35–37). Hegel
thought new life must be breathed into the ‘ossified material’, the ‘dead matter’, the
‘devastated land’ of the useless, empty wisdom inherited from scholasticism ([12],
p.507; cf. [10], p.5). This resuscitation could not be achieved by supplementing a
‘pure logic’ with an ‘applied logic’ and still less through ‘all the psychology and
anthropology that is commonly deemed necessary to interpolate into logic’ ([12],
p.676; cf. [10], p.179). Such phenomena, which are often to be found in nineteenth-
century German logic (e.g. in Fries’s system), are for Hegel the symptom of the
crisis and not its cure:
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A just published and most up-to-date adaptation of this science, Fries’s System of Logic
[7], goes back to its anthropological foundations. The shallowness of the representation or
opinion on which it is based, in and of itself, and of the execution, dispenses me from the
trouble of taking any notice of this insignificant publication. ([12], p.31; cf. [9], p.23)

One might think that someone like Hegel, who was willing to rethink all logic
without being led astray by psychology and anthropology, might have found a
new interest in diagrams like the square. But that proved not to be the case since,
like other philosophers of this time, Hegel was convinced that diagrams and logic
do not go well together. This belief could be explained by the idea that there is
a fundamental difference between sensibility or spatial perception and thinking.
Since logic is about thinking and diagrams are about spatial perceptions, mixing
them together, and thus ignoring this difference, would obscure understanding of
the genuine nature of thinking. This thought can be found in Kant too, when he
explains: ‘Hence we distinguish the science of the rules of sensibility in general, i.e.,
aesthetic, from the science of the rules of understanding in general, i.e., logic’ ([18],
pp.A52, B76/p.194). When he speaks of the difference between understanding and
sensibility, Kant of course does not intend to keep them separated: ‘Only from their
unification can cognition arise’ (ibid.). Therefore, it is not surprising that diagrams
(though not, admittedly, squares) can be found in Kant’s logic, at least if one trusts
the Jäsche edition of Kant’s Lectures on Logic ([17], pp.160, 168). Matters are
different with Hegel.

3 Hegel and Hegelianism

In Hegel’s writings on logic, there are no diagrams to be found. Even in the notes
made by the students who attended his lectures on logic, there is only one small
Euler-like diagram ([14], p.608) and one square ([13], p.8). But this square is just
meant to illustrate how the train of thought in Hegel’s Science of Logic proceeds.
Clearly, Hegel was no friend of diagrams. So what is the point of investigating his
attitudes towards them? The answer to this question is somewhat dialectic in its own
right: if the more traditional logics, which tend to be affirmative of the square, have
nothing to say, maybe the critiques of the square have something interesting or even
something new to add to the topic. They do discuss the subject at least.

3.1 Hegelianism

The hostility towards diagrams representing certain crucial aspects of thinking
has a long tradition within Hegelianism. One example from the twentieth century
is Theodor Litt, who repeatedly claims in his Individual and Community that
spatial perception is unable to illustrate the relation between the individual and the
community adequately, because ‘although the individual lives in the whole, none
the less the whole lives in the individual’ ([20], p.155; cf. ibid., pp.7–8, 117, 157,
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239). Meanwhile, to take an example from the nineteenth century, Karl Rosenkranz
explicitly expresses his scepticism towards the square of opposition, writing in his
Science of the Logical Idea that:

In the logics this square is usually presented with emphatic solemnity as if it were the
altar in the holy of holies of the goddess of wisdom. But it seems like the square has
contributed little to the essence of the logical insight. The reason for that is presumedly
that thinking becomes rigid in such schematism and that the results that arise from such
superficial reflections are too modest. ([27], pp.130–131)

Rosenkranz believes on the one hand that essential parts of thinking are not rigid
and can therefore not be captured by schematisms and on the other that the aspects
of thinking that can be captured by schematisms like the square are trivial. Both
ideas are in line with the above-mentioned assumptions: many nineteenth-century
logicians deemed the square too obvious to merit exploring, and some logicians
were convinced that logic, or at least the interesting parts of logic, and diagrams do
not go well together.

3.2 Hegel

3.2.1 Hegel’s Concept of the Concept

Hegel writes about figures, forms, lines and circles in his Science of Logic when he
finally presents his concept of the ‘concept’ at the beginning of the third and last
book. The line of reasoning in his work is therefore already rather advanced at this
point, and the conceptions he uses are quite complex. Nonetheless, it is necessary to
outline roughly what Hegel means when he talks about the ‘concept’. First of all, it
is important to know that Hegel uses ‘concept’ (Begriff ) as a technical term to refer
to the structure and form of performance of all thinking and truly understood being.
Since Hegel’s use of the German term Begriff is idiosyncratic, it has been translated
in several different ways: ‘comprehension’, which seems to be closer to the German
Begriff, or ‘logos’, in a more or less Heraclitan sense, or ‘notion’. In the following,
Begriff will be translated as ‘concept’, simply because the translation of the Science
of Logic that is used in this paper keeps it that way. To use ‘logos’ as a translation
would of course have the advantage that the performative character of the structure
that Begriff is meant to name would come to the fore.

Hegel’s concept includes three moments or determinations: the universal (All-
gemeinheit), the particular (Besonderheit) and the singular (Einzelheit), and of
course these are technical terms as well. The three moments of the concept are
closely interwoven with each other. The universal, for example, is supposed not to
be abstract but a ‘concrete universal’. It is established not by abandoning specific
determinations but by embracing their differences as such. That is why it can only
be properly conceived in relation to the particular and the singular. The singular
is likewise not understood as a private or isolated element in its own right. It is a
distinct part of a specific universal, which in turn is established as specific by the
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differences of its parts. All three moments of the concept are thus interdependent. At
the same time, they are necessarily opposed to one another because their differences
define what they mean.

Although Hegel clearly disapproves of diagrams, it is very common and some-
times even helpful to illustrate the one concept with its three opposing determina-
tions by means of a triangle [15] (Fig. 6).

This triangle could be understood as representing the A and E corners. So one
might be tempted to add the negations in the form of a complementary triangle, so
as to form a hexagon (Fig. 7).

But the result would be very hard to interpret. Even though the square of
opposition can be discerned within this diagram, it is – regardless of the semantic
content of ‘Singular’ and ‘~Singular’ – unclear how the new corners fit in, let
alone how the new relations should be understood. The triangle of the singular,
the universal and the particular is neither a triangle of contrariety nor a triangle of
subcontrariety and even less a triangle of subalternity (cf. [1]) (Figs. 8 and 9).

Fig. 6 The determinations of
Hegel’s concept, illustrated
by a triangle

Fig. 7 A hexagon formed by
the concept’s triangle and its
negation
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Fig. 8 The square within the
concept’s hexagon

In fact, the relations between the three determinations of the concept do not form
a triangle at all, because no diagram could possibly be a proper approach to what
Hegel has in mind when he talks about his concept:

Since the human being has in language a means of designation that is appropriate to reason,
it is otiose to look for a less perfect means of representation to bother oneself with. It is
essentially only spirit that can grasp the concept as concept [ . . . ]. It is futile to want to fix
it by means of spatial figures [ . . . ] for the sake of the outer eye [ . . . ]. ([12], pp.545–546;
cf. [10], pp.48–49)

Fig. 9 The hexagon of
oppositions formed by a
triangle of contrariety and a
triangle of subcontrariety

Hegel points out that the concept can be understood adequately only by the spirit,
using language, and that spatial figures like diagrams are unsuitable for that task.
Since the concept has a pivotal role in Hegel’s logic, it is safe to assume that Hegel
shares with several other logicians of his time the opinion that logic (or at least his
logic) does not go well together with diagrams.
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3.2.2 Hegel’s Critique of Diagrams in Logic

But what is the reason for Hegel’s objection to diagrams in his logic? In his words:

It is characteristic of objects of this kind [lines, figures, numbers, etc.], as contrasted with
the determinations of the concept, that they are mutually external, that they have a fixed
determination. Now when concepts are made to conform to such signs, they cease to
be concepts. Their determinations are not inert things [Totliegendes], like numbers and
lines whose connections lie outside them; they are living movements; the distinguished
determinateness of the one side is immediately also internal to the other side; what would
be a complete contradiction for numbers and lines is essential to the nature of the concept.
([12], pp.544–545; cf. [10], p.47)

According to this passage, ‘lines and figures’ are, firstly, mutually external. Regard-
ing the square of opposition, this makes sense. Neither the corners nor the different
lines overlap each other. There are good reasons for this: for example, the square
is meant to visualise the difference between the contrary and the contradictory
relation. It is more difficult to understand how Hegel’s critique or diagnosis can
be applied to, say, Euler diagrams. In the case of one set that completely includes
another set, it seems obvious that two circles do overlap. But that is not actually
what the diagram shows. It could equally be that the outer circle ends at the edge
of the inner circle, as if the area of the outer circle had a hole in it covered exactly
by the smaller circle. That the outer circle continues beneath the inner one is only
one possible interpretation of the diagram. This leads to Hegel’s second point: the
connections between the elements that form a diagram are made not by the forms
themselves but by their interpretation. The diagonals in the square of opposition
do not show the contradictory relation of the corners they connect. When Drobisch
exchanges the E and the O corners (see Fig. 3), he simply interprets the diagonals as
no longer signifying contradictory relations but rather contrary or subcontrary ones.
Hegel thirdly points out that the determinations in diagrams are fixed. At least in his
day, they did not move or morph. This means they do not change according to the
relations they are in but simply always stay what they are.

In contrast to the ‘lines and figures’, the determinations of Hegel’s concept are
not isolated. They are in some manner internally connected. They react to each
other and change relative to their counterparts, more like living beings than dead
things (Totliegendes). So one might get the impression that Hegel’s concept is some
swirling, undifferentiated oneness. That is not what Hegel intends. His concept of
the concept unites the differences of the determinations as well as the unity of the
determinations. It is the unity of the oppositions or the identity of identity and non-
identity.

That means Hegel’s concept includes aspects that are clearly distinguished from
each other. Therefore, it would be misleading to think Hegel means to overcome all
differences by making them fade away in some blurry union. Moreover, the aspects
of the concept, which are well differentiated from each other, could also be shown
by a diagram: ‘The determinations of the concept, universality, particularity, and
singularity, certainly are, like lines or the letters of algebra, diverse; and they are
also opposed and allow, therefore, the signs of plus and minus’ ([12], p.544; cf.
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[10], p.47). But focusing on this side alone would be misleading, because the other
side is that:

The determinations of the concept [ . . . ] themselves and especially their connections [ . . . ]
are in their essential nature entirely different from [ . . . ] lines and their connections, from
the equality and diversity of magnitudes, the plus and minus, or the superimposition of lines,
or the joining of them in angles and the resulting disposition of space that they enclose.
([12], p.544; cf. [10], p.47)

This might seem plainly inconsistent. But there is quite a simple configuration that
gives at least a hint of what Hegel has in mind with his unity of oppositions. The
basic idea is that of opposites that mutually constitute each other. That means the
one side is exactly what the other side is not, and neither side can be conceived
without its complement. Both sides are necessarily connected to each other, because
otherwise they would cease to be what they are. For this reason, they are one.
And for the same reason, they are necessarily opposed, because their difference
from each other defines what they are. That is why in this case ‘the distinguished
determinateness of the one side is immediately also internal to the other side’. Very
roughly speaking, this is also the way the moments of Hegel’s concept are related to
each other. The determinateness can be understood as semantic content that derives
from the relation between the opposite sides. Indeed, one of the main criticisms that
Hegel makes of traditional logic, with its notations, lines, figures and calculus, is
that it is only formal and therefore meaningless, whereas he claims that logic has to
include content as well.

The possibilities of a visual illustration of such strictly contradictory relations are
in fact limited. One might object that there is one obvious example that disproves
this. A taijitu or ‘yin–yang’ symbol seems to show exactly this relation, for the white
part seems to be formed by the black part and vice versa (Fig. 10).

Fig. 10 The taijitu or
‘yin–yang’ symbol
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Fig. 11 The black form is
partly independent of the
white form

But a closer look reveals that one part can be changed without any effect on the
other. The white and black parts determine each other only where they border on
each other (Fig. 11).

Because there is no possible image where the black part completely encompasses
the white part and the white part completely encompasses the black part at the same
time – that would be a ‘universe’ – there are limits to visual illustration. These limits
can also be shown by removing the aspects of the image that are determined by the
opposition of the black and white parts. If the taijitu is not a symbol but showed the
strictly contradictory relation that Hegel presumably has in mind, nothing should
remain. But in fact, there would still be a circle because the outside of the image is
independent of the internal relation of the black and white parts.

Of course, there might be ways to illustrate the impossibility of illustration
by using graphics that work with these very limits, like a Penrose triangle, but
these effects are probably hard to implement in diagrams. And of course there
are non-Euclidian geometries that come closer to Hegel’s concept than he might
have thought possible, for example, projective geometries that were developed
purely synthetically and understand figures without any reference to ‘external
determinations’ like coordinates or formulae. But, again, a specific conception of
geometry is probably hard to operationalise within diagrams.

Returning to the square of opposition, it might be pointed out that it displays
relations which are not meant to be strictly contradictory. Therefore, it should
not be a problem if they are illustrated by ‘lines and figures’ that lie apart
from each other. The lines that show the contrary and contradictory relations
do not even cross each other. While one could argue that the relation between
the identical and contradictory relations should show their mutual determination,
because it is a contradictory relation in itself, the relation between the contrary and
contradictory relations is surely not a contradictory one. Nonetheless, Hegel stresses
that the diagram is still misleading because the contrary relation depends on the
contradictory one:
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They [the contrary and contradictory relation] are viewed as two particular species, each
fixed for itself and indifferent towards the other, without any thought being given to the
dialectic and the inner nothingness of these differences, as if that which is contrary would
not equally have to be determined as contradictory. ([12], p.543; cf. [10], p.46)

Hegel does not believe every contrary relation is actually a contradictory one.
Rather, he wishes to express that without contradictory relations there is no contrary
relation.

A closer look at the contrary relation might indicate what Hegel has in mind.
Within the contrary relation, two cases can be distinguished. Case 1, if one side is
true, the other is determined to be false. Case 2, if one side is false, the other is
indeterminate; it can be true or false. In regard to these two cases, two contradictory
aspects can be recognised within the contrary relation: firstly of course in case 1 and
secondly between case 1 and 2, because if case 1 is not the case, then case 2 has to
be and vice versa. So the contrary relation reveals itself not to be a relation of its
own quality that would back up its isolation from the contradictory relation in the
square. It is only a lack of determination, as can be seen in case 2, that differentiates
the contrary from the contradictory relation.

This does not mean that Hegel considers it pointless to determine a relation as
contrary. The long and complex line of thought in his Science of Logic is intended
to show that the categories of logic are interrelated and context-sensitive. They are
not isolated like rocks but answer to each other and change their determination in
the light of the relations they participate in. That this conception does not lead to
arbitrariness and chaos but can be understood rationally, without losing the different
determinations logic provides, is the other central purpose of Hegel’s logic. This
should be kept in mind when he says that within his concept of the concept, the
determinations are not separated but rather exist in a state of permanent interchange:

The universal has proved itself to be not only the identical, but at the same time the diverse
or contrary as against the particular and the singular, and then also to be opposed to them,
or contradictory; but in this opposition it is identical with them, and it is their true ground
in which they are sublated. The same applies to particularity and singularity, which are
likewise the totality of the determinations of reflection. ([12], p.543; cf. [10], p.46)

Even though it is questionable whether this makes any sense at all, it is clear why
Hegel can hardly agree to illustrate his concept using a diagram:

It is, therefore, entirely inappropriate, in order to grasp such an inner totality, to want to
apply [ . . . ] spatial relations in which the terms fall apart; such relations are rather the last
and the worst medium that could be used. ([12], p.545; cf. [10], p.48)

But one might doubt whether there is any appropriate way to ‘grasp such an inner
totality’ at all, since the propositions Hegel uses to describe it reveal contradictions.
This is, of course, what one would expect from Hegel. However, this is also helpful
to understand why Hegel’s logic is not fixed in the way that (on his view) the
determinations in diagrams are. In fact, contradictions appear systematically within
Hegel’s logic. Every single proposition provokes the formulation of an opposed
proposition, due to the link between the semantic determination of a proposition
and the negative relation to its opposite (omnis determinatio est negatio ([12], p.87;
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cf. [11], p.101)). But just as systematically, these contradictions are solved, not by
levelling down the opposed determinations but by embedding these determinations
into a more complex and richer context where they are properly related to each
other and no longer appear as contradictions. This more complex context is the
ground in which the determinations of the former contradiction are sublated. But
this more complex context will reveal itself to be contradictory as well, and so the
logic proceeds from the simplest notion of pure being to the very complex notion of
Hegel’s concept and beyond that until finally the whole system has evolved. While
in Hegel’s logic a single proposition has the power to overcome its isolated fixation
and reveal its true nature as part of a wider context, diagrams and traditional logic
do not provoke such a development. In Hegel’s view, their ‘terms fall apart’ and are
fixed in formal isolation from each other.

4 Conclusion

Hegel does not wholly object to the use of diagrams. As mentioned above, they
can illustrate the aspects of difference within the concept. But at the same time, he
makes perfectly clear that in his eyes these aspects should not be mistaken for the
whole structure of thinking or logic that is the concept in its entirety. To understand
these aspects of difference within the concept adequately, they must be embedded in
their wider context, and in this context, their differences no longer appear isolated
and independent from each other but become relative and fluid.

Broadening the perspective and bringing the nineteenth century back into view,
one could say that the aspects of thinking that can be shown using the diagrams
of this time correspond to the traditional and back then largely unquestioned logic
of the time. The study of the context and conditions in which this traditional logic
works could be called ‘metalogic’. Since it was common among nineteenth-century
German-speaking logicians to think that logic was already completed and perfected,
these logicians often laid emphasis on metalogical questions of this sort. This leads
to another answer to the question of why the square was so rare at this time: even
if the square is doubtlessly useful to illustrate traditional logic, it may be deemed
useless for reflecting on metalogical issues. This was the view taken by, for example,
Hegel and his school.

But even if it is true that diagrams are limited in their ability to display certain
kinds of relations, it does not necessarily render them useless in these cases.
Because once understood, the limit itself might be operationalised and express
determinations. Or, conversely, by defining limits, one always also to a certain extent
defines what lies beyond those limits. That too is a very Hegelian thought.
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Augustus De Morgan’s Unpublished
Octagon of Opposition

Anna-Sophie Heinemann and Lorenz Demey

Abstract The British logician Augustus De Morgan (1806–1871) sought to unify
the traditional syllogistics with the new algebraic logic that he and George Boole
(1815–1864) were developing. Although there are hardly any diagrams or figures
in De Morgan’s published writings, in his unpublished manuscripts, one can find
various attempts to draft certain figures of opposition, which are evidently meant
to fit the relations between the propositions of De Morgan’s extended syllogistics.
In this paper, we present some archival findings and discuss their contemporary
relevance. We will focus on one of De Morgan’s unpublished diagrams, which
occurs several times throughout his manuscripts. Based on a detailed analysis of
this octagon, in combination with De Morgan’s unpublished notes as well as his
published materials, we argue that this diagram belongs to the type of so-called
KJ octagons. Throughout the twentieth century, this type of diagram has been
studied quite extensively in philosophical logic, and in recent years even in computer
science. Historically speaking, it has long been assumed that this type of octagon
was studied for the first time by John Neville Keynes and William E. Johnson around
the turn of the twentieth century. However, the manuscript findings presented in this
paper clearly show that this type of octagon was already known by De Morgan,
some five decades earlier than Keynes and Johnson.
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1 De Morgan, Symbols, Syllogistics, and Diagrams?

Augustus De Morgan1 does not belong to those historical characters who are
very well-known today. Although every contemporary logician is familiar with
the propositional laws regarding conjunction, disjunction, and negation that have
come to bear his name,2 relatively little is known about De Morgan himself.
He is notoriously referred to in the historiography of algebraic logic as a more
traditionally minded contemporary to George Boole and described as “not a clear-
thinking philosopher” who “worked largely within the syllogistic tradition” [18,
p. 27].3 His involvement in the debates over the so-called quantification of the
predicate is habitually mentioned for the very, maybe the only, reason that there is a
reference to it in the preface to Boole’s Mathematical Analysis of Logic, published
in 1847 [1, p. 1].4 His own contributions to the logical literature of his times are
usually not discussed very extensively.5

As a Cambridge-trained mathematician, De Morgan thought of logic as a set
of operations defined to be performed upon symbols, rather than upon intellectual

1 During most of his adult life (1828–1831 and 1836–1866), De Morgan served as professor of
mathematics at London University and University College of London, respectively. He had studied
and taken his BA degree at the University of Cambridge, but refrained from proceeding to the MA
degree for reasons of religious discrimination. De Morgan was born on 27 June, 1806, at Maduras,
Madras, India. He was admitted to Trinity College at the University of Cambridge on 1 February,
1823. He took the chair of mathematics at the newly founded London University in 1828. In 1864,
he became the first president of the Mathematical Society. De Morgan died on 18 March, 1871, in
London (information to be found in the records of the University of Cambridge, available on the
Cambridge Alumni Database: http://venn.lib.cam.ac.uk/, last access 26 August 2019).
2 In classical propositional logic, De Morgan’s laws state that ¬(p ∨ q) is equivalent to ¬p ∧ ¬ q
and that¬(p ∧ q) is equivalent to¬p∨ ¬ q. Despite their name, these laws were already known by
scholastic authors such as William of Ockham, Walter Burley, and Paul of Pergula [2]. De Morgan
himself stated them differently, viz., in terms of classes instead of propositions: “The contrary of an
aggregate is the compound of the contraries of the aggregants [ . . . ]. The contrary of a compound
is the aggregate of the contraries of the components” [14, p. 40]. His presentation corresponds
roughly to (X ∪ Y ) = (

X ∩ Y
)

and (X ∩ Y ) = (
X ∪ Y

)
.

3 As early as 1918, C. I. Lewis also stated that De Morgan’s “methods and symbolism ally him
rather more with his predecessors than with Boole and those who follow” and that De Morgan’s
articles “are ill-arranged and interspersed with inapposite discussion” [25, p. 38]. Both Lewis and
Grattan-Guinness do admit that there are some noteworthy novelties in De Morgan’s logic. Lewis
credits him with 14 pages (pp. 37–51), Grattan-Guinness with 12 pages (pp. 25–37). However, the
general impression of De Morgan’s contributions seems to have adjusted to the quotes just given.
4 A popular narrative has it that De Morgan’s Formal Logic [9] came off the press on the very
same day as Boole’s Mathematical Analysis of Logic [1]. An overview of the debate between De
Morgan and Sir William Hamilton which Boole refers to is to be found in [20, pp. xxi–xxiv]. For
an extended discussion, see [21].
5 There are of course exceptions. For example, in the early 1990s, De Morgan’s logic has been a
subject in Maria Panteki’s [27, pp. 407–492]. De Morgan’s logic of relations has been dealt with
in Daniel D. Merrill’s [26]. More than half of [21] is devoted to De Morgan.

http://venn.lib.cam.ac.uk/
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contents.6 In other words, he tended to conceive of logic as inherently symbolical–
but, one should assume, not as diagrammatic.7 When it came to relations between
propositions, for example, De Morgan usually spoke of them in terms of implication
instead of illustrating them by figures of opposition such as the classical square
of opposition.8 Indeed, there are hardly any diagrams or figures in De Morgan’s
published writings.9

Given De Morgan’s apparent reluctance to make use of logical diagrams, it is
all the more surprising to learn that among De Morgan’s unpublished manuscripts,
there remain the documents of various attempts to draft certain figures of opposition
which are evidently meant to fit the relations between the propositions of De
Morgan’s extended syllogistics. These documents suggest that the reason why De
Morgan did not publicly invoke such schemata is not that he rejected them altogether
but, rather, that he seemed to have remained unclear about how to extend the
classical square of opposition in order to be applicable to his version of syllogistics.
Some of these findings and their interpretations will be the subject of the present
paper.

In particular, we will argue that one of De Morgan’s unpublished diagrams,
which occurs several times throughout his manuscripts, is an example of the type of
so-called KJ octagons. Throughout the twentieth century, this type of diagram has
been studied quite extensively in philosophical logic, and in recent years even in
computer science. Consequently, its logical and diagrammatic properties are now
well-understood. Historically speaking, it has long been assumed that this type
of octagon was studied for the first time by John Neville Keynes and William E.
Johnson around the turn of the twentieth century (1894–1921); hence the term “KJ

6 His approach culminated particularly in his theory of the “abstract copula” and attempts at a
logic of relations as prepared in his second paper in the “syllogism series” [10, pp. 107–116] and
elaborated on in the fourth [13]; see [15] for a modern edition. For De Morgan’s logic of relations,
see [26].
7 With the exception of rudiments of “pictorially” motivated choices of symbols, such as an
enclosing parenthesis – the remnant of a circle – to signify a term’s being quantified universally
(cf. Sect. 3.1).
8 De Morgan himself did not use the term “implication” but rather spoke of “affirmation” and
“containment.” Even in his very first little textbook on logic [9], which was published in 1839 and
kept quite close to the traditional syllogistics of his times, he stated that “Every A is B” “affirms
and contains” the particular affirmative “Some A is B,” while it “denies” the universal negative
“No A is B” as well as the particular negative “Some A is not B.” “No A is B” in turn “affirms and
contains” the particular negative “Some A is not B” but “denies” the universal affirmative “Every
A is B” as well as the particular affirmative “Some A is B.” Again, “Some A is B” in turn “does not
contradict” the universal affirmative “Every A is B” nor the particular negative “Some A is not B,”
but it “denies” the universal negative “No A is B.” Finally, the particular negative “Some A is not
B” “does not contradict” the universal negative “No A is B” nor the particular affirmative “Some A
is B,” but it “denies” the universal affirmative “Every A is B” [9, p. 7].
9 With the exception of De Morgan’s “zodiac” of syllogisms, printed in his late Syllabus of a
Proposed System of Logic [14, p. 21]. It is a circular arrangement of symbolical expressions for
triplets of propositions, and it is meant to illustrate the relations between syllogisms, differing in
strengthened or weakened premises.
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octagon.” However, the manuscript findings presented in this paper clearly show that
this type of octagon was already known by De Morgan, some five decades earlier
than Keynes and Johnson.

The paper is organized as follows. In Sect. 2 we present the manuscript findings
and provide a transcription of the relevant sections of De Morgan’s handwritten
notes. In Sect. 3 we discuss some key aspects of De Morgan’s logic, which will help
us to make sense of the diagrams found in his manuscripts. With these prerequisites
in place, we then show in Sect. 4 that De Morgan’s octagon belongs to the type of
KJ octagons, and briefly discuss the significance of this result for the historiography
of logical diagrams. Finally, Sect. 5 wraps things up and suggests some questions
for future research.

2 The Senate House Library (SHL) Diagrams

At this point, the manuscript findings will be presented, and a transcription of De
Morgan’s note will be given. This section is to be followed by an exposition of some
core pieces of De Morgan’s logic and notation, in order to facilitate subsequent
interpretive steps.

2.1 Provenance and Context

The drawings to be discussed in the present paper are held by the Senate House
Library (SHL) of London.10 Hence in the following, they will be referred to as “the
SHL diagrams” or “the SHL figures.”

The Senate House Library itself was founded upon De Morgan’s private library,
purchased and presented to the University of London by Samuel Jones Loyd, 1st
Baron Overstone,11 after De Morgan’s death in 1871. The De Morgan Library, as
it is called today, is still one of the special collections held by the Senate House. It

10 Large portions of De Morgan’s multitudinous manuscripts are held by other archives, such as
the manuscript collections at the British Library, the special collections of University College,
the Department of Manuscripts and University Archives at the Cambridge University Library, or
the special collections at the Bodleian Library of Oxford University. A list of institutions holding
manuscripts of De Morgan’s can be found at https://discovery.nationalarchives.gov.uk/details/c/
F49779 (last access 26 August 2019). During the preparation of the present paper, it has not been
possible to systematically search those stocks for similar figures.
11 As De Morgan himself, Samuel Jones Loyd was an alumnus of Trinity College at the University
of Cambridge. Born in Manchester on 25 September 1796, he enrolled on 18 September 1813
and earned his first degree in 1818, the second in 1822. Having been employed in several other
functions, he succeeded his father as head of Jones Loyd and Co. Bankers, London, and became
a well-respected authority on matters of finance (information to be found in the records of the
University of Cambridge, available on the Cambridge Alumni Database: http://venn.lib.cam.ac.
uk/, last access 26 August 2019).

https://discovery.nationalarchives.gov.uk/details/c/F49779
https://discovery.nationalarchives.gov.uk/details/c/F49779
http://venn.lib.cam.ac.uk/
http://venn.lib.cam.ac.uk/
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comprises around 3800 items, printed between 1474 and 1870, most of which cover
mathematical topics. Some of them are interleaved and annotated by De Morgan
himself.

Several of the annotated exemplars of books from De Morgan’s library have
been allotted to a collection of unpublished material by or relating to De Morgan,
kept in the Library’s Archives and Manuscripts Department. Besides the De Morgan
family papers and correspondence of private or of scientific character, this collection
includes papers such as lecture notes and notebooks as well as drafts and annotated
copies of De Morgan’s own works. The diagrams to be discussed are partly among
the papers and correspondence files (MS.775), partly among the annotated copies
of De Morgan’s works (MS.776).12 To be more precise, some are contained in
a notebook (MS.775/355) containing addenda to De Morgan’s Formal Logic [9],
which extended on De Morgan’s first “syllogism” paper, “On the structure of the
syllogism” [8]. Others are to be found in De Morgan’s own copy of the same book,
annotated and interleaved with notes, letters, and newspaper cuttings (MS.776/1).
It is reasonable to assume that De Morgan’s printed copy of his Formal Logic
[9] has been held by the Senate House Library ever since De Morgan’s private
collection was presented to the Library after his death in 1871. The provenance
of the handwritten notebook (MS.775/355), however, is not so clear. According to
the archivists, it was almost certainly deposited at the Senate House Library in the
twentieth century.13

While the additions to the printed copy (MS.776/1) are from 1846 through 1859
(one letter maybe later), the entries to the notebook (MS.775/355) date around
1850–1853. It seems that the notebook (MS.775/355) in particular may relate to
a projected second edition of Formal Logic. Indeed, it seems reasonable to assume
that De Morgan wanted to prepare a second edition of Formal Logic around the
beginning of the 1850s. By this time, he had completed his second paper in the
“syllogism” series [10], which was to improve his extensions of syllogistics as
proposed in the first edition of Formal Logic and the first “syllogism” paper [8] from
1847. This hypothesis becomes even more plausible if one takes into account that
the figures bear inscriptions to express propositional forms invoking the notational
system of his second “syllogism” paper [10].

2.2 The Manuscript Materials

Although the De Morgan papers contain several more drawings of logical diagrams,
the present exposition will focus on three figures only. The reason is that all three of
them contain a similar octagonal figure. As this figure seems to be a recurring theme

12 For MS.775 and MS.776, there exists a typewritten “interim handlist,” which sums up the
contents of the files. It is available on https://archives.libraries.london.ac.uk/resources/MS775.pdf
(last access 26 August 2019).
13 We thank Richard Temple, archivist at the Senate House Library, for this information.

https://archives.libraries.london.ac.uk/resources/MS775.pdf


146 A.-S. Heinemann and L. Demey

in De Morgan’s diagrammatic explorations, it will be worthwhile to concentrate on
it.14

2.2.1 The Figures

The manuscripts to be referred to are MS.775/355-36, MS.776/1-90b, and
MS.776/1-94b, as reproduced in Figs. 1, 2, and 3. The materials have officially
been digitized by the Senate House Library document supply service with the
permissions to publish the images for purposes of research in an international
venue.

A comparison of the octagons in MS.775/355-36 (Fig. 1) and MS.776/1-90b
(Fig. 2) reveals that both indeed contain the same figure as to the inscriptions of
the corners. Reading clockwise and indicating the corners by lowercase letters (a)
to (h), MS.775/355-36 (Fig. 1) gives the following order of inscriptions:

(a) ) · (
(b) ) · )
(c) ))
(d) ()
(e) (·)
(f) ( · (
(g) ((
(h) )(

The octagon in MS.776/1-90b (Fig. 2) displays the same arrangement. The
octagon contained in MS.776/1-94b (Fig. 3), however, seems to have been rotated
180◦. Consequently, there is an interchange of (a) and (e), i.e., the uppermost and
lowermost corners of the octagon. Similarly, (b) and (f ) are interchanged, (c) and
(g) are interchanged, and finally, (d) and (h) are interchanged.

While MS.775/355-36 (Fig. 1) and MS.776/1-90b (Fig. 2) agree in the ordering
of corners, they also contain the same kinds of lines drawn between them, such
as thick lines and thin lines, thick dashed lines, thin dashed lines, and others. In
MS.776/1-94b (Fig. 3), which displays the rotated figure, most of the thinner lines
differ from the other drawings graphically.

From De Morgan’s notes, it is quite clear that the inscriptions at the corners
of the figures are meant as symbolic expressions for propositional forms, and the
lines between them are meant to represent their interrelations of opposition. Thus,
MS.775/355-36 (Fig. 1) bears an explanation of the drawing:

14 The octagonal figure occurs at least once more in De Morgan’s manuscripts held by the
Senate House Library, viz., at MS.776/1-94a. That diagram is not reproduced here, for reasons
of copyright, but it is very similar to the one at MS. 776/1-94b (Fig. 3), modulo a 180◦ rotation.
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Fig. 1 De Morgan’s MS.775/355-36

“Relations of the eight propositional Forms in the system which admits contraries, or terms
privative each of the other, stipulating that each term shall have a contrary, that is, that no
term shall contain the whole universe in its extent.”
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Fig. 2 De Morgan’s MS.776/1-90b

2.2.2 The Comments

De Morgan commented on his drawings more extensively. His handwritten com-
ments are to be found on two sheets, namely, MS.775/355-28 and MS.775/355-37
to MS. 775/355-38.

Judging from the kinds of lines contained in the explanatory remarks,
MS.775/355-28 (Fig. 4) refers to MS.776/1-94b (Fig. 3). By contrast, MS.775/355-
37 and MS.775/355-38 (Figs. 5 and 6) comment on MS.775/355-36 (Fig. 1) and
may also be applied to MS.776/1-90b (Fig. 2).

MS.775/355-28 (Fig. 4) contains an explanation of the inscriptions at the corners
of the figures, which is also presented in Table 1. Table 2 lists De Morgan’s
explanations of the lines drawn between the poles specified above. As MS.775/355-
37 and MS.775/355-38 (Figs. 5 and 6) differ from MS.775/355-28 (Fig. 4) both in
the graphics for some of the oppositions and in their ordering, the transcriptions
have partly been rearranged to run parallel for both.

3 Reading Sense Into the Manuscript Materials

In order to read some more sense into De Morgan’s drawings, it will be helpful
to get acquainted with De Morgan’s logical notation and with some core pieces of



Augustus De Morgan’s Unpublished Octagon of Opposition 149

Fig. 3 De Morgan’s MS.776/1-94b

Table 1 De Morgan’s
interpretations of the corners
of the octagon in Fig. 3

)) X))Y Every X is Y Univ.
( · ( X( · (Y Some Xs are not Ys Part.
(( X((Y Every Y is X Univ.
) · ) X) · )Y Some Ys are not Xs Part.
) · ( X) · (Y No X is Y Univ.
() X()Y Some Xs are Ys Part.
(·) X(·)Y Everything is either X or Y or both Univ.
)( X)(Y Some things are neither Xs nor Ys Part.
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Table 2 Comparison of De Morgan’s explanations of the lines in Fig. 3 and Figs. 1, 2

MS.775/355-28
(Fig. 4)

MS.775/355-37 and
MS.775/355-38
(Figs. 5 and 6)

“The octagon in the
middle has then 8
forms at its corners –
Every form is joined
to every other either
by side or diagonal,
and the joining lines,
28 in number, are
marked in a manner
which symbolized
the connexion of the
propositions.

“The eight forms are
marked at the eight
points of an octagon,
which has, in sides and
diagonals, 28 lines. Each
line is marked in a way
which symbolises the
connexion of the
propositions at the two
ends, as follows

joins a Univ[ersal]
and a Part[icular]
when the latter
follows from the
former and to the
greatest possible
extent. Thus )) )(
means that when
every X is Y, some
things are neither Xs
nor Ys to the utmost,
namely, all that are
not Y.

The propositions are a
universal and a
consequent particular the
extension of the
particular character
being maximum, and
independent of the extent
of X. Thus in )) and )(,
every species has the
utmost amount of
subcompletion, for no
part of the species of Y,
large or small, is in the
contrary.

joins a Univ. and a
part. when the extent
of the character of
the particular is
indefinite. Thus ))

() means that
X))Y gives X()Y, the
part of Y filled by X
not being ascertained
by the proposition.

The propositions are a
universal and a
consequent particular,
the amount of extension
of the particular
character depending
upon that of X. Thus in
)) and (), the partience of
X and Y depends on the
extent of X.

joins a universal &
particular or two
universals, which
together form a
complex proposition:
thus
)) ). ) or X))Y
and X). )Y give X a
subidentical of Y.

The two prop.ns may or
may not coexist, and
when they coexist, they
form one of the complex
propositions used by the
writer of a work of
Formal Logic, whom
may Aristotle confound.
Thus )) and
) · ) coexisting, say )o),
give X his subidentical
of Y.

(continued)
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Table 2 (continued)

MS.775/355-28
(Fig. 4)

MS.775/355-37 and
MS.775/355-38
(Figs. 5 and 6)

joins two particulars
of which neither,
either, or both may
be true together

o − = o − = The propositions are two
particulars of which
neither [o] or one [–] or
both [=] may be true

joins two particulars
of which one must,
both may, be true

− = − = − = The propositions are two
particulars which are one
[–] or both [=] true.
Thus () or ) · ) must be
true, X is either partient
or subtotal of Y. and may
be both

joins a universal & a
particular of which
one must, both
cannot be true

− �= − �= − �= The propositions are a
contradictory (or as he
w.m.A.c. says, contrary)
particular and universal,
one [–], not both [�=],
true.

joins two universals
of which both
cannot, and neither
may, be true.”

�= �= �= �= �= �= The propositions are two
universals which are not
[�=] both true”

his logic and terminology. The following paragraphs will introduce the necessary
prerequisites for successfully reading and interpreting the diagrams.

3.1 Notation

The inscriptions at the corners of the SHL diagrams are based on a notational
system which De Morgan arrived at in his second paper from the “syllogism”
series, published in 1850 [10]. He proposed it as a relevant refinement of his
earlier notation.15 As in his earlier writings, the uppercase letters X, Y, Z represent
terms, while the lowercase letters x, y, z represent their “contraries” [8, p. 379]. De
Morgan now applies parentheses as signs of quantity to each16 of the term signs. An

15 In 1847, De Morgan had made use of a notational system based on parentheses as signs of
quantity and dots as signs of quality. However, as this earlier version is irrelevant to the reading
of the inscriptions to the SHL diagrams, it may at this point be neglected. De Morgan’s notational
system of 1850 is outlined in [20, pp. xxvi–xxvii]. It should be noted that there is also an exposition
of it in Lewis’s [25, pp. 38–42]. For a more detailed discussion see [22].
16 The earlier notation had not consistently applied a sign of quantification to each of the terms but
basically to the subject terms only, which makes conversions hard to manipulate.
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Fig. 4 De Morgan’s MS.775/355-28

“inclosing parenthesis, as in X) or (X” denotes that the term sign it relates to “enters
universally” [10, p. 86]. An “excluding parenthesis, as in )X or X(” signifies that X
“enters particularly” [10, p. 86]. The use of dots to indicate a proposition’s quality
is also systematized: “[A]n odd number [of dots], usually one, denote[s] negation or
non-agreement” [10, pp. 86–87], while affirmation is signified by “an even number
of dots, or none at all” [10, p. 86].17 An advantage of this notational system is that
complex expressions can be read in both directions: for instance, “X))Y and Y((X
both denote that every X is Y” [10, p. 87]. The same goes for negative forms and for
forms including contraries. For example, X). (Y is equivalent to Y). (X, and X))y is
equivalent to y((X [10, p. 91].

In order to simplify his notational system even further, De Morgan chose to fix
a certain order of reference relating to the terms: he fixed the subject to be X and
the predicate to be Y. The theoretical justification for this notational convention is
that any of the expressions that are admissible within De Morgan’s system can be
reduced to an equivalent expression which has X as its subject and Y as its predicate.

17 At the time of De Morgan’s second “syllogism” paper [10], De Morgan inscribed the dots at the
bottom of the line. In later writings, such as [14], he raised them to the middle of the line. The
latter version can be recognized in the SHL figures.
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Fig. 5 De Morgan’s MS.775/355-37

For example, x)(Y can be transformed into the equivalent expression X(. (Y, and
similarly, X)(y can be rewritten as the equivalent expression X). )Y. (For the full
set of rules that enable these transformations, see Table 3, given in the following
section.) In light of this convention, i.e., now that it has been determined that the
subject term will always be X (rather than x, Y or y) and the predicate term will
always be Y (rather than y, X or x), the notation can be simplified further. For
example, it is now possible to leave out the terms altogether, and simply write ))
without any danger of ambiguity: )) will unequivocally stand for X))Y, rather than
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Fig. 6 De Morgan’s MS.775/355-38

for x))Y, for X))y, or for any other expression. It is exactly this simplified notation
(with subject and predicate terms fixed to X and Y, respectively) which De Morgan
uses in his diagrams (Figs. 1, 2, and 3) as well as his notes (Figs. 4, 5, and 6; also
cf. Table 1).
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3.2 Propositions

Generally speaking, a proposition contains two terms: subject and predicate. On De
Morgan’s account, each of these two terms has a “contrary”: the subject is either
X or x; the predicate is either Y or y. Furthermore, each of these two terms enters
into the proposition either universally or particularly (as to notation, the bracket is
either “enclosing” or “excluding,” cf. Sect. 3.1). Finally, the copula that links both
terms is either affirmative or negative (as to notation, either there is no dot or there is
exactly one, cf. Sect. 3.1). These five binary parameters (X or x as subject; universal
or particular subject; affirmative or negative copula; Y or y as predicate; universal or
particular predicate) clearly yield 25 = 32 propositions.

De Morgan’s 32 propositions cluster together into eight groups of four pairwise
equivalent propositions.18 In each of these eight groups, any proposition may be
equivalently converted into the three other ones of that group, by interchange
of terms and rotation of parentheses, following the rule of transformation: “To
use the contrary of a term, without altering the import of the proposition, alter
the curvature of its parenthesis, and annex or withdraw a negative point” [10, p.
92]. By applying this rule of transformation, equivalent expressions are generated
by restating one expression by reference to contraries of terms or contraries
of contraries, respectively. De Morgan himself gave an incomplete table of the
resulting equivalences [10, p. 91]. It can be completed as in Table 3. The verbal
interpretations are De Morgan’s own; it is noteworthy that except for their ordering,

18 De Morgan himself rather thought of eight fundamental propositions in the following way:
for any combination of subject and predicate, the choice may be made from the set of terms
or from the set of their contrary terms, respectively. If both subject and predicate are replaced
by their respective contraries, De Morgan spoke of “contranominals” [9, p. 62]. For example,
“All Xs are Ys” and “All Non-Xs are Non-Ys” are contranominals [9, p. 62]. Starting from
the four classical fundamental propositions and adding their four contranominals, De Morgan
arrived at eight fundamental propositions instead of the traditional four; see [8, p. 381; 9, p. 62].
However, it should be noted that De Morgan thought the eight fundamental propositions eventually
reduced to six propositional forms. De Morgan’s distinction between fundamental propositions and
propositional forms is somewhat different as to terminology: “When the subject and the predicate
are of the same sort of quantity, both universal or both particular [i.e., respectively], the converse
forms give the same proposition” [9, p. 58]. The reduction to six forms is arrived at by various
approaches: according to De Morgan himself, certain equivalences may be established between
propositions and contranominals, as stated on converted order of terms. In particular, he held “All
Non-Xs are Non-Ys” to be equivalent to “All Ys are Xs,” and “Some Non-Xs are not Non-Ys” to
be equivalent to “Some Ys are not Xs”; see [8, p. 382; 9, p. 61]. But in this case, while the order
of terms is converted, the form of the proposition remains constant: a classical A or a classical O,
respectively. Hence A and O give rise to two distinct fundamental propositions, but as propositional
forms, A and O each occur only once. However, according to De Morgan, the classical E and I each
transform into two distinct propositional forms. The reason is that besides “No X is Y” and “Some
Xs are Ys,” there are the contranominals “No Non-X is Non-Y” and “Some Non-Xs are Non-Ys,”
which share the form of a negative universal negative and an affirmative particular, but cannot be
reduced by conversion since the result would not match their import [8 , p. 382]. Hence there are
only two forms that should be added to the classical four.
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they match the ones from the manuscripts, as quoted in Table 2, Sect. 2.2.2. We add
a column with transcriptions based on our own notation, which is based on the two
propositional forms all(−,−) and some(−,−) and allows both the subject term and
predicate term to be negated.

Table 3 De Morgan’s 32 propositions and their interpretation

X))Y = X). (y = x((y = x(.)Y Every X is Y all(X, Y)
x))y = x). (Y = X((Y = X(.)y Every Y is X all(∼X,∼Y)
X). (Y = X))y = x(.)y = x((Y No X is Y all(X,∼Y)
x). (y = x))Y = X(.)Y = X((y Everything is X or Y or both all(∼X, Y)
X()Y = X(. (y = x)(y = x). )Y Some Xs are Ys some(X, Y)
x()y = x(. (Y = X)(Y = X). )y Some things are neither Xs nor Ys some(∼X,∼Y)
X(. (Y = X()y = x). )y = x)(Y Some Xs are not Ys some(X,∼Y)
x(. (y = x()Y = X)(y = X). )Y Some Ys are not Xs some(∼X, Y)

A difficulty with De Morgan’s convention to fix the subject and predicate terms
to X and Y, respectively, is that at least some of the resulting expressions are assigned
a quite unnatural interpretation. For example, for the listings given in Tables 1 and
3, it is neither straightforward why X(.)Y should be read as “Everything is X or
Y or both” nor why X)(Y corresponds to “Some things are neither Xs nor Ys.”19

Indeed, De Morgan’s verbal descriptions of his formulae are sometimes at variance.
A slightly different version, which is still relatively close to the interpretations given
in Tables 1 and 3, is to be found in his second “syllogism” paper [10, p. 101]:

All X are all Ys )(
Some X s are some Ys ()
All X s are some Ys ))
Some X s are all Ys ((
No Xs are Ys ). (
Some Xs are not some Ys (.)
No Xs are some Ys ). )
Some X s are no Ys (. (

As a final alternative, De Morgan also offered a set of relational descriptions [10,
p. 113]:

19 If we drop the requirement that the subject and predicate terms be fixed to resp. X and Y, we
can obtain more natural readings. For example, the expression X(.)Y can be transformed into the
equivalent expression x))Y, which straightforwardly reads “Every Non-X is Y.” Similarly, X)(Y
transforms into x()y, which straightforwardly reads “Some Non-X is Non-Y.”
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X)(Y Each X is related to all the Ys.
X(.)Y Some Xs are not related to some of the Ys.
X))Y Each X is related to one or more Ys
X(. ( Some Xs are not related to any Ys.
X((Y Some Xs are (among them) related to all the Ys.
X). )Y No X is related to some one or more Ys.
X). (Y No X is related to any one Y.
X()Y Some Xs are related to some one or more Ys.

3.3 Relations Between Terms and Propositions

Up to the times to which the manuscript materials are dated, De Morgan’s
modifications to syllogistic were based on an extensional understanding of mutually
exclusive complements. In Formal Logic, for example, he made it quite clear that he
proceeded on the assumption that “all the instances of a name are counted” [9, p. 71].
Stipulating that given this assumption there are extensionally (even numerically)
“complemental” and “non-complemental” terms [9, p. 75], he pointed out that
“[e]xclusion from one complement is inclusion in the other” [9, p. 75]. As the notion
of a complement is obviously defined by mutual exclusion and joint exhaustion, it
reminds of conditions that are classically associated with contradictory relations.
However, De Morgan chose to speak of “contraries” [8, p. 379; 9, p. 60]. The notion
of a “contrary” is the core piece of De Morgan’s logic, with regard to terms as
well as to propositions. In both respects, he redefined the relations holding between
terms and between propositions. As his terminology is different from the traditional
wording, the following paragraphs will introduce De Morgan’s main ideas.

3.3.1 “Contraries,” “Subcontraries,” “Supercontraries”

De Morgan chose to speak of “contraries” of terms [8, p. 379; 9, p. 60] as well
as of their “subcontraries” and “supercontraries” [9, p. 67]. Similarly, he spoke of
“contrary,” “subcontrary,” and “supercontrary” propositions [9, p. 60, 148). The
term “complement” extends over at least “contrary” and “subcontrary” (see [9],
correction to p. 62, line 23 as indicated in the corrigenda to the table of contents for
Ch. IV, p. ix; see also [9, p. 120; 12, p. 200]).

The contrary of a term X is another term Non-X, such that taken together, both
“fill up” a given “universe of a proposition, or of a name” [8, p. 380]; also see [9, p.
55].20 In other words, if “[b]y the universe (of a proposition) is meant the collection
of all objects which are contemplated as objects about which assertion or denial may
take place,” then “every thing [within the universe] is either X or Non-X; nothing is
both,” as De Morgan later put it in 1860 [14, pp. 12–13]. If two terms are indeed

20 As C. I. Lewis, for example, recognizes, the term “universe of discourse” was not so much
coined by Boole but already by De Morgan [25, p. 37].
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contraries, then “[t]here is nothing which is both X and Y, [and] there is nothing
which is neither” [9, p. 67]. If, however, “X and Y are clear of each other, but [ . . . ]
do not fill up the universe,” then they should be called “subcontraries” [9, p. 67].
Finally, it is possible for two terms to “overfill” the universe, namely, in the case
that “some things are both Xs and Ys” [9, p. 67]. In this case, De Morgan speaks of
“supercontraries” [9, p. 67].

In characterizing the relations holding between propositions, De Morgan con-
tinued and extended his specific use of the term “contrary.” As before, he took the
term “contrary” to mean “what logicians usually call contradictory” [9, p. 147]. Its
meaning also covers relations between propositions because the truth and falsity
of propositions are determined by whether a given term or its contrary applies [9,
p. 147]. But again, De Morgan modified the traditional terminology even further:
“[T]he propositions usually called contraries, ‘Every X is Y’ and ‘No X is Y’ [ . . . ]
I shall call subcontraries: while those usually called subcontraries ‘Some Xs are Ys’
and ‘Some Xs are not Ys’ I shall call supercontraries” [9, p. 60]; also see [9, p. 148].

3.3.2 “Subidentical,” “Subcomplement,” “Subtotal”

The comments (presented and transcribed in Sect. 2.2.2) which De Morgan added
to his drawings (presented in Sect. 2.2.1) quite obviously relate to further aspects of
relations between propositions. However, they involve some specific terminology,
which will be useful to consider in order to grasp the sense of De Morgan’s
comments.

The explanatory remarks in MS.775/355-28 (Fig. 4) are somewhat easier to
read, while those in MS.775/355-37 (Fig. 5) and MS.775/355-38 (Fig. 6) involve
a bit more of De Morgan’s specific terminology. The terms “complex proposi-
tion” and “subidentical” occur in all comments. Additionally, MS.775/355-37 and
MS.775/355-38 (Figs. 5 and 6) make use of the terms “consequent,” “species,”
“subcomplement,” “partient,” and “subtotal.” In order to draw a comparison
between De Morgan’s remarks from MS.775/355-28 (Fig. 4) on the one hand and
those from MS.775/355-37 and MS.775/355-38 (Figs. 5 and 6) on the other, the
relevant terms will now be given a quick explanation.

The notions of a “complex proposition” and of a “subidentical” were already
introduced in Formal Logic [9]. A proposition is said to be complex if it includes
explicit quantifications of both the subject and the predicate term, in the sense that it
involves a conjunction of two assertions: one assertion that states the quantitative
relation of the first term to the second, and another assertion that states the
quantitative relation of the second term to the first. For example, “Every X is Y
and every Y is X” is a complex proposition; “Every X is Y and some Ys are not Xs”
is another [9, p. 56]. According to De Morgan, if “[a]ny two of the eight forms [i.e.,
fundamental propositions]” are considered, “it is clear either that they cannot exist
together or that one must exist when the other exists, or that one may exist either
with or without the other” [9, p. 63]. Consequently, a “complex proposition is one
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which involves within itself the assertion or denial of each and all of the eight simple
propositions” [9, p. 65].

The notion of being “identical” may be applied to pairs of terms. Identical terms
are of the kind that “[w]here either can be applied, there can the other also” [9,
p. 66]; such terms thus define the very same extension. For example, the terms
“equilateral and equiangular are identical names,” because “what figure soever has a
right to either name, it has the same right to the other” [9, p. 66]. If, however, “there
are more Ys than Xs, and X stops short of a complete claim to identity with Y,” then
X is “subidentical” of Y [9, p. 67]. Correlatively, if “[e]very Y is X” but “there are
more Xs than Ys,” then X is a “superidentical” of Y [9, p. 67].

However, not only terms but also propositions can be called identical, subiden-
tical, or superidentical to one another. In this case, the notion of a “consequent”
comes into play. For example, a proposition P is a subidentical of a proposition
Q “if every case in which P is true be one in which Q is true, but so that Q is
sometimes true when P is not” [9, p. 147]. In this case, Q “is usually mentioned
as essential to P, and as a necessary consequence of it” [9, p. 147]. Therefore,
De Morgan thought, “superidentical or identical” and “necessary consequent” are
synonymous [9, p. 147].

The terms of “genus,” “species,” and “partient” may more readily be explained
in the context of a set of descriptions summed up in De Morgan’s Syllabus of a
Proposed System of Logic [14]. Here, De Morgan states that a “class [not a term!]
X be called a species of the class Y, and Y a genus of X,” if “[e]very X is Y, X))Y or
Y((X.” Furthermore, if “some Xs are Ys, X()Y or Y()X,” then each of them is “called
a partient of the other” [14, p. 52].

The terms “subcomplement” and “subtotal” are not often used in De Morgan’s
writings. However, there is at least one occurrence of the term “subtotal” in a small
article on “Logical Phraseology,” published in 1853 [11]. Here, the term “subtotal”
occurs in De Morgan’s attempt to paraphrase those particular propositions which
would deny a universal indicating that X is a genus of Y, i.e., that every Y is X. A
“subtotal” would be what is “[n]ot a genus, that is, not entirely filling up” [11, p.
30]. In other words, “x is a subtotal of y” if “Some ys are not xs” [11, p. 30].

The term “subcomplement” is hard to find in De Morgan’s writings. Perhaps it is
meant to signify a “subtotal” of a “complement,” i.e., what is not a complement of a
term in that it does not entirely fill up that term’s contrary. In the article just quoted,
however, De Morgan coins the terms “subremainder or subremnant” for this case
[11, p. 30].

3.3.3 Aristotelian Relations

We will now gather De Morgan’s pairs of opposites and compare them to the
Aristotelian relations encoded in logical diagrams such as the square of opposition.

First of all, we have already seen that De Morgan’s “contraries” correspond to
what is traditionally called the contradictory relation. These propositions are such
that “one must be true and one false, differ[ing] both in quantities and copula.
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Thus X))Y and X(. (Y are contraries” [10, p. 92]. Hence, in order to obtain the
contradictory of a proposition, we have to change both its quantities (notationally
encoded by the enclosing/excluding brackets) and also its copula (notationally
encoded by the presence/absence of a dot). In total, there are four applications of
this rule (the first one was already given by De Morgan himself):

• X))Y and X(. (Y are contradictories, i.e., De Morgan’s “contraries”;

in our own notation, all(X, Y) and some(X,∼Y) are contradictories.

• X((Y and X). )Y are contradictories, i.e., De Morgan’s “contraries”;

in our own notation, all(∼X,∼Y) and some(∼X, Y) are contradictories.

• X). (Y and X()Y are contradictories, i.e., De Morgan’s “contraries”;

in our own notation, all(X,∼Y) and some(X, Y) are contradictories.

• X(.)Y and X)(Y are contradictories, i.e., De Morgan’s “contraries”;

in our own notation, all(∼X, Y) and some(∼X,∼Y) are contradictories.

Secondly, we have already seen that De Morgan’s “subcontraries” and “super-
contraries” correspond to what are traditionally called the contrary and subcontrary
relations, respectively. De Morgan’s rule for these is that “The alteration of one
quantity, and the copula, turns a universal into another and inconsistent [i.e.
contrary] universal, and a particular into another and a consistent [i.e., subcontrary]
particular: as X))Y into X(.)Y, or X()Y into X). )Y” [10, pp. 92–93].21 Hence, in order
to obtain the contraries of a universal proposition, we have to change exactly one of
its quantities (notationally encoded by the enclosing/excluding brackets) and also its
copula (notationally encoded by the presence/absence of a dot). As the De Morgan’s
logic contains four universal propositions, there are in total four applications of this
rule (the first one was already given by De Morgan himself):

• X))Y and X(.)Y are contraries, i.e., De Morgan’s ‘subcontraries’;

in our own notation, all(X, Y) and all(∼X, Y) are contraries.

• X))Y and X). (Y are contraries, i.e., De Morgan’s “subcontraries”;

in our own notation, all(X, Y) and all(X,∼Y) are contraries.

• X((Y and X). (Y are contraries, i.e., De Morgan’s “subcontraries”;

in our own notation, all(∼X,∼Y) and all(X,∼Y) are contraries.

• X((Y and X(.)Y are contraries, i.e., De Morgan’s “subcontraries”;

in our own notation, all(∼X,∼Y) and all(∼X, Y) are contraries.

21 The second example mentioned in this quotation literally reads: “X(.)Y into X). )Y” [10, p.
93]. However, that would not be a valid illustration of the rule it is supposed to illustrate, since
the copula (the dot) has not been altered. The most charitable interpretation is to view this as a
misprint for “X()Y into X). )Y,” which would effectively be a valid illustration of this rule. This
interpretation has also been adopted in the main text of this paper.
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Furthermore, the same rule also specifies that in order to obtain the subcontraries
of a particular proposition, we have to change exactly one of its quantities
(notationally encoded by the enclosing/excluding brackets) and also its copula
(notationally encoded by the presence/absence of a dot). As the De Morgan’s logic
contains four particular propositions, there are in total four applications of this rule
(the second one was already given by De Morgan himself, but cf. Footnote 21):

• X()Y and X(. (Y are subcontraries, i.e., De Morgan’s “supercontraries”;

in our own notation, some(X, Y) and some(X, ∼ Y) are subcontraries.

• X()Y and X). )Y are subcontraries, i.e., De Morgan’s “supercontraries”;

in our own notation, some(X, Y) and some(∼X, Y) are subcontraries.

• X)(Y and X). )Y are subcontraries, i.e., De Morgan’s “supercontraries”;

in our own notation, some(∼X,∼Y) and some(∼X, Y) are subcontraries.

• X)(Y and X(. (Y are subcontraries, i.e., De Morgan’s “supercontraries”;

in our own notation, some(∼X,∼Y) and some(X,∼Y) are subcontraries.

In his second “syllogism” paper, De Morgan also gives a rule for subalternations.
The rule reads: “In a universal proposition, any one quantity may be altered, either
from universal to particular, or from particular to universal; and the result is always
a true deduction, though not an equivalent. Thus X))Y gives both X()Y and X)(Y”
[10, p. 92]. Hence, in order to obtain the propositions that stand in subalternation to
a universal proposition, we have to change exactly one of its quantities (notationally
encoded by the enclosing/excluding brackets), while leaving its copula (notationally
encoded by the presence/absence of a dot) unaltered. There are four universal
propositions in De Morgan’s system, each of which yields two subalternations.
In total, we thus get eight subalternations (the first two were already given by De
Morgan himself):

• Subalternations from X))Y to X()Y and to X)(Y;

i.e., subalternations from all(X, Y) to some(X, Y) and to some( ∼ X, ∼ Y).

• Subalternations from X((Y to X)(Y and to X()Y;

i.e., subalternations from all(∼X,∼Y) to some(∼X,∼Y) and to some(X, Y).

• Subalternations from X). (Y to X(. (Y and to X). )Y;

i.e., subalternations from all(X,∼Y) to some(X,∼Y) and to some(∼X, Y).

• Subalternations from X(.)Y to X). )Y and to X(. (Y;

i.e., subalternations from all(∼X, Y) to some(∼X, Y) and to some(X,∼Y).

Finally, we should consider the relation of unconnectedness or independence.
Unconnectedness essentially amounts to the absence of any relation: two proposi-
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tions are said to be unconnected if and only if they do not stand in any Aristotelian
relation whatsoever. This is entirely in line with De Morgan’s remark that such
propositions are “perfectly indifferent” [10, p. 92]. De Morgan’s rule of uncon-
nectedness (which he calls “concomitance”) reads as follows: “The concomitants
of a universal, to which it is perfectly indifferent, differ from it in quantities,
or in copula, not in both. Thus X))Y coexists either with X((Y or X). )Y” [10,
p. 92]. Hence, in order to obtain the propositions that are unconnected to a
universal proposition, we have to change either both of its quantities (notationally
encoded by the enclosing/excluding brackets) or its copula (notationally encoded
by the presence/absence of a dot). As De Morgan’s rule contains four universal
propositions, we get a total number of six applications of this rule for unconnected
pairs (the first two were already given by De Morgan himself):

• X))Y and X((Y are unconnected;

i.e., all(X, Y) and all(∼X,∼Y) are unconnected.

• X))Y and X). )Y are unconnected;

i.e., all(X, Y) and some(∼X, Y) are unconnected.

• X((Y and X(. (Y are unconnected;

i.e., all(∼X,∼Y) and some(X,∼Y) are unconnected.

• X). (Y and X(.)Y are unconnected;

i.e., all(X,∼Y) and all(∼X, Y) are unconnected.

• X). (Y and X)(Y are unconnected;

i.e., all(X,∼Y) and some(∼X,∼Y) are unconnected.

• X(.)Y and X()Y are unconnected;

i.e., all( ∼ X, Y) and some(X, Y) are unconnected.

These six unconnected pairs each involve at least one universal proposition.
However, later on in his second “syllogism” paper, De Morgan also adduces addi-
tional considerations that “justify us in extending the general name of comcomitants
[i.e. unconnectedness] to particulars in which both quantities differ” [10, p. 93].
Hence, in order to obtain the propositions that are unconnected to a particular
proposition, we have to change both of its quantities (notationally encoded by
the enclosing/excluding brackets), while leaving its copula (notationally encoded
by the presence/absence of a dot) unaltered. This extension of the definition of
unconnectedness yields two more unconnected pairs (which involve two particular
propositions):

• X()Y and X)(Y are unconnected;

i.e., some(X, Y) and some(∼X,∼Y) are unconnected.
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• X(. (Y and X). )Y are unconnected;

i.e., some(X,∼Y) and some(∼X, Y) are unconnected.

Adding these two pairs to the six pairs that we already obtained above, we thus
find that De Morgan’s logic yields a total number of eight pairs of unconnected
propositions.

To summarize, in this section, we have shown that De Morgan’s rules yield
a total number of four pairs of contradictory propositions, four pairs of contrary
propositions, four pairs of subcontrary propositions, eight pairs of propositions in
subalternation, and finally, eight pairs of unconnected propositions. Adding these
all up yields the total number of 4 + 4 + 4 + 8 + 8 = 28 pairs of propositions.
This is exactly the number that we should expect: De Morgan’s logic (his “system
of contraries”) contains 8 propositions, and an easy combinatorial calculation shows

that this gives rise to
(

8
2

)
= 8×7

2 = 28 pairs of propositions. In other words, we

can be certain that the lists above are completely exhaustive: every single pair of
propositions that exists within De Morgan’s logic has now been “classified” as either
contradictory, or contrary, or subcontrary, or in subalternation, or unconnected.

4 Logical Analysis of De Morgan’s Octagon of Opposition

Having completed our discussion of De Morgan’s logical system (as he presented
it in his published materials and unpublished notes), we are now fully equipped to
analyze the octagonal diagram that occurs several times throughout his manuscripts
(cf. Figs. 1, 2, and 3). In order to facilitate this analysis, we will start with the dia-
gram in Fig. 1 and add our own, modern notation for the propositions to the corners
of the octagon (cf. Table 3 and Sect. 3.2). Furthermore, we will also emphasize the
various lines between those corners, following the contemporary color convention
for the Aristotelian relations (cf. Table 2 and Sect. 3.3), i.e., contradictions in red,
contrarieties in blue, subcontrarieties in green, and subalternations as black arrows.
(Note that unconnectedness is typically not visualized at all,22 but De Morgan
himself visualized unconnectedness by means of thick dashed lines.) The resulting
diagram is shown as Fig. 7.

Before moving on, it should be emphasized that the diagram in Fig. 7 is only
meant as a visual aid and thus contains exactly the same logical information as De
Morgan’s original diagram in Fig. 1. In particular, the visual elements that have
been added in Fig. 7 do not carry any new logical information: we have seen in
Sect. 3 that they all fit within De Morgan’s overall system of logic, his notation for
propositions, and his rules for the relations between propositions.

22 And for good reasons, recall that unconnectedness is the absence of any Aristotelian relation, so
this is naturally “visualized” by the absence of any colored lines in the diagram.
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It should be clear that the octagon in Fig. 7 is an Aristotelian diagram, just like the
traditional square of opposition and many others. After all, this octagon visualizes
a number of propositions and the (Aristotelian) relations holding between those
propositions. This is also emphasized in De Morgan’s accompanying handwritten
comments: “Relations of the eight propositional Forms in the system which admits
contraries” (cf. the transcription given in Sect. 2.2.1). Nevertheless, the octagon
in Fig. 7 does have some peculiar features. For example, contradiction is not
represented by means of central symmetry: usually, the red lines that represent the
contradiction relations are the diagonals of the diagram, but in Fig. 7, this is clearly

Fig. 7 De Morgan’s MS.775/355-36, labelled according to our own notation and with the
Aristotelian relations highlighted in color
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not the case. However, this visual-diagrammatic peculiarity by no means disqualifies
the octagon in Fig. 7 from being an Aristotelian diagram. Although they are not
extremely common, there certainly exist other examples of Aristotelian diagrams
which do not visualize the contradiction relation by means of central symmetry [3,
31]. The octagon in Fig. 7 is just a new example to be added onto that list.

Since De Morgan’s unpublished octagon is an Aristotelian diagram, the follow-
ing question naturally arises: which type of Aristotelian diagram is it precisely?
After all, recent research in logical geometry has shown that there exist several types
of Aristotelian diagrams, each with their own distinctive logical properties [7, 29].
For example, one can show that there exist 2 types of Aristotelian squares (including
the traditional square of opposition), 5 types of Aristotelian hexagons, and 18
types of Aristotelian octagons. We will now show that De Morgan’s unpublished
octagon belongs to 1 of these 18 types, viz., the type of so-called KJ octagons (this
terminology will be explained later).

Fig. 8 Generic description of
the type of KJ octagons

Figure 8 shows a “generic” description of the type of KJ octagons. The formulas
α, β, etc. in this diagram do not come from any particular logical system, but merely
serve as “placeholders” for specific formulas coming from a specific logical system.
The goal of Fig. 8 is to illustrate the type of KJ octagons in its full generality, as an
abstract pattern of eight formulas and certain Aristotelian relations holding between
them. Although it might not look like it at first sight, De Morgan’s octagon (Fig. 7)
is a perfect instantiation of this abstract pattern (Fig. 8). We do need to transform the
diagram quite a bit to see this. To make this precise, we define a bijective mapping
f from the generic description in Fig. 8 to De Morgan’s actual octagon in Fig. 7.
The full definition of f is given below. For example, when we say that f (α) = )),
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we mean that the “placeholder” α from the generic description is to be filled in with
the specific formula )) from De Morgan’s specific logical system, i.e., his system of
contraries.

x α β γ δ ¬α ¬β ¬γ ¬δ
f (x) )) ). ( (( (.) (. ( () ). ) )(

It can now be shown that this function f is an Aristotelian isomorphism, i.e., it
perfectly preserves and reflects the Aristotelian relations. More formally, for all ϕ, ψ
that occur in the octagon in Fig. 8 and for all Aristotelian relations R, the following
holds:

ϕ and ψ stand in relation R (in the octagon in Fig. 8)

if and only if

f (ϕ) and f (ψ) stand in that same relation R (in the octagon in Fig. 7).

In order to illustrate this isomorphism, consider the following three examples:

• α and δ are contrary in the generic description of the type of KJ octagons (Fig.
8), and we have already seen in Sect. 3.3 that f (α) and f (δ), i.e., )) and (.), are
also contrary in De Morgan’s system of contraries (Fig. 7).

• There is a subalternation from γ and ¬β in the generic description of the type of
KJ octagons (Fig. 8), and we have already seen in Sect. 3.3 that there is also a
subalternation from f (γ ) to f (¬β), i.e., from (( to (), in De Morgan’s system of
contraries (Fig. 7).

• α and γ are unconnected in the generic description of the type of KJ octagons
(Fig. 8), and we have already seen in Sect. 3.3 that f (α) and f (γ ), i.e., )) and ((,
are also unconnected in De Morgan’s system of contraries (Fig. 7).

The existence of this Aristotelian isomorphism shows that De Morgan’s unpub-
lished octagon (Fig. 7) belongs to the type of KJ octagons (Fig. 8).

Over the course of the twentieth century, KJ octagons have gathered a rich
history. Diagrams of this type have been used by authors such as Dopp [16], Thomas
[32], Hacker [19], and Sauriol [28]. In more recent years, they have also been studied
by philosophers and logicians such as Dekker [6] and García-Cruz [17], and even by
computer scientists such as Ciucci, Dubois and Prade [4, 5]. Historically speaking,
it has long been assumed that the first occurrences of KJ octagons were to be found
in the third edition of John N. Keynes’s Studies and Exercises in Formal Logic from
1894 [24]23 and in William E. Johnson’s Logic from 1921 [23]. This is also the

23 The first (1884) and second (1887) editions of Keynes’s Studies and Exercises in Formal Logic
contain a traditional square of opposition, but not yet a KJ octagon. The KJ octagon was included
in the third edition (1894), and it again appears in the fourth (1906), which was the last major



Augustus De Morgan’s Unpublished Octagon of Opposition 167

reason why we now speak of the type of KJ octagons: “KJ” stands for “Keynes-
Johnson.” Ironically, however, this now turns out to be a misnomer. After all, in
this section, we have shown that De Morgan’s unpublished octagon (Fig. 7) from
the 1850s also belongs to the type of KJ octagons. In other words, this type of
diagram was already known by De Morgan, some five decades earlier than Keynes
and Johnson.

5 Conclusion

In this paper we have uncovered some hidden gems from Augustus De Morgan’s
unpublished manuscripts. Although De Morgan’s published writings hardly contain
any diagrams or figures, his unpublished manuscripts contain several attempts to
extend the traditional square of opposition to a larger diagram. In particular, one
“octagon of opposition” occurs several times throughout his manuscripts. Based on
a detailed analysis of this octagon, in combination with De Morgan’s unpublished
notes as well as his published materials, we have argued that this diagram belongs to
the type of so-called KJ octagons. It has long been assumed that this type of octagon
was studied for the first time by John Neville Keynes and William E. Johnson around
the turn of the twentieth century. However, the manuscript findings presented in this
paper clearly show that this type of octagon was already known by De Morgan,
some five decades earlier than Keynes and Johnson.

These results naturally lead to a vast array of further questions. For example, on
the historical side, one might wonder if Keynes and Johnson’s octagon of opposition
was in any way influenced by De Morgan’s unpublished diagram. On the logical
side, now that De Morgan’s diagram has been identified as a KJ octagon, it would
be interesting to systematically investigate its logical properties by means of the
contemporary tools and techniques of logical geometry (e.g., bitstring semantics
[30]). These topics will be addressed in future research.
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edition of this work. When giving his octagon for the first time, Keynes explicitly states: “For the
octagon of opposition in the form in which it is here given I am indebted to Mr. Johnson” [24, p.
113].
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A Bitstring Semantics for Calculus CL

Jens Lemanski and Fabien Schang

Abstract The aim of this chapter is to develop a semantics for Calculus CL. CL is
a diagrammatic calculus based on a logic machine presented by Johann Christian
Lange in 1714, which combines features of Euler-, Venn-type, tree diagrams,
squares of oppositions etc. In this chapter, it is argued that a Boolean account of
formal ontology in CL helps to deal with logical oppositions and inferences of
extended syllogistics. The result is a combination of Lange’s diagrams with an
algebraic semantics of terms: Bit-CL, in which any ordered objects are identified
by characteristic bitstrings. Then, a number of objections to Bit-CL are answered to,
and the process of inference is explained in this new logical framework.

Keywords Calculus CL · Bitstring semantics · Logic diagrams · Diagrammatic
reasoning · Extended syllogistics · Ontology
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1 Introduction

In 1714, Johann Christian Lange and his staff introduced a logic machine that
serves to automate three faculties of human cognitive abilities: (1) the representation
of knowledge by means of hierarchically ordered concepts or classes, (2) the
judgement concerning relationships of hierarchically ordered knowledge, and (3)
the inferential reasoning based on explicit or implicit knowledge (cf. [17, 91]).
Lange understood his approach as a contribution to a ‘logica universalis’, since the
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logic machine should unite the advantages of all logic diagrams known at that time,
in particular tree diagrams, Eulerian diagrams and the square of opposition.

Calculus CL is the name of a diagram type that is based on the principles of
Lange’s logic machine and has the form of a square or a cube. Since Lange himself
speaks of a logical cube, the abbreviation CL stands for ‘Cubus Logicus’ or ‘Cubus
Langianae’ and thus recalls the origin of the calculus presented here. CL also
combines many features of today’s common logic diagrams, which are currently
used in areas such as visual representation (cf. [7]), proof theory (cf. [1]) or Artificial
Intelligence (cf. [12]). In these research areas, diagrams are regarded as equivalent
to conventional notations in a linguistic or sentential form, since they also have their
own syntax and semantics (cf. [30]). As with many other diagram types, CL also
has the special feature that it can depict information that was not intended when the
diagram was created (cf. [29]).

In recent years, there has been much progress in research on various types of
diagrams, which build the basis of CL: tree diagrams have been used to clarify
semantic problems in ontology engineering (cf. [14]), Euler diagrams have been
combined with systems of natural deduction (cf. [22]), and a bitstring semantics has
been developed for the square of opposition (cf. [8]), to name just a few examples.
Since CL combines various elements of these diagram types into a new one, it is
obvious that advances in other diagram types can also be applied to CL.

Moreover, research on CL is still in its infancy: In the last 2 years, CL has been
studied first as a two-dimensional square. However, this square forms the basis of
the three-dimensional cube that Lange had in mind. The researches on CL so far
have gone in different directions: oppositional structures have been investigated (cf.
[21]), analogy relations have been analyzed (cf. [2]), possible applications in area
domains have been examined [18], Lange’s role in AI history has been discussed
(cf. [24]), CL has been presented as an extended syllogistics (cf. [20]) and currently
it has been proven that CL can be used as a formal system that is sound and complete
(cf. [15]).

In this chapter, we want to develop a bitstring semantics for CL, which helps
to organize, display and verify information. Thus, we assume that the progress for
the square of opposition can also be transferred to CL. We will see that there are
differences between the use of a bitstring semantics in the square of opposition
and in CL. Nevertheless, a bitstring semantics developed specifically for CL is
very well suited to represent classes, display propositions and test inferences. We
expect from this approach on the one hand to obtain a well-founded and suitable
semantics, which offers easy verifiability of CL as a formal system, and a model for
CL diagrams, which will eventually make arithmetic operations in CL possible with
the help of Boolean algebra.

Section 2 presents the current research on bitstring semantics, which is particu-
larly oriented towards the square of opposition. In Sect. 3, we will design the basic
principles of CL using a specific bitstring semantics. Section 4 then shows how to
test inferences in CL using a bitstring semantics. Finally, in Sect. 5, we will briefly
summarize the results on bitstring semantics in CL and venture an outlook on future
research in this area. It should be noted that in Sects. 3 and 4, we refer only to



A Bitstring Semantics for Calculus CL 173

the basic principles of CL and to one possibility to use bitstrings semantics in CL.
Furthermore, we use a simple CL diagram and use extended syllogisms with only
few propositions.

2 Bitstring Semantics

It is well known that consequence is the central issue of formal logic, whereas
opposition is a derived notion that can be explained in truth-conditional terms. For
instance, two sentences are said to be contradictory to each other if, and only if,
they can be neither true together nor false together. At the same time, the process of
partition has to do with opposition and appeared as a relevant feature in the history
of philosophy as well. Some cases in point are Socrates’ definition by dichotomy
(cf. [32]), the Pythagorean table of opposites [10] or Seneca’s and Porphyry’s trees
for classifying categories of being (genera, species, accidental differences and the
like) (cf. [11]). The latter two organized ontology into a range of increasingly higher
order entities, whilst the former mentioned characterized the meaning of concepts
by ramifying the discourse into positive and negative.

The present section wants to go back to the latter tradition by emphasizing upon
the logic of terms, i.e. a set of values and operations upon the components of
sentences. The result is an extensional logic of terms, where properties are the basic
items of meaning and behave like extensions of structured objects instead of being
viewed as intensional entities. Unlike the usual distinction between extensions and
intensions, the following semantics will depict properties as extensionally greater
than objects.

2.1 Identity Without Existence

The ontology of the twentieth century was shaped by the existential questions of
the Quine-Carnap debate, and today many argue that Quine’s main question of On
what there is remained the dominant one (cf. [13, 34]). With Quine’s existential
question, two further questions that relate to formal ontology and formal semantics
are connected: The first question is: how many objects can there be in an arbitrary
world? The second question is: how to define an arbitrary object within such a
world? Such interrelated questions also relate to the issue of individuation, and they
can find a preliminary answer in Quine: the two necessary criteria for individuating
any object are existence and identity. Only the latter will be retained in the following
semantics, insofar as existence is not required to make sense of entities.

Indeed, the first criterion of existence assumes a primary metaphysical distinction
between two main kinds of entities: those existing ones, or individuals, and the
other ones. This distinction is deeply entrenched from Aristotle’s metaphysics to
the Frege–Russell tradition of first-order logic, as witnessed by the usual distinction
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between logically singular and general terms. In this sense, singular terms are those
which can never be predicated of another one, contrary to general terms. This
matches with Aristotle’s definition of primary substances or Russell’s proper names,
that is, whatever cannot be the predicate in a categorical proposition and always
occurs in the position of subject term [33, chap. V].

Our intention is neither to take a position on these questions of ontology nor to
make any connection between Quine’s criteria of identity and the previous philos-
ophy of Lange. On the other hand, a way back to Lange’s logical works may have
the merit of calling into question some contemporary ontological presuppositions,
including the significance of atomism in logic and the resulting logical atomism.
Instead of positing such a metaphysical theory of preexisting objects, the following
wants to account for the meaning of any entity uniquely in terms of properties.
This brings us closer to recent trends in ontology (e.g. [26, 28]), which regard the
question of ordered structures as more important than existential questions in the
sense of the Quine–Carnap debate. However, from Quine we are borrowing the
insight that ontological matters are relative to how speakers or experts take the world
to be structured into related entities and operations on them. But unlike Quine, our
coming semantics wants to take the issue of existence apart and construe a formal
logic on a prior formal ontology of constructed or structured objects. These are not
mere atoms, departing from the mainstream tradition of logical atomism inherited
from Russell and Wittgenstein.

2.2 Boolean Ontology

Let us consider a fragment of discourse including 3 properties only: B for blue, R
for round and S for soft. Then, the existential question of how many individuals
there are that are blue, round or soft in the world is a secondary question from our
perspective. Rather, the formal question of how many individuals there can be is to
be answered to by a mere exhaustive combination of the available properties. One
first object may be both blue, round and soft; a second one may be blue, round and
not soft; a third one may blue, not round and soft; and the like, resulting in a total
set of 8 kinds of objects. More generally, for any set S = {P1, . . . , Pn} of n given
properties P , there is a total of 2n kinds of possible objects which correspond to
the single subsets of S. Of course, any two different objects may share the same
properties in this partial domain, and the question about whether properties are
sufficient to characterize any individual is debated in philosophy of language. In
addition, imagine an all-comprehensive set of properties S∗, so that there could not
exist any additional property n+ 1 outside S∗. Then given that every object is to be
characterized by an ordered set of these properties, none of the objects could have
all or none of the properties of S∗ for it would be nothing or everything, respectively.
In other words, any object must satisfy at least one property and not satisfy at least
one other property. At the same time, any two objects can be distinguished from
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each other by some of their characteristic properties whenever there is one property
the one has that the other one does not.

