
Gwen Salaün
Anton Wijs (Eds.)

LN
CS

 1
30

77

Formal Aspects
of Component Software
17th International Conference, FACS 2021
Virtual Event, October 28–29, 2021
Proceedings

Lecture Notes in Computer Science 13077

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Gwen Salaün • Anton Wijs (Eds.)

Formal Aspects
of Component Software
17th International Conference, FACS 2021
Virtual Event, October 28–29, 2021
Proceedings

123

Editors
Gwen Salaün
Grenoble Alpes University
Saint-Martin-d’Hères, France

Anton Wijs
Eindhoven University of Technology
Eindhoven, The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-90635-1 ISBN 978-3-030-90636-8 (eBook)
https://doi.org/10.1007/978-3-030-90636-8

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2021
Chapter “A Linear Parallel Algorithm to Compute Bisimulation and Relational Coarsest Partitions” is
licensed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-90636-8
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the proceedings of the 17th International Conference on Formal
Aspects of Component Software (FACS 2021), held online, due to the COVID-19
pandemic, during October 28–29, 2021.

Component-based software development proposes sound engineering principles and
techniques to cope with the complexity of present-day software systems. However,
many challenging conceptual and technological issues remain in component-based
software development theory and practice. Furthermore, the advent of service-oriented
and cloud computing, cyber-physical systems, and the Internet of Things has brought to
the fore new dimensions, such as quality of service and robustness to withstand faults,
which require revisiting established concepts and developing new ones.

FACS 2021 was concerned with how formal methods can be applied to
component-based software and system development. Formal methods have provided
foundations for component-based software through research on mathematical models
for components, composition and adaptation, and rigorous approaches to verification,
deployment, testing, and certification.

We received 16 submissions for the conference, and all of them were reviewed by
three reviewers. Based on their reports and subsequent discussions, the Program
Committee (PC) decided to accept eight papers (seven regular papers and one tool
paper) for inclusion in this volume and the program of FACS 2021. In addition, we
invited Radu Calinescu and Corina Pasareanu to give keynotes. This volume contains
an abstract of the talk given by Radu Calinescu and an invited paper by Corina
Pasareanu.

We thank Radu Calinescu and Corina Pasareanu for accepting our invitations to
give an invited talk, as well as all authors who submitted their work for FACS 2021.
We thank the members of the PC for their effort to write timely and high-quality
reviews, and their discussions to make the final selection of papers. We also thank the
FACS Steering Committee for useful suggestions and support. Finally, we thank the
other members of the FACS 2021 organizing committee, Radu Mateescu, Ajay Muroor
Nadumane, and Ahang Zuo, for their contribution to organizing the conference.

September 2021 Gwen Salaün
Anton Wijs

Organization

Program Committee Chairs

Gwen Salaün Université Grenoble Alpes, France
Anton Wijs Eindhoven University of Technology, The Netherlands

Steering Committee

Farhad Arbab CWI and Leiden University, The Netherlands
Kyungmin Bae Pohang University of Science and Technology,

South Korea
Luís Soares Barbosa INESC TEC and University of Minho, Portugal
Sung-Shik Jongmans Open University and CWI, The Netherlands
Zhiming Liu Southwest University, China
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine Inria Sophia Antipolis, France
Peter Csaba Ölveczky University of Oslo, Norway
Corina Pasareanu CMU, USA
José Proença CISTER, Portugal
Gwen Salaün Université Grenoble Alpes, France

Program Committee

Kyungmin Bae Pohang University of Science and Technology,
South Korea

Christel Baier TU Dresden, Germany
Luís Soares Barbosa University of Minho, Portugal
Simon Bliudze Inria Lille, France
Javier Camara University of York, UK
Francisco Duran University of Malaga, Spain
Fatemeh Ghassemi University of Tehran, Iran
Sung-Shik Jongmans Open University and CWI, The Netherlands
Olga Kouchnarenko University of Franche-Comté, France
Alfons Laarman Leiden University, The Netherlands
Ivan Lanese University of Bologna, Italy
Zhiming Liu Southwest University, China
Alberto Lluch-Lafuente Technical University of Denmark, Denmark
Markus Lumpe Swinburne University of Technology, Australia
Eric Madelaine Inria Sophia Antipolis, France
Mieke Massink CNR ISTI, Italy
Hernán Melgratti University of Buenos Aires, Argentina
Fabrizio Montesi University of Southern Denmark

Peter Csaba Ölveczky University of Oslo, Norway
Jun Pang University of Luxembourg, Luxembourg
José Proença CISTER, Portugal
Jorge Pérez University of Groningen, The Netherlands
Camilo Rocha Pontificia Universidad Javeriana Cali, Colombia
Gwen Salaün Université Grenoble Alpes, France
Ana Sokolova University of Salzburg, Austria
Jacopo Soldani University of Pisa, Italy
Anton Wijs Eindhoven University of Technology, The Netherlands
Shoji Yuen Nagoya University, Japan

Additional Reviewers

Zahra Moezkarimi
Yuanrui Zhang
Vincent Hugot

Zeynab Sabahi Kaviani
Wanwei Liu
Renato Neves

viii Organization

Parametric and Interval Model Checking:
Recent Advances and Applications

(Abstract of Invited Paper)

Radu Calinescu

Department of Computer Science, University of York, UK
radu.calinescu@york.ac.uk

Abstract. The model checking of Markov chains is a powerful technique for
verifying performance, dependability and other key properties of systems with
stochastic behaviour, both during development and at runtime. However, the
usefulness of this technique depends on the accuracy of the models being ver-
ified, and on the efficiency of the verification. This invited talk will describe how
recent advances in parametric and interval model checking address major
challenges posed by these prerequisites, enabling the application of the tech-
nique to a broader range of component-based systems.

Keywords: Parametric model checking � Parametric Markov chains �
Confidence-interval model checking � Interval Markov chains � Change-point
detection

This talk is based on research reported in [1–7], and funded by the UK Research and
Innovation project EP/V026747/1 ‘Trustworthy Autonomous Systems Node in Resi-
lience’, the Assuring Autonomy International Programme, and the ORCA-Hub Part-
nership Resource Fund project ‘COVE’.

References

1. Alasmari, N., Calinescu, R., Paterson, C., Mirandola, R.: Quantitative verification with
adaptive uncertainty reduction. arXiv preprint arXiv: https://arxiv.org/abs/2109.02984 (2021)

2. Calinescu, R., Ceska, M., Gerasimou, S., Kwiatkowska, M., Paoletti, N.: Efficient synthesis of
robust models for stochastic systems. J. Syst. Softw. 143, 140–158 (2018). https://doi.org/10.
1016/j.jss.2018.05.013

3. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.: Formal veri-
fication with confidence intervals to establish quality of service properties of software sys-
tems. IEEE Trans. Reliab. 65(1), 107–125 (2016). https://doi.org/10.1109/TR.2015.2452931

4. Calinescu, R., Johnson, K., Paterson, C.: FACT: A probabilistic model checker for formal
verification with confidence intervals. In: 22nd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), pp. 540–546 (2016).
https://doi.org/10.1007/978-3-662-49674-9_32

https://orcid.org/0000-0002-2678-9260
https://arxiv.org/abs/2109.02984
https://doi.org/10.1016/j.jss.2018.05.013
https://doi.org/10.1016/j.jss.2018.05.013
https://doi.org/10.1109/TR.2015.2452931
https://doi.org/10.1007/978-3-662-49674-9_32

5. Calinescu, R., Paterson, C., Johnson, K.: Efficient parametric model checking using domain
knowledge. IEEE Trans. Softw. Eng. 47(6), 1114–1133 (2021). https://doi.org/10.1109/TSE.
2019.2912958

6. Fang, X., Calinescu, R., Gerasimou, S., Alhwikem, F.: Fast parametric model checking
through model fragmentation. In: 43rd IEEE/ACM International Conference on Software
Engineering (ICSE), pp. 835–846 (2021). https://doi.org/10.1109/ICSE43902.2021.00081

7. Zhao, X., Calinescu, R., Gerasimou, S., Robu, V., Flynn, D.: Interval change-point detection
for runtime probabilistic model checking. In: 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 163–174 (2020). https://doi.org/10.1145/
3324884.3416565

x R. Calinescu

https://doi.org/10.1109/TSE.2019.2912958
https://doi.org/10.1109/TSE.2019.2912958
https://doi.org/10.1109/ICSE43902.2021.00081
https://doi.org/10.1145/3324884.3416565
https://doi.org/10.1145/3324884.3416565

Contents

Invited Paper

Learning Assumptions for Verifying Cryptographic Protocols
Compositionally . 3

Zichao Zhang, Arthur Azevedo de Amorim, Limin Jia,
and Corina Păsăreanu

Modelling and Composition

Component-Based Approach Combining UML and BIP for Rigorous
System Design . 27

Salim Chehida, Abdelhakim Baouya, and Saddek Bensalem

Composable Partial Multiparty Session Types. 44
Claude Stolze, Marino Miculan, and Pietro Di Gianantonio

A Canonical Algebra of Open Transition Systems . 63
Elena Di Lavore, Alessandro Gianola, Mario Román,
Nicoletta Sabadini, and Paweł Sobociński

Corinne, a Tool for Choreography Automata . 82
Simone Orlando, Vairo Di Pasquale, Franco Barbanera,
Ivan Lanese, and Emilio Tuosto

Verification

Specification and Safety Verification of Parametric Hierarchical
Distributed Systems. 95

Marius Bozga and Radu Iosif

A Linear Parallel Algorithm to Compute Bisimulation and Relational
Coarsest Partitions. 115

Jan Martens, Jan Friso Groote, Lars van den Haak, Pieter Hijma,
and Anton Wijs

Automated Generation of Initial Configurations for Testing
Component Systems . 134

Frédéric Dadeau, Jean-Philippe Gros, and Olga Kouchnarenko

Monitoring Distributed Component-Based Systems 153
Yliès Falcone, Hosein Nazarpour, Saddek Bensalem, and Marius Bozga

Author Index . 175

xii Contents

Invited Paper

Learning Assumptions for Verifying
Cryptographic Protocols Compositionally

Zichao Zhang1, Arthur Azevedo de Amorim3, Limin Jia1,
and Corina Păsăreanu1,2(B)

1 Carnegie Mellon University, Pittsburgh, USA
{zichaoz,liminjia}@andrew.cmu.edu
2 NASA Ames, Mountain View, USA

pcorina@cmu.edu
3 Boston University, Boston, USA

Abstract. Automated analysis tools for cryptographic protocols can
verify sophisticated designs, but lack compositionality. To address this
limitation, we investigate the use of automata learning for verifying
authentication protocols in an automatic and compositional way. We
present Taglierino, a tool for synthesizing specifications for protocol com-
ponents and checking them in isolation. The specifications can aid the
design of protocol variants and speed up verification. Taglierino includes
a domain-specific language for protocols, which are compiled to automata
and analyzed with the LTSA model checker extended with automata
learning. We demonstrate the tool on a series of case studies, including
the Needham-Schroeder, Woo-Lam, and Kerberos protocols.

Keywords: Assume-guarantee reasoning · Automata learning ·
Protocols

1 Introduction

Cryptographic protocols such as TLS are crucial for security, but notoriously
difficult to get right. Automated analyses [14,15,53] can help discover vulnera-
bilities in sophisticated designs before deployment [10,12,18,37,54], and are thus
invaluable to protocol development. Unfortunately, they suffer from a key draw-
back: limited compositional reasoning. To verify a property, they must analyze
the entire protocol at once, rather than verifying its components against separate
specifications. This is unsatisfactory for several reasons. First, decomposition can
speed up verification, since it reduces the code analyzed in each stage. Second,
a monolithic analysis provides few guarantees when the protocol is itself part of
a larger system—e.g. using a key to sign and encrypt data simultaneously can
enable attacks that are absent if only one of the functionalities is used. Finally,
decomposition can guide protocol design, helping to find modifications that are

A. A. de Amorim—Work performed at Carnegie Mellon University.

c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 3–23, 2021.
https://doi.org/10.1007/978-3-030-90636-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-90636-8_1

4 Z. Zhang et al.

also secure. Sadly, prior work on compositional protocol verification [27] requires
significant manual effort to find component assumptions.

We envision a future where the power of compositionality can coexist with the
convenience of automation. As a first step, we consider how protocol analysis can
benefit from off-the-shelf, automated compositional techniques, by developing
Taglierino, a verification framework based on assume-guarantee reasoning. More
concretely, suppose we have a complex system M1 || M2 composed of simpler
pieces M1 and M2, and we aim to check that a property P holds: M1 ||M2 |= P .
Rather than checking P directly, we can apply the following rule:

〈Q〉M1〈P 〉 〈true〉M2〈Q〉
M1 || M2 |= P

(R1)

This rule says that we can prove P by finding an assumption Q that (1) holds
of M2 and (2) implies that P holds of M1 when Q holds of the rest of the
system. Though it can be hard to craft such a Q, prior work [25,51] shows that
it can be inferred using L∗ [6], a learning algorithm for finite automata, even
for systems with multiple components. However, cryptographic protocols and
their attacker models are usually expressed in specialized formalisms based on
process calculi [1,14] rather than automata. To bridge this gap, we developed
a domain-specific language for modeling and verifying protocols, supporting a
variety of constructs, such as symmetric and asymmetric encryption and digital
signatures. The Taglierino Compiler compiles this language to finite automata
(including one representing the attacker) that can be analyzed with L∗ learning;
our current implementation uses an extension of the LTSA model checker [42,51].

Taglierino uses symbolic cryptography [29], where the network is controlled
by an attacker who can eavesdrop communication, replay and shuffle messages,
but cannot sign a message without the corresponding private key or violate other
basic cryptographic rules. Unlike other verifiers for this model [14,53], Taglierino
uses a bounded attacker model, and can only attest the absence of attacks up to
a user-specified bound; if an attack exists, it can be found eventually by making
this bound larger. Because of these limitations, we see Taglierino’s compositional
analysis as complementary to existing monolithic, automated verification tools.

We demonstrate Taglierino by verifying several protocols from the literature.
We focus on authentication properties [41,56], but our approach could be adapted
to other trace properties (e.g., weak or syntactic secrecy). Our case studies show
that the generated assumptions can inform the design of protocol variants, whose
components can be verified more efficiently and independently.

In summary, our contributions are:

– Taglierino, a compositional, automated protocol-verification framework based
on assume-guarentee reasoning and L* assumption learning.

– Taglierino Compiler, a Haskell library that automatically generates automata
for protocol components, including a bounded symbolic attacker.

– The analysis of several case-studies, such as Needham-Schroeder-Lowe, Woo-
Lam, and Kerberos, demonstrating that the tool can generate small, inter-
pretable assumptions and speed up the verification of protocol variants.

Learning Assumptions for Verifying Cryptographic Protocols 5

This work extends an earlier paper reporting preliminary results [57] with:
(1) an in-depth description of the Taglierino language and implementation, (2)
a correctness proof of our verification approach, and (3) three new case studies.

2 Background

We briefly review labeled transition systems, which give semantics to protocols;
and assumption learning and alphabet refinement, which Taglierino builds on.

2.1 Labeled Transition Systems

Messages in Taglierino are described by the grammar below, where n, k and
{m}k denote nonces, keys (symmetric or not), and an encrypted message.

Term/Messages � m ::= n | k | (m1, . . . ,mn) | {m}k | · · ·

Let Act = {send i.m, recv i.m, . . .} be the set of observable actions (Sect. 3). A
labeled transition system (LTS) is a tuple M = (Q,αM, δ, q0, Qf), where

– Q is a set of states;
– αM ⊆ Act , the alphabet of M , is a set of actions;
– δ ⊆ Q × Σ × Q is a transition relation;
– q0 ∈ Q is the initial state; and
– Qf ⊆ Q is the set of accepting states.

We say that M is finite if Q and αM are finite. The language of M , denoted
L(M), is the set of finite sequences σ ∈ Act∗ such that q0

σ−→ qf for some qf ∈ Qf ,
where the → relation is defined inductively as follows:

q
ε−→ q

(q, a, q′) ∈ δ q′ σ−→ q′′

q
a·σ−−→ q′′

a /∈ αM q
σ−→ q′

q
a·σ−−→ q′.

Here, ε is the empty sequence, and a · σ is the sequence that appends the action
a to σ. The alphabet αM enumerates the actions that M controls; if a /∈ αΣ,
a can occur without affecting M ’s state. Given two LTSs M1 and M2, their
parallel composition M1 || M2 synchronizes shared actions and interleaves the
remaining actions. We use LTSs P to represent trace properties: M satisfies P
if L(M) ⊆ L(P).

2.2 Assumption Learning and Alphabet Refinement

The heart of our approach lies in L∗ learning [6,51], used by LTSA in the last
stage of Taglierino. The algorithm looks for an assumption Q such that the
assume-guarantee rule (R1) applies, where 〈Q〉M〈P 〉 is defined as L(Q || M) ⊆
L(P). If such a Q exists, it returns the weakest one that holds of M2. Otherwise,
it outputs a counterexample that can be produced by M1 || M2 but violates P .

6 Z. Zhang et al.

In many cases, this procedure turns out to be too crude to be useful: if one
of the components is too complex, Q will be expensive to compute and difficult
to interpret. (In our case, the culprit is attacker model; cf. Sect. 5.) However, we
can adapt the procedure to look for assumptions Q such that αQ is bounded
by some finite alphabet Σ ⊆ Act . In practice, this leads to simpler assumptions
that are faster to process and more interpretable. (Note, however, that they will
generally be stronger than those found when learning is unconstrained.)

To find such a Σ automatically, we employ alphabet refinement [51]. The idea
is to start with an empty alphabet and progressively add more labels until we
find an assumption Q. A bit more formally, let M1 and M2 be the two system
components, P be the property we want to check and ΣI � (αM1∪αP)∩αM2 be
the interface alphabet between M1 and M2. The algorithm proceeds as follows:

1. Initialize Σ := ∅.
2. Run classic learning on Σ. If it finds some assumption Q, we stop. Otherwise,

it returns some potential counterexample σ for M1 || M2 |= P .
3. Find an index i such that σi ∈ ΣI but σi /∈ Σ. If no i exists, σ is a real

counterexample and we stop. Otherwise, set Σ := Σ ∪ {σi} and go to (2).

This procedure is guaranteed to terminate with either an assumption or a coun-
terexample. To use it, we must choose some method for extracting an alphabet
extension σi. In this paper, we always pick the smallest possible i.

3 An Overview of Taglierino

Taglierino takes as input a Haskell file with a protocol model, a set of specifica-
tions, and a description of the attacker. It compiles this input to LTSs for the
LTSA model checker [42] extended with L∗ learning [6,51] (cf. Fig. 1). To verify
the system, we decompose the system in LTSA, which generates assumptions
for each component. If each component satisfies its assumptions, the protocol is
correct. To illustrate, consider the following protocol:

Message 1. A −→ B : nA Message 2. B −→ A : {nA}skB

Alice (A) generates a nonce nA and sends it to Bob (B). Bob acknowledges
by signing nA with his private key skB and sending it back. By checking the
signature, Alice knows that Bob did receive nA and accepted her connection.

Figure 2 shows a model of this protocol. A (hidden) preamble declares con-
stants such as na and the signing key bobSK. Each agent is defined using an
embedded domain-specific language inspired by the applied pi calculus [1,14].
Agents manipulate messages with cryptographic primitives (sign, checkSig,
etc.), and communicate with send and receive. Their beliefs are expressed by
begin and end: begin means that Bob is willing to establish a session keyed by
na, whereas end means that Alice believes her connection attempt succeeded.

Our goal is to verify that the protocol satisfies agreement [41,56]: if Alice
thinks she’s talking to Bob, then Bob indeed accepted her connection—i.e., every

Learning Assumptions for Verifying Cryptographic Protocols 7

Taglierino Compiler

Authentication
property

Protocol
model

Attacker
model

Automaton

LTSA model checker

Decomposition
strategy

Generated assumption Error trace

Property is true Property is false

Fig. 1. Taglierino workflow

agent "Alice" (do

send na

sig <- receive

check <- checkSig bobPK sig na

when check (end "auth" na))

agent "Bob" (do

na <- receive

begin "auth" na

send (sign bobSK na))

Fig. 2. Simple authentication protocol in Taglierino

end is preceded by a matching begin. To do so, Taglierino compiles the agents
to the LTSs in Fig. 3. The agents start at 0, and the transition labels represent
interactions with the environment, including begin and end events. The indices
represent the agent performing the action. For example, Alice first sends nA and
transitions to 1. There are multiple transitions from 1, depending on what she
gets from the network. If she gets {nA}skB , she moves to 3, emits endA.nA, and
stops at 2; if she receives any other message, she skips endA.nA and stops at 2.

0 1 2 3

sendA .m1

recvA .m1
recvA .m3

. . .

recvA .m2

endA.m1

(a) Alice

0 1 2 3

recvB .m1

recvB .m2
recvB .m3

. . .

beginB.m1

sendB .m2

(b) Bob

Fig. 3. Honest agents, where m1 = nA, m2 = {nA}skB , and m3 = {nA}skM

Taglierino also produces an automaton that recognizes the traces allowed
by the agreement property (Fig. 4). The automaton does not mention any send

8 Z. Zhang et al.

or receive events, since those have no effect on agreement. end is allowed to
occur multiple times, which corresponds to weak, or non-injective agreement [41]:
a nonce can authenticate multiple sessions. Taglierino also supports injective
agreement assertions [41], which forces each session key to be used at most once.

0 1

begini.nA

begini.nA

endi.nA

Fig. 4. Automaton for agreement assertion

For the agents to communicate, we need a network. Taglierino represents
the network as another automaton, shown in Fig. 5. The labels are similar to
those for agents, but the meanings of “send” and “receive” are swapped; e.g.
sendi.m means the network received m from the agent i ∈ {A,B} (i.e., i sent
m). The behavior of the entire system (Alice, Bob and the network) is given by
the parallel composition of the LTSs of Figs. 3 and 5 (cf. Sect. 2).

The network automaton is much more complex than the others! In the sym-
bolic model, the network abstracts all possible attacker behaviors, and its LTS
describes all messages that an attacker can send after observing the agents’
actions. For example, the attacker can’t send m3 = {nA}skB initially because it
does not know nA or the key skB . Still, the network LTS is only an approxima-
tion of the real symbolic model, which would require an infinite state space. The
user can control this approximation through a parameter, the allowed set, which
lists the messages that can be sent on the network; any other message is silently
discarded. Here, only three messages are allowed: m1 = nA, m2 = {nA}skB , and
m3 = {nA}skM , where skM is another signing key owned by the attacker.

Verifying the Protocol. When Alice receives Bob’s signature, she knows her con-
nection was accepted because there is no other way such a message could have
appeared: only Bob has the power to sign messages with skB , and since nA hadn’t
appeared in the network before Alice’s first message, the signature must have

0 1 2 3 4 5 6 7

sendi .m3

sendi .m2

sendi .m1

recvi .m3
sendi .m2

sendi .m1

recvi .m2..3
sendi .m1

recvi .m1..3
recvi .m1
recvi .m3

sendi .m2

recvi .m2
sendi .m1

sendi .m3

recvi .m1..3

sendi .m3

recvi .m1
recvi .m3

sendi .m2

sendi .m3

Fig. 5. Automaton for network (m1 = nA, m2 = {nA}skB , m3 = {nA}skM)

Learning Assumptions for Verifying Cryptographic Protocols 9

0 1

sendA .m1
recvi .m1..3
sendA .m2..3
sendB.m1..3

recvA .m1
recvA .m3

sendi .m1..3

recvB .m1..3

Fig. 6. Assumption Q for the component M2 = Net

been created as a response to her. LTSA can verify this argument directly, but
let’s consider how to tackle this compositionally. To use the assume-guarantee
rule (R1), we need to find a decomposition S = M1 || M2 and an assumption Q
for M2. We choose M1 = A || B and M2 = Net , and L∗ infers the assumption
Q in Fig. 6. The properties of L∗ show the existence of Q is enough for ensuring
the correctness of the protocol, but not only that. As we’ll see (Sect. 5), we can
reuse the assumptions to verify protocol variants, look for bugs, and sometimes
even develop intuition for the protocol, informing potential refinements thereof.

The Taglierino API. (Figure 7) is structured around three types: System, Term
and Proc. The first one is used for global declarations and compiler directives.
The second one corresponds to the terms of Sect. 2.1, which are manipulated with
symbolic primitives (senc, sdec, etc.). The last one corresponds to processes.
Processes can send terms to the network, receive them, and store them in a
lookup table (cf. insertFresh and store). The agent function binds a process
definition to an agent name. Each name can be bound to multiple processes, to
model a protocol running multiple sessions.

Proc and System are monads [47], yielding a convenient syntax for models.
For example, the sig <- receive notation of Fig. 2 binds sig to the received
term, or, more generally, to the value returned by the right-hand side. Internally,
Proc builds LTSs incrementally, in continuation-passing style. A value of type
Proc a is roughly a function of type (a -> Automaton) -> Automaton, whose
first argument is a callback that builds a partial LTS given a value x : : a. This
simplifies the representation of network non-determinism. E.g., to implement
receive, we use the callback k : : Term -> Automaton to compose the LTSs
k m, where m ranges over all messages in the model’s allowed set (cf. Sect. 4).

4 The Attacker Model and Its Correctness

A sent message m is learned by the attacker, who is free to manipulate it accord-
ing to the rules of symbolic cryptography. The predicate knows(K,m) (Fig. 8)
says that the attacker can produce m after it has seen all messages in K. Roughly,
the attacker may copy messages, extract components of a tuple, and encrypt,
decrypt or sign messages with known keys. The knows predicate yields two net-
work LTSs. The first one is infinite, and describes the capabilities of an ideal
attacker. The second one is a finite approximation of the first used in Taglierino.

10 Z. Zhang et al.

Function name & Type Description
send :: Term -> Proc () Send a message
receive :: Proc Term Receive a message
sign :: Term -> Term -> Term Use a key k to sign m

checkSig :: Term -> Term -> Term -> Proc Bool Use k to check the sig. s with m

aenc, senc :: Term -> Term -> Term Use a key k to encrypt m
adec, sdec :: Term -> Term -> Proc Term Use a key k to decrypt m
begin, end :: String -> Term -> Proc () Agreement events
agent :: Term -> Proc () -> System () Agent definition
gen* :: System Term Declare fresh nonces, keys, etc.
allow :: [Term] -> System () Add messages to allowed set
knowledge Size :: Int -> System () Bound attacker knowledge
public :: [Term] -> System () Declare public terms
query :: String -> System () Declare agreement assertion
insertFresh :: Term -> Proc Bool Store m check if it is new
store :: String -> [Term] -> System () Declare private storage

Fig. 7. The Taglierino API

m ∈ K

knows(K, m)
∀i ∈ {1, . . . , n}. knows(K, mi)
knows(K, f(m1, . . . , mn))

knows(K, (m1, . . . , mn))
knows(K, mi)

knows(K, k) knows(K, {m}k)
knows(K, m)

Fig. 8. Attacker knowledge; f ranges over operations of the symbolic model

Definition 1 (Network Automata). We define NetK , the infinite network
automaton, for a finite set of terms K (the initial knowledge). Its states are
all finite sets of terms; the initial state is ∅ and all states are accepting. The
alphabet consists of all send and recv events. The transitions in NetK are (1)
K ′ sendi.m−−−−−→ K ′ ∪ {m}, and (2) K ′ recvi.m−−−−−→ K ′ when knows(K ∪ K ′,m).

Definition 2 (Finite Network Automata). We define NetK,A,k, the
bounded network automaton, for K, a (finite) allowed set A ⊇ K, and a
bound k ∈ N. Its states are all subsets of A of size at most k; the initial
state is ∅ and all states are accepting. Its transitions are (1) K ′ sendi.m−−−−−→ K ′,
(2) K ′ sendi.m−−−−−→ K ′ ∪ {m} when |K ′| < k, and (3) K ′ recvi.m−−−−−→ K ′ when
knows(K ∪ K ′,m).

The states represent the messages that the attacker knows beyond the initial
knowledge K. The send transitions allow the attacker to incorporate a message
into its knowledge—in the bounded case, only if we do not exceed the bound k.
The recv transitions allow the attacker to deliver any messages in the knowledge.
Since any behavior of NetK can be observed in NetK,A,k for A and k large
enough, any symbolic attack can be caught by Taglierino.

Learning Assumptions for Verifying Cryptographic Protocols 11

Theorem 1. For all K, L (NetK) =
⋃

A,k L (NetK,A,k) .

Corollary 1 (Soundness and Relative Completeness). Let M and P be
finite. Then L(M || NetK) ⊆ L(P) ⇐⇒ ∀A, k, L(M || NetK,A,k) ⊆ L(P).

Here, M corresponds to the parallel composition of all honest agents, and P
corresponds to the property to be verified. Strictly speaking, the bound k is not
needed to ensure finiteness. However, if |A| = n, we need 2n states in the worst
case to represent an attacker. To make verification tractable, we would need
to keep n small, preventing us from exploring interesting attacker behavior.
With k, we just need

∑k
i=0

(
n
i

)
states to represent the attacker, which grows

polynomially in k for fixed n. We don’t need k to verify the example of Sect. 3,
but this parameter will be crucial for tackling more complex protocols; cf. Sect. 5.

5 Protocol Analysis

We evaluated Taglierino by verifying a series of protocols from the literature.
We were interested in the following research questions:

RQ1. Is compositional verification more efficient than monolithic verification?
RQ2. Can assume-guarantee reasoning help the verification of protocol variants?
RQ3. Can the learned assumptions provide insight into the design of a protocol?

Our results show that compositional verification is usually cheaper than
monolithic verification. Though expensive to learn, the assumptions can be
reused on protocol variants, often reducing the verification time by 2–5×. More-
over, they are often interpretable, highlighting which protocol messages are
important.

We proceed as follows. We present our setup (Sect. 5.1) and overview each
case study: Needham-Schroeder-Lowe [40,49] (Sect. 5.2), Denning-Sacco [28]
(Sect. 5.3), Woo-Lam [55] (Sect. 5.4) and Kerberos [38] (Sect. 5.5). We discuss
the implications of each case study for RQ2 and RQ3. Whenever meaningful,
we’ll interpret the learned assumptions. We conclude by summarizing our results
(Sect. 5.6), answering RQ1 with quantitative and performance data.

5.1 Evaluation Setup

We encoded the protocols with the API of Fig. 7. The model includes nonces and
keys for honest agents and for the corrupt Mallory (M). Only M ’s data is part
of the initial attacker knowledge. Recall that, to generate the attacker, we must
declare which messages can go in the network, and how many M can remember
(Sect. 4). We chose the allowed set by starting with all messages exchanged in a
good run, and then adding other messages by mutating some of the parameters
of the first group (e.g. replacing an honest nonce with a nonce generated by
M). This set ranged from a few messages to 170. We allowed 2 to 4 additional
messages in M ’s knowledge, since larger bounds caused the model to explode.

12 Z. Zhang et al.

This was enough to explore interesting behaviors and to observe known bugs
from the literature. Indeed, these bugs do not hinge on a large knowledge, but
on few critical pieces of information, such as a particular nonce or signature.

After compiling the models, we analyzed them in LTSA. We’ve seen that the
network is much larger than the other generated LTSs (Sect. 3), and in our case
studies it easily reached hundreds of thousands of states. Thus, to obtain use-
ful assumptions and a tractable analysis, we employed two decomposition steps.
Suppose that the protocol comprises Alice (A), Bob (B) and the network. First,
we generated an assumption QNet for the network using alphabet refinement
(Sect. 2.2), letting M2 = Net and M1 = A || B in (R1). (As our version of LTSA
does not implement this algorithm, we ran it manually, using the tool to generate
assumptions for each candidate alphabet.) By replacing the attacker with QNet ,
the protocol became much easier to analyze. We then learned an assumption
QA for A by setting M2 = A and M1 = B || QNet . Finally, we reused QA to
verify alternative implementations A′ for Alice. If A′ satisfies QA, the variant is
secure against the same bounded attacker. Otherwise, we obtain a counterexam-
ple showing that A′ does not satisfy QA. In principle, this counterexample might
be spurious, since QA is generated using B ||QNet , which includes more behaviors
than B ||Net . To rule out this possibility, we check that the counterexample can
be produced by A′ ||B ||Net . All experiments were performed on a 1.6 GHz Intel
Core i5 CPU and 8.0 GB RAM, running 64-bit Ubuntu 18.04 LTS.

5.2 Needham-Schroeder-Lowe

The Needham-Schroeder-Lowe (NSL) protocol [40,49] attempts to provide
mutual authentication between two parties:

(1) A −→ S : A,B (5) S −→ B : {A, pkA}skS

(2) S −→ A : {B, pkB}skS (6) B −→ A : {nA, nB , B}pkA

(3) A −→ B : {nA, A}pkB (7) A −→ B : {nB}pkB

(4) B −→ S : B,A

Alice (A) starts by asking a key server S for Bob’s public key pkB . (In our model,
the peer is chosen by the attacker.) The server replies to A signing the reply with
its own secret key skS . Then, A encrypts a fresh nA and sends it to B, along
with her identity. Bob asks S for A’s public key pkA, and then sends nA back to
het along another fresh nonce nB and his identity, all of this encrypted with pkA.
Finally, A acknowledges the end of the handshake to B by sending nB back.

Informally, we want to show: when A receives (6), she knows that B accepted
her connection; and when B receives (7), he knows that A tried to contact him.
We analyzed the second property, as it allows us to explore a broken variant
(Sect. 5.2); the first one is similar and thus omitted. We allowed 31 messages
and bounded M ’s knowledge to 4 messages. We generated an assumption for Net
using alphabet refinement, and then one for A. Figure 9 shows the alphabets.

Protocol Variant: NS. The NSL protocol fixed a vulnerability in the earlier
NS protocol [40,49], which resulted from omitting B in (6). We simulated NS by

Learning Assumptions for Verifying Cryptographic Protocols 13

send i({nA, nB , M}pkA) recv i({nA, nB , M}pkA) send i({nB}pkB)
send i({nA, nB , B}pkM) recv i({nA, nB , B}pkM) send i({nB}pkM)
send i({nA, nB , M}pkM) recv i({nA, nB , M}pkM) send i({B, pkB}skS)
send i({nB , nB , B}pkM) recv i({nB , nB , B}pkM) recv i({nB}pkB)
send i({nB , nB , M}pkM) recv i({nB , nB , M}pkM) recv i({nB}pkM)
send i({nM , nB , B}pkM) recv i({nM , nB , B}pkM) recv i({B, pkB}skS)
send i({nM , nB , M}pkM) recv i({nM , nB , M}pkM) beginA(authAB , B)

beginA(authAB , M)

Fig. 9. NSL assumption alphabets for Alice and Mallory. The identifier i ranges over
A, B and S for Mallory, and over A for Alice. Only Alice uses begin.

simply not checking that identity when A receives (6). Then, A ends up breaking
its assumption, and the counterexample reveals the original attack:

(1) M −→ A : M (7) M −→ B : {nA, A}pkB

beginA(authAB ,M) (8) B −→ S : B,A
(2) A −→ S : A,M (9) S −→ B : {A, pkA}skS

(3) S −→ A : {M,pkM}skS (10) B −→ A : {nA, nB , B}pkA

(4) A −→ M : {nA, A}pkM (11) A −→ M : {nB}pkM

(5) M −→ S : A,B (12) A −→ B : {nB}pkB

(6) S −→ M : {B, pkB}skS endB(authAB , B)

Variant: Serverless NSL. A common simplification is to assume that A
already knows the keys of her peer, obviating the need for (1) and (2). LTSA
reports that this modification also satisfies A’s assumptions, implying security.

Interpreting the Assumptions. We abstract M and A’s behavior using
assumption learning with alphabet refinement. The alphabets (Fig. 9) list the
actions that must be controlled for the property to hold; removing them means
allowing the M to freely perform them, regardless of whether a send action was
triggered by an honest agent or of whether M had enough knowledge to deliver a
message. In other words, if an action is in M ’s alphabet, it must be synchronized
with her automaton; otherwise, it can be directly triggered by the agents.

The difference between M and A’s alphabets is that M ’s includes actions
for B, whereas A’s includes her own actions and the begin events. Most of the
controlled actions are variants of (6) encrypted with pkM . If M can forge such
messages, she can learn nB even before B is contacted, thus obtaining the infor-
mation needed to impersonate A and break agreement. (Note that we didn’t
include nB in the allowed set of messages, so it is not possible for M to learn
this value directly.) Interestingly, the expected message (6) in a normal run of
the protocol, {nA, nB , B}pkA, is not in the alphabet. Intuitively, since M does
not have pkA, the only thing she can do with this message is relaying it to A. If A
meant to talk to B anyway, A will eventually trigger begin and send her response
(7), which does not pose any harm for agreement. Otherwise, if A meant to talk
to M , B’s identity will not match M ’s, and A stops without sending (7) to B.

14 Z. Zhang et al.

5.3 Denning-Sacco

The Denning-Sacco protocol [28] is used to agree on a shared symmetric key
given by a trusted server. We consider the following simplified version without
timestamps (where CA = {A, pkA}skS and CB = {B, pkB}skS):

(1) A −→ S : A,B (3) A −→ B : CA,CB, {{A,B, kAB}skA}pkB

(2) S −→ A : CA,CB

This version uses a defense [2] against an attack similar to that of Sect. 5.2. The
specification is that (3) should prove to B that A has tried to contact him.

Our model allows 170 messages in the network and 2 additional messages in
the attacker knowledge. After generating an attacker assumption with alphabet
refinement, we used it to generate an assumption for B.

A Broken Variant. When B receives (3), he knows that A wants to start a
connection and the key is shared between the two. We modified B so that the
identity in (3) is not checked, which is equivalent to the original broken version.
Thus, B accepts CA,CB, {{A,M, kAM}skA}pkB and believes he is contacting
A. This behavior enables the attack on Denning-Sacco [2], which we rediscovered
by checking the modified B against his assumption.

We did not consider a serverless variant of Denning-Sacco like we did earlier.
In practice, certificates issued by S also contain timestamps to prevent replays.
Thus, it wouldn’t make sense to assume Alice knows the certificate from the start
nor to assume Alice tries to contact the agents she wants using old certificates.

αi(CA,CB)
αi(CA, CB, {{A, B, kAB}skA}pkB) αi(CA, CB, {{A, B, kAM}skA}pkB)
αi(CA, CB, {{A, M, kAB}skA}pkB) αi(CA, CB, {{A, M, kAM}skA}pkB)
αi(CA, CB, {{B, A, kAB}skA}pkB) αi(CA,CM, {{A, B, kAB}skA}pkB)
αi(CB, CA, {{A, B, kAB}skA}pkB) αi(CB, CM, {{A, B, kAB}skA}pkB)
αi(CM, CA, {{A, B, kAB}skA}pkB) αi(CM, CB, {{A, B, kAB}skA}pkB)
αi(CA,CB, {{A, B, kAB}skA}pkM) αi(CA, CM, {{A, B, kAB}skA}pkM)
αi(CB, CA,{{A, B, kAB}skA}pkM) αi(CB, CM, {{A, B, kAB}skA}pkM)
αi(CM, CA, {{A, B, kAB}skA}pkM) αi(CM, CB, {{A, B, kAB}skA}pkM)

Fig. 10. Refined attacker alphabet in Denning-Sacco; i ∈ {A, B, S}, α ∈ {send , recv},
CA = {A, pkA}skS , CB = {B, pkB}skS , CM = {M, pkM}skS .

Interpreting the Assumptions. Figure 10 shows the assumption alphabet.
Most actions are variants of (3). The first two components are not important
since they are public. The last component is encrypted with either pkB or pkM

and contains Alice’s signature on the shared keys. If the attacker is free to forge
such messages, he can fake (3) even when Alice is offline and break security.

Learning Assumptions for Verifying Cryptographic Protocols 15

αi(nB), αi({B, nB}kAS), αi({A, nB}kBS), αi(A,B, {B, nB}kAS), αi(M, B, {B, nB}kAS)

Fig. 11. Refined attacker alphabet in Woo-Lam; i ∈ {A, B, S}, α ∈ {send , recv}.

5.4 Woo-Lam

Woo and Lam [55] present a symmetric-key protocol two agents authenticate via
a trusted server. We use a modified version [36], which includes two fixes [2,4]
that were not present originally:

(1) A −→ B : A (4) B −→ S : A,B, {B,nB}kAS

(2) B −→ A : nB (5) S −→ B : {A,nB}kBS

(3) A −→ B : {B,nB}kAS

The goal of the protocol is to ensure that, when B receives (5), he knows that A
is online and has responded to nB . Our model allows 20 messages in the network
and allows the attacker to learn at most 2 messages in addition to her initial
knowledge. We modeled two instances of B, but checked the agreement for only
one of them, since LTSA was taking too long to generate assumptions for the
two. Again, we used two decomposition steps.

A Broken Variant. We modified B to reintroduce a flaw found in the original
protocol [2], by removing the check on the identity in (5). We rediscovered the
flaw by checking the modification against his generated assumption.

Interpreting the Assumptions. Figure 11 shows the refined alphabet of the
attacker in the fixed protocol. Unlike in Sect 5.2, (5) does appear in the refined
alphabet. In NSL, the authentication of A hinges on the secrecy of nB , which
is protected by pkA, whereas here nB is public and the crucial factor is the
secrecy of the shared keys between the agents and the server. Forging (5) means
effectively learning this key and breaking agreement.

5.5 Kerberos

Kerberos [38] is a protocol designed to provide mutual authentication between
two parties via a trusted server S. We model a common simplification [2,20,50]:

(1) A −→ S : A,B, nA (4) B −→ A : {tA}kAB

(2) S −→ A : {kAB , A}kBS , {kAB , B, nA}kAS

(3) A −→ B : {kAB , A}kBS , {A, tA}kAB

Upon receiving nA, S generates a new key kAB and creates a ticket for B
({kAB , A}kBS) secured using kBS , as well as a response for A. She decrypts
her part to learn kAB , while checking that the identifier and the nonce match
those sent initially. She then constructs an authenticator containing a timestamp

16 Z. Zhang et al.

Protocol Component Original Assumption
#States #Trans. #States #Trans.

NSL public key Attacker 775030 4343487 3 178
Alice 14 163 6 69

Denning-Sacco
Attacker 719999 3711528 2 203

Bob 3 171 3 103

Woo-Lam
Attacker 4374 28016 13 516

Bob 3844 75888 8 161

Kerberos
Attacker 13528 85840 4 252

Bob 26 228 5 126

Fig. 12. Sizes of components and assumptions, in terms of states and transitions.

tA encrypted with the session key kAB . She sends the ticket and the authenti-
cator to B, who then learns kAB and tA. He checks that the ticket and the
authenticator match before ending the handshake.

The goals of the protocol are as follows: when B receives (3), he knows that
A wants to start a session with him; when A receives (4), she knows that B
accepts her connection. Unfortunately [11], Mallory can replay (3) and trick B
into thinking that A is attempting to setup two or more simultaneous sessions
with him, when in reality Alice is trying to establish only one session. The fix is
for B to store all live authenticators in order to detect the replay, though this
might be infeasible for a practical implementation. To demonstrate this fix, we
introduced a session lookup table in B (cf. Fig. 7). This allows rejecting a replay
of (3) when the authenticator was stored in another session. We created two
parallel instances of B in the model. We checked authentication of A for detecting
flaws in the broken variants of the protocol. The other property, authentication
of B, is similar. In total, our model allows 22 messages in the network and
allows 2 additional messages in the initial knowledge. As usual, we performed
two decomposition steps.

A Broken Variant. We modified B in the fixed version so that the received
authenticators are not checked for freshness. This behavior enables the above
attack, which we rediscovered by checking the new B against the assumption.

Interpreting the Assumptions. We inspected B’s assumption. We observed
that, when emitting end after (3), he transitions to a loop where his two instances
can only send or recv but cannot trigger another end . Intuitively, since we only
model one instance of A, she will only send one authenticator to B. Thus, once
he receives the authenticator, further receives are replays and should be ignored.

5.6 Performance Evaluation Results

We evaluate the effect of alphabet refinement, and then compare the effort
required by compositional and monolithic verification (RQ1). Figure 12 shows
that alphabet refinement abstracts the behavior of the attacker and agents and

Learning Assumptions for Verifying Cryptographic Protocols 17

significantly reduces their complexity: the abstractions (“Assumption”) are much
smaller then the original automata (“Original”). Figure 13 compares monolithic
and compositional verification in terms of the size of the automata and the time
for checking their properties. The Attack column specifies whether the variant is
vulnerable to an attack. The Bounds column shows the attacker bounds we used:
the first number refers to the size of allowed set and the second, the number of
messages attacker can learn in addition to its initial knowledge. The next column
shows how long it took to compile the various automata produced by Taglierino.
The next three columns show the resources used for monolithic verification and
the last three columns show the resources used for compositional verification.

Rows marked with (*) are the variants used to generate the assumptions.
In principle, we didn’t need to carry out a separate compositional verification
of those variants (since this is already done when generating the assumptions),
but we repeated the verification for completeness. Rows marked (**) are buggy
variants that yielded counterexamples in LTSA. As explained earlier, we need
to rule out false positives, so the performance figures include two numbers: the
first is the time for generating the counterexample and the second is the time
for validating it (in parentheses).

To illustrate, consider the first two rows of Fig. 13 which refer to checking
Needham-Schroeder-Lowe (NSL) and Needham-Schroeder (NS) protocols in our
framework. The column “Attack” shows that using our framework we did not
find an attack in NSL and we did find an attack in NS. The column “Bounds”
shows the bounds used in the models: 31 messages are allowed, and the attacker
can learn at most 4 messages in addition to the initial knowledge. Under “Mono-
lithic verification” we show the cost of verifying the protocols monolithically (i.e.
checking Alice || Bob || Server || Network |= P), whereas “Compositional ver-
ification” has the cost of verifying the protocol compositionally. The first row
(NSL) shows the effort of checking Alice |= QAlice where QAlice is the gener-
ated assumption for Alice. The numbers on the second row (NS) are the cost
of checking AliceNS |= QAlice where AliceNS is the automaton for Alice. This
check produced a counterexample Alice′, and the numbers in parentheses are
the cost of confirming it (i.e. checking Alice′ || Bob || Server |= P).

We observe that compositional verification requires substantially fewer
resources than monolithic verification, with the only exception being the broken
variant of the Woo-Lam protocol. However, these numbers do not include the
time spent to generate Alice’s assumption, which amounts to approximately 1
to 5 min, implying that the benefits of compositional verification mostly apply
when we expect to reuse the generated assumptions for several protocol variants.

18 Z. Zhang et al.

Protocol Attack Bounds Compile time
Monolithic verification Compositional verification

#States #Transitions Time #States #Transitions Time
NSL [41] No 31, 4 2851 388 2738 8 18 163 1 *
NS [51] Yes [41] 31, 4 2674 12425 116365 97 19 (3547) 164 (25703) 1 (22) **

NSL (w/o server) No 31, 1 2182 11142 97517 115 13 99 1
DS (fixed) [2] No 170, 2 909 2308 14722 63 4 171 1 *

DS (broken) [29] Yes[2] 170, 2 974 1913 13939 43 4 (956) 172 (3944) 1 (24) **
WL (fixed) [37] No 20, 2 1214 58189 441161 215 4078 78207 8 *
WL (broken) [57] Yes[2] 20, 2 1209 7493 82593 22 2555 (58593) 46221 (358567) 6 (76) **

KB (fixed) No 22, 2 1295 434 1988 12 31 332 1 *
KB [39] Yes [11] 22, 2 1029 420 1993 10 33 (90) 337 (200) 1 (1) **

Fig. 13. Evaluation results. We use the following abbreviations: NSL for Needham-
Schroeder-Lowe; NS for Needham-Schroeder; DS for Denning-Sacco; WL for Woo-Lam;
KB for Kerberos. All time figures are in ms. Rows marked with (*) are the variants
used to generate the assumptions. Rows marked (**) are buggy variants that yielded
counterexamples. We report the time to produce a counterexample and the time to
validate the counterexample (inside the parenthesis).

6 Related Work

Many researchers have investigated formal methods for security protocols [7,10,
12,14,15,18,27,30,31,34,37,39,53,54]. We discuss here research areas that are
closely related to Taglierino: automated cryptographic protocol verification, and
compositional reasoning.

Researchers have developed automated analysis tools for protocols, most
of which are based on the symbolic model like Taglierino [17,26,32,35,45],
while some uses the computational model [8,9,16,33]. Unlike ours, these tools
are monolithic, analyzing the entire protocol at once, and thus cannot easily
reuse intermediary results to verify protocol variants like we do. Interestingly,
Tamarin [53] allows users to specify intermediate lemmas to aid verification, but
this still requires the entire protocol code. It would be interesting to investigate
how to integrate the properties discovered by Taglierino in such a framework.

Compositional verification and assume-guarantee reasoning [43,44,46,48,52]
have been studied extensively to address the state-space explosion problem [24].
It has been applied to protocol verification, notably in the Protocol Composi-
tional Logic (PCL) [27]. PCL targets security properties of cryptographic pro-
tocols, supporting compositional reasoning about complex security protocols. It
has been applied to a number of industry standards including SSL/TLS, IEEE
802.11 i and Kerberos V5. Despite its success, PCL is limited by the large man-
ual effort that is required by the proofs. An automatic compositional approach
for security analysis is presented in [5]; that work targets protocols composed
from smaller protocols. It does not use assume-guarantee reasoning but instead
uses a property of independence that enables analysis of component protocols in
isolation. A quite different approach [13], proposes a modular code verification
method for protocol implementations. The method is based on checking invari-
ants on the usage of cryptography. Invariants are expressed as refinement types
which can be checked efficiently using type checking.

Learning Assumptions for Verifying Cryptographic Protocols 19

In the model checking community, progress has been made in automating
compositional reasoning using learning and abstraction-refinement techniques
for iterative building of the necessary assumptions [19,25,51]. Other learning-
based approaches for automating assumption generation have been proposed as
well, e.g. [3,21–23], with many other results to follow. As future work, we will
investigate incorporating more advanced learning techniques in Taglierino.

7 Conclusion

We developed Taglierino to analyze authentication protocols, featuring a com-
piler for generating automata for agents in the protocol and a bounded Dolev-
Yao attacker. Our framework allows us to synthesize assumptions for protocol
components which can be used to compositionally verify protocol variants and
to provide insights into the protocol design. Our results show that compositional
verification yields faster checks when we the assumption can be reused.

As our compiler is quite general, we plan to investigate how to integrate it
with more powerful model checking frameworks. Furthermore we plan to study
learning and abstraction-based methods that would allow us to automate more
involved compositional proofs, that use circular reasoning (necessary for instance
to reason about secrecy) and put no bound on the search space.

