
Spatial and Nonspatial in Calculations
with Shapes

Djordje Krstic

Abstract This paper reexamines Uij algebras which constitute the framework for
calculations with shapes in the context of shape grammars. The calculations are
done in a Boolean fashion and may have both spatial and nonspatial components.
We start with partial algebras of geometric elements, where calculations are purely
spatial, and gradually introduce nonspatial ones to build shapes and their standard
algebras (Uij). Based on this Uij is decomposed into several algebras that do mostly
spatial calculations the result of which is then turned into shape in a nonspatial
fashion. The resulting decomposition algebra does the same job as Uij while
keeping the spatial and nonspatial computations as separate as possible. Besides
being a novel structure, the new algebra allows for more efficient computer
applications and its version supports simultaneous calculations with shapes and
their boundaries.

1 Building Blocks

Before getting to shapes and calculations with them we should examine their
building blocks. That is geometric elements like points, lines, planes, and solids.
We restrict the inquiry to so-called flat loci where lines are strait, planes are flat, and
solids are delineated by flat planes. Such a system could be extended, in a
straightforward way, to include curved lines and surfaces so that flat loci restriction
should not impede the generality of what we are trying to achieve. We consider
only finite geometric elements and finite sets of such elements that are confined to a
finite space.
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1.1 Geometric Elements

Our perceptual reality consists of three-dimensional (3D) things the abstraction of
which are 3D geometric elements or solids situated in 3D space. Some of the things
may have one or two dimensions much larger than the remaining ones like for
example a sheet of paper with the width and depth much bigger than its thickness or
a piece of string with a length overpowering its cross-section area. By abstracting
these small dimensions, one gets planes and lines as two-dimensional (2D) and
one-dimensional (1D) geometric element, respectively. The latter elements could be
arrived at by seeing the surfaces of solids or their edges as entities separate from the
solids themselves. By the same token, one gets the zero-dimensional (0D) geo-
metric elements or points as the places where two or more noncolinear edges meet.
Having less than three-dimensional elements opens possibility for the spaces these
are situated in to be less than three-dimensional as well. A line can be in the space,
but also on an infinite plane or an infinite line. At the minimum, a point can be
situated on a point, which is a 0D space. In general, a geometric element is char-
acterized by its dimensionality and that of the space it is defined in. Typically, a
geometric element of dimension i defined in the space of dimension j� i is denoted
by aij with all the combinations shown below

a00 a01 a02 a03
a11 a12 a13

a22 a23
a33

It is clear from the table above that the minimum space (in terms of its
dimensionality) in which a single geometric element can be defined is of the same
dimension as the geometric element itself. Elements defined in their minimum
spaces are diagonal geometric elements as they appear on the diagonal of the table
above. The minimum space for a set of geometric elements could be as small as the
minimum space of one of the elements and as big as the 3D space. For example,
minimum space for two colinear lines is 1D, for two parallel or
two intersecting lines is 2D, while for two skew lines is 3D. If the
minimum space of a nonempty set of geometric elements is the same as the min-
imum space of one of its elements, then it is a diagonal set and the space is
diagonal space. It is easy to see that in such a set all elements have the same
minimum space. For example, the set of all solids is diagonal, but so is a set of
colinear lines defined in a plane.

Boundaries outline geometric elements. Each geometric element is delineated
by a finite collection of geometric elements one dimension smaller than itself. Two
endpoints delineate a line, a polygon delineates a plane and a closed polyhedral
surface delineates a solid. Points do not have boundaries and lines have 2-point
boundaries. Given that each geometric element of dimension greater than 0 has
infinitely many geometric elements embedded in it, the boundary of a geometric
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element of dimension greater than 1 can be described by an infinite set of geometric
elements. However, the fact that there are also finite descriptions qualifies it as a
boundary. There are figures with finite areas and infinite boundaries i.e. boundaries
that cannot be described by finite sets. For example, the infinite Koch snowflake

is a finite area planar figure with an infinite fractal boundary.

