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Abstract Building and maintaining a custom-made Virtual Reality (VR) system
is expensive and time consuming. The recent availability of affordable and capable
head mounted displays (HMD) and graphics cards along with powerful 3D game
engines has created new opportunities for implementing VR systems. In this chapter
we describe the historical development of software and hardware for VR systems
and applications from the 90s to today, as well as the advantages, disadvantages
and challenges that the recent developments have introduced. The development is
described through the journey of porting a VR system from a custom made game
engine displayed on a backprojected screen to using an inexpensive off-the-shelf
system with the Unity game engine displayed in an HMD.

1 Introduction

Several VR systems used in the areas of oil and gas exploration and medical visual-
ization had been developed by Christian Michelsen Research (CMR), which is now
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part of Norwegian Research Centre (NORCE). One of these systems was for risk
assessment, risk communication and safety training in fire and explosion scenarios.
The VR hardware consisted of a large screen display and shuttered glasses for stereo
viewing, including positional and rotational tracking. The software was an in-house
developed custom 3D engine. Custom 3D engines are time consuming to develop
and maintain, and the VR hardware we used took much space and was costly. How-
ever, the recent availability of affordable but advanced VR HMDs, combined with
powerful 3D game engines such as Unity [1] and Unreal Engine [2], has created a
new opportunity in VR technology.

To test the potential of this new technology we ported the functionality of our
custom VR system into the Unity game engine and used the Oculus Rift DK2 [3] for
rendering and tracking. In this chapter we will discuss our previous experience with
VR technology and then compare and contrast it with the new technology.

2 Background

HMDs have been used extensively for military training purposes [4] and are entering
the public domain for medical training [5]. Recently, companies are increasingly
embracing VR for training their personnel in fields such as safety and security, sales,
engineering, hospitality, HR, leadership and education [6].

In 2004, CMR started development of a VR solution called VRSafety [7, 8],
funded by Equinor and Norsk Hydro. VRSafety was developed for evacuation and
safety training and for discussing and reviewing structural changes in existing or
planned industrial environments. Computational Fluid Dynamics (CFD) simulations
calculated in external software were imported and visualized to simulate fire, gas
leak and explosion scenarios inside the models. To visualize the simulation results,
we implemented volume rendering and isosurface rendering. To discuss mitigation
steps, wemade it possible to do basic editing of the geometrymodel. In effect, we had
created a digital twin with respect to visual appearance, and visualization of fire, gas
and explosion scenarios that could be used for learning and training on e.g. hazard
identification and to find evacuation routes. As spatial understanding and the sense
of presence is important, particularly in training scenarios, we implemented support
for 3D immersion using VR. In addition to training, experts and non-experts could
use the solution to communicate hazard and risk topics, e.g., by showing how much
larger an explosion would be if a certain opening would be closed off with a wall.

VRSafety had implemented a real time connection to the FLACS (Flame Accel-
eration Simulator) CFD simulator [9], this enabled defining explosion, gas leak and
fire scenarios in VR and immediately starting a FLACS CFD simulation allowing
real-time visualization of the calculated results in the VR environment. However,
real-time visualization of the simulation output was not practically useful due to
long computation times. It took in the order of seconds to simulate a single timestep,
which could be between a fraction of a second to a few seconds long depending on
the type of simulation. So in most cases the scenarios to be discussed were computed
in advance before running the VRSafety application.
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2.1 Evolution of VR Hardware and Software

Before starting the development ofVRSafety,CMRhadalready implemented another
3D engine for supporting VR applications in oil and gas exploration and production,
called SHIVR. This 3D engine, which is described in the chapter titled “When Visu-
alization and Virtual Reality made a Paradigm Shift in Oil and Gas”, was developed
for UNIX running on an SGI ONYX visualization system. The graphics rendering of
the 3D engine was built on top of the low-level OpenGL library [10], and it supported
immersive visualization in CAVE setups [11] through the use of the (discontinued)
CAVELib library. CAVElib handled the graphics display on each wall of the CAVE,
including computation of correct angles and projections. For tracking the user, hard-
ware technology (discontinued) was used which consisted of wired electromagnetic
sensors (Ascension Flock of Birds [12]). The engine had collaborative capabilities
where several instances of the software could run at different sites, enabling geo-
graphically dispersed users to meet and collaborate within the virtual environment.