2.3 Term Semantics

The following semantics is a systematization of earlier works (cf. [8, 27]), where
bitstrings were introduced to deal with fragments of language centered upon specific
expressions like binary sentences, modalities and the like. Unlike these pioneer
works, this chapter wants to deal with any kind of meaningful information without
restriction: concepts or individuals; besides that, any kind of information is intended
to be codified by a sort of logical code—a characteristic bitstring, to be compared
to the biological code of DNA and related to any other information irrespective of
its content. Here is the main added contribution of this chapter, given that logical
opposites are traditionally limited to structured formulas whose content is the same.

Let us consider now our intended Bitstring Semantics (thereafter, BS). It is an
algebra of terms according to which objects are to be defined as ordered sets of
properties. BS = 〈L,D〉 consists in a language L including a set of properties
P = {P1, . . . , Pn} and a set of operations on these properties (complement, join,
meet, inclusion), together with a Boolean domain of valuation D including the
two bits 1 and 0. The valuation function β assigns the value 1 and 0 to every
element of P , so that every ordered set of bits 〈β(P1), . . . , β(Pn)〉 is a bitstring
that denotes a corresponding object. Hence, every object xi of BS corresponds
to an ordered set of properties that are satisfied or not by this object. Taking
again the above example of m = 3 properties, this yields an exhaustive set of 23

objects x = {a, b, c, d, e, f, g, h} denoted by their characteristic bitstrings β(x) =
〈β(P1), β(P2), β(P3)〉. Thus, β(a) = 111, β(b) = 110, β(c) = 101, β(d) =
011, β(e) = 100, β(f ) = 001, β(g) = 010 and β(h) = 000.

A calculus of predications may also be made specified according to the relation
any objects of a given ontology x = {x1, . . . , xn}, thereby giving a Boolean
expression to sets, relations and entities beside the language of classical logic. Let
� and ⊥ be constant values of bitstrings, such that � and ⊥ are finite sequences
1 . . . 1 and 0 . . . 0 including only 1s-bits and 0-bits, respectively. Then, a set of
four main operations {∩,∪,⊂, } may be performed into BS upon structured
objects x, to be characterized by a length of n finitely ordered properties β(x) =
〈β1(x), . . . , βn(x)〉 where every ordered valuation function i assigns a bit to the ith
property Pi . Then, for any object variable x1, x2 ∈ x, x1, x2 may be turned into
other objects by one unary term operator and three binary term operators.

Term negation (complement):
β(x1) = 〈β1(x1), . . . , βn(x1)〉
Example: if β(x1) = 1000, then β(x1) = 0111.
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Term conjunction (meet):
β(x1 ∩ x2) = β(x1) ∩ β(x2) = 〈β1(x1) ∩ β1(x2), . . . , βn(x1) ∩ βn(x2)〉
Example: if β(x1) = 1110 and if β(x2) = 0111, then β(x1 ∩ x2) = 0110.

Term disjunction (union):
β(x1 ∪ x2) = β(x1) ∪ β(x2) = 〈β1(x1) ∪ β1(x2), . . . , βn(x1) ∪ βn(x2)〉
Example: if β(x1) = 1000 and if β(x2) = 0001, then β(x1 ∩ x2) = 1001.

Term inclusion:
β(x1 ⊂ x2) = β(x1 ∩ x2) = β(x1 ∪ x2) = 〈β1(x1) ∪ β1(x2), . . . , βn(x1) ∪

βn(x2)〉
Example: if β(x1) = 1100 and β(x2) = 0110, then β(x1 ⊂ x2) = 0011 ∨
0110 = 0111.

Sentential formulas can be gathered from this term calculus by defining the
truth-values True and False in terms of inclusion. Whilst the usual truth-conditional
semantics sentential assigns basic values to sentences in terms of truth and falsity,
BS is in position to account for the truth-value of predicative sentences by
explaining the relation of subsumption set-theoretically. For example, let p be the
closed sentential formula ‘b and c are a’. That p is interpreted as true in the above
domain can be shown by the fact that whatever b and c are is also b: a is blue and
round and soft, whereas b and c are jointly blue; however, that b and c are neither
round nor soft jointly entails that b and c are not a.

2.4 Truth and Falsity

Equipped with this term calculus, the sentential values of truth and falsity can
now be defined according to what predications hold or not. More precisely, any
predicative sentence can be evaluated in terms of inclusion such that, for any
different objects x1, x2:

Truth and Falsity
The sentence ‘x1 is x2’ is true if, and only if, β(x1 ⊂ x2) = �, i.e.
The sentence ‘x1 is x2’ is false if, and only if, β(x1 ⊂ x2) �= �.

In other words, ‘x1 is x2’ is true if and only if whatever is x1 is also x2, whereas ‘x1
is x2’ is false if and only if there is at least one x1 that is not x2.

Such a sentence seems to be absurd from the perspective of first-order logic,
where both x1 and x2 are normally intended to be instantiated by individual
constants. For if so, then how can any value of x2 fall upon the range of predicate
functions insofar as x1 is also taken to be an individual? It turns out that, from our
formal perspective of terms, x1 and x2 are any arbitrary terms that can occur in the
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positions of either subject or predicate terms; in other words, terms are not automat-
ically considered as denoting individuals by merely being denoted with the same
sort of letters, in the sense of not being predicates; rather, they are arbitrary objects
which may be basic individuals or more abstract entities like predicates. For this
reason, the formal symbolism of BS does not rely on the usual distinction between
capital (P,Q,R, . . .) and lowercase letters (a, b, c, . . .). This also means that the
ontological distinction between different kinds of entities and levels of abstraction
will be expressed without specific letters, for want of any metaphysical hierarchy of
beings in the language for BS. Rather, the difference between ontological levels will
be expressed in terms of their characteristic bitstrings. Assuming that what makes
a subject different from a predicate in any predicate statement is that the latter be
more abstract than the former, the abstractness degree can be defined in BS as the
number of properties a given object is in position to satisfy.

2.5 Hamming Measurements

In the following, but especially in Sect. 3, we will use Hamming measures to better
describe bitstrings and their relations. We use especially Hamming weight and
Hamming distance of bitstrings.

Hamming weight:
For any x, its Hamming weight w(x) is the number of occurrences of 1-bits in
β(x).

Example: Let β(x1) = 1000, and let β(x2) = 1110, then w(x1) = 1 and
w(x2) = 3.

Let d(x1, x2) be the Hamming distance between any terms x1 and x2 into a given
set of 2n− 1 terms, to be defined by the number of Boolean bits that differ in x1 and
x2.

Hamming distance:
For any x1, x2, the Hamming distance d(x1, x2) is the number of occurrences at
which their corresponding bits βi(x1), βi(x2) differ from each other.

n−1∑
i=1

|βi(x1)− βi(x2)|

that is, d(x1, x2) = |(β1(x1)− β1(x2)| + . . .+ |(βn(x1)− βn(x2)|.

Example: Let β(x1) = 1000, and let β(x2) = 1100, then d(x1, x2) = |(β1(x1)−
β1(x2)|, . . . , |(βn(x1)− βn(x2)| = 0+ 1+ 0+ 0 = 1.
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Hamming measurements will be detailed further in Sect. 3, due to their useful-
ness when dealing with bits and bitstrings. Furthermore, Hamming distance and
Hamming weight may also contribute to the definition of logical oppositions.

For example, any x1 and x2 are said to be contradictories if and only if their
Hamming distance is maximal, that is, d(x1, x2) = n. In the above case, w(x1) = 1
and n = 4, so that the contradictory cd(x1) of x1 is such that d(x1, x2) = 4, i.e.
β(cd(x1)) = 0111.

Likewise, the relation of subalternation can be defined as a case of subsumption
or possible predication such that, if x1 is subaltern to x2, then w(x1) > w(x2).

2.6 Boolean Quantifications

Finally, any pair of objects of our Boolean domain may be related to each other by
using the traditional relations of oppositions. The special contribution of BS in this
domain is to afford a Boolean calculus on categorical propositions, by accounting
for these quantified statements in terms of range over bits. Let us take the basic, non-
quantified sentence ‘x1 is x2’. Then, the quantified accounts of the basic predication
‘x1 is x2’ yield the four usual Aristotelian propositions a, e, i, and o, such that:

a: ‘Every x1 is x2’ is true if, and only if, there is no x1 that is not x2, that is,
β(x1 ∩ x2) = �, i.e. β(x1 ∩ x2) = ⊥.

e: ‘No x1 is x2’ is true if, and only if, there is no x1 that is x2, that is,
β(x1 ∩ x2) = �, i.e. β(x1 ∩ x2) = ⊥.

i: ‘Some x1 is x2’ is true if, and only if, not every x1 is not x2, that is,
β(x1 ∩ x2) �= �, i.e. β(x1 ∩ x2) �= ⊥.

o: ‘Some x1 is not x2’ is true if, and only if, not every x1 is x2, that is,
β(x1 ∩ x2) �= �, i.e. β(x1 ∩ x2) �= ⊥.

It could be noted that the above quantified formulas express a number of
relations between the terms x1 and x2; for this reason, the above definitions already
include some relations of opposition insofar as the relations between x1 and x2
internalize the four Aristotelian oppositions between terms within one and the
same proposition. More generally, there is a structural isomorphism between the
oppositions between sentences of the forms ‘x1 is (not) x2’ and those between terms
like x1 and x2. Bits are for x1 and x2 what models are for propositions p and q,
that is, an ordered set of conditions satisfied by both kinds of relata. The relations
of opposition can thus be characterized as follows.

Contrariety: R = CT

x1 and x2 are contrary to each other if, and only if, every property Pi that is
satisfied in x1 is not satisfied in x2. That is, if βi(x1) = 1, then βi(x2) = 0.
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Contradiction: R = CD

x1 and x2 are contradictory to each other if, and only if, every property Pi that
is satisfied in x1 is not satisfied in x2 and conversely. That is, βi(x1) = 1 if, and
only if, βi(x2) = 0.

Subcontrariety: R = SCT

x1 and x2 are subcontrary to each other if, and only if every property Pi that is
not satisfied in x1 is satisfied in x2 and conversely. That is, if βi(x1) = 0, then
βi(x2) = 1.

Fig. 1 Square of Oppositions: (a) Categorical propositions. (b) Modal propositions

Subalternation: R = SB

x2 is subaltern to x1 if, and only if, every property Pi that is satisfied in x1 is also
satisfied in x2. That is, if βi(x1) = 1, then βi(x2) = 1.

All these logical properties may be illustrated into the famous square of oppositions
or Aristotelian square, irrespective of the kind of formulas in use. As illustrated
in Fig. 1, these were restricted to categorical and modal propositions, in Aristotle’s
Organon and in the Aristotelian commentaries (cf. [6]).

It is worthwhile noting that such square relates logical entities like categorical
or modal propositions to each other, but rarely ontological entities like singular
terms or properties.1 This means that our bitstring semantics goes farther into the
Aristotelian square by relating any kind of meaningful entities, beyond the sole cases
of propositions. This extension already occurred in the recent history of logic, when
the authors like Sesmat or Blanché showed that logical oppositions apply beyond
categorical and modal propositions to define a large range of concepts including
binary connectives (and, or etc.), ordering relations (greater than, lesser than etc.)
and the like (cf. [16]).

1 An analysis of objects in terms of oppositions has been made in [9]. This method could be applied
to the ontology presented in Sect. 4.
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Now, our Boolean approach to semantics means that whatever can be character-
ized by bitstrings may occur in such a logical square, including the sole Ss and P s.
Let x1 be any such term that can be defined by a set of 4 properties. Then, a logical
square for x1 may be illustrated as given in Fig. 2.

It should be clear that such a term like x1 does not have only one characteristic
square: its Boolean structure helps to determine the cardinality of its contraries,
subcontraries and subalterns (or superalterns), whilst every term has one and only
one contradictory.

And finally, a semantics for quantified predicates may also be afforded into BS
with formulas like ‘Every x1 is every x2’, ‘Every x1 is every x2’, ‘Some x1 is every
x2’ or ‘Some x1 is some x2’. Let ‘. . . x1 is---x2’ be such an expression including
quantifiers on both subject terms and predicate terms. Assuming that the extension
of the predicate term x2 is broader than that of x1, the above expressions may be
parsed into nested quantifiers such that:

‘. . . x1 is---x2’ is satisfied such that, for . . . x1 and---x2, β(x1 is x2) = �.

In syllogistics, the oppositions, as they are represented in the square (Figs. 1
and 2), play an essential role: among other things, they serve to prove imperfect
syllogisms for their validity. This is especially essential for the indirect modes (such
as Baroco and Bocardo). We will see in Sect. 3 that the meaning of the arrows in
CL is related to the directions of the lines in the square of opposition. In contrast
to traditional syllogistics, the arrows in CL can also be used to prove inferences of
extended syllogistics such as ‘. . . x1 is---x2’.

2.7 Objections and Answers

A number of objections may be raised upon the foundations of BS, however.
A first objection is about the usual distinction between material and formal truth.

How can it be sustained in the light of this semantics, given that any true sentence
is defined there in terms of �, whereas the latter symbol normally expresses formal
truth? A way to overcome this problem is to introduce dispositional predicates, by
distinction with real predicates or predicates actualized in the real world. Thus,
any object x of a given domain is to be defined as an ordered set of properties
that x can possess. Although this account may appear undesirable by introducing
modal expressions, one can also interpret what an object can possess in the light of
updated empirical data. For example, any number cannot be colored by virtue of
what numbers are supposed to be. Hence, numbers never satisfy properties having
to do with colors in any possible domain of interpretation, whilst a mere pencil may
be blue or not in a given domain of interpretation.
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Fig. 2 Square of Oppositions: (a) Oppositions between individuals. (b) Oppositions between
atomic propositions

A second objection is about the process of individuation. What are the necessary
and sufficient conditions for an object to be individuated in BS, according to the
length of its characteristic bitstring? By virtue of the Leibnizian law of identity,
any x is individuated only if its characteristic bitstring makes it different from all
the other objects in a given domain of interpretation. At the same time, if any
such x1 is to be characterized, then it is made different from any other object x2
whose characteristic bitstring is not that of x1. Another issue is whether any object
can always be characterized in concrete situations of natural language. But just as
logicians need not investigate what makes a sentence materially true or false outside
their logical system, BS need not explain how many properties a given object needs
in order to be characterized completely.

A third and last objection is about the concept of identity in itself. How can a
given object x be defined in BS without circularity, given that any set of properties
β1(x1) . . . βn(x1) characterizing bitstrings already assumes identity by stating that
βi(x1) �= βj (x1) for any compound properties βi(x1), βj (x1) of β(x). BS states
Leibniz’s law of identity, by redefining identity in terms of bitstrings. Thus,

x1 = x2 if, and only if, β(x1) = β(x2).
Nevertheless, the criterion of existence disappears from BS since such a logic of

terms does not take quantifiers as relevant parts of its language. So just as Quine said,
BS assumes that no entity may hold without identity, but unlike Quine, identity does
not assume existence in the sense that such a sentence as x = x holds whether x is
said to exist in the real world or not. This is, by passing, a way to avoid the difficulty
of existential import (cf. [5]) by assigning truth to sentences without assuming no
ontological commitment.

Once the Boolean semantics BS is set up, let us see how it can be implemented
into Lange’s Calculus CL. Then, we will talk about the advantages of combining
such diagrammatical and algebraic devices in logic.
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3 Basic Principles of CL

A CL diagram is a logic diagram that has the shape of a square (2D) or cube
(3D) to which various geometric forms can be applied. (For illustrative examples,
see Figs. 3, 4, 5, and 6.) First of all, a CL diagram consists of several rows
of boxes of different sizes that represent classes/sets/concepts and the objects
/members/individuals they are grounded in. CL diagrams can be divided into two
valid types, namely, regular and irregular diagram types. Both diagram types differ
in the number of objects/members/individuals (in the following ‘basics’) in the
bottom row of the diagram, which are constructed or structured objects. The more
basics a CL diagram has, the more rows with different larger classes/sets/concepts
(in the following ‘classes’) it has in the upper levels.

A regular CL diagram is based on 2n basics. Any CL diagram that does not
consist of 2n basics is considered irregular. The number of basics also determines the
size of the CL diagram: the more basics there are, the more classes the CL diagram
contains and the larger it is. CL diagrams can be enlarged at will.

Further geometric forms can be applied to the various boxes, which then
represent logical relations within the diagram. Up to now, arrows, lines, tensors
and shadings were used in CL to represent propositions, logical connectives or
general content information for propositional calculus or predicate logic. Many
more elements are conceivable.

In the following, we use arrows and describe the basics and the classes in a
regular 2D CL diagram. So, we only use a few possible functions of the logic
diagram in order to show how BS works in CL.

3.1 Basics

Basics are represented by solid boxes, i.e. , in the bottom row of a CL diagram.
Unlike classes (see Sect. 3.2), basics do not contain dotted lines. At first sight,
(1) basics can be interpreted as having some similarities to Aristotle’s primary
substances, Boethius’s species specialissima (or individua) or maybe to Russell’s
proper names (cf. Sect. 2.1) and (2) the bottom row, including a series of basics
( , , . . .), can be interpreted as having some similarities to what has been called
a ‘fundamental layer’ [4] or a ‘(partial) ultimate ontological basis’ [23]. But these
are only aids to understand what basics can be. For unlike these interpretations and
debates mentioned above, CL does not use logic to argue what an ontology is that
represents the world, but what logical assumptions we can make when we choose
an ontology that can represent the world (cf. also Sect. 4.2).

Another given aid of understanding basics is BS as described in Sect. 2: each
basic can be defined by a bitstring, the length of which is determined by the number
of basics in the CL diagram. The bitstring of a basic always has a Hamming weight
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of 1, where the position of 1 in the bitstring determines the position of the basic’s
solid box in relation to all other basics in the CL diagram.

Basics can be defined in BS not by their mere existence, but by a property (cf.
Sect. 2.1). In the variant of the BS presented here, it is the property that they are
located at a certain position within the diagram. More precisely, each digit of a
bitstring denotes one property: since each nth digit of a bitstring corresponds to the
nth position of a basics in a CL diagram, each digit can be understood as an answer
to the question whether this basic is meant or not. The position of a basic in a CL
diagram is represented by a solid box in the lowest row. Diagrammatically speaking,
each basic has its own solid box; in terms of BS, each basic has its own bitstring that
functions as a unique identifier, thereby distinguishing each basic from all others
into an ordered sequence from left to right or from right to left (cf. the DNA example
in Sect. 2.3).

Fig. 3 A regular CL8 diagram (4× 8 matrix)

Let a regular CL diagram be a m × n matrix aij with m for horizontal rows and
n for vertical columns (cf. [31, sect. 1.3]), such that

aij =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ .

A bitstring with a Hamming weight of 1 that begins with 1 at the first bit position
denotes the basic at the solid box at the outer left edge of the lowest row, am1; a
bitstring with the same Hamming weight, which is flagged 1 at the last bit position,
is located at the outer right edge, amn. The Hamming distance between two basics
is 2: to generate a basic’s bitstring to the right of am1, i.e. am2, the first bit of am1
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must be converted from 1 to 0 and the second bit must be converted from 0 to 1.
To generate a basic bitstring to the left of amn, the last bit of amn must be converted
from 1 to 0 and the penultimate 0 of the bitstring must be converted from 0 to 1. All
basics with w = 1 and d = 2 denote solid boxes in the CL diagram located between
am1 and amn. A bitstring with w = 0 is outside the CL diagram, so that basics are
all ways of forming minimal Hamming weights in CL.

Example In a regular CL diagram with 23 = 8 basics, each bitstring has
a length of n = 3, so that each following diagram will be an instance of
a CL2n diagram. In the CL8 diagram or 4 × 8 matrix of Fig. 3, there are
eight solid boxes denoting basics each with a Hamming weight of 1, i.e.
10000000, 01000000, 00100000, . . . , 00000001. The basic at the lower left corner
is in CL8 = a41 = 10000000, and the basic at the lower right corner is in
CL8 = a48 = 00000001. The bitstring 01000000 is read from the left, at the
second position, i.e. a42. The bitstring 00001000 is read from the left, at the fifth
position, i.e. a45.

3.2 Classes

Any solid box that contains dotted lines is not a basic but a class. Dotted lines
indicate dotted boxes, but most of their sides are covered by the solid box in which
they are contained, e.g. and ∼= . Such a solid box contains two or more
basics, which are mirrored by dotted boxes within the solid box of the class. In the
variant of BS, which we apply here for CL, the following applies: only solid boxes
hold a bitstring, i.e. basics or classes. Each bitstring of a class is the disjunction of
the bitstrings of two or more basics. For each class, w < 1. The higher the Hamming
weight, i.e. the more dotted boxes a solid box contains, the more disjuncted basics
the bitstring of a class denotes.

In the following, we distinguish between rows (m) and levels (l). Rows are
horizontal series of dotted or solid boxes within the matrix. Levels denote the
horizontal series of classes with the help of solid boxes. All solid boxes with the
same Hamming weight form a level of classes. The higher the Hamming weight of
a box, the higher the level in the CL diagram.

Basics have a Hamming weight of 1 and are therefore located within the first
level seen from the bottom-up. In the level above there are only bitstrings with w =
2 in which two basics are disjuncted. In the third row above, there are bitstrings
with w = 4 etc. More generally, at any level (lα), there are only bitstrings with a
Hamming weight of 2α−1. If there is only one solid box in the highest row of the
matrix (m = 1), then it has the maximum Hamming weight corresponding to the
bitstring length.

Example In a regular CL8 diagram (Fig. 3), the classes in the second
level series (l = 2) consist of bitstrings with a Hamming weight of 2:
11000000, 00110000, 00001100, 00000011. In the CL8 diagram, the classes with
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w = 4 form the third level series (l = 3): 11110000, 00001111 and the top class
(l = 4) has the maximum Hamming weight, i.e. 11111111.

For each higher class of the CL8 diagram top-down applies in relation to all other
classes:

(l = 4): {11111111} = {11110000 ∨ 00001111}
(l = 3): {11110000 = (11000000 ∨ 00110000), 00001111 =

(00001100 ∨ 00000011)}
(l = 2): {11000000 = (10000000 ∨ 01000000), 00110000 =

(00100000 ∨ 00010000), 00001100 =
(00001000 ∨ 00000100), 00000011 =
(00000010 ∨ 00000001)}

Bottom-up applies to all classes within a row or level:

(l = 1): {10000000, 01000000, 00100000, 00010000, 00001000,
00000100, 00000010, 00000001}

(l = 2): {11000000, 00110000, 00001100, 00000011}
(l = 3): {11110000, 00001111}

3.3 Arrows

So far we have only examined the ontology of CL, and we have presented in
the given examples the regular order of basics and classes according to the JEPD
(Jointly Exhaustive and Pairwise Disjoint) principle (cf. [14]). CL has this advantage
in comparison to ordinary ontologies, however, that it intuitively offers a spatial
structure to represent relations between solid boxes (basics or classes) in the form
of propositions. Arrows can be used to make the information explicit, which are
only given implicit in the ontology. It will be shown that the arrows provide more
information about relations than is needed for the construction of the CL diagram
(cf. Sects. 3.1–3.2).

The relations between two boxes are always displayed with the help of straight
arrows. With these straight arrows, the shortest connection between two solid boxes
is searched, and all other possible connections with straight arrows (between dotted
boxes inside the solid ones) should be considered. The arrow shaft shows the
first term of a proposition and the arrowhead the second term. The arrows have a
different meaning depending on the direction. Similar to the square of opposition
(cf. Sect. 2.6), one can generally say that vertical arrows are positive, and horizontal
and transversal arrows are negative. In detail, the following applies:

(1) If arrows go bottom-up from all dotted boxes of a lower solid box to some
dotted boxes of a higher solid box, all lower dotted boxes are included in the
higher box.
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Example: The proposition ‘11000000�11111111’, i.e. ‘All 11000000 is some
11111111’, can be represented by two arrows leading from the lower boxes
a31, a32 to the boxes a11, a12.

(2) If arrows go bottom-up from some dotted boxes of a lower solid box to some
dotted boxes of a higher solid box, some lower dotted boxes are included in the
higher box.
Example: The proposition ‘11000000Ö11111111’, meaning ‘Some 11000000
is some 11111111’, could be represented by an arrow going from the lower box
a31 to the box a11.
NB!: (2) is a partial expression of (1) since between 11000000 and 11111111 a
further arrow between a32 and a12 can be drawn.

(3) If arrows go top-down from some dotted boxes of a higher solid box to dotted
boxes of a lower solid box, this means that some higher boxes correspond to
some lower boxes.
Example: The proposition ‘11110000Ö00110000’, meaning ‘Some 11110000
is some 00110000’, can be represented by two arrows going from the higher
box a23, a24 to the boxes a33, a34.

(4) If arrows go horizontally from one box to another, the proposition is completely
negative.
Example: The proposition ‘11110000�00001111’, i.e. ‘No 11110000 is
any 00001111’, can be displayed with one arrow going from the boxes
a21, a22, a23, a24 to the boxes a25, a26, a27, a28.

Fig. 4 A CL8 diagram with arrows

(5) If an arrow crosses transversally from one box to another and no vertical arrow
can be drawn between these two boxes, the proposition is completely negative.
Example: The proposition ‘10000000↗↙00000011’, i.e. ‘No 10000000 is any
00000011’, can be represented by an arrow leading from the box a41 to the
boxes a37, a38.
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NB! ‘10000000↗↙00000011’ = ‘10000000�00000011’ because ‘10000000Ö
00000011’ is impossible (cf. also below (6)).

(6) If an arrow crosses transversally from one box to another and a vertical arrow
can be drawn between these two boxes, the proposition is partially negative.
Example: The proposition ‘00001000↗↙00001111’, i.e. ‘Some 00001000 is not
some 00001111’, will be represented by an arrow leading from the box a45 to
the boxes a27, a28.
NB! ‘00001000↗↙ 00001111’ �= ‘00001000�00001111’ because ‘00001000Ö
00001111’ is possible.

It must be pointed out that we have six different interpretations of arrows,
although there are only four different arrow directions, corresponding to the
Aristotelian propositions (cf. Sect. 2.6). But this is not untypical for logic diagrams
(cf. [3, Sect. 3.2.1]). The reason is that either one can draw less arrows than possible
(1 and 2) or the meaning of an arrow depends on the possibility of implicit arrows
between given boxes (5 and 6). So, we can either make less explicit than implicitly
present (1 and 2) or consider more implicitly than should be made explicit (5 and
6). In any case, we can already see from the bitstrings which relations, expressed by
arrows, are possible at all. In general, the following principles apply to the six types
of arrows:

(1) Each 1-position of the first bitstring must also be a 1-position of the second
bitstring, and the second bitstring must have a higher Hamming weight than the
first. (All 1-bits are made explicit by arrows.)

(2) Each 1-position of the first bitstring must also be a 1-position of the second
bitstring, and the second bitstring must have a higher Hamming weight than the
first. (Only some 1-bits are made explicit by arrows.)

(3) Some 1-position of the first bitstring must also be a 1-position of the second
bitstring, and the first bitstring must have a higher Hamming weight than the
second one.

(4) Each 1-position of a bitstring must be a 0-position in the second bitstring. Both
bitstrings must have the same Hamming weight.

(5) Each 1-position of a bitstring must be a 0-position in the other bitstring and vice
versa. Both bitstrings must have the same Hamming weight.

(6) Each 1-position of one bitstring must be a 0-position in the other bitstring and
vice versa. Both bitstrings cannot have the same Hamming weight.

4 Testing Inferences with CL4

CL can be used for very different purposes and for different logics. Lange has
already used his logic machine for an extended syllogistic with numeric definite
predicates as well as for propositional logic and modal logic [19]. Regardless of
which logic is used, CL can be applied to test the validity of inferences, supplement
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incomplete inferences or extrapolate additional information from given inferences.
The following subsections are limited to extended syllogisms (cf. also [20]), and CL
is used only for the purpose of testing inferences consisting of two premises and one
conclusion. To show how this works, we use four examples each to demonstrate the
validity and invalidity of inferences.

In order to save space, we will work with the smallest possible CL diagram,
in which all forms of proposition shown in Sect. 2 can be applied. This smallest
possible CL diagram is an m × 4 matrix with a bitstring length of 4 and is called
CL4. The following color assignment is suitable for the project of testing inferences
and the following rule is set up.

Color assignment:
The first premise is displayed in blue, the second premise in green and the
conclusion in red.

Rule (R):
Three propositions form a valid inference if (RI) all three propositions can be
displayed by arrows in the CL diagram and (RII) two arrow ends meet each in
three different solid boxes.

By using R, we now have a possibility to prove the validity of given inferences. If
three propositions satisfy the RI subrule, they can be interpreted as true judgements
about the ontology of the CL diagram. If they also fulfil subrule RII, the three arrows
form a valid inference pattern in CL.

Fig. 5 Examples: (a) Ex1. (b) Ex2

In this way, on the one hand, the truth and falsehood discussed in Sect. 2.4 can
be examined diagrammatically and, on the other hand, the technique for proving
inferences mentioned at the end of Sect. 2.6 can both be replaced and applied to
inferences of extended syllogistics.
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4.1 Examples

We now take the following four inferences as given and check with CL4 whether
these inferences are valid or not.

Ex1 (Fig. 5A): 0010↗↙1100 and 1000�1100, therefore 0010�1000.
Ex2 (Fig. 5B): 1100�0011and 1100Ö0100, therefore 0100↗↙0011.
Ex3 (Fig. 6A): 0011�1111and 0010�0011, therefore 0010�1111.
Ex4 (Fig. 6B): 0011↗↙0010 and 0011Ö1111, therefore 1111↗↙0010.

Each example corresponds to one of the CL4 diagrams in Figs. 5 and 6. In each
diagram, it can be seen that all three corresponding propositions of Ex1–4 can be
displayed. The rule (RI) is therefore fulfilled in all examples. Since in three different
solid boxes of each diagram two arrow ends meet, the rule (RII) for Ex1–4 is also
fulfilled.

Fig. 6 Examples: (a) Ex3. (b) Ex4

Let us take a look at the following four inferences for comparison. All four
examples are a repetition of Ex1–4, but one proposition was altered in each case.
For convenience, the changed proposition has not been color-marked. Therefore
Ex5–8 are only partially identical with Figs. 5 and 6.

Ex5: 0010↗↙1100 and 1000�1100, therefore 0010�1000.
Ex6: 1100�0011and 1100Ö0100, therefore 0100↗↙0011.
Ex7: 0011�1111and 0011�1111, therefore 0010�1111.
Ex8: 1000�1100and 0011Ö1111, therefore 1111↗↙0010.

All four given examples, Ex5–8, show invalid inferences: in Ex5, the second
premise cannot be represented in a CL diagram, since it is required to draw a
horizontal arrow between 1000 and 1100, which is not possible. 1000 and 1100
are on different levels of the diagram and cannot represent a universal negative
statement since 1100 is 1000 ∨ 0100. Also, the first premise of Ex6 is false,
because 1100 and 0011 are on the same level and both exclude each other. A
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universal positive proposition with bottom-up arrows between 1100 and 0011 is
therefore impossible to display in CL4. Ex5 and Ex6 therefore both do not fulfil the
requirements of RI.

In Ex7 and Ex8, all premises can be represented in CL4, but they do not fulfil
RII: in Ex7, premises 1 and 2 are identical, so that in box 0010, the arrow shaft
of the conclusion remains unconnected, but in box 1111 three arrowheads meet. In
Ex8, the first premise has no connection to the other remaining arrows, so that there
is no valid inference here either.

4.2 Application

In Sect. 4.1, we have shown how to test inferences with CL using four valid (Ex1–
4) and four invalid examples (Ex5–8). We started from bitstring inferences which
were given and constructed a CL4 diagram for each in the second step in order to
prove whether the inferences are valid or not. Of course, one can also first draw a
CL diagram with arrows and then translate the diagram in inferences including a
bitstring semantics.

A practical application of CL now consists of assigning the bitstring to an
ontology or taxonomy that corresponds either to our natural language usage or to
specific domain ontologies. As an example for CL4, one could use the following
ontology of organisms which we will call OrganOnt: 1111 = Organisms, 1100 =
Animals, 0011 = Plants, 1000 = terrestrial animals, 0100 = aquatic animals, 0010 =
land plants and 0001 = aquatic plants. As mentioned in Sect. 3.1, one can understand
the 1-bit of the basics, 1000, . . . , 0001, as a property to be represented by a certain
box within the CL diagram. Similar to Sects. 2.2–2.3, however, the 1-bit of the
basics can also be interpreted as referring to objects which can only fulfil one of the
following properties: living on land, living in water, growing on land and growing
in water.

If we translate our first four examples into a natural language, they would read in
terms of an extended syllogistic (cf. [25]) as follows:

Ex1*: No land plant is any animal. All land animals are some animals. No land
plant is any land animal.

Ex2*: No animal is any plant. Some animals are all aquatic animals. So no aquatic
animal is any plant.

Ex3*: All plants are some organisms. All land plants are some plants. So all land
plants are also some organisms.

Ex4*: Some plants are not land plants. Some plants are some organisms. So some
organisms are not land plants.

If one also translates Ex5–8 into a natural language ontology, one quickly finds
out why they cannot be valid. We will therefore not discuss these invalid examples
by using OrganOnt.
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Of the valid examples, Ex1*–4*, only Ex4* is probably worth discussing, since
it does not necessarily have to be accepted in the normal language form. At least
in natural language, it is unclear what the quantified subject of the second premise
is dealing with. Furthermore, the proposition would also be valid if one uses the
universal quantifier ‘All’. Regardless of which quantification of the subject is used
in the second premise, the inference would be much clearer in everyday language if
it indicates that all three judgements are about the same subject, i.e. ‘Some plants
are not land plants. But these plants are also organisms. So some organisms are not
land plants’.

In the CL diagram and in the bitstrings, however, we see immediately that
all three propositions of Ex4* are about the same subject: the arrow shafts, i.e.
the diagrammatic subjects, are all in the last dotted box of the diagram, and
the bitstrings of the negative propositions (first premise and conclusion) show a
Hamming distance to the fourth bit. Thus, the CL diagram and the corresponding
bitstrings indicate implicit information, namely that all three propositions of Ex4
or Ex4* deal with the box a34 = 0001, which is not explicitly mentioned in one
of the propositions. Aquatic plants in OrganOnt are thus the truthmaker for all
three propositions in Ex4 or Ex4*. In other words, Ex4 or Ex4* is valid, since they
are a shortening of the valid inference ‘0011� 0010 and 0001Ö1111, therefore
1111↗↙0010’. This information gain can be interpreted diagrammatically as a free
ride (cf. [29]).

5 Conclusion and Outlook

A combination of the diagrammatic calculus CL with a bitstring semantics has been
endorsed in this chapter, the result of which is the so-called Bit-CL. It purports
to augment the explanatory virtues of Lange’s cubes with those of a Boolean set
of bitstrings, in such a way that logic diagrams can be both justified in terms of
bitstrings and naturally extended to the logical relations of oppositions.

After explaining its basic principles, the aim of such a non-standard semantics
was to revisit the foundations of formal ontology through the key concept of bit.
Thus, the latter has been applied for characterizing the special class of categorical
propositions, as a way to qualify both the precondition of existence for identifying
objects and the extensional definition of classes in terms of their elements. Some
expected objections have been presented and replied to, although some other ones
could have been exposed as well.

To concentrate on the detailed discussion of bitstring semantics and its appli-
cation using the property of the location or position of the basics, we have not
introduced a new CL system here but explained a diagrammatic version of extended
syllogistics with the help of bitstrings. Future work will thus be left to review the
formal system of this syllogistics and to discuss how to use Boolean algebra to
compute inferences in CL.



192 J. Lemanski and F. Schang

Acknowledgments We would like to express our gratitude to the audience of the 6th World
Congress on the Square of Opposition in Crete 2018 and to the journal’s anonymous reviewers
for comments that contributed to the improvement of this chapter.

References

1. G. Allwein, J. Barwise, eds., Logical Reasoning with Diagrams. Oxford Studies In Logic And
Computation Series, 1996.

2. Barbot, N., Miclet, L., Prade, H., Gilles, R. (2019), A New Perspective on Analogical
Proportions, in Kern-Isberner, G., Ognjanovi, Z., ed. ‘Symbolic and Quantitative Approaches
to Reasoning with Uncertainty’. ECSQARU 2019. LNCS, vol. 11726, Springer, Cham, 163–
174.

3. P. Bernhard, Euler-Diagramme: Zur Morphologie einer Repräsentationsform in der Logik.
Paderborn: mentis 2001.

4. R. Cameron, Turtles all the Way Down: Regress, Priority and Fundamentality, The Philosoph-
ical Quarterly 58 (2008), 1–14.

5. S. Chatti, F. Schang, The Cube, the Square and the Problem of Existential Import, History and
Philosophy of Logic 34:2 (2013), 101–132.

6. M. Correia, The Proto-Exposition of Aristotelian Categorical Logic, in: J.Y. Béziau, G. Basti
(eds) The Square of Opposition: A Cornerstone of Thought. Cham: Birkhuser 2017, 21–34.

7. F. Dau, A. Fisch, Conceptual Spider Diagrams. Eklund P., Haemmerl O. (eds) Conceptual
Structures: Knowledge Visualization and Reasoning. ICCS 2008. Lecture Notes in Computer
Science, vol. 5113. Springer, Berlin, Heidelberg 2008, 104–118.

8. L. Demey, H. Smessaert, Combinatorial Bitstring Semantics for Arbitrary Logical Fragments.
Journal of Philosophical Logic 47:2 (2018), 325–363.

9. L. Demey, From Euler Diagrams in Schopenhauer to Aristotelian Diagrams in Logical
Geometry, in J. Lemanski (ed.) Language, Logic, and Mathematics in Schopenhauer. Basel:
Birkhäuser, 2020, 181–207.

10. O. Goldin, The Pythagorean Table of Opposites, Symbolic Classification, and Aristotle,
Science in Context 28, 2015, 171–193.

11. I. Hacking, Trees of Logic, Trees of Porphyry, J. Heilbron (ed.) Advancements of learning.
Firenze, L.S. Olschki, 2007. p. 219–261.

12. S. Cave, M. Jamnik, J. Hernandez-Orallo, Artificial intelligence is Growing up Fast: What’s
Next for Thinking Machines?, Research Horizons 35 (2018), 26–27.

13. T. Hofweber, A Puzzle about Ontology, Noûs 39 (2005), 256–283.
14. L. Jansen, Classifications, in Munn, K., Smith, B. (ed.) Applied Ontology: An Introduction,

Ontos, Heusenstamm 2008, 159–173.
15. L. Jansen, J. Lemanski, Calculus CL as a Formal System, in A.-V. Pietarinen, P. Chapman,

L. Bosveld-de Smet, V. Giardino, J. Corter, S. Linker (eds.) Diagrammatic Representation
and Inference, 11th International Conference, Diagrams 2020, Tallinn, Estonia, August 24-28,
2020, Proceedings 2020. Cham: Springer 2020, 445–460.

16. D. Jaspers, P.A.M. Seuren, The Square of Opposition in Catholic Hands: A Chapter in the
History of 20th-Century Logic, Logique et Analyse 233 (2016), 1–35.

17. J.C. Lange, Inventvm Novvm Quadrati Logici Vniversalis, Giessen (Gissae-Hassorum), Müller
1714.

18. J. Lemanski, Calculus CL—From Baroque Logic to Artificial Intelligence, Logique & Analyse
249–250 (2020), 109–127.

19. J. Lemanski, Euler-Type Diagrams and the Quantification of the Predicate, Journal of
Philosophical Logic 49:2, 2020, p. 401–416.

20. J. Lemanski, Extended Syllogistics in Calculus CL, in: Daniele Chiffi, M. Carrara, C. De Florio
(eds.) Proceedings of Assertion and Proof 2019, Lecce. Special Issue of Journal of Applied
Logics - IfCoLoG Journal of Logics and their Applications 8:2 (2021), 557–577.



A Bitstring Semantics for Calculus CL 193

21. J. Lemanski, Oppositional Geometry in the Diagrammatic Calculus CL, South American
Journal of Logic 3:2 (2017), 517–531.

22. K. Mineshima, M. Okada, R. Takemura, A Diagrammatic Inference System with Euler Circles,
Journal of Logic, Language and Information 21:3 (2012), 365–391.

23. A. Paseau, Defining Ultimate Ontological Basis and the Fundamental Layer, The Philosophical
Quarterly 60:238 (2010), 169–175.

24. Prade, H., Marquis, P., Papini, O. (2020), Elements for a History of Artificial Intelligence, in P.
Marquis. O. Papini, H. Prade (eds.) A Guided Tour of Artificial Intelligence Research. Bd. 1:
Knowledge Representation, Reasoning and Learning, Springer, 1–43.

25. I. Pratt-Hartmann, The Hamiltonian Syllogistic, Journal of Logic, Language and Information
20 (2011), 445–474.

26. J. Schaffer, On What Grounds What, in D. Manley, D. J. Chalmers, R. Wasserman (eds.),
Metametaphysics: New Essays on the Foundations of Ontology. Oxford University Press, 2009,
347–383.

27. F. Schang, Abstract Logic of Oppositions. Logic and Logical Philosophy 21 (2012), 415–438.
28. F. Correia, B. Schnieder: Grounding: An Opinionated Introduction, in F. Correia and B.

Schnieder (eds.), Metaphysical Grounding: Understanding the Structure of Reality. Cambridge
University Press, 2012, 1–37.

29. A. Shimojima, Semantic Properties of Diagrams and Their Cognitive Potentials. Stanford,
CSLI Publications, 2015.

30. S.-J. Shin, The Logical Status of Diagrams, Cambridge University Press, 1994.
31. G. Strang, Introduction to Linear Algebra, 5th ed., Wellesley-Cambridge Press, 2016.
32. J.J. Vlasits, Platonic Division and the Origins of Aristotelian Logic, UC Berkeley 2017,

ProQuest ID: https://doi.org/Vlasits_berkeley_0028E_17182. Merritt ID: https://doi.org/ark:/
13030/m5zm0ckf.

33. M.V. Wedin, Aristotle’s Theory of Substance: The Categories and Metaphysics Zeta, Oxford:
Oxford Univ. Press, 2004.

34. S. Yablo, Does Ontology Rest on a Mistake?, Proceedings of the Aristotelian Society 72 (1998),
229–261.

https://doi.org/Vlasits_berkeley_0028E_17182
https://doi.org/ark:/13030/m5zm0ckf
https://doi.org/ark:/13030/m5zm0ckf


Logical Diagrams, Visualization Criteria,
and Boolean Algebras

Roland Bolz

Abstract This paper considers logical diagrams as a method for visualizing infor-
mation concerning logical/linguistic/conceptual systems. I introduce four criteria
for assessing visualization: (1) completeness, (2) correctness, (3) lack of distortion,
and (4) legibility. Next, I present well-known families of diagrams, based on the
geometrical figures of (a) the hexagon, and (b) the tetrakis hexahedron. These two
families of diagrams are generally regarded as exemplars in the logical geometry
literature. To understand better why they succeed so well at visualizing logical
information, they are presented as visualizations of complete (finite) Boolean
algebras. This also establishes the connection between the combinatorial concept
of partition and the logical concept of opposition (i.e., contradiction, contrariness,
and subcontrariness). Finally, the paper suggests that the two geometrical figures in
question are part of a larger family of polytopes with deep connections to Boolean
algebras.

Keywords Oppositional geometry · Logical geometry · Logical hexagon ·
Logical tetrakis hexahedron · Opposition · Partition · Boolean algebra ·
Visualization · Diagram

Mathematics Subject Classification (2000) 03G05 · 03E02 · 03B05 · 52B11

R. Bolz (�)
Humboldt University Berlin, Berlin, Germany
e-mail: rolandbolz@gmail.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J.-Y. Beziau, I. Vandoulakis (eds.), The Exoteric Square of Opposition, Studies
in Universal Logic, https://doi.org/10.1007/978-3-030-90823-2_9

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90823-2_9&domain=pdf
mailto:rolandbolz@gmail.com
https://doi.org/10.1007/978-3-030-90823-2_9


196 R. Bolz

1 Introduction1

The purpose of logical diagrams such as the famous square or hexagon of opposition
is to visualize information about a system of logical expressions, concepts, or
objects. In that sense, the use of diagrams in logic is very much like the use of bar
charts, boxplots, etc. in statistics. A diagram is not used to generate new knowledge
(to derive new facts) but to communicate a set of available data effectively and
without visual clutter. As in statistics, such visualizations should be assessed
according to four criteria:

1. Completeness – are all the relevant data shown by the diagram?
2. Correctness – are the data displayed in the diagram correct?
3. Absence of distortion – does the diagram contain as few as possible visual

elements that may be misinterpreted by its reader?
4. Legibility – how easy is it to read the data off the diagram?

Since it is easy to create diagrams which are incomplete and incorrect and/or
distort the data, there exists an independent subject of inquiry which studies rules
and guidelines for creating felicitous diagrams. The potential for error warrants
separate methodological inquiry.2

Another way to phrase the above is as follows: if logical diagrams such as the
square and hexagon are to become part of a shared language among logicians and
linguists, we will need transparent criteria concerning successful visualization. The
purpose of this paper is to contribute to developing these criteria by presenting
two classical diagrams which perform surprisingly well in this regard. To establish
this, I strongly emphasize the connection between logical diagrams and small (i.e.,
finite) Boolean algebras. It appears that this is the correct mathematical basis on
which to assess visualizations. This perspective also results in a relative emphasis
on the connection between logical geometry and the fundamental concepts of
combinatorics (subset, set partition, set permutation).

1 I would like to thank Alessio Moretti for stimulating discussions during the 2018 conference
on the square of opposition. This paper was also discussed in the logic colloquium of Prof. Dr.
Karl-Georg Niebergall at the Humboldt-University of Berlin. Finally, I would like to thank two
anonymous referees for their valuable comments.
2 Logical diagrams of the square, hexagon, etc. kind have only rarely been explicitly studied
as a method for visualization of (independently existing) logical subject matter. It seems that
the labels “oppositional geometry” (Moretti, [8]) and “logical geometry” (Smessaert & Demey,
www.logicalgeometry.org) are somewhat misleading with regard to this matter. What is at stake
here is neither a division of geometry which focuses on logic or opposition nor a form of logic
which is geometrical in its approach, as if geometrical methods are being used to solve logical
problems or the other way around. The study of visualization techniques in statistics is called data
visualization and not statistical geometry (or geometrical statistics). There is no reason not to treat
the use of diagrams in logic as a form of data visualization also. The concept of visualization is
really most apt here, because the emphasis is on the nontrivial character of the process of turning
nonvisual data (in this case, logical data) into visual data (i.e., images). That said, whenever I refer
to the existing literature, I use the label “oppositional/logical geometry.”

http://www.logicalgeometry.org
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The paper has four parts. The first part describes different facets of visualizing
logical structures in diagrams with the goal of separating geometrical considerations
from abstract-structural ones. The following two sections describe the hexagon and
the tetrakis hexahedron in detail. The uniqueness of the description lies in the fact
that the paper treats both diagrams in relation to the Boolean algebras on P({a, b, c})
and P({a, b, c, d}).3 I believe that this allows one to describe the connection between
abstract logical (and combinatorial) structure and geometrical structure in a more
systematic and simple fashion than has been done so far. In the final section, I briefly
focus on the idea that certain diagrams can be “contained in” other diagrams.

The subject treated in this paper has been studied most intensely by Alessio
Moretti in his thesis and subsequent papers [7, 8] and by Hans Smessaert and Lorenz
Demey [3–6, 9, 10] in their many publications on logical geometry. My main aim
is to simplify what is already known. The aforementioned authors have contributed
tremendously to the classification and understanding of existing diagrams. Here, I
foreground the question “what makes a really good diagram?” against the larger
classificatory effort. And I show how the usual concepts of contrariness and
subcontrariness can be elegantly described using the combinatorics of set partitions.
So far, no texts have been published which contain systematic criteria for assessing
diagrams, so I aim to fill this gap by making a number of observations concerning
diagrams which, according to scholarly consensus, perform very well.

2 Visualizing Logical Structure

A typical visualization of logical data in a diagram involves the following
aspects/steps:

1. The context is usually (a fragment of) some natural or artificial language in
which certain expressions occur among others. Usually, a small number of
expressions is chosen, because of the strong structural relations between them.
The goal is then to exhibit the relations between these expressions.

2. The isolated logical expressions may first be regarded as a nonspatial relational
structure. The structure consists of a domain (the expressions) and relations
between them, such as implication and opposition (contradiction, contrariety,
etc.) or other “Aristotelean relations” (Smessaert & Demey). It is important to
see that this abstract structure is not yet the diagram but simply a finite relational
structure. Depending on what expressions and relations are lifted from the larger
linguistic/logical context at 1., one may get a canonical type of structure or a
more nonstandard type of structure.

3 P(x) is the power set of x.
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3. Next, a geometric entity (again, not yet a diagram) is chosen which fits the
abstract structure from 2. For example, if the structure contains five expressions,
then the geometric entity should be a polytope (shape) with five vertices. Since
the diagram will be printed on paper, the most typical geometric figures are two-
dimensional polygons or projections of three-dimensional polyhedra.

4. Finally, a diagram is designed which is based on this geometric entity. Typically,
the vertices are labeled with the chosen expressions, and the edges are given
different colors or are turned into arrows. Perhaps further lines (e.g., diagonals)
are added to indicate further relations from 2.

A quick survey of the literature shows that most authors have focused on steps
1 and 4. Typically, the step from choosing expressions to presenting a diagram is
direct, without any extended reflection on the abstract structures and the features
of the purely geometrical objects behind the diagrams. The goal of this paper is to
show that a detailed consideration of the link between certain algebraic structures
and certain polytopes greatly aids our understanding of successful visualization.
With regard to the geometric side of logical geometry, I emphasize a combinatorial
interpretation over a logical one.

In the following sections of the paper, I present diagrams based on the hexagon
and the tetrakis hexahedron, focusing on the link between the abstract structural
dimension and the geometric dimension (points 2 and 3 of the above list). These two
types of diagrams are the most complete up to a certain level of complexity. It will
become apparent that these correspond to the Boolean algebras on the power sets of
three- and four-element sets, respectively. Finally, and perhaps most interestingly,
I make a number of observations with regard to the lack of distortion in these
diagrams. Above all, it is striking that many of the visual (i.e., geometric) features
of these diagrams correspond to relevant logical (or combinatorial) features of the
abstract structures. I introduce several connections that seem to have escaped notice
so far (especially in relation to set partitions and set permutations). As such, these
two (families of) diagrams are exemplars of effective visualization in the sense of
the four criteria completeness, correctness, absence of distortion, and legibility.

3 The Logical Hexagon

An important starting point for the recent renaissance in the study of logical
diagrams descending from Aristotle’s square is the discovery of a family of hexagon
diagrams (see [1] and [2]). The latter are usually presented as natural completions
or extension of square diagrams. Let us now examine two such hexagon diagrams
in order to describe their common structure.

The following figure shows the completion of a square to a hexagon (Fig. 1):
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Fig. 1 The completion of a square diagram to a hexagon diagram

Here is a quick reminder of the meaning of the arrows and colored lines:

– A black arrow signifies logical consequence.
– A red line (contradictories) signifies that the two expressions:

• Cannot both be true.
• Cannot both be false.

– A blue line (contraries) signifies that the two expressions:

• Cannot both be true.
• Can both be false.

– A green line (subcontraries) signifies that the two expressions:

• Can both be true.
• Cannot both be false.

The diagram displays six expressions with four different relations between them.
This much is manifest. However, is this abstract structure, with the given relations,
a familiar mathematical structure – something canonical? The answer is that it is the
finite Boolean algebra of eight elements with two of its eight elements (True and
False) omitted. To see this, consider the following Hasse diagram (Fig. 2):

Fig. 2 Hasse diagram for
Fig. 1
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The arrows in this diagram are the black arrows in the previous diagram (plus
“trivial” arrows from and to T and F). Transitivity and reflexivity of the consequence
relation are implicit. The diagram depicts a complete Boolean algebra:

– The arrows form a poset (the consequence relation is reflexive, transitive, and
antisymmetric).

– Each pair of elements has a greatest lower bound and a least upper bound. This is
not immediately obvious from the diagram, because conjunction and disjunction
do not appear in the expressions that label the vertices of the hexagon. However,
upon inspection and this is a crucial fact about the structure, one surmises that
for each conjunction/disjunction of two formulas, one finds a logically equivalent
expression already in the structure. For example, a ≤ b is logically equivalent to
a < b ∨ a = b. The usual approach is to treat the formulas as representatives for
equivalence classes of formulas (where equivalence is logical equivalence).

– The structure has a top and a bottom (T and F, respectively).
– Disjunction and conjunction are distributive (an assumption about conjunction

and disjunction in the source theory, which we take to be classical).
– Each element a has a complement b, such that a ∧ b (or its equivalent)

is F and a ∨ b (or its equivalent) is T (this corresponds to the relation of
contradictoriness).

The generality of the Boolean background of hexagon diagrams can be illustrated
by way of another (more familiar) example, this time using the classical quantifier
hexagon (Figs. 3 and 4):

Fig. 3 Quantifier hexagon
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Fig. 4 Hasse diagram for quantifiers

Any hexagon in which the arrows and lines correctly display the aforementioned
logical relations can be regarded as a Boolean algebra of this type. Hence, it will
be useful for our purposes to choose a canonical representation of this structure.
The natural candidate for this purpose is the inclusion relation on the powerset of a
three-element set. Here are the Hasse diagram and the hexagon (with and without
universal and empty sets):

Fig. 5 Canonical hexagon
for {a, b, c}
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Fig. 6 Hasse diagram for {a,
b, c}

Focusing on the hexagon now, the arrows and colored lines receive a different
but related interpretation:

– A black arrow means inclusion.
– A red line means that the two sets are complements relative to {a, b, c}.
– A blue line means that:

• The intersection of the two sets is empty.
• The union of the two sets is not {a, b, c}.

– A green line means that:

• The intersection of the two sets is non-empty
• The union of the two sets is {a, b, c}.
A set theorist will point out that inclusion and complementation (black and red)

are canonical concepts but that the blue and green lines signify relations that are
a bit nonstandard. We can give the following definitions for these relations for the
general set-theoretical case4:

Definition 1 (Contrariness) x and y are contrary in z iff:

• x ⊆ z and y ⊆ z
• x �= y
• x �= ∅ and y �= ∅

• x �= z and y �= z
• x ∩ y = ∅

• x ∪ y �= z

Definition 2 (Subcontrariness) x and y are subcontrary in z iff:

• x ⊆ z and y ⊆ z
• x �= y

4 These definitions are not minimal; it is more expedient to simply list the relevant features here.
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• x �= ∅ and y �= ∅

• x �= z and y �= z
• x ∩ y �= ∅

• x ∪ y = z

Although these definitions adequately translate the logical concepts of contrari-
ness and subcontrariness into a set-theoretical context, I will propose below that
these be replaced with the more fine-grained (and well-understood) concept of set
partition.

The canonical eight-element Boolean algebra on P({a, b, c}) (Figs. 5 and 6)
adequately represents the abstract structure behind the other hexagonal diagrams.5

Complementation, closure under conjunction/disjunction, etc. are now easy to read
off the diagram. This constitutes a relative advantage over other proposals for
canonical diagrams/structures (e.g., Smessaert and Demey’s bitstring approach in
[4]). We may now focus on the fit between this structure and the geometric figure
of the regular hexagon. What follows are three neat convergences between logic
(consequence and opposition), the combinatorics of P({a, b, c}), and the geometrical
features of the regular hexagon.

3.1 Inclusion and Logical Consequence

The relation of logical consequence is modeled by set inclusion. This much is
obvious from the fact that the arrows in Figs. 1 and 5 are the same. Geometrically,
the regular hexagon is a good fit because each of its six edges (all of the same length,
suggesting no difference to the reader) can be made to stand for exactly one of the
inclusions. Of course, this means that edges are replaced by arrows pointing in the
right direction (Fig. 7).

Fig. 7 The inclusion arrows
form a regular hexagon

5 All other Aristotelean relations (Smessaert & Demey) can be defined inside it.



204 R. Bolz

3.2 Partitions and Opposition

The concept of contradictoriness in logic neatly fits set complementation relative to
{a, b, c} (the red lines of Fig. 5). However, the original logical hexagon contains two
more relations: contrariness and subcontrariness (blue and green lines) (Definitions
1 and 2). It will be instrumental in the next section on the tetrakis hexahedron to
define all relations of opposition uniformly in relation to the more fundamental
concept of set partition. On this basis, the deep connection between the algebraic
structure and the polytope becomes easier to grasp.

Definition 3 (Partition) A partition of a set X is a set Y of non-empty subsets of X
such that X is the disjoint union of Y.

The partitions of {a, b, c} are:

• {{a}, {b}, {c}}
• {{a, b},{c}}
• {{a, c}, {b}}
• {{a}, {b, c}}
• {{a, b, c}}

In total, {a, b, c} has one ternary partition, three binary partitions, and one
unary partition. It is easy to see that the red lines in the hexagon (comple-
mentation/contradictoriness) correspond to the binary partitions. The blue triangle
(contrariness) as a whole corresponds to the single ternary partition. Hence, one can
reframe the relation of contrariness between (nonidentical) elements of P({a, b, c})
in terms of the single ternary partition of {a, b, c}, which is {{a}, {b}, {c}}:
Lemma 1 Two elements x, y ∈ P({a, b, c}) are contrary in {a, b, c} iff x �= y and x,
y ∈ {{a}, {b}, {c}}.

This follows from Definition 1.
To get subcontrariness, the following simple construction does the trick:

Definition 4 (Co-partition) The co-partition Z of a partition Y of a set X is the set
of all the complements (relative to X) of all the elements of Y.

For example, the co-partition of {{a}, {b}, {c}} is simply {{b, c}, {a, c}, {a, b}}.6
The relation of subcontrariness between (nonidentical) elements of P({a, b, c}) is

now easily understood in terms of the single ternary co-partition of {a, b, c}, which
is {{b, c}, {a, c}, {a, b}}.
Lemma 2 Two elements x, y ∈ P({a, b, c}) are subcontrary in {a, b, c} iff x �= y and
x, y ∈ {{b, c}, {a, c}, {a, b}}.

6 Only co-partitions of ternary and quaternary partitions are of interest in this paper. Co-partitions
of binary partitions are simply those binary partitions themselves.
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This follows from Definition 2. For example, {a, b} and {b, c} are subcontraries
in {a, b, c} because they are both members of {{b, c}, {a, c}, {a, b}}, which is the co-
partition of {{a}, {b}, {c}}, the single ternary partition of {a, b, c}.

All this shows that the three varieties of opposition can be defined in reference
to the partitions of {a, b, c}, structure that comes “for free” with our canonical
representation.

I want to stress the subtle difference between relations of contrariness and
partitions. In P({a, b, c}), these concepts are not interestingly different, which should
be clear from the above. However, when one increases the complexity of the
Boolean algebra (taking a basis of four, not three, elements), the number of ternary
partitions will increase from one to six. At that point, the contrariness of two sets will
come to mean that they are members of some partition (ternary or higher). Hence,
it is beneficial to consider the concept of partition as more fundamental (also, more
fine-grained) than the concept of contrariness.7 The same goes for the dual concept
of subcontrariness/co-partition. This will become clearer in the next section, which
contains a concrete example of a structure where these distinctions start to matter.

Turning to the regular hexagon as a geometric figure, one notices that the red
lines are the three mirror symmetries (where the axis is a line through two vertices
of the figure). This is a first observation regarding the link between mirror symmetry
and partitions. I submit the following analogy between the partition structure and the
symmetries of the hexagon:

– The ternary partition can be identified with the figure itself (the motivation for
this will become clear in the next section).

– The binary partitions can be identified with the segments that are mirror
symmetries of the figure (where the axis is a line through two vertices of the
hexagon).8

– The unary partition can be identified with the point at the center of the hexagon
(the central symmetry of the figure).

One also observes that the central point lies on all the symmetry segments, which
in turn lie on the figure itself.

Definition 5 (Refinement of a partition) Let the sets A and B both be partitions of
the set X. Then A is a refinement of B iff every element of A is a subset of an element
of B.

One can order the partitions of {a, b, c} by refinement, resulting in the following
refinement lattice:

7 It seems that the concept of contrariness arose in the context of trichotomy (as opposed to
contradiction for dichotomy). Two choices of a trichotomy are contraries since there is a third
option (the law of excluded middle does not hold here). But when the complexity is increased
(tetrachotomy, pentachotomy), the number of concepts increases and so does the number of
conceptual partitions. In that case, the full set of complete conceptual partitions will be of more
interest than the mere existence of a contrariness relation between two concepts.
8 Without this restriction, the hexagon has three more mirror symmetries.



206 R. Bolz

Fig. 8 Refinement Lattice on
{a, b, c}

Turning once more to a comparison between the hexagon and the abstract
structure, one observes the following: let A

′
be the part of the hexagon (i.e., the point,

segment, or figure) assigned to the partition A. Then the following correspondence
holds between the above refinement lattice and our hexagon: A is a refinement of B
iff B

′
lies on A

′
(the reader should compare Figs. 5 and 8).

3.3 Permutations

There is a final analogy between the Boolean algebra on P({a, b, c}) and the regular
hexagon. The relevance of this connection is perhaps the least understood of the
three connections that are explored here. However, the simplicity of the matter is so
apparent that I cannot fail to mention it.

Any finite set with n elements has n! permutations. The permutations of {a, b, c}
appear as complete paths through the inclusion lattice (exemplified in Fig. 9).

Fig. 9 Permutations as complete paths through the poset
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The set {a, b, c} has six permutations. These appear in the hexagon once a single
point in the center of the hexagon is added (Fig. 10).

Fig. 10 The permutations
appear as six regular triangles

The figure shows how the hexagon decomposes into six equal triangles, each
corresponding to a unique complete path through the lattice: a permutation.

The relevance of permutations to oppositional/logical geometry lies in the
connection to modal graphs (see Chap. 11 of Moretti’s [8]).

In this chapter I described an elaborate analogy between the Boolean algebra
on P({a, b, c}) and the logical hexagon in terms of the combinatorial (set-theoretic)
concepts of subsets, partitions, and permutations. In what looks like an amazing
pattern, the same analogy exists between P({a, b, c, d}) and the three-dimensional
figure of the tetrakis hexahedron.

4 The Logical Tetrakis Hexahedron

Logical diagrams based on the tetrakis hexahedron have been described, among
others, by Régis Pellissier, Alessio Moretti, and Hans Smessaert and Lorenz
Demey.9 Although these authors seem well aware of the Boolean background of

9 Pellissier and Moretti [8] speak of a “logical tetraicosahedron,” emphasizing the fact that the
figure has 24 faces. Smessaert and Demey [3, 5, 9] present the figure as a “rhombic dodecahedron,”
which amounts to collapsing the 24 faces into 12. Given that the 24 faces of the tetrakis
hexahedron correspond to 24 permutations (combinatorics), i.e., 24 entailment paths (logic), it
seems that collapsing them into 12 is to suppress valuable information. In other words, the rhombic
dodecahedron seems to sacrifice completeness for no apparent reason, except perhaps that the data
in question has not been recognized as relevant. Furthermore, by collapsing 24 triangular faces
into 12 rhombic faces, the diagram also risks distorting the data, since the reader may ask what the
meaning of these rhombic faces is – a question without answer. This specifically geometric feature
has no reading in terms of the logical structure.

http://doi.org/10.1007/978-3-030-90823-2_11
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this diagram, I believe that the full extent of the connection has not been grasped
and expressed fully.10 This section of the paper works toward filling this gap.

It seems natural to orient ourselves using the following diagram, which sets the
Boolean algebra on P({a, b, c, d}) (omitting the universal and empty set) to a tetrakis
hexahedron (Fig. 11):

Fig. 11 Tetrakis hexahedron
diagram for inclusion on
P({a, b, c, d})

This diagram is a good basis for exploring the match between the algebraic
structure and the geometric figure (polyhedron) without getting distracted by
specific logical or linguistic content. It should be observed that the diagram is
already quite busy as is, without the relations of opposition drawn in (this concerns
our criterion of legibility).

10 The connection between Boolean algebras and logical diagrams has been studied most deeply
by Smessaert and Demey [4, 6, 9, 10]. However, in their work, the elements of the Boolean algebra
appear as bitstrings. Of course, such Boolean algebras are isomorphic to Boolean algebras on
power sets. However, it seems that the connection between the inclusion structure and the partition
and permutation structure becomes much simpler to grasp when one builds the Boolean algebras
around power sets. Most importantly, the deeper connection between the Boolean structure and the
opposition concepts (contradiction, contrariness, subcontrariness) remains below the surface using
the bitstring approach – they appear as more or less independent aspects of the theory. Using
power sets, one gets a partition structure for free which aids our understanding of opposition
tremendously. All the relevant logical structure is simply already in the power set structure and
can hence be defined on its basis. Also, the bitstring approach has the disadvantage of obscuring
the relations between this subject and existing work in combinatorics, which is almost always done
in a set-theoretic setting.
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4.1 Inclusion and Logical Consequence

The vertices of the diagram are labeled by the 14 subsets of {a, b, c, d} (excluding, as
with the hexagon, the universal set and the empty set). Furthermore, each of the 36
edges of the tetrakis hexagon corresponds to one subset inclusion in P({a, b, c, d}).
All the vertices are equidistant from the center, suggesting no hierarchy.

In P({a, b, c, d}) without the universal and empty sets, there are two types of
proper inclusion:

– A ⊂ B where B has exactly one element more than A (call this a 1-inclusion)
– A ⊂ B where B has exactly two element more than A (call this a 2-inclusion)

The edges of the tetrakis hexahedron come in two lengths, which reflect this
difference (see Demey & Smessaert [5]). The longer edges are the two-inclusions,
the shorter ones the one-inclusions.

As has been pointed out by Smessaert, it is sensible to consider a variation of the
diagram in which the universal and empty set are given a vertex in the center of the
figure.

4.2 Partitions and Opposition

In this section it will become apparent that a characterization of opposition in terms
of set partitions pays off.

The following diagram (also a hexagon, but by coincidence) gives the 15
partitions of a four-element set and the refinement relation on them, with the finer
partitions always above the coarser ones:

Fig. 12 Partitions of a
four-element set ordered by
refinement. (Source:
Wikipedia – “Partitions of a
Set”)
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The figure shows that {a, b, c, d} has:

– 1 quaternary partition (white)
– 6 ternary partitions (purple)
– 7 binary partitions (green for 3–1 and orange for 2–2)
– 1 unary partition (red)

Furthermore, the refinement relation on these 15 partitions is nontrivial, as
opposed to the refinement relation on the 5 partitions of {a, b, c} (compare Figs.
8 and 12).

Surprisingly, these partitions and their refinement relation find a natural place in
the tetrakis hexahedron as canonical diagram for P({a, b, c, d}):
– The binary partitions are relations of complementation/contradiction between

two subsets of {a, b, c, d}. In the diagram, these always appear at opposite sides
of the center of the polyhedron. Hence, each binary partition is represented
by a segment which is one of seven line symmetries (rotation) of the tetrakis
hexahedron.

– The ternary partitions are sets of three elements. The three corresponding
vertices always determine a plane. As it turns out, this plane is always a unique
plane through the center of the tetrakis hexahedron, more precisely, one of six
mirror symmetries of the tetrakis hexahedron in a plane.

– The quaternary partition is a set of four elements. These four vertices do not
determine a plane; they determine a sphere in which the tetrakis hexahedron is
inscribed. Hence, one can identify the entire polyhedron with this partition.

– The unary partition can be identified with the point at the center of the tetrakis
hexahedron.

The following diagram highlights examples of ternary and binary partitions:

Fig. 13 Two examples of partitions of {a, b, c, d} “in” the tetrakis hexahedron
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The above description amounts to a mapping between the partitions of {a, b, c, d}
and certain vertices, segments, planar figures, and shapes in the tetrakis hexahedron.
Interestingly, as before, the refinement relation translates to geometrical incidence.
This is most meaningful for the relations between the seven binary and six ternary
partitions. A binary partition A corresponds to a segment A

′
, and a ternary partition

B corresponds to a plane B
′
. We now observe that B is a refinement of A iff A

′
lies

on B
′

(see Fig. 13 for an example). But here, unlike with the hexagon, there are
examples where such a refinement relation does not occur between some partitions
A and B. In that case, the segment B

′
does not lie on the plane A

′
. The reader can

verify these claims by comparing Figs. 11 and 12.
The above establishes a fit between the partition structure of {a, b, c, d} and the

symmetries of the tetrakis hexahedron. It remains to be asked how the concept of
partition connects to the more familiar concepts of contrariness and subcontrariness.
The way has already been paved for this in the section on the hexagon.

When two (logical, linguistic) expressions labeling edges of the tetrakis hexahe-
dron are contraries, then they cannot both be true but may (in some models) both be
false. The set-theoretic equivalent of this was given in Definition 1.

Lemma 3 Two sets x and y are contrary in {a, b, c, d} iff x �= y, and there exists
some z which is a ternary or quaternary partition of {a, b, c, d} such that x ∈ z and
y ∈ z.

This follows directly from our definitions. The partition concept is more fine-
grained (and combinatorially canonical).

There are two reasons to focus on partitions and not only on relations of
contrariness once the degree of complexity exceeds the ternary framework of
P({a, b, c}):
1. As has been shown for the hexagon and the tetrakis hexahedron, there is a

correspondence between the partition lattice and the various symmetries of the
polytope. The systematic nature of this relation is only visible if partitions are
considered. In the tetrakis hexahedron, it was important to see all six ternary
partitions and not just a single overall binary relation of contrariety. It seems to
the author that the concept of partition is one of the keys to understanding the
link between the algebraic structures and the geometric polytopes at the heart of
oppositional/logical geometry.

2. As an analytic tool for conceptual, linguistic, or logical analysis, the degree
of resolution offered by our approach is desirable. The mere fact that two
expressions are contraries does not indicate whether or not there is an underlying
trichotomy, tetrachotomy, or n-chotomy. A complete oppositional analysis of a
conceptual system, however, should be able to present all possible dichotomies,
trichotomies, tetrachotomies, etc.11 The focus on partitions leaves this option

11 Similarly, to know one’s way around a certain conceptual apparatus means to be aware of the
underlying dichotomies, trichotomies, etc. Usually, when one grasps that two concepts are contrary,
one also grasps the third (and fourth, etc.) remaining option of the tri- or tetrachotomy. Cognitively
speaking, contrariness is founded in n-chotomy, not the other way around.
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open; it is the right level of abstraction. To reduce the existence of a tetrachotomy
plus six trichotomies into a single relation of contrariness is to simplify the data
at the outset.12

Subcontrariness can be treated as in the section on the hexagon. Each of the six
ternary partitions and the one quaternary partition of {a, b, c, d} has a unique co-
partition. Each of these is interesting in its own right as the dual of the partition.
The connection between subcontrary sets and co-partitions is established in the
following lemma:

Lemma 4 Two sets x and y are subcontrary in {a, b, c, d} iff x �= y, and there exists
some z which is a ternary or quaternary partition of {a, b, c, d} and some w such that
w is the co-partition of z and such that x ∈ w and y ∈ w.

Again, it is more informative to know in which co-partitions the expressions A
and B figure than to merely know that they are subcontraries.

So much for contrariness and subcontrariness.
From the point of view of visualization, we face the following difficulty. The

structure that has been the focus of this section contains six ternary partitions,
one quaternary partition, six ternary co-partitions, and one quaternary co-partition.
Obviously, the diagram will no longer be legible (our fourth criterium for successful
visualization) if all 14 of these relations are combined into a single diagram using
different colors – a problem we did not face with P({a, b, c}) because it was much
simpler. It may very well be more informative to give these trichotomies and
this tetrachotomy in seven additional diagrams, each based on a partition and its
co-partition.13 On the other hand, the fact that the tetrakis hexahedron implicitly
conveys the partition structure via its symmetries is reassuring.

The following diagram plus a short instruction for the reader is an attempt at
balancing between the aim of legibility and completeness:

How to read this diagram: Black arrows signify inclusion/logical consequence.
The four blue points display a single tetrachotomy (a partition into 4 distinct
concepts) and the four green points display the co-partition of this tetrachotomy.
Any set of six points which form a plane symmetry of the figure indicates both a
trichotomy (2 blue vertices and 1 black vertex at the other side of the center) and its
dual co-partition (2 green vertices and 1 black vertex at the other side of the center).
Finally, any pair of points at opposite ends of the center display a dichotomy (Fig.
14).

12 Again, it seems the concept of contrariness (subcontrariness) emerges in the context of
trichotomy, where there is no real distinction between the contrariness relation and the partition
structure, as I noted in the section on the hexagon.
13 These are essentially Moretti’s “logical bi-simplexes” from his [8].
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Fig. 14 A very informative
diagram

This may perhaps be simplified further by dropping all mention of the co-
partitions. At this level of complexity, the partitions (tetrachotomies, trichotomies,
and dichotomies) are probably of primary interest. The co-partitions appear to be
conceptually and cognitively derivative.

Presented with these instructions, the diagram nonetheless succeeds at conveying
quite a lot of information. The biggest difficulty is probably that it presupposes that
the reader is able to visualize the tetrakis hexadron in three dimensions in order
to identify its symmetries. Nonetheless, it can be regarded as an extreme case,
where completeness, correctness, and lack of distortion are fairly optimal but where
legibility is perhaps already somewhat compromised. Presenting a combination of
several diagrams, with the tetrakis hexahedron functioning as “global” diagram
(integrating the other diagrams, so to speak), may be a good compromise.

4.3 Permutations

In the section on the hexagon, it was pointed out that the permutations of the set
have a natural geometric interpretation. We briefly indicate how the same holds true
for the tetrakis hexahedron.
{a, b, c, d} has 24 permutations. In the geometrical solid, they appear as the 24

faces of the tetrakis hexahedron. To see this, it is helpful to add a vertex at the center
of the solid (Fig. 15).
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Fig. 15 Permutations as unique faces/tetrahedra in the tetrakis hexahedron

Each of the 24 permutations then appears as a tetrahedron (from the “outside,”
one sees the 24 faces, i.e., triangles). Each of these tetrahedra has the same shape.
There are two path orientations (clockwise and counterclockwise).

Whenever two such tetrahedra share an edge, they introduce some character at
the same stage. For example, abcd shares an edge with bcad because they both add
d in the fourth stage. Whenever they share a face (i.e., whenever they are adjacent),
they introduce two characters at the same stages. It seems that many more of the
relations between the permutations of {a, b, c, d} are reflected in the geometry of the
tetrakis hexahedron and its constituent 24 tetrahedra. For example, the abcd face is
at the opposite side of the dcba face. These connections cannot be explored fully
here.14

5 Hexagons inside the Tetrakis Hexahedron?

There has been some discussion on the subject of smaller logical diagrams “inside”
bigger diagrams (on the subject of nonstandard hexagons, see Moretti’s [7]). In
the following section, I attempt to simplify some of that work in the light of
my own conceptual apparatus. Readers unfamiliar with these debates may find
the following discussion overly technical, especially since my conclusion is that

14 Both our canonical hexagon and our canonical tetrakis hexahedron are geometrically dual
polytopes to Cayley graphs created using the so-called permutohedra on {1, 2, 3} (a hexagon) and
{1, 2, 3, 4} (a truncated octahedron).
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these inquiries are poorly motivated, given how well-understood the canonical
combinatorial superstructures are.

The simplest example of a diagram “in” a diagram is a square inside a hexagon.
The hexagon was first discovered as a completion of the square, so it is only to
be expected that a square (three in fact) appears “inside” the hexagon (see Fig. 1).
Especially when the complexity of the diagram is high (e.g., when it is based on
the tetrakis hexahedron), the number of smaller diagrams to be “discovered” inside
the larger diagram grows quickly. Several authors have considered it important to
classify these diagrams inside diagrams exhaustively. Let us briefly see what the
focus on Boolean algebras can bring to the discussion. It appears that these questions
can be answered using simple combinatorics, before any visualization effort.

Since both the simple and the more complex diagram are based on a poset or
Boolean algebra structure, it is only to be expected that any structural parthood
relation that exists between the diagrams should already exist between the purely
relational structures. There is no need to study these connections at the level of
the visualization – it will be much more straightforward to study (and classify)
them as mappings between canonical algebraic structures. To support this claim,
let us use the example of hexagons in the tetrakis hexahedron. It seems to me that
this entire subject reduces to the classification of structure-preserving mappings
between P({a, b, c}) and P({a, b, c, d}), since these mappings pick out exactly the
“hexagons in the tetrakis hexahedron.” The different types of hexagons (e.g., “weak”
and “strong”) in the tetrakis hexahedron appear as maps with different degrees of
structure-preservation. It becomes straightforward to specify what constitutes the
weakness or strength of such a substructure of the larger structure.

P({a, b, c}) and P({a, b, c, d}) are lattices with 8 and 16 elements, respectively.
It is fruitful to examine injective functions f : P({a, b, c}) −→ P({a, b, c, d}). These
pick exactly 8 of the 16 elements of P({a, b, c, d}). A second condition that should
be imposed is:

Preservation of inclusion if x ⊆ y in P({a, b, c}), then also f (x) ⊆ f (y) in
P({a, b, c, d}).

This guarantees that the function f picks out a set of eight elements with an
inclusion relation matching the six arrows of the hexagon diagram. The image of
such a function thus “lifts” an eight-element poset from the more complex structure
of P({a, b, c, d}).
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Fig. 16 Arrow hexagon
based on the image of f

Table 1 Example:
inclusion-preserving
mapping f

Argument Value

∅ ∅

{a} {b}
{b} {c, d}
{c} {a}
{a, b} {b, c, d}
{a, c} {a, b, c}
{b, c} {a, c, d}
{a, b, c} {a, b, c, d}

Table 1 and Fig. 16 give an example of such a mapping which picks out a
hexagon “in” P({a, b, c, d}). Because of the condition that the function preserves
inclusion, the image of the function can always be “set” to a hexagon arrow diagram.
It should however be noted that the structure portrayed in Fig. 16 is not closed under
complements, unions, and intersections. So the condition of preserving inclusion is
too weak to pick out interesting (important) substructures.

It is useful here to identify the functions of the above type with the substructures –
each function of the specified kind picks out one substructure of the desired kind
(a commonplace identification in category theory).15 Any hexagon diagram based
on the image of such a function f is what Moretti has called an “arrow hexagon”
[7] (e.g., my Fig. 16). In other words, it has the canonical six arrows, but the
canonical opposition relations (and closure under conjunction and disjunction) are
not necessarily present (no restrictions on these functions have been introduced yet).

15 If one requires a one-to-one correspondence between functions and substructures, define
equivalence on the functions as follows: two functions f, g : P({a, b, c}) −→ P({a, b, c, d}) are
equivalent iff there exists an automorphism h : P({a, b, c}) −→ P({a, b, c}) such that g ◦ h = f
and f ◦ h−1 = g. Assuming this notion of equivalence, there is a one-to-one relation between
equivalence classes of injective inclusion-preserving functions f : P({a, b, c}) −→ P({a, b, c, d})
and substructures of the desired kind. For the purposes of this paper, it suffices to characterize the
substructure as some map from P({a, b, c}).
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The substructure picked out by such functions is generally a weaker type of
poset structure than the Boolean algebra exhibited in the canonical logical hexagon
of Fig. 5 (not all the axioms of a Boolean algebra are true in it). It is not very
clear what the information value of this wider class of hexagonal diagrams is (qua
visualization). The fact that the corresponding structures (six nodes and six arrows)
can be arranged hexagon-wise does not guarantee that the resulting diagrams are
relevant for our visualization efforts. Also, the fact that there are many of them is
not surprising in and of itself.

Nonetheless, among the many arrow hexagons in the tetrakis hexahedron,
there are a number of so-called strong hexagons. Informally, these are the arrow
hexagons such that the canonical opposition relations hold between their six
corners (in the larger structure!) and which are closed under conjunction and
disjunction. One can characterize strong hexagons in the tetrakis hexahedron by
imposing two further conditions of the injective inclusion-preserving functions
f : P({a, b, c}) −→ P({a, b, c, d}).
Condition 1 (preservation of complements) If X and Y are set complements
relative to {a, b, c} in P({a, b, c}), then f (X) and f (Y) must be set complements
relative to {a, b, c, d} in P({a, b, c, d}).

It follows from this that the top and bottom of P({a, b, c}) are mapped onto the
top and bottom of P({a, b, c, d}).
Condition 2 (preservation of conjunction/disjunction) If X = Y ∩ Z, then
f (X) = f (Y) ∩ f (Z) and if X = Y ∪ Z then f (X) = f (Y) ∪ f (Z).

It follows from Conditions 1 and 2 that the image of f is itself a Boolean algebra
(Fig. 17). The following figures and table present a function f ′ which meets these
conditions. The image of this function is rendered as a hexagon in Fig. 18, which is
indeed a strong hexagon in the tetrakis hexahedron (Table 2).

There are only six such strong hexagons based on images of such functions “in”
the tetrakis hexahedron, one for each of the six ternary partitions of {a, b, c, d} –
each strong hexagon is simply a ternary partition together with its co-partition,
complements at opposite sides of the hexagon. As was established earlier, they can
be grasped in the geometric figure as mirror symmetries in a plane. Any diagram
based on such a function f is a strong hexagon “in” the tetrakis hexahedron. The
definitions that have been given here are generalizable to other types of inclusion
between families of diagrams.