1.2 Calculating with Geometric Elements

Geometric elements could be related in many ways. One could be embedded in or
be coincident with another element or the two could overlap or touch. There are
numerous other relations but just mentioned four play important roles when cal-
culating with geometric elements. The most important relation is embedding.
Intuitively, given two lines , the top line is embedded in the bottom one, if
the result of drawing one on top of the other is the bottom line. The top line appears
to be a part of the bottom one. The embedding relation is a partial order � on a set
of geometric elements of the same kind—i.e. the elements of the same dimension
defined in the same space. Note that this implies that only lines could be parts of
lines, planes parts of planes and solids parts of solids. A point can be coincident
with a line but not its part. However, for a� b to hold, where a and b are geometric
elements, being of the same kind is not enough. There is another necessary—but
not sufficient—condition. Set a; bf g must be diagonal.

For points partial order is identity. A point is a part of another point if they are
identical. That is if a� b then b� a and a ¼ b, where a and b are points. Note that
for points all diagonal sets are singletons.

Armed with partial order we may proceed to define Boolean operations: product,
sum, difference, and symmetric difference—for geometric elements of the same kind.

For points defined on a point (0D space) sum and product are always defined and
equal to the only point, which is both the smallest and the greatest element. In
contrast, difference and symmetric difference are never defined. Points defined in
1D, 2D, and 3D spaces have sum and product only if the points that are arguments
are identical. In contrast, difference is only defined if the arguments are different
points, while symmetric difference is never defined. Geometric elements of higher
dimension have more elaborate behavior in calculations. Operations for lines planes
and solids are defined below.

Product a � b ¼ c exists if c is the greatest common part of a and b. That is c� a
and c� b so that set a; b; cf g is diagonal. Given lines , the top one is the
product of the middle and the bottom line. Lines belong to a diagonal
set but do not have the product as there is no line that is a part of both. It is clear
from the definition and examples that for a � b to be defined a and b must have
common parts—i.e. overlap–however, this is not sufficient for planes and solids.

For example, two interlocking 2D L-s and , overlap but do not have the

Spatial and Nonspatial in Calculations with Shapes 153



product. The greatest common part is missing, as we end up with two incomparable

elements .

Sum aþ b ¼ c if c is the smallest geometric element with both a and b as parts
(1), and there is no part of c that does not share parts with a or b (2). If sum exists
then a� c and b� c so that set a; b; cf g is diagonal. Given lines , the top
one is the sum of the middle and the bottom line. In contrast, with lines
the top one is the smallest line with the bottom two as parts, but it is not their sum. It
satisfies condition (1) however the gap between the bottom lines can accommodate
infinitely many lines that violate condition (2). Both conditions (1) an (2) are
required only for lines. For planes and solids condition (1) is sufficient. For

example, neither planes nor planes satisfy (1) and cannot be

summed. In contrast, planes and planes do satisfy (1) so that

and are their respective sums. The sums exist because planes overlap in the
first case and touch in the second. The touch relation could now be defined.

Two geometric elements touch if their sum exists, but they do not share parts.
Difference a� b ¼ c exists if c is the greatest part of a that does not share parts

with b. Given lines the top line is the result of subtracting the middle line
from the bottom one. The same result we get if the middle line is subtracted from
the top one and we get the middle line if the two arguments swap their places. That
is, a� b ¼ a and b� a ¼ b if the two do not have common parts. There is no
difference defined for lines as in one case we end up with two geometric
elements and none in the other case. There is another, somewhat unintuitive,
requirement stemming from the Boolean nature of the operations. As there is no
greatest or the smallest geometric element difference is defined using relative
complements. It is the unique complement of b relative to the interval b; aþ b½ �.
Thus, the difference could only be defined if aþ b is defined.

Symmetric Difference a� b ¼ c exists if c is the greatest geometric element
with each of its parts being either part of a or b, but not of both. For example, each
of the three lines is the symmetric difference of the other two. In contrast,
lines do not have the symmetric difference as two different lines satisfy
the definition. Like the other operations, the symmetric difference is only defined
for diagonal sets of arguments.