Interfacing OpenGL directly is a time-consuming way of programming computer
graphics applications, as almost every high-level functionality has to be implemented
from scratch. Therefore we based the 3D engine for the VRSafety application on a
higher graphics abstraction level provided by theOpenGLPerformer scene graphAPI
by SGI (now discontinued). On top of OpenGL Performer we implemented our own
navigation system, event system, and XML meta-language for controlling behavior
in the virtual environment [13]. As SGI started experiencing financial difficulties, the
support on the hardware and libraries we were using became uncertain. Therefore,
we switched from SGI’s OpenGL Performer scene graph to OpenScenegraph [14]
and ported our 3D engine from UNIX to Microsoft Windows. Due to the rapid
development of the game industry, we were now able to replace the expensive SGI
Onyx OS and hardware systems with a high-end PC and commodity graphics cards
costing a fraction of the price, without losing performance. In addition, we no longer
needed a separate server room for the large SGI Onyx rack setup. At the same time,
we exchanged CaveLib by VRjuggler [15] which had no license fees associated with
it. We were also able to get rid of wired tracking by replacing the Flock Of Birds
tracking system with the IO Tracker [16] tracking system which was using infrared
cameras, emitters and reflective markers.

VRSafety was designed for running in a CAVE environment, but during develop-
mentwewere running the application in a downscaled immersiveVRsetup consisting
of a 4.6m × 1.6m back-projected screen, powered by two partly overlapping Barco
Galaxy NW-7 projectors. The overlap was smoothed using edge blending, resulting
in a resolution of 2048× 1600 120Hz. Stereo was achieved using active stereo shut-
ter glasses from Nvidia that were synchronized with the display through an infrared
signal. Positional and rotational tracking of the glasses and of the pointing device
was achieved with the IO Tracker system using reflective markers. The markers were
tracked by infrared emitting and receiving cameras positioned around the bevel of
the display, see Fig. 1.
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Fig. 1 Immersive display environment consisting of a back projected screen with infrared tracking
cameras around the screen bevel

2.2 Experiences with VRSafety

The newVRSafety setup was considerably improved, but still consisted of expensive
hardware that required a custom-made visualization room, with an additional projec-
tor room located behind the screen. In addition, an initial manual calibration process
had to be performed by trained personell, both for the projectors and the tracking
system. The setup was ideal for simultaneously immersing multiple people in the
virtual environment, and for facilitating collaborative discussion sessions between
experts from different disciplines. In our particular setup, we only had the front wall
projected, resulting in a lower degree of immersion than in a multiwall CAVE. We
used this setup as it could also be used as an ordinary large screen for meetings,
and it was more affordable than a CAVE setup. Our immersive work sessions did
usually not produce motion sickness among the participants. Compared to the cur-
rently available rendering engines and frameworks, requests for added functionality
was time consuming to implement due to our in-house developed framework. The
framework also naturally did not benefit from bug fixes and feature updates from
external actors.

