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Abstract. In the context of model reduction, we study an optimization
problem related to the approximation of given data by a linear combina-
tion of transformed modes, called transformed proper orthogonal decom-
position (tPOD). In the simplest case, the optimization problem reduces
to a minimization problem well-studied in the context of proper orthog-
onal decomposition. Allowing transformed modes in the approximation
renders this approach particularly useful to compress data with trans-
ported quantities, which are prevalent in many flow applications. We
prove the existence of a solution to the infinite-dimensional optimization
problem. Towards a numerical implementation, we compute the gradi-
ent of the cost functional and derive a suitable discretization in time
and space. We demonstrate the theoretical findings with three numerical
examples using a periodic shift operator as transformation.

Keywords: Nonlinear model order reduction · Transport-dominated
phenomena · Transformed modes · Gradient-based optimization

1 Introduction

Projection-based model order reduction (MOR) typically relies on the fact that
the solution manifold of a (parametrized) differential equation can be approxi-
mately embedded in a low-dimensional linear subspace. The best subspace of a
given dimension, where best is understood as the minimal worst-case approxi-
mation error, is characterized by the Kolmogorov n-widths [14]. In practice, the
minimizing subspace for the n-widths is difficult to compute. Instead, one relies
on the proper orthogonal decomposition (POD) [11], which is typically com-
bined with a greedy-search within the parameter domain, to get an approximate
solution. In more detail, for given parameters μσ ∈ M (σ = 1, . . . , �), associ-
ated data samples z(t, x;μσ) with time variable t ∈ T := [0, T ], space variable
x ∈ Ω ⊆ R

d, and desired dimension r ∈ N of the low-dimensional subspace, POD
determines orthonormal basis functions of a low-dimensional subspace solving
the minimization problem
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min
1
2

�∑

σ=1

∫ T

0

∥
∥
∥
∥z(t, x;μσ) −

r∑

i=1

αi(t;μσ)ϕi(x)
∥
∥
∥
∥

2

dt

with αi(t;μσ) := 〈z(t, x;μσ), ϕi(x)〉 for i = 1, . . . , r, σ = 1, . . . , �,

s.t. 〈ϕi, ϕj〉 = δij for i, j = 1, . . . , r.

(1)

If the n-widths, respectively the Hankel singular values for linear dynamical sys-
tems [33], decay fast, then one can expect to construct an effective reduced-order
model (ROM) able to approximate the full dynamics with a small approxima-
tion error. Although one can show exponential decay for a large class of problems
[18], it is well-known, see for instance [7,10], that the decay of the n-widths for
flow problems is typically slow, thus conspiring against MOR. The main rea-
son for slowly decaying n-widths is that flow problems often exhibit a strong
space-time coupling, thus conspiring against the separation of space and time
inherent to the definition of the Kolmogorov n-widths and POD approximation.
Consequently, POD is often not able to produce accurate ROMs with a small
number of modes.

To remedy this issue prevalent in transport-dominated phenomena, several
strategies have been proposed in the literature. We refer to [7,12,15,22–24,27,
31,32,34] to name just a few. One promising approach, introduced in [16,26,30]
and formalized in [3,6], is to replace the POD minimization problem with

min
1
2

�∑

σ=1

∫ T

0

∥
∥
∥
∥z(t, x;μσ) −

r∑

i=1

αi(t;μσ)ϕi(x − pi(t;μσ))
∥
∥
∥
∥

2

dt, (2)

thus accounting explicitly for the transportation of quantities throughout the
spatial domain. Let us emphasize that in the above formulation we may have
x−pi(t;μσ) �∈ Ω. This may be resolved by a periodic domain, by an extrapolation
approach [5], or by defining the modes on an extended domain Ω̃ [3, Sec. 7.2].

Consequently, the linear subspace in the Kolmogorov n-widths is replaced
with a subspace able to adapt itself to the solution over time, hence rendering
this a nonlinear approach, which we refer to as transformed POD (tPOD). Note
that in contrast to the POD minimization problem (1), we do not require the
modes to be orthogonal to each other. This is due to the fact that in the setting
of (2), we would need orthogonality of ϕi(x − pi(t;μσ)) and ϕj(x − pj(t;μσ))
for all i �= j, t ∈ [0, T ], and σ = 1, . . . , �, which is in general not a reasonable
assumption, cf. [3, Ex. 4.4] for an illustrative example.

In the past years, there have been some attempts of solving discretized ver-
sions of (2) or related minimization problems. In [26], the authors propose a
heuristic iterative method for computing a decomposition of a given snapshot
matrix by an approximation ansatz as in (2). The numerical experiments indicate
promising results, but it is not clear in which situations the proposed method
actually determines an optimal solution. Another heuristic has been recently
proposed in [5, sec. 5.2.1] and it is applied to snapshot data of a wildland fire
simulation. This method is based on a decomposition of the snapshot matrix
and involves a small number of singular value decompositions without requir-
ing an iterative procedure. The numerical results presented in [5] demonstrate
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the effectiveness of this approach, but it is in general not optimal in the sense
of the minimization problem (2). In contrast, the method introduced in [30]
directly solves a fully discretized version of (2) by determining optimal modes ϕ
and coefficients α, but assumes the paths p to be given or determined in a pre-
processing step. A similar optimization problem has been proposed in [25] and
aims at approximating the snapshot matrix by a sum of matrices representing
different reference frames while achieving a fast singular value decay in each of
the reference frames. The corresponding cost function is shown to be an upper
bound for a fully discretized version of (2) and the cost functions coincide for
the special case that only one reference frame is considered, i.e., if the same shift
is applied to all modes in (2). Again, the paths are not considered as part of
the optimization problem, but instead determined in a pre-processing step via
peak or front tracking. On the contrary, the authors in [20] focus on determin-
ing optimal paths, whereas the determination of optimal ansatz functions and
coefficients is not addressed. Moreover, to simplify the optimization problem,
the paths are sought within a low-dimensional subspace consisting of predefined
time-dependent library functions. As in the case of the other mentioned works,
also the authors in [20] consider a fully discrete optimization problem.

