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Laser-Assisted Photodynamic 
Therapy

Uwe Paasch

19.1  Introduction

The incidence of non-melanoma skin cancer 
(non-melanocytic tumors or white or non- 
melanoma skin cancer, white skin cancer WSC, 
Fig. 19.1 in the form of actinic keratoses (AK, 
synonym: squamous cell carcinoma [SCC] in 
situ of the skin)) and superficial basal cell carci-
nomas (BCC) in the form of multicentric super-
ficial (BCCms) or solid (BCCsol) is constantly 
and significantly increasing in the western hemi-
sphere. A major problem here is the frequently 
encountered area-wide expansion in the sense of 
field cancerization. For the latter, only a few top-
ics are available, and due to the fact, that large 
areas are primarily not surgically treatable. The 
classical photodynamic therapy is not limited in 
area but has the disadvantage of a high painful-
ness. While the latter could be minimized by 
using daylight, the so-called daylight PDT 
depends on cofactors such as weather, UV radia-
tion, and temperature. As a consequence, artifi-
cial “daylight sources” have recently become 
available, which now make an indoor daylight 
PDT possible. The increase in the efficiency of 
PDT through laser assistance, one of the first 
very successful applications of the concept of 
laser-assisted drug delivery (LADD), has been  

successfully combined with these new irradia-
tion concepts. The combination of all these inno-
vations provides us today with new and effective 
therapeutic options, which are also urgently 
needed with regard to the epidemiology of light 
skin cancer.

19.2  Epidemiology of Light Skin 
Cancer

The causes of the increase in incidence lie in the 
aging of a large population of people who did not 
know or underestimate the dangers of chronic UV 
exposure at work or in private life and who simply 
did not have access to highly efficient sunscreens 
used today. With a view to these backgrounds, the 
recognition of damage to health as a result of job-
related UV exposure as an occupational disease 
(BK 5103) is consistent for certain occupational 
groups. Overall, it is assumed that the number of 
these cases will increase fivefold in Germany. 
Approximately 1.7 million new AKs per year are 
expected in Germany.

19.3  Supply Options for Light 
Skin Cancer

In daily patient care and especially in skin cancer 
screening, it is evident that more and more infil-
trative squamous cell carcinomas and basal cell 
carcinomas are diagnosed as infiltrative scleros-
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ing or non-sclerosing differentiation (BCCinf) 
especially in rural areas and must be treated 
according to guidelines. Already today, basal cell 
carcinoma is the most common cancer in 
Germany. From 2007 to 2009 alone, the number 
of outpatient skin cancer operations rose by 40%, 
and the number of BCC and SCC requiring inpa-
tient care rose by 11.1% annually. Currently, only 
about 50% of the eligible persons are aware of 
their option to skin cancer screening, so that with 
increasing public awareness these numbers will 
continue to rise.

For both localized and extensive early superfi-
cial neoplastic non-melanocytic skin disease 
(Fig.  19.1), numerous lesion- or field-directed 
therapies have been established.

Localized AK and BCC are safe and effective 
using cryotherapies and topicals addressable. 
The basic biological course plays an important 
role here. Thus it usually takes some time until 
an AK develops into an infiltrative SCC, so that 
an ordinary AK or a BCC does not have to be 
rushed into therapeutic maximum measures and 

the response of basic measures can be waited 
for. However, about 10% of all patients and 
about 30% of immunosuppressed patients are 
expected to transition to invasive SCC after 
about 2 years.

A BCC never heals on its own and often shows 
a transition from superficial to infiltrative sub-
types with increasing course of the disease.

For this reason, every form of illness of the 
WSC should be treated by dermatologists.

