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Abstract. Pressure gain combustion has been proposed to exploit supe-
rior thermodynamic cycles in gas turbines. However, further research on
their integration is needed to reduce the induced negative effects on the
last stages of a compressor. In this contribution, mitigation results on
the effects of periodic disturbances on an annular compressor stator rig
are presented and compared for different closed-loop controllers. Instead
of a real, unsteady combustion setup, a rotating disc was installed to cre-
ate periodic disturbances downstream of each passage. Pneumatic active
flow control served to influence the suction side of each stator blade.

With steady blowing actuation, the effects of periodically induced
disturbances could not be explicitly addressed and led to worse results
compared to the closed-loop versions. For closed-loop control, a clear
recommendation for a class of learning approaches can be given. Finally,
an evaluation of the efficiency of flow control is presented with a refined
characterization of the actuation effort.

Keywords: Closed-loop control · Active flow control · MPC · ILC ·
RMPC · Annular compressor stator cascade · Pulsed jets

1 Introduction

The performance of modern gas turbine compressors is limited by flow separa-
tion from the suction side of the stator and rotor blades. Therefore, in general,
a compressor blade is designed to avoid boundary layer separation, limiting the
amount of achievable flow turning and pressure rise from a single blade row and
hence an axial compressor stage. However, the loading of such blades and the
risk of separation increases significantly when pressure gain combustion (PGC)
is integrated due to its unsteady effects on the upstream flow field. To mit-
igate these effects and still benefit from PGC, the application of active flow
control (AFC) is proposed.
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Previous studies have shown that actively controlling the secondary flow fea-
tures within a passage can lead to higher pressure recoveries of a stator vane [1].
A comprehensive review of a wide variety of possible actuator concepts is pre-
sented by Cattafesta et al. [2]. Of those concepts, pneumatic actuation by air
injection is particularly interesting for axial compressors, as bleed air can be
used.

However, recent studies [11] of a linear stator cascade have shown an over-
all efficiency drop with increasing actuation amplitudes for blowing. Therefore,
the actuation effort should be as low as possible while damping the induced
disturbances of PGC.

In this paper, the results of an annular compressor stator cascade with AFC
are discussed. An annular test rig was equipped with highly loaded stator vanes
and an end-wall actuator at the hub side of each passage. In the experiments,
air blowing out of rectangular actuation slots was modulated using solenoid
valves, thus requiring a binary control signal. In addition to steady blowing,
different closed-loop concepts were applied and compared—two variants of model
predictive controllers (MPCs), a quadratic iterative learning controller (QILC),
and a repetitive model predictive controller (RMPC). Both the QILC and RMPC
exploit the periodic character of the induced disturbances and have already been
successfully adapted with a real-valued control signal and proportional valves in
a linear stator cascade [10]. For the MPCs, a simple disturbance model and
an extended disturbance model are proposed here to estimate and predict the
disturbance.

Within all four closed-loop algorithms, an optimal binary control signal
had to be calculated with respect to a chosen cost function. This led to a
binary quadratic program (BQP) and was solved with a classical branch-and-
bound (B&B) [6] algorithm combined with an underlying quadratic program
solver [5] to obtain the optimal solution of the BQP in real time.

2 Experimental Setup

In this section, the setup for the annular stator cascade experiments is briefly
explained. All experimental investigations were conducted using a low-speed,
open circuit wind tunnel at the Chair for Aero Engines. The annular design was
chosen to create enhanced three-dimensional flow characteristics and thus enable
investigation of the effects of unsteady disturbances at a high spatial resolution.

The annular setup consisted of a highly loaded compressor stator cascade
equipped with controlled diffusion airfoils. A schematic of the cascade and the
airfoil geometry is presented in Fig. 1a. The blades were designed to produce an
axial outflow with a chord-based Reynolds number of Re = 6 × 105 without any
gap at the hub or tip and with a total mass flow of ṁ(k) ≈ 9.3 kg/s at every
time step k. Downstream of the cascade, a rotating throttling disc was installed
(Fig. 1b) to mimic periodic disturbances that could occur using downstream
PGC. During the experiments, the disc ran at a frequency of 3.7 Hz, which led
to a disturbance frequency of fd = 7.4 Hz and a resulting Strouhal number of
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Fig. 1. (a) Actuation concept and geometry; (b) location of the throttling disc

Srd ≈ 0.03. More geometric details and the parameters of the wind tunnel were
presented in a previous publication [4].