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied pi calculus: mobile values, new
names, and secure communication. CoRR abs/1609.03003 (2016). http://arxiv.
org/abs/1609.03003

2. Abadi, M., Needham, R.: Prudent engineering practice for cryptographic protocols.
IEEE Trans. Softw. Eng. 22(1), 6–15 (1996). https://doi.org/10.1109/32.481513

3. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learn-
ing assumptions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS,
vol. 3576, pp. 548–562. Springer, Heidelberg (2005). https://doi.org/10.1007/
11513988 52

4. Anderson, R., Needham, R.: Programming Satan’s computer. In: van Leeuwen, J.
(ed.) Computer Science Today. LNCS, vol. 1000, pp. 426–440. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0015258

5. Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S.F., Radomirović,
S.: A framework for compositional verification of security protocols. Inf. Comput.
206(2), 425–459 (2008). Joint Workshop on Foundations of Computer Security
and Automated Reasoning for Security Protocol Analysis (FCS-ARSPA 2006).
https://doi.org/10.1016/j.ic.2007.07.002. http://www.sciencedirect.com/science/
article/pii/S0890540107001228

6. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

7. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: Shao, Z., Pierce, B.C. (eds.) Proceedings of the 36th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, 21–23 January 2009, pp. 90–101. ACM (2009). https://
doi.org/10.1145/1480881.1480894

http://arxiv.org/abs/1609.03003
http://arxiv.org/abs/1609.03003
https://doi.org/10.1109/32.481513
https://doi.org/10.1007/11513988_52
https://doi.org/10.1007/11513988_52
https://doi.org/10.1007/BFb0015258
https://doi.org/10.1016/j.ic.2007.07.002
http://www.sciencedirect.com/science/article/pii/S0890540107001228
http://www.sciencedirect.com/science/article/pii/S0890540107001228
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/1480881.1480894
https://doi.org/10.1145/1480881.1480894

20 Z. Zhang et al.

8. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-aided security
proofs for the working cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22792-9 5

9. Barthe, G., Grégoire, B., Heraud, S., Zanella Béguelin, S.: Formal certification of
ElGamal encryption. In: Degano, P., Guttman, J., Martinelli, F. (eds.) FAST 2008.
LNCS, vol. 5491, pp. 1–19. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-01465-9 1

10. Basin, D.A., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A
formal analysis of 5G authentication. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018,
pp. 1383–1396. ACM (2018). https://doi.org/10.1145/3243734.3243846

11. Bellovin, S.M., Merritt, M.: Limitations of the Kerberos authentication system.
SIGCOMM Comput. Commun. Rev. 20(5), 119–132 (1990). https://doi.org/10.
1145/381906.381946

12. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-
mentations for the TLS 1.3 standard candidate. In: 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017, pp. 483–502.
IEEE Computer Society (2017). https://doi.org/10.1109/SP.2017.26

13. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular verification of security proto-
col code by typing. In: Proceedings of the 37th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2010, Madrid, Spain, 17–23
January 2010, pp. 445–456 (2010). https://doi.org/10.1145/1706299.1706350

14. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), Cape
Breton, Nova Scotia, Canada, 11–13 June 2001, pp. 82–96. IEEE Computer Society
(2001). https://doi.org/10.1109/CSFW.2001.930138

15. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: 2006 IEEE Symposium on Security and Privacy (S&P 2006), Berkeley, Califor-
nia, USA, 21–24 May 2006, pp. 140–154. IEEE Computer Society (2006). https://
doi.org/10.1109/SP.2006.1

16. Blanchet, B.: A computationally sound mechanized prover for security protocols.
In: Proceedings of the 2006 IEEE Symposium on Security and Privacy, SP 2006,
pp. 140–154. IEEE Computer Society (2006). https://doi.org/10.1109/SP.2006.1

17. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus
and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016). https://doi.org/
10.1561/3300000004

18. Blanchet, B.: Symbolic and computational mechanized verification of the
ARINC823 avionic protocols. In: 30th IEEE Computer Security Foundations Sym-
posium, CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 68–82. IEEE
Computer Society (2017). https://doi.org/10.1109/CSF.2017.7

19. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 135–148. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70545-1 14

20. Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990). https://doi.org/10.1145/77648.77649

https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-22792-9_5
https://doi.org/10.1007/978-3-642-01465-9_1
https://doi.org/10.1007/978-3-642-01465-9_1
https://doi.org/10.1145/3243734.3243846
https://doi.org/10.1145/381906.381946
https://doi.org/10.1145/381906.381946
https://doi.org/10.1109/SP.2017.26
https://doi.org/10.1145/1706299.1706350
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1109/SP.2006.1
https://doi.org/10.1561/3300000004
https://doi.org/10.1561/3300000004
https://doi.org/10.1109/CSF.2017.7
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1007/978-3-540-70545-1_14
https://doi.org/10.1145/77648.77649

Learning Assumptions for Verifying Cryptographic Protocols 21

21. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning
for simulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 534–547. Springer, Heidelberg (2005). https://doi.org/10.
1007/11513988 51

22. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.:
Automated assume-guarantee reasoning through implicit learning. In: Touili, T.,
Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6 44

23. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) TACAS 2009. LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 3

24. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

25. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

26. Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and analysis of secu-
rity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
414–418. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-
1 38

27. Datta, A., Derek, A., Mitchell, J.C., Roy, A.: Protocol composition logic (PCL).
Electron. Notes Theor. Comput. Sci. 172, 311–358 (2007). https://doi.org/10.
1016/j.entcs.2007.02.012

28. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun.
ACM 24(8), 533–536 (1981). https://doi.org/10.1145/358722.358740

29. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

30. Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Verification of stateful cryp-
tographic protocols with exclusive OR. J. Comput. Secur. 28(1), 1–34 (2020).
https://doi.org/10.3233/JCS-191358

31. Erbsen, A., Philipoom, J., Gross, J., Sloan, R., Chlipala, A.: Simple high-level code
for cryptographic arithmetic - with proofs, without compromises. In: 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, 19–23
May 2019, pp. 1202–1219. IEEE (2019). https://doi.org/10.1109/SP.2019.00005

32. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R.
(eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03829-7 1

33. Fournet, C., Kohlweiss, M., Strub, P.Y.: Modular code-based cryptographic veri-
fication. In: Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security, CCS 2011, pp. 341–350. Association for Computing Machinery,
New York (2011). https://doi.org/10.1145/2046707.2046746

34. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy,
N.: A verified, efficient embedding of a verifiable assembly language. Proc. ACM
Program. Lang. 3(POPL), 63:1–63:30 (2019). https://doi.org/10.1145/3290376

35. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3—a mod-
ern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

https://doi.org/10.1007/11513988_51
https://doi.org/10.1007/11513988_51
https://doi.org/10.1007/978-3-642-14295-6_44
https://doi.org/10.1007/978-3-642-00768-2_3
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1007/978-3-540-70545-1_38
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1016/j.entcs.2007.02.012
https://doi.org/10.1145/358722.358740
https://doi.org/10.3233/JCS-191358
https://doi.org/10.1109/SP.2019.00005
https://doi.org/10.1007/978-3-642-03829-7_1
https://doi.org/10.1145/2046707.2046746
https://doi.org/10.1145/3290376
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13

22 Z. Zhang et al.

36. Gordon, A.D., Jeffrey, A.: Authenticity by typing for security protocols. In: 2001
Proceedings of the 14th IEEE Computer Security Foundations Workshop, pp. 145–
159 (2001)

37. Kobeissi, N., Bhargavan, K., Blanchet, B.: Automated verification for secure mes-
saging protocols and their implementations: a symbolic and computational app-
roach. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P
2017, Paris, France, 26–28 April 2017, pp. 435–450. IEEE (2017). https://doi.org/
10.1109/EuroSP.2017.38

38. Kohl, J., Neuman, C., et al.: The Kerberos network authentication service (V5).
Technical report, RFC 1510, September 1993

39. Liao, K., Hammer, M.A., Miller, A.: ILC: a calculus for composable, computa-
tional cryptography. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2019, Phoenix, AZ, USA, 22–26 June 2019, pp. 640–654. ACM (2019).
https://doi.org/10.1145/3314221.3314607

40. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 43

41. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43. IEEE (1997)

42. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley,
Hoboken (1999)

43. McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by
compositional model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS,
vol. 1427, pp. 110–121. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0028738

44. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L.,
Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidel-
berg (1999). https://doi.org/10.1007/3-540-48153-2 30

45. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

46. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng.
7(4), 417–426 (1981)

47. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of the
Fourth Annual Symposium on Logic in Computer Science (LICS 1989), Pacific
Grove, California, USA, 5–8 June 1989, pp. 14–23. IEEE Computer Society (1989).
https://doi.org/10.1109/LICS.1989.39155

48. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning.
In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153.
Springer, Heidelberg (2000). https://doi.org/10.1007/10722167 14

49. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Commun. ACM 21(12), 993–999 (1978). https://doi.org/
10.1145/359657.359659

50. Panti, M., Spalazzi, L., Tacconi, S.: Using the NuSMV model checker to verify the
Kerberos protocol (2002)

51. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods Syst. Des. 32(3), 175–205 (2008). https://
doi.org/10.1007/s10703-008-0049-6

https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1145/3314221.3314607
https://doi.org/10.1007/3-540-61042-1_43
https://doi.org/10.1007/BFb0028738
https://doi.org/10.1007/BFb0028738
https://doi.org/10.1007/3-540-48153-2_30
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1007/10722167_14
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.1007/s10703-008-0049-6
https://doi.org/10.1007/s10703-008-0049-6

Learning Assumptions for Verifying Cryptographic Protocols 23

52. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI
Series, vol. 13, pp. 123–144. Springer, Heidelberg (1985). https://doi.org/10.1007/
978-3-642-82453-1 5

53. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Chong, S. (ed.) 25th IEEE
Computer Security Foundations Symposium, CSF 2012, Cambridge, MA, USA,
25–27 June 2012, pp. 78–94. IEEE Computer Society (2012). https://doi.org/10.
1109/CSF.2012.25

54. Whitefield, J., Chen, L., Sasse, R., Schneider, S., Treharne, H., Wesemeyer, S.: A
symbolic analysis of ECC-based direct anonymous attestation. In: IEEE European
Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden, 17–19
June 2019, pp. 127–141. IEEE (2019). https://doi.org/10.1109/EuroSP.2019.00019

55. Woo, T.Y.C., Lam, S.S.: Authentication for distributed systems. Computer 25(1),
39–52 (1992)

56. Woo, T.Y., Lam, S.S.: A semantic model for authentication protocols. In: Proceed-
ings of the 1993 IEEE Computer Society Symposium on Research in Security and
Privacy, pp. 178–194. IEEE (1993)

57. Zhang, Z., de Amorim, A.A., Jia, L., Păsăreanu, C.: Automating compositional
analysis of authentication protocols. In: 2020 Formal Methods in Computer Aided
Design, FMCAD 2020 (2020)

https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1109/EuroSP.2019.00019

Modelling and Composition

Component-Based Approach Combining
UML and BIP for Rigorous System

Design

Salim Chehida(B) , Abdelhakim Baouya , and Saddek Bensalem

University of Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
{salim.chehida,abdelhakim.baouya,saddek.bensalem}@univ-grenoble-alpes.fr

Abstract. The development of critical systems requires the definition
of a rigorous design approach enabling to check these systems before a
real operation. This paper presents a component-based approach that
combines UML and BIP languages for the specification and formal ver-
ification of systems. We begin by modeling the system architecture and
behavior using UML. The UML models are then translated into a formal
specification expressed in BIP. Finally, the SBIP framework is used for
verifying the correctness of the system using Statistical Model Check-
ing while satisfying requirements expressed by temporal properties. We
apply our approach to a dam infrastructure, represented by a set of
deployed sensors.

Keywords: UML · BIP · Statistical Model Checking · Sensors ·
Stochastic Behavior · Authentication

1 Introduction

Managing complexity, increasing trust, and promoting automation are the major
challenges facing developers of critical systems. Model-based design is one of the
effective solutions to address these challenges by facilitating system modeling
through multiple abstractions and enabling the integration of techniques and
tools for system verification.

In this work, we propose a component-based approach based on a graphical
representation in the Unified Modeling Language (UML) [26], and BIP (Behav-
ior, Interaction, Priority) [4], a highly expressive component-based language for
the formal design of systems. Integrating UML and BIP is an appropriate way
for the rigorous development of complex and critical systems. On one hand,
UML is a standard graphical notation that has a visual and structural aspect
through its diagrams. On the other hand, BIP is a textual representation that
allows building formal models with the support of external code for specifying
component behaviors. Moreover, BIP has stochastic semantics and an efficient
tool for analysis based on statistical model checking techniques.

The approach declines in three steps. First, in Sect. 2, we use UML component
diagrams to describe the architecture of the system by specifying the components
c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 27–43, 2021.
https://doi.org/10.1007/978-3-030-90636-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_2&domain=pdf
http://orcid.org/0000-0002-5070-2591
http://orcid.org/0000-0003-2182-7501
http://orcid.org/0000-0002-5753-2126
https://doi.org/10.1007/978-3-030-90636-8_2

28 S. Chehida et al.

and their relationships, then UML state machine diagrams to express the behav-
ior of each component. Secondly in Sect. 3, we translate UML diagrams into a
formal representation in BIP. Finally in Sect. 4, we apply the SBIP tool [21] for
simulating the BIP model and analyzing the system behavior using Statistical
Model Checking (SMC). We check that the system satisfies some formal require-
ments using a set of quantitative and qualitative properties expressed in LTL
(Linear-time Temporal Logic) [24] based on model simulations. We rely on the
industrial case study of sensors system from the Cecebre dam infrastructure in
the city of “la Coruña” in Spain. To sum up, Sect. 5 identifies the related work
and we draw our conclusions and perspectives in Sect. 6.

2 System Modeling with UML

To model our system architecture and behavior, we use respectively component
diagram and state machine diagrams. We use the Eclipse Papyrus Tool1 adopted
in our project to build the UML diagrams. We first present our case study.

2.1 Case Study

As shown in Fig. 1, the dam infrastructure we consider in this work is equipped
with wireless sensors that collect and report sensed data to a platform called
SICA-MEDUSA.

Fig. 1. Overview of the dam system

The sensors measure the Water Height (WH), the Rain Precipitation (RP),
and the Water Flow (WF) in the dam. The data collected by SICA-MEDUSA
help to control the opening of the spillgate and avoid the dam overflow. In this
work, we aim to build a system for evaluating the confidence of sensors readings
(i.e., if sensors readings are rare, possible, etc.) for a given day and making
predictions for the next day after the authentication of sensors data received

1 http://www.eclipse.org/papyrus/.

http://www.eclipse.org/papyrus/

Combining UML and BIP for Rigorous System Design 29

from SICA-MEDUSA. Our system helps for the management of the spillgate.
To build our system, we rely on a trace of data recorded by each sensor per day
for 28 years (from 1989 to 2016). In the following sections, we will explain how
to build behavioral models for predicting sensors readings and calculating their
confidence from this trace.

2.2 Architecture Model

UML component diagram is used to specify the architecture of systems by defin-
ing component choices and their dependencies. Each component is represented
by a rectangle with the component name, the stereotype text and icon. A port
of the component is symbolized by a small square that specifies an interac-
tion point between the component and the environment. A connection between
components defines that a component provides the services that other com-
ponents require. As shown in Fig. 2, our system is represented by one compo-
nent (SpillgateSensorsSystem) structured into three subcomponents (Auth,
SensorReadingPredictor, and SensorReadingConfidence).

Fig. 2. Architecture of sensors system

The Auth component parses and authenticates the sensors data received from
SICA-MEDUSA platform using JWT (JSON Web Token). JWT is an authenti-
cation system for data transferred between two parties. It represents data as a

30 S. Chehida et al.

JSON object that is encoded using a technique defined in the standard RFC7519
[15] of IETF (Internet Engineering Task Force). The JSON token consists of three
parts. As shown in the example of Fig. 3, the first part, called Header, defines
the type of the token and the hash algorithm used for its signature. The second
part, called Payload, stores the data to be transmitted such as the token issuer
(iss), the token expiration time (exp), the intended recipient of the token (aud),
the party that the token carries information about (sub), and sensors informa-
tion (sensorId, sensorType, sensorReading, and sensingT ime). The last part
of the token is the Signature that ensures the integrity of the data. In our sys-
tem, we use the hash-based message authentication code (HMAC) algorithm to
generate the signature from the encoded header and payload in base64 with a
secret key using the cryptographic hash function SHA-256. The secret key pre-
vents hackers to modify the data and produce a valid signature. As shown in
Fig. 2, the Auth component sends the tokens to SensorReadingPredictor and
SensorReadingConfidence components after validation through the connectors
C2 and C1.

Fig. 3. Example of JWT

The SensorReadingPredictor component gets the sensing time (Day) from
the token and predicts the sensor reading level (PSRL) for the next day based
on the random variable associated with a probability distribution defined from
the trace of sensors data. The SensorReadingConfidence component gets the
sensing day and sensor reading (SR) from the token and evaluates the confi-
dence of this value (SRC) based on sensor trace. The connector C3 allows Auth
component proceeds to the next token after calculating SRC and PSRL.

Combining UML and BIP for Rigorous System Design 31

2.3 Behavior Models

We use the UML state machine diagram to specify the behavior of the system
components. State machine diagrams allow describing the states of an object
or a component while interacting with other objects, components, or actors.
They are represented by a state graphs connected by directed arcs that describe
the transitions. A state is a situation in the life of a component during which
the component satisfies a condition, performs an activity, or waits for an event.
A transition allows a component to change state. It has an event, a condition
(called guard) and an action denoted as “event [condition]/action”. An event is
an instant in time that can be significant for the behavior of the component. A
guard is evaluated when the event occurs. An action consists in the invocation
of an operation if the event occurs and if the condition is true.

Figure 4 shows the behavior of Auth component of Fig. 2. An initial pseu-
dostate is shown as a small solid filled circle. After receiving the JWT (SToken)
from SICA-MEDUSA, the function checkToken tests if this token is well-formed
and was signed by the sender and not altered in any way. If so, it will be sent
to the other components, otherwise, we switch to the next token. Papyrus tool
allows to define the functions checkToken and getToken using a programming
language like C++.

Fig. 4. The behavior of Auth component

Figure 5 presents the stochastic behavior of SensorReadingPredictor com-
ponent. In [7,8], we explain how to specify this behavior starting from a given
trace of sensors data. After cleaning, we discretize sensor data into five fixed
levels using EWD (Equal Width Discretization) method [12]. Then, we gener-
ate a sensor distribution file for each day by counting the occurrence of each
level of sensor readings this day. As shown in Fig. 5, when receiving the valid
token with the sensor data for any day, the function getSensorDist selects the

32 S. Chehida et al.

corresponding distribution file (DSD) of a given sensor for the next day. The
predictive sensor reading level (PSRL) is defined based on DSD distribution.
We use a special way to represent this stochastic behavior in BIP by associating
the distribution with a random variable (see Listing 1.3).

Fig. 5. The behavior of SensorReadingPredictor component

In Fig. 6, we specify the behavior of SensorReadingConfidence component.
The function discrete calculates the sensor reading level (SRL) from the token.
Then, the sensor reading confidence (SRC) is decided according to the results of
functions isV eryPossible (observed more than 21 times in 28 years for a given
day), isPossible (observed 3 to 21 times in 28 years for a given day), isRare
(observed once or twice within 28 years for a given day), and isNotObserved
(never seen in 28 years for a given day) that allow respectively to check if SRL
is very possible, possible, rarely observed or never observed for a given day from
the trace of sensors data.

3 From UML to BIP

The objective of the translation of UML component and state machine diagrams
into BIP specification is to check our system by taking advantage of rigorous
reasoning and verification tool (SBIP) that supports BIP. The choice of the
translation to BIP is also motivated by its capability to use external code for
specifying stochastic behaviors and security features needed for our dam system.

BIP (Behavior, Interaction, and Priority) [4] is a highly expressive component-
based language for the rigorous design of complex and critical systems. It allows

Combining UML and BIP for Rigorous System Design 33

Fig. 6. The behavior of SensorReadingConfidence component

representing the behavior of systems using a set of components, a set of interac-
tions that defines the possible interactions between the components, and a set
of priorities for defining interaction schedule policies. BIP supports the specifi-
cation of composite, hierarchically structured components, called Compounds,
starting from the atomic ones. In BIP, the atomic components, called Atoms, are
finite-state automata having transitions labeled with ports and states (or places)
that denote control locations where the component waits for interactions. Ports
are actions that can be associated with data stored in local variables and used for
interactions with other components. Connectors relate ports from components
by assigning them to a synchronization attribute, which may be either trigger
or synchronous. A compound type defines a level of the hierarchy. It contains
instances of component and connector types with connection definitions and also
priorities to schedule the interactions between these components.

In this section, we will translate the UML component and state machine
diagrams given in Sect. 2 into BIP. Table 1 defines the main mapping rules to
translate the basic structures needed for our case study from UML to BIP.
Work in progress considers other structures such as the priorities of interactions
between components. A prototype is developed to automate the translation using
the Eclipse Acceleo Tool2. In the future, we plan to prove the correctness of the
translation made by our tool.

The UML composite components become BIP compounds and the UML
atomic components become BIP atoms. Connections between UML components
are represented by BIP connectors. State machine diagrams specifying the behav-
ior of UML atomic components are also translated into BIP specification attached

2 https://www.eclipse.org/acceleo/.

https://www.eclipse.org/acceleo/

34 S. Chehida et al.

Table 1. Transformation of basic structures

UML BIP

Composite component Compound

Atomic component Atom

Connection Connector

State Place

Transition Event External Port/Internal Port

Transition action BIP expression

Transition guard BIP guard expression (provided)

Variable BIP Data

to the corresponding BIP atoms. States are specified by BIP places and transi-
tion events by BIP ports. Then, we associate the transition actions and transition
guards to the BIP ports. More details and descriptions will be given in the follow-
ing paragraphs.

Listing 1.1 shows the translation of the UML diagrams presented in the pre-
vious Section into BIP code. Among the advantages of BIP are the capability to
use external functions and data types defined using a programming language like
C++ (See the BIP documentation3 for more details). In this work, we define the
external functions to be called by our BIP code in the C++ file senSysFunc.cpp.
These are the functions called by the transitions actions or transitions guards in
UML behavior models of Figs. 4, 5 and 6. In line 1 of Listing 1.1, we import the
external C++ file. Functions can be defined in UML state machine diagrams
using the Papyrus tool and then integrated into the external C++ file when
generating the BIP specification.

In line 2, our system is represented by the BIP package SensorsSystem
contained in a single file. Lines 4 to 16 declare the external functions
invoked by the components Auth (see Fig. 4), SensorReadingPredictor (see
Fig. 5), and SensorReadingConfidence (see Fig. 6). Line 17 declares the
external data distribution t needed to specify the stochastic behavior of
SensorReadingPredictor component.

As mentioned earlier, the transition events in UML state machine diagrams
are represented by ports in BIP. With BIP, we can define types of ports. Our
system involves two types of ports. In line 19, the type port0 represents events
without arguments such as event testToken in the behavior model of Auth
component (Fig. 4). The type port1 in line 20 for events that have one string
argument such as event sendV alidToken in Fig. 4.

As for the ports, BIP allows defining types of connectors to characterize the
interactions between components. A connector type in BIP is characterized by:
a type name, a list of port parameters, an exported port (if any) and a set of
actions for data transfers.

3 https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html.

https://www-verimag.imag.fr/TOOLS/DCS/bip/doc/latest/html/index.html

Combining UML and BIP for Rigorous System Design 35

Listing 1.1. BIP code of the main system component
1 @cpp(src="ext-cpp/senSysFunc.cpp",include="senSysFunc.cpp")

2 package SensorsSystem

3 //--- external functions and data

4 extern function string getToken()

5 extern function bool checkToken(string)

6 extern function int getDay(string)

7 extern function string getSensorType(string)

8 extern function float getSensorReading(string)

9 extern function int discrete(float)

10 extern function bool isNotObserved(int,string,int)

11 extern function bool isRare(int,string,int)

12 extern function bool isPossible(int,string,int)

13 extern function bool isVeryPossible(int,string,int)

14 extern function string getSensorDist(string,int)

15 extern function int select(distribution_t,int)

16 extern function distribution_t init_distribution(string,int)

17 extern data type distribution_t

18 // --- Ports and connectors types definitions

19 port type port0()

20 port type port1(string px)

21 connector type connect0(port1 p1, port1 p2)

22 define p1 p2 on p1 p2 down { p2.px= p1.px; } end

23 connector type connect1(port0 p1, port0 p2, port0 p3)

24 define p1 p2 p3 end

25 // --- Atom types definitions

26 atom type Auth()

27 //.. see Listing 1.2

28 end

29 atom type SensorReadingPredictor()

30 //.. see Listing 1.3

31 end

32 atom type SensorReadingConfidence()

33 //..

34 end

35 //--- Compound types definitions

36 compound type SpillgateSensorsSystem()

37 component Auth Auth1()

38 component SensorReadingPredictor SRP1()

39 component SensorReadingConfidence SRC1()

40 //--- Connector instantiations

41 connector connect0 C2(Auth1.sendValidToken, SRP1.getValidToken)

42 connector connect0 C1(Auth1.sendValidToken, SRC1.getValidToken)

43 connector connect1 C3(Auth1.nextToken, SRP1.nextP, SRC1.nextC)

44 end

45 end

36 S. Chehida et al.

In lines 21 and 22, we define the connector type connect0 that takes as param-
eters two ports p1 and p2 of types port1. The connect0 type is used for describing
the actions performed when the connections C1 and C2 in UML architecture
model of Fig. 2 happen. These connections allow sending the validated token from
Auth component to SensorReadingPredictor and SensorReadingConfidence
components. In lines 23 and 24, the connect1 type allows to describe synchro-
nization link between three ports such as the ports nextP , nextC and nextToken
of type port0 in Fig. 2 (connector C3). Lines 26 to 34 define the three atomic
components of our system (see Listing 1.2 and 1.3 for more detail). In lines 36 to
44, we create a BIP compound that composes the three atoms. In the compound,
we instantiate the components then connectors by giving the exported ports of
components.

The BIP atom Auth in Listing 1.2 is defined from the state machine diagram
of Fig. 4. The SToken and TV variables handled by the transitions actions and
transitions guards in the UML diagram are declared as data in lines 2 and 3.
The transition events are declared as BIP ports. The ports sendV alidToken and
nextToken preceded by “export” (lines 5 and 6) allow Auth atom to communi-
cate with the other components. The ports testToken and invalidToken in line
4 (called silent) allow to run internal actions. In line 7, UML states are repre-
sented by BIP places. Lines 8 to 14 describe the transition between states (from
.. to ..), the transitions guards (provided) and the transitions actions (do { })
associated with each BIP port.

Listing 1.2. BIP code of Auth atom
1 atom type Auth()

2 data string SToken

3 data bool TV

4 port port0 testToken, invalidToken

5 export port port1 sendValidToken(SToken)

6 export port port0 nextToken

7 place START, tokenChecking,tokenValidation

8 initial to START

9 on testToken from START to tokenChecking

10 do {SToken = getToken(); TV = checkToken(SToken);}

11 on sendValidToken from tokenChecking to tokenValidation

12 provided (TV)

13 on invalidToken from tokenChecking to START provided (!TV)

14 on nextToken from tokenValidation to START

15 end

In the same way, the state machine diagram of Fig. 5 describing the behavior
of SensorReadingPredictor atom is translated into BIP code of Listing 1.3. The
connector C2 defined in Listing 1.1 allows to joint the port getV alidToken and
recover valid token (SV Token) from Auth component.

As mentioned in Sect. 2.3, we use a special way to translate the stochastic
behavior from UML state machine diagram to BIP. In line 7, we use the external

Combining UML and BIP for Rigorous System Design 37

data type distribution t declared in line 17 of Listing 1.1 to express the stochas-
tic behavior of the atom. In line 18, the external functions init distribution and
getSensorDist declared in Listing 1.1 get and initiate the corresponding distri-
bution (DSD). We add an integer random variable x in line 6 then we associate
this variable with the DSD distribution in line 19 using the predefined func-
tion select. In lines 21 to 30, the internal ports setSRL1, setSRL2, setSRL3,
setSRL4, setSRL5 calculate the predictive sensor reading level (PSRL) based
on value of the random variable x associated with the DSD distribution. In line
31, the external port nextP switches the execution to Auth atom through C3
connector.

For more details about the specification of stochastic behaviors with BIP and
their analysis, refer to [20].

Listing 1.3. BIP code of SensorReadingPredictor atom
1 atom type SensorReadingPredictor()

2 data string SVToken

3 data int Day

4 data string ST

5 data int PSRL

6 data int x

7 data distribution_t DSD

8 data int size

9 port port0 setSRL1, setSRL2, setSRL3, setSRL4, setSRL5

10 export port port1 getValidToken(SVToken)

11 export port port0 nextP

12 place START, sensorDistribution, predictiveSensorLevel

13 initial to START

14 on getValidToken from START to sensorDistribution

15 do {

16 Day = getDay(SVToken);

17 ST = getSensorType(SVToken);

18 DSD = init_distribution(getSensorDist(ST,Day+1),size);

19 x = select(DSD,size);

20 }

21 on setSRL1 from sensorDistribution to predictiveSensorLevel

22 provided (x==0) do { PSRL =1;}

23 on setSRL2 from sensorDistribution to predictiveSensorLevel

24 provided (x==1) do { PSRL =2;}

25 on setSRL3 from sensorDistribution to predictiveSensorLevel

26 provided (x==2) do { PSRL =3;}

27 on setSRL4 from sensorDistribution to predictiveSensorLevel

28 provided (x==3) do { PSRL =4;}

29 on setSRL5 from sensorDistribution to predictiveSensorLevel

30 provided (x==4) do { PSRL =5;}

31 on nextP from predictiveSensorLevel to START

32 end

38 S. Chehida et al.

The BIP atom code corresponding to state machine diagram of Fig. 6 is
defined in the same way as SensorReadingPredictor and Auth atoms.

4 System Simulation and Verification

The BIP model built from UML diagrams gives a precise semantics of our system
and makes its simulation and formal verification possible. In this work, we use
a verification technique called SMC (Statistical Model Checking) to check our
system. This technique is scalable and less memory intensive compared to model
checking [2]. SMC uses a simulation-based approach to reason about formal
requirements expressed in temporal logic properties. Using SMC, executions are
first sampled, after which statistical techniques are applied to answer two types
of questions:

1. Quantitative: what is the probability that the system S satisfies a given prop-
erty φ?

2. Qualitative: is the probability of a given property φ being satisfied by the
system S is greater or equal to a certain threshold θ?

Several SMC tools have been proposed and applied for the analysis of various
case studies. In this study, we use the SBIP Statistical Model Checking tool
[21] that supports the BIP language for the verification and analysis of our
system. SBIP4 has a graphical user-interface permitting to edit, compile and
simulate BIP models, and automates the different statistical analysis. It also
provides a summary of the performed analysis and generates specific curves
and/or plots of results. SBIP allows to express properties using a stochastic
bounded variant of LTL (Linear-time Temporal Logic) [24]. It is an extension of
LTL where temporal operators can be bounded and formulas can be preceded by
a probabilistic operator P. In LTL, path formulas are defined using four bounded
temporal operators namely, Next (Nψ1), Until (ψ1∪k ψ2), Eventually (F kψ1),
and Always (Gkψ1), where k is an integer value that specifies the length of the
considered system execution trace and ψ1,ψ2 are called state formulas, which is a
Boolean predicate evaluated on the system states. More details on the different
LTL operators can be found in [24]. SBIP makes it possible to express and
check parametric property φ(x), where x is a parameter ranging over a finite
instantiation domain.

In this work, we defined a set of LTL properties expressed on the BIP model
presented in Sect. 3. We present three examples of properties to test our system
on the sensed data for 2017. The three properties were evaluated in a few seconds.
PR1: Check whether the tokens received by the system in 2017 are valid.
In LTL: P>=0.99[F 10000 (TV = true ∧ Day = D)]; D = 1 : 366 : 1;

The results are given in Fig. 7. They show that all the tokens received by
Auth component from SICA-MEDUSA platform in 2017 are well-formed and
4 http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?
lang=en.

http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en
http://www-verimag.imag.fr/BIP-SMC-A-Statistical-Model-Checking.html?lang=en

Combining UML and BIP for Rigorous System Design 39

have a valid signature. Pr1 is used for checking the authentication and integrity
of sensed data. With this property, it is possible to detect if a token has been
modified or sent by a user other than SICA-MEDUSA.

Fig. 7. Probability that received tokens in 2017 are valid

PR2: Compute the probability of predictive levels of WH, WF and RP sensors
on January 27.

In LTL:

{
P=?[F 10000 (ST = T ∧ PSRL = L ∧ Day = 26)]; L = 1 : 5 : 1;

T ∈ {WH,WF,RP};

Figure 8 presents the results given by SBIP for PR2. We see that level 1 is
the most likely for both RP and WF sensors with a probability of more than
0.80 and levels 3, 4, and 5 are never observed on this day. For WH sensor, level
3 is most likely, the levels 2 and 4 are less likely, and levels 1 and 5 are never
observed on this day. The predictions of the sensors’ levels can help to manage
the dam spillgate.

Fig. 8. Probability of WH, WF and RP predictive levels on January 27

40 S. Chehida et al.

PR3: Check the absence of rare levels of sensors readings in February 2017.
In LTL:

{
P>=0.99[F 10000 (ST = T ∧ ¬(SRC = O) ∧ Day = D)]; D = 32 : 59 : 1;

T ∈ {WH,WF,RP};

The SMC verdict of PR3 in Fig. 9 shows two levels rare of RP sensor recorded
on February 2nd and 3rd. For WH and WF sensors, no rare levels are detected
in February 2017. In the same way, we can define properties to check for the
absence of levels never observed for a given period.

Fig. 9. Probability that RP level is not rarely observed in February 2017

5 Related Work

Several works have been proposed for coupling between UML and formal meth-
ods such as Z [13], Object-Z [16], and Event-B [25]. The works around the B
method [1] are numerous. The paper [6], for instance, proposes an approach that
uses UML activity diagrams for modeling system behavior considering access
control policy based on RBAC (Role-Based Access Control) model, then trans-
lates UML diagrams into B in order to validate the RBAC policy using anima-
tion.

In our work, we combine UML and formal verification tools to check if the sys-
tem satisfies some properties. Several works have proposed approaches to Model
Checking UML state machines using the model checkers UPPAAL [17], PAT [28],
USM2C [19] and PRISM [3]. In [23], the authors propose the tool TANGRAM
for modeling, and verifying component-based real-time systems. The tool trans-
lates UML component and state machine diagrams into timed automata. The
UPPAAL model checker is then applied to verify system correctness. The paper
[11] translates UML activity diagrams extended for embedded systems into the
front-end languages used by the model checkers NuSMV, SPIN, UPPAAL and
PES, then compares the performance of different model checking tools.

In our approach, we apply Statistical Model Checking (SMC) after trans-
lating UML component and state machine diagrams into a formal specification

Combining UML and BIP for Rigorous System Design 41

expressed in BIP. SMC technique has been proposed to improve scalability by
combining simulation and statistical methods to reason about properties. It is
used as an alternative to time and memory intensive techniques like model check-
ers. The paper [2] presents a survey of SMC tools. For instance, PRISM-SMC
[18] implements SMC techniques such as Probability Estimation techniques (PE)
and Hypothesis Testing, and the model to be checked is constructed before and
stored in memory. MRMC [22] offers SMC with confidence interval computation.
However, it always loads Markov chain representations into memory completely.
UPPAAL-SMC [10] and Ymer [27] are closer to SBIP, and both of them con-
sider GSMP (Generalized Semi Markov Processes). UPPAAL-SMC provides a
general stochastic timed semantics and is limited to exponential and uniform
density functions. Furthermore, BIP is a component-based language endowed
with capabilities to express automata-based and/or Petri Net behavior and to
call external code. To perform SMC, the BIP engine relies on the constructed
models in C++.

There are also some works that propose the integration of other languages
with BIP. For instance, [5] proposes a security-based modelling language for rep-
resenting data access controls in IoT systems and implements a tool to translate
IoT models into BIP. The BIP generated model is used to simulate the system
and test if the security policy is guaranteed. The paper [14] presents an app-
roach for the translation from the robotic framework GenoM3 to the real-time
extension of BIP. After the transformation, the BIP model augmented with a
timed-property monitor is executed to check properties online and react in case
of violation. The paper [9] provides a general methodology and tool for translat-
ing AADL models into BIP models in order to enable the simulation of AADL
models, as well as application of verification techniques, such component-based
deadlock detection.

6 Conclusion

In this paper, we have proposed a component-based approach to support the
rigorous design of software systems and have applied this approach to a dam
system. System components with their interactions and behaviors are modeled
with UML component and state machine diagrams. UML models are translated
into a formal specification expressed in BIP. Finally, SBIP is used to simulate
the BIP specification and check system requirements expressed by LTL. The
main benefits of our approach are:

– It supports the specification of composite components, hierarchically struc-
tured from atomic components, which facilitates reusability and maintain-
ability of the system components.

– UML graphical models facilitate the understanding of the system by designers
without background in formal methods.

– BIP allows the rigorous specification of the system and offers the possibil-
ity of calling external code to specify different types of components such as
stochastic and security components.

42 S. Chehida et al.

– We use SMC, a scalable and less memory-intensive technique compared to
model checking, for verifying system requirements. Verification helps mitigate
the risk of software errors.

We are planning in the future to work in two directions: (i) validating the
translation of UML models into BIP using proof techniques, (ii) generating Java
code from BIP and wrapping the code in an envelope called bundles to enable
its dynamic deployment in execution platforms such as OSGi.

Acknowledgments. The research leading to these results has been supported by the
European Union through the BRAIN-IoT project (Grant agreement ID: 780089) and
the CPS4EU project (Grant agreement ID: 826276). The authors would like to thank
EMALCSA Company for the data collected from the dam infrastructure.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACMTrans. Model.
Comput. Simul. 28(1), 1–39 (2018). https://doi.org/10.1145/3158668

3. Baouya, A., Bennouar, D., Mohamed, O.A., Ouchani, S.: A probabilistic and timed
verification approach of SysML state machine diagram. In: 2015 12th International
Symposium on Programming and Systems (ISPS) (2015). https://doi.org/10.1109/
ISPS.2015.7245001

4. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

5. Beaulaton, D., et al.: A language for analyzing security of IOT systems. In: 2018
13th Annual Conference on System of Systems Engineering (SoSE), pp. 37–44
(2018)

6. Chehida, S., Idani, A., Ledru, Y., Kamel Rahmouni, M.: Combining UML and B for
the specification and validation of RBAC policies in business process activities. In:
2016 IEEE Tenth International Conference on Research Challenges in Information
Science (RCIS), pp. 1–12 (2016). https://doi.org/10.1109/RCIS.2016.7549284

7. Chehida, S., Baouya, A., Bensalem, S., Bozga, M.: Applied statistical model check-
ing for a sensor behavior analysis. In: Shepperd, M., Brito e Abreu, F., Rodrigues
da Silva, A., Pérez-Castillo, R. (eds.) QUATIC 2020. CCIS, vol. 1266, pp. 399–411.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58793-2 32

8. Chehida, S., Baouya, A., Bensalem, S., Bozga, M.: Learning and analysis of sensors
behavior in iot systems using statistical model checking. Softw. Qual. J. 2020, 1–22
(2021). https://doi.org/10.1007/s11219-021-09559-w

9. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP -
Application to the verification of real-time systems. In: Chaudron, M.R.V. (ed.)
MODELS 2008. LNCS, vol. 5421, pp. 5–19. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01648-6 2

10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.
org/10.1007/s10009-014-0361-y

11. Daw, Z., Cleaveland, R.: Comparing model checkers for timed UML activity dia-
grams. Sci. Comput. Program. 111, 277 (2015)

https://doi.org/10.1145/3158668
https://doi.org/10.1109/ISPS.2015.7245001
https://doi.org/10.1109/ISPS.2015.7245001
https://doi.org/10.1109/RCIS.2016.7549284
https://doi.org/10.1007/978-3-030-58793-2_32
https://doi.org/10.1007/s11219-021-09559-w
https://doi.org/10.1007/978-3-642-01648-6_2
https://doi.org/10.1007/978-3-642-01648-6_2
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1007/s10009-014-0361-y

Combining UML and BIP for Rigorous System Design 43

12. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretiza-
tion of continuous features. In: Prieditis, A., Russell, S. (eds.) Machine Learning
Proceedings 1995. Morgan Kaufmann, Burlington (1995)

13. Dupuy, S., Ledru, Y., Chabre-Peccoud, M.: An overview of RoZ?: a tool for inte-
grating UML and Z specifications. In: Wangler, B., Bergman, L. (eds.) CAiSE
2000. LNCS, vol. 1789, pp. 417–430. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45140-4 28

14. Foughali, M., Bensalem, S., Combaz, J., Ingrand, F.: Runtime verification of timed
properties in autonomous robots. In: 2020 18th ACM-IEEE International Confer-
ence on Formal Methods and Models for System Design (MEMOCODE) (2020)

15. Jones, M., Bradley, J., Sakimura, N.: JSON Web Token (JWT). RFC 7519 (2015).
https://doi.org/10.17487/RFC7519

16. Kim, S.-K., David, C.: Formalizing the UML class diagram using Object-Z. In:
France, R., Rumpe, B. (eds.) UML 1999. LNCS, vol. 1723, pp. 83–98. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46852-8 7

17. Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and
collaborations. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol.
2469, pp. 395–414. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45739-9 23

18. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

19. Liu, S., et al.: A formal semantics for complete UML state machines with com-
munications. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp.
331–346. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-
8 23

20. Mediouni, B.L.: Modeling and Analysis of Stochastic Real-Time Systems. Ph.D.
thesis, Grenoble Alpes University, France (2019). https://tel.archives-ouvertes.fr/
tel-02305867

21. Mediouni, B.L., Nouri, A., Bozga, M., Dellabani, M., Legay, A., Bensalem, S.:
SBIP 2.0: statistical model checking stochastic real-time systems. In: Lahiri, S.K.,
Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 536–542. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01090-4 33

22. MRMC: MRMC tool (2011). http://www.mrmc-tool.org
23. Muniz, A.L.N., Andrade, A., Lima, G.: Integrating UML and UPPAAL for design-

ing, specifying and verifying component-based real-time systems. Innov. Syst.
Softw. Eng. 6, 29–37 (2009)

24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science. IEEE Computer Society, USA (1977)

25. Siyuan, H., Hong, Z.: Towards transformation from UML to Event-B. In: 2015
IEEE International Conference on Software Quality, Reliability and Security -
Companion, pp. 188–189 (2015). https://doi.org/10.1109/QRS-C.2015.39

26. UML2: Unified Modeling Language (Version 2.5.1). Object Management Group
(2017)

27. Younes, H.L.S.: Ymer: a statistical model checker. In: Etessami, K., Rajamani,
S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005).
https://doi.org/10.1007/11513988 43

28. Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state
machines. In: 2010 Fourth International Conference on Secure Software Integration
and Reliability Improvement Companion (2010)

https://doi.org/10.1007/3-540-45140-4_28
https://doi.org/10.1007/3-540-45140-4_28
https://doi.org/10.17487/RFC7519
https://doi.org/10.1007/3-540-46852-8_7
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/3-540-45739-9_23
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-38613-8_23
https://doi.org/10.1007/978-3-642-38613-8_23
https://tel.archives-ouvertes.fr/tel-02305867
https://tel.archives-ouvertes.fr/tel-02305867
https://doi.org/10.1007/978-3-030-01090-4_33
http://www.mrmc-tool.org
https://doi.org/10.1109/QRS-C.2015.39
https://doi.org/10.1007/11513988_43

Composable Partial Multiparty Session
Types

Claude Stolze, Marino Miculan(B) , and Pietro Di Gianantonio

Dept. of Mathematics, Computer Science and Physics, University of Udine,
Udine, Italy

{claude.stolze,marino.miculan,pietro.digianantonio}@uniud.it

Abstract. We introduce partial sessions and partial (multiparty) ses-
sion types, in order to deal with open systems, i.e., systems with missing
components. Partial sessions can be composed, and the type of the result-
ing system is derived from those of its components without knowing any
suitable global type nor the types of missing parts. Incompatible types,
due to e.g. miscommunications or deadlocks, are detected at the merging
phase. We apply these types to a process calculus, for which we prove
subject reduction and progress, so that well-typed systems never violate
the prescribed constraints. Therefore, partial session types support the
development of systems by incremental assembling of components.

Keywords: Multiparty session types · process algebras · open systems

1 Introduction

(Multiparty) session types (MPST) are a well-established theoretical and prac-
tical framework for the specification of the interactions between components
of a distributed systems [10,12,15–17,26]. The gist of this approach is to first
describe the system’s overall behaviour by means of a global type, from which
a local specification (local type) for each component can be derived. The sys-
tem will behave according to the global type if each component respects its local
type, which can be ensured by means of, e.g., static type checking [18,24]. There-
fore, session types support a top-down style of coding: first the designer specifies
the behaviour from a global perspective, then the programmers are given the
specifications for their modules. On the other hand, these session types do not
fit well bottom-up programming models, where systems are built incrementally
by composing existing reusable components, possibly with dynamic bindings. In
these situations, components could offer “contracts” in the form of, e.g., session
types; then, when these components are connected together, we would like to
derive the contract for the resulting system from components’ ones. The system
becomes a new component which can be used in other assemblies, and so on.

Work supported by the Italian MIUR project PRIN 2017FTXR7S IT MATTERS
(Methods and Tools for Trustworthy Smart Systems).

c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 44–62, 2021.
https://doi.org/10.1007/978-3-030-90636-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_3&domain=pdf
http://orcid.org/0000-0003-0755-3444
http://orcid.org/0000-0002-0638-4610
https://doi.org/10.1007/978-3-030-90636-8_3

Composable Partial Multiparty Session Types 45

To this end, we need to infer the type for an open system (i.e., where some
parts may be still missing) using the types of the known components, in a com-
positional way and without knowing any global type. This is challenging. As an
example, let us consider a protocol from [10] with three participants: a server s,
an authorization server a and some client c. First, s sends to c either a request
to login, or to cancel. In the first case, c sends a password to a, and a sends a
boolean to s (telling whether c is authorized). In the second case, c tells a to
quit. Using the syntax of [10], the two server processes have the following types:

Ss := c⊕
{

login.a&auth(Bool),
cancel

}
Sa := c&

{
passwd(Str).s⊕auth(Bool),
quit

}

Let us suppose that we have implementations a and s for Sa, Ss. To prevent
miscommunications, we would like to verify that these two processes work well
together; e.g., we have to ensure that a can send the message auth(Bool) to s iff
s is waiting for it. This corresponds to see these two processes as a single system
a|s, and to check that a|s is well-typed without knowing the behaviour of clients;
more precisely, we have to figure out a session type for a|s from Sa and Ss. This
is difficult, because the link that propagates the choice made by s to a is the
missing client c, so we have to “guess” its role without knowing it.

In this paper, we address this problem by introducing partial sessions and
partial (multiparty) session types. Partial session types generalise global types
with the possibility to type also partial (or open) sessions, i.e., where some
participant may be missing. The key difference is that while a global type is
a complete, “platonistic” description of the protocol, partial session types rep-
resent the subjective views from participants’ perspectives. We can merge two
sessions with the same name but from two different “point of views”, whenever
their types are compatible; in this case, we can compute the new, unified, session
type from those of the components. In this way, we can guarantee important
properties (e.g., absence of deadlocks) about partial session without knowing all
participants beforehand, and without a complete global type. In fact, the distinc-
tion between local and global types vanishes: local types correspond to partial
session types for sessions with a single participant, and global types correspond
to finalized partial session types, i.e., in which no participant is missing.

Defining “compatibility” and how to merge partial session types is technically
challenging. Intuitively, the semantics of a partial session type is the set of all
possible execution traces (which depend on internal and external choices). We
provide a merging algorithm computing a type covering all the possible synchro-
nizations of these traces. Incompatible types, due to, e.g., miscommunications
or deadlocks, are detected when no synchronization is possible. Also the notion
of progress has to be revisited, to accommodate the case when a partial session
cannot progress not due to a deadlock, but due to some missing participant.

The rest of the paper is organized as follows. In Sect. 2 we introduce a formal
calculus for processes communicating over multiparty sessions. Partial session
types are presented in Sect. 3, and the type system is in Sect. 4. Central to this
type system is the merging algorithm, which we describe in Sect. 5. Subject

46 C. Stolze et al.

reduction and progress are given in Sect. 6. Finally, comparison with related
work are in Sect. 7, and conclusions are in Sect. 8.

A prototype implementation of the merging algorithm can be found at
https://github.com/cstolze/partial-session-types-prototype.

2 A Calculus for Processes over Multiparty Sessions

Our language for processes is inspired by [10], in turn inspired by [28]; as in
those works, we consider synchronous communications. We note p, q, p1, p

′, . . .
for participant names, belonging to some set P; p̃ for a finite non-empty set of
participants {p1, . . . , pn}. The syntax of processes is as follows:

P,Q,R ::= xpq̃ � ini.P | xpq � (P,Q) | xpq̃(y).P | xpq(y).(P ‖ Q)
| close(x) | wait(x).P | (P |x Q) | (νx)P | P + Q

The process xpq̃ � ini.P sends label ini in session x, as participant p, to q̃, and
proceeds as P . This label is received by processes of the form xqp�(Q1, Q2), which
then proceeds as Qi. The process xpq̃(y).P creates a fresh subsession handler y,
sends it to q̃, and proceeds as P . This handler is received by processes of the
form xqp(y).(Q ‖ R) which forks a process Q (dedicated to y) in parallel to the
continuation R (on x)1. We compose the processes P and Q through session x
with P |x Q. close(x) is the neutral element for |x, while wait(x).P closes session
x when all the other participants are gone. (νx)P is the standard restriction,
and P + Q is the standard non-deterministic choice.

The session name y is bound in expressions of the form (νy)P , xpq̃(y).P ,
and xpq(y).(P ‖ Q). Free names of a process P (noted fn(P)) are the set of free
names of sessions appearing in P .

In order to define the operational semantics, we first introduce the usual
notion of contextual equivalence.

Definition 2.1 (Contexts). C[] ::= | (νx)C[] | (C[] |x P) | (P |x C[])

Definition 2.2 (Equivalence ≡). The relation ≡ is the smallest equivalence
relation closed under contexts (that is, P ≡ Q ⇒ C[P] ≡ C[Q]) satisfying the
following rules (we suppose that x, y and z are different session names):

P |x Q ≡ Q |x P (P |x Q) |x R ≡ P |x (Q |x R)

P |x close(x) ≡ P ((νx)P) |z Q ≡ (νx)(P |z Q) x �∈ fn(Q)

(νx)(νy)P ≡ (νy)(νx)P (P |x Q) |y R ≡ P |x (Q |y R) x �∈ fn(R), y �∈ fn(P)

We can see that processes have the structure of a commutative monoid, thus we
will use Πz

i Pi as a shorthand for P1 |z · · · |z Pn.
1 From a computational point of view, this “parallel input” corresponds to the pro-

gramming practice to selectively share sessions between processes. This constructor
allows us to enforce a discipline on the shared sessions in order to avoid deadlocks
between processes. Moreover, it is motivated by connections with linear logic [10,28].

https://github.com/cstolze/partial-session-types-prototype

Composable Partial Multiparty Session Types 47

xpq̃(y).R |x Πx
i (x

qip(y).(Pi Qi))
x:p→q̃:−→ (νy)(R |y Πy

i Pi) |x Πx
i Qi (send)

xpq̃ inj .R |x Πx
i xqip (P1,i, P2,i)

x:p→q̃:&inj−→ R |x Πx
i Pj,i (case)

(νx)(wait(x).P) τ−→ P if x fn(P) (wait)

P1 + P2
+−→ Pj j ∈ {1, 2} (choice)

P
x:γ−→ Q

(νx)P τ−→ (νx)Q

P
α−→ Q ∀γ, α = x : γ

(νx)P α−→ (νx)Q

P
α−→ Q

P |x R
α−→ Q |x R

P
α−→ Q

R |x P
α−→ R |x Q

P ≡ P P
α−→ Q Q ≡ Q

P
α−→ Q

Fig. 1. Reduction for processes (where q̃ = {q1, . . . , qn} and i ranges over 1..n).

Definition 2.3 (Reductions for processes). The actions α for processes are
defined as:

α ::= + | x : p → q̃ : 〈·〉 | x : p → q̃ : &ini | τ

We may write x : γ for either x : p → q̃ : 〈·〉 or x : p → q̃ : &ini.
We note P

α−→ Q for a transition from P to Q under the action α. This
relation is defined by the rules in Fig. 1.

Note that the typing rules will ensure x does not escape its scope when reducing
(νx)(wait(x).P) into P .

Example 2.1. As a running example, let us consider three participants p, q, r. p
chooses whether to send a message to r or not; this choice is communicated to
r through an intermediate participant q.

Pp := (xpq � in1.x
pr(y).wait(y).close(x)) + (xpq � in2.close(x))

Pq := xqp � (xqr � in1.close(x), xqr � in2.close(x))
Pr := xrq � (xrp(y)(close(y) ‖ close(x)), close(x))

Here is an example of execution:

Pp |x Pq |x Pr
+−→ xpq � in2.close(x) |x Pq |x Pr

x:p→q:&in2−→ xqr � in2.close(x) |x Pr
x:q→r:&in2−→ close(x)

Notice that p can start the session with just q and then wait for input from r:

Pp |x Pq
+−→ xpq � in2.close(x) |x Pq

x:p→q:&in2−→ xqr � in2.close(x)

48 C. Stolze et al.

3 Partial Multiparty Session Types

Partial multiparty session types (or just “session types”) define the behaviour
of a partial session. Their syntax is as follows (where i ∈ {1, 2}):

G ::= p → q̃ : &ini;G | p → q̃ : 〈G〉;G | G ⊕ G | G & G | end | close | 0 | ω

The set of participant names appearing in G is denoted by fn(G).
Informally, p → q̃ : m;G means that the participant p sends the message m

to the participants in q̃, then the session continues with G. The message &ini

is a label, while 〈G〉 is a fresh session handler of type G. end means that the
session ends and the process survives, while close means that the session and
the process end. G1 ⊕ G2 (resp. G1 & G2) denotes an internal (resp. external)
choice. Internal choices are made by local participants of the session, contrary
to external choices; notice that, in contrast with standard practice, sending or
receiving a label &ini is unrelated from the choices done with ⊕ or & . Finally,
we add the empty type 0, which denotes no possible executions (and it is the
unit of ⊕), and the inconsistent type ω, which denotes an error in the session.

Example 3.1. Continuing our running Example 2.1, the following should be the
types of each participant.

Gp := (p → q : &in1; p → r : 〈end〉; close) ⊕ (p → q : &in2; close)
Gq := (p → q : &in1; q → r : &in1; close) & (p → q : &in2; q → r : &in2; close)
Gr := (q → r : &in1; p → r : 〈close〉; close) & (q → r : &in2; close)

These types are actually assigned to Pp, Pq, Pr by the type system we will present
in Sect. 4. But moreover, we would like to be able to type also compositions of
these processes; e.g. the types of Pp |x Pq and Pq |x Pr should be the following:

Gp,q := (p → q : &in1; q → r : &in1; p → r : 〈end〉; close)
⊕ (p → q : &in2; q → r : &in2; close)

Gq,r := (p → q : &in1; q → r : &in1; p → r : 〈close〉; close)
& (p → q : &in2; q → r : &in2; close)

Moreover, notice that Gp,q describes also the behaviour of Pp |x Pq |x Pr. As we
will see in the next section, these types can be inferred from Gp, Gq, Gr in a
compositional way.
�

A chain of communications is a type of the form C1;C2; . . . ;Cn. Messages
m and communications C are defined as follows:

m ::= &ini | 〈G〉 C ::= p → q̃ : m | end | close | 0 | ω | 1

The communications end, close, 0, ω are also types and they are called terminal ;
the only non-terminal communications are p → q̃ : m and 1, the latter repre-
senting any communication which is not observable from the current process.