Although the operations above are Boolean in nature some of the standard
Boolean identities do not hold. For example, the definition of difference as the unique
complement of a�b relative to the interval a � b; a½ �, which is equivalent to the one
given before, does not hold if a�b is not defined although the difference may be
defined. Similarly, if a� b exists then a� b ¼ a� a � bð Þ should hold. For example,

two overlapping L-s  and yield two possible differences and .

However, the identity does not hold for either of the differences because the product

of the L-s is not defined. Likewise, symmetric difference of the two L-s is ,

which is following standard identity a� b ¼ a�bð Þþ b�að Þ. However, another
standard identity a� b ¼ aþ bð Þ � a � bð Þ does not hold for lack of the product.
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Note that the geometric elements that are results of the operations above have
finite boundaries because the elements that are the arguments of the operations have
finite boundaries.

Set Iij of all geometric elements of dimension i defined in the space of dimension
j together with operations �, +, −, and � forms partial algebra Iij–which is partial in
a sense that Iij is not closed under the operations.

2 Shapes

In the previous section, we were dealing with single geometric elements which are
building blocks of shapes. Intuitively, shapes are collections of such elements like
the collection of lines that makes rectangle . Nevertheless, shapes will be
defined here without relying on these intuitions. Rather, the formal conditions under
which partial algebras of geometric elements evolve into algebras of shapes will
guide the definition.

2.1 Towards Shape

Calculations with geometric elements are purely spatial: one starts with two geo-
metric elements and transforms them into one usually different than both–but
occasionally equal to one of them. Such a transformation depends on a spatial
relation between geometric elements and may not always be possible. In contrast,
nonspatial or symbolic calculations are always possible as they typically involve
just repacking of geometric elements while leaving them intact. One may take two
elements from two packages and place them into one: af g[ bf g ¼ a; bf g; or may
take some elements out of a package and not worry if the package ends up empty:
a; bf gn a; bf g ¼ fg ¼ ;. The packages are more important than the elements they

contain so the latter are as good as symbols.
For operations involving geometric elements to be always defined spatial

operations of Iij should be extended to include nonspatial (set) operations.
Consequently, geometric elements are replaced with sets of geometric elements of
the same kind, or shapes. Shapes are combinations of the spatial and nonspatial.
The spatial is what matters the most while the nonspatial is there for closure i.e. to
be able to calculate and always get the result.

For example, one cannot make a line out of lines so the sum from
I11 fails. However, if each line is seen as one-line shape then the set union produces
a two-line shape and we have the sum. Similarly, if the top line is
subtracted from the bottom one no geometric element is left, and the difference
fails. Not so if the two lines are shapes. The difference produces a shape with no
geometric elements, just an empty set.
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Geometric elements forming a shape must, be of the same kind, and occupy a
finite chunk of space. Because there are infinitely many geometric elements
embedded in a single geometric element–if its dimension is greater than 0–different
sets, including infinite ones, of geometric elements may represent the same shape.
An infinite set may represent a shape if there is at least one finite set representing
the same shape. The following proposition establishes bounds for such sets.

Proposition 1: Let a and A be sets of geometric elements defined in Iij and confined
to a finite chunk of space. Let a be finite with sums being defined only for pairs of
identical elements (i) and let A be the set of all elements that are parts of elements of
a, or A ¼ fx� yjy 2 ag (ii). The following holds:

(1) a is the set of maximal geometric elements of A,
(2) a represents a shape, and
(3) A is the set of all geometric elements embedded in the shape represented by a.1

Sets a and A are, in terms of their cardinalities, respective minimal and maximal
sets representing the same shape. The former one is the ideal shape representation
because it is unique and compact which leads to the following three equivalent
definitions of shape.

A shape occupies a finite chunk of space and is:

(1) A finite set of geometric elements defined in Iij such that only pairs of identical
elements have sums.

(2) A finite set of maximal geometric elements defined in Iij.
(3) A finite subalgebra of Iij with sums and products defined only for identical

elements.

Note that subset X of partial algebra Iij is its subalgebra if every sum (product) of
elements of X which is defined is also an element of X.

Any finite set of geometric elements from Iij, occupying a finite chunk of space,
may be represented as a shape.

