)

Check for
updates

Research on Cross-Project Software Defect
Prediction Based on Machine Learning

Baoping Wang!-3, Wennan Wang', Linkai Zhu'-?, and Wenjian Liu' &2
1 Faculty of Data Science, City University of Macau, Macau, China
wwwennan@zcst.edu.cn, andylau@cityu.mo
2 Institute of Software, Chinese Academy of Sciences, Beijing, China
linkai@iscas.ac.cn
3 Beijing Huayuexun Technology Co., Ltd., Beijing, China
D19092105076@cityu.mo

Abstract. In recent years, machine learning technology has developed vigor-
ously. The research on software defect prediction in the field of software engi-
neering is increasingly adopting various algorithms of machine learning. This
article has carried out a systematic literature review on the field of defect pre-
diction. First, this article studies the development process of defect prediction,
from correlation to prediction model. then this article studies the development
process of cross-project defect prediction based on machine learning algorithms
(naive Bayes, decision tree, random forest, neural network, etc.). Finally, this
paper looks forward to the research difficulties and future directions of software
defect prediction, such as imbalance in classification, cost of data labeling, and
cross-project data distribution.

Keywords: Machine learning - Software defect prediction model - Metric

1 Introduction

With the breakthrough development of various technologies and the increasing software
requirement, the functions of software products are becoming more and more powerful,
but the system is also becoming more and more complex. Due to the complexity of the
software itself, technical architecture, team capabilities, and use environment, there are
various defects in software products. Software defects can cause serious accidents and
even great economic losses and casualties. 2018 In October and March 2019, two Boeing
737TMAX planes belonging to Lion Air Singapore and Ethiopian Airlines crashed one
after another, causing a total of 346 people to die. The 737MAX series were subsequently
grounded globally, and Boeing’s reputation was also severely damaged. The follow-up
air crash report pointed out that the accident was caused by Boeing engineers’ wrong
technical assumptions, the lack of transparency in Boeing’s management, and the serious
inadequacy of FAA supervision; in November 2020, a software failure in Michigan, the
United States, erroneously 6,000 votes Vote for Biden, as many as 47 counties have been
affected, causing the US general election process to be questioned.

© Springer Nature Switzerland AG 2021
W. Zhou and Y. Mu (Eds.): ICWL 2021, LNCS 13103, pp. 160-165, 2021.
https://doi.org/10.1007/978-3-030-90785-3_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90785-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-90785-3_16

Research on Cross-Project Software Defect Prediction 161

The defect prediction model is established by software measurement data and histor-
ical labeling data. Through the collected software historical data, Use various algorithms
of machine learning to obtain a predictive model, and predict subsequent software defects
on this basis, so as to reduce the cost of defect repair and improve software quality. ensur-
ing the availability and reliability of software, have important scientific value and social
significance.

2 Software Defect Prediction Research

Since the 1970s, research on software defects has begun, and software defects have
been studied more through correlation and causality. Since 2000, with the popularity of
configuration management tools, the software development process and software mea-
surement data have become more and more abundant. At the same time, the performance
of computer hardware has continued to improve, and machine learning algorithms have
been more applied to software defect prediction research. Software defect Prediction
methodologies are shown in the table below (Table 1).

Table 1. Software defect Prediction methodology

Number Category Methodology

[S1] Metrics The relationship between software defects
and code lines (Akiyama 1971)

[S2] Control flow Cyclomatic complexity (McCab 1976)

[S3] Error-prone modules Metrics related to the amount of data and

the structural complexity (DE) of programs
(Shen et al. 1985)

[S4] Software complexity metrics The relationship between program
complexity measures and program faults
(Munson and Khoshgoftaar 1992)

[S5] Object-oriented methods A new suite of metrics for OO design
(Chidamber and Kemerer 1994)

[S6] Relative code churn Relative code churn metrics (Nagappan and
Ball 2005)

[S7] Metrics—performance measures Network analysis on these dependency
graphs (Zimmermann and Nagappan 2008)

[S8] Network measures Logistic regression (Ma et al. 2011)

[S9] Complex network Sampled K-fold cross-validation method

(Yang et al. 2018)

The defect prediction model is established by software measurement data and tagged
defect data collected from historical data. Through the collected historical data, the
machine learning method is used to construct a software defect prediction model,
and then to predict the subsequent software, provide support for decision-making and



162 B. Wang et al.

improve the quality of the software, and ensure the availability and reliability of the
software as an infrastructure. The software defect prediction process based on machine
learning algorithms is shown in the figure below (Fig. 1).