We conclude that a gradient-based algorithm for the full optimization prob-
lem (2) is currently not available. Besides, a rigorous proof showing that (2)
has a solution is missing in the literature. A notable exception is provided in
[3, Thm. 4.6], albeit under the assumption that the path variables pi(t) are
known a-priori. In this paper we aim to close this gap. Our main contributions
are the following:

1. We show in Theorem 3 the existence of a minimizing solution for the optimiza-
tion problem (6), which generalizes the minimization problem (2). Afterward,
we reformulate the constrained minimization problem (6) as unconstrained
problem (9) by adding appropriate penalty terms and conclude from Theo-
rem 3 that also the unconstrained problem has a solution, cf. Corollary 1. In
addition, Theorem 5 details that the solution of the unconstrained problem
converges to the solution of the constraint problem.

2. We compute the gradient of the unconstrained problem in Theorem 7, which
enables the use of gradient-based methods to solve (2). In this context, a
remarkable finding is that the paths have to be sufficiently smooth (e.g. in
H1(0, T )), since otherwise some directional derivatives of the cost functional
with respect to the paths may not exist, cf. Example 2.

3. We discuss the discretization of the gradient in space and time in Sect. 4 and
explicitly compute the path-dependent inner products for the shift operator
with periodic boundary conditions in Example 3. Finally, the effectiveness of
gradient-based optimization is demonstrated for several examples in Sect. 5.

Notation. We denote the space of real m × n matrices by R
m×n and the trans-

pose of a matrix A is written as A�. Furthermore, for a vector with n entries
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all equal to one we use the symbol 1n. Besides, for abbreviating diagonal and
blockdiagonal matrices we use

diag(a1, . . . , an) :=

⎡

⎢
⎣

a1

. . .
an

⎤

⎥
⎦ , blkdiag(A1, . . . , An) :=

⎡

⎢
⎣

A1

. . .
An

⎤

⎥
⎦ ,

respectively, where a1, . . . , an are scalars and A1, . . . , An matrices of arbitrary
size. For the Kronecker product of two matrices A and B we write A ⊗ B.
The space of square-integrable functions mapping from an interval (a, b) to
a Banach space X is denoted by L2(a, b;X ) and, similarly, the space of
essentially bounded measurable functions by L∞(a, b;X ). Furthermore, we use
H1(a, b;X ) for the Sobolev subspace of functions in L2(a, b;X ) possessing
also a weak derivative in L2(a, b;X ). The corresponding subspace consisting
of H1(a, b;X ) functions whose values at the boundaries a and b coincide is
denoted by H1

per(a, b;X ). Besides, for the space of continuous functions from
[a, b] to X we use the symbol C([a, b];X ). For the special case X = R, we omit
the last argument, i.e., we write, for instance, L2(a, b) instead of L2(a, b;R).

2 Preliminaries and Problem Formulation

To formalize the optimization problem (2), we introduce the following spaces and
notation. Consider a real Hilbert space (X , 〈·, ·〉X ) with induced norm ‖ · ‖X ,
and let Y denote a dense subspace of X that itself is a reflexive Banach space
with norm ‖ · ‖Y . Our standing assumption is that we are minimizing the mean-
squared distance to the data z ∈ L2(0, T ;Y ) in the Bochner space L2(0, T ;X )
with the additional requirement that the modes ϕi are elements of Y .

To formalize the meaning of ϕi(x−pi(t)) in (2), we follow the notation in [3]
and introduce a family of linear and bounded operators Ti : Pi → B(X ) with
real, finite-dimensional vector space Pi, for which we postulate the following
properties, taken from [3, Ass. 4.1].

Assumption 1. For every i = 1, . . . , r, every ϕi ∈ Y , and every pi ∈ Pi, the
operator Ti(pi) is Y -invariant, i.e., Ti(pi)Y ⊆ Y , and the mapping

Pi → X , pi 
→ Ti(pi)ϕi

is continuous.

A particular example for such a family of operators is given by the shift
operator with periodic boundary conditions, see for instance [3, Ex. 5.2]. For
further examples we refer to [2,15].

For the ease of presentation, we restrict ourselves to the case Pi = R, and
emphasize that all results can be generalized to Pi = R

mi for some mi ∈ N. For

Z := L2(0, T ;Rr) × H1(0, T ;Rr) × Y r (3)
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let us define the cost functional

J : Z → R, (α,p,ϕ) 
→ 1
2

∥
∥
∥
∥
∥
z −

r∑

i=1

αiTi (pi) ϕi

∥
∥
∥
∥
∥

2

L2(0,T ;X )

(4)

and for C > 0 the space

AC :=
{
(α,p,ϕ) ∈ Z

∣
∣max

{
‖ϕi‖Y , ‖αi‖L2(0,T ), ‖pi‖H1(0,T )

}
≤ C

}
, (5)

where we use the notation α = (α1, . . . , αr) to denote the coefficients of α
and analogously for p and ϕ. To ensure that the norm in (4) is defined, we
invoke the following assumption, which is for instance satisfied if the family of
operators Ti(·) is uniformly bounded, cf. [3, Lem 4.2].

Assumption 2. For every i = 1, . . . , r, αi ∈ L2(0, T ), pi ∈ H1(0, T ), and every
ϕi ∈ Y , we assume

αiTi(pi)ϕi ∈ L2(0, T ;X ).

With these preparations, the constrained minimization problem that we are
interested in takes the form

min
(α ,p,ϕ)

J (α,p,ϕ) , s. t. (α,p,ϕ) ∈ AC . (6)

Note that we have set � = 1 in (2) to simplify the notation. We emphasize that
it is straightforward to generalize all results to � > 1.

3 Main Results

As first main result, we discuss the existence of a solution for the optimization
problem (6), thus generalizing [3, Thm. 4.6] to include the path variables.

Theorem 3. Assume that the reflexive Banach space Y is compactly embedded
into X , and let z ∈ L2(0, T ;Y ). Furthermore, let the family of transforma-
tion operators satisfy Assumptions 1 and 2. Then the constraint minimization
problem (6) has a solution for every C > 0.

Proof. The proof follows along the lines of the proof of [3, Thm. 4.6], with slight
modifications to account for the optimization with respect to the path variables.
Let C > 0. We first observe that the optimization problem possesses a finite
infimum J� ≥ 0. This follows directly from J ≥ 0 and (0, 0, 0) ∈ AC . We may
thus choose a sequence (αk,pk,ϕk)k∈N ∈ AC satisfying

lim
k→∞

J(αk,pk,ϕk) = J�.