In particular, the extensive confluent spread 
of disease in the sense of field cancerization 
requires an exact diagnostic classification so 
that the definitive rehabilitation of all forms of 
WSC growing in this area succeeds as sustain-
ably as possible. The clinician wants a fast, safe, 
and easy-to-use diagnostic procedure for this 
purpose. The photodynamic diagnostics to 
determine at least the area expansion of BCC 
was evaluated negatively at an early stage. New 
optical methods such as optical coherence 
tomography (OCT), confocal reflection micros-
copy (RCM), and multiphoton spectroscopy 
(MSP) are currently being introduced into clini-
cal dermatology alongside impedance measure-
ment methods and other methods. The automatic 
detection of basal cell carcinomas by OCT is 
already possible today and is used for the opti-
mization of micrographically controlled surgery 
and experimentally for the optical control of 
laser ablation of BCC. In practical settings, 
these methods will help to distinguish localized 
and planar non-infiltrative or superficial forms 
of WSC from manifestations with infiltrating 
growth. This is crucial for the choice of 
therapy.

The best cure rates for infiltrative SCC and 
BCC can only be achieved with micrographi-
cally controlled surgery. Recurrence rates of 
approx. 0.5% can be achieved with this method, 
because even the smallest digitiform tumor pro-
liferates can be reliably detected. For the flat 
non-infiltrative WSC variants, the operative 
approach does not make sense and may not be 
possible for very large areas. In addition to the 
application of liquid nitrogen or topics, photody-
namic therapy (PDT) is also recommended as a 
selective procedure for the treatment of small 

Fig. 19.1 Typical clinical picture of a field cancerization 
in the area of an alopecia androgenetica
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areas. It is exploited that more protoporphyrin 
IX (PPIX) accumulates in the neoplastic skin 
when a suitable photosensitizer is applied to the 
skin. Subsequent inactivation with light of dif-
ferent wavelengths out of the visible range, in 
the presence of oxygen and sufficient tempera-
ture, leads to the formation of radicals that selec-
tively destroy the tumor cells. While the response 
rates are comparable with the other topical 
options, the painful nature of photoinactivation 
in classical PDT (classical PDT, cPDT) limited 
its clinical use in pronounced planar lesions. A 
conceptual breakthrough toward less painful 
PDT protocols was achieved by demonstrating 
that daylight can also be used for continuous 
photoinactivation. Thus the so-called daylight 
PDT was invented (daylight PDT, dPDT). 
Recently, new topics have been approved for 
special use in this setting and launched onto the 
market. In this therapy procedure, a significant 
part of the oncological therapy, the photoinacti-
vation, is no longer controlled by a physician 
and is transferred to the responsibility of the 
patient. This situation and other specific disad-
vantages of the process, such as the UV compo-
nent of sunlight, weather, and temperature 
dependence, led to the development of new radi-
ation sources that emit quasi artificial daylight. 
The advantage of the established indoor daylight 
PDT (indoor daylight PDT, artificial daylight 
PDT, IDL-PDT) lies in the medically controlled 
photoinactivation. At the same time, develop-
ments in the field of fractional lasers led to 
undreamt of possibilities for increasing the effi-
ciency of PDT by laser-assisted introduction of 
the photosensitizer into the skin. A new chapter 
in dermatotherapy, laser-assisted drug delivery, 
was opened using the example of photodynamic 
therapy for light skin cancer, the most common 
skin disease.

19.4  Laser-Assisted Drug Delivery

With the discovery of the almost ideal safety 
profile of non-ablative fractional lasers 
(NAFXL) and the subsequent transfer of the 
concept to ablative lasers (ablative fractional 

lasers, AFXL), the concept of laser-assisted 
drug delivery (LADD), i.e., the introduction of 
substances into the skin after prior microperfo-
ration with lasers, was born. Ideas quickly 
matured into potential areas of application 
(Table 19.1), but only a few of these were clini-
cally implemented.

The physicochemical and biological proper-
ties of the photosensitizers required for PDT in 
turn enabled the first clinical breakthrough in 
the sense of a LADD.  Laser-assisted or laser- 
intensified PDT (iPDT) has been able to assert 
itself in numerous clinical studies with regard to 
higher efficiency and longer absence of recur-
rence. Further developments toward laser- 
assisted daylight PDT and laser-assisted 
artificial daylight PDT (LA-IDL-PDT) already 
enrich our therapeutic possibilities. In the fol-
lowing, the concept of LADD in general and in 
particular will be presented using the example 
of the different variants of laser-assisted PDT 
forms.