Proposition 2: Let C be such a set and let clþ Cð Þ be its closure under sum, where
cl+ is a closure operator on } Cð Þ. Set a of maximal elements of clþ Cð Þ is a shape
represented by C.2

1 Proof: From (i) a is a set of maximal elements, from (ii) a�A so that these are also maximal
elements of A, which proves (1). a must have finite boundary to be a shape. Because a is finite
and so are representations of boundaries of elements of a, the union these representations is finite
and is a representation of the boundary of a, which proves (2). Assume (3) does not hold so that
there is a geometric element z embedded in the shape represented by a such that z 62 A. Thus,
z must be a sum of parts of different elements of a. From (i) no such sum exists so that (3) holds.
2 Proof: Because C is finite clþ Cð Þ is finite and there are elements e 2 clþ Cð Þ such that for
every c 2 clþ Cð Þeþ c ¼ e or is not defined. Set of all elements like e is a and because they are
maximal with respect to one another a is a shape. Each element of C is either part of or equal to
an element of a because a is the set of maximal elements of clþ Cð Þ so that a is the shape
represented by C.
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The same is true if C is infinite provided that a exists and is finite and that for
every x 2 C there is y 2 a such that x� y. A good example of such a set is A from
Proposition 1.

2.2 Calculating with Shapes

Calculations with shapes are combinations of spatial ones, which alter geometric
elements, and the nonspatial ones, which just group them. Unlike spatial calcula-
tions with geometric elements, which may not always be defined, calculations with
shapes always result in shapes.

As with geometric elements operations for shapes are Boolean and depend on
the partial order among shapes. The latter is defined as follows.

The Subshape (or a part) a of shape b, or a� b, is a shape where for every x 2 a
there is y 2 b such that x� y.

The smallest shape is an empty shape which is an empty set of geometric
elements denoted by 0. An empty shape is a part of every shape.3

The subshape relation is pivotal in defining operations on shapes, but for cal-
culating with them we also rely on operations for geometric elements.

It is important to note that the operations below are defined for shapes occupying
the same finite chunk of space.4

Sum aþ b is the smallest shape which has both a and b as parts. It is the set of
maximal elements of clþ ða[ bÞ.5 The sum could be calculated recursively with the
aid of the sum operation from Iij.

6,7

3 Note that there are different empty shapes as they are empty sets of elements from different Iij
partial algebras.
4 For example, two shapes infinite distance apart cannot be summed.
5 Per proposition 2, aþ b is the shape represented by a[ b. Every element of aþ b is either the
sum of elements of a, or elements of b, or the sum of elements of a and b, or equal to an element
of a or b. Thus, aþ b is the smallest shape that includes both a and b as parts.
6 card(b) is the cardinality of set b.
7 For i = 1 we remove element b from b (line 1 of the recursive step) and partition a into set C of
elements which do not sum with b and set of ones that do ðAi�1nCÞ, which are then summed with
b to get D (lines 2 and 3). D is augmented with b—just in case Ai�1nC was empty—and summed
to create geometric element c. All elements of D include b as a part so that their sum is defined.
Element c is included in set C of elements which do not sum with b to create Ai. The process is
continued until all the elements of b are exhausted ðBcardðbÞ ¼ ;Þ. Note that each Ai is a shape–a
set of maximal elements—and so is the result Acard bð Þ.
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Initial values: A0 ¼ a;B0 ¼ b; i ¼ 1; 2; . . .card bð Þ
Recursive step: Bi ¼ Bi�1n bf g; where b 2 Bi�1;

C ¼ fx if xþ b is not definedjx 2 Ai�1g;
D ¼ xþ bjx 2 Ai�1nCf g;
c ¼ P

D[ bf gð Þ;
Ai ¼ C [ cf g

Result: aþ b ¼ AcardðbÞ

The set Uij of i-dimensional shapes defined in the j-dimensional space closed
under + and � is a relatively complemented distributive lattice ordered by the
subshape relation. It features an empty shape as the smallest element while lacking
the greatest one. Being distributive makes its relative complements unique, enabling
the definition of the difference operation.