Composable Partial Multiparty Session Types 49

As such, we can prefix 1 to any session type G by defining 1;G := G. We denote
by Cω the set of all communications, and by C = Cω \{ω, 0} the set of executable
communications. We pose Gω the set of all session types, and G the set of session
types where there is no occurence of 0 and ω. By default, we will use Gω, while
G will be used to type processes in Sect. 4.

In the following, we denote by S, S1, . . . sets of participants, and we use the
shorthand S1
 S2 for S1∩S2 = ∅. A set of participant S will be called viewpoint.

Definition 3.1 (Independence relation). We define the independence of
communications relative to a set of participants S as the smallest symmetric
relation IS such that C IS 1 for any C, and (p → q̃ : m) IS (p′ → q̃′ : m′)
whenever ({p} ∪ q̃) ∩ ({p′} ∪ q̃′)
 S.

Informally, C1 IS C2 means that the common participants of C1 and C2 are not
in S. This independence is relative to the viewpoint of S, because when C1 IS C2,
the viewpoint of S cannot discriminate between C1;C2;G and C2;C1;G, as is
shown in Eq. (1) below. In fact, we can define an equivalence relation between
session types relative to S:

Definition 3.2 (Equivalence relation). For any set of participants S, we
define the relation �S on session types as the smallest congruence verifying the
following properties:

C1;C2;G �SC2;C1;G (if C1 IS C2) (1)
G1 & (G2 ⊕ G3) �S(G1 & G2) ⊕ (G1 & G3) G & ω �S G G & 0 �S 0

G1 & (G2 & G3) �S(G1 & G2) & G3 G & G �S G G1 & G2 �S G2 & G1

G1 ⊕ (G2 ⊕ G3) �S(G1 ⊕ G2) ⊕ G3 G ⊕ G �S G G ⊕ 0 �S G

C; (G1 & G2) �S(C;G1) & (C;G2) C;ω �S ω C; 0 �S 0

C; (G1 ⊕ G2) �S(C;G1) ⊕ (C;G2) G1 ⊕ G2 �S G2 ⊕ G1

We can see that the operations ⊕ and &, together with the constants 0 and
ω, form a unital commutative semiring. We note

⊕{G1, . . . , Gn} for G1 ⊕ . . . ⊕
Gn, and

˘{G1, . . . , Gn} for G1 & . . . & Gn. In particular,
⊕

∅ = 0, and˘
∅ = ω. Equation (1) allows for the “out of order” execution of independent

communications. Notice that in general G ⊕ ω ��S ω because the behaviour of a
process of type G ⊕ ω is not necessarily always inconsistent.

The fact that choices G1 ⊕ G2 or G1 & G2 are unrelated from the action of
sending a choice allows us to move these operators around without changing the
meaning. Hence, we can consider disjunctive normal forms of session types.

Definition 3.3 (Disjunctive Normal Form). A session type G is in Dis-
junctive Normal Form (DNF), if it is of the form

⊕{˘A1, . . . ,
˘

An} with the
Ai being sets of chains of communications where every message 〈G′〉 is in DNF.

In DNF a type can be seen as a set of sets of traces (sequences of communica-
tions), the intuition being that a trace describes a single possible interaction of
a process. A set of traces defines a deterministic strategy followed by a single

50 C. Stolze et al.

process P , describing how P reacts for any possible choice from other processes.
A set of sets of traces describes all the possible strategies that P can follow once
it has selected all its possible internal choices. So, describing a behaviour in DNF
is like saying that a process P starts by anticipating all possible internal choices
for all possible interactions during execution. After that, P becomes deterministic
and reacts in a single possible way to communications of other processes.

The equivalence relation on types allows us to rewrite any type in a DNF.

Proposition 3.1. For any type G and set of participants S, we can compute a
G′ in DNF such that G′ �S G.

4 Type System

In this section we introduce the type system for processes. A key point is that
the type of a session are relative to the participants of that session.

Definition 4.1 (Environment). A typing declaration for session x is a triple
x : 〈G | S〉 where G ∈ G and S ⊆ P. S is the set of local participants of x.

An environment Γ is a finite set of typing declarations Γ = x1 : 〈G1 |
S1〉, . . . , xn : 〈Gn | Sn〉, such that x1, . . . xn are all distinct.

The main differences between our environments and those in [10] are that ses-
sion types replace local types, and each session is endowed with a set of local
participants, in addition to its session type.

Definition 4.2 (Equivalent environments). We define � on environments
as the smallest equivalence relation satisfying the following rule:

Γ1 � Γ2 G1 �S G2

Γ1, x : 〈G1 | S〉 � Γ2, x : 〈G2 | S〉

The typing judgment is P � Γ , whose rules are shown in Fig. 2.
Rules (send), (recv), (seli), and (case) deal with communication. Differently

from most type systems (see e.g. [10]), the send and receive actions are typed
by the same global type, and not by dual types: in our approach the duality is
given by the set of participants, which is either the sender or the receiver.

Rules (close) and (wait) correspond respectively to the 1 and ⊥ rules in
linear logic, and they both assume there is no named participant, therefore the
set of inner participants in the conclusion is empty.

Rule (+) types an internal choice between two processes, but this internal
choice is not done for a single session but for the whole process, hence we need
to add ⊕ to every type. If the internal choice is irrelevant for some session x,
that is, we have x : 〈G | S〉 in the two premises, then in the conclusion we would
have x : 〈G⊕G | S〉, which is equivalent to the former. We can of course rewrite
types into equivalent ones with rule (�).

Rule (ν) allows us to create a local, restricted session. To correctly type
the local session, we need to check that the its type is complete, since no other

Composable Partial Multiparty Session Types 51

P Γ, y : G1 | {p , x : G2 | {p

xpq̃(y).P Γ, x : p → q̃ : G1 ;G2 | {p
(send)

P Γ1, y : G1 | {q Q Γ2, x : G2 | {q q ∈ q̃

xqp(y).(P Q) Γ1, Γ2, x : p → q̃ : G1 ;G2 | {q
(recv)

P Γ, x : G | {p

xpq̃ ini.P Γ, x : p → q̃ : &ini;G | {p
(seli)

P Γ, x : G1 | {q Q Γ, x : G2 | {q q ∈ q̃

xqp (P, Q) Γ, x : (p → q̃ : &in1;G1) & (p → q̃ : &in2;G2) | {q
(case)

P x1 : G1 | S1 , . . . , xn : Gn | Sn Q x1 : G1 | S1 , . . . , xn : Gn | Sn

P + Q x1 : G1 ⊕ G1 | S1 , . . . , xn : Gn ⊕ Gn | Sn

(+)

P Γ1, x : G1 | S1 Q Γ2, x : G2 | S2 S1 2 G3 S1 S2 G1
S1∨S2 G2

P |x Q Γ1, Γ2, x : G3 | S1 S2
(|)

close(x) x : close | ∅
(close) P Γ

wait(x).P Γ, x : end | {p
(wait)

P Γ, x : G | S G ↓ S

(νx)P Γ
(ν) P Γ Γ Γ

P Γ
()

P Γ, x : G | S1 S2 fn(G)
P Γ, x : G | S1 ∪ S2

(extra)

Fig. 2. Type system for processes.

participants will be able to join that session afterward. To this end, we introduce
the notion of finalized session type. Intuitively, a type is finalized for a given
viewpoint (i.e., a set of participants) if all participants involved in the session
are in the viewpoint, there are no occurence of ω or close (because we need to
avoid deadlocks and miscommunications), and that the end of the session is not
the end of the process (because we are within a subsession).

Definition 4.3 (Finalized session type). The judgment G ↓ S, meaning that
the session type G is finalized for the set of participants S, is defined as follows:

{p} ∪ q̃ ⊆ S G1 ↓ {p} ∪ q̃ G2 ↓ S

p → q̃ : 〈G1〉;G2 ↓ S

G1 ↓ S G1 �S G2

G2 ↓ S end ↓ S

G1 ↓ S G2 ↓ S

G1 ⊕ G2 ↓ S

G1 ↓ S G2 ↓ S

G1 & G2 ↓ S

{p} ∪ q̃ ⊆ S G ↓ S

p → q̃ : &ini;G ↓ S 0 ↓ S

Rule (|) is one of the key novelties of this type system. This rule allows us to
connect two processes through a shared session merging their respective types.
The shared session has a merged type, computed by G1

S1∨S2 G2. The definition

52 C. Stolze et al.

of this operator is quite complex and is postponed to Sect. 5. For the time being,
it is enough to know that G1

S1∨S2 G2 may not be in G, e.g. when G1, G2

are not compatible. To guarantee that only valid types are used for the merged
session, we have to find some G3 ∈ G such that G3 �S1�S2 G1

S1∨S2 G2.
The (extra) rule allows us to add participants which actually do not interact

with the sessions; this is needed for the Subject Reduction.

Remark 4.1. Our rule for parallel composition is similar to a cut rule for linear
logic. It may be interesting to compare our rule with the cut rule for linear logic
[14], that for binary session types [28], and that for multiparty session types [10]:

� Γ, A � Δ, A⊥

� Γ, Δ

P � Γ, x : A Q � Δ, x : A⊥

(νx : A)(P | Q) � Γ, Δ

Pi � Γi, x
pi : Ai G � {pi : Ai}i

(νx : G)(Πx
i Pi) � {Γi}i

Each of these rules corresponds to the applications of two rules of our system: the
rule (|) which merges partial sessions, and the rule (ν) which closes the session.
For instance, if we assume that A1, A2, and B are suitable session types, we have
the following derivation:

P � Γ, x : 〈A1 | S1〉 Q � Δ, x : 〈A2 | S2〉 A1
S1∨S2 A2 �S1�S2 B

P |x Q � Γ, Δ, x : 〈B | S1 � S2〉 B ↓ S1 � S2

(νx)(P |x Q) � Γ, Δ

In the case of a multiparty session involving n participants, we would apply (|)
n−1 times, and then the (ν) rule to close the session. This correspondence (in a
logical setting and for binary choreographies) have been previously observed in
[9], where the cut rule above is split into two rules (called (Conn) and (Scope)).

5 Merging Partial Session Types

The central part of the type system is the merging algorithm that infers the
result of interaction of two partial session types. In this section, we will define
the merge function G1

S1∨S2 G2, where G1, G2 describe the behavior of a session
from the viewpoint of the local participants found in the set S1 and S2, respec-
tively. G1

S1∨S2 G2 then describes the behaviour of the session from the unified
viewpoint S1 ∪S2. In particular, if G1 and G2 are intuitively incompatible, then
G1

S1∨S2 G2 should contain some occurrence of ω.
To merge two types, we can consider them in DNF; in this way we can recur-

sively reduce the problem to merging chains of communications. Informally, we
merge two sequences of communications by considering all possible reorderings
which are compatible with each other. This give us a set of all possible merged
behaviours, which we glue together using external choices (&). Thus, two types
are compatible if they can agree on at least a pair of merged sequences of com-
munications, whatever their internal choices; if no such sequences exist, we get
ω as result. Extra complexity is given by the fact that a single communica-
tion in the form p → q̃ : 〈G〉 contains a general type; therefore, the func-
tion mcommS1,S2(C1, C2) for merging single communications and the function
G1

S1∨S2 G2 for merging session types are mutually recursive.

Composable Partial Multiparty Session Types 53

We also need the following helper functions:

– the partial function contS(G,C) takes a chain of communications G and a
communication C as input, and returns a type that corresponds to what
remains in G after having executed C (up to �S)

– the decidable predicate C1
S1♥S2 C2 tells us whether C1 and C2 are mergeable

(from their respective viewpoints S1, S2)
– the total function syncS1,S2

(G1, G2) takes two chains of communications G1

and G2 as input, and returns all possible tuples (C1, G
′
1, C2, G

′) such that
C1;G′

1 �S1 G1, C2;G′
2 �S2 G2 and C1 and C2 are mergeable

– finally, the partial function mapS1,S2
(f)(G1, G2) takes a (partial) function

f : C × C ⇀ C and two session types in DNF as arguments, and maps f on
the pair (G1, G2).

We can then define the partial function mcommS1,S2(C1, C2) and the total
function G1

S1∨S2 G2. These functions are actually non-deterministic, but
G1

S1∨S2 G2 is deterministic up to �.
In order to prove termination of these functions, we define the length l of

session types; besides, we define also the height h of communications and session
types as the maximal number of nested subsessions. Formally, we have:

l(G1 & G2) := l(G1) + l(G2)
l(G1 ⊕ G2) := l(G1) + l(G2)

l(C;G) := 1 + l(G)
l(G) := 1 otherwise.

h(G1 & G2) := max(h(G1), h(G2))
h(G1 ⊕ G2) := max(h(G1), h(G2))

h(C;G) := max(h(C), h(G))
h(p → q̃ : 〈G〉) := 1 + h(G)

h(C) := 0 otherwise.

5.1 Mapping Merging Functions over Session Types

Definition 5.1 (cont). The partial function contS(G,C) takes as input a chain
of communications G and a communication C, and returns some G′ in DNF
such that G �S C;G′. It is undefined if such G′ does not exist.

Intuitively, contS(G,C) is a kind of Brzozowski derivative that tells us what
happens in G after the communication C.

Proposition 5.1. The function cont is computable, and moreover l(C;G′) =
l(G) and h(C;G′) = h(G).

Note that dom(contS(G,)) is finite, and can be computed using Eq. (1)
repeatedly.

Definition 5.2 (Function sync). Let G1, G2 be chains of communications in
DNF. Let A1 = {(C,G′) | C ∈ dom(contS(G1,)), G′ = contS(G1, C)}, and
A2 = {(C,G′) | C ∈ dom(contS(G2,)), G′ = contS(G2, C)}. We then define:

syncS1,S2
(f)(G1, G2) := {(C1, C2, G′

1, G′
2) | (C1, C2) �= (1, 1), f(C1, C2) is defined,

(C1, G′
1) ∈ A1, (C2, G′

2) ∈ A2}.

54 C. Stolze et al.

Intuitively, syncS1,S2
(f)(G1, G2) returns a set containing all possible pairs of

communications that can be merged, as well as their continuations.
It is important to know whether a communication C1 (from the viewpoint

S1) and a communication C2 (from the viewpoint S2) can correspond to the
same communication; in this case, we say that they are mergeable. Formally,
this notion is defined by the following relation.

Definition 5.3 (Mergeability). We define C1
S1♥S2 C2 as follows:

{p} ∪ q̃1 ∪ q̃2 ⊆ S1 ∪ S2 ⇒ (G1
S1∨S2 G2) ↓ S1 ∪ S2

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2

p → q̃1 : 〈G1〉 S1♥S2 p → q̃2 : 〈G2〉
p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2

p → q̃1 : &ini
S1♥S2 p → q̃2 : &ini 1 S1♥S2 1

C2
S2♥S1 C1

C1
S1♥S2 C2

({p} ∪ q̃)
 S1

1 S1♥S2 p → q̃ : m close S1♥S2 close close S1♥S2 end

The first rule deserves some explanations. In the first hypothesis, G1 and G2

describe sessions whose participants can be only in {p} ∪ q̃1 ∪ q̃2; if all these
participants are in S1 ∪ S2, then after the merge all the participants are present
and therefore the communication must be safe, because no other participant
may join later. This means that, in this case, we have to check that the merge
of G1 and G2 is finalized. The second hypothesis (and dually the third one)
corresponds to the fact that in the (send) rule of Fig. 2, the sender specifies
all receiving participants, while in (recv) a receiver may not know about other
receivers; therefore, if p → q̃1 : 〈G1〉 describes the communication from the point
of view of the sender (i.e., p ∈ S1), then q̃2 is a set of receivers only, and must
be contained in q̃1. The fourth (and dually the fifth) hypothesis means that if a
participant which is known to a process (i.e., in S1) appears as receiver for other
process (i.e., in q̃2), then it must appear as a received also by the first process.

Proposition 5.2. C1
S1♥S2 C2 is decidable.

Definition 5.4 (Function map). Let S1, S2 be two sets of participants, two
types G1, G2 ∈ C and a (partial) function f : C × C ⇀ C such that

– G1 and G2 are in DNF
– for any C1, C2, we have that f(C1, C2) is a terminal communication iff it is

defined and both C1 and C2 are terminal
– if f(C1, C2) is defined, then either both C1 and C2 are terminal, or none of

them are.

Then, mapS1,S2
(f)(G1, G2) is defined recursively over G1, G2 as follows:

– First cases:

mapS1,S2
(f)(G1 ⊕ G2, G3) := mapS1,S2

(f)(G1, G3) ⊕ mapS1,S2
(f)(G2, G3)

mapS1,S2
(f)(G1, G2 ⊕ G3) := mapS1,S2

(f)(G1, G2) ⊕ mapS1,S2
(f)(G1, G3)

Composable Partial Multiparty Session Types 55

– If neither of the cases above apply, then we have:

mapS1,S2
(f)(G1 & G2, G3) := mapS1,S2

(f)(G1, G3) & mapS1,S2
(f)(G2, G3)

mapS1,S2
(f)(G1, G2 & G3) := mapS1,S2

(f)(G1, G2) & mapS1,S2
(f)(G1, G3)

– If G1, G2 are both chains of communications and at least one of them is not
a terminal communication, we pose B := syncS1,S2

(f)(G1, G2) and we have:
• If G1 or G2 ends with 0, mapS1,S2

(f)(G1, G2) := 0.
• If G1 or G2 ends with ω, or if B = ∅, then mapS1,S2

(f)(G1, G2) := ω.
• Otherwise:

mapS1,S2
(f)(G1, G2) :=

˘{f(C1, C2);mapS1,S2
(f)(G′

1, G
′
2) |

(C1, C2, G
′
1, G

′
2) ∈ B}

– If G1 and G2 are both terminal communications, then:

mapS1,S2
(f)(G1, G2) :=

⎧⎪⎨
⎪⎩

0 if G1 or G2 is 0
f(G1, G2) if f(G1, G2) is defined
ω otherwise.

The two conditions on f guarantee that mapS1,S2
(f)(G1, G2) is well-defined in

the last two cases, when f is applied to G1, G2 or to the chains C1, C2.

Proposition 5.3. Termination of map is ensured by induction on l(G1)+l(G2).

Note that, when we computing mapS1,S2
(f)(G1, G2), every application of f is of

the form fS1,S2(C1, C2), where h(C1) + h(C2) � h(G1) + h(G2).

5.2 Merging Communications and Session Types

We now define the partial function mcommS1,S2(C1, C2) which merges compati-
ble communications C1 (from the viewpoint S1) and C2 (from the viewpoint S2)
and returns, if possible, the new communication from the merged viewpoints
S1 ∪ S2. We also define by mutual recursion the merging function for session
types, which is just a shorthand for map applied to mcomm:

G1
S1∨S2 G2 := mapS1,S2

(mcommS1,S2)(G1, G2)

We suppose that G1 and G2 are in DNFs, but it can be applied to any session
types by rewriting them in DNF.

Definition 5.5 (Function mcomm). If C1
S1♥S2 C2, then:

mcommS1,S2(p → q̃ : &ini, p → q̃′ : &ini) := p → (q̃ ∪ q̃′) : &ini

mcommS1,S2(p → q̃ : 〈G1〉, p → q̃′ : 〈G2〉) := p → (q̃ ∪ q̃′) : 〈G1
S1∨S2 G2〉

mcommS1,S2(1, C) := C

mcommS1,S2(C, 1) := C

mcommS1,S2(C, close) := C

mcommS1,S2(close, C) := C

Otherwise, mcommS1,S2(C1, C2) is undefined.

56 C. Stolze et al.

Proposition 5.4. Termination is ensured by induction on h(C1) + h(C2).

Example 5.1. Continuing Example 3.1, let us recall the types of participants p, r:

Gp := G′
p ⊕ G′′

p Gr := G′
r & G′

r

G′
p := p → q : &in1; p → r : 〈end〉; close G′′

p := p → q : &in2; close

G′
r := q → r : &in1; p → r : 〈close〉; close G′′

r := q → r : &in2; close

We have that:

dom(cont{p}(G′
p)) = p → q : &in1 dom(cont{p}(G′′

p)) = p → q : &in2

dom(cont{r}(G′
r)) = q → r : &in1 dom(cont{r}(G′′

r)) = q → r : &in2

As a consequence, we have for instance that: sync{p},{q}(G1, G
′
1) = {(p → q :

&in1, 1, (p → r : 〈end〉; close), G′
1), (1, q → r : &in1, G1, (p → r : 〈close〉; close))}.

We have that:

G′
p

{p}∨{r} G′
r = (p → q : &in1; q → r : &in1; p → r : 〈end〉; close) &

(q → r : &in1; p → q : &in1; p → r : 〈end〉; close)
G′

p
{p}∨{r} G′′

r = (p → q : &in1; q → r : &in2;ω) & (q → r : &in2; p → q : &in1;ω)

G′′
p

{p}∨{r} G′
r = (p → q : &in2; q → r : &in1;ω) & (q → r : &in1; p → q : &in2;ω)

G′′
p

{p}∨{r} G′′
r = (p → q : &in2; q → r : &in2; close) &

(q → r : &in2; p → q : &in2; close)

and finally

Gp
{p}∨{r} Gr = ((G′

p
{p}∨{r} G′

r) & (G′
p

{p}∨{r} G′′
r))⊕

((G′′
p

{p}∨{r} G′
r) & (G′′

p
{p}∨{r} G′′

r))

�{p,r} (p → q : &in1; q → r : &in1; p → r : 〈end〉; close)⊕
(p → q : &in2; q → r : &in2; close)

6 Subject Reduction and Progress

In this section we state two main properties of session types, subject reduction
and progress, which guarantee that “well-typed systems cannot go wrong”. To
this end, we first define a reduction semantics for partial session types.

Definition 6.1 (Reductions for session types). Actions γ for session types
are defined as

γ ::= + | p → q̃ : 〈·〉 | p → q̃ : &ini

We write G1
γ−→S G2 for a transition from G1 to G2 from the viewpoint of

S under the action γ. This relation is defined as follows:

G1 ⊕ G2
+−→S Gi p → q̃ : 〈G1〉;G2

p→q̃:〈·〉−→ S G2

p → q̃ : &ini;G
p→q̃:&ini−→ S G

G1
γ−→S G′ G1 �S G2

G2
γ−→S G′

Composable Partial Multiparty Session Types 57

Note that transitions are not deterministic, in particular G �S G⊕G, there-
fore we always have G

+−→ G, which is useful in case we are reducing an internal
choice which is irrelevant for G.

Definition 6.2 (Reduction for environments). Reductions for environ-
ments are labelled by actions for processes α, and are defined as follows:

· α−→ · Γ
τ−→ Γ

G1
+−→S G2 Γ1

+−→ Γ2

x : 〈G1 | S〉, Γ1
+−→ x : 〈G2 | S〉, Γ2

G1
γ−→S G2

x : 〈G1 | S〉, Γ x:γ−→ x : 〈G2 | S〉, Γ
Γ1

y:γ−→ Γ2 x �= y

x : 〈G | S〉, Γ1
y:γ−→ x : 〈G | S〉, Γ2

The type system enjoys the following properties:

Theorem 6.1 (Subject equivalence). If P � Γ and P ≡ Q, then Q � Γ .

From now on, we can consider processes equal modulo ≡.

Theorem 6.2 (Subject reduction). If P1 � Γ1 and P1
α−→ P2, then for

some Γ2, we have P2 � Γ2 and Γ1
α−→ Γ2.

Remark 6.1. In earlier work about MPST, usually subject reduction requires
some consistency condition over the typing environment Γ (see, e.g., [26]). In
our development, this condition is not explicitly needed because the type rules
for processes ensure that environments are consistent; hence, the derivability of
P1 � Γ1 implies that no session in Γ1 has the type ω.

Progress. In usual session types, the progress property means that well-typed
systems can always proceed, and in particular they are deadlock-free. In our
case, well-typed systems can still contain processes which cannot proceed not
due to a deadlock or miscommunication but due to some missing participant.

Example 6.1. Let us consider P = xpq � &in1.close(x). This process is typable
(P � x : 〈p → q : &in1; close | {p}〉), yet it is stuck. It can be completed into a
redex P |x Q, with Q = xqp � (Q1, Q2). In fact, P can be seen as the restriction
of P |x Q on session x with participants in {p}. Hence, P is preempted by x and
so it can be considered a correct process, waiting for the missing participant.

Therefore, in order to define the progress property for our system, we need to
define the restriction of a process to a given set of local participants.

Definition 6.3 (Restriction). We define the restriction of a term P on ses-
sion x with participants in S (noted P �S x) as follows:

xpq̃(y).P �S x = close(x) if p �∈ S xpq(y).(P ‖ Q) �S x = close(x) if p �∈ S

xpq̃ � ini.P �S x = close(x) if p �∈ S xpq � (P,Q) �S x = close(x) if p �∈ S

P |x Q �S x = (P �S x) |x (Q �S x) P �S x = P otherwise

58 C. Stolze et al.

Definition 6.4 (Preemption). We say that a session x with type G ∈ G and
local participants S preempts P (noted x : 〈G | S〉 �g P) when one of these
condition occurs:

– x : 〈p → q̃ : 〈G1〉;G2 | S〉 �g ((xpq̃(y).R |x Πx
i (xqip(y).(Pi ‖ Qi))) �S x) |x P

if G2 �S C where C is terminal, or x : 〈G2 | S − {p, q̃}〉 �g P
– x : 〈p → q̃ : &ini;G | S〉 �g (xpq̃ � ini.R |x Πx

j xqjp � (P1,j , P2,j) �S x) |x P if
G2 �S C where C is terminal, or x : 〈G | S − {p, q̃}〉 �g P

– x : 〈close | S〉 �g close(x)
– x : 〈end | S〉 �g wait(x).P
– x : 〈G1 ⊕ G2 | S〉 �g U if x : 〈G1 | S〉 �g P or x : 〈G2 | S〉 �g P
– x : 〈G1 & G2 | S〉 �g P if x : 〈G1 | S〉 �g P and x : 〈G2 | S〉 �g P
– x : 〈G | S〉 �g P if x : 〈G | S〉 �g P ′ and P ≡ P ′

Definition 6.5 (Contextual preemption). We define x : 〈G | S〉 �c P if
for some C[], P ′, we have that P ≡ C[P ′], x �∈ fn(C[]), and x : 〈G | S〉 �g P ′.

Intuitively, x : 〈G | S〉 �c P means that every local participant in S is
ready to trigger its respective communication described in G. As a consequence,
there is no deadlock for x: if all the concerned participants are present there is
a redex, otherwise we are blocked due to the absence of some sender or receiver.
The following lemma states that if a session is finalized and preempted, then the
process (with the session restricted) contains a redex.

Lemma 6.1. 1. If G ↓ S and x : 〈G | S〉 �g P , then (νx)P has a redex.
2. If G ↓ S and x : 〈G | S〉 �c P , then (νx)P has a redex.

Theorem 6.3 (Progress). If P � Γ then there is a redex in P , or for some
x : 〈G | S〉 ∈ Γ we have x : 〈G | S〉 �c P .

7 Related Work

The problem of composing session types has been faced in several related work.
Compositional choreographies are discussed in [23], with the same motivations
as ours, but from a different perspective. The authors manage to compose chore-
ographies using global types, but the global type of shared channels has to be
the same. This is in contrast with our approach, where the processes may have
different session types that we merge during the composition. Moreover, also
their typing judgments use sets of participants (there called roles); more pre-
cisely, the types for channels keep track of the “active” role, the set of all roles in
the global type, and the roles actually implemented by the choreography under
typing. On the other hand, we do not need to specify neither the complete set
of participants nor the “active” role, in typing sessions.

Synthesis of choreography from local types has been studied also in [21], but
with no notion of “partial types” and no distinction between internal/external
choice. Graphical representations of choreographies (as communicating finite-
state machines) and global types have been used in [22], where an algorithm for
constructing a global graph from asynchronous interactions is given.

Composable Partial Multiparty Session Types 59

An interesting approach based on gateways has been investigated in [2–5]: two
independent global types G1 and G2 with different participants can be composed
through participant h in G1 and k in G2 where h and k relay the message they
receive to each other. Therefore, in this approach the two session types G1, G2

are connected by the gateway but not really merged, as in our approach. Finally,
[26] do not use global types altogether: behaviours of systems are represented
by sets of local types, over which no consistency conditions are required, and
behavioural properties can be verified using model checking techniques.

A problem similar to ours is considered in [8], where the authors introduce a
type system for the Conversation Calculus, a model for service-oriented comput-
ing. Conversation types of parallel processes can be merged like in our approach,
but the underlying computational model is quite different.

Semantics of concurrent processes can be given using Mazurkiewicz trace
languages [25]. Semantics can also be defined using event structures, as in [11],
where they are used for defining equivalent semantics for processes and their
global types. Interestingly, the semantics for global types proposed in [11] is
similar to the representation of Mazurkiewicz trace languages as event structures
given in [25]. Mazurkiewicz trace languages have been also used to characterize
testing preorders on multiparty scenarios [13]. A denotational semantics based
on Brzozowski derivatives that corresponds to bisimilarity is given in [20].

Another semantics of processes (but for binary session types) that records
exchanged informations is given in [1]. This semantics is similar to the relation-
based model of linear logic [6], and not based on traces. It would interesting
to investigate if this alternative semantics can be extended to MPST and to
interpret the merge operation. The relationship between category theory and
session types has been investigated also in [19,27].

8 Conclusions

In this paper, we have introduced partial sessions and partial (multiparty) ses-
sion types, extending global session types with the possibility to type also sessions
with missing participants. Sessions with the same name but observed by different
participants can be merged if their types are compatible; in this case, the type for
the unified session can be derived compositionally from the types of components.
To this end we have provided a merging algorithm, which allows us to detect
incompatible types, due to miscommunications or deadlocks, as early as possible;
this differs from usual session type systems which delay all the checks to when
the system is completed (i.e., at the restriction rule). Therefore, in this theory
the distinction between local and global types vanishes. We have also generalised
the notion of progress to accommodate the case when a partial session cannot
progress not due to a deadlock, but to some missing participant.

Future Work. An interesting application of partial session types would be in the
verification of composition of components, like e.g. containers a la Docker; to
this end, we can think of defining a typing discipline similar to the one presented
in this paper, but tailored for a formal models of containers, like that in [7].

60 C. Stolze et al.

We claim that for the type system presented in this paper both type check-
ing and type inference are decidable. The idea is that, in order to be typable,
the structure of a process has to match the structure of the type(s), up-to type
equivalence; hence, the typing derivation is bounded by the complexity of pro-
cess terms. At worst, this bound is exponential, as in the application of type
equivalence rule we have to explore a possibly exponential space of equivalent
types; however, this limit could be improved by some algorithmic machinery
concerning the normal form of types, which we leave to future work.

The current merging algorithm returns types that may contain many equiv-
alent subterms; a future work could be to define shorter and more efficient rep-
resentations. Another interesting aspect of this algorithm is that it is defined
by two functions (map and mcomm), which can be updated separately in future
variations; in particular, adding recursion only requires to update the function
map, while adding new kinds of communication, or changing how communica-
tions are merged, only requires to update the function mcomm. The correctness
of this algorithm can be proved with respect to a categorical semantics for session
types based on traces, which we leave to the extended version of this work.

In this paper we have considered a calculus with synchronous multicast, along
the lines of [10,28] and others. However, it would be interesting to extend the
definitions and results of this paper to an asynchronous version of the calculus.
This is not immediate, as it requires non-trivial changes in the typing systems
and especially in the (already quite complex) merging operation.

Following the Liskov substitution principle, we could define a subtyping rela-
tion by seeing & and ⊕ as the meet and join operator of a lattice, respectively.
However, a semantical understanding of this subtyping relation is not clear yet.

One intriguing possible extension would be to add some form of encapsula-
tion. For instance, if we have the type p → q : m1; q → r : m2; p → r : m3; close
from the viewpoint of {q, r}, then we could be tempted to “erase” the communi-
cation q → r : m2, since this communication is purely internal, but this erasure
would not be compatible with equivalence:

p → q : m1; q → r : m2; p → r : m3; close ��{q,r} p → q : m3; q → r : m2;
p → r : m1; close

but p → q : m1; p → r : m3; close �{q,r} p → q : m3; p → r : m1; close

How to add a form of encapsulation to our type system is an open question.
Finally, to guarantee the correctness of most complex proofs and definitions

of this paper, it would be useful to formalise them in a proof assistant, like Coq.

Acknowledgments. We are grateful to Mariangiola Dezani-Ciancaglini, Marco Per-
essotti and the anonymous reviewers for their useful remarks on the preliminar version
of this paper.

Composable Partial Multiparty Session Types 61

References

1. Atkey, R.: Observed communication semantics for classical processes. In: Yang,
H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 56–82. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54434-1 3

2. Barbanera, F., Dezani-Ciancaglini, M.: Open multiparty sessions. In: Proceedings
of the ICE. EPTCS, vol. 304, pp. 77–96 (2019)

3. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and
decomposition of multiparty sessions. J. Log. Algebraic Methods Program. 119,
100620 (2021)

4. Barbanera, F., Lanese, I., Tuosto, E.: Composing communicating systems, syn-
chronously. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12476, pp.
39–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61362-4 3

5. Barbanera, F., de’ Liguoro, U., Hennicker, R.: Global types for open systems. In:
Proceedings of ICE. EPTCS, vol. 279, pp. 4–20 (2018)

6. Barr, M.: *-autonomous categories and linear logic. Math. Struct. Comput. Sci.
1(2), 159–178 (1991). https://doi.org/10.1017/S0960129500001274

7. Burco, F., Miculan, M., Peressotti, M.: Towards a formal model for composable
container systems. In: Hung, C., Cerný, T., Shin, D., Bechini, A. (eds.) SAC 2020:
The 35th ACM/SIGAPP Symposium on Applied Computing, pp. 173–175. ACM
(2020). https://doi.org/10.1145/3341105.3374121

8. Caires, L., Vieira, H.T.: Conversation types. Theoret. Comput. Sci. 411(51–52),
4399–4440 (2010)

9. Carbone, M., Montesi, F., Schürmann, C.: Choreographies, logically. Distrib. Com-
put. 31(1), 51–67 (2018)

10. Carbone, M., Montesi, F., Schürmann, C., Yoshida, N.: Multiparty session types
as coherence proofs. Acta Informatica 54(3), 243–269 (2017)

11. Castellani, I., Dezani-Ciancaglini, M., Giannini, P.: Event structure semantics
for multiparty sessions. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R.
(eds.) Models, Languages, and Tools for Concurrent and Distributed Program-
ming. LNCS, vol. 11665, pp. 340–363. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-21485-2 19

12. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N., Padovani, L.: Global progress for
dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci. 26(2),
238–302 (2016)

13. De Nicola, R., Melgratti, H.: Multiparty testing preorders. In: Ganty, P., Loreti,
M. (eds.) TGC 2015. LNCS, vol. 9533, pp. 16–31. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-28766-9 2

14. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–101 (1987)
15. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline

for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

16. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) Proceedings of the POPL 2008, pp. 273–284. ACM
(2008). https://doi.org/10.1145/1328438.1328472

17. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. J.
ACM 63(1), 9:1–9:67 (2016). https://doi.org/10.1145/2827695

18. Jespersen, T.B.L., Munksgaard, P., Larsen, K.F.: Session types for rust. In: Pro-
ceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, pp.
13–22 (2015)

https://doi.org/10.1007/978-3-662-54434-1_3
https://doi.org/10.1007/978-3-030-61362-4_3
https://doi.org/10.1017/S0960129500001274
https://doi.org/10.1145/3341105.3374121
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/978-3-030-21485-2_19
https://doi.org/10.1007/978-3-319-28766-9_2
https://doi.org/10.1007/978-3-319-28766-9_2
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695

62 C. Stolze et al.

19. Keizer, A.C., Basold, H., Pérez, J.A.: Session coalgebras: a coalgebraic view on
session types and communication protocols. In: ESOP 2021. LNCS, vol. 12648, pp.
375–403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72019-3 14

20. Kokke, W., Montesi, F., Peressotti, M.: Better late than never: a fully-abstract
semantics for classical processes. Proc. ACM Program. Lang. 3(POPL) (2019).
https://doi.org/10.1145/3290337

21. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In:
Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-1 17

22. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: POPL, pp. 221–232. ACM (2015)

23. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40184-8 30

24. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24836-1 5

25. Nielsen, M.: Models for concurrency. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol.
520, pp. 43–46. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-54345-
7 47

26. Scalas, A., Yoshida, N.: Less is more: multiparty session types revisited. Proc. ACM
Program. Lang. 3(POPL), 1–29 (2019)

27. Toninho, B., Yoshida, N.: Polymorphic session processes as morphisms. In: Alvim,
M.S., Chatzikokolakis, K., Olarte, C., Valencia, F. (eds.) The Art of Modelling
Computational Systems: A Journey from Logic and Concurrency to Security and
Privacy. LNCS, vol. 11760, pp. 101–117. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-31175-9 7

28. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)

https://doi.org/10.1007/978-3-030-72019-3_14
https://doi.org/10.1145/3290337
https://doi.org/10.1007/978-3-642-32940-1_17
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1007/3-540-54345-7_47
https://doi.org/10.1007/3-540-54345-7_47
https://doi.org/10.1007/978-3-030-31175-9_7
https://doi.org/10.1007/978-3-030-31175-9_7

A Canonical Algebra of Open Transition
Systems

Elena Di Lavore1 , Alessandro Gianola2 , Mario Román1(B) ,
Nicoletta Sabadini3 , and Pawe�l Sobociński1

1 Tallinn University of Technology, Ehitajate tee 5, 12616 Tallinn, Estonia
elendi@ttu.ee

2 Free University of Bozen-Bolzano, Piazza Domenicani, 3, 39100 Bolzano, BZ, Italy
3 Università degli Studi dell’Insubria, Via Ravasi, 2, 21100 Varese, VA, Italy

nicoletta.sabadini@uninsubria.it

Abstract. Feedback and state are closely interrelated concepts. Cate-
gories with feedback, originally proposed by Katis, Sabadini and Walters,
are a weakening of the notion of traced monoidal categories, with several
pertinent applications in computer science. The construction of the free
such categories has appeared in several different contexts, and can be
considered as state bootstrapping. We show that a categorical algebra for
open transition systems, Span(Graph)∗, also due to Katis, Sabadini and
Walters, is the free category with feedback over Span(Set). This alge-
bra of transition systems is obtained by adding state to an algebra of
predicates, and therefore Span(Graph)∗ is the canonical such algebra.

1 Introduction

1.1 State from Feedback

Set

Reset A

A

Fig. 1. NOR latch.

A remarkable fact from electronic circuit design is
how data-storing components can be built out of a
combination of stateless components and feedback.
A famous example is the (set-reset) “NOR latch”:
a circuit with two stable configurations that stores
one bit.

The NOR latch is controlled by two inputs, Set
and Reset. Activating the first sets the output value
to A = 1; activating the second makes the output value return to A = 0. This
change is permanent: even when both Set and Reset are deactivated, the feedback
loop maintains the last value the circuit was set to1—to wit, a bit of data has
1 In its original description: “the relay is designed to produce a large and permanent
change in the current flowing in an electrical circuit by means of a small electrical
stimulus received from the outside” ([12], emphasis added).

Di Lavore, Román and Sobociński were supported by the European Union through the
ESF funded Estonian IT Academy research measure (2014-2020.4.05.19-0001). This
work was also supported by the Estonian Research Council grant PRG1210.

c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 63–81, 2021.
https://doi.org/10.1007/978-3-030-90636-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_4&domain=pdf
http://orcid.org/0000-0002-7783-5079
http://orcid.org/0000-0003-4216-5199
http://orcid.org/0000-0003-3158-1226
http://orcid.org/0000-0003-2846-4475
http://orcid.org/0000-0002-7992-9685
https://doi.org/10.1007/978-3-030-90636-8_4

64 E. Di Lavore et al.

been conjured out of thin air. In this paper we exhibit this as an instance of
an abstract phenomenon: the universal way of adding feedback to a theory of
processes consists of endowing each process with a state space.

Indeed, there is a natural weakening of the notion of traced monoidal cate-
gories called categories with feedback [30]. The construction of the free category
with feedback coincides with a “state-bootstrapping” construction, St(•), that
appears in several different contexts in the literature [7,23,26]. We recall this
construction and its mathematical status (Theorem 2.5), which can be summed
up by the following intuition:

Theory of Processes + Feedback = Theory of Stateful Processes.

1.2 The Algebra of Transition Systems

Our primary focus is the Span(Graph) model of concurrency, introduced in [27]
as a categorical algebra of communicating state machines, or—equivalently—
open transition systems. Open transition systems interact by synchronization,
producing a simultaneous change of state. This corresponds to a composi-
tion of spans, realized by taking a pullback in Graph. The dual algebra of
Cospan(Graph) was introduced in [29]. It complements Span(Graph) by
adding the operation of communicating-sequential composition [17].

Informally, a morphism of Span(Graph) is a state machine with states and
transitions, i.e. a finite graph given by the ‘head’ of the span. The transition
system is equipped with interfaces or communication ports, and every transition
is labeled by the effect it produces in all its interfaces. We give examples below.

1.3 Stateful and Stateless Components

In Fig. 2, we depict two open transition systems as arrows of Span(Graph).
The first represents a NOR gate B × B → B. The diagram below left (Fig. 2)
is a graphical rendering of the corresponding span B × B ← N → B, where B

is a single-vertex graph with two edges, corresponding to the signals { 0, 1 },
the unlabeled graph depicted within the bubble is N , and the labels witness the
action of two homomorphisms, respectively N → B × B and N → B. Here each
transition represents one of the valid input/output configurations of the gate.
NOR gates are stateless components; the graph N has a single vertex.

The second component is a span L = {Set,Reset, Idle} → {A,A} = R that
models a set-reset latch. The diagram below right (Fig. 2), again, is a convenient
illustration of the span L ← D → R. Latches store one bit of information, they
are stateful components; consequently, their transition graph has two states.

A Canonical Algebra of Open Transition Systems 65

(0
0

)
,1

(0
1

)
,0

(1
0

)
,0

(1
1

)
,0

Set,A

Reset,A

Idle,A Reset,A

Set,A Idle,A

B

B

B L R

Fig. 2. A NOR gate and set-reset latch, in Span(Graph).

In both cases, the interfaces on Span/Cospan(Graph) are stateless: indeed,
they are determined by a mere set – the self-loops of a single-vertex graph.
This is a restriction that occurs rather frequently: the important subcategory of
Span(Graph), the one that we can clearly conceptually explain as transition
systems with interfaces, is the full subcategory of Span(Graph) restricted to
objects that are single-vertex graphs, which we denote by Span(Graph)∗. Anal-
ogously, the relevant subcategory of Cospan(Graph) is Cospan(Graph)∗, the
full subcategory on sets, or graphs with an empty set of edges.

Definition. Span(Graph)∗ is the full subcategory of Span(Graph) with
objects the single-vertex graphs.

The problem with Span(Graph)∗ is that it is mysterious from the cate-
gorical point of view; the morphisms are graphs, but the boundaries are sets.
Decorated and structured spans and cospans [3,14] are frameworks that capture
such phenomena, which occur frequently when composing network structures.
Nevertheless, they do not answer the question of why they arise naturally.

1.4 Canonicity and Our Original Contribution

Universal constructions, such as “state-bootstrapping” St(•), characterize the
object of interest up to equivalence, making it the canonical object satisfying
some properties. This is the key to side-stepping Abramsky’s concern [1]: because
of the lack of consensus about the intrinsic primitives of concurrency, we risk
making our results too dependent on a specific syntax. It is thus important to
characterize existing models of concurrency in terms of universal properties.

The main contribution of this paper is the characterization of Span(Graph)∗
in terms of a universal property: it is equivalent to the free category with feedback
over the category of spans of functions. We now state this more formally:

Theorem. The free category with feedback over Span(Set) is isomorphic to
Span(Graph)∗, the full subcategory of Span(Graph) given by single-vertex
graphs. That is, there is an isomorphism of categories

St(Span(Set)) ∼= Span(Graph)∗.

Given that Span(Set), the category of spans of functions, can be considered
an algebra of predicates [4,10], the high level intuition that summarizes our main
contribution (Theorem 3.8) can be stated as:

66 E. Di Lavore et al.

Algebra of Predicates + Feedback = Algebra of Transition Systems.

We similarly prove (in Sect. 3.4) that the free category with feedback over
Cospan(Set) is isomorphic to Cospan(Graph)∗, the full subcategory on dis-
crete graphs of Cospan(Graph).

1.5 Related Work

Span/Cospan(Graph) has been extensively used for the modeling of con-
current systems [9,15–17,27,29,38,41,42]. Similar approaches to compositional
modeling of networks have used decorated and structured cospans [3,14]. How-
ever, Span(Graph)∗ has not previously been characterized in terms of a uni-
versal property.

In [30], the St(•) construction (under a different name) is exhibited as the
free category with feedback. Categories with feedback have been arguably under-
appreciated but, at the same time, the St(•) construction has made multiple
appearances as a “state bootstrapping” technique across the literature. The St(•)
construction is used to describe a string diagrammatic syntax for concurrency
theory in [7]; a variant of it had been previously applied in the setting of carte-
sian bicategories in [26]; and it was again rediscovered to describe a memoryful
geometry of interaction in [23]. However, a coherent account of both categories
with feedback and their relation with these stateful extensions has not previously
appeared. This motivates our extensive preliminaries in Sects. 2.1 and 2.2.

1.6 Synopsis

Section 2 contains preliminary discussions on traced monoidal categories and
categories with feedback; it explicitly describes St(•), the free category with
feedback. It collects mainly expository material. Section 3 exhibits a universal
property for the Span(Graph)∗ and Cospan(Graph)∗ models of concurrency
and Sect. 3.5 highlights a specific application.

1.7 Conventions

We write composition of morphisms in diagrammatic order, f ; g. When describ-
ing morphisms in a symmetric monoidal category we omit the associators and
unitors, implicitly using the coherence theorem [33, Theorem 2.1, Chapter VII].

2 Preliminaries: Categories with Feedback

Categories with feedback were introduced in [30], and motivated by examples
such as Elgot automata [13], iteration theories [6] and continuous dynamical sys-
tems [28]. We recall the details below, contrast them with the stronger notion of
traced monoidal categories in Sect. 2.2, discuss the relationship between feedback
and delay in Sect. 2.3, recall the construction of a free category with feedback in
Sect. 2.4, and give examples in Sect. 2.5.

A Canonical Algebra of Open Transition Systems 67

2.1 Categories with Feedback

A feedback operator , fbk(•), takes a morphism S ⊗ A → S ⊗ B and “feeds back”
one of its outputs to one of its inputs of the same type, yielding a morphism
A → B (Fig. 3, left). When using string diagrams, we depict the action of the
feedback operator as a loop with a double arrowtip (Fig. 3, right).

f : S ⊗ A → S ⊗ B

fbkS(f) : A → B f
A B

S

Fig. 3. Type and graphical notation for the operator fbkS(•).

Capturing a reasonable notion of feedback requires the operator to interact
nicely with the flow imposed by the structure of a symmetric monoidal category.
This interaction is expressed by a few straightforward axioms.

Definition 2.1. A category with feedback [30] is a symmetric monoidal cat-
egory C endowed with an operator fbkS : C(S ⊗ A,S ⊗ B) → C(A,B), which
satisfies the following axioms (A1–A5, see also Fig. 4).

(A1). Tightening, u; fbkS(f); v = fbkS((id ⊗ u); f ; (id ⊗ v)).
(A2). Vanishing, fbkI(f) = f .
(A3). Joining, fbkT (fbkS(f)) = fbkS⊗T (f).
(A4). Strength, fbkS(f) ⊗ g = fbkS(f ⊗ g).
(A5). Sliding, fbkT (f ; (h ⊗ id)) = fbkS((h ⊗ id); f), for h : S → T any
isomorphism.

f
A B

S

u
A′ v

B′

(A1)
= f

A B

S

u
A′ v

B′
f

A B

I

(A2)
= f

A B

f
A B

S

T

(A3)
= f

A B

S ⊗ T
f

A B

S

g
A′ B′

(A4)
=

f

A B

S

g
A′ B′

f
A B

T

h (A5)
= f

A B

S

h (h isomorphism)

Fig. 4. Diagrammatic depiction of the axioms of feedback.

68 E. Di Lavore et al.

The natural notion of homomorphism between categories with feedback is
that of a symmetric monoidal functor that moreover preserves the feedback
structure. These are called feedback functors.

Definition 2.2. A feedback functor F : C → D between two categories with
feedback (C, fbkC) and (D, fbkD) is a strong symmetric monoidal functor s.t.

F (fbkCS (f)) = fbkDF (S)(μ;Ff ;μ−1),

where μA,B : F (A)⊗F (B) → F (A⊗B) is the isomorphism of the strong monoidal
functor F . We write Feedback for the category of (small) categories with feedback
and feedback functors. There is a forgetful functor U : Feedback → SymMon.

2.2 Traced Monoidal Categories

Categories with feedback are a weakening of the well-known traced monoidal
categories. Between them, there is an intermediate notion called right traced
category [39] that strengthens the sliding axiom from isomorphisms to arbitrary
morphisms. This first extension would be already too strong for our purposes
later in Sect. 2.4: we would be unable to define a state space up to isomorphism.
However, the more conceptual difference of traced monoidal categories is the
“yanking axiom” (in Fig. 5). Indeed, strengthening the sliding axiom and adding
the yanking axiom yields the definition of traced monoidal category.

Traced monoidal categories are widely used in computer science. Since their
conception [24] as an abstraction of the trace of amatrix in linear algebra, theywere
used in linear logic and geometry of interaction [1,18,19], programming language
semantics [21], semantics of recursion [2] and fixed point operators [5,22].

=

Fig. 5. The yanking axiom.

Traces are thus undeniably important, but it
is questionable whether we really want to always
impose all of their axioms. Specifically, we will be
concerned with the yanking axiom that states that
tr(σ) = id. The yanking axiom is incontestably ele-
gant from the geometrical point of view: strings are
“pulled”, and feedback (depicted as a loop with an arrowtip) disappears (Fig. 5).

Fig. 6. Diagram for the
NOR latch, modeled with a
trace in Span(Graph).

However, if feedback can disappear without leav-
ing any imprint, that must mean that it is instan-
taneous: its output necessarily mirrors its input.2

Importantly for our purposes, this implies that a
feedback satisfying the yanking equation is “mem-
oryless”, or “stateless”.

Consider again the NOR latch from Fig. 1.
We have seen how to model NOR gates in
Span(Graph) in Fig. 2, and the algebra of

2 In other words, traces are used to talk about processes in equilibrium, processes that
have reached a fixed point. A theorem by Hasegawa [22] and Hyland [5] corroborates
this interpretation: a trace in a cartesian category corresponds to a fixpoint operator.

A Canonical Algebra of Open Transition Systems 69

Span(Graph) does include a trace (see Fig. 6, later detailed in Sect. 3.2). How-
ever, imitating the real-world behavior of the NOR latch with just a trace is
unsatisfactory: the trace of Span(Graph) is built out of stateless components,
and tracing stateless components yields a stateless component.

In engineering and computer science, instantaneous feedback is actually a
rare concept; a more common notion is that of guarded feedback. Consider signal
flow graphs [34,40]: their categorical interpretation in [8] models feedback not
by the usual trace, but by a trace “guarded by a register”, that delays the signal
and violates the yanking axiom (see Remark 7.8 in op.cit.).

The component that trace misses in such examples is a delay.

2.3 Delay and Feedback

= ∂

Fig. 7. Definition of delay.

The main difference between categories with
feedback and traced monoidal categories is the fail-
ure of the yanking axiom. Consider the process that
only “feeds back” the input to itself and then uses
that “fed back” input to produce the output. This
process, ∂A := fbkA(σA,A), is called delay endomor-
phism. The yanking axiom of traced monoidal categories states that the delay is
equal to the identity, trA(σA,A) = id, which is not necessarily true for categories
with feedback. In that sense, a non-trivial delay is what sets apart categories with
feedback from traced monoidal categories (Fig. 7).

∂

∂

Fig. 8. NOR latch with
feedback.

This interpretation of feedback as the combination
of trace and delay can be made into a theorem when
the category has enough structure. Compact closed
categories are traced monoidal categories where every
object A has a dual A� and the trace is constructed
from two pieces ε : A ⊗ A� → I and η : I → A� ⊗ A.
While not every traced monoidal category is compact
closed, they all embed fully faithfully into a compact
closed category.3 In a compact closed category, a feedback operator is necessarily
a trace “guarded” by a delay.