2.1 Instrumentation and Data Acquisition

All measurements were conducted with instrumentation amplifiers [DEWETRON
DAQP-STG] and 24-bit digitization [DEWETRON ORION-1624-200]. A control
blade with ten suction-side embedded pressure transducers [KULITE XCS-062]
was used for the closed-loop experiments. The corresponding transducer posi-
tions are marked in red in Fig. 1a, with a span-wise position at z/h = 0.05. For
the closed-loop experiments, the control algorithms were implemented with Mat-
lab/Simulink 2017a on a real-time system featuring a multi-function I/O device
[NATIONAL INSTRUMENTS PCIe 6259]. The sampling rate of the real-time
system was set to ns · fd = 111 Hz, with ns = 15 as the number of stator blades.
This choice implies that the blockage produced by the throttling disk moves one
passage per sampling instant. As a result, the control signal applied to the con-
trol blade’s passage could be used to actuate the next passage for the next time
instant. By repeating this for every consecutive passage, the information from
the control blade could be used to control the whole annular test rig.1

1 This, of course, assumes that the cascade is rotational symmetric, all passages behave
exactly the same, and other local disturbances do not occur.



324 B. Fietzke et al.

Fig. 2. Miniature pitot tube probe

A jet actuator system with binary controlled solenoid valves (Fig. 1a; bottom)
was used to influence the flow via pneumatic blowing. The actuation system was
located on the hub wall side and consisted of a rectangular outlet orifice, with
slot height h

act
/c = 0.053 and slot width d

act
/c = 0.001 in relation to the blade

chord length c (Fig. 1a). The outlet orifices had a blowing angle of Θ = 15◦

relative to the passage end wall and were oriented perpendicular to the blade’s
surface. Further information on the jet actuator system can be found in [4].

To assess the outflow conditions of the additively manufactured actuators,
a miniature pitot tube (MPT) was used during additional actuator slot exper-
iments. The MPT featured a sub-miniature pressure sensor [MEAS EPIH-113-
3.5B-Z1V10] with an outer diameter of only 1.27 mm specifically designed for
dynamic and high-frequency measurements. The MPT’s slender inlet tube had
an outer diameter of 0.2 mm, an inner diameter of 0.09 mm, and a length of
12.00 mm. Thus, the MPT had a blockage of less than 1% with respect to actu-
ator slot height of 0.4 mm and length of 10.00 mm. The pressure sensor did not
have a screen or any protective coatings on the diaphragm, and the cavity vol-
ume in the MPT was kept to a minimum of only 0.17 mm3 (see Fig. 2). Using the
analysis of line-cavity systems presented in [3] to model the linearized dynamic
of a pneumatic measuring system, one can state that the geometric parameters
of the MPT yield a bandwidth of approximate 1070 Hz, thus being sufficiently
fast for the presented measurements. The MPT was traversed in a cartesian grid
covering 30 points in the exit plane of the actuator slot. The grid had three
points in d- and ten points in the h-direction.

The amplitude of actuation is represented here by the momentum coeffi-
cient cμ(k). It describes the momentum of an actuated passage with actuation
mass flow ṁjet(k) and properly defined velocity vjet(k); (see below) in relation
to the momentum of a passage flow in the cascade:
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cμ(k) =
ṁjet(k) · vjet(k)
Apsg · q1,ref (k)

=
ṁ2

jet(k)
Apsg · q1,ref (k) · ρ · dact · hact

. (1)

with:

ṁjet(k) =

{
ṁact(k)
nact(k)

nact(k) > 0

0 nact(k) = 0
. (2)

Hereby, nact(k) represents the number of actuated passages, Apsg the cross sec-
tional area of one passage, q1,ref the dynamic pressure measured upstream of the
passage on the reference location, and ρ represents the density of air. During the
closed-loop and open-loop wake measurements, it was not possible to measure
vjet and verify whether it was homogenous over the actuator slot. Therefore, a
mean vjet was estimated via linear interpolation, using the results of the actua-
tion slot measurements obtained from a separate experiment (see Fig. 5). Finally,
the resulting values of cμ could be calculated.

3 Closed-Loop Control

In [4], without the refined actuation slot measurements, we already compared
open-loop actuation against RMPC. Additionally, more details with respect to
RMPC and the chosen surrogate control variable for the test rig were given. In
the following, we repeat only some of the details and introduce other controllers
used in the comparison.

