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Abstract. Due to the variety and interaction of volatile influencing factors as well
as the increasing requirements resulting from individualization, the prediction of
future demand development is becoming increasingly difficult and complex. In
manufacturing companies, this leads to a need for shorter and faster production
planning cycles. In addition, the production network must be secured against
uncertainty. This is possible by scenario analysis integrated into automated plan-
ning. In this paper, an automated scenario analysis in combination with determin-
istic modeling for integrated product allocation and global network configuration
is developed to tackle demand uncertainty in a medium-term planning horizon.
When creating scenarios, a trade-off arises concerning the completeness of pos-
sible developments and the manageability of the set. The objective is to achieve a
representative coverage of possible future states by a small number of reasonable
scenarios. Therefore, change drivers are defined that can lead to modifications
of customer orders. This is followed by an automated simulation of the occur-
rence of the change drivers using a Monte Carlo simulation with a high number
of samples for statistical validation. A cluster analysis with upstream principal
component analysis is used to reduce the number of scenarios while maintaining
representativeness. Finally, the scenarios are optimized in a production planning
tool. The approach is applied to a real use case. The results are used to validate
the representativeness of the scenarios, as well as to conclude robust decisions.

Keywords: Scenario analysis · Uncertainty in production · Changeability ·
Global production systems · Production system planning

1 Introduction

The ability to plan production and predict future developments has become steadily
more difficult over the past 30 years due to growing uncertainty. This uncertainty results
from increasingly fast-changing framework conditions, growing individualization and a
high diversity of variants [1], which particularly affects demand and capacity in terms of
quantity andflexibility. For global production networks, this represents amajor challenge
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for their production strategy [2]. In the manufacturing environment, it also means that
matching production resources and customer orders is becoming increasingly complex
in the context of order allocation [3].

This leads to the need to be able to react quickly and in a robust manner to chang-
ing environmental conditions. In addition, the timely recognition and consideration of
possible changes are of decisive importance for economic success [4]. One conceivable
option is to automate global network configuration planning and job allocation for a
single scenario, which leads to acceleration of planning but does not create a robust
solution. If, on the other hand, several scenarios are considered, the time required for
compilation increases in the case of classical scenario analysis methods, and the repre-
sentativeness or required quantity is limited. With stochastic methods for the creation of
a large number of scenarios, the future can be covered representatively, but due to the
high amount of scenarios the manageability decreases. Based on the later validation, an
Input is representative, if it covers all defined change drivers, such that the result based
on this input can been seen as robust against these change drivers.

Section 2 summarizes the current state of the art referring these research problems.
The answer to this dilemma is a combination of a stochastic scenario building, an

automated method to reduce the scenarios to a manageable number as well as the use
of a deterministic automated planning tool to calculate an optimal network configura-
tion and product allocation for each scenario which enables robust decisions based on
these solutions (Sect. 3). Section 4 applies this approach to an industrial use case of an
automotive supplier leading to the conclusion in Sect. 5.

2 State of the Art

The complexity of planning decisions as allocations and network configurations consid-
ering various restrictions leads to the fact that mathematical and optimization models
are often used as a support. These optimization models are used to automatically find
an optimal solution concerning quantitative goals [5]. Thus, various approaches can
already be found in the literature that use optimization approaches for the configuration
and product allocation in global production networks [6].

When designing the manufacturing network structure and defining an allocation
strategy, the uncertainty of influencing factors has to be considered [3]. The ability to
make early and proactive adjustments at all levels of the production system in order to
respond economically to influencing factors, their uncertainty and the resulting chal-
lenges, is referred to as changeability. A distinction can be made between flexibility and
reconfigurability. While flexibility is the ability of a system to react to changes without
additional investments, reconfigurability describes the possibility to adapt the produc-
tion system with little effort. Uncertain influencing factors that trigger such changes are
called change drivers [1]. One option to consider them is the usage of specific scenarios,
which are optimized individually.

While classic scenario analysis techniques were developed for strategic business
management, similar methods are also used in strategic production planning. Due to the
time consumption and limited manageability of many scenarios, few mostly qualitative
scenarios are built based on possible developments of change drivers [7].
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Other approaches use stochastic models, such as a Monte Carlo simulation, to create
a variety of quantitative scenarios and representatively map the scenario funnel. [8] use
this approach to generate scenarios for their design and planning model for manufac-
turing systems. Therefore they apply an accelerated Benders’ decomposition to solve
a high number of scenarios. [9] use the Monte Carlo analysis to simulate scenario-
based possible change drivers and developments, which were identified by experts. [18]
combine possible customer order configurations into scenarios through Monte Carlo
simulation. To be applicable for robust cost-minimal optimization of the medium-term
order allocation, [10] reduce the number of scenarios by clustering.