Proposition 2.3 (Feedback from delay [7]). Let C be a compact
closed category with fbkC a feedback operator that takes a morphism S ⊗ A →
S⊗B to a morphism A → B, satisfying the axioms of feedback (in Fig. 4) but pos-
sibly failing to satisfy the yanking axiom (Fig. 5) of traced monoidal categories.
Then the feedback operator is necessarily of the form

fbkCS (f) := (η ⊗ id); (id ⊗ f); (id ⊗ ∂S ⊗ id); (ε ⊗ id)

where ∂A : A → A is a family of endomorphisms satisfying

3 This is the Int construction from [24].

70 E. Di Lavore et al.

– ∂A ⊗ ∂B = ∂A⊗B and ∂I = id, and
– ∂A;h = h; ∂B for each isomorphism h : A ∼= B.

In fact, any family of morphisms ∂A satisfying these properties determines
uniquely a feedback operator that has ∂A as its delay endomorphisms.

Consider again the NOR latch of Fig. 1. The algebra of Span(Graph) does
include a feedback operator that is not a trace – the difference is an additional
stateful delay component. As we shall see, this notion of feedback is canonical.
We shall also see that the delay enables us to capture the real-world behavior of
the NOR latch. The emergence of state from feedback is witnessed by the St(•)
construction, which we recall below.

2.4 St(•), the Free Category with Feedback

f
A

S

B

= f
A

T

B

h−1 h

Fig. 9. Equivalence of stateful pro-
cesses. We depict stateful processes
by marking the space state.

Here we show how to obtain the free category
with feedback over a symmetric monoidal
category. The St(•) construction is a gen-
eral way of endowing a system with state.
It appears multiple times in the literature in
slightly different forms: it constructs a state-
ful resource calculus in [7]; a variant is used
for geometry of interaction in [23]; it coin-
cides with the free category with feedback presented in [30]; and yet another,
slightly different formulation was given in [26].

Definition 2.4 (Category of stateful processes, [30]). Let (C,⊗, I) be a
symmetric monoidal category. We write St(C) for the category with the objects
of C but where morphisms A → B are pairs (S | f), consisting of a state space
S ∈ C and a morphism f : S ⊗ A → S ⊗ B. We consider morphisms up to
isomorphism classes of their state space, and thus

(S | f) = (T | (h−1 ⊗ id); f ; (h ⊗ id)), for any isomorphism h : S ∼= T.

When depicting a stateful process (Fig. 9), we mark the state strings.

We define the identity stateful process on A ∈ C as (I | idI⊗A). Sequential
composition of the two stateful processes (S | f) : A → B and (T | g) : B → C is
defined by (S | f); (T | g) = (S ⊗T | (σ ⊗ id); (id⊗ f); (σ ⊗ id); (id⊗ g)). Parallel
composition of the two stateful processes (S | f) : A → B and (S′ | f ′) : A′ → B′

is defined by (S | f) ⊗ (S′ | f ′) = (S ⊗ S′ | (id ⊗ σ ⊗ id); (f ⊗ f ′); (id ⊗ σ ⊗ id))
(Fig. 10).

A Canonical Algebra of Open Transition Systems 71

f
A B

g

C

T

S f

A

S

Bf ′

A′ B′

S′

Fig. 10. Sequential and parallel composition of stateful processes.

storeT

⎛
⎜⎜⎝ f

A

S

B

T

⎞
⎟⎟⎠ = f

A

S

B

T

Fig. 11. The store(•) operation, dia-
grammatically.

This defines a symmetric monoidal cat-
egory. Moreover, the operator

storeT (S | f) := (S ⊗ T | f),

which “stores” some information into the
state, makes it a category with feedback
(Fig. 11).

Theorem 2.5 [30]. The category St(C), endowed with the store(•) operator, is
the free category with feedback over a symmetric monoidal category C.

2.5 Examples

All traced monoidal categories are categories with feedback, since the axioms of
feedback are a strict weakening of the axioms of trace. A more interesting source
of examples is the St(•) construction we just defined.

Example 2.6. A Mealy deterministic transition system with boundaries A and
B, and state space S was defined [35, §2.1] to be just a function f : S×A → S×B.

fbk

⎛
⎜⎜⎜⎝

0, 1/1 1, 0/0

1, 1/1

0, 0/0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0/ 0/ 1/

1/

⎞
⎟⎟⎟⎠

Fig. 12. Feedback of a Mealy transition system.
Every transition has a label i/o indicating inputs
(i) and outputs (o).

It is not difficult to see
that, up to isomorphism of
the state space, they are mor-
phisms of St(Set). They com-
pose following Definition 2.4,
and form a category with feed-
back Mealy := St(Set).

The feedback of Mealy
transforms input/output pairs
into states. Figure 12 is an
example: a transition system
with a single state becomes a transition system with two states and each tran-
sition (si, i/so) yields a transition (i/) from si to so.

Similarly, when we consider Set to be the monoidal structure of sets with
the disjoint union, we recover Elgot automata [13], given by a transition function
S + A → S + B. These transition systems motivate the work in [26,30].

72 E. Di Lavore et al.

Example 2.7. A linear dynamical system with inputs in R
n, outputs in R

m and
state space R

k is given by a matrix (A B
C D) ∈ MatR(k+m, k+n) [25]. Two linear

dynamical systems (A B
C D) and

(
A′ B′
C′ D

)
are considered equivalent if there is an

invertible matrix H ∈ MatR(k, k) s.t. A′ = H−1AH, B′ = BH, and C ′ = H−1C.
Linear dynamical systems are morphisms of a category with feedback which

coincides with St(Vect⊕
R

). The feedback operator is defined by

fbkl

(
k,

(
A1 A2 B1
A3 A4 B2
C1 C2 D

))
=

(
k + l,

(
A1 A2 B1
A3 A4 B2
C1 C2 D

))
,

where
(

A1 A2 B1
A3 A4 B2
C1 C2 D

)
∈ MatR(k + l + m, k + l + n).

3 Span(Graph): An Algebra of Transition Systems

Span(Graph) [27] is an algebra of “open transition systems”. It has applications
in concurrency theory and verification [17,26,27,29,31], and has been recently
applied to biological systems [15,16]. Just as ordinary Petri nets have an under-
lying (firing) semantics in terms of transition systems, Span(Graph) is used as
a semantic universe for a variant of open Petri nets, see [9,42].

An open transition system is a morphism of Span(Graph): a transition
graph endowed with two boundaries or communication ports. Each transition has
an effect on each boundary, and this data is used for synchronization. This con-
ceptual picture actually describes a subcategory, Span(Graph)∗, where bound-
aries are mere sets: the alphabets of synchronization signals. We shall recall the
details of Span(Graph)∗ and prove that it is universal, our main result:

Span(Graph)∗ is the free category with feedback over Span(Set).

3.1 The Algebra of Span(Graph)

Definition 3.1. A span [4,10] from A to B, both objects of a category C, is a
pair of morphisms with a common domain, A ← E → B. The object E is the
“head” of the span, and the morphisms are the left and right “legs”, respectively.

When the category C has pullbacks, we can sequentially compose two spans
A ← E → B and B ← F → C obtaining A ← E ×B F → C. Here, E ×B F is
the pullback of E and F along B: for instance, in Set, E ×B F is the subset of
E × F given by pairs that have the same image in B.

Definition 3.2. Let C be a category with pullbacks. Span(C) is the category
that has the same objects as C and isomorphism classes of spans between them as
morphisms. That is, two spans are considered equal if there is an isomorphism
between their heads that commutes with both legs. Dually, if C is a category with
pushouts, Cospan(C) is the category Span(Cop).

A Canonical Algebra of Open Transition Systems 73

Span(C) is a symmetric monoidal category when C has products. The paral-
lel composition of A ← E → B and A′ ← E′ → B′ is given by the componentwise
product A × A′ ← E × E′ → B × B′. An example is again Span(Set).

Definition 3.3. The category Graph has graphs G = (s, t : E ⇒ V) as objects,
i.e. pairs of morphisms from edges to vertices returning the source and target of
each edge. A morphism G → G′ is given by functions e : E → E′ and v : V → V ′

s.t. e; s′ = s; v and e; t′ = t; v. Equivalently, it is the presheaf category on the
diagram (• ⇒ •).

We now focus on Span(Graph)∗, those spans of graphs that have single
node graphs (A ⇒ 1) as the boundaries.

Definition 3.4. An open transition system is a morphism of Span(Graph)∗: a
span of sets A ← E → B where the head is the set of transitions of a graph E ⇒
V (see Fig. 13). Two open transition systems are considered equal if there is an
isomorphism between their graphs that commutes with the legs. Open transition
systems whose graph E ⇒ 1 has a single vertex are called stateless.

A E B

1 V 1

ts

a b

Fig. 13. A morphism of
Span(Graph)∗.

Sequential composition (the communicating-
parallel operation of [27]) of two open transition sys-
tems with spans A ← E → B and B ← F → C and
graphs E ⇒ S and F ⇒ T yields the open transi-
tion system with span A ← E×B F → C and graph
E ×B F ⇒ S ×T . This means that the only allowed
transitions are those that synchronize E and F on
the common boundary B.

Parallel composition (the non communicating-parallel operation of [27]) of
two open transition systems with spans A ← E → B and A′ ← E′ → B′

and graphs E ⇒ V and E′ ⇒ V ′ yields the open transition system with span
A × A′ ← E × E′ → B × B′ and graph E × E′ ⇒ V × V ′.

3.2 The Components of Span(Graph)

Let us now detail some useful constants of the algebra of Span(Graph)∗, which
we will use to construct the NOR latch circuit from Fig. 8.

Example 3.5. The Frobenius algebra [10] (, , ,) is used for the “wiring”.
The following spans are constructed out of diagonals A → A×A and units A → 1.

()A = {A ← A → A × A} ()A = {A ← A → 1}
()A = {A × A ← A → A} ()A = {1 ← A → A}

These induce a compact closed structure (and thus a trace), as follows:

()A = {1 ← A → A × A} ()A = {A × A ← A → 1}.

74 E. Di Lavore et al.

1,0

0,1

0,0

1,1

B B

Fig. 14. Delay morphism
over the set B := {0, 1}.

In general, any function f : A → B can be lifted
covariantly to a span A ← A → B and contravari-
antly to a span A ← B → B. Any span A ← E → B
can be lifted to Span(Graph)∗ by making the
head represent the graph E ⇒ 1. We use this fact
to obtain a stateless NOR gate from the function
NOR : B × B → B (Fig. 2).

We will need a single stateful component to model our circuit, the delay

(∂)A =

⎧⎪⎪⎨
⎪⎪⎩

A × A

A A A

π2 π1π2π1

⎫⎪⎪⎬
⎪⎪⎭

.

∂

∂

Fig. 15. Decomposing the
circuit.

This is not an arbitrary choice: it is the canon-
ical delay obtained from the feedback structure4 in
Span(Graph)∗ (Fig. 14).

The NOR latch circuit of Fig. 8 is the com-
position of two NOR gates where the outputs
of each gate have been copied and fed back as
input to the other gate. The algebraic expression,
in Span(Graph)∗, of this circuit is obtained by
decomposing it into its components, as in Fig. 15.

(id ⊗ ⊗ ⊗ id); (NOR ⊗ σ ⊗ NOR); (⊗ id ⊗)
; (id ⊗ ∂ ⊗ id ⊗ ∂ ⊗ id); (id ⊗ ⊗ ⊗ id)

•

•A

•A

• T2
T1 Idle

Set

Reset

Set

Unspec

Reset

Unspec

Idle

Set

Unspec

Reset

Unspec

Idle

Reset

Idle

Set

Fig. 16. Span of graphs representing the
NOR latch

The graph obtained from this
expression, together with its transi-
tions, is shown in Fig. 16. This time,
our model is indeed stateful. It has
four states: two states representing a
correctly stored signal, A = (1, 0) and
A = (0, 1); and two states representing
transitory configurations T1 = (0, 0)
and T2 = (1, 1).

The left boundary can receive a
set signal, Set =

(
1
0

)
; a reset signal,

Reset =
(
0
1

)
; none of the two, Idle =(

0
0

)
; or both of them at the same time,

Unspec =
(
1
1

)
, which is known to cause

unspecified behavior in a NOR latch.
4 As in Sect. 2, ∂A = fbk(σA,A).

A Canonical Algebra of Open Transition Systems 75

fbk
B×B

⎛
⎜⎝

⎞
⎟⎠

Fig. 17. Applying fbk(•) over the
circuit gives the NOR latch.

The signal on the right boundary, on the
other hand, is always equal to the state
the transition goes to and does not provide
any additional information: we omit it from
Fig. 16.

Activating the signal Set makes the latch
reach the state A in (at most) two transition
steps. Activating Reset does the same for A.
After any of these two cases, deactivating all
signals, Idle, keeps the last state.

Moreover, the (real-world) NOR latch has some unspecified behavior that
gets also reflected in the graph: activating both Set and Reset at the same time,
what we call Unspec, causes the circuit to enter an unstable state where it
bounces between the states T1 and T2 after an Idle signal. Our modeling has
reflected this “unspecified behavior” as expected.

Feedback and Trace. In terms of feedback, the circuit of Fig. 16 is equivalently
obtained as the result of taking feedback over the stateless morphism in Fig. 17.

But Span(Graph)∗ is also canonically traced: it is actually compact closed.
What changes in the modeling if we would have used the trace instead? As we
argued for Fig. 6, we obtain a stateless transition system. The valid transitions
are

{(Unspec,T1), (Idle,A), (Idle,A), (Set,A), (Reset,A)}.

They encode important information: they are the equilibrium states of the cir-
cuit. However, unlike the previous graph, this one would not get us the correct
allowed transitions: under this modeling, our circuit could freely bounce between
(Idle,A) and (Idle,A), which is not the expected behavior of a NOR latch.

The fundamental piece making our modeling succeed the previous time was
feedback with delay. Next we show that this feedback is canonical.

3.3 Span(Graph) as a Category with Feedback

This section presents our main theorem. We introduce a mapping that associates
to each stateful span of sets a corresponding span of graphs. This mapping is
well-defined and lifts to a functor St(Span(Set)) → Span(Graph). Finally, we
prove that it is an isomorphism St(Span(Set)) ∼= Span(Graph)∗.

Proposition 3.6. The composition of two stateful spans in St(Span(Set)),

S × A
σ,f←− X

σ′,g−→ S × B, T × B
τ,h←− Y

τ ′,k−→ T × C

is the span T × S × A
τ,σ,f←− X ×B Y

τ ′,σ′,k−→ T × S × C, where X ×B Y is the
pullback along g and h.

76 E. Di Lavore et al.

Lemma 3.7. The following assignment of stateful processes over Span(Set) to
morphisms of Span(Graph) is well defined.

K

⎛
⎜⎜⎝S

∣∣∣∣∣∣∣∣

E

S × A S × B

(s,a) (t,b)

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

A E B

1 S 1

ts

a b
⎞
⎟⎟⎠

Theorem 3.8. There exists an isomorphism of categories St(Span(Set)) ∼=
Span(Graph)∗. That is, the free category with feedback over Span(Set) is iso-
morphic to the full subcategory of Span(Graph) given by single-vertex graphs.

Proof. We prove that there is a fully faithful functor K : St(Span(Set)) →
Span(Graph) defined on objects as K(A) = (A ⇒ 1) and defined on mor-
phisms as in Lemma 3.7.

We now show that K is functorial, preserving composition and identities.
We can directly see that the identity morphism in St(Span(Set)), as a span
1 × A ← A → 1 × A, is sent to the identity span of the graph A ⇒ 1.

Let us now show that composition is also preserved. Let us consider two
stateful spans; the first given by s, a : E → S×A and s′, b : E → S×B; the second
given by t, b′ : F → T ×B and t′, c : F → T ×C. Their composition is given by a
span whose legs are s, t, a : E×B F → S×T ×A and s′, t′, c : E×B F → S×T ×C,
and E ×B F is the pullback along b and b′ (see Proposition 3.6).

E ×B F

E S × T F

A S B T C

1 1 1

πE πF

a

b

πS πT c

b′

Fig. 18. Pullback of graphs.

We have composed two stateful spans;
and we want to show that the correspond-
ing graph of the composite is the pullback
of their graphs. Computing a pullback of
graphs can be done separately on edges and
vertices, as graphs form a presheaf category
(see Fig. 18). Note how the resulting graph
is precisely the graph corresponding, under
the assignment K, to the previous stateful
span.

The final step is to show that the origi-
nal assignment is fully-faithful. We can see
that it is full: every span of single-vertex graphs given by A ← E → B and E ⇒ S
does arise from some span, namely S × A ← E → S × B. Let us check it is also
faithful. Suppose that two morphisms in St(Span(Set)), S × A ← E → S × B
and S′ × A ← E′ → S′ × B, are sent to equivalent spans of graphs, i.e. there
exist h : E ∼= E′ and k : S′ ∼= S making the diagrams in Fig. 19 commute.

A Canonical Algebra of Open Transition Systems 77

A E E′ B

1 S S′ 1

ts

ha

b

t′s′

a′

b′

k

Fig. 19. Equivalent spans of graphs.

In this case, we know that S × A ←
E → S×B is equivalent to S′×A ← E →
S′ ×B because of the equivalence relation
on stateful processes. Finally, S′ × A ←
E → S′ × B is equivalent as a span to
S′ × A ← E′ → S′ × B.

We have shown that there exists a
fully-faithful functor from the free cate-
gory with feedback over Span(Set) to the
category Span(Graph) of spans of graphs. The functor restricts to an equiv-
alence between St(Span(Set)) and the full subcategory of Span(Graph) on
single-vertex graphs. It is moreover bijective on objects, giving an isomorphism
of categories. ��
Example 3.9. The characterization Span(Graph)∗ ∼= St(Span(Set)) that we
prove in Theorem 3.8 lifts the inclusion Set → Span(Set) to a feedback preserv-
ing functor Mealy → Span(Graph)∗. This inclusion embeds a deterministic
transition system into the graph that determines it.

3.4 Cospan(Graph) as a Category with Feedback

Theorem 3.8 can be generalized to any category C with finite limits. By tak-
ing Graph(C) to be the presheaf category of the diagram (• ⇒ •) in C and
Span(Graph(C))∗ the full subcategory on objects of the form A ⇒ 1, we have:

Theorem 3.10. There exists an isomorphism of categories St(Span(C)) ∼=
Span(Graph(C))∗. That is, the free category with feedback over Span(C) is
equivalent to the full subcategory on Span(Graph(C)) given by single-vertex
graphs.

Cospan(Graph)∗ can be also characterized as a free category with feedback.
We know that Cospan(Set) ∼= Span(Setop), we note that Graph(Setop) ∼=
Graphop(Set) (which has the effect of flipping edges and vertices), and we can
use Theorem 3.10 because Set has all finite colimits. The explicit assignment is
similar to the one shown in Lemma 3.7.

K

⎛
⎜⎜⎝S

∣∣∣∣∣∣∣∣

S

E + A E + B

[t|a] [s|b]

⎞
⎟⎟⎠ :=

⎛
⎜⎜⎝

A S B

0 E 0

a b

st

⎞
⎟⎟⎠

Corollary 3.11. There is an isomorphism St(Cospan(Set)) ∼=
Cospan(Graph)∗.

Cospan(Graph) is also compact closed and, in particular, traced. As in the
case of Span(Graph), the feedback structure given by the universal property is
different from the trace. In the case of Cospan(Graph), tracing has the effect
of identifying the output and input vertices of the graph; while feedback adds
an additional edge from the output to the input vertices.

78 E. Di Lavore et al.

3.5 Syntactical Presentation of Cospan(FinGraph)

The observation in Proposition 2.3 has an important consequence in the case of
finite sets. We write FinGraph for Graph(FinSet). Cospan(FinSet) is the
generic special commutative Frobenius algebra [32], meaning that any morphism
written out of the operations of a special commutative Frobenius algebra and the
structure of a symmetric monoidal category is precisely a cospan of finite sets.
But we also know that Cospan(FinSet), with an added generator to its PROP
structure [7] is St(Cospan(FinSet)), or, equivalently, Cospan(FinGraph).
This means that any morphism written out of the operations of a special com-
mutative Frobenius algebra plus a freely added generator of type (∂) : 1 → 1
is a morphism in Cospan(FinGraph)∗. This way, we recover one of the main
results of [37] as a direct corollary of our characterization.

Proposition 3.12 (Proposition 3.2 of [37]). Cospan(FinGraph)∗ is the
generic special commutative Frobenius monoid with an added generator.

Proof. It is known that the category Cospan(FinSet) is the generic special com-
mutative Frobenius algebra [32]. Adding a free generator (∂) : 1 → 1 to its
PROP structure corresponds to adding a family (∂)n : n → n with the con-
ditions on Proposition 2.3. Now, Proposition 2.3 implies that adding such a gen-
erator to Cospan(FinSet) results in St(Cospan(FinSet)). Finally, we use The-
orem 3.8 to conclude that St(Cospan(FinSet)) ∼= Cospan(FinGraph)∗. ��

4 Conclusions and Further Work

We characterized Span(Graph)∗, an algebra of open transition systems, as the
free category with feedback over the category of spans of functions. To do so,
we use the St(•) construction, characterized as the free category with feedback
in [30]. It is also well-known as a technique of adding state to processes.

We have seen how the St(•) construction creates categories of transition
systems out of symmetric monoidal categories. We could also consider a gener-
alization of this construction where, instead of quotienting by isomorphisms, we
can quotient by arbitrary classes of morphisms selected by some strong monoidal
functor. Our observation is that this generalized state construction can be rewrit-
ten compactly as a particular kind of colimit called a coend (see [33] for a defi-
nition). In fact, let F : D → C be a strong monoidal functor, we can express the
set of stateful morphisms quotiented by sliding in D as

StD(C) :=
∫ D∈D

hom(FD ⊗ X,FD ⊗ Y).

For instance, the original St(•) construction is recovered from the inclusion
functor of the subgroupoid of isomorphisms (also known as the “core” of the
category). The identity functor can be used to quotient processes by dinatu-
rality. The forgetful PointedSet → Set can be used to construct automata
with initial states. We plan to investigate the relationship between such gener-
alized categories with feedback to approaches based on guarded recursion [20]
and coalgebras [11,36].

A Canonical Algebra of Open Transition Systems 79

References

1. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t
know! CoRR abs/1401.4973 (2014). http://arxiv.org/abs/1401.4973

2. Adámek, J., Milius, S., Velebil, J.: Elgot algebras. Log. Methods Comput. Sci. 2(5)
(2006). https://doi.org/10.2168/LMCS-2(5:4)2006

3. Baez, J.C., Courser, K.: Structured cospans. CoRR abs/1911.04630 (2019)
4. Bénabou, J.: Introduction to bicategories. In: Reports of the Midwest Category

Seminar. LNM, vol. 47, pp. 1–77. Springer, Heidelberg (1967). https://doi.org/10.
1007/BFb0074299

5. Benton, N., Hyland, M.: Traced premonoidal categories. RAIRO Theor. Inform.
Appl. 37(4), 273–299 (2003). https://doi.org/10.1051/ita:2003020

6. Bloom, S.L., Ésik, Z.: Iteration Theories - The Equational Logic of Iterative Pro-
cesses. EATCS Monographs on Theoretical Computer Science. Springer, Heidel-
berg (1993). https://doi.org/10.1007/978-3-642-78034-9

7. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic
algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL),
25:1–25:28 (2019). https://doi.org/10.1145/3290338

8. Bonchi, F., Sobociński, P., Zanasi, F.: The calculus of signal flow diagrams I: linear
relations on streams. Inf. Comput. 252, 2–29 (2017). https://doi.org/10.1016/j.ic.
2016.03.002

9. Bruni, R., Melgratti, H., Montanari, U.: A connector algebra for P/T nets inter-
actions. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp.
312–326. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-
6 21

10. Carboni, A., Walters, R.F.C.: Cartesian bicategories I. J. Pure Appl. Algebra 49(1–
2), 11–32 (1987)

11. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and rea-
soning with guarded recursion for coinductive types. In: Pitts, A. (ed.) FoSSaCS
2015. LNCS, vol. 9034, pp. 407–421. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46678-0 26

12. Eccles, W.H., Jordan, F.W.: Improvements in ionic relays. British patent number:
GB 148582 (1918)

13. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Studies in
Logic and the Foundations of Mathematics, vol. 80, pp. 175–230. Elsevier (1975)

14. Fong, B.: Decorated cospans. Theory Appl. Categories 30(33), 1096–1120 (2015)
15. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Schiavio, F., Tini, S.:

CospanSpan(Graph): a compositional description of the heart system. Fundam.
Informaticae 171(1–4), 221–237 (2020)

16. Gianola, A., Kasangian, S., Manicardi, D., Sabadini, N., Tini, S.: Compositional
modeling of biological systems in CospanSpan(Graph). In: Proceedings of ICTCS
2020. CEUR-WS (2020, to appear)

17. Gianola, A., Kasangian, S., Sabadini, N.: Cospan/Span(Graph): an algebra for
open, reconfigurable automata networks. In: Bonchi, F., König, B. (eds.) 7th Con-
ference on Algebra and Coalgebra in Computer Science, CALCO 2017, Ljubljana,
Slovenia, 12–16 June 2017. LIPIcs, vol. 72, pp. 2:1–2:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.CALCO.2017.2

18. Girard, J.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

http://arxiv.org/abs/1401.4973
https://doi.org/10.2168/LMCS-2(5:4)2006
https://doi.org/10.1007/BFb0074299
https://doi.org/10.1007/BFb0074299
https://doi.org/10.1051/ita:2003020
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/3290338
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1007/978-3-642-23217-6_21
https://doi.org/10.1007/978-3-642-23217-6_21
https://doi.org/10.1007/978-3-662-46678-0_26
https://doi.org/10.1007/978-3-662-46678-0_26
https://doi.org/10.4230/LIPIcs.CALCO.2017.2
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

80 E. Di Lavore et al.

19. Girard, J.Y.: Towards a geometry of interaction. Contemp. Math. 92(69–108), 6
(1989)

20. Goncharov, S., Schröder, L.: Guarded traced categories. In: Baier, C., Dal Lago,
U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 313–330. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89366-2 17

21. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In: de Groote, P., Roger Hindley, J. (eds.) TLCA 1997.
LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-62688-3 37

22. Hasegawa, M.: The uniformity principle on traced monoidal categories. In: Blute,
R., Selinger, P. (eds.) Category Theory and Computer Science, CTCS 2002,
Ottawa, Canada, 15–17 August 2002. Electronic Notes in Theoretical Computer
Science, vol. 69, pp. 137–155. Elsevier (2002). https://doi.org/10.1016/S1571-
0661(04)80563-2

23. Hoshino, N., Muroya, K., Hasuo, I.: Memoryful geometry of interaction: from coal-
gebraic components to algebraic effects. In: Henzinger, T.A., Miller, D. (eds.) Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, 14–18 July 2014, pp.
52:1–52:10. ACM (2014). https://doi.org/10.1145/2603088.2603124

24. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math.
Proc. Cambridge Philos. Soc. 119, 447–468 (1996). https://doi.org/10.1017/
S0305004100074338

25. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory,
vol. 1. McGraw-Hill, New York (1969)

26. Katis, P., Sabadini, N., Walters, R.F.C.: Bicategories of processes. J. Pure Appl.
Algebra 115(2), 141–178 (1997)

27. Katis, P., Sabadini, N., Walters, R.F.C.: Span(Graph): a categorical algebra of
transition systems. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 307–
321. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0000479

28. Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of feedback and systems
with boundary. In: Rendiconti del Seminario Matematico di Palermo (1999)

29. Katis, P., Sabadini, N., Walters, R.F.C.: A formalization of the IWIM model. In:
Porto, A., Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp.
267–283. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45263-X 17

30. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics.
RAIRO-Theor. Inform. Appl. 36(2), 181–194 (2002). https://doi.org/10.1051/ita:
2002009

31. Katis, P., Sabadini, N., Walters, R.F.C.: A process algebra for the Span(Graph)
model of concurrency. arXiv preprint arXiv:0904.3964 (2009)

32. Lack, S.: Composing PROPs. Theory Appl. Categories 13(9), 147–163 (2004)
33. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-

ematics, Springer, New York (1978). https://doi.org/10.1007/978-1-4757-4721-8
34. Mason, S.J.: Feedback theory - some properties of signal flow graphs. Proc.

Inst. Radio Eng. 41(9), 1144–1156 (1953). https://doi.org/10.1109/JRPROC.1953.
274449

35. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J.
34(5), 1045–1079 (1955)

36. Milius, S., Litak, T.: Guard your daggers and traces: properties of guarded (co-)
recursion. Fund. Inform. 150(3–4), 407–449 (2017)

https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1007/3-540-62688-3_37
https://doi.org/10.1016/S1571-0661(04)80563-2
https://doi.org/10.1016/S1571-0661(04)80563-2
https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1017/S0305004100074338
https://doi.org/10.1007/BFb0000479
https://doi.org/10.1007/3-540-45263-X_17
https://doi.org/10.1051/ita:2002009
https://doi.org/10.1051/ita:2002009
http://arxiv.org/abs/0904.3964
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1109/JRPROC.1953.274449
https://doi.org/10.1109/JRPROC.1953.274449

A Canonical Algebra of Open Transition Systems 81

37. Rosebrugh, R., Sabadini, N., Walters, R.F.C.: Generic commutative separable alge-
bras and cospans of graphs. Theory Appl. Categories 15(6), 164–177 (2005)

38. Sabadini, N., Schiavio, F., Walters, R.F.C.: On the geometry and algebra of net-
works with state. Theor. Comput. Sci. 664, 144–163 (2017)

39. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke
B. (ed.) New Structures for Physics, vol. 813, pp. 289–355. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12821-9 4

40. Shannon, C.E.: The Theory and Design of Linear Differential Equation Machines.
Bell Telephone Laboratories (1942)

41. Sobociński, P.: A non-interleaving process calculus for multi-party synchronisation.
In: 2nd Interaction and Concurrency Experience: Structured Interactions, (ICE
2009). EPTCS, vol. 12 (2009). https://doi.org/10.4204/eptcs.12.6. http://users.
ecs.soton.ac.uk/ps/papers/ice09.pdf

42. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15375-4 38

https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.4204/eptcs.12.6
http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf
http://users.ecs.soton.ac.uk/ps/papers/ice09.pdf
https://doi.org/10.1007/978-3-642-15375-4_38

Corinne, a Tool for Choreography
Automata

Simone Orlando1, Vairo Di Pasquale1, Franco Barbanera2 ,
Ivan Lanese3(B) , and Emilio Tuosto4

1 University of Bologna, Bologna, Italy
2 Department of Mathematics and Computer Science, University of Catania,

Catania, Italy
barba@dmi.unict.it

3 Focus Team, University of Bologna/INRIA, Bologna, Italy
4 Gran Sasso Science Institute, L’Aquila, Italy

emilio.tuosto@gssi.it

Abstract. Choreography automata are a model of choreographies envis-
aging high-level views of the behaviour of communicating systems as
finite-state automata. The behaviour of each participant of a choreog-
raphy can be obtained via a projection operation from a choreography
automaton. The system of participants obtained by projection is well-
behaved if the choreography automaton satisfies some well-formedness
conditions. We present Corinne, a tool allowing one to render, compute
projections of and compose choreography automata, as well as to check
well-formedness conditions.

1 Introduction

Programming and understanding distributed systems is notoriously difficult
due to the need to reason on multiple flows of execution and many possible
behaviours; yet distributed systems are fundamental nowadays. Indeed most of
our systems, from social networks to apps, from games to scientific software, are
distributed. A main challenge when programming distributed systems, in partic-
ular multiparty ones, is how to define communication protocols avoiding subtle
bugs such as deadlocks.

In order to reason on the correctness and properties of multiparty commu-
nication protocols, dedicated models such as conversation protocols [24], chore-
ographies [11,28,31], global graphs [35], and multiparty session types [12,26,27]

Research partly supported by the EU H2020 RISE programme under the Marie
Sk�lodowska-Curie grant agreement No 778233, by the MIUR project PRIN
2017FTXR7S “IT-MaTTerS” (Methods and Tools for Trustworthy Smart Systems),
and by the Progetto di Ateneo Pia.Ce.Ri - UNICT. The third and fourth authors have
also been partially supported by INdAM as members of GNCS (Gruppo Nazionale per
il Calcolo Scientifico). The authors thank the reviewers for their interesting comments
and suggestions, which helped us to improve the paper. The third author wishes to
thank also Mariangiola Dezani-Ciancaglini for her support.

c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 82–92, 2021.
https://doi.org/10.1007/978-3-030-90636-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_5&domain=pdf
http://orcid.org/0000-0002-8039-1085
http://orcid.org/0000-0003-2527-9995
http://orcid.org/0000-0002-7032-3281
https://doi.org/10.1007/978-3-030-90636-8_5

Corinne, a Tool for Choreography Automata 83

have been proposed. Their common trait is to provide global descriptions of the
behaviour of a distributed system, and to allow one to ensure desirable prop-
erties such as deadlock freedom by checking some structural conditions on the
model. Also, they provide an operation, called projection, to extract from the
global specification a description of the (local) behaviour that each participant
has to follow in order to implement the desired global behaviour.

In this paper we focus on choreography automata (c-automata) [4], which
are an automata model belonging to the family described above. Essentially, c-
automata are finite-state automata whose transitions are labelled by interactions
representing point-to-point communications between a sender and a receiver.
Despite its simplicity, manually performing the constructions and analysis (such
as the ones in [4]) on c-automata is tedious, error prone even for simple cases,
and its complexity increases with the size of c-automata to the point that it
becomes practically impossible even on moderately large instances.

Thus, we decided to automate the main constructions and analysis on c-
automata in a prototype tool called Corinne. This tool allows us to experiment
with c-automata. We illustrate the usefulness of Corinne by applying it to the
examples in [3,4]. This exercise allowed us to spot a couple of (minor) errors in
[4]. We will come back to this when describing the tool. It is worth noticing that
the definitions of choreography automaton and of its projection are independent
of the chosen communication model (synchronous or asynchronous). Indeed, this
choice affects only the definition of well-formedness conditions.

After reviewing the main constructions and operations of c-automata (Sect.
2), we introduce Corinne (Sect. 3). We will conclude the paper (Sect. 4) with
some final remarks.

Corinne is available at [14] (under the open-source MIT license), together
with all the examples discussed in this paper.

2 Choreography Automata

This section surveys choreography automata (c-automata) borrowing definitions
and concepts from [4,5]; for full details about this formalism we refer the reader
to [4,5]. C-automata (ranged over by CA, CB, etc.) are Finite-State Automata
(FSAs) whose transitions are labelled by interactions of the form A−→B : m; such
interaction represents a communication between participants A and B where the
former sends a message (of type) m to the latter, which is supposed to receive
m. We let λ range over the set Lint of interactions.

Definition 2.1 (Choreography automata). A choreography automaton (c-
automaton) is an FSA on the alphabet Lint, namely a tuple 〈Q, q0,Lint,−→〉 where
Q is a finite set of states, q0 the initial state, and −→⊆ Q×Lint×Q the transition
relation. We write q

λ−→ q′ when (q, λ, q′) ∈−→.

Given a c-automaton, the projection operation builds the corresponding com-
municating system consisting of the set of projections of the c-automaton on each
participant. Each projection is an FSA as well, on the alphabet Lact of actions,

84 S. Orlando et al.

which have the form AB!m,AB?m. The former denotes the action of sending
message m from A to B, the latter the corresponding receiving action. Such FSAs
are called Communicating Finite State Machines (CFSMs) [10]. Hereafter, PCA

denotes the set of participants of a c-automaton CA; note that PCA is necessarily
finite.

Definition 2.2 (Automata projection). The projection on A of a transition
t = q

λ−→ q′ of a c-automaton, written t↓A, is defined by:

t↓A =

⎧
⎪⎨

⎪⎩

q
AB!m−−−→ q′ if λ = A−→B : m

q
BA?m−−−−→ q′ if λ = B−→A : m

q
ε−→ q′ otherwise

The projection of a c-automaton CA = 〈Q, q0,Lint,→〉 on a participant A ∈
PCA, denoted CA ↓A, is obtained by determinising1 up-to-language equivalence
the intermediate automaton

AA = 〈Q, q0,Lact ∪ { ε }, { (q λ−→ q′)↓A | q λ−→ q′ }〉

The projection of CA, written CA↓, is the communicating system (CA↓A)A∈PCA .

The projection of c-automata is essentially obtained by transferring projec-
tions of global specifications present in several choreography-based approaches
such as, e.g., [12,13,26,27,35]. A composition operation on c-automata has been
recently proposed by the last three authors in [5]. The idea is to lift at the chore-
ographic level a version of the composition of systems of CFSMs described in [2]
and applied in a multiparty session type setting in [3]. This technique enables to
overcome the fact that in choreographic approaches systems are usually intended
to be closed. Actually, it is instead possible to look at any system as an open
one (so enabling modular development) by looking at any of its participants as
a possible interface. Hence, the composition of systems is essentially obtained
by taking two systems, selecting two of their participants (one per system) pro-
vided that they meet some compatibility conditions, and removing them while
redirecting communications to them towards the other system. More precisely,
if a message is sent by some participant A to the chosen interface of the system
it belongs to, compatibility conditions require the interface of the other system
to send an identical message to some participant B. In the composed system A
sends the message directly to B. This way of composing systems can be obtained
by applying one after the other two operations:

1. the product of c-automata, building a c-automaton corresponding to the con-
current execution of the two original c-automata; and

2. a blending operation that, given two participants (the chosen interfaces) of a
same c-automaton, removes them and adjusts the c-automaton as described
above.

1 In [4] also minimisation is performed, but this is not needed for the correctness of
the constructions, and it is not currently performed by Corinne.

Corinne, a Tool for Choreography Automata 85

The formalisation of these operations can be found in [5], while an example will
be discussed in the next section (Fig. 3).

Fig. 1. Corinne screenshot

3 Corinne

The operations of projection and composition of c-automata described in Sect. 2
are implemented in Corinne [14]. The tool is written in python3 and works on
c-automata represented as particular directed graphs in the DOT format [23].
Rendering of DOT files is performed using the graphviz library [25]. Other for-
mats can be used as input of Corinne; more precisely the tool also parses regular
expressions used as the syntax of global graphs [35] in ChorGram [15,17], or the
DOT representation [23] of global graphs produced by Domitilla [22]. We remark
that only global graphs with no parallel composition correspond to c-automata
and can thus be imported. All parsers are defined using ANTLR4 [32].

86 S. Orlando et al.

Users interact with Corinne through a graphical interface based on the tkinter
package [34]. The GUI of Corinne displays FSAs that are either c-automata or
CFSMs obtained via projection. As shown in the screenshot in Fig. 1, each FSA
appears in a separate tab. The tab also reports basic information on the FSA
(e.g., number of states and of edges) as well as a graphical rendering of the FSA
itself.

{ 0 }

Cref ↓S

{ 1 } { 2 }

{ 3 }

{ 4 }

{ 5 } { 6 }
C
S?

req

S C!res

S
L!cnt

C S?refC
S?
by
e

C
S?ok

S C!res

S C!noRef

S C!bye

Fig. 2. Projections of Cref on S from Corinne (left) and [4] (right)

Besides utility menus File and Help, Corinne has two menus to work on
c-automata. Menu Transformations allows one to compute projections2 on a
given participant, the product of two c-automata as well as the blending (syn-
chronisation) operation via interfaces following the approach described in [5].

Menu Properties instead allows one to check the well-formedness conditions
discussed in [4] ensuring that the language of the c-automaton coincides with
the one of the (synchronous) system obtained via projection, and that the latter
is live, lock-free, and deadlock-free (we refer to [4] for the definition of these
properties in the context of c-automata as well as for formal statements and
proofs of the results hinted at above).

The screenshot in Fig. 1 depicts the c-automaton Cref used in [4, Introduc-
tion] as a running example. Cref specifies the coordination among participants
C, S, and L whereby a request req from client C is served by server S which
replies with a message (of type) res and logs some meta-information cnt on a
service L (e.g., for billing purposes). Client C may acknowledge a response of S
(i) with an ok message to restart the protocol, or (ii) by requiring a refinement
of the response with a ref message, or else (iii) by ending the protocol with a
bye message which S forwards to L. In the second case, S sends C either a noRef
message, if no refinement is possible, or another res (with the corresponding cnt
to L). Using Corinne we can generate the projections of Cref. Figure 2 contrasts
the projection on participant S returned by Corinne and the one in [4, Example
3.4], manually computed. The two CFSMs differ on the labels of the transition

2 Determinisation required for projection is computed using the classical subset con-
struction for FSAs with ε-transitions.

Corinne, a Tool for Choreography Automata 87

from state 4 to 6 and {5} to {6}, respectively from the left and the right CFSM,
which should correspond to each other. In fact, the label SC!bye on the transition
from {5} to {6} is wrong.

We can also check the well-formedness of Cref, which is the conjunction
of two conditions, well-branchedness and well-sequencedness. Intuitively, well-
branchedness requires that all the participants are aware of which branch is taken
in a choice, if they have to behave differently on the available branches. Well-
sequencedness instead requires concurrency (due to communications involving
disjoint sets of participants) to be explicitly represented as commuting diamonds.
As expected Corinne reports Cref to be well-sequenced. Unexpectedly, the check
of well-branchedness fails. This is shown in the message in the bottom part of
Fig. 1. The message means that the third condition in [4, Definition 4.6] fails on
the pair of paths 3-0-1-2-3 and 3-4-3 because of participant L. The reason is
that L occurs in the former but not in the latter. This implies that, in case the
system reaches state 3 and participant C keeps on choosing indefinitely to send
message ref to S, participant L will never be aware of what is going on. So L gets
stuck waiting for a message bye that will never arrive. We refer to [4] for further
details on well-formedness conditions. We conjecture that Cref is nevertheless
well-behaved under suitable fairness assumptions, but the theory in [4] needs to
be generalised to prove it.

We now demonstrate the composition operation relying on the running exam-
ple of [3], where (referring to the UML representations) the diagrams in [3, Fig. 5]
and [3, Fig. 6] are composed to derive the one in [3, Fig. 8]. Figure 3 shows the two
c-automata involved and the result of the composition. The top-left c-automaton
(let’s dub it CA1) represents the global behaviour of a system with participants
P, Q, and H interacting according to the following protocol. Participant P keeps
on sending text messages to Q, which has to deliver them to H. Participant P
can send a new message only if H has ascertained the propriety of language of
the previous one, i.e. if the latter does not contain, say, rude or offensive words.
Participant H acknowledges to Q the propriety of language of a received text
by means of the message ack. In such a case, Q sends to P an ok message so
that P can proceed by sending a further message. If the message does not passes
the check, then H sends a nack message to inform Q that the text has not the
required propriety of language. In such a case, Q produces transf (a semantically
invariant reformulation of the text), sends it back to H and so that it can be
checked. Before doing that, Q informs P (through the notyet message) that the
text has not been accepted yet and a reformulation has been requested. After
receiving a message, H may also decide to stop the interaction, sending a stop
message to inform Q that no more text will be accepted. In such a case, Q informs
P of that.

The bottom-left c-automaton (let’s dub it CA2), instead describes a system
formed by participants K, R, and S interacting according to the following proto-
col. Participant K sends text messages to R and S in an alternating way, starting
with R. Participants R and S inform K that a text has been accepted or refused
by sending back, respectively, either ack or nack. In the former case, it is the

88 S. Orlando et al.

Fig. 3. Composition of c-automata in Corinne

other receiver’s turn to receive the text: a message go is exchanged between R
and S to signal this case. In case nack is sent back, the sender has to resend the
text until it is accepted. Meanwhile, the participant currently selected by K asks
the other one to wait, since the previous message is being resent in a transformed
form.

In the composition, participants H and K in, respectively, CA1 and CA2 of
Fig. 3 are chosen as interfaces. This means that, e.g., when participant Q sends a
text, it will send it alternatively to R and S. This can be thought somehow as if
CA1 invokes CA2 for sending the message. However, w.r.t. choreographies with
procedure invocations such as [19,20], our approach on the one hand allows a
complex interaction between caller and callee choreographies but, on the other
hand, does not allow for parameter passing in the invocation. Notice that the
interfaces H and K are compatible; specifically, the languages of CA1 ↓H and
CA2 ↓K are dual to each other if we disregard the name of participants other
than H and K in the input/output actions (duality corresponds to the exchange
of ‘!’ with ‘?’ and vice versa in the actions). Compatibility, roughly, enables the

Corinne, a Tool for Choreography Automata 89

composition not to modify in an essential way the behaviour of participants
other than H and K. To obtain in Corinne the composition of CA1 and CA2
via the chosen interfaces H and K, we need first to apply Product on the two
c-automata and then to apply Synch on H and K on the result. The only rele-
vant difference between the composition performed by Corinne and the one in [3]
is that the synchronisation in [3] transforms H and K into gateways while our
composition drops them. Actually, our composition precisely corresponds to the
direct composition in [3], but there is no example in [3] of this form of compo-
sition. We can obtain our result from the one in [3] by transforming sequences
of communications A-H-K-B into A-B and B-K-H-A into B-A for any A and B.
We also remark that the representation as c-automata highlights concurrency as
commuting diamonds, e.g., the one at states (4,3),(5,3),(4,4),(5,4). Both
the component c-automata and their composition can be checked to be both
well-sequenced and well-branched. However, the check of well-branchedness on
the composition is quite heavy.

4 Conclusion, Related Work, and Future Work

We refer to [4] for a comparison between c-automata and related models, while
here we focus on the relations between Corinne and the most related tools.

Possibly Corinne’s closest sibling is ChorGram, a tool chain based on global
graphs to support choreographic development of message-oriented applica-
tions [17,29]. Global graphs are not directly comparable with c-automata: on the
one hand they are more general since they allow one to specify parallelism, but
on the other hand they require structured interactions. As a result, global graphs
without parallel composition correspond to a strict subset of c-automata. In a
sense, ChorGram complements Corinne’s functionalities; for instance, it supports
different semantics of global graphs and some experimental ideas on choreog-
raphy amendment or model-driven testing of message passing applications [18].
While Corinne can already take as input global graphs without parallel compo-
sition produced by ChorGram, we plan to further integrate the two tools in the
future. We are currently considering to encode the parallel composition of global
graphs as interleaving of independent transitions. We also plan to extend Chor-
Gram so that it imports c-automata produced by Corinne. This paves the way to
extensions of Corinne with features to import models based, e.g., on multiparty
session types such as [21,33] once proper mappings to c-automata are defined.
We remark that this might not be simple for models relying on asynchronous
communications such as [13,30] for Corinne’s semantics is synchronous.

Another toolkit close to Corinne is CAT, a tool introduced in [7] to support
the verification of communication protocols expressed as contract automata via
the analysis of agreement properties. Contract automata are a versatile model
of automata featuring the synthesis of controllers for communicating compo-
nents; a thorough analysis based on CAT of the relations between choreographic-
and orchestration-based controllers (initiated in [8]) has been recently developed
in [6]. This suggests a possible entanglement of the complementary features of

90 S. Orlando et al.

Corinne and CAT also in the light of the recent refactoring of the latter tool [9].
In fact, recently this model is being applied to choreography automata; Corinne
could be useful in this context to validate choreography automata synthesised
with contract automata.

We believe that Corinne is useful to experiment with c-automata, yet a num-
ber of improvements are desirable. First, right now the complexity of the check
for well-branchedness is too high. We believe this can be reduced, at least in the
average case, by avoiding checking multiple times analogous choices which are
repeated in many states due to concurrency. Also, other functionalities would
be useful, such as performing composition via gateways as described in [3] or
checking well-formedness conditions also for the asynchronous semantics [4].

References

1. Barbanera, F., de’Liguoro, U., Hennicker, R.: Global types for open systems. In:
Bartoletti, M., Knight, S. (eds.) ICE, EPTCS, vol. 279, pp. 4–20 (2018)

2. Barbanera, F., de’Liguoro, U., Hennicker, R.: Connecting open systems of com-
municating finite state machines. J. Logic Algebr. Methods Program. 109 (2019).
https://doi.org/10.1016/j.jlamp.2019.07.004. Extended version of [1]

3. Barbanera, F., Dezani-Ciancaglini, M., Lanese, I., Tuosto, E.: Composition and
decomposition of multiparty sessions. J. Logic Algebr. Methods Program. 119,
100620 (2021)

4. Barbanera, F., Lanese, I., Tuosto, E.: Choreography automata. In: Bliudze, S.,
Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 86–106. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-50029-0 6

5. Barbanera, F., Lanese, I., Tuosto, E.: Composition of choreography automata.
Technical reports 2107.06727, Arxiv, July 2021. http://arxiv.org/abs/2107.06727

6. Basile, D., ter Beek, M.H., Pugliese, R.: Synthesis of orchestrations and choreogra-
phies: bridging the gap between supervisory control and coordination of services.
Logic. Methods Comput. Sci. 16(2) (2020)

7. Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and
communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016.
LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-39570-8 5

8. Basile, D., Degano, P., Ferrari, G., Tuosto, E.: Relating two automata-based models
of orchestration and choreography. J. Logic Algebr. Methods Program. 85(3), 425–
446 (2016)

9. Basile, D., ter Beek, M.H.: A clean and efficient implementation of choreography
synthesis for behavioural contracts. In: Damiani, F., Dardha, O. (eds.) COORDI-
NATION 2021. LNCS, vol. 12717, pp. 225–238. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-78142-2 14

10. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

11. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-77351-1 4

https://doi.org/10.1016/j.jlamp.2019.07.004
https://doi.org/10.1007/978-3-030-50029-0_6
http://arxiv.org/abs/2107.06727
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-319-39570-8_5
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-030-78142-2_14
https://doi.org/10.1007/978-3-540-77351-1_4
https://doi.org/10.1007/978-3-540-77351-1_4

Corinne, a Tool for Choreography Automata 91

12. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 2

13. Carbone, M., Montesi, F.: Deadlock-freedom-by-design: multiparty asynchronous
global programming. In: POPL, pp. 263–274 (2013). https://doi.org/10.1145/
2429069.2429101

14. Corinne github repository. https://github.com/lanese/corinne-3
15. Coto, A., Guanciale, R., Lange, J., Tuosto, E.: ChorGram: tool support for chore-

ographic development (2015). https://bitbucket.org/emlio tuosto/chorgram/wiki/
Home

16. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic
testing. In: Lange, J., Mavridou, A., Safina, L., Scalas, A. (eds.) Proceedings 13th
Interaction and Concurrency Experience, ICE 2020, Online, 19 June 2020. EPTCS,
vol. 324, pp. 43–60 (2020)

17. Coto, A., Guanciale, R., Tuosto, E.: Choreographic development of message-
passing applications. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020.
LNCS, vol. 12134, pp. 20–36. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50029-0 2

18. Coto, A., Guanciale, R., Tuosto, E.: An abstract framework for choreographic test-
ing. J. Logic Algebraic Methods Program. 123, 100712 (2021). Extended version
of [16]

19. Cruz-Filipe, L., Montesi, F.: Procedural choreographic programming. In: Bouaj-
jani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 92–107. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-60225-7 7

20. Demangeon, R., Honda, K.: Nested protocols in session types. In: Koutny, M.,
Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 272–286. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32940-1 20

21. Dezani-Ciancaglini, M., Ghilezan, S., Jaksic, S., Pantovic, J., Yoshida, N.: Precise
subtyping for synchronous multiparty sessions. In: Gay, S., Alglave, J. (eds.) Pro-
ceedings Eighth International Workshop on Programming Language Approaches
to Concurrency- and Communication-cEntric Software, PLACES 2015, London,
UK, 18th April 2015. EPTCS, vol. 203, pp. 29–43 (2015). https://doi.org/10.4204/
EPTCS.203.3

22. Domitilla github repository. https://github.com/dedo94/Domitilla
23. The DOT Language. https://graphviz.org/doc/info/lang.html
24. Fu, X., Bultan, T., Su, J.: Conversation protocols: a formalism for specification

and verification of reactive electronic services. Theoret. Comput. Sci. 328(1–2),
19–37 (2004). https://doi.org/10.1016/.tcs.2004.07.004

25. Graphviz 0.16 - Simple Python interface for Graphviz. https://pypi.org/project/
graphviz/

26. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM Press (2008)

27. Hüttel, H., et al.: Foundations of session types and behavioural contracts. ACM
Comput. Surv. 49(1), 3:1–3:36 (2016)

28. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., Lafon, Y., Barreto, C.:
Web services choreography description language version 1.0. Technical report, W3C
(2005). http://www.w3.org/TR/ws-cdl-10/

29. Lange, J., Tuosto, E., Yoshida, N.: A tool for choreography-based analysis of
message-passing software. In: Gay, S., Ravara, A. (eds.) Behavioural Types: From
Theory to Tools, chap. 6, pp. 125–146. Automation, Control and Robotics, River
(2017)

https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/2429069.2429101
https://github.com/lanese/corinne-3
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
https://doi.org/10.1007/978-3-030-50029-0_2
https://doi.org/10.1007/978-3-030-50029-0_2
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1007/978-3-642-32940-1_20
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.4204/EPTCS.203.3
https://github.com/dedo94/Domitilla
https://graphviz.org/doc/info/lang.html
https://doi.org/10.1016/.tcs.2004.07.004
https://pypi.org/project/graphviz/
https://pypi.org/project/graphviz/
http://www.w3.org/TR/ws-cdl-10/

92 S. Orlando et al.

30. Ng, N., Yoshida, N., Honda, K.: Multiparty session c: safe parallel programming
with message optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS,
vol. 7304, pp. 202–218. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30561-0 15

31. OMG: Business Process Model and Notation (BPMN), Version 2.0, January 2011.
https://www.omg.org/spec/BPMN

32. Parr, T.: Antlr. https://www.antlr.org/index.html
33. Severi, P., Dezani-Ciancaglini, M.: Observational equivalence for multiparty ses-

sions. Fundam. Informaticae 170(1–3), 267–305 (2019). https://doi.org/10.3233/
FI-2019-1863

34. TKinter - Python interface to Tcl/Tk. https://docs.python.org/3/library/tkinter.
html

35. Tuosto, E., Guanciale, R.: Semantics of global view of choreographies. J. Logic
Algebr. Methods Program. 95, 17–40 (2018)

https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://www.omg.org/spec/BPMN
https://www.antlr.org/index.html
https://doi.org/10.3233/FI-2019-1863
https://doi.org/10.3233/FI-2019-1863
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

Verification

Specification and Safety Verification
of Parametric Hierarchical

Distributed Systems

Marius Bozga and Radu Iosif(B)

Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering
Univ. Grenoble Alpes), VERIMAG, 38000 Grenoble, France

{marius.bozga,radu.iosif}@univ-grenoble-alpes.fr

Abstract. We introduce a term algebra as a new formal specification
language for the coordinating architectures of distributed systems con-
sisting of a finite yet unbounded number of components. The language
allows to describe infinite sets of systems whose coordination between
components share the same pattern, using inductive definitions similar
to the ones used to describe algebraic data types or recursive data struc-
tures. Further, we give a verification method for the parametric systems
described in this language, relying on the automatic synthesis of struc-
tural invariants that enable proving general safety properties (absence
of deadlocks and critical section violations). The invariants are defined
using the WSκS fragment of the monadic second order logic, known to
be decidable by a classical automata-logic connection. This reduces the
safety verification problem to checking satisfiability of a WSκS formula.
We implemented the invariant synthesis method into a prototype tool
and carried out verification experiments on a number of non-trivial mod-
els specified using the term algebra.