Additionally, we have
∥
∥(αk,pk,ϕk)

∥
∥2

L2(0,T ;Rr)×H1(0,T ;Rr)×Y r

= ‖αk‖2L2(0,T ;Rr) + ‖pk‖2H1(0,T ;Rr) + ‖ϕk‖2Y r ≤ 3rC2
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for all k ∈ N, such that the Eberlein-S̆muljan theorem [35, Thm. 21.D] ensures
the existence of a weakly convergent subsequence (αkn ,pkn ,ϕkn)n∈N ⊆ AC

with weak limit (α�,p�,ϕ�) ∈ AC , cf. [35, Prop. 21.23 (c)]. Due to the com-
pact embeddings Y ↪→ X and H1(0, T ;Rr) ↪→ L2(0, T ;Rr), we conclude that
(ϕkn)n∈N and (pkn)n∈N converge strongly in X and L2(0, T ;Rr) to ϕ� and p�,
respectively, cf. [35, Prop. 21.35]. Using [29, Thm. 3.12], we conclude the exis-
tence of a subsequence, for which we use the same indexing, such that (pkn)n∈N

converges pointwise to p� for almost all t ∈ (0, T ).
For the next part of the proof, we introduce the mapping

β : Z → L2(0, T ;X ), (α,p,ϕ) 
→
r∑

i=1

αiTi(pi)ϕi (7)

with Z as defined in (3) and notice

J(α,p,ϕ) =
1
2
‖z − β(α,p,ϕ)‖2L2(0,T ;X ).

If β(αkn ,pkn ,ϕkn) converges weakly to β(α�,p�,ϕ�), then the weak sequen-
tial lower semicontinuity of the norm, see for instance [35, Prop. 21.23 (c)],
implies that (α�,p�,ϕ�) is a minimizer of J . It thus remains to show that
β(αkn ,pkn ,ϕkn) converges weakly to β(α�,p�,ϕ�).

To this end, we observe that

‖Ti(pkn
i (t))ϕkn

i − Ti(p�
i (t))ϕ

�‖X
≤ ‖Ti(pkn

i (t))ϕkn
i − Ti(p�

i (t))ϕ
kn
i ‖X + ‖Ti(p�

i (t))ϕ
kn
i − Ti(p�

i (t))ϕ
�
i ‖X

together with Assumption 1 and the strong convergence of (ϕkn
i )n∈N in X

implies

‖Ti(pkn
i (t))ϕkn

i − Ti(p�
i (t))ϕ

�‖X → 0 for n → ∞

for i = 1, . . . , r and almost all t ∈ (0, T ). Let f ∈ L2(0, T ;X ). Then clearly

〈f(t), Ti(pkn
i (t))ϕkn

i 〉X → 〈f(t), Ti(p�
i (t))ϕ

�
i 〉X for n → ∞

for i = 1, . . . , r and almost all t ∈ (0, T ) such that [35, Prop 21.23 (j)] implies

r∑

i=1

〈
αkn

i , 〈f, Ti(pkn
i )ϕkn

i 〉X
〉

L2(0,T )
→

r∑

i=1

〈α�
i , 〈f, Ti(p�

i )ϕ
�
i 〉X 〉L2(0,T )

for n → ∞ and thus

β(αkn ,pkn ,ϕkn) ⇀ β(α�,p�,ϕ�) for n → ∞,

which completes the proof. ��
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For numerical methods, it may be easier to work with unconstrained opti-
mization problems. To this end, we use a penalty method, see for instance
[17, Cha. 13.1], i.e., we add the constraint equation with a penalty parameter to
the cost functional. In more detail, we assume for C > 0 a penalty functional

ΛC : Z → R (8)

with the following properties available.

Assumption 4. The penalty functional (8) is continuous, weakly sequentially
lower semicontinuous, non-negative and has the following properties:

– We have ΛC(α,p,ϕ) = 0 if, and only if, (α,p,ϕ) ∈ AC .
– For any sequence (αk,pk,ϕk) with

max{‖αk‖L2(0,T ;Rr), ‖pk‖H1(0,T ;Rr), ‖ϕk‖Y r} → ∞ for k → ∞,

we have ΛC(αk,pk,ϕk) → ∞ for k → ∞.

Example 1. The penalty functional

ΛC(α,p,ϕ) :=
r∑

i=1

max{0,max{‖αi‖L2(0,T ), ‖pi‖H1(0,T ) , ‖ϕi‖Y } − C}

satisfies Assumption 4.

The penalized cost functional is then given as

J̃C(α,p,ϕ, λ) := J(α,p,ϕ) + λΛC(α,p,ϕ)

with penalty coefficient λ > 0. The associated (unconstrained) minimization
problem is thus given by

min
(α ,p,ϕ)∈Z

J̃C(α,p,ϕ, λ) (9)

with Z as defined in (3) and given λ > 0.

Corollary 1. Let the assumptions of Theorem 3 and Assumption 4 be satisfied.
Then for any C > 0 and any λ > 0 the optimization problem (9) has a solution.

Proof. Similarly as in the proof of Theorem 3, we conclude the existence of a
finite infimum, such that we can choose a minimizing sequence (αk,pk,ϕk) ∈ Z .
Due to Assumption 4, we deduce that (αk,pk,ϕk)k∈N is bounded in Z , i.e., there
exists some C̃ > 0 such that (αk,pk,ϕk) ∈ A

˜C for all k ∈ N. The remaining
proof thus follows along the lines of the proof of Theorem 3. ��

Theorem 5. Let (λk)k∈N ⊆ R denote a non-decreasing sequence of positive
numbers with limk→∞ λk = ∞, and let C > 0. For k ∈ N, let (αk,pk,ϕk) ∈
Z denote a solution of (9) with penalty parameter λk. If the assumptions of
Corollary 1 are satisfied, then any limit point of (αk,pk,ϕk)k∈N is a solution
of (6).
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Proof. The proof follows along the lines of the proof of the main theorem in [17,
Cha. 13.1]. Let (α�,p�,ϕ�) ∈ AC denote a minimizer of (6) with minimum J�.
Then for every k ∈ N we have

J̃C(αk,pk,ϕk, λk) ≤ J̃C(αk+1,pk+1,ϕk+1, λk)

≤ J̃C(αk+1,pk+1,ϕk+1, λk+1)

and

J(αk,pk,ϕk) ≤ J̃C(αk,pk,ϕk, λk) ≤ J̃C(α�,p�,ϕ�, λk) = J(α�,p�,ϕ�) = J�.