Difference a – b is the relative complement of b with respect to interval [0, a +
b], or dually the relative complement of a�b with respect to interval [0, a]. It is the
greatest shape made only of parts of a which have no parts that are parts of b. It
could be calculated recursively as follows.

Initial values: A0 ¼ a;B0 ¼ b; i ¼ 1; 2; . . .card bð Þ
Recursive step: Bi ¼ Bi�1n bf g; where b 2 Bi�1;

C ¼ fx if x�b is not definedjx 2 Ai�1g;
D ¼ x� bjx 2 Ai�1nCf g;
Ai ¼ C [D

Result: a�b ¼ AcardðbÞ

Product a�b is the greatest shape embedded in both a and b. To calculate it we
rely on the difference for shapes which is related to the product via
a � b ¼ a� a�bð Þ.

Symmetric Difference a� b is the greatest shape having only parts of a that
have no parts that are parts of b and parts of b that have no parts that are parts of
a. To calculate it one may use – and + with formula a� b ¼ a�bð Þþ b�að Þ or
equivalently by using –, +, and ⋅ with a� b ¼ aþ bð Þ�ða � bÞ.

For example, shapes and have product , sum , difference ,
another difference , and symmetric difference .

2.3 Boundaries of Shapes

We established earlier that the boundary of a geometric element may be represented
by a finite sets of geometric elements one dimension lower than the original
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element. However, proposition 2 allows for a more precise characterization of the
boundary.

Boundaries of geometric elements are shapes one dimension lower than the
elements.8

This allows for a unique and compact representation of boundaries and intro-
duction of boundary operator be: Iij ! Ui�1j, where Ui�1j is the set of (i − 1)-
dimensional shapes defined in the j-dimensional space. Boundary operator takes a
geometric element from Iij to its boundary which is a shape in Ui�1j, or
y ¼ be xð Þ; x 2 Iij; y 2 Ui�1j. For example, be( ) = i.e. a quadrilateral planar
element is turned into a set of four maximal lines or a linear shape which is a
boundary of the planar element. Because shapes are sets of maximal geometric
elements boundaries are sums of the boundaries of the elements. Consequently, the
boundary operator for shapes b:Uij ! Ui�1j is defined as b að Þ ¼ P

x2a be xð Þ where
b að Þ 2 Ui�1j, a 2 Uij and x 2 Iij. For example, b( ) = be( ) + be( ) = +

= .
Boundaries of shapes are shapes one dimension lower than the original shapes.

They are sums of the boundaries of maximal elements representing shapes.

For example, sequence of shapes , , , and has a 3D solid cube,

its boundary which is a 2D shape consisting of 6 planar squares, with 1D boundary
consisting of 12 lines, and its boundary a 0D shape having 8 points, respectively.

Calculations with shapes do not mirror calculations with their boundaries i.e. the
two are not isomorphic. For example, for two singleton shapes the boundary
of their sum is different than the sum of their boundaries . The only
exception is the operation of symmetric difference when applied to shapes sharing
the same diagonal space.

Proposition 3: The boundary of symmetric difference of two shapes sharing the
same diagonal space is the symmetric difference of their boundaries, or bða� bÞ ¼
b að Þ � b bð Þ where a; b 2 Uii.