1 Introduction

The separation between behavior and coordination is a fundamental principle
in the design of large-scale distributed systems [16]. By behavior we mean a set
of traces of observable events. A component is a representation of a behavior,
by means of a (finite) state machine, whose actions are labeled by events. The
architecture of the system defines the interactions between components, as sets
of events that must occur simultaneously in several components. For instance,
Fig. 1a shows a token-ring systems, whose components are depicted in yellow
boxes (behaviors are modeled by the finite-state machines within the boxes) and
whose architecture is the set of connections between components (depicted with
solid lines). Such high-level models of real-life distributed systems are suitable
for reasoning about correctness in the early stages of system design, when details
related to network reliability or the implementation of coordination mechanisms,
by means of low-level synchronization mechanisms (e.g. semaphores, monitors,
compare-and-swap, etc.) are abstracted away.
c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 95–114, 2021.
https://doi.org/10.1007/978-3-030-90636-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_6&domain=pdf
http://orcid.org/0000-0003-4412-5684
http://orcid.org/0000-0003-3204-3294
https://doi.org/10.1007/978-3-030-90636-8_6

96 M. Bozga and R. Iosif

This modular view of a distributed system is key to scalable design methods
that exploit a conceptual hierarchy, in which each module is split into sub-
modules. For instance, a ring is a chain whose final output port is connected to
the initial input port, whereas a chain consists of a (head) component linked to a
separate (tail) chain (Fig. 1b). Furthermore, system designers are accustomed to
the use of predefined architectural patterns, that define the interactions between
(unboundedly large) sets of modules (e.g. crowds, rings, pipelines, stars, trees,
etc.). In this context, the contribution of the paper is three-fold.

1. We introduce a formal language to describe the coordinating architectures
of distributed systems parameterized by (i) the number of components of
each type that are active in the system, e.g. a system with n readers and
m writers, in which n and m are not known a priori and (ii) the pattern
in which the interactions occur (e.g. a pipeline, ring, star or more general
hypergraph structures). The language uses predicate symbols to hierarchically
break the architecture into sub-modules. The interpretation of these predicate
symbols is defined inductively by rewriting rules consisting of terms that
contain predicate atoms, in a way that recalls the usual definitions of algebraic
datatypes [2] or heaps [18].

2. We tackle the parametric safety problem for systems described in this lan-
guage, which is checking that the reachable states of every instance stays clear
of a set of global error configurations, such as deadlocks or critical section vio-
lations. We synthesize invariants directly from the syntactic description of the
system, generate WSκS formulæ [19] that are unsatisfiable only if every sys-
tem described by the given inductive definitions is safe and use off-the-shelf
WSκS solvers [11] for proving safety automatically. The invariant synthesis
method models the set of executions of a parametric system as a boolean
(1-safe) Petri net of unbounded size and computes structural invariants (trap
invariants, linear invariants) of this Petri net.

3. We implemented the invariant synthesis in a prototype tool and experimented
with a number of parametric component-based systems with non-trivial archi-
tectural patterns, such as trees with root links, trees with linked leaves, token-
rings with or without a main controller, etc.

Example 1. Let us consider a distributed system consisting of components of
type C, having two interaction ports, namely in and out and whose behavior
is described by a finite state machine with transitions q0

out−→ q1 and q1
in−→ q0.

These components are arranged in a ring, such that the out port of a compo-
nent is connected to the in port of its right neighbour, with the exception of
the last component, whose out port connects to the in port of the first compo-
nent (Fig. 1a). The connections (interactions) in the system are described by the
predicate Ring(), defined inductively by the rules below:

Ring() ← νy1 νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2)) (1)
Chain(x1, x2) ← 〈out(x1) · in(x2)〉(Comp(x1),Comp(x2)) (2)
Chain(x1, x2) ← νy1 . 〈out(x1) · in(y1)〉(Comp(x1),Chain(y1, x2)) (3)

Comp(x) ← C(x) (4)

Specification and Safety Verification of Parametric Systems 97

q0· · ·
out out out

nini ni

C(y1) C(y1
1) C(yn

1) C(y2)

in out

(a)
(b)

C(y1) C(y1
1) outChain(y2

1 , y2)
in in in

out out

Ring()

Chain(y1
1 , y2)

Chain(y1, y2)3

1

3in

out

q1

q0

in

out

q1

q0

in

out

q1

q0

in

out

q1

Fig. 1. Recursive Specification of a Token-Ring System (Color figure online)

Rule (1) states that a Ring() consist of a Chain(y1, y2), where y1 and y2 are
the indices of the first and last components1, respectively. The last out port is
connected to the first in port, written as out(y2) · in(y1). Rule (2) states that the
least Chain(x1, x2) consists of two instances of type C, namely C(x1) and C(x2),
and the out port of x1 connects to the in port of x2, described as out(x1)·in(x2).
Rule (3) gives the inductive step, namely that every Chain(x1, x2) consists of
a component C(x1) that interacts with a disjoint chain from y1 to x2. Here the
binder νy1 makes sure the value of y1 is different from the value of every other
variable in the system. Since this binder is used in a recursive rule, each identifier
in a subsequent unfolding of Chain(y1, x2) is guaranteed to be unique. Last, rule
(4) is used to instantiate (i.e. create new) components of type C. In principle, this
rule is not necessary, as any occurrence of a predicate Comp(y) can be replaced
by a component C(y), however it is considered for technical reasons related to
our invariant-based verification approach.

Figure 1b shows the unfoldings of this set of recursive definitions. The sys-
tem depicted in Fig. 1a is obtained by an application of rule (1), followed by n
applications of rule (3), ending with an application of rule (2). The first two appli-
cations of (3) following the application of (1) are depicted in Fig. 1b, with rule
labels annotated (each application of rule (3) creates a fresh variable, denoted
by y1

1 , . . . , y
n
1 , respectively). �

2 Preliminaries

This section introduces preliminary definitions used throughout the paper. Given
sets A and B, we denote by A → B the set of total functions f : A → B. If
a = 〈a1, . . . , an〉 is a tuple of values from A, then f(a) def= 〈f(a1), . . . , f(an)〉. By
a · b we denote the concatenation of tuples a and b. For two positive integers
k, � ∈ N, we denote by [k, �] the set {k, k + 1, . . . , �}, assumed to be empty if
k > �. The cardinality of a finite set A is denoted by |A|.
Trees. Trees play a key role in the definition of parametric distributed systems
from the following section (Sect. 3). Let κ ≥ 1 be an integer constant, fixed
throughout this paper, and let [1, κ]∗ denote the set of finite sequences of integers

1 First and last are understood here in the order of unfolding of the rewriting rules.

98 M. Bozga and R. Iosif

between 1 and κ, called nodes in the following. A κ-ary tree T is a partial function
mapping [1, κ]∗ to a set of labels. The domain of T , denoted nodes(T), is such
that wi ∈ nodes(T) for some i ∈ [1, κ] only if w ∈ nodes(T) and wj ∈ nodes(T)
for all j ∈ [1, i − 1]. The root of T is the empty sequence ε, the children of a node
w ∈ nodes(T) are {wi ∈ nodes(T) | i ∈ [1, κ]} and the parent of a node wi, i ∈
[1, κ], is w. The leaves of T are leaves(T) def= {w ∈ nodes(T) | w.1 �∈ nodes(T)}.
The subtree of T rooted at w is defined by nodes(T ↓w) def= {w′ | ww′ ∈ nodes(T)}
and T ↓w (w′) def= T (ww′), for all w′ ∈ nodes(T ↓w).

The invariant synthesis method uses the restriction of monadic second order
logic to trees of branching degree κ and quantification over finite sets only. Let
V1 = {x, y, z, . . .} and V2 = {X,Y,Z, . . .} be countably infinite sets of first and
second order variables, respectively. The formulæ of the WSκS logic are defined
inductively by the syntax:

τ ::= ε | x ∈ V1 | τ1.i, i ∈ [1, κ] terms
φ ::= τ = τ | X(τ) | φ ∧ φ | ¬φ | ∃x . φ | ∃X . φ formulæ

As usual, we write φ1 ∨ φ2
def= ¬(¬φ1 ∧ ¬φ2), φ1 → φ2

def= ¬φ1 ∨ φ2, φ1 ↔ φ2
def=

(φ1 → φ2)∧(φ2 → φ1), ∀x . φ
def= ¬∃x . ¬φ and ∀X . φ

def= ¬∃X . ¬φ.WSκS formulæ
are interpreted over an infinite tree, where first order variables x ∈ V1 range over
individual nodes n ∈ [1, κ]∗, second order variables X ∈ V2 range over finite sets of
nodes, ε is a constant symbol interpreted as the root of the tree and, for all i ∈ [1, κ],
the notation .i is is interpreted as the function mapping each w ∈ [1, κ]∗ into wi.
Given a valuation ν : V1 ∪ V2 → [1, κ]∗ ∪ 2[1,κ]∗ , such that ν(x) ∈ [1, κ]∗, for
each x ∈ V1 and ν(X) ⊆ [1, κ]∗ (ν(X) is finite), for each X ∈ V2, the satisfaction
relation |= is defined inductively, as usual [14]. A valuation ν is amodel of a formula
φ iff ν |= φ. A formula is satisfiable if and only if it has a model.

Petri Nets. A Petri net (PN) is a tuple N = 〈S, T,E〉, where S is a set of places,
T is a set of transitions, S ∩ T = ∅, and E ⊆ (S × T) ∪ (T × S) is a set of edges.
Given x, y ∈ S∪T , we write E(x, y) def= 1 if (x, y) ∈ E and E(x, y) def= 0, otherwise.
Let •x def= {y ∈ S ∪ T | E(y, x) = 1}, x• def= {y ∈ S ∪ T | E(x, y) = 1} and lift
these definitions to sets of nodes. A marking of N is a function m : S → N. A
transition t is enabled in m if and only if m(s) > 0 for each place s ∈ •t. We write
m t−→ m′ whenever t is enabled in m and m′(s) = m(s) − E(s, t) + E(t, s), for all
s ∈ S and t ∈ T . A sequence of transitions σ = t1, . . . , tn is a firing sequence,
written m σ−→ m′ if and only if either (i) n = 0 and m = m′, or (ii) n ≥ 1 and
there exist markings m1, . . . ,mn−1 such that m

t1−→ m1 . . . mn−1
tn−→ m′.

A marked Petri net is a pair N = (N,m0), where m0 is the initial marking
of N. A marking m is reachable in N if there exists a firing sequence σ such that
m0

σ−→ m. We denote by R(N) the set of reachable markings of N . A marked
PN N is boolean if m(s) ≤ 1, for each s ∈ S and m ∈ R(N). All marked
PNs considered in the following will be boolean and we shall silently blur the
distinction between a marking m : S → {0, 1} and the set {s ∈ S | m(s) = 1}.

Given a set of markings E , a marked PN N is safe w.r.t. E if and only if
R(N) ∩ E = ∅. A set of markings M is an inductive invariant of N = (N,m0) if

Specification and Safety Verification of Parametric Systems 99

and only if m0 ∈ M and for each m t−→ m′ such that m ∈ M, we have m′ ∈ M.
It is known that R(N) is the least inductive invariant of N , thus N is safe w.r.t
E if it has an inductive invariant M disjoint from E .

Components. In this paper we are concerned with systems consisting of an
unbounded number of components that are replicas of a fairly small set of pat-
terns, called component types. Let P = {a, b, . . .} and S = {s, t, . . .} be countably
infinite sets of ports and states, respectively. An injective function P (resp. S)
mapping tree nodes to ports (resp. states) is called a port type (resp. state type).
A component type is a tuple B = 〈P,S, I,Δ〉, where P ⊆ [1, κ]∗ → P and
S ⊆ [1, κ]∗ → S are finite sets of port and state types, I ∈ S is the initial state
type, and Δ is a finite set of transition rules S

P−→ T , where S, T ∈ S and P ∈ P.
In addition, we require that (i) the elements of P (resp. S) have pairwise disjoint
ranges and (ii) for any two transition rules S1

P1−→ S′
1, S2

P2−→ S′
2, if P1 = P2 then

S1 = S2 and S′
1 = S′

2. For a transition rule S
P−→ S′ ∈ Δ, let •P def= S and P • def= S′

denote the pre- and post-state type of the unique transition rule whose label is
the port type P .

The replicas of a component type are indexed (distinguished) by tree nodes2.
Given a component type B = 〈P,S, I,Δ〉 and a tree node w ∈ [1, κ]∗, we define
the component B(w) def= 〈{P (w) | P ∈ P}, {S(w) | S ∈ S}, I(w), {S(w) P (w)−−−→
S′(w) | S

P−→ S′ ∈ Δ}〉. Note that the sets of ports {P (w) | P ∈ P} (resp. states
{S(w) | S ∈ S}) of different replicas of the same component type are disjoint,
because the port (state) types are required to have disjoint ranges. We slightly
abuse notation by writing •(P (w)) def= •(P)(w) and (P (w))• def= (P)•(w) (we omit
brackets when they are clear from the context). We consider below a set B of
component types, with pairwise disjoint sets of port and state types.

Architectures. The coordination in a system is defined by architectures. An
interaction π ∈ 2P is a finite set of ports. An architecture γ ⊆ 2P is a finite set
of interactions. Given component types Bi = 〈Pi,Si, Ii,Δi〉 ∈ B and tree nodes
wi ∈ [1, κ]∗, the behavior of the system consisting of the components Bi(wi),
i = 1, . . . , n, coordinated by the architecture γ is defined by the marked PN
γ(B1(w1), . . . ,Bn(wn)) def= (〈S, γ,E〉,m0), where S

def=
⋃n

i=1{S(wi) | S ∈ Si} is
the set of places, for each interaction π ∈ γ, the edges to (from) π are given by
•π def= {•p | p ∈ π} (π• def= {p• | p ∈ π}) and the initial marking is m0

def= {Ii(wi) |
i ∈ [1, n]}.

Example 2. Figure 2 shows the marked PN that defines the behavior of the sys-
tem from Fig. 1a. The tree node 1 . . . 1 (i times) is represented by its value i in
the unary encoding. The interaction {in(n), out(1)} is duplicated, for readability.
The initially marked places are surrounded by dashed circles. �

2 We identify components by tree nodes in preparation of the ground for the verifica-
tion technique from Sect. 4. However, these definitions can be given in general, for
any countably infinite set of identifiers.

100 M. Bozga and R. Iosif

Fig. 2. The Behavior of a Token-Ring System

3 A Term Algebra of Behaviors

In this section we introduce a term algebra for describing the systems resulting
from the application of an architecture to an unbounded number of component
type instances (see Example 1 for the specification of a token-ring system in this
language). Let A be a countably infinite set of predicate symbols, and let #(A)
denote the arity of the predicate symbol A ∈ A.

Syntax. The following syntax generates behavioral terms inductively:

P ∈ [1, κ]∗ �→ P, x ∈ V1, B ∈ B, A ∈ A

I ::= P (x) | I1 · I2 interactions
Γ ::= I | Γ1 + Γ2 architectures
b ::= B(x) | 〈Γ 〉(b1, . . . , bn) | νx . b1 | A(x1, . . . , x#(A)) behavioral terms

A variable x occurring in a behavioral term b is free if it does not occur in
the scope of some subterm of the form νx . b1 and bound otherwise. The set
of free variables occurring in a term b is denoted by fv(b). In the following,
we assume that all bound variables occurring in a term are pairwise distinct
and distinct from the free variables. This assumption loses no generality because
terms obtained by α-conversion (renaming of bound variables) are usually viewed
as the same term. A term b is closed if fv(b) = ∅ and predicateless if no predicates
from A occur in b. We denote by b[y1/x1, . . . , yn/xn] the term obtained by
substituting the variable xi ∈ fv(b) with yi, for each i ∈ [1, n]. We write size(b)
for the number of occurrences of symbols in b.

A term B(x) is called an instance atom and a term A(x1, . . . , xn) is called
a predicate atom. We denote by #pred(b) the number of occurrences of pred-
icate atoms and by predi(b) the predicate atom that occurs i-th in b, for
i ∈ [1,#pred(b)], in some linear order of the nodes in the syntax tree of b.
The predicate symbols are interpreted as the least sets of predicateless terms
inductively defined by a rewriting system:

Definition 1. A rewriting system is a finite set R of rules of one of the forms:

A(x) ← B(x)
A(x1, . . . , x#(A)) ← νy1 . . . νyn . 〈Γ 〉(A1(z11 , . . . , z1

#(A1)
), . . . ,Am(zm

1 , . . . , zm
#(Am)

))

where m ≥ 1 and
{

{zi
1, . . . , zi

#(Ai)
}
}m

i=1
is a partition of {x1, . . . , x#(A), y1, . . . , yn}

Specification and Safety Verification of Parametric Systems 101

For instance, in Example 1, rule (4) is an instantiation rule, whereas (1), (2) and (3)
are inductive rules. We write A(x1, . . . , x#(A)) ←R b for A(x1, . . . , x#(A)) ← b ∈
R. The size of R is size(R) def=

∑
A(x1,...,x#(A))←Rb size(b). Given behavioral terms

b1 and b2, we denote by b1
r⇐ b2 the rewriting step that obtains b2 by replacing

a predicate atom A(y1, . . . , y#(A)) in b1 with b[y1/x1, . . . , y#(A)/x#(A)], where r =
(A(x1, . . . , x#A) ← b) is a rule of R and all bound variables in b are renamed to
avoid clashes with the variables from b1. We write [b]R for the set of predicateless
terms obtained from b by exhaustively applying the rewriting rules from R to it.

Semantics. Let us consider a given closed behavioral term b and a rewriting
system R. First, we define the semantics of a (closed) predicateless behavioral
term t ∈ [b]R, as the behavior (i.e. marked PN) resulting from joining the
components defined by the instance atoms from t, via the architecture consisting
of all the interactions that occur in t. This definition is done in two steps:

(a) we write t in prenex form as νx1 . . . νxn . u, where u contains no more terms
of the form νx . b, by moving all the ν binders upfront. Because all bound
variables in t, including those introduced by rewriting, are assumed to be
pairwise distinct, this step incurs no name clashes.

(b) we apply the following flattening relation exhaustively:

〈Γ1〉(〈Γ2〉(b1, . . . bi), bi+1, . . . bn) � 〈Γ1 + Γ2〉(b1, . . . , bn) (5)

Example 3. Consider the below rewriting sequence, using rules from Example 1:

Ring() ⇐ νy1νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2))
⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy1

1 . 〈out(y1) · in(y1
1)〉(Comp(y1),Chain(y1

1 , y2)))
⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy1

1 . 〈out(y1) · in(y1
1)〉(Comp(y1),

〈out(y1
1) · in(y2)〉(Comp(y1

1),Comp(y2))))
⇐ ... ⇐ νy1νy2 . 〈out(y2) · in(y1)〉(νy1

1 . 〈out(y1) · in(y1
1)〉(C(y1),

〈out(y1
1) · in(y2)〉(C(y1

1),C(y2)))) = t

By applying flattening to the last term, we obtain:

t� = νy1νy2 . 〈out(y2) · in(y1) + out(y1) · in(y1
1) + out(y1

1) · in(y2)〉(C(y1),C(y
1
1),C(y2))

�
Note that every chain t1 � t2 � . . . is finite, because the height of terms
strictly decreases with flattening. The result of flattening is of the form t� def=
〈Γ 〉(B1(x1), . . . ,Bn(xn)), where Γ =

∑m
k=1 Pk1(xk1) · . . . · Pkrk

(xkrk
) is an

architecture description, such that each Pk� ∈ [1, κ]∗ �→ P is a port type,
xk� ∈ {x1, . . . , xn}, for all k ∈ [1,m] and � ∈ [1, rk]. Given an injective valuation
ν : V1 → [1, κ]∗ that maps variables into distinct nodes of a tree of branching
degree κ, we define the architecture Γ (ν) def= {{Pk1(ν(xk1)), . . . , Pkrk

(ν(xkrk
))} |

k ∈ [1,m]} and the behavior:

Bt
ν

def= Γ (ν)(B1(ν(x1)), . . . ,Bn(ν(xn))) (6)

102 M. Bozga and R. Iosif

The semantics of the behavioral term b in the rewriting system R is the following
set of marked PNs:

[[b]]R
def= {Bt

ν | t ∈ [b]R , ν ∈ V1 → [1, κ]∗ injective} (7)

As a remark, the flattening step is required because applying an architecture
to a set of components is a global operation; if an interaction Pk1(xk1) · . . . ·
Pkrk

(xkrk
) occurs as a monomial in the architecture description Γ of a subterm

u = 〈Γ 〉(t1, . . . , t�) of t and some variable xki occurs in an instance atom B(xki)
in t but not in u, the interaction would be ignored if we applied Γ (ν) directly to
Bt1

ν , . . . , ,Bt�
ν , for some injective valuation ν.

4 The Parametric Safety Problem

Having defined a rewriting-based term algebra for the specification of distributed
systems, we move on to the problem of verifying that every behavior generated by
a given rewriting system R, starting from a given behavioral term b is safe with
respect to a given set of error markings. This problem is challenging, because
we ask for a proof of safety that holds for the behavior(s) of every predicateless
rewriting of the behavioral term, i.e. for each t ∈ [b]R. Since, even for token-ring
systems with finite-state components, the parametric safety problem is undecid-
able [9], we resort to a sound but necessarily incomplete solution, that consists
in computing inductive invariants.

Structural Invariants. In contrast with the classical approach to invariant
synthesis, based on a fixpoint iteration in an abstract domain [8], we consider a
particular class of invariants, that can be obtained directly from the syntactic
structure of the marked PN representation of behaviors. For this reason, we
call these invariants structural. In the following, we define two kinds of such
invariants, namely trap and mutex invariants:

Definition 2. Given a marked PN N = (〈S, T,E〉,m0), a set θ ⊆ S is a:

1. trap if |θ ∩ m0| ≥ 1 and, for any t ∈ T , if |θ ∩ •t| ≥ 1 then |θ ∩ t•| ≥ 1.
2. mutex if |θ ∩ m0| = 1 and, for any t ∈ T , we have |θ ∩ •t| = |θ ∩ t•| ≤ 1.

The structural invariants of N are the trap and mutex invariants, receptively:

A. Θ(N) def= {m marking of N | |m ∩ θ| ≥ 1, for each trap θ of N}
B. Ω(N) def= {m marking of N | |m ∩ θ| = 1, for each mutex θ of N}.

Note that, since N is boolean, each marking can be represented as a set of places.
Moreover, it is easy to check that Θ(N) and Ω(N) contain the initial marking m0

and are closed under the transition relation of the net. Thus both sets are induc-
tive invariants of N , that can be used to prove a safety property, by checking the
emptiness of the intersection of the above sets with a set E of error markings.

Our method encodes the families of sets {Θ(N) | N ∈ [[b]]R} and {Ω(N) |
N ∈ [[b]]R} by formulæ of WSκS, for a suitable integer constant κ ≥ 1. To

Specification and Safety Verification of Parametric Systems 103

x1 ← 1, x2 ← 2

Ring() ← νy1νy2 . 〈out(y2) · in(y1)〉(Chain(y1, y2)) (1) y1 ← 11, y2 ← 122

Chain(x1, x2) ← νy1
1 . 〈out(x1) · in(y1

1)〉(Comp(x1),Chain(y1
1 , x2)) (3) x1 ← 1, y1

1 ← 21, x2 ← 22

x ← ε

Comp(x) ← C(x) (4)x ← ε

Comp(x) ← C(x) (4)

Comp(x) ← C(x) (4) x ← ε

Chain(x1, x2) ← 〈out(x1) · in(x2)〉(Comp(x1),Comp(x2)) (2)

Fig. 3. A Rewriting Tree for the Token-Ring System

prove a parametric safety property given by a WSκS encoding of the E set, a
sufficient (but not necessary) condition is that the WSκS formula defining the
family of sets {Θ(N) ∩ Ω(N) ∩ E | N ∈ [[b]]R} is unsatisfiable. Since automata-
theoretic decision procedures exist for WSκS [19], we rely on existing provers
[11] to perform this check.

Rewriting Trees. The crux of the method is to represent each predicateless
behavioral term t ∈ [b]R by a tree labeled with the rewriting rules from some
rewriting sequence b ⇐∗

R t. As will be shown below, each such rewriting tree
(Definition 3) defines an injective valuation ν : V1 → [1, κ]∗ of the bound vari-
ables from t (Definition 4) that, in turn, induces a behavior Bt

ν ∈ [[b]]R (7).
Since each term t ∈ [b]R can be represented by a rewriting tree (Proposition 1),
it follows that each behavior N ∈ [[b]]R corresponds to a rewriting tree (up to
a permutation of component identifiers). Our encoding uses rewriting trees T
as backbone parameters for the definition of the trap (Θ(N (T))) and mutex
(Ω(N (T))) invariant, respectively, where N (T) = Bt

ν is the behavior induced
by T . In fact, any injective valuation of the variables is sufficient for safety check-
ing, provided that the safety properties considered are defined by sets of error
markings that are closed under permutations of component identifiers.

To simplify technicalities, we assume the existence of a rule Ab(x1, . . . , xn) ←
b in R, where fv(b) = {x1, . . . , xn} and Ab is a predicate symbol of arity n not
occurring elsewhere in R. We also assume that the constant κ is greater than
the number of predicate atoms that occur in any rule of R.

Definition 3. Given a rewriting system R and a behavioral term b, a rewriting
tree for b is a tree T : [1, κ]∗ → R, such that:

1. T (ε) = (Ab(x1, . . . , xn) ← b)

and, for all nodes w ∈ nodes(T), such that T (w) =
(
Aw(x1, . . . , x#(Aw)) ← bw

)
,

the following hold:

2. for all i ∈ [1,#pred(bw)], if predi(bw) = Awi(y1, . . . , y#(Awi)) then wi ∈
nodes(T) and T (wi) =

(
Awi(x1, . . . , x#(Awi)) ← bwi

)
, for some rule of the

form Awi(x1, . . . , x#(Awi)) ← bwi from R.
3. for all i ≥ #pred(bw), we have wi �∈ nodes(T).

We denote by TR
(
b
)
the set of rewriting trees for b in R.

104 M. Bozga and R. Iosif

A rewriting tree T induces a characteristic term C[T], obtained by the appli-
cation of the rewriting rules labeling the tree nodes in some order of traversal,
and a characteristic valuation ν[T], that maps each variable in the term to the
node where it is instantiated.

Definition 4. Given a rewriting tree T ∈ TR
(
b
)
, the characteristic term C[T]

and characteristic valuation ν[T] are defined inductively on the structure of T :

– if nodes(T) = {ε}, then C[T]
def= B(x) and ν[T](x) def= ε, for T (ε) =

(A(x) ← B(x)),
– else, let 1, . . . , m be the children of the root of T and let:

C[T]
def= νy1 . . . νyn . 〈Γ 〉(C[T↓1][z

1
1/x1, . . . , z

1
#(A1)

/x#(A1)], . . . ,
C[T↓m][zm

1 /x1, . . . , z
m
#(A1)

/x#(Am)])

where ν[T](zi
j)

def= i · ν[T↓i](xj), for all i ∈ [1,m] and j ∈ [1,#(Ai)], such that

T (ε) =
(
A(x1, . . . , x#(A)) ← νy1 . . . νyn . 〈Γ 〉(A1(z11 , . . . , z

1
#(A1)

), . . . ,
Am(zm

1 , . . . , zm
#(Am)))

)

A consequence of the specific form of rewriting rules (Definition 1) is that
each (free or bound) variable y from C[T] is mapped by ν[T] to a unique node
w ∈ nodes(C[T]), such that C[T](w) contains an instance atom B(x), where x is
substituted with y along the path from the node u that introduces y (take u = ε
if y ∈ fv(C[T])) to w. For example, Fig. 3 shows the rewriting tree for the rewrit-
ing sequence from Example 3; we annotate on the side of the tree the bottom-up
definition of the characteristic valuation associating the bound variables y1 and
y2 with the nodes of the rewriting tree where they are instantiated.

Below we show that the set [b]R of predicateless terms obtained by complete
rewriting is the same as the set of characteristic terms that correspond to some
rewriting tree:

Proposition 1. Given a behavioral term b, we have [b]R = {C[T] | T ∈ TR
(
b
)
}.

Its proof is an easy consequence of the confluence of the rewriting system, i.e.
the order in which the rules are applied to a term does not change the resulting
predicateless term.

4.1 Encoding Invariants and Error Configurations

We begin by building a WSκS formula that describes an infinite κ-ary tree whose
finite prefix encodes a rewriting tree T ∈ TR

(
b
)
. Let us assume that R =

{r1, . . . , rN}, such that r1 = (Ab(x1, . . . , xn) ← b). We use a designated tuple of
second order variables U = 〈U1, . . . , UN 〉, where each variable Ui is interpreted
as the set of tree nodes labeled with the rule ri in T . With this convention, the
RTree(U) formula (Fig. 4) defines a rewriting tree:

Specification and Safety Verification of Parametric Systems 105

RTree(U) def= ∀x .
∧

1≤i<j≤N

(
¬Ui(x) ∨ ¬Uj(x)

)
∧ U1(x) ↔ x = ε ∧ (8)

∀x .
∧

i:ri∈R

κ∧

�=1

Ui(x.�) →
∨

rj∈R
Uj(x) ∧ (9)

∀x .
∧

i:ri=(A′(x1,...,x#(A′))←b′)

#pred(b
′)∧

j=1

Ui(x) →
∨

j:predj(b
′)=A′′(ξ1,...,ξ#(A′′))

�:r�=(A′′(x1,...,x#(A′′))←b′′)

U�(x.j) ∧ (10)

∀x .
∧

i:ri=(A′(x1,...,x#(A′))←b′)

κ∧

j=#pred(b
′)+1

Ui(x) →
N∧

�=1

¬U�(x.j) (11)

Fig. 4. The Definition of Rewriting Trees

– line (8) states that the sets U are pairwise disjoint and that U1 is a singleton
containing the root of the tree (condition 1 of Definition 3).

– line (9) states that the union of the sets U is prefix-closed, i.e. the parent x
of each node x.� from some Ui belongs to some Uj , for i, j ∈ [1, N].

– lines (10) and (11) encode the conditions 2 and 3 of Definition 3, respectively.

Clearly, for each model ν of RTree(U), there is a unique rewriting tree, denoted
T U
ν ∈ TR

(
b
)
, such that nodes(T U

ν) =
⋃N

i=1 ν(Ui) and T U
ν (w) = ri iff w ∈ ν(Ui),

for all i ∈ [1, N] and w ∈ nodes(T U
ν).

As said, a rewriting tree T ∈ TR
(
b
)

defines a behavior (i.e. a marked PN)
denoted by N (T) def= Bt

ν (6), where t = C[T] is the characteristic term and ν = ν[T]

is the characteristic valuation of T (Definition 4). An invariant of N (T) is a set
of markings, i.e. a set of sets of marked places from different components.

Let
{
Bi

def= 〈Pi,Si, Ii,Δi〉
}K

i=1
be the set of component types that occur in

the rules of R and let Z = 〈Z1, . . . , ZK〉 be a tuple of second-order variables,
where Zi is interpreted as the set of identifiers of the components of type Bi.
We encode the markings of N (T) by a WSκS formula using a tuple of second-
order variables X = 〈XS | S ∈

⋃K
i=1 Si〉, where each XS is interpreted as the

set of identifiers of the components currently in state S(w) and define the set
σX

ν
def= {S(w) | S ∈

⋃K
i=1 Si, w ∈ ν(XS)}. The following formula constrains the

set represented by X to be a marking of N (T U
ν):

mark(X,Z)
def
= ∀x.

∧
S �=S′∈⋃K

j=1 Sj

(¬XS(x) ∨ ¬XS′ (x)
) ∧ ∨

S∈⋃K
j=1 Sj

XS(x) ↔ ∨K
j=1 Zj(x)

inst(Z,U)
def
= ∀x.

∧K
i=1 Zi(x) ↔ ∨

j:rj=(A′(y)←Bi(y))
Uj(x)

Intuitively, mark(X,Z) states that no component can be in two different states
(first conjunct) and each component is an instance of some component type
(second conjunct). The formula inst(Z,U) above relates the instance indices to
the nodes of the rewriting tree where the corresponding instance atoms occur,

106 M. Bozga and R. Iosif

assuming that the sets U are constrained by RTree(U). Then, for each model ν
of mark(X,Z) ∧ inst(Z,U) ∧ RTree(U), the set σX

ν is a marking of N (T U
ν).

We proceed with the encoding of invariants and error states, by assuming the
existence of a flow formula, that defines the pre- and post-sets of the transitions
from a behavior N (T U

ν), formally described next (Sect. 4.2). In the following,
the primed copy of the tuple X is denoted as X′.

Definition 5. Φ(X,X′,U) is a flow formula for b and R if, for each model ν
of RTree(U), we have ν |= Φ(X,X′,U) if and only if •t = σX

ν and t• = σX′
ν , for

some transition t of N (T U
ν).

Given a flow formula Φ, the parametric trap invariant TrapInvΦ(X,U) is defined
by the formula below:

trapΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U) ∧ inter(X,Y1) → inter(X,Y2)

TrapInvΦ(X,U)
def
= ∃Z . mark(X,Z) ∧ ∀Y1,Y2. init(Y1,Z) ∧ inter(Y1,Y2) ∧

trapΦ(Y2,U) → inter(X,Y2)

where the tuples Yi def= 〈Y i
S | S ∈

⋃K
j=1 Sj〉, for i = 1, 2, are distinct copies

of X. The auxiliary formula init(X,Z) def= mark(X,Z) ∧
∧K

j=1 ∀x . Zj(x) ↔
XIj

(x) states that X represents the initial marking of the behavior, whereas
inter(X,Y) def= ∃x.

∨K
j=1

∨
S∈Sj

XS(x) ∧ YS(x) means that the sets of places
encoded by X and Y, respectively, have a non-empty intersection. Intuitively,
the formula trapΦ(X,U) defines the traps (point 1 of Definition 2), whereas
TrapInvΦ(X,U) defines the set of markings that intersect with the initial mark-
ing and with each trap of the behavior, i.e. the trap invariant (point A of Defi-
nition 2).

Mutexes and mutex invariants (points 2 and B of Definition 2) are defined
by the formulæ:

mutexΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U) → ∧ ¬inter(X,Y1) ↔ ¬inter(X,Y2)

single(X,Y1) ↔ single(X,Y2)

MutexInvΦ(X,U)
def
= ∃Z . mark(X,Z) ∧ ∀Y1,Y2. init(Y1,Z) ∧ single(Y1,Y2)∧

mutexΦ(Y2,U) → single(X,Y2)

where single(X,Y) def= ∃1x .
∨K

j=1

∨
S∈Sj

XS(x) ∧ YS(x) states that the inter-
section of the sets of places defined by X and Y is a singleton3. The following
lemma states the correctness of the encoding:

Lemma 1. Given a flow formula Φ(X,X′,U) and a model ν of RTree(U) ∧
inst(Z,U), we have:

1. Θ(N (T U
ν)) = {σX

μ | μ |= TrapInvΦ(X,U), μ(U · Z) = ν(U · Z)},
2. Ω(N (T U

ν)) = {σX
μ | μ |= MutexInvΦ(X,U), μ(U · Z) = ν(U · Z)}.

3 ∃1x . φ(x) is a shorthand for ∃x . φ(x) ∧ ∀x∀y . φ(x) ∧ φ(y) → x = y.

Specification and Safety Verification of Parametric Systems 107

In our examples (Sect. 5) we consider two kinds of error sets, defined as:

DeadLockΦ(X,U)
def
= ∀Y1,Y2. Φ(Y1,Y2,U) → ∃x.

∨K
j=1

∨
S∈Sj

Y 1
S (x) ∧ ¬XS(x)

CriticalSectionΞ(X,U)
def
= ∃x∃y .

∨
S,S′∈ Ξ XS(x) ∧ XS′(y) ∧ ¬x = y

Intuitively, DeadLockΦ(X,U) defined the deadlock markings, in which no tran-
sition of the behavior is enabled and CriticalSectionΞ(X,U) states that no two
components are at the same time in a state from a given set Ξ ⊆

⋃K
i=1 Si of state

types. It is worth mentioning that these sets of error markings are closed under
permutations of component indices4, which makes them suitable for safety check-
ing using our encoding of trap and mutex invariants (with variables mapped to
the nodes of the rewriting tree where they occur instantiated, as in Fig. 3).

4.2 The Flow of a Behavioral Term

The previous definition of structural invariants relied on the existence of a flow
formula Φ(X,X′,U), stating that σX

ν and σX′
ν are the pre- and post-sets of some

transition from the behavior (i.e. marked PN) N (T U
ν), whenever ν is a model

of RTree(U) ∧ Φ(X,X′,U) (Definition 5). In this section, we describe the flow
formula. In the following, we assume w.l.o.g. that the inductive rules in R are
of the form:

A(x1, . . . , x#(A)) ← νy1 . . . νym .
〈 m∑

k=1

Pk1(xk1) · . . . · Pkrk
(xkrk

)
〉
(t1, . . . , tn)

if necessary, by applying the flattening relation (5) to each rule of R. We denote
by Inter(r) def=

{
{Pki(xki) | i ∈ [1, rk]} | k ∈ [1,m]

}
the set of sets of port

atoms Pki(xki), corresponding to the interactions (i.e. the monomials from the
architecture) from r.

Φ(X,X′,U) def=
N∨

�=1

∨

π∈Inter(r�)

Ψ�,π(X,X′,U) (12)

Ψ�,{P1(x1),...,Pn(xn)}(X,X′,U) def= ∃y0 . . . ∃yn . U�(y0) ∧ (13)
n∧

i=1

(∨

r′=(A′(yi)←B(yi))

Pathxi,yi
r�,r′ (y0, yi,U)

)
∧ (14)

∀x.
∧

S∈⋃K
j=1 Sj

[(
XS(x) ↔

∨

•Pk=S

x = yk

)
∧

(
X ′

S(x) ↔
∨

Pk
•=S

x = yk

)]
(15)

Fig. 5. Definition of the Flow Formula for the Rewriting System R = {r1, . . . , rN}.

4 This is the case for every WSκS formula consisting of equality and membership
atoms, without successor functions.

108 M. Bozga and R. Iosif

The flow formula Φ(X,X′,U) is given in Fig. 5. Essentially, the formula (12)
is split into a disjunction of formulæ Ψ�,{P1(x1),...,Pn(xn)} (13), one for each rule
r� ∈ R and each set of port atoms {P1(x1), . . . , Pn(xn)}, denoting an interaction
(monomial) from r�. To understand the formulæ (13), recall that each of the
variables x1, . . . , xn is mapped to the (unique) node of the rewriting tree con-
taining an instance atom Bi(xi). In order to find this node, we must track the
variable xi from the node labeled by the rule r, to the node where this instance
atom occurs. This is done by the Pathxi,yi

r�,r′ (y0, yi,U) formulæ (14), that holds
whenever T U

ν is a rewriting tree, uniquely encoded by the interpretation ν of the
U variables, and y0, yi are mapped to the source and the destination of a path
from a node w ∈ nodes(T U

ν), with label T U
ν (w) = r� to a node w′ ∈ nodes(T U

ν),
with label T U

ν (w′) = r′, such that xi and yi are variables that occur in the bod-
ies of r and r′, respectively, mapped to the same variable in the characteristic
term of T U

ν (Definition 4). We describe these paths by an automaton and define
Pathxi,yi

r�,r′ (y0, yi,U), by translating this automaton into a WSκS formula.
But first, let us define paths in a tree formally. Given a κ-ary tree T , a

path is a finite sequence of nodes ρ = n1, . . . , n� ∈ nodes(T), such that, for all
i ∈ [1, � − 1], ni+1 is either the parent (ni = ni+1αi) or a child (ni+1 = niαi)
of ni, for some αi ∈ [1, κ]. The path is determined by the source node and the
sequence (α1, d1) . . . (α�−1, d�−1) of directions (αi, di) ∈ [1, κ] × {↑, ↓}, with the
following meaning: di =↑ if ni+1αi = ni and di =↓ if ni+1 = niαi. Given two
distinct nodes w1, w2 ∈ nodes(T), there is a unique minimal path from w1 to
w2, labeled by a sequence denoted as ρ(w1, w2). This path climbs from w1 to the
greatest common prefix w of w1 and w2, before descending from w to w2.

A path automaton is a tuple A = (Q, I, F, δ), where Q is a set of states, I, F ⊆
Q are the sets of initial and final states, respectively, and δ ⊆ Q×[1, κ]×{↑, ↓}×Q

is a set of transitions q
(α,d)−−−→ q′, with α ∈ [1, κ] being a direction and d ∈ {↑, ↓}

indicating whether the automaton moves up or down in the tree. A run of A
over ω = (α1, d1) . . . (αn−1, dn−1) is a sequence of states q1, . . . , qn ∈ Q such that
q1 ∈ I and qi

(αi,di)−−−−→ qi+1 ∈ δ, for all i ∈ [1, n − 1]. The run is accepting if and
only if qn ∈ F . The language L(A) of A is the set of sequences over which A has
an accepting run.

A path automaton A = (Q, I, F, δ) corresponds (Lemma 2) to the formula
in Fig. 6, that can be effectively built from the description of A. Here Q =
{q1, . . . , qL} is the set of states of A and Y = 〈Y1, . . . , YL〉 are second order
variables interpreted as the sets of tree nodes labeled by the automaton with
q1, . . . , qL, respectively. Intuitively, the first three conjuncts of the above formula
(16) encode the facts that Y are disjoint (no tree node is labeled by more than
one state during the run) and that the run starts in an initial state with node
x and ends in a final state with node y. The fourth conjunct (17) states that,
for every non-final node on the path, if the automaton visits that node by state
qi, then either the node has a (α, ↓)-child or a (α, ↑)-parent visited by state qj ,
where qi

(α,↓)−−−→ qj and qi
(α,↑)−−−→ qj are transitions of the automaton. The fifth

conjunct (18) is the reversed flow condition on the path, needed to ensure that

Specification and Safety Verification of Parametric Systems 109

ΔA(x, y,Y) def=
∧

1≤i�=j≤L

∀z.
(
¬Yi(z) ∨ ¬Yj(z)

)
∧

∨

qi∈I

Yi(x) ∧
∨

qj∈F

Yj(y) ∧ (16)

L∧

i=1

∀z . z �= y ∧ Yi(z) →
∨

j:qi

(α,↓)−−−→qj

Yj(z.α) ∨
∨

j:qi

(α,↑)−−−→qj

∃z′ . z′.α = z ∧ Yj(z′) ∧ (17)

L∧

j=1

∀z . z �= x ∧ Yj(z) →
∨

i:qi

(α,↓)−−−→qj

∃z′ . z′.α = z ∧ Yi(z′) ∨
∨

i:qi

(α,↑)−−−→qj

Yi(z.α) (18)

Fig. 6. Definition of the Path Automaton formula ΔA(x, y,Y)

the sets Y do not contain useless nodes, being thus symmetric to the fourth. The
following result stems from the classical automata-logic connection5 [14, §2.10]:

Lemma 2. Given a tree T with nodes(T) ⊆ [1, κ]∗ and a sequence ω ∈ ([1, κ]×
{↑, ↓})∗ from w1 ∈ nodes(T) to w2 ∈ nodes(T), for each valuation ν such that
ν(x) = w1 and ν(y) = w2, we have ω ∈ L(A) ⇐⇒ ν |= ∃Y . ΔA(x, y,Y) .

Our purpose is to define path automata that recognize the paths between the
node where a bound variable is introduced and the node where the variable is
instantiated, in a given rewriting tree. This automaton is directly inferred from
the syntax of the rules in R. For each pair of rules r1, r2 ∈ R and variables
z1, z2 ∈ V1 that occur in the bodies of r1 and r2, respectively, we define the path
automaton Az1,z2

r1,r2

def= (Q, Iz1
r1 , F z2

r2 , δ):

– We associate a state qd
r,z to each rule r =

(
A(x1, . . . , x#A) ← b

)
, each variable

z occurring (free or bound) in b and each direction d ∈ {↑, ↓}. The intuition is
that the automaton visits the state qd

r,z while going up or down, as indicated
by the direction d, currently tracking variable z in rule r.

(b)(a)

(2, ↓)

q
↓
2,x1

q
↓
1,y2

(2, ↓)

(1, ↓)
q

↓
1,y1

q
↓
4,x

(1, ↓)
q

↓
3,x1

(2, ↓)

q
↓
3,x2

q
↓
2,x2

q
↓
4,x

(2, ↓)(1, ↓) (1, ↓)

Fig. 7. Path Automata Recognizing the Instantiation Paths from Example 1

5 A similar conversion of tree walking automata to MSO has been described in [12].

110 M. Bozga and R. Iosif

– The sets of initial and final states are Iz1
r1

def= {qd
r1,z1

| d =↑, ↓} and F z2
r2

def=
{q↓

r2,z2
}. In other words, the automaton starts to track z1 in r1, moving either

up or down and it ends tracking z2 in r2, while moving down.
– The transitions are q↓

r1,yj

(α,↓)−−−→ q↓
r2,xj

, q↑
r2,xj

(α,↑)−−−→ q↑
r1,yj

and q↑
r2,xj

(α,↑)−−−→ q↓
r1,yj

,
for any two distinct rules ri = (Aj(x1, . . . , x#(A)) ← bi), i = 1, 2, all α ∈
[1,#pred(b1)], such that predα(b1) = A2(y1, . . . , y#(A2)) and all j ∈ [1,#(A2)].
Intuitively, if r1 labels the parent of the node labeled by r2 in the rewriting
tree, the automaton can move either: (i) down from tracking yj in r1 to
tracking xj in r2, (ii) up from tracking xj in r2 to tracking yj in r1, or (iii)
change direction from moving up tracking xj in r2 to moving down tracking
yj in r1. In particular, the last case might be needed to accept a path that
only goes up in the tree.

Note that a run of a path automaton Az1,z2
r1,r2 may have at most one change of

direction, by a rule of the form q↑
r2,xj

(α,↑)−−−→ q↓
r1,yj

.

Example 4. The paths that track the instantiations of the variables y1 and y2 in
a rewriting tree for the term Ring() are depicted in dashed lines in Fig. 3. The
path automata that recognize these paths are given in Fig. 7a (y1) and Fig. 7b
(y2). The initial states are q↓

1,y1
and q↓

1,y2
, respectively, and the final state is q↓

4,x

in both cases, where the labels (1–4) of the rewriting rules are the ones from
Example 1. �

The lemma below shows that these automata recognize exactly the labels of
the minimal paths between two nodes:

Lemma 3. Let T ∈ TR
(
b
)
be a rewriting tree and wi ∈ nodes(T) be nodes

labeled with the rules T (wi) =
(
Ai(xi,1, . . . , xi,#(Ai)) ← bi

)
= ri, for i = 1, 2.

Then, for all ki ∈ [1,#(Ai)], i = 1, 2, the following are equivalent:

1. x1,k1 and x2,k2 are substituted by the same variable during the construction
of C[T] (Definition 4),

2. ρ(w1, w2) ∈ L(Ax1,k1, x2,k2
r1,r2).

The path automata A
x1,k1, x2,k2
r1,r2 are used to define the Pathz1,z2

r1,r2 formulæ:

Pathz1,z2
r1,r2 (x, y,U)

def
= ∃Y . ΔA

z1,z2
r1,r2

(x, y,Y) ∧ Υ (Y,U)

Υ (Y,U)
def
=

∧
d=↑,↓

∧
i:ri=

(
A′(x1,...,x#(A′))←b′

)
∧

z∈fv(b′) ∀x . Y d
r,z(x) → Ui(x)

The formula Υ (Y,U) above states that all nodes labeled with a state qd
r,z during

the run must be also labeled with r in the rewriting tree given as input to the
path automaton. The lemma below proves that Φ(X,X′,U) (12) is indeed a flow
formula (Definition 5):

Lemma 4. For each model ν of RTree(U), we have ν |= Φ(X,X′,U) if and
only if σX

ν = •t and σX′
ν = t• for some transition t of N (T U

ν).

Specification and Safety Verification of Parametric Systems 111

Together with Lemma 1, this ensures that the trap and mutex invariant of
the parametric system described by b and R are defined by the TrapInvΦ(X,U)
and MutexInvΦ(X,U) formulæ, respectively. Hence a sufficient condition that
proves a safety property of the parametric system described by b and R is the
unsatisfiability of a WSκS formula, obtained from the syntax of b and R:

Theorem 1. Let b be closed behavioral term, R be a rewriting system and
E(X,U) be a WSκS formula. The behavior N (T U

ν) is safe w.r.t. the set
{σX

μ | μ |= E(X,U), μ(U) = ν(U)}, for any valuation ν, if the formula
RTree(U) ∧ TrapInvΦ(X,U) ∧ MutexInvΦ(X,U) ∧ E(X,U) is unsatisfiable.

In particular, we have experimented with error sets defined by the
DeadLockΦ(X,U) and CriticalSectionΞ(X,U) formulæ, for some critical section
given by Ξ ∈

⋃K
i=1 Si.

5 Experimental Evaluation

We implemented the structural invariant synthesis in a prototype tool6. Table 1
shows the results of checking deadlock freedom in all test cases and absence
of critical section violations, for those test cases where a critical section was
defined (otherwise marked n/a). The 2nd column gives the number of states in
the system, in the form n1 × . . . × nK , where ni is the number of states in the
i-th component type and K is the number of component types. The number
of rewriting rules and interactions in the specification are given in the 3rd and
4th columns, respectively. The 5th and 7th columns report the results of the
satisfiability check (� means that the formula is unsatisfiable and × means that
a counterexample has been found, in which case safety could not be proved using
our method) for deadlock freedom and absence of critical section violations, using
the Mona v1.4-18 tool [11]. The 6th and 8th columns show the total running
times (in seconds) on an iMac 3,4 GHz with 32 GB of RAM, respectively (∞
means that Mona has run out of memory). The 9th column gives the branching
degree κ ∈ {1, 2} of trees in the WSκS logic. Note that star and token ring
systems require κ = 1, whereas the tree-structured systems require κ = 2.

The test cases we consider are grouped according to the architectural pat-
tern. Token rings (Fig. 1a) consist of instances of the same component type, such
that the out port of a component is connected to the in port of the next compo-
nent in the ring. Dining philosophers are special cases of token rings, consisting
of alternating philosopher and fork instances. Stars consists of a single con-
troller (master) sending requests and receiving replies from one or more slaves
connected to it. Concerning trees, the tree-dfs example models a binary tree
architecture traversed by a token in depth-first order, while tree-back-root and
tree-linked-leaves(-generic) go beyond trees, modeling hierarchical systems with
parent-children communication on top of which the nodes communicate with the
root and the leaves are linked in a token-ring, respectively. These examples could
6 https://github.com/raduiosif/rtab.

https://github.com/raduiosif/rtab

112 M. Bozga and R. Iosif

not have been described using first order logic, as in [4]. The verification prob-
lems considered could be solved in less than 1 s, with the exception of the crit-
ical section violations for the tree-linked-leaves(-generic) examples, that require
mutex, in addition to trap invariants. In particular, in the examples marked with
-generic, the initial state of the components is arbitrary. Consequently, all these
examples violate the critical section initially.