Table 19.1 Established and potential applications of 
topical laser-assisted delivery of active ingredients into 
the skin

Indication
Potentially applicable active 
substance

Light-aged skin Hyaluronic acid, collagen 
stimulators

Dynamic wrinkles Argireline
Scars and keloids Steroids

Matrix metalloproteinases
Mast cell stabilizers

Melasma Melanosomin inhibitors
Tattoo Phagocytosis inhibitors
Photodynamic 
therapy (PDT)

ALA, MAL

Psoriasis Vitamin D3 analogs
Vitiligo Steroids, 5-phosphodiesterase 

inhibitors, topical 
immunomodulators

Acne Retinoids
Hair 5-DHT inhibitors/inductors/PRP
Wounds Growth factors
Bacteria, fungi, 
leishmania

Antibiotics, fungicides

Granuloma 
annulare

Steroids

Vessels Brimonidine
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19.5  Fractional Photothermolysis

After ablative fractional lasers were able to 
establish themselves extremely quickly in 
dermatology due to their efficiency and the 
easily controllable side effect profile. Their 
indication spectrum has once again multiplied 
with the concept of laser-assisted drug 
delivery.

The somewhat less versatile fractional non- 
ablative lasers are to be distinguished. Such sys-
tems emit in the near infrared range and lead to 
tissue coagulation. They are therefore used, as 
are other coagulating laser systems. This is espe-
cially true for the treatment of wrinkles, but also 
of redness, scars, acne scars, and dis 
pigmentation.

In the case of fractional lasers with ablative 
effects, two basic device classes are available 
in addition to niche systems and devices that 
do not work with laser beams and have a frac-
tional ablating or at least perforating effect 
(radio frequency, heat contact methods [micro-
plasma], needling) (Fig.  19.2). While the 
Er:YAG laser is easier to adopt for beginners, 
in the long run a CO2 laser can be used in a 
wider range of applications. Today, both sys-
tems can handle all common forms of applica-
tion (cutting, punctiform ablations, scanned 
ablations, fractionated ablations) and are 
offered by various companies. It is necessary 
to evaluate the systems in detail in order to find 
the most suitable system for the individual use 
It is important in this consideration that practi-
cal experience accumulates with increasing use 
and that this quickly releases desires for more 
efficient devices.

The current technical innovations of the AFXL 
make it possible to equip fractional Er:YAG lasers 
with thermal modes, while the latest CO2 lasers 
have high power outputs, work extremely fast, and 
thus unfold less dreaded heat side effects. In addi-
tion, systems have been developed which can be 
located in their biological effect between the two 
antipodes (Er:YSGG and thulium lasers) due to the 
wavelengths used. These AFXL alone achieves 
reproducible, comparable, and promising results in 
the treatment of sun- damaged and thus potentially 
neoplastic skin, as well as scars. This becomes pos-
sible because large areas of the skin are subjected 
to a microperforation that heals without scarring if 
known laser parameter limits are adhered to. They 
can also be used at WSCs but are usually not cura-
tive per se.

Until the healing process is complete, ele-
gantly fitting substances can also be introduced 
into the skin. This becomes possible because a 
specific sequence of wound healing takes place 
after AFXL. The temporary TOR (TOR: tempo-
rary opening of the epidermal barrier, Fig. 19.3) 
to the deep compartments of the skin can thus be 
opened for a LADD based on published 
evidence.

19.6  Laser-Assisted Drug Delivery

The quasi uniform ablation pattern of the AFXL 
early suggested the idea of using the TOR to the 
skin therapeutically. On the other hand, there is 
also the danger of sensitization if, for example, 
sun protection is applied too early. The latter 
effect can in turn also be intentionally used for 
vaccination.