9

8 Because the boundary of an i-dimensional geometric element can be represented as a finite set of
i� 1ð Þ-dimensional geometric elements it can, according to proposition 2, be represented as a
shape.
9 Proof: Different spatial relations between a and b determine how parts of their boundaries are
affected by a� b. Note that a part of the original boundary should be removed if there is ether
shape or empty shape on both of its sides (i) and it should be preserved otherwise (ii). If
b að Þ � b bð Þ ¼ 0 and either a � b ¼ 0 or b\a, then a� b ¼ aþ b and a� b ¼ a� b, respec-
tively. In both cases boundaries of a and b satisfy (ii) and should be preserved. b að Þ � b bð Þ ¼
b að Þþ b bð Þ does that which is in accordance with the proposition (WAWP). If b að Þ � b bð Þ 6¼ 0
and either a � b ¼ 0 or b\a, then a� b ¼ aþ b and a� b ¼ a� b, respectively. In both cases
b(a) � b(b) should be removed as it satisfies (i) and b að Þ � b bð Þ ¼ b að Þþ b bð Þ½ ��½b að Þ � b bð Þ�
does that, WAWP. If a � b 6¼ 0 and b að Þ � b bð Þ ¼ 0, then a� b removes a � b so that bða � bÞ
satisfies (ii) and should be preserved. The remaining parts of boundaries b að Þ � bða � bÞ and
b bð Þ � bða � bÞ also satisfy (ii) so that both b að Þ and b(b) should be preserved. b að Þ � b bð Þ ¼
b að Þþ b bð Þ does that, WAWP. This exhausts all the possible spatial relations between a and b.
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For example, shapes and with the respective boundaries and
have symmetric difference with boundary . The latter is also the

symmetric difference of boundaries of the original shapes. Restriction to diagonal
shapes is necessary to avoid situations where the products of boundaries are parts of

new boundaries like, for example, the surface of cube with boundary

which has products of boundaries of the adjacent faces. Because products are never
parts of symmetric differences proposition 3 does not hold.

3 Algebras of Shapes

Algebras of shapes provide the framework for calculations with shapes. They are
formalizing the design practice by modelling what designers do when they design.
The process of drawing, outlining, or erasing shapes is handled well with the
Boolean operations above. Designers also move, scale and otherwise transform
shapes in order to achieve different spatial relations. This cannot be modeled with
Boolean operations. For that Uij must be closed under similarity transformations.10

The latter form an algebra of their own: a group. An algebra for shapes must include
both a Boolean lattice and a group.

3.1 Two-Sorted Algebras

An algebra of shapes should have a Boolean part to handle the structures of shapes
and a group part to deal with their symmetries.

The Boolean part has set Uij of shapes, occupying a finite chunk of space, which
together with Boolean operations forms a relatively complemented distributive
lattice with the least element, but without the greatest one. Such a structure is due to
its Boolean properties also known as Generalized Boolean Algebra (GBA).

The group part has set Tij of similarity transformations that can act on i-
dimensional shapes defined in a j-dimensional space. Set Tij is closed under group
operations of composition °, inverse −1, and identity , to form a group. This
structure allows for calculating with transformations. For example, simple trans-
formations could be combined to create more complex ones, or an inverse of a
transformation could be created to undo an erroneous move.

Boolean and group parts are connected via the operation of group action ():
Tij 	 Uij ! Uij where a shape a is acted upon by a transformation t to produce the
transformed shape t(a).

10 Similarity transformations are Euclidean transformations with added dilations, Euclidean
transformations are rigid body transformations with added reflections, and rigid body transfor-
mations are translations with added rotations.

160 D. Krstic



The two parts are combined in a two-sorted algebra Uij with carrier Uij; Tij
� �

having elements of two different sorts—shapes and transformations—and signature
{�, +, -, �, °, −1, , ()} with Boolean and group operations as well as the group
action. Based on the geometric elements of their shapes (i) and the space in which
they are defined (j) Uij algebras are enumerated in the following table.

U00 U01 U02 U03

U11 U12 U13

U22 U23

U33

The table resembles that of geometric elements. For example, algebras with
shapes defined in the minimum space of their geometric elements appear on the
diagonal of the table above, the same way the elements appeared in the previous
table. The geometric elements were diagonal, and the algebras are diagonal oper-
ating on diagonal shapes in diagonal spaces.