Thus (J̃C(αk,pk,ϕk, λk))k∈N is a monotone sequence bounded above by J�. We
thus set

J̃�
C := lim

k→∞
J̃C(αk,pk,ϕk, λk) ≤ J�. (10)

Let (αkn ,pkn ,ϕkn) denote a convergent subsequence with limit (α†,p†,ϕ†) and
set

J† := lim
n→∞ J(αkn ,pkn ,ϕkn) = J(α†,p†,ϕ†), (11)

using the continuity of J . Subtracting (10) from (11) yields

lim
n→∞ λknΛC(αkn ,pkn ,ϕkn) = J̃�

C − J†.

Assumption 4 and λkn → ∞ for n → ∞ together with the continuity of ΛC thus
implies

ΛC(α†,p†,ϕ†) = lim
n→∞ ΛC(αkn ,pkn ,ϕkn) = 0,

showing (α†,p†,ϕ†) ∈ AC . We conclude

J† = lim
n→∞ J(αkn ,pkn ,ϕkn) ≤ J�,

which completes the proof. ��

Although (9) is an unconstrained optimization problem, we still have to
choose a suitable constant C > 0 for the admissible set. Let us emphasize that
the proofs of Theorem 3 and Corollary 1 heavily depend on the fact that we
have bounded sequences, which is the main reason for the constant C > 0 in
the admissible set (5). However, we observed faster convergence in our numerical
experiments when considering the unconstrained minimization problem without
penalization. For this reason and the sake of a concise presentation, we consider
in the following only the unconstrained optimization problem (9) with penalty
parameter λ = 0. Nevertheless, we emphasize that adding the derivatives of the
penalty terms to the gradient formulas is straightforward as long as the partial
Fréchet derivatives of ΛC are available.

To solve the optimization problem (9) with penalty parameter λ = 0 numeri-
cally, we employ a gradient-based algorithm and thus have to compute the gradi-
ent of the objective function (4). It is easy to see that the directional derivatives
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of J with respect to the coefficient function α ∈ L2(0, T ;Rr) and the modes
ϕ ∈ Y r in directions d ∈ L2(0, T ;Rr) and h ∈ Y r, respectively, are given by

∂α ,dJ(α,p,ϕ) =
r∑

i=1

〈
r∑

j=1

αjTj(pj)ϕj − z, diTi(pi)ϕi

〉

L2(0,T ;X )

, (12a)

∂ϕ,hJ(α,p,ϕ) =
r∑

i=1

〈
r∑

j=1

αjTj(pj)ϕj − z, αiTi(pi)hi

〉

L2(0,T ;X )

. (12b)

The situation is slightly different for the partial derivative with respect to the
path variable. First of all, we have to ensure that the transformed modes are
differentiable (with respect to the path variable), i.e., we have to evoke the
following assumption.

Assumption 6. For every ϕi ∈ Y and every i = 1, . . . , r, the mapping

R → X , pi 
→ Ti(pi)ϕi,

is continuously differentiable with derivatives in X . For pi ∈ R we denote the
derivative by ∂

∂pi
Ti (pi)ϕi ∈ X and assume αi

∂
∂pi

Ti(pi)ϕi ∈ L2(0, T ;X ) for all
αi ∈ L2(0, T ) and all pi ∈ H1(0, T ).

In this case, the directional derivative in direction g ∈ H1(0, T ;Rr) is given as

∂p,gJ(α,p,ϕ) =
r∑

i=1

〈
r∑

j=1

αjTj(pj)ϕj − z, αi

[
∂

∂pi
Ti(pi)ϕi

]
gi

〉

L2(0,T ;X )

. (12c)

Note that the Sobolev embedding theorems, see for instance [35, Thm. 21.A.(d)],
imply gi ∈ C([0, T ]) ⊆ L∞(0, T ), such that (12c) is defined.

Theorem 7. Let the transformation operators satisfy Assumptions 1, 2, and 6.
Let (α,p,ϕ) ∈ Z and assume

Ti(pi)ϕi ∈ L∞(0, T ;X ), (13a)

αi‖Ti(pi)‖ ∈ L2(0, T ) (13b)

for i = 1, . . . , r, then the partial Fréchet derivatives of the cost functional J
(defined in (4)) with respect to the coefficients, paths, and modes at (α,p,ϕ) ∈ Z
are given by

∂αJ(α,p,ϕ)(d) := ∂α ,dJ(α,p,ϕ), ∀d ∈ L2(0, T ;Rr), (14a)

∂pJ(α,p,ϕ)(g) := ∂p,gJ(α,p,ϕ), ∀g ∈ H1(0, T ;Rr), (14b)
∂ϕJ(α,p,ϕ)(h) := ∂ϕ,hJ(α,p,ϕ), ∀h ∈ Y r, (14c)

with directional derivatives as defined in (12).
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Proof. It suffices to show that J is partially Fréchet differentiable with respect
to the coefficients, paths, and modes. Let (α,p,ϕ), (d, g,h) ∈ Z . Using (13a)
we obtain

J(α + d,p,ϕ) − J(α,p,ϕ) − ∂α ,dJ(α,p,ϕ) =
1
2

∥
∥
∥
∥
∥

r∑

i=1

diTi(pi)ϕi

∥
∥
∥
∥
∥

2

L2(0,T ;X )

≤ 1
2

max
i=1,...,r

‖Ti(pi)ϕi‖2L∞(0,T ;X )

(
r∑

i=1

‖di‖L2(0,T )

)2

≤ r2

2
max

i=1,...,r
‖Ti(pi)ϕi‖2L∞(0,T ;X )‖d‖2L2(0,T ;Rr)

and thus

lim
‖d‖L2(0,T ;Rr)→0

|J(α + d,p,ϕ) − J(α,p,ϕ) − ∂α ,dJ(α,p,ϕ)|
‖d‖L2(0,T ;Rr)

= 0.