Fig. 19.2 (a–g) Selection of typical shot profiles on 
human skin. The diameter of the ablation zone is so small 
that scar-free healing is possible. The depth determines 
within limits the penetration of the molecule to be applied 
depending on its physicochemical properties. The coagu-
lation zone serves as a reservoir. (a) Ultra-pulsed frac-
tional CO2 laser (Encore, Lumenis, Israel) Density 5% 
10 mJ 120 μm Spot HE4x. (b) Chopped fractional CO2 
laser (Exelo2, Alma Lasers GmbH, Germany) 10 W 5 ms 
50 mJ Density 200 pts./cm2 HE 20x. (c) Chopped frac-

tional CO2 laser (Dotscan, GME GmbH, Germany) 5 mJ 
0.5 ms 10 W Density 500 pts./cm2 HE 20x. (d) Fractional 
Er:YAG laser (Burane FX, Alma Lasers, Germany  
GmbH) FX12 180 mJ ablative 0  J thermal HE 20x. (e) 
Microplasma roller “Legato” (Legato, Alma Lasers 
GmbH, Germany) atrophic ablative 110  W thermal. (f) 
Thermoablation system (prototype Tixel, Novoxel GmbH, 
Germany) S-Tip 9 ms HE 4x methylene blue. (g) Ablation 
profiles according to needling (System Dr. Pen, Korea) 
1.0 mm HE 40x
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Using histology, optical coherence tomogra-
phy (OCT), and confocal laser microscopy 
(RCM) its opening time was determined to be at 
least 1–6  h. Of the numerous potential therapy 
options, practical implementations are gradually 
becoming known (Table 19.2)

It is now known that fractional laser ablation 
must meet minimum requirements for LADD 
and that not every laser device is equally suitable. 
Ideally, you will find a precise ablation, in par-
ticular of the upper epidermal portions, a homo-
geneous columnar dermal ablation channel 
which is surrounded by a not too wide coagula-
tion zone. Compared to other methods, such as 
needling or flat abrasion, the AFXL-PDT is 
equipped with a powerful CO2 laser, since this is 
the only area where a homogeneous PPIX enrich-
ment in area and depth occurs. The coagulation 
zone is of particular importance. Recent investi-
gations have shown that the same acts like a 
sponge as a reservoir for introduced molecules. 

The special influence of the structure of the abla-
tion channels is also confirmed by the biodistri-
bution of MTX and ingenol mebutate. In contrast, 
however, the density of the ablation channels 
should be kept rather low.

19.7  The Evolution of PDT

 Classical Photodynamic Therapy 
of the Skin

The cPDT is an effective and widely used therapy 
for the treatment of AK including its bowenoid vari-
ant and the M. Bowen as well as BCC and small 
solid BCC. Due to the minimally invasive character 
of PDT, it is particularly suitable for the treatment of 
multiple lesions and field cancerization, even if the 
cosmetic result is important.

The mechanism of action of PDT is based on 
the irradiation of dyes specifically accumulated 

a

b

Fig. 19.3 (a) Sequence 
1. (b) Sequence 2
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in neoplastic cells of the skin, such as the cell’s 
own protoporphyrin IX (PPIX) after applica-
tion of aminolevulinic acid (ALA) or their 
derivatives. PPIX absorbs light of different wave-
lengths, leading to the formation of reactive oxy-
gen species. The latter destroy vital tumor cell 
structures and thus lead to the selective elimina-
tion of neoplastic transformed skin parts.

Numerous light sources are suitable for inacti-
vating the protoporphyrin IX (PPIX) accumu-
lated in this way, whereby LEDs were able to 
achieve the best effect in the conventional 
approach.

Main side effect of the conventionally applied 
PDT is the pain. It is the direct result of the neu-
rotoxic action of the oxygen radicals released 
during irradiation of the PPIX.  The amount of 
accumulated PPIX depends on several factors: 
the amount/concentration and type of application 
added (occlusion, incubation time) as well as the 
temperature and irradiation intensity. The incuba-
tion period is particularly critical. Too long an 
exposure time should be avoided, as otherwise 

accumulation would take place in healthy cells 
and the selectivity would be eliminated.