3.2 Combining Algebras

Shapes in practice often come as compound, having geometric elements of different
kinds like , which has four lines and a planar segment. The lines belong to U12

while the planar segment belongs to U22 so that the shape must belong to a
combination of the two algebras. A standard algebraic combination is the direct
product of component algebras which have the same signatures. Direct product
U12 	 U22 of U12 and U22 is a two-sorted algebra of compound shapes with carrier
fU12 	 U22; T12 	 T22g which is the Cartesian product of the component carriers
and operations defined componentwise. Shape is represented by ordered the
pair ( , ) where 2 U12 and 2 U22. The componentwise symmetric
difference of two compound shapes a; uð Þ; b; vð Þ 2 U12 	 U22 is a; uð Þ�
b; vð Þ ¼ ða� b; u� vÞ. For example, = , where , 2
U12 	 U22. Likewise, action of compound transformation t1; t2ð Þ 2 T12 	 T22 on
compound shape a; bð Þ 2 U12 	 U22 is t1; t2ð Þ a; bð Þð Þ ¼ t1 að Þ; t2 bð Þð Þ 2 U12	
U22. For example, clockface showing 9:00 shows (9:15) after the action of

transformation ðrotð�90
Þ; rotð�90=12 ¼ �7:5
ÞÞ 2 T12 	 T22, where , 2
U12 	 U22 and rot(x) is the rotation of x degrees around the origin.

Another combination of algebras is their sum. Unlike direct product, which is in
the domain of universal algebra, sum is particular to algebras of shapes. It is based
on a subdirect product i.e. a subalgebra of a direct product which enumerates all
elements of the component algebras, but not all their combinations. The sum of two
shape algebras is a subdirect product which enumerates all shapes of the component
algebras as well as all their combinations but allows only combinations of equal
transformations. Sum does not restrict the Boolean part but requires for all
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components of compound shapes to be transformed in the same way. This preserves
the integrity of compound shapes in calculations. For example, compound shape

could be rotated in the direct product algebra so that its boundary is off
however, this cannot happen with the sum of algebras where both the shape and its
boundary are rotated in the same way .

3.3 Decomposing Algebras

As previously shown the necessary condition for two geometric elements to be able
to spatially interact is that they are both occupying the same diagonal space.
However, they must overlap or at least touch for their interaction to result in new
geometric elements, that is, to be spatial. All shapes in a diagonal algebra share the
same diagonal space as for example, two lines which are singleton shapes
from U11. The sum of two lines is a spatial calculation as it results in a longer line

. In contrast, two singleton shapes and defined in U12 have sum
which is their set union. This is a nonspatial calculation yielding no new geometric
elements. Calculations are usually combinations of spatial and nonspatial as for
example, with sum of shapes and defined in U12. This operation
has a spatial part and a nonspatial one [ [

= = . Note that + from U12 acts as + from U11 in
the spatial part of the calculation and as set union in the nonspatial part. This means
that instead of calculating with shapes in U12 we may calculate with their parts in
diagonal algebras and take the union of the results of these calculations. To take this
further we need to utilize shape decompositions.

A shape could be decomposed into shapes that are its parts. For shape a set A of
its parts is a decomposition of a if it is finite and sums up to a, or RA ¼ a. Set A is a
discrete decomposition of a if for each x; y 2 A and x 6¼ y; x � y ¼ 0. There is a
unique discrete decomposition of each shape that stems from the shape definition.

The natural decomposition of shape a 2 Uij is set na ¼ f xf gjx 2 ag.
Set na is a decomposition of a with elements that are singleton shapes of

maximal geometric elements which define a.For example, shape has natural
decomposition { , , , }. Each shape has its unique natural
decomposition. Because shapes which are elements of the decomposition are
incomparable their sum and union are equal, or Rna ¼ [na ¼ a, so that [ {

, , , } = = .
Each element of a natural decomposition is singleton shape, so its minimum

space is a diagonal one. Two shapes belonging to the same algebra may have
natural decompositions such that an element of one decomposition shares diagonal
space with an element belonging to the different one. There could be several such
elements. If the two shapes are arguments of some calculation, then calculations
with elements sharing the same diagonal space could take place in a related
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diagonal algebra. This opens interesting possibilities, however, not without a
problem. There is no guarantee for the two elements of the same natural decom-
position to be in the different diagonal spaces. Fortunately, there is another discrete
decomposition related to the natural one, which overcomes this problem.

The diagonal decomposition of a shape is a discrete decomposition in which
each element is a diagonal shape and no two elements share the same diagonal
space. The decomposition above is both natural and diagonal. In