Table 1. Experimental Results

Example #states #rules #interaction

types

deadlock

freedom

time

(secs)

critical

(secs)

time

(secs)

κ

token-ring 2 × 2 3 3 � 0.66 � 0.63 1

token-ring-generic 2 × 2 5 4 � 0.75 × 0.72 1

sync-philo 2 × 2 3 6 � 0.69 � 0.67 1

alt-philo-sym 3 × 2 3 9 × 0.75 � 0.77 1

alt-philo-asym 3 × 2 3 9 � 0.84 � 0.78 1

alt-philo-generic 3 × 2 4 12 � 0.91 � 0.87 1

star 2 × 2 3 4 � 0.58 n/a – 1

star-ring 2 × 3 × 3 3 9 � 0.75 � 0.76 1

star-ring-generic 2 × 3 × 3 5 12 � 0.84 × 0.88 1

tree-dfs 2 × 6 × 2 4 6 � 0.70 n/a – 2

tree-back-root 2 × 2 3 5 � 0.60 n/a – 2

tree-linked-leaves 2 × 2 × 4 × 3 4 10 � 1.05 � 1.21 2

tree-linked-leaves-generic 2 × 2 × 4 × 3 7 16 � 1.31 × 1.73 2

6 Related Work

Traditionally, verification of unbounded networks of parallel processes consid-
ers known architectural patterns, typically cliques or rings [6,10]. Because the
price for decidability is drastic restrictions on the shape of architectures [3], more
recent works propose practical semi-algorithms, e.g. regular model checking [1,13]
or automata learning [7]. Here the architectural pattern is implicitly determined
by the class of language recognizers: word automata encode pipelines or rings,
whereas tree automata describe trees. A first attempt at specifying architectures
by logic is the interaction logic of Konnov et al. [15], which is a combination of
Presburger arithmetic with monadic uninterpreted function symbols, that can
describe cliques, stars and rings. More structured architectures (pipelines and
trees) can be described using a second-order extension [17]. As such, these inter-
action logics are undecidable and have no support for automated verification.
Recently, interaction logics that support the verification of safety properties by
structural invariant synthesis have been developed. These logics use fragments
of first order logic with interpreted function symbols that implicitly determine
the shape of the architecture [4,5].

Specification and Safety Verification of Parametric Systems 113

7 Conclusions and Future Work

We present a formal language for the specification of distributed systems param-
eterized by the number of replicated components and by the shape of the coordi-
nating architecture. The language uses inductive definitions to describe systems
of unbounded size. We propose a verification method for safety properties based
on the synthesis of structural invariants able to prove deadlock freedom for a
number of non-trivial models.

References

1. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 56

2. Barrett, C.W., Shikanian, I., Tinelli, C.: An abstract decision procedure for a
theory of inductive data types. J. Satisf. Boolean Model. Comput. 3(1–2), 21–46
(2007)

3. Bloem, R., et al.: Decidability of Parameterized Verification. Synthesis Lectures on
Distributed Computing Theory. Morgan & Claypool Publishers, San Rafael (2015)

4. Bozga, M., Esparza, J., Iosif, R., Sifakis, J., Welzel, C.: Structural invariants for the
verification of systems with parameterized architectures. In: TACAS 2020. LNCS,
vol. 12078, pp. 228–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45190-5 13

5. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of parametric
component-based systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17465-1 1

6. Browne, M., Clarke, E., Grumberg, O.: Reasoning about networks with many iden-
tical finite state processes. Inf. Comput. 81(1), 13–31 (1989)

7. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: Stewart, D., Weissenbacher, G. (eds.) 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, pp. 76–83. IEEE (2017)

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Conference Record of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pp. 269–282. ACM Press, New York (1979)

9. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: Cytron, R.K., Lee, P.
(eds.) Conference Record of POPL 1995: 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 85–94. ACM Press (1995)

10. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

11. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

12. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2 2

https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1007/978-3-030-45190-5_13
https://doi.org/10.1007/978-3-030-45190-5_13
https://doi.org/10.1007/978-3-030-17465-1_1
https://doi.org/10.1007/978-3-030-17465-1_1
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2

114 M. Bozga and R. Iosif

13. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theoret. Comput. Sci. 256(1), 93–112 (2001)

14. Khoussainov, B., Nerode, A.: Automata Theory and Its Applications. Springer,
New York (2001). https://doi.org/10.1007/978-1-4612-0171-7

15. Konnov, I.V., Kotek, T., Wang, Q., Veith, H., Bliudze, S., Sifakis, J.: Parameter-
ized systems in BIP: design and model checking. In: Desharnais, J., Jagadeesan,
R. (eds.) 27th International Conference on Concurrency Theory, CONCUR 2016.
LIPIcs, vol. 59, pp. 30:1–30:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2016)

16. Kramer, J., Magee, J.: Analysing dynamic change in distributed software architec-
tures. IEE Proc. Softw. 145(5), 146–154 (1998)

17. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: modeling
architecture styles. J. Log. Algebr. Meth. Program. 86(1), 2–29 (2017)

18. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
17th IEEE Symposium on Logic in Computer Science (LICS 2002), pp. 55–74.
IEEE Computer Society (2002)

19. Thatcher, J., Wright, J.: Generalized finite automata theory with an application
to a decision problem of second-order logic. Math. Syst. Theory 2, 57–81 (2005)

https://doi.org/10.1007/978-1-4612-0171-7

A Linear Parallel Algorithm to Compute
Bisimulation and Relational Coarsest

Partitions

Jan Martens1(B) , Jan Friso Groote1 , Lars van den Haak1 ,
Pieter Hijma1,2 , and Anton Wijs1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{j.j.m.martens,j.f.groote,l.b.v.d.haak,a.j.wijs}@tue.nl
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

pieter@cs.vu.nl

Abstract. The most efficient way to calculate strong bisimilarity is
by finding the relational coarsest partition of a transition system. We
provide the first linear-time algorithm to calculate strong bisimulation
using parallel random access machines (PRAMs). More precisely, with n
states, m transitions and |Act | ≤ m action labels, we provide an algo-
rithm for max(n, m) processors that calculates strong bisimulation in
time O(n + |Act |) and space O(n + m). The best-known PRAM algo-
rithm has time complexity O(n log n) on a smaller number of processors
making it less suitable for massive parallel devices such as GPUs. An
implementation on a GPU shows that the linear time-bound is achiev-
able on contemporary hardware.

1 Introduction

The notion of bisimilarity for Kripke structures and Labelled Transition Sys-
tems (LTSs) is commonly used to define behavioural equivalence. Deciding this
behavioural equivalence is important in the field of modelling and verifying con-
current and multi-component systems [4,15]. Kanellakis and Smolka proposed a
partition refinement algorithm for obtaining the bisimilarity relation for Kripke
structures [11]. The proposed algorithm has a run time complexity of O(nm)
where n is the number of states and m is the number of transitions of the input.
Later, a more sophisticated refinement algorithm running in O(m log n) steps
was proposed by Paige and Tarjan [16].

In recent years the increase in the speed of sequential chip designs has stag-
nated due to a multitude of factors such as energy consumption and heat genera-
tion. In contrast, parallel devices such as graphics processing units (GPUs) keep
increasing rapidly in computational power. In order to profit from the accelera-
tion of these devices, we require algorithms with massive parallelism. The article
“There’s plenty of room at the Top: What will drive computer performance after

This work is carried out in the context of the NWO AVVA project 612.001751 and the
NWO TTW ChEOPS project 17249.

c© The Author(s) 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 115–133, 2021.
https://doi.org/10.1007/978-3-030-90636-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_7&domain=pdf
http://orcid.org/0000-0003-4797-7735
http://orcid.org/0000-0003-2196-6587
http://orcid.org/0000-0002-0330-5016
http://orcid.org/0000-0002-5716-1118
http://orcid.org/0000-0002-2071-9624
https://doi.org/10.1007/978-3-030-90636-8_7

116 J. Martens et al.

Moore’s law” by Leierson et al. [13] indicates that the advance in computational
performance will come from software and algorithms that can employ hardware
structures with a massive number of simple, parallel processors, such as GPUs.
In this paper, we propose such an algorithm to decide bisimilarity.

Deciding bisimilarity is P -complete [1], which suggests that bisimilarity is an
inherently sequential problem. This fact has not withheld the community from
searching for efficient parallel algorithms for deciding bisimilarity of Kripke struc-
tures. In particular, Lee and Rajasekaran [12,17] proposed a parallel algorithm
based on the Paige Tarjan algorithm that works in O(n log n) time complexity
using m

log n log log n Concurrent, Read Concurrent Write (CRCW) processors,
and one using only m

n log n Concurrent Read Exclusive Write (CREW) pro-
cessors. Jeong et al. [10] presented a linear time parallel algorithm, but it is
probabilistic in the sense that it has a non-zero chance to output the wrong
result. Furthermore, Wijs [22] presented a GPU implementation of an algorithm
to solve the strong and branching bisimulation partition refinement problems.
In a distributed setting, Blom and Orzan studied algorithms for refinement [2].
Those algorithms use message passing as a way of communication between dif-
ferent workers in a network and rely on a small number of processors. Therefore,
they are very different in nature than our algorithm. Those algorithms were
extended and optimized for branching bisimulation [3].

In this work, we improve on the best known theoretical bound for PRAM
algorithms using a higher degree of parallelism. The proposed algorithm improves
the run time complexity to O(n) on max(n,m) processors and is based on the
sequential algorithm of Kanellakis and Smolka [11]. The larger number of pro-
cessors used in this algorithm favours the increasingly parallel design of con-
temporary and future hardware. In addition, the algorithm is optimal w.r.t.
the sequential Kanellakis-Smolka algorithm, meaning that overall, it does not
perform more work than its sequential counterpart.

We first present our algorithm on Kripke structures where transitions are
unlabelled. However, as labelled transition systems (LTSs) are commonly used,
and labels are not straightforward to incorporate in an efficient way (cf. for
instance [21]), we discuss how our algorithm can be extended to take action
labels into account. This leads to an algorithm with a run time complexity of
O(n + |Act |), with Act the set of action labels.

Our algorithm has been designed for and can be analyzed with the CRCW
PRAM model, following notations from [20]. This model is an extension of the
normal RAM model, allowing multiple processors to work with shared memory.
In the CRCW PRAM model, parallel algorithms can be described in a straight-
forward and elegant way. In reality, no device exists that completely adheres
to this PRAM model, but with recent advancements, hardware gets better and
better at approximating the model since the number of parallel threads keeps
growing. We demonstrate this by translating the PRAM algorithm to GPU code.
We straightforwardly implemented our algorithm in CUDA and experimented
with an NVIDIA Titan RTX, showing that our algorithm performs mostly in
line with what our PRAM algorithm predicts.

A Linear Parallel Algorithm to Compute Bisimulation 117

The paper is structured as follows: In Sect. 2, we recall the necessary prelimi-
naries on the CRCW PRAM model and state the partition refinement problems
this paper focuses on. In Sect. 3, we propose a parallel algorithm to compute
bisimulation for Kripke structures, which is also called the Relational Coarsest
Partition Problem (RCPP). In this section, we also prove the correctness of the
algorithm and provide a complexity analysis. In Sect. 4, we discuss the details
for an implementation with multiple action labels, thereby supporting LTSs,
which forms the Bisimulation Coarsest Refinement Problem (BCRP). In Sect. 5
we discuss the results of the implementation and in Sect. 6 we draw conclusions.

2 Preliminaries

2.1 The PRAM Model

The Parallel Random Access Machine (PRAM) is a natural extension of the
normal Random Access Machine (RAM), where an arbitrary number of parallel
processors can access the memory. Following the definitions of [20] we use a
version of PRAM that is able to Concurrently Read and Concurrently Write
(CRCW PRAM). It differs from the model introduced in [6] in which the PRAM
model was only allowed to concurrently read from the same memory address,
but concurrent writes (to the same address) could not happen.

A CRCW PRAM consists of a sequence of numbered processors P0, P1,
These processors have all the natural instructions of a normal RAM such as
addition, subtraction, and conditional branching based on the equality and less-
than operators. There is an infinite amount of common memory the processors
have access to. The processors have instructions to read from and write to the
common memory. In addition, a processor Pi has an instruction to obtain its
unique index i. A PRAM also has a function P : N → N which defines a bound
on the number of processors given the size of the input.

All the processors have the same program and run synchronized in a sin-
gle instruction, multiple data (SIMD) fashion. In other words, all processors
execute the program in lock-step. Parallelism is achieved by distributing the
data elements over the processors and having the processors apply the program
instructions on ‘their’ data elements.

Initially, given input consisting of n data elements, the CRCW PRAM
assumes that the input is stored in the first n registers of the common memory,
and starts the first P(n) processors P0, P1, . . . , PP(n)−1.

Whenever a concurrent write happens to the same memory cell, we assume
that one arbitrary write will succeed. This is called the arbitrary CRCW PRAM.

A parallel program for a PRAM is called optimal w.r.t. a sequential algorithm
if the total work done by the program does not exceed the work done by the
sequential algorithm. More precisely, if T is the parallel run time and P the
number of processors used, then the algorithm is optimal w.r.t. a sequential
algorithm running in S steps if P · T ∈ O(S).

118 J. Martens et al.

2.2 Strong Bisimulation

To formalise concurrent system behaviour, we use LTSs.

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) is a three-tuple A = (S,Act,→) where S is a finite set of states, Act a
finite set of action labels, and →⊆ S × Act × S the transition relation.

Let A = (S,Act,→) be an LTS. Then, for any two states s, t ∈ S and a ∈ Act,
we write s

a−→ t iff (s, a, t) ∈ →.
Kripke structures differ from LTSs in the fact that the states are labelled

as opposed to the transitions. In the current paper, for convenience, instead of
using Kripke structures where appropriate, we reason about LTSs with a single
action label, i.e., |Act | = 1. Computing the coarsest partition of such an LTS
can be done in the same way as for Kripke structures, apart from the fact that
in the latter case, a different initial partition is computed that is based on the
state labels (see, for instance, [8,9]).

Definition 2 (Strong bisimulation). On an LTS A = (S,Act,→) a relation
R ⊆ S × S is called a strong bisimulation relation if and only if it is symmetric
and for all s, t ∈ S with sRt and for all a ∈ Act with s

a−→ s′, we have:

∃t′ ∈ S.t
a−→ t′ ∧ s′Rt′

Whenever we refer to bisimulation we mean strong bisimulation. Two states
s, t ∈ S in an LTS A are called bisimilar, denoted by s � t, iff there is some
bisimulation relation R for A that relates s and t.

A partition π of a finite set of states S is a set of subsets that are pairwise
disjoint and whose union is equal to S, i.e.,

⋃
B∈π B = S. Every element B ∈ π

of this partition π is called a block.
We call partition π′ a refinement of π iff for every block B′ ∈ π′ there is a

block B ∈ π such that B′ ⊆ B. We say a partition π of a finite set S induces the
relation Rπ = {(s, t) | ∃B ∈ π.s ∈ B ∧ t ∈ B}. This is an equivalence relation of
which the blocks of π are the equivalence classes.

Given an LTS A = (S,Act,→) and two states s, t ∈ S we say that s reaches t
with action a ∈ Act iff s

a−→ t. A state s reaches a set U ⊆ S with an action a iff
there is a state t ∈ U such that s reaches t with action a. A set of states V ⊆ S
is called stable under a set of states U ⊆ S iff for all actions a either all states
in V reach U with a, or no state in V reaches U with a. A partition π is stable
under a set of states U iff each block B ∈ π is stable under U . The partition π
is called stable iff it is stable under all its own blocks B ∈ π.

Fact 1. [16] Stability is inherited under refinement, i.e. given a partition π of S
and a refinement π′ of π, then if π is stable under U ⊆ S, then π′ is also stable
under U .

The main problem we focus on in this work is called the bisimulation refine-
ment problem (BCRP). It is defined as follows:

A Linear Parallel Algorithm to Compute Bisimulation 119

Input: An LTS M = (S,Act,→).
Output: The partition π of S which is the coarsest partition, i.e., has the

smallest number of blocks, that forms a bisimulation relation.
In a Kripke structure, the transition relation forms a single binary relation,

since the transitions are unlabelled. This is also the case when an LTS has a
single action label. In that case, the problem is called the Relational Coarsest
Partition Problem (RCPP) [11,12,16]. This problem is defined as follows:

Input: A set S, a binary relation →: S × S and an initial partition π0

Output: The partition π which is the coarsest refinement of π0 and which
is a bisimulation relation.

It is known that BCRP is not significantly harder than RCPP as there are
intuitive translations from LTSs to Kripke structures [5, Dfn. 4.1]. However,
some non-trivial modifications can speed-up the algorithm for some cases, hence
we discuss both problems separately. In Sect. 3, we discuss the basic parallel
algorithm for RCPP, and in Sect. 4, we discuss the modifications required to
efficiently solve the BCRP problem for LTSs with multiple action labels.

3 Relational Coarsest Partition Problem

In this section, we discuss a sequential algorithm based on the one of Kanellakis
and Smolka [11] for RCPP (Sect. 3.1). This is the basic algorithm that we adapt
to the parallel PRAM algorithm (Sect. 3.2). The algorithm starts with an input
partition π0 and refines all blocks until a stable partition is reached. This stable
partition will be the coarsest refinement that defines a bisimulation relation.

3.1 The Sequential Algorithm

The sequential algorithm, Algorithm 1, works as follows. Given are a set S, a
transition relation →⊆ S ×S, and an initial partition π0 of S. Initially, we mark
the partition as not necessarily stable under all blocks by putting these blocks
in a set Unstable. In any iteration of the algorithm, if a block B of the current
partition is not in Unstable, then the current partition is stable under B. If
Unstable is empty, the partition is stable under all its blocks, and the partition
represents the required bisimulation.

As long as some blocks are in Unstable (line 3), a single block B ∈ π is taken
from this set (line 4) and we split the current partition such that it becomes
stable under B. Therefore, we refer to this block as the splitter. The set S′ =
{s ∈ S | ∃t ∈ B.s → t} is the reverse image of B (line 6). This set consists of
all states that can reach B, and we use S′ to define our new blocks. All blocks
B′ that have a non-empty intersection with S′, i.e., B′ ∩ S′ �= ∅, and are not a
subset of S′, i.e., B′ ∩ S′ �= B′ (line 7), are split in the subset of states in S′

and the subset of states that are not in S′ (lines 8–9). These two new blocks are
added to the set of Unstable blocks (line 10). The number of states is finite, and
blocks can be split only a finite number of times. Hence, blocks are only finitely
often put in Unstable, and so the algorithm terminates.

120 J. Martens et al.

Algorithm 1: Sequential algorithm based on Kanellakis-Smolka
1 π := π0;
2 Unstable := π;
3 while Unstable �= ∅ do
4 foreach B ∈ Unstable do
5 Unstable := Unstable \ {B};
6 S′ := {s ∈ S | ∃t ∈ B.s −→ t};
7 foreach B′ ∈ π with ∅ ⊂ B′ ∩ S′ ⊂ B′ do

// Split B′ into B′ ∩ S′ and B′ \ S′

8 π := π \ {B};
9 π := π ∪ {B′ ∩ S′, B′ \ S′};

10 Unstable := Unstable ∪ {B′ ∩ S′, B′ \ S′};

11 end

12 end

13 end

3.2 The PRAM Algorithm

Next, we describe a PRAM algorithm to solve RCPP that is based on the sequen-
tial algorithm given in Algorithm 1.

Block Representation. Given an LTS A = (S,Act,→) with |A| = 1 and |S| =
n states, we assume that the states are labeled with unique indices 0, . . . , n − 1.
A partition π in the PRAM algorithm is represented by assigning a block label
from a set of block labels LB to every state. The number of blocks can never be
larger than the number of states, hence, we use the indices of the states as block
labels: LB = S. We exploit this in the PRAM algorithm to efficiently select a
new block label whenever a new block is created. We select the block label of a
new block by electing one of its states to be the leader of that block and using
the index of that state as the block label. By doing so, we maintain an invariant
that the leader of a block is also a member of the block.

In a partition π, whenever a block B ∈ π is split into two blocks B′ and B′′,
the leader s of B which is part of B′ becomes the leader of B′, and for B′′, a new
state t ∈ B′′ is elected to be the leader of this new block. Since the new leader
is not part of any other block, the label of t is fresh with respect to the block
labels that are used for the other blocks. This method of using state leaders to
represent subsets was first proposed in [22,23].

Data Structures. The common memory contains the following information:

1. n : N, the number of states of the input.
2. m : N, the number of transitions of the input relation.
3. The input, a fixed numbered list of transitions. For every index 0 ≤ i < m of a

transition, a source sourcei ∈ S and target targeti ∈ S are given, representing
the transition sourcei → targeti.

A Linear Parallel Algorithm to Compute Bisimulation 121

4. C : LB ∪ {⊥}, the label of the current block that is used as a splitter; ⊥
indicates that no splitter has been selected.

5. The following is stored in lists of size n, for each state with index i:
(a) mark i : B, a mark indicating whether state i is able to reach the splitter.
(b) block i : LB , the block of which state i is a member.

6. The following is stored in lists of size n, for each potential block with block
label i:
(a) new leader i : LB the leader of the new block when a split is performed.
(b) unstablei : B indicating whether π is possibly unstable w.r.t. the block.

As input, we assume that each state with index i has an input variable
Ii ∈ LB that is the initial block label. In other words, the values of the Ii

variables together encode π0. Using this input, the initial values of the block
label blocki variables are calculated to conform to our block representation with
leaders. Furthermore in the initialization, unstablei = false for all i that are not
used as block label, and true otherwise.

The Algorithm. We provide our first PRAM algorithm in Algorithm 2. The
PRAM is started with max(n,m) processors. These processors are dually used
for transitions and states.

The algorithm performs initialisation (lines 1–6), after which each block has
selected a new leader (lines 3–4), ensuring that the leader is one of its own states,
and the initial blocks are set to unstable. Subsequently, the algorithm enters a
single loop that can be explained in three separate parts.

Splitter selection (lines 8–14), executed by n processors. Every variable
marki is set to false. After this, every processor with index i will check
unstablei. If block i is marked unstable the processor tries to write i in
the variable C. If multiple write accesses to C happen concurrently in this
iteration, then according to the arbitrary PRAM model (see Sect. 2), only
one process j will succeed in writing, setting C := j as splitter in this
iteration.

Mark states (lines 15–17), executed by m processors. Every processor
i is responsible for the transition si −→ ti and checks if ti (target i) is in the
current block C (line 15). If this is the case the processor writes true to
marksourcei

where sourcei is si. This mark now indicates that si reaches
block C.

Performing splits (lines 18–26), executed by n processors. Every pro-
cessor i compares the mark of state i, i.e., mark i, with the mark of the
leader of the block in which state i resides, i.e., markblocki

(line 20). If the
marking is different, state i has to be split from block i into a new block. At
line 21, a new leader is elected among the states that form the newly created
block. The index of this leader is stored in new leaderblocki

. The instability
of block block i is set to true (line 22). After that, all involved processors
update the block index for their state (line 23) and update the stability of
the new block (line 24).

122 J. Martens et al.

s1

s4

s2

s5

s3

Bs1

Bs4

Step 1: Select current block:= Bs4

s1

s4

s2

s5

s3

Bs1

Bs4

Step 2: Mark nodes s1, s2

s1

s4

s2

s5

s3

Bs1 Bs3

Bs4

Step 3: Split Bs1 into Bs1 , Bs3

Fig. 1. One iteration of Algorithm 2

The steps of the program are illustrated in Fig. 1. The notation Bsi
refers

to a block containing all states that have state si as their block leader. In the
figure on the left, we have two blocks Bs1 and Bs4 , of which at least Bs4 is
marked unstable. Block Bs4 is selected to be splitter, i.e., C = Bs4 at line 12
of Algorithm 2. In the figure in the middle, mark i is set to true for each state
i that can reach Bs4 (line 16). Finally, block Bs4 is set to stable (line 19), all
states compare their mark with the leader’s mark, and the processor working on
state s3 discovers that the mark of s3 is different from the mark of s1, so s3 is
elected as leader of the new block Bs3 at line 21 of Algorithm 2. Both Bs1 and
Bs3 are set to unstable (lines 22 and 24).

The algorithm repeats execution of the while-loop until all blocks are marked
stable.

3.3 Correctness

The block i list in the common memory at the start of iteration k defines a
partition πk where states s ∈ S with equal block labels block i form the blocks:

πk = {{s ∈ S | blocks = s′} | s′ ∈ S} \ {∅}
A run of the program produces a sequence π0, π1, . . . of partitions. Partition

πk is a refinement of every partition π0, π1, . . . , πk−1, since blocks are only split
and never merged.

A partition π induces a relation of which the blocks are the equivalence
classes. For an input partition π0 we call the relation induced by the coarsest
refinement of π0 that is a bisimulation relation �π0 .

We now prove that Algorithm 2 indeed solves RCPP. We first introduce
Lemma 1 which is invariant throughout the execution and expresses that states
which are related by �π0 are never split into different blocks. This lemma implies
that if a refinement forms a bisimulation relation, it is the coarsest.

Lemma 1. Let S be the input set of states, →: S × S the input relation and
π0 the input partition. Let π1, π2, . . . be the sequence of partitions produced by

A Linear Parallel Algorithm to Compute Bisimulation 123

Algorithm 2: The algorithm for RCPP for each processor Pi in the PRAM
1 if i < n then
2 unstablei := false;
3 new leaderIi := i;
4 block i := new leaderIi ;
5 unstableblocki := true;

6 end
7 do
8 C := ⊥;
9 if i < n then

10 mark i := false;
11 if unstablei then
12 C := i;
13 end

14 end
15 if i < m and block targeti = C then
16 mark sourcei := true;
17 end
18 if i < n and C �= ⊥ then
19 unstableC := false;
20 if mark i �= markblocki then
21 new leaderblocki := i;
22 unstableblocki := true;
23 block i := new leaderblocki ;
24 unstableblocki := true;

25 end

26 end

27 while C �= ⊥;

Algorithm 2, then for all initial blocks B ∈ π0, states s, t ∈ B and iterations
k ∈ N:

s �π0 t =⇒ ∃B ∈ πk.s, t ∈ B

Proof. This is proven by induction on k. In the base case, π0, this is true by
default. Now assume for a particular k ∈ N that the property holds. We know
that the partition πk+1 is obtained by splitting with respect to a block C ∈ πk.
For two states s, t ∈ S with s �π0 t we know that s and t are in the same block in
πk. In the case that both s and t do not reach C, then marks = markt = false.
Since they were in the same block, they will be in the same block in πk+1.

Now consider the case that at least one of the states is able to reach C.
Without loss of generality say that s is able to reach C. Then there is a transition
s → s′ with s′ ∈ C. By Definition 2, there exists a t′ ∈ S such that t → t′ and
s′

�π0 t′. By the induction hypothesis we know that since s′
�π0 t′, s′ and t′

must be in the same block in πk, i.e., t′ is in C. This witnesses that t is also able
to reach C and we must have marks = mark t = true. Since the states s and t

124 J. Martens et al.

are both marked and are in the same block in πk, they will remain in the same
block in πk+1.

Lemma 2. Let S be the input set of states with →: S × S, LB = S the block
labels, and πn the partition stored in the memory after the termination of Algo-
rithm 2. Then the relation induced by πn is a bisimulation relation.

Proof. Since the program finished, we know that for all block indices i ∈ LB we
have unstablei = false. For a block index i ∈ LB , unstablei is set to false if the
partition πk, after iteration k, is stable under the block with index i and set to
true if it is split. So, by Fact 1, we know πn is stable under every block B, hence
stable. Next, we prove that a stable partition is a bisimulation relation.

We show that the relation R induced by πn is a bisimulation relation. Assume
states s, t ∈ S with sRt are in block B ∈ πn. Consider a transition s → s′ with
s′ ∈ S. State s′ is in some block B′ ∈ πn, and since the partition is stable under
block B′, and s is able to reach B′, by the definition of stability, we know that t
is also able to reach B′. Therefore, there must be a state t′ ∈ B′ such that t → t′

and s′Rt′. Finally, by the fact that R is an equivalence relation we know that R
is also symmetric, therefore it is a bisimulation relation.

Theorem 1. The partition resulting from executing Algorithm 2 forms the
coarsest relational partition for a set of states S and a transition relation
→: S × S, solving RCPP.

Proof. By Lemma 2, the resulting partition is a bisimulation relation. Lemma 1
implies that it is the coarsest refinement which is a bisimulation.

3.4 Complexity Analysis

Every step in the body of the while-loop can be executed in constant time. So
the asymptotic complexity of this algorithm is given by the number of iterations.

Theorem 2. RCPP on an input with m transitions and n states is solved by
Algorithm 2 in O(n) time using max(n,m) CRCW PRAM processors.

Proof. In iteration k ∈ N of the algorithm, let us call the total number of blocks
Nk ∈ N and the number of unstable blocks Uk ∈ N. Initially, N0 = U0 = |π0|. In
every iteration k, a number of blocks lk ∈ N is split, resulting in lk new blocks,
so the new total number of blocks at the end of iteration k is Nk+1 = Nk + lk.

First the current block C in iteration k which was unstable is set to stable
which causes the number of unstable blocks to decrease by one. In this iteration
k the lk blocks B1, . . . , Blk are split, resulting in lk newly created blocks. These
lk blocks are all unstable. A number of blocks l′k ≤ lk of the blocks B1, . . . Blk ,
were stable and are set to unstable again. The block C which was set to stable is
possibly one of these l′k blocks which were stable and set to unstable again. The
total number of unstable blocks at the end of iteration k is Uk+1 = Uk+lk+l′k−1.

For all k ∈ N, in iteration k we calculate the total number of blocks Nk =
|π0| +

∑k−1
i=0 (li) and unstable blocks Uk = |π0| − k +

∑k−1
i=0 (li + l′i). The number

A Linear Parallel Algorithm to Compute Bisimulation 125

of iterations is given by k =
∑k−1

i=0 (li + l′i) − Uk + |π0|. By definition, l′i ≤ li,
and the total number of newly created blocks is

∑k−1
i=0 (li) = Nk − |π0|, hence

∑k−1
i=0 (li + l′i) ≤ 2

∑k−1
i=0 (li) ≤ 2Nk − 2|π0|. The number of unstable blocks is

always positive, i.e., Uk ≥ 0, and the total number of blocks can never be larger
than the number of states, i.e., Nk ≤ n, so the total number of iterations z is
bounded by z ≤ 2Nz − |π0| ≤ 2n − |π0|.

4 Bisimulation Coarsest Refinement Problem

In this section we extend our algorithm to the Bisimulation Coarsest Refinement
Problem (BCRP), i.e., to LTSs with multiple action labels.

Solving BCRP can in principle be done by translating an LTS to a Kripke
structure, for instance by using the method described in [18]. This translation
introduces a new state for every transition, resulting in a Kripke structure with
n+m states. If the number of transitions is significantly larger than the number
of states, then the number of iterations of our algorithm increases undesirably.

4.1 The PRAM Algorithm

Instead of introducing more states, we introduce multiple marks per state, but
in total we have no more than m marks. For each state s, we use a mark variable
for each different outgoing action label relevant for s, i.e., for each a for which
there is a transition s

a−→ t to some state t. Each state may have a different
set of outgoing action labels and thus a different set of marks. Therefore, we
first perform a preprocessing procedure in which we group together states that
have the same set of outgoing action labels. This is valid, since two bisimilar
states must have the same outgoing actions. That two states of the same block
have the same set of action labels is then an invariant of the algorithm, since
in the sequence of produced partitions, each partition is a refinement of the
previous one. For the extended algorithm, we need to maintain extra information
in addition to the information needed for Algorithm 2. For an input LTS A =
(S,Act,−→) with n states and m transitions the extra information is:

1. Each action label has an index a ∈ {0, . . . , |Act| − 1}.
2. The following is stored in lists of size m, for each transition s

a−→ t with
transition index i ∈ {0, . . . , m − 1}:
(a) ai := a
(b) order i : N, the order of this action label, with respect to the source state

s. E.g., if a state s has the list [1, 3, 6] of outgoing action labels, and
transition i has label 3, then order i is 1 (we start counting from 0).

3. mark : [B], a list of up to m marks, in which there is a mark for every state,
action pair for which it holds that the state has at least one outgoing transition
labelled with that action. This list can be interpreted as the concatenation
of sublists, where each sublist contains all the marks for one state. For each
state s ∈ S we have:

126 J. Martens et al.

(a) off (s) : N, the offset to access the beginning of the sublist of the marks of
the state s in mark . The positions markoff (s) up to markoff (s+1) contain
the sublist of marks for state s. E.g., if state s has outgoing transitions
with 3 distinct action labels, we know that off (s+1) ≡ off (s)+3, and we
have 3 marks for state s. We write markoff (s)+orderi

to access the mark
for transition i which has source state s.

4. mark length: The length of the mark list. This allows us to reset all marks in
constant time using mark length processors. This number is not larger than
the number of transitions (mark length ≤ m).

5. In a list of size n, we store for each state s ∈ S a variable splits : B. This
indicates if the state will be split off from its block.

With this extra information, we can alter Algorithm 2 to work with labels.
The new version is given in Algorithm 3. The changes involve the following:

1. Lines 7–9: Reset the mark list.
2. Line 11: Reset the split list.
3. Line 17: When marking the transitions, we do this for the correct action label,

using order i. Note the indexing into mark . It involves the offset for the state
sourcei, and order i.

4. Lines 19–21: We tag a state to be split when it differs for any action from the
block leader.

5. Line 24: If a state was tagged to be split in the previous step, it should split
from its leader.

6. Line 29: If any block was split, the partition may not be stable w.r.t. the
splitter.

To use Algorithm 3, we need to do two preprocessing steps. First, we need
to partition the states w.r.t. their set of outgoing action labels. This can be
done with an altered version of Algorithm 2, which does one iteration for each
action label. For the second preprocessing step, we need to gather the extra
information that is needed in Algorithm 3. This is done via sorting the action
labels and subsequently performing some parallel segmented (prefix) sums [19].
In total the preprocessing takes O(|Act| + log m) time. For details how this is
implemented see the full version of this paper [14].

4.2 Complexity and Correctness

For Algorithm 3, we need to prove why it takes a linear number of steps to
construct the final partition. This is subtle, as an iteration of the algorithm does
not necessarily produce a stable block.

Theorem 3. Algorithm 3 on an input LTS with n states and m transitions will
terminate in O(n + |Act|) steps.

Proof. The total preprocessing takes O(|Act| + log m) steps, after which the
while-loop will be executed on a partitioning π0 which was the result of the

A Linear Parallel Algorithm to Compute Bisimulation 127

Algorithm 3: The algorithm for BCRP, the highlighted lines differ from
Algorithm 2.
1 if i < n then
2 unstablei := false;
3 unstableblocki := true;

4 end
5 do
6 C := ⊥;
7 if i < mark length then
8 marki := false;
9 end

10 if i < n then
11 spliti := false;
12 if unstablei then
13 C := i;
14 end

15 end
16 if i<m and block targeti = C then
17 markoff (sourcei)+orderi := true;
18 end
19 if i<m and markoff (sourcei)+orderi �= markoff (blocksourcei

)+orderi then

20 splitsourcei := true;

21 end
22 if i < n & C �= ⊥ then
23 unstableC := false;
24 if split i then
25 new leaderblocki := i;
26 unstableblocki := true;
27 block i := new leaderblocki ;
28 unstableblocki := true;
29 unstableC := true;

30 end

31 end

32 while C �= ⊥;

preprocessing on the partition {S}. Every iteration of the while-loop is still
executed in constant time. Using the structure of the proof of Theorem 2, we
derive a bound on the number of iterations.

At the start of iteration k ∈ N the total number of blocks and unstable blocks
are Nk, Uk ∈ N, initially U0 = N0 = |π0|. In iteration k, a number lk of blocks
is split in two blocks, resulting in lk new blocks, meaning that Nk+1 = Nk + lk.
All new lk blocks are unstable and a number l′k ≤ lk of the old blocks that are
split were stable at the start of iteration k and are now unstable. If lk = l′k = 0
there are no blocks split and the current block C becomes stable. We indicate
this with a variable ck: ck = 1 if lk = 0, and ck = 0, otherwise. The total number

128 J. Martens et al.

of iterations up to iteration k in which no block is split is given by
∑k−1

i=0 ci. The
number of iterations in which at least one block is split is given by k − ∑k−1

i=0 ci.
If in an iteration k at least one block is split, the total number of blocks

at the end of iteration k is strictly higher than at the beginning, hence for all
k ∈ N, Nk ≥ k − ∑k−1

i=0 ci. Hence, Nk +
∑k−1

i=0 ci is an upper bound for k.
We derive an upper bound for the number of iterations in which no blocks

are split using the total number of unstable blocks. In iteration k there are
Uk =

∑k−1
i=0 (li + l′i) − ∑k−1

i=0 ci + |π0| unstable blocks. Since the sum of newly
created blocks

∑k−1
i=0 (li) = Nk − |π0| and l′i ≤ li, the number of unstable blocks

Uk is bounded by 2Nk − ∑k−1
i=0 ci − |π0|. Since Uk ≥ 0 we have the bound

∑k−1
i=0 ci ≤ 2Nk − |π0|. This gives the bound on the total number of iterations

z ≤ 3Nz − |π0| ≤ 3n − |π0|.
With the time for preprocessing this makes the run time complexity O(n +

|Act| + log m). Since the number of transitions m is bounded by |Act| × n2, this
simplifies to O(n + |Act|).

5 Experimental Results

In this section we discuss the results of our implementation of Algorithm 3 from
Sect. 4. Note that this implementation is not optimized for the specific hardware
it runs on, since the goal of this paper is to provide a generic parallel algorithm.
This implementation is purely a proof of concept, to show that our algorithm
can be mapped to contemporary hardware and to understand how the algorithm
scales with the size of the input.

The implementation targets GPUs since a GPU closely resembles a PRAM
and supports a large amount of parallelism. The algorithm is implemented in
CUDA version 11.1 with use of the Thrust library.1 As input, we chose all bench-
marks of the VLTS benchmark suite2 for which the implementation produced a
result within 10 min. The VLTS benchmarks are LTSs that have been derived
from real concurrent system models.

The experiments were run on an NVIDIA Titan RTX with 24 GB memory
and 72 Streaming Multiprocessors, each supporting up to 1,024 threads in flight.
Although this GPU supports 73,728 threads in flight, it is very common to launch
a GPU program with one or even several orders of magnitude more threads, in
particular to achieve load balancing between the Streaming Multiprocessors and
to hide memory latencies. In fact, the performance of a GPU program usually
relies on that many threads being launched.

The left-hand side of Table 1 shows the results of the experiments we con-
ducted. The |Act | column corresponds to the number of different action labels.
The |Blocks| column indicates the number of different blocks at the end of the
algorithm, where each block contains only bisimilar states. With #It we refer
to the number of while-loop iterations that were executed (see Algorithm 3),

1 The source code can be found at https://github.com/sakehl/gpu-bisimulation.
2 https://cadp.inria.fr/resources/vlts/.

https://github.com/sakehl/gpu-bisimulation
https://cadp.inria.fr/resources/vlts/

A Linear Parallel Algorithm to Compute Bisimulation 129

Table 1. Benchmark results for Par-BCRP (Algorithm 3) on a GPU, times (T) are in
ms. The right-hand side compares the total times from the different algorithms.

Benchmark name |Act| |Blocks| #It Tpre Talg #It/n #It/ |Blocks| TPar-BCRP/n Talg/#It TPar-BCRP TLR TWss TWms

Vasy 0 1 2 9 16 0.50 0.37 0.06 1.78 0.003 0.023 0.87 2.29 0.49 0.45

Cwi 1 2 26 1,132 2,786 0.63 56.5 1.43 2.46 0.029 0.020 57.1 17 18.8 21.8

Vasy 1 4 6 28 45 0.56 1.01 0.04 1.61 0.001 0.022 1.58 4.78 1.68 0.62

Cwi 3 14 2 62 122 0.63 2.68 0.03 1.97 0.001 0.022 3.30 60 3.80 3.72

Vasy 5 9 31 145 193 0.84 4.22 0.04 1.33 0.001 0.022 5.06 134 35.3 3.45

Vasy 8 24 11 416 664 0.70 13.9 0.07 1.59 0.002 0.021 15 277 31.5 3.03

Vasy 8 38 81 219 319 1.12 6.64 0.04 1.46 0.001 0.021 7.76 127 35.1 5.94

Vasy 10 56 12 2,112 3,970 0.73 82.0 0.37 1.88 0.008 0.021 82.7 860 40.9 4.6(0.2)

Vasy 18 73 17 4,087 6,882 1.01 142 0.37 1.68 0.008 0.021 143 1,354 211 21.7

Vasy 25 25 25,216 25,217 25,218 159 519 1.00 1.00 0.027 0.021 678 21,960 t.o 416

Vasy 40 60 3 40,006 87,823 0.87 1,810 2.20 2.20 0.045 0.021 1,811 17,710 1,290 1,230

Vasy 52 318 17 8,142 15,985 2.52 338 0.31 1.96 0.007 0.021 340 11,855 368 152(20)

Vasy 65 2621 72 65,536 98,730 12.2 10,050 1.51 1.51 0.154 0.102 10,060 t.o 27,000 1,230

Vasy 66 1302 81 66,929 91,120 6.70 5,745 1.36 1.36 0.086 0.063 5,752 480,600 20,450 240(20)

Vasy 69 520 135 69,754 113,246 4.13 3,780 1.62 1.62 0.054 0.033 3,780 94,800 16,090 35.4

Vasy 83 325 211 83,436 148,012 4.41 3,093 1.77 1.77 0.037 0.021 3,097 57,190 21,500 5,880

Vasy 116 368 21 116,456 210,537 2.50 5,900 1.81 1.81 0.051 0.028 5,900 80,900 6,360 2,930

Cwi 142 925 7 3,410 5,118 4.85 238 0.04 1.50 0.002 0.047 243 3,363 220(30) 140(20)

Vasy 157 297 235 4,289 9,682 4.58 201 0.06 2.26 0.001 0.021 206 1,058 1,240 579

Vasy 164 1619 37 1,136 1,630 8.34 125 0.01 1.43 0.001 0.077 134 8,173 470(30) 46.8

Vasy 166 651 211 83,436 145,029 6.13 5,710 0.87 1.74 0.034 0.039 5,720 80,210 29,660 9,560

Cwi 214 684 5 77,292 149,198 3.58 6,948 0.70 1.93 0.032 0.047 6,952 19,250 440(30) 450(50)

Cwi 371 641 61 33,994 85,858 4.72 4,050 0.23 2.53 0.011 0.047 4,050 26,940 6,970 1,548

Vasy 386 1171 73 113 199 7.38 14.0 0.00 1.76 0.000 0.070 21 334 30.6 34.8

Cwi 566 3984 11 15,518 23,774 16.0 3,707 0.04 1.53 0.007 0.156 3,723 98,200 6,700 2,200(200)

Vasy 574 13561 141 3,577 5,860 71.5 3,770 0.01 1.64 0.007 0.643 3,841 144,810 11,700 1,853

Vasy 720 390 49 3,292 3,782 3.97 143 0.01 1.15 0.0002 0.038 147 2,454 1,633 183

Vasy 1112 5290 23 265 365 24.0 99.3 0.0003 1.38 0.0001 0.272 123 4,570 293 36.8

Cwi 2165 8723 26 31,906 66,132 37.0 23,660 0.03 2.07 0.011 0.358 23,700 140,170 9,700 1,965

Cwi 2416 17605 15 95,610 152,099 64.1 96,400 0.06 1.59 0.040 0.634 96,500 257,200 16,300(1100) 15,300

Vasy 6020 19353 511 7,168 12,262 221 11,690 0.002 1.71 0.002 0.954 11,910 107,900 34,000(2000) 19,230

Vasy 6120 11031 125 5,199 10,014 74.0 6,763 0.002 1.93 0.001 0.675 6,837 55,750 7,010 1,280

Vasy 8082 42933 211 408 660 281 1,149 0.0001 1.62 0.0002 1.739 1,429 17,272 5,530 2,030

before all blocks became stable. The number of states and transitions can be
derived from the benchmark name. In the benchmark ‘X N M ’, N ∗ 1000 is the
number states and M ∗ 1000 is the number of transitions. The Tpre give the pre-
processing times in milliseconds, which includes doing the memory transfers to
the GPU, sorting the transitions and partitioning. The Talg give the times of the
core algorithm, in milliseconds. The TPar-BCRP is the sum of the preprocessing
and the algorithm, in milliseconds. We have not included the loading times for
the files and the first CUDA API call that initializes the device. We ran each
benchmark 10 times and took the averages. The standard deviation of the total
times varied between 0% and 3% of the average, thus 10 runs are sufficient. All
the times are rounded with respect to the standard error of the mean.

We see that the bound as proven in Sect. 4.2 (k ≤ 3n) is indeed respected,
#It/n is at most 2.20, and most of the time below that. The number of itera-
tions is tightly related to the number of blocks that the final partition has, the
#It/|Blocks| column varies between 1.00 and 2.53. This can be understood by
the fact that each iteration either splits one or more blocks or marks a block
as stable, and all blocks must be checked on stability at least once. This also
means that for certain LTSs the algorithm scales better than linearly in n. The
preprocessing often takes the same amount of time (about a few milliseconds).
Exceptions are those cases with a large number of actions and/or transitions.

130 J. Martens et al.

Concerning the run times, it is not true that each iteration takes the same
amount of time. A GPU is not a perfect PRAM machine. There are two key
differences. Firstly, we suspect that the algorithm is memory bound since it is
performing a limited amount of computations. The memory accesses are irregu-
lar, i.e., random, which caches can partially compensate, but for sufficiently large
n and m, the caches cannot contain all the data. This means that as the LTSs
become larger, memory accesses become relatively slower. Secondly, at a certain
moment, the maximum number of threads that a GPU can run in parallel is
achieved, and adding more threads will mean more run time. These two effects
can best be seen in the Talg/#It column, which corresponds to the time per
iteration. The values are around 0.02 up to 300, 000 transitions, but for a larger
number of states and transitions, the amount of time per iteration increases.

5.1 Experimental Comparison

We compared our implementation (Par-BCRP) with an implementation of the
algorithm by Lee and Rajasekaran (LR) [12] on GPUs, and the optimized GPU
implementation by Wijs based on signature-based bisimilarity checking [2], with
multi-way splitting (Wms) and with single-way splitting (Wss) [22]. Multi-way
splitting indicates that a block is split in multiple blocks at once, which is
achieved by computing a signature for each state in every partition refinement
iteration, and splitting each block off into sets of states, each containing all the
states with the same signature. The signature of a state is derived from the
labels of the blocks that this state can reach in the current partition. Note that
we are not including comparisons with CPU bisimulation checking tools; the
fact that those tools run on completely different hardware makes a comparison
problematic, and such a comparison does not serve the purpose of evaluating
the feasibility of implementing Algorithm 3. Optimising our implementation to
make it competitive with CPU tools is planned for future work.

The running times of the different algorithms can be found in the right-hand
side of Table 1. Similarly to our previous benchmarks, the algorithms were run 10
times on the same machine using the same VLTS benchmark suite with a time-
out of 10 min. In some cases, the non-deterministic behaviour of the algorithms
Wms and Wss led to high variations in the runs. In cases where the standard
error of the mean was more than 5% of the mean value, we have added the
standard error in Table 1 in between parentheses. Furthermore, all the results
are rounded with respect to the standard error of the mean. As a pre-processing
step for the LR, Wms and Wss algorithms the input LTSs need to be sorted.
We did not include this in the times, nor the reading of files and the first CUDA
API call (which initializes the GPU).

This comparison confirms the expectation that our algorithm in all cases
(except one small LTS) out-performs LR. This confirms our expectation that
LR is not suitable for massive parallel devices such as GPUs.

Furthermore, the comparison demonstrates that in most cases our algorithm
(Par-BCRP) outperforms Wss. In some benchmarks (Cwi 1 2, Cwi 214 684,
Cwi 2165 8723 and Cwi 2416 17605) Wss is more than twice as fast, but in 16

A Linear Parallel Algorithm to Compute Bisimulation 131

other cases our algorithm is more than twice as fast. The last comparison shows
us that our algorithm does not out-perform Wms. Wms employs multi-way split-
ting which is known to be very effective in practice. Furthermore, contrary to
our implementation, Wms is optimized for GPUs while the focus of the current
work is to improve the theoretical bounds and describe a general algorithm.

Fig. 2. Run times of Par-BCRP and Wms on the LTS Fan outn.

In order to understand the difference between Wms and our algorithm bet-
ter, we analysed the complexity of Wms [22]. In general this algorithm is
quadratic in time, and the linearity claim in [22] depends on the assumption
that the fan-out of ‘practical’ transition systems is bounded, i.e., every state has
no more than c outgoing transitions for c a (low) constant. We designed the
transition systems Fan outn for n ∈ N

+ to illustrate the difference. The LTS
Fan outn = (S, {a, b},−→) has n states: S = {0, . . . , n − 1}. The transition func-
tion contains i

a−→ i + 1 for all states 1 < i < n − 1. Additionally, from state 0
and 1 there are transitions to every state: 0 b−→ i, 1 b−→ i for all i ∈ S. This LTS
has n states, 3n − 3 transitions and a maximum out degree of n transitions.

Figure 2 shows the results of calculating the bisimulation equivalence classes
for Fan outn, with Wms and Par-BCRP. It is clear that the run time for Wms
increases quadratically as the number of states grows linearly, already becoming
untenable for a small amount of states. On the other hand, in conformance with
our analysis, our algorithm scales linearly.

6 Conclusion

We proposed and implemented an algorithm for RCPP and BCRP. We proved
that the algorithm stops in O(n + |Act|) steps on max(n,m) CRCW PRAM
processors. We implemented the algorithm for BCRP in CUDA, and conducted
experiments that show the potential to compute bisimulation in practice in linear
time. Further advances in parallel hardware will make this more feasible.

For future work, it is interesting to investigate whether RCPP can be solved
in sublinear time, that is O(nε) for a ε < 1, as requested in [12]. It is also intrigu-
ing whether the practical effectiveness of the algorithm in [22] by splitting blocks

132 J. Martens et al.

simultaneously can be combined with our algorithm, while preserving the lin-
ear time upperbound. Furthermore, it remains an open question whether our
algorithm can be generalised for weaker bisimulations, such as weak and branch-
ing bisimulation [7,9]. The main challenge here is that the transitive closure of
so-called internal steps needs to be taken into account.