Historical
Defect
Data

Measuring
Labeling

- Modeling

Y

—| Predicting 4—@

New
Defect
Data

Fig. 1. Defect prediction process

In the 1970s, (Akiyama 1971) based on the hypothesis that complex source code
may cause defects, and clearly gave the relationship between software defects and code
lines: D = 4.86 + 0.018L. (McCabe 1976) and (Halstead 1977) respectively proposed
cyclomatic complexity metric and Halstead complexity metric. During this period, the
research was not on predictive models, but only on fitting models with the correlation
between the number of defects and the measurement.

From the 1980s to the 1990s, (Shen et al. 1985) established a linear regression model
and tested it on a new software module. (Munson and Khoshgoftaar 1992) proposed
a modular classification model that is divided into high-risk and low-risk categories.
(Chidamber and Kemerer 1994) proposed several object-oriented metrics, namely CK
metrics, (Basili et al. 1994) used CK metrics to predict defects in object-oriented systems.

Since 2000, because of the popularization of configuration management tools, there
have been more and more measurement data in the software development process, and
the application of measurement data in defect prediction has become more and more
extensive. (Nagappan and Ball 2005) proposed relative code change churn indicators,
(Zimmermann and Nagappan 2008) proposed dependency graph indicators. (Yang et al.
2018) established an object-oriented software network based on the relationship between
software elements and their evolutionary relationship. (Tian 2020) proposed a software
defect prediction model based on program slicing.



Research on Cross-Project Software Defect Prediction 163

3 Cross-Project Defect Prediction Research

Cross-Project Defect Prediction (CPDP) refers to the use of predictive models trained
from software metrics of other projects to identify software modules that are prone to
defects in software projects.

(Zimmermann et al. 2009) collect data from open-source software and commercial
software, and build defect prediction models based on logistic regression algorithms.
They considered the recall rate, precision and accuracy values of performance indicators,
and assumed success when all indicators were equal to or greater than 0.75. Studies have
shown that only 3.4% meet this standard.

(Ma et al. 2011) proposed the “naive Bayesian transfer” method, which uses the
naive Bayes method to weight the training data in the training set. The NASA MDP
and SOFTLAB data sets are used. Studies have proved that, compared with the nearest
neighbor sample selection and the traditional naive Bayes method, the prediction model
produces better recall and PF results without any further processing.

(Pan 2013) proposed a transfer defect learning method that uses the existing method
to transfer component analysis (TCA), and then performs TCA+by extending TCA.
They studied different data normalization techniques. TCA+applies automatic selection
for the best standardization strategy. The research concluded that z-score normalization
provides better results than no normalization.

(Goel et al. 2018) This article takes the multi-class/polynomial classification of
cross-item defect prediction as an example. Use set-based statistical models-gradient
enhancement and random forest for classification. To determine the performance of
polynomial classification for cross-project defect prediction, an empirical study was
conducted. According to the number of defects, the class level information can be divided
into one of three defined multi-class class O, class 1 and class 2. The conclusion is:
multiple/multi-category classification is applicable to cross-project data, and the results
are comparable to project defect data.

(Li et al. 2019) First, a new domain adaptation method based on subspace alignment
(SA) is introduced in CPDP, which can reduce the difference in data allocation between
the source item and the target item. Then, a discriminant SA (DSA) method is proposed
for CPDP, which can make full use of the class label information of the source item.
The experimental results of five public projects in the NASA data set show that DSA is
superior to related competitive methods.