The classification of the weak hexagons “in” the tetrakis hexahedron may
be undertaken as follows. Drop Conditions 1 and 2 concerning the preservation
complements, unions, and intersections. Observe the following: the Hasse diagram
on P({a, b, c}) (Fig. 6) has four levels (the empty set, the singletons, the two-element
sets, and the three-element set at the top). P({a, b, c, d}) has five in total. Since f is
injective and preserves inclusion, the image of f must contain elements from at least
four of the five levels of P({a, b, c, d}). The following definition will be useful:

Definition 6 f preserves top and bottom iff f (∅) = ∅ and f ({a, b, c}) = {a, b, c, d}.
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Fig. 17 Boolean-preserving
function f ′

One may now classify the weak hexagons in the tetrakis hexahedron on the basis
of the following distinction regarding f :

– f does not preserve top and bottom. Since the image of f contains elements from
at least four of the five levels of P({a, b, c, d}), it follows that it preserves either
the top or the bottom.

• Suppose that f preserves the bottom, i.e., that f (∅) = ∅. That means that f
maps the top of P({a, b, c}) to the fourth level of P({a, b, c, d}). In other words,
it maps it to some three-element set X. But since f preserves inclusion, the
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Fig. 18 Hexagon of the
image of f ′

Table 2 Function f ′ Argument Value

∅ ∅

{a} {a}
{b} {d}
{c} {b, c}
{a, b} {a, d}
{a, c} {a, b, c}
{b, c} {b, c, d}
{a, b, c} {a, b, c, d}

entire image of f is determined by this choice of X, since there are only three
two-element sets and only three one-element sets in P({a, b, c, d}) which are
subsets of X. There are four such structures to be found in P({a, b, c, d}), since
there are four three-element subsets of {a, b, c, d}. Each of these structures
is a complete Boolean algebra, but their internal relations of opposition do
not hold true for the larger BA P({a, b, c, d}). In other words, P({a, b, c}),
P({a, b, d}), P({a, c, d}), and P({b, c, d}) are substructures of P({a, b, c, d}).

• Suppose that f preserves the top, i.e., that f ({a, b, c})= {a, b, c, d}. That means
that f maps the bottom of P({a, b, c}) to the first level of P({a, b, c, d}). In other
words, it maps it to some one-element set X. But since f preserves inclusion,
the entire image of f is determined by the choice of X, since there are only
three two-element sets and only three three-element sets in P({a, b, c, d}) such
that X is a subset of them. There are four such arrow hexagons in P({a, b, c, d}),
since there are four one-element subsets of {a, b, c, d}.

• It is interesting to note that these two types of structure appear as hexagons on
the surface of the tetrakis hexahedron (not as mirror symmetries). Figure 19
shows a hexagon based on P({a, b, c}) on the face of the tetrakis hexahedron,
where the vertex {a, b, c} is the center of the hexagon (sticking out, as it were).
Incidentally, the tetrakis hexahedron can be assembled by taking four such
shapes.
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Fig. 19 A hexagon on the
face of the tetrakis
hexahedron

– f preserves top and bottom but fails to preserve complements and/or conjunc-
tion/disjunction. The internal unity/completeness of these structures is weak –
there is no good reason to isolate them from the larger structure in a separate
diagram. Moretti has classified these from a geometric point of view in his
[7]. His classification can be captured in terms of restrictions on the mappings
between the structures alone (there is nothing inherently geometric in the matter);
one merely needs to specify that the structures fail to be closed under some
combination of complements, unions, and intersections. Is it really relevant to
meticulously count and classify all these possible degrees of Boolean incom-
pleteness? I do not believe that these substructures play a very important role in
the project of visualizing logical data – perhaps only in the negative sense that
it is good to know of their existence so that we can avoid mistaking diagrams of
such partial structures with diagrams of complete (i.e., Boolean) structures. That
said, if one were to completely spell out the classification, it would certainly be
more straightforward at the level of structure-mappings than at the level of the
geometric objects.

Figure 20 shows that the difference between partitions and the wider contrari-
ness/subcontrariness relation is relevant if we want to differentiate between weak
hexagons (i.e., which depict a non-Boolean poset) and strong hexagons.
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Fig. 20 (a) and (b): Relevance of the difference between partitions and contrari-
ness/subcontrariness

Figure 20 a and b depict the same weak hexagon inside the tetrakis hexahedron
for P({a, b, c, d}). It has been customary in the literature to indicate a relation of
contrariness (our Definition 1) between two expressions with a blue line and a
relation of subcontrariness (our Definition 2) with a green line. This would yield Fig.
20a, which is visually indistinguishable from a canonical hexagon (Fig. 5).But Fig.
20a is quite nonstandard, since it is not closed under conjunction and disjunction
(union and intersection) vis-à-vis the larger structure P({a, b, c, d}). We see that
{d} �= {a, b, d} ∩ {b, c, d} and also that {a, b, c} �= {a} ∪ {b}. But according to the
conventional approach, this figure is entirely correct, even if it violates the (implicit
but important) expectation of closure under conjunction and disjunction (modulo
logical equivalence) – which is certainly part of the larger ideal of completeness.

To remedy this, I suggest to prioritize complete partitions over the relation of
contrariness. This results in the following rule:

Rule (partitions over contrariness) A blue (green) triangle may only appear if the
three nodes form a complete partition (co-partition).

According to this convention, which I hereby submit to the scrutiny of my
colleagues, Fig. 20b is to be regarded as correct and Fig. 20a as incorrect. From
the perspective of visual communication, such a rule is motivated by the fact that
a triangle suggests a complete ternary relationship. It will be desirable to introduce
normative rules which prevent us from drawing misleading/incomplete diagrams in
the first place. I have argued that this is a good step from the jungle to the desert.
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6 Conclusion

In this paper I have presented two well-known types of logical diagrams (based
on the hexagon and the tetrakis hexahedron) in a new light. Instead of labeling
them directly with logical or linguistic expressions, it was shown that they have
deep connections with Boolean algebras – algebraic structures which are known to
be fundamental to both combinatorics and logic. Instead of using logical concepts
(opposition and entailment), the matter was reframed in terms of three fundamental
combinatorial concepts related to Boolean algebras (subsets, partitions, and per-
mutations).16 I have shown that the diagrams in question are based on geometric
objects (polytopes) which happen to display a lot of fundamental facts about the
subsets, partitions, and permutations of the Boolean algebra in the relations between
their vertices, facets, and symmetries. In fact, the connection between the Boolean
algebras and the polytopes is so striking that I am tempted to call them “Boolean
polytopes.”

A few remarks on our four criteria for successful visualization:
It seems that the completeness of logical diagrams can be approached fruitfully

via Boolean closure. The completion of incomplete logical diagrams often relies
on the use of conjunction and disjunction (modulo logical equivalence). There are
strong reasons to believe that “complete” diagrams are simply depictions of small
Boolean algebras (at least when the source language/theory is classical!). The search
thus becomes for the best geometrical objects to represent the structure of these
Boolean algebras. I have made the case that the hexagon and the tetrakis hexahedron
are exemplars for logical geometry exactly because they represent the Boolean
algebras (and a lot of combinatorial structure!) on P({a, b, c}) and P({a, b, c, d})
elegantly.

Although no incorrect diagrams have been studied here, it is clear that a
systematic view on the underlying structures and their geometric portrayal can only
be of help here.

Distortion appears when the geometric features of the diagram suggest informa-
tion about the structure that is not within the intended scope of communication. In
this paper two diagrams have been presented with the goal of showing that many
of their prominent geometric features correspond to something relevant about the
logical structure. Importantly, any diagram whatsoever suggests completeness. An
incomplete diagram thus also distorts the data, insofar as it is easily taken by a reader
to be a complete representation of the system. Hence, the question of canonical types

16 The choice of these three concepts is not arbitrary. I have been guided by the following
fact: in category-theoretic treatments of set theory, the connection between subsets, partitions,
and permutations is quite manifest. Subsets of a set X appear as equivalence classes of monic
arrows into X. Partitions appear as equivalence classes of epic arrows out of X. “Epic arrow”
and “monic arrow” are strictly dual concepts. Finally, permutations appear as automorphisms
(endomorphisms that are isomorphisms). In the category of sets, isomorphisms are arrows that
are epic and monic. Hence, the connection between subsets, partitions, and permutations appears
at a deep and conceptual level.
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of completeness becomes very important. In this paper I have developed the idea
that Boolean closure is an obvious candidate for completeness. Nonetheless, this
limitation would greatly restrict the range of acceptable diagrams. In practice, only
very few diagrams from the literature are Boolean complete. Perhaps more nuanced
criteria may be developed.

Legibility is the most relative of our criteria, especially since the language
of logical diagrams is just being developed. Here I have merely suggested that
legibility emerges, among others, by balancing the careful choice of geometric
features with sound instructions to the reader. Finally, legibility emerges above all
by standardizing visualization practices. We have a long way to go in this direction.

The following final remark pertains to possible generalizations of the pattern at
the heart of this paper.

So far, a correspondence has been established between the following:

– P({a, b, c}) and the hexagon
– P({a, b, c, d}) and the tetrakis hexahedron

It is natural to inquire whether this pattern is more general. It is easy to see that
P({a, b}) can be set to a one-dimensional segment. Among these three polytopes,
one observes that each increase of complexity amounts to an increase by one
dimension. Hence, if the pattern continues as expected, P({a, b, c, d, e}) (with a
heptachotomy as basis) will correspond to a four-dimensional polytope inscribed
in a four-dimensional sphere. As such, one should not expect such figures to be of
great help in the project of visualizing logical relations, since humans are mostly
unable to visualize higher-dimensional objects. On the other hand, they might be of
independent mathematical interest as a series of Boolean polytopes of dimension n.
I postpone the matter to a future paper.

References

1. Béziau, J.-Y. (2012). The Power of the Hexagon. Logica Universalis, 6(1–2), 1–43.
2. Béziau, J.-Y., & Jacquette, D. (Eds.). (2012). Around and Beyond the Square of Opposition.

Birkhäuser.
3. Demey, L., & Smessaert, H. (2018). Geometric and Cognitive Differences between Logical

Diagrams for the Boolean Algebra B4. Annals of Mathematics and Artificial Intelligence,
83(2), 185–208.

4. Demey, L., & Smessaert, H. (2018). Combinatorial Bitstring Semantics for Arbitrary Logical
Fragments. Journal of Philosophical Logic, 47(2), 325–363.

5. Demey, L., & Smessaert, H. (2017). Logical and Geometrical Distance in Polyhedral Aris-
totelian Diagrams in Knowledge Representation. Symmetry, 9, 204.

6. Demey, L., & Smessaert, H. (2014). The Relationship Between Aristotelean and Hasse
Diagrams. In T. Dwyer, H. Purchase, & A. Delaney (Eds.), Diagrammatic Representation and
Inference. Lecture Notes in Artificial Intelligence (pp. 213–227). Heidelberg: Springer.

7. Moretti, A. (2015). Arrow-Hexagons. In A. Koslow & A. Buchsbaum (Eds.), The Road to
Universal Logic: Festschrift for the 50th Birthday of Jean-Yves Béziau: Volume II (pp. 417–
488). Birkhäuser.



224 R. Bolz

8. Moretti, A. (2009). The Geometry of Logical Opposition. University of Neuchâtel. Retrieved
from https://doc.rero.ch/record/12712/files/Th_MorettiA.pdf

9. Smessaert, H., & Demey, L. (2016). Visualising the Boolean Algebra B4 in 3D. In M. Jamnik,
Y. Uesaka, & S. Elzer Schwartz (Eds.), Diagrammatic Representation and Inference. Lecture
Notes in Artificial Intelligence (pp. 289–292). Heidelberg: Springer.

10. H. Smessaert and L. Demey, “The Unreasonable Effectiveness of Bitstrings in Logical
Geometry” in J-Y Beziau and G. Basti. The Square of Opposition: A Cornerstone of Thought:
Springer 2017.

https://doc.rero.ch/record/12712/files/Th_MorettiA.pdf


Turnstile Figures of Opposition

Jean-Yves Beziau

Abstract We present many figures of opposition (triangles and hexagons) for
simple and double turnstiles. We start with one-sided turnstiles, corresponding to
sets of tautologies, and then we go to double-sided turnstiles corresponding to
consequence relations. In both cases, we consider proof-theoretic (with the simple
turnstile) and model-theoretic (with the double turnstile) figures. By so doing, we
discuss various central aspects of notations and conceptualizations of modern logic.

Keywords Square of opposition · Turnstile · Tautology · Truth · Proof ·
Consequence · Model

Mathematics Subject Classification (2000) Primary: 03-01 Secondary 03A05;
03B22;03B45;03F99: 03 C99

J.-Y. Beziau (�)
Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: jyb@ufrj.br

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J.-Y. Beziau, I. Vandoulakis (eds.), The Exoteric Square of Opposition, Studies
in Universal Logic, https://doi.org/10.1007/978-3-030-90823-2_10

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90823-2_10&domain=pdf
mailto:jyb@ufrj.br
https://doi.org/10.1007/978-3-030-90823-2_10


226 J.-Y. Beziau

1 The Hexagon of Opposition and the Turnstile

The hexagon of opposition was introduced by Robert Blanché.1 It is an improve-
ment and/or reconstruction of the famous square of opposition. Figure 1 is a picture
of it:

Fig. 1 Hexagon of
opposition

We have the same four relations as in the square: the black arrow is the relation
of subalternation, and in red we have the relation of contradiction, while in blue the
relation of contrariety and in green the relation of subcontrariety. We recall the basic
definitions: two propositions are said to be contradictory iff they cannot be true and
cannot be false together, contrary iff they cannot be true but can be false together,
and subcontrary iff they cannot be false but can be true together. Subalternation is
an implication.

In the above hexagon, we can find the traditional square of opposition with
corners A, E, I, O. Blanché introduced two additional corners that he named U
and Y and which are defined as indicated. In the hexagon, we can see two additional
squares of opposition – Y, A, U, O and E, Y, I, A – as well as a contrariety triangle
in blue and a subcontrariety triangle in green.

The hexagon of opposition has been applied to many topics ranging from deontic
notions to the theory of colors, through music, economy, and quantum physics

1 His main book on the topic is [1], but his first works were published in the 1950s, and at this time
other people had similar ideas (for details, see [2]).
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(cf. [3, 4]), and other papers in the many volumes of collected papers [5–8] and
special issues [9–12] which have been published since the revival of the square (cf.
[13, 14]) and the First World Congress on the Square of Opposition in Montreux in
2007. It can also be applied to the theory of opposition itself (see [15]).

Here we will apply it to logical notions. This paper is a follow-up of my paper
“The Metalogical Hexagon of Opposition” [16]. It is also related with the talk
“Beyond Truth and Proof” I gave in Tübingen at the workshop Consequence and
Paradox Between Truth and Proof (March 2–3, 2017) and the tutorial I gave at
UNILOG’2018 (World Congress and School on Universal Logic) in Vichy in June
2018: “The Adventures of the Turnstile.”

The present paper connects two aspects of symbolism: diagrammatic symbolism
and the use of nonalphabetical signs. In logic, among the first category, the square
is the most famous representative followed by Venn diagrams. Among the second
category, we have in particular the connectives “∨, ¬, ∧,→” and the quantifiers “∀,
∃.” But probably the most famous one is “�.”

This symbol was introduced by Frege (1879, cf. [17]) with a specific meaning
that we will not discuss here (see, e.g., [18]). It is nowadays used with another
meaning which is not always clear. The aim of this paper is to clarify the
contemporary meaning(s) of “�,” using the theory of opposition, in particular
triangles of contrariety and hexagons of opposition.

Doing that we will deal with the sister symbol “�,” which is called the double
turnstile, by contrast to “�,” called simple turnstile. “�” is also called Frege’s stroke,
but we will not use here this terminology, because on the one hand we are not dealing
with the original meaning given to it by Frege and on the other hand the turnstile
terminology is nice because it allows to use the same word “turnstile” to qualify two
different connected notions. It would make no sense to talk about Frege’s simple
stroke and Frege’s double stroke, since Frege did not introduce “�” (this symbol
was introduced in the 1950s).

2 Tautological Figures of Opposition

2.1 Two Pretty Different Contrariety Triangles

There is the dichotomy between truth and falsity that we find in particular in
classical propositional logic. We can go beyond this dichotomy by adding a third
value or more values. This in particular is what Łukasiewicz [19] did, inspired by
Aristotle. If we have three-values, we have then the following triangle of contrariety,
depicted in Fig. 2:



228 J.-Y. Beziau

Fig. 2 Three-valued triangle
of contrariety

On the other hand, there is a distinction which is at another level. This is the
distinction between truth and logical truth, promoted in particular by Wittgenstein
[20] putting forward the notion of tautology. This leads to a subtler triangle of
contrariety:

Fig. 3 Tautological triangle
of contrariety

Wittgenstein didn’t use the words “antilogies” and “contingencies.” This termi-
nological choice is explained in [15, 16, 21]. But although we are using a different
terminology, we are presenting here the same trichotomy as in the Tractatus: a
tautology is always true, an antilogy is always false, and a contingency can be true
and can be false.

2.2 Symbolic Representation of the Tautological Triangle

Wittgenstein presented the trichotomy among propositions using a framework
which is nearly identical to the one used nowadays for the semantics of classical
propositional logic based on valuations that he calls “truth-possibilities” (Tractatus
4.3). We can present it in the following table:

We have called what is on the right column “mathematical definition” to
emphasize that it is not just symbolism. In modern logic, mathematical tools,
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objects, and concepts are used. Here, for example, the numbers 0 and 1 (not only
the notations “0” and “1”) are used, as well as the notions of function and equality.2

In modern mathematical logic, the expression “∀v v(p) = 1” is also written “�
p.” The latter can be seen as an abbreviation of the former; it is indeed shorter. “∀”
can also be seen as an abbreviation of “All.” This is the first letter of this word
put upside down (notation introduced by Gentzen, following the same idea as for
the sign of the existential quantifier “∃” introduced by Peano). But mathematical
writing is not only a question of abbreviation. There is the idea to use signs which
are not completely arbitrary that have a serious symbolic aspect in the true sense
of the word (see [24] and [25]). The sign “�” was introduced by Frege with a real
symbolic dimension expressing an important distinction through perpendicularity.
“�” is a symbol directly inspired by “�.” The similar graphic design of the two signs
expresses the connection between their meanings, and the difference of meaning is
expressed by doubling the horizontal line. This is nicely reflected in natural language
by the expressions simple turnstile and double turnstile. Natural language is useful
in particular when talking.

After having established a correspondence between “∀v v(p)= 1” and “�p,” how
can we go further on, rewriting the other mathematical definitions using the double
turnstile? There is no “direct” way to do that. The best we can do with “∀v v(p)= 0”
is to write it as “�¬p” considering the definition of classical negation according to
which v(p) = 0 iff v(¬p) = 1.

It is even less straightforward to express contingency with the double turnstile.
We have to use the symbol “�,” which uses a negation at the metalevel. According
to that, “� p” means ∃v v(p) = 0 (we are not putting quotes here, because we are
not talking about this symbolic formula but about its meaning: p is false according
to one valuation). “� p” is the syntactic (metalevel syntax) negation of “� p,” which
itself means ∀v v(p) = 1. Here we have to be very careful because there is a mix
between logic and metalogic. ∃v v(p) = 0 is the negation of ∀v v(p) = 1 at the
metalogical level (again we don’t use quotes here because we are not talking about
“∃v v(p)= 0” and “∀v v(p)= 1,” but about their meanings).

The ambiguity is that the symbols “∃” and “∀” are generally used as symbols
for quantifiers in first-order logic, at a logical level, not at a metalogical level. Here
we are using them at a metalogical level. One may think that the metatheory of
propositional logic (classical or not) can be carried out in first-order logic. This
is true up to a certain point. But it is not necessarily obvious, details have to be
checked, and someone may defend another point of view. Here we stay neutral. If
we use the symbols “∃” and “∀,” it is rather a question of abbreviation. There are
no other symbols standardly used for that, like in the case of implication where we
can make the distinction between implication and meta-implication, respectively,

2 Wittgenstein uses “F” and “W,” not “0” and “1.” In general, his framework is not explicitly
mathematical, although he uses the notion of function, following Frege and Russell. About 0 and
1 as truth-values, the notion of truth-function, etc.; see [22] and [23].
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using the symbols “−→” and “�⇒”.3 Likewise, in the case of conjunction and
meta-conjunction, we can make the distinction using the symbols “∧” and “&.”

Using the latter symbol, we can rewrite the mathematical definition of contin-
gency as “∃v v(p)=1 & ∃v v(p)=0,” which in turn we can express using the double
turnstile: “� p & � ¬p.” At the end, using also negation at the metalevel for the
second part of the mathematical definition of contingency, we have the Table 1:

Table 1 Trichotomy of
propositions in propositional
logic using bivaluations

TERMINOLOGY MATHEMATICAL DEFINITION

Tautology ∀v v(p) = 1
Antilogy ∀v v(p) = 0
Contingency ∃v v(p) = 1 and ∃v v(p) = 0

Base on the right column, we can represent the triangle of contrariety of Fig. 3
in the following manner:

Fig. 4 Double turnstile
tautological triangle of
contrariety

Nowadays there is a clear distinction between “�” and “�,” the latter being used
in proof theory (also called syntax) by contrast to the former used in model theory
(also called semantics). For classical propositional logic, the bridge was established
by Emil Post in a paper published in 1921 [26], the same year of the publication of
Wittgenstein’s Tractatus,4 and in 1930 by Kurt Gödel for first-order logic [27]. We
have therefore the Table 2:

Table 2 Trichotomy of propositions in propositional logic using double turnstyle

TERMINOLOGY MATHEMATICAL DEFINITION DOUBLE TURNSTILE

Tautology ∀v v(p) = 1 � p

Antilogy ∀v v(p) = 0 �¬p

Contingency ∃v v(p) = 1 & ∃v v(p) = 0 � p & � ¬p

3 The difference between the two levels is expressed here by doubling the horizontal line. For the
turnstile, the doubling of the horizontal line is not used in this sense.
4 Post was using only “�.” As we said, “�” was introduced in the 1950s. Wittgenstein was using
none of these symbols, and he rejected Frege’s stroke (cf. Tractatus 4.442).
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Fig. 5 Simple turnstile
tautological triangle of
contrariety

Accordingly, the triangle of Fig. 4. is equivalent to the following one:
Using the simple and double turnstiles, we are able to explicitly make the

distinction between proof theory and model theory, truth and proof, syntax and
semantics, a distinction which is not clearly made at the level of natural language.
For example, the word “tautology” is not clearly attached to one of the side of
the dichotomy. One may say that it is not important because of the completeness
theorem. But in fact the distinction is important. If we don’t make the distinction, the
completeness theorem has no meaning. Moreover, if we have a general perspective,
being interested not only in classical propositional logic but in many other systems
of logic, there are some cases where the completeness theorem does not hold.

The two triangles of Figs. 4 and 5 clearly show the general structure of a triangle
of contrariety. The bottom corner is the conjunction of the (metalogical) negations
of the two top corners. The position of the decorations of the corners is mostly
irrelevant, contrary to the spirit of the traditional theory of opposition with the labels
“A,” “E,” “I,” “O” for the corners of the square, which are moreover connected to a
special version of the square, i.e., the original square of categorical propositions.

We have put on the top left corner the notion of tautology and the corresponding
notations: “� p” and “� p.” The reason to do so is because it is the most famous
notion. This is also the reason why we have called these triangles “tautological
triangles.” Other words are used for the notion of tautology, for example, logical
truth, but tautology is more striking. It is usual to call a figure of opposition (a
triangle, a square, a hexagon) by the name of one of its corners, e.g., the analogical
hexagon [28]. Another option is to use the name of the family of notions involved
in the figure, i.e., the deontic hexagon. Here we could have used the expression
“metalogical triangle” as we did in [16]. The reason not to do that here is that
we want to make explicit the distinction between two metalogical figures, the one
corresponding to logics as sets of tautologies and the one corresponding to logics as
consequence relations, in which both are metalogical.

Another distinction is between propositional logic and first-order logic. Our two
triangles of Figs. 4 and 5 can be seen from both perspectives. But on the one hand
in our tables we have given only the mathematical definitions corresponding to
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propositional logic, and on the other hand the use of the letter “p” is generally
attached to propositional logic by contrast to first-order logic.

What we want to do here is to make a uniform presentation for all variations of
classical logic: propositional, first-order, second-order, etc. We are also aiming at a
very general framework not limited to classical logic. The only typical feature of
classical logic we are using is classical negation. Therefore, our framework applies
to extensions of classical logics such as modal logics or nonclassical logics with a
classical negation such as some paraconsistent logics.

We can make the following new version of Table 3:

Table 3 Trichotomy of propositions in propositional logic using
simple turnstyle

TERMINOLOGY DOUBLE TURNSTILE SIMPLE TURNSTILE

Tautology � p � p

Antilogy �¬ p �¬ p

Contingency � p & � ¬ p � p & �¬ p

When we write “m � k” we are using the double turnstile in a different way as
on the right column. It is a bit ambiguous but is based on a link between the two:
the meaning of “� k” is defined by ∀M M � k. Generally “M � k” is used only in
first-order logic but Chang and Keisler in their famous book Model Theory [29] also
use this notation for propositional logic. However they don’t use the letters “M” and
“k”, but they use another notation.

On the left side we are using the letter “M” using a graphism different from the
one of the letter “k” to emphasize that these are different kinds of entities. We use
the 13th letter of the alphabet because it is the initial letter of the word “model.”
This word can be used in any context because it does not specify the internal nature
of the thing, whether it is a bivaluation, a first-order structure, or a possible world,
but only its function. It is a bit ambiguous because if “M � k” can be read without
problem as “M is a model of k,” on the other hand “M � k” is read as “M is not a
model of k,” which is a bit paradoxical, because we have a model which is not a
model! But this makes sense if we consider that M is a model of other formulas,
here, for example, of ¬k.

Instead of writing “M � k” and “M � k” we could have, respectively, written “v(M
; k)=1” and “v (M ; k)=0,” but it would have been a bit cumbersome. Anyway “M
� k” is usually read as “k is true in M” and “M � k” as “k is false in M.” What is
important to stress is that a principle of bivalence is used at the metalogical level
whether we are dealing with a non-classical logic and/or a first-order logic.

Why using the letter “k”? We want to avoid to use the letter “p” which is too much
connected to propositional logic, so we chose the 11th letter of the alphabet which
is quite neutral. We could have chosen the letter “f,” considering that it is the first
letter of the word “formula.” This word is quite neutral and is used to talk either of
formulas of propositional logic or first-order logic. But this word has an ambiguous
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Table 4 Trichotomy of propositions from the point of view of model theory

TERMINOLOGY MATHEMATICAL DEFINITION DOUBLE TURNSTILE

Tautology ∀M M � k � k

Antilogy ∀M M � k � ¬k

Contingency ∃M M � k & ∃M M � k � k & � ¬k

meaning: it is also used for any symbolic expression (not necessarily connected to
logic). It is important to emphasize the nature of the object we are dealing with and
to which the three categories tautology, antilogy, and contingency apply. These are
propositions, whether specified as formulas of a propositional language or another
formal language. So we will keep using the word “proposition,” but we prefer to use
“k” than “p” to avoid the reader to immediately think that we are dealing only with
propositional logic.

We have then the two following diagrams:

Fig. 6 Turnstile tautological triangles of contrariety

Based on Table 4, the left diagram can be designed as follows without using
negation at the logical level:

Fig. 7 Model-theoretic
triangle of contrariety
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It is interesting because we have then a diagram not limited to logics with a
classical negation, such as positive logic. This triangle could be called a “turnstile
triangle” since the (double) turnstile is used, but not with the same meaning as in
Fig. 4.

2.3 Turnstile Tautological Hexagons

Let’s now apply the structure of the hexagon. We have then the following diagrams:

Fig. 8 Turnstile tautological hexagons

These hexagons have been generated using the logical structure of this figure
of opposition. The three corners of the green triangles of subcontrariety are the
(metalogical) negations of the three corners of the blue triangles of contrariety. We
are using the symbol “⊕” to denote metalogical disjunction. And we have replaced
“&” by “⊗” for metalogical conjunction. This is not only purely esthetical. A good
notation has to be designed considering the general context, in relation with other
notations. For example, the symbol for the empty set “∅” (introduced by André
Weil) is a good notation considering its link with the symbol for the number zero
“0.” It is good to have a connection between the symbols for conjunction and
disjunction. At the logical level, we have “∧, ∨” and that’s nice. At the metalogical
level, we also chose here two symbols having a connection (and multiplication and
addition are traditionally connected with conjunction and disjunction).

“� k” can literally be interpreted as follows: k is not a tautology, which means
nothing else than k is an antilogy or k is a contingency, as clearly depicted by the
structure of the hexagon. There is not a positive terminology for this situation, and
maybe it could be good to create one. The same happens with the two other cases:
the contradictory opposite of antilogy and the contradictory opposite of contingency.
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3 Hexagons of Opposition for Consequence Relations

At some point a logic started to be considered as a consequence relation rather than
a set of tautologies. The origin of this framework can be traced back to Tarski when
in Poland. He put forward on the one hand the notion of consequence operator [30]
and on the other hand the notion of logical consequence [31]. In both cases we
have a binary setting: a formula is consequence of a set of formulas. These two
notions studied by Tarski are not defined in the same way and he didn’t use the
same terminology for them.

Tarski at this time was using neither “�” nor “�.” Nowadays it is common to use
these symbols as binary relations in the following way:

Table 5 Proof-theoretic and model-theoretic consequence relations

SYMBOLISM READING MEANING

T � k k is a proof-theoretic consequence of T There is a proof of k from T

T � k k is a model-theoretic consequence of T All models of T are models of k

In continuity with what we have said in the previous section, what is on the right
of the simple or double turnstile, we will call it a proposition and denoted it by “k.”
On the left side we have what is generally called a theory,5 a set of formulas, or, to
use our present language, a set of propositions. We use a capital letter for a theory
to emphasize the difference between the size: multiplicity vs. oneness. Multiplicity
on the right of the turnstile has also been considered (cf. [32]) but we will not deal
here with this issue.

In the case of both turnstiles, the tautological framework can be seen as a
particular limit case of the consequential framework, the case where the theory is
the empty set: ∅ � k and ∅ � k.

Symbolically we have then the two following consequential turnstile hexagons
of which the two hexagons of Fig. 8 are limit cases:

5 In Poland during the 1930’s, the word “theory” was used in a different way: for what is nowadays
called a “closed theory,” a theory such that any formula which is a consequence of the theory is in
the theory.
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Fig. 9 Turnstile consequential hexagons

These hexagons perfectly depict the six possibilities we have for a relation of a
proposition relatively to a theory, either from a model-theoretic point of view (on
the left) or from a proof-theoretic point of view (on the right). The completeness
theorem can be interpreted as the matching of these two hexagons.

These six positions do not always exist. For example, if we have a complete
theory, the bottom position does not exist. The definition of a complete theory is
given by the top position. A famous case of incomplete theory is Peano Arithmetic,
PA. Gödel [33] has shown that there is a proposition g, inspired by the liar paradox,
such that PA � g and PA�¬g. Sometimes such a proposition is called an undecidable
proposition, but a better terminology is independent.6

Let’s see what kind of names we can give to the other positions. We can design
the following hexagon:

Fig. 10 Terminological proof-theoretic hexagon

6 A theory can be incomplete and decidable, a famous case is the empty theory of classical
propositional logic, and an atomic formula is independent from ∅ but ∅ is decidable.
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We clearly have some positive terms for the three corners of the contrariety
triangle. It is no clear that we can find some non-ambiguous terminology for the
three other corners. But note that in this figure we have avoided to use negation at
the logical level, so it can apply to any logical system.

Now let’s turn to the model-theoretic hexagon. We have the following Table 6:

Table 6 Model-theoretic consequential hexagon

MATHEMATICAL DEFINITION DOUBLE TURNSTILE

A ∀M M � T �⇒ M � k T � k

E ∀ M M � T �⇒ M � k T � ¬k

Y (∃M M � T ⊗M � k) ⊗ ( ∃M M � T ⊗ M � k) T � k ⊗ T � ¬k

I ∃M M � T ⊗ M � k T � ¬k

O ∃M M � T ⊗ M � k T � k

U ∀M M � T �⇒ M � k ⊕ ∀M M � T �⇒ M � k T � k ⊕ T � ¬k

This allows us to have a consequential hexagon with the use of negation only at
the metalevel similarly to the triangle presented in Fig. 7:

Fig. 11 Model-theoretic hexagon

If we want to use a truth terminology, we can interpret “T � k” as “k is true in
T” or “k is true according to T,” for example, “2 + 2 = 4” is true according to
Peano Arithmetic. And we can interpret “T � ¬k” as “k is false in T” or “k is false
according to T”. For example, 2 + 2 �= 4 is false according to Peano Arithmetic.
Up to now, no problems. From this point of view, the Y corner of the hexagon can
be interpreted as neither true nor false in T (or according to T), but there is no
straightforward terminology to summarize this in one word. And we can interpret
the other corners of the hexagon in a pure negative way. We then have the situation
as depicted in Fig. 12.

A very important point is that “k is true in T” is not equivalent here to “k is
not false in T.” Symbolically, T � k is not equivalent to T � ¬k. At the level of



238 J.-Y. Beziau

symbolism, it is interesting because we see that we have a logical negation and a
metalogical negation, and the two together do not lead to affirmation.

Fig. 12 Terminological
model-theoretic hexagon:
truth version

We may want to eliminate truth, and then we can a configuration as depicted in
Fig. 13.

Fig. 13 Terminological model-theoretic hexagon: no truth version

The word “satisfiable” is clearly from model-theory, but generally it is not used
in this way: we say that a formula is satisfiable in a model, not in a theory. The
terminology “satisfiable” is quite natural for the I-corner when T is empty, i.e., in
the case of the tautological model-theoretic hexagon. Then we say that a formula is
satisfiable tout court.

On the E-corner we have put “refutable” which is rather from proof theory. We
have used “in” rather than “from” to have a similar expression as with satisfiability
and different from the proof-theoretic hexagon of Fig. 10.

From the point of view of model theory, it would make more sense to put
refutable in the O-corner, where we have put “is not a consequence.” Again, this
is natural in the empty case, when we say refutable tout court. This is the reason
why in our previous paper [16] we put refutable in the O-corner forming a nice
subcontrariety pair with satisfiable rather than a contradictory pair as in Fig. 13.
The problem we are facing here is that in proof theory it makes also sense to put it
in the E-corner.
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Fig. 14 Terminological consequential hexagon

To finish, let us present a new terminological decoration of the six corners of the
consequential hexagon, depicted in Fig. 14 :

As in Figs. 10, 11, 12, and 13, we have avoided to use negation at the logical
level, so this figure applies to any logical system. Moreover, the advantage of the
terminology of this diagram is that it can be used both for proof theory and for model
theory. The terminologies “(in)compatible” and “(in)dependent” are not usually
univocally tight to one of these fields. This advantage turns of course into a defect
if we want to emphasize one of the two specific fields.

Considering the turnstile symbolism, the two fields are clearly distinguished by
the simple turnstile “�” and the double turnstile “�.” There is not a symbol which
is unambiguously used to deal with an abstract situation which is beyond proof and
truth, although in recent years the tendency has been to use the simple turnstile for
such a situation.
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32. D.J.Shoesmith and T.J.Smiley, 1978, Multiple-conclusion logic, Cambridge University Press,

Cambridge, 1978.
33. K.Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme, I”, Monatshefte für Mathematik und Physik, 38 (1931), pp. 173–98.



The Naturalness of Jacques Lacan’s
Logic

Hubert Martin Schüler

Abstract In his works in the field of psychoanalysis, especially in his Seminar
XX – Encore and in L’Étourdit, Jacques Lacan (1901–1981) developed a logic
of incompleteness by rejecting universal negative propositions in the sense of the
traditional (quantificational) square of opposition. By using the formula ~(∀x)�x,
entitled pas-tout, Lacan made a connection between psychoanalysis and formal
logic. Recently, among logicians, a debate has been triggered that makes it possible
to leave the depth of psychoanalytic theoretical content. This chapter compares
Lacan’s four formulas of sexuation with the traditional (quantificational) square
of opposition and tries to explain the naturalness of Lacan’s logic. Furthermore, it
deals with Guy Le Gaufey’s Lacanian logical square in order to compare it to the
traditional square. Finally, it becomes clear that in Lacan’s logic, a new contribution
to the question of naturalness in logic can be found.

Keywords Square of Opposition · Psychoanalysis · Paraconsistent logic
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1 Introduction

Beyond our trivial knowledge that nothing is permanent, or – in more philosophical
words – nothing is universal, for Jacques Lacan this issue is expressed in his well-
known and much-cited cryptical statement that there is no sexual relationship. In the
1960s and 1970s (cf. Guy Le Gaufey [15], p. 2–3, as well as in William J. Urban
[16], p. 167), Lacan presented his four formulas of sexuation which should support
the thesis that “Il n’y pas de rapport sexuel” (cf. [2] – Alain Badiou and Barbara
Cassin titled their book with this thesis.). These four formulas, which are based
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on predicate-logic, raise many questions, which, however, culminate in one main
question:

(mq) What is the difference between Lacan’s logic and the traditional logic?

Regarding (mq) and the procedure of the paper discussed in this chapter, I will
not focus on the psychoanalytic background, but rather on the formal-logical part.
Furthermore, I will only mention the formalized propositions of the four formulas of
sexuation and make a few introductory remarks (Sect. 2) so that a comparison with
the traditional logic becomes possible (Sects. 3, 4, and 5). Sections 3 and 4 prepare
the answer of (mq) which is finally given in Sect. 5. Section 3 prepares the following
argument: Lacan’s formulas are compared with the traditional (quantificational)
square of opposition. This comparison leads to something that is very reminiscent
of Jacques Brundschwig’s maximal particular (Sect. 4). Section 5 deals with Guy
Le Gaufey’s Lacanian logical square in order to ask (mq): What is the difference
between Lacan’s logic and the traditional logic? At this point, it is important to
mention that Newton da Costa and Jorge Forbes have already identified three basic
ways of applying logic to psychoanalysis ([21]). With an answer to (mq), however,
in this chapter, I would like to transfer to the question of naturalness (Sect. 6).

2 The Four Formulas of Sexuation

Regarding Lacan’s four formulas of sexuation, within this section, I will argue the
following: After introducing these four formulas, I will give a few introductory
remarks on the variable x, the predicate �, and both of them in connection
(�x). Finally, based on two quotes of Lacan (Q1 and Q2), I will focus on the
aforementioned four formulas regarding their quantification.

According to Lacan, “the absence of the sexual relationship” ([12], p. 69) or the
proposition that “there is no sexual relationship” ([11], p. 5) is supported by the four
formulas of sexuation:

Fig. 1 The four formulas of sexuation. (Redrawn from Hubert Martin Schüler [4], p. 73)

Figure 1 shows a redrawn part of Lacan’s tabular given in [12], p. 73. For better
readability, I have slightly changed the notation.
At first, we should focus on the variable x in Fig. 1. According to Russell Grigg,
there is a fundamental difference between Lacan’s use of x and the common use of
the variable in predicate logic.
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[I]n Lacan’s formulas the variable, x, ranges only over those things that fall under �

[...], whereas the formulas of the predicate calculus are formulated in such a way that the
variables, x, y, z, etc., range over everything. ([8], p. 54)

In other words, Lacan’s x does not range over everything, it denotes “speaking
being[s]” ([8], p. 54). According to Grigg, Lacan’s formula (∀x) �x corresponds
to the formula (∀x) (Gx→ Hx) and (∃x) �x to (∃x) (Gx ∧ Hx) of predicate calculus
(cf. [8], p. 53).

But what is the predicate of the predicator �? For Lacan, � signifies nothing else
than the phallus, or more precisely, phallic enjoyment (cf. [12], p. 73–81). However,
according to Ellie Ragland, Lacan refers – contrary to Sigmund Freud – with the
meaning of the phallus not to the penis (cf. [18], p. 2). Or, as Lacan says in Seminar
XX:

I designate � as the phallus insofar as I indicate that it is the signifier that has no signified,
the one that is based, in the case of man, on phallic jouissance. ([12], p. 81)

Finally, the connection between x and �, i.e., �x, can be identified as Lacan’s
“phallic function” ([12], p. 73). He uses the concept function based on Gottlob
Frege, of course with the mentioned restriction of the blank space, the variable x.
Furthermore, it is important that Lacan’s phallic enjoyment, or “phallic jouissance”
([12], p. 81), means a special kind of enjoyment which is a characterization or
structuring of the castration complex, i.e., a structure of lack. Thus, �x can be
interpreted as “x (a sexual not specified individual) is structured by the castration
complex.”

But how are the four formulas of sexuation to be understood regarding their quan-
tification? Lacan refers with his neologism sexuation to the process of assignment
in a particular gender. Each speaking being assigns either to the left or to the right
column of Fig. 1. The left column corresponds to man, the right one to woman.

First, let us focus on the left column, i.e., the two formulas of sexuation of man.
The following quote explains the meaning of the left column in detail:

(Q1) We’ll start with the four propositional formulas at the top of the table, two of which
lie to the left, the other two to the right. Every speaking being situates itself on one side
or the other. On the left – the lower line – (∀x) �x – indicates that it is through the phallic
function that man as whole acquires his inscription [ . . . ], with the proviso that this function
is limited due to the existence of an x by which the function �x is negated [..]: (∃x) ~�x.
That is what is known as the father function – whereby we find, via negation, the proposition
~�x, which grounds the operativity [..] of what makes up for the sexual relationship with
castration, insofar as that relationship is in no way inscribable. The whole here is thus based
on the exception posited as the end-point [..], that is, on that which altogether negates �x.
([12], p. 79–80)

(Q1) not only confirms the inscription of every speaking being in one column
mentioned above but also gives an explanation of (∃x) ~ �x and (∀x) �x. The
following results:

upper left: (∃x) ~�x:

“There is (at least) one x which is not structured by the castration complex.”

lower left: (∀x) �x :

“All x are structured by the castration complex.”
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However, a similar structure in vertical direction between the upper and the lower
formula can also be found on the right side of the table (cf. Fig. 1), the column of
woman:

(Q2) On the other side, you have the inscription of the woman portion of speaking beings.
Any speaking being whatsoever, as is expressly formulated in Freudian theory, whether
provided with the attributes of masculinity – attributes that remain to be determined – or
not, is allowed to inscribe itself in this part. If it inscribes itself there, it will not allow for
any universality – it will be a not-whole, insofar as it has the choice of positing itself in �x
or of not being there. ([12], p. 79–80)

According to Fig. 1 and (Q2) we can say:

upper right: ~(∃x) ~�x:

“There is no x which is not structured by the castration complex.”

lower right: ~(∀x) �x:

“Not-all (pas-tout)x are structured by the castration complex.”

Concerning Lacan’s so-called pas-tout, there are many translations that can be found
in the literature. However, these translations already concern (mq) which will be
discussed in the next sections.

3 Lacan’s Formulas in Comparison to the Traditional Square
of Opposition

It is well known that there are many illustrations of the traditional square of
opposition in the literature on logic. For our concerns, it seems helpful to expand
the quantificational square with formulas, such as the following:

Fig. 2 The traditional
(quantificational) square of
opposition
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Without going deeper into the various ways of drawing the square, there are
basically four logical relationships, as we can see in Fig. 2. Figure 2 is based
on the way of presentation introduced by Jean-Yves Béziau, cf. [5]: (1) contrary
relationship between A and E (the blue line in Fig. 2); (2) contradictory relationship
between A and O, and between E and I (the red line in Fig. 2); (3) subcontrary
relationship between I and O (the green line in Fig. 2); and (4) implicatory
relationship (subalternation) between A and I (A implies I), as well as between E
and O (E implies O) (the black arrows in Fig. 2). In addition, each corner contains an
equivalent formula, so that every proposition can be formalized with a ∀-quantifier
or with an ∃-quantifier. For this chapter, I also use the following abbreviations:
universal affirmative = UA, universal negative = UN, particular affirmative = PA,
and particular negative = PN. However, I will only use these abbreviations if I refer
to the traditional (quantificational) square of opposition (cf. Fig. 2).

Lacan’s formulas obviously correspond only to the A- and O-corner: If we assign
the four formulas of Lacan to the traditional square, then the A-corner corresponds
to (lower left) (∀x) �x <=> (upper right) ~ (∃x) ~ �x, and the O-corner corresponds
to (upper left) (∃x) ~ �x <=> (lower right) ~ (∀x) �x. But this also means that in
the formulas of Lacan, those formulas of the traditional square are not included,
which have their place at the E- and I-corners: ~(∃x) �x <=> (∀x) ~ �x and (∃x)
�x <=> ~ (∀x) ~ �x. Thus, in the logic of Lacan, there is no universalizable nothing
as well as its contradictory, i.e., a particular something which affirms not a negation
of a predicate. However, what that means has to be clarified in Sect. 5. Furthermore,
the four formulas of sexuation describe only relationships of contradictions and
equivalences.

Thus, if we recall (mq), a first superficial difference to the traditional logic comes
up: First, the four formulas of sexuation describe no logical meanings of universal-
negative (UN) and particular-affirmative (PA) propositions which do not affirm a
negation of a predicate. Second, they contain only relationships of contradictions
and equivalences. This fact is already reminiscent of another logical square, i.e., the
square of the maximal particular by Jacques Brunschwig.

4 A “Source” of Lacan’s Logic?

So far, Sect. 3 summarized the results of the comparison between Lacan’s four
formulas of sexuation and the traditional (quantificational) square of opposition and
led to the assumption that Lacan refers to the maximal particular. This assumption
is also confirmed by Grigg and Jacques-Alain Miller. Both identify the maximal
particular – specially pursued by Jacques Brunschwig – “as the source of the pas-
tout” ([8], p. 64).

Brunschwig’s argument begins with the recognition of a fundamental problem in
Aristotelian logic, i.e., the problem concerning the corners of particular propositions
within the traditional (quantificational) square of opposition. Béziau examines this
problem by dividing it into the I- and O-corner problems and proposes, with a
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reference to Robert Blanché, the hexagon of opposition (cf. [5]). For our concerns,
it is sufficient to focus on the problems of the O-corner.

(OP1) there is no primitive name of natural languages for the notion located at the O-corner.

(OP2) tentative names used for the O-corner do not correspond to the meaning of the O-
corner.

(OP3) the notion located at the O-corner does not correspond to a natural notion of our
thought. ([5], p. 8)

As said, Blanché and Béziau solve these problems by extending the traditional
square. However, Brunschwig “argues that Aristotle came to realize that he had
initially been misled by the working of natural language, and that this led to an
internal problem” ([8], p. 62). With the introduction of the minimal particular,
Aristotle already excluded the maximum particular as an important aspect of natural
language. Grigg emphasizes that Brunschwig does not want to characterize the
Aristotelian logic as being inconsistent, but he would notice that “it is one in
which certain intuitions implicit in natural language have been disallowed specially
in relation to particular statements” ([8], p. 62). Grigg summarizes that natural
language, in the sense of a usual meaning of the particular, finds no place in the
traditional square of opposition. This, so Grigg, can simply be shown by “three
mutually inconsistent propositions” ([8], p. 62). (For better readability, I translate
Grigg’s propositions into predicate logic formulas):

Three inconsistent axioms of the usual meaning of the particular (cf. Grigg [8], as well as
Brunschwig [4]):

a) (∀x) �x↔ ~(∃x)~�x
b) (∀x) �x→ (∃x)�x
c) (∃x)�x↔ (∃x)~�x

Axiom a) and axiom b) are familiar to the traditional (quantificational) square
of opposition (cf. Fig. 2): a) corresponds to the A-corner (with its equivalent
proposition) and b) to the relationship between the A- and I-corners. But not axiom
c): The two particular propositions reject the subcontrary relationship between the
I- and O-corners of the quantificational square and claim to imply each other.

However, axiom c) can be explained with a simple example: Just imagine that
we sit under an apple tree in the garden and someone in the house asks whether the
tree carries red apples. So we look into the dense branches of the tree and though
we did not take a close look at each apple, meaning we do not know if all apples are
red, our answer might be: “Some apples are red.”: (∃x) �x. But what do we actually
mean by that? Usually we would not object to the person in the house if he or she
understood: “Not all apples are red.”: ~(∀x) �x, which means: “Some apples are not
red.”: (∃x) ~ �x. This is what is meant with axiom c).

The three axioms are inconsistent because if it is true that all apples are red ((∀x)
�x), it is also true that some apples are red ((∃x) �x) (cf. axiom b)). But according
to axiom c) (∃x) �x is equivalent to (∃x) ~ �x. So if someone claims that all apples
are red ((∀x) �x), then he also claims that some apples are not red (∃x) ~ �x. This
inconsistency can only be solved by discarding one of the three axioms.
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By rejecting axiom c), the traditional (quantificational) square of opposition
occurs; by rejecting axiom b), Brunschwig’s square of the maximal particular
comes up:

Fig. 3 Brunschwig’s square
of the maximal particular.
(Redrawn from Hubert
Martin Schüler [4], p. 7)

As we can see in Fig. 3, according to axiom c), Brunschwig draws an equivalency
between the I- and O-corners. The diagonals were not affected by the three axioms,
so they remain (as in the traditional square) contradictions. By rejecting axiom b),
the implication becomes also a contradiction. Therefore, there is also a contradiction
between the E- and O-corners. Otherwise, the inconsistency would be introduced
once again. The consequence is that there is also an equivalency between the A- and
E-corners, because both of them contradict both particular propositions which are
equivalent.

Thus, why do we speak about a maximum particular? The answer is quite easy.
According to Grigg, Brunschwig calls the particular corners of the traditional square
the minimal particular because the truth of “Some apples are red” which means “At
least one apple is red” does not exclude the possible truth of its antecedent “All
apples are red.” In contrast to the minimal particular, a maximum particular refers
to the issue that the truth of “Some apples are red” and “Not all apples are red”
contradicts every truth of a universal proposition, no matter whether affirmative or
negative. So, if we say “Some apples are red,” we mean “At least and at most some
apples are red” (cf. [8], p. 63).

In comparison with Lacan’s four formulas of sexuation, we have seen that they
only refer to the formulas of the A- and O-corners of the traditional (quantifica-
tional) square of opposition (cf. Sect. 3). The consequence was that we are only
dealing with contradictions and equivalences, just like Brunschwig’s square of the
maximal particular. The difference being that for Brunschwig – in contradiction
to Lacan – the universal-negative (UN) and the particular-affirmative (PA) are
included. The question of how Brunschwig interprets the UN and the PA in his
square must be excluded here. However, for him as well as for Lacan, there is a
basic consequence for the relationship between the particular and the universal level:
Whether affirmative or negative, they are contradictions. In relation to Lacan’s four
formulas of sexuation, however, this led to confusion among the commentators.

Grigg – for example – interprets Badiou in agreement with himself and concludes
that Lacan’s ~ (∀x) �x has “to be taken: no woman comes entirely under the phallic
function” ([8], p. 57). Guy Le Gaufey, on the other hand, contradicts this conclusion:
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Here one must get rid of the idea that they would not entirely satisfy it (i.e. that a woman
would never, as such, be would entirely taken up into the phallic function, etc. etc.) and that
this would be the reason why Lacan would mark them with his not-all. ([15], p. 29)

This confusion manifests in the fact that Lacan assigns supposedly equivalent
formulas different meanings. Why does he write (∀x) �x if he could also write
~(∃x) ~ �x? Why does he write ~(∀x) �x if he could also write (∃x) ~ �x? So,
if we are not dealing with equivalents in terms of the traditional (quantificational)
square of opposition, what are the relationships between these formulas? But this
question affects the meaning of the quantifiers. In summary, there is a different
meaning in Lacan’s logic concerning its basic elements: the quantifiers, the negation
(contradiction), and the equivalence (implication). But this reiterates (mq): What is
the difference between Lacan’s logic and the traditional logic?

5 Le Gaufey’s Lacanian Logical Square

As we have seen in the last section, quantifiers, negation (contradiction), and
equivalence (implication) have different meanings in Lacan than in the traditional
(quantificational) square of opposition (cf. Fig. 2). In this section, these aspects will
be pointed out, and my intention is to answer (mq).

Le Gaufey argues that there is nothing wrong by interpreting Lacan’s four
formulas of sexuation as a logical square (cf. [15], p. 32). Urban agrees with Le
Gaufey and calls it the Lacanian logical square (cf. [16], p. 169).

Fig. 4 Le Gaufey’s Lacanian
logical square. (Redrawn
from Hubert Martin Schüler,
cf. [15], p. 32)

As we can see in Fig. 4, Le Gaufey adopts the logical relationships of the square of
Brunschwig while replacing the formulas of the E- and O-corners with ~(∃x) ~ �x
and ~ (∀x) �x (cf. Sect. 3 and Fig. 3).

However, the Lacanian logical square raises questions that basically culminate in
(mq). We are well advised to clarify this question, among other reasons because we
have seen that we need to understand the logical relationships given in the square
in different ways. If we want to understand the fundamental difference between
Lacan’s logic (i.e., the Lacanian logical square – cf. Fig. 4) and the traditional logic
(i.e., the traditional (quantificational) square of opposition – cf. Fig. 2), it seems
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practical to form and follow a path of questions concerning the four formulas of
sexuation in the sense of the Lacanian logical square (cf. Fig. 4). Although many
paths lead to the same goal, I suggest the following questions:

1. Why do the positions of the four formulas of sexuation change as soon as they
are put into a logical square?

2. What is the difference between Lacan’s logic and the traditional logic, concern-
ing the following:

(a) The a-corner
(b) The negation (contradiction)
(c) The quantifiers: the ∀-quantifier and the ∃-quantifier
(d) The o-corner
(e) The equivalence (implication)
(f) The i-corner
(g) The e-corner

For the sake of readability, I will use lower case letters for the corners of the
Lacanian logical square (as in Fig. 4: a, e, i, o) and uppercase letters for the
traditional (quantificational) square of opposition (as in Fig. 2: A, E, I, O).

5.1 Why Do the Positions of the Four Formulas of Sexuation
change as Soon as They Are Put into a Logical Square?

Comparing Le Gaufey’s Lacanian logical square (cf. Fig. 4) with Lacans four
formulas (cf. Fig. 1), it is obvious that the two formulas on the left ((∀x) �x and
(∃x) ~ �x) have switched positions. However, this problem is merely a bogus
problem. Le Gaufey reverses these positions simply to improve readability. He
is concerned with removing his square from the others as little as possible in an
intention to make comparisons better. Urban goes a step further and exchanges the
whole “man-column” with the “woman-column.” He justifies his exchange with the
claim that the formulas of woman are more primary. According to Urban, one would
usually read from left to right, and thus, we should start with these formulas (cf. [16],
p. 170). To what extent one can say that the formulas of woman are to be considered
more primary cannot be discussed at this point yet. However, in comparison with
other logical squares, the square of Le Gaufey seems – at least at this point – more
workable.

5.2 What Is the Difference Between Lacan’s Logic
and the Traditional Logic?

(a) The difference between the a-corner (cf. Fig. 4) and the A-corner (cf. Fig. 2):
First, it immediately becomes clear that the equivalent relationship between the
formulas of the A-corner cannot be asserted in the a-corner. In Sect. 5.2.e, this
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issue will be explored. For now, we can only repeatedly say that in the a-corner, the
relationship between (∀x) �x and ~ (∃x) ~ �x has to be understood in a different way
than the traditional equivalence. Otherwise, there is no difference between them, at
least so far. In both squares, the a- or A-corner means (∀x) �x (“All x are �x.”, or
in the sense of Lacan, and of course in considering the definition of x in Lacan (cf.
Sect. 2), “All x are structured by the castration complex.”).

(b) The different meaning of negation (contradiction): The more interesting point
is that after starting our path of questions with the UA (cf. Sect. 5.2.a – (∀x) �x),
according to Le Gaufey, Lacan establishes his further formulas only via redoubled
negation (cf. [15], p. 34). Thus, there is a difference between the logical operation
of negation (contradiction) in the traditional (quantificational) square of opposition
and the Lacanian logical square. What is this difference? According to Slavoj Žižek,
this important logical operation in Lacan is reminiscent of Georg Wilhelm Friedrich
Hegel’s double negation or the negation of the negation. Žižek points out that in
Seminar XX, Lacan gives a “new definition” of Hegel’s negation of the negation
([17], p. 86). According to Hegel, “the negation of the negation is something
positive” ([9], p. 108) (“(S)o einfach die Einsicht ist, ( . . . ) daß die Negation der
Negation Positives ist ( . . . ).). But Lacan’s redoubled negation does not return to
any kind of positivity. Of course, the special feature in Hegel’s double negation is
that the positivity unceasingly changes. This is not the point. Apart from the fact that
Hegel would not only disagree to logical formalizations, the difference between his
double negation and redoubled negation is that the latter does not mean that one can
conclude by the first negation of (∀x) �x to ~ (∀x) �x, while the second negation
of ~ (∀x) �x leads again to (∀x) �x. In this case, (∀x) �x would then imply (∃x)
�x (cf. the traditional (quantificational) square of opposition – Fig. 2). However,
in Lacan, “two quite different forms of negation” ([11], p. 17) are intertwined. If
we negate (∀x) �x, will we conclude ~ (∀x) �x (the o-corner) or (∃x) ~ �x (the
i-corner) – or both? In the sense of the traditional (quantificational) square, ~(∀x)
�x and (∃x) ~ �x would be equivalent (cf. Fig. 2) – not in the square of Le Gaufey,
at least in that traditional meaning of equivalence. According to him, the “diagonal”
negation leads to ~ (∀x) �x, which means that “[o]ur not-all is discordance” ([11],
p. 17). On the other hand, the “vertical” negation of (∀x) �x leads to (∃x) ~ �x.
However, the i-corner is not discordance, it is “foreclosure” ([11], p. 17). Lacan
explains the difference:

But what is foreclosure? Assuredly it is to be placed in a different register to that of
discordance. It is to be placed at the point at which we have written the term described
as function. Here is formulated the importance of the said (du dire). The only foreclosure
is of the said, of this something that exists – existence being already promoted to what
assuredly ( . . . ) we have to give it as a status – that (..) something can be said or not. ([11],
p. 17)

In summary: The interwined “two types of contradiction” ([15], p. 42) of (∀x) �x
lead on the one hand to ~ (∀x) �x (negation as discordance) which means not that
there is or there exists a something. That is the reason why Lacan places ~ (∀x)
(“not all x”) instead of (∃x) (“there is a x”). On the other hand, the second type of
contradiction as foreclosure leads to existence: (∃x) ~ �x.
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In the structure of Le Gaufey’s Lacanian logical square, a problem arises: The
two types of contradiction distinguish between existence and non-existence and
combine the two in the sense of equivalence. Thus, there are equivalences between
the a- and e-corners, as well as between the i- and o-corners. However, these
equivalences are not to be understood in terms of equivalent relationships like in the
traditional (quantificational) square of opposition. Insofar, the question of how the
Lacanian logical square does not break down shifts first to the place of the different
meaning of equivalent relationship and second to the question of the meaning of
existence (cf. Sect. 5.2.e).

Furthermore, it is not only the mentioned aspect that strains the Lacanian logical
square. For we are dealing with two different sets, which in turn pass on the question
to the Lacanian meaning of equivalence. Le Gaufey describes it like this:

It nevertheless remains that, in every case, when we write that any element whatsoever
belongs to a determined set, we posit such a set as existing. No ∀ without the set that it is
supposed to cover. And if no set... ([15], p. 16)

What Le Gaufey addresses here is nothing else than Lacan’s “weld” in the midst
of set-theory, formalized in his logical square by the redoubled negation on both
horizontal planes as equivalence. Since this section only aims to explain the
negation, it is necessary to stop at the mere naming of the problem and refer to
Sect. 5.2.e. Again: Whether and, if so, how existence in the whole Lacanian logical
square is to be understood, ultimately depends on the question of equivalence. So
far, we have only dealt in isolation with the left and the right sides of the square.

Regardless of the unresolved problems, it makes more sense to pursue the
mentioned structured path. We first started in the upper left corner of the Lacanian
logical square and then turned to the negation in the diagonal, the o-corner follows.
But before that, one has to consider the effects of the redoubled negation on the
meaning of quantifiers themselves.

(c) The different meaning of the quantifiers: the ∀-quantifier and ∃-quantifier:
Basically, the difference or the change of the meaning of the quantifiers by the
redoubled negation already became clear in the last section. While in the traditional
(quantificational) square of opposition the negation of the formula (∀x) �x or
its equivalent formula ~ (∃x) ~ �x simply leads to ~ (∀x) �x or (∃x) ~ �x (cf.
Fig. 2), the redoubled negation in Le Gaufey’s Lacanian logical square affirms a
different meaning of equivalence in distinguishing existence on the left ((∀x) �x
and (∃x) ~ �x) from non-existence on the right (~(∃x) ~ �x and ~ (∀x) �x) columns
of the square (cf. Fig. 4). As already mentioned above, this refers to the topic of set-
theory and will be discussed in the context of the question of equivalent relationships
(cf. Sect. 5.2.e). However, the difference between the meaning of the Lacanian
quantifiers and the traditional use is not that the ∀- quantifier or ∃- quantifier would
change their fundamental meaning. They change their meaning if they get negated:
~∀x and ~ ∃x no longer claim that any x exists, on the contrary:

Starting from the negation brought to bear on all women, Lacan concludes to the inexistence
of the woman as a strictly symbolic entity, and by there alone there vanishes the possibility
of writing a relationship between an entity possessing a set of values to be covered (men)
and another which does not possess such a range of Fregian values (women). ([15], p. 22–
23)
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This quote of Le Gaufey offers two interesting aspects: a first aspect for Lacan’s
argument that there is no sexual relationship. For how should these two essentially
different values relate? Thus, there is no sexual relationship. Second, does this mean
that the “man-column” correspond to existence, while the “woman-column” do not?
Again, this issue is addressed.

(d) The difference between the o-corner (cf. Fig. 4) and the O-corner (cf. Fig. 2):
Here, several aspects are simultaneously pressing for clarification – but one after
another: Summarized, there are three logical relationships concerning the o-corner
(~(∀x) �x): First, the two contradictions: the negation of the a-corner ((∀x) �x)
and the negation of the e-corner (~(∃x) ~ �x), and second, the equivalence to the
i-corner ((∃x) ~ �x). First, concerning the two contradictions: On the position of the
o-corner, we do not say that there exists at least one which is not, which is equivalent
to the proposition that not all are so, in the sense of existence. On the one hand, we
negate the existence of (∀x) �x in the sense of discordance, and on the other hand,
the non-existence of ~(∃x) ~ �x in the sense of foreclosure. The latter negation
is perhaps the more interesting because of its contradiction of non-existence. Or,
like Žižek perhaps would say: That which does not exist anyway is negated so
that it exists even less than before. With this logical operation, Lacan brings that
psychoanalytic structural moment into the whole context of his logic what he calls
the real. Second, the question of equivalence is again asked at this point. Just like
the a-corner, the o-corner does not contain the equivalent formula expressed with
the quantifier of existence. The Lacanian change of meaning concerning the ∀- and
∃- quantifiers has already been described in the former section (cf. Sect. 5.2.c). The
o-corner (i.e., the Not-all (~(∀x) �x)) negates two propositions: First, it negates as
discordance the existence of (∀x) �x. Second, it negates as foreclosure the non-
existence of ~(∃x) ~ �x. However, the Not-all implies existence: (∃x) ~ �x (cf. Fig.
4). Unfortunately, the question of how we get logically from the o- to i-corner via
implication and vice versa (so that we can speak of an equivalent relationship and
of existence or non-existence) is not answered yet.

(e) The different meaning of equivalence (implication): Here we turn to the question
of how the logical implication on the particular level between the o- and the i-corners
and vice versa can be understood in the sense of the square of Le Gaufey (cf. Fig. 4).
This also involves the question of existence and non-existence. Of course, the same
question arises at the universal level. However, according to our path of questions,
we finally ask this question concerning the particular level. We have already seen
that Lacan – contrary to the Aristotelian approach – entangles two fundamentally
different values, thus shaking the symmetry of the traditional square. Again, where
does this asymmetry come from? The different values that we have described so far
in terms of existence (left side, the “man-column”) and non-existence (right side, the
“woman-column”) can be explained with the help of set-theory. When we talk about
an “all” in terms of the “man-column” ((∀x) �x), we assume that there also exists the
aforementioned set. But if that set exists, then we can pick out an existing element
or an instance as well. The exception ((∃x) ~ �x) confirms the rule ((∀x) �x) via
redoubled negation. This applies also to the “woman-column”: The exception (~(∀x)
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�x) confirms the rule (~(∃x) ~ �x) via redoubled negation. Here, however, we are
dealing with other values. Because “Not-all” negates what does not exist anyway,
so we have no existing set with corresponding elements in front of us. That was
the reason that led Lacan to say that there is not “the woman.” In contrast to the
man-side, where the rule is confirmed by exception, thus establishing a symbolism,
the Not-all receives the absence of the rule by negation. Not only does Lacan
incorporate Bertrand Russell’s paradox that there exists no set that contains itself,
but Lacan points out that this fact is primarily to be considered. Urban emphasizes
this assumption by interchanging the “man-column” (Urban and Le Gaufey call both
the formulas of the “man-column” right deixis) with the “woman-column” (the left
deixis in Urban and Le Gaufey) as described above (cf. Sect. 5.1) and also refers to
the logic of Gottlob Frege:

Given that Frege’s system leads to such a paradox, the conclusion must be that it cannot be
logically sound. So the extensional approach must be seen as taking logical priority to the
intensional approach and what makes the Lacanian logical square that much more complete
is that it inscribes both these approaches. In contrast to the right deixis [the left side of Le
Gaufey’s Lacanian logical square (cf. Fig. 4)] where sets exist, the left deixis [the right side
of Le Gaufey’s Lacanian logical square (cf. Fig. 4)] has priority through its inscription of
the deeper truth that some sets do not exist. ([16], p. 175)

So, how should the values of the “woman-column” be characterized? So far, we
have been talking in a quite simplistic way about mere non-existence. However,
this characterization is not accurate. Because if we are not dealing with a set or a
universal, then there exists the non-existence of essence. Nothing else is expressed
by the formulas on the right. However, according to Urban, there are consequences
for both columns of the Lacanian logical square:

In contrast to the classical logical square, running across the top of the Lacanian square are
propositions which deeply damage the universal, for in both partitions the universal simply
cannot collectivize all the elements which would give rise to a homogeneous unity without
exception. ([16], p. 181)

It seems, then, that apart from the mentioned asymmetry in the values of the left
and the right, one has to define the gap between the universal and its exception. To
find an answer, Le Gaufey addresses Lacan’s L’étourdit. In this chapter, the latter
introduces the term of limitation. Lacan turns to the relationship of (∀x) �x and
(∃x) ~ �x, or, in other words, how the particular affirms the universal. According
to Lacan, (∀x) �x means, “for all x, �x is satisfied” ([10], p. 56), and (∃x) ~ �x
means, “there is by exception the case, familiar in mathematics (the argument x =
0 in the exponential [sic] function 1/x), the case where there exists an x for which
�x, the function, is not satisfied, namely, by not functioning, is in effect excluded”
([10], p. 56). Urban adds a value table as an example to the drawing of a hyperbolic
function by Le Gaufey:
Le Gaufey and Urban basically agree in their explanations regarding the hyperbolic
function, i.e., the graph in Fig. 5. As we can see, the line of the graph never crosses
the y- or the x-axes, even if we would always extend the values of the adjacent value
table. The value x = 0 is, like the exception ((∃x) ~ �x), never reached. “In a word,
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Fig. 5 Hyperbolic function and value table. (Redrawn from Hubert Martin Schüler, cf. [16],
p. 182)

division by 0 is undefined” ([16], p. 182). However, if the axes never intersect with
the line of the graph, how should one know if this undefined belongs to a set or not?
This question also drives Urban:

There is an undecidability: if the submission of All x under the f(x) is conditioned by the
fact that at least one escapes it, should this escaped x = 0 be counted amongst the All or
not? ([16], p. 182)

So again we come to the question of equivalence. If we know that not all x are �,
then how can we say that there exists an x which is not �, or formalized: ~(∀x)
�x → (∃x) ~ �x (as well as (∃x) ~ �x? → ~(∀x) �x)? Urban suggests a simple
but plausible solution because “[a] choice must be made” ([16], p. 186). He simply
asks the question of what condition must be fulfilled that a logical inference can be
done. If we only have the aforementioned implications (∃x) ~ �x → ~(∀x) �x as
well as ~(∀x) �x→ (∃x) ~ �x, how can we get to ~(∀x) �x or to (∃x) ~ �x? – only
when we as subjects discover one ((∃x) ~ �x) or the other (~(∀x) �x) antecedent
of one of the implications as a second premise and apply the well-known elemental
inference modus ponens. Because, as Urban argues, “without the actualization of
the antecedent this knowledge remains unrealized” ([16], p. 191). The existence of
a rule is thus not only borne by its exception, but also the existence of this exception
must be recognized. Without the act of knowing of the child in Hans Christian
Andersen’s fairy tale The Emperor’s New Clothes that the emperor is naked, there
is no concept of swindle.

(f) The difference between the i-corner (cf. Fig. 4) and the I-corner (cf. Fig. 2): How
can the difference between the i-corner and the traditional I-corner be summarized
from what has been said so far? Le Gaufey replaces – of course in the sense of
Lacan – the traditional formula of (∃x) �x with the formula of (∃x) ~ �x. So we are
no longer talking about an existing thing with a certain essence. Such an existence
is impossible for Lacan. In other words, the green of the apple we hold in our hand
is not the green we characterize it with. But only because of what we see is not the
green, we can call it green. So, if we could not relate to anything outside, we could
not refer to a set. The exception confirms the rule via redoubled negation (cf. Sect.
5.2.b), but without crossing the line of zero (cf. Sect. 5.2.e). (∃x) ~ �x confirms that
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there exists a set ((∀x) �x), but at the same time, it also confirms that if this set exists
for an appreciative subject, there is an open outside (~(∃x) ~ �x). This opening is
the prerequisite for assuming that point of view at all.

(g) The difference between the e-corner (cf. Fig. 4) and the E-corner (cf. Fig. 2):
Finally, we take a quick look at what says of itself that there is nothing that is not
somehow: (~(∃x) ~ �x). First of all, it must be said that similar to the i-corner, the
Aristotelian negation of a certain set ((∀x) ~ �x) has to be replaced with the negation
of an existence that is not somehow. The existence of this “Non-Aristotelian-rule,”
which has a different meaning than the A-corner of the latter (cf. Figure 2), is
confirmed by its exception: ~(∀x) �x, and – again: if a subject recognizes its
existence and concludes (∃x) ~ �x. The difference between the Aristotelian and
the Lacanian meaning of ~(∃x) ~ �x is that unlike the former there is no set that
would imply the existence of an essence. The Lacanian meaning overcomes the
limit of existence, but not just on universal level. The pas-tout confirms as particular
symbolic proposition the open background of the concept of existence.

6 The Naturalness of Lacan’s Logic

As we have seen with Blanché, Béziau, and Brunschwig, various problems arise in
the traditional square of opposition (cf. Sect. 4). These problems basically depend
on the topic of naturalness of logical reasoning and language itself. In this section,
I will address the issue of naturalness in the context mentioned because in Lacan’s
logic, we can find a new contribution to this. I would like to focus on two main
aspects: First, that Lacan contributes to the debate devoted to the question of what is
natural logic. Second, one can see in Lacan’s logic of incompleteness an argument
for the fact that all logic in the Aristotelian tradition is fragmented insofar as it builds
on incompleteness.

Many authors and commentators of the Aristotelian logic and its following
tradition discuss – of course not always in an explicit sense – the term of naturalness.
For example, Arthur Schopenhauer argues that only with the fourth figure of the
Aristotelian logic, unnaturalness is introduced (cf. [19, 20]). Thus, Schopenhauer
made a contribution to natural deduction already in the nineteenth century. Today,
we find contributions to this topic reaching, e.g., from George Lakoff (cf. [14]) to
Johan van Benthem (cf. [3]). Another debate also discusses how to understand the
Aristotelian syllogistic. Are we dealing here with some kind of natural deduction?
Jan Łukasiewicz and Günter Patzig contradict this thesis and argue for an axiomatic
interpretation (cf. [1, 13]). For John Corcoran – for example – “Aristotle’s syllogistic
is an underlying logic which includes a natural deductive system [ . . . ]” ([6], p.
85). Of course, the question how Aristotle should be interpreted is not the question
of this chapter. It is all about showing that one has always tried to connect logic
with naturalness and Brunschwig’s concept of it starts, as shown in Sect. 4, much
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earlier: With the introduction of the minimal particular, Aristotle already excluded
the maximum particular as an important aspect of natural language.

At least, one might have to admit that incompleteness is closer connected to nat-
uralness, not only because Lacan confronted Aristotle with Russell’s Paradox. Isn’t
it appropriate to speak of naturalness in logic only if one necessarily presupposes a
subject who also recognizes existence?

Psychoanalytic ethics goes further. In deciding never to organize individuals or observations
under a concept, namely, by deciding that everything we say remains particular, is a
maximal particular, and implies also its counterpart in the expression ( . . . ), we will confer
on existence the power of escaping any concept by which we might have believed we could
corner it. ([7], p. 4)
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On Modal Opposition Within Some
Modal Discussive Logics
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Abstract We consider the issue of the square of opposition for two modal exten-
sions of the discussive logic D2. To this aim we recall some basic information on
discussive logic, but also mention some facts concerning the mentioned extensions
of D2. Our idea is to extend the discussive language with modalities, which although
are considered in the context of the discussive logic, but are used only auxiliarily and
are absent from its object language.
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1 Introduction

Jaśkowski proposed a logical calculus that could be applied to inconsistent systems
but would not result in their overfilling. Jaśkowski expressed his calculus with the
use of the modal logic S5, so, via standard facts, in classical (quantifier) logic (see
[2, p. 55]). The aim was to obtain a system that would not be overfilled, that is, would
not lead in general to the set of all expressions when applied to inconsistent set of
premisses. Additionally, two requirements were stipulated as regards the resulting
calculus, that it ‘(2) would be rich enough to enable practical inference, (3) would
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have an intuitive justification’ [2, p. 38]. When proposing his solution, he used a
model of discussion. During a discussion inconsistent opinions can be formulated,
but participants of this discussion as well as external observers are not inclined to
deduce every sentence from the set of statements presented in the discussion. Hence,
in the model, two types of point of view are considered: internal ones of particular
participants of the discussion and an external one of some observers.

Jaśkowski proposed to express some interactions that are taking place between
participants, in particular, he proposed connectives of the so-called discussive
conjunction and discussive implication (as well as definable discussive equivalence)
that were used to represent some interactions that can take place during a discussion.
From the point of view of a given debater, the statements of other participants of the
discussion have to be differentiated from the debater’s own statements. The former
is marked by the possibility operator—‘♦’. The justification for the use of the modal
operator is that from debater’s point of view, the statements of others do not have to
be true. The possibility operator can be treated according to Jaśkowski as saying [2,
p. 43]:

‘in accordance with the opinion of one of the participants in the discourse’.

Next to modalities corresponding to debater’s evaluations of statements made by
other debaters, in his definition, Jaśkowski also includes a point of view of an
external observer. This way of considering other statements is also expressed by
possibility operator. It can be seen as expressing the fact that from the point of view
of the ‘impartial arbiter’ (see [1, p. 149], English version) all opinions presented
during the discussion are only possible. So ([1, p. 149], English version),

“if a thesis is recorded in a discursive system, its intuitive sense ought to be interpreted so
as if it were preceded by the symbol Pos”.

Hence, the modal possibility operator is applied in the definition of D2 on two
levels, but none of these two uses is explicitly saved in the resulting language of the
logic D2. So, although D2 is connected with a modal logic—the logic S5, D2 has got
neither ♦ nor � in its language. One can consider an extension of D2 with the help
of modal operators of ♦d—possibility and �d—necessity (see [6]). The obtained
logics is denoted as mD2. Similarly as the logic D2, mD2 is defined by translations
referring to the modal logic S5. Semantic conditions for ♦d and �d are standard.
However, the resulting modal logic as a whole behaves rather in a non-standard
way. In the present paper we consider the issue of the square of opposition for this
logic. As a result of the given analysis, we consider also a modified version of this
extension, where in the discussive model we allow an influence of some general
community. For this aim we consider additional modalities.
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2 Basic Notions and Facts

2.1 Standard Modal Formulas

Modal formulas are formed standardly from propositional variables: ‘p’, ‘q’, ‘p0’,
‘p1’, ‘p2’, . . . ; truth-value operators: ‘¬’, ‘∨’, ‘∧’, ‘→’, and ‘↔’ (connectives of
negation, disjunction, conjunction, material implication, and material equivalence,
respectively); modal operators: the necessity symbol ‘�’ and the possibility sym-
bol ‘♦’; and the brackets. By Form we denote the set of all modal formulas.

The set Form includes the set of all classical formulas. Let Taut be the set of all
classical tautologies. Besides, for any ϕ,ψ, χ ∈ Form, let χ [ϕ/ψ ] be any formula
that results from χ by replacing one, none, or more than one occurrence of ϕ, in χ ,
by ψ .

As usually, modal logics are sets of formulas. By a modal logic we mean a set L
of modal formulas satisfying following conditions:

• Taut ⊆ L,
• L includes the following set of formulas

{
�χ [¬�¬ϕ/♦ϕ] ↔ χ� : ϕ, χ ∈ Form

}
. (rep�)

• L is closed under the following two rules: modus ponens for ‘→’:

ϕ ϕ → ψ

ψ
(mp)

• and uniform substitution

ϕ

s ϕ
, (sb)

where s ϕ is a result of the uniform substitution of formulas for propositional
variables in ϕ.

If we skip the first condition we can say about modal logics in a broader sense or
non-classical modal logics.

By the uniform substitution, every modal logic includes the set PL of modal
formulas being substitution instances of elements of Taut.

By (rep�), every modal logic has the following thesis:

♦p↔ ¬�¬p. (df♦)

In this paper the term ‘modal logic’ is always understood as a set of modal
formulas. All members of a logic are called its theses.
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2.2 Discussive Logic

Discussive formulas are again formed in the standard way using propositional
variables, but this time from truth-value operators: ‘¬’ and ‘∨’ (negation and
disjunction); discussive connectives: ‘∧d’, ‘→d’, ‘↔d’ (conjunction, implication
and equivalence); and the brackets. In the case of a discussive modal logic, we use
also discussive modal operators ♦d and �d—‘discussive’, since these operators have
also an explication in the model of discussion.

Let Ford (Ford
m) be the set of all discussive formulas (respectively, discussive

modal formulas) in this language.

2.2.1 Translation from Ford into Form

Let i0 be the translation from Ford into Form such that:

1. i0(a) = a, for any propositional variable a,
2. for any A,B ∈ Ford:

• i0(¬A) = �¬ i0(A)�,
• i0(A ∨ B) = �i0(A) ∨ i0(B)�,
• i0(A ∧d B) = �i0(A) ∧ ♦i0(B)�,
• i0(A→d B) = �♦i0(A)→ i0(B)�,
• i0(A↔d B) = �(♦i0(A)→ i0(B)) ∧ ♦(♦i0(B)→ i0(A))�.

2.2.2 Historical Reminder

As it was mentioned, Jaśkowski used discussive operators to express some basic
interactions that can hold between debaters. The first interaction has been expressed
by Jaśkowski in the following way ‘if anyone states that p, then q’ (see [1,
p. 67]). This phrase is treated as an intuitive understanding of Jaśkowski’s discussive
implication. As one might see, we apply the custom to denote discussive implication
by: ‘→d’. Taking into account the intuitive meaning of discussive implication,
Jaśkowski proposes the formula

♦p→ q

as the intended understanding of the formula

p→d q .

The technical reason for such interpretation of discussive implication is its ability
to ensure the closure of the set of theses on modus ponens. In particular, Jaśkowski
observes [2, p. 44], [1, p. 67]:



On Modal Opposition Within Some Modal Discussive Logics 263

In every discussive system two theses, one of the form:

P→d Q ,

and the other of the form:

P ,

entail the thesis

Q ,

and that on the strength of the theorem

♦(♦p→ q)→ (♦p→ ♦q). (M21)

In [3]1 a discussive conjunction (notation: p ∧d q) has been introduced:

p ∧ ♦q.

It is usually understood as a summary made by a debater who expressed p. In the
very same paper, discussive equivalence p↔d q is expressed by the formula:

(p→d q) ∧d (q →d p).

2.3 The Discussive Logic D2 as a Set of Discussive Formulas

Jaśkowski’s discussive logic D2 can be treated either as a set of discussive formulas
or as some consequence relation on the set of all discussive formulas. Nowadays,
the discussive logic D2 is usually understood in the first way and formulated with
the help of the modal logic S5 as follows:

D2 := {A ∈ Ford : �♦i0(A)� ∈ S5 } .