3.1 Model Identification

With a surrogate control variable, a scalar was introduced that best reflected
the results of the flow disturbances. For time step k, it describes the disturbance
impact on the static pressure coefficients of the control blade and reads as

yk = pT
1

· cp(k) − ys . (3)

Here, pT
1

is the first principle component of the control blade’s disturbed static
pressure coefficients. The vector cp(k) comprises measurements from ten sen-
sor locations (see Sect. 2.1), and ys describes a constant operating point. As a
consequence, when yk = 0, the variance of the disturbance’s impact along the
direction given by p

1
is zero, which is the overall goal of the closed-loop control.

Therefore, the reference for closed-loop control is set to rk = 0.
In Eq. (3), p

1
can be understood as a weighting vector for the influence of the

control blade’s static pressure sensors on yk. Figure 3a presents a plot of p
1

over
the sensor positions of the control blade. Because p

1
decreases over the suction

side coordinate s, the last sensors have a significantly less effect on yk than the
first ones. In Fig. 3b, yk is shown over the cycle of one disturbance period.
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Fig. 3. First principle component of disturbance influence on cp(k) (a) and its time-
dependent projection on p

1
(b).

For modeling, a system excitation was performed for different actuation
amplitudes and blowing distributions with respect to the actuated passages.
Pseudorandom binary signals were used as valve control signals to identify a
linear, time-invariant, discrete-time single-input single-output state-space model
for the actuation valves’ physically possible frequency range.

All control algorithms applied in this study will be based on a prediction of
the future evolution of the systems’ state and control error. With the identified
model, these predictions will only depend on the actual state at time k and
the future undetermined evolution of the control input. The predictions can be
given in a very compact form introducing appropriately built matrices F and
G to describe the influence of the actual state and predicted control input on
the future evolution of the control error; see [4]. In all control algorithms, an
optimization problem will be solved based on optimization criteria I evaluating
the outcomes of the predictions.

3.2 Controller Formulation

In the following, the formulation of all used control algorithms is shown. We
start with the RMPC formulation, the derivation of which is shown in more
detail in [4]. With relatively minor adjustments, the formulations of the MPC
and the QILC can finally be derived by modifying the optimization criteria.

RMPC. In an RMPC, the prediction of the system’s output error ek = rk − yk

makes use of the knowledge of the periodic disturbance dk−n of the last cycle
and assumes that this disturbance will occur again. The matrix G maps the
supposed control input trajectory uk|k and F maps the initial state error εk

to the predicted error trajectory ek+1|k. In the following, a vector with the
notation (·)k|k and (·)k+1|k indicates a prediction at current time step k for future
values starting at k and k+1, respectively. With the special notation (·)k+n|k, the
last entry of a prediction vector is addressed. (·)k−n refers to the corresponding
trajectory of the last cycle, Δ(·) refers to the change in comparison to the last
cycle, and (̌·) refers to the last row of the corresponding matrix.

The cost function I(uk|k) of the optimization problem, depending on uk|k,
is defined by the summation of the prediction’s running costs and end costs. As
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our identified system is asymptotically stable, we can ensure stability for the
closed-loop system with an adequate set of weight matrices. These are for the
future error We , future control input Wu , change in control input with respect
to the last cycle WΔ , and the end costs We . I(uk|k) can finally be written as a
quadratic function2 with the Hessian matrix H and a linear term fT

k
. Thus, the

binary optimization problem to calculate the optimal control trajectory u∗
k|k is

u∗
k|k = argmin

uk|k
{

I(uk|k)︷ ︸︸ ︷
uT

k|kHuk|k + fT

k
uk|k} , (4a)

subject to

uk|k ∈ B
n

, (4b)

with

H = GTWe
TG + Wu + WΔ +

1
2
ǦTWe Ǧ , (5a)

fT

k
= −2

(
sT
k+1|kWe G + uT

k−nWΔ +
1
2
tTk+n|kWe Ǧ

)
, (5b)

sk+1|k = ek−n + FΔεk + Guk−n , tk+n|k = ek + F̌Δεk + Ǧuk−n . (5c)

As solenoid valves were used for actuation, the design variables of this and
the following optimization problem are binary (Eq. (4b)). The first input of the
optimal control trajectory u∗

k|k(1) is used as control input uk for the control
blade’s passage valve, while at the next time step k+1 the optimization problem
has to be solved again. This “principle of receding horizon” is part of every model
predictive control used in this study.