3 Head Mounted Displays and Game Engines

3.1 Evolution of HMDs

Because of the recent interest in VR from companies such as Facebook, HTC, Sam-
sung and Sony, affordable HMDs have now become commercially available. These
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devices offer similar features, such as six degrees of freedom and a wide field of view
(FOV). Sony’s device is geared toward the PlayStation game console whereas the
others are run by connected PCs or inbuilt mobile devices. Now that head mounted
displays are commercially available and there are several companies competing in the
marked, the hardware is rapidly improving. HMDs available in the 90s suffered from
a very narrow field of view. Some had angular tracking, but to also have positional
tracking, external sensors had to be attached such as the wired electromagnetic Flock
of Birds sensor. Since the first prototypes of HMDs, the field of view has increased
dramatically, and 6 degrees of freedom tracking is supported both on the HMD and
on the hand-controllers. Tracking has evolved from using several external cameras
for detecting the position and orientation of a device, called outside-in tracking, to
using cameras embedded in the device, called inside-out tracking. The latter solution
requires less hardware setup and calibration, and does not limit the movement to a
confined area within the cameras’ view. Most HMDs require cables, but cableless
HMDs are appearing. One example is the Oculus Quest device which is based on
a stand-alone Android mobile device with inside-out tracking. Such systems allow
the user to move freely around in the physical environment. The disadvantage with
using mobile computation of VR is that it is less performant than an HMD connected
with cables to a powerful computer. It is possible to send images wirelessly from a
powerful computer to an HMD, but this adds some latency between a user’s action
and an updated rendering. If latency can be reduced to become unnoticeable, one
will be able to achieve high quality rendering on lightweight wireless HMDs which
could improve the user experience dramatically. Another recent development is eye
tracking integrated into the HMD which makes it possible to track what the user is
looking at. This feature is already available in the VIVE Pro Eye device [17]. Eye
tracking can open up for more intuitive interaction with the VRworld, and for higher
framerates or better-quality renderings by focusing the rendering computation to the
area that the user is looking at. This is called foveated rendering [18].

3.2 The Oculus Rift HMD

We used the Oculus Rift DK2 HMD, as this was the only commercially available
HMD at the onset of the project. The lenses used in the Oculus Rift creates two
distortions: pincushion distortion and chromatic aberration. These distortions are
corrected for by convoluting the image with a barrel distortion and distorting the
red, blue, and green components of the image to cancel out the chromatic aberration.
Both the 3D position and angles of the DK2 is tracked. The position is measured by a
stationary infrared camera observing at 60 FPS infrared (IR) emissions from an array
of IR-LEDS on the DK2. The angles are measured with an accelerator in the DK2.
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3.3 Unity and Unreal Engine 3D Software

To find out which 3D engine we should port VRSafety to, we evaluated the Unreal
and Unity game engines because of their state-of-the-art features and liberal end
user licenses. The Crytek CryEngine also offers state-of-the-art features but is only
allowed to be used for game development [19]. The engine cannot be used for scien-
tific simulations and serious games as the end user license agreement states: “Under
this Agreement the following will not be considered Games: military projects; gam-
bling; simulation (technical, scientific, other); science; architecture; pornography;
Serious Games”.

Unity and the Unreal Engine are multi-platform game engines. They provide
advanced functionality that was lacking in our previous system such as a powerful
scene editor for adding geometry, interactive landscape shaping, (dynamic) foliage
and visual environmental andweather effects.Additionally, all objects can be scripted
for adding behavior to them.

Both game engines are reasonably priced with scalable fees according to either
game revenue or development licenses used. Unreal has a 5% royalty fee for revenues
above 1millionUSDper product [20]. If the product is distributed through theOculus
store however, the royalty free revenue limit is raised to 5 million USD [21]. In
2019 Unreal removed the restriction regarding using the engine for gambling-related
activities, for military activities with live combat, in nuclear facilities, or in critical
aircraft software.

Unity has three licenses. With the personal license, products created with Unity
can be used, distributed and sold without fees by entities earning less than 100,000
USD per year. Entities earning less than 200,000 USD can use the Plus licence for
35 USD per month or 299 USD per year. Entities earning more than 200,000 USD
must use the professional license which will cost 150 USD per month per developer
or 1800 USD per year [22]. In 2019 Unity removed the restriction regarding using
the engine for gambling-related activities. The licenses described here are from 2021
and may change from year to year.