We conclude that J is Fréchet differentiable with respect to the coefficients
with Fréchet derivative as in (14a). For the partial derivative with respect to the
modes we obtain

J(α,p,ϕ + h) − J(α,p,ϕ) − ∂ϕ,hJ(α,p,ϕ) =
1
2

∥
∥
∥
∥
∥

r∑

i=1

αiTi(pi)hi

∥
∥
∥
∥
∥

2

L2(0,T ;X )

≤ 1
2

∫ T

0

(
r∑

i=1

|αi(t)|‖Ti(pi(t))‖‖hi‖X

)2

dt

≤ ‖h‖2X r

2

∫ T

0

(
r∑

i=1

|αi(t)|‖Ti(pi(t))‖
)2

dt.

Using (13b), we observe that the integral is finite. Similarly as before, we thus
conclude that J is Fréchet differentiable with respect to the modes with Fréchet
derivative as in (14c). We conclude our proof for the partial derivative with
respect to the path variable. Note that the Sobolev embedding theorem [1,
Thm 4.12, Part I, Case A] implies that the Sobolev space H1(0, T ) is contin-
uously embedded into the space L∞(0, T ), i.e., there exists a constant γ > 0
independent of gi, such that ‖gi‖L∞(0,T ) ≤ γ‖gi‖H1(0,T ). We define

fi(pi, ϕi, gi) := Ti(pi + gi)ϕi − Ti(pi)ϕi −
[

∂
∂pi

Ti(pi)
]
gi.

For gi ≡ 0 we have fi(pi, ϕi, gi) = 0 for almost all t ∈ (0, T ). For ‖gi‖H1(0,T ) �= 0,
let us define T̂i := {t ∈ (0, T ) | gi(t) �= 0}. Then

〈z, αifi(pi, ϕi, gi)〉L2(0,T ;X )

‖gi‖H1(0,T )
≤ γ

∫

̂Ti

αi(t)
〈

z(t),
fi(pi(t), ϕi, gi(t))

|gi(t)|

〉

X

dt.
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From Assumption 6 we conclude

lim
‖gi‖H1(0,T )→0

〈z, αifi(pi, ϕi, gi)〉L2(0,T ;X )

‖gi‖H1(0,T )
= 0,

and thus

lim
‖g‖H1(0,T ;Rr)→0

∑r
i=1 〈z, αifi(pi, ϕi, gi)〉L2(0,T ;X )

‖g‖H1(0,T ;Rr)
= 0.

Furthermore, using β as defined in (7), we obtain

1
2‖β(α,p + g,ϕ)‖2L2(0,T ;X ) − 1

2 ‖β(α,p,ϕ)‖2L2(0,T ;X )

−
r∑

j=1

〈
β(α,p,ϕ), αj

[
∂

∂pj
Tj(pj)ϕj

]
gj

〉

L2(0,T ;X )

= 1
2 ‖β(α,p + g,ϕ) − β(α,p,ϕ) + β(α,p,ϕ)‖2L2(0,T ;X )

− 1
2 ‖β(α,p,ϕ)‖2L2(0,T ;X )

−
r∑

j=1

〈
β(α,p,ϕ), αj

[
∂

∂pj
Tj(pj)ϕj

]
gj

〉

L2(0,T ;X )

= 1
2‖β(α,p + g,ϕ) − β(α,p,ϕ)‖2L2(0,T ;X )

+
r∑

j=1

〈
β(α,p,ϕ), αjfj(pj , ϕj , gj)

〉

L2(0,T ;X )
.

Similarly as before, we obtain

lim
‖g‖H1(0,T ;Rr)→0

1
2

‖β(α,p + g,ϕ) − β(α,p,ϕ)‖2L2(0,T ;X )

‖g‖H1(0,T ;Rr)
= 0,

lim
‖g‖H1(0,T ;Rr)→0

〈
β(α,p,ϕ),

∑r
j=1 αjfj(pj , ϕj , gj)

〉

L2(0,T ;X )

‖g‖H1(0,T ;Rr)
= 0.

Combining the previous results, we thus infer

lim
‖g‖H1(0,T ;Rr)→0

|J(α,p + g,ϕ) − J(α,p,ϕ) − ∂p,gJ(α,p,ϕ)|
‖g‖H1(0,T ;Rr)

= 0,

which concludes the proof. ��

Remark 1. If the family of transformation operators is uniformly bounded, i.e.,
there exists some C > 0 such that

‖Ti(pi)‖ ≤ C for all pi ∈ R,

then it is easy to see that condition (13) is satisfied. Note that in this case
Assumption 2 is also satisfied, cf. [3, Lem 4.2]. An example for such a family of
operators is (again) the periodic shift operator.
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Let us emphasize that it is essential for the directional derivative ∂p,gJ to
have the path variable and associated directions in H1(0, T ;Rr). The following
example details that if we take a direction in L2(0, T ;Rr), then the directional
derivative may not be finite.

Example 2. Consider the shift operator T (p)ϕ = ϕ(· − p) with periodic embed-
ding into the spaces X := L2(0, 2π) and Y := H1

per(0, 2π), cf. [3, Ex. 4.3 and
5.12]. It is well-known, that the shift operator is a semi-group with generator
− ∂

∂x , see for instance [9, Sec. II.2.10]. Let z(t, x) = t−1/3 cos(x), r = 1, p1 ≡ 0,
and ϕ1(x) = sin(x). Then for any α1, g1 ∈ L2(0, T ), we obtain

∂p,gJ(α1, p1, ϕ1) = −
〈
α1ϕ1 − z, α1

∂
∂xϕ1g1

〉

L2(0,T ;X )

= 〈z, α1
∂
∂xϕ1g1〉L2(0,T ;X ) = ‖ cos(·)‖2X

∫ T

0

t−1/3α1(t)g1(t) dt.

We notice that for α1(t) = g1(t) = t−1/3 we have α1, g1 ∈ L2(0, T ) but the
product t−1/3α1g1 is not in L1(0, T ). We conclude ∂p,gJ(α,p,ϕ) �∈ R.

Remark 2. To ensure p ∈ H1(0, T ;Rr) during a (numerical) optimization, we
may choose a suitable low-dimensional subspace with continuously differentiable
basis functions, such as the space of polynomials with given maximal degree.
The associated gradient is easily computed from Theorem 7 via the chain rule.
Besides the reduced computational cost, such an approach yields an interpretable
representation for the wave speeds. We refer to [20] for a similar idea in a fully
discretized setting.