As one can see such a formulation corresponds to both levels of the modal
interpretation recalled and sketched above. As one can also easily see, the set D2
is closed under substitution. Besides, as it was planned by Jaśkowski, D2 is closed
on modus ponens for ‘→d’. It is achieved by the use of the formula (M21), which
belongs to S5. Using this formula we see that for A,B ∈ Ford, if A ∈ D2,
�A→d B� ∈ D2, i.e., ♦i0(A),♦i0(A→d B) ∈ S5, then ♦i0(B) ∈ S5, so B ∈ D2.

Besides, by (2.1) and (2.2),

♦(♦p→ p) (2.1)

♦(♦p→ (♦q → (p ∧ ♦q))) (2.2)

1 See also [4].
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the following formulas

p→d p ((1)d)

p→d (q →d (p ∧d q)) ((2)d)

belong to D2.
As a standard counterexample, consider �p → (¬p → q)� that is not a thesis

of D2.

3 Discussive Modal Logic

3.1 Extension of Jaśkowski’s Translation

The first step while working on a modal extension of D2 is to save modalities in
the object language of discussive logic. So, we keep Jaśkowski’s intuitive model
of discussion but add to the language modalities that are interpreted standardly. By
considering this modal extension of D2 ‘we allow’ participants of a discussion to
explicitly use possibility and necessity operators. Such extension was investigated
in [6].

While formulating a modal logic over D2 we consider an extension i1 of the
translation i0 onto the set of modal formulas by adding to the previously given
conditions, two clauses:

• i1(♦d A) = �♦i1(A)�,
• i1(�d A) = ��i1(A)�.

The obtained logic is denoted as mD2, where:

mD2 := {A ∈ Ford
m : �♦i1(A)� ∈ S5 } .

As an outcome, we can consider, for example, formulas of the form:

♦d(p→d q)→d (�dp→d q) (∗)

�d(p→d q)→d (�d p→d �dq) (Kd)

(�d p→d ♦d q)→d ♦d(p→d q). (K1d)

Using both translations we obtain:

♦(♦♦(♦p→ q)→ (♦�p→ q)) (∗i)

♦(♦�(♦p→ q)→ ♦(♦�p→ �q)) (Ki
d)

♦(♦(♦�p→ ♦q)→ ♦(♦p→ q)) (K1d
i)
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We see that (∗), (Kd) ∈ mD2 and (K1d) �∈ mD2, while

♦(p→ q)→ (�p→ q) �∈ S5

�(p→ q)→ (�p→ �q) ∈ S5

and of course

(�p→ ♦q)→ ♦(p→ q) ∈ S5.

To make a readable comparison of mD2 with standard modal logics, we apply a
function e from Ford

m into Form which removes the subscript ‘d’.
Using the above mentioned examples and definitions we give the following

resume of some basic facts on mD2:

Fact 3.1 ([6])

1. S5 and e[mD2] cross each other.
2. The set mD2 is not closed under necessitation rule

A

�d A
. (3.1)

3. The set mD2 is closed under modus ponens (mp) and is closed under uniform
substitution (sb), hence mD2 is a logic. In particular, it is a non-classical modal
logic.

4. (a) CL+ � e[mD2]
(b) CL � mD2
(c) D2 � mD2 and mD2 is a conservative extension of the logic D2.

5. The following formulas are theses of mD2

¬♦d p→d �d¬p

�d ¬p→d ¬♦d p

¬�d¬p→d ♦d p

¬♦d¬p→d �d p

�d p→d p

p→d ♦d p

♦d p→d p

¬�d¬p→d p.
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6. The following formulas are not theses of mD2

(p→d q)→d (¬ q →d ¬p)

(¬ q →d ¬p)→d (p→d q)

p→d �d p

¬p→d �d¬p

♦d(p→d �d p)

�d(¬p→d �d¬p).

7. mD2 (as D2) is not closed on rules of contraposition

A→d B

¬B →d ¬A

¬B →d ¬A

A→d B

(in fact, (p ∨ ¬p) ∧d p→d p,¬¬((p ∨ ¬p) ∧d p)→d ¬¬p ∈ D2 ⊆ mD2,
while p→d (p ∨ ¬p) ∧d p /∈ mD2).

8. mD2 (as D2) is not extensional. Indeed

p↔d (¬p ∨ p) ∧d p ∈ D2 ⊆ mD2

�(q ∧d ¬p)↔d (q ∧d ¬((¬p ∨ p) ∧d p))� /∈ mD2

since

�♦(♦(q ∧ ♦¬p)→ (q ∧ ♦¬((¬p ∨ p) ∧ ♦p)))� /∈ S5.

9. For any A ∈ Ford
m, such that i1(A) is a thesis of S5, then A is a thesis of mD2.

We can see that ♦d and �d are not dual on the basis of mD2. Points 7 and 8, of
the above fact 3.1, lead us to the following observations:

Fact 3.2 ([6]) The set mD2 is not closed under the congruence and extensionality
rules:

A↔ B

�d A↔ �d B

A↔ B

C ↔ C(A//B)

As a result, mD2 is also not closed on the monotonicity nor regularity rule:

A→ B

�d A→ �d B

(A ∧d B)→d C

(�d A ∧d �d B)→d �d C
.
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3.2 Semantics for the Modal Discussive Logic

We focus here on semantical analysis, however, the logic under consideration can
be also expressed purely syntactically—for axiomatisation of the logic mD2, please
see [6]. The given semantics is natural, it uses respective modal meanings of the
considered connectives and when applied to the language without modalities can be
used to determine of D2.

A relational frame for a discussive modal logic (a frame) is a pair 〈W,R〉
consisting of a nonempty set W and a binary relation R on W . As usually, elements
of sets W are called (accessible) worlds, while R is the accessibility relation.

A model for the logic mD2 is a triple 〈W,R, V 〉, where 〈W,R〉 is a frame and the
function V : Ford

m ×W −→ {0, 1} preserves classical truth conditions for negation
and disjunction

V (¬A,w) = 1 iff V (A,w) = 0, (3.2)

V (A ∨ B,w) = 1 iff V (A, x) = 1 or V (A, x) = 1, (3.3)

standardly understood conditions for discussive connectives:

V (A ∧d B,w) = 1 iff V (A,w) = 1 and ∃x∈R(w)V (B, x) = 1,

V (A→d B,w) = 1 iff ∀x∈R(w)(V (A, x) = 0 or V (B,w) = 1),

V (A↔d B,w) = 1 iff V (A→d B,w) = 1 and ∃y∈R(w)V ((B →d A), y) = 1

and usual conditions for modalities:

V (�d A,w) = 1 iff ∀x∈R(w) V (A, x) = 1 ,

V (♦d A,w) = 1 iff ∃x∈R(w) V (A, x) = 1 ,

where R(w) = {x ∈ W : wR x}. As usually, V is determined by its restriction to
the set of all propositional variables. We say that the model 〈W,R, V 〉 is based on
the frame 〈W,R〉.
Definition 3.3 A formula A is discussively true in a model M = 〈W,R, V 〉 iff for
each w ∈ W , there is x ∈ R(w) such that V (A, x) = 1.

We say that a formula A ∈ Ford
m is discussively valid in a frame iff A is

discussively true in all models based on this frame.

Fact 3.4 ([6]) For any A ∈ Ford
m and a model M:

A is discussively true in M iff ♦i1(A) is standardly true in M .

We can vary the conditions that are imposed on the relation R.

Definition 3.5 Let F = 〈W,R〉. The frame F (or the accessibility relation R) is

(i) trivial iff R = ∅,
(ii) serial iff ∀x∈W∃y∈W xRy,
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(iii) reflexive iff ∀x∈W xRx,
(iv) symmetric iff ∀x,y∈W(xRy �⇒ yRx),
(v) transitive iff ∀x,y,z∈W(xRy & yRz �⇒ xRz),

(vi) Euclidean iff ∀x,y,z∈W(xRy & xRz �⇒ yRz).

Fact 3.6 The set of all formulas from Ford
m that are discussively valid in every frame

is empty. In particular, the set of all formulas that discussively valid in a frame with
a world w with no alternatives (that is in a frame which is not serial) is empty.

As an introductory step to the issue of the square of opposition for mD2, we
recall some facts concerning positive and negative examples of discussive validity
for specific classes of frames, extending slightly results given in Fact 3.1. Below, we
also refer to the issue of completeness for mD2.

Fact 3.7 ([6])

1. The formula

p→d ♦d p

is discussively valid in every frame with a serial accessibility relation.
2. It is not the case that

�d p→d ♦d p

is discussively valid in every serial frame.
3. The formulas

¬�d p ∨ p

¬p ∨ ♦d p

are discussively valid in every reflexive frame but also in those fulfilling the
condition:

∀w∃u
(
wRu ∧ ∃v(uRv ∧ wRv)

)
.

While

�d p→d p

¬♦d �d p ∨ p

is valid in every serial and symmetric frame but also fulfilling the condition

∀
z
∃
u
(zRu ∧ ∀

x
(uRx → ∃

w
(xRw ∧ zRw))).

4. For the formula

♦d �d p→d p
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it is not the case that it is discussively valid in every symmetric frame or even
frames that are both symmetric and serial.

We know that (see [6] and [5]):

Theorem 3.8 ([6])

1. A formula belongs to mD2 iff it is discussively valid in every reflexive and
Euclidean frame.

2. The logic mD2 is determined by the class of reflexive and transitive frames.
3. The logic mD2 is determined by the class of serial and transitive frames.
4. The logic mD2 is determined by the class frames fulfilling

∀w∃u
(
wRu ∧ ∀x(uRx → wRx)

)

∀w∃u
(
wRu ∧ ∀x∀y(uRx ∧ xRy → wRy)

)
.

4 Another Modal Extension of D2

Fact 4.1 ([6]) The following two formulas belong to mD2:

♦d p↔d ((p ∨ ¬p) ∧d p)

�d p↔d ¬((p ∨ ¬p) ∧d ¬p).

However, although these equivalences hold, it is still intriguing to consider cal-
culuses with ♦d and �d, since D2 and mD2 are not closed under the rule of
extensionality (see Fact 3.2).

So, the added modalities give a variant of the model of discussion in which a
given participant expresses his own modal views. In what follows, we refer to the
next extension of D2, where we extend also the model of discussion.

4.1 Semantics for General/Public Discussive Modalities

We consider a model of discussion in which next to the discussive group, there
is possibly a broader community of people whose statements will be used as an
intuitive explication of new modalities �g and ♦g. In this way we obtain the set
Fordg

m being another extension of Ford but also of the set Ford
m. The semantics

considered here is a natural extension of the previously given semantical conditions
for discussive modalities: it uses respective modal meaning of the considered
connectives with respect to another—not smaller then W in the sense of inclusion—
domain Wg , and when applied to the language without modalities, i.e., when Wg is
dropped, it comes down to the semantics that can be used for determination of D2
or mD2. Intuitively, the set Wg corresponds to the voices that express the external
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points of view that can be taken into account by members of the given discussive
group.

An relational frame for a discussive modal logic with public modalities is a
quadruple 〈W,Wg,W ×W,Wg ×Wg〉 consisting of a nonempty set W , and a set
Wg ⊇ W . Elements of the set W are still called (accessible) worlds, while elements
of the set Wg—general worlds.

A model for an extended discussive modal logic is any 5-tuple 〈W,Wg,W ×
W,Wg × Wg, V 〉, where 〈W,Wg,W × W,Wg × Wg〉 is a frame and V : Fordg

m ×
Wg −→ {0, 1} is a function that preserves classical truth conditions (3.2) and (3.3)
for negation and disjunction; discussive conditions for modalities adapted for the
current context:

V (A ∧d B,w) = 1 iff V (A,w) = 1 and ∃x∈WV (B, x) = 1,

V (A→d B,w) = 1 iff ∀x∈W(V (A, x) = 0 or V (B,w) = 1),

and the following conditions for new ‘general’/‘public’ modalities:

V (�gA,w) = 1 iff ∀x∈Wg V (A, x) = 1 ,

V (♦g A,w) = 1 iff ∃x∈Wg V (A, x) = 1 .

As usually, V is determined by its restriction to the set of all propositional variables.
As we observed, we can consider discussive modalities expressed by discussive
connectives:

♦d A = (p ∨ ¬p) ∧d A (df ♦d)

�d A = ¬A→d ¬(p ∨ ¬p). (df �d)

We say that the model 〈W,Wg,W × W,Wg × Wg, V 〉 is based on the frame
〈W,Wg,W ×W,Wg ×Wg〉.

Since we consider full accessibility relations, in fact as frames we could treat
just pairs 〈W,Wg〉, while 〈W,Wg, V 〉—as models, stipulating only that W ⊆ Wg .
We repeat the notation of validity for the introduced notions of model and frame
referred to definitions given in this subsection:

Definition 4.2 A formula A is discussively true in a model M = 〈W,Wg,W ×
W,Wg ×Wg, V 〉 iff for each w ∈ W , there is x ∈ W such that V (A, x) = 1.

We say that a formula is discussively valid in a frame iff it is discussively true in
all models based on this frame.

The set of all formulas discussively valid in the class of frames of the form 〈W,Wg〉
is noted by mgD2. We easily see:

Fact 4.3 D2 ⊆ mgD2.2

2 The logic mgD2 can be of course characterised syntactically but this exceeds the aim of the
present paper. For details see [7].
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5 Square of Opposition

Now we consider theses of mD2 that are connected to the square:3

Fact 5.1 Suppose that A ∈ Ford
m, e(A) is a thesis of S5 and each atom a of A

occurs in subformulas of the form �♦d a�, �♦d ¬ a�, ��d a� or ��d ¬ a�. Then
A ∈ mD2.

Below, a formula of the form ¬A ∨ B is denoted as A→c B.

Fact 5.2 The following formulas are theses of mD2:

¬�d p ∨ ¬�d¬p

♦d p ∨ ♦d¬p

¬�d p ∨ ♦d p

¬�d ¬p ∨ ♦d ¬p

¬�d p ∨ ¬♦d ¬p

�d p ∨ ♦d¬p

¬�d ¬p ∨ ¬♦d p

�d ¬p ∨ ♦d p

or using→c for the case of contraries, subalternation, and contradictories

�d p→c ¬�d¬p

¬♦d p→c ♦d¬p

�d p→c ♦d p

�d¬p→c ♦d¬p

�d p→c ¬♦d¬p

¬�d p→c ♦d¬p

�d¬p→c ¬♦d p

¬�d ¬p→c ♦d p.

Moreover the respective connections also hold if the discussive connectives are
used:

¬(�d p ∧d �d ¬p) or �d p→d ¬�d ¬p

3 Some of these formulas are recalled from [6].
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¬♦d p→d ♦d¬p

�d p→d ♦d p

�d¬p→d ♦d¬p

�d p→d ¬♦d¬p

¬�d p→d ♦d¬p

�d¬p→d ¬♦d p

¬�d¬p→d ♦d p.

• Taking into account the above theses and the fact that mD2 as a logic is closed
on substitution, we have the square for discussive modalities within mD2, where
respective connections can be understood both: classically and discussively.

One can observe that similar result holds for the logic mgD2. Again e is
the function that removes subscripts refereeing to discussive connectives but also
indexes referring to the ‘global’ modalities:

Fact 5.3 Given A ∈ Fordg
m formulated in the sublanguage solely with ∨, ¬, �g, ♦g,

and such that e(A) is a thesis of S5, then A ∈ mgD2.

So, similarly as for mD2, we have:4

Fact 5.4 The following formulas are theses of mgD2

¬�gp ∨ ¬�g ¬p

♦g p ∨ ♦g¬p

¬�gp ∨ ♦g p

¬�g ¬p ∨ ♦g ¬p

4 For details see [7].
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¬�gp ∨ ¬♦g¬p

�gp ∨ ♦g ¬p

¬�g ¬p ∨ ¬♦g p

�g ¬p ∨ ♦g p

or using→c for the case of contraries, subalternation, and contradictories

�gp→c ¬�g ¬p

¬♦g p→c ♦g¬p

�gp→c ♦g p

�g¬p→c ♦g¬p

�gp→c ¬♦g¬p

¬�gp→c ♦g¬p

�g¬p→c ¬♦g p

¬�g ¬p→c ♦g p

Again, the respective connections also hold, if instead of ‘→c’, discussive
implication is used. To see this, using the semantical characterisation of mgD2,
first we easily can observe that:

Fact 5.5 The following formulas are theses of mgD2:

�gp→c �d p

�gp→d �d p

♦d p→c ♦g p

♦d p→d ♦g p

Hence, we have:

Lemma 5.6 The following formulas are theses of mgD2:

�gp→d ¬�g¬p

¬♦g p→d ♦g¬p

�gp→d ♦g p

�g¬p→d ♦g¬p

�gp→d ¬♦g¬p
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¬�gp→d ♦g¬p

�g¬p→d ¬♦g p

¬�g¬p→d ♦g p

Hence, we have the similar square for the pair of ‘public’ modalities in mgD2.

Taking into account Fact 5.5 we obtain the extended square, where again, the
respective relations can be expressed either in terms of classical implication, but—
what is more interesting—also with the help of discussive implication.

We can connect both these squares by putting one onto another:

Acknowledgments The authors would like to thank the referee of this paper for his/her careful
reading of the manuscript.
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On the Transformations of the Square of
Opposition from the Point of View of
Institution Model Theory

Yiannis Kiouvrekis, Petros Stefaneas, and Ioannis Vandoulakis

Abstract In recent decades, research in the square of opposition has been
increased. New interpretations, extensions, and generalizations have been
suggested, both Aristotelian and non-Aristotelian ones. The paper attempts at
comparing different versions of the square of opposition. For this reason, we appeal
to the wider categorical model-theoretic framework of the theory of institutions.

Keywords Square of opposition · Classification of judgements · Abstract model
theory · Category theory · Institutions theory · Galois connection
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1 Introduction

During the second half of the twentieth century, the research in the square of
opposition was revived. First, Augustin Sesmat [7] and Robert Blanché [3] extended
independently the square of opposition to a logical hexagon which includes the
relationships of six statements. This was followed by an extension to a “logical
cube” that paved the way to the development of a series of n-dimensional objects
called logical bi-simplexes of dimension n [5, 6].

The second line of research was developed during the last 20 years by Jean-Yves
Beziau’s attempts to find an intuitive basis for paraconsistent negation, which is
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the O-corner of the square of opposition [1, 2]. In this connection, the third of the
authors posed the question how to compare all versions of the square of opposition
and, if possible, their different illustrations by various configurations. This required
the passage to a wider framework, where the different versions of the theory within
different logics could be compared. To this effect, the authors appealed to abstract
categorical model theory and specifically to the theory of institutions [13].

Within this wider framework, we can compare the various variants of the square
of opposition and their different configurations within the various underlying logics
and provide a formal description and characterization of their relations. Moreover,
this general framework can serve as a methodology for the formal analysis of
eventual variations that can be constructed in the future.

The concept of the institution was introduced by Joseph Goguen and Rod Burstall
in the late 1970s, to deal with the vast variety of logical systems developed and used
in computer science. The concept tries to capture the essence of the concept of
“logical system” [4]. Informally speaking, an institution is a mathematical structure
for “logical systems,” based on the concept of satisfaction between sentences and
models.

In the first section of the paper, we introduce the concept of the square of
opposition. In the second section, we expose fundamental concepts from category
theory and institution theory that we will use to treat the square of opposition within
a wider institution-theoretic framework. The third section introduces the concept
of the rhombus of opposition and examines certain aspects of the configurational
change of the squares of opposition inside and between logical systems.

In the fourth section, we use the concept of the Galois connection, which is a
useful generalization of correspondence between subgroups and subfields that are
studied in Galois theory, to show the equilibrium that one can establish between the
standard square of opposition (of sentences) and the internal semantics of Boolean
connectives at a meta-level. Finally, we introduce the concept of the dual square that
can give us not only squares for sentences but also squares for sets of sentences.

2 Squares of Opposition

The theory of the opposition is exposed by Aristotle in De Interpretatione 6–7, 17
b 17–26 and Prior Analytics I.2, 25 a 1–25 to describe the logical relations between
the four basic categorical judgements. During the Middle Ages, Aristotle’s theory
was represented by a square diagram. This was done by altering the semantics of
the O form. During the nineteenth to twentieth centuries, it assumed two major
reinterpretations:

(a) within the context of the algebra of logic (see Fig. 1) (Boole, Venn, and others),
(b) within the second-order predicate logic, by using the newly introduced concept

of quantified variables by Frege (see Figs. 2 and 3). Within these interpretations,
the shape of the “square” remains unaffected.
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Beginning with Nicolai A. Vasiliev (1880–1940), the traditional “square” loses
for the first time its original square shape; it is transformed into “triangle.” This was
by a new alteration of semantics of the O form, based on Aristotelian concepts that
were neglected in the Aristotelian tradition of logic, notably the concept of indefinite
judgment [8].

During the twentieth century, new transformations of the “square” into various
shapes appear, i.e., into “hexagon” [3], or “cube” (Fig. 3), by altering the semantics
and establishing relationships between truth-values. The new objects admit various
interpretations in terms of traditional logic, quantification theory, modal logic, order
theory, or paraconsistent logic.

Fig. 1 Representation of the
Square of Opposition in
algebra of logic (Boole, Venn,
and others)

Fig. 2 Representation of the
square of opposition in the
functional tradition of logic
(Frege and others)
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However, a natural question arises: how do all these configurations often realized
within different logics, are related? Can we describe these transformations in logical
terms? What changes and what remains invariant in these transformations?

To examine these questions, we appeal to the concepts of the theory of
institutions, introduced by Goguen and Burstall [4]. The theory of institution has
the advantage that is not committed to any specific logical system. Moreover, its
high level of abstraction allows the accommodation of not only classical, but also
non-classical logical systems. A structure-preserving mapping, called morphism of
institutions, is defined by Goguen and Burstall [4], that operates as projection from
a more complex institution into a simpler one.

Fig. 3 Cube of opposition of quantified statements

Using morphisms of abstract logical systems, we will study the transformation
of the configurations, traditionally called “square of opposition” into entities of
different shape, taking into account the changes in semantics of the underlying
logical systems. We will try to study the generation of new entities (diagrams)
out of old ones with categorical tools, as well as by encoding/embedding simple
diagrams (squares) into entities of higher complexity (polygons or 3D objects),
and vice versa. In other words, in the context of category theory we will study the
following question: how a change in semantics might generate different outcomes
(of various shapes) of the so-called square of opposition.

3 Preliminaries

3.1 Essentials of Category Theory

An abstract category is a collection of objects, together with a collection of
mappings that we call arrows or morphisms [9].

Definition 3.1 (Category) A category C consists of the following:

• Objects: A,B,C, . . .

• Arrows or Morphisms: f, g, h, . . .



The Transformations of the Square of Opposition 281

that satisfy the following axioms:

1. for every arrow f , there are objects

A = dom(f ), B = codom(f )

called the domain and the codomain of f , and we write

f : A→ B

2. Let f : A→ B and g : B → C such that codom(f) = dom(g), then there exists
an arrow/morphism h such that

h = g ◦ f : A→ C

called the composite of f and g.

3. For every object A, there exists an arrow

1A : A→ A

called the identity arrow of A
4. For all f : A→ B, g : B → C, h : C → D

h ◦ (g ◦ f ) = (h ◦ g) ◦ f

with codom(f) = dom(g) and codom(g) = dom(h)
5. and for all f : A→ B

f ◦ 1A = f = 1B ◦ f

A category is anything that satisfies the above definition. Let us illustrate this
concept by two elementary, but fundamental examples.

Example 1 (Sets) The first example concerns the category of sets. The objects of
this category are sets and the morphisms are the functions between the sets. It is
obvious that the identity arrow or identity morphism is the identity function of the
set onto itself. The triangle below represents the usual composition of functions.
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Example 2 (Partial Ordered Sets) A slightly more complex category than the
previous one, is that of partially order sets, (abbreviated as posets). A space is called
partially ordered, whenever we can define a partial order in this space. What special
feature does this category have? It is one of the most typical examples of categories
and help us to understand why we will use the language of the category theory in the
rest of our paper. Morphisms, the arrows, are functions that preserve the structure.

Another concept in category theory that plays a fundamental role is that of the
functor.

Definition 3.2 (Functor) Let C,D be two categories, then a functor F with domain
C and codomain D consists of two suitably related functions:

• the object function F , which to every object X of C assigns an object F(X) of
D;

• and the arrow function F which to every morphism f : X→ Y of C assigns the
F(f ) : F(X)→ F(Y ) of D such that F(1X) = 1F(X) and:

Example 3 (Power Set Functor) One of the most simple examples is the power set
functor P : Set → Set. The object function for every set X assigns its powerset
P(X) and the morphism function to every f : X→ Y assigns the P(f ) : P(X)→
P(Y ) which sends every subset Z ⊆ X to its image F(Z) ⊆ Y .

Definition 3.3 (Natural Transformation) Let C,B be two categories and S, T be
two functors S : C $→ D, T : C $→ D. A natural transformation τ : S ⇒ T is
an action which to every object c ∈ C assigns an arrow τc : S(c) → T (c) of the
category B such that for every morphism f : c → c′ in C the diagram in Fig. 4 is
commutative.
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Thus a natural transformation is a set of morphisms translating (mapping) the
picture S to the picture T with all squares and parallelograms be commutative [9].

Fig. 4 Fundamental Square

Fig. 5 Natural transformation scheme

A natural transformation is often called morphism of functors (Fig. 5).

Example 4 A determinant is a natural transformation. Let detKM be the determi-
nant of the n × n matrix M with entries in the commutative ring K . If K∗ denotes
the group of units of K , then M is non-singular when detKM is a unit, and detK is
a morphism GLnK $→ K∗ of groups. Since the determinant is defined by the same
formula for all rings K , each morphism f : K $→ K ′ of commutative rings gives a
commutative diagram.

This means that the map det : GLn $→ ( )∗ is natural between the functors
CRng→ Grp.
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3.2 Essentials of Institution Theory

Definition 3.4 (Institutions) An Institution I =
(
SigI ,SenI ,ModI , |�I

)
con-

sists of:

1. a category SigI , whose objects are called signatures, that defines the (non-
logical) symbols that may be used in sentences and that need to be interpreted in
models;

2. a functor SenI : SigI → Set giving for every signature a set whose elements
are called sentences over that signature;

3. a functor ModI : (
SigI

)op → CAT such that for every signature � assigns
a category which objects are called �-models and which arrows are called �-
morphisms, and for every signature morphism σ : � $→ �′, the reduct functor
Mod(σ ) : Mod(�′) $→ Mod(�), where Mod(σ )(M ′) is often designated by
M ′ 	 σ (Fig. 6a).

4. a relation |�I
�⊆

∣∣ModI (�)
∣∣ × SenI (�) for every � ∈ ∣∣

SigI
∣∣, called �-

satisfaction such that for every morphism φ : � → �′ in SigI , the satisfaction
condition

M ′ |�I
�′ Sen

I(φ)(ρ) iff ModI(φ)(M ′) |�I
� ρ

holds for every M ′ ∈
∣∣∣ModI

∣∣∣ and ρ ∈ SenI(�) (Fig. 6b).

Fig. 6 Institution fundamental diagrams. (a) Institution fundamental triangle. (b) Institution
fundamental square

In words, we assume that signature morphisms map sentences and models in
such a way that satisfaction is preserved. Sentences are mapped along with signature
morphisms and models are reduced against signature morphisms. The satisfaction
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condition expresses that truth is invariant under change of notation. One of the most
useful examples is that of standard Propositional Logic (PL).

3.3 Examples of Institutions

Example 5 (Propositional Logic) The institution PL of Propositional Logic is
defined in the following way:

• The category SigPL has as objects sets of propositional variables and as arrows
the functions between them.

• A signature morphism σ is a mapping between the propositional variables.
• The functor SenPL maps every signature � to SenPL (�) which consists of

propositional formulas with propositional variables from � and connectives for
conjunction, disjunction, implication, and negation.

• The SenPL(σ ) is the extension of σ to all formulas.
• Models of � are truth valuations, i.e., mappings from � into the standard

Boolean algebra Bool = {0, 1}.
• A model morphism between �-models M and M ′ exists iff for all p ∈

�, M(p) ≤ M ′(p).
• Given σ : �1 → �2 and a �2-model M2 : �2 → Bool, then the reduct M2 	σ

is the composition M2 ◦ σ .
• M |�PL

� φ if and only if φ evaluates 1 under the standard extension of M to all
formulas.

Example 6 (Temporal Logic) The following example is a simplified version of
Temporal Logic (TL) and its formalization in the theory follows [10].

• The signatures SigT L consists of sets of actions;
• The models ModT L(�) consist of sets of runs, which are finite or infinite

sequences of (sets of) actions;
• The sentences Sen(�) are sets of sentences which are build up from atomic

sentences p using the standard propositional and temporal connectives;
• A satisfaction relation M |�T L

� φ holds if and only if φ holds at the beginning of
every run in M;

This section is devoted to examples of institutions.

Example 7 (First Order Logic) Possibly, the most important example of institution
is First Order Logic (FOL). A signature in FOL is a triple (S, F, P ) that consists
of:

• S is the set of sort symbols, for example, S = {N,Z} where N denotes the
natural numbers (N) and Z the integers (Z);

• F = {Fw→s | w ∈ S∗, s ∈ S} is a family of sets of operation symbols such
that Fw→s denotes the set of operations with arity w and sort s, for example,
FNN→N = {+}, FZZ→Z = {+,−};
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• P = {Pw | w ∈ S∗} a family of sets relation symbols where Pw denotes the set
of relations with arity w, for example, PNN = PZZ = {≤} or Pw = ∅;

The models of FOL are related with the sort symbols in a natural way and the
sentences are the standard expansion of PL. Furthermore, the institution of PL can
be seen as a sub-institution of FOL obtained by restricting the signatures to those
with an empty set of sort symbols [10].

Example 8 (Weak Propositional Logic) The weak propositional logic (denoted by
WPL) designates a variation of Propositional Logic. The sentences are the same as
in PL, but the models are valuations M : Sen(P ) $→ {0, 1} the standard truth table
semantics of all Boolean connectives except negation, i.e.:

• M(φ ∧ ψ) = 1 if and only if M(φ) = M(ψ) = 1;
• M(φ ∨ ψ) = 0 if and only if M(φ) = M(ψ) = 0;
• if M(φ) = 1, then M(¬φ) = 0;

Example 9 (Modal First Order Logic) The last example is the standard Modal First
Order Logic (MFOL), with modalities �,♦ and Kripke semantics. The MFOL
signatures are sixples (S, S0, F, F0, P , P0), where (S, F, P ) is the signature of
FOL and (S0, F0, P0) is a sub-signature of (S, F, P ) of rigid symbols [10]. A
MFOL model (W,R), called Kripke model, consists of

• a family W = {Wi}i∈IW of possible worlds, which are models in FOL;
• a binary relation R ⊆ IW × IW between the possible worlds such that the

following sharing condition holds:
∀i, j ∈ IW we have that Wx

i = Wx
j for each x.

The satisfaction of MFOL sentences by the Kripke models is defined in the
following way:

(W,R) |� φ ⇔ (W,R) |�i φ ∀i ∈ IW (3.1)

where (W,R) |�i φ is defined by induction:

• (W,R) |�i φ if and only if Wi |�FOL φ for all atom φ and each i ∈ IW ;
• (W,R) |�i φ ∧ ψ if and only if Wi |�FOL φ and Wi |�FOL ψ ;
• (W,R) |�i �φ if and only if Wi |�k φ for < i, k >∈ R;
• (W,R) |�i ∀Xφ if and only if (W ′, R) |�i φ for all expansions (W ′, R) of

(W,R) to a Kripke model;
• ♦φ abbreviates ¬�¬φ;

Like PL we get the institution of Modal Propositional Logic (MPL) as a sub-
institution of MFOL defined by the signatures with an empty set of sort symbols
and empty set of rigid relation symbols.
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3.4 Morphisms

The concept of institution morphism formalizes the mapping from a more complex
to a simpler institution.

Definition 3.5 (Institution Morphism) Let I and I ′ be two institutions, then an
institution morphism � : I → I ′ consists of:

1. a functor � : Sig→ Sig′
2. a natural transformation α : �;Sen′ ⇒ Sen and
3. a natural transformation β : Mod ⇒ �op;Mod′

such that the following Satisfaction Condition holds

m |�� α�(e
′) iff β�(m) |��(�) e

′ (3.2)

for any �-model m from I and any �(σ)-sentence e′ from I ′
Remark 3.6 �;Sen′ is the composition of the functors � and Sen′, for more
information see [10].

Figures 7 and 8 show a representation of the natural transformations α� and β� .
The institution morphisms are suitable to formalize “forgetful” maps between more
complex institutions to simpler ones.

Fig. 7 First Morphism
square

Fig. 8 Second Morphism
square

Example 10 (The Morphism Between FOL and MFOL) Regarding these two
institutions we can define the morphism � : FOL $→ MFOL which maps the
FOL − (S, F, P ) signature to MFOL − (S, S, F, F, P, P ) signature, such that
the natural transformation α erases the modalities from the sentences.
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4 Institution-Theoretic Square of Opposition

4.1 The Aristotelian Relations of Sentences in
Institution-Theoretic Setting

The square of opposition is commonly known as a diagram for which many
extensions have been proposed in the second half of the twentieth century. However,
most of them are discussed at informal level.

Using the formalism introduced by Hans Smessaert and Lorenz Demey [7],
we generalize these concepts to the level of theory of institutions. It should be
emphasized that the theory of institutions guarantees that the subsequent definitions
apply to all logical systems under consideration. For reasons of convenience, we
assume that the logical systems contain the classical connectives as a syntactic
method of constructing sentences. The authors cited above define Aristotelian
Geometry as a logical system, which has the links of denial, conjunction, and
implication. Hence, the following definitions are naturally given:

Definition 4.1 (Aristotelian Relation of Contradictoriness) Let I = (
SigI ,

SenI ,ModI , |�I
)

be an arbitrary institution, � ∈ SigI and φ,ψ be sentences

in Sen(�). Then the propositions φ,ψ are called contradictory, if the truth of one
implies the falsity of the other, and conversely.

|�I
� (φ ⇒ ¬ψ) ∧ (¬ψ ⇒ φ) (4.1)

|�I
� (¬φ ∨ ¬ψ) ∧ (ψ ∨ φ) (4.2)

|�I
� ¬ (φ ∧ ψ) and |�I

� ¬ (¬φ ∧ ¬ψ) (4.3)

We denote the relation between two contradictory sentences RC(φ,ψ) or by a graph
(Fig. 9)

Fig. 9 Geometrical representation of contradictory sentences

Definition 4.2 (Aristotelian Relation of Contrariety) Let I =
(
SigI ,SenI ,

ModI , |�I
)

be an arbitrary institution, � ∈ SigI and φ,ψ be sentences in

Sen(�). Then the sentences φ,ψ are called contrary, if they cannot both be true.

|�I
� ¬ (φ ∧ ψ) and �|�I

� ¬ (¬φ ∧ ¬ψ) (4.4)

We denote the relation between two contrary sentences Rc(φ,ψ) or by a graph
(Fig. 10)



The Transformations of the Square of Opposition 289

Fig. 10 Geometrical representation of contrary sentences

Definition 4.3 (Aristotelian Relation of Subcontrariety) Let I =
(
SigI ,SenI ,

ModI , |�I
)

be an arbitrary institution, � ∈ SigI and φ,ψ be sentences in

Sen(�). Then the sentences φ,ψ are called subcontrary, if it is impossible for
both to be false.

�|�I
� ¬ (φ ∧ ψ) and |�I

� ¬ (¬φ ∧ ¬ψ) (4.5)

We denote the relation between two subcontrary sentences Rs(φ,ψ) or by a graph
(Fig. 11)

Fig. 11 Geometrical representation of subcontrary sentences

Definition 4.4 (Aristotelian Relation of Subalternation) Let I =
(
SigI ,SenI ,

ModI , |�I
)

be an arbitrary institution, � ∈ SigI and φ,ψ be sentences in

Sen(�). Then the sentences φ,ψ are called subalternate, if the truth of the first (the
“superaltern”) implies the truth of the second (the “subaltern”), but not conversely.

|�I
� φ → ψ and �|�I

� ψ → φ (4.6)

We denote the relation between two subalternate sentences RS(φ,ψ) or by a graph
(Fig. 12)

Fig. 12 Geometrical representation of subalternate sentences

Definition 4.5 (Boethian Diagram) Let an arbitrary institution I =
(
SigI ,SenI ,

ModI , |�I
)

and � ∈ Sig. Then a Boethian diagram is an edge-labeled graph. The

vertices of the graph are pairwise non-equivalent sentences e1, e2, . . . , en ∈ Sen(�)

and the edges of the graph are the Aristotelian relations (see Fig. 13).
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Fig. 13 The fundamental Aristotelian relations. (a) Relation of subalternation. (b) Relation of
subcontrariety. (c) Relation of contrariety. (d) Relation of contradictoriness

Concerning the Definitions 4.6 and 4.7 below, we should note that Definition 4.6
is the common traditional square of opposition. However, the shape in the second
Definition 4.7 is introduced, as we will see in a natural way so that we could see
how the square of opposition changes from one logical system to another logical
system. For this reason, we call it rhombus of opposition.

Definition 4.6 (Aristotelian Square) Let an arbitrary institution I =
(
SigI ,SenI ,

ModI , |�I
)
, � ∈ Sig and p, q ∈ Sen(�). Then an Aristotelian Square is a graph

of the following form (Fig. 14):

Fig. 14 Aristotelian square
of opposition

Definition 4.7 (Rhombus of Opposition) Let an arbitrary institution I =(
SigI ,SenI , ModI , |�I

)
, � ∈ Sig and p, q ∈ Sen(�). Then a rhombus

of opposition is (Fig. 15)

Fig. 15 Aristotelian
Rhombus of opposition
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4.2 The Example of PL: Square of Opposition

In this subsection, we study the action of signature morphisms, i.e., how they affect
the corresponding configurations.

The first example that we examine is that of propositional calculus. As shown in
Figs. 16 and 17, after a signature morphism, the square structure is retained, if and
only if the relationship remains unaltered; otherwise the square turns into a straight
line segment. For the case of the straight line segment it is sufficient to imagine the
possibility where σ(p) = σ(q) = χ .

Fact Let I =
(
SigI ,SenI ,ModI , |�I

)
be an institution with the traditional

square, then for every σ : � → �′ the square either remains invariant (Fig. 16
or it terms of a line Fig. 17).

Fig. 16 Square of opposition in institution with Boolean connectives

Fig. 17 Line of opposition in institution with Boolean connectives

4.3 After the Action of Morphisms

In this section, we present several examples (shown in Figs. 18, 19, 20, and 21) in
which the square of opposition changes under the action of certain functors, i.e., we
will illustrate how the square of opposition changes when we pass from one logical
system over another logical system.



292 Y. Kiouvrekis et al.

The square of opposition of the modal logic S5 changes when the “forgetful”
functor acts and assigns the shape to the primary logic system. In the case of the
square of opposition, the configuration changes and becomes a straight line segment,
as the Sherwood-Czezowski hexagon does. On the other hand, the Sesmat-Blanche
and the Beziau hexagons become a rhombus. As we mentioned earlier, we can have
a morphism � : FOL $→MFOL which represents the projection of Modal Logic
into First Order Logic.

Fig. 18 The modal system
S5

Fig. 19 Sesmat-Blanche hexagon

5 Institution-Theoretic Treatment of the Square of
Opposition

In general, in the square of opposition we have a relation between two sentences.
We have defined the relations of sentences Ri(φ,ψ) where i belongs to {C, c, S, s}.
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Fig. 20
Sherwood-Czezowski
hexagon

Fig. 21 Beziau octagon for S5

In order to pass to dual relations R∗i (φ∗, ψ∗), we appeal to the concept of Galois
connection, which is defined as follows:

∗ : R(φ,ψ) $→ R∗(φ∗, ψ∗) (5.1)

Thus, the Galois connection forms way the dual relation, as well as the dual square
of opposition in a natural way [9, 10].

5.1 Galois Connection

Let � be a signature in an arbitrary institution I =
(
SigI ,SenI ,ModI , |�I

)
.

Then we know that if E is set of sentences we have that the models of E is the class
of models such that M |� φ for every sentence in E. Moreover, the theory of a
class of models M is the set of sentences φ such that M |� φ for every model in this
class. In formal language, this is expressed as follows:

• for every set of �-sentences E, we have

E∗ = {M ∈ Mod(�) |M |�� φ ∀φ ∈ E}
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• for every class M of �-models, we have

M
∗ = {φ ∈ Sen(�) |M |� φ ∀M ∈M}

Remark 5.1 For any sentence φ and a model M , we denote {φ}∗ = φ∗ and {M}∗ =
M∗

It is evident that the previous definition implies two functions (−)∗, where “-”
denotes an empty place, which are known as Galois Connection.

Lemma 1 The two functions denoted ∗ in the previous paragraph determine a
Galois connection (see [11, 12]), whenever they satisfy the following properties,
for any collections E,E′ of �-sentences and collections M,M′ of �-models:

1. E ⊆ E′ ⇒ E′∗ ⊆ E∗.
2. M ⊆M

′ ⇒M
′∗ ⊆M

∗.
3. E ⊆ E∗∗.
4. M ⊆M

∗∗.
5. E∗ = E∗∗∗.
6. M

∗ =M
∗∗∗.

7. There is a dual (i.e., inclusion reversing) isomorphism between the closed
collections of sentences and the closed collections of models. This isomorphism
maps unions to intersections and intersections to unions.

(a)
⋂
n

E∗n =
(⋃

n

En

)∗

(b)

(⋂
n

E∗n

)∗∗
=

(⋃
n

En

)∗

(c)

(⋃
n

E∗∗n

)∗
=

⋂
n

E∗n

(d)

(⋃
n

E∗∗n

)∗
=

(⋃
n

En

)∗

(e)

(⋂
n

E∗∗n

)∗
=

(⋃
n

E∗n

)∗∗

There are also dual identities to (a)–(e) for collections of models.

Proof We prove the first, the second and the 7(a). Let E be a set of �-sentences and

E∗ = {M ∈ Mod(�) | ∀φ ∈ E M |� φ}

a collection of models. Let E1 ⊆ E2 ⊆ |Sen(�)| then from Galois Connection we
take two collections of set of models, E∗1 and E∗2 .
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M ∈ E∗2 ⇒
(∀φ ∈ E2) M |� φ ⇒
(∀φ ∈ E1) M |� φ ⇒

M ∈ E∗1 ⇒
E∗2 ⊆ E∗1

(5.2)

For the second, if M ⊆ M ′ ⊆ |Mod(�)| then

φ ∈ M ′∗ ⇒
(∀m ∈ M ′) m |�I

� φ ⇒
(∀m ∈ M) m |�I

� φ ⇒
φ ∈ M ⇒

M ′∗ ⊆ M∗

(5.3)

And for the conjunction, if M ∈ E∗1 ∩ E∗2 then

M ∈ E∗1 & M ∈ E∗2 ⇔
(∀φ ∈ E1) M |�I

� φ & (∀φ ∈ E2) M |�I
� φ ⇔

(∀φ ∈ (E1 ∪ E2)) M |�I
� φ ⇔

M ∈ (E1 ∪ E2)
∗

(5.4)

Thus we conclude that φ∗ ∩ ψ∗ = (φ ∪ ψ)∗ &'

5.2 Aristotelian Relations and the Galois Connection

According to the previous section, we have four fundamental relations Ri(_, _),
where i belongs to {C, c, S, s}. Now we give an institution-independent form of
these definitions using the Galois connection. First, we translate these relations in
terms of the Galois connection.

(1) |�I
� ¬ (φ ∧ ψ) In terms of Galois connection this means that

∀M ∈ Mod(�)
(
M |�I

� ¬φ or M |�I
� ¬ψ

)
⇔

∀M ∈ Mod(�)
(
M ∈ φ∗ or M ∈ ψ∗

)⇔
φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ = Mod(�) (5.5)
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(2) |�I
� ¬(¬φ ∧ ¬ψ) In terms of Galois connection this means that

∀M ∈ Mod(�)
(
M |�I

� φ or M |�I
� ψ

)
⇔

∀M ∈ Mod(�)
(
M ∈ φ∗ or M ∈ ψ∗

)⇔
φ∗ ∪ ψ∗ = Mod(�) (5.6)

(3) �|�I
� ¬ (φ ∧ ψ) In terms of Galois connection this means that

∃M ∈ Mod(�) : M |�I
� φ ∧ ψ ⇔

∃M ∈ Mod(�) : M |�I
� φ & M |�I

� ψ ⇔
∃M ∈ Mod(�) : M ∈ φ∗ & M ∈ ψ∗ ⇔

∃M ∈ Mod(�) : M ∈ φ∗ ∩ ψ∗ ⇔
φ∗ ∪ ψ∗ ⊂ Mod(�)⇔

φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ �= Mod(�) (5.7)

(4) �|�I
� ¬(¬φ ∧ ¬ψ) In terms of Galois connection this means that

∃M ∈ Mod(�) : M |�I
� ¬φ ∧ ¬ψ ⇔

∃M ∈ Mod(�) : M ∈ φ∗ & M ∈ ψ∗ ⇔
∃M ∈ Mod(�) : M ∈ φ∗ ∩ ψ∗ ⇔
∃M ∈ Mod(�) : M ∈ φ∗ ∪ ψ∗ ⇔

φ∗ ∪ ψ∗ ⊂ Mod(�)⇔
φ∗ ∪ ψ∗ �= Mod(�) (5.8)

We should note that in the initial definition we talked about relations between
sentences. However, by introducing the concept of the Galois Connection, we
talk now about relations between collections of models. Then, applying again the
concept of Galois Connection, we pass to collections of sentences, i.e., essentially
to relations of sentences again (Figs. 22 and 23). Thus, in terms of relations we have
the following scheme:

R(φ,ψ)
∗−−−→ R∗(φ∗, ψ∗) ∗−−−→ R∗∗(φ∗∗, ψ∗∗) (5.9)

This scheme is transferred in a natural way to the square’s schemes. According to
the following definitions, we have:
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Fig. 22 Transformation of square

Fig. 23 Transformation of rhombuses

Definition 5.2 Two sets of models φ∗, ψ∗ are in dual contradictory relation
R∗C(φ∗, ψ∗) if φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ = Mod(�) and φ∗ ∪ ψ∗ = Mod(�) which is
equivalent to

φ∗ = ψ∗ (5.10)

Definition 5.3 Two sets of models φ∗, ψ∗ are in dual contrary relation R∗c (φ∗, ψ∗)
if

φ∗ ∩ ψ∗ = φ∗ ∪ ψ∗ = Mod(�) and φ∗ ∩ ψ∗ �= ∅ (5.11)

Definition 5.4 Two sets of models φ∗, ψ∗ are in dual subcontrary relation
R∗s (φ∗, ψ∗) if

φ∗ ∪ ψ∗ = Mod(�) and φ∗ ∩ ψ∗ �= ∅ (5.12)

Definition 5.5 Two sets of models φ∗, ψ∗ are in dual subalternate relation
R∗S(φ∗, ψ∗) if

φ∗ ⊂ ψ∗ (5.13)
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5.3 The Dual Square of Opposition

The scheme above is transferred in a natural way to the dual square’s schemes
(Figs. 24 and 25).

Fig. 24 Dual square of opposition

Fig. 25 Dual rhombus of opposition

Definition 5.6 Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual contradictory
relation R∗∗C (φ∗∗, ψ∗∗), if R∗C(φ∗∗∗, ψ∗∗∗);
Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual contrary relation R∗∗c (φ∗∗, ψ∗∗),
if R∗c (φ∗∗∗, ψ∗∗∗);
Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual subcontrary relation
R∗∗s (φ∗∗, ψ∗∗), if R∗s (φ∗∗∗, ψ∗∗∗);
Two sets of sentences φ∗∗, ψ∗∗ are in a dual dual subalternate relation
R∗∗S (φ∗∗, ψ∗∗), if R∗S(φ∗∗∗, ψ∗∗∗)

We know that E∗ = E∗∗∗ and M
∗ = M

∗∗∗. So we can obtain the following
generalization for abstract set of models and sentences (Figs. 26 and 27).

Definition 5.7 Two sets of models D,E are in a dual contradictory relation
R∗C(D,E), if

D ∩ E = D ∪ E = Mod(�) and D ∪ E = Mod(�) (5.14)
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Fig. 26 Generalized dual square of opposition

Fig. 27 Generalized dual rhombus of opposition

Two sets of models D,E are in a dual contrary relation R∗c (D,E), if

D ∩ E = D ∪ E = Mod(�) and D ∩ E �= ∅ (5.15)

Two sets of models D,E are in a dual subcontrary relation R∗s (D,E), if

D ∪ E = Mod(�) and D ∩ E �= ∅ (5.16)

Two sets of models D,E are in a dual subalternate relation R∗S(D,E), if

D ⊂ E (5.17)

Two sets of sentences D,E are in a dual dual contradictory relation R∗∗C (D,E), if
their duals D∗, E∗ are in a dual contradictory relation R∗C(D∗, E∗);
Two sets of sentences D,E are in a dual dual contrary relation R∗∗c (D,E), if their
duals D∗, E∗ are in a dual contrary relation R∗c (D∗, E∗);
Two sets of sentences D,E are in a dual dual subcontrary relation R∗∗s (D,E), if
their duals D∗, E∗ are in a dual subcontrary relation R∗s (D∗, E∗);
Two sets of sentences D,E are in a dual dual subalternate relation R∗∗S (D,E), if
their duals D∗, E∗ are in a dual subalternate relation R∗S(D∗, E∗);
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6 Conclusions

In this paper we examined the transformations of the logical object conventionally
called “square of opposition” undergoes under changes of semantics. For this
reason, we appealed to concepts from category theory and theory of institutions.
By introducing the concept of rhombus of opposition we examined the basic cases
of configuration changes of the ‘squares’ of opposition inside a logical system and
between different logical systems.

Further, by introducing the concept of Galois connection we showed the equi-
librium that can be established between the sentences of the traditional square of
opposition and the internal semantics of Boolean connectives, using them at a meta-
level. Furthermore, the introduction of the concept of dual square enabled us to
examine not only squares for sentences but also squares for sets of sentences.

Since quite a few logical systems do not have internal connectives, it is legitimate
to talk not about sentences graphs, but about classes of models and sets of sentences.
Therefore, we could also escape from the weakness of not being able to write basic
relationships, such as contradiction.

This is the first time that different ‘squares’ of opposition were compared within
a unified framework by using abstract model theory. We aim at integrating the
different versions of the ‘square’ of opposition into this universal framework.
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Jungian Hexagon of Opposition
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translator of C.G. Jung’s works to Portuguese.
Colors symbolize qualities, which can be interpreted in various
ways.
Psychologically this points to orienting functions of
consciousness, of which at least one is unconscious and
therefore not available
for conscious use.

C.G. Jung (CW, IX, pr.582, abridged) [77].

Abstract This article considers distinct ways of understanding the world, referred
in psychology as functions of consciousness or as cognitive modes, having as scope
of interest epistemology and natural sciences. Inspired by C.G. Jung’s simile of the
spectrum, we consider three basic cognitive modes, associated with: (R) embodied
instinct, experience, and action; (G) reality perception and learning; and (B) concept
abstraction, rational thinking, and language. RGB stands for the primary colors:
red, green, and blue. Accordingly, a conceptual map between cognitive modes and
primary and secondary colors is build based on physics and physiology of color
perception and epistemological characteristics of the aforementioned cognitive
modes, leading to logical relations structured as an hexagon of opposition.
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1 Introduction

Epistemology or knowledge theory is the branch of philosophy concerned with
studying how we learn about our environment and how we verify and justify the
acquired knowledge. In this article, I restrict my interest in epistemology to the
scope of natural sciences. Nevertheless, my interests also take in consideration the
human subject, observer, or agent of learning, and how he or she uses and integrates
distinct ways of understanding the world—ways often refereed in psychology as
functions of consciousness or as cognitive modes, see [176]. With this goal in mind,
I follow in the footsteps of Swiss psychologist Carl Gustav Jung (1875–1961),
who used conceptual models where colors symbolize qualities constituting a color-
coded system that points to orienting functions of consciousness, as stated in the
opening quotation. The best known of these systems concerns Jung’s categorization
of psychological types— that is not a system used in this article. Instead, I develop
in the sequel an alternative system of color-coded cognitive modes based on Jung’s
celebrated simile of the spectrum.

The systems of color-coded cognitive modes used by Jung are in no way arbi-
trary: First, these colors and modes relate to associations Jung frequently found in
patient’s dreams or in historically recorded imagery that also relate to the etymology
of color terms and the evolution and organizational patterns of these terms found
in human languages. Second, these color-codings have significant connections to
the physics of color formation and; Third, these color-codings have significant
connections to the physiology of color perception. These physical and physiological
connections are frequently overlooked in the psychology literature. Nevertheless,
the aforementioned connections are specially interesting for the epistemological
applications I have in mind, for they correspond to, respectively, external vs. internal
or objective vs. subjective aspects of color processing, in particular, or knowledge
representation in general.

Section 2 reviews basic notions of modern color theory. Section 3 relates color
theory and logical structures. Section 4 develops a model inspired by Jung’s simile
of the spectrum in which color-coded cognitive modes and the logical structure of
their interrelations are interpreted in the context of epistemology and philosophy
of science. Sections 5, 6, and 7 examine some examples of how these cognitive
modes are interpreted in the scope of scientific disciplines. Section 8 presents some
directions for further research and final remarks.
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Fig. 1 Newton’s [106] Opticks (updated) color wheel (circular perception structure) vs. linear
structure of light spectrum; Helmholtz’s [61] cone receptors response curves

2 Modern Color Theory

This section presents an abridged and selective chronology of modern color theory,
focusing on relevant concepts needed for this paper. Modern color theory starts
with the publication of Isaac Newton’s Opticks (1704), where he showed how (a)
a ray of white sun light can be decomposed by a prism into a spectrum of color
hues, forming a linear continuum ranging from red to violet, as commonly seen in a
rainbow, see Fig. 1r.1 Moreover, Newton showed that (b) different color sensations
can be generated by mixing light of specific spectral hues. For example, a sensation
of violet can be generated by mixing red and blue. Furthermore, (c) color sensations
like magenta or purple are not produced by light from any single locus in the linear
spectrum, but they can only be produced by various mixtures of red and blue.
Hence, Newton suggested that (d) human perception of colors is better represented
by a color wheel, where the red and violet ends of the linear spectrum are joined
to form a circle. Figure 1l depicts an updated version of Newton’s color wheel,
see [93]. In this article, the violet-magenta-purple region joining the extremities of
the linear spectrum is called as the paradoxical region of the color wheel, while
magenta-purple hues span the more restricted non-spectral region. In his famous
simile of the spectrum, C.G.Jung (CW, VIII, pr.414–416, pp.3167–3169) compared
this representation to an Ouroboros—a serpent biting its own tail at the paradoxical
region of the color wheel, see Fig. 1c and [2].

Using a simple thermometer, in 1801, William Herschel was able to detect infra-
red radiation, that is, radiation located beyond the red end of the spectrum that
is invisible to the human eye, see [151]. In a similar way, using photo-chemical
reactions, in 1801, Johann Wilhelm Ritter detected ultra-violet radiation beyond the
violet end of the visible spectrum. Hence, using the color wheel representation, it
is an understandable façon de parler to speak of hues at the paradoxical region as
neither ultra-violet nor infra-red but an undivided blend of both, see [132, p.23].

1 Positional figure locators: c=center, t=top, b=bottom, l=left, r=right.
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Meanwhile, Thomas Young [181] postulated that the human perception of color
is based on three types of light receptors at the eye’s retina. Hermann von Helmholtz
[61] and James Clerk Maxwell (1857) were able to verify Young’s intuition in
a series of experiments designed to elucidate peculiarities of human perception
of color. These three receptors are nowadays denominated L, M, S cones that
are sensible to radiation roughly located, respectively, at red, green, blue regions
of the spectrum, see Fig. 1r. Maxwell’s [95] triangle uses a convenient system of
coordinates to specify color hues by their red, green, and blue (RGB) components.
This system of coordinates is known in mathematics as (de Finetti’s) compositional
diagram, where each coordinate is in the [0, 1] interval and all coordinates add up
to 1, see Fig. 2tl, [46, S.77], [91, 160].

The sensitivity curves of LMS/RGB receptors depicted at Fig. 1r are normalized,
i.e., these curves are plotted with maxima of same height. In fact, their absolute
sensitivities are quite different: S/B receptors have a much smaller (neural output
density) response than M/G receptors that, in turn, have a smaller response than L/R
receptors. Furthermore, these receptors have distinct and non-linear response curves
to color hue, resulting in highly non-linear combined response curves for brightness
and color saturation, or for other qualitative aspects of color perception around the

Fig. 2 Top: Maxwell [95] RGB compositional diagram including approximate position of violet,
purple, primary and secondary colors; Neural network re-encoding trichromatic (RGB) inputs into
oppositional (RGBY) outputs; Hering [65] circle of four antagonistic archetypal colors (RGBY).
Bottom: Hexagonal tiling and color schemata, from Runge [129] and Wundt [179] to HSL/HSV
encoding by Smith, Joblove and Greenberg [73].
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hue circle. Hence, additional calibration points around the hue circle are needed for
good color encoding systems. For this purpose, the hexcone (hexagonal cone) color
encoding system includes calibration points located midway between the primary
colors (RGB), corresponding to the secondary colors cyan, magenta, and yellow
(CMY), see Fig. 2b.

The primary colors constitute an additive basis, that is, different colors hues can
be generated by mixing RGB light sources of different intensities. In particular,
each one of the secondary colors is generated by mixing two primary colors,
namely C=G+B, M=R+B, and Y=R+G. In contrast, the secondary colors constitute
a subtractive basis, that is, different color hues can be generated by sending withe
light through CMY filters of different intensities (like artists do by mixing paints).

The hexcone and similar color encoding systems were first envisioned by Philipp
Otto Runge [129], further explored by Wilhelm Wundt [179, 180], and greatly
developed for TV broadcasting and computer graphics in order to achieve good
quality renderization of color images at high processing speed, see [58, 148, 150].
Hexcone encoding and similar systems are now ubiquitous, underlying color
information structure in the modern world. The logical structure of such hexagonal
color models is further examined in the next section.

The tripolar color model, developed by Maxwell and Helmholtz, was able
to explain how distinct physical light sources and filters can be combined to
obtain different colors. Meanwhile, Ewald Hering [65] developed an alternative
quadripolar color model based on four archetypal colors or Urfarben, organized
as antagonistic processes opposing red vs. green and yellow vs. blue, see Fig. 2tr.
Hering’s model was able to explain some color phenomena related to perception
latency, see [65, 172]. Hering’s model could also explain recurring organization
patterns for color words found in human languages. Interestingly, exactly the same
colors and structure are used by Jung to color-code oppositional cognitive modes in
his theory of personality types, see [77], [76, p.48] [88] and [176].

At the beginning of XX century, Erwin Schrödinger [134–137] showed how to
combine the aforementioned tripolar and quadripolar models into an integrated color
theory, but the functional transforms underlying this integration are still a matter
of current research. For example, Chittka and coauthors [20–22] show how neural
networks responsible for post-processing of signals generated by cone receptors
conform to the oppositional structure anticipated by Hering, see Fig. 2tc. From a
logical point of view, the simplest structure able to integrate the aforementioned
tripolar and quadripolar models is the hexagon of opposition, studied in the next
section. For general overviews of color theory and its historical development, see
[83, 93].

The aforementioned tripolar models describe color processing at the interface
between the human eye and the external environment, while quadripolar models
describe processes at a corresponding interface to the internal world of an embodied
human mind. My interest in epistemology demands simultaneous attention to both
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external phenomena and their internal representation. Following Jung’s intuition, I
use for this purpose the framework provided by color theory, for vision is arguably
the most important human sense for perception of phenomena in the external
environment, and it should therefore have a comparable influence and importance
in human internal representation and psychological processing. Accordingly, Sect. 4
develops a model in which primary and secondary colors equipped with a hexa-
polar structure are interpreted as cognitive modes in the context of epistemology
and philosophy of science.

3 Logic Structures and Color Theory

The superposition or compositional properties of primary and secondary colors
entail a rich and intuitive algebraic structure that has been extensively explored in
mathematical and philosophical studies, see [70, 71, 149]. Formally, a bit-string
〈r, g, b〉 in the 3-dimensional Boolean space {0, 1}3 is used to represent the colors
Red (R), Green (G), Blue (B), Cyan (C), Yellow (Y), Magenta (M), Black (K), and
White (W), as shown in the cubic diagram at Fig. 3tl. Analogously, a vector 〈r, g, b〉
in the 3-dimensional Euclidean unit cube [0, 1]3 is used to represent a continuum
of color hues, as (partially) depicted in Fig. 3tl. Arrows in these diagrams represent
color intensity gradients for the Euclidean color cube, and entailment or inferiority
relations for the Boolean color cube.

The entailment relations in the Boolean color cube impose a (transitive) order
structure captured by the algebraic lattice depicted in Fig. 3tr; for further details,
see [8, 32–35, 70, 71]. The geometric orthogonal projection of the color cube along
the K-W axis generates the color hexagon, as depicted in Fig. 3l. In addition to
the entailment relations directly inherited from the color cube, the color hexagon
includes other important logical relations corresponding to color theoretic prop-
erties: Contrariety relations, represented in the hexagon by dashed lines (−−),
interconnect elements of the additive color basis; Meanwhile, sub-contrariety
relations, represented in the hexagon by dotted lines (· · · ), interconnect elements
of the subtractive color basis, see Fig. 3bl. Accordingly, bit-string codes of any two
contrary colors have null or K=〈0, 0, 0〉 intersection or minimum, while bit-string
codes of any two sub-contrary colors have full or W=〈1, 1, 1〉 union or maximum.
Finally, complementarity relations, represented in the color hexagon by parallel lines
(==), interconnect colors with complementary bit-string codes.

Curiously (or insightfully), one can observe a synchronic evolution of the human
understanding and the historical development, on the one hand, of color theories
and their logical structures and, on the other hand, of inference systems formalizing
human reasoning and their logical structures. Classical and medieval logic orbits
around tripolar and quadripolar structures known as triangles and squares of
opposition, see Fig. 4tl,tc. Only in modern times, since [10], were these structures
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Fig. 3 Top left: Cubic diagram of color entailment relations projected into the hexagon; Top
right: Hasse diagram for (transitive) mereological relations of entailment or inferiority (−→);
Bottom-left: Hexagon of opposition for additive (RGB) and subtractive (CMY) colors with
corresponding mereological or bit-string relations of complementarity (==), contrariety (−−),
and sub-contrariety (· · · ); Bottom-right: Color wheel showing hue continuum in standard angular
coordinate

generalized so to integrate tripolar and quadripolar oppositional relations, see also
[52, 53, 72, 138]. The simplest structure of this kind is the logical hexagon of
opposition, depicted in Fig. 4br.

Figure 4br illustrates oppositional relations in the logical hexagon either by arith-
metic equality and inequality operators, (<,>,=, �=), or by modal logic operators
of necessity, possibility, and negation, (�,♦,¬). Applying to the logical hexagon
the same convention used in the color hexagon: Implication or subalternation
relations are represented by arrows (−→); Contrariety relations are represented by
dashed lines (−−); Sub-contrariety relations are represented by dotted lines (· · · );
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and Contradiction relations are represented by parallel lines (==). Contradictory
statements have opposite truth-false values; Contrary statements cannot both be true,
although they might both be false; and Sub-contrary statements cannot both be false,
although they might both be true.

I believe that the existing isomorphism between the color hexagon and logical
hexagon can be taken as a sign reinforcing Jung’s intuition of seeking color-coded
systems for representing interrelated cognitive modes or as evidence corroborating
the validity of following this path. Moreover, the same basic oppositional structure,
or further generalizations thereof, can be used to represent a great variety of
deductive and inductive (statistical) inference systems, see [6, 7, 16, 17, 32–
35, 38, 39, 43, 44, 101, 102, 165]. These extensions and generalizations engender
additional homeomorphisms between logical structures found in color theory and
(sub-)structures of those inference systems. Coherently, I take these homeomor-
phisms as additional evidence supporting the aforementioned path taken by C.G.
Jung.

Figure 4 shows some medieval illustrations: These tri- , quadri-, and hexa-polar
diagrams are concerned with oppositional aspects of, respectively, language and
argumentation, see [32], and alchemy and gnostic philosophy, see [36, p.45], [56,
p.184], [109, pl.1], [114, pl.6]. Each of these diagrams presents a fragment of
the full hexagon of opposition, Fig. 4br, whose interpretations in logic and color
theory were analyzed in this and the preceding sections. Moreover, these diagrams
were conceived as conceptual maps, hence acting like bridges that interconnect
different fields of study by seeking, identifying, and abstracting common underlying
logical structures, see [170]. The obvious success of these and analogous enterprises
reinforces, once again, my conviction of the validity of Jung’s intuitions that
motivate this article.

4 Epistemic Color-Coded Cognitive Modes

Eugen Bleuler (1857–1939) was the director of Burghölzli psychiatric hospital from
1898 to 1927. Jung worked at Burghölzli from 1900 to 1909 where he developed
several key ideas of analytical psychology. Bleuler [11, 12] had a special interest in
chromesthesia and other paradoxical phenomena related to color perception. Jung
was also aware of Wilhelm Wundt’s [179] psychometric studies, including color
theory and perception. Hence, we can safely assume Jung had a good understanding
of the complex structure and rich interconnections implied by his simile of the
spectrum. Surprisingly, some interpretations found in psychology textbooks present
Jung’s simile in over-simplified fashion, sometimes even reducing it to a linear
structured allegory presented a few years earlier by Frederic Myers [103, 1891,
pp.298–306; 1892, 333–336] and, in so doing, fail to capture essential aspects of
Jung’s simile. The next abridged quotation presents, in a condensed form, Jung’s
own formulation of the simile of the spectrum:
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Fig. 4 Top and bottom-left: Medieval diagrams of tri- , quadri- and hexa-polar oppositional
structures; Bottom-right: Blanche [9] hexagon of opposition for (�,♦,¬) modal logic operators
of necessity, possibility, and negation, or (<,>,=, �=)(in)equality relations, including oppositional
relations of contradiction (==), contrariety (−−), sub-contrariety (· · · ) and subalternation (−→)

[We] employ once more the simile of the spectrum. . . The dynamism of instinct is lodged
as it were in the infra-red part of the spectrum, whereas the instinctual image lies in the
ultra-violet part. If we remember our color symbolism, then, as I have said, red is not such
a bad match for instinct. But for spirit, as might be expected, blue would be a better match
than violet. Violet is the ‘mystic’ color, and it certainly reflects the indubitably ‘mystic’ or
paradoxical quality of the archetype in a most satisfactory way. Violet is a compound of blue
and red, although in the spectrum it is a color in its own right. . . . Because the archetype is
a formative principle of instinctual power, its blue is contaminated with red: it appears to
be violet. . . The creative fantasy of the alchemists sought to express this abstruse secret of
nature by means of another, no less concrete, symbol: the Ouroboros, or tail-eating serpent.

Jung (CW, VIII, pr.414–416, pp.3167–3169, abridged).
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Jung’s simile of the spectrum is a metaphor used to explain essential aspects
of archetypes, a concept we further discuss at Sect. 7. At this point we focus on
specifics of the color symbolism used in the simile, involving the colors red, blue,
and violet. Red and blue correspond to the color receptors of the human retina closer
to the extremes of the visible linear spectrum, while violet lies in the paradoxical
region of the color wheel where the Ouroboros bites its tail, see Fig. 1l,c. In the
topology of the color wheel, opposite to violet and midway in the linear spectrum
between red and blue is the locus of color green, a color that, like the colors used in
the simile, finds a consistent symbolic meaning in Jung’s work, as expressed in the
following abridged quotations:

Red, the blood color, has always signified emotion and instinct.
Jung (CW, VIII, pr.384, p.3143) [77].

Blue, the color of air and sky, is most readily used for depicting spiritual contents.
Jung (CW, VIII, fn.122, p.3167) [77].

Statistically, at least, green is correlated with the sensation function [. . . in. . . ] relation to
the real world. Jung (CW, IX, fn.130, pr.582, p.3840).

Of the essence of things, of absolute being, we know nothing. But we experience various
effects: from ‘outside’ by way of the senses, from ‘inside’ by way of fantasy. . . . the color
‘green’ . . . is an expression, an appearance standing for something unknown but real.

Jung (CW, VII, pr.355, p.2862).

Table 1 presents the symbolic meanings of primary and secondary colors as they
are used in the hexa-polar epistemological model under construction in this article.
The three primary colors plus violet are reinterpreted in the context of epistemology,
our targeted application field, but still preserving (I hope) much of Jung’s original
interpretations in the context of psychology.

As far as I know, cyan never found in Jung’s work a distinct symbolic meaning.
This is not surprising for, outside the terminology of modern color theory, few
human languages (like Russian, Mongolian, Italian and Hebrew, but neither German
nor English) have a distinct traditional word for this color, using instead compound
expressions like light-blue or greenish-blue; for pertinent references in etymology,
evolutionary linguistics and grammar of color terms, see [5, 41, 80, 96, 153], and
also Jung’s grandfather, Samuel Preiswerk [118].

Yellow (citrinus or ξανθoς ) was Jung’s “missing” color, used to reestablish
oppositional symmetry and complete his quadripolar basis for psychological types
(that can then be unfolded in 2k-polar models, for k = 3, 4, 5), see Jung (CW, XII,
pr.333) [77]; [76, p.48] [176]. In the same way, Yellow is the color still missing in
our hexa-polar model, where it takes a symbolic meaning specific to the model at
hand, see Table 1.

In real life experience, it is difficult to spot pure spectral colors, for processes
that naturally generate light produce either a mixture of isolated frequencies (like
chemical spectra) or, after some interaction in the environment, (like reflection and
scattering) complex mixtures in the color space. Likewise, in our epistemological
analog, it is difficult to spot examples of scientific models or theories that would
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Table 1 Color-coded epistemological cognitive modes



 Red: Color of blood, symbol of (e)motion and instinct. Capacity to maintain
embodied life (grounded existence and autopoiesis), of well-adapted reactions or
purposive interactions with objects in a scope of interest.



 Yellow: Color of metallic gold: symbol of craft work, fine artisanry, precise
manufacture, industry, and technology.



 Green: Color of vegetation, symbol of sensory perception and sense of reality:
Ability to perceive and learn existing qualitative relations in the scope of interest;
Capacity to discern, detect, and evaluate independence, correlation or other forms of
statistical association between quantities of interest.



 Cyan: Light-blue, symbol of reliable empirical statements: Ability to build,
use, and communicate good descriptive or predictive models of reality.



 Blue: Color of the sky, symbol of thinking and the rectified spirit: Capacity
to distill conceptual notions or sublimate abstract ideas; Ability to relate and
interconnect such concepts and retrieve or communicate pertinent relational chains
in organized conceptual networks. A lexicon used to express and communicate such
concepts is called (in computer science) an ontology.



 Violet: Spectral hue in the

 -

 -

 purple-magenta-violet paradoxi-
cal region of the color wheel. Symbol of the cryptic (or psychoid) nature of archetypal
forms, half-way between adaptive instincts and their teleological representation as
conscious images or ideas: Ability to find, seek, or suggest meaningful associations,
symbolic connections or causal relations.

be well described by an isolated primary color. Far easier is to give good examples
related to secondary colors (CYM), corresponding to coordinated operations in the
space spanned by (at least) two primary colors.

As should be expected, well-developed scientific theories integrate all primary
and secondary colors (cauda pavonis), hence providing the clearest views in their
areas of application. Nevertheless, those theories never drop from the sky fix-und-
fertig (already fully assembled and ready to go). Usually, they are first noticed while
in a dark shade of a secondary color and, from there, progressively evolve so to
better illuminate their fields of study. In the following sections we discuss some
examples of this kind, discerning positive aspects of scientific models or theories
in an evolutionary stage appropriately described by a secondary color, as well as
corresponding negative effects due to the missing primary color.

5 Yellow: Invisible Carriers in Charge

This section presents case studies of technological development that, according to
our epistemological model for color-coding cognitive modes, could be characterized
as yellow—the secondary color made by adding red and green. The technological
devices under study had to be manufactured and employed for specific purposes
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where they had to perform according to strict objective criteria. However, these
case studies also illustrate partial successes made by trial-and-error, as well as
the overcoming of deficiencies in cognitive mode blue, namely how overcoming
a paralyzing deadlock required a breakthrough that, in turn, could only be achieved
when key concepts could be abstracted and ensuant metaphors were developed and
used to illuminate blind-spots previously dark to consciousness.

The twentieth century spans the development of electronics—the technology of
generating, amplifying, and precisely controlling electrical currents. The evolution
of electronics came in two great waves, characterized by the key device used to exert
this control, namely vacuum tube triodes and semiconductor transistors. Studying
electronics’ history is facilitated by abundant documentation, including laboratory
notebooks of experimental pioneers, scientific articles reporting important break-
throughs, textbooks on the subject written by main protagonists, and even audio
and video recordings of interviews with those personalities. Finally, there are good
collections of early prototypes and production samples of these artifacts, and a good
literature dedicated to the history of these technologies. For general references see
[67, 108, 122, 123, 140, 144, 173]. For additional details relevant for this section, see
[4, 14, 15, 29, 31, 66, 86, 87, 124–126, 141, 144–147], and also references [184–190]
listed as videos and simulations.

Triodes and transistors, also called valves or amplifiers, use a small input, the
emitter (or cathode) to base (or grid) electric signal, to regulate a much larger output,
the emitter to collector (or anode) electric current. Figure 5t,cr depicts modern
diagrammatic representations and shows photographs of the earliest prototypes of
these devices. In both cases (triodes and transistors), pioneering inventors had a poor
understanding of the fundamental science involved: They were severely misguided
by inappropriate concepts and metaphors that generated intellectual blind-spots that,
in turn, temporarily halted further development. In both cases, electrically charged
particles flow through these devices, but the nature and behavior of these particles
was a source of confusion and misunderstanding.
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In the case of vacuum tubes, early researchers thought that charged particles
flowing through the vacuum tube resulted from the chemical decomposition of gas
molecules into positively charged cations and negatively charged anions. Figure 5crt
shows an Audion, whose patent explicitly required some residual gas left in the
tube for ionization, resulting in a working but very noisy and unreliable amplifier.
Later on, the development of theoretical and experimental means and methods of
physics and chemistry demonstrated that electrons traveling through vacuum were
the carriers in charge of the relevant transport processes, a hypotheses formerly
perceived as incoherent, for there is an apparent contradiction in having a current of
something in empty space. The apparent paradox was solved by realizing that the
electrons in question were sub-atomic particles orders of magnitude smaller than
chemical molecules of ordinary matter, see [1]. Triodes and their variants build
using high-vacuum tubes were reliable, had good signal to noise characteristics,
and became the backbone of subsequent developments in electronic technology.

In the case of semiconductors, researchers had to follow a path in the opposite
direction, that is, they had to realize that not only electrons, but also (at least
initially) mysterious positively charged (quasi-)particles called holes had to be
invoked in order to understand and control the relevant electrical flows. The concept
of electron-holes, or just holes, was made explicit for the first time by Werner
Heisenberg [60]. Emerging from quantum mechanics mathematical formalisms for
solid-state physics, this is easy to visualize metaphor often offers the best way to
answer Heisenberg’s signature question, see [67, p.113,120]: How can we make
that physically insightful (anschaulisch) or intuitive?

Figure 5cl, resembling Shockley (1950, p.57), depicts free electrons (−) and
positive charged holes (+) flowing as missing electrons in covalent bonds in a
(doped) Silicon crystal lattice, see also [187, 188]. Figure 5bl, resembling Shockley
(1950, p.8,9), depicts his famous two-story parking garage for the flow of holes (+)
and electrons (−): Electric flow is impossible in the perfect crystal lattice of pure
4-valent Silicon or Germanium, but possible if the crystal is “doped” with scattered
impurities of either a 5-valent element, like Phosphorus or Arsenic, introducing a
free electron in the crystal, or a 3-valent element, like Boron, introducing a missing
electron or hole in the lattice of covalent bonds.

Pioneering researchers trying to build a semiconductor triode were fully aware
of the existence of excess electrons and holes in crystalline structures that could be
conceived as negatively and positively charged particles. Moreover, they knew that,
depending on the type of semiconductor, the number of particles of one kind far
exceeded the other, whence called majority and minority carriers. Furthermore, they
implicitly hold a majority only premise, namely they tried to build semiconductor
devices relying only on majority carriers, minority carriers having a superficial or
no role to play, see [64] for such a device. Appreciating the importance of minority
carriers was the conceptual blind-spot to overcome in order to achieve a viable solid-
state triode.
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Fig. 5 Top: Diagrammatic representation of Transistor and Triode vacuum tube. Right: Early
devices relying on misleading metaphors: Audion, on gas ionization; Contact point transistor, on
surface effects. Left: Shockley (1950) parking garage metaphor for the flow of holes (+) and free
electrons (−) in a crystal lattice

Figure 5crb depicts a contact point transistor, invented by John Bardeen and Wal-
ter Brattain at Bell-Labs in 1949. Like the Audion, this pioneering device worked,
but just barely. Its invention was a fruit of much trial-and-error experimentation
guided by fuzzy ideas about the role played by minority carriers—supposed to be
trapped at a semiconductor’s surface or confined to its interfaces. Retrospectively,
Brattain stated he had an intuitive feel for what you could do in semiconductors,
not a theoretical understanding, see [15, p.40] and [142]. Figure 5br, depicts John
Shive’s [141] double-surface triode, used to demonstrate the importance of in-
depth (non-superficial) currents of minority carriers, the conceptual breakthrough
needed for William Shockley [143] to invent the Junction Transistor. Figure 5tl
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gives a diagrammatic representation of a junction transistor, where majority carriers
(electrons) are responsible for the main current through the device. Nevertheless
this flow of majority carriers is controlled by a secondary current of minority carriers
(holes) injected at the base (or grid). The interaction of holes from this much smaller
secondary current with electrons flowing in the semiconductor constitutes the key
mechanism used to efficiently and reliably control the main flow, see [187, 188].

Vacuum as a transport medium is a difficult thing to “see”, and so is a flow
of empty holes! Nevertheless, in the aforementioned case studies, overcoming
associated blind-spots was the pivotal step to progress, see next quotations. Not
surprisingly, in 1906, 1928 and 1932, Joseph Thomson, Owen Richardson and
Irving Langmuir were all awarded a Nobel Prize for elucidating the nature and
laws of thermionic emission, the theoretical foundation of vacuum tube technology.
Contemporary textbooks in solid-state physics are fully immersed in the quantum
mechanics theoretical framework, see and compare [79]. In contrast, John Bardeen,
Walter Brattain and William Shockley shared a Nobel Prize (1956) for inventing
the transistor using simplified (semi-classical) models for the dynamics of flow and
interaction (drift, diffusion and recombination) of majority and minority carriers in
semiconductors. Essentially, they “only had to see” interacting flows of electrons
and holes; see [107, 128, 130, 140, 141, 143–147], and references [184–190] listed
as videos and simulations. The next quotations reveal this mindset:

The explanation of these effects involved both the majority and the minority carriers.
The fact that minority carriers might play an important role in the understanding of
semiconductor phenomena was more or less overlooked by other investigators. As we shall
see later, this was another blind-spot. . . . In the course of these experiments it became
evident that the minority carrier, even in small concentrations, played a very important
role. . . . It is of course not surprising that this blind-spot persisted for so long. The minority
carriers were, after all, present in too small concentrations in most semiconductors to
matter very much. Pearson and Brattain (1955, p.1797,1801,1802)[110].

The hole, or deficit produced by removing an electron from the valence-bond structure
of a crystal, is the chief reason for existence of this book.

Shockley (1950, Preface, 1st line).

At this point, it is worth to remember Heinz von Foerster’s [49] Principle of
The blind spot: One does not see what one does not see. As explained in [159],
if we lack an appropriate conceptual framework to represent a specific “pattern
of reality”, our “mind’s eye” will not be able discern this pattern, even when the
conditions for its occurrence are directly available in our environment. This notion
is also in tune with the etymological origin of the word theory, from Ancient Greek:
�εωρια= �εαν +oραω, theoria = thean (a view) +horao (I see). Retrospectively,
once we are able to see what was hidden in a former blind-spot, it may be hard to
believe that someone (possibly ourselves) could not see “that” what had always been
there! Even so, incorporating and integrating new theories, adopting new ways of
seeing the world, and accepting its consequences, may not be easy. We often cling
to old blind-spots, resist change, hold on to old ideas and/or to the old habits, modus
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operandi or ways of being that grew with them. Furthermore, these inertial effects
can be various, complex, multi-layered, mutually reinforcing and, therefore, can be
easily misunderstood—sometimes even misinterpreted as intentional efforts aiming
to suppress innovation and progress, see [47, 159, 177, 178].