The effectiveness of PDT depends very much 
on the lesion thickness. The response rates of the 
cPDT are 75–93% for thin AK, between 64% and 
83% for medium AK, and between 39% and 52% 
for thick AK. The same loss of efficacy can be seen 
with increasing thickness in basal cell carcinomas. 
For this reason, it is recommended to repeat the 
cPDT after 1–2 weeks for thicker lesions.

The loss of effectiveness toward depth is due 
to the limited penetration depth of the photosen-
sitizer. Effect amplification by means of curet-
tage, peeling, needling, microdermabrasion, 
NAFXL, and AFXL (Table 19.2), among others, 
has been the subject of numerous successful 
studies and was included in the recommendations 
for carrying out the cPDT.

 Daylight PDT

A major disadvantage of the classic PDT was the 
partly pronounced painfulness, which was largely 
overcome with the introduction of daylight PDT.

Disadvantages of the use of sunlight are the 
seasonal limitation (May to October), the extraor-
dinary temperature dependence, and the neces-
sity of additional protection against unwanted 
UV radiation. In addition, dosimetry cannot usu-
ally be guaranteed without additional measuring 
instruments.

This has led to the development of alternative 
radiation sources based on LED and other sys-
tems, so that a conventional daylight PDT, a 
laser-assisted daylight PDT, artificial daylight 
PDT, and a laser-assisted artificial daylight PDT 
are now available. This combines the advantages 
of the AFXL-PDT and the daylight PDT.  The 
laser-assisted artificial daylight PDT (indoor day-
light PDT) can be used all year round tempera-
ture- and dose-controlled.

 Laser-Assisted PDT

Extensive studies on laser-assisted drug delivery 
using ablative fractional lasers in PDT showed 

Table 19.2 Intensification variants for PDT of the skin

Intensification option References
Reduction of hyperkeratoses
   – Peeling/jet peel
   – Dermabrasion

[1]

Induction of HSP up to 24 before PDT
   –Diode laser

[2–4]
[5]

Warming of the skin
   – Infrared light
   –Direct heat

[6–8]

Laser assistance
   – AFXL using CO2 laser, ~5% 

coverage, 20 mJ, <1

[9–13]

Photosensitizer
   –  Preferentially apply ALA 

immediately up to 1 h after AFXL

[14–16]

Pressure/vacuum [13]
Incubation
   – 15–60 min without occlusion
Photobleaching by means of LED, 
daylight or artificial daylight

[17, 18]

Pain management
   – Cooling with cold air blower
   – Analgesics
Posttreatment
   – Steroids short term
   – Peeling intermittent long term

[19]
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that in particular ALA and its methyl ester (MAL) 
as well as the hexyl derivative (HAL) are homo-
geneously and deeply enriched after AFXL and 
lead to better healing rates with longer recurrence 
freedom in focal lesions and field- cancerized 
skin as well as in immunocompromised patients. 
If such an AFXL-PDT is applied prophylacti-
cally, preventive effects can be achieved.

The outstanding clinical effects of AFXL- 
assisted and thus intensified PDT are explained at 
the molecular level. Heat shock proteins (HSP, 
e.g., HSP70) are induced in both postfractional 
wound healing and PDT, leading to synergistic 
effects. Heat shock proteins ensure the timely 
replacement of lethal keratinocytes and the repair 
of important cell functions in surviving cells. 
HSP70 can be induced even more intensively if 
the AFXL is preceded by another thermal stimu-
lus mediated by classical diode lasers. This can 
be practically implemented up to 24 h before the 
actual intervention.

In parallel, it could be shown that AFXL is 
also effective in NMSC, unless there are pro-
nounced hyperkeratoses. Thus, before an AFXL-
PDT, a reduction of the hyperkeratoses so typical 
for the AK and especially for the field cancer is 
always recommended. In addition to the spa 
days, more suitable methods for the surface such 
as peeling, dermabrasion, or jet peeling are also 
available. It is interesting to note that salicylic 
acid peeling can suppress tumor development in 
the mouse model by suppressing p53 
expression.