Besides production, there are further approaches in literature that address similar
problems and also identify ways to reduce a high number of scenarios. [11] simu-
late a “closed-loop” network with a scenario-based stochastic optimization model. To
reduce the number of scenarios a k-means cluster algorithm is used. [12] build scenar-
ios for investment decisions. Therefore, two approaches are applied. The first approach
combines intervals of two uncertain parameters. The second approach clusters historic
combinations of the uncertain parameters by using a k-means algorithm. [13] develop a
stochastic model of the supply chain. For this purpose, scenarios are created using the
Monte Carlo simulation and the number of scenarios is reduced by the application of
a sample average approximation approach. All in all none of these approaches solves
the problem of enabling robust decision making under uncertainty in global production
networks. The aim of this paper is to combine production needs with state of the art
scenario techniques to only plan for relevant demand scenarios.

3 Approach

The present approach combines and advances the existing methods to secure a global
production network against uncertainty and ensures short-cycle production planning.
Therefore, the methodology shown in Fig. 1 was developed which combines scenario
analysis and automated planning for network configuration and product allocation.

The first step of the scenario building is the project definition by determining the
object of investigation and recording the current status. As the approach is particularly
created for product allocation and global network configuration, the object will usually
be a specific product group or business unit. For the current status, a recent order list is
needed together with the underlying assumptions. In addition, a decision concerning the
time frame for the modeling of the scenarios and the planning is required.

The second step deals with the definition of different relevant change drivers, which
affect the demand development. The aim of this phase is to map individual conceivable
developments of various influencing factors in a machine-readable format. To ensure
speed, change drivers are obtained as far as possible with secondary data (e.g. customers,
variants etc.) and supplemented with expert interviews to guarantee accuracy.

The starting point is the order list identified in phase one as the as-is state, and
the drivers represent a deviation from the assumptions contained therein. To define the
change drivers, the probability of occurrence, the influence on the number of units,
possible occurrence times and the affected orders have to be specified for each factor.
Furthermore, drivers can be interrelated or mutually exclusive. This allows not only
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Fig. 1. Approach for the combination of a scenario analysis and an automated planning tool.

changes in the number of units, but also shifts in the demand for certain variants can be
modeled, which is required for the flexibility of the production network.

The last step of the scenario building is a Monte Carlo analysis. A scenario is cre-
ated by simulating the occurrence of the individual change drivers and their combined
effects on the output scenario. With the scenario tool several scenarios are generated to
representatively map the scenario funnel and statistically validate the result [14].

The third part of the approach deals with the creation of a limited number of
representative scenarios by the reduction of the simulated scenarios. One possibility
is to adjust the distribution of the scenarios to the objective value (e.g. costs). However,
since the information about the achieved value is only available after optimization and it
is impossible to optimize all scenarios, this is not feasible. Instead, other criteria must be
defined that determine the difference between the scenarios and are relevant for product
location or network design. For this purpose, a two-stage approach is used in which
first general criteria are defined based on the existing order data and then independent
relevant factors are formed employing a principal component analysis (PCA).

To keep it simple and fast for the user, only basic categories that are present in the
order data need to be defined. The calculation of the values per scenario is done auto-
matically. This already results in a large number of possible clustering criteria through
the definition of a few categories. To reduce noise in the data, new independent factors
are now formed within a PCA, which influence on the main difference (in the form
of the highest variance) between the scenarios. For a better comparability, the criteria
are scaled. After the PCA the number of factors to keep is selected by the literature
approved “Elbow criterion”. An explanation and comparison of different approaches for
determining the number of factors to retain can be found in [15].

Now the scenarios are grouped by using a k-means clustering approach. The goal
is to pool similar scenarios together, while scenarios in different clusters should be as
different as possible. The resulting factors of the PCA are used to define the scenarios
in a multidimensional space. The euclidean distance between two scenarios defines
their similarity. The k-means algorithm uses the error sum of squares as an assignment
criterion and is applied due to its high speed and high prevalence. For a more detailed
explanation of this cluster algorithm see [16]. The number of clusters is equivalent to
the resulting number of representative scenarios and has to be determined by the user.

The third step is to select a representative scenario for each cluster. In the k-means
algorithm, the centroid is representative of a cluster [16]. However, the centroid repre-
sents a point in themultidimensional space andusually not a possible scenario. Therefore,
for each cluster, the scenario closest to the centroid is chosen as representative. More-
over, a weighting for each representative is calculated, which indicates the number of
scenarios represented by the representative.
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The representative demand scenarios are now used for the optimization and robust
decision making for the allocation and network configuration. For this purpose, an
automated deterministic optimizationmodel based on the developments of [17] is used in
this work to enable short-cycled planning by ensuring speed and limited computing time.
By the automated optimization of the scenarios, the result is a production plan for each
representative scenario, with the utilization of individual lines in the global production
network and additional upgrade decisions taking into account several cost terms and
restrictions. After the sequential optimization, the optimal results of each scenario are
jointly observed. This allows to identify decisions that lead to good outcomes for the
majority of scenarios. Furthermore, a conclusion about the possible cost distribution can
be drawn on this basis. The information gained about uncertainty can thus be taken into
account in the decisions on allocations, production system configuration and the final
production plan. For the creation of a robust production plan based on the individual
results, reference is made to the approach of [17] as a possible procedure.