4 Porting from VRSafety to a Modern Head Mounted
Display and Game Engine

In the following text we will refer to the new platform which we port VRSafety to, as
VRFlacs. The porting consisted of two main tasks, transferring assets such as geom-
etry models to a game engine, and implementing/porting the software functionality
found in VRSafety.
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4.1 Porting of Geometry Models

The geometry constituting the industrial model was originally in a CAD format but
was provided to us as anOpenScenegraph Binary file (IVE) of 668Mb. The geometry
consists approximately of 5 million triangles

Both game engines support the FilmBox format (FBX) [23], while Unity addi-
tionally supports Collada (DAE) [24]. Therefore we focused on converting the geom-
etry to FBX. We identified two geometry software packages which advertised the
ability to convert from OpenScenegraph exportable file formats to FBX. Sketchup
Pro [25] could import DAE and export FBX, but the software crashed during import.
Blender [26] could transform both Autodesks [27] 3ds Max format (3DS) and DAE
format to FBX, but Unreal failed to load the FBX file created both from 3DS and
from DAE. It appears that Unreal’s FBX importing was not suitable for large CAD
files. Although, we were pleased with the Unreal Engine editor and impressed with
the visual realism of the Unreal Engine, due to the failure to import our model, we
decided to continue with the Unity engine. We did not investigate the many third
party importer plugins for Unreal, nor the latest version of the engine, which might
have solved this problem.

Unity successfully imported the FBX file, however, the original smooth shading
was turned into flat shading. Loading the DAE format that had been exported from
OpenScenegraph maintained the smooth shading, however all textures had been lost
during conversion, but it was relatively easy to reassign the textures thanks to the
Unity editor allowing for editing geometry. In addition, many surfaces flickered
due to overlap with other surfaces with different colors (Z-fighting). This issue was
also quickly resolved in the Unity editor by deleting one of the overlapping surfaces.
Figure2 shows anoverheadviewof themodel imported intoUnity after beingupdated
in the Unity editor.

4.1.1 Adding Terrain, Sea and Sky

Compared toVRSafetywhich lacks a graphical editor,Unity supportsmany advanced
features that can be created easily within the integrated graphical scene editor. Unity
also has an assets store where one can purchase textures, models and visual effects.
Our original model used in VRSafety was positioned inside a large sky-textured box
that rendered the sky. It also included geometry representing the surrounding terrain.
As Unity supports several sky-models and allows for interactive terrain sculpting
and the adding of foliage, we replaced the original sky and terrain with Unity-made
models. In addition, we added animated trees and an animated sea into the model.
Using the interactive editor in Unity, we were able to create surroundings that more
accurately represented the real surroundings of the model, see Fig. 3 bottom.

Unity supports several extensions for improved renderingquality, such as advanced
shadingmodels with shadow casting, and dynamic content such as animated environ-
mental effects in water, trees and leaves. Adding too many of these features quickly
degraded the framerate to below comfortable levels for VR. Rendering our scene in
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Fig. 2 Top view of the industrial model in the Unity editor. The sea and the surrounding terrain
with foliage were created in the Unity editor

Oculus Rift with the basic Phong shading model as used in our previous VRSafety
system, and having disabled animation of water and trees, resulted in interactive
framerates at just over 70 FPS on an Nvidia GTX580 graphics card from 2011.
This is an outdated graphics card, but provides at least a reference number for the
framerate.

4.2 Implementing Software Functionality

Adding functionality such as navigation and collision detection in Unity was simply
a matter of importing an asset and clicking a check box. Other functionality available
in VRSafety, such as moving objects around in the scene, has not been implemented
in Unity, but by inspecting the game engine design and scripting functionality we
believe this would be easy to implement. VRSafety supported a two-way interactive
connection with the FLACS CFD fire, leak and explosion simulator. However, this
was not practically useful due to slow simulation times, therefore it was not ported to
VRFlacs. For visualizing the simulation output, VRSafety had implemented an iso-
surface renderer for showing boundary surfaces for a user defined value and attribute,
and a volume renderer for showing all values of an attribute mapped with a color
table. In VRFlacs, we implemented only a volume renderer since it could be used to
render isosurfaces also.
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Fig. 3 Top: Rendering from VRSafety showing geometry and volume rendering of a gas leak.
Bottom: Rendering from VRFlacs using Unity showing geometry with trees, shadows and water in
the distance. Bottom Right inset: Stereoscopic rendering generated for the DK2