MPC. In contrast to the RMPC, the past cycle is not taken into account in an
MPC, so that the cyclic character of the disturbance induced by the throttling
disc is not exploited. Instead, a prediction of the disturbance is used, see below.
Moreover, all terms relating to the last cycle are dropped. Thus, the structure
of the BQP is the same (Eq. (4)), but with slightly different matrices

H = GTWe
TG + Wu +

1
2
ǦTWe Ǧ , (6a)

fT = −2
(
sT
k+1|kWe G +

1
2
tTk+n|kWe Ǧ

)
, (6b)

sk+1|k = Fεk − dk+1|k , tk+n|k = F̌εk − dk+n|k . (6c)

QILC. In contrast to the two other controllers, QILC is not based on the
receding horizon principle, but the control trajectory of the upcoming cycle is
2 The offset of the cost function is ignored here because it is not essential for the

optimization program.
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calculated from the control trajectory and the remaining control error of the last
cycle by an optimization program [10].

I(uj) = uT
j Huj + fT

j
uj (7a)

with

H = GTWe
TG + Wu + WΔ , (8a)

fT

j
= −2

(
sT
j We G + uT

j−1WΔ

)
, (8b)

sj = ej−1 + FΔε0,j + Guj−1 . (8c)

This BQP is solved only once at the start of each cycle, and the entire control
trajectory is applied. In the case of QILC, the notation (·)j indicates a trajectory
for the current cycle and (·)j−1 indicates a trajectory for the last cycle. Addi-
tionally, within the QILC formulation there is no term regarding the end costs
because when using a QILC it is usually assumed that the initial conditions are
always constant, which was approximately the case during the experiments.

Finally, the setup for the learning weight WΔ for the RMPC and QILC,
with equal diagonal entries of wΔ ∈ R>0 will be discussed here. As suggested
in [7], wΔ is implemented as an adaptive parameter to account for peculiarities
of the binary domain. In contrast to the case of real-valued control signals, for
a fixed wΔ >> 0, the binary solution for u∗

k|k is likely to get stuck in a sub-
optimal solution. Therefore, it is checked whether the control signal trajectory
has changed at every time step compared to the previous cycle. If this is not the
case, wΔ is reduced by 5%, to allow for a possible higher change for the next
optimal control trajectory.

Since in case of the QILC the corresponding BQP only has to be solved once
per cycle, in every remaining time step3 wΔ can be adapted to solve the BQP
of the last cycle start, with lowered wΔ until a change in the optimal control
signal trajectory occurs. The changed wΔ then influences the trajectory in the
next cycle. The weight adaptation is done until wΔ falls below a small threshold
of 0.01, where both the RMPC and QILC are likely to be converged. After
that, wΔ is set back to the initial value of wΔ,0 = 100.

3.3 State Estimation

Since the state vector is not directly measurable, a Kalman filter is used to cal-
culate the estimated state x̂k and, by this, the estimated state error ε̂k needed
for the MPC and RMPC. To improve the quality of the estimation, we intro-
duce disturbance models. In the case of the MPC, a disturbance model is even
mandatory to estimate the disturbance dk and predict the future disturbance
trajectory dk+1|k, Eq. (6).

Two approaches for the disturbance model were investigated. The first one
assumes the disturbance as a constant offset δk. Therefore, within the MPC, the

3 Meaning the n − 1 time steps that are not used for solving the original BQP.
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vector dk+1|k is held constant at δk during a prediction horizon. With A being
the matrix of the identified state-space model, b and c being the input and output
vectors, and xk being the corresponding state-space vector, the augmented state-
space model, including the constant disturbance model, reads(

xk+1

δk+1

)
=

[
A O
O 1

](
xk

δk

)
+

[
b
0

]
uk , (9a)

yk =
[
cT 1

] (
xk

δk

)
, (9b)

with O as the zero matrix/vector of the corresponding dimension.
Inspired by the similarity of the induced disturbances with a harmonic oscil-

lation (compare Fig. 3b), an oscillating second-order system with zero damping
and a state vector zk ∈ R

2
is included in Eq. (9) to define a second dynamic

disturbance model within the augmented state-space model:

⎛
⎝xk+1

zk+1

δk+1

⎞
⎠ =

⎡
⎣A O O
O Á O
O O 1

⎤
⎦

⎛
⎝xk

zk

δk

⎞
⎠ +

⎡
⎢⎢⎣

b
0
0
0

⎤
⎥⎥⎦uk , (10a)

yk =
[
cT 1 0 1

] ⎛
⎝xk

zk

δk

⎞
⎠ . (10b)

Here, Á is chosen so that the eigenfrequency of the second-order system is equal
to fd. Within the MPC, the matrix Á and the estimated disturbance state vector
zk can be used to calculate a dynamic prediction dk+1|k, which is more accurate
than the first approach above.