4 Discretization

Towards a numerical implementation, we derive discretized versions of the partial
derivatives from Theorem 7. To shorten notation, we introduce for (α,p,ϕ) ∈ Z
and h ∈ Y r the quantities

vi(α,p,ϕ) :=
〈 r∑

j=1

αjTj(pj)ϕj − z, Ti(pi)ϕi

〉

X

, (15a)

ξi(α,p,ϕ) :=
〈 r∑

j=1

αjTj(pj)ϕj − z, αi

[
∂

∂pi
Ti(pi)ϕi

]〉

X

, (15b)

μi(α,p,ϕ,h) :=
〈 r∑

j=1

αjTj(pj)ϕj − z, αiTi(pi)hi

〉

X

, (15c)

for i = 1, . . . , r.
We start our exposition with the discretization with respect to time. To this

end, consider a time grid 0 = t0 < t1 < . . . < tm = T and associated quadrature
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rule defined by weights ω� ≥ 0 for � = 0, . . . ,m. The approximation of the
directional derivative of J with respect to α is thus given by

∂α ,dJ(α,p,ϕ) =
r∑

i=1

∫ T

0

vi(α(t),p(t),ϕ)di(t) dt

≈
r∑

i=1

m∑

k=0

wkvi(α(tk),p(tk),ϕ)di(tk)

= (vm(α,p,ϕ))� (Ir ⊗ W ) dm,

where ⊗ is the Kronecker product and

W := diag (w0, . . . , wm) ∈ R
(m+1)×(m+1),

vm
i (α,p,ϕ) :=

[
vi(α(t0),p(t0),ϕ) · · · vi(α(tm),p(tm),ϕ)

]� ∈ R
m+1,

vm(α,p,ϕ) :=
[
vm
1 (α,p,ϕ)� · · · vm

r (α,p,ϕ)�]� ∈ R
r(m+1),

dm
i :=

[
di(t0) · · · di(tm)

]� ∈ R
m+1,

dm :=
[
(dm

1 )� · · · (dm
r )�]� ∈ R

r(m+1).

The time-discrete approximation of the partial derivative is thus given by

∂αJm(α,p,ϕ) := (vm(α,p,ϕ))� (Ir ⊗ W ) ∈ R
1×r(m+1).

Analogously, the time-discrete approximation of the partial derivative of J with
respect to the path variables, i.e., ∂pJ(α,p,ϕ), is given by

∂pJm(α,p,ϕ) := (ξm(α,p,ϕ))� (Ir ⊗ W ) ∈ R
1×r(m+1),

with ξm(α,p,ϕ) defined analogously as vm(α,p,ϕ). In the same fashion, we
obtain the time-discrete approximation for the directional derivative with respect
to the mode variables as

∂ϕ,hJm(α,p,ϕ) := (μm(α,p,ϕ,h))� (Ir ⊗ W )1r(m+1) ∈ R,

where we denote by 1r(m+1) ∈ R
r(m+1) the vector with all entries equal to 1,

and μm defined analogously as vm.
For the spatial discretization, let Yn denote an n-dimensional subspace of

Y with basis functions ψ1, . . . , ψn ∈ Y . Let us define for i, j = 1, . . . , r and
pi, pj ∈ R the matrices Mi,j , Ni,j , Fi, Gi ∈ R

n×n via

[Mi,j(pi, pj)]k,� := 〈Tj(pj)ψk, Ti(pi)ψ�〉X , (16a)

[Ni,j(pi, pj)]k,� := 〈Tj(pj)ψk, ∂
∂pi

Ti(pi)ψ�〉X , (16b)

[Fi(pi)]k,� := 〈ψk, Ti(pi)ψ�〉X , (16c)

[Gi(pi)]k,� := 〈ψk, ∂
∂pi

Ti(pi)ψ�〉X , (16d)
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for k, � = 1, . . . , r. For the data z ∈ L2(0, T ;Y ), the modes ϕi ∈ Y , and direc-
tions hi ∈ Y , we consider the approximations

z(t) ≈
n∑

�=1

ẑ�(t)ψ�, ϕi ≈
n∑

�=1

ϕ̂i,�ψ�, hi ≈
n∑

�=1

ĥi,�ψ�,

with

ẑ(t) := [ẑ1(t) · · · ẑn(t)]� ∈ R
n, ϕ̂i := [ϕ̂i,1 · · · ϕ̂i,n]� ∈ R

n,

ĥi := [ĥi,1 · · · ĥi,n]� ∈ R
n.

With these preparations, we obtain the spatial approximation of the inner prod-
ucts in (15) as

v̂i(α,p,ϕ) :=
( r∑

j=1

αjϕ̂
�
j Mi,j(pi, pj) − ẑ�Fi(pi)

)

ϕ̂i ∈ R,

ξ̂i(α,p,ϕ) := αi

( r∑

j=1

ϕ̂�
j Ni,j(pi, pj) − ẑ�Gi(pi)

)

ϕ̂i ∈ R,

μ̂i(α,p,ϕ) := αi

( r∑

j=1

αjϕ̂
�
j Mi,j(pi, pj) − ẑ�Fi(pi)

)

∈ R
1×n.

We thus obtain the space- and time-discretized partial derivatives as

∂α Ĵm(α,p,ϕ) := (v̂m(α,p,ϕ))� (Ir ⊗ W ) ∈ R
1×(m+1)r,

∂p Ĵm(α,p,ϕ) := (ξ̂
m

(α,p,ϕ))� (Ir ⊗ W ) ∈ R
1×(m+1)r,

∂ϕ Ĵm(α,p,ϕ) := 1�
r(m+1) (Ir ⊗ W ) M ∈ R

1×nr,

with M := blkdiag(μ̂m
1 (α,p,ϕ), . . . , μ̂m

r (α,p,ϕ)).
We conclude this section with a specific computation of the quantities

depending on the inner products for the periodic shift operator and P1 finite
elements.

Example 3. Let us assume we have a one-dimensional domain Ω = (0, 1) and a
corresponding equidistant grid of step size h := 1

n . We discretize Y = H1
per(Ω)

via periodic P1 finite element functions. For X = L2(0, 1) and shift operator
with periodic embedding, we observe

Mi,j(pi, pj) = Fi(pi − pj) and Ni,j(pi, pj) = Gi(pi − pj).