4 Application

The validation of the developed approach takes place in a series production for auto-
motive components and is part of a research partnership with the objective to design an
agile production system. The partnership consists of the wbk Institute for Production
Technology at the Karlsruhe Institute of Technology (KIT) and the central department
Connected Manufacturing of the Bosch Powertrain Solutions division.

The scenario building starts with the project definition. The object of investigation
is a product group with about 200 variants, which have to be allocated on 13 global
distributed production lines. The lines are at significantly different stages of expansion
in terms of their capabilities and can therefore only produce certain variants. Moreover,
operating costs, cycle times, and capacities differ between the lines. However, it is
possible to upgrade lines at certain costs. At present, planning is based on an order list
with over 1000 orders for a period of seven years. Half-yearly demand predictions and
order-specific information are available.

Around 150 change drivers are specifiedwhich are uncertain and affect the demand of
orders. Therefore, existing data about the acquisition chance is used for each not already
accepted order. Furthermore, change drivers and their characteristics (like probability,
affected orders etc.) are determined by expert interviews. Thereby, also the connection
between drivers are specified, e.g. if A occurs B does not. Based on the defined change
drivers 100.000 demand scenarios are simulated by a Monte Carlo analysis.

To ensure applicability and manageability in optimization, the creation of a limited
number of representative scenarios is now conducted. To enable a comparison, dif-
ferent numbers of representants (4, 8, 10, 12, and 15) are created. Existing information
is used to create possible clustering criteria. In the use case, the total number of parts,
the number of parts per period, customer, and country of delivery as well as the number
of different variants in a scenario is employed to create 106 different criteria.

By applying a PCA and the elbow criterion, the reduction to seven factors occurs
in the use case. Based on these factors, clustering is now performed using the k-means
algorithm. The resulting number of ten clusters corresponds to the number of desired
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Fig. 2. Scenario funnel for 1000 random (left) and ten representative (right) scenarios. Relative
quantity history to a basis level in the time period from 2020-2 to 2027-2.

representative scenarios. These are each chosen as the scenario closest to its centroid.
Figure 2 shows the resulting scenario funnel of ten representative scenarios with respect
to the criterion “number of pieces” and the probability of the occurrence of the underlying
cluster (thickness of the line) in comparison to the scenario funnel of 1000 randomly
simulated scenarios.

Now the serial optimization and robust decisionmaking for the representative sce-
narios takes place using the deterministic model of [17]. In addition to the representative
scenarios, a reference of 100 random scenarios is optimized to be able to evaluate the
approach. While the optimization of the representative scenarios can be done overnight
even for fifteen scenarios, the reference needsmore than three days, which is inapplicable
in a short-cycled planning process. To estimate the goodness of the representative sce-
narios in the use case, a cost distribution is first created based on the reference. Then, the
cost distribution is calculated using the representative scenarios and the overlap of these
distributions with the reference is used as a measure of goodness. The calculation also
takes into account the weightings of the representatives. Figure 3 shows the results and
additionally the distribution based on different samples of ten random scenarios each.
The use of ten random scenarios leads to a large scatter and on average to significantly
worse results even than four representative scenarios.

Fig. 3. Comparison of cost distribution of weighted representatives and random samples.

In the use case, it can even be seen that ten representative scenarios lead to a signif-
icantly better result than 95% of the random samples. A second evaluation is done by
comparing the line upgrade decisions, which would be done with the reference of 100
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Fig. 4. Comparison of upgrade decisions of initial, reference of 100 and representative scenarios

scenarios, the representative scenarios, and the current (initial) planning scenario. In the
use case these upgrades, e.g. buying a station at a line, come with high investments. The
result, which is displayed in Fig. 4, shows that the representative scenarios would lead to
the same decision as the reference while the initial plan seeming to be an edge scenario,
which would differ here.

Already these evaluations show the representativeness of the scenarios in the
described use case which leads to more robust decisions. For the creation of an entire
robust production plan based on scenarios, please refer to [17].

5 Conclusion and Outlook

This paper presents a new methodology for hedging short-cycle and automated produc-
tion network planning against uncertainty. It consists of three parts of which the first
phase is scenario building with the project and change driver definition as well as a
Monte Carlo simulation. The second part is the representative reduction to a manage-
able number of scenarios by using a PCA and a k-means cluster algorithm. The last step
is the application and examination of the scenarios in an optimization model to build
robust allocation and network configuration decisions.

The results show that the supposed method can be applied to an industrial problem
and support robust decision making. Furthermore, at least for the considered use case,
it is possible to obtain a representative mapping with less scenarios and thus to reduce
the effort with low decrease in quality compared to the reference of 100 scenarios.

To validate the approach and prove general applicability, it has to be applied to more
use cases. Moreover, further research is needed to implement other risk factors than
demand uncertainty in the model like capacity uncertainty. As an outlook, it could be
interesting to also add the possibility to identify risk and chance drivers in a production
network by combining the scenario analysis with a sensitive analysis.

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) - DFG “Dynamic Allocation Planning” – 408367989.
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