4.2.1 Volume Rendering

TheCFD simulator used for computing gas dispersion and gas explosions generates a
3D volumetric dataset for each attribute and timestep. Volume rendering is a suitable
method for visualization of such datasets. As Unity does not have built-in volume
rendering capabilities,we implemented this ourselves. There are parameters thatmust
be set before starting a simulation. The timestep size and spatial resolution of the
simulation grid is manually set to achieve sufficient accuracy and to capture relevant
features. Simulations such as explosions that start and end in a fraction of a second
require smaller timesteps than e.g. a slow burning oil fire. The attributes to be output
could be temperature, pressure, gas composition or a multitude of other attributes
that are calculated by the simulator. As the volumetric data output consumes much
memory, a decision to only store e.g. every 2nd or 4th timestep to theVR environment
can be taken.

To show the data quantitatively, a slice through the volume at a user-defined
position can be displayed. The user chooses which scalar simulation value to display,
for instance temperature, and chooses a colormap for translating the scalar value to
a color. This is useful for reviewing the simulator output.
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For giving a qualitative impression of a fire scenario, the fire is rendered in a
realistic manner. To achieve this, the simulator must calculate temperature and soot
particles per volume unit (i.e. per voxel). The renderer then maps temperature to a
wavelength spectrum using Planck’s law of black-body radiation [28], and soot is
mapped to opacity. The wavelength spectrum is further mapped to an RGB color
value using the CIE 1931 color spaces [29] which define quantitative links between
a wavelength spectrum and physiologically perceived colors in human vision. The
RGB color represents chromaticity only (Planckian locus). To add lightness to the
color according to how much energy is radiated from the point, the color is modified
using the power of the spectrum. An example is shown in Fig. 5, bottom.

Gas leaks are mostly invisible, so in order to visualize them in VRSafety and
in VRFlacs in Unity, we used a non-physically based mapping from gas density to
color, which gave the leak a cloud-like appearance. Such a rendering from VRSafety
is shown in Fig. 3, top. We can also show the extent of the gas leak by volume
rendering a single isosurface for a user defined gas density, for instance for lethal
or combustible levels of gas, giving the impression of a growing (semitransparent)
bubble around the critical area.

In Unity, we implemented slice-based volume rendering [30]. This represents a
volume as a set of semitransparent slices stacked behind each other, always facing
the viewer, see Fig. 4 for a 2D schematic view. Each slice is a textured rectangle
represented in Unity as a Quad GameObject. A higher number of slices improves
the accuracy of the rendering at the cost of reduced framerate. Parts of slices that
are behind existing scene geometry are automatically hidden due to depth buffering,
and this ensures that the volume rendering is integrated with the geometry rendering.
Because of this, only opaque geometry is supported inside the volume rendering.

To increase quality without decreasing the framerate, we use a smaller distance
between slices when they are closer to the viewer instead of having slices evenly
spaced. This works since data closer to the viewer is more visible which affects
the resulting rendering more than data further away. We used an initial distance of
0.5 voxels for the first slice (Nyquist sampling rate) and increased this with 1% per
additional slice. The user can speed up the volume rendering at the cost of reduced
quality by increasing the initial and thereby the following slice distances. Each slice
represents the optical properties of a slab around the slice. This is depicted in Fig. 4,
where slices are shownwith stippled vertical lines, and slabs with solid vertical lines.
For simplicity, we use a constant distance between slices in the illustration. The blue
rotated square represents the bounds of the volumedata and the black circle represents
opaque geometry inside the volume. The color and transparency of a given pixel on
the texture of a slice depends on the data in the volume at the 3D position of the
pixel, and how this value is mapped to color and opacity. Since the slice represents
a slab of a specific thickness, this thickness will affect the transparency of the pixel.
The thickness is affected by a slab’s intersection with other geometry in the volume,
and by its intersection with the volume bounds. In Fig. 4 is shown line intervals
of different colors representing slab thicknesses. To improve rendering quality, the
predefined slab thickness (sampling distance) is reduced to fit the front of the volume
bounds (green), the back of the volume bounds (orange) or the front of geometry
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Fig. 4 The eye represents the viewing direction. Blue square shows volume bounds, black circle
represents opaque geometry inside the volume rendering. Stippled vertical lines represent slices,
green vertical lines represent slab borders. Horizontal lines represent different slice thicknesses due
to intersection with volume bounds (green and red) or geometry (grey)