6 Cyan Science: As in Heaven Not on Earth

In Ptolemy’s astronomy, a planet moves around its epicycle, a small circle whose
center moves around a larger one, the planet’s deferent, see [183]. All motions in
heaven are explained by a composition of circular motions of this sort. Ptolemy
model can be displayed by planetaria—gear driven mechanical simulators, see
Fig. 6l, [51, 117]. Ptolemy astronomy provides a Kinematic description of planetary
motions, namely it presents a model of orbital trajectories without regard to their
causes, that is, without answering the question of why these trajectories are the way
they do. Moreover, the heavenly world is conceived as an ideal reality inaccessible
and alien to human beings—confined to the imperfect sub-lunar world. Hence, the
astronomer is an observer completely detached from the reality he or she observes.

Newtonian Mechanics presents a Dynamic model that derives the trajectory
followed by a material body from the physical forces acting upon it. Hence, these
forces are conceived as the causes producing and determining a given trajectory
exactly the way it is. Moreover, under appropriate circumstances, these forces can be
precisely measured and manipulated, so that the trajectories of the bodies they impel
can be controlled according to our will and power. Figure 6r shows a diagram from
Newton’s magnum opus, Philosophiae Naturalis Principia Mathematica, illustrat-
ing the smooth transition from sub-orbital to orbital trajectories of a cannonball.
This diagram is reproduced in a Hungarian postage label (Michel HU 3199AZf,
1977, with highlighted sub-orbital trajectories), near the lift-off of a Soyuz rocket
impelling an artificial satellite to orbit. It is perfectly feasible to build mechanical
simulators of such forces and consequent orbits. However, these models are useful
to illustrate the dynamics of Newtonian systems, not as analog computers used for
orbit calculations, a task better suited to the mathematics of differential equations,
see [19, 98, 99, 171].

Ptolemy’s astronomy is cyan science: Blue because it is based on well-
established concepts and metaphors and it is expressed in the formal language of
Greek geometry; and Green because its descriptions and predictions are in excellent
agreement with empirical data—up to the observational precision attainable at that
time (and for many centuries later). However, it lacks the color red, for it does not
admit any possible interaction between the observer and the (kind of) objects he or
she observes.

In contrast, Newtonian physics provides a much clearer light: Blue because it
is based on new but well-established concepts like positional coordinates, velocity,
acceleration, and force, and it is expressed in the formal language of differential
and integral calculus, see [106]; Green because it agrees with the most accurate
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empirical data available, surpassing in this respect Ptolemaic astronomy; and Red
because the same universal laws govern heaven and earth, where humans are no
longer dis-empowered voyeurs of the sky, but partakers in a universe in which they
eventually become spacecraft builders, astronauts, or cosmonauts.

7 Purple-Violet: Suggestive Instincts-Insights

[There] are essential phenomena of life which express themselves psychically, just as there
are other inherited characteristics which express themselves physiologically. . . . Among
these inherited psychic factors there [are] universal dispositions of the mind, and they are
to be understood as analogous to Plato’s forms (eidola), in accordance with which the
mind organizes its contents. One could also describe these forms as categories analogous
to the logical categories which are always and everywhere present as the basic postulates
of reason. Only, in the case of our “forms”, we are not dealing with categories of reason
but with categories of the imagination. . . . following St. Augustine, I call them “archetypes”.

Jung (CW, IX, pr.845, pp.5401–5402, abridged).

The archetypal representations (images and ideas) mediated to us by the unconscious
should not be confused with the archetype as such. . . It seems to me probable that the real
nature of the archetype is not capable of being made conscious, that it is transcendent, on
which account I call it psychoid.

Jung (CW, VIII, pr.417, pp.3169, abridged).

Pythagoras’ theorem, one of the best known results of Euclidean geometry,
establishes an invariant relation between the lengths of the edges in a right triangle,
namely the sum of the squares of the lengths of the catheti is equal to the square
of the length of the hypotenuse; for illustrative images, see Fig. 7. For an intuitive
understanding and beautiful visual proofs of Pythagoras theorem, see [104]; for its
history, see [121]. Felix Klein [81, 82] Erlangen program to the study of geometry
is based on the following question: What kind of transformations can be applied

Fig. 6 Blasius [183] mechanism based on Hipparchus of Nicaea (190–120 BC) or Claudius
Ptolemaeus (100–170 AD) deferent plus epicycles astronomical models; Newton’s [105] diagram
of cannonball sub-orbital and orbital trajectories
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Fig. 7 Euclid of Alexandria (300 BC) and Zhoubi Suanjing (100 BC) diagrammatic demonstra-
tions of Pythagorean theorem

to geometric figures that preserve their essential characteristics? For example: How
can the position of each vertex of a triangle be moved so that the size (Pythagoras
theorem suggests the quadratic norm) of its edges and its angles remain invariant? In
the case of Euclidean geometry, the answer to the last question is: By composition
of a translation (linear displacement along a given direction) and a rotation (angular
displacement around a given direction). A standard mathematical representation
of this class of movements is given by the algebra of Complex numbers in the
Euclidean (two dimensional) plane, and by the algebra of Quaternion numbers in
the Euclidean (three dimensional) space. For a readable introduction to Klein’s
approach to geometry, see [58], for extensions of this program to physics, see [174]
and [156, 160, 163]. Complex numbers are covered by high-school or college books,
[46] is my favorite. For an intuitive introduction to Quaternions, see [59], or [25] for
more abstract views.

Complex and Quaternion arithmetic are standard tools of Computer Graphics and
Robotics, exactly because they efficiently encode the possibilities and constraints
that govern the movement of physical objects in two and three dimensional space.
Nevertheless, mechanical robots (robota= slave worker) are machines conceived
to emulate the movements human workers are capable of, and computer graphics
emulates human visual perception of physical objects as they are moved or illu-
minated under changing conditions. Hence, we humans must have internal means
and methods, like neural networks, that biologically encode equivalent algebraic
structures. Every time we do manual labor, be it a plumber or a surgeon, we
coordinate our visual perceptions and fine motor skills by using phylogenetically
inherited capabilities that are ontogenetically trained and developed during our
lives. Using Jung’s terminology, in this context far removed from his original
field of psychology, we could say that Complex and Quaternion algebras are good
descriptions of archetypal forms of movement the human body if capable of.

Abraham Kaplan’s Law of the Instrument states: If your only tool is a hammer,
then every problem looks like a nail. Humans are finite beings that have quite limited
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resources. If we have a tool that works well in a context, it is only natural to
try and test it everywhere we can. In the case at hand, Complex and Quaternion
algebras are archetypal forms of movement that seem to be well-adapted to our
environment, that is, it seems they efficiently encode essential geometric properties
of the space we live in. Moreover, these archetypes are great contributors to human
intuition, for we use them all the time in our daily activities. As predicted by
Kaplan’s law of the instrument, we naturally try to use the same archetypal forms
to study different phenomena and, behold, sometimes it works miraculously well!
James Clerk Maxwell (1831–1879) equations of electromagnetism can be written
as a quaternion differential equation—although vector calculus is an equivalent
and nowadays more popular formalism, see [27, 40, 119]. As an applied tool,
the same equations are at the core of electronic engineering. As basic physics,
Maxwell equations can be verified by extremely precise empirical experiments.
The extraordinary precise agreement between simple and compact mathematical
formulation of physical theories and empirical tests motivated Wigner’s [175]
famous comments on the Unreasonable effectiveness of mathematics in the natural
sciences, see [156, 158] and references therein.

The suggestive power of archetypal insights has, however, a double-edged nature:
It may either inspire and drive a work of genius, or else engender persistent and
misleading mirages. Abraham Kaplan’s aforementioned aphorism—also known as
Law of the Hammer when applied with a pejorative meaning, can explain the
conceptual opposite of a blind-spot, namely some persistent forms of wishful
thinking and self-illusion. The term apophania (from απo = away +φαινω =
bring to light, show, reveal) was coined by Klaus Conrad to describe the frequent
misidentification of patterns and meanings at the onset of schizophrenia, see
[24, 42, 100]. The closely related Gambler’s fallacy or pareidolia (from παρα

= beside, instead +ειδωλoν = form, shape) refers to perceptions of inexistent
patterns in random data. Pareidolia explains some misleading beliefs or pathological
behaviors of gamblers, see [154] and references therein. Statistical retrospective
fishing expeditions and other variations of the gambler’s fallacy are the root cause
of many misconceived experimental designs or mistaken statistical analyses. Such
spurious chains of argumentation are, unfortunately, sometimes used to justify
pseudo-scientific theories, academic deception, or professional malpractice. Jung
himself warns about the double-edged power of archetypal insights, a source of
inspiration for genius and fools alike:

The golden apples drop from the same tree, whether they be gathered by an imbecile
locksmith’s apprentice or by a Schopenhauer.

Jung (CW, VII, p.2789, pr.229).

Notwithstanding Jung’s harsh warning, I must say that even the most brilliant
scientists I know—those who have had the grace of their Eureka or Schopenhauer
moments, also had plenty more of dumb locksmith’s apprentice moments—trying
to use the wrong key to open a door, or even struggling to properly use a
good working key. In [157, 164] we carefully dissect some paradigmatic cases of
pseudo-scientific studies concerning parapsychology, extra-sensory perception, and
the medical (ab)use of phosphoethanolamine and hydroxychloroquine. The strong
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Fig. 8 Blindfolded Fortuna (lady luck), [116], and Justice, [28, 54]; Francis Galton [116]
Quincunx, demonstrating convergence to Normal (Gaussian) distribution

insights and suggestive power offered by intuitive (violet) archetypal ideas—that
is, archetypal forms that correspond to firmly embodied (red) instincts that are also
represented in well-established (blue) conceptual ontologies—may shed some light
on psychological aspects of these bizarre cases.

Double-blind and randomized statistical trials are the gold standard used to test
and accept or reject statistical hypotheses. Figure 8l depicts a medieval personi-
fication of Luck (T υχη, Tyche), blindfolded and spinning the wheel of fortune.
Figure 8c depicts Justice (�ικη, Dike) holding her classical instruments, sword
and scales, and also blindfolded—representing impartial judgment, an iconographic
innovation of that time. Figure 8r shows Francis Galton (1822–1911) Quincuncx
machine, used to demonstrate the asymptotic convergence of means of random
variables to the Normal or Gaussian distribution, a core result of Mathematical
Statistics, see [55, 84]. These three images provide some intuition for the key ideas
supporting double-blind and randomized statistical trials; for technical details see
references in the next paragraphs.

All the case studies analyzed in [157, 164] involve blunt denials of (green)
statistical theory and practice, either by contesting the validity of standard math-
ematical reasoning, or by disputing the ethics of conducting double-blind and
randomized experimental trials, or by recourse to unfounded conspiracy theories,
etc. Hence, Caveat emptor: Any pragmatic or rhetorical attempt to avoid submitting
an empirical model to test at this crucible—in which predictive models are validated
or falsified—should be taken as a warning flag for pseudo-science; for related
discussions, see [26, 85, 115]. Nevertheless, there are many more important aspects
of pseudo-science, some of them, I suspect, relating to the suggestive power of
archetypal ideas.
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Notwithstanding the former caveat, there are valid methodological and ethical
concerns regarding clinical (and similar) trials, that should be addressed using state
of the art means and methods. For example, contemporary clinical trials should:
Dynamically optimize (minimize) sample sizes, see [50, 89, 90]; Cryptographically
secure, traceable, and auditable randomization procedures, see [94, 131], Stern et
al. (2020); Provide information and conclusions that are, on the one hand, logically
coherent and, on the other hand, understandable and consistently interpretable,
see [13, 111–113, 154–167]; Protect participants against discernible sub-optimal
treatments or practices; etc. Moreover, in my opinion, clinical trials should inform
participating patients and agents of the general framework (including goals and
ethics) of clinical trials, and how they differ (and so they must) from standard
medical practice, in a way that is far more comprehensive than often done.

8 Final Remarks

As it is the case in color theory, both tripolar and quadripolar structures coexist in
Jung’s work for the analysis of psychic functions, polarities that, we argued, can
only be reconciled using a hexagonal logical structure. For example, as already
mentioned, Jung categorization of psychological types has a basic quadripolar
oppositional structure. Nevertheless, Jung (CW, X, pr.555–557, pp.4591–4592)
suggest that all man’s psychic functions have an instinctual foundation and that,
in turn, the world of unconscious instincts has a tripolar structure corresponding to:

• Self-assertion – associated with Nietzsche’s Wille zur Macht or with will power,
the Adlerian standpoint in psychology, and Augustinian Superbia;• Imitation impulse – a reality principle associated with the Learning capacity,
a quality almost exclusive to man, based on the instinct for imitation found in
animals. It is in the nature of this instinct to disturb other instinctive activities
and eventually to modify them;• Sex drive – associated with preservation of the species, Freudian libido, and
Augustinian Concupiscentia.

Considering our color-coding of cognitive modes, it seems natural to associate
power and learning to the colors red and green. Finally, the association of sex to the
color blue can be motivated by the following analogy: From a biological point of
view, the most archaic forms of sex are, in essence, exchange of genetic information
(horizontal gene transfer mechanisms are much older than genetic recombination
of sexual reproduction), see [30, 69, 97, 152]. Moreover, genetic information is
organized around basic units of meaningful information that are encoded in DNA
as genes. Analogously, conceptual thinking is organized around basic units of
meaningful information that are encoded in language as words. Each in its respective
domain, genes and words constitute a basic linguistic vocabulary or a basic
repertoire of abstractions used for dealing with life and for communication, that
is, they constitute basic ontologies for their respective domains, see [159, 160, 163].
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The possible similarities or parallelisms between psychology, evolution biology
and epistemology suggested by the analogies or correspondences considered so far
motivates2 a few lines of future research:

Psychology has a great expertise in developing qualitative and quantitative
instruments for the purpose of sketching psychological profiles of human subjects,
see for example [176]. In future research we would like to explore the possibility
of developing similar instruments to sketch epistemological profiles of scientific
theories (as they stand in a given instance). We consider some tools of Bayesian
statistics, like survey techniques for elicitation, aggregation, and statistical analysis
of expert opinion, to be specially promising for the task at hand.

Recent studies in neuroscience suggest that the neural networks in charge of fine
motor skills, used for specialized brain processes that are described (approximately)
by Complex and Quaternion algebras, are reused for other tasks, a phenomenon
related to what is known in computer science as code reuse. For example, [63]
suggests that the same code developed to motor-visual perception, control, and
coordination of human fine motor skills, is reused for simulating and anticipating
actions and intentions of other individuals. Furthermore, [127] advance a linguistic
hypothesis, suggesting that the same code is reused for language processing. As
a consequence, a pre-linguistic grammar closely related to the aforementioned
algebras lies underneath the basic structure of human language. Furthermore, [120]
suggests that the same code is reused, once again, to support abstract concepts
related to consciousness and self-awareness.

Complex and Quaternion numbers are members of the small but important family
of normed division algebras, that also include Real numbers and Octonions. These
algebras represent translations and rotations in 1, 2, 3, and higher dimensional
spaces. In modern science, we “keep finding” those algebras everywhere we look,
see for example [18, 37, 62, 74, 92, 154]. Hence, the questions: Do we keep finding
these structures in the universe because they really are out there? Or is that what
we keep seeing because these structures are a priory encoded in the equipment we
have to perceive and interact with the world? Or is it the case that these are the
structures (or a priory categories) that we have because those were the ones selected
along our phylogenetic evolutionary path as the best fit or the better adapted to the
world as it is? For further considerations on the interplay between archetype theory
and evolution biology/ psychology, see [68, 133, 168, 169]. Finally: To what extent
must the explanations we find most intuitive, see for example [139], be related to
our inventory of inborn mental structures or archetypal categories? Perhaps these
investigations may help us to better understand a celebrated statement by Johanes
Kepler,3 as quoted and translated by Wolfgang Pauli [109, p.163–164]:

2 Perhaps these analogies can also shed some light on the dual character of Eρως , namely on
the one hand, the young Eros (desire)—the playful god of love and, on the other hand, Eros the
elder—equated in Orphic tradition to �ανης (Phanes, from φαινω= bring to light, show, reveal),
a primordial god generator of life and the first to bring light to human consciousness.
3 Geometriae vestigia in mundo expressa, sic ut geometria sit quidam quasi mundi archetypus [78].



Color-Coded Epistemic Hexagon 325

The traces of geometry are expressed in the world so that geometry is, so to speak, a kind
of archetype of the world.
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Abstract The present paper’s aim is to construct a “3-oppositional trisimplex” (i.e.,
the tri-simplicial counterpart of the “logical hexagon” (1950), the most famous
“oppositional bi-simplex”) by means of “numerical sheaves” on a topological
space with one non-trivial open set. First of all, we must redefine the concept of
“Aristotelian 32-semantics” (2009) in sheaf-theoretical terms and, as a result, we
explain the meaning of the “trisimplicial entities”: three types of contradictions
(classical negation and two non-classical ones: intuitionist and co-intuitionist), three
types of simplexes (the two classical bi-simplicial ones—namely contrariety and
subcontrariety—and the new one, pivotal, characteristic for trisimplexes), and three
types of subalternations (classical implication and two non-classical ones). Then we
shall show the relations holding between some sheaves in the terms of the above
defined Aristotelian 32-semantics (i.e., the “oppositional qualities,” or “kinds of
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1 The Context of This Study

Following, among others, the works of Blanché ([4] in 1953 and [5] in 1966) and
Béziau ([3] in 2003) on “logical hexagons,” which show that Aristotle’s famous
“logical square” (or “square of opposition”) is a mathematically incomplete form
of 3-opposition (i.e., a fragment of logical hexagon), Alessio Moretti has developed
a general “theory of n-opposition” (currently labeled “oppositional geometry”): his
so-called modal graphs (a.k.a. “oppositional generators”) allow decorations of what
he has discovered as “n-oppositional figures” and which include the already known
logical hexagon (i.e., 3-opposition) and the “logical cube” (i.e., 4-opposition). These
extensions of Aristotle’s square can be interpreted in many different logics, as
fuzzy logic [9] by instance. Moretti’s aim in 2004 [6] was, as in some sense
Béziau had opened the way in 2003 [3], the discovery of an infinite sequence
of growing geometrical n-dimensional solids (i.e., polytopes) constitutive of all
the “n-oppositional figures.” These solids have been characterized by Moretti as
“oppositional bi-simplexes” (simplexes are so to say an n-dimensional geometrical
counterpart of the positive numbers), since they fit together a (conventionally
blue) “contrariety simplex” (expressing the mutual incompatibility of any two
terms of a set of n terms) and a correlated (conventionally green) “subcontrariety
simplex,” with, between these two simplexes, “contradictions,” i.e., “negation
segments” (conventionally red) and “subalternations,” i.e., “implication arrows”
(conventionally grey). In 2008 [10] we demonstrated that a set-theoretical technique
that we proposed allows producing, for any such n-opposition, i.e., for any bi-
simplex seen as an “oppositional kernel,” a correlated “oppositional closure,” this
concept being very important in so far it determines algorithmically the general
shape of the whole, infinitely growing, oppositional geometry (leaving, so to say,
nothing of it outside the algorithm): it is these oppositional closures which measure
and model “oppositional phenomena” by determining univocally (when finite)
their “oppositional complexity” (one of the most famous oppositional closures,
namely the closure of the logical cube, is the 3D “oppositional tetrahexahedron,”
discovered in 1968 by Pierre Sauriol [11], and rediscovered independently by us
[10] as “tetraicosahedron” and by Hans Smessaert [12]—this last author prefers
to view it, equivalently, as a “rhombic dodecahedron” inside what he and Lorenz
Demey prefer to call “logical geometry”). All this oppositional geometry, with
its generators, kernels, and closures (the three being precisely put into mutual
relation by our setting technique) is defined in a mathematical world logically
classic (i.e., bi-valued, that is admitting only 2 truth-values: the false, “0”, and
the true, “1”). In order to overcome that limitation, in his 2009 PhD thesis [7],
Moretti has explored what he proposed to call the “Aristotelian semantics” behind
the four classical opposition relations: in game-theoretical terms, namely putting
into evidence an underlying “generating algorithm” (for opposition kinds) made by
a combinatorics based on the two classical Aristotelian questions: “Can two things
A and B be false together?” and “Can two things A and B be true together?”.
If we answer those 2 questions with the help of n possible truth-values (instead
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of only two, as in Aristotle and his followers), this gives a so-called Aristotelian
n2-semantics (instead of the starting “Aristotelian 22-semantics,” which generated
the concept of bi-simplex), generating many forms of “weak negations” (alongside
with classical negation, i.e., “contradiction”), n different simplexes (interpolating
new ones in between the classical blue simplex of “contrariety” and the classical
green simplex of “subcontrariety”) as well as “weak implications” (alongside with
classical implication, i.e., “subalternation”). The geometrical figures fitting together
these elements, i.e., the n simplexes (generated by any such “Aristotelian n2-
semantics”) and the negation segments and implication arrows relating two by two
any pair of such n oppositional simplexes, are defined as “multisimplexes” (a.k.a.
“oppositional poly-simplexes”).

The aim of our paper is to explore the new structures of Moretti, in particular,
the 3-oppositional trisimplex generated by the Aristotelian 32-semantics, with the
aid of the mathematical structure of “sheaf” (i.e., based on “category theory”
and “sheaf theory”) and its general many-valued internal logic of topoi (i.e.,
based on “topos theory”). For this, we shall follow the aforementioned “setting
technique” of [10], here duly adapted for sheaves. In the course of this paper,
we shall show that the 3-oppositional trisimplex (a.k.a. tri-triangle) contains three
hexagons whose structure we shall discuss in detail, using for that the mathematical
notions of “paracompleteness” (i.e., “intuitionism”) and “paraconsistency” (i.e.,
“co-intuitionism”), linked with the topological nature of “open” and “closed”
subsets, as put into evidence and demonstrated by us in [1] and [2]. At last, we
shall trace the “jewel nonagon,” proposed as a way of representing the trisimplex,
and discuss logically some of its oppositional-geometric features.

2 Some Numerical Sheaves on a Topological Space with One
Non-trivial Open Subset

Let us choose a topological space X with a unique non-trivial open subset U . That
is to say that X has only three open subsets forming a strictly increasing sequence
∅ ⊂ U ⊂ X.

A sheaf on the topological space X is a presheaf with the gluing condition.
But, as the gluing condition is trivial for U and X which can be only recovered
by themselves as open subsets, a sheaf on X is only a presheaf with a unique section
on ∅, which can be noted ∗.

So, to describe a sheaf F on X, we must give:

– the set F(X) of global sections, or sections on X,
– the set F(U) of local sections, or sections on U ,
– a function F(X)→ F(U), named restriction to U .
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The category of sheaves on X is a Grothendieck topos with an internal intuitionist
many-valued logic with three truth-values which are in correspondence with the
three open subsets: T rue = X, False = ∅, 1/2 = U .

In this paper we shall consider only the sheaves with value in the set {1, 2, 3}. Let
i and j be two different numbers among 1, 2, or 3, in all this paper we shall note:

– iX the sheaf where iX(X) = iX(U) = {i},
– iU the sheaf where iU (X) = ∅ ⊂ iU (U) = {i},
– iXjU the sheaf where iXjU (X) = {i} ⊂ iXjU (U) = {i, j}.

3 The Aristotelian 32-semantics Reconsidered in This World
of Sheaves

In [7], Moretti modeled the four oppositional relations (contradiction, contrariety,
subcontrariety, and subalternation) of the logical square, and more generally of
oppositional geometry, as an Aristotelian 22-semantics. The exposant “2” refers to
the number of logical questions and the number “2” refers to the number of truth-
values allowed for the answers. Reformulated, the two questions are the following:
“Is there a non-excluded middle between two terms ?”; “Is there a non-false
conjunction ?”. Among the four possible answers, two “No” lead to contradiction, a
“Yes” at the first with a “No” at the second lead to contrariety, a “No” at the first and
a “Yes” at the second lead to subcontrariety, and the subalternation (or implication)
answers two “Yes” (provided one adds an extra constraint on the order: never the
first without the second—cf. [7]).

So Moretti’s main idea, intended both at generating new oppositional sim-
plexes and at introducing many-valuedness into oppositional geometry, is to allow
answering these two Aristotelian questions with more possible truth-values than
just the classical “yes” or “no,” staying for true and false, 1 and 0 (truly speaking,
as Moretti started to explore it, the number of Aristotelian questions can also
change, but we will not discuss this in our paper, keeping only the two classical
Aristotelian questions). An Aristotelian n2-semantic is then the set (in form of
ordered, 2D square-shaped network, called by Moretti “Aristotelian n2-lattice”)
of all oppositional relations generated by answering these two questions in an n-
valued logic. As for its “oppositional” interpretation, this network or lattice can be
so to say parted into three subsets: the contradiction-type relations, weak and strong
(upper triangular half of the square lattice), the simplexes (horizontal diagonal of
the square lattice), and the implication-type relations (lower triangular half of the
square lattice).

Here we shall study only the Aristotelian 32-semantic, which is the following
network (called in [7, 8] “Aristotelian 32-lattice”):
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As we have said in the previous part, our numerical sheaves on X possess a
three-valued logic based on the open subsets of X. Answering “1”, “1/2”, or “0” to
a question about such sheaves corresponds to answering at which topological level
it is true: at the global level X, only at the local level U , or never (i.e., at the trivial
level ∅).

These considerations lead us to interpret in term of sheaves, sections, and
topology the contradiction-type relations and the simplexes of the trisimplex. As
for the implication-type, the straightforward meaning of inclusions of sections sets
at some topological level will play.

First of all, let us consider the three negation-type relations (contradictions). The
first one, “(0, 0),” is the classical contradiction, with no non-excluded middle and no
true conjunction, so the global conjunction is empty and the global disjunction is the
total sheaf. The relation “(1/2, 0)” allows a non-global middle term (only at level
X and not at level U ), but no true conjunction, so it is a global contrariety relation
on X (and in fact a strict one at top level X), but with a contradiction at level U .
Thus the global conjunction is empty and the local disjunction is the total sheaf but
this is not the case of the global disjunction. We will note it “CXCDTU .” Dually,
“(0, 1/2)” permits a non-false conjunction at level U , but no middle term, so it is
a local subcontrariety endowed with a contradiction at top level X. Thus the global
conjunction is non-empty (even if it is empty at level X) and the global disjunction
is the total sheaf. We will note it “SUCDTX−U .”

Let us now study the three simplexes. In [7], (1, 0) and (0, 1) are proved to be
respectively contrariety and subcontrariety. In our terms, they are the global con-
trariety “CX” and the global subcontrariety “SX.” The more problematic (because
new) simplex, i.e., “(1/2, 1/2),” can be easily explained, as for its nature, by our
reasoning: it is a combined relation of contrariety, only at top level X, and of local
subcontrariety, at level U ; we shall note it “CX−USU .”

As for the three implications (subalternations), re-defining them sheaf-
theoretically is even simpler than the preceding: “(1, 1/2)” is the local inclusion



338 R. Angot-Pellissier

of section on U , noted “⊂U ,” while “(1/2, 1)” is the inclusion of section on X

noted “⊂X−U ,” and “(1, 1)” is the global inclusion of sheaves, “⊂” (i.e., classical
implication). At this point it is important to remark that the first two inclusions are
not necessarily morphisms of sheaves: they would not commute with the restriction
function of the sheaf. That points to the fact that the first two relations are weak
implications whereas the strong implication is indeed a sheaf morphism.

With all these reflexions we can now give the Aristotelian 32-semantic network
for the “numerical sheaves” on X:

4 A Generic Trisimplex of Sheaves

As topos theory teaches, the many-valued internal logic lies on the relations between
subsheaves of a determined sheaf. So let us consider now as total or true sheaf
“1X2X3X.” We shall study the logical relations between some of its subsheaves: 1X,
2X, 3X, their disjunctions 1X2X, 2X3X, and 3X1X, and some of their subsheaves,
namely 1X2U , 2X3U , and 3X1U . (we could, with a symmetrical reasoning, consider
instead their subsheaves 1U2X, 2U3X, and 3U1X and obtain analogue results.)

The classical contradiction relations lie between the global sheaves, which are
equivalent to the subsets of set-theory, and so can support the “setting technique” of
[10]:

The CXCDTU relation, as we saw, is a global contrary relation endowed with a
local contradiction. It relies the following pairs of subsheaves:
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As we can easily observe, the global conjunction of 1X and 2X3U is empty and their
global disjunction is not the total sheaf. But their disjunction on level U is the total
set {1, 2, 3}. The same proof runs for the two other pairs of subsheaves.

The SUCDTX−U relation is a local subcontrary relation endowed with a
contradiction at the top level. Its relies the following pairs of subsheaves:

1X2U ���� 2X3X 2X3U ���� 3X1X 3X1U ���� 1X2X

As we can easily observe, the local conjunction of 1X2U and 2X3X is non-empty
because it is the local section 2, and their local disjunction is the total set {1, 2, 3}.
But their conjunction at the top level X is empty and their disjunction at the top
level X is also the total set {1, 2, 3}. The same proof runs for the other two pairs of
subsheaves.

The contrariety simplex and the subcontrariety simplex concern the global
sheaves, equivalent to sets, so they are the same as in [10]:

The CX−USU simplex is formed of three identical relations, each combining—
relatively to each pair of subsheaves it joins—a local subcontrariety with a
contrariety at top level.

As we can easily observe, the local conjunction of 1X2U and 2X3U is non-empty
because it is the local section 2 and their local disjunction is the total set {1, 2, 3}.
But their conjunction at the top level X is empty and their disjunction at the top level
X is not the total sheaf. The same proof runs for the two other pairs of subsheaves.

The weak implication ⊂U is an inclusion of section on U , which gives the
following relations:
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We can remark that in the first of the two lines, the weak implications are in fact
strong ones because the inclusions are valid also at top level X. But this is not the
case in the second line: if the set of sections on U of 1X, which is {1}, is included in
the set of sections on U of 3X1U , which is the set {1, 3}, the set of sections on X of
1X, which is again {1}, is not included in the set of sections on X of 3X1U , which
is only the set {3}. So the weak implication ⊂U is not always a strong implication,
because it is not always a global inclusion, and therefore it is not always a morphism
of sheaves.

The weak implication ⊂X−U is an inclusion of section on X, which gives the
following relations:

1X2U
X−U

�� 1X2X 2X3U
X−U

�� 2X3X 3X1U
X−U

�� 3X1X

1X2U
X−U

�� 3X1X 2X3U
X−U

�� 1X2X 3X1U
X−U

�� 2X3X

We can observe the same phenomenon as before with this weak implication: the
first of the two lines is in fact a line of strong implications, whereas the second line
is only a line of relations which are neither strong implications nor morphisms of
sheaves. The set of sections on U of 1X2U , which is {1, 2}, is not included in the
set of sections on U of 3X1X, which is the set {1, 3} but the set of sections on X

of 1X2U , which is only {1}, is indeed included in the set of sections on X of 3X1X,
which is again the set {1, 3}.

To conclude with, the strong (i.e., classical) implications lie between the global
sheaves, which are equivalent to subsets and thus are as in [10]:

1X �� 1X2X 2X �� 2X3X 3X �� 3X1X

1X �� 3X1X 2X �� 1X2X 3X �� 2X3X

5 Many-Valued Logical Hexagons in Our Trisimplex of
Sheaves

With all these relations between our nine subsheaves, we can construct the three
hexagons of the 3-oppositional trisimplex. The first hexagon is the classical “logical
hexagon” (discovered independently by P. Jacoby, A. Sesmat and R. Blanché in—
respectively—1950, 1951, and 1953), whose vertices are the global sheaves, which
are equivalent to sets. As in [10], we have then:
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In this hexagon we meet again the traditional four kinds of opposition: contradiction
(dotted line), contrariety (line), subcontrariety (waves), subalternation (arrow).

But there are two more hexagons. One is obtained by assorting the classical
contrariety simplex with the new “mixed” one, i.e., with the CX−USU simplex. Here
two problems do occur:

– First problem: the vertices of the mixed simplex, such as, for instance, 1X2U ,
cannot be contradictories (in the classical sense), pairwise, with respect to the
vertices of the contrariety simplex, and then central symmetry, which is so to
say the “cornerstone” of the logical hexagon (quo bi-simplex, i.e., bi-triangle)
by fitting together two centrally symmetrical triangles, is not valid anymore as
an easy and elegant visual means of expression of “contradiction.” Nevertheless,
as we saw, we have at our disposal two weak contradictions. And the CXCDTU
weak contradiction is indeed the link holding between the contrariety simplex
and the mixed simplex: 1X2U has this relation with 3X, for example. So,
in the second hexagon central symmetry will represent the CXCDTU weak
contradiction.

– Second problem: the star hexagon being constructed (i.e., a logical hexagon
represented without its perimeter of implication arrows), some vertices cannot
be linked, as in a standard logical hexagon, by implications: 1X and 3X1U , for
example, because, as we saw, 1 is not a section on X for 3X1U . But, here too,
as we saw, we have two weak implications, and the ⊂U weak implication will
rescue us here, because it can perfectly link our vertices: 1 is indeed a section on
U of 3X1U , in our example.

So we have a second hexagon as follows:
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In this hexagon we have a new quartet of compatible “oppositional relations”:
the CXCDTU weak contradiction, which contains a local contradiction (broken
line), the classical contrariety (normal line), the mixed CX−USU relation containing
a local subcontrariety (broken double line), and the ⊂U local weak implication
(arrow labeled U ). Now, this “quartet of opposition” is fundamentally an intuitionist
(in the sense of mathematical intuitionism, i.e., paracompleteness) quartet of
opposition, for two complementary reasons. The first one is that the CXCDTU weak
contradiction is an “intuitionist negation”: if 2X3U is the “negation” of 1X, we could
see that between these two “contradictory” terms the X-section 3 is missing, and the
axiom of excluded middle is therefore not valid (which is, notoriously, the main and
most fundamental point in intuitionism). The second reason lies in the local quality
of these oppositions: we could even say that these four oppositional relations are
in fact the sheaf restrictions at local level U of the four traditional oppositional
relations, which our previous discussion about the nature of these relations will
easily show. But, as is known in topos theory, the local nature of the sheaves is
the basis of the intuitionist internal logic typical of the topoi in general, the open
subsets playing there the role of truth-values. Therefore we have here an intuitionist
and sheaf-local 3-valued logical hexagon.

We can obtain the third hexagon by fitting together the new mixed simplex with
the classical subcontrariety simplex. The same two problems as before will occur
also now, and this time the SUCDTX−U weak contradiction will be the meaning of
central symmetry (in this hexagon), and the ⊂X−U weak implication will constitute
the edges of the hexagon (i.e., the perimeter made of alternated arrows). So we have,
now, the following hexagon:
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We have, with this third hexagon, a third quartet of oppositions: the SUCDTX−U
weak contradiction, which contains a contradiction at top level X (tilde line), the
mixed CX−USU relation containing a contrariety at top level (broken double line),
the classical subcontrariety (waves), and the top level ⊂X−U weak implication
(arrow labeled X − U ). Thus we have a top level X version of the four traditional
kinds of opposition. But we must remark that our top level relations are not global
relations, because the results on X do not imply the same results on U . In fact, all
these relations speak about what happens in the closed subset X\U , complementary
subset in X of the open subset U . As we have shown in [1] and in [2], the closed
subsets in general (i.e., topologically) have a paraconsistent (i.e., co-intuitionist)
internal logic, and here we have the same property by this reason. The SUCDTX−U
weak contradiction can be viewed as a “paraconsistent negation”: 1X2U admits
as its “negation” 2X3X, but their conjunction is the subsheaf 2U , which happens
to be not empty (this is a paraconsistent “glut”). Furthermore, if 1X2U implies
straightforwardly 1X2X, it is more difficult to see how it can (nevertheless) weakly
imply 3X1X, its U -section 2 not appearing in 3X1X unless we replace ourselves
in the paraconsistent closed subset X \ U . The paraconsistent contrariety is also a
X \ U contrariety, for example, between 1X2U and 3X1U : whereas they are locally
subcontraries, on the closed subset X \ U they are as contrary as can be 1 and 3.
Therefore we have here a closed paraconsistent logical hexagon.

6 The “Jewel Nonagon” as the Trisimplex

We can now end this paper with the “jewel nonagon” representation of the
trisimplex, which in some sense contains in a glance all the previous discussions:
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In this “Nona” representation of the jewel nonagon we have reserved central
symmetry for the expression of contradiction (dotted line), and then we can see
at first sight the classical logical hexagon. But we can also make the following
remarks:

– The two weak contradictions (broken line and tilde line) have neither the
geometrical property of meeting together (in a unique central point) nor that of
passing by the center of the nonagon. In fact each forms an internal triangle, the
two triangles being symmetrical along the line joining 1X2U and the center of
the nonagon.

– The mixed simplex (broken double line) is a triangle obtained by a 90◦ rotation of
the two other simplexes, each in one direction (i.e., clockwise and anticlockwise).
Its vertices have also a mixed property relatively to the implication arrows:
two arrows are coming to each of them (the U local ones) and two arrows are
leaving (the X − U top level ones). All this renders the fact that this mixed
simplex is a local subcontrariety simplex in the intuitionist hexagon (and as
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subcontrariety simplex it receives arrows) and a top level contrariety simplex
for the paraconsistent hexagon (and as contrariety simplex it shoots arrows).

Remark that a symmetrical nonagon along a line joining 3X1X to 2X can be
obtained with the other mixed simplex constituted by the subsheaves 1U2X, 2U3X,
and 3U1X (which we have left aside as redundant). And here are the only two which
could be obtained by this method. Furthermore a dodecagon containing the two
nonagons would have no logical meaning.

To conclude this paper, we could say that this world of sheaves illuminates
the notion of 3-oppositional trisimplex. Furthermore our reasoning could apply for
any 3-oppositional multisimplex (i.e., any oppositional multitriangle). It would be
interesting for further research, on the one hand, to explore the case of the four-
valued logical quadrisimplex, and on the other hand to develop a general sheaf
technique for the decoration of the general 3-oppositional multisimplex.
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Abstract In this paper, we deal with the theory of the “oppositional poly-
simplexes”, producing the first complete analysis of the simplest of them:
the oppositional tri-segment, the three-valued counterpart of the oppositional-
geometrical red contradiction segment. The concept of poly-simplex has been
proposed by us in 2009 (Moretti A, The geometry of logical opposition. PhD
thesis, University of Neuchâtel, Switzerland, 2009), for generalizing the theory of
the “oppositional bi-simplexes”, which is the heart of our and Angot-Pellissier’s
“oppositional geometry” (Angot-Pellissier R, 2-opposition and the topological
hexagon. In: [30], 2012; Moretti A, Geometry for modalities? Yes: through n-
opposition theory. In: [27], 2004; Pellissier R, Logica Universalis 2:235–263, 2008).
The latter is meant to be the general theory of structures like the logical hexagon
(which is a bi-triangle). The poly-simplexes are the most straightforward way to
turn any “geometry of oppositions” consequently many-valued, which is otherwise
still a desideratum of the field. We start by recalling the general theoretical context:
how the field was opened, around 2002, by a reflection on the foundations of
paraconsistent negation (Béziau J-Y, Logical Investigations 10:218–233, 2003) and
how from that has progressively emerged “oppositional geometry”, the theory of
the “oppositional structures”, enabling to model the “oppositional complexity” of
“oppositional phenomena”. After recalling how emerged the idea of poly-simplex,
we explain why time seems to have now come to explore them for real, since we
have two powerful new tools: (1) Angot-Pellissier’s sheaf-theoretical technique
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(Angot-Pellissier R, Many-valued logical hexagons in a 3-oppositional trisimplex.
In: this volume, 2022; Angot-Pellissier R, Many-valued logical hexagons in a 3-
oppositional quadrisimplex. Draft, January 2014) for producing the many-valued
oppositional vertices of the poly-simplexes (and evaluating their edges) (2) and a
generalization of “Pascal’s triangle”, turned here into a more general “Pascalian ND
simplex”, whose suited “horizontal (N-1)D sections” provide a much needed and
very powerful numerical-geometrical “roadmap”, for constructing and exploring
any arbitrary oppositional poly-simplex (Sect. 1). After unfolding successfully
the structure of the tri-segment (Sects. 2 and 3), we make an unexpected detour
(Sect. 4) by Smessaert and Demey’s “logical geometry” (Smessaert H. and Demey
L., Journal of Logic, Language and Information 23:527–565, 2014), composed
of two “twin geometries”: one for “opposition” and another for “implication”.
We thus develop the “implication geometry” of the tri-segment and so discover
that what these authors take for a “bricolage” (called by them “Aristotelian
geometry”) is in fact, when considered as general “Aristotelian combination”
in oppositional spaces higher than the bi-simplicial one (the one in which they
remain tacitly but constantly), the mathematically optimal way, bottom-up, for
exploring methodically the poly-simplicial space. We end (Sect. 5) by considering
applications of this tri-segment resulted from such a tri-simplicial diffraction
of the bi-simplicial contradiction segment (which adds to it paracomplete, i.e.,
intuitionist, and paraconsistent, i.e., co-intuitionist, features) in many-valued logics,
paraconsistent logics, quantum logic, dialectics, and psychoanalysis. In particular,
we show that the tri-segment, by its paracomplete substructure, models, better than
did anything before it, “Lacan’s square”.

Keywords Pascal’s triangle · Pascal’s simplex · Multinomial theorem ·
Oppositional bi-simplex · Oppositional poly-simplex · Oppositional geometry ·
Logical geometry · Logical hexagon · Contradiction · Negation · Classical
negation · Many-valued logics · Topos-theory · Sheaf theory · Paraconsistent
logics · Paracomplete logics · Intuitionism · Co-intuitionism · Hegelian logics ·
Dialectics · Quantum logics · Psychoanalysis · Lacan’s square · Square of
sexuation

Mathematics Subject Classification (2000) Primary 18N50, Secondary 11B65,
03B50 18F20, 03B53, 03A05

1 The Context of This Study

Before studying the oppositional tri-segment (Sects. 2, 3, and 4) and its applications
(Sect. 5), it will be useful to recall the context where this new strange mathematical
concept has arisen in 2009. This obliges us to say something, in the following Sect.
1.1, about the genesis of “oppositional geometry”. In Sect. 1.2 we will present
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oppositional geometry and in particular its link with the concept of “bi-simplex”
(2004). Starting from Sect. 1.3, we will recall the concept of “poly-simplex” (2009).
Finally, in Sect. 1.6 we will introduce the original idea of “tri-segment” (2009),
meaning by that the simplest oppositional poly-simplex (poly≥3).

1.1 The Controversy on the Foundations of Logical Negation
(2003)

Starting in 1995, some logical inquiries on the philosophical foundations of
“paraconsistent logics” (the logic of “nontrivial inconsistency”; cf. [21, 35, 106,
117–118]) by Slater, Priest, Restall, Paoli, Béziau, and several other logicians and
philosophers bore progressively to the front a quite ancient and almost forgotten
structure: the “square of opposition” (a.k.a. “logical square”, “Aristotle’s square”,
etc.). This old structure (second century) condenses some of the main concepts of
Aristotle’s (384–322 BC) theory (and logic) of “opposition” (Fig. 1).

Fig. 1 The “square of opposition” (or logical square, or Aristotle’s square) and some of its
fundamental properties

What happened is that some scholars (and in primis Slater in 1995, [132]) used
abstractly this square (i.e., without drawing it but by recalling its definitions – Fig. 1)
in order to show that what paraconsistent logic (since at least 1948, with N.C.A. da
Costa and his Brazilian school of paraconsistent logic, [46]) argued to be, namely,
a logic provided with a new kind of “negation” operator (i.e., a “paraconsistent
negation”, a negation “~” capable of having nontrivially “A&~A”), is in fact
something much less interesting than promised (by paraconsistent logicians):
because “paraconsistent negation” truly speaking reveals to be something not even
deserving the name “negation”. So, paraconsistent logic and its paraconsistent
negation would be, according to Slater (and his many followers on this point),
a brutal deceit. More precisely, the claim was that, formulated in the ancient
but fundamental (i.e., “transcendental”) language of the old square (Aristotle’s
language), a conceptual language which more or less gave birth to “logic” and has
been conserved (as a primitive but sound fragment) by the successive developments
of logic, paraconsistent negation, seen as a binary relation, is neither a relation of
“contradiction” nor a relation of “contrariety” (both being indeed two currently
serious forms of negation, namely, the classical and the “intuitionist” ones). It is
only (and disappointingly) a relation of “subcontrariety” (i.e., some kind, so to
say, of inverse of contrariety, some kind of anti-contrariety, i.e., some form not of
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incompatibility but, on the contrary, of close “collaboration”!). Put more crudely,
Slater’s argument pretends to show that paraconsistent “negation” is in fact no other
than “inclusive disjunction” (i.e., the well-known – and not negation-like! – “∨”
operator of propositional logic), given that subcontrariety has precisely that meaning
(cf. Fig. 1) when translated, as it can, into “propositional logic” (the logic of the
“binary connective” relations). Accordingly, at least some of the many attempts
(which I reviewed in 2010 [96]), by paraconsistent logicians, to resist Slater’s
devastating criticism against the very idea of their working field, paraconsistent
logic, could have involved a renewed study of the logical square. But, in fact, that
happened to be done almost uniquely by the paraconsistent logician and philosopher
Jean-Yves Béziau (2003, [24], as a complement to [26]), who tried to answer
frontally Slater’s objection (i) by adopting its main argument (“paraconsistent
negation is the square’s relation of subcontrariety”) but (ii) by reconsidering
radically the very idea of logical square (and this strategy, as we will see, is a
posteriori, without exaggeration, a bit of a stroke of genius). Béziau claimed, for
short, (1) that Slater was right in his advocation of the old square concerning
paraconsistency (2) but that “subcontrariety” is in fact not a disappointing (or
marginal) but, on the contrary, a very important relation, indeed, such that – quite
contrary to Slater’s claim – it deserves plainly being considered a very interesting
“new” kind of nonclassical “negation”! In a nutshell, Béziau did this by resuming
the totally forgotten concept of “logical hexagon” (1950, cf. [97]), which, when
speaking about the logical square, de jure is a mathematically unavoidable reference
(but de facto so much and so badly underestimated by logicians, even now, that
it is almost unknown by them!). This is because this hexagonal structure shows
(cf. Blanché [33]), with mathematical certainty, nothing less than the undisputable
fact that the logical square is only a problematic and misleading fragment of the
mathematically unproblematic (but still mysterious) logical hexagon (Fig. 2).

Fig. 2 From any “contrariety” emerges a “logical square”, and hence a “logical hexagon”
containing three logical squares

Then Béziau showed, by a discovery he made while reasoning, against Slater,
on the possible applications of the logical hexagon to contemporary “alethic-
modal logic” (Sect. 1.2), that there are not one but in fact three logical hexagons,
the classical one (under its alethic-modal reading, already proposed by Blanché
around 1953), which expresses classical negation, and two new (Béziauian) logical
hexagons, also for alethic-modal logic, which express, respectively, relatively
to alethic-modal-logical operators, not the classical, but the paracomplete (i.e.,
intuitionist) and the paraconsistent (i.e., co-intuitionist) negation (the “co-” being
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an important concept of “category-theory”, cf. Sect. 1.4, and the “para-” being an
important concept of metalogic) (Fig. 3).

Fig. 3 Beziau’s very original defense of the idea of “paraconsistent negation” (2003) against
Slater’s attack to it (1995)

By the proposal of that new global setting of opposition matters (i.e., notably by
conjecturing, at the end of his very original – and not enough appreciated – 2003
paper, the existence of a new 3D “stellar dodecahedron” solid of opposition made by
the 3D intersection of the three 2D “modal hexagons” (a 3D stellar solid, however,
that Béziau was imprudent enough not to draw and check . . . ) taking the place of
Aristotle’s 2D square, as the new transcendental core of the foundations of logic),
Béziau argued he had proven the mathematical naturalness of “subcontrariety”
and thus defeated in its very heart Slater’s fundamental attack to the very idea of
paraconsistent negation and paraconsistent logic (to this we will return on Sect.
5.3).

1.2 The Mathematics of Opposition: There Is an Oppositional
Geometry

Béziau’s 2003 paper [24] – where he introduced, as a promising conjecture, the
idea of a 3D solid of opposition, larger (and more meaningful) than the old
2D square, although Béziau’s very solid revealed soon mistaken in its details:
not 12, but 14 vertices – unexpectedly opened, notably through Moretti (2004,
[93]), Pellissier (2008) [111], and Smessaert (2009) [133], a whole new discipline
devoted to the study of this kind of oppositional-geometrical solids (or polytopes):
currently some (Smessaert and Demey, cf. [49, 51, 135]) call it “logical geometry”,
while others (ourselves and Angot-Pellissier, cf. [3, 98, 101]) call it “oppositional
geometry”. Whatever the name, the result, after more than 15 years of studies
until now, is that there is (by now still small, but growing) a new branch (or at
least a new theory) of mathematics, having “opposition” as its focus object of
study. Epistemologically, it must be noticed that, still nowadays, this is a difficult
bit to swallow for many established scholars: “opposition” was reputed – and so
it tends to remain (mistakenly!) – to be more or less the “strict possession” of
mathematical logic and of the “analytical philosophy” allegedly based on it. The
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latter, on that respect, is reputed to have fought victoriously against at least two
tough competitors in the twentieth century: Hegelian-Marxist “dialectics” (which
claimed also to be the science of “contradiction” and of “opposition”; Sect. 5.5) and
transdisciplinary “structuralism” (which used quite often, together with instances of
the mathematical concept of “group”, duly modified instances of . . . the square of
opposition; cf. [97, 100], but also [126, 127]) and, as such, still nowadays, analytical
philosophers and logicist logicians (there are!) do not want to “share their cake”
(i.e., the concept of opposition). But by now, oppositional geometry, although still
almost unknown, does indeed exist and keeps growing (as this paper will try to show,
with its climax on Sect. 4.6), given its robust results and main mathematical ideas.
As for its “body”, it consists (at least so far) mainly of two infinite series of new
mathematical structures: (1) n-oppositions (i.e., so to say, “n-oppositional kernels”,
the so-called bi-simplexes), or An (Fig. 4), (2) and oppositional closures (one for
each kernel of n-opposition; cf. Fig. 7 for a clear example of application of the
series of the Bn-structures). In fact, an important result of oppositional geometry of
2008 [111] is that any oppositional bi-simplex or An-structure (which expresses, as
such, the kernel of n-opposition) has its own “oppositional closure” or Bn-structure
(obtained by adding to it an “envelope”; cf. Figs. 49 and 51, which complete the
kernel by adding some more vertices to it, forming its “cloud”); moreover, there
also are “oppositional generators” or !-structures, which appeared first of all –
but up to now still without a specific theorization – in modal logic (among others
in Prior and Hamblin, Chellas, Hugues and Cresswell, and Popkorn; cf. Fig. 35
of [97]) but seem to have a much more general nature, still to be explored. The
general character of these two series (the An and Bn) is granted mathematically
by a demonstration provided by the mathematician Régis Angot-Pellissier in 2008
[111], which also gives a general mathematical handling method for oppositional
geometry: this is called the “set-theoretical partition technique for n-oppositions”
or “setting technique”. Consequently, oppositional geometry is so to say ruled
by this general set-theoretical method (the linguist and logician Hans Smessaert
has provided in 2009 [133], independently, another one, based on “bit strings”,
roughly equivalent, later leading to what he and Lorenz Demey call since 2011
“logical geometry”; cf. [135]). This method allows putting into precise relation
the oppositional generators (the !-structures, when there are), the oppositional
closures (the Bn-structures), and the oppositional kernels or n-oppositions (the
An-structures) (Fig. 5).

Fig. 4 The bi-simplexes of dim. n − 1 (hexagon, cube . . . ) are the “kernels” (An) of the n-
opposition structures
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Fig. 5 Pellissier’s setting method for oppositional geometry: from generators (!), to closures (B),
to kernels (A)

Oppositional geometry, through its abstract study of “oppositions” as such,
therefore offers a tool for measuring (and studying) a transversal object which
can be called “oppositional complexity” and which in fact can appear in every
discipline (oppositionality is a universal mathematical property). Let us recall two
quick examples of this.

First, different phenomena (whatever their field) sharing the same degree of
oppositional complexity have the same oppositional-geometrical model (or “oppo-
sitional attractor”): for instance, the “oppositional tetrahexahedron” or B4 (i.e.,
the complete structure of 4-opposition – i.e., its closure – whose kernel is the
“oppositional cube”, or bi-tetrahedron, or A4) formalizes, among many other things,
propositional logic, first-order predicate logic, alethic-modal logic, and partial
order-theory (Fig. 6).

Fig. 6 The “oppositional tetrahexahedron” (B4), the attractor of 4-opposition, characterizes
several different fields

But it also formalizes things much more informal, in whatever field (including
humanities and art), like, for instance, some important gender issues (gender
identity) and some conceptual frameworks related to sexual preference, just to give
two “sexier” examples (Sect. 5.6). Remark, en passant, that the 3D opposition solid
Béziau was rightly looking for (Sect. 1.1) is precisely the B4 (and more precisely
the third B4-structure in Fig. 6). Béziau missed its precise structure (cf. Fig. 3) but
was quite right in guessing its existence (and its three-dimensional nature).

Second, and conversely, a same qualitative (or conceptual) phenomenon can
admit (in different contexts possible for it) different degrees of oppositional com-
plexity. This is, for instance, the case with the mathematical object “order”, studied
by the fundamental branch of mathematics called “order-theory” (or “lattice theory”
[48]): in different although strictly related mathematical universes (viz., discrete
order, total order, partial order, set-theoretical order . . . ), this object (“order”)
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admits different degrees of oppositional complexity, and oppositional geometry, as
a plastic tool for that, allows giving of this, at the same time, a precise arithmetical
measure and geometrical description (the arithmetical measure of the oppositional
complexity of “order” can be, respectively, 2, 3, 4, and 5, meaning oppositional-
geometrically the B2-, B3-, B4-, and B5-structure, respectively; Fig. 7).

Fig. 7 Oppositional geometry, by the series of its closures (Bn), allows measuring the complexity
of different “orders”

It must be remarked that oppositional geometry seems to be, as any part of
contemporary mathematics (this important structuralist feature was magistrally
explained in 1968 by Piaget [112]), a converging point of several distinct math-
ematical “distant” areas: oppositional geometry is known to have in it important
elements of graph theory [125], mathematical logic, modal logic, fractal geometry
[109, 110], and knot-theory ([101]), and some facts (e.g., in the tetrahexahedron
and higher similar closure structures) seem to suggest also the presence of relevant
aspects of “differential topology” ([62] p. 52), to be inquired in the future (Fig. 8).

Fig. 8 There are several mathematical, “extra-logical” interesting properties in the oppositional
tetrahexahedron (B4)

In our own so to say “anti-logicist” and structuralist way of understanding it
(meaning by “structuralism” something like “taking seriously and therefore pushing
to their still unknown limits any new combinatorial fragments”), oppositional
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geometry seems to be structured around the mathematical concept of “oppositional
bi-simplex” (cf. [93]), and “simplexes” are mathematical objects usually absent
from the vocabulary and the “ontological pantheon” of logic, since the latter tends
to be independent from (and anterior to) “numbers”, whereas simplexes are, so to
say, precisely “geometrical numbers” (cf. [15]; and [45], p. 120) (Fig. 9).

Fig. 9 “Simplexes” are so to say the geometrical counterpart of “numbers”: their dimensionality
grows into infinite

Historically, oppositional geometry seems to have popped out all of a sudden,
unexpected, around 2004, and as such it still is “not very well accepted”, as we
said, for instance (and mainly), by analytical philosophy “leaders” and therefore
“troops” – witness, paradigmatically, the otherwise unexplainable and unjustifiable
lasting absence of any reference to the logical hexagon in, say, Terence Parsons’
very famous, and since 1997 regularly updated (!!!), entry on the logical square
in the very famous Stanford Encyclopedia of Philosophy [107]: remark that this
valuable scholar was invited (and thereafter published) as speaker in the “First
World Congress on the Square of Oppositions” (Montreux, 2007) where the logical
hexagon (and the premises of oppositional geometry) was one of the main objects
in explicit focus, so Parsons cannot claim to “ignore de jure” what he seemingly
has decided to “ignore de facto”. But, at the same time, despite this “analytical
opposition to the geometry of oppositions” (Sect. 4.6), truly speaking, ongoing
historical and epistemological studies constantly discover from time to time new
elements of evidence that, although oppositional geometry has remained unveiled
until very recently (i.e., 2004, with [93]), there have been, and since long, several
premonitions of the existence of such a “geometry of oppositions” and even some
true forerunners of it: several forgotten strange, isolated, and badly understood
glimpses into oppositional-geometrical possibilities were given, among others, also
by historically important thinkers like Aristotle, Apuleius, Llull, Buridanus, Lewis
Carroll, De Morgan, Vasil’ev, Reichenbach, Prior, etc. (on all this cf., for instance,
[97, 98, 100], but also [126, 127]).

Now, another chapter of this young and still open mathematical adventure is
relative to the generalization trying to go from the aforementioned concept of bi-
simplex to a new concept naturally built on top of that, namely, the concept of
oppositional poly-simplex.
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1.3 A General Extension of OG: The “Oppositional
Poly-Simplexes”

In 2004, A. Costa-Leite (then a PhD student of Béziau, as soon myself) challenged
oppositional geometry (then called by me “n-opposition theory”, N.O.T.) to get rid,
if it only could, of its founding but also constrictor notion of “bi-simplex”. The
(friendly but frank) reproach signified that, however (finitely) big and complex
the blue (n-1)-dimensional simplex of n-contrariety and hence the geometrical
n-opposition built on top of it (its “oppositional closure”, the Bn of the An, Sect.
1.2, Fig. 7), it always consisted, in some sense, of four and only four oppositional
main “colors” (conventionally – since the proposal of Béziau [24], generally adopted
after him – blue, red, green, and black/gray). This led me to accept such radical
challenge, trying to go from the concept of bi-simplex to something wider, namely,
as I proposed, the more general (but at that time inexistent!) concept of oppositional
“poly-simplex”. In my 2009 PhD dissertation [94], in some sense I succeeded in
responding this challenge (as for the key ideas for this, my intuition traces back to
at least 2006, and I obtained the main results no later than in 2007). The original
idea consisted of the following: (1) in trying to understand how the two oppositional
“simplexes” (responsible of the four colors) so to say popped up with Aristotle’s
theory of opposition, and this led back to his elegant combinatorial definition (Sect.
1.1, Fig. 1 – a “combinatorial fragment”!), expressed by words, of “contrariety” and
“contradiction” (completed by Apuleius with the tantamount elegant combinatorial
definition – also a “combinatorial fragment”! – given by him or by the “Pseudo
Apuleius”, together with the square visual device, of “subcontrariety”; Fig. 1) (this
was called “Aristotelian 22-semantics” and “Aristotelian 22-lattice”) (Fig. 10); (2)
in trying to see whether one could go beyond “bi-simpliciality” (Costa-Leite’s
challenge) so understood (i.e., taken as the “Aristotelian” game-theoretical “meta-
level” generating the blue and the green simplexes and the red and the gray “links”
between these two simplexes); and (3) that is (I proposed), in changing the number
of the truth-values authorized in its generative “ask-answer” game-theoretical meta-
level, observing that this kind of change seemingly generates, automatically, in an
infinite variety of different possible ways, precisely extra “oppositional simplexes”
(and interesting extra pairs of links between them). This was called “Aristotelian
pq-semantics” (with “q” as the number of possible different questions “Can two
things . . . ?” and “p” as the number of possible answers “Yes/no/maybe/ . . . ” to
each of these questions); it was first examined as “Aristotelian 32-semantics” and
“32-lattice”, which generate three instead of two simplexes (Fig. 11).

Each such Aristotelian pq-semantics results in fact in a correlated “Aristotelian
pq-lattice”, useful in so far as it gives, a priori, the “oppositional colors” (i.e., the
possible qualities of opposition) of the mathematical universe under discussion. In
the case where q = 2 remains unchanged, the variations of p generate Aristotelian
2D square lattices (presented as lozenges) which are bigger and bigger but
remain two-dimensional. Differently, when what varies is “q”, the lattice becomes
increasingly many-dimensional and n-dimensionally hypercubic, a.k.a. “measure
polytopic” ([45], p. 123). The q is a new, third dimension – along with p and with n
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Fig. 10 The way proposed in 2009 in order to formalize Aristotle’s game-theoretical generator of
opposition theory

Fig. 11 The Aristotelian 32-semantic and its correlated 32-lattice giving the “kinds of opposition”
of the tri-simplexes

- of complexity growth of the whole poly-simplicial n-opposition. So, in a nutshell,
the changes in p and in q generate a mathematical 2D space (populated by n-dim
measure polytopic lattices) of possible changes in the meta-level of the theory of
opposition (Fig. 12).

Fig. 12 An overview of the space of the possible Aristotelian pq-lattices (for the general
oppositional poly-simplexes) when “p” and/or “q” vary
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Given that the growing complexity of the simplexes (indexed by the parameter
“n”) constitutes, as said, a third dimension, the whole space of such possible general-
izations of the Aristotelian bi-simplicial case (generalizations abstractly conjectured
by me in 2009) can be figured through an infinite “Aristotelian parallelepiped” (the
front rectangular face of which corresponds (modulo a 3D diagonal rotation) to the
2D space of Fig. 12) (Fig. 13).

Fig. 13 The Aristotelian infinite parallelepiped for the oppositional poly-simplexes (and beyond)

Remark that in all what follows only q= 2 will be explored (i.e., only 2D, square-
shaped Aristotelian p2-lattices). This means that we will remain 2D at the level
of the metatheory of opposition (leaving the exploration of the still intriguing “q”
parameter – supposing it leads, as I believe, to something sound, meaningful, and
tractable – for further studies, Sects. 4.1, 5.1 and 5.2).

It is by this “Aristotelian” method that it was proposed in 2009 to consider the
existence of such a new family of mathematical structures relative to oppositions
(integrating logical many-valuedness and giving birth to the structure of the poly-
simplexes). The problem then, at this still very hypothetical and programmatic level,
was that of seeing what concrete oppositional geometry could, if it could, result from
this new research paradigm and program. So, for instance, one way to explore such
still hypothetical oppositional poly-simplexes seemed to be fixing one simplex, for
instance, the 2D simplex (i.e., the triangle, Sect. 1.2, Fig. 9), and studying the series
of its infinitely growing oppositional poly-instances, namely, the (still conjectural)
space of the oppositional poly-triangles (Fig. 14).

Another way in order to explore the still unknown space of the poly-simplexes
(Fig. 13) seemed to be fixing instead the number “p” of simplexes considered
(taking, for instance, p = 3, i.e., the tri-simplexes) and considering the increasing
structural complexity of the series when the constitutive simplex (present in three
different colors: blue, black, green) grows (from segment to triangle, to tetrahedron,
to four-dim simplex, to five-dim simplex, etc., Sect. 1.2; Fig. 9): this was conjectured
as the (hypothetical) space of the oppositional tri-simplexes (Fig. 15).

One of the many exciting parts of this new research line seemed to be the search
for new oppositional solids. For instance, the tri-triangle seemed to be possibly
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Fig. 14 The space of the oppositional poly-triangles: from the bi-triangle (i.e., the logical
hexagon) to the p-triangle

Fig. 15 The (hypothetical) space of the growing oppositional tri-simplexes (tri-segment, tri-
triangle, tri-tetrahedron . . . )

represented by a compact 2D figure (provided one adopts curve lines, as in non-
Euclidean geometry) (Fig. 16).

Fig. 16 From the “bi-triangle” (logical hexagon) to the “tri-triangle” (its simplexes, contradic-
tions, and subalternations)

The idea seemed, if not worth the tiniest shadow of a postdoc ( . . . ), at least quite
new, interesting, and promising, and it was proposed this could have (because of
what recalled in Sect. 1.1) some non-negligible impact over the philosophy of the
foundations of logic (especially with respect to nonclassical logic – paraconsistent
and many-valued – as we argued in [96]).

However, the problem with this conceptual and visual conjecture of us of 2009
was that something quite important was still missing badly, namely, (1) some kind
of mathematical proof (I am trained as – and I am! – a “continental philosopher”),
or axiomatic construction, of the fact that these oppositional-geometrical poly-
simplicial entities (of which we have seen at least the hypothetical conceptual
idea, but also some possible concrete oppositional-geometrical shapes) are math-
ematically sound under every respect, and (2) some device (comparable to Angot-
Pellissier’s set-theoretical technique for generating the bi-simplicial oppositional



360 A. Moretti

closures, cf. Sect. 1.2, Figs. 5 and 7) in order to make, concretely, the “jungle” of
the oppositional poly-simplexes mathematically real, testable, and applicable.

Tackling this problem leads us to the next Sect. 1.4 of this first chapter.

1.4 Angot-Pellissier’s Sheaf-Theoretical Method for
Poly-Simplexes

This needed mathematical method for the poly-simplexes happened to be excitedly
announced and then shown on blackboard, in 2009 by Angot-Pellissier in a talk
given in a four-people (!) workshop on the geometry of oppositions organized the
day after my PhD defense. But it arrived in written version only 4 long years later
(first in a draft in 2013 and then in a sequel draft in 2014, the first appearing only
now [3], the second still unpublished [4]). The method mainly consists, so to say,
in shifting from set-theory to sheaf-theory. For that recall, first of all, that sheaf-
theory and topos-theory are important parts, or consequences, of “category-theory”
[81, 83], which, in turn, so to say, has taken the place of “set-theory” as the main
conceptual framework of general mathematics (this is called the “dynamic turn”
of mathematical structuralism, cf. Avodey [7–9]). Recall also, secondly, that the
“setting technique” for bi-simplicial oppositional geometry [111] consisted mainly
in studying the possible partitions of a given set: the theory tells, among others,
how to get to such a starting partitionable set (“Angot-Pellissier’s set”), case by
case (it is here that can play a role the !-structures, as we show successfully
in a particular case study in [95]), and then how to study its partitions. Recall,
thirdly, that a “sheaf”, here, can be seen as a “topological diffraction” of this
concept of “set”, giving thus access to a more complex and powerful viewpoint over
mathematical creativity (a set is then seen, retrospectively, as a particularly simple
and “static” instance of sheaf, so to say a sheaf reduced to a point, whereas the latter,
generally, has an extra topological richness [81]). Consequently, Angot-Pellissier’s
new “sheafing technique” [3] for poly-simplicial oppositional geometry consists,
mainly, in studying, instead of the partitions of a starting suited set, the possible sub-
sheaves of a given starting suited sheaf (in fact, as we will see, a “numerical sheaf”)
and thereby in giving access to this sheaf’s finer-grained “partitions” (the theory
tells you how to determine this starting sheaf). And this starting sheaf takes into
account both (1) the complexification of mathematical discourse that results (when
talking about poly-simplexes) from the adoption of more than two truth-values in the
Aristotelian game-theoretical algorithm (the Aristotelian p2-semantics) generating
the possible kinds of opposition relations (through the correlated Aristotelian p2-
lattice) (2) and the dimension of the simplex (i.e., whether it is a segment, a triangle,
a tetrahedron, a five-cell, etc.).

More concretely, the first move of Angot-Pellissier’s new method for opposi-
tional poly-simplexes consists in translating in sheaf-theoretical terms the change
in the number of truth-values. If “truth” (i.e., “1”) is seen as a maximal starting set
“X”, and “false” (i.e., “0”) as the (minimal) empty set “∅”, the needed interpolated
additional truth-values (remember the “p” parameter, Sect. 1.3) – like, for instance,
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“1/3”, “1/2”, “2/3”, etc. – will be constructed as (or represented by) interpolated
intermediate sets “U”, “V”, “Y”, etc., such that the first is a strict subset of “X”
and that each of the following is a strict subset of the preceding ones, the empty set
being by definition a strict subset of all. This constructs a suited “topos” (Fig. 17).

Fig. 17 The introduction of additional truth-values between “0” (false) and “1” (true) by means
of topoi and sheaves

Then, another of the keys of this “sheafing method” is the redefinition in such
sheaf-theoretical mathematically precise terms of the Aristotelian classical defini-
tions of “contrariety” and subcontrariety (Sect. 1.1, Fig. 1), i.e., the two questions
Q1 and Q2 of the Aristotelian p2-semantics (cf. Sect. 1.3, Figs. 10 and 11). Provided
with that, Angot-Pellissier can reconstruct, in a mathematically understandable
and rigorous way, our intuitive and conjectural idea of Aristotelian p2-semantics
and p2-lattices, by deriving any new kind of opposition as an articulation of two
answers to the two questions relative to the sub-sheaves of the starting sheaf (we
will give a step-by-step concrete example and illustration of this on Sect. 2.2).
Angot-Pellissier’s study, in some sense, thus confirms our general conjecture of
2009 over the possibility of theorizing with mathematical rigor the oppositional
poly-simplexes. As a paradigmatic example, he finds back in [3, 4], by his new
technique, the two “Aristotelian lattices” (the 32- and the 42- ones) proposed by me
for the tri-simplexes and the quadri-simplexes, respectively (which he applies to the
simplex “triangle”) (Fig. 18).

Fig. 18 Angot-Pellissier’s redefinition (through sheaf-theory) of the Aristotelian 32- and 42-
lattices ([2013], [2014])

An important point – to which we will come back in Sect. 5.3 – is that Angot-
Pellissier, by the way, confirms by a demonstration (by topological arguments) that
the two left-right families of “infra-negations” (“CN” on one side and “NS” on the
other side in the tri-triangle’s Aristotelian 32-lattice; “CNN”, “CCN”, and “CNS” on
one side and “NNS”, “NSS”, and “CNS” on the other side in the quadri-triangle’s



362 A. Moretti

Aristotelian 42-lattice) are mathematically such that the members of the first are
“paracomplete” (i.e., intuitionist) negations, while the members of the second are
“paraconsistent” (i.e., co-intuitionist – cf. Sect. 1.1, Fig. 3) negations (remark that
“CNS” is member of both families: it is both paracomplete and paraconsistent,
behavior logically called – João Marcos docet – “paranormality” [sic]).

Finally, by introducing one last element, namely, the length of the numerical
sheaves in question, by expressing them as finite indexed strings of the form
“1j2k3l4m . . . ” (with j, k, l, m belonging to the set {∅, U, V, . . . , X} of the
topos-theoretical truth-values), he expresses, in the sheaf’s very structure (i.e.,
in its length, defined as numerical sheaf’s string length), the dimensionality of
the involved simplex of the studied poly-simplex (e.g., “1j2k3l” is for triangles,
“1j2k3l4m” is for tetrahedra, etc.). Angot-Pellissier also finds back, by his new
rigorous mathematical method (i.e., in a new way), the oppositional tri-triangle I
had predicted and tentatively represented in 2009 (Sect. 1.3, Figs. 14 and 16) (Fig.
19).

Fig. 19 Angot-Pellissier’s sheaf-theoretical construction of the oppositional tri-triangle [2013]
(2020)

(Angot-Pellissier also offers in [3] a new, original global 2D representation of
the tri-triangle, the “nonagon”, which we omit reproducing here). In the same
way, in his second draft study [4], Angot-Pellissier finds back, but constructed in
mathematically more rigorous (and understandable) terms than I did in 2009 [94],
the oppositional quadri-triangle (Fig. 20).

Fig. 20 Angot-Pellissier’s sheaf-theoretical construction of the oppositional quadri-triangle
[2014]
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However, Angot-Pellissier in his two pioneering draft studies also introduces
some strange and puzzling elements, which he just mentions, without discussing
them much, both in his study on the tri-triangle [3] and in his study on the quadri-
triangle [4]. Namely, a first element of puzzlement is that he mentions the existence,
among the things generated by his new tools, of (at least) one extra triangle
(lapidary judged irrelevant, because redundant) in the tri-triangle and two extra
triangles (also judged irrelevant, again because redundant) in the quadri-triangle: he
dismisses further discussion of this point, to us unexpected and puzzling – leaving
the lucky reader (we have had the prepublication deep friendly privilege to be)
rather confused – again, only mentioning that such extra triangles are oppositionally
(i.e., combinatorially) equivalent to others he takes into account, and as such the
redundant ones can/must (?) be neglected (Fig. 21).

Fig. 21 Angot-Pellissier’s sheaf-theoretic method reveals the existence of some “equivalent” extra
triangles

Whereas with his 2008 [111] “setting” technique Angot-Pellissier gave to
oppositional geometry a powerful tool such that in some sense it possibly generated
all (it thus helped fixing the boundaries of the oppositionally possible/thinkable),
with his 2013 [3] “sheafing” technique Angot-Pellissier did not explain what kind
of “totality” this new method could lead to, speaking about oppositional poly-
simplexes. As we are going to see (Sect. 1.5), the present paper proposes a first clear
answer to this crucial, until now open question. A second possibly puzzling aspect
in his two otherwise absolutely groundbreaking draft papers, is that Angot-Pellissier
still does not provide concrete examples of application of the two poly-simplexes
he successfully studies (successfully from a needed, purely mathematical, but then
not applied point of view). So, for short, the problem, if any, with Angot-Pellissier’s
long waited for method, otherwise very promising and in fact quite exciting (for
people interested in oppositional-geometrical research), was that (1) on one side it
allowed finding more instances of poly-simplicial entities than what I predicted in
2009 (without this fact being further explained and explored by him) (2) but on the
other side Angot-Pellissier himself seemingly explored (and explained) less entities
than what his promising method seemed to make possible: he just selected things
sufficient for confirming (as the friend he is) my analysis of 2009 (and this he did
indeed successfully).
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Tackling and solving these two residual problems (while benefiting decisively
from the powerful and long waited for sheafing technique offered to us oppositional
geometers) leads us to the next Sect. 1.5, possibly the most important, if any, of all
this study.

1.5 Our Proposal of a “Pascalian” Extra Tool for
the Poly-Simplexes

Remaining faithful to the structuralist methodology (or “ideology”! – as we explain
in our theory of the “elementary structures of ideology”, [102]) according to which
oppositional geometry (which inquires oppositional structures), as any mathemat-
ical investigation, is a matter of general mathematics (and not of “essentially and
primarily of logic”! – as might seem to suggest, for instance, the more sellable
but misleading label “logical geometry”, Sect. 4.6), we propose now to use, here,
tools promising (and fit!) even if they usually are not used in “logic”: repeating a
gesture we dared in 2004 [93], when we successfully introduced “out of the blue”, in
the study of “oppositions”, the mathematical n-dimensional concept of “simplex”.
Being a matter of “n-opposition” (with n any integer such that n ≥ 2), oppositional
geometry (which was called, at the beginning, “n-opposition theory”, i.e. “N.O.T”.
in acronym, with n a numerical parameter) has inescapably to do with numbers,
whereas “logic” (with the magnificent exception of “linear logic”, which is precisely
by no means – J.-Y. Girard [68–72] docet – a logicist tool!) normally doesn’t. Recall
that numbers – i.e., arithmetic – are so to say the structural “deadly threshold” of
Gödel’s complexity for formal systems (his famous second theorem of 1931, cf.
[104]) and by that a proof of the deadly uselessness, and in fact harmfulness, of
the logicist “ideology” (cf. [68]), consisting allegedly, but fruitlessly, in (keeping
trying, over and over) “reducing things to logic” (logic seen – very mistakenly –
as “the deepest element in mathematics”). Deepening this fundamental relation of
oppositional geometry to numbers, we will turn now to a fundamental (and famous)
structure of arithmetic and general “number-theory”, namely, “Pascal’s triangle”.
Remark, incidentally, that historically speaking this very important mathematical
structure was already known in India (by the mathematician Pingala, in the second
century BC) and, much later, in China (no later than in the fourteenth century).
And after that, but long before its “discovery” by Blaise Pascal (1623–1662) in
1654, it had been rediscovered, independently, by the mathematicians Michael Stifel
(1487–1567) in 1544 and Niccolò Tartaglia (1499–1557) in 1556. Now, as is well
known even at school, “Pascal’s” triangle (as it is now thus improperly called)
is obtained very simply: starting from the top, with a “1”, each lower integer
(of the triangle) is the sum of the two integers above it (on its left and on its
right, considering, by a typically structuralist move, that the absence of an integer
means the presence of the number “0” . . . ). Generated thus by a simple arithmetical
algorithm, Pascal’s triangle results in a structure which condensates in itself a
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huge number of really fundamental features of mathematical complexity, which
potentially can be unfolded into infinite. Most famously, Pascal’s triangle expresses,
through the series of numbers in each of its horizontally left-right symmetric lines,
each of the coefficients of Newton’s (1642–1727) “binomial formula” for expressing
the development of “(a + b)n”, whatever the natural number “n”. And in fact, an
important remark here (we will see why very soon) is that Pascal’s triangle is so to
say parallel to this Newtonian formula (a + b)n for binomial powers (Fig. 22).

Fig. 22 An important arithmetical structure, “Pascal’s triangle”, with its algebraic counterpart,
“Newton’s formula”

This is perhaps the most famous application of Pascal’s triangle, at least at
school’s level, although by far not the only one: for instance, reading it “diagonally”
(and still top-bottom) also gives the series of the “polytopic numbers” (a.k.a.
“figurate numbers”, i.e., simplicial generalizations of the “triangular numbers”,
i.e., numbers – those studied by the Pythagorean – characterized by intrinsic
geometrical properties). Moreover, Pascal’s triangle is also known for having very
strong fractal properties, among others, in the distribution of its numbers – be them
prime numbers, or even numbers, or powers, etc. More concretely, it exhibits fractal
patterns akin to “Sierpiński’s gasket”, cf. [109], p. 91–102, and [110], p. 85–96 (Fig.
23).

Fig. 23 Pascal’s triangle also displays, “obliquely”, the “polytopic numbers”, and has many
fractal properties

But then, what about oppositional geometry? As it happens, Pascal’s triangle
contains, among other mathematical treasures, nothing less than all the numerical
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features of the closures of the oppositional bi-simplexes (!!!): each of its horizontal
lines, starting from the third from top, gives, line by line, the exact full “numericity”
of the closure of one of the n-oppositions for n ≥ 2 (with no possible exception,
it is an isomorphism: no “gap” and no “glut”, Sect. 3.5, Fig. 81). As such Pascal’s
triangle presents the two constitutive simplexes (blue and green) of any bi-simplex
but also, in between them, their “cloud” (!): for short, again, all (bi-simplicial . . . )
oppositional geometry is contained in Pascal’s triangle (Fig. 24).

Fig. 24 Pascal’s triangle gives, with its horizontal lines, all the numbers of (bi-simplicial)
oppositional geometry!

Remark that retrospectively this is not totally surprising: since the n-oppositions
are all the possible set partitions of any finite set of n elements (n ≥ 2), as Angot-
Pellissier has established in 2008 [111]. Now, it must be remarked that Newton’s
formula, mentioned above, also does this “oppositional job”, starting from what
corresponds in it to the third line from the top of Pascal’s triangle (in bold the
nontrivial oppositional elements):
(a+b)

2
= a

2
+ 2ab + b

2
which are the numbers of 2-opposition (segment);

(a+b)
3

= a
3

+ 3a2b + 3ab2
+ b

3
the numbers of 3-opposition (hexagon);

(a+b)
4

= a
4

+ 4a3b + 6a2b2 + 4ab3
+ b

4
the numbers of 4-opposition (tetrahexahedron);

etc. etc.

(a+b)
n

= a
n

+ n.an-1b + … + n.abn-1
+ b

n
the numbers of n-opposition.

But this, although it might seem (to some good mathematical eye) a posteriori
mathematically “natural”, seems nonetheless absolutely remarkable! And as it
happens, it gave us the idea (in 2018) of trying to generalize geometrically Pascal’s
triangle, so to obtain a general method for having an equivalent “oppositional
numericity” for the oppositional poly-simplexes. With this very goal in mind, we
propose here to introduce a new concept (new at least for us: we almost surely are
rediscovering something known in contemporary – and maybe even in classical? –
mathematics, as for the idea we propose here of extending n-dimensionally Pascal’s
triangle): something we propose to call, accordingly, the “Pascalian ND simplex”,
seen as a general geometrical-numerical structure such that Pascal’s triangle is only
a particular case of it, the case where, in “ND”, N = 2 (addendum: in fact we found
in Wikipedia, afterward, mention of the existence of “Pascal’s simplex”, which
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seems to be exactly what we are speaking about here – all what follows in this
Sect. 1.5 has nevertheless been developed, or redeveloped, by us “out of nothing”).
Let us see how to unfold this idea progressively. For a start, the very first step of this
will be considering, after the well-known Pascalian “triangle” (seen as a “simplex of
dimension 2”), a “tetrahedron” (seen as a “simplex of dimension 3”) that we will call
“Pascalian” as well, for it is made so that it has a horizontal triangular equilateral
“basis”, going downward (as the horizontally segmental, infinite “basis” at the
infinite bottom of Pascal’s triangle goes endlessly downward): by construction this
horizontal triangular infinite basis of the Pascalian tetrahedron dives, step by step,
into growing infinite numerical depth and complexity. Each of the remaining three
non-horizontal triangular faces of this Pascalian tetrahedron will be, like Pascal’s
classical triangle taken as a whole, triangular and with a horizontal linear basis,
step by step going down endlessly into infinitely more complex numericity (in fact,
precisely the numericity of Pascal’s triangle) (Fig. 25).