(Gong et al. 2020) A new class imbalance learning method is proposed for the
problem of class imbalance within and across projects. The conclusion of the study is
that this method has better area under the curve (AUC), recall rate and F measurement.
(Zhu et al. 2020) proposed an improved Transfer Naive Bayes (ITNB) based on Naive
Bayes. The conclusion of the study is that in WPDP and CPDP defect prediction, the
accuracy and accuracy of the ITNB model have achieved better results. (Wang 2020)
This article focuses on the comparative study of oversampling and ensemble learning
methods in software defect prediction. Aiming at the treatment of category imbalance
in software defect prediction, it is studied how to effectively combine the imbalance
processing method at the data level and the imbalance processing method at the algorithm
level to obtain better defect prediction performance. Aiming at the problem of category
imbalance in defect prediction, a hybrid sampling technique HS SKM based on S MODE
and X-mode s clustering is proposed, and this technique is combined with the traditional



164 B. Wang et al.

random forest algorithm to obtain a Hybrid sampling random forest algorithm HSRF.
Aiming at the problem of feature selection in defect prediction, a feature selection
algorithm based on conditional information entropy and random subspace, FSC ERS, is
proposed, and an integrated learning algorithm combining this algorithm with Bootstrap
sampling.

4 Conclusion

From the above research status at home and abroad, it can be seen that in recent
years, many studies have been carried out on cross-project software defect prediction,
and according to the characteristics of cross-project software data, various algorithm
improvements have been used to improve the accuracy of defect prediction. Several key
issues of the existing cross-project software defect prediction technology have not been
effectively resolved, and can be used as a direction for future research considerations.

1. The problem of imbalanced training data classification
Classification imbalance is the main factor that affects the quality of the data set. The
defective data set contains defective modules and non-defective modules. Among
them, defective modules often belong to a minority category, while non-defective
modules belong to a majority category. Traditional classification models often aim to
maximize the overall classification accuracy, but reduce the classification accuracy
of minority classes, which will affect the performance of the defect prediction model
to a certain extent.

2. The problem of labeling cost of unlabeled training data
Marking defective modules is costly. How to select samples that can build a better
predictive model for marking without marking samples, avoid marking the entire
software project module, thereby reducing the high cost of marking samples.

3. Data distribution of source and target projects in cross-project defect prediction
For the defect data of different projects, due to the different programming styles of the
developers of different projects, the different development platform environments,
and the different functions and complexity of the projects, the distribution of the
defect data of different projects will be very different. In order to construct an effective
defect prediction model, reducing the difference in the distribution of defect data of
different projects is the key.

Acknowledgement. The work was supported by Macau Foundation, Project number: MF2012.

References

Akiyama, F.: An example of software system debugging. In: Freiman, C.V., Griffith, J.E.,
Rosenfeld, J.L. (eds.) IFIP Congress, no. 1, pp. 353-359. North-Holland (1971). ISBN:
0-7204-2063-6

Basili, R., Marziali, A., Pazienza, M.T.: Modelling syntactic uncertainty in lexical acquisition from
texts. J. Quant. Linguist. 1(1), 62-81 (1994). https://doi.org/10.1080/09296179408590000


https://doi.org/10.1080/09296179408590000

Research on Cross-Project Software Defect Prediction 165

Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw.
Eng. 20(6), 476493 (1994). https://doi.org/10.1109/32.295895

Goel, L., Sharma, M., Khatri, S., Damodaran, D.: Prediction of cross project defects using ensemble
based multinomial classifier. ICST Trans. Scalable Inf. Syst. 159974 (2018). https://doi.org/10.
4108/eai.13-7-2018.159974

Gong, L., Jiang, S., Bo, L., Jiang, L., Qian, J.: A novel class-imbalance learning approach for both
within-project and cross-project defect prediction. IEEE Trans. Reliab. 69(1), 40-54 (2020).
https://doi.org/10.1109/TR.2019.2895462