(gray). In blue is shown a few internal intervals where no adjustment is needed.
There is also no adjustment behind the geometry since this area will not be visible
as we only support opaque geometry. When not taking these distances into account,
artifacts as shown in Fig. 5 top will be visible which are more pronounced when
using larger slice distances. Figure5 top shows jagged artifacts in square numbered
1) and 2) arising from not taking into account the distance to geometry and to front
of volume bounding box respectively. Bottom figure shows the rendering when these
distances are taken into account.

To calculate the distance to geometry, we accessed the depth buffer after render-
ing the scene geometry. The distance to the cuboid volume bounds was calculated
analytically. We experienced that the programming interface for low level access to
graphics features such as the depth buffer was not always direct and efficient in Unity.
This resulted in a reduced framerate as compared to e.g. an OpenGL implementation.

4.2.2 Particle System Rendering

We faced several problemswhen visualizing the simulations using volume rendering.
The graphics-intensive volume visualization reduced the framerate to below the rec-
ommended framerates for an optimal VR experience. In addition, simulations take up
much space in memory which limits the length and size of the simulations that can be
displayed. Finally, there is the problem of simulations that have long timesteps, e.g.
the simulation of a long running fire. Since the fire lasts longer and is less dynamic
than an explosion, the timestep of the simulator is set to one second to save memory.
However, animating a fire which changes appearance only every second breaks the
realism. In order to address the issues of memory usage and nonsmooth animation
of fire, we looked at how fire and explosions are expressed in games with limited
computing and memory consumption. One common technique in games to visualize
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Fig. 5 Slice-based volume rendering shown together with geometry in Unity. Top: Jagged artifacts
when not taking into account distance to geometry (1) and to volume bounding box (2). Colors
have been exaggerated to better show the artifacts. Bottom: Volume rendering when taking these
distances into account (The two images show data from two slightly different timesteps)

fires is to use particle systems [31] where each particle is a rising billboard having
predefined fire animations playing on the surface of the billboard. A billboard is a
2D view-aligned textured surfaces with transparency masking. The animated bill-
board functionality is integrated in Unity’s particle system module via the Texture
sheet Animationmodule [32]. Several predefined fire particle systems can be directly
downloaded through the Unity Asset Store, which made it easy for us to implement
this functionality.

For a specific training scenario where accurate simulations have been performed,
we simply positioned particle systems for fire at the positions of the fires, and set
their parameters to approximatively match the simulation results. We also calculated
and showed the accumulated radiation received by the player. This was calculated
based on the volumetric output from the simulator. See Fig. 6 for renderings of fire
and smoke using particle systems. To automatically get more accurate renderings
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Fig. 6 Particle systems used
to visualize fire and smoke.
In the top left corner is
visualized an ignited gas
leak. Colors are exaggerated
in the figure to better show
the results

of fire using particle systems without manually setting parameters for the particle
systems, we also experimented with limiting the particle movements based on the
simulation data. This approach looked promising, but we did not have time to explore
this sufficiently.

4.2.3 Support for Multiple Users

In VRSafety, local collaboration was possible simply because the participants were
physically present in the same room and could see and talk to each other. In Unity,
the application was running in an HMD, which is designed for one person only.
To support multiple collaborators, the multiplayer functionality supported in Unity
was used, where several instances of the application, each running on an individual
computer, are synchronized. In this mode, the users can see the avatars of each other,
see Fig. 7.