Fig. 25 Our proposal [2018]: from “Pascal’s triangle” (2D simplex) to a “Pascalian tetrahedron”
(3D simplex)

Now, the crucial point is that this Pascalian tetrahedron has numbers even
“inside” of it, determined by a suited analog of the simple algorithm generating
the numbers of Pascal’s triangle. This “internal” algorithm explaining the internal
numbers of the Pascalian tetrahedron can be seen, again, in (at least) two ways:
(1) either as a graphical or (2) as an algebraic algorithm, the former being an
extension of “Pascal’s” graphic algorithm (in a nutshell, each number in a layer –
i.e., horizontal triangular “section” – is the sum of the three numbers above it, the
absence of a number being counted as number “0”) and the latter being an extension
of Newton’s formula, such that it calculates (for each horizontal triangle, instead
of for each horizontal line) the powers of the sum of three, instead of two, addenda
(i.e., it calculates “(a + b + c)n” instead of “(a + b)n”) (Fig. 26).

Fig. 26 The graphical 3D algorithm, extending the classical 2D one, for generating by sum the
“internal numbers”
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Consequently, what is immediately interesting for us, for the oppositional poly-
simplexes, through this deepening move (from triangle to tetrahedron) is in fact the
generalization of the concept of “horizontal line of Pascal’s triangle”, because this
happens to yield the corresponding, duly changed concept of “horizontal sections”
(of the Pascalian tetrahedron) for the oppositional tri-simplexes. The Pascalian
3D simplex (a tetrahedron) happens to have, in fact, an infinite number (one
simultaneously intersecting a horizontal line in every of its three lateral triangular
faces) of top-bottom growing 2D horizontal “sections”, which are triangles, and
these triangular sections happen to be such that they are perfectly suited for
exploring . . . the tri-simplexes! The correspondence can be matched by comparing
the numbers given by these triangles with the numbers given by Angot-Pellissier’s
sheaf-technique. In fact the more complex is the simplex (of the studied oppositional
tri-simplex), the deeper you will have to go down in the 3D Pascalian simplex
(the tetrahedron) for finding the adequate horizontal triangular section. We will
demonstrate and explain duly our general claim in another paper; here it will suffice
to show that it holds at the levels we are interested in and works perfectly with the
oppositional tri-segment we will thus inquire in Sects. 2 and 3 of this study (Fig.
27).

Fig. 27 The 2D simplicial sections (i.e., triangles) of the “Pascalian 3D simplex” (i.e., tetrahedron)
map the tri-simplexes

Remark that, as it happens, the aforementioned Newton formula for binomial
powers (i.e., the coefficients of the development of “(a + b)n”) still gives a parallel
vision: as said, it simply becomes here (a + b + c)n, i.e., what changes when
going from the Pascalian 2D simplex (Pascal’s triangle) to the Pascalian 3D simplex
(“Pascal’s tetrahedron”) is, in its “Newtonian translation”, the fact of having three
addenda (“a”, “b” and “c”) instead of, classically, only two (“a” and “b”). This
can be used for generating the same set of internal numbers: in fact, the formula
generates all the numbers of any 2D section (triangle) of the Pascalian 3D simplex
(tetrahedron).

But let us unfold this idea further. In the same way, if you now want to explore
the oppositional quadri-simplexes (Sects. 1.3 and 1.4, Figs. 18 and 20), as we do in
other working papers, you need a more complex Pascalian ND simplex: you need,
no more no less, what we propose here to call the “Pascalian 4D simplex” (i.e., a
4D hyper-tetrahedron, or 4D “five-cell”, i.e. a 4D “volume” delimited by five 3D
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tetrahedral “faces”, by analogy with the tetrahedron, whose 3D volume is delimited
by four 2D triangles, and by analogy with the 2D triangle whose 2D “volume”, i.e.
surface, is delimited by three 1D segments, its three sides, etc.). From this Pascalian
4D simplex, what you further need to consider for dealing with the oppositional
quadri-simplexes are, again, its “horizontal sections”: but these horizontal sections
(i.e., sections “parallel” to the 4D simplex’s infinite “horizontal” – by construction –
3D “base”) now are no more 2D triangles (as they were, in the previous case, for
tri-simplexes) but 3D tetrahedra; they are the “3D horizontal sections of the 4D
Pascalian simplex”. Incidentally, representing a 4D solid is notoriously not always
straightforward [15, 45, 137]. But one way (among others) of doing it rather simply
(when possible) consists, so to say, in resorting to “slicing” (i.e., in cutting this 4D
solid into suited superposable slices, each of them being lower-dimensional, namely,
each of them being a 3D tetrahedron, which can in turn be sliced, this time in terms
of stacks of 2D triangles, as previously with the 2D sections of the Pascalian 3D
simplex) (Fig. 28).

Fig. 28 The 3D simplicial sections (i.e., tetrahdra) of the “Pascalian 4D simplex” (i.e., 5-cell) map
the quadri-simplexes

We will not study here its sections (we do it in other working papers on
oppositional quadri-simplexes). Just remark that, as it happens, the 4D counter-
part of Newton’s formula still exists here, and it is now the development of
“(a + b + c + d)n” (the addenda become four, instead of three).

Now, as we will prove it elsewhere, this “Pascalian” geometrical-arithmetical
algorithm for the oppositional poly-simplexes goes, always working perfectly, into
infinite! And this both in its geometrical-arithmetical stricto sensu Pascalian aspect
and in its (corresponding) algebraic Newtonian aspect: on one side the Pascalian
ND solid, with its (n-1)-D horizontal sections, and on the other side the generalized
Newtonian formula (a + b + . . . + z)n, where, as in all previous cases, the N
addenda between parentheses stay for the degree of the oppositional poly-simplex
(i.e., the numerical value of the “poly-”), whereas the exponent “n” stays for the
quality of the simplex (n = 2 for the segment, n = 3 for the triangle, n = 4 for the
tetrahedron . . . n for the (n-1)-dimensional oppositional simplex). The important,
general result for oppositional geometry is that, in each case, equivalently, the
numbers produced by such a generalized Pascalian ND simplex (or by the correlated
generalized Newtonian formula) and those generated by Angot-Pellissier’s sheaf
theoretic method for the oppositional poly-simplexes [3, 4] do match perfectly and
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give the “poly-simplicial oppositional closure” (addendum: as it seems – and as we
found, only afterward, in Wikipedia – these two correlated things we are speaking
about are already known in mathematics, namely, as “Pascal’s simplex” and as the
“multinomial theorem”; but on the one side we rediscovered them by ourselves, and
on the other we still found no exact bibliographic references for this).

Remark that, conversely, the clear understanding of the (very wide!) scope of
Angot-Pellissier’s until know mysterious sheafing method (i.e., understanding that,
when duly followed – as we will explain on a precise case in Sect. 2.4 – i.e., with
the “Pascalian ND simplex”, it can lead to the oppositional closures of the poly-
simplexes) shows that his own concrete analyses ([3] and [4], respectively) of the
tri-triangle and quadri-triangle happen to show only a small fragment (and therefore
not the oppositional closure) of the real structure to be brought to light in both cases
(we will show this in future studies).

Remark also that given the aforementioned correlation between the oppositional
poly-simplexes à la Angot-Pellissier and the generalized Pascalian ND simplex (and
its correlated generalized Newtonian formula “(a + b + c + · · · )n”), the latter
(Pascal and/or Newton), besides giving us an Ariadne thread (as we are going to
see in the rest of this paper, starting from Sect. 2.4) for studying poly-simplexes
in full rigor, allows us doing some quite useful preliminary action with respect
to inquiring directly poly-oppositional structures (poly≥3): having a synoptic view
of the geometrical complexity of the poly-simplexes (provided one concedes, as it
seems reasonable, that this complexity is somehow measured by the number of the
vertices of each of these structures) (Fig. 29).

Fig. 29 Synoptic view of the complexity degree of the poly-simplicial oppositional geometry
(number of vertices)

The structures with a blue square are those already studied, while the ones with a
red disk are those which have been studied only partly (as, for instance, tri-triangles
and quadri-triangles by Angot-Pellissier [3, 4] or the bi-simplicial closures B5-7 by
myself [94, 95]). The figure highlights, by a diagonal cut, the left-bottom domain of
the general poly-simplicial space having no more than around 270 vertices. So, the
above synoptic view strongly suggests that the easiest and most reasonable thing to
do next, thanks to our fresh two new tools, in order to explore the poly-simplicial
space would be, at present, to study the oppositional “tri-segment” (characterized,
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as we are going to explain in Sect. 2.4, by the complexity degree 6). And this is
precisely what we are going to do in the rest of this paper.

But before starting the inquiry on the tri-segment, let us now have one last
preliminary retrospective look to the “old style” study of oppositional tri-segments:
recalling what is known so far about them, and then (as we will inquire in Sect. 2)
what we can try, from now on, to learn about them by a deeper and more accurate
investigation.

1.6 Flashback: The Primitive Idea of Oppositional Tri-segment
(2009)

As we saw, Angot-Pellissier’s two very important draft studies of 2013 and 2014
[3, 4] concerned poly-triangles (viz., the tri-triangle and the quadri-triangle). But in
my 2009 PhD dissertation [94], I also took into account as simplexes (for the poly-
simplexes), before triangles, segments. There the “poly-segments” were imagined,
roughly, as being some kind of diffraction of the logical square, since the latter seems
to be a 2-opposition and is precisely based on two simplexes, a blue and a green
segment (we come back to this in Sect. 2.5). In the case of the first higher poly-
segment (poly≥3), the tri-segment, it was imagined as made of the classical blue-
green logical square, plus two interpolated new ones, a blue-black and a black-green
squares – but of course in a way different from that in which three logical squares
merge to form a logical hexagon (Sect. 1.1, Fig. 2). Therefore it was thought we
could have (1) a blue segment of contrariety; (2) a green segment of subcontrariety;
(3) and, interpolated (in the 3D space), a black new segment (interpolated) of a
“pivotal” simplex. This was my guess as for having a “tri-segment”, the second
element of the series of the poly-segments and the first element of the series of the
tri-simplexes. It was seen as made basically out of three simplexes of dimension
2 (i.e., three segments): the two classical ones (the blue and the green horizontal
segments of the logical square) and a new one (the third simplex), black (Fig. 30).

Fig. 30 How was imagined to be, in 2009, the hypothetical structure of “oppositional tri-segment”

Being committed to three truth-values (say: “0”, “½” and “1”, Sect. 1.3) one had
to try to understand how three-valued logic can intervene here, if it does (we afford
this in Sect. 3.6). Based on their definition through the Aristotelian 32-semantics
and its correlated 32-lattice, the three-valued propositional connectives, allegedly
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embodied in this oppositional tri-segment, were defined (quite experimentally) by
means of an “extensional definition” (Fig. 31).

Fig. 31 2009 Conjecture over the possible valuations of the tri-segment’s negations, simplexes,
and implications

As for the global “valuations” we proposed something like the following three
(Fig. 32).

Fig. 32 The problem of the “valuation”, with three truth-values, of the (still hypothetical!) tri-
segment (2009)

All this, in order to think the “tri-segment”, was intuitively inspired by the logical
square.

But in 2012 Angot-Pellissier [1] demonstrated (or more precisely: he gave a
deep mathematical explanation and clarification of a fact until then “known” too
confusedly) that 2-opposition, until then not clearly elucidated in its oppositional-
geometrical specificity, is in fact not a blue segment of two-contrariety (which
would have automatically generated, by central symmetry of the contradictories,
a correlated green segment of subcontrariety and therefore the logical square –
and therefore the logical hexagon, Sect. 1.1, Fig. 2) but simply the red segment
of (any) contradiction. “2-opposition”, Angot-Pellissier demonstrated implacably,
is tantamount the red segment of contradiction, with no trace of any other possible
oppositional color (no blue segment!). This was strange with respect to the idea,
otherwise good working, of bi-simplex, but was so. And the logical square, which
exhibits a blue segment of contrariety, is therefore (as already established around
1950 by three different people!) only a fragment of the logical hexagon (i.e., 3-
opposition, Sect. 1.1, Fig. 2). Angot-Pellissier clarified why contrariety, with its blue
simplexes, can begin only with the triangle: there is no contrariety smaller than
3-contrariety, as in fact Aristotle knew already. This important and long needed
clarifying result by Angot-Pellissier (on which we will come back shortly, from
another viewpoint, in the introduction of ch.3) implied, among others, that my
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proposal of a tri-segment was at least quite mistaken in the way I had tried it, if
not totally unthinkable (as tri-segment) per se.

So, having recalled the current context (state of the art) starting from this
point, in the remaining of the present study we will try to come back to this
issue of the classical (and “not complex”) segment of (bi-simplicial?) contradiction
(seen, as we will explain, as being nevertheless rightfully a “bi-segment”, cum
grano salis) and to the question of knowing whether it can admit (as proposed in
2009) a tri-simplicial counterpart: something like the oppositional tri-segment . . .
As a very last preliminary remark, notice that this research results, therefore,
in a voluntary provisory blindness (in this study) with respect to tri-triangles,
whereas with bi-simplicial oppositional geometry important things clearly begin,
so to say, precisely only with contrariety (blue) triangles. But that price once
paid the expected non-negligible gain is that our present study will be simpler
and therefore easier (as suggested in the synoptic view of Sect. 1.5, Fig. 29),
which will be no luxury, as we will see (poly-simplexes are “wild”!). Again,
the loss, of course, is that oppositional segments (and tri-segments as well) do
express much less than oppositional triangles, as well as tri-triangles, and higher
poly-simplexes (we study tri-triangles and higher poly-simplexes in other studies,
already ongoing). Then what can be expressed by bi-oppositional segments (and
by their hypothetical poly-simplicial diffractions)? (1) Neither the relation of two
independent “atoms”, neither, alternatively, the mutual opposition (i.e., contrariety)
of four things: both things need a 4-oppositional A4 bi-tetrahedron (and its B4
closure); (2) nor even the simple contrariety of two things (antonymy) (this needs
a 3-oppositional A3 bi-triangle (which is its own B3 closure, Sect. 1.1, Fig. 2));
but (3) a 2-oppositional B2 (red) segment, and a fortiori its hypothetical poly-
simplicial diffractions, can nevertheless express something not so trivial (Sect. 1.1):
the negation of a given element (and in fact, as we are going to see, Sect. 3.5, also
this element’s affirmation!) and, again, possibly the “diffractions” of this concept of
negation/affirmation . . . (Fig. 33).

Fig. 33 Segment, triangle, tetrahedron: the increasing expressive power of the bi-simplicial
oppositional structures

So let us now try to study, in the next two Sects. 2 and 3, this still mysterious
structure anew, with the help of the two new tools which are Angot-Pellissier’s
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sheaf-theoretical technique (Sect. 1.4) and our own new concept of “Pascalian ND
simplex” (Sect. 1.5).

2 Studying with These New Tools the Oppositional
Tri-segment

In the previous Sect. 1, we recalled the main ingredients, historical, conceptual,
and methodological of the context of our present inquiry on poly-simplexes. In this
Sect. 2, we are going to study anew the simplest poly-simplex (poly≥3), i.e., the
tri-segment (Sect. 1.6), reaching non-negligible new elements of knowledge.

2.1 Oppositional Sub-sheaves of the Tri-segment: Which Are
Vertices?

In order to explore the concept of tri-simplex, we start by resorting to Angot-
Pellissier’s sheaf-theoretical technique (Sect. 1.4), but limiting it to the study of
a smaller object than what he considered in his two seminal papers on the subject
[3, 4]: not triangles (i.e., the tri-triangle and the quadri-triangle, in Angot-Pellissier)
but segments (here: the tri-segment). How to do that?

Two things must be recalled: (1) in Angot-Pellissier’s sheaf-theoretical method,
one parameter is the number of truth-values; (2) the other is the simplex considered;
more precisely Angot-Pellissier (i) considered three truth-values (in [3]) and four
truth-values (in [4]); (ii) he considered triangles (in both [3, 4]); he thus remained
inside the study of oppositional poly-triangles.

For us, the way of applying his sheaf-theoretical method to the study of
oppositional tri-segments (for which he gives no hint) will then consist in the
following: (1) we will consider three truth-values (because here we want to study
tri-segments); (2) but we will not deal with triangles, but with segments (we are
interested in tri-segments): therefore, we will not resort to a total numerical sheaf
“1X2X3X” (suited for triangles), but to a shorter total numerical sheaf “1X2X”
(suited for segments). The “job”, then, will consist in working methodically with the
sub-sheaves of this shorter total numerical sheaf (remembering Angot-Pellissier’s
2008 lesson of [111]: “opposition, i.e., contrariety, is a partition of the true”).
Accordingly, since we are dealing with three truth-values, the “topos” (i.e., the
category-theory tool ruling many-valuedness) in our study will be the same as the
one in Angot-Pellissier’s first study [3], namely, one with three levels (three strictly
nested sets): the total set “X”, one strict open subset of it “U”, and the empty set
“∅” (as such contained in any other set). By construction these three elements are
therefore strictly ordered: X ⊃ U ⊃ ∅ (Fig. 34).
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Fig. 34 Expressing, via the sheafing technique, the three-valuedness of the space of the opposi-
tional tri-simplexes

Now, this, applied to the starting total numerical sheaf (for segments) “1X2X”,
will give that all in all there are, as total number of possible sub-sheaves of this total
sheaf, 32 = 9 possible terms (including here those particular sub-sheaves which are
the total sheaf 1X2X itself and the null sheaf 1∅2∅). Put into a lattice, they result in
a familiar lozenge-shaped structure (Fig. 35).

Fig. 35 Distribution of the nine sub-sheaves (i.e., the oppositional-geometrical vertices) of the
tri-segment in a lattice

But one must beware: the lattice at the right hand of Fig. 35 looks like the
Aristotelian 32-lattice of the tri-simplexes (Sect. 1.3, Fig. 11, and Sect. 1.4, Fig.
18), to which we come back in the Sect. 2.2, but truly speaking the lattice here
is something totally different (and, as said in Sect. 1.4, this totality of the sub-
sheaves is thinkable, thanks to Angot-Pellissier, but it must be remarked – in order to
understand where we are going to in this study – that this is something that Angot-
Pellissier did not study yet as such; notice in particular that the “extended indicial
notation” here, admitting “∅” as an explicit index alongside with “X” and “U”, is
ours – in Angot-Pellissier’s notation, our “1U2∅” is “1U”, our “1∅2X” is “2X”, etc.).

The next important step, as in the case of Angot-Pellissier’s set-theoretical
method for the oppositional bi-simplexes (Sect. 1.2, Fig. 5), consists in keeping
out from this set of possibilities those which are trivial with respect to oppositional
geometry. In fact, the sub-sheaf 1X2X is trivial: it is an analog of “T” (the “verum”
and of the “universal set”). And the sub-sheaf 1∅2∅ is also trivial: it is an analog
of “⊥” (the “falsum”, the null-element of logic, and of the “empty set”, the null-
element of set-theory). In oppositional geometry, which – again – in a sense is a
matter of partitioning methodically a “cake”, the “whole cake” and “no cake” are
trivial partitioning situations, and as such, by construction, they are put outside
the structural game. In fact in the bi-simplicial space, the equivalent of these tri-
simplicial two points (1X2X and 1∅2∅) does exist, mathematically speaking, but,
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for any oppositional structure, they implode “by construction” to the symmetry
center of that structure (this important result – ruling out the reproach otherwise
recurrent, as in [87], against oppositional geometry of being “Boolean incomplete” –
is due independently to Smessaert and Angot-Pellissier).

Let us remark that the sub-sheaf “1U2U” can be seen, of itself, as a bit mysterious
of its own as well, so far: for, seen with our “extended indicial notation”, it resembles
quite much the two trivial sheaves 1X2X and 1∅2∅ (i.e., it bears on both digits of
its numerical string, “1” and “2”, the same index, viz., “U”), without however being
trivial itself at least as long as we know (we will have to come back later, in Sect.
2.4, to this rather important and strange point). In any case, what seems to be sure so
far is that in what follows the sub-sheaves 1X2X and 1∅2∅ must, by construction,
be neglected (as “oppositionally trivial”). So our study will, from now on, concern
no more than seven oppositional sub-sheaves (i.e., supposedly, seven oppositional-
geometrical vertices) over the starting nine possible ones (Fig. 36).

Fig. 36 From the lattice of all the nine sub-sheaves of “1X2X” to the set of its seven presumed
nontrivial sub-sheaves

Now that we have the entities supposed to be the vertices, what must be
considered next, if we want to be able to study the oppositional geometry of this (i.e.,
of the tri-segment), is the “lines” uniting each possible pair of these seven vertices
(including here the pairs made of a vertex with itself! – this is also something
Angot-Pellissier did not in his two draft studies [3, 4]). These are all the possible
(oppositional) relations between the (oppositional) vertices of the tri-segment, its
“oppositional colors” (and this brings us to the oppositional closure).

2.2 The Oppositional Relations Between the Sub-sheaves:
Edges!

The theory, outlined in my PhD [94] and confirmed and deepened mathematically
by Angot-Pellissier’s method [3], tells that for tri-simplexes, there are nine possible
qualities of oppositional relations, which are, visually, nine “oppositional colors”
(Sect. 1.3, Fig. 11, Sect. 1.4, Fig. 18). This is also true of tri-segments, which are a
particular case of the general concept of tri-simplex. The nine relations predicted by
the Aristotelian 32-lattice are the following (2009 style on the left, 2013 style on the
middle, and 2020 style on the right of Fig. 37) (Fig. 37).
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Fig. 37 The lattice of the nine “oppositional qualities” of the tri-simplexes (2009, 2013, 2020)

Now, and this is a major theoretical advance since 2009, Angot-Pellissier’s
method not only allows generating mathematically all the vertices of the poly-
simplexes as sub-sheaves of a starting total numerical sheaf (as we will see soon, the
“all” is in fact clear only now thanks to the Pascalian method, Sect. 1.5 and 2.4), but
it also allows calculating, for any given pair of such sub-sheaves, the precise kind of
oppositional relation (among the predicted nine possible ones) that holds between
the two elements of the considered pair. Combinatorially speaking, regarding only
the geometrical side (i.e., making momentarily abstraction of colors), there are
exactly 7!, i.e. 7 + 6 + 5 + 4 + 3 + 2 + 1 = 28 such possible pairs (including
the seven pairs of identical elements, which will be twisted segments, i.e., “curls”).
In the following, we will give, on the one side, at least an example of calculation
for each of the three main oppositional kinds (i.e. negations, simplexes, arrows) and
then, on the other side, the complete list of the colors of each of the 28 vertex-vertex
relations (of which 21 are edges properly said – i.e., edges – and 7 are reflexive
“curls”).

Remark that I will use the notation I propose on the right side of Fig. 37
(equivalent to, but different from, Angot-Pellissier’s original one, in particular more
precise relatively to the two nonclassical implications CI and IS, cf. [3]).

Let us start from negations (i.e., the red, pink, and brown oppositional relations).
For instance, let us compare the vertices 1X2U and 1∅2X. We must ask for this pair
of nontrivial sub-sheaves the two Angot-Pellissierian meta-questions, first at the
lower sheaf-theoretical level U and then at the higher level X (of the three-valued
topos we use): the respective four answers to these 2 + 2 = 4 questions will give
us, combined two by two, two literals, x and u (each taken among the set {N,C,S,I},
respectively, for “negation”, “contrariety”, “subcontrariety”, “implication”), and the
noncommutative concatenation “xu” of these two literals will give us precisely the
tri-simplicial oppositional quality of the relation (or segment) under examination
(viz., one among the NN, CN, NS, CC, CS, SS, CI, IS, II). So (call this meta-
question “Q1/U”) “Can these two sub-sheaves have a false (inclusive) disjunction
at level U?” The answer (call it “A1/U”), here, is “0” (i.e., “No”, because their
sections on U are, respectively, {1,2} and {2}, so the set-theoretical union ∪ of
the two is {1,2}, which is the “total section”, which as such cannot be false).
Further (second meta-question, “Q2/U”), “Can these two sub-sheaves have a true
conjunction at level U?” The answer (“A2/U”), here, is “1” (i.e., “Yes”, because
the set-theoretical intersection ∩ of their aforementioned respective sections on
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U, i.e., {1,2} and {2}, is {2}, and therefore it is non-empty). Further (“Q1/X”),
“Can these two sub-sheaves have a false (inclusive) disjunction at level X?” The
answer (“A1/X”), here, is “0” (because their respective sections on X, i.e., {1} and
{2}, have a union which is the total section {1,2}). Further (“Q2/X”), “Can these
two sub-sheaves have a true conjunction at level X?” The answer (“A2/X”), here,
is “0” (because their aforementioned respective sections on X, i.e., {1} and {2},
have an intersection which is empty). The last two answers (i.e., those at level
X), “0” and “0”, determine the first literal, “x” (the one standing, on top of the
tri-simplicial oppositional quality we are determining, for the level X) as “N” (for
“negation”: recall that in the Aristotelian 32-semantics negation is precisely [0|0],
cf. Fig. 10); the first two answers (i.e., those at level U), “0” and “1”, determine the
second literal, “u” (the one standing, at the bottom of the tri-simplicial oppositional
quality we are now determining, for the level U) as “S” (for “subcontrariety”: recall
that subcontrariety is defined as [0|1], cf. Fig. 10). So, together these two ordered
literals “N” and “S” give, concatenated (i.e., as the noncommutative string “xu”),
“NS”, which, as shown by the Aristotelian lattice on the right of Fig. 37, is the
brown paraconsistent negation. The same kind of reasoning holds for (and only
for) the further two (commutative) pairs of vertices, “1X2U and 1U2X” and “1X2∅
and 1U2X” (thus, all in all, in the tri-segment there are three brown segments of
paraconsistent negation NS). A similar reasoning establishes that the CN relation
(the pink paracomplete negation) holds for (and only for) the three (commutative)
pairs of vertices “1X2∅ and 1∅2U”, “1∅2U and 1U2∅”, and “1U2∅ and 1∅2X”
(so there are three pink segments in the tri-segment). Finally, a similar reasoning
establishes that the NN relation (the red classical negation) holds only between
the two vertices “1X2∅ and 1∅2X” (thus there is only one red segment in the
tri-segment). So we have seen here 3 + 3 + 1 = 7 over the 28 segments of the
tri-segment.

Let us now see simplicial colors (among blue, black, and green). For instance,
let us compare the vertices 1X2U and 1∅2U. So, as previously (Q1/U), “Can these
two sub-sheaves have a false (inclusive) disjunction at level U?” The answer (A1/U)
here is “0”. Further (Q2/U), “Can these two sub-sheaves have a true conjunction
at level U?” The answer (A2/U) here is “1”. Further (Q1/X), “Can these two sub-
sheaves have a false (inclusive) disjunction at level X?” The answer (A1/X) here is
“1”. Further (Q2/X), “Can these two sub-sheaves have a true conjunction at level
X?” The answer (A2/X) here is “0”. So, the last two answers (level X), “1” and
“0”, determine the first literal as “C” (contrariety); the first two answers (level U),
“0” and “1”, determine the second literal as “S” (for “subcontrariety”). Together
these two literals give, concatenated, “CS”, which is the black pivotal simplicial
relation (a mixture of contrariety at level X-U and subcontrariety at level U, cf.
Fig. 37). The same reasoning holds for (and only for) the further ten (commutative)
pairs of vertices – “1X2U and 1U2∅”, “1∅2U and 1U2X”, and “1U2∅ and 1U2X” –
and all the remaining seven pairs containing at least one occurrence of the vertex
“1U2U” (thus, all in all, there are 3+ 7= 10 black segments, one of which is in fact
the black non-arrowed reflexive curl “1U2U and 1U2U”). Remark that neither the
blue (i.e., “CC”, contrariety) nor the green (i.e., “SS”, subcontrariety) tri-simplicial
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oppositional relation (i.e., the two “simplicial colors” other than black) does emerge
here as 1 of the 21 segments or 7 curls between the possible pairs of the 7 vertices.
So we have seen here 10 over the 21 segments and 1 among the 7 curls of the tri-
segment.

Finally, let us see implication arrows (we know they can be gray, light green,
and violet). For instance, let us compare the commutative pair of vertices 1U2∅ and
1X2∅. So (Q1/U), “Can these two sub-sheaves have a false (inclusive) disjunction
at level U?” The answer (A1/U) here is “1”. Further (Q2/U), “Can these two sub-
sheaves have a true conjunction at level U?” The answer (A2/U) here is “1”. Further
(Q1/X), “Can these two sub-sheaves have a false disjunction at level X?” The
answer (A1/X) here is “1”. Further (Q2/X), “Can these two sub-sheaves have a true
conjunction at level X?” The answer (A2/X) here is “0”. So, the last two answers
(level X), “1” and “0”, determine the first literal as “C”; the first two answers (level
U), “1” and “1”, determine the second literal as “I” (for “implication”). Together
these two (orderly) literals give, concatenated, “CI”, which is the light green
paracomplete implication (a mixture of contrariety at level X-U and implication
at level U). Notice that the direction of the arrow (which can even be two-sided) is
determined, further, by comparing the relevant sections (for CI this is the sections
at level U): the implication then goes from the shorter to the greater section: e.g.,
1 → 12, 1 ←→1, 12 ← 2, etc. (recall that since Angot-Pellissier’s proposal in
2008 [111], “12” means “1∨2”, i.e., “either 1 or 2 or both is true”). In the case
under examination the sections on U being, respectively, {1} and {1}, the light green
relation CI takes the form of a biconditional. The same relation holds between the
three (commutative) pairs “1∅2U and 1∅2X”, “1∅2U and 1∅2U” (this is a curl),
and “1U2∅ and 1U2∅” (another curl). So, all in all in the tri-segment there are, in
light green, two segments and two curls. A similar reasoning establishes that the IS
relation (the violet paracomplete implication) holds, here also as biconditional, for
the two pairs of vertices “1X2∅ and 1X2U” and “1∅2X and 1U2∅”, as well as for the
two reflexive pairs “1X2U and 1X2U” and “1U2X and 1U2X” (thus two violet arrowed
curls). Finally, a similar reasoning establishes that the II relation (the gray classical
implication) holds (only) for the two reflexive pairs of vertices “1X2∅ and 1X2∅”
and “1∅2X and 1∅2X” (thus two gray arrowed curls). So we have seen here, as for
tri-simplicial implication arrows (of 3 colors), 4 over the 21 segments and 6 over the
7 curls. In sum, 7 (negations) + 11 (simplicial segments) + 10 (implications) = 28.
Le compte est bon.

Incidentally, remark that to see more directly the link existing with the Aris-
totelian 32-semantics (i.e., with its terms like “[1|½]”, etc.), you can read vertically
the four numbers of the aforementioned xu code (obtained as in the examples just
described), as in a 2 × 2 square matrix, where the two numbers of x are put on
top of the two numbers of u: then, a left (resp. right) column of this 2 × 2 square
matrix containing a same number “j” (j∈{0,1}) gives, as half of the Aristotelian code
(relative to that column), “[j|” (resp. “|j]”), while a left (resp. right) column made of
two different numbers “j” and “k” (j,k∈{0,1}, j �= k) gives “[½|” (resp. “|½]”).

Now, further focusing on each of the seven vertices we determined (Sect. 2.1),
the one after the other, and on the just calculated list of the precise quality of each



380 A. Moretti

of their 28 possible mutual two-terms relations, these results can be tentatively
displayed in a synoptic way (i.e., in a unique picture), vertex after vertex, in a row,
in the following way (Fig. 38).

Fig. 38 Synoptical view of the kinds of tri-simplicial opposition relation each vertex has with any
possible vertex

As we remarked, two over the nine possible tri-simplicial “colors” are in fact
absent here: the blue and the green. This reduces the Aristotelian 32-lattice of the
tri-segments (Fig. 39).

Fig. 39 The oppositional tri-segment has only seven of the nine possible colors of the oppositional
tri-simplexes

But this absence (of two over the nine oppositional colors: blue and green) is
normal: poly-segments are based on segments (and not on triangle, tetrahedron, five-
cell or higher, cf. end of Sect. 1.6, Fig. 33); as already known by wordy reasonings
by Aristotle and elucidated by Angot-Pellissier [1], contrariety and subcontrariety
need triangles to emerge. So tri-segments are a very particular (and primitive) case
of the tri-simplexes (the blue and the green colors will appear as soon as triangles
do intervene, that is, in tri-triangles – as Angot-Pellissier’s 2013 study [3] has in
fact precisely confirmed). Remark that this establishes not only that, but also (in
part) why, my model of tri-segment of 2009 (Sect. 1.6, Figs. 30, 31, and 32) was
mistaken.

In our trip toward the global oppositional geometry of the tri-segment, several
points come next. One is that of determining the “logical” meaning of each of the
oppositional colors. Angot-Pellissier [3] has provided elements of answer to that.
Recall that in the bi-simplexes the meanings of colors are clear and related to the
connectives of propositional calculus (Sect. 1.1, Fig. 1), although it has taken time
to understand – thanks Smessaert – two important additional things to be signaled
here, namely, (1) the exact nature of the Aristotelian subalternation (to which we
come in a few lines) and (2) the existence, in some sense, of one more oppositional
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“joker” color: orange for the “no-relation” relation – in some sense the structuralist
null-element. Now, in the tri-simplexes what seems to be expected is – we will
not discuss it here – that three-valued connectives (rather than two-valued) will
intervene somehow in a similar way (we will try to come back to this in Sect. 5.2).

Before going on, we must recall a quite important point, Smessaert’s lesson
on subalternation (in some sense seemingly at the origin of his and Demey’s
idea of calling “logical geometry”, cf. [49, 135], the field he and several others –
including myself – are investigating since years, if not centuries). In 2009 (Sect.
1.3) I interpreted the “[1|1]” (which in some sense I created!), in the Aristotelian
lattice, as meaning “logical implication” (i.e., the Aristotelian-Apuleian classical
“subalternation”). I signaled that to do this a restriction of the combinatorial
“yes yes” (i.e., “[1|1]”) definition was necessary; otherwise, we would have had
“logical equivalence” instead of “logical implication”. This point remained strange
and awkward (this sudden asymmetry in Aristotle and Apuleius’ otherwise so
elegant oppositional combinatorics). But Smessaert, later, showed, in his studies
where he proposed the idea of a larger “logical geometry” [134, 135], that “[1|1]”
is more properly to be understood as something more primitive than logical
implication, namely, “noncontradiction”, that is as a very general relation (of which
“implication” is only a meaningful and useful restriction). To explain that point
more deeply, he discovered that one must in fact consider a larger ask-answer game-
theoretical semantics (than mine of 2009; Figs. 10 and 11), which, as it happens,
generates not one but two geometries: “opposition geometry” (which is more or less
“oppositional geometry”, Sect. 1.2) and “implication geometry” (which is the new
thing). And that the classical geometry of oppositions (i.e., oppositional geometry),
called by Smessaert the new name “Aristotelian geometry”, emerged, historically,
as an unconscious composition of three over the four elements of “opposition
geometry” (i.e., dropping precisely “noncontradiction”) and one over the four
elements of “implication geometry (“one-sided implication”, more precisely “right-
implication”, taken to replace “noncontradiction”) (Fig. 40).

Fig. 40 Smessaert (2012): the logical hexagon (its vertices and edges) can support (at least) three
different “geometries”

The discovery is important and clarifying. But, as for bi-simplexes, it does not
seem to change much: one just has to be aware that in fact “I” (i.e., “[1|1]”) is
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in fact noncontradiction and that it can be “enriched” with implication. And it
justifies in no way Demey’s repeated argument that high-dimensional solids (i.e.,
higher than 3D) (and therefore, a fortiori, poly-simplexes . . . ) are not worth being
investigated (which is a logicist move: logicism, among others, aims at reducing all
numericity to the binary “0 and 1”, so that it generally takes no pleasure in exploring
mathematical depth, as, for instance, poly-simplicial depth . . . ). In [100], where I
solved the (rather difficult and unsolved since 1968) riddle of the nature of Greimas’
problematic (and very famous) “semiotic square”, I proposed to see Smessaert and
Demey’s two geometries as “meta-geometries”, that is, as useful preconditions of
the real thing: oppositional infinite complexity (infinite as for the dimensionality
of the contrariety simplexes and as for the variability of the “poly” diffractions).
My point was, and up to now remains, that oppositional geometry is the real
mathematical thing at stake and that it is by no means “a new chapter of logic” (and
one that according to Demey and Smessaert should refrain from exploring higher
dimensions!), as the label “logical geometry” strongly and recklessly suggests to a
philosophically non-naïve (and non-cynical . . . ) eye (Sect. 4.6). Again, practically
this means for us that “[1|1]” needs interpretation (it is more abstract than just
logical implication; it is the “noncontradiction” relation, logical implication being a
particular case of the more general “noncontradiction” relation). Our way of dealing
with it will be “Aristotelian” (in the sense of Smessaert and Demey; Fig. 40), and
this will be done, as we just saw in this Sect. 2.2, relying on Angot-Pellissier’s sheaf-
theoretical method for the poly-simplexes (Sect. 1.4): in front of codes containing
“I” (i.e., II, CI, or IS), we will see, by examining the relevant sheaf-sections, whether
the simple colored line (fluo pink, light green, or violet) can be turned into a single-
sided or a double-sided arrow (in fact we will come back to this important issue
in Sect. 4). In the rest of this paper, we will take into account this while refusing
as inappropriate and very misleading the academically fashionable label “logical
geometry”: (1) it loses the stress put on “opposition”, as a mathematical concept
largely independent from logic (Sect. 1.5!!!), (2) and it falls into “logicism” (which
is a deadly constant in the history of the geometry of oppositions – cf. [97] and Sect.
4.6).

The first point waiting for us right now is that of finding the “most natural”
geometries (in principle “tri-simplicial” instead of “bi-simplicial”) of this set of
seven vertices with the relations holding between any pair of them (including the
curls of the reflexive pairs).

2.3 The Geometrical Problem: Having a Strange Pentadic
Structure

Let us try to end our inquiry still without the help of the “Pascalian ND simplexes”
(Sect. 1.5). As said (Sect. 2.1, Fig. 36), from the nine numerical sub-sheaves we
eliminated the oppositional-geometrical analog of T and ⊥ (i.e., 1X2X and 1∅2∅).
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This leaves in our hands seven sub-sheaves, among which one (i.e., 1U2U), as said,
seems mysterious (we saw in Sect. 2.2, Fig. 38, that the strangeness of 1U2U grows
with its black non-arrow curl).

How can we try to find a good global geometrical expression of this reality,
namely, something like the polygon or the solid (or polytope) of the tri-segment?
How to display in the n-dimensional (2D? 3D? 4D?) oppositional-geometrical space
the 7 vertices (with their 7 curls) and the 21 non-curl edges relating any pair of
(nonidentical) vertices? (Fig. 41).

Fig. 41 How to display at best, in the oppositional-geometrical space, these seven non-trivial
vertices of the tri-segment?

Given that in some sense the tri-segment can be seen as a transformation (tri-
simplicial “oppositional diffraction”) of the (red) segment (of contradiction), we
can try to singularize this starting classical red segment 1X2∅—–1∅2X (of which
the tri-segment seems to be a diffraction and a conservative extension), by putting
it so to say on a “radial position” (i.e., visual-metaphorically, as the axle of a
wheel). Remark that we can try to color this segment’s vertices, but we do not
know how to color the five others (there are no simplexes here): so we will use
gray points. But then several different alternative dispositions of the five remaining
sub-sheaves are possible, and, as it happens, it does not seem to be easy to find
a particular configuration more convincing and “mathematically natural” than the
other possible ones. Remark that since the self-relations (of any vertex to itself)
happen, here, to resort not to only one (gray), as in the bi-simplicial space, but to
three possible “arrow colors” (gray, light green, and violet and seemingly even the
non-arrow black), we cannot go on keeping them implicit (as they usually are, pace
Smessaert, in bi-simplicial oppositional “Aristotelian” geometry, where they usually
are not drawn, since they are tautological): so to say following, at least partially, the
suggestion of Smessaert inside his and Demey’s aforementioned “logical geometry”
(Sect. 2.2, Fig. 40), we will do better here by choosing to represent them as well
explicitly, as “curls” (so, on this point our research on the tri-segment goes in the
direction of logical geometry). Remark, again, that over the seven curls, six are
implication arrows (two gray, two light green, and two violet), while one (the black
CS of the 1U2U vertex . . . ) is not (CS contains no “I” in its code): as said, this
adds more suspicion or puzzlement of us regarding the strangeness or, in the best
case, the mathematical singularity (but then: why and how?), of the 1U2U nontrivial
sub-sheaf and vertex (Sect. 2.1) (Fig. 42).

Trying to clarify this complex oppositional-geometrical (and chromatic) riddle,
we can try to decompose it (divide et impera), hoping to lower its complexity, by
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Fig. 42 Trying to represent the tri-segment like “axle and wheel”, putting into light the red
segment of contradiction

detaching so to say the pentadic circular “tire” from its radial “axle” (the latter can
be cut in two halves) (Fig. 43).

Fig. 43 Trying to decompose into parts the oppositional-geometrical problem of finding the tri-
segment

Remark that this representation, and more fundamentally this structure, whatever
its tentative representation, might in some sense already seem exciting per se, for in
some sense it seems to lead us to forms or patterns rather unexpected with respect to
the usual standards of oppositional geometry (mainly by having here something
pentadic, and so to say numerically seven-based, in an a priori non-heptadic
and non-pentadic context of mathematical analysis: the tri(3)-segment(2)). This is
mathematically surprising with respect to what known so far about bi-simplicial
(i.e., two-valued) oppositional geometry, which tends to be reasonably simple and
symmetric. In other words, we might be tempted to accept as (unexpectedly)
“typical” of the still mysterious and maybe durably exotic universe of the “tri-
segments” this intractable pentadic flavor, if one wants to represent the classical
(red) contradiction segment as the starting term of a tri-simplicial “oppositional
diffraction”. But truly speaking, this structure in some sense remains hard to
interpret, at this stage (the “logic – cum grano salis! – of tri-simplicial diffraction”
is not at all clear here), and this can be seen as being no specifically good sign;
notably we can remain puzzled about the particular status of the still mysterious
1U2U term: for it clearly seems to introduce a strong geometrical (and chromatic)
disequilibrium that, supposing it is justified and meaningful – but then why? –
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we do not yet understand by resorting to Angot-Pellissier’s sheafing technique.
In other words, the so far reached structure seems to lack badly symmetry, and
this seems to be notably influenced by the presence of a large number of black
segments (which, again, converge on the still mysterious 1U2U sub-sheaf, Sect.
2.2, Fig. 38). Of course, we can try to invert geometrical representation priorities
(in the hope of finding unseen, better oppositional-geometrical arrangements): for
instance, by putting tentatively the red contradiction segment in positions other
than axial (but then: why? and how?), so to let 1U2U take such a geometrically
and chromatically (for short: oppositionally) prominent place. But no clear better
alternative (to the pentadic “wheel and axle”) seems, even at that price, to emerge.
On that respect we might say that apart when considering “seven” to be a hexagon
with an extra inner point, or as a blue seven-contrariety simplex (or 7-opposition),
seven seems, fundamentally, to be (at least as long as we know) no easy number to
let emerge “from itself” a geometrical regular configuration provided with the kind
of symmetries oppositional geometry got us used to (Fig. 44).

Fig. 44 The geometrical strangeness of the number seven: hard to unfold through spatial
symmetries

So let us try to see, instead, in the next Sect. 2.4, whether applying to this
oppositional-geometrically still mysterious putative tri-segment, so far a nut hard
to crack, a totally different strategy, or better an extra piece of the puzzle, namely,
the “Pascalian lens” (Sect. 1.5), can help us in finding some more fundamental (and
helpful) order, regularity, and understanding of the still hypothetical oppositional
tri-segment.

2.4 The Pascalian 3D Simplex and Its “2D Section for
Tri-segments”

As we saw (Sect. 1.5, Fig. 24), Pascal’s triangle matches perfectly the oppositional
bi-simplexes (and most importantly, their closures, the Bn, Sect. 1.2, Fig. 7), and
we claimed to have successfully defined (with a general proof that we will give
elsewhere) a generalization of Pascal’s triangle to be called the “Pascalian ND
simplex”, such that it matches, case by case, the oppositional poly-simplexes (Sect.
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1.5). So, in order to see whether we can find a way of solving the not so easy puzzle
of reaching (if possible) a harmonious oppositional-geometrical structure of the tri-
segment (Sect. 2.3), let us now turn back to the Pascalian 3D simplex (i.e., a 3D
tetrahedron) for the tri-simplexes (Sect. 1.5, Fig. 27). Among its “2D horizontal
sections” (i.e., the horizontal “arithmetical triangles” this arithmetical tetrahedron
is made of, when sliced horizontally) for all the tri-simplexes, the one relative to
the segments, which gives us therefore the oppositional numericity relative to the
tri-segments, is the third, starting from the top (Fig. 45).

Fig. 45 The Pascalian 3D simplex (tetrahedron) for the tri-simplexes and its “2D section”
(triangle) for tri-segments

How to use this “Pascalian horizontal 2D section” in order to reinterpret the use-
ful, but so far puzzling, combinatorics of Angot-Pellissier? The idea is rather simple
(and seemingly natural): one has to distribute, as useful symbols on a roadmap, the
nine possible vertices determined through Angot-Pellissier’s combinatory method,
as being all the sub-sheaves of the relevant total numerical sheaf (Sect. 2.1, Fig. 35),
in what we might call “Pascalian places”, which happen to be qualitatively different.
In this case (i.e., the tri-segment), which is rather simple (Sect. 1.5, Fig. 29),
such “Pascalian” distinction essentially only runs between the three vertices (each
bearing “1”) on the one side and the three intermediate points (each bearing “2”)
on the other side. By construction, on one hand, the three Pascalian “1” correspond,
respectively, to the Angot-Pellissierian sub-sheaves “1∅2∅”, “1U2U” and “1X2X”.
But then, this is big news: for, so to say, monsieur Pascal himself suggests us here
nothing less than to consider the up to now problematic and mysterious numerical
sub-sheaf “1U2U” as being an “extremum” that is something to be eliminated by
(oppositional) construction together with the already known extrema “1∅2∅” and
“1X2X” (Sect. 2.1, Fig. 36). By construction, still, on the other hand, the three
Pascalian “2” (on the Pascalian horizontal section, Fig. 45) correspond to pairs of
the remaining six nontrivial sub-sheaves (the nontrivial oppositional-geometrical
vertices of the tri-segment): more precisely, these three Pascalian “2” correspond,
respectively, to “1X2∅” and “1∅2X” (on the horizontal upper side of the Pascalian
section), “1U2∅” and “1∅2U” (on its oblique left side), and “1X2U” and “1U2X” (on
its oblique right side) (Fig. 46).

Summing up, the Pascalian section helps us in solving neatly the puzzle of the
term “1U2U”: by suggesting us quite clearly to see it as being (mathematically) “on a
same plane as the sub-sheaves 1∅2∅ and 1X2X” and therefore to eliminate it (i.e., by
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Fig. 46 The “Pascalian 2D section” as a roadmap from the nine sub-sheaves to the six vertices of
the tri-segment

making “1U2U” implode in a way similar to the previous – bi-simplicial – implosion
of the sub-sheaves “1∅2∅” and “1X2X”). The result, in fact, is that not only
two but in fact three over the nine sub-sheaves of the starting Angot-Pellissierian
total numerical sheaf “1X2X” are “extrema” and must so to say be eliminated by
(oppositional) construction. There remain, consequently, six nontrivial numerical
sub-sheaves. Furthermore, thanks to the roadmap embodied by the Pascalian 2D
horizontal section (the horizontal triangle, Figs. 45 and 46) for segments, we see
that these remaining six terms distribute themselves in three precise “places”, of
two terms each, among which two (“1X2∅” and “1∅2X”) are the classic ones of
bi-simplicial oppositional geometry.

But before going back, in Sect. 2.6 (and then in the next Sect. 3), to the
puzzle of a global oppositional-geometrical representation of the tri-segment, let
us have a quick look at the order-theoretical question possibly raised by our present
“Pascalian” proposal of having not two but three extrema (for in some sense, order-
theory deals exactly with the question of extrema, but in rigorous and systematic
mathematical terms). Recall that the already mentioned order-theory (Sect. 1.2, Fig.
7) is a rich and important region of general mathematics, dealing with the most
general order structures and lattice structures [48]. How can we posit ourselves
safely in it relatively to our daring idea here of having not two but three extrema?
Provided I am – alas – no expert on the field, if we try to think at least intuitively
what can mean to have not two but three extrema, a tentative figuration which
seems possible and hopefully helpful is maybe the following, where essentially
we represent the Pascalian “2” as two “white spheres” (the three-colored spheres
represent the three Pascalian extrema: “1X2X being green”, “1U2U being black”,
and “1∅2∅ being blue”) (Fig. 47).

The intuition we propose to follow with this 3D order-theoretical tentative
model seemingly can be decomposed, more classically, in terms of three 2D order-
theoretical models, suggesting that in some sense this fundamental “tri-polarity”
remains submitted to a binary transitive order (T > Y > ⊥) (Fig. 48).

In our eyes, there seem to be at least three possibilities: (1) either there is
transitivity, so that the triangular Pascalian shape (of the section) might seem
illusory (in its claim of a strong ternary symmetry of what it depicts), (2) or
somehow there is not transitivity, so that the triangular shape can hold on; (3) or
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Fig. 47 A tentative 3D order-theoretical qualitative view of the Pascalian 2D section for the tri-
segment

Fig. 48 Decomposing a tentative 3D order structure (for the tri-segment) into three more classical
2D components

(most probably), even if there is in some sense a binary order over (or embedded
in) this (per se) ternary structure (which is the case as for truth-values as we take
them here: 1 > ½ > 0), its ternarity as for its polarities “holds on”. This question
seems to be some order-theoretical counterpart of the question about the very idea
of “oppositional tri-simplex” (in its intended innovating radicality). In our view, it
could echo a famous point raised in 1975 by R. Suzsko [138] against the very idea
of “many-valued logic” and the reactions (as, to mention one, [131]) this originated
(we recalled and tried to discuss this in [96]). But in this paper we are not yet able
to say more on it.

Let us now turn, in what follows, to our lasting problem and goal of finding
the oppositional geometry of the tri-segment, but starting by a (last) preliminary
important question on the possible structure of oppositional colors of the six vertices
of the tri-segment.

2.5 A Point About “Points”: The Oppositional Colors of the Six
Vertices

Notwithstanding the undeniable material difficulty involved by this at the level of
future black and white printed papers on the subject, and not forgetting the potential
real pain and discrimination I thus will – alas – increase among color-blind readers
(there are), I keep thinking, as the years pass, that sua juxta principia the vertices
of the oppositional-geometrical structures do gain, as much as the edges clearly do,
in getting colored: this gives to them some extra expressive power, which enhances
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oppositional-geometrical creative thinking. But how to proceed, thus getting more
graph-theoretical (because of colors)? In a nutshell, the situation is currently the
following: inside bi-simplicial oppositional geometry, coloring the vertices seems
pretty fine, except for the 2-oppositional contradiction segment!

Let us recall more closely this problem. With the exception of the red segment
of 2-oppositional contradiction (i.e., B2), the red segments of contradiction more
generally – i.e. when they are part of an n-opposition strictly bigger than a 2-
opposition – are by no means a problem as for coloring their two vertices. For
short, (1) in the B3, each of the three red segments of contradiction it contains has
one blue and one green vertex; (2) in the A4, we have the same good-functioning
behavior for the four red segments of contradiction it contains; and (3) in the
closure of the A4, namely, the B4, we have the A4, plus its “cloud”, made of
six extra vertices, two by two centrally symmetric, such that they thus let emerge
three extra red segments of contradiction (so B4 has 4 + 3 = 7): but this time
each of these three extra red segments of contradiction will have at each of its two
extremities a blue-green vertex. Put more abstractly, in the case of bi-simplicial (i.e.,
classical, two-valued) oppositional geometry the main use, never properly theorized,
in coloring the vertices went, so far, as follows: (1) in the “oppositional kernel” (of
an n-oppositional closure), the vertices of any simplex of contrariety are blue dots
(related, two by two, by a blue line meaning the contrariety relation between them),
and the vertices of the correlated simplex of subcontrariety are “oppositionally-
dually” green dots (related, two by two, by a green line meaning the subcontrariety
relation between them); (2) in the remaining, non-kernel part of the oppositional
closure itself (and de facto this most of the time, so far, concerns the B4), the
vertices are represented as blue-green dots (the mutual proportion of blue and green,
in principle, can vary according to the typology of the cloud, as we study in [94],
but as this enters seldom into play (so far), this point has not yet been afforded too
systematically) (Fig. 49).

Fig. 49 By coloring the vertices one can distinguish “kernel” and “cloud” (or “envelope”) of a
bi-simplicial B4

This color of its two vertices, importantly, tells something about the structure
where this red segment of contradiction intervenes, that is, respectively, either (i) in
the kernel (i.e., an An-structure) or (ii) in the cloud of a kernel (the union of these
two constituting a Bn-structure).
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Now, as said, the only problem is that, when facing the question of depicting
the two vertices of a red segment of 2-opposition (and not the two vertices of a red
segment which is a fragment of a larger n-oppositional solid), two options seem
possible by analogy with what precedes: representing its two vertices either as:
(i) one blue and the other green (by analogy with the oppositional kernels) or (ii)
depicting them as both blue-green (by analogy with the clouds). The pros and cons
of this choice, so far, are not too clear. But in my own researches so far, I tended
to adopt resolutely the first option. But, as we are going to show, the study of the
tri-simplexes (and higher) reveals, retrospectively, that I made the bad choice.

The Pascalian 2D simplex (Sect. 1.5, Fig. 24) can be read as strongly suggesting
that, in its third line (top-down), corresponding to bi-simplicial – cum grano salis! –
2-opposition, in fact the “2” does belong to the cloud! In other words, the 2-
oppositional contradiction segment, being pre-simplicial (because in oppositional
geometry contrariety simplexes start with triangles, cf. Sect. 2.2, Fig. 39), “lives
inside the classical blue-green cloud” (!). More precisely, the Pascalian 2D simplex
suggests, for the bi-simplexes, that their “2” belongs, in fact, not to one of the two
“simplicial diagonal lines” (either the blue on the left or the green on the right or
maybe even to both . . . ) but to the “cloud zone”. More precisely, “2” belongs to the
vertical central line of the “pivotal elements of the clouds” of the n-oppositional
closures (with n an even number): 2, 6, 20, 70, 256 . . . (Fig. 50).

Fig. 50 Seeing, in the 2D Pascalian simplex, the 2-oppositional contradiction as an instance of
bi-simplicial “cloud”

And this changes quite much as for our questioning about 2-oppositional
contradictory vertices: it means, as for these vertices, that those of any B2 are,
respectively, not the one “blue” and the other “green” but the one “blue-green” and
the other “green-blue” (Fig. 51).

And in fact, one can and must read the same way also the more general
(triangular) 2D section of the Pascalian 3D simplex (i.e., tetrahedron) for the tri-
segment (Figs. 45 and 46). This means that the “Pascalian colors” of the tri-segment
are in turn simple enough and must be represented in terms of (i) three pure colors
(blue, black, green) for its three extrema (“1∅2∅”, “1U2U”, “1X2X”) and (ii) the
three mixed colors for the three pairs of vertices in between any pair of them:
one Pascalian “2” is blue-green, another is blue-black, the third is black-green (for
coloring newly the vertices of the simplexes, cf. Sect. 5.1, Fig. 125) (Fig. 52).
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Fig. 51 Our study tells to change the way of representing the vertices of a 2-oppositional
contradiction segment

Fig. 52 The oppositional colors of the “Pascalian 2D section” for the tri-segment

So, not only the classical blue-green 2-oppositional red contradiction but each
of the three “2” positions of the Pascalian 2D roadmap is in fact, in the same way,
a pre-simplicial two-elements cloud (the simplexes, if any – and they appear for
real in the tri-triangle – would be, for each of the three sides of the Pascalian 2D
section, somewhere in between the extrema “1” and the cloud “2” positions), and the
points living in each of these three “2” cloud positions must therefore be seen as 2-
oppositional negations and labeled, from the viewpoint of the oppositional colors of
the extrema they live (as clouds) in between, by mixed-points (i.e., blue-green, green-
black, and black-blue). But if the three extrema are (as they must) identified with
the three oppositional “simplicial colors” of the tri-simplexes, then it seems natural
to conceive each of the six remaining numerical sub-sheaves (Sect. 2.4, Fig. 46) as
composed (in its two vertex-indices) of two colors: those of its two indices! Since
each pair of sub-sheaves in each Pascalian “2” represents a tri-simplicial negation
(including, as we said, the classical one), this also suggests us how these diagonal
negations will look like with respect, so to say, to the general spatial architecture
(Sect. 2.6) of the tri-segment (Fig. 53).

To sum up, this regular and understandable combinatorial behavior suggests,
very strongly, a very interesting simple but powerful relation of this Pascalian
“oppositional chromaticity” with the Angot-Pellissierian numerical sub-sheaves
(i.e., the six vertices, Sect. 2.4, Fig. 46) corresponding to the Pascalian view.
The general rule for tri-segments (generalizable, with extensions for the chromatic
expression of the simplexes, Sect. 5.1, Fig. 125, to any poly-simplex), as carried
usefully by the indices of the Angot-Pellissierian numerical sub-sheaves, seems
to be straightforward: each vertex “1J2K” (with J, K ∈ {∅, U, X}) will have,
representing it faithfully, a dot of “type”, so to say, “J-K” (as for its colors), and with
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Fig. 53 The Pascalian 2D roadmap shows that the segments of the negations of the tri-segment
“live in the clouds”

blue staying for ∅, black staying for U, and green staying for X. Here as well should
become clearer the not negligible usefulness of our proposal of an “extended indicial
notation” (with respect to Angot-Pellissier’s original one of [3]) for his oppositional
numerical sub-sheaves, i.e., the fact of systematically writing, for instance, “1X2∅”
instead of “1X” or “1∅2U” instead of “2U” (Sect. 1.5). So, the final “chromatic”
reading of the Pascalian roadmap for tri-segments (but this is nicely generalizable,
as we will show in other ongoing draft studies, to higher poly-simplexes) as for
vertices seems to be the following (Fig. 54):

Fig. 54 Angot-Pellissier’s numerical sub-sheaves (vertices) command by their full indices their
“chromaticity”

With this last new tool (a theory of the oppositional chromaticity of poly-
simplicial points), we can now at last come back to the main question left open
at the end of Sect. 2.3, namely, the problem of finding a convincing oppositional
geometry of the tri-segment.

2.6 Back to the Geometrical Quest of the Oppositional
Structure

After having dealt with the problem of coloring the “points” (i.e., the vertices, Sect.
2.5), let us now turn to the oppositional geometry of the “lines” (the edges, i.e.,
the – oppositional – relations between the six nontrivial sub-sheaves of the tri-
segment, Sect. 2.2). Let us come back now, with better “weapons”, to the problem
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of expressing the global geometry of the tri-segment (Sect. 2.3). We know now
that 1U2U is, as 1X2X and 1∅2∅, an extremum and as such must be put away
(Sect. 2.4, Fig. 46). This makes at once disappear as well the seven black segments
which linked this vertex to any of the possible seven (including itself, with a curved
reflexive “curl segment” which was strange, being the only non-arrow curl). So we
have now to arrange oppositionally-geometrically not seven but six oppositional
sub-sheaves (i.e., vertices), taking into account (in order to let emerge a “geometry”)
all the segments relying pairs of them (including, as said, reflexive pairs, which by
construction yield curl arrows) which now are not C2

7 = 28, but C2
6 = 6!/((6 − 2)!

2!) = 21. As a start, we know the relation between the two classical (i.e., bi-
simplicial) vertices 1X2∅ e 1∅2X and we know (Sect. 2.5) that each of these vertices
is |green-blue|, i.e., the first is green-blue, while the second is blue-green (Fig. 55).

Fig. 55 The bi-simplicial starting point: the (red) segment of “ contradiction” (i.e., “classical
propositional negation”)

How to posit the remaining four vertices (numerical sub-sheaves), of which we
now know the oppositional color (Sect. 2.5), with respect to this starting pair?
Let us rely, for a start, on intuitive visual symmetries of the symbols, namely,
on those relating, for instance, 1X2U and 1U2X, and, in a similar way, 1∅2U and
1U2∅ (i.e., symmetries relative to the indexes of the numerical sub-sheaves): this is
interesting since all the pairs of vertices with symmetric indexes (including 1X2∅
and 1∅2X) happen to be related by kinds of negations (Sect. 2.2), so putting this
into geometrical evidence (by construction), by imposing central symmetry to these
three pairs of indicially symmetric points, would keep something of the classical
bi-simplicial interpretation of central symmetry as contradiction (we have here a
conservative extension of bi-simplicial central symmetry) (Fig. 56).

Fig. 56 Rearranging the six nontrivial sub-sheaves of the tri-segment, looking for its oppositional
geometry
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So let us try to put these four nonclassical vertices “around” the classical red
segment (two on the left, two on the right of it); then let us draw progressively all
the relevant colored segments (such as Angot-Pellissier’s method of [3] has allowed
us determining, cf. Sect. 2.2, Fig. 38). Thus doing, we witness at the end of the
process, as one of the possible representations of the tri-segment, the emergence of
a new kind of hexagon (Fig. 57).

Fig. 57 Trying to let emerge, from its six vertices, a good oppositional geometry of the
oppositional tri-segment

Now, there seem to be several good points with this possible representation of the
tri-segment: (1) it highlights (by construction) the central position of the classical
contradiction (red) segment; and (2) it imitates the bi-simplicial oppositional
hexagon (i.e., the bi-triangle, Sect. 1.1, Fig. 2) (i) by putting (by construction with
respect to the interpretation of central symmetry) as diagonals its “negations” (i.e.,
the red contradiction and the pink and the brown “infra”-contradictions) and (ii) by
putting as hexagonal perimeter its “implications” (i.e., the light green and the violet
“infra”-subalternations). Notice also that the final (oppositional) geometrical result
toward which we provisorily tend can be seen both as a 2D and as a 3D oppositional
figure (Sect. 3.3), namely, as a hexagon or as an octahedron (this was already the
case with the classical bi-triangle, notably in Smessaert), and this 3D representation
stresses a bit more an interesting feature of the previous hexagon: the presence of
some kind of “horizontal (black) belt” (Fig. 58).

Fig. 58 The hexagon representation of the tri-segment seen as a 2D projection of an equivalent
3D octahedron
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As with any 2D hexagon or 3D octahedron, one can read rather easily inside
of it three (oppositionally) interesting substructures: respectively, three rectangles
or (equivalently) three squares (in the hexagonal representation the components of
the tri-segment are rectangles, whereas in the octahedral representation they are,
equivalently, squares) (Fig. 59).

Fig. 59 Two different but equivalent views on some components of the oppositional geometry of
the tri-segment

As said, our choice – among several possible other ones (Sect. 3.3) – of this
particular presentation stresses the “logical square”-like expression, as diagonals,
of three “negation segments” (red, pink, and brown) and the expression, as lateral
vertical edges, of at least two “implication arrows” (respectively, light green and
violet – in fact here biconditionals).

However, on one point at least one must beware: in this representation, differently
with respect to the usual one for the bi-simplexes in oppositional geometry, central
symmetry is not uniquely meaning “contradiction”. And as it happens, the starting
intuition of the poly-simplexes (emerged around 2006 and then presented in my
PhD in 2009, [94]) consisted precisely in admitting the idea of having, in the tri-
simplexes, several (in fact three) distinct symmetry centers (i.e., one for each of the
three bi-simplexes composing a tri-simplex). Notice also that the comparison (which
we afford in other papers) with other tri-simplexes, namely, the tri-triangle and the
tri-tetrahedron, suggests that another “regular” geometrical representation of the tri-
segment could be rather useful, namely, the one in terms of a 3D “trihedron” (Sect.
3.3, Fig. 71). In any case (be it hexagon, octahedron, or trihedron, Sect. 3.3), this
result seems much more “regular” (and promising) than the one of Sect. 1.6, Fig.
30 (2009), on one side, and then the one of Sect. 2.3, Figs. 42 or 44, on the other
side, for (1) it infirms, by correcting it strongly, my unfortunate tentative “trihedral”
model of 2009 on that (Sect. 1.6); and (2) it avoids the seemingly intractable
strangeness and the chromatic (and geometric) disharmony of the pentagonal-
heptagonal seven-vertices model of Sect. 2.3.

Having reached, at the end of this Sect. 2, our main target (i.e., a basic but reliable
oppositional geometry of the tri-segment), in the next Sect. 3, we will try to go
deeper into detail with respect to the structure of the tri-segment, so to be able,
notably, to start using it a little bit concretely (in Sect. 5).
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3 More on the Inner Geometry of the Oppositional
Tri-segment

At the end of the previous chapter, we reached an important point: a first, convincing
approximation of the global oppositional-geometrical structure of the tri-segment, in
terms of a hexagon, which is elegant and promising. But at the moment the possible
functioning of this structure is not yet fully clear. Therefore, among other possible
consequences, it is not yet clear which of its “parts” can be more meaningful
and which ones should be seen as less interesting. As a consequence, praising
complexity, we propose, in a partly experimental way (experimental mathematics, as
defended by Mandelbrot [88]), to go in this chapter through the tri-segment’s “inner
jungle” in order to try to lay some possible milestones of its study, hopefully useful
in the future. For the notion of “hybrid” oppositional structures and for that of “inner
jungle”, cf. our [101], important seminal elements of this are in Angot-Pellissier’s
[111], where he discovered and explained, inside the B4, what he theorized as
being four equivalent instances of (previously unseen) “weak hexagons” in addition
to the classical six instances of “strong” hexagons (until then simply known as
“logical hexagons”). Our exploration will be gradual: from proximal (horizon),
through fluent (circuits), and finally to global (representation optimality, inner
jungle, semantic roles, and global valuation patterns).

3.1 There Are Three Possible Vertex Horizons Inside
the Tri-segment

One interesting starting question is that of the possible “destinies” of any of the six
terms inside the tri-segment, imagining that we “walk” from any of them toward the
others: seeing things with a particular vertex’s eyes (this was already in Sect. 2.2,
Fig. 38). As it happens (this will be shown very soon by the emerging patterns),
there seem to be exactly three pairs of such possible “proximal horizons”. Let us
see them. The first concerns the “classical pair” of vertices (i.e., the two extremities
of the red segment): 1X2∅ and 1∅2X (i.e., two terms centrally symmetric in the
hexagonal or octahedral model of the tri-segment) (Fig. 60).

Fig. 60 Establishing the “oppositional horizon” of the classical vertices 1X2ø and 1ø2X
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The “vision” these two vertices have (i.e., their horizon) is exactly the same (i.e.,
the two are “chromatically congruent”), modulo (i.e., provided) a rotation of 180◦
of the two hexagonal patterns in their 2D plane (including, in this rotation of the
global colored structure, even the colored vertices, but not the algebraic expression
of the numerical sub-sheaves) (Fig. 61).

Fig. 61 These two different hexagonal patterns of “oppositional horizon” are in fact equivalent
modulo a 180◦ rotation

The second possible hexagonal pattern of oppositional horizon concerns a
second pair of vertices, the one expressing the Angot-Pellissierian nonclassical
(and centrally symmetrical) numerical sheaves 1U2X and 1X2U. Again, their two
oppositional horizons (i.e., the sets of oppositional colors they have to cross, by an
oppositional segment, in order to access to any of the six vertices – i.e., including
the possibility of accessing to themselves!) are in fact the same hexagonal pattern
of horizon, modulo, again, a rotation of 180◦: the two horizons are chromatically
congruent (Fig. 62).

Fig. 62 The “oppositional horizon” of the vertices 1U2X and 1X2U has the same pattern, modulo
a rotation of 180◦

Finally, the third possible kind of oppositional horizon concerns the pair of the
last two vertices (over the six) of the tri-segment: those expressed by the nonclassical
(and centrally symmetrical) numerical sheaves 1∅2U and 1U2∅. Again, here also
the two horizons are in fact the same, modulo a rotation of 180◦ (Fig. 63).

Remark, again, that, in the three cases (i.e., the three pairs of centrally symmetri-
cal vertices), the 180◦ rotation of the pattern of the hexagonal oppositional horizon
comprises also a rotation of the two-color structure of the six vertices (the only thing
out of rotation are, again, the algebraic expressions of the numerical sub-sheaves
of these vertices, like “1X2U”, etc., which do not move: their bicolored points do



398 A. Moretti

Fig. 63 The “oppositional horizon” of the vertices 1ø2U and 1U2ø has the same pattern, modulo a
rotation of 180◦

move). This invariance through rotation is related to symmetries in the structure
(anchored, among others, in the central symmetry of the sheaves with permuted
indexes, which are exactly those of the pairs, like with 1X2U and 1U2X). These
isometries by 180◦ rotation will reveal themselves quite important later (Sect. 3.6).

Having seen here what appears when a vertex is limited to “what comes next”
(and that is by definition its horizon), another internal viewpoint on the complexity
of this structure is, conversely, that of the possible “flows” or “inner circuits”,
made of arbitrarily long concatenations of oppositional segments of similar (if not
identical) nature.

3.2 Three Possible Inner Circuits of the Oppositional
Tri-segment

The principal possible “flows” inside the tri-segment, meaning by that the con-
catenations (also by reverse iteration) of oppositional relations of same or similar
“quality”, happen to be of at least three kinds: the negations, the simplexes (which,
in the tri-segment, are reduced to non-simplex avatars of the black simplex), and
the implications (arrows). This is of course related to the Aristotelian 32-lattice of
the tri-simplexes (generated equivalently by the Aristotelian pq-semantics of Sect.
1.3, Fig. 11, and by Angot-Pellissier’s sheaf-theoretical method for the oppositional
poly-simplexes of Sect. 1.4, Fig. 18). In fact, it respects the idea that this Aristotelian
lattice is made, qualitatively speaking, of three parts: the upper triangular half
(kinds of contradictions, i.e., kinds of negations), the horizontal diagonal (kinds of
oppositional simplexes, taken in between classical contrariety and subcontrariety),
and the lower triangular half (kinds of Smessaertian noncontradictions, classically
read as kinds of subalternations, i.e., kinds of implication arrows) (Fig. 64).

So, first of all, if we now focus on “contradictions” (the classical red one as the
new pink and brown ones), i.e., the three oppositional relations (among the nine) on
the upper part of the Aristotelian 32-lattice (Sect. 1.3, Fig. 11), we find that their
possible concatenations in the tri-segment constitute together a “subgraph” of the
tri-segment (considered not as a solid, but as a graph, [125]), which we propose to
call the “contradictions circuit” of the oppositional tri-segment (in graph theory a
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Fig. 64 The structure of the Aristotelian 32-lattice generates three “inner circuits” in the opposi-
tional tri-segment

circuit is a closed line). It can be visualized equivalently in at least three different
ways, if geometry is “reinjected” in this graph-theoretical structure (Fig. 65).

Fig. 65 Three equivalent views of the tri-chromatic “contradictions circuit” of the oppositional
tri-segment

What is the use of this? Intuitively it can show, so to say, the circulation (hence
the dynamic name “circuit” here) that “negation” (in its three different forms)
can have between the six vertices of the oppositional tri-segment. As it happens,
this circulation can reach all the six vertices, but not through all “passages” (i.e.,
segments) and not everywhere, in the circuit, by any of the three possible varieties
of contradiction (classical, paracomplete, paraconsistent). The importance (if any)
of this still experimental characterization, that will already play some role in Sect.
3.5, might (and should) become clearer in future studies of higher oppositional poly-
segments but also, a fortiori, from that of any other higher poly-simplex. The main
idea is that poly-simplexes (poly-triangles, poly-tetrahedra, etc.) grow very fast in
mathematical complexity, so this kind of “index” or parameter (inner circuits) can
help “navigating” conceptually (without drowning) in this otherwise discouraging
new ocean of still mysterious shapes.

The second kind of circuit is given by the global structure of the simplicial
relations in the oppositional tri-segment. As we saw, two of these three simplicial
oppositional colors of the general tri-simplex (i.e., the blue and the green one) do
not emerge at all in the tri-segment (Sect. 2.2, Fig. 39). So this “simplicial circuit”
here will be not tri- but monochromatic (and more precisely black – to give an idea,
in the quadri-segment it becomes bichromatic). It might therefore be called, rather,
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the “pivotal-simplex circuit” of the oppositional tri-segment. As previously, it can
be visualized equivalently in at least three different ways (Fig. 66).

Fig. 66 Three equivalent views of the monochromatic “neo-simplicial circuit” of the oppositional
tri-segment

From a graph-theoretical point of view, this subgraph, as the previous one, is a
real circuit, for it is closed and not constituted of disconnected parts. Notice however
that this time it does not reach all the six vertices of the tri-segment (it misses its
two classical vertices). Its intuitive “meaning” (not yet fully clear) should become
clearer in the future (in comparison with what happens in higher poly-simplexes,
where its shape complexifies growingly fractalwise).

The third and last kind of inner tri-simplicial “circuit” is that of the “subalter-
nations circuit” of the oppositional tri-segment. Remark (Sect. 2.2, Fig. 40) that
Smessaert [135] has clarified that in place of subalternation (i.e., implication) one
should in fact read “noncontradiction” (the latter being so to say the true “top-down
symmetrical” of “contradiction” in the Aristotelian 22-lattice); but, as recalled,
subalternation (implication) emerges on that basis as a useful and legitimate
restriction of noncontradiction (by it the nondirectional “noncontradiction” relation
becomes either directional or bidirectional, Sect. 2.2) and carries as such more
interesting mathematical properties (the conditional or the biconditional, classical
or nonclassical). So we will continue, with respect to the lower half of the 32-
lattice, to speak of implications (of three different kinds) not forgetting however
that these can (and must) also be seen, in some more abstract and general contexts,
as three varieties of underlying Smessaertian nondirectional “noncontradiction”.
As previously, this third “circuit” can be visualized equivalently in at least three
different ways (Fig. 67).

What emerges here is that this three-colored graph (gray, light green, violet),
as such, differently from the two previous ones, is a disconnected one (i.e., one
made of two separated parts, an upper and a lower one). Moreover, each of
the two disconnected parts fails to be stricto sensu (i.e., graph-theoretically) a
“circuit”: each is a string (with three loops) with a noncoincident “head” and
“tail”. So, stricto sensu, it is not a circuit (i.e., a graph-theoretical closed line),
unless we adopt Smessaert’s discovery (related to the just aforementioned one)
that the subalternations (i.e., implications) of bi-simplicial oppositional geometry
(i.e., of the Aristotelian 22-lattice) can systematically also be read as having so
to say incorporated in (or associated with) them an invisible but present “reverse
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Fig. 67 Three equivalent views of the tri-chromatic “subalternations circuit” of the oppositional
tri-segment

implication” (i.e., B “being implied” by A, as a reverse relation of A “implying”
B, cf. Sect. 2.2, Fig. 40): for in this case (i.e., if “being implied” is also expressed
graphically, near to “implying”), we can see this global graph as two true circuits
mutually disconnected, which thing justifies (although rather trivially) keeping the
term of “inner circuit” (Fig. 68).

Fig. 68 The subgraph of subalternation (of the tri-segment) also viewed as consisting of two
disconnected circuits

(Given that here the light green and the violet infra-implications are in fact bi-
implications, i.e., they are bidirectional, the Smessaertian correlated relation will
be it as well.) It will be interesting, in future studies, to examine the evolutions in
pattern of this kind of circuit in other poly-simplexes (and first of all in the quadri-
segment and in the tri-triangle).

Let us stress once more that these circuits, proposed by us as a new kind of
hopefully meaningful oppositional-geometrical parameters of the “inner jungle”
(Sect. 3.4) of the tri-segment, should become better understandable (and more
clearly useful, if they will) if studied “in the long run”, i.e., considering in a row this
kind of features not only in the tri-segment but also in the quadri-segment, in the
quinque-segment, etc. (as it happens, some of our ongoing still unpublished draft
investigations on higher poly-simplexes already seem to confirm and to establish
clearly the robustness of this here only conjectured point).

Having explored some inner patterns, let us now turn back to a comparison of the
main different global representations of the tri-segment.
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3.3 Which Is “the Best” Global Representation
of the Tri-segment?

Given that several representations of the tri-segment are possible (Sect. 2.6, Fig.
58), the question arises relatively to knowing whether some of them are better
than others or whether they (probably) simply bear different but equivalent qualities
and interests, to be alternatively privileged in different contexts of study. Roughly
speaking we know (at the moment) at least three ways of expressing geometrically
as a whole this structure (the tri-segment) made of six vertices. Let us summarize
them.

First of all, there is a 3D representation, as we saw, by means of an octahedron
(Sect. 2.6, Fig. 58). The latter can be decomposed in three, two by two 3D
orthogonal, inner 2D squares (more precisions on this will be given in Sect. 3.4)
(Fig. 69).

Fig. 69 The 3D expression of the oppositional tri-segment by means of an octahedron (with its
three inner squares)

This octahedron-like representation helps highlighting the “oppositional diffrac-
tion” of the (here vertical) red bi-simplicial contradiction segment. This expression
of the diffraction of contradiction is very symmetric: (1) with the three “negations”
(red, pink, brown) in the three mutually orthogonal diagonals (which are the three
1D intersections of the three 3D orthogonal aforementioned 2D squares) (2) and
with the horizontal circular “black belt” surrounding the red contradiction as a
wheel with its axle. Moreover, the three 2D squares in which the octahedron can
be decomposed express also by themselves some nice features, for in some sense
they resemble up to a certain extent to the classical bi-simplicial logical square
(Sect. 1.1, Fig. 1): in each of them their two diagonals, although different in
color, are both negations, and at least four over the six vertical edges (the two
light green and the two violet) are kinds of implications, but here the implications
(arrows) become biconditionals (double-sided arrows, Sect. 2.2). Notice that in this
octahedral representation, there is a central symmetry of the pairs of numeric sub-
sheaves which have permutated indexes (like 1X2U with respect to 1U2X), which
is a generalization that implies as a particular case the classical interpretation (as
classical red contradiction) of central symmetry proper of the bi-simplexes (Sect.
2.5, Fig. 51).
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Secondly, there is a 2D representation of the oppositional tri-segment, by means
of a hexagon, which can also be obtained as a 2D projection of the previous (the 3D
octahedron, Sect. 2.6, Fig. 58). Conversely, this hexagon can be pictured in a way (as
we do here, playing knot theoretically with 3D chromatic priorities in the crossing
of segments) such that it almost expresses (at least to an experimented oppositional
geometer’s eye) simultaneously the previous 3D octahedron. Among four possible
projections of the 3D octahedron into a 2D hexagon, we choose the one which is
such that the thus obtained tri-segment hexagon keeps strong enough analogies with
the classical (bi-simplicial) logical hexagon (Sect. 1.1, Fig. 2) and, at the same time,
it highlights the red segment of classical 2-opposition (i.e., classical contradiction)
by putting it as the vertical diagonal of this hexagon. As a consequence, this “tri-
segmental hexagon” can also be meaningfully decomposed into its three constitutive
rectangles (as can the logical hexagon, Sect. 1.1, Fig. 2), which, as previously (with
the octahedron’s three squares) are partly analogous to logical squares and in fact
are fully equivalent (i.e., have each the same four vertices and six segments) to the
previous three octahedral squares (i.e., the (i), (ii), and (iii), Fig. 69) (Fig. 70).

Fig. 70 The 2D expression of the oppositional tri-segment by means of a hexagon (with its three
inner rectangles)

This hexagon-like representation helps (better than the 3D octahedron) in making
quick drawings (which is very helpful to the working oppositional geometer) and as
said keeps, cum grano salis, the good properties of the previous 3D octahedron-
like representation, mainly due to the fact that it keeps the interpretation of central
symmetry in terms of permutation of the indexes of the numerical sub-sheaves (e.g.,
in the central symmetry of 1X2U and 1U2X). In particular, we will meet gratefully
enough this helpfulness when considering (in a bunch of coming other studies)
higher-order poly-segments (and first of all with the quadri-segment and quinque-
segment): when unfolding the quadri-segment, it will be very helpful to consider the
tri-segments it contains as 2D hexagons.

Thirdly, there is however still another possible 3D representation of the tri-
segment, by means this time of a 3D trihedron. It can be remarked that this is the
same geometrical shape (but not the same oppositional-geometrical shape!) as that
of our (mistaken) 2009 tentative representation of the tri-segment (Sect. 1.6, Fig.
30) (Fig. 71).

This trihedron-like representation also provides some kind of help at a funda-
mental level. It loses the nice property of the central symmetry of the permutations
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Fig. 71 A 3D expression of the oppositional tri-segment by means of a trihedron (with its three
lateral rectangles)

of indexes in the numerical sub-sheaves, but, if one adopts a left-right reversal of
each of the three top vertices (i.e., “1J” and “2K” switching in “1J2K” so to give
the equivalent “2K1J” – and reversing accordingly the corresponding chromatic
representation), it gains the advantage of expressing visually the deep relation
existing between the tri-segment as a whole and its originating abstract horizontal
2D section of the Pascalian 3D simplex for tri-simplexes (Sect. 2.5, Fig. 53), by
being now visibly isomorphic to it and thus giving a deeper visual intuition of the
three underlying bi-simplicial “clouds” (for the notion of oppositional cloud, cf.
Sects. 1.2, 2.5 and 5.1) (Fig. 72).