Finally, each augmented state-space model is used in a corresponding Kalman
filter to calculate the augmented state vector. The equations and settings for a
Kalman filter are well documented in the literature (e.g., see [8]).

4 Results

The outcome of the actuation slot measurements are presented first, followed by
the results of the closed-loop experiments. Finally, a series of open-loop wake
measurements are presented, comparing the impact of steady blowing and the
RMPC control trajectory on important characteristics of the considered passage.

4.1 Actuation Slot Experiments

Figure 4 shows an example of the time-averaged velocity field measured at the
actuator slot outlet using the MPT for the lowest (pact = 2 bar) and the highest
set pressure in the actuator pressure tank (pact = 4 bar). It can be seen that the
velocity field is relatively uniformly distributed, especially at a higher pressure.
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Fig. 4. Time-averaged velocity field in the actuator slot for (a) pact = 2 bar and (b)
pact = 4 bar.

Fig. 5. Area-averaged actuator slot velocity over a mean period ϕ over pact = [2...4] bar
for (a) steady actuation and (b) applied RMPC trajectories.

The velocity drops to nearly zero only at a measurement point in the upper
left corner, as this actuator slot was blocked due to manufacturing tolerances
decreasing the effective outlet area.

The area-averaged jet velocity for a mean period4 ϕ = [0...360]◦ for a range
of different pact is displayed in Fig. 5. Figure 5a shows the results for steady
blowing, and Fig. 5b shows the results for several RMPC trajectories and pres-
sure levels. The outlet velocities can be estimated using linear interpolation, and
the corresponding cμ values can be calculated retrospectively for the open-loop
measurements previously presented in [4].

4 Note: Because the disturbance induced by the throttling disc is periodic, a period
angle ϕ can be defined.
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Fig. 6. Comparison of different closed-loop actuations. On the left, the two MPCs (a, e)
and learning controllers (b, f) are shown and compared with the non-actuated case (O)
and the permanently actuated case (I) over an averaged cycle. On the right, the duty
cycle and normalized control error norm are shown over several cycles for the two
MPCs (c, g) and the learning controllers (d, h).

4.2 Closed-Loop Experiments

Figure 6 shows the results of the closed-loop experiments with different con-
troller configurations compared with the base case (O - grey diamonds) and the
case with steady actuation (I - grey diamonds). The squares show the data for
the MPC with the Kalman filter using the simple disturbance model (Eq. (9)).
The crosses, circles, and stars show the data for MPC, QILC, RMPC with the
Kalman filter using the extended disturbance model (Eq. (10)). On the left side,
the averaged, converged control trajectories u∞ and output trajectories y∞ over
the time steps k of a disturbance cycle j are presented. The notation (·)∞ indi-
cates that the considered number of cycles before averaging was high enough
so that the learning controllers could converge. In terms of the two MPCs, the
control trajectories were still slightly fluctuating because, in contrast to the
learning controllers, the change of control trajectory is not penalized. This can
be observed from the non-binary5 values of u∞ of the MPCs (Fig. 6a), which is
not the case for QILC and RMPC that reached a converged state (Fig. 6b).

As discussed above, y∞ = 0 means that the influence of the throttling disc
on the first principle component of the pressure readings on the suction side
disappears. Without control (O), y∞ clearly deviates from zero, which indicates

5 This results when fluctuating binary trajectories are averaged over several cycles.
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the disturbance’s influence (Figs. 6e and 6f). For open-loop control with steady
actuation (I), the absolute value of y∞ could only be decreased for very few
time instants, while in other phases, the results were even worse. Looking at the
results of the MPC with the simple disturbance model (MPCδ), the same holds
here as well: the disturbance could not be effectively damped. However, the MPC
with the enhanced disturbance model was able to lower the disturbance impact
much more, similar to the effect of the QILC and RMPC (Fig. 6f).