In addition to an extended relapse-free post-
therapeutic window, the therapy approach is par-
ticularly suitable for immunosuppressed high-risk 
patients with their considerably higher risk of 
developing light skin cancer. The preventive 
effect of PDT in these patients has also been 
proven.

While initial studies on laser-assisted PDT in 
basal cell carcinoma were promising, only a non-
significant discrete superiority of AFXL-PDT 
was found in BCC in the high-risk area of the 
face, the so-called H-zone. Thus, there is a basic 
risk of an insufficient therapy of deeper 
neoplasia.

Optimum biodistribution for ALA is already 
achieved with 5% coverage. The use of external 
pressure is recommended to ensure that the abla-
tion channels, which are rather sparsely distrib-
uted on the skin surface, are filled safely.

With all these modifications, the AFXL-PDT 
can be further improved and used for the therapy 
of field cancer even in large areas intensively and 
safely as well as relatively painlessly. However, it 
must be accepted that PDT, which has been fur-
ther developed in this way, cannot be a substitute 
for surgical restoration and certainly not for 
micrographically controlled surgery. It remains 
to be seen whether clinical studies with sufficient 
follow-up times will be able to evaluate the actual 
clinical efficiency.

The optimal maintenance therapy is still open. 
A weekly off-label application of imiquimod 
3.75% is recommended in the absence of published 
evidence. Further fields of application include the 
female genital tract and onychomycosis, where 
fractional lasers on the one hand and variants of 
PDT on the other are already in use.

 Laser-Assisted Daylight PDT

The limiting painfulness of the cPDT could be 
avoided with the introduction of the daylight 
PDT. The intensification of the conventional PDT 
by the AFXL-PDT alone also led to a higher 
painfulness with classical irradiation with 635 nm 
37 J/cm2 over 8 min. Sunlight is also less painful 
when AFXL-PDT is applied to normal patients as 
well as to patients at risk for 
immunosuppression.

 Laser-Assisted Artificial Daylight PDT

Sunlight has specific disadvantages: seasonal 
limitation (May to October), temperature depen-
dence, and carcinogenic UV radiation. The miss-
ing dosimetry can be a source of insufficient 
irradiation.

All these disadvantages can be solved by an 
alternative indoor radiation source (Fig.  19.4), 
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which follows the protocol of daylight therapy. 
The further development of conventional PDT 
allows an efficient therapy of field cancerization 

of large areas with relatively low pain (Fig. 19.5). 
Further intensification options can also be used 
(Table  19.2). Infiltrative SCC and thick solid 

a

dc

b

Fig. 19.4 (a–c) LED emitting at 415, 535, and 635 nm (Multilight, GME GmbH, Germany). (d) Spotlight with white 
light source
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and infiltrative BCC, however, remain reserved 
for micrographically controlled surgical sanita-
tion. Depending on the tumor load, the clinical 
reactions can be moderate to intense (Fig. 19.6). 
In addition to the use of a suitable laser and pho-

tosensitizer, the intensification option of the 
LADD should be considered (Table  19.2). A 
standardized protocol is required to ensure the 
efficacy of the therapy with minimal side effects 
(Fig. 19.7).

a b

c d

Fig. 19.5 (a–d) Clinical picture before and after an 
indoor PDT. (a) Clinical picture in front of indoor day-
light PDT. (b) Representation of vessels and pigments 
from (a) middle before indoor daylight PDT. (c) Clinical 

image after indoor daylight PDT. (d) Representation of 
vessels and pigments from (c) center after indoor daylight 
PDT. The increased blood circulation or vascular reaction 
becomes clear after the therapy