References

1. Balcázar, J., Gabarro, J., Santha, M.: Deciding bisimilarity is P-complete. Formal
Aspects Comput. 4(1), 638–648 (1992). https://doi.org/10.1007/BF03180566

2. Blom, S., Orzan, S.: Distributed branching bisimulation reduction of state spaces.
Electr. Notes Theoret. Comput. Sci. 89(1), 99–113 (2003). https://doi.org/10.
1016/S1571-0661(05)80099-4

3. Blom, S., van de Pol, J.: Distributed branching bisimulation minimization by induc-
tive signatures. In: Brim, L., van de Pol, J. (eds.) Proceedings 8th International
Workshop on Parallel and Distributed Methods in verification, PDMC 2009, Eind-
hoven, The Netherlands, 4th November 2009, EPTCS, vol. 14, pp. 32–46 (2009).
https://doi.org/10.4204/EPTCS.14.3

4. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

5. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990). https://doi.org/10.1007/3-540-53479-2 17

6. Fortune, S., Wyllie, J.: Parallelism in random access machines. In: Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, pp. 114–118 (1978).
https://doi.org/10.1145/800133.804339

7. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimu-
lation semantics. J. ACM 43(3), 555–600 (1996). https://doi.org/10.1145/233551.
233556

8. Groote, J.F., Wijs, A.: An O(m log n) algorithm for stuttering equivalence and
branching bisimulation. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS,
vol. 9636, pp. 607–624. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49674-9 40

9. Jansen, D.N., Groote, J.F., Keiren, J.J.A., Wijs, A.: An O(m log n) algorithm
for branching bisimilarity on labelled transition systems. In: TACAS 2020. LNCS,
vol. 12079, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45237-7 1

10. Jeong, C., Kim, Y., Oh, Y., Kim, H.: A faster parallel implementation of Kanellakis-
Smolka algorithm for bisimilarity checking. In: Proceedings of the International
Computer Symposium. Citeseer (1998)

11. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Inf. Comput. 86(1), 43–68 (1990). https://doi.org/10.1016/
0890-5401(90)90025-D

12. Lee, I., Rajasekaran, S.: A parallel algorithm for relational coarsest partition prob-
lems and its implementation. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp.
404–414. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58179-0 71

13. Leiserson, C.E., et al.: There’s plenty of room at the top: what will drive com-
puter performance after Moore’s law? Science 368(6495) (2020). https://doi.org/
10.1126/science.aam9744

https://doi.org/10.1007/BF03180566
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.1016/S1571-0661(05)80099-4
https://doi.org/10.4204/EPTCS.14.3
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1145/800133.804339
https://doi.org/10.1145/233551.233556
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-662-49674-9_40
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1007/978-3-030-45237-7_1
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1007/3-540-58179-0_71
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744

A Linear Parallel Algorithm to Compute Bisimulation 133

14. Martens, J., Groote, J., Haak, L.v.d., Hijma, P., Wijs, A.: A linear parallel algo-
rithm to compute bisimulation and relational coarsest partitions. arXiv preprint
arXiv:2105.11788 (2021)

15. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

16. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987). https://doi.org/10.1137/0216062

17. Rajasekaran, S., Lee, I.: Parallel algorithms for relational coarsest partition prob-
lems. IEEE Trans. Parallel Distrib. Syst. 9(7), 687–699 (1998). https://doi.org/10.
1109/71.707548

18. Reniers, M.A., Schoren, R., Willemse, T.: Results on embeddings between state-
based and event-based systems. Comput. J. 57(1), 73–92 (2014). https://doi.org/
10.1093/comjnl/bxs156

19. Sengupta, S., Harris, M., Garland, M., Owens, J.: Efficient parallel scan algorithms
for GPUs. In: Scientific Computing with Multicore and Accelerators, chap. 19, pp.
413–442. Taylor & Francis (2011)

20. Stockmeyer, L., Vishkin, U.: Simulation of parallel random access machines by cir-
cuits. SIAM J. Comput. 13(2), 409–422 (1984). https://doi.org/10.1137/0213027

21. Valmari, A.: Simple bisimilarity minimization in O(m log n) time. Fundam. Infor-
maticae 105(3), 319–339 (2010). https://doi.org/10.3233/FI-2010-369

22. Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46681-0 29

23. Wijs, A., Katoen, J.-P., Bošnački, D.: Efficient GPU algorithms for parallel decom-
position of graphs into strongly connected and maximal end components. Formal
Methods Syst. Des. 48(3), 274–300 (2016). https://doi.org/10.1007/s10703-016-
0246-7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/2105.11788
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1137/0216062
https://doi.org/10.1109/71.707548
https://doi.org/10.1109/71.707548
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1093/comjnl/bxs156
https://doi.org/10.1137/0213027
https://doi.org/10.3233/FI-2010-369
https://doi.org/10.1007/978-3-662-46681-0_29
https://doi.org/10.1007/s10703-016-0246-7
https://doi.org/10.1007/s10703-016-0246-7
http://creativecommons.org/licenses/by/4.0/

Automated Generation of Initial
Configurations for Testing Component

Systems

Frédéric Dadeau(B), Jean-Philippe Gros, and Olga Kouchnarenko

Univ. Bourgogne Franche-Comté, CNRS, FEMTO-ST Institute,
15B avenue des Montboucons, 25030 Besançon, Cedex, France

{frederic.dadeau,jean-philippe.gros,olga.kouchnarenko}@femto-st.fr

Abstract. In the context of component-based systems, this paper
presents the automated generation of initial states, from which an adap-
tive system starts to receive sequences of events that aim to provoke
reconfigurations. For generating these states, also called configurations,
we present a combinatorial algorithm supporting various architectural
elements and relationships among them, while satisfying consistency con-
straints expressed by invariants. Moreover, this algorithm deals with the
system-dependant instantiations of the primitive and composite compo-
nents, parameters and relations, in order to produce meaningful struc-
tured configurations. While testing adaptation policies for component-
based systems, this algorithm allows us to improve the capability of ful-
filling coverage criteria by using different initial configurations. To illus-
trate the approach, the paper reports on experiments on a simulation
with platoons of autonomous vehicles.

1 Introduction

Even if models of component-based systems are very heterogeneous, most of
them consider software components either as black boxes, or as grey boxes if some
of their inner features are visible, having fully-described interfaces. Systems’
behaviour is then specified using components’ definitions. In general, the system
state, also called a configuration, is the specific definition of the elements that
define what a system is composed of, while a reconfiguration can be seen as
a transition from a configuration to another. In this context, adaptation rules
or policies can be used to guide dynamic reconfigurations of component-based
systems [6,10,18] by using either architectural constraints on configurations, or
events, or temporal constraints over sequences of events and reconfigurations.

Overall, our goal is to validate that the adaptation policy rules are faithfully
implemented by the system. In [7], the system execution has been validated w.r.t.
the adaptation policy by checking that the reconfigurations that are triggered
during the execution correspond to those authorized in the adaptation policy. In
addition, [8] addresses the issue of validating that the system execution, which
starts from a particular configuration, respects the utilities of the reconfiguration
c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 134–152, 2021.
https://doi.org/10.1007/978-3-030-90636-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-90636-8_8

Generation of Initial Configurations for Testing 135

Fig. 1. The process of online test generation for adaptive systems

rules of the adaptation policy. It is easy to see that the testing process depends
on initial configurations. For example, in the context of autonomous systems,
when the execution starts from a configuration with the full battery, only a few
reconfigurations are expected and, consequently, the test cases to cover aimed
behaviour with reconfigurations may be long enough. On the contrary, starting
from a configuration where the battery level is low, provokes reconfigurations
to save energy, and the test cases are expected to be shorter. So, to go further,
the present paper presents the automated generation of initial configurations,
from which the adaptive system starts to receive sequences of events that aim
to provoke reconfigurations.

This process is summarized in Fig. 1. The adaptive system’s architecture is
described by a component-based model, from which initial configurations are
automatically generated while instantiating the model (1). These initial con-
figurations are necessary inputs to initialize testing (2) of the system, as the
tests are executed starting from them, as well as the system itself. To take into
account the environment in which the system is executed, usage models [25] for
components are provided as inputs as well. Starting from initial configurations,
test cases are composed of the events, which are extracted from components
usage models (3). These events are sent by the test generator to the system (4),
in an online testing manner: as the system’s behavior depends on the environ-
ment, test outputs are observed on the reconfiguration trace (5), and analyzed
by the test generator (6) to both guide the next event to be sent to the system
under test (4), and verify that the system behaves as expected w.r.t. the various
artifacts that are available, namely adaptation policies with temporal properties
(not shown in Fig. 1). This last point has been described in [7], where as the
present paper focuses on points (1) and (2).

In order to generate initial configurations, we first considered a random
data generator. However, due to the complexity of the structures to be gener-
ated for component-based systems, such a random generator could possibly not

136 F. Dadeau et al.

terminate, or hardly converge to a relevant configuration, which is realistic in
terms of architecture. Indeed, the relationships that are defined by the compo-
nent model, regarding parenting relationships, delegations and bindings, define
a constraint satisfaction problem (CSP), that cannot be effectively solved by a
random process. While constraint solvers exist, such as CLPS [5], using them is
problematic in our context. First issue is a large number of solutions computed
that will be structurally similar, due to symmetries in the solution space. Sec-
ond, solvers are usually meant to determine if a CSP has a solution, but a fine
tuning of the solver is required to obtain some variety in the proposed solutions.

To overcome these issues, the contributions of this work are to propose a ded-
icated combinatorial algorithm that is used to enumerate all possible symmetry-
free solutions of the CSP defined by the component model, in order to produce
initial configurations. This algorithm integrates symmetry elimination patterns
which reduce the combinations to be considered. While this algorithm can be
used to perform bounded exhaustive testing as in [22], the resulting configuration
set can be sampled to select a subset of configurations, that reduce the number
of test data to consider. A sampling method, aiming to amplify the variety of
configurations, is presented as a second contribution.

Outline. The paper is organized as follows. After a brief overview of the
component-based systems under adaptation policies, some basic notions on cov-
erage criteria for their testing are presented in Sect. 2. Section 3 presents the
component-based model that is used to represent systems configurations. The
configuration generation process, based on bounded exhaustive computation of
the possible configurations is presented in Sect. 4. The algorithm is described
along with optimisations that aim to reduce the combinatorial explosion, and
data selection criteria that make it possible to sample the solutions to a small but
significant subset. Section 5 reports on experimental results w.r.t. the research
questions. Related works are presented in Sect. 6 before concluding in Sect. 7.

2 Background

On Component-Based Systems Under Adaptation Policies. In this
paper, only the basic and generic concepts of component-based systems are con-
sidered to allow their application to various hierarchical models: components as
entities of several types, required and provided interfaces as interaction points
between components, bindings to link component interfaces. Components are
either primitive components providing data or services, or composite compound
components delegating their interfaces. Components can have some attributes
used as configuration parameters. This section presents a running example of
such a system, whereas Sect. 3 provides the reader with needed formal notions.

Example 1. Let us start with an example of a Vehicle Platooning Application
(VPA for short) inspired from [4]. This complex system is composed of vehicles
which are either in solo mode, or organized in some platoons, as displayed in
Fig. 2. This figure also provides a component-based architecture corresponding

Generation of Initial Configurations for Testing 137

to the displayed VPA situation. In VPA, each platoon is led by a leader vehicle.
Any vehicle in solo mode can ask to join a platoon or decide to create a new
platoon with another vehicle in solo mode. Each vehicle in a platoon can ask to
quit it either because the vehicle reached his destination, or because it needs to
refill its energy. The platoon leader may change either because another vehicle
has more autonomy or a further destination. Some external events happen in
the system environment, e.g., a new vehicle can arrive on the road, or a driver
may decide to quit the platoon on his way to a new destination. These changes
on system’s architecture level are considered as dynamic reconfigurations.

For dynamic reconfigurations to occur only in suitable circumstance, adap-
tation rules indicate, for a given set of configurations, which reconfiguration
operations can be triggered, with a utility level associated. Following [6], they
are of the form when b if g then utility of ope is f . As introduced in [18],
reconfiguration operations in adaptation policies are guarded by temporal logic
properties that may either make use of propositional formulae over configura-
tions, or involve sequences of events and/or reconfigurations.

when after Join normal until Quit normal and VehicleId.battery < 33
if state = leader then utility of PassRelay is high

when after Join normal until Quit normal and VehicleId.battery > Leader.battery
if state = platooned then utility of GetRelay is medium

Example 2. Let us consider 2 adaptation rules involving the PassRelay and
GetRelay reconfigurations. Intuitively, the above rules apply to all vehicles and
are used to determine when it is possible to have a relay between the leader and
another vehicle of the platoon. In the first case, the PassRelay reconfiguration of
high utility can be triggered when the leader has not enough autonomy. In the

Fig. 2. Component architecture for the considered VPA (top-right side)

138 F. Dadeau et al.

second case, the GetRelay reconfiguration of medium utility may trigger when
the autonomy of a vehicle is greater than the autonomy of the leader.

Notice that a reconfiguration is suggested with a utility value (e.g. from Ft =
{ high, medium, low}). For the formal definition, the reader can refer to [7].

On Coverage Criteria for Adaptation Policies. In a previous work [7], we
have proposed a test generation technique which aims to generate sequences of
external events, from usage models of system’s components, in order to exercise
the reconfiguration rules described in the adaptation policy. The dedicated cov-
erage criteria have been designed for adaptation rules with temporal patterns by
exploiting coverage criteria for temporal patterns described in [23].

These coverage criteria can be used as a means to handle the input data,
to evaluate a test suite, by measuring how much of the considered artifacts–
e.g., temporal properties and adaptation rules with temporal properties–the test
suite covers, and to decide when to stop testing. In [23], a temporal property
is considered as covered by a test suite TS if each transition of the property
test automaton is covered by at least one test case tc from TS. Having the same
temporal patterns allows us to consider coverage criteria for adaptation rules and
thus for adaptation policies. In [7], the adaptation rule is covered by a test case
tc if the rule is eligible–there is a configuration that tc reaches, where b scope
and g guard predicates are evaluated to true,–and ope is actually triggered from
such a configuration. Coverage criteria for policies are obtained by lifting this
notion to sets of rules.

As a consequence, the introduced coverage criteria for adaptation rules allow
the user to evaluate if (i) the triggered reconfigurations were among eligible ones,
in order to detect undesirable reconfigurations, and (ii) a generated test suite
execution has triggered all the reconfiguration rules that were described in the
adaptation policy, so as to detect specified but never triggered reconfigurations,
even for long test cases generated.

3 Component-Based Model

This section gives means for specifying component-based systems. Their archi-
tectural model is defined as a triplet 〈Elem,Rel, Inst〉, where Elem is a set of
the component elements, Rel describes the architectural relationships between
these elements, and Inst is an instantiation of Elem and Rel in terms of actual
components and relations.

Components. Components are entities that can be assembled to create an
application. As usual, interfaces are used for interactions between components.
A provided interface is an interface that the component realizes, whereas a
required interface is an interface that the component needs to be able to
run. Composite components may delegate their interfaces to inner components.
Formally, Elem = {CTypes, IProvided, IRequired, Params, ITypes, PTypes,
Contings}, where CTypes is the non-empty set of components types, IProvided
(resp. IRequired) is the set of interfaces, which are provided (resp. required) by

Generation of Initial Configurations for Testing 139

the components, Params is the set of components’ parameters, ITypes (resp.
PTypes) is a finite set of the interfaces (resp. parameters) types, Contings is the
set of contingencies that represent the cardinality of required interfaces (single
or multiple connections, optional or mandatory).

Example 3 (Components of the VPA example). The architectural elements of
the VPA configuration depicted in Fig. 2 are as follows:
CTypes = {Road, P latoon, V ehicle}
IProvided = {connV, leader}
IRequired = {vehicles, next}
Parameters = {battery, position, speed, goal}
ITypes = {V Info}
PTypes = {int, f loat}
Contings = {singleopt, singlemandatory,multiopt,multimandatory}

Relationships. The architectural relationships among components are defined
by a tuple Rel = {IPType, IRType, Provider,Requirer, Contingency, Param
Type, Definer, ParentTypes,DelegProv, DelegReq} in which IPType (resp.
IRType) is a total function that maps a provided interface in IProvided (resp.
a required interface in IRequired) to its type in ITypes, Provider (resp.
Requirer) is a total function that maps a provided interface in IProvided
(resp. a required interface in IRequired) to its component type in CTypes.
Contingency associates each required interface in IRequired with its contin-
gency. ParamType is a total function that associates with each parameter in
Params its type in PTypes, Definer is a total function to define the component
type in CTypes for each parameter, ParentTypes associates each component
type with the component types of its parent components1, and DelegProv (resp.
DelegReq) describes pairs of provided interfaces (resp. required interfaces) that
are linked by a delegation from a parent component to one of its subcomponents.

Example 4 (3 relationships of the VPA example). For the VPA component
model, one has Provider = {connV �→ V ehicle, leader �→ Platoon},
Requirer = {vehicles �→ Road, next �→ V ehicle}, and DelegateProv =
{connV �→ leader}.

Instantiation. An instantiation provides the main entities of the component-
based system and thus defines its particular configuration, which consists of
the components that are present and put together thanks to their relationships.
The instantiation is a 6-tuple Inst = {Comps,CT, Parents,Binds,DelProv,
DelReq, V alue} in which Comps is the set of component instances; a total func-
tion, called CT , associates with each component in Comps its type in CTypes;
Parents associates with each component in Comps the set of its parent compo-
nents; Binds is a relation to bind provided and required interfaces of components;
DelProv (resp. DelReq) describes the delegated interface of a sub-component
1 Each component type is mapped to a set of component types, as we assume that

components can be shared by composite components.

140 F. Dadeau et al.

in relation with the delegating interface of the parent component; and V alue
provides the value of each component parameter.

Example 5 (Instantiation of the VPA example). A component can be instanti-
ated several times, as e.g. the components of type V ehicle. The configuration in
Fig. 2 is given by the following instantiation:
Comps = {v1.1, v1.2, v1.3, v2.1, v2.2, v3, v4, v5, r, p1, p2}
CT = {{v1.1 �→ V ehicle, ..., p1 �→ Platoon, ..., r �→ Road}
Parents = {v2.1 �→ {p1}, ..., v3 �→ ∅, ..., p �→ ∅, r �→ ∅}
Binds = {((v3, connV), (r, vehicles)), ..., ((v2.2, connV), (v2.1, next)), ...}
DelProv = {((v1.1, connV), (p1, leader)), ..., ((v2.1, connV), (p2, leader))}
DelReq = {}
V alue = {v1.1 �→ {battery �→ 31, position �→ 253.3, ...}, ...}

In addition, following [20], set-theoretical constraints on this architectural
model are provided so as to express: (i) the consistent typing of components,
(ii) the consistent binding of interfaces, and finally (iii) the consistent parent
relationship. For example, only components having a common parent can be
bound; mandatory contingencies are fulfilled; a delegated interface of parent
component is bound to an appropriate interface of a child component. Finally,
some constraints inherent to the considered system are expressed as system-
dependant invariant properties, like in [20]. They are also needed for the system
configurations to be consistent.

We refer to [9,18] for the definition of components, interfaces, bindings, etc.,
and their consistent assembly obeying invariants. We call a state or a configura-
tion of a component-based system a set of instantiated above-mentioned archi-
tectural elements together with their types and relations to link them.

4 Generation of Initial Configurations

Given the component-based model 〈Elem,Rel, Inst〉, this section describes
a configuration generation algorithm that is used to enumerate all possible
symmetry-free solutions of the CSP defined by the component model, in order to
produce initial configurations. The aim of this combinatorial algorithm is to build
a set of configurations that are correct-by-construction, especially regarding the
architectural and consistency constraints that guarantee the correct parenting,
delegations and bindings. Nevertheless, the execution of the test cases from all
the computed configurations can be a tedious task, especially the setup of the
test environment for a given configuration. Hence, some of the solutions can be
sampled to produce a reduced set of configurations that are different from each
other. These configurations can then be used as initial configurations for the
online testing process described in Sect. 1.

4.1 Combinatorial Algorithm

The test generation algorithm is summarized below as Algorithm 1. It takes
as an input component model parts Elem and Rel, and aims to produce all

Generation of Initial Configurations for Testing 141

instantiations SInst up to a given size (expressed as the number of components)
that fulfill the description. In order to eliminate irrelevant configurations w.r.t.
the system-dependant invariant (notably to restrict possible bindings, e.g. in
order to prevent vehicles to be connected to each other outside a platoon), an
invariant function can be provided in order to define valid configurations.

Algorithm 1 is parameterized by: the minimal and maximal number of com-
ponents of each type, the total number of components, a parameter instantiation
function, which aims to determine how component parameters are supposed to
be valued, and an invariant function which is supposed to provide additional
constraints on the configurations, which complement the description of the com-
ponent model and rule out irrelevant configurations.

1: Inputs
2: Elem
3: Rel
4: N : int
5: invariant: Inst → B

6: genParameters: Comp, CT , Definer → V alues
7: Output
8: SInst // the set of possible instantiations
9: Begin

10: SInst ← ∅
11: for all Comp, CT from genComponents(N) do
12: for all Parents from genParenting(Comp, CT) do
13: if not isFresh(Parents) then
14: proceed to the next value of Parents
15: end if
16: for all Delegations from genDelegations(Comp, Parents) do
17: if not isFresh(Delegations) then
18: proceed to the next value of Delegations
19: end if
20: for all Binds from genBindings(Comp, Parents, Delegations) do
21: if not isFresh(Binds) then
22: proceed to the next value of Binds
23: end if
24: V alues = genParameters(Comp, CT , Definer)
25: Inst = 〈 Comp, CT , Parents, Delegations, Binds, V alues 〉
26: if invariant(Inst) then
27: SInst ← SInst ∪ Inst
28: end if
29: end for
30: end for
31: end for
32: end for
33: End

Algorithm 1: Initial configurations generation

142 F. Dadeau et al.

The combinatorial algorithm proceeds by successive steps. Each step consists
in identifying the possible solutions before considering the valid one, one-by-one
to proceed to the next step. Once a given step has explored all the possibilities,
the algorithm backtracks to the previous step to consider the next solution before
moving onto the next step. The different steps are the following.

Step 1. The algorithm starts (line l.11) by considering all possible partitions of
the components according to their types, bound by a maximal cardinality size.
This step relies on the CTypes description in Elem. Each pair from Comps
×CT (of components and types in Inst) is considered for the subsequent step.

Step 2. The second step (l.12) aims to produce, for a given set of instances, a
parenting relationship that fulfills the following constraints: (i) each composite
component has at least two children, and (ii) no loop may appear in the parenting
relationship. At this step, the isFresh function (l.13) is used to detect if the
solution that is computed has been already encountered modulo permutation
in a previous iteration of the current loop, as illustrated by Fig. 3. If so, the
solution is not considered for the subsequent step, and the algorithm proceeds
the next parenting solution.

Step 3. The third step (l.16) consists in delegating required or provided interfaces
of the composite components to one of its children. To save space Delegations
represents both DelProv and DelReq described previously. All interfaces of the
composites have to be delegated to their inner components. Similarly to the
previous step, symmetrical solutions are ruled out, as illustrated by Fig. 4.

Step 4. The fourth step (l.20) consists in computing, based on the current par-
enting and delegations, a binding of compatible required and provided inter-
faces, that satisfies architectural constraints (e.g. only components with the
same parent can be bound) and contingency constraints (single/multiple, manda-
tory/optional). Here again, symmetrical solutions, as illustrated by Fig. 5, are
not considered.

Step 5. Once the structure of component system is generated, the algorithm
eventually computes data values for the component parameters, according to
their type, based on a given valuation function that can be user-defined (l.24-
25). For both discrete and continuous domains of the considered parameters,
this function makes use of the Beta-distribution method [12] with parameterized
probabilistic distributions allowing the user to vary the density of random draw
from these domains, and to automate the process. In the end, the configuration
that has been computed is checked against the invariant (l. 26), before being
stored (l. 27).
Finally, only valid and consistent configurations up to size N are computed2.

2 The interested reader can find an implementation of this algorithm at https://
fdadeau.github.io/CSConfigGen/.

https://fdadeau.github.io/CSConfigGen/
https://fdadeau.github.io/CSConfigGen/

Generation of Initial Configurations for Testing 143

Proposition 1. Given number N of components’ instances to be generated,
Algorithm 1 terminates either by providing a set SInst of consistent configu-
rations with up to N components (without those obtained by permutations of
architectural elements), or by returning the empty set if none of the configura-
tions satisfies consistency constraints or system-dependant invariant.

Fig. 3. Symmetries in parenting relationships

Fig. 4. Symmetries in delegations

Fig. 5. Symmetries in bindings

4.2 Initial Configuration Sampling

Once initial configurations generated, there is a need to select some of them
for testing the system under adaptation policies. Intuitively, while using cov-
erage criteria for handling test inputs, the greater the difference between the
configurations, the higher the coverage rate will be.

Comparing Configurations. The difference between the configurations is
computed by processing them two by two. This computation can be divided into
2 parts: on the overall architecture, and on particular system-dependant features.
First, we compare the overall structure of the configurations by counting the dif-
ference Δcomps between the numbers of the components instances (primitive and
compound ones), and the difference Δhierachy between the numbers of all the
ancestors of the involved components. This way, a better coefficient will be given
to a complex configuration with nested composite components, compared with

144 F. Dadeau et al.

a flat configuration. Depending of the systems under consideration, the number
of bindings may differentiate the configurations as well, hence Δbindings.

In [1], a negative inverse exponential function is used to limit the complexity
score, together with a coefficient to scale it between two values. In the same
spirit, we have chosen a logarithmic function to limit our coefficient values. So,
in the end, a coefficient on the overall architecture difference is computed by the
following formulae:

k = log10(Δ
Δhierarchy+Δbindings
comps)

Example 6. Let us consider again the configuration in Fig. 2 with 8 vehicles, 2
platoons, 1 road, and 3 bindings (configuration A). Let us compare it to con-
figuration B composed of 5 solo vehicles on the road. One has Δcomps = 5 for
primitive and compound components, Δhierarchy = 5, and Δbindings = 3, so
k = log10(55+3) = 5.59.

Second, while testing adaptation rules, the test case generation may be
impacted by the values of the component parameters, that are involved in the
rules. So, the validation engineer should be able to examine the parameters that
are worthy of attention. To compare two configurations with a different num-
ber of the components of the same type, for each parameter of interest of the
configuration with more instances, the closest values are two by two selected
for merging, until the same number of values is obtained. So, given number n of
instances of the same type considered, l1 and l2 sorted lists of n values of param-
eter Par, the proportional difference is computed by the following formulae:

scorePar =
100

n × (maxPar − minPar)
×

n∑

i=1

|l1i − l2i |

where maxPar and minPar represent resp. maximal and minimal values of
parameter Par. The scores of all parameters from Pars ⊆ Params that impact
the adaptation rule, are aggregated in a final score, where k is the coefficient on
the overall architecture difference between two configurations:

difScore = k ×
∑

Par∈Pars

scorePar

Example 7. Let us consider again configurations A and B from Example 6, with
a focus on battery parameter. Let us suppose that the battery level values for
the vehicles in A are (20, 22, 34, 54, 62, 72, 80, 99). As there are 3 more vehicles
in A, the 3 pairs of the closest values are: (20, 22), (55, 62) and (72, 80). After
the merging step (here by averaging), one has l1 = (21, 34, 58, 76, 99). For B, let
us take l2 = {26, 55, 62, 74, 89}. Applying scorePar to battery gives:

scoreBat =
100

5 × (100 − 20)
×

5∑

i=1

|l1i − l2i | = 0.25 × 42 = 8.4

Assuming distance parameter score being scoredistance = 5.1, the aggregated
difference score is then: difScore = 5.59 × (8.4 + 5.1) = 75.46.

Generation of Initial Configurations for Testing 145

1: Inputs
2: Scores, NS
3: Output
4: Configs
5: Begin
6: i, j ← selectHigestScore(Scores)
7: mark ai,j as selected
8: Configs.add(i)
9: Configs.add(j)

10: repeat
11: j′ ← selectHighestScoreInLine(i)
12: mark ai,j′ as selected
13: Configs.add(j′)
14: i′ ← selectHighestScoreInColumn(j)
15: mark ai′,j as selected
16: Configs.add(i′)
17: i ← i′

18: j ← j′

19: until Configs.size() < NS
20: return Configs
21: End

Algorithm 2: Initial config. sampling

Configuration Sampling. Sam-
pling consists in reducing the
set of possible configurations to
a subset of size NS, in which
the difference scores between
the configurations are maxi-
mized. Such an optimization
problem can be solved by var-
ious kind of approaches, such
as SAT-solving, linear program-
ming, clustering [13], genetic
programming [19], etc. For this
work, we choose to implement a
greedy algorithm, shown below
as Algorithm 2. Based on the set
of m generated initial configura-
tions computed, an m×m score
matrix (named Scores line 2) is
built, where ai,j element repre-
sents difScore between config-
uration i and configuration j3.
NS (line 2) denotes the number
of configurations to select, which
is the cardinality of Configs set
of indexes of selected configurations (line 6). The algorithm starts by select-
ing the biggest score in Scores matrix with function selectHigestScore (line 6),
and marks the corresponding element as selected (line 7). Configs set is then
updated (lines 8, 9). Here selectHigestScore(Scores) function browses the matrix
given parameters, and returns the indexes corresponding to the biggest difference
score between i-th and j-th configurations. Then, in the corresponding row i and
column j the biggest remaining scores are chosen (lines 11 and 14), and the cor-
responding configurations indexes are added to Configs (lines 13 and 16). Func-
tion selectHighestScoreInLine(i) (resp. selectHighestScoreInColumn(j)) browses
the i-th row (resp. the j-th column) of Scores matrix, and returns the index of
the column (j′) (resp. row i′) corresponding to their respective biggest score. In
order to prepare the next iteration step, the indexes are updated (lines 17, 18).
The steps in lines 11 to 18 are repeated, until Configs size reaches NS.

By construction, only configurations with big difference scores are selected.

Proposition 2. Given NS, number of configurations to select from SInst set
of size m, Algorithm 2 terminates by providing Configs set of size NS ≤ m of
configuration indexes from SInst that have the most significant difference scores.

3 In this matrix ai,i = 0 and ai,j = aj,i. The complexity of the computation is
quadratic in the number m of configurations.

146 F. Dadeau et al.

4.3 Integration into the Online Test Generation Process

The online testing process relies on the usage models, one per component type,
which are probabilistic automata. They capture the behavior of components and
determine, for a given state, which external events can be sent to the compo-
nent, at a given rate. As an example, Figure 6 represents the usage model of
Vehicle type components. In this figure, edges with solid lines represent external
events that may be used for stimulating (i.e., testing) the component, whereas
dotted lines represent internal events that may occur and change the state of
the automaton. Edges may also be labelled by δ, which represents a quiescence,
meaning that no event will be sent to the system. Finally, the number in paren-
theses represents the probability for the considered event to be selected.

The usage models are specific to each component type, and each state of the
automaton represents a given configuration for the component. As a consequence,
we assume that there is, for each component type, a function to determine the
initial state of usage model for a component of this type. We denote initCType

this function.

Example 8. Assuming that a component v of type Vehicle appears in the instan-
tiation Inst that is generated by the process described in Sect. 4.1 and selected
by the process described in Sect. 4.2, this component’s automaton initial state
will be given by the following function:

function init_V ehicle(v, Inst)
if ((v, connV) �∈ Inst.Binds) return 0
else if (Inst.Parents(v) �= ∅) return 1
else return 2

5 Experimentation

This section describes experiments to assess the testing approach described in
Sect. 1 and displayed in Fig. 1 while using Algorithms 1 and 2 for initial config-
uration automatic generation and sampling. The goal of the experiments is to
answer the following research questions.
[RQ1] To what extent the use of different initial configurations improves the
generated tests? (shorter? improve coverage? find more faults?)
[RQ2] To what extent the symmetry-breaking in Algorithm 1 reduces the number
of generated configurations?

On the Experiments. To experiment, a simulator of the VPA example has
been developed as a Java program (almost 6000 lines of code). It can be modi-
fied at will, e.g. to set up initial configurations and sequences of events. It is also
possible for the validation engineer to modify the implementation of the adap-
tation policies that guide system’s reconfigurations. Actually, the implementa-
tion may depend on the reconfigurations utilities and on strategies for handling
priorities of the reconfigurations with the same utility level. The validation of
implementation choice has been described in [8].

Generation of Initial Configurations for Testing 147

Fig. 6. Usage model for the Vehicle components

For the VPA system under test, 8 adaptation rules have been designed, that
integrate 5 temporal properties of interest.

Example 9. In addition to 2 adaptation rules for vehicles from Example 2 involv-
ing battery parameter, we consider the following rule with distance parameter:
when after Join normal until Quit normal and VehicleId.distance < 10
if state != leader then utility of QuitPlatoon is high

On the Experimental Protocol. Let us now describe the experimental pro-
tocol. Once the set of initial configurations Inst of cardinality 1200 generated
by applying Algorithm 1, matrix Scores of difference scores is computed. After-
wards, 10 closest configurations with small difference scores and 10 farthest ones
with big difference scores are selected by applying twice Algorithm 2 to Score
matrix.

As the test generator performs Markovian walk over components usage mod-
els, the experiment is replayed 170 times for each set of configurations, one by one
(2 × 10 × 170), to provide a confidence in the experimental results. This allows
observing produced traces with actually triggered reconfigurations in order to
compute the coverage criteria rate [7] as recalled in Sect. 2.

For the VPA example simulation, as displayed in Fig. 1, running an exper-
iment consists then in starting from a selected initial configuration and letting
the test generator deal with usage models of components to send the events at
a given rate to the system under adaptation policies. During 3000-step exper-
iments, the reconfigurations occur (with traces produced) and make system’s
architecture evolve.

On the Results. The coverage rate is separately aggregated for the properties
and for the adaptation rules by applying coverage criteria described in [7] and
reminded in Sect. 2. Given the set of initial configurations, for each experiment
the coverage rate for the rules is the ratio of the number of adaptation rules,
that are covered by at least one test case starting from a configuration from this
set, to the number of rules under consideration.

148 F. Dadeau et al.

Table 1 below reports on the experimental results4, where the lines corre-
spond to the coverage rate reached for the properties and rules, depending on
the configuration set chosen with either small difScore values, or big difScore
values. The columns represent the running experiment number (from 1 to 170),
with an extract of 9 experiments below. For example, for the run in column n+1,
the first line (Small dif. score) indicates 94% of coverage for properties and 75%
for rules, where as the second line (Big dif. score) indicates 100% coverage for
properties and 75% for adaptation rules. The Av. column indicates the average
coverage rate of a sub-line. For example, in the first line (Small dif. score) the
first sub-line indicates 86.5% properties coverage on average for 170 performed
experiments. Also, for the 8 adaptation rules, 0% coverage rate indicates that no
rule has been triggered during the 3000-step experiment with about 300 external
events sent to the SUT5, whereas 100% coverage says that all the adaptation
rules have been triggered. The column M.freq. indicates the most often seen
rate value over 170 experiments performed for each set of configurations. So, 75
indicates that 75% is the most frequent coverage.

Let us note that the most frequent 75%-rate for adaptation rules is due
to the rules, whose QuitDistance reconfiguration is not triggered because of
distance parameter involved. For these rules, 3000-step experiments are not long
enough for decreasing distance values, and the scope and guard predicates of
the concerned rules remain false.

Table 1. Extract of experimental results and coverage rates

Run number 23 24 25 26 27 28 29 30 31 Av. M.fr.

Small dif. Prop.Cov.(%) ... 56 94 17 94 56 61 94 100 94 ... 86.5 94

score Rule Cov.(%) ... 0 75 0 75 0 13 75 75 75 ... 58.5 75

Big dif. Prop.Cov.(%) ... 100 100 100 100 100 100 94 100 100 ... 98.1 100

score Rule Cov.(%) ... 94 75 75 75 75 100 75 75 75 ... 80.2 75

On the Symmetry Elimination. To address RQ2, we ran an experiment,
which consists in counting the number of configurations that are generated with
or without the symmetry detections that we have considered.

For the VPA example we designed 5 setups that differ in the minimal and
maximal number of components of each type that are generated. The invariant
specifies that vehicles that are not in a platoon are not connected together. The
setups are as follows: Setup#1: 1 Road, 1 to 5 Vehicles, 0 to 2 Platoons, 0 to 1
Station. Setup#2: 1 Road, 5 Vehicles, 0 to 2 Platoons, 0 to 1 Station. Setup#3:
1 Road, 6 Vehicles, 0 to 2 Platoons, 0 to 1 Station. Setup#4: 1 Road, 1 to 5
Vehicles, 1 Platoon, 0 to 1 Station. Setup#5: 1 Road, 1 to 5 Vehicles, 0 to 2
Platoons, 1 Station.

4 More results are in Table at https://fdadeau.github.io/CSConfigGen/table.html.
5 Let us note that for each experiment, on the given clock tick, on average 10% of

steps correspond to the events from the usage models sent to the SUT (cf. (4) in
Fig. 1), whereas δ occurs for the remaining 90% of steps.

https://fdadeau.github.io/CSConfigGen/table.html

Generation of Initial Configurations for Testing 149

Fig. 7. Number of configurations for each setup

By turning on or off (denoted
with a line over the correspond-
ing symbol) some of the symmetry
eliminations (parenting P , delega-
tions D, bindings B) and invari-
ant filtering (I), we obtain the
results shown in Fig. 7. Setup #1,
#3 and #5 took about 25 s on a
standard laptop (Dual-core i5 1.6
GHz with 8Go RAM) to gener-
ate 21.000–23.000 configurations.
Due to the exponential blow up of the unfolding, it takes about 20 min to gener-
ate the 337.625 configurations of Setup #3, which was reduced to 16 min when
enabling symmetry reductions.

All symmetry reductions are clearly relevant in order to master the com-
binatorial explosion, showing that only a tractable number of configurations is
generated even for highly combinatorial setups. On this case study, the experi-
mentation also shows that a large set of irrelevant configurations can be gener-
ated, based only on the description of the component model (without considering
the invariant).

Notice that these symmetrical configurations have 0 for the difference score,
and thus, only one of them will at most be kept by the selection process. As a
consequence, removing them at the soonest prevents useless computations from
being performed.

The obtained experimental results allow assessing the use of automatically
generated initial configurations and their sampling. Indeed, they show that the
set of the generated configurations with significant difference scores gives better
coverage rates, thus answering our research questions.

6 Related Work

System’s configurations are required for online testing approaches to work. In our
approach, these configurations are automatically generated from a component
model by using boundary testing [3,21,24] to generate system’s values. In [21],
the authors present a test case generation based on boundary goals derived from
a formal model, with a feedback to refine boundary criteria if the boundary goals
are not reachable. In our approach, as in [14], the boundaries of the parameters
are defined in the model; in this respect our contribution consists in generating
a wide diversity of combinations.

Our symmetry filtering approach for generating initial configurations is close
to the TACO tool [11], which applies SAT-based techniques instrumented with
a symmetry-breaking predicate to JML-annotated sequential Java programs in
order to eliminate some isomorphic models. Our approach goes further, as we
also consider hierarchical objects.

In the field of software product lines (SPLs), the configuration spaces are
often determined by features and constraints over them, modeled as feature

150 F. Dadeau et al.

models (FMs). A feature oriented testing (FOT) described in [16] applies FMs to
test-case designs for black-box testing. In this approach, SAT-based automated
test-suite generation and correctness checking of test-case designs are performed.
In [15] the authors present a comparative study of combinatorial testing (CT)
and random testing (RT) algorithms for testing SPLs. On the chosen bench-
marks, this study shows that the diversity of configurations sampled by CT is 2
to 3 times higher than those sampled by RT.

As reported in [17], in fuzz testing, the performance substantially varies
depending on input configuration files, or seeds, used to start fuzzing with.
However, most papers (among 32) have treated their choice casually, apparently
assuming that any seed would work equally well, without providing particulars.
Our experimentations with initial configurations also show that testing process
heavily depends on them.

7 Conclusion and Future Works

In this paper, we have presented an approach to automatically generate initial
configurations for testing component-based systems. The presented algorithm
allows generating structured data composed of architectural elements and rela-
tionships to link them, while satisfying general consistency constraints expressed
by invariants. System-dependant instantiation of component parameters is inte-
grated at appropriate algorithm steps, in order to generate meaningful inputs
for testing. The provided experimental results on a simulation of platoons of
autonomous vehicles show that this approach allows us to improve the capabil-
ity of fulfilling coverage criteria by using different initial configurations. Thus,
the present work usefully extends the approach for testing component-based sys-
tems in [7]. This approach is generic for any component-based framework, and
can be extended to adapt to component models, such as BIP [2].

One of the future work directions consists in providing the user with a refine-
ment method in order to enlarge or reduce defined boundaries. Also, we intend
to improve detection of dubious reconfigurations, and to provide the user with
the means to validate that an adaptation policy, that is correctly implemented,
fulfills extra-functional properties, such as optimized resource-consumption, etc.

References

1. Alkan, B., Harrison, R.: A virtual engineering based approach to verify struc-
tural complexity of component-based automation systems in early design phase. J.
Manuf. Syst. 53, 18–31 (2019)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: Proceedings of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, SEFM 2006, Washington, DC, USA, pp. 3–12.
IEEE Computer Society (2006)

3. Beizer, B., Wiley, J.: Black box testing: techniques for functional testing of soft-
ware and systems. IEEE Softw. 13(5), 98 (1996). https://doi.org/10.1109/MS.
1996.536464

https://doi.org/10.1109/MS.1996.536464
https://doi.org/10.1109/MS.1996.536464

Generation of Initial Configurations for Testing 151

4. Bergenhem, C.: Approaches for facilities layer protocols for platooning. In: IEEE
18th International Conference on Intelligent Transportation Systems, ITSC 2015,
pp. 1989–1994. IEEE (2015). https://doi.org/10.1109/ITSC.2015.322

5. Bouquet, F., Legeard, B., Peureux, F.: CLPS-B - A constraint solver to animate a
B specification. Int. J. Softw. Tools Technol. Transf. 6(2), 143–157 (2004). https://
doi.org/10.1007/s10009-003-0123-8

6. Chauvel, F., Barais, O., Borne, I., Jézéquel, J.: Composition of qualitative adap-
tation policies. In: 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2008), pp. 455–458. IEEE Computer Society (2008)

7. Dadeau, F., Gros, J.P., Kouchnarenko, O.: Testing adaptation policies for software
components. Softw. Qual. J. 28(3), 1347–1378 (2020). https://doi.org/10.1007/
s11219-019-09487-w

8. Dadeau, F., Gros, J.P., Kouchnarenko, O.: Online testing of dynamic reconfig-
urations w.r.t. adaptation policies. Model. Anal. Inf. Syst. 28(1), 52–73 (2021).
https://doi.org/10.18255/1818-1015-2021-1-52-73. (in Russian)

9. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic recon-
figurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS,
vol. 6921, pp. 200–217. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27269-1_12

10. El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic recon-
figurable systems. Int. J. Softw. Tools Technol. Transf. (2021). https://doi.org/10.
1007/s10009-020-00596-7

11. Galeotti, J.P., Rosner, N., López Pombo, C.G., Frias, M.F.: TACO: efficient sat-
based bounded verification using symmetry breaking and tight bounds. IEEE Trans.
Softw. Eng. 39(9), 1283–1307 (2013). https://doi.org/10.1109/TSE.2013.15

12. Gupta, A., Nadarajah, S.: Handbook of Beta Distribution and Its Applications.
CRC Press (2004)

13. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. JSTOR Appl. Stat.
28(1), 100–108 (1979)

14. Hussain, A., Tiwari, S., Suryadevara, J., Enoiu, E.: From modeling to test case
generation in the industrial embedded system domain. In: Mazzara, M., Ober, I.,
Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 499–505. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04771-9_35

15. Jin, H., Kitamura, T., Choi, E.-H., Tsuchiya, T.: A comparative study on combina-
torial and random testing for highly configurable systems. In: Casola, V., De Bene-
dictis, A., Rak, M. (eds.) ICTSS 2020. LNCS, vol. 12543, pp. 302–309. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-64881-7_20

16. Kitamura, T., Do, N.T.B., Ohsaki, H., Fang, L., Yatabe, S.: Test-case design by
feature trees. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7609, pp.
458–473. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34026-
0_34

17. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing. In: Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, pp. 2123–2138 (2018)

18. Kouchnarenko, O., Weber, J.-F.: Adapting component-based systems at runtime
via policies with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS
2013. LNCS, vol. 8348, pp. 234–253. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07602-7_15

19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

https://doi.org/10.1109/ITSC.2015.322
https://doi.org/10.1007/s10009-003-0123-8
https://doi.org/10.1007/s10009-003-0123-8
https://doi.org/10.1007/s11219-019-09487-w
https://doi.org/10.1007/s11219-019-09487-w
https://doi.org/10.18255/1818-1015-2021-1-52-73
https://doi.org/10.1007/978-3-642-27269-1_12
https://doi.org/10.1007/978-3-642-27269-1_12
https://doi.org/10.1007/s10009-020-00596-7
https://doi.org/10.1007/s10009-020-00596-7
https://doi.org/10.1109/TSE.2013.15
https://doi.org/10.1007/978-3-030-04771-9_35
https://doi.org/10.1007/978-3-030-64881-7_20
https://doi.org/10.1007/978-3-642-34026-0_34
https://doi.org/10.1007/978-3-642-34026-0_34
https://doi.org/10.1007/978-3-319-07602-7_15
https://doi.org/10.1007/978-3-319-07602-7_15

152 F. Dadeau et al.

20. Lanoix, A., Dormoy, J., Kouchnarenko, O.: Combining proof and model-checking to
validate reconfigurable architectures. Electron. Notes Theor. Comput. Sci. 279(2),
43–57 (2011). https://doi.org/10.1016/j.entcs.2011.11.011

21. Legeard, B., Peureux, F., Utting, M.: Automated boundary testing from Z and B.
In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, pp. 21–40.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45614-7_2

22. Sullivan, K., Yang, J., Coppit, D., Khurshid, S., Jackson, D.: Software assurance
by bounded exhaustive testing. In: Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2004), pp. 133–142. Association for Com-
puting Machinery, New York (2004)

23. Taha, S., Julliand, J., Dadeau, F., Cabrera Castillos, K., Kanso, B.: A composi-
tional automata-based semantics and preserving transformation rules for testing
property patterns. Formal Aspects Comput. 27(4), 641–664 (2015). https://doi.
org/10.1007/s00165-014-0328-5

24. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.
1002/stvr.456

25. Walton, G.H., Poore, J.H., Trammell, C.J.: Statistical testing of software based on
a usage model. Softw. Pract. Exp. 25(1), 97–108 (1995)

https://doi.org/10.1016/j.entcs.2011.11.011
https://doi.org/10.1007/3-540-45614-7_2
https://doi.org/10.1007/s00165-014-0328-5
https://doi.org/10.1007/s00165-014-0328-5
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456

Monitoring Distributed
Component-Based Systems

Yliès Falcone1(B) , Hosein Nazarpour2, Saddek Bensalem2,
and Marius Bozga2

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

2 Univ. Grenoble Alpes, CNRS, Grenoble INP, Verimag, 38000 Grenoble, France
{hosein.nazarpour,saddek.bensalem,marius.bozga}@univ-grenoble-alpes.fr

Abstract. We monitor asynchronous distributed component-based sys-
tems with multi-party interactions. We consider independent components
whose interactions are managed by several distributed schedulers. In this
context, neither a global state nor the total ordering of the executions of
the system is available at runtime. We instrument the system to retrieve
local events from the local traces of the schedulers. Local events are sent
to a global observer which reconstructs on-the-fly the set of global traces
that are compatible with the local traces, in a concurrency-preserving
fashion. The set of compatible global traces is represented in the form of
an original lattice over partial states, such that each path of the lattice
corresponds to a possible execution of the system.

1 Introduction

Component-based design consists in constructing complex systems using a set of
predefined components. Each component is an atomic entity with some actions
and interfaces. Components communicate and interact with each other through
their interfaces. The behavior of a component-based system with multiparty
interactions (CBS) is defined according to the behavior of each component as
well as their interactions. Each interaction is a set of simultaneously executed
actions of the existing components [9]. In the distributed setting, for efficiency
reasons, the execution of the interactions is distributed among several indepen-
dent schedulers. Schedulers and components are interconnected (e.g., networked
physical locations) and work together as a whole unit to meet some requirements.
The execution of a multi-party interaction is then achieved by sending/receiving
messages between the schedulers and the components [3].

Verification techniques can ensure the correctness of a distributed CBS. Run-
time Verification (cf. [1,18,30]) consists in verifying the executions of the sys-
tem against the desired properties. We consider properties referring to the global
states of the system which can not be projected nor checked on individual com-
ponents. In the following, we point out the problems that one encounters when
monitoring distributed CBSs. We use neither a global clock nor a shared memory.
This makes the execution of the system more dynamic and parallel by avoiding
c© Springer Nature Switzerland AG 2021
G. Salaün and A. Wijs (Eds.): FACS 2021, LNCS 13077, pp. 153–173, 2021.
https://doi.org/10.1007/978-3-030-90636-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90636-8_9&domain=pdf
http://orcid.org/0000-0002-0114-0641
https://doi.org/10.1007/978-3-030-90636-8_9

154 Y. Falcone et al.

synchronization to take global snapshots, which would go against the distribution
of the verified system. However, it complicates the monitoring problem because
no component of the system can be aware of the global trace. Since the execu-
tion of interactions is based on sending/receiving messages, communications are
asynchronous and delays in the reception of messages are inevitable. Moreover, the
absence of ordering between the execution of the interactions in different sched-
ulers makes the actual execution trace not observable. Our goal is to allow for the
verification of distributed CBSs by formally instrumenting them to observe their
global behavior while preserving their performance and behavior.

Our main contribution is an approach for the monitoring of distributed CBSs
w.r.t. specifications referring to the global states of the system. First, we define a
monitoring hypothesis that permits to rely on an abstract semantic model of dis-
tributed CBSs that encompasses a variety of distributed (component-based) sys-
tems. Our model only relies on the semantics of CBS, given in terms of Labeled
Transition Systems (LTSs), thus it is not bound to any CBS framework. In a dis-
tributed CBS, due to the parallel executions in different schedulers (i) events (i.e.,
actions changing the state of the system) are not totally ordered, and (ii) the actual
execution trace of a distributed system can not be obtained. Although each sched-
uler is aware of its local events, to evaluate the global behavior, it is necessary to
find a set of possible ordering of the events of all schedulers, that is, the set of com-
patible execution traces. In our setting, schedulers do not communicate together
but only communicate with their own associated components. Indeed, what makes
the actions of different schedulers to be causally related is only the shared compo-
nents, which are involved in several multi-party interactions managed by different
schedulers. In other words, the executions of two actions managed by two sched-
ulers and involving a shared component are definitely causally related, because
each execution requires the termination of the other execution in order to release
the shared component. To account for existing causalities among events, we (i)
employ vector clocks to define the ordering of events, (ii) compose each scheduler
with a controller to compute the correct vector clock of each generated event, (iii)
compose each shared component with a controller to resolve the causality, and (iv)
introduce a centralized algorithm that executes on a global observer to reconstruct
a set of compatible execution traces that could possibly happen in the system with
respect to the received events. We represent the set of compatible traces using a
computation lattice tailored for CBSs. Such a computation lattice consists of a set
of partially connected nodes. Created nodes are partial states and become global
states during monitoring. Any path of the lattice projected on a scheduler rep-
resents the corresponding local partial trace according to that scheduler (sound-
ness). All possible global traces are recorded (completeness).

An extended version of this paper with more details and proofs is available
in [29].

2 Preliminaries and Notations

Sequences. For a finite set E, a sequence s containing elements of E is formally
defined by a total function s : I → E where I is either the integer interval [0 . . n]

Monitoring Distributed Component-Based Systems 155

for some n ∈ N, or N itself (the set of natural numbers). Given a set of elements
E, e1·e2 · · · en is a sequence or a list of length n over E, where ∀i ∈ [1 . . n] . ei ∈ E.
The empty sequence is noted ε or [], depending on the context. The set of (finite)
sequences over E is noted E∗. E+ is defined as E∗\{ε}. The length of a sequence
s is noted length(s). We define s(i) as the ith element of s and s(i · · · j) as the
factor of s from the ith to the jth element; and s(i · · · j) = ε, if i > j. We
define function last : E+ → E as last(e) = s(length(s)). For an infinite sequence
s = e1 · e2 · e3 · · ·, we define s(i · · ·) = ei · ei+1 · · · as the suffix of s from index
i onwards. An n-tuple is an ordered list of n elements, where n ∈ N. The ith

element of tuple t is denoted by t[i].

Labeled Transition Systems (LTS). Labeled Transition Systems (LTSs) are
used to define the semantics of CBSs. An LTS is a 3-tuple (State,Lab,Trans)
where State is a non-empty set of states, Lab is a set of labels, and Trans ⊆
State × Lab × State is the transition relation. A transition (q, a, q′) ∈ Trans
means that the LTS can move from state q to state q′ by consuming label a;
we say that a is enabled in q. We abbreviate (q, a, q′) ∈ Trans by q

a−→Trans q′

or by q
a−→ q′ when clear from context. Moreover, relation Trans is extended

to its reflexive and transitive closure in the usual way and we allow for regular
expressions over Lab to label moves between states: if expr is a regular expression
over Lab (i.e., expr denotes a subset of Lab∗), q

expr−−−→ q′ means that there exists
one sequence of labels in Lab matching expr such that the system can move from
q to q′.

Vector Clock. Mattern and Fidge’s vector clocks [20,27] are a more powerful
extension of Lamport’s scalar logical clocks [23], i.e., strongly consistent with the
ordering of events. In a distributed system with a set of schedulers {S1, . . . , Sm},
VC = {(c1, . . . , cm) | ∀j ∈ [1 . . m] . cj ∈ N} is the set of vector clocks, such that
vector clock vc ∈ VC is a tuple of m scalar (initially zero) values c1, . . . , cm

locally stored in each scheduler Sj ∈ {S1, . . . , Sm} where ∀k ∈ [1 . . m] . vc[k] = ck

holds the latest (scalar) clock value scheduler Sj knows about scheduler Sk ∈
{S1, . . . , Sm}. A unique vector clock is associated each event in the system ([27],
Sect. 7). For two vector clocks vc1 and vc2, max(vc1, vc2) is a vector clock vc3
such that ∀k ∈ [1 . . m] . vc3[k] = max(vc1[k], vc2[k]). Moreover two vector clocks
can be compared together such that vc1 < vc2 ⇐⇒ ∀k ∈ [1 . . m] . vc1[k] ≤
vc2[k] ∧ ∃z ∈ [1 . . m] . vc1[z] < vc2[z].

Happened-Before Relation [23]. Relation � on the set of system events is
the smallest relation satisfying the following three conditions: (1) If a and b are
events in the same scheduler, and a comes before b, then a � b. (2) If a is
the sending of a message by one scheduler and b is the reception of the same
message by another scheduler, then a � b. (3) If a � b and b � c then a � c.
Two distinct events a and b are said to be concurrent if a �� b and b �� a.
Vector clocks are strongly consistent with happened-before relation. That is,
for two events a and b with associated vector clocks vca and vcb respectively,
vca < vcb ⇐⇒ a � b.

156 Y. Falcone et al.

Computation Lattice [27]. A computation lattice is represented as a directed
graph with m (i.e., number of schedulers executed in distributed manner) axes.
Each axis is dedicated to the state evolution of a scheduler. A computation lattice
expresses all the possible traces. A computation lattice L is a pair (N,�), where
N is the set of nodes (i.e., global states) and � is the happened-before relation
among the nodes.