For pi = qh + p̃i with q ∈ Z and p̃i ∈ [0, h) we obtain

〈ψk, Ti(pi)ψ�〉 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
h2

(
2
3 (h − p̃i)3 + p̃i(h − p̃i)2 + p̃ih(h − p̃i) + 1

6 p̃3i
)
, if � = k − q,

1
6h2 (h − p̃i)3, if � = k − q + 1,
1
h2

(
1
6 (h − p̃i)3 − 1

3 p̃3i + h2p̃i

)
, if � = k − q − 1,

1
6h2 p̃3i , if � = k − q − 2,

0, otherwise.
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For further details, including the computation of 〈ψk, ∂
∂pi

Ti(pi)ψ�〉X , we refer to
the preprint version of this manuscript [4].

5 Numerical Examples

For our numerical examples, we use an equidistant time grid ti := iτ with
step size τ > 0. The weights for the time integration are chosen based on the
trapezoidal rule. For the discretization in space, we also use an equidistant grid
and follow Example 3 for approximating the inner products occurring in the
cost functional and the gradient. In particular, we use the periodic shift oper-
ator for all numerical examples. The optimization itself is carried out with the
MATLAB R© package GRANSO with default settings, see [8], which is based on
a quasi-Newton solver.

For notational convenience, we assumed so far that there is exactly one mode
per transformation operator. In practice, it is often more reasonable to cluster
the modes into different reference frames, see, for instance, [3, sec. 7.1]. Thus,
we use the clustered approximation ansatz

z ≈
q∑

ρ=1

rρ∑

i=1

αρ,iTρ (pρ) ϕρ,i (18)

for the following numerical experiments and emphasize that this only requires a
minor and straightforward modification of the gradient. We denote the approx-
imation based on our optimization results with tPOD. Furthermore, we use
dashed lines in the plots to display the (optimized) path variables. Finally, note
that even though the data for the numerical examples stems from partial dif-
ferential equations, our main concern in this work is the approximation and
compression of any given data. We thus forego a thorough treatment of the
actual values in the following pseudocolor plots.

To ensure reproducibility of the conducted experiments, the code for the
numerical examples is publicly available under https://doi.org/10.5281/zenodo.
5471404.

5.1 Viscous Burgers’ Equation

We consider the one-dimensional viscous Burgers’ equation

∂
∂tz(t, x) = 1

Re
∂2

∂x2 z(t, x) − z(t, x) ∂
∂xz(t, x), (t, x) ∈ (0, 2) × (0, 1), (19)

and, following [19], use the analytical solution

z(t, x) =
x

t + 1

(

1 +
√

t+1

exp
(

Re
8

) exp
(
Re x2

4t+4

))−1

(20)

with Reynolds number Re = 1000 for our experiment. Let us emphasize that (20)
is not periodic in x. Nevertheless, the shock front (as depicted in Fig. 1a) stays

https://doi.org/10.5281/zenodo.5471404
https://doi.org/10.5281/zenodo.5471404
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x

t

(a) snapshot data
x

t

(b) tPOD r = 2
x

t

(c) POD r = 2

Fig. 1. Burgers’ equation – comparison of original data (a), tPOD approximation (b),
and POD approximation (c). The red dashed line in (b) denotes the optimized path
variable.

within the computational domain and the solution is approximately zero at the
boundaries, allowing us to treat this problem as quasi-periodic. We test our
algorithm with data obtained from the analytical solution, evaluated on a grid
with 100 equidistant intervals in space and time, respectively. We use a single
frame, i.e., q = 1 in (18), and r1 = r = 2 modes, and supply the first snapshot and
the zero vector as starting values for the modes. The corresponding coefficients
are initialized as a constant function with value 1. For the path, we start with
a straight line given by p(t) = 37

200 t. The results are depicted in Fig. 1, detailing
that already with r = 2, an accurate approximation with a relative L2 error
of less than 3% can be achieved, while the POD approximation is not able to
reproduce the shock front. Besides, we compare the relative L2 errors of the
approximations for different mode numbers in Table 1, detailing the superior
approximation capabilities of tPOD for this test case.

Table 1. Burgers’ equation – comparison of relative L2 errors

r tPOD POD

1 1.224× 10−1 4.510× 10−1

2 2.910× 10−2 2.863× 10−1

3 1.328× 10−2 2.111× 10−1

4 8.453× 10−3 1.662× 10−1

5 6.821× 10−3 1.354× 10−1

5.2 Nonlinear Schrödinger Equation

In this section, we consider the nonlinear Schrödinger equation

i ∂
∂tz(t, x) = − 1

2
∂2

∂x2 z(t, x) + κ|z(t, x)|2z(t, x),
z(t, 0) = 2sech(x + 7) exp(2ix) + 2sech(x − 7) exp(−2ix),
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as presented in [20, Example 4]. We compute a solution using the code from [20]
on a uniform grid of 501×1024 points on the domain T×Ω = [0, 2π]× [−15, 15].
The absolute value of the numerical solution is presented in Fig. 2a.

We initialize our algorithm by assuming an approximation with two frames,
each with two modes. As starting value for the modes, we use

ϕρ,1(x) = 2sech(x − (−1)ρ7) exp(−(−1)ρ2ix) and ϕρ,2 ≡ 0

for ρ = 1, 2. The coefficients are initialized as constants, with value 1 at each time
point. For the initial paths, we use p1(t) = 2t and p2(t) = −2t. The correspond-
ing approximation and the absolute error are presented in Figs. 2b and c. We
observe that the error results mainly from the complicated wave dynamics in the
middle of the spatial and time domain, whereas the transported wave profiles are
captured accurately. Let us emphasize that the error is very localized such that
it can be captured with only a few additional POD modes. We notice that the
optimizer does not keep the linear path over the whole time domain. Instead, as

x

t

(a) snapshot data
x

t

(b) tPOD r = 4
x

t

(c) absolute error

Fig. 2. Nonlinear Schrödinger equation – original data (a), tPOD approximation with
r = 4 total modes (b), and absolute error (c) for initial paths p1(t) = 2t and p2(t) =
−2t. The red and white dashed lines in (b) denote the optimization results for the first
and second path variable, respectively.