a b

Fig. 19.6 (a, b) Clinical course spectrum after indoor PDT. (a) Clinical picture in front of indoor PDT. (b) Clinical 
picture 1 week after indoor PDT
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Fig. 19.7 Protocol of indoor PDT (laser-assisted artificial 
daylight PDT). (a) Schematic representation of superficial 
light skin cancer (non-melanocytic tumors or white or non-
melanoma skin cancer, light skin cancer WSC) in the form of 
actinic keratoses (AK, synonym: squamous cell carcinoma 
[SCC] in situ of the skin) and superficial basal cell carcinomas 
(BCC) in the form of multicentrally superficially differentiated 
(BCCms) or solid (BCCsol) differentiated (BCCsol) superfi-
cially. (b) The first step in the preparation of PDT in all its 
variations is the elimination of superficial cornifications and 
tumor parts using suitable procedures such as peeling, jet peel-
ing, abrasion (med. Sandpaper, microdermabrasion), curet-
tage, or shave excision. (c) Second step in the intensification of 
cPDT: microperforations of the skin are introduced using suit-

able methods such as AFXL, fractional radiofrequency, or nee-
dling. A relatively low coverage of <5% is to be used for 
optimal biosdistribution. (d) Third step of intensified PDT: 
application of a suitable photosensitizer. (e) Fourth step of the 
intensified PDT: improvement of the biodistribution by apply-
ing pressure from the outside and then incubation and con-
struction of the PPIX in the neoplastic transformed cells. (f) 
Fifth step of intensified PDT: photodeactivation of PPIX in the 
presence of oxygen leads to the destruction of neoplastic cells. 
The classic red LED 36 J/cm2 can be used as a light source. 
The light can also be blue (North America preferred) and a 
combination of both with and without additional yellow light, 
daylight, and artificial daylight. (g) Sixth and final step of 
intensified PDT: cure

a

b

c

Basal Cell Carcinoma
•  Multicentric superficial or nodular
•  Low risk - Zones

Actinic keratosis
•  Grad I-III
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f

g

Protoporphyrin IX, PPX

Fig. 19.7 (continued)
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 Onychomycosis, Nail Psoriasis, 
and Nail Dystrophy

After initial euphoria about a potentially new 
principle of action, the onychomycosis It has 
meanwhile been pointed out that lasers as mono-
therapy cannot control the problem but are more 
effective in combination with topical agents (also 
in comparison with topical agent monotherapy). 
Reinfections in particular must be prevented. The 
combination with systemic antimycotics was also 
described as more effective compared to the 
respective monotherapies. The FDA’s approval 
criteria were revised accordingly. Nevertheless, 
lasers are regarded as helpful if a system medica-
tion is prohibited or could at least be shortened in 
duration and used for the therapy of the psoriasis 
of the nail. It is interesting to note that even with 
an idiopathic onychodystrophy, therapy options 
may exist. Not to be neglected, however, are 
sometimes serious complications after applica-
tion of lasers to the nail organ, especially in con-
nection with conduction anesthesia and in the 
presence of neuropathies.

Numerous systems are used that emit light in 
the area of the skin’s optical window, although it 
is not yet clear exactly which mechanism could 
be effective.

Diode lasers, which emit in the range of 755–
980 nm and have been tested with classical hair 
removal parameters, are able to heat circum-
scribed nail areas for a short time far above 60 °C, 
which also applies to long and short pulsed 
Nd:YAG lasers and leads to changes in the nail 
keratin composition. Q-switched 1064  nm 
Nd:YAG lasers are also described as effective, 
although the mechanism of action has not been 
clarified. AFXL is also used in combination with 
common antifungal drugs.

19.8  Conclusion

Laser dermatology has developed dramatically in 
the last 5  years. This is reflected not least in 
almost 3500 new publications on the subject.

The development of fractional lasers has 
greatly expanded the options of dermatological 

laser therapy. Today, essential indications are 
treated with these systems as standard. In addi-
tion, the AFXL have made the field of laser- 
assisted introduction of molecules into the skin 
practicable. Translatable research results flowed 
into the further development of PDT and led to 
the concept of laser-assisted PDT. The superior-
ity of the latter over the classic PDT has already 
been proven for some applications. Numerous 
options for further refining treatment protocols 
using other lasers, radiation sources, devices, and 
interventions have been identified. In addition, 
other topics and systemically applicable drugs 
were used to show that there is still considerable 
potential for further development of the 
methodology.
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