3 Distributed CBS

We describe our assumptions on CBSs by providing them with a general seman-
tics. The exact model and the system behavior are unknown. The architecture,
the behaviors of the components and the schedulers, and the association between
schedulers and components can be obtained by several techniques such as the
ones in [7,10]. Our monitoring framework is independent from the technique used
to obtain the system and its implementation. Inspiring from conformance-testing
theory [32], we refer to this as the monitoring hypothesis.

3.1 Semantics

The system is composed of components in a set B =
{
B1, . . . , B|B|

}
and sched-

ulers in a set S =
{
S1, . . . , S|S|

}
. Each component Bi is endowed with a set of

actions Act i. Joint actions, aka multi-party interactions, involve the execution of
actions on several components. An interaction is a non-empty subset of ∪|B|

i=1Act i

and we denote by Int the set of interactions in the system. At most one action of
each component is involved in an interaction: ∀a ∈ Int .|a∩Act i|≤ 1. In addition,
each component Bi has internal actions modeled as a unique action βi. Sched-
ulers coordinate the execution of interactions and ensure that each multi-party
interaction is jointly executed (Definition 2).

We assume some functions from the system architecture.

– Function inv : Int → 2B\ {∅} indicates the components involved in an
interaction. Moreover, we extend function inv to internal actions by setting
inv(βi) = i, for any βi ∈ {

β1, . . . , β|B|
}
. Interaction a ∈ Int is a joint action

if and only if |inv(a)|≥ 2.
– Function mng : Int → S indicates the scheduler managing an interaction: for

an interaction a ∈ Int mng(a) = Sj if a is managed by scheduler Sj .
– Function scp : S → 2B\ {∅} indicates the set of components in the scope of a

scheduler s.t. ∀j ∈ [1 . .|S|] . scp(Sj) =
⋃

a′∈{a∈Int | mng(a)=Sj}
inv(a′).

We describe the behavior of components, schedulers, and their composition.

Definition 1 (Behavior of a component). The behavior of a component B
is an LTS (QB ,ActB ∪ {βB} ,→B) s.t.:

– QB is the set of states which has a partition
{
Qr

B , Qb
B

}
, where Qr

B (resp. Qb
B)

is the so-called set of ready (resp. busy) states,

Monitoring Distributed Component-Based Systems 157

– ActB is the set of actions, and βB is the internal action,
– →B⊆ (

Qr
B × ActB × Qb

B

) ∪ (
Qb

B × {βB} × Qr
B

)
is the set of transitions.

The set of ready (resp. busy) states Qr
B (resp. Qb

B) is the set of states s.t. the
component is ready (resp. not ready) to perform an action. Component B (i)
has actions in set ActB , which are possibly shared with some of the other com-
ponents, (ii) has an internal action βB s.t. βB �∈ ActB which models internal
computations of component B, and (iii) alternates moving from a ready state
to a busy state and from a busy state to a ready state. Note that busy states
permit the modelling of distributed (decentralized) execution of components:
after an interaction, components stay in busy states until the internal compu-
tation related to the interaction terminates (after which they get ready for the
next interaction and so on). The state of components is only modified by their
internal actions; other actions are dedicated to synchronisation.

We assume that each component Bi ∈ B is defined by the LTS (QBi
,ActBi

∪
{βBi

} ,→Bi
) where QBi

has a partition
{
Qr

Bi
, Qb

Bi

}
of ready and busy states.

Definition 2 (Behavior of a scheduler). The behavior of a scheduler S is
an LTS (QS ,ActS ,→S) s.t.:

– QS is the set of states,
– ActS = Actγ

S ∪Actβ
S is the set of actions, where Actγ

S = {a ∈ Int | mng(a) =
S} and Actβ

S = {βi | Bi ∈ scp(S)},
– →S⊆ QS × ActS × QS is the set of transitions.

Actγ
S ⊆ Int is the set of interactions managed by S, and Actβ

S is the set of
internal actions of the components involved in an action managed by S.

In the following, we assume that each scheduler Sj ∈ S is defined by the LTS
(QSj

,ActSj
,→Sj

) where ActSj
= Actγ

Sj
∪ Actβ

Sj
; as per Definition 2. The coor-

dination of interactions of the system i.e., the interactions in Int , is distributed
among schedulers. Actions of schedulers consist of interactions of the system.
Since one scheduler is associated with each interaction, schedulers manage dis-
joint sets of interactions (i.e., ∀Si, Sj ∈ S . Si �= Sj =⇒ Actγ

Si
∩ Actγ

Sj
= ∅).

Intuitively, when a scheduler executes an interaction, it triggers the execution of
the associated actions on the involved components. Moreover, when a component
executes an internal action, it triggers the execution of the corresponding action
on the associated schedulers and also sends the updated state of the component
to the associated schedulers, that is, the component sends a message including
its current state to the schedulers. Note, by construction, schedulers are always
ready to receive such a state update.

Remark 1. Since components send their updated states to the associated sched-
ulers, the current state of a scheduler contains the last state of each component
in its scope.

Definition 3 (Shared component). Bs = {B ∈ B | |{S ∈ S | B ∈ scp(S)|≥ 2}}.

158 Y. Falcone et al.

A shared component is in the scope of more than one scheduler. Thus, the
execution of its actions are managed by more than one scheduler. The global
execution of the system can be described as the parallel execution of interactions
managed by the schedulers.

Definition 4 (Global behavior). The system behavior is the LTS (Q,
GAct ,→) where:

– Q ⊆ ⊗|B|
i=1 Qi × ⊗|S|

j=1 QSj
is the set of states consisting of the states of

schedulers and components,
– GAct ⊆ 2Int ∪ ⋃|B|

i=1{βi}\ {∅} is the set of possible global actions of the sys-
tem consisting of either several interactions and/or several internal actions
(several interactions can be executed concurrently by the system),

– →⊆ Q ×GAct × Q is the transition relation defined as the smallest set abid-
ing by the following rule. A transition is a move from state (q1, . . . , q|B|, qs1 ,
. . . , qs|S|) to state (q′

1, . . . , q
′
|B|, q

′
s1

, . . . , q′
s|S|) on global actions in set α ∪ β,

where α ⊆ Int and β ⊆ ⋃|B|
i=1 {βi}, noted (q1, . . . , q|B|, qs1 , . . . , qs|S|)

α∪β−−−→
(q′

1, . . . , q
′
|B|, q′

s1
, . . . , q′

s|S|), whenever the following conditions hold:
C1: ∀i ∈ [1 . . |B|] .|(α ∩ Act i) ∪ ({βi} ∩ β) |≤ 1,
C2: ∀a ∈ α . (∃Sj ∈ S . mng(a) = Sj)

=⇒
(
qsj

a→Sj
q′
sj

∧ ∀Bi ∈ inv(a) . qi
a∩Acti−−−−→Bi

q′
i

)
,

C3: ∀βi ∈ β . qi
βi−→Bi

q′
i ∧ ∀Sj ∈ S . Bi ∈ scp(Sj) . qsj

βi−→Sj
q′
sj
,

C4: ∀Bi ∈ B\inv(α ∪ β) . qi = q′
i,

C5: ∀Sj ∈ S\mng(α) . qsj
= q′

sj
.

where functions inv and mng are extended to sets of interactions and internal
actions.

The system components execute according to the schedulers decisions.

– C1 states that a component performs at most one execution step at a time.
Executed global actions (α ∪ β) contains at most one interaction involving
each component.

– Condition C2 states that whenever an interaction a managed by scheduler Sj

is executed, a is enabled in Sj and the corresponding action (in a ∩ Act i) is
enabled in each component involved in this interaction.

– Condition C3 states that internal actions are executed whenever they are
enabled in the corresponding components. Schedulers are aware of internal
actions of components in their scope. This results in transferring the updated
state to the schedulers.

– Conditions C4 and C5 state that the components and the schedulers not
involved in an interaction remain in the same state.

Remark 2. The operational description of a CBS is usually more detailed. The
execution of conflicting interactions in schedulers needs first to be authorized by
a conflict-resolution module which guarantees that two conflicting interactions

Monitoring Distributed Component-Based Systems 159

are not executed at the same time. Moreover, schedulers follow the (possible)
priority rules among the interactions, i.e., in the case of two or more enabled
interactions (interactions, which are ready to be executed by schedulers), those
with higher priority are allowed to be executed. Since we only deal with execu-
tion traces, we assume that these are correct w.r.t. the conflicts and priorities.
Therefore, defining the other modules is out of our scope. Moreover, schedulers
could interact together as part of some coordination protocol, but our model
does not account for it.

Definition 5 (Monitoring hypothesis). The behavior of the CBS under
scrutiny can be modeled as an LTS as per Definition 4.

3.2 Traces

Running the system produces a trace. Intuitively, a trace is the sequence of tra-
versed states of the system, from some initial state and following the transition
relation of the LTS of the system. For the sake of simplicity and for our moni-
toring purposes, the states of schedulers are irrelevant in the trace and thus we
restrict the system states to states of the components.

We consider a CBS consisting of a set B of components (as per Definition 1)
and a set S of schedulers (as per Definition 2) with the global behavior as per
Definition 4.

Definition 6 (Trace). A trace is a sequence (q01 , . . . , q
0
|B|) · (α0 ∪ β0) ·

(q11 , . . . , q
1
|B|) · · · (qk

1 , . . . , qk
|B|) · · ·, s.t. q01 , . . . , q

0
|B| are the initial states of com-

ponents B1, . . . , B|B| and ∀i ∈ [0 . . k − 1] .(qi
1, . . . , q

i
|B|)

αi∪βi

−−−−→ (qi+1
1 , . . . , qi+1

|B|),
where → is the transition relation of the global system and scheduler states are
discarded.

Since a trace t has partial states where at least one component is busy with
its internal computation, t is referred to as a partial trace. Although the partial
trace of the system exists, it is not observable because it would require a perfect
observer having simultaneous access to the states of the components. Introducing
such an observer in the system would require all components to synchronize,
and would defeat the purpose of building a distributed system. Instead, we shall
instrument the system to observe the sequence of states through schedulers.

In the sequel, we consider a partial trace t = (q01 , . . . , q
0
|B|) · (α0 ∪ β0) ·

(q11 , . . . , q
1
|B|) · · ·, as per Definition 6. Each scheduler Sj ∈ S, observes a local

partial trace sj(t) which consists in the sequence of state-evolutions of the com-
ponents it manages.

Definition 7 (Observable local partial-trace). The local partial-trace sj(t)
observed by scheduler Sj is defined on the partial trace t as follows:

160 Y. Falcone et al.

– sj

((
q01 , . . . , q

0
|B|

))
=

(
q01 , . . . , q

0
|B|

)
, and

– sj (t · (α ∪ β) · q) =

{
t if Sj /∈ mng(α) ∧ (inv(β) ∩ scp(Sj) = ∅)
t · γ · q′ otherwise

where
• q =

(
q1, . . . , q|B|

)
,

• γ = (α ∩ {a ∈ Int | mng(a) = Sj}) ∪ (β ∩ {βi | Bi ∈ scp(Sj)})

• q′ = (q′
1, . . . , q

′
|B|) with q′

i =

⎧
⎨

⎩

last(sj(t))[i] if Bi ∈ inv(γ) ∩ scp(Sj),
qi if Bi ∈ inv(γ) ∩ scp(Sj),
? otherwise (Bi �∈ scp(Sj)).

We assume that the initial system state is observable by all schedulers. An
interaction a ∈ Int is observable by scheduler Sj if Sj manages the interaction
(i.e., Sj ∈ mng(a)). Moreover, an internal action βi, i ∈ [1 . .|B|], is observable
by scheduler Sj if Bi is in the scope of Sj . The state observed after an observable
interaction or internal action consists of the states of components in the scope
of Sj , i.e., a state (q1, . . . , q|B|) where qi is the new state of component Bi if
Bi ∈ scp(Sj) and ? otherwise.

4 Efficient Construction of the Computation Lattice

We define how a global observer constructs on-the-fly a computation lattice repre-
senting the possible global traces compatible with the local partial-traces observ-
able by schedulers. Since schedulers do not interact directly, the execution of an
interaction by one scheduler seems to be concurrent with the execution of all
interactions by other schedulers. Nevertheless, if scheduler Sj manages interac-
tion a and scheduler Sk manages interaction b s.t. a shared component Bi ∈ Bs is
involved in a and b, i.e., Bi ∈ inv(a) ∩ inv(b), the execution of interactions a and
b are causally related. In other words, there exists only one possible ordering of
a and b and they could not have been executed concurrently. Ignoring the actual
ordering of a and b would result in retrieving inconsistent global states (i.e., states
that do not belong to the system). To find out the actual ordering and obtain the
local partial-traces, one needs instrumenting the system by adding controllers to
the schedulers and to the shared components. Each time a scheduler executes an
interaction, the involved components are notified by the scheduler to execute their
corresponding actions. Moreover, the controller of the scheduler updates its local
clock and notifies the controller of the shared components involved in the interac-
tion by sending its vector clock. Whenever a shared component executes its inter-
nal action β, schedulers with the shared component in their scope are notified by
receiving the updated state. Moreover, the vector clock stored in the controller of
the shared component is sent to the controller of the associated schedulers. Conse-
quently, schedulers with a shared component in their scope exchange their vector
clocks through the shared component. Such an instrumentation is described in [29]
but omitted for space reasons.

Intuitively, for scheduler Sj , the execution of an interaction (labeled by a
vector clock), or notification by the internal action of a component which the

Monitoring Distributed Component-Based Systems 161

execution of its latest action has been managed by scheduler Sj , is defined as an
event of scheduler Sj . For a partial trace t, the sequence of events of scheduler
Sj is denoted by event(sj(t)).

4.1 Computation Lattice

The computation lattice is represented implicitly using vector clocks. The con-
struction mainly performs the two following operations: (i) creations of new
nodes and (ii) updates of existing nodes in the lattice. The observer receives two
sorts of events: events related to the execution of an interaction in Int , referred
to as action events, and events related to internal actions referred to as update
events. (Recall that internal actions carry the state of the component that has
performed the action – the state is transmitted to the observer by the controller
that is notified of this action. See Sect. 3). Hence, the set of action events is
defined as Ea = Int ×VC with VC the set of vector clocks, and the set of update
events is defined as Eβ = ∪i∈[1,|B|] ({βi} × Qi). Action events lead to the creation
of new nodes in the direction of the scheduler emitting the event while update
events complete the information in the nodes of the lattice related to the state of
the component related to the event. The set of all events is E = Eβ ∪ Ea. Since
the received events are not totally ordered (because of communication delay),
we construct the computation lattice based on the vector clocks attached to the
received events. Note, we assume that the events received from a scheduler are
totally ordered.

We first adapt the notion of computation lattice to CBSs.

Definition 8 (Computation lattice). A computation lattice L is a tuple
(N, Int ,), where:

– N ⊆ Ql × VC is the set of nodes, with VC the set of vector clocks and
Ql =

⊗|B|
i=1

(
Qr

i

⋃ {
⊥j

i

∣
∣
∣ Sj ∈ S ∧ Bi ∈ scp(Sj)

})
,

– Int is the set of multi-party interactions as defined in Sect. 3.1,
– = {(η, a, η′) ∈ N × Int × N | a ∈ Int ∧ η � η′ ∧ η.state a−→ η′.state},
where is the extended happened-before relation, which is labeled by the set
of multi-party interactions and η.state refers to the state of node η.

Intuitively, a computation lattice consists of a set of partially connected nodes,
where each node is a pair, consisting of a system state and a vector clock. A
system state consists of the states of all components. The state of a component
is either a ready state or a busy state (as per Definition 1). We represent a busy
state of component Bi, by ⊥j

i which shows that component Bi is busy to finish
its latest action which has been managed by scheduler Sj . A computation lattice
L initially consists of an initial node initL = (init, (0, . . . , 0)), where init is the
initial state of the system and (0, . . . , 0) is a vector clock where all the clocks
associated with the schedulers are zero. The set of nodes of L is denoted by
L.nodes , and for a node η = (q, vc) ∈ L.nodes , η.state denotes q and η.clock
denotes vc. If (i) the event of node η happened before the events of node η′,

162 Y. Falcone et al.

that is η′.clock > η.clock and η � η′, and (ii) the states of η and η′ follow the
global behavior of the system (Definition 4) in the sense that the execution of an
interaction a ∈ Int from the state of η brings the system to the state of η′, that
is η.state a−→ η′.state, then in the computation lattice it is denoted by η a η′

or by η η′ when clear from context.
Two nodes η and η′ of the computation lattice L are said to be concurrent

if neither η.clock > η′.clock nor η′.clock > η.clock . For two concurrent nodes η
and η′ if there exists a node η′′ s.t. η′′ η and η′′ η′, then node η′′ is said
to be the meet of η and η′ denoted by meet(η, η′,L) = η′′.

4.2 Intermediate Operations

We consider a computation lattice L (Definition 8). A received event either modi-
fies L or is kept for later in a queue. Action events extend L using operator extend
(Definition 9), and update events update the existing nodes of L by adding the
missing state information into them using operator update (Definition 12). By
extending the lattice with new nodes, one needs to further complete the lattice
by computing the joins of created nodes (Definition 11) with existing ones to
complete the set of possible global states and traces.

Extension of the Lattice. We define a function to extend a node of the lattice
with an action event which takes as input a node and an action event and outputs
a new node.

Definition 9 (Node extension). Given a node η = (q, vc) ∈ Ql ×
VC and an action event e = (a, vc′) ∈ Ea, function extend :
(Ql × VC) × Ea → Ql × VC is defined as follows: extend(η, e) =⎧
⎪⎨

⎪⎩

(q′, vc′) if ∃j ∈ [1 . .|S|] .(vc′[j] = vc[j] + 1∧
∀j′ ∈ [1 . .|S|]\ {j} . vc′[j′] = vc[j′])

undefined otherwise ;

with ∀i ∈ [1 . .|B|] . q′[i] =

{
⊥k

i if Bi ∈ inv(a),where k = mng(a).index ,

q[i] otherwise.

Node η is said to be extendable by event e if extend(η, e) is defined. Node
η = (q, vc) represents a global state of the system and extensibility of η by action
event e = (a, vc′) means that from the global state q, scheduler Sj = mng(a),
could execute interaction a. State ⊥k

i indicates that component Bi is busy and
being involved in a global action which has been executed (managed) by sched-
uler Sk for k ∈ [1 . .|S|].

We say that L is extendable by action event e if there exists a node η ∈
L.nodes s.t. extend(η, e) is defined.

Property 1. ∀e ∈ Ea .|{η ∈ L.nodes | ∃η′ ∈ Ql × VC . η′ = extend(η, e)}|≤ 1.

Property 1 states that for any action event e, there exists at most one node in
the lattice for which function extend is defined (meaning that L can be extended
by event e from that node). We define a relation between two vector clocks to

Monitoring Distributed Component-Based Systems 163

distinguish the concurrent execution of two interactions s.t. both could happen
from a specific global system state.

Definition 10 (Relation JL). JL = {(vc, vc′) ∈ VC×VC | ∃! k ∈
[1 . .|S|] . vc[k] = vc′[k] + 1 ∧ ∃! l ∈ [1 . .|S|] . vc′[l] = vc[l] + 1 ∧ ∀j ∈ [1 . .|S|] \
{k, l} . vc[j] = vc′[j]} .

For two vector clocks vc and vc′ to be in JL, they should agree on all but two
clock values related to two schedulers of indexes k and l. On one index, the value
of one vector clock is equal to the value of the other vector clock plus 1, and
the converse on the other index. Intuitively, (η.clock , η′.clock) ∈ JL means that
η and η′ are associated with two concurrent events (caused by the execution of
two interactions managed by different schedulers) that both could happen from
a unique global system state, which is the meet of η and η′ (see Property 2).

Property 2. ∀η, η′ ∈ L.nodes . (η.clock , η′.clock) ∈ JL ⇒ meet(η, η′,L) ∈
L.nodes .

The join of two nodes is defined as follows.

Definition 11 (Join node). For two nodes η, η′ ∈ L.nodes s.t.
(η.clock , η′.clock) ∈ JL, the join of η and η′, denoted by join(η, η′,L) =
η′′, is the node defined as follows: – ∀i ∈ [1 . .|B|] . η′′.state[i] ={

η.state[i] if η.state[i] �= ηm.state[i],

η′.state[i] otherwise;

– η′′.clock = max(η.clock , η′.clock); where ηm = meet(η, η′,L).

According to Property 2, for two nodes η and η′ in relation JL, their meet node
exists in the lattice. The state of the join of η and η′ is defined by comparing their
states and the state of their meet. Since two nodes in relation JL are concurrent,
the state of component Bi for i ∈ [1 . .|B|] in nodes η and η′ is either equal to
the state of component Bi in their meet, or only one of the nodes η and η′ has
a state different from their meet (components can not be both involved in two
concurrent executions). The join node of two nodes η and η′ takes into account
the latest changes of the state of the nodes η and η′ compared to their meet.
Note that join(η, η′,L) = join(η′, η,L), because join is defined for nodes whose
clocks are in relation JL.

Update of the Lattice. We define a function to update a node of the lattice
which takes as input a node and an update event and outputs the updated
version of the input node.

Definition 12 (Node update). Given a node η = ((q1, . . . , q|B|), vc) and an
update event e = (βi, q

′
i) ∈ Eβ with i ∈ [1 . .|B|], which is sent by scheduler Sk

with k ∈ [1 . .|S|], function update : (Ql × VC) × Eβ → Ql × VC is defined as
follows:

update(η, e) = ((q1, . . . , qi−1, q
′′
i , qi+1, . . . , q|B|), vc), with q′′

i =

{
q′

i if qi = ⊥k
i ,

qi otherwise.

164 Y. Falcone et al.

An update event (βi, q
′
i) contains an updated state of some component Bi. By

updating a node η in the lattice with an update event, which is sent from sched-
uler Sk, we update the partial state associated to η by adding the state infor-
mation of that component, if the state of component Bi associated to node η
is ⊥k

i . Intuitively it means that a busy state resulting of the execution of an
action managed by scheduler Sk can only be replaced by a ready state sent by
Sk. Updating node η does not modify vc.

Buffering Events. The reception of an action or update event might not always
lead to extending or updating the current computation lattice. Due to commu-
nication delay, an event which has happened before another event might be
received later by the observer. It is necessary for the construction of the lattice
to use events in a specific order. Events not in the desired order must be kept
in a waiting queue to be used later. For example, such a situation occurs when
receiving action event e s.t. function extend is not defined over e and none of the
existing nodes of the lattice. Event e must be kept in the queue until obtaining
another configuration of the lattice in which function extend is defined. More-
over, an update event e′ referring to an internal action of component Bi is kept
in the queue if there exists an action event e′′ in the queue s.t. component Bi

is involved in e′′, because we can not update the nodes of the lattice with an
update event associated to an execution, which is not yet taken into account in
the lattice.

Definition 13 (Queue κ). A queue of events is a finite sequence of events in
E. Moreover, for a non-empty queue κ = e1 · e2 · · · er, remove(κ, e) = κ(1 · · · z −
1) ·κ(z+1 · · · r) with e = ez ∈ {e1, e2, . . . , er}. Moreover, events in the queue are
picked up in the same order as they have been stored in the queue (FIFO queue).

4.3 Algorithms for Constructing the Computation Lattice

We define an algorithm based on the above definitions to construct the com-
putation lattice based on the received events. The algorithm consists of a main
procedure (see Algorithm 1) and several sub-procedures. The algorithm defines
and uses a lattice (Definition 8, global variable L) and a queue (Definition 13,
global variable κ).

For an action event e ∈ Ea with e = (a, vc), e.action denotes interaction a
and e.clock denotes vector clock vc. For an update event e ∈ Eβ with e = (βi, qi),
e.index denotes index i.

After the reception of each event e from a controller of a scheduler,
Make(e) = Make(e, false) is called. In the sequel, we describe each proce-
dure.

Monitoring Distributed Component-Based Systems 165

Algorithm 1. Make
Global variables: L initialized to initL,

1: κ initialized to ε,

2: V initialized to (0, . . . , 0).

3: procedure Make(e, from-queue)
4: if e ∈ Ea then

5: ActionEvent(e, from-queue)
6: else if e ∈ Eβ then

7: UpdateEvent(e, from-queue)
8: end if

9: end procedure

Make (Algorithm 1). Procedure
Make takes two parameters as input:
an event e and a boolean vari-
able from-queue. Parameters e and
from-queue vary based on the type of
event e. Boolean variable from-queue
is true when the input event e is
picked up from the queue and false
otherwise (i.e., event e is received
from a controller of a scheduler). Pro-

cedure Make uses two sub-procedures, ActionEvent and UpdateEvent.
Make updates the global variables.

ActionEvent (Algorithm 2). Procedure ActionEvent takes as input an
action event e and a boolean parameter. Procedure ActionEvent modifies
global variables L and κ. ActionEvent has a local boolean variable named
lattice-extend, which is true when an input action event could extend the lattice
(i.e., the current computation lattice is extendable by the input action event)
and false otherwise. By iterating over the existing nodes, ActionEvent checks
if there exists a node η in L.nodes s.t. function extend is defined over event e
and node η (Definition 9). If such a node η is found, ActionEvent creates the
new node extend(η, e), adds it to the set of the nodes of the lattice, invokes pro-
cedure ModifyQueue, and stops iteration. Otherwise, ActionEvent invokes
procedure ModifyQueue and terminates. In the case of extending the lattice
by a new node, it is necessary to create the (possible) join nodes. To this end,
in Line 15 procedure Joins is called to evaluate the current lattice and create
the join nodes. For optimization purposes, RemoveExtraNodes is then called
to eliminate unnecessary nodes that represent past system states. After mak-
ing the join nodes and (possibly) reducing the size, if the input action event is
not picked from the queue, ActionEvent invokes procedure CheckQueue in
Line 18, otherwise it terminates.

Algorithm 2. ActionEvent
1: procedure ActionEvent(e, from-queue)
2: lattice-extend ← false

3: for all η ∈ L.nodes do

4: if ∃η′ ∈ Ql ×VC . η′ = extend(η, e) then

5: L.nodes ← L.nodes ∪ {
η′}

6: ModifyQueue(e, from-queue, true)

7: lattice-extend ← true

8: break

9: end if

10: end for

11: if ¬lattice-extend then

12: ModifyQueue(e, from-queue, false)

13: return

14: end if

15: Joins()

16: RemoveExtraNodes()

17: if ¬from-queue then

18: CheckQueue()

19: end if

20: end procedure

UpdateEvent (Algorithm 3). Recall
that an update event e contains the
state update of some component Bi

with i ∈ [1, n] (e.index = i). Upda-
teEvent takes as input an update
event e and a boolean value associ-
ated with parameter from-queue. Upda-
teEvent modifies global variables L
and κ. First, UpdateEvent checks the
events in the queue. If there exists an
action event e′ in the queue s.t. compo-
nent Bi is involved in e′.action, Upda-
teEvent adds update event e to the
queue using ModifyQueue and termi-
nates. Indeed, one can not update the

166 Y. Falcone et al.

nodes of the lattice with an update event associated to an execution, which is
not yet taken into account in the lattice. If no action event in the queue concerns
component Bi, UpdateEvent updates all the nodes of the lattice (Lines 8–10)
according to Definition 12. Finally, the input update event is removed from the
queue if it is picked from the queue, using ModifyQueue.

ModifyQueue takes as input an event e and boolean variables from-queue and
event-is-used. Procedure ModifyQueue adds (resp. removes) event e to (resp.
from) queue κ. If event e is picked up from the queue (i.e., from-queue = true)
and e is used in the algorithm to extend or update the lattice (i.e., event-is-used =
true), event e is removed from the queue. Moreover, if event e is not picked up
from the queue and it is not used in the algorithm, event e is stored in the queue.

Joins extends L in such a way that all the possible joins have been created.
First, procedure Jcompute is invoked to compute relation JL (Definition 10)
among the existing nodes of the lattice and then creates the join nodes and adds
them to the set of the nodes. Then, after the creation of the join of two nodes
η and η′, (η.clock , η′.clock) is removed from JL. It is necessary to compute JL
again after the creation of joins, because new nodes can be in JL. This process
terminates when JL is empty.

Jcompute computes relation JL by pairwise iteration over all the nodes of the
lattice and checks if the vector clocks of any two nodes satisfy the conditions in
Definition 10. The pair of vector clocks satisfying the above conditions are added
to JL.

Algorithm 3. UpdateEvent
1: procedure UpdateEvent(e, from-queue)
2: for all e′ ∈ κ do

3: if e′ ∈ Ea ∧ e.index ∈ inv(e′.action) then

4: ModifyQueue(e, from-queue, false)

5: return

6: end if

7: end for

8: for all η ∈ L.nodes do

9: η ← update(η, e)

10: end for

11: ModifyQueue(e, from-queue, true)

12: end procedure

CheckQueue recalls the events stored
in the queue e ∈ κ and then
executes Make(e, true), to check
whether the conditions for taking them
into account to update the lattice hold.
CheckQueue checks the events in the
queue until none of the events in the
queue can be used either to extend
or to update the lattice. To this end,
before checking queue κ, a copy of
queue κ is stored in κ′, and after iter-

ating all the events in queue κ, the algorithm checks the equality of current
queue and the copy of the queue before checking. If the current queue κ and
copied queue κ′ have the same events, it means that none of the events in queue
κ has been used (thus removed), therefore the algorithm stops checking the
queue again by breaking the loop. Note, when the algorithm is iterating over the
events in the queue, i.e., when the value of variable from-queue is true, it is not
necessary to iterate over the queue again (Algorithm 2, Line 17).

RemoveExtraNodes removes the extra nodes of the lattice. Since our online
algorithm is used for runtime monitoring purposes, each node n represents the
evaluation of system execution up to node n. Hence, the nodes which reflect the

Monitoring Distributed Component-Based Systems 167

state of the system in the past are not valuable for the runtime monitor. For this,
after extending the lattice by an action event, procedure RemoveExtraNodes
is called to eliminate some (possibly existing) nodes of the lattice. A node in the
lattice can be removed if the lattice no longer can be extended from that node.
Having two nodes of the lattice η and η′ s.t. every clock in the vector clock of
η′ is strictly greater than the respective clock of η, one can remove node η. This
is due to the fact that the algorithm never receives an action event which could
have extended the lattice from η where the lattice has already took into account
the occurrence of an event which has greater clock stamps than η.clock .

5 Properties of the Constructed Lattice

We give the properties of the lattice constructed in the previous section.

5.1 Insensitivity to Communication Delay

Algorithm Make can be defined over a sequence of events received by the
observer ζ = e1 · e2 · e3 · · · ez ∈ E∗ by applying it sequentially from e1 to ez

with the initial lattice initL and an empty queue.

Proposition 1 (Insensitivity to the reception order). ∀ζ, ζ ′ ∈ E∗,∀Sj ∈
S . ζ ↓Sj

= ζ ′ ↓Sj
=⇒ Make(ζ) = Make(ζ ′), where ζ ↓Sj

is the projection of ζ
on scheduler Sj which results the sequence of events generated by Sj.

Proposition 1 states that different ordering of the events does not affect the
output result of Algorithm Make. Note, Proposition 1 assumes that all events in
ζ and ζ ′ can be distinguished. For a sequence of events ζ ∈ E∗, Make(ζ).lattice
denotes the constructed computation lattice L by algorithm Make.

5.2 Correctness of Lattice Construction

Computation lattice L has a frontier node, which is the node with the greatest
vector clock. A path of the constructed computation lattice L is a sequence of
causally related nodes of the lattice, starting from the initial node and ending
up in the frontier node.

Definition 14 (Set of the paths of a lattice). The set of the paths of a
constructed computation lattice L is Π(L) =

{
η0 · α1 · η1 · α2 · η2 · · · αz · ηz | η0 =

initL ∧ ∀r ∈ [1 . . z] .
(
ηr−1

αr ηr ∨ (∃N ⊆ L.nodes . ηr−1 = meet(N,L) ∧ ηr =

join(N,L)∧∀η ∈ N . ηr−1
aη

η∧αr =
⋃

η∈N aη)
)}

, where the notions of meet
and join are naturally extended to a set of nodes.

A path is a sequence of nodes s.t. for each pair of adjacent nodes either (i) the
prior node and the next node are related according to or (ii) the prior and
the next node are the meet and the join of a set of existing nodes respectively.

168 Y. Falcone et al.

A path from a meet node to the associated join node represents an execution of
a set of concurrent interactions.

At runtime, the execution of such a system produces a partial trace t =
q0 · (α1 ∪ β1) · q1 · (α2 ∪ β2) · · · (αk ∪ βk) · qk which consists of partial states and
global actions (Definition 6). Due to the occurrence of concurrent interactions
and internal actions, each partial trace can be represented as a set of compatible
and possible partial traces.

Definition 15 (Compatible partial-traces of a partial trace). The set of
all compatible partial-traces of partial trace t is P(t) = {t′ ∈ Q · (GAct · Q)∗ |
∀j ∈ [1 . .|S|], t′ ↓Sj

= t ↓Sj
= sj(t)}.

Trace t′ is compatible with trace t if the projection of both t and t′ on scheduler
Sj , for j ∈ [1 . .|S|], results the local trace of scheduler Sj . In a partial trace, for
each global action which consists of several concurrent interactions and internal
actions of different schedulers, one can define different ordering of those concur-
rent interactions, each of which represents a possible execution of that global
action. Consequently, several compatible partial-traces can be encoded from a
partial trace.

Note that two compatible traces with only difference in the ordering of their
internal actions are considered as a unique compatible trace. Two compatible
traces of a partial trace differ if they have different ordering of interactions.

For monitoring purposes we need to represent the run of the system by a
sequence of global states (recall that we consider properties over global states).
For this, we extend the technique in [28], to define a function which takes as
input a partial trace of the distributed system (i.e., a sequence of partial states)
and outputs an equivalent global trace in which all the internal actions (β) are
removed from the trace and instead the updated state after each internal action
is used to complete the states of the partial trace.

Definition 16 (Function refine R). Function R : Q ·(GAct ·Q)∗ −→ Q ·(Int ·
Q)∗ is defined as R(init) = init and:

R(σ · (α ∪ β) · q) =

⎧
⎪⎨

⎪⎩

R(σ) · α · q if β = ∅,

map [x �→ upd(q, x)] (R(σ)) if α = ∅,

map [x �→ upd(q, x)] (R(σ) · α · q) otherwise;
with upd : Q × (Q ∪ 2Int) −→ Q ∪ 2Int defined as: upd((q1, . . . , q|B|), α) =

α, and upd
(
(q1, . . . , q|B|), (q′

1, . . . , q
′
|B|)

)
= (q′′

1 , . . . , q′′
|B|), where ∀k ∈

[1 . . |B|], q′′
k = qk if (qk /∈ Qb

k) ∧ (q′
k ∈ Qb

k) and q′
k otherwise.

Function R uses the state after internal actions in order to update the partial
states using function upd.

By applying function R to the set of compatible partial-traces P(t), we obtain
a new set of global traces, which is (i) equivalent to P(t) (according to [28],
Def. 7), (ii) internal actions are discarded in the presentation of each global
trace and (iii) contains maximal global states that can be built with the infor-
mation contained in the partial states observed so far. In Sect. 3.2 (Definition 7)

Monitoring Distributed Component-Based Systems 169

we define
{
s1(t), . . . , s|S|(t)

}
, the set of observable local partial-traces of the

schedulers obtained from partial trace t. From each local partial-trace we can
obtain the sequences of events generated by the controller of each scheduler, s.t.
the set of all the sequences of the events is {event(s1(t)), . . . , event(s|S|(t))} with
event(sj(t)) ∈ E∗ for j ∈ [1 . .|S|].

In the following, we define the set of all possible sequences of events that
could be received by the observer.

Definition 17 (Events ordering). Considering partial trace t, the set of all
possible sequences of events that could be received by the observer is Θ(t) = {ζ ∈
E∗ | ∀j ∈ [1 . .|S|] . ζ ↓Sj

= event(sj(t))}.
Events are received by the observer in any order compatible with the local events
of schedulers.

Fig. 1. Overview of the construction of the computation lattice.

Proposition 2 (Soundness). Given a partial trace t as per Definition 6, we
have:
∀ζ ∈ Θ(t),∀π ∈ Π(Make (ζ) .lattice),∀j ∈ [1 . .|S|] . π ↓Sj

= R(sj(t)).

Proposition 2 states that the projection of all paths in the lattice on a scheduler
Sj for j ∈ [1 . .|S|] results in the refined local partial-trace of scheduler Sj . The
following proposition states the correctness of the construction in the sense that
applying Algorithm Make to a sequence of observed events (i.e., ζ ∈ Θ) at
runtime, results a computation lattice which encodes a set of the sequences of
global states, s.t. each sequence represents a global trace of the system.

Proposition 3 (Completeness). Given a partial trace t as per Definition 6,
we have:
∀ζ ∈ Θ(t),∀t′ ∈ P(t),∃!π ∈ Π

(
Make (ζ) .lattice

)
. π = R(t′).

π is said to be the associated path of the compatible partial-trace t′. Applying
algorithm Make to any sequence of events constructs a computation lattice
whose set of paths consists on all the compatible global traces.

Figure 1 depicts an overview of our approach.

170 Y. Falcone et al.

6 Related Work

The problem of reconstructing a global behavior from local observa-
tions/behaviors has been investigated in several settings. In the setting of chore-
ographies, the approach in [25] reconstructs global graphs from (local) commu-
nicating finite-state machines. More recently, in the setting of program replay,
the approach in [24] introduces causal-consistent replay to record the execution
of a concurrent program and reproduce a misbehavior as well as its causes inside
a debugger.

In the following, we focus our comparison on the research efforts that
contributed to the distribution of the monitoring process. The approaches
in [4,12,14,15] define algorithms for decentralized monitoring for distributed
systems with a global clock. In comparison, we target asynchronous distributed
CBSs with a partial-state semantics, where global states are not available at
runtime. Hence, instead of having a global trace at runtime, we deal with a
set of compatible partial traces which could have happened at runtime. The
approach in [5] detects and analyzes synchronous distributed systems faults in a
centralized manner using local LTL properties evaluated with local traces. In our
setting, global properties can not be projected and checked on individual com-
ponents nor on individual schedulers. Thus, local traces can not be directly used
for verifying properties. In [31], the authors designed a method for monitoring
safety properties in distributed systems relying on the existing communication
among processes. Compared to [31], our algorithm is sound, in the sense that we
reconstruct the behavior of the distributed system based on all possible partial-
traces of the distributed system. In our work, each trace could have happened as
the actual trace of the system, and could have generated the same events. The
approach in [26] monitors LTL properties on finite executions of a distributed
system. In comparison, our approach is tailored to and leverages the structure
of CBSs; traces are defined over partial states and are obtained from a generic
semantic model of CBSs.

There are several approaches dedicated to the monitoring of CBSs: [13,21]
for the correctness of reconfigurations of Fractal [11] components, [17] and [28]
for the runtime verification of functional properties on respectively sequential
and multi-threaded BIP [2] CBSs, [8] for the runtime checking of local behaviors
specified as quantitative properties. However, these approaches do not handle
fully concurrent components and they either assume a global clock or a shared
memory. This is for instance the case with our previous work on monitoring
multithreaded CBSs [28] where we assume a global clock shared by the threads
used to execute the components.

7 Conclusions

Conclusions. We present a technique that enables the monitoring on dis-
tributed CBSs, where the interactions are partitioned among a set of distributed
schedulers. Each scheduler is in charge of execution of a subset of interactions.

Monitoring Distributed Component-Based Systems 171

The execution of each interaction triggers the actions of the components involved
in the interaction. Our technique consists in (i) transforming the system to gen-
erate events associated to partial trace local to each scheduler, (ii) synthesizing
a centralized observer which collects the local events of all schedulers (iii) recon-
structing on-the-fly the possible orderings of the received events which forms a
computation lattice. Our technique leverages the nature of distributed CBSs in
that it uses components shared by several interactions to infer causality relations
between events. The constructed lattice encodes exactly the compatible global
traces: each could have occurred as the actual execution. We implemented our
monitoring approach in a tool which executes in parallel with the distributed
system and takes as input the events generated from each scheduler and out-
puts the evaluated computation lattice. Our experimental results, omitted for
space reasons, show that even for traces with thousands of events, the lattice
size remains reasonable.

Future Work. The first extension of this work is to define how to use the
computation lattice for efficiently evaluating properties at runtime. Moreover, we
plan to decentralize the runtime monitors so that the satisfaction or violation
of specifications can be detected by local monitors alone using decentralized
monitoring techniques from [6,14,15] and decentralization/projection techniques
for CBSs in [8,22]. By distributing the monitors, we indeed decrease the load of
monitoring process on a single entity. Another possible direction is to extend the
proposed framework for timed components and timed specifications as presented
in [33]. Finally, we plan to go beyond simple monitoring to allow components to
react to errors by defining runtime enforcement [19] approaches for concurrent
CBSs. For this, we plan extending our runtime enforcement approach [16] defined
in the sequential setting to the multithreaded and distributed settings.

Acknowledgment. The authors thank the reviewers for their helpful comments.
The authors acknowledge the support from the H2020-ECSEL-2018-IA call – Grant

Agreement number 826276 (CPS4EU), the European Union’s Horizon 2020 research
and innovation programme - Grant Agreement number 956123 (FOCETA), from
the French ANR project ANR-20-CE39-0009 (SEVERITAS), the Auvergne-Rhône-
Alpes research project MOAP, and LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01)
funded by the French program Investissement d’avenir.

References

1. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

2. Basu, A., et al.: Rigorous component-based system design using the BIP frame-
work. IEEE Softw. 28(3), 41–48 (2011)

3. Basu, A., Bidinger, P., Bozga, M., Sifakis, J.: Distributed semantics and imple-
mentation for systems with interaction and priority. In: Suzuki, K., Higashino, T.,
Yasumoto, K., El-Fakih, K. (eds.) FORTE 2008. LNCS, vol. 5048, pp. 116–133.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68855-6 8

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-68855-6_8

172 Y. Falcone et al.

4. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016). https://doi.org/10.1007/s10703-016-0253-8

5. Bauer, A., Leucker, M., Schallhart, C.: Model-based runtime analysis of distributed
reactive systems. In: Proceedings of the Australian Software Engineering Confer-
ence (ASWEC 2006), pp. 243–252. IEEE (2006)

6. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 85–100. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32759-9 10

7. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Optimized distributed imple-
mentation of multiparty interactions with restriction. Sci. Comput. Program. 98,
293–316 (2015)

8. Bistarelli, S., Martinelli, F., Matteucci, I., Santini, F.: A formal and run-time
framework for the adaptation of local behaviours to match a global property. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 134–152.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 9

9. Bliudze, S., Sifakis, J.: A notion of glue expressiveness for component-based sys-
tems. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp.
508–522. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9
39

10. Bonakdarpour, B., Bozga, M., Quilbeuf, J.: Automated distributed implementa-
tion of component-based models with priorities. In: Chakraborty, S., Jerraya, A.,
Baruah, S.K., Fischmeister, S. (eds.) Proceedings of the 11th International Con-
ference on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded
Systems Week, ESWeek 2011, Taipei, Taiwan, 9–14 October 2011, pp. 59–68. ACM
(2011)

11. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.: The FRACTAL
component model and its support in Java. Softw. Pract. Exp. 36(11–12), 1257–
1284 (2006)

12. Colombo, C., Falcone, Y.: Organising LTL monitors over distributed systems with
a global clock. Formal Methods Syst. Des. 49(1–2), 109–158 (2016). https://doi.
org/10.1007/s10703-016-0251-x

13. Dormoy, J., Kouchnarenko, O., Lanoix, A.: Using temporal logic for dynamic recon-
figurations of components. In: Barbosa, L.S., Lumpe, M. (eds.) FACS 2010. LNCS,
vol. 6921, pp. 200–217. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-27269-1 12

14. El-Hokayem, A., Falcone, Y.: On the monitoring of decentralized specifications:
semantics, properties, analysis, and simulation. ACM Trans. Softw. Eng. Methodol.
29(1), 1:1–1:57 (2020)

15. Falcone, Y., Cornebize, T., Fernandez, J.-C.: Efficient and generalized decentralized
monitoring of regular languages. In: Ábrahám, E., Palamidessi, C. (eds.) FORTE
2014. LNCS, vol. 8461, pp. 66–83. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43613-4 5

16. Falcone, Y., Jaber, M.: Fully automated runtime enforcement of component-based
systems with formal and sound recovery. Int. J. Softw. Tools Technol. Transfer
19(3), 341–365 (2016). https://doi.org/10.1007/s10009-016-0413-6

17. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime veri-
fication of component-based systems in the BIP framework with formally-proved
sound and complete instrumentation. Softw. Syst. Model. 14(1), 173–199 (2013).
https://doi.org/10.1007/s10270-013-0323-y

https://doi.org/10.1007/s10703-016-0253-8
https://doi.org/10.1007/978-3-642-32759-9_10
https://doi.org/10.1007/978-3-319-57666-4_9
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/978-3-540-85361-9_39
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/s10703-016-0251-x
https://doi.org/10.1007/978-3-642-27269-1_12
https://doi.org/10.1007/978-3-642-27269-1_12
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/978-3-662-43613-4_5
https://doi.org/10.1007/s10009-016-0413-6
https://doi.org/10.1007/s10270-013-0323-y

Monitoring Distributed Component-Based Systems 173

18. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying runtime
verification tools. Int. J. Softw. Tools Technol. Transfer 23(2), 255–284 (2021).
https://doi.org/10.1007/s10009-021-00609-z

19. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

20. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial
ordering. Austral. Comput. Sci. Commun. 10(1), 56–66 (1988)

21. Kouchnarenko, O., Weber, J.-F.: Adapting component-based systems at runtime
via policies with temporal patterns. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS
2013. LNCS, vol. 8348, pp. 234–253. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07602-7 15

22. Kouchnarenko, O., Weber, J.-F.: Decentralised evaluation of temporal patterns
over component-based systems at runtime. In: Lanese, I., Madelaine, E. (eds.)
FACS 2014. LNCS, vol. 8997, pp. 108–126. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-15317-9 7

23. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

24. Lanese, I., Palacios, A., Vidal, G.: Causal-consistent replay reversible semantics
for message passing concurrent programs. Fundam. Informaticae 178(3), 229–266
(2021)

25. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical
choreographies. In: Rajamani, S.K., Walker, D. (eds.) Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2015, Mumbai, India, 15–17 January 2015, pp. 221–232. ACM (2015)

26. Massart, T., Meuter, C.: Efficient online monitoring of LTL properties for asyn-
chronous distributed systems. Technical report, Université Libre de Bruxelles
(2006)

27. Mattern, F.: Virtual time and global states of distributed systems. Parallel Distrib.
Algorithms 1(23), 215–226 (1989)

28. Nazarpour, H., Falcone, Y., Bensalem, S., Bozga, M.: Concurrency-preserving and
sound monitoring of multi-threaded component-based systems: theory, algorithms,
implementation, and evaluation. Formal Aspects Comput. 29(6), 951–986 (2017)

29. Nazarpour, H., Falcone, Y., Jaber, M., Bensalem, S., Bozga, M.: Monitoring dis-
tributed component-based systems. ArXiv e-prints (2017)

30. Runtime Verification (2001–2021). http://www.runtime-verification.org
31. Sen, K., Vardhan, A., Agha, G., Rosu, G.: Efficient decentralized monitoring of

safety in distributed systems. In: Proceedings of the 26th International Conference
on Software Engineering, pp. 418–427. IEEE Computer Society (2004)

32. Tretmans, J.: A formal approach to conformance testing. In: Protocol Test Systems,
VI, Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on Protocol
Test systems, pp. 257–276 (1993)

33. Triki, A., Combaz, J., Bensalem, S.: Optimized distributed implementation of
timed component-based systems. In: 2015 ACM/IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE), pp. 30–35. IEEE
(2015)

https://doi.org/10.1007/s10009-021-00609-z
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-07602-7_15
https://doi.org/10.1007/978-3-319-07602-7_15
https://doi.org/10.1007/978-3-319-15317-9_7
https://doi.org/10.1007/978-3-319-15317-9_7
http://www.runtime-verification.org

Author Index

Baouya, Abdelhakim 27
Barbanera, Franco 82
Bensalem, Saddek 27, 153
Bozga, Marius 95, 153

Chehida, Salim 27

Dadeau, Frédéric 134
de Amorim, Arthur Azevedo 3
Di Gianantonio, Pietro 44
Di Lavore, Elena 63

Falcone, Yliès 153

Gianola, Alessandro 63
Groote, Jan Friso 115
Gros, Jean-Philippe 134

Hijma, Pieter 115

Iosif, Radu 95

Jia, Limin 3

Kouchnarenko, Olga 134

Lanese, Ivan 82

Martens, Jan 115
Miculan, Marino 44

Nazarpour, Hosein 153

Orlando, Simone 82

Păsăreanu, Corina 3
Pasquale, Vairo Di 82

Román, Mario 63

Sabadini, Nicoletta 63
Sobociński, Paweł 63
Stolze, Claude 44

Tuosto, Emilio 82

van den Haak, Lars 115

Wijs, Anton 115

Zhang, Zichao 3

	Preface
	Organization
	Parametric and Interval Model Checking: Recent Advances and Applications (Abstract of Invited Paper)
	Contents
	Invited Paper
	Learning Assumptions for Verifying Cryptographic Protocols Compositionally
	1 Introduction
	2 Background
	2.1 Labeled Transition Systems
	2.2 Assumption Learning and Alphabet Refinement

	3 An Overview of Taglierino
	4 The Attacker Model and Its Correctness
	5 Protocol Analysis
	5.1 Evaluation Setup
	5.2 Needham-Schroeder-Lowe
	5.3 Denning-Sacco
	5.4 Woo-Lam
	5.5 Kerberos
	5.6 Performance Evaluation Results

	6 Related Work
	7 Conclusion
	References

	Modelling and Composition
	Component-Based Approach Combining UML and BIP for Rigorous System Design
	1 Introduction
	2 System Modeling with UML
	2.1 Case Study
	2.2 Architecture Model
	2.3 Behavior Models

	3 From UML to BIP
	4 System Simulation and Verification
	5 Related Work
	6 Conclusion
	References

	Composable Partial Multiparty Session Types
	1 Introduction
	2 A Calculus for Processes over Multiparty Sessions
	3 Partial Multiparty Session Types
	4 Type System
	5 Merging Partial Session Types
	5.1 Mapping Merging Functions over Session Types
	5.2 Merging Communications and Session Types

	6 Subject Reduction and Progress
	7 Related Work
	8 Conclusions
	References

	A Canonical Algebra of Open Transition Systems
	1 Introduction
	1.1 State from Feedback
	1.2 The Algebra of Transition Systems
	1.3 Stateful and Stateless Components
	1.4 Canonicity and Our Original Contribution
	1.5 Related Work
	1.6 Synopsis
	1.7 Conventions

	2 Preliminaries: Categories with Feedback
	2.1 Categories with Feedback
	2.2 Traced Monoidal Categories
	2.3 Delay and Feedback
	2.4 St(), the Free Category with Feedback
	2.5 Examples

	3 Span(Graph): An Algebra of Transition Systems
	3.1 The Algebra of Span(Graph)
	3.2 The Components of Span(Graph)
	3.3 Span(Graph) as a Category with Feedback
	3.4 Cospan(Graph) as a Category with Feedback
	3.5 Syntactical Presentation of Cospan(FinGraph)

	4 Conclusions and Further Work
	References

	Corinne, a Tool for Choreography Automata
	1 Introduction
	2 Choreography Automata
	3 Corinne
	4 Conclusion, Related Work, and Future Work
	References

	Verification
	Specification and Safety Verification of Parametric Hierarchical Distributed Systems
	1 Introduction
	2 Preliminaries
	3 A Term Algebra of Behaviors
	4 The Parametric Safety Problem
	4.1 Encoding Invariants and Error Configurations
	4.2 The Flow of a Behavioral Term

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	A Linear Parallel Algorithm to Compute Bisimulation and Relational Coarsest Partitions
	1 Introduction
	2 Preliminaries
	2.1 The PRAM Model
	2.2 Strong Bisimulation

	3 Relational Coarsest Partition Problem
	3.1 The Sequential Algorithm
	3.2 The PRAM Algorithm
	3.3 Correctness
	3.4 Complexity Analysis

	4 Bisimulation Coarsest Refinement Problem
	4.1 The PRAM Algorithm
	4.2 Complexity and Correctness

	5 Experimental Results
	5.1 Experimental Comparison

	6 Conclusion
	References

	Automated Generation of Initial Configurations for Testing Component Systems
	1 Introduction
	2 Background
	3 Component-Based Model
	4 Generation of Initial Configurations
	4.1 Combinatorial Algorithm
	4.2 Initial Configuration Sampling
	4.3 Integration into the Online Test Generation Process

	5 Experimentation
	6 Related Work
	7 Conclusion and Future Works
	References

	Monitoring Distributed Component-Based Systems
	1 Introduction
	2 Preliminaries and Notations
	3 Distributed CBS
	3.1 Semantics
	3.2 Traces

	4 Efficient Construction of the Computation Lattice
	4.1 Computation Lattice
	4.2 Intermediate Operations
	4.3 Algorithms for Constructing the Computation Lattice

	5 Properties of the Constructed Lattice
	5.1 Insensitivity to Communication Delay
	5.2 Correctness of Lattice Construction

	6 Related Work
	7 Conclusions
	References

	Author Index