Halstead, M. H.: Elements of Software Science, Operating, and Programming Systems Series.
Elsevier Science, 7 (1977)

Li, Z., Qi, C., Zhang, L., Ren, J.: Discriminant subspace alignment for cross-project defect pre-
diction. In: Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence and Com-
puting, Advanced and Trusted Computing, Scalable Computing and Communications, Inter-
net of People and Smart City Innovation, SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019,
pp- 1728-1733 (2019). https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.
2019.00308

Ma, Y., Luo, G., Li, J., Chen, A.: Software defect prediction using transfer method. In: 2011
International Conference on Computational Problem-Solving, ICCP 2011 (2011). https://doi.
org/10.1109/ICCPS.2011.6092261

Mccabe, T. J.: A Complexity Measure. IEEE Trans. Softw. Eng. SE-2(4) (1976). https://doi.org/
10.1109/TSE.1976.233837

Munson, J.C., Khoshgoftaar, T.M.: The detection of fault-prone programs. IEEE Trans. Softw.
Eng. 18(5), 423-433 (1992). https://doi.org/10.1109/32.135775

Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density. In:
Proceedings of the 27th International Conference on Software Engineering, ICSE 2005 (2005).
https://doi.org/10.1145/1062455.1062514

Nagappan, N., Murphy, B., Basili, V.R.: The influence of organizational structure on software
quality: an empirical case study. In: Proceedings of the International Conference on Software
Engineering (2008). https://doi.org/10.1145/1368088.1368160

Pan, S.J.: Transfer defect learning. In: Proceedings of the International Conference on Software
Engineering, pp. 382-391, 22 May 2013

Shen, V.Y., Yu, T.J., Thebaut, S.M., Paulsen, L.R.: Identifying error-prone software—an empirical
study. IEEE Trans. Softw. Eng. SE-11(4), 317-324 (1985). https://doi.org/10.1109/TSE.1985.
232222

Tian, Y.: Research on software defect prediction based on program slice (2020)

Wang, H.: Research on software defect predication based on ensemble learning (2020)

Yang, Y., Ai, J., Wang, F.: Defect prediction based on the characteristics of multilayer structure of
software network. In: Proceedings of the 2018 IEEE 18th International Conference on Software
Quality, Reliability, and Security Companion, QRS-C 2018 (2018). https://doi.org/10.1109/
QRS-C.2018.00019

Zhu,K.,Zhang, N., Ying, S., Wang, X.: Within-project and cross-project software defect prediction
based on improved transfer Naive Bayes algorithm. Comput. Mater. Contin. 63(2), 891-910
(2020). https://doi.org/10.32604/cmc.2020.08096

Zimmermann, T., Nagappan, N.: Predicting defects using network analysis on dependency graphs.
In: Proceedings of the International Conference on Software Engineering (2008). https://doi.
org/10.1145/1368088.1368161

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B.: Cross-project defect prediction: a
large scale experiment on data vs. domain vs. process. In: ESEC-FSE 2009 - Proceedings of the
Joint 12th European Software Engineering Conference and 17th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2009). https://doi.org/10.1145/1595696.1595713


https://doi.org/10.1109/32.295895
https://doi.org/10.4108/eai.13-7-2018.159974
https://doi.org/10.1109/TR.2019.2895462
https://doi.org/10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00308
https://doi.org/10.1109/ICCPS.2011.6092261
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/32.135775
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1145/1368088.1368160
https://doi.org/10.1109/TSE.1985.232222
https://doi.org/10.1109/QRS-C.2018.00019
https://doi.org/10.32604/cmc.2020.08096
https://doi.org/10.1145/1368088.1368161
https://doi.org/10.1145/1595696.1595713

	Research on Cross-Project Software Defect Prediction Based on Machine Learning
	1 Introduction
	2 Software Defect Prediction Research
	3 Cross-Project Defect Prediction Research
	4 Conclusion
	References