depicted in Fig. 2b, in the middle of the computational domain, the paths jump
between the wavefronts. Inspecting the snapshot matrix in the co-moving frame
along the path p1(t) = 2t in Fig. 3 provides a possible explanation: the vertical
wavefront features an offset after the two waves have crossed. The optimizer
needs to account for this offset, which explains the jump. Let us emphasize that
with a different initialization for the path variables, the optimizer finds another
local minimum with a similar approximation quality. Using piecewise linear paths
as depicted in Fig. 4a, we observe that the resulting optimized path smoothes
out the edges of the initial path in the middle of the domain (cf. Fig. 4c) and
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x

t

Fig. 3. Nonlinear Schrödinger equation – transformation of Fig. 2a to the co-moving
frame along the path p1(t) = 2t, i.e., applying the shift operator along the path −p1(t)
to the original snapshot data in Fig. 2a, such that the wave front originally traveling
to the right becomes stationary. For illustration purposes, the image is stretched to
clearly present the offset in the vertical wave profile after the two waves have crossed.

does not feature any jumps. It is smooth and tracks the wavefronts as if the
waves reflect off each other.

5.3 FitzHugh–Nagumo Wave Train

We follow [13] and consider the FitzHugh–Nagumo model given by

∂
∂tu1(t, x) = ν ∂2

∂x2 u1(t, x) − u2(t, x) + u1(t, x)(1 − u1(t, x))(u1(t, x) − a),
∂
∂tu2(t, x) = ε(bu1(t, x) − u2(t, x)),

(21)

with spatial domain (0, 500) and time interval (0, 1000). The partial differential
equation (21) is closed by periodic boundary conditions and the initial condition

u1(0, x) = 1
2

(
1 + sin

(
π
50x

))
, u2(0, x) = 1

2

(
1 + cos

(
π
50x

))
.

For the parameter values, we choose ν = 1, a = −0.1, ε = 0.05, and b = 0.3.
The spatial discretization of (21) is performed via a central sixth-order finite-
difference scheme with mesh width h = 0.5 and for the time integration we
use MATLAB R©’s ode45 function based on a time grid with step size 1. The
corresponding numerical solution for the variable u1 is depicted in Fig. 5a.

For the optimization we consider only the data of the variable u1 and use an
approximation with one reference frame to account for the traveling wave train.
Furthermore, we reduce the computational complexity by considering the opti-
mization problem only in terms of the path, whereas the coefficients and modes
are computed in each iteration via a truncated singular value decomposition of
the snapshot matrix shifted into the co-moving reference frame. Here we exploit
that the periodic shift operator is isometric, such that we can solve the opti-
mization problem via classical POD with transformed data, cf. [3, Thm. 4.8].
As starting value for the path, we choose a linear function in t with slope
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x

t

(a) initial paths

x

t

(b) tPOD r = 4

x

t

(c) zoom: initial vs. opti-
mized path

Fig. 4. Nonlinear Schrödinger equation – comparison of original data (a) with piece-
wise linear initialization of the path variables (red dashed lines) and tPOD approxi-
mation (b) with r = 4 total modes and optimized path variables (white dashed lines).
Figure 4c shows a zoom into Fig. 4b and illustrates that the optimized path variables
(white dashed lines) differ from the initial path variables (red dashed lines).

1.04, which we determined by inspecting the first and the last snapshot of the
original data. The corresponding approximation obtained from the optimization
procedure is depicted in Fig. 5b. As reference approximation, we consider a POD

x

t

(a) snapshot data
x

t

(b) tPOD r = 4
x

t

(c) POD r = 4

Fig. 5. FitzHugh–Nagumo model – comparison of original data for u1 (a), tPOD
approximation with r = 4 modes (b), and POD approximation with r = 4 modes (c).
The red dashed line in (b) denotes the optimized path variable.

approximation with the same number of modes in Fig. 5c. The corresponding
total relative errors are 15% for the approximation based on shifted modes and
31% for the POD approximation. We note that in contrast to the Burgers test
case considered in Sect. 5.1, the traveling wave train can be better approximated
by POD due to the lack of a traveling shock wave. Correspondingly, the difference
between tPOD and POD approximation for the considered FitzHugh–Nagumo
test case is less striking than the one observed for the example in Sect. 5.1.
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6 Summary

In this paper, we analyze the problem of determining an optimal approxima-
tion of given snapshot data by a linear combination of dynamically transformed
modes. This data compression can, for instance, be used for model order reduc-
tion of transport-dominated systems [3]. As optimization parameters, we con-
sider the modes, the corresponding coefficients or amplitudes, and the so-called
path variables, which parameterize the coordinate transforms applied to the
modes. We first show that the considered infinite-dimensional optimization prob-
lem possesses a minimizing solution if the admissible set is constrained such
that the optimization parameters are norm bounded. Afterward, we derive a
corresponding unconstrained optimization problem by adding an appropriate
penalization term and show that the unconstrained problem also has a solution.
Furthermore, we demonstrate that if the penalization coefficient tends to infinity,
each limit point of the corresponding sequence of minimizers is a solution to the
original constrained optimization problem. To derive a gradient-based optimiza-
tion procedure, we compute the partial Fréchet derivatives of the unconstrained
cost functional and discuss their space and time discretization. Finally, we apply
the optimization procedure to some numerical test cases and observe that the
optimized decompositions are significantly more accurate than corresponding
approximations obtained by the classical POD with the same number of modes.

After full discretization, the optimization problem still features a large
number of optimization parameters scaling with the number of grid points in
space and time. Thus, an interesting future research direction is to investi-
gate approaches for reducing the computational complexity of the optimization
procedure, for instance, by using multigrid optimization techniques [21], or by
making use of low-dimensional parametrizations of the optimization parame-
ters, cf. Remark 2. Such a parametrization seems to be especially promising for
reducing the complexity in the path variables since our numerical experiments
revealed that the optimization procedure is sensitive with respect to the paths.
Furthermore, let us emphasize that, although we have only discussed applica-
tions in a one-dimensional spatial domain with a periodic shift operator, our
framework is not restricted to this case. Thus, another promising direction for
the future is to explore the applicability to problems with higher-dimensional
spatial domains using different transformation operators, see e.g. [15,28,31] for
some contributions in this direction.
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