On the right side of Fig. 6, the convergence behavior of the controllers with
respect to the duty cycle DCj of the actuation and the relative 2-norm of the
output error trajectory ej of a period j

||ẽj ||2 = ||ej ||2
/√

n (11)

can be seen. All controllers were activated at j = 0. The RMPC and the QILC
converged after seven and twelve cycles, respectively, and lowered the error from
||ẽj ||2 ≈ 0.68 to ||ẽj ||2 ≈ 0.50 (Fig. 6h), an improvement of about 25%. The
duty cycle of the valves was constant at DCj = 33% after convergence (Fig. 6d).
With steady actuation and the MPC with the simple disturbance model, the
error even increased (Fig. 6g), while DCj , and thus the actuation effort, was
higher (Fig. 6c). The MPC with enhanced disturbance model lowered the error
similar to the learning controllers but was faster due to the missing costs of
control trajectory change. In return, DCj was on a slightly higher level and
fluctuated more.

The closed-loop experiment with the RMPC, presented in Fig. 6, was con-
ducted five times for every considered actuation amplitude. The converged
RMPC trajectories were then averaged and used for the following wake mea-
surements.

Open-Loop Wake Experiments

In this section, the effect of the RMPC trajectory on the wake of a passage and
particularly three important characteristics of the passage will be shown. The
cμ-values were calculated with the data of Fig. 5 and are more accurate than the
cμ-values in our previous publication [4].

Keeping in mind the overall purpose of a stator vane—the conversion
of dynamic pressure into static pressure—the static pressure rise coeffi-
cient Cp(z, y, k) of a passage is an important parameter. It is defined as the
difference between the local static pressure downstream p2(z, y, k) and the area-
averaged static pressure upstream p1(k) of the passage relative to the mass-
averaged upstream dynamic pressure q1(k)

Cp(z, y, k) =
p2(z, y, k) − p1(k)

q1(k)
. (12)

Note that as suggested by Cumpsty and Horlock [9], area-averaging is used
for static pressure and mass averaging is used for total and dynamic pressure.



A Comparison of Optimal, Binary Closed-Loop Active Flow Control 333

In comparison to Cp(z, y, k), the total pressure loss coefficient ζ∗(z, y, k) takes
the difference of the total pressure into account

ζ∗(z, y, k) =
g∗
1(k) − g2(z, y, k)

q1(k)
, (13)

with the corrected inlet total pressure of the passage

g∗
1(k) =

ṁpsg(k) · g1(k) + ṁact,psg(k) · pact(k)
ṁpsg(k) + ṁact,psg(k)

, (14)

including the contribution of the actuation mass flow as well. Here, ṁact,psg(k)
is the measured passage’s actuation mass flow and pact(k) is the total pressure
of the actuation, defined as the pressure in the actuation stagnation tank.

Since our definition of the actuation amplitude cμ(k) (Eq. (1)) does not
allow for an evaluation of the overall mass flow effort of a specific passage
for pulsed actuation, the last characteristic describes the actuation mass flow
of a specific passage ṁact,psg(k) in relation to the passage’s inlet mass flow
ṁpsg(k) = ṁ(k)/ns

μ(k) =
ṁact,psg(k)
ṁpsg(k)

. (15)

Here, ṁact,psg(k) is approximated with the general jet mass flow ṁjet(k)
weighted with the control input uk,psg for the valve of the specific passage

ṁact,psg(k) = ṁjet(k) · uk,psg . (16)

To compare the effects of different actuation amplitudes cμ on the passage
characteristics, Cp(z, y, k) was area-averaged and ζ∗(z, y, k) was mass-averaged.
Both characteristics were also phase-averaged and divided by the corresponding
characteristic value for the case without actuation. Whereas μ(k) was phase-
averaged. The outcome is shown in Fig. 7 over different cμ values. It can be
seen that with increasing cμ, the positive effect on the static pressure rise of

Fig. 7. Normalized mean static pressure rise coefficient (a), corrected total pressure
loss coefficient (b), and actuation mass flow consumption (c) for base flow (cµ = 0%),
steady blowing, and RMPC actuation for different actuation amplitudes.
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RMPC-enabled actuation was just moderately lower compared to steady actua-
tion. However, for the latter, the consumption of actuation mass flow was up to
three times higher, while the total pressure loss coefficient was up to two times
higher than with RMPC actuation. Consequently, using RMPC-enabled AFC,
the efficiency drop was significantly lower while producing a comparable rise in
static pressure.