5 Modes of Work in VR

VRSafety supported a desktop mode where a single user would typically review and
inspect simulation results on a desktop computer by looking at the volume rendering
animations, using quantitative slice visualization at specific timesteps and using a
probe to read out simulation values at specific positions in space. For discussing
the simulation results with a group of people, VRSafety could be run in VR where
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Fig. 7 Multiuser mode. Two users (bottom right) are immersed. Third-person view seen by each
user is shown in bottom left and main image respectively

the same operations could be performed as in desktop mode. A different mode of
operations was to run VRSafety in VR for the purpose of replaying a realistic recre-
ation of a simulated situation and immersing a group of participants into the situation.
This was useful for efficient communicating the consequences of leak, explosion and
fire situations. In this mode, VRSafety needed an operator to guide the participants
through the scenario.

In Unity, there was built-in support for navigation by walking and running, for
animation of realistic characters and for creating game logic that triggers events based
on a user’s actions in the world. Together with the high immersion created by the
HMDs, this made it easy to create a VR training mode where the user learns by being
exposed to various situations in the virtual world which must be handled correctly.
This mode of work enables safe and affordable training on dangerous situations.
Figure8 shows one such scenario that we created, where the user’s actions affected
how events unfolded. These scenarios supported multiple immersed users as shown
in Fig. 7.

6 The Immersive Experience in VRFlacs Compared
to VRSafety

Those that had used the VRSafety application in our back projected single wall
setup with 3D glasses found the experience with the Oculus Rift far more immersive.
Several people tryingVRFlacswith anHMDfound it so immersive that they expected
to see their hands and arms when they moved them. Newer HMDs from Oculus (Rift
S) now include two tracked hand controllers which makes this possible.
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Fig. 8 A scenario playing out from left to right. A user detects a fire, localizes the valve and closes
the gas supply to the fire. The user sets of fire alarm. Fire alarm is set of. The fire truck arrives

We did face some new challenges using an HMD for VR. Initially, a first-person
perspectivewasusedwhenbeing immersed.After an approximately 30minof immer-
sion, the main author experienced nausea. This lasted for over an hour. Reducing
negative sideeffects from VR is an actively researched field [33]. Limiting the user’s
ability to perform changes in movement, and using HMD’s with increased field of
view or increased framerates are examples of techniques that help. In our case, we
switched fromafirst-person to a third-person perspectivewhich gave fewer viewpoint
changes when navigating in VR and this reduced nausea.

A problem we faced with the complex terrain we added along with shadows and
a dynamic ocean, is that it had a dramatic effect on the framerate of the applica-
tion which was particularly noticeable during rotational head movements. Lag in
rotational head movements was not a problem in the VRSafety solution since the
rendering on the large-screen display did not have to change much when the user
rotated his/her head. The low frame rate in our new VRFlacs framework not only
damages the immersive experience but also contributes to motion sickness.

We believe that with a more modern GPU along with a better understanding of
the Unity engine, we can achieve a sufficiently high framerate. For now, we have
created two version of our demonstration: one with a complex terrain and ocean and
one with a simple terrain and no ocean. In addition, we do not use volume rendering
in immersive training scenarios. Instead we use the approximate particle system
rendering.