Fig. 72 The trihedral 3D representation of the oppositional tri-segment expresses something of its
Pascalian 2D map

Summing up, these three possible global representations of the tri-segment
seem to be fundamentally equivalent but bear different geometrical “flavors” and
therefore favor different visual intuitions, all potentially useful. Having discussed
the geometry of the possible shapes of the global structure of the tri-segment,
let us now return to a deeper (but still elementary!) look on some of its possible
geometrical substructures.
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3.4 Inner Jungle: Possible Hybrid Substructures
of the Tri-segment

We claimed in [101] (and still claim here) that oppositional-geometrical sub-
structures, even “hybrid” (i.e., even infra-simplicial, chromatically irregular), are
interesting in the bi-simplicial oppositional geometry: we studied it first of all
relatively to the complexity of what we proposed to call the “arrow-hexagons”
of B4 (a new kind of generalization of the concept of logical hexagon). For
instance, the useful notion of “oppositional shadow” (which appears in B4, e.g.,
with the counterpart, hybrid, of the non-hybrid B3 “hexagon of linear order” in
the non-hybrid B4 “tetrahexahedron of partial order”, Sect. 1.2, Fig. 7) can be
conceptualized and studied only once one has a rich, methodical, and exhaustive
typology of such hybrid substructures (the goal being of having, as tools, chromatic
“markers” for describing oppositional transformations). The same seemingly goes
for studying “oppositional-geometrical operations” on the bi-simplicial space: the
result of several such operations (i.e., combinations of previously unrelated oppo-
sitional structures, leading then to new ones) is characterized, as by oppositional
markers, by very regular hybrid structures, which are like “chromatic signatures” of
various kinds of oppositional dynamic phenomena. All these things should help in
the future, in building the new study of a whole “oppositional dynamics” (Fig. 73).

Fig. 73 Oppositional dynamics of the order relations: a B3 becomes B4, leaving a “shadow” of
itself inside the B4

Now, there is no reason (other than fear of complexity) not to study this also
in the oppositional-geometrical space of the poly-simplexes. And oppositional-
geometrically speaking, there seem to be at least two main substructures in the
“inner jungle” of the tri-segment (be it expressed as a 2D hexagon, a 3D octahedron,
or a 3D trihedron, Sect. 3.3): polychrome (i.e., hybrid) squares and triangles (the
study of its segments, even concatenated, has already been quickly evoked, Sect. 3.1
and 3.2, and will be left aside here).

Starting with the squares, we have already evoked three “regular” ones (the
(i), (ii), and (iii), Sect. 2.6, Fig. 59, and Sect. 3.3, Figs. 69, 70, and 71) under
two different but equivalent presentations (i.e., as contained, respectively, in the
hexagon/octahedron or in the trihedron). But in the tri-segment, there are several
other oppositional-geometrical squares, which are even more irregular (i.e., hybrid):
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in fact, mathematically speaking any possible 4-tuple of vertices, among the six
vertices of the oppositional tri-segment, can (and must) be considered an instance
of such concept of hybrid square: so, combinatorially speaking, there are exactly
C4

6 = 6!/(6 − 4)!4! = 15 of them. So, where are (and how do they look like) the
remaining 12 squares? We could view them on the trihedron: three are extensions
of its “roof triangle” (adding a basement vertex to it), three are extensions of its
“basement triangle” (adding a roof vertex to it), and the last six are obtained by
combining two vertices of the roof with two vertices of the basement (avoiding
the three cases where this gives back the three squares (i)–(iii)). But deriving our
missing 12 hybrid squares from the trihedron would break any central symmetry of
the numerical sub-sheaves with permuted indices in the so obtained expression of
the squares. So it is preferable to derive them from the octahedron, which expresses
central symmetries: this property is partly inherited by its parts (among which the
squares). In it, a first group of four squares is visible on the upper half of its surface
(Fig. 74).

Fig. 74 Viewing 4 of the missing 12 hybrid squares on the top of the surface of the octahedral
tri-segment

A second group of four squares can be seen as made of pairs of contiguous
triangles such that one is on the upper half and one on the lower half of the
octahedron’s surface (Fig. 75).

Fig. 75 Viewing 4 of the missing 12 hybrid squares on the vertical quarters of the octahedral
tri-segment

And a last group of four squares can be seen on the lower half of the octahedron’s
surface (Fig. 76).
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Fig. 76 Viewing 4 of the missing 12 hybrid squares on the bottom of the surface of the octahedral
tri-segment

Typologically speaking, the three first squares ((i), (ii), and (iii), Sects. 2.6 and
3.3) are such that all their four vertices are two by two centrally symmetric (this
regularity makes them so to say not hybrid). Differently, the 12 more hybrid squares
deserve their epithet because they have only two among their four vertices which
are centrally symmetric. Accordingly, these 12 can be viewed as forming 3 groups:
a first group of four ((viii), (ix), (x), and (xi)) where the unique central symmetry
is expressed by one red diagonal, a second group of four ((iv), (vi), (xii), and (xiv))
where the unique central symmetry is expressed by one pink diagonal, and a third
group of four ((v), (vii), (xiii), and (xv)) where the unique central symmetry is
expressed by one brown diagonal (it seems to be better to represent them rather
as lozenges) (Fig. 77).

Fig. 77 The 12 broken squares (seen as lozenges) of the octahedral tri-segment

Moreover, these 12 hybrid squares are such that they divide into 6 pairs of
chromatically isomorphic squares, and all such pairs of identical squares are cen-
trally symmetric inside the octahedron (beware: their vertices undergo an indicial
permutation). So, globally there are three different “normal” squares. And then
there are six pairs of centrally symmetric hybrid squares: all in all nine different
chromatic kinds of squares. These elements might be studied in the future (as
“jungle”) relatively to effects of oppositional shadow of the tri-segment with respect
to higher tri-simplexes containing tri-segments.

If we now go to the triangles, a similar combinatorial abstract calculation as
the previous tells us that there are C3

6 = 6!/(6 − 3)!3! = 20 of them. Again, the
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octahedron helps seeing straightforwardly 8 of the 20: they simply are its eight 2D
faces (four on the top half and four on the bottom half of the octahedron’s surface)
(Fig. 78).

Fig. 78 Eight of the twenty chromatically hybrid (i.e., infra-simplicial) triangles of the opposi-
tional tri-segment

Remark that these eight “surface triangles” are two by two chromatically
isomorphic, and this concerns the triangles which are centrally symmetric (the
central symmetry of the whole entails the mutual central symmetry of some of its
parts – here as well, remember however that their respective vertices undergo an
indicial permutation). The other 12 triangles over the 20 can be seen easily enough
in the octahedron’s 3 inner squares ((i), (ii), and (iii)): for there are four triangles
in each of these three squares. If these three squares are seen as tetrahedra, the four
triangles in each square are the four triangular faces of the equivalent tetrahedron
(Fig. 79).

Fig. 79 Twelve chromatically hybrid (i.e., less than regular) triangles of the oppositional tri-
segment

Remark that because of the full diagonal central symmetry of the global structure
of each of the 3 squares (i)–(iii), these 12 triangles obtained by splitting in 2 ways
each of the 3 squares (i)–(iii) let emerge only 6 different chromatic kinds of triangle
(the pairs of centrally symmetric such triangles are, here as well, those chromatically
isomorphic, modulo the reversed indices of their vertices).
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As for the final typology of the 20 triangles, their chromaticity can be stressed
either relatively to the edges or relatively to the curls. Eight of the 12 triangles
inscribed in the 3 central squares (i)–(iii) of the octahedron (i.e., the i, j, m, n, o, p,
s, t) are bichromatic with respect to edges, and 4 (i.e., the k, l, q, r) are tri-chromatic.
The eight triangles of the octahedron’s surface let emerge four different chromatic
kinds of triangle (a and g, b and h, c and e, and d and f; Fig. 78). So, all in all in the
tri-segment there are ten different pairs of isomorphic triangles such that four kinds
are bichromatic and six are trichromatic with respect to edges. As for the curls, the
8 triangles (a–h) are tri-chromatic (due to the lack of central symmetric vertices),
while the 12 triangles (i–t) are bichromatic (due to the presence, in each of these
triangles, of two vertices centrally symmetric) (Fig. 80).

Fig. 80 General typology of the 20 inner triangles of the oppositional tri-segment: there are 10
kinds of them

We cannot say more here. But we will find some use of this already in the next
Sect. 3.5: as we are going to see, at least 2 of these 30 triangles (centrally symmetric)
seem to be particularly meaningful for the tri-segment taken as a whole.

3.5 How to Put “Semantic Values” on the Vertices
of the Tri-segment?

We can face now a very important part of our global study of the concept of tri-
segment: the question of meaning. Clarifying this is absolutely necessary in order
to be able to apply this structure to something concrete whatsoever. Remark that
the structural or differential game (in the sense launched by the structuralist linguist
Saussure, cf. [112]) of the oppositional structures is in general so made that it helps
by itself in building the meaning, by means of the very system of the oppositions. But
here, with the tri-segment, we are handling very minimal conditions of “opposition”
(we have no contrarieties! Cf. Sect. 1.6, Fig. 33), so that the meaning involved seems
to have to be quite subtle (related to varieties of contradiction) and in that sense
harder than usual to figure out.

More precisely, we are looking for something like the “semantic values” of the
decorations of the six vertices of the tri-segment. Let us give a concrete example of
the problem: given, as our starting point, the semantic value (or meaning) “white”
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(or, if you prefer, “giraffe”, or “running” or anything else), what can (and in fact
must) be the semantic values of the other five vertices, so that together they build up
(without incoherence) an oppositional tri-segment? Remark that the answer seems
to be composed of two qualitative halves: three over the six values of the tri-
segment (i.e., three over its six vertices) are expected to be more or less “assertoric”
(they “affirm”), while the other three are more or less “negative” (they “deny”).
This seems clear with respect to the starting point, the classical bi-simplicial (red)
segment N of 2-oppositional contradiction (of which the tri-segment is supposed
to be a ternary “oppositional diffraction”): it relates two polarities, such that each
is the negation of the other, but in a way such that in general (the starting) one is
concrete, while the other (i.e., the negation of the starting one) is vague. So “white”
or “giraffe” (or “running” or even “2 + 2 = 5” or whatever other possible starting
meaning) will be a concrete, non-vague semantic starting point, while the other
polarity of the starting (red) segment of contradiction will be the (classical) negation
of the first and therefore a vague term (i.e., “all that is not the starting term”!). So
far, so good.

Taking off from the 2-oppositional contradiction segment, as we saw (Sects.
1.3 and 2.2), in the oppositional-geometrical space of the tri-simplexes, there are
five new colors (in addition to the classical Aristotelian 4 of the bi-simplexes).
Putting aside the black one (the new simplex, which is pivotal), the four other
new colors, according to the Aristotelian 32-lattice (generated equivalently by the
Aristotelian 32-semantics or by Angot-Pellissier’s sheaf-theoretical method), are
expected to represent (1) two new forms of contradiction and (2) two new forms
of (Smessaertian) noncontradiction (in fact interpretable as implications, Sect. 2.2,
Fig. 40 and Sect. 3.2).

Now, as demonstrated by Angot-Pellissier [3], one of these new negations (the
pink CN one) is “paracomplete” (it drops “completeness”, i.e., it is “intuitionist”,
and it defies the principle of the excluded middle, by producing situations where
you have truth-value “gaps”, i.e. holes): it therefore represents a form of negation
in some sense stronger than the classical one (it goes so far that it so to say
“tears” the truth-theoretical space, cf. left side of Fig. 81), such that it is not
“involutive” (i.e., with an intuitionist “NoT” negation operator, the formula or
meaning “NoT NoT A” is not equivalent, in general, to “A”). The other of these two
new negations (the brown NS one), as demonstrated, again by Angot-Pellissier [3],
is “paraconsistent” (it drops “consistency”, i.e. it is “co-intuitionist”, and it defies the
principle of noncontradiction, by producing situations where you have truth-value
“gluts”, i.e., truth-value superpositions of “1” and “0”, cf. right side of Fig. 81): it
represents a “negation” weaker than the classical one (and a fortiori weaker than
the paracomplete one), so weak in fact that it might seem not to be a negation (cf.
Slater, Sect. 1.1) (Fig. 81).

So, in the tri-segment, starting from one of the two |blue-green| vertices (Sect.
2.5, Fig. 51) of its red segment NN of classical 2-oppositional contradiction (say:
the green-blue 1X2∅), taken to be meaning “white” (or “giraffe”, “running”, etc.),
one pink CN segment (of paracomplete negation) leads us therefore to a blue-black
vertex (1∅2U) meaning “NoT-white” (or “NoT-giraffe”, “NoT-running”, etc.) and
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Fig. 81 Negations and truth-values: paracomplete (gaps), classical paraconsistent (gluts)

generating the possibility of a gap (at Angot-Pellissierian level X-U). And starting
from the same green-blue classical vertex (i.e., 1X2∅), one brown NS segment (of
paraconsistent negation) leads us this time to a black-green vertex (1U2X) meaning
“nOt-white” (or “nOt-giraffe”, “nOt-running”, etc.), generating the possibility of a
glut (at Angot-Pellissierian level U). Summing up, we thus have so far one starting
vertex which expresses a positive meaning and three other vertices, related to it by
a red, a pink, and a brown segments, respectively, that express, each, one of three
kinds of negation (a classical, a paracomplete, or a paraconsistent one) of the starting
concept (or meaning). Remark that in the octahedral tri-segment, together these
three vertices, expressing negations (of our starting vertex 1X2∅), form a surface
triangle (the “e” in the sense of Sect. 3.4, Fig. 78). What are the mutual relations
of these three “negation vertices” in this triangle “e”? The two double arrows CI
and IS express a weak form of equivalence between, on one side, the paracomplete
and the classical negations of the starting term and, on the other side, the classical
and the paraconsistent negations of the starting term. The mutual relation of the two
vertices expressing nonclassical negations of the starting meaning is less evident:
all we know so far is that the black CS segment means, as its name “CS” says,
contrariety at level X-U and subcontrariety at level U.

What said so far covers, relatively to the expression of meaning, four over the
six vertices of the tri-segment and the six edges between them: a tetrahedron, or
square, the “xi” (Sect. 3.4, Fig. 75). So, what about the remaining two vertices, the
numerical sub-sheaves 1X2U and 1U2∅? This can be approached in at least two
ways: (i) starting from 1X2∅ (as previously) (ii) or starting, this time, from 1∅2X. If
we continue starting from 1X2∅, the two remaining vertices are directly accessible
from it by two nonclassical forms of biconditional, IS and CI, respectively. This
suggests that the two remaining vertices can be seen as partly equivalent to the
starting one. More precisely, 1U2∅ is “CI-equivalent” (i.e., “paracompletely equiv-
alent”) to 1X2∅ at level U, whereas 1X2U is “IS-equivalent” (i.e., “paraconsistently
equivalent”) to 1X2∅ at level X-U. As for the mutual relation of these two assertions
(each represented by one of these two vertices), it is expressed by the black segment
CS: again, between the two there is contrariety at level X-U and subcontrariety at
level U.

Three things at least can be seen at this stage: (1) the Aristotelian 32-lattice
suggests that they are so to speak “the (vertically) symmetrical” of negations (i.e.,
they are – as II, CI, and IS – in the lower triangular half of this 32-lattice), and,
as said, under some “Aristotelian” circumstances (Sect. 2.2, Fig. 40), they even
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can be read as forms of implications (so is it, for instance, in the logical square
and hexagon and in fact in all oppositional geometry). (2) With respect to our
starting vertex (1X2∅), these two remaining vertices can (and must) be read (also,
if not only) as “negations of negations (of 1X2∅)”. In the classical case (i.e.,
“¬”) this is the classical negation of classical negation and therefore (classical)
affirmation (or “assertion”). In the other two cases of negation (paracomplete and
paraconsistent), this seems to lead, again, to other varieties of “affirmation” (an
affirmation with a gap and one with a glut, Fig. 81). We thus have three kinds
of classical and nonclassical “affirmations (of the starting 1X2∅)”. (3) If one
reads this centrally symmetric octahedral (or hexagonal) tri-segment “the other
way round”, i.e., starting from the vertex “1∅2X”, taken (classically) as meaning
the (classical) “affirmation of ‘the (classical) negation of white’” (or of “giraffe”,
of “running”, etc.), the two vertices up to now somehow mysterious, 1X2U and
1U2∅, must be read (because of the reasoning above and because of the central
symmetry of the structure) as two nonclassical negations of it. So, they are two
nonclassical negations of the classical (starting) negation (1∅2X), therefore they are
two nonclassical affirmations of the starting vertex 1X2∅, and together with 1X2∅
itself they therefore seem to be three forms of “assertion” (or noncontradiction)
of the starting meaning “white” (or of “giraffe”, or of “running”, etc.). Remark
that together the three vertices form a “triangle of assertions” (of the starting
meaning): more precisely, the triangle “c” in our notation of Sect. 3.4, Fig. 78,
which is centrally symmetric to the previous “triangle of negations”, i.e. “e”. The
3-oppositional relations of this triangle “c” (of assertions) are, again, CI, IS, and
CS. So, in some sense we have reached here two triangles, a “triangle of negations”
and a correlated (and centrally symmetric to it) “triangle of assertions” (this is a first
example of the apparent usefulness of hybrid substructures, Sect. 3.4). Similarly, the
tetrahedron (or “square”) “ix” (Fig. 75) is the structure dealing specifically with the
vertex 1∅2X and its three possible negations (Fig. 82).

Fig. 82 The basic intuition over the fundamental “semantic values” of the oppositional tri-
segment: two triangles

So, remark also that the tri-segment’s inner squares reveal potentially meaningful
as well in an additional way: this can be seen if one concentrates on the meaning of
the three non-hybrid squares (i, ii, iii, Sect. 3.3, Fig. 69). The two vertical squares (of
the octahedral tri-segment), i.e., the “i” and the “iii”, seem to embody, respectively,
the relations between (1) classical negation and paracomplete negation (i) and (2)
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classical negation and paraconsistent negation (iii). As for the horizontal square
(ii), it seems to embody the relations between the four nonclassical meanings: (1)
between paracomplete either affirmation or negation and paraconsistent affirmation
or negation (the four black CS edges), (2) between paracomplete affirmation
and paracomplete negation (pink diagonal CN), (3) and between paraconsistent
affirmation and paraconsistent negation (brown diagonal NS).

This distribution of the six vertices into two groups of 3 (i.e., the triangles “c” and
“e”) seems to be semantically stable. The “stability” of this distribution may become
clearer when one concentrates on the possible (virtual) iterations of negations in the
tri-segment (and here we can see somehow at action, in its conceptual potential
usefulness, the “circuit of contradictions”, Sect. 3.2) (Fig. 83).

Fig. 83 The possible concatenations of iterations of the three kinds of negations reach a stable
“semantic distribution”

The “triangle of assertions” (Fig. 82), with respect to any of its two possible
semantic starting points (i.e., 1X2∅ or 1∅2X), contains three numerical sub-sheaves
which have, prefixed to the semantic starting point, always an even number of
negation signs (Fig. 83); conversely, the “triangle of denials” (Fig. 82) contains
three sub-sheaves such that in each there is, prefixed to the semantic starting point,
always an odd number of negation signs (Fig. 83). This seemingly distributes
meaning over the tri-segment, in a way such that each of classical, paracomplete, and
paraconsistent logic/mathematics has two loca, a positive (assertion) and a negative
(denial) one.

Having already dealt with quite many aspects of the concept of oppositional
tri-segment, one last point at least remains nevertheless to be treated before being
reasonably able to start using tri-segments “for real” (in applications): understanding
how they can be decorated with truth-values, that is, “valuated”.

3.6 Which Possible “Truth-Valuations” of the Global
Tri-segment?

One last crucial problem, seemingly, is that of determining how do function
“valuations” (i.e., the attribution of truth-values) for the oppositional tri-segment.



414 A. Moretti

Recall that for a structure of opposition, its strength comes also from coherence
in that respect. And that is what works for the logical square, as well as for
its many avatars or even its few components: they are useful since they admit
coherent patterns of global assignments of truth-values. In order to find a solution
for the problem of valuating the tri-segment, which seems to require to reduce
combinatorial complexity, as we are going to recall, the inspiring image seems to be
the familiar situation with the bi-simplexes. For here, empirically (cf. Mandelbrot
[88]!), there seems to be something like a “law of the two hemispheres” of valuation:
one-half of the valuations will be “0”; the other will be “1”. This can be seen in
the 1D space with the oppositional segment (B2) and in the 2D space with the
oppositional hexagon (B3) (Fig. 84).

Fig. 84 “Hemisphere theory”: the bi-simplexes’ (and their closures’) valuation always cuts their
“surface” into two

This hypothetical “hemispheral” behavior of the valuation of the bi-simplicial
structures can also be seen in the 3D space with the oppositional tetrahexahedron
(B4) (Fig. 85).

Fig. 85 The four possible valuations of the oppositional tetrahexahedron (the B4, the “closure” of
the bi-tetrahedron)

Intuitively, this behavior seems to be general for the bi-simplexes and their
closures: all the vertices of any blue simplex will have to be valued “0”, except
one (let us call it the “oppositional hostage”), which will have to be valued “1”;
conversely, all the vertices of the correlated, centrally symmetric green simplex
will have to be valued “1”, except one (also an “oppositional hostage”), which
will have to be valued “0” (by construction, these two hostages, the blue and the
green one, are mutually centrally symmetric). Now, the structure of the bi-simplex,
by construction, is such that it lets emerge (seemingly independently from the
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dimension of the starting simplex) a partition into two of the resulting bi-simplex’s
n-dimensional “surface” (the half around the green hostage, valued “0”, will have
to be valued “0”; the other half, around the blue hostage, valued “1”, will have to be
valued “1”), and this seems to have to be respected also by the bi-simplex’s cloud
(this last conjecture is not yet proven for higher Bn, but this provisory uncertainty
seemingly brings not much harm here – but this point will have, of course, to be
fully clarified as soon as possible). The number of vertices of the starting simplex
(i.e., its dimensionality) determines how many rotations of this valuation pattern
(for that precise bi-simplex and its closure) there can be (this is due to the fact
that simplexes, by construction, are symmetric with respect to all their vertices and
therefore any vertex can and must play the oppositional hostage). So, the valuation
of bi-simplicial oppositional-geometrical figures (including their closures) admits
(i) an abstract n-dimensional “hemispheral pattern” and (ii) n concrete possibilities
of having this hemispheral pattern embodied on the global Bn: two for the B2 (two
vertices), three for the B3 (three vertices), four for the B4 (four vertices), etc.

But our oppositional tri-segment is not bi-simplicial, but it is an instance of tri-
simplex. And, by construction, dealing with tri-simplexes means dealing with three-
valued logic. How to conceive valuation in this case, then?

Now that we seemingly know with sufficient precision the real structure of the
tri-segment (but some surprises wait for us in Sect. 4), the question is: how to
handle, with it, this question of its possible global valuations? Remark that from
a purely combinatorial viewpoint (six vertices admitting each in abstracto three
possible truth-values), we seem to have 36 = 729 different possible valuations (!).
But then we must remember that the B2 has abstractly 22 = 4 valuations, but really
it only has 2; similarly, the B3 in abstracto has 26 = 64 possible valuations, but
really it only has 3; and similarly the B4 has abstractly 214 = 16.384 valuations
(!), whereas really it only has 4. So, it seems natural that oppositional structures
reduce drastically, by the constraints they impose by construction, the combinatorial
explosiveness. How to reduce then, comparably (reasoning the safest we can by
analogy), the combinatorial complexity of the valuations of the tri-segment? Remark
that the structure “tri-segment” has a strong central symmetry, meaning by that that
its centrally symmetric parts are oppositionally identical, so the possible cases seem
already to be reduced at least by 2. This is not much, but it suggests that symmetries
play here as well as in the bi-simplexes: so there is a robust hope of finding here
as well drastic reductions of combinatorial complexity. On the other hand, from
the viewpoint of analogy (with what is known from the bi-simplexes), we have, by
construction, three possible truth-values. So, a first temptation, betting on the real
existence of a strong analogy with the bi-simplicial case (to be checked now), might
be to have us landing here to something like a “surface tripartition” (instead of the
surface bi-partition, or “hemisphere theory”, we seemingly have, as we have seen,
with the bi-simplexes) (Fig. 86).

This solution, in fact, seems to work. It leads to see three independent “worlds”:
three bi-simplexes inside the tri-segment, each bi-valued (with three possible truth-
values only at the global scale, never in the bi-simplicial substructures of the tri-
simplex). And this happens to be made very clear by the “oppositional colors” of
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Fig. 86 An intuition on “valuation” in the tri-simplexes: from “hemisphere theory”, to “sphere
n-partition theory”

the vertices (Sect. 2.5)! The rule seems to be that each vertex, in a bi-simplicial pair
(i.e., the one comprising the cloud where this vertex lives), can receive only either
its “natural value” or its “hostage value” (i.e., the “natural value” of its co-simplex in
that bi-simplex), which are precisely the two colors of the indexes of this vertex and
therefore the two colors of this “point” itself! The same reasoning (with the same
two colors) runs for its centrally symmetric mate, and this gives as a major final
result of our reasoning only two possible valuations of the oppositional tri-segment
(Fig. 87).

Fig. 87 Sphere n-partition: what seem to be the only two possible global valuations of the
oppositional tri-segment

More concretely, the combinatorially natural solution to the problem of valuating
the tri-segment seems to be that (1) |blue-green| vertices (i.e., vertices blue-green
or green-blue) can only be valuated “0” or “1”; (2) |blue-black| vertices can only
be valuated “1/2” or “0”; (3) |green-black| vertices can only be valuated “1” or
“1/2”; (4) there is only one valuation, i.e., only one kind of valuated pattern (of the
global tri-segment); (5) given the existence of a 2-symmetry by a 180◦ rotation of
the 2D hexagonal representation of the tri-segment, this valuation (i.e., the unique
pattern) can only be “upside” or “down”; (6) a posteriori this matter of fact is
pretty analogous to what happens already with the opposition segment (the bi-
simplicial counterpart of the tri-segment), so the solution proposed here seems to be
a conservative extension; and (7) this behavior is kept in higher poly-segments (and
in fact, mutatis mutandis, in higher poly-simplexes), so the solution proposed here
seems to be a generalizable conservative extension. Remark that the reason why
the “hostage rotation” (of the valuations) does not play here is because in the tri-
segment there are not yet simplexes (an oppositional hostage appears as soon as, but
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not before, at least one simplicial triangle appears). Remark, then, that this seems to
be a quite important new element of knowledge (if our starting conjecture holds): it
seemingly rules the valuation of any poly-simplex! (We will handle this question as
soon as we will expound, in another study, the case of the oppositional tri-triangle,
of which Angot-Pellissier has opened the sheaf-theoretical exploration in [3], but
without reaching its oppositional closure and without affording the question of its
global valuation.)

Notice however, as well, that this valuation (Fig. 87) might – and in fact must –
perplex us, in the sense that it strongly suggests to see as implication arrows some
edges of the tri-segment that we have had no reason so far for seeing as implication
arrows. This concerns (1) the four black CS segments, (2) the two light green CI
double arrows, and (3) the two violet IS double arrows: each of these three might
function – according to the two valuations – as a unidirectional implication arrow
(Fig. 88).

Fig. 88 Some perplexities arising from the valuation (otherwise convincing): it seems to let
emerge arrows

So in some sense we have now, unexpectedly, a non-negligible new problem
with “arrows”. This seems to be due to the fact that our “Aristotelian strategy” (put
into play in Sect. 2.2), aimed at avoiding (lazily) the “heaviness” of a potential
Smessaert-like complete analysis of implication behaviors (at the non-Smessaertian,
tri-simplicial level), possibly did not suffice: our conjecture (and our correlated lazy
bet), that just looking for the implication-behavior of the edges admitting some “I”
in their code might suffice for dealing, overall, with implication-like relations, was
seemingly wrong (and our lazy bet is seemingly lost). So we will now face this
very instructive serious problem (remember that we already faced voluntarily an
instructive “laziness problem” in Sect. 2.1 and 2.4) by changing now quite radically
our strategy on this point of arrows (as we changed it successfully in Sect. 2.4
with respect to trivial extrema), by having, from now on, a direct and systematic
“tri-simplicial look” (not yet existing . . . ) at the possible Smessaertian-Demeyan
“implication geometry” of the tri-segment (Sect. 4).
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4 There Is Logical Geometry Inside the Oppositional
Tri-segment!

The result we arrived to at the end of the previous chapter is interesting, but still too
puzzling with respect to implication relations. And it appears that the instruments
used so far do not suffice yet, as we would have liked, to deal in full clarity
with this massive “arrows problem”. So we turn to the tools offered at the bi-
simplicial (rather than tri-simplicial) level by “logical geometry” (Sect. 2.2, Fig.
40), in so far it contemplates, specifically, the existence of a whole (although small)
“implication geometry” parallel (in Smessaert and Demey’s terms) to “opposition
geometry” (“oppositional geometry” being seen by them as a bricolage, a non-
systematic and unconscious mixture of these two scientific characterizations, as we
will reexamine in Sects. 4.5 and 4.6). So far, as long as I know, logical geometers
have not yet inquired the concept of poly-simplex. Therefore we will have the honor,
brave reader, you and me, to open now the way of this attempted “junction”, right
here. And this should close, at a reasonable level of understanding, our complex
investigation over the concept of tri-segment, not without some interesting backfire
(Sects. 4.6, 5.1 and 5.2).

4.1 The Implication Geometry’s 32-Semantics/Lattice
of the Tri-simplex

We want to explore the “implication geometry” (if, as we think, it exists) correl-
ative of the oppositional tri-segment we investigated so far. Our “doubt” is just
methodical, since this has never been done before (logical geometers have not yet
taken seriously the idea of poly-simplex, and for a start they do not seem to favor
much – euphemism – the simpler idea of bi-simplex). As for us, what we need
for that is, first of all, generating a new kind of lattice, comparable to our game-
theoretical Aristotelian 32-lattice (Sect. 1.3, Fig. 11), for obtaining the “implication
kinds” of the 21 possible binary relations (edges and curls) holding between the 6
vertices of the tri-segment (Sect. 2.4, Fig. 46). Recall that at the level of the “bi-
simplicial space” (i.e., two-valued oppositional/logical geometry), such semantics
and lattice, devised by Smessaert around 2011 (Sect. 2.2), resulted of two “meta-
questions”, complementary of the “Aristotelian” ones (proposed by me in 2009)
seen so far (Sect. 1.3, Fig. 10), but aimed at generating not “opposition relations” but
“implication-like relations”. Truly speaking, Smessaert investigated the strangeness
of “subalternation” (i.e., the strangeness of its being, in the classical “Aristotelian
quartet” (Sect. 1.1, Fig. 1), the only asymmetric relation), and because of his
rigorous framing of this question, he discovered, probably unexpected, a whole
(although small) “implication geometry” (this is a typical structuralist good move).
Now, these two Smessaertian meta-questions are (for any pair of things A and B)
(Q’1) “Is it possible to have, at the same time, A false and B true?”; (Q’2) “Is it



Tri-simplicial Contradiction: The “Pascalian 3D Simplex” for the Oppositional. . . 419

possible to have, at the same time, A true and B false?”. As one sees, they inquire not
the simultaneous “truth-value similarity” (both false, both true) but the simultaneous
“truth-value dissimilarity” (false the first while true the second, true the first while
false the second). For short, Smessaert had the structuralist brilliant idea to add
the study of dissimilarity to that of similarity (to a continental philosopher’s eye
that reminds the main methodological lesson of Plato’s Parmenides, [113]). Now,
allowing two kinds of answers, i.e., “0” or “1” (this binarity being the “bi-simplicial
touch”!), generates four possible pairs of answers ([0|0], [0|1], [1|0], [1|1]) at
these two questions (Q’1 and Q’2). These four possible “double answers” ([x|y])
distribute, similarly to what we saw with the Aristotelian 22-lattice (Sect. 1.3, Fig.
10), in a “Smessaertian lattice”, which gives precisely the four kinds of possible
“implicative relations” (for the bi-simplicial space) (Fig. 89).

Fig. 89 The Smessaertian 22-semantics for the “bi-simplicial” (in our terminology) implicative
geometry

As we recalled above (Sect. 2.2, Fig. 40), these four kinds of Smessaertian
“implication relations” are (i) double-implication ([0|0]), (ii) right-implication
([1|0]), (iii) left-implication ([0|1]), and (iv) no-implication ([1|1]) (Fig. 90).

Fig. 90 The meaning of the four Smessaertian kinds of implication relations for bi-simplicial
geometry

Let us introduce here, comparably with what I did with respect to Angot-
Pellissier (Sect. 2.2, Fig. 37), a small terminological change (aimed at making
easier the combination of logical geometry’s strategy and conceptuality with our
own approach based on simplexes): a useful convention (for what follows) consists
in naming with a single letter each of the possible four Smessaertian kinds of
implication (so to generate, once one levels up as we will be when we will
move from bi-simplicial to tri-simplicial, a “code” made of two such literals
concatenated), a swift symbolism whose utility should appear soon (Fig. 91).
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Fig. 91 A useful terminological convention (literals for building higher-level concatenations)

Starting from that, what we need now with respect to our goal (i.e., clarifying
the strange “black CS emerging implications” carried by the tri-segment, notably
in relation to its two valuations obtained in Sect. 3.6, Fig. 88) is something
comparable to Smessaert’s 22-semantics and its 22-lattice, but admitting now
not two, but three kinds of answers, because of the adoption by us of a third
truth-value, “1/2”, alongside with the classical “0” and “1” (i.e., so to make this
implicative-geometrical meta-lattice match, by the “implication kinds” it generates,
the tri-simplicial and three-valued structure of the oppositive tri-segment) (Fig. 92).

Fig. 92 The “Smessaertian” 32-semantics for the “tri-simplicial” implicative geometry

But here we must mention an important problem that we will have to leave open
in the rest of this study (but not in a near future), relative to what we called “the q
parameter” (Sect. 1.3): some structure will be clearly missing in our approach now,
for we are not (yet) able to try to ask all the remaining comparable meta-questions,
like the “Aristotelian” Q3 (“Can two things A and B be ½ together?”) or like the
“Smessaertian” Q’3 (“Is it possible to have, at the same time, A ‘0’ and B ‘½’?”).
On this we will come back later (Sects. 5.1 and 5.2).

So, back to our introduction, if not of all the possible meta-questions (q
parameter), at least of a third possible kind of answer (p parameter) to them: we
see that, as in the case of the Aristotelian 32-semantics and 32-lattice (Sect. 1.3,
Fig. 11), there are, emerging here, five new kinds of possible answers ([1/2|0],
[0|1/2], [1/2|1/2], [1|1/2], [1/2|1]), whence, by (inspiring but slippery) analogy, we
would expect something like 4 + 5 = 9 kinds of “implicative relations”. This can
be viewed, from our viewpoint at least, as a form of tri-simplicial diffraction of the
bi-simplicial Smessaertian “implication geometry” (Fig. 93).

The naming, in our convention, of the five new kinds of implicative relations
cannot yet be fully clear at this stage. But it should become clearer as soon as we
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Fig. 93 A first intuition on the “tri-simplicial diffraction” of the (bi-simplicial) Smessaertian
“implication geometry”

will start the calculations of the edges carrying these nine (or more?) qualities of
implication and when, thus, we will see how these “implications work” (Sect. 4.2).
But by analogy with the poly-simplexes, we would expect something comparable
with what we have already seen (Sect. 2.2). A still more urgent problem is that of
interpreting the formal meaning of these five new kinds of implication relations: but,
again, a reasoning by analogy, always to be taken carefully (as potentially slippery,
of course), can provide already now a provisory starting intuition on that (to be
further checked by other means) (Fig. 94).

Fig. 94 Guessing, by analogy, the emerging codified labels and the formal meaning of the (at
least) five new kinds

Another question arising before we get started is the following: what about the
colors of “points” (i.e., the vertices), if any in this “implication geometry”? Here,
as a provisory methodology, we will keep the “point coloring technique” of the tri-
segments (Sect. 2.5). This seems not necessarily too arbitrary since the geometrical
shape under examination (the tri-segment, abstraction made of its colours) has been
generated by the Pascalian method of Sect. 1.5 (and the Angot-Pellissierian one,
isomorphic to it), which seems to have a strong isomorphism with the “coloring of
points” we adopted (Sect. 2.5, Figs. 52 and 53). But we will remain ready to revise
this provisory methodology (for the coloring of points) as soon as it would appear
reasonable to do that. So, given that the vertices of the tri-segment, seen as Angot-
Pellissierian numerical sub-sheaves, remain the same as those seen so far (Sects. 2
and 3), we can now go to the question of the edges, between any pair of them, of the
“implication-geometrical” version of the tri-segment we are trying to study in this
Sect. 4.
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4.2 Calculating the 21 Implicative Relations (Edges)
of the Tri-segment

On the basis of the “Smessaertian” 32-semantics and 32-lattice seen in the previous
section (which asks only 2 of the 6 meta-questions it could/should ask, as pointed
out in Sect. 4.1), we must now calculate the 21 binary relations holding between
the 6 nontrivial vertices of the tri-segment (Sect. 2.4, Fig. 46). This seemingly
can be done rather easily relying anew on the Angot-Pellissierian numerical sub-
sheaves introduced in the previous Sects. 1, 2, and 3, taken by pairs (hence the
number 21: there are 21 possible unordered such pairs). However, an important
change here is that since we are mainly dealing with varieties of implication, we
must now also pay attention to the order of each such unordered pair of numerical
sub-sheaves, i.e., distinguishing AB from BA, so to say (implication is an order
relation). Combinatorially, taken apart the 6 reflexive pairs (as “1X2U and 1X2U”),
the remaining 15 unordered pairs (as “|1X2U and 1X2∅|”) must be examined “both
ways”: so all in all 6 + (2 × 15) = 36 pairs must be analyzed. So, in principle to
each (nonreflexive) ordered pair, it should be asked now the four following pairs
of Smessaertian questions (Q’1 and Q’2, in both Angot-Pellissierian sheaf-levels U
and X): (Q’1/U) “Is it possible to have, at the same time, A false and B true at level
U?”; (Q’2/U) “Is it possible to have, at the same time, A true and B false at level
U?”; (Q’1/X) “Is it possible to have, at the same time, A false and B true at level
X?”; and (Q’2/X) “Is it possible to have, at the same time, A true and B false at
level X?”. In each case, the quartet of answers (A’1/U, A’2/U, A’1/X, and A’2/X)
to this general quartet of questions, for each of the 36 ordered pairs of vertices (i.e.,
sub-sheaves) of the tri-segment, will give us the “implication quality” of this precise
ordered pair of vertices (one among the 36), that is the “color” of the corresponding
edge of the tri-segment. So let us stress again that this implies that, for each non-
ordered pair of vertices, the quartet of questions should be applied two times (one
for each of the two possible orders, A-B or B-A, of the unordered pair). But as it
happens, the mutually reversed ordered pairs are in fact strictly correlated (as for
the quality of implication relation generated by their answers) in a way such that the
correlated reversed pairs will turn up to give globally (i.e., modulo the direction) the
same answer, and this will allow in the end a very useful simplification (Sect. 4.3,
Fig. 102). For short, reverse pairs just will exchange R with L and vice versa (Fig.
95).

Fig. 95 Possible left-right simplifications of the “implicative relations” (eliminating hidden
redundancies)
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So it will suffice to calculate one of any pair of correlated pairs (of sub-sheaves),
and the other will be obtained by substituting, in the result of the first, any R with L
and any L with R. Therefore, we only need to test 21 pairs (instead of 36).

Let us now give just a few examples of calculations, so to nourish the intuition
of the reader. Let us first consider a pair which depends on its order, the ordered
pair of sub-sheaves “1X2U and 1X2∅” (taken as “A and B”). The calculation goes
as follows, asking about this ordered pair the four Smessaertian questions: (Q’1/U)
“Is it possible to have, at the same time, A false and B true at level U?”; the answer
to this (i.e., A’1/U) is 0. (Q’2/U) “Is it possible to have, at the same time, A true
and B false at level U?”; the answer to this (i.e., A’2/U) is 1. (Q’1/X) “Is it possible
to have, at the same time, A false and B true at level X?”; the answer to this (i.e.,
A’1/X) is 0. (Q’2/X) “Is it possible to have, at the same time, A true and B false at
level X?”; the answer to this (i.e., A’2/X) is 0. As a result, the string variable x (for
concatenating orderly the two answers relative to level X, cf. Sect. 2.2), receiving
here the value 00, is B (for B is defined, in the Smessaertian 22-semantics, as [0|0],
Sect. 4.1, Fig. 91), and the variable u (for concatenating orderly the two answers
relative to the level U, cf. Sect. 2.2), receiving here the value 01, is L (for L, in
the Smessaertian 22-semantics, is defined as [0|1]), so here the string variable xu
becomes BL and this is the tri-simplicial “implication kind” holding between the
two ordered vertices of the tri-segment (Fig. 96).

Fig. 96 How to calculate the quality of the “implication relation” of an ordered pair of numerical
sub-sheaves

Let us now consider the reverse ordered pair, “1X2∅ and 1X2U” (taken as “A and
B”). The calculation for it goes as follows, asking about this ordered pair the four
Smessaertian questions: (Q’1/U) “Is it possible to have, at the same time, A false
and B true at level U?”; the answer to this (i.e., A’1/U) is 1. (Q’2/U) “Is it possible
to have, at the same time, A true and B false at level U?”; the answer to this (i.e.,
A’2/U) is 0. (Q’1/X) “Is it possible to have, at the same time, A false and B true at
level X?”; the answer to this (i.e., A’1/X) is 0. (Q’2/X) “Is it possible to have, at the
same time, A true and B false at level X?”; the answer to this (i.e., A’2/X) is 0. As
a result, x, being here 00, is B, and u, being here 10, is R, so here xu is BR and this
is the tri-simplicial “implication kind” holding between these two ordered vertices
of the tri-segment.

Remark, then, as we already said, that inverting the two vertices here just
transforms “BL” in “BR”: which means that the same edge read in one direction
gives BR, while read in the other it gives BL. This is because at level X-U (i.e.,
X minus U) the implicative relation happens here to be B (which is bidirectional),
which is therefore not affected by switching the vertices, while at level U the relation
happens to be L for the first two ordered vertices and R for their reversal: this means
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that R or L represent in fact the same “absolute relation”, but it specifies (by being
R or L) in which of the two possible directions it is read; let us call it “|R/L|”, which
means “L or R, just according the directional viewpoint” (Fig. 97).

Fig. 97 The relations “R” and “L” are two directionally opposed viewpoints on the same
unchanging reality

Let us now take a different example, that of a pair of sub-sheaves of the tri-
segment which is invariant with respect to the order of its elements. Let us consider
the ordered pair “1X2U and 1U2X” (taken as “A and B”). Its calculation goes like
this, asking about this ordered pair the four Smessaertian questions: (Q’1/U) “Is it
possible to have, at the same time, A false and B true at level U?”; the answer to
this (i.e., A’1/U) is 0. (Q’2/U) “Is it possible to have, at the same time, A true and
B false at level U?”; the answer to this (i.e., A’2/U) is 0. (Q’1/X) “Is it possible
to have, at the same time, A false and B true at level X?”; the answer to this (i.e.,
A’1/X) is 1. (Q’2/X) “Is it possible to have, at the same time, A true and B false at
level X?”; the answer to this (i.e., A’2/X) is 1. As a result, x, being here the string
11, is A, and u, being here the string 00, is B, so here xu is the string AB and this is
the “implication kind” holding between the two ordered vertices of the tri-segment.

Let us now consider the same ordered pair, but reversed: “1U2X and 1X2U” (taken
as “A and B”). Its calculation goes like this, asking about this ordered pair the four
Smessaertian questions: (Q’1/U) “Is it possible to have, at the same time, A false
and B true at level U?”; the answer to this (i.e., A’1/U) is 0. (Q’2/U) “Is it possible
to have, at the same time, A true and B false at level U?”; the answer to this (i.e.,
A’2/U) is 0. (Q’1/X) “Is it possible to have, at the same time, A false and B true at
level X?”; the answer to this (i.e., A’1/X) is 1. (Q’2/X) “Is it possible to have, at the
same time, A true and B false at level X?”; the answer to this (i.e., A’2/X) is 1. As
a result, x, being here the string 11, is A, and u, being here the string 00, is B, so xu
is here the string AB. Remark that in this case the fact of reading this edge in one
direction or the other makes no difference: both ways it has to be read AB.

We will not make – we are merciful – all calculations explicitly here. Instead we
will give the general resulting calculation of the 21 edges (in only one direction, the
result of the reverse calculation can be obtained by substituting the “R” with “L”
and vice versa), in a synoptic compact format (Fig. 98).

These 21 calculations give us 11 kinds of implication relations (the BB, BL,
AB, LL, AL, AR, LB, AA, LA, RA, BA). But once we exchange L with R (and
not the other way round) two become redundant and we obtain thus nine kinds:
BB, BR, AB, RR, AR, RB, AA, RA, and BA. If we compare these nine kinds of
implication relations obtained here with the nine kinds conjectured by analogy (Sect.
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Fig. 98 Synoptic view of the calculations over the 21 ordered pairs of sub-sheaves (i.e., vertices)
of the tri-segment

4.1, Fig. 94), we see that the 32-lattice for the tri-segment must be modified (we
will also adopt by the way new formal symbols more fit, notably in terms of color
conventions, with those of the opposition tri-segment, as we will see in Sect. 4.5).
The result is well-balanced (i.e., fully symmetrical) (Fig. 99).

Fig. 99 A simplified version of the 32-lattice after the calculation of the 21 edges of the
implication tri-segment

This change is important and will have to be understood (Sects. 5.1 and 5.2).
Relying on this knowledge of the 21 edges (Fig. 98), and based on our new
symbolism (cf. Figure 99), we can give now a synoptic view of the “horizons” (Sect.
3.1) of each of the six vertices of the implicative tri-segment (Fig. 100).

Fig. 100 Synoptical view of the kinds of tri-simplicial implicative relation each vertex has with
any possible vertex

Remark that, as in Sect. 3.1, there are here three kinds of horizon, such that the
vertices centrally symmetric share the same horizon modulo a rotation of 180◦ of it.

A natural question now, in comparison with what happens with the opposition
qualities of the tri-segment (less, in number, than those of the general tri-simplex:
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seven instead of nine, Sect. 2.2, Fig. 39), is that of knowing whether some
implicative qualities of the tri-simplex are missing in the tri-segment. We are not
yet able to give a systematic a priori answer. But this answer could seem to be
that no implicative quality among those of the tri-simplex (Sect. 4.1) is missing in
the tri-segment. However, comparable calculations done by us on the tri-triangle let
emerge already two more relations there, absent here: the “LR” and the “RL” (and
RL is one which appeared in our previous, conjectural lattice, Fig. 94). This point,
which bears no prejudice to the rest of this study, will have to be understood and
explained in the future.

Having calculated the edges of the implicative version of the tri-segment (without
forgetting however that our current reasoning relies on only two over the six possible
“Smessaertian” meta-questions, Sects. 4.1, 5.1, and 5.2), we can now try, in the next
Sect. 4.3, to construct a global view of it.

4.3 The Global “Implication Geometry” of the Tri-segment

Having determined the “implicative quality” of each of the 21 possible (so to
say absolute, in the sense of “direction independent”) binary relations of the tri-
segment, let us now try to have a more synoptic view on this. We keep the hexagonal
representation of the tri-segment we arrived to in the last Sects. 2 and 3 (Sect. 2.6,
Fig. 57). A first step consists in putting, on each of the 21 still colorless edges (6 of
which are reflexive curls), its reading (and its color), and this can be of two kinds:
(1) either bidirectional and therefore unique (when it is either BB or AA but also
AB or BA); or (2) it is unidirectional (i.e., asymmetric) and then the direction in
which the edge is read determines two different labels (like in RR and LL, in AR
and AL, or in RB and LB, Sect. 4.2, Figs. 95 and 97). So, to begin with, we put on
each edge its two readings (when there are 2: one with R and one with L), and we
try to highlight the direction of the intended segment decoration by the direction (at
times a little bit directionally strange) of the letters (Fig. 101).

Fig. 101 A global view of the “implicative side” of the tri-segment (with all its kinds of
“implication relations”)

But then it is useful to resort to what we have understood in the previous Sect.
4.2 over the substantial (i.e., regular) coincidence “in the absolute” of all pairs of
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reversed labels (Figs. 95 and 97). And this will mean that we will now be able to
produce another, swifter implicative (but still decomposed) decoration of the tri-
segment, with only one-half of its two opposed labels on each of its 21 edges. As a
rule, as said, we will privilege the so to say “direct” (or active, Fig. 95) implication
(i.e., “A implies B”) to its “indirect” (or passive), equivalent counterpart (i.e., “B is
implied by A”), and this means that we will always choose R instead of L, but we
could have done, equivalently, the other way round. So, RR will be preferred to the
correlative LL; BR and RB will be preferred to, respectively, their correlative BL
and LB; RA and AR will be preferred, respectively, to their correlative LA and AL
(Fig. 102).

Fig. 102 Global decomposed view of the “implicative side” of the tri-segment, simplified (R and
not L)

If we now gather this decomposed view into a whole, this gives the following first
global representation(s) of the “implication geometry” version of the tri-segment
(Fig. 103).

Fig. 103 First two whole representations of the “implication geometry” version or the tri-segment

Remark that this seems very interesting: the tri-simplicial diffraction of the
contradiction segment gives us this, in some sense unexpected “arrow complexity”.
Recall: the red segment of 2-opposition already could be seen as “implication
geometry” (à la Smessaert, Fig. 104). So, at this so to say “logical-geometry stage”,
we have two versions of the tri-segment, one in terms of its “opposition geometry”
(on the middle), the other in terms of its “implication geometry” (on the right) (Fig.
104).

This is, so far, the – cum grano salis (Sect. 4.1) – complete “logical geometry”
view on the tri-segment. We will however afford the question of unifying (if it is
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Fig. 104 Tri-simplicial diffraction of the “logical geometry” of the 2-opposition contradiction
segment

possible) by a methodical and reasoned combination these two representations into
just one (Aristotelian) later (Sect. 4.5).

But before that, by analogy with what we did in Sect. 3 (with respect to Sect. 2),
we will have now to study at least the basics of the structure of this “implication
geometry” tri-segment in some more depth (Sect. 4.4). And, before that, let us make
here some more preliminary remarks on this implicative structure taken as a whole.
Importantly (for our study), remark that this is more or less precisely what we have
been looking for since the end of Sect. 3 (i.e., since the end of Sect. 3.6): finding
some kind of reasoned roadmap of the “implications” of the tri-segment for helping
us in understanding how to judge the otherwise puzzling apparent emergence (from
the valuation of Sect. 3.6, Fig. 87) of unexpected implication relations (arrows),
notably in the four black segments of (non-arrow) simplicial CS relations (Fig. 88).
And in fact such a roadmap, that we now have successfully in our hands, provides
us immediately at least two very important things: (1) an exhaustive list of the kinds
of implications at stake in the tri-segment (which appears to be – although not yet
the closure: we are not yet able to consider all the 3 + 6 possible meta-questions,
Sects. 4.1, 5.1 and 5.2 – quite larger than what we knew and quite larger than what
we expected) and (2) a rather univocal and unambiguous indication as to the way to
interpret the valuation we arrived to (on Sect. 3.6, Figs. 87 and 88). Let us see more
in detail these two points.

As for the first point, in our “implication geometry” tri-segment (Fig. 104),
there are, at work, three main families – the kinds of nonimplications, the kinds
of implications and the kinds of bi-implication – more precisely: (1) five kinds of
“nonimplication” (i.e., all the tri-simplicial “implication geometry” relation kinds
containing at least an occurrence of the bi-simplicial relation “A”, as in AR), (2) five
kinds of implication (i.e., those containing at least an occurrence of R, as in RA),
and (3) five kinds of bi-implication (i.e., those containing at least one occurrence
of B, as in BA). Because of the tri-valuedness of the tri-simplicial space, which
implies the existence of two Angot-Pellissierian sheaf-levels U and X (Sects. 1.4
and 2.1), these three kinds are not mutually exclusive any more: their composition
is now the rule (six over the nine cases); the “pure cases” are just particular cases
of composition (three over the nine cases), namely, trivial compositions (or self-
compositions), like “RR”, “AA”, or “BB” (Fig. 105).
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Fig. 105 There are three main “implication relations” kinds, characterized by the fact of contain-
ing B, R, and A

Remark en passant that the result as for implications seems to confirm that
the hexagonal representation that we choose for the tri-segment is optimal and
this can be seen here in at least three respects: (1) its three diagonals are indeed
contradiction diagonals (because they are the “implication geometry” counterpart
of this: the nonimplication AA and its two weakenings AB and BA); (2) as we will
see in the next Sect. 4.4, Fig. 109, the three main rectangles (“squares”) of this
implicative hexagonal tri-segment are very regular with respect to its “implication
geometry” relations; and (3) the balanced character of the hexagonal representation
of the tri-segment, still thanks to the unveiling of its arrows, is also confirmed
by the “differential topology” viewpoint (Sect. 1.2, Fig. 8, based on [62], p. 52),
i.e., by the distribution of the three differential-topological kinds of vertices: two
(centrally symmetric) vertices (i.e., the two |black-blue| ones) shoot each four
arrows (exhibiting thus a “source” behavior), two (centrally symmetric) vertices
(the two |blue-green| ones) shoot each two arrows and receive each two arrows
(exhibiting thus a “saddle” behavior), two (centrally symmetric) vertices (the two
|black-green| ones) receive each four arrows (exhibiting thus a “sink” behavior)
(Fig. 106).

Fig. 106 Reading the “implication geometry” of the tri-segment with “differential-topology”’s
eyes

Remark here that the classical position (i.e., the two |blue-green| vertices of
the classical bi-simplicial 2-oppositional red segment of contradiction) seems to
play a pivotal role in between its two symmetric “diffractions” (paracomplete and
paraconsistent). In other words, the “tri-simplicial diffraction” opens so to say some
kind of left-right “symmetry”, orthogonal to the top-bottom affirmative-negative
starting (oppositional) “symmetry” of the starting red segment of 2-oppositional
contradiction. At the level of the expression of the tri-segment by a visual structure
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(Sect. 3.3), all its good properties (i.e. the symmetries – among which the three kinds
(1)–(3) we just mentioned) seem to be grounded in (and granted by) our starting
choice of interpreting central symmetry as a reversal of the indices (Sects. 2.6 and
3.3).

Let us now turn to the second point (valuation and its implications). What we now
have clearly confirms some of the arrows we suspected (due to the two valuations
we were able to establish, for the tri-segment, at the end of Sect. 3.6, Fig. 88). So
let us consider now these two valuations of the tri-segment, but this time under its
implicative reading (Fig. 107).

Fig. 107 The two possible valuations of the tri-segment reconsidered from the viewpoint of
“implicative relations”

Here there are three remarks. The first thing to be remarked is that the naturalness
of these two valuations seems to be confirmed here. If the “opposition(al) geometry”
tri-segment so to say made clear the meaningfulness of these two valuations with
respect to kinds of negations (particularly the diagonals), the present “implication
geometry” tri-segment so to say makes clear the meaningfulness of these two same
valuations with respect to the kinds of implications. A second important remark,
then, more particularly, is that the “implication geometrical” approach confirms
that the black “simplicial relation” CS can (must?) in some sense be read as
an implication: no doubt about this seems to remain now. But this Smessaertian
(complementary) approach tells even more: the black simplicial relation can be
read, seemingly, as a classical implication (we will come back to this in Sect.
4.5). Additionally, the oppositional kinds of noncontradiction CI and IS (that we
interpreted, à la Aristotle, as biconditionals, given the relevant Angot-Pellissierian
sheaf sections, cf. Sect. 2.2, but that the two valuations pushed forward as being,
rather, as the CS, possible full-fledged kinds of implications, Sect. 3.6, Fig. 88)
can also be read, thanks to this Smessaertian roadmap, as unidirectional arrows (at
the implication-geometrical level): but this time not as classical RR implications
(and this is coherent with their oppositional reading: the CI and the IS are,
respectively, paracomplete and paraconsistent “implications”, Sect. 1.4, Figs. 19
and 20). The “opposition-geometrical” light green CI becomes in fact, in the
“implication geometry”, the “implication geometrical” porous (in our representation
here) gray implication RB, whereas the “opposition geometrical” violet IS becomes
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the “implication geometrical” porous black implication BR. A third and last remark
with respect to our rereading of the two valuations of the tri-segment is that two more
arrows, in fact, seem to emerge here: the “porous” red arrow AR and the “porous”
yellow arrow RA. And this is more surprising: (1) they are parallel to (i.e., they
share edges with), respectively, the non-arrow negations CN (paracomplete) and
NS (paraconsistent). (2) Moreover, of all the thus possible five different kinds of
implication arrows of the “implication geometry” tri-segment, these two last kinds
(embodied each two times) seem rather strange, because sometimes they seem to
go beyond the limits imposed by valuation; the AR, taken at face value (i.e., as an
arrow), seems to lead to the strange implication (in terms of truth-values) “1→ 1/2”,
and the RA seems to lead to the tantamount strange implication “1/2 → 0”. The
simple, first explanation is that they are “restricted implications” (cf. [3]): moreover,
they are like “water and fire”, they join “R” with “A” (but in separated sheaf-levels U
and X-U. (3) But for this reason, we could not clearly see them before (which shows,
again, the power and the usefulness of the Smessaertian “implication geometry”).
Remark that, as we mentioned (Sect. 4.2), in the tri-triangle we find relations RL
and LR generating a similar “strange” issue. We will come back on this important
point on Sect. 4.5.

A general final remark here, before going to the next Sect. 4.4, is that the
tri-simplicial space confirms here, but also radicalizes, what has been seen by
Smessaert in the bi-simplicial space, namely, that the relations of the “opposition
geometry” and those of the “implication geometry” have partial overlaps (Sect. 4.5).
This fact, as we are going to see, is – without exaggeration – hugely important
(Sects. 4.5 and 4.6).

4.4 Overview of Some Inner Structures of the Implicative
Tri-segment

Before summing up (with rather important consequences at stake, cf. Sects. 4.5
and 4.6), it will be useful to acquire some more understanding of the structure of
the “implication geometry” version of the tri-segment (once more: we are working,
however, by necessity with a restricted version of it, Sects. 4.1 and 5.1, and 5.2).
In some sense, we will just try to repeat for it (quickly!) the kind of tentative
categorization we proposed for the “opposition(al) geometry” version of the tri-
segment in Sect. 3. We leave aside the kind of characterization in terms of “horizon”
made in Sect. 3.1 (for many elements of it are already in Fig. 100 of Sect. 4.2). The
question about the “inner circuits” (Sect. 3.2) of the “implication geometry” version
of the tri-segment seems potentially interesting (here we will only mention it). The
main idea seems to be that there are three main kinds of circuits, reflecting the
three main kinds of “implication relations”: bi-implication (containing at least a B),
implication (containing at least an R), and nonimplication (containing at least an
A) (Fig. 108).
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Fig. 108 The possible “inner circuits” of the “implication geometry” version of the tri-segment

A notable difference with the case of the opposition(al) inner circuits (to be
reconsidered, then?) is that here, differently from there, the three inner circuits have
systematic overlaps.

Another meaningful and potentially useful (although tentative) structural investi-
gation is that consisting in looking for the hybrid “inner squares” (here: rectangles)
and triangles of the implicative tri-segment. Again, our methodology here will be
just to rely on what seen for the “opposition(al) geometry” of the tri-segment (Sect.
3.4). As for squares, for the same combinatorial reasons put forward in Sect. 3.4,
there are here, qualitatively, 3 + 12 = 15 of them. The three main squares (in fact:
rectangles!), the (i)–(iii), are very regular and even more mutually similar than what
were the three opposition(al) rectangles (Fig. 70) (Fig. 109).

Fig. 109 The three main “inner rectangles” (or squares) of the “implication geometry” tri-segment
are very regular

As for the other 12 squares, they seem to be less regular and more “hybrid” (cf.
Sect. 3.4, Fig. 77), although their global combinatorial system is very regular (Fig.
110).

Fig. 110 The “implication geometry” version of the 12 “hybrid squares” (or tetrahedra) of the
tri-segment
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As for the “inner triangles”, for the same combinatorial reasons seen in the
“opposition(al) geometry” tri-segment, there seem to be here 8 + 12 = 20 of them
(cf. Sect. 3.4, Fig. 80). Here we only give their qualitative kinds, if needed, and
the reader can easily reconstruct the rest, by referring to Sect. 3.4 (in fact the pairs
of isomorphic triangles, like (a) and (g), being centrally symmetric, have inverted
colors in the readable vertices) (Fig. 111).

Fig. 111 The qualitative kinds of inner triangles of the “implication geometry” version of the
tri-segment

En passant, a possible question is to verify how do look here the two “meaningful
triangles” of Sect. 3.5, Fig. 82, recalling that these two triangles seemed meaningful
to us since, as we argued, they play some kind of “semantic role” (on the
“oppositional roles”, cf. Sect. 3.4): one triangle, namely, the (c), contains the
three “affirmative meanings” (of the tri-segment), while the other, namely, the (e),
contains the tri-segment’s three “negative meanings”. One sees that each of these
two mutually isomorphic (and centrally symmetric) triangles is isomorphic to a
“commutative (i.e., transitive) triangle” (modulo, however, the fact of having three
different kinds of implication arrows, instead of a same kind). A general interesting
feature expressed by them (and important for the tri-segment, Sect. 3.5, where in
some sense we spoke mistakenly of “equivalences” or bidirectional light green CI
and violet IS arrows) is the “strength order”, expressed by the three implication
arrows, “paracomplete > classical > paraconsistent” (Fig. 112).

Fig. 112 “Qui peut le plus, peut le moins”: paracomplete→ classical→ paraconsistent in the two
“semantic triangles”

So, we gained, as expected, at least the first elements of a basic understanding
of this new structure (the “implicative tri-segment”). But then, if I am not mistaken
(logical geometer friends will tell), we are faced now with a new main problem:
some sort of “methodological schizophrenia” (or “methodological dualism” of
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“logical geometry”). In other terms, we seemingly paid quite much for obtaining
our (very valuable and needed) “implication roadmap”: the problem now is that of
knowing what we want and/or can do with these two logical-geometrical “twin tri-
segments”. This means that there are at least two main possible choices (or issues)
in front of us: either (i) accepting, as seem to be strongly suggesting the “logical
geometers”, as durable and methodologically justified the separated, parallel twin
existence of the “opposition geometry” version and of the “implication geometry”
version of the tri-segment (and this could be seen – at the level of powerful,
conscious or unconscious, analogies and/or fantasies – as, in quantum physics,
with Heisenberg’s famous “uncertainty principle”: a situation of structural dualism
forever impossible to get rid of) or (ii) trying to resolutely systematically combine
the two Smessaertian twin geometries, so to have a swifter, articulated but unique
structure for the tri-segment, but also – more importantly – for any future poly-
segment and poly-simplex (Sect. 4.6). But then how? Let us now try to see this
point.

4.5 Is an Aristotelian Tri-segment Possible? Yes! Meaningful?
Very!

What said at the end of the previous Sect. 4.4 is equivalent, as Smessaert and
Demey in some sense have taught us these last 10 years (in their bi-simplicial-
restricted logical-geometrical space), to asking the rhetorical question: “is an
“Aristotelian” tri-segment possible?” (and their implied answer seems to me to
be: “yes, but honestly . . . ”). Again, the question here means: is it possible to
combine usefully these two Smessaertian sides of the tri-segment without losing
“logical-geometrical” properties? (i) if yes: then it would be easier, but maybe
even instructive, to use this combination, instead of the two “forever parallel and
substantially disjoint sides” of logical geometry; (ii) if not, then we will have to
use both, in parallel, without any hope of finding again the pre-Smessaertian “lost
paradise” of a unity of the geometry of oppositions. The position of Smessaert
and Demey, if I am not mistaken, seems to be the second: they consider, in nuce,
“Aristotelian geometry” a little bit as “logical geometry for dummies”. Being a
notorious dummy, my position is – alas! – the first.

So, if we now nevertheless afford (as dummies – sorry dear hostage reader) the
question of understanding more radically the tri-segment, in some sense by looking
for its possible (still hypothetical) “Aristotelian” (or maybe Pascalian) version,
what we need is a methodical comparison of its two twin sub-geometries. In fact,
this means that all the possible kinds of edge overlap, with respect to the two
sub-geometries, must be studied and known: and named . . . . The emergence of
“Aristotelian simplifications”, at this level of complexity, can only be discussed
after that (and it is not yet granted a priori). So let us now develop some
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tentative comparative remarks on the two Smessaertian sub-geometries of the (non-
Smessaertian) supposedly unique Aristotelian tri-segment.

For that, let us come back, first of all, to what happens, in the tri-segment,
to the pink CN and the brown NS relations. And first of all remember that they
are supposed to be oppositionally very meaningful: they are the tri-simplicial
diffractions of the red segment of 2-oppositional (i.e., bi-simplicial) contradiction;
they are, so to say, the ratio essendi of the tri-segment! We just created/discovered
it, in thought, with the aim of exploring “contradiction’s tri-simplicial diffractions”
(Sect. 1.6). So, let us then concentrate on what really happened with them: for,
retrospectively, without thematizing it, we were de facto surprised to see these two
new contradiction kinds, the paracomplete CN and the paraconsistent NS, appear:
(1) in the two nonclassical diagonals (this was very satisfactory!) (2) but also
elsewhere, namely, in the “1∅2U—1X2∅” and “1U2X—1X2∅” edges, etc. (this was
more disturbing). But then, “implication geometry”, under its never seen before tri-
simplicial version, somehow rescues us, as a roadmap, even in this respect (Sects.
4.1, 4.2, 4.3, and 4.4), by teaching us, implicitly, if we now just explicitly think
of it, that there are in fact, in the tri-simplexes in general and in the tri-segment in
particular, (at least) two different kinds of CN relations and similarly two different
kinds of NS relations! They are (i) the CN (resp. the NS) segment overlapping
with the BA (resp. the AB) diagonal segment (ii) and the two CN (resp. the two
NS) segments overlapping, each one, with one RA (resp. one AR) segment. If one
thinks of it, this just means that “CN” (resp. “NS”) means in fact not just one but
two different things inside the Aristotelian tri-segment taken not schizophrenically
(Fig. 113).

Fig. 113 In the tri-segment globally taken (i.e., Aristotelian!), there are, in fact, two different kinds
of CN (and NS)!

So one can, and in fact must, (1) distinguish, in the global (Aristotelian) tri-
segment, between (i) the “CN/BA” relation (one diagonal pink-light blue edge of
the tri-segment, Fig. 113) and (ii) the “CN/RA” relation (two pink-porous yellow
non-diagonal edges of the tri-segment, Fig. 113) (2) distinguish between (i’) the
“NS/AB” relation (one diagonal brown-ultramarine edge of the tri-segment, Fig.
113) and (ii’) the “NS/AR” relation (two non-diagonal brown-porous red edges of
the tri-segment, Fig. 113). Consequently, we propose to introduce here the concept
of “Aristotelian combination” and to apply it in order to “produce” (or rather
unfold) two different formal symbols for the two different kinds of CN relations,
namely, the “CN/BA” and “CN/RA”. For reasons to appear soon, we keep for
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CN/BA just the starting representation, unchanged, of CN (i.e., a pink segment)
but adopt for CN/RA a new porous pink arrow (porous will mean here “beware, this
arrow here is sui generis”) (Fig. 114).

Fig. 114 Toward the “Aristotelian tri-segment”: the Aristotelian composed relations “CN/BA”
and “CN/RA”

Similarly, by another “Aristotelian combination”, we introduce now two different
forms of “NS” relations, namely, the “NS/AB” and the “NS/AR” relations. For
reasons to appear soon, we just keep for NS/AB the starting representation of NS (a
brown segment) but adopt for NS/AR a new porous brown arrow (porous will mean
here as well “beware, this arrow here is sui generis”) (Fig. 115).

Fig. 115 Toward the “Aristotelian tri-segment”: the Aristotelian composed relations “NS/AB”
and “NS/AR”

Second, let us now turn, in our refreshing Aristotelian poly-simplicial dummies-
journey, to the CS relation which was our main source of puzzlement about
implications (Sect. 3.6, Fig. 88). If one considers the black “opposition geometry”
relation CS, which is a non-arrow relation, as being directly “challenged” by the
“implication geometry” arrow relation RR (which in fact seems to be none other
than classical implication itself), we see that the two occupy exactly the same
four edges of the tri-segment, and this is, again, the first reason of the “buzz” we
did with “valuation”, starting from Sect. 3.6, and which motivated the δεύτερoς

πλoυ̃ς (second navigation) of this Sect. 4. In the tri-segment, things are effectively
so, but not so in the tri-triangle (or higher tri-simplicial space)! There, there are
two different kinds of CS and at least two different kinds of RR. Therefore, in
the Aristotelian combination we operate now, we are better inspired in using, for
expressing the relation CS/RR, not the classical gray RR arrow (which in the bi-
simplicial space of Smessaert is a I/R arrow and in the tri-simplicial space of the
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tri-triangle is a II/RR arrow) but rather a suited new black arrow, keeping for it a
combination of the arrow shape of the RR and of the black color of the CS (Fig.
116).

Fig. 116 Toward the “Aristotelian tri-segment”: the Aristotelian composed relation “CS/RR” and
its black arrow

Third, still dealing with implication arrows, let us now turn to the “implication
geometry” BR and RB, porous black and porous gray arrows (here porous means
nothing special). They seem quite interesting: they seem to be compatible with the
properties stressed by the “opposition geometry” segments CI and IS (paracomplete-
ness and paraconsistency, one sees this in their two valuations) but express, as for
them (i.e., in their “implication geometry”), full-fledged implications. So we operate
here a further Aristotelian combination, generating, respectively, the CI/RB and the
IS/BR new arrows: each will take the color of its “opposition geometry” component
and the arrow shape (and direction!) of its “implication geometry” component (Fig.
117).

Fig. 117 Toward the “Aristotelian tri-segment”: the Aristotelian composed relations CI/RB and
IS/BR

But here one must remark that if any RB (respectively, any BR) arrow of the tri-
segment is strictly coupled, as for the edge of the tri-segment where it takes place,
with a CI (respectively, an IS) relation, this is not true the other way round: the CI
(respectively, the IS) can also happen to overlap, in form of curls, with a light gray
BB curl. This leads us to the next point.

Fourth, in fact, one must remark here that the classical biconditional BB of
tri-simplicial “implication geometry” takes place in all the six curls of the tri-
segment. But then this seems in some sense quite under-informative with respect
to the corresponding colored curls in the Smessaertian twin “opposition geometry”.
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The gray classical self-implication, for sure a strong logical property, without
any other indication, seems to be pretty tautological (“A ↔ A”), and, worse,
it erases the oppositive colors, not distinguishing (and not letting distinguish)
between the II/BB (the tri-simplicial counterpart of the bi-simplicial case), CI/BB,
and IS/BB: it transforms these three into the same (tauto-)logical relation. This
is no good from a structuralist point of view (think of Saussure, but also of
Blanché). What must be unfolded and studied systematically is the differential
(i.e., the structuralist, Saussurian “système des différences”), a.k.a. oppositional
( . . . ), system (Blanché’s main work [33], where he presented philosophically in
1966 the logical hexagon – with its 1967 sequel [34] explicitly directed against
the logicists and the illogicists – was titled Structures intellectuelles. Essai sur
l’organisation systématique des concepts). So, being (oppositionally, if not more
globally philosophically) “Aristotelian”, we want to show all different relations as
different (Aristotle: “Saying the truth consists in presenting as united what is united,
and as separated what is separated”, i.e., “truth as adequacy”, cf. [5, 144]). So
we operate here one more “Aristotelian combination”, to the effect of which each
curl of the Aristotelian tri-segment will take from its “implication geometry” side,
BB, the shape (double-sided arrow), but keeping also something of its “opposition
geometry” side, namely, the color of the nonclassical CI or IS counterparts – remark
that we will keep for “II/BB” the classical light gray color of the bi-simplicial I/B
(Fig. 118).

Fig. 118 Toward the “Aristotelian tri-segment”: the Aristotelian composed curls II/BB, CI/BB,
IS/BB

The last element to be dealt with, so to end our little journey, is the red classical
diagonal of 2-oppositional contradiction (we saw already the two other diagonals,
Figs. 114 and 115) which remains here, as NN/AA, exactly as it is in the bi-
simplicial Aristotelian space, namely, N/A.

So, finally we arrive to something like a systematic “combination table”, offering
a global view of the 21 combined qualities of the 21 edges of the tri-segment. And
this is, pace Smessaert Demeyque, the entry gates, if not to paradise (oy!), at least
to what seems to be a full-fledged “Aristotelian tri-segment” (Fig. 119).
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Fig. 119 A systematic “Aristotelian” comparison of the 2 sub-geometries on each of the 21 edges
of the tri-segment

It seems we can therefore arrive, in full conceptual rigor (which is something
orthogonal to the neo-Scholastic furor axiomaticus of the logicists), to an interest-
ing, meaningful, and – most importantly – mathematically quite “natural” (instead
of arbitrary, ad hoc, suboptimal, bricolé, etc.) “Aristotelian tri-segment” (Fig. 120).

Fig. 120 Out of the two tri-segments there is, emerging, a mathematically very natural “Aris-
totelian tri-segment”!

In order to sum up (for we will spare the reader giving her/it/him a third instance
(!) of inner analysis of this structure, we pretty successfully got to), we can have at
least a look at the two valuations of this newborn, alive and kicking “Aristotelian tri-
segment”, verifying visually that its truth-value relations seem fully reasonable (i.e.,
conform to the different constraints laid by its two Smessaertian sub-geometries and
the nonlogical-geometrical composition they induce by it) (Fig. 121).

The final result of this, at this level of our inquiry, is that for any of the 21
edges (curls included) of the tri-triangle, it seems we could find a fully reasonable
and meaningful combination of its two Smessaertian sub-geometries (i.e., the one
which was first expounded in Sect. 2.6 and the one which was first expounded in
Sect. 4.3), not forgetting that we are working in a fragment: we are considering
2 + 2 = 4, instead of the total 3 + 6 = 9, “Aristotelian” (on truth-value identity)
and “Smessaertian” (on truth-value difference) meta-questions (Sects. 4.1, 5.1, and
5.2).

If we look now for some provisory, general condensed expression of the “Aris-
totelian combining methodology” we are tentatively proposing, we can consider
something like the (informal!) following: (1) one has to play with (i) shapes
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Fig. 121 The two valuations of the “Aristotelian geometry” tri-segment, articulating its two sub-
geometries

and (ii) colors of any edge (under its expression in both Smessaertian twin and
parallel sub-geometries); (2) one has to combine (rather than substitute!) the two
versions of each edge, creating, for that, new formal arrangements respectful of
the starting two not yet combined components; (3) the latter means, rather simply,
that one must tend to distinguish (or separate) what must be distinguished and
to combine (or join) what must be combined (again: the good old wisdom of the
Aristotelian definition of “truth as adequacy”); (4) also, very importantly, one must
prudently (and open to rearrangements) always keep in mind that the exploration of
higher levels of the infinite, mathematically complex space of the poly-simplexes
can induce unexpected, but meaningful, feedback effects (asking for wise and
patient theoretical rearrangements), due to unexpected, but mathematically natural,
theoretical emergence phenomena ([145], p. 19, point “d”); (5) the latter is in line
with Gödel’s famous anti-formalist and anti-logicist discovery (of 1931, [104]) on
the impossibility to rule once and forever mathematical serious things (i.e., numbers
and higher) by a fixed Russell-Whitehead-style axiomatics (i.e., the impossibility of
the logicist dream – for us scary – of a world reducible de jure and de facto to
compositions of “0” and “1”, cf. [68]), which is compatible with a structuralist
common sense (i.e., remaining always open to the emergence of unexpected new
forms of structure).

But what we just saw in this Sect. 4.5 seems to be, if one now thinks of it, a small
but nice enough coup de théâtre: Aristotelian geometry, as we just discovered and
(cum grano salis) “proved”, is not quite much a primitive (and “dummy”), imperfect
version of “logical geometry”, destined since 2011 to remain forever in the morn and
dusty prescientific past (and shadows) of the now eternal light of the latter. Rather,
“Aristotelian geometry” is, provided it is worked out properly (i.e., methodically,
i.e., in primis with a mathematical – Platonic! – open-minded eye on the poly-
simplexes!) and bottom-up (with a stress on “up”!), potentially (if all possible
“Smessaertian” implication-questions are integrated! Cf. Sect. 4.1) the appealing
mathematical closure of what Smessaert and Demey call “logical geometry”®. Let
us now try to focus, before closing this Sect. 4, on this important question.
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4.6 “Logical Geometry” or “Poly-Simplicial Oppositional
Geometry”?

Smessaert’s discovery, in 2011, of the parallel existence of two geometries, is a
major discovery in our common field (be it called “oppositional geometry”, “logical
geometry”, or something else). Our present study (Sect. 4) confirms it, if needed,
and at a level of analysis that Smessaert and Demey themselves so far seemingly
did not consider: that of the “poly-simplexes”. Our present study, notably, seems to
confirm Smessaert’s and Demey’s reasoning to the effect of which the classical
“geometry of oppositions” (which in some sense contains among others Angot-
Pellissier’s and myself’s “oppositional geometry”), which they call “Aristotelian
geometry”, is indeed a hybrid mixture of what they call the “opposition geometry”
and the “implication geometry” (ch.4). But the sense in which such a “hybrid” must
be understood is now to be discussed, for it appears to be possibly rather different
from what Smessaert and Demey think and teach.

As I understand it, Smessaert and Demey claim that the “Aristotelian” approach
to oppositions has mixed (without knowing it) two fundamental geometries (dis-
covered 2.400 years later by Smessaert) and that any current researchers developing
“avatars” of the traditional Aristotelian structures (such as our own “oppositional
geometry”, with its theory of the bi- and of the poly-simplexes) keep making the
same old “Aristotelian mistake”: they do not realize that, truly speaking, there are
two rather different geometries at work and that the one relative to opposition
(generally the one mainly investigated by naive researchers) is only one of the
two. Now, “since ‘logic’ deals both with opposition (negation) and implication”,
Smessaert and Demey propose to baptize the global geometry emerging from their
“opposition geometry” and their “implication geometry” with the name “logical
geometry” (Fig. 122).

Fig. 122 “Logical geometry” explaining the bricolage of “Aristotelian geometry”, in all its forms,
past and future

Thus doing, however, Smessaert and Demey commit in my opinion four non-
negligible mistakes: (1) they keep refusing (drastically) to take into account the
importance of the presence of “bi-simplexes” (and the geometrical consequences
this entails) in the “geometry of oppositions” (the refinement goes so far that
they honor me writing papers, like [50], partly on my 2004 “bi-tetrahedron”,
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“logical cube”, i.e., the A4, but always calling it “Moretti’s octagon”!); (2)
they underestimate the idea that from the concept of (oppositional) bi-simplex
emerges very naturally that of (oppositional) poly-simplex (and that therefore its
investigations should be worth some attention, some support, or at very least some
mention); (3) they misunderstand, in some (important!) sense, the nature of the
fundamental relation between their own two geometries; (4) they try to impose urbi
et orbi – ESSLLI and JoLLI! – as common name for the discipline of anyone dealing
geometrically with oppositions and, as the real “scientific standard”, the – alas –
problematic label “logical geometry”. These four non-negligible “mistakes”, if I am
not mistaken myself, are quite related. Let us try to see why.

A first important starting point is the non-negligible “extra structure” imposed to
oppositional geometry and/or logical geometry by the fact of going, as we went here,
from the bi-simplicial space to the poly-simplicial space. For, it reveals things (i.e.,
formal behaviors, mathematical regularities, structures) that seemingly were not so
easy to perceive (and in fact seemingly were not perceived!) in the bi-simplicial
space. But, the latter is – this point is capital and worth repetitions – the space where
Smessaert and Demey (and therefore “logical geometry”) so far remain, without
however recognizing overtly that this space where “logical geometry” voluntarily
remains is, in some important sense (a Pascalian sense!), a “bi-simplicial space”.
Why speaking of extra structure? Because our present study – although only the
fragment of a future, more complete one (Sects. 4.1, 5.1, and 5.2) – dramatically
unveiled that what we proposed to call the “Smessaertian” 32-lattice (a structure!)
is, in fact, way more complex than its “logical-geometrical” ancestor, the official
(and unique) Smessaertian 22-lattice. If our own simplification (with respect to R
and L) is correct, the simplified Smessaertian 32-lattice at play for the tri-segment,
as said (Sect. 4.1), is then the following not so simple extra structure (Fig. 123).