5 Conclusion

An annular low-speed compressor stator rig with hub-sided pneumatic AFC
was investigated. Downstream of the stator vanes, a rotating throttling disc
was installed to mimic the effect of periodic disturbances as they could occur
with the usage and integration of pressure gain combustion concepts. Previous
investigations of a linear compressor stator rig [11] indicated that although the
flow field in a stator row can be manipulated effectively, the overall efficiency of
the cascade will decrease with higher actuation amplitudes. Therefore, different
advanced closed-loop concepts were applied to test their performance in reducing
the impact of the periodic disturbances and decreasing the effort of actuation
mass flow compared to steady actuation. To that end, a scalar surrogate control
variable was specified for a control blade equipped with high-bandwidth pressure
sensors, and an input-output model was identified to predict the influence of
the binary actuation on the defined control variable. In addition, two different
disturbance models were included in the control algorithms for state estimation
and disturbance prediction.

It could be shown that an MPC with the simple disturbance model could not
lessen the disturbance impact. In contrast, an MPC with the extended distur-
bance model could damp the disturbances effectively. The two applied learning
controllers, a QILC and an RMPC, performed even better due to the ability to
learn from past disturbance cycles. In our case, this resulted in a smooth, con-
verging control trajectory and slightly less actuation effort. Comparing the QILC
and the RMPC, the latter converged slightly faster, which is based on the reced-
ing horizon principle applied within the RMPC algorithm. With the exception of
the MPC with the simple disturbance model, all closed-loop approaches lowered
the relative 2-norm of the disturbance impact on the control variable up to 25%.
For this control task, the performance with steady actuation was insufficient
and not suited to lessening the disturbance’s effects. With several RMPC runs,
an optimal input trajectory for each actuation amplitude cμ was obtained and
thereafter used for further open-loop wake experiments to obtain more detailed
insight into the influence of the considered passage’s wake. For comparison, a
steady blowing approach was used. The cμ-values could be estimated much more
accurately compared to a previous study due to the data of the conducted actu-
ator slot experiments with an MPT. With the RMPC actuation, a similar static
pressure rise of the considered passage was achieved, while the actuation mass
flow effort was up to 66% lower depending on the actuation amplitude. This is
particularly advantageous because it could be confirmed for the annular test rig
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that the efficiency of a passage decreases with increasing actuation amplitude.
In summary, AFC can improve an operating condition, but should only be used
selectively due to actuation costs. For this purpose, in a periodic operation, an
optimal closed-loop controller exploiting the periodicity, such as an RMPC, can
be a promising option.
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7. Schäpel, J.S., King, R., Yücel, F., Völzke, F., Paschereit, C.O., Klein, R.: Fuel
injection control for a valve array in a shockless explosion combustor. In: Proceed-
ings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and
Exposition, GT2018-75295, vol. 6, p. V006T05A007 (2018)

8. Bar-Shalom, Y., Li, X.-R., Kirubarajan, T.: Estimation with Applications to Track-
ing and Navigation: Theory Algorithms and Software. John Wiley & Sons, Hoboken
(2004)

9. Cumpsty, N.A., Horlock, J.H.: Averaging nonuniform flow for a purpose. J. Tur-
bomach. 128(1), 120 (2006)

10. Steinberg, S.J., King, R.: Closed-loop active flow control of repetitive disturbances
in a linear stator cascade. In: 2018 Flow Control Conference AIAA 2018-3689, p.
3689 (2018)

11. Steinberg, S.J., King, R.: Efficiency of active flow control in an unsteady stator
vane flow field. In: Radespiel, R., Semaan, R. (eds.) Fundamentals of High Lift for
Future Civil Aircraft. NNFMMD, vol. 145, pp. 631–648. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-52429-6 38

https://doi.org/10.1007/978-3-030-52429-6_38

	A Comparison of Optimal, Binary Closed-Loop Active Flow Control Applied to an Annular Compressor Stator Cascade with Periodic Disturbances
	1 Introduction
	2 Experimental Setup
	2.1 Instrumentation and Data Acquisition

	3 Closed-Loop Control
	3.1 Model Identification
	3.2 Controller Formulation
	3.3 State Estimation

	4 Results
	4.1 Actuation Slot Experiments
	4.2 Closed-Loop Experiments

	5 Conclusion
	References