Another challenge with the DK2 HMD compared to a large-screen setup is that
the HMD blocks the view of the physical room one is situated in. Thus, collaborative
sessions where several users see each other and e.g., point at parts of the model using
hand gestures is not supported. Current HMDs come with tracked hand controllers,
which will make it possible to show the participants as avatars with arms. Technol-
ogy is developing that captures subtle body language and face mimic which is an
important part of communication. Recently the VIVE Facial Tracker [34] has been
released for the consumer market. It is is a device that works with HMDs and tracks
the movement of the lower face including the mouth. This can substantially increase
the ability to capture face mimic. There are now technological advances where the
hand controllers might be replaced by sensors around the wrist that register the finger
positions using cameras [35] or by reading the electric signals from muscles through
the skin [36].
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Table 1 Comparing the software aspects of the solutions. “+” is better than “(+)”, which is better
than “−”

Custom Engine (VRSafety) Commercial Game Engine

Importing large geometry + (+)

Fast implementation - +

Rendering quality - +

Adding “standard” functionality - +

Adding “nonstandard” functionality + -

Pricing scheme Free Per dev. licence / Per sale

Motion sickness and the reduced ability to communicate with collaborators in
the same room are probably the two largest challenges using HMDs compared to
using shared stereoscopic screens or CAVEs. We have summarized in Table1 the
differences between our previous system (VRSafety) that used a large stereoscopic
screen with shuttered glass and the current one (VRFlacs) that used the Oculus Rift.
In Table1, we compare the software aspects of the two solutions. We use the term
“standard” functionality for functionality that is common in games such as realistic
environments, collision detection, animation and multiplayer support. Conversely,
with “nonstandard” functionality we refer to features not common in games such as
volume rendering, which we could not implement as efficiently as we wished due
to lack of enough low-level graphics control in Unity. In sum, we spent a substan-
tially less amount of time on implementation in Unity than with OpenSceneGraph
in VRSafety. This is also thanks to Unity’s integrated developer environment, good
debugging abilities, and the interpreted C# language that does not require time con-
suming compilation. This is reflected by giving the category “Fast implementation”
a + for Unity in the Table. VRSafety was developed in-house and did not have a
purchase cost, while Unity has a cost per license. The license cost far outweighs
the extra hours required for implementing a custom engine. The risk of using an
externally provided game engine for a domain that it is not exactly designed for is
that only after investing a certain (possibly large) amount of time, one may realize
that a specific functionality is not possible to implement in a satisfactory manner.
This is less likely to happen for a custom-made engine where one has more control.

Table2 shows the differences between presenting VR through large screens and
in CAVEs (Large-screen VR) compared to using HMDs (HMD VR). HMDs are
more affordable than large-screen solutions. For fast rotational head movements in
an HMD, a high framerate is required to not experience lag. However when the
display is not attached to the head, this is not a problem. Perhaps partly related to the
rotational framerate, motion sickness was less of a problem on large-screen VR in
our experiences. When considering only the hardware, it is easier to collaborate with
multiple people in the same room for Large-screen VR solutions than for HMDs as
HMDs block the view of the room and the participants.
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Table 2 Comparing the hardware aspects of the old and new solution

Large-screen VR HMD VR

Hardware price high low

“Rotational framerate” high medium/low

Motion sickness low medium/high

Collaboration support high medium/low

7 Discussion and Conclusions

VRSafety was developed as a tool for training and safety assessment of industrial
environments. The costs for developing andmaintaining a custom3Dgraphics engine
made it challenging to convince companies to pursue further investments. The recent
availability of inexpensive HMDs with six-degrees of freedom tracking and a wide
FOV, along with the availability of advanced 3D engines have rekindled our interest
in VR as a viable platform for immersive training.

Our initial experience using the Oculus Rift DK2 device has been positive, as
exploring the model of an industrial complex has never felt so immersive. Addition-
ally, using Unity made it simple to reproduce many of the features we have in our
custom 3D engine with much less effort, and the high visual quality provided by
Unity generated a much more realistic visualization than we achieved with our 3D
engine. The implemented volume rendering in Unity did not achieve high enough
framerates for being used in a HMD in a training scenario. A faster but less accurate
particle system rendering was instead used to give a qualitative impression of fire.

The major problem using the Oculus Rift DK2 was the motion sickness. This
is a serious issue which needs to be carefully addressed. This may be as simple as
avoiding low frame rates and lag to more restrictive solutions locking the user to a
fixed inertial reference frame such as the cockpit of an automobile.
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