Fig. 123 The unexpected, and very meaningful, exponential growth visible in the “Smessaertian”
32-lattice

What one must notice here is that there is a quite big hiatus between the degree
of combinatorial complexity of the two “implication geometry” structures (i.e., the
22-lattice and the 32-lattice): not only we step from three to nine qualitative kinds
(once the redundant L simplified), but we pass from a situation where the three kinds
(B, R, A) were strictly distinct (22-lattice), to a situation where six among the nine
kinds are mixed (32-lattice); in the two constitutive Angot-Pellissierian sheaf-levels
(U and X) of the nine kinds of the 32-lattice can happen to be put, side by side, very
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heterogeneous relations (such as “A” and “B” in AB, etc.). This extra structure,
which is not even yet the whole story (it does not yet encompass all the possible
“Aristotelian” and “Smessaertian” questions, Sects. 4.1, 5.1, and 5.2), introduces
already a big qualitative jump.

Now, the bi-simplicial 22-case (left side of Fig. 123) seemingly gave to Smessaert
and Demey the misleading idea of a stability (and simplicity) of the “strange
parallelism” of the two Smessaertian twin geometries, a strange parallelism which
in some sense, at least currently, seems to be the essence of the methodology of
“logical geometry” (Fig. 122) (to slightly nuance this: maybe Smessaert conceives
somewhere the 2 + 2 = 4 twin questions as a whole, dictated by a global
“logical” combinatorics over the possible truth-values of A and B?). Stability means
the same two geometries, more or less, show up always parallel, always in the
same qualitative proportions, for any (bi-simplicial!) Bn-structure: red segment
B2, logical hexagon B3, logical tetrahexahedron (a.k.a. rhombic dodecahedron)
B4, etc. Such an apparent stability (which is a stability of the two twin 22-
lattices, the Aristotelian and the Smessaertian, both simple and unique!) seemingly
suggested them, for short, that the two geometries have no deep relations (other
than mysterious coexistence) and, most importantly, that it is potentially misleading
to “unite” them, given that this happens by “surgery” (i.e., by mutilation, as, in fact,
in the historically attested bi-simplicial “Aristotelian geometry”, Sect. 2.2, Fig. 40
and, here, Fig. 122) into a unique one: for short, bricolage is of course useful and up
to a certain extent tolerated, but suboptimal with respect to methodical (axiomatic!)
science. Remark that this belief, I am ascribing them, in a (deceitful) stability is
apparently not too harmful to them in so much their very rigorous and valuable
study of many other phenomena gives them work enough (and, again, very valuable
work). Still, it seems that something precious (Pascalian?) here thus dropped, at
least momentarily, out of view (but not only for them: for anyone following their
logicist advice), with potential harm for our entire discipline.

As we saw, the tri-simplicial case (of which the study is still at the very primordial
beginning) reveals however (Sect. 4.5) (1) that the “strange parallelism” of the twin
geometries is not stable at all (provided one does not stick, somewhat geometry-
blind, to the bi-simplicial space) (2) and that, therefore, it is not the theoretical
terminus ad quem, of “our common discipline”, but rather the terminus ab quo:
it is not its all-encompassing horizon, but just an exciting starting point!

But this, then, means quite much, speaking less abstractly: it means that the
higher you go in the poly-simplexes, the more complex are, there, the (meaningful!)
overlaps of the two Smessaertian twin sub-geometries, themselves more and more
geometrically complex the way up in the higher poly-simplexes. One must stress this
point: both geometries have, each, an exponentially growing complexity (unknown
“by construction” to logical geometry), so that their combination (Sect. 4.5) has
even more complexity (not only is it a growing series: it is a “geometrically
growing” series!). This is quite important; it means that (1) the combinations of
the two “parallel” Smessaertian twin sub-geometries seemingly are by no means
“forever frozen” (as is the combinatorially morn “Aristotelian combination” proper
to the bi-simplicial space, limited to putting right-implication, by “surgery”, in the
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place of noncontradiction, Figs. 40 and 122); (2) these combinations are, far from
it, the general rule of the poly-simplicial space (for understanding its combined
qualities); and (3) more precisely, these combinations are the key for understanding
the very nature of each possible edge (or curl) of any general opposition/implication
n-dimensional polytope! For this reason, it seems to me that you cannot quite
understand the (very important!) interplay of the “opposition geometry” with the
“implication geometry” (preciously offered to us by logical geometry) by remaining
in the bi-simplicial space (as until now seem to be doing voluntarily Smessaert
and Demey). Because there, in the bi-simplicial space, this interplay not only does
not change enough: it simply does not change at all! It remains “forever” at the
level of the 2011 “Smessaertian 22-semantics” and of the “Smessaertian 22-lattice”
(echoing the twin “Aristotelian” 22-semantics and 22-lattice). For this reason, very
paradoxically (with respect to their otherwise quite impressive and valuable work),
Smessaert and Demey’s thinking about “combinations” seemingly has not changed
much since its beginning (although they explore 1.000 and 1 varieties of ad hoc,
suboptimal existing combinations and fragments, from many other – sometimes
major, sometimes not – authors past or present, to which they give systematic
conceptual and terminological order: but top-down!). For short, you do understand
what is really at stake with Smessaert’s groundbreaking discovery (of the twin
geometries), seemingly, only in the poly-simplicial space (or in a structurally similar
playground), where this interplay changes, and changes with an exponentially
growing complexity!

But this, in turn, means in some sense that what Smessaert and Demey call
“Aristotelian geometry” is in fact not, as they think, a suboptimal ancestor (because
fruit of unconscious bricolage) of “logical geometry” (the latter being supposed
to be the firm scientific standard of our general discipline) but – rather – the real
thing to be studied from a mathematically serious (i.e., nonlogicist) viewpoint!
Something like “Aristotelian geometry” (or any comparable equivalent name)
appears, paradoxically, to be (Sect. 4.5) not the limitation, but the mathematical limit
(in the powerful, positive meaning of this word), or the “mathematical closure”,
of what Smessaert and Demey call a little bit recklessly “logical geometry” and
by no means the other way round! In other terms, there seems to be, here, yet
another non-negligible mistake (the third), in my opinion, in Smessaert and Demey’s
very admirable, but also terminologically dangerously normative program, namely,
a confusion between (1) the idea of “choosing without creating” (as it seems to
be, between the two geometries, in the bi-simplicial space) and (2) the idea (not
yet clearly assessed by Smessaert and Demey, so far they do not dare enter poly-
simpliciality) of “combining methodically bottom-up”, at each poly-simplicial stage
(this idea which they seem to miss so far is, on the contrary, in line with Béziau’s –
structuralist – fertile and open idea of “universal logic”, as an intended parallel
with the structuralist idea, preoccupied of thinking about mathematical “mother
structures”, of “universal algebra” – “universal” being in the programs of both,
universal algebra and universal logic, the fruit of systematic infinite variations and
combinations – a powerful idea of Bernard Bolzano, cf. [36, 37, 84, 129], and Sect.
5.5). Remark, again, that Smessaert and Demey produce an impressive number of
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valuable studies over combinations, but so to say always top-down (i.e., “logical
geometry” clarifies with benevolence “suboptimal” materials, mostly of the past)
and not bottom-up, i.e., not yet investigating new mathematical (oppositional!)
spaces (Fig. 124).

Fig. 124 “Aristotelian geometry”, understood correctly, is not a “merry bricolage”, but a system-
atic combination!

The mistake (the third) – if I am not mistaken myself – on the nature of
“combining” the two geometries (grounded, I believe, on mistakes – the first and
the second – on the bi- and poly-simplicial nature of the core of the theory of
opposition, Sect. 1.5) introduces the fourth and last of the non-negligible mistakes
we suggested to consider at the beginning of this section: that on the name to be
given to our common theory. Naming it “logical geometry” is, for the experimented
(if not employed) general philosopher I am, at least “surprising”, if not clearly
shocking. Remember that it has taken a very long time before something like the
idea of a decent geometry of oppositions could be born (around 2004, [93]): and
this is, without exaggeration, a major conceptual revolution, since it means that
“opposition”, a very intuitive concept, common to almost all known human cultures,
enters thus, unexpectedly, a mathematical legality: opposition is becoming, under
our eyes, a mathematical object of its own (and a rich one). But one must be aware
that historically at least two important thinking schools notoriously refuse(d) the
simple possibility of the emergence of such a kind of revolution (for both already
fought, mercilessly, against structuralism, which was very close – notably with
Blanché [33, 34] – to unfolding such “elementary structures of opposition”): these
are “dialectics” (Sect. 5.5) and the ambassador of logicism, “analytical philosophy”.
The latter did and does it on ground of its founding (and never dying) constitutional
logicism: “things must be reduced to ‘logic,’ and logic is the tool, the structure, and
the key (even of mathematics)”. The sterility and harmfulness, for mathematical
research, of logicist extremism (a pleonasm) should, in principle, not have to be
proven, again and again, in 2020 (Zalamea’s Synthetic Philosophy of Contemporary
Mathematics of 2009 [146] is, if one looks for one, a masterpiece of intelligence
in explaining, painstakingly, the seriousness of this point – but cf. also Mandelbrot
[88]). But so it is not: as is known, “analytical philosophy”, which (in good company
with the comparable deliria of Hegelianism, positivism, Marxism, phenomenology,
and many other past and future) has pretended (and still pretends!) being able to
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“make of philosophy a science” (!), despite being as such – beyond face lifts – a
programmatic “dead horse” (we recall why in [97, 99], relying among others on
[67] and [104]), still holds, by inertia and worldwide, an academic strong position
of power (currently symbiotic with computer science and the growing market of
the “smart technologies”), and as such it continues to push forward its “little gray
soldiers” (a direct, nondiplomatic, but also non-flat, description of this can be found,
among others, in J.-Y. Girard: [68–72]). But then is it also needed here to recall that
analytical philosophy and logicism, far from developing themselves (when? how?)
the geometrical study of “oppositions”, hindered it times and times again, and by all
means? Analytical philosophy produced rivers (no: oceans!) of ink about “logic”,
“contradiction”, “negation”, “implication”, “tautology”, “truth-values”, “possible
worlds”, and the like. But, unless I am mistaken, one finds hardly a single word of
Wittgenstein (& Co) about “contrariety” (which is the most characteristic concept
of opposition – Sect. 1.6, Fig. 33 – and precisely the one requiring, for expressing
n-contrariety and n-opposition, cf. Fig. 9, the concept of simplex!): and this is,
paradigmatically, still the position of a Parsons, in the prestigious and “standard”
Stanford Encyclopedia of Philosophy (Sect. 1.2); in his top-reference paper for
the analytical philosophy world on the “logical square” [107], the existence of
the “logical hexagon” (1950) is not even mentioned . . . (!). So, the problem with
logicism is not only “ideological” in a general sense (it hinders “clumsily” the
unfolding of fruitful new mathematical – and philosophical! – ideas, cf. Girard
[68–72], Mandelbrot [88], and Zalamea [146]) but also in a very concrete sense:
in the precise case of oppositional matters, it has proven, very specifically, times
and times again, that different forms of logicism have voluntarily “killed in the
egg”, in a reflex of (“institutional”) self-defense, several promising, embryonal
developments of the geometry of oppositions (cf. [97, 99]). Is it necessary to recall
that analytical philosophers have been dismissing (and urging others to dismiss)
for more than a century, relentlessly, the square of opposition (Sect. 1.1) – and in
more recent times the logical hexagon – notably because of the alleged “paradoxes
of existential import” (realizing only in 2013, cf. [43], that this paradox is in
fact a pseudo-paradox), which is a mathematical bad joke: judging normatively
mathematical creativity (for, here we are) from the viewpoint of logic, and not the
other way round (i.e., judging mathematical logic for its mathematical creativity),
is the world upside-down, a very bad joke, historically attested (and persisting), but
still devastating.

For these reasons, and because of its very dubious name and, if it does not
change, because of what seems to be its main methodology of “schizophrenic”
frozen parallelism of the two twin (micro!) geometries with respect to bottom-
up pure geometrical exploration, logical geometry, nolens volens, and despite the
impressive, increasing crop of its valuable scriptural and conceptual productions
in the best journals, runs very seriously the risk of becoming one more logicist
machine for killing the radicalness of the emergence of a full-fledged “oppositional
geometry” (or, if one prefers, of a “geometry of oppositions”). Again, the paradox to
be understood, and defeated, is that what Smessaert and Demey call, seemingly with
soft irony, “Aristotelian geometry” (as meaning “inferior to logical geometry”) is in
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fact not a stupid ancestor (or a bizarre fossil of the past), but it is rather the higher-
order mathematical methodology (but which possibly should not be mislabeled
“Aristotelian” . . . ) to be unfolded (through an exploration of the poly-simplicial
space) and followed in the future! The future of our common discipline (the
geometry of oppositions), at the level of the exploration of deep mathematical still
unknown ideas if not at that of the “academic Zeitgeist”, will very seemingly consist,
despite all logicist efforts to refrain it, in exploring systematically the overlaps of,
among others, the twin sub-geometries of the geometry of oppositions and in finding
techniques for expressing bottom-up (stressing the “up”!) the autonomous reality
of the mathematical (and not “logical”) thing. So, in my opinion the question of
the name of our general and/or global common theory is very important, and it
remains problematically open, “poly-simplicial oppositional geometry” seeming so
far a much better name.

Back to the successful (although still fragmentary, Sect. 4.1) tri-simplicial
diffraction of the 2-oppositional red segment of contradiction, if one considers (as
we take now the risk of doing here – readers will have to judge) that we seem to have
solved satisfactorily the last general important technical question (the tri-segment’s
two possible global valuations and what these imply, Sects. 3.6, 4.3 and 4.5), it
seems that we are now in a position for seriously considering (only sketchily, alas)
the question of the possible concrete applications of the oppositional tri-segment
and that of the consequences that this new possible mathematical structure (to be
refined and brought to its closure in the future, Sect. 4.1) has on some well-known
other issues related to “contradictions”.

5 Consequences/Applications of the Tri-segment: Some
Remarks

We will, at last, be in a position of making in this concluding Sect. 5 some
quick remarks on future possible applications of the tri-segment (and similar
poly-segments and tri-simplexes). The concept of contradiction/negation, as dis-
tinguished from that of contrariety, has the particularity of being very important
in the “exact sciences”, but it is also important, in some cases, in the humanities
(where contrariety seems, however, much more important). The oppositional-
geometrical diffraction of the concept of “contradiction”, a concept which can
happen to generate several misleading fantasies, formally speaking may concern, in
primis, three particular disciplines – many-valued logics, paraconsistent logics, and
quantum logics – in so far each of these three pretends to have a very special relation
to contradiction/negation. We will try to recall the issues at stake here in Sects. 5.2,
5.3, and 5.4. As for the humanities, contradiction is more or less the focus (or high
spot) of at least two among the few major thinking traditions of the last one or two
centuries: dialectics and psychoanalysis. We will try to recall this as well, in Sects.
5.5 and 5.6, where we will end by a surprise in the very last pages (the cherry on
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our oppositional “partitioning cake”). But first we will propose in Sect. 5.1 some
preliminary (and necessary) remarks on the general meaning and limitations of our
present inquiry and on its results and perspectives.

5.1 Some General Remarks on What Has Been Seen so Far
in This Study

The “Renaissance” of the geometry of oppositions is taking place, mainly thanks to
the intellectual and institutional efforts of Jean-Yves Béziau, since nearly 20 years
(Sects. 1.1 and 1.2, [28–30]). Since more than 10 years, it has been signaled (by
us, [94]) that one of the main issues at stake with the geometry of oppositions
(however you prefer to name it) seems to involve oppositional “poly-simplexes”
(Sect. 1.3). But for several reasons (among which – but alas not only – a natural,
if not glorious, “conceptual inertia”), this message has not been received so far.
The present study should have, at least, succeeded, in principle, in making loud and
clear that the complexity involved in such poly-simplexes, a posteriori, not only
exists for real (mathematically speaking) but is in fact much higher than what we
perceived and therefore believed in 2009. Far from being a confused fantasy of mine,
the oppositional poly-simplexes do exist mathematically speaking and are very
promising and exciting: and we have, at last, powerful and reliable tools for dealing
systematically with them, in primis Angot-Pellissier’s sheafing technique (Sect. 1.4,
[3]). But the game is much more complex, technical and rich than it was perceivable
at the beginning (2007–2009). This is first of all true of the global “Pascalian
structure” of the general space of the poly-simplexes (Sect. 1.5): this means that,
unexpectedly, the poly-simplexes are in fact, so to say, poly-bi-simplexes, and this
involves that there is much more “structure” than what was thought; for instance, in
a tri-simplex, the three main composing bi-simplexes (whatever the dimension of the
simplex under examination) are such that each involves its own particular instance
of simplex for any of the two bi-simplicial colors it has, e.g., the “blue simplex” of
the “blue and green” bi-simplex is not the same as the “blue simplex” of the “blue
and black” bi-simplex, etc. – this is directly readable in the Pascalian roadmap, Sect.
1.5 (provided one learned how to read it), but becomes more concretely clear when
one analyses, by humble and down-to-earth calculations, the tri-triangle (or higher).
Remark that the natural way for coping with this (i.e., the unexpected “diffraction”
of the simplexes) consists, first of all, in introducing a new element in our convention
for coloring the vertices (Sect. 2.5): namely, one for coloring, with “oppositional
hostages” (Sect. 3.6) inside, the vertices of the simplexes (the same technique can
represent either the real vertices of a precise simplex or, as in Fig. 125, whole generic
simplexes taken as a dimensionally undetermined whole) (Fig. 125).

But this increase in structure is also true relatively to our discovery, made in Sect.
4, that Smessaert and Demey’s “logical geometry” intervenes in the poly-simplexes
and in a way much more rich and complex than what we believed (Sect. 2.2): a
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Fig. 125 The poly-simplexes behave as poly-bi-simplexes: each simplex becomes “diffracted” by
“its” bi-simplexes

way that forced us (Sect. 4.1), from now on, to adopt logical geometry as a very
important part of oppositional poly-simplicial geometry, namely, as generating one
of its two systematic sub-geometries. In that respect, our choice in this paper of
limiting ourselves to the most “primitive” case of poly-simplex (“poly” ≥3), that of
the tri-segment (Sect. 1.5, Fig. 29), a posteriori revealed to be a rather wise but also
fruitful move. For, the structure we investigated here, the tri-segment, is “simple”
(it is a “three-cloud” deprived of simplexes, cf. Fig. 126), but far from trivial, and
at least we obtained a rather clear, global understanding of it and, through it, a
starting global understanding of the more general concept of tri-simplex and of
poly-segment (Fig. 126).

Fig. 126 The “tri-simplicial diffraction” of the red contradiction segment is a “tri-cloud” (having
no simplexes)

So this choice paid in at least two respects: (1) we proved the existence (Sect.
2.6) of this until now unknown structure (conjectured by me in 2009, Sect. 1.6), the
tri-segment, which is very important (for, it is the very first full-fledged poly-simplex
and it is the first mathematical diffraction of contradiction); and (2) through it we
made at least four rather important discoveries about: (i) what must be considered
as “oppositionally extremum” (i.e., each n-simplex has not two, but n extrema!)
(Sect. 2.4), (ii) how must be treated mathematically, through colors, the vertices
of general oppositional-geometrical solids (and this is nothing less, if you think
of it, than the embryo of a new chapter of graph theory!) (Sect. 2.5), (iii) how to
deal successfully, for any poly-simplex, with its “valuations” (which is possibly
the embrio of a new chapter of many-valued logics) (Sect. 3.6), and (iv) how must
be developed systematically, from its two Smessaertian sub-geometries, with the
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concept of “Aristotelian combination” and against the trap which is laid by the
misleading name (and program) of “logical geometry” (Sect. 4.6), something like a
non-naïve “Aristotelian geometry” or more precisely a “poly-simplicial oppositional
geometry” (Sect. 4.5, and this is possibly a new chapter of . . . logical geometry!).

The oppositional poly-simplexes are a successful generalization of the oppo-
sitional bi-simplexes (including, this is very important, their closures, the Bn-
structures), which, as we recalled (having learned it first from Angot-Pellissier
[111]), are quite important new mathematical tools (Sect. 1.2): the oppositional Bn-
structures, generating new kinds – oppositional kinds! – of “equivalence classes”,
allow us naming, measuring, and thus thinking about “oppositional complexity”,
and they make of “opposition” a new mathematical object. The poly-simplexes,
therefore, should enable us, from now on, to extend this conceptual and formal
mathematical new power, relatively to new situations where “oppositional valua-
tions”, finer-grained than two-valued, will be needed (and this is what we will try to
overview in the next Sects. 5.2, 5.3, 5.4, 5.5 and 5.6).

However, at least three further considerations must now be added to this. First,
one important point to be remembered is that, so far, we nevertheless remained
strictly inside the Aristotelian (and Smessaertian) p2-lattices (the stress here is on
the exponent “2”): this means that the “q” parameter (i.e., the number of meta-
questions) of the general pq-lattices (Sect. 1.3) is not yet being explored. The reason
is that we still seem to lack, for this, something like an analog of the Angot-
Pellissierian successful formal techniques of 2008 and 2013 [3, 111]. It might
be the case that q ≥ 3 shows up impossible. But if it will turn out that the “q
parameter” (i.e., q ≥ 3) corresponds to something mathematically real (as I still
believe at the moment, given the promising results found in several draft preliminary
investigations), than it seems that, at least in principle, it will be necessary to
go patiently through its a priori non-easy, full-fledged exploration, (re-)reading
all the p2- poly-simplexes one by one (exposed to the risk of a combinatorial
explosion . . . ), in order to get important, still missing insights about the profound
meaning of the complex concept of oppositional poly-simplicial space (Fig. 127).

Fig. 127 From the Aristotelian (and Smessaertian) 32-lattice to the Aristotelian (and Smessaer-
tian?) 33-lattice?

A second important point is that oppositional geometry, as we said (and as
we gave further evidence for, in Sect. 1.5, but also in Sects. 2.5 and 4.3, Fig.
106), is at the crossroad of different mathematical distant “spaces”. As such, its
progressive, deep understanding is conditioned by future works in mathematical
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directions potentially quite heterogeneous and, generally, rather unpredictable.
Remark, in that respect, that the theory of the poly-simplexes, although it belongs to
“general mathematics” rather than to “mathematical logic” alone (Sects. 1.2 and
4.6), seems to offer interesting elements of natural conceptual radicalization to
Béziau’s theoretical framework (which in fact is structuralist, in the best sense of the
word, since it looks for mathematical “mother structures”, suggesting that “logic”
might in fact be just a new one) of “universal logic” (this appears particularly in
Sect. 4.5, with the notion of “Aristotelian combination” if it were, for instance, to
be seen as a new case of “fusion”).

Finally, a third important point, as we said (Sect. 1.6, Fig. 33), is that it must
always be remembered here that the higher poly-simplexes will now really have
to be explored methodically, starting from the tri-triangle (which opens the big
jump into “real” poly-simplexes) and aiming at, as soon as possible, at least the
tri-tetrahedron (so to obtain a first “poly-simplicial diffraction” of B4 (B4 being
by now probably the most applied – and in that respect, cum grano salis, the most
important – of the bi-simplicial oppositional-geometrical structures, Sect. 1.2, Fig.
6) in a way similar to the one successfully followed here for the tri-segment. Remark
that we already have important and very encouraging unpublished results: (1) on
higher poly-segments (quadri-segment and quinque-segment), the series of the poly-
segments seems to offer a stable behavior and quite nice formal properties (and is the
first “poly-simplicial series” which will be reachable soon enough), and (2) and on
poly-triangles (we reached the closure of the tri-triangle and of the quadri-triangle,
which are both much more complex than what appears in Angot-Pellissier’s two
precious, pioneer draft studies of 2013 [3] and 2014 [4] on the subject).

As said, in the following sections of this last Sect. 5 we are now going to try to
give some quick hints and remarks on some possible applications of the tri-segment.

5.2 The Tri-segment and Many-Valued Logics: Some Remarks

As we have recalled (Sects. 1.3 and 1.4), the very idea of oppositional poly-simplex
(of which the “geometry of oppositions” is a classical, bi-simplicial case) is strongly
linked with the idea of having more than two truth-values, so the relations between
the general theory of opposition and many-valued logics seem to be in some
sense quite strong. And with respect to many-valued logics, the main results of
the present study (as, for instance, the mathematical birth of the Aristotelian tri-
segment (Sect. 4.5) but also the fundamental relevance of the Pascalian ND simplex,
Sect. 1.5) seem indeed potentially important. The poly-simplexes, as we have seen,
seem to open the direct and systematic study, up to now absent, of “many-valued
opposition”. However, as we have stressed several times, oppositions have shown up
to be much more generally “mathematical” than specifically “logical” (Sect. 4.6).
In this respect, our present inquiry seems to show that, given the now undeniable
“Pascalian” side of opposition (Sect. 1.5), which puts forward not only simplicial
geometry (the Pascalian ND simplexes) but also arithmetic (Pascal’s triangle), well-
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known many-valued issues (e.g., the “MV-algebras”, [20]) might have, because of
the until now rather hidden or unnoticed presence in their heart of “opposition”
(seemingly in terms of the, up to now, invisible geometry of the mutual relations
of truth-values), to change something relatively to their “mathematical barycenter”.
For short, many-valued logic might be more “Pascalian” and/or “simplicial” than it
was thought/known. In any case, it seems to me by now undisputable that the theory
of the oppositional poly-simplexes offers structure to many-valued logics.

Currently the relations between many-valued logics and the poly-simplicial space
seem, of course, to be at the very beginning of their possible exploration. On
one side, precise oppositional-geometrical (poly-simplicial) studies on different
known paradigmatic many-valued systems (like those of Łukasiewicz, Bochvar,
Kleene . . . , cf. [106, 117]) should be carried out step by step. But on the other, for
that, more poly-simplexes should also have been studied in abstracto extensively,
and in particular at least some poly-triangles: as we recalled (Sect. 1.6, Fig. 33),
the expressive (and conceptual) power of segments is nontrivial, but nevertheless
comparatively low (with respect to triangles and higher), and higher simplexes
are seemingly absolutely needed for that, starting from triangles (which open to
“contrariety”, a very important feature, absent in the poly-segments). Possibly
related to these considerations, it seems to be still a little bit too early for studying
easily the presence (and the action) of many-valued connectives inside poly-
simplicial oppositional geometry (by analogy with the important presence and
action of two-valued connectives in and for bi-simplicial oppositional geometry,
cf. Sect. 1.1, Fig. 1). This important basic work still has to be done. Notice however
that some non-negligible elements of knowledge in that respect seem, nevertheless,
to be already emerging at the basic level of the tri-segment.

One can hope or predict that similar studies will, from now on, be carried also in
the direction of what seems to be the mathematical (infinite) horizon of many-valued
logics, namely, fuzzy logic (i.e., infinite-valued logic, cf. [20, 38, 75, 106, 117]).
Here, several researchers (like, for instance, F. Cavaliere [41], P. Murinová [103], or
D. Dubois, H. Prade and A. Rico [59], to name some recent researchers) looking for
bridges between fuzziness and oppositions have already proposed many different
interesting strategies: but focusing on drastic “shortcuts” (for avoiding a lethal
complexity explosion), they do not seem yet to have taken in due consideration
the idea (of 2009) that “many-valued oppositions” are (seemingly) to be seen, as a
systematic whole, as poly-simplexes (Sect. 1.3). Of course, oppositional geometry,
in all its variants, seems (so far) committed to finite numbers, whereas fuzzy logic, as
remembered, is essentially an infinite-valued logic. But this openness of opposition
theory to finite many-valuedness, through the poly-simplexes, allows, at least in
principle, studying their numerical progressions and therefore opens, through the
concept of potential (if not yet actual) infinite, the discussion about the geometrical
patterns of possible infinite limits of these progressions.

Let us stress, here as well, that an important, and maybe even crucial point
on that respect (fuzziness), not to be forgotten, is the potential reference of the
poly-simplexes to the parameter “q” (Sects. 1.3, 4.1, and 5.1) of the Aristotelian
and “Smessaertian” pq-semantics. It seems reasonable to think, for instance, that
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a real three-valuedness (i.e., a radically three-valued one) would be closer to an
Aristotelian (and a Smessaertian?) 33-lattice than to 32- ones. This parameter “q”
(q ≥ 3) might open to a much finer-grained approach: in a 33-lattice (i.e., with
q = 3), there seem to be 27 instead of only 9 kinds of “opposition (and – cum grano
salis – implication) qualities” (cf. Fig. 127). So, even with respect to the “spirit of
fuzzy logic” (i.e., the idea of getting the more fine-grained you can and finer-grained
than “false/true”), an approach to oppositional geometry based on the 33-lattice,
rather than the 32-lattice, would seem, intuitively, more natural and complete. But
currently the 33-lattice is still being investigated as a hypothesis, with no robust
founding results already at hand on that so far. As said in Sect. 5.1, what seems to
be still lacking us – although several pieces of the “q puzzle” are already there and
promising – is something like an adequate new Angot-Pellissierian mathematical
tool able to cope, at the meta-level (the level of the meta-questions, precisely), with
truth-values other than 0 and 1. In fact, a further problem is that the Aristotelian
and the Smessaertian possible meta-questions happen to have different progression
rates: the former deal with “truth-value similarity” (“A and B true together”, etc.),
while the latter with “truth-value dissimilarity” (“A false while B true”, etc.). So,
to give an example, in a three-valued context (tri-simplexes), there could/should
be three Aristotelian meta-questions (our Q1 and Q2, plus the new Q3: “Can A
and B be ½ together?”), but six Smessaertian questions (Smessaert’s Q’1 and Q’2,
plus the following new four: Q’3 “Is it possible to have A 0 and B ½?”; Q’4
“Is it possible to have A ½ and B 0?”; Q’5 “Is it possible to have A ½ and B
1?”; Q’6 “Is it possible to have A 1 and B ½?”). So, the “Aristotelian” meta-
questions (generating the “opposition geometries”) can really be modeled, as we
proposed in 2009, by the hypercubic, or measure-polytopic, pq-lattices (Sect. 1.3,
Fig. 12). And, as said, this currently seems to lack a suited Angot-Pellissierian
mathematical tool. But, independently from that, the Smessaertian meta-questions
(generating the “implication geometries”) cannot be modeled as a whole (but maybe
as parts?) by a pq-lattice really parallel (i.e., with the same numerical values of p
and q) to the Aristotelian one. The idea, put more clearly, is that intuitively the
Aristotelian lattices should be pp-lattices (same number of qualities of questions
and of qualities of answers, given that both depend directly on the truth-values:
the Aristotelian meta-questions are reflexive), whereas the Smessaertian lattices
should be pq-lattices where q = p2 - p (they embody the total number of possible
nonredundant binary relations between p truth-values, i.e., p2, minus the number
of the reflexive ones, i.e., p, which are exactly the Aristotelian ones). The overall
situation just described can be visualized (and in principle explained, by a simple
combinatorial reasoning), again, with still one more instance of the series of the
simplexes (here in their graph-theoretical suit of “complete graphs”, or “cliques”,
cf. [125], p. 7), now interpreted in terms of possible binary relations between pairs
of truth-values (Fig. 128).

The result is that if one aims at being “many-valuedly complete” (in the sense
of being n-valued also in the meta-level – echoing, maybe, Suszko’s concern about
the danger of a “fake many-valuedness”, [138]), this seems to cause a combinatorial
explosiveness that might hang upon the researcher’s head like a sword of Damocles.
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Fig. 128 The possible “meta-questions” conform to the graph-theoretical counterpart of the
simplexes, the “cliques”

Again, a viable solution could maybe consist in decomposing the Smessaertian
lattice into a multitude of more viable sub-lattices, supposing this is possible and
meaningful. In that respect, what we have done in this study resembles a first step in
between the current total absence of theory and a theory which could be complete
(but at which combinatorial expensiveness’ cost is still unclear).

Let us finally recall that, as we saw, tri-simplicial oppositional geometry (starting
with the tri-segment) seems to show that there is an intrinsic deep link between
three-valuedness (and higher!) and the metalogical triad “paracomplete, classical,
paraconsistent” (Sects. 1.1 and 3.5, Fig. 81). And in fact, although we must stop
here speaking directly about many-valued logics, in the following two sections, we
are nevertheless going to have to look more specifically to particular cases of three-
valuedness: in paraconsistent logics (Sect. 5.3) and in quantum logics (Sect. 5.4).

5.3 The Tri-segment and Paraconsistent Logics: Some
Remarks

A second domain of the formal sciences where contradiction/negation is explic-
itly meant to be of the highest importance is, we have recalled, paraconsistent
logics (programmatically “the mathematics of nontrivial self-contradiction”, i.e.,
of nontrivial “A∧¬A”, for some, but not all A, cf. [22]). And as for the latter,
the relevance for it of the present study should already appear clearly in relation
to our opening Sect. 1.1 (on the “Slater dispute”), as well as in relation to other
comparable considerations we made all over the rest of our study (Sect. 3.5, Fig. 81).
Remark that poly-simplicial oppositional geometry, notably its Angot-Pellissierian
sheaf-theoretical version (Sect. 1.4, Figs. 19 and 20), seems to deeply confirm the
rightness of Béziau’s fundamental line of defense (2003, [24]) of paraconsistency
against the rude charge of Slater (Sect. 1.1, and [132]). Oppositional geometry does
it by rediscovering, over and over, the deep mutual relations of paracompleteness
and paraconsistency (a.k.a. the relations between intuitionism and co-intuitionism,
put into evidence, among others, by Béziau), seen as oppositional diffractions
of “classicality”: intuitionism being considered as mathematically fully natural
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(although not as mainstream as classicality), co-intuitionism (i.e., paraconsistency)
should be as well (at the Slaterian price, however, of cleaning itself of fantasy
elements). Inside (and outside) oppositional geometry, this is done by works like
Angot-Pellissier’s [1, 2], consisting in putting into precise link “topology” (a
fundamental approach to “space” in which “distances” and “shapes rigidity” do
not intervene) and (bi-simplicial as poly-simplicial) oppositional geometry, notably
with his “topos construction” of tri-simplicial tri-valuedness (Sect. 1.4, Fig. 17
and Sect. 2.1, Fig. 34) and by recalling an old but profound idea (found, e.g., in
V.A. Smirnov’s [136] commenting N.A. Vasil’ev’s [143] – Angot-Pellissier read
a draft translation I made of it from Russian) according to which, fundamentally,
paracompleteness is proper to any “open topology”, while paraconsistency, its
“dual”, is proper to any “closed topology” (“open” means “not possessing its own
frontier”, while “closed” means “comprising in itself its own frontier”). The tri-
segment we arrived at in this study, interestingly, seems to confirm and to summarize
these very important ideas by means of the well-displayed interplay of its three
diagonals (and of each of the three pairs of numerical sub-sheaves which are these
diagonals’ vertices): for short, each diagonal embodies one of the three kinds of this
fundamental logical-mathematical “trio” (Fig. 129).

Fig. 129 The Aristotelian tri-segment as a visualization of paracompleteness, classicality and
paraconsistency

This deep relation of the tri-segment to this important “metalogical” triad can
be suggested more intuitively by combining graphically the two valuations of the
Aristotelian tri-segment (Sect. 4.5, Fig. 121) with the symbolic (intuitive) expression
we proposed of the concepts of gap and glut (Sect. 3.5, Fig. 81). One sees, then,
vertex by vertex, what happens when the two valuations of the tri-segment, i.e.,
respectively, the supposed truth of the literal “1” and the supposed truth of the
literal “2”, switch the one into the other. By switching valuations, (i) classicality
oscillates between true and false, (ii) whereas paracompleteness oscillates between
gap and false, (iii) and paraconsistency oscillates between true and glut. This seems
to be, in some sense, one of the fundamental meanings of the tri-segment: by the tri-
simplicial diffraction of the red segment of 2-oppositional contradiction it “opens”
the classical concept of contradiction, seen as oscillation between true and false,
adding to it two new different ways of oscillating, one paracomplete and the other
paraconsistent (Fig. 130).
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Fig. 130 The two possible valuations of the tri-segment (1 and 2) express the possible plays with
“gaps” and “gluts”

This deep, natural link between intuitionism and paraconsistency, as said, had
been studied among others by Béziau since years, but principally in modal logic
(paradigmatically in [23–25]). He claimed in [23] (seemingly with reason!) that S5
(the “universal system”, i.e., the most classical and standard system of modal logic),
very paradoxically, can be seen as being already a full-fledged “paraconsistent
logic” (!), since its apparently innocuous modal operator “♦¬” (traditionally read as
“possibly not”, equivalent to the negation of necessity, “¬�”) in fact also expresses,
unseen but real, the gist of “paraconsistent negation” (Sect. 1.1, Fig. 3). The
emergence of other “demonstrations” of the same fundamental idea seems to appear
transversally (throughout logics and mathematics) in at least five different domains
(and we are probably missing, by ignorance, important others): (1) mathematical
logic, (2) modal logic, (3) topology, (4) many-valued logic, (5) and, last but not
least (given its high relevance for discussing “contradiction” as such), oppositional
geometry. Remark, however, that in some sense poly-simplicial oppositional geom-
etry seems even to add to these five domains (which comprise it as their fifth)
a sixth domain: (6) for one, and perhaps even more fundamental, new kind of
line of defense of the idea of a mathematical naturalness of paraconsistency, is, I
believe, the oppositional “Pascalian ND simplex” itself (and therefore arithmetic?);
inside the “Pascalian roadmap” for the oppositional poly-simplexes (Sect. 1.5),
paraconsistency’s naturalness becomes even visible, in its being, so to say, one of
the “fractal branches” – in the sense of Sierpiński’s gasket, which is correlated
(in several ways) with Pascal’s triangle (Sect. 1.5, Fig. 23, cf. also [109, 110]) –
relative to the possible contradiction kinds, of the global fractal structure. It must be
remarked that the fractality lies not only on the very numerical structure of Pascal’s
2D triangle but also on the fact that this tri-simplicial behavior (clearly readable,
for instance, in the 2D section of the Pascalian 3D simplex, Sect. 2.5, Fig. 53)
can be complexified, n-simplicially, into infinite by the very simplicial constitutive
structure of the Pascalian ND simplex (Fig. 131).

Thus doing, poly-simplicial oppositional geometry seems to confirm, over and
over, (1) that paraconsistent logics in some sense must not be overestimated
(by effect of the dangerous power of the fantasy relative to having “nontrivial
classical contradiction”, leading to unjustified fantasies of formal almightiness)
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Fig. 131 The 2D section (for the tri-segment) of the Pascalian 3D simplex shows the “meta-logical
trio” of negations

(this belief or ideal of nontrivial classical contradiction, Slater is right at least on this
important point, would be a pure, misleading fantasy!) and (2) that paraconsistency
is, however, indeed an important, natural, and by now even visible (!) feature
of the rigorous mathematical approach, not only to negation but more generally
(and deeply) to “opposition” (taken as a mathematical object, Sects. 1.2 and 4.6).
In this respect, one should never forget, as (logicist) logicians tend to forget it
almost “by construction”, that in some important mathematical (Pascalian!) sense
“contradiction” (i.e., negation) is a very meaningful but nevertheless particular case
of “opposition” (i.e., not able to erase, or even simply dominate, the numerical and
therefore Pascalian element of the global theoretical structure of “opposition”, Sect.
1.5).

As said for many-valued logics (Sect. 5.2), it must be repeated here that future
studies should also try to put at work, rereading humbly and patiently, step by step,
“classical” systems and concepts of paraconsistent logic (such as those of Vasil’ev,
Jaśkowski, da Costa, Belnap, Routley, Scotch, Batens, Priest, etc.), but this is not yet
easy to realize, given also the already mentioned current inexistence of full studies of
poly-triangles (i.e., published studies determining their oppositional closure). And
this should also become partly easier than it currently can be, when something more
will be understood and known about the seemingly fundamental, but still rather
obscure and opaque, relations of poly-simplicial oppositional geometry and many-
valued logics (Sect. 5.2).

Let us now turn to the last of the three formal approaches to contradiction we
consider, one which seems to bear itself many-valued and paraconsistent aspects:
quantum logics.

5.4 The Tri-segment and Quantum Logics: Some Remarks

A third domain of the formal sciences strongly interested by contradiction – we enter
here, let it be clear, as an amateur – is “quantum logics” (QL). Since it is deeply
rooted in “quantum mechanics” (QM), this also touches the question (otherwise
left untouched by us in this study) of the importance of contradiction/negation (as
different from contrariety) for the experimental natural sciences (like, for instance,
interestingly, in biology, cf. Figs. 137 and 138 infra). As for quantum mechanics,
that is microphysics, the problem is the following: this theory is said to be strange,
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and indeed it is, for it seems – as in another way, psychoanalysis (Sect. 5.6) – to
challenge fundamentally, and not by choice, but by necessity, the intuitive very
laws of logic. This is first of all, and notably, the case with “quantum leaps”,
that is the most elementary and small-scale known causal sequences, which appear
to contain in them a strict and intractable indeterminism (although these quantic
leaps take place in the formal framework – “Schrödinger’s equation” – of the
strictest statistical determinism). Many serious theoretical-physics proposals (i.e.,
nonexperimental, hard to test) have been done, inside physics, for coping with
this rationally embarrassing mystery (i.e., the sudden irreversible loss of classical
strict causality). This is the case with Everett’s famous (but rigorous!) theory of
the “parallel universes” (1957), also known as “many worlds (and/or many-minds)
interpretation of QM” (on this, cf. [17, 18, 54, 141]), which saves strict causality,
abolishes indeterminism, and makes mathematically more symmetrical and less ad
hoc the von Neumann quantum axiomatics, but at the astonishing price of admitting
that each micro-causal sequence (each quantic leap!) makes “split” the universe into
two (or more) parallel universes (and this exponentially into infinite): the fractal
bushy whole of these almost infinite fractal splits is called the “multiverse” (Fig.
132).

Fig. 132 Linear determinism, branching quantic indeterminism, fractal multi-linear (multi-
versum) determinism

Quantic intuitive strangeness – mainly due to the scientific naturalization of some
strange “intuitive contradictions” – remains in some sense not understood. But it
is proven to be “real” (its predictions so far remain unchallenged) and useful in
practice (it impacts reality technologically). But as such, by “weird” features like,
for instance, “local reversals of time”, or the spatial “non-locality”, and the like
(again, most of which, so to say, justify intuitive contradictions), QM becomes the
support of many, less serious fantasies, generally aiming at justifying “magics” and
paranormality (new age, esotericism, religion etc.), like in Jung [78] or Lupasco
[86]. In some sense, these fantasies (justified or not) are related to the idea of a
physical possibility of having “true contradictions” (the dangerous fantasy of some
paraconsistent logicians: having “nontrivial classical contradictions”, cf. Sects. 1.1
and 5.3).

With respect to the general theory of oppositions (i.e., considering not only
contradiction but also contrariety), it must be remarked that microphysics in general
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is full of entities related with contrarieties: anti-particles, anti-matter, anti-energy,
etc. One of the fathers of QM, Niels Bohr (1885–1962), is known for having, in that
respect, made explicit philosophical reference to the Dao’s “Yin-Yang” (notably
relatively to his formal concept of “quantic complementarity”). Consequently, it
seems that it would be interesting to look at QM with the new mathematical lens
now offered, on “oppositions”, by oppositional geometry.

In fact, long before the emergence of oppositional geometry, one way to cope
with this lasting and resisting “illogical” strangeness of QM has been to develop,
mathematically, something like “quantum logics”, a.k.a. “QL” ([60]). Systems of
QL have been proposed, at the beginning, by people like Birkhoff and von Neumann
in 1936 [32], Destouches-Février in 1937 and 1951 [53], and Reichenbach in
1944 [120], and they are mostly three-valued logical systems (Łukasiewicz, one
of the creators of many-valued logics, was among others motivated, by inventing
three-valued logic, in modeling physical indeterminism, cf. [75, 106]). This inven-
tion/discovery of QL involved, notably, the theorization of new “truth-tables”, suited
for three-valued propositional connectives, among which are three-valued negations
(Fig. 133).

Fig. 133 Some of the truth-tables of Destouches-Février’s three-valued logic for quantum
mechanics (1937, 1951)

As we saw, being three-valued logical systems, these early formal systems of QL
are somehow related to tri-simplexes (Sect. 1.3). Our fresh knowledge of the basic
features of the Aristotelian tri-segment (Sects. 2, 3, and 4), even without (the much
needed and not yet available) knowledge of tri-triangles and tri-tetrahedra (Sect.
1.6, Fig. 33, Sect. 5.1), allows us, in principle, to try to analyze some features of
quantum logic, at least those related to (three-valued) negation.

But QL, together with these rather simple, early three-valued propositional sys-
tems, has also resorted (notably with Birkhoff), more abstractly and powerfully, to
the then new mathematics of “order” and “lattice theory” (Sect. 1.2, Fig. 7 – cf. [48,
147]): there have been investigations on nonclassical order-theory (with structures
like “complemented ortholattices”) aiming at coping with mathematically strange
behaviors, as “non-distributivity” and the like (but there also are rivals to this,
namely, mathematically more radical and powerful things, like “noncommutative
geometries”, cf. Girard [70] and Zalamea [146]). Remark that the lattices of QL,
like “orthomodular lattices” and similar, are essentially nonstandard with respect to
classical logic (it is precisely by this that they aim relentlessly – but difficultly, as
heavily criticized in [70] – at capturing the strangeness of quantic “contradictions”)
(Fig. 134).
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Fig. 134 The “order theory” and “lattice theory” turn of quantum logic

Currently, QL is also the basis of the hope to reach soon “quantic computers”
and, through them, “quantic computations” (and, through the latter, “deep AI”,
cf. [76]), which also opens to some strong and astonishing fantasies (like the
dream/nightmare of the allegedly imminent “singularity”: the almightiness of
“emergent” artificial ultra-intelligent agents . . . ).

As said, a further idea is that of studying QM not only through three-valued
logic and nonstandard lattices (QL) but also, maybe, through “oppositions”. And
this is also not entirely new. In the last years, some logicians and epistemologists
(like Freytes, de Ronde, Bueno, and others: [19, 52, 66]) have been trying to use
the “square of oppositions” (Sect. 1.1, Fig. 1) for inquiring the foundations of QM
and of QL. But, strangely enough, this has been done by them, again and again,
without any reference to what is now really known about the structure “logical
square” (Sect. 1.2) – the (seemingly) logicist (Sect. 4.6) still have not understood
that something mathematically serious is going on, outside logic, with “oppositions”
(Sect. 1.5). So this line of researches seems at least suboptimal with respect (1), on
one hand, to concepts like the oppositional closures of bi-simplicial n-opposition
(and for a minimum, nonnegotiable start: the logical hexagon!) (2) and, on the other
hand, if reference is done (as we just saw) to the use, by QL, of logical many-
valuedness, to the (non) use (with respect to “microphysical oppositions”) of poly-
simplicial oppositional geometry (Sect. 1.3)! And, as it happens – as an intriguing
example of this strangely underestimated line of thought we are arguing for here
since some years – there is already notice (although still “unheard” until now) of at
least one striking, possibly interesting similarity, still to be investigated and checked,
between existing canonical formulations of QL (viz., those of Pavičić and Megill,
cf. [91, 108]) and poly-simplicial oppositional geometry (Fig. 135).

Fig. 135 The 1 + 5 = 6 “implications kinds” mysteriously present in any orthomodular lattice
(Pavičić and Megill)
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In fact, the 1 + 5 kinds of “quantum implications”, put forward by Pavičić and
Megill, strongly remind us those, emerging as weakenings of the “II” relation of
“opposition geometry”, in the Aristotelian 42-lattice (i.e., in the quadri-simplexes,
Sects. 1.3 and 1.4, Fig. 18) (Fig. 136).

Fig. 136 The six mysterious implications of any OML seem to match quite well those of any
oppositional quadri-simplex

Our present study, however, has clearly shown (ch. 4) that the complexity of the
arrow system of an oppositional-geometrical poly-simplicial universe is in fact even
higher than what shown by Aristotelian p2-lattices alone: the twin Smessaertian p2-
lattices (for “implication geometry”), and maybe even more complex pp2-p ones
(Sect. 5.2, Fig. 128), are also needed to have a clear view. So it will be possible to
seriously try to study this apparent correspondence between QL and poly-simplicial
oppositional geometry (as we hope to do, or to see done, in future researches) only
when will be inquired for themselves the quadri-simplexes (starting, soon enough,
from the quadri-segment, which bottom-up unfolds the tri-segment fractally in a
very elegant 3D polyhedron containing several interlaced tri-segments).

In order to try to have, nevertheless, at least a sketch of direct application of the
tri-segment (and also a first application of it to biology), we can now try to rethink
something of the famous thought-experiment of QM known as “Schrödinger’s cat”.
This is a poor furry non-dog quadruped in a dangerous Austrian “black box”, who is,
paradoxically, provisory “dead AND alive” – because of quantic “superposition” –
so long the strange quantic superposition inside the black box is not brutally
abolished (quantum leap) by the intervention of an external observer of the black
box, making a “measure” of what is inside it: a cat that, consequently, suddenly
becomes either dead or alive, only immediately after this “quantic measure” has
occurred – the quantic measure triggers (or not: mysteries of the quantum leaps) the
opening, inside the box, of a cyanide flask. Now, in some sense a robust reflection on
this seemingly requires, as a simplified standard oppositional-geometrical starting
model: (1) either (standardly) a bi-simplicial logical triangle (B3) for opposing
as contraries (and not as contradictories!) “dead”, “alive”, and “neither alive nor
dead”, then its tri-simplicial diffraction (the tri-triangle) could offer – maybe – some
starting element of oppositional-geometrical further clarification of the quantic
strangeness of the thought-experiment; (2) or (less standardly) a bi-simplicial oppo-
sitional tetrahexahedron (B4, the closure of the bi-tetrahedron A4) for combining, as
orthogonal (and therefore freely combinable), “dead”, “alive”, and their respective



462 A. Moretti

negations, then its tri-simplicial diffraction (the tri-tetrahedron) could maybe offer
some other starting element of clarification (Fig. 137).

Fig. 137 A B3-structure and a B4-structure for “Schrödinger’s (poor) cat”’s three or four possible
existential states

Waiting for the tri-triangle (and, still later, for the tri-tetrahedron), the tri-
segment can help us having at least some sort of (small and partial) “preview” of
the tri-simplicial diffraction, thus investing the starting bi-simplicial oppositional
description of Schrödinger’s cat’s conceptual experiment (but beware: the “tri-
triangle”, as we will show in another study, has not 6 but 24 nontrivial vertices! –
cf. Sect. 1.5, Fig. 29) (Fig. 138).

Fig. 138 “Tri-simplicial diffraction”, through the tri-segment, of some “contradictory halves” (!)
of Schrödinger’s cat

More generally, as already said (Sects. 5.1, 5.2, and 5.3), remaining at the level of
three-valued logic, it seems likely that alternative, finer-grained oppositional config-
urations might appear by resorting not to the Aristotelian and the Smessaertian twin
32-lattices (as here) but to the Aristotelian and the Smessaertian “twin” 33-lattices
(and, in fact, heavier, Sect. 5.2, Fig. 128).

Having tried to make some remarks on possible (future) applications of the tri-
simplicial diffraction of contradiction (i.e., the Aristotelian tri-segment) to some of
the formal sciences, les us try to have now a quick comparable look at a possible
incidence on some of the humanities: dialectics and psychoanalysis.
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5.5 The Tri-segment and Hegelian-Marxian Dialectics: Some
Remarks

The famous concept of “dialectics” also bears strong “fantasy elements” with
respect to “contradiction”, which is the starting object of this study. Dialectics is
in fact supposed (by its partisans) to be “the science of contradiction”. With respect
to all which should be said about “dialectics” – its theory, its history, its issues, etc.
(for two good overviews cf. [74, 122]) – we will try to limit ourselves to some of
the main points.

First of all, there is some interest in considering it, for dialectics (as a doctrine,
as well as a symbol) still has some strong impact on reality (notably in politics, but
more generally in contemporary philosophy). However, it is notoriously difficult
to define properly dialectics: dialecticians themselves (starting from Hegel) justify
this as being related to the very subject matter: (1) dialectics is the conceptual and
ontological “engine” of everything (according to dialecticians), and (2) it has to
do (allegedly) with the most inner structure of “being” and of “becoming” (of
anything! be it concrete or abstract), and (3) its own structure, it is said, consists
mainly in defeating dynamically any concrete “structure”. Historically, there are
essentially two such dialectics (leaving aside other important theories of dialectics,
generally of a very different and less “dynamic” nature, e.g., Plato’s dialectics
[121] or Lautman’s dialectics, [16, 80, 145]. First, there is a Hegelian (1770–1831)
dialectics (appeared around 1804). Second, derived from it, there is a Marxian
(1818–1883) dialectics (appeared around 1841). The important point for us is that
both claim to deal, in their “kernel”, with oppositions and contradictions. And
both claim to be superior to (in the sense of methodologically and ontologically
“more fundamental than”, and “irreducible to”) mathematics. This point is crucial:
among current philosophers (and activists, etc.), dialectics is still a competitor to
mathematics and nourishes, in its partisans, a deep disbelief for mathematics as a
reliable source of inspiration for philosophy or action in general. Later (and still
nowadays) dialectics has also been put into rivalry with mathematical logic – which
was born after it, with Boole (1815–1864), around 1847 – but the result of this
second confrontation remains rather unclear ([44, 58, 89]). Logicians and analytical
philosophers, like Popper (1902–1994), claim to have “demonstrated” that dialectics
is unsound. But dialecticians (the remaining few) claim, not without some rigor, that
logic cannot defeat dialectics (it cannot reach it, as a target) and that this is because
logic is a very primitive, too simple thing, in which dialectics just becomes unduly
frozen (dialectics is supposed to be more intrinsically lively and fundamental).

In fact, logic cannot “hit” dialectics because, truly speaking, dialectics (i.e.
Hegelian and/or Marxian) should be put into critical comparison not much with
logic but with oppositional geometry, for the latter, and not the former, is indeed
the “science of opposition”, if any (Sects. 1.2, 4.6). Once this point understood
and adopted, the main ulterior point to be seized is that, retrospectively, dialectics
is built on some clear inaugural, deep conceptual mistakes (inside philosophy)
about mathematics. This was substantially proven by the great mathematician (also
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a philosopher, [37]) Bernard Bolzano (1781–1848) – the real discoverer, before
Cantor (1845–1918), of the mathematical thinkability of the “actual infinite” [36]
and one of the founders, with Cauchy (1789–1857) and Weierstraß (1815–1897),
of modern mathematical analysis [129]. But it was not perceived by many, and,
very dramatically, not by Marx (most of Bolzano’s writings appeared posthumous
around 1929, long after his death in 1848). Bolzano demonstrated, by a crystal-
clear reasoning, that Kant (1724–1804) made severe mistakes in his theory of “how
mathematics can/must function”, a crucial theory for his project of a “criticist
philosophy”, which led him to difficult points (“antinomies”) in his “critique of
pure reason” [84]. Hegel assumed uncritically the fundamental structure of Kant’s
philosophy of mathematics (assuming, by that, Kant’s mistakes!) but claimed
that the difficulties thematized by Kant as “antinomies of pure reason” had to
be understood “the other way round”: here Hegel used a binary opposition, just
reversing it (this point is crucial and paradigmatic, cf. Fig. 139), so to suggest that
contradictions were not the bad end of thought (Kant’s antinomies), but its good
beginning! (i.e. Hegel’s dialectical philosophy). On top of this, and using Fichte’s
(1762–1814) astonishing philosophy of (i) opposition/contradiction and (ii) of the
creation of the object by the (absolute) subject (!), Hegel elaborated his “logic”, of
which “dialectics” is the second of three moments (this ternary scheme is supposed
to repeat into infinite, thus unfolding any reality, from nothingness to “absolute
Spirit”).

Fig. 139 “Diachronic” and “synchronic” dimensions in Hegel’s “logic”: the opposition in it is
synchronically binary

Third, then, it must be understood that one of the fundamental problems with
dialectics is that current dialecticians (and already Hegel and Marx!) seem to have
lost a precise intuition of the difference between “contradiction” and “contrariety”
[114]. This oblivion, quite common at the time of the birth of dialectics (and
shared by schools of thought quite distant from dialectics, like analytical philosophy,
phenomenology, and psychoanalysis – on the last cf. next Sect. 5.6), is conceptually
deadly. Dialecticians – as, paradigmatically, Roy Bhaskar (1944–2014), cf. [31] –
people obsessed by the concepts of “opposition” and “contradiction”, make almost
no mention of the “square of opposition”, left for dead on the floor! (they
discuss Priest’s “dialetheism” [115, 116], but not the logical hexagon). But this
confusion about contradiction and contrariety has a tremendous impact, lethal for
the credibility of dialectics. On the one hand, it shows that the dialecticians’
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“fundamental bet” (lost!) has been that opposition, at its root, had been theorized
once and for all by Hegel (in turn based on the “firm rock” of Kant’s theory of
mathematics) and that no mathematical new insights on opposition might appear
in the future (Kant’s similar tragicomic assertion, about logic admitting no major
changes in the future, is famous). Oppositional geometry, by its simple existence
(Sect. 1.2) – and right now by the emergence of the tri-segment! – ruins this insane
Hegelian view! On the other hand, by teaching, since the discovery of the logical
hexagon in 1950, that “binary oppositions” (i.e., binary contrarieties) do not exist
(Sect. 1.1, Fig.2), oppositional geometry ruins de facto most dialectical reasonings
of the past (and of the future!) which can be shown to be crucially grounded on
such (alleged) binary oppositions: the problem being that from a binary opposition
you can deduce (as the dialecticians), by “reversal”, things that you cannot from a
ternary or higher contrariety.

This becomes clearer if one realizes that, in fact, nolens volens, Hegelian
logic bears, from a structuralist mathematically legitimate viewpoint (cf. [7–9,
112]), a “diachronic” and a “synchronic” dimension: there is, clearly, a diachronic
succession of three moments, the second of which is “dialectics” properly said
([130]). But this second moment has also a fundamental “synchronic” dimension:
it consists of an opposition, and this (Hegelian) opposition, “at some time” (think
of it in terms of a mathematical “fixed point”), “exists”. But in this necessarily
“synchronic” dimension, dialectics commits a mistake with respect to oppositional
geometry: it believes in binary oppositions, which it uses (by “reversing” them),
whereas, as we recalled, they do not exist (and thus cannot be deductively “binarily
reversed”)! (Fig. 139).

This confusion appears, even nowadays, in the fact that “true dialecticians” and
their admirers (Bhaskar, Ollman, etc.) speak commonly about “two things being
in contradiction”, whereas what happens is that their contrariety (a fragment of a
larger, at least ternary one, Sect. 1.1, Fig. 2) implies two contradictions: each of the
two contrary terms also implies the contradiction, i.e., the (vague!) negation, of the
other.

What about the tri-segment, then? One of the most reputed attempts at formaliz-
ing Hegelian logic/dialectics, due to Rogowski in 1964 (cf. [124]), uses four-valued
logics (the two extra truth-values stay, respectively, for “beginning to be” and
“ending to be”): so, in order to see how the “oppositions” truly work in it, we
would need quadri-simplexes (Sects. 1.3, 1.4, and 1.5). This is out of reach here (but
not in the near future). What the oppositional tri-segment already shows, however,
and decisively (Sects. 4.5 and 4.6), is, again, that the holy “pure contradiction”
segment (so, even without speaking of the oppositional-geometrical bi-simplicial –
and a fortiori poly-simplicial – “fireworks” of n-contrariety, starting with triangles)
is already mathematizable and already leads (as draft studies on the quadri-
and quinque-segments already establish) to unmistakable mathematical, infinitely
growing, highly structured complexity, which, again, ruins the “transcendental
flavor” of Hegel’s alleged “constant ternary flowing of dialectics” (Fig. 140).

Similar remarks should be done, point by point, for Marx: in his own changes
to dialectics (cf. [74, 105, 122]), which are real proposals, he offers new “patches”
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Fig. 140 “Contradiction” is a mathematical object: it ruins the Hegelian anti-mathematical
fantasy on “dialectics”

which – at times – even contain bits of interesting mathematical premonitions (e.g.,
of catastrophe-theory, system-theory, category-theory, etc. [82, 123]). As such, they
are valuable achievements of creative thought. But, they are nothing more than that,
and by embedding them into the deadly fantasy of a unique, almighty scheme,
transcendental “dialectics”, superior to mathematics, Marx as well, as already
Hegel (pace Lawvere), leaves, up to now, dialecticians and “Marxian orphans” blind
and hostile to mathematical non-unifiable complexity (as intelligently explained,
among others, by Badiou [11, 13] and by Mélès [92]).

Having made some minimal remarks on the possible impact of our successful tri-
simplicial diffraction of contradiction (the tri-segment) over dialectics, let us now
turn, in the last Sect. 5.6, to psychoanalysis.

5.6 The Tri-segment and Psychoanalysis: Some Remarks

Last element of our inquiry, the relation to “opposition” of “psychoanalysis” is
strong, but complex. Here as well, we can only point to a few general remarks,
which we will center on three main theoreticians of psychoanalysis: Freud, Lacan,
and Matte Blanco.

Psychoanalysis is a study of the human mind based on the assumption of the
existence of “unconscious” mental dynamics and “unconscious” mental structures,
playing a structuring role at the level of “meanings” but also at the level of personal
identity. From the viewpoint interesting us, the main contribution to this reflection
made by Sigmund Freud (1856–1939), the first theoretician of psychoanalysis, can
be decomposed critically in three main points. First, he discovers, and syntheti-
cally expounds in 1915 [64], that considerable “negation/opposition problems”
appear in the mysterious but real foundations of what he theorizes as the human
“metapsychology”, generated by the existence of a quite strange (but observable)
“unconscious” mind, of which the metapsychology aims at giving some kind of
conceptual axiomatics. The existence of the unconscious is shown, convincingly,
to be very important, both for explaining “normal mental life” (dreams, parapraxis,
acting out, ordinary psychopathology, etc.) and for “mental pathology” properly
said (psychosis, severe forms of neurosis, perversion, etc.). But the unconscious is
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shocking, and one of the five irreducible axioms of the metapsychology says: “In
the unconscious, ‘negation’ seems to be not working”. For Freud this is shocking,
but at the same time real, and therefore desperately asking for an explanation (Freud
himself will never succeed in finding a satisfactory one, as he will admit in his
last, posthumous, and unfinished study [65]). Secondly, in order to explore the
unconscious, Freud develops a powerful theory of the mental processes and notably,
in some sense, a theory of the “mental oppositions” (i.e., “complexes”), both at
the individual and at the collective (and historical) level (this results, globally,
in a theory of individual and collective “psychogenesis”). This is based on the
idea that “mental unity” is the emerging (fragile) property of a constant process,
rather than a “transcendental”, firm starting point (like in the philosophical theories
of Kant, Hegel, or Husserl). As such, Freud’s theory seems to be “realist” and
rather powerful, for it seems to match clinical evidence (in fact Freud’s starting
point) and everyday life’s experience, but at the price of introducing morally
shocking elements (like infantile sexuality, constitutive bisexuality, “naturalness”
of murder and rape instincts or fantasies, etc.). Third, however, Freud seemingly
confounds at least partly (like most people in his time and most people even
now!) “contradiction” (negation) and “contrariety” (i.e., opposition properly said):
what Freud talks about when he speaks about “negation not working” (in the
“unconscious”) seems rather to be, in fact, opposition (which also implies negation)
and more precisely “contrariety” (this seems quite clear in his 1910 “remarks on the
oppositions in primitive languages”, [63]). The two (contradiction and contrariety)
are of course deeply related (and showing this is one of the main tasks of the
square of opposition, Sect. 1.1, Fig. 1, and, thence, of all oppositional geometry,
Sect. 1.2) but must not be confused. As it seems, contemporary psychoanalytical
theory, despite its interest for mathematical developments, still has not clarified this
important inaugural non-negligible confusion of Freud. Oppositional geometry in
general brings some precious light precisely on this: the articulation and the possible
confusion of contrariety and contradiction, at least in the sense that if, as I think after
a careful examination of it, what Freud is speaking about – when he speaks, not
lightheartedly, of “negation” – is in fact (also) “contrariety”, than some important
obscurities and difficulties of the theorization of metapsychology by him and by
his school seem to disappear, and some new, robust research lines seem to emerge,
promisingly enough.

This is more or less, implicitly, the research line of Ignacio Matte Blanco (1908–
1995), the author of the part of contemporary psychoanalytical theory that seems
to be most deeply (and most promisingly) related to the particular mathematical
discoveries of general poly-simplicial oppositional geometry. Since 1975 (year
of the publication of his The Unconscious as Infinite Sets. An Essay in Bi-logic,
[90, 119]), the strictly remarkable (and largely underestimated) theory of Matte
Blanco proposes concrete theoretical elements for trying to go methodically in this
direction. Apparently more modest than the more famous and flamboyant Lacan (cf.
infra, [55-57, 61]), Matte Blanco has in fact made some very important theoretical
proposals, where he substantially claims (convincingly!) that he has unexpectedly
(i.e., not too young: aged of 67 years!) solved, through a new sort of mathematical
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reasoning, the main five metapsychological problems left dramatically unresolved
by Freud at his death and until then reputed unsolvable by Matte Blanco himself.
For short, since 1975 Matte Blanco tries to draw our attention on the fact that there
seem to be important structural links, of an unexpected abstract mathematical kind,
between growingly strange but meaningful psychoanalytical oppositions and “sym-
metrizations” (as in dreams, psychopathology, or psychosis), and the unfolding of a
mental kind of hyper-geometry. I must recall that the very invention/discovery of the
concept of “oppositional bi-simplex” was much helped, in me, by some acquaintance
I had with Matte Blanco’s psychoanalytical theory of the mind, formulated in terms
of geometrical n-dimensional simplexes. Matte Blanco pedagogically obliges his
readers to get acquainted with simplexes of different dimensions and with strange
phenomena possibly resulting from the mutual projections of (mental) geometrical
spaces and objects of different (perceptual) dimensionality (Fig. 141).

Fig. 141 Matte Blanco’s study (The Unconscious as Infinite Sets, 1975) of the interplays of some
nested simplexes

But since, as Freud, Matte Blanco seems to be much more committed with
contrariety than with contradiction, we must leave an oppositional-geometrical
poly-simplicial discussion of his theory (a theory of “bi-logic” and of the “bi-logical
structures”) for a context in which we will have more knowledge about poly-
simplexes higher than poly-segments (this will start, again, with the tri-triangle).
Since the tri-segment only deals with “contradiction”, we cannot say much more
here.

Fundamental metapsychological questions, similar to those explicitly left unre-
solved by Freud at his death in 1939, are faced with similar radicality by a third
major theoretician of psychoanalysis, Jacques Lacan (1901–1981), who innovates
mainly by constructing an operative link (through Saussurian differential linguistics)
between Freudian investigations of the unconscious and the powerful structuralist
interdisciplinary (and among others mathematical) paradigm and methodology
[112]. Lacan’s theoretical strength (beyond his stylistic “Gongorism”, his constant
provocations, and his still deranging histrionic outings), among others, seems to
have been the deep understanding he progressively gained and defended (against
reigning Hegelianism, for instance, but also against Marxism, Heideggerianism, and
logicism – not to speak about “psychologisant” psychoanalysis that he, as well as
Matte Blanco, fought relentlessly) that mathematics are so to say the most powerful,
radical, and relevant key for investigating profound issues about the human mind
(Lacan’s concept for this is, in fine, the “Real”, in his fundamental conceptual
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triad “R.S.I.”, articulating Real, Symbolic, and Imaginary, which among others is
a powerful tool for modeling the complex morphogenesis of fantasies). But the
mathematics put into play by Lacan – as “mathemes”: inspiring formal images – are
such that they strongly diverge from the logicist program: they are structure-based
(instead of logic-based or deduction-based), highly creative, and in some sense
“nonstandard”. In order to model meaningful (mental) “reversals” (contradictions
and contrarieties) of all kinds (including meaningful self -contradictions), Lacan
thus resorts (also) to topological structures typically “strange”, like “Möbius’s
stripe” (an open surface, in the 3D space, with only one side!), “Klein’s bottle”
(a closed surface, in the 4D space, with only one side!), etc., that is mathematical
structures such that they can help expressing the most strange and “illogical” but
natural features of the human mind (and notably those related to the unconscious,
“normal”, or pathologic) (Fig. 142).

Fig. 142 “Möbius’s stripe” and “Klein’s bottle” provide topological intuitions on “opposition
subversion”

In particular, one of the most famous (but also one of the most difficult to work
out formally) of Lacan’s innovating concepts is that of “pas-tout.e” (in French: “not-
all”). Lacan arrives to it by a psychoanalytical complex (and deep) reasoning, about
“sexuation”, i.e., “mental gender”, considered as independent from “anatomical
destiny”: you can have a penis but “fundamentally be” a woman, etc. (remark
that nowadays Lacan’s theory is, despite polemics, very appreciated, debated [14],
and used, notably in gender and transgender issues). For modeling this concept of
sexuation, in a nutshell, aiming at studying the unconscious relation of “man” and
“woman” (as related to concepts as “universality”, “exception”, “enjoyment”, etc.),
he deforms the logical square (decorated à la Frege with quantifiers and quantified
functional assertions), cutting and extracting from it one of its two red diagonals of
contradiction and leaving aside what remains. More precisely, around 1972 [79] he
“opens” the so obtained contradiction segment (extracted, as said, from a quantified
version of the canonical logical square), by redoubling and renaming each of its two
vertices, transforming it into a nonstandard new kind of formal square, his “square
of sexuation” (in my opinion of oppositional geometer, one can/must think of it by
analogy with the “cut and paste” construction of Möbius’ stripe and Klein’s bottle,
Fig. 142, supra) (Fig. 143).

As it happens [85], this shape was inspired to Lacan by a reasoning of J.
Brunschwig in 1969 [39] on the supposed psychogenetic “difficult origin” of the
logical square in Aristotle, where the former argued that, historically, Aristotle
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Fig. 143 From Aristotle’s to Lacan’s square (i.e., the “square of sexuation”) through Brun-
schwig’s square (1969)

found difficulties, allegedly “in the very heart of logic” (this is something Lacan
liked!), during the invention of the square, and therefore had to hesitate between
three successive kinds of (implicit!) formal squares (historically, we still do not
know whether Aristotle himself developed graphically the full-fledged square (on
Aristotle and mathematics, cf. [97], based on [77, 139]; cf. also [142]): he developed
at least a preliminary version of it, the ὑπoγραϕή, in Peri Hermeneias, [6],
Sect. 13). Brunschwig’s square, rigorous per se, is nevertheless indigent from the
viewpoint of oppositional geometry in so far it is a very suboptimal expression
of formal properties optimally expressed, 20 years before (1950), by the logical
hexagon (Sect. 1.1, Fig. 2). So, the fact that Lacanians, still now, keep “shielding”
their Master, and themselves, with it – as did, for instance, in 2005 Grigg [73] against
a benevolent but rigorous Badiou (1992) in his mathematically critical remarks on
Lacan [12] – in order to claim (Grigg) that “Lacan’s reasoning is neither a sophism
nor a formal mistake, because it relies on Brunschwig’s square!”, is not (yet) a
sign of conceptual strength ( . . . ). More interestingly, one should remark here two
things: (1) Lacan aims at proving that “sexual difference” is conceptually deeper
than “logical difference” (i.e., contradiction); and (2) by his square, Lacan defines
sexuation through (nonstandard) contradiction. The first point is well-known, while
the second seems problematic from the viewpoint of oppositional geometry: “female
vs. male” is not a contradiction, but a contrariety (hence the necessity of having a
logical hexagon, etc.).

But, here – coup de théâtre! – our tri-segment (at least under the provisory naïve
form it took in Sects. 2 and 3) seems, unexpectedly, to be quite interesting and fit, if
one thinks of it, for trying to reformulate oppositional-geometrically this otherwise
formally strange and perplexing current “square” expression of the Lacanian theory
of sexuation (Fig. 144).

For, not only it bears striking formal similarities with Lacan’s square: more
deeply, it rescues it from the aforementioned aporia of reducing dangerously
“female vs. male” to a contradiction (instead of a contrariety), by its own structural
richness (the tri-segment is a . . . hexagon!). In fact, the Aristotelian tri-segment
captures really quite much, but with mathematical rigor, of what Lacan seems
“illogically” willing to capture. The tri-segment seems to have at least a quintuple
advantage over the previous implicit model of this (i.e., Brunschwig-Lacan’s
square): (1) it is not arbitrary (while Brunschwig-Lacan’s square clearly is); (2)
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Fig. 144 The “square of sexuation”, or “Lacan’s square”, resembles quite much a tri-segment’s
“inner rectangle”!

it has a large and deep mathematical theory behind (poly-simplicial oppositional
geometry), whereas Lacan’s square has not; (3) it has more structure – the
(paracomplete) square, or better rectangle, is only one of its components, but even
taken alone as a paracomplete rectangle, it says more (for instance, about the inner
structure of the two different “contradiction diagonals” composing it) – (4) it bears
explicit and reasoned reference to intuitionism (i.e., paracompleteness and its gaps),
which is a major point advocated (but so far with problems, as pointed by Badiou
in 1992 [12]) by Lacan (cf. Darmon [47]); and (5) it adds to the reference to
paracompleteness a tantamount explicit (and intuitively important) reference to its
mathematical dual (absent in Lacan!), paraconsistency (i.e., co-intuitionism).

One must remark that this last proposal of application of the tri-segment,
although surely strange for some, seems interesting (and paradigmatic): quite many
people looked for “Lacan’s square” (including, in some sense, Lacan himself!) and
still look for it (as recalled in [128]). So, finding a mathematical solution to the
“riddle of the pas tout” would be a fait d’armes. If seemingly nobody found it so
far, despite looking eagerly for it, and since years, and with all sort of formal means,
this is because nobody had the idea (or, in fact, the means) of simply looking for a
mathematically rigorous, proper diffraction of the oppositional-geometrical concept
of contradiction (a diffraction of the red segment): in terms of “poly-simplicial
diffraction”! This is what we achieved in this study and in some sense seems to
be quite close to what Lacan was trying, as he could, to “speak” about (Fig. 145).

Fig. 145 The Aristotelian tri-segment as mathematical basis of Lacan’s attempted “sexuation
square”?
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Again, the importance of the “pas-tout.e”, in a considerable part of contemporary
thought, is such that if it were confirmed (time will tell) that the Aristotelian tri-
segment, as in fact I tend to think, is indeed a (serious) model of it, this could
be a memorable rather inspiring 2020 result. And a splendid entrée sur scène of
our newborn, small “formal artist”: the first full-fledged oppositional poly-simplex
(poly≥3) . . . . But here we cannot say more (that will be another story) and so leave
the consideration of this last suggestion to the future curiosity of our reader.

Here we can close, at last, the long journey, brave reader, which has been our
present common inquiry on the poly-simplexes in general and on the tri-segment in
particular.

6 Conclusion

Our study was about the mathematical concept of “contradiction” (i.e., negation).
In a nutshell, it consisted in showing that the “mathematical nature” of the concept
of contradiction/negation is more geometrical (i.e., “simplicial”) than “logical”. Of
this we gave a particularly strong new proof: (1) by establishing an astonishing
(and powerful) technical reference to Pascal’s triangle (which we generalized to the
very useful notion of “Pascalian ND simplex”) and (2) by developing a concept
of “Aristotelian combination” which proves suboptimal, as for the exploration of
“opposition”, the logicist program and methodology of Smessaert and Demey’s
“logical geometry”. More specifically, in our study we developed a “tri-simplicial
diffraction” of contradiction (seen as, classically, bi-simplicial). This engaged us in
recalling first the concept of poly-simplicial space.

We recalled the context of the emergence of the idea of poly-simplicial space
that we proposed in our PhD in 2009 and that has not been much developed since.
This engaged us in recalling, previously, the concept of “oppositional geometry”,
which is a powerful framework for explaining the structure of the “logical hexagon”
(which explains, since 1950, the otherwise mysterious “logical square”), seen as a
“bi-simplex” (viz., a bi-triangle). Importantly, we showed that by now the poly-
simplicial space has become explorable, notably (i) thanks to Angot-Pellissier’s
sheaf-theoretical method for generating vertices and examining the edges between
any pair of them (ii) and thanks to our concept, proposed here, of “Pascalian
ND simplex”, which generalizes Pascal’s triangle and provides a quite useful
“roadmap”, complementary to the sheaf-theoretic method (of which it solves some
crucial problems). Through this we explored successfully the simplest of all the
poly-simplexes (poly≥3), the “tri-segment”: the tri-simplicial diffraction of the
classical red “contradiction segment”. This turned up to be rich enough as for its
structure, which consists of a 2D hexagon (or, equivalently, a 3D octahedron). In
order to do that, we had, previously, to solve successfully some intermediary rather
difficult steps. We thus discovered (in Sects. 2 and 3) (i) proper treatments for poly-
simplicial “extrema”, (ii) a general technique for coloring any poly-simplicial vertex
(and not only the edges between them), (iii) and the general combinatorial laws
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ruling the patterns of the poly-simplicial “valuations” (i.e., the attribution of truth-
values to the vertices).

In order to deal with unexpected arrows emerging in the tri-segment from its
two valuations, in Sect. 4 we established an important further point: that it is
possible and in fact necessary to use, additionally, Smessaert and Demey’s concept
of “implication geometry” (on top of which they posited the idea of a “logical
geometry”, encompassing the two twin geometries which are the “opposition
geometry” and the “implication geometry”, and therefore supposed to be the most
general and best theoretical framework for dealing, among others, with oppositions).
To do that, we developed new, suited versions of Smessaert’s starting idea, thus
bringing Smessaert and Demey’s “logical geometry” to a level of complexity where
it had never been before (the level of the poly-simplicial spaces – Smessaert and
Demey’s logical geometry remains, by construction, bi-simplicial, and in fact the
very concept of “simplex”, i.e., geometrical number, is banned from the logicist
vocabulary of logical geometry). And this allowed us making a very interesting
discovery: what these two authors take for suboptimal, namely, what they call
“Aristotelian geometry” (and which is supposed to contain also our and Angot-
Pellissier’s “oppositional geometry”), seen as a bricolage, made unconsciously, by
conceptual surgery, over the two twin halves of logical geometry (i.e., “opposition
geometry” and “implication geometry”), is in fact, in the light of the emerging
complexity of the poly-simplicial space, already at the “ground-zero” level of the tri-
segment, a necessary and optimal transformation (which we baptized “Aristotelian
combination”) – not of choice, as they believe, but of fusion – allowing methodical
complexity reduction. This fact allows understanding that Smessaert and Demey’s
logical geometry, in its programmatic negation of a mathematical autonomy (with
respect to logic) of the “oppositional”, is in fact suboptimal. On that respect, we
also recalled the deep philosophical reasons why what we therefore take as being
their logicist posture (inscribed in the very reckless name of their approach) is
rather dangerous (and, again, suboptimal as for the exploration bottom-up of the
“poly-simplicial space”, which is constitutive of the key concept of “n-contrariety”).
It is notably suboptimal with respect to a structuralist approach, very natural for
exploring (as Blanché in [33]) the “elementary structures of opposition”, but more
generally “logical geometry” is suboptimal with respect to any free mathematical
approach not submitted to the logicist, mathematically counterproductive agenda.

Finally, in the last part (Sect. 5), we tried to have a prospective first look at
possible applications of the successful tri-simplicial diffraction of contradiction,
which is the “Aristotelian” tri-segment. Before that, we discussed some current
limitations of our approach, which should be, but is not yet, many-valued also at the
meta-level (technically speaking: at the level of the number of the possible “meta-
questions”) and how it should be tried to overcome these current limitations in a near
future. An important point is that, from now on, the higher poly-simplexes (and, for a
start, as soon as possible, the “tri-triangle”, i.e., the “tri-simplicial diffraction” of the
logical hexagon) should be studied in a way comparable to the one we successfully
developed in this study for the tri-segment. As for applications, we concentrated on
five domains where contradiction/negation seems to play a particularly important
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role, both positively as a concept and also negatively as a fantasy: in the exact
sciences we proposed to see this in many-valued logics, paraconsistent logics,
and quantum logics; in the humanities we proposed to see this in dialectics and
psychoanalysis. Among the applications we proposed, the most spectacular one
seems to be the (in our view) very convincing formalization of what is traditionally
known as “Lacan’s square” (1972), or “square of sexuation”, a structure and theory
much debated and used, notably, in gender and transgender studies and which so
far remained a very difficult open problem (despite the many attempts to solve it,
notably by some mathematicians). We claim that this famous and strange square,
generally reduced – as to its formal standard – to “Brunschwig’s square” (1969), is
in fact, when duly formulated (i.e., better than Lacan and his followers did and still
do), a precise fragment (viz., its “paracomplete inner rectangle”) of the tri-segment,
and retrospectively this seems “logical”: the tri-segment “diffracts” the contradic-
tion segment, which is precisely what Lacan tried to do, but without an adequate
tool. This suggests to use, in the future, the paraconsistent “extra structure” of the
tri-segment, with respect to the a posteriori suboptimal Lacan-Brunschwig’s square,
for exploring Lacanian (and more generally: gender-theoretical) “sexuation issues”
possibly not yet explored by Lacan, the Lacanians, or any of the many working on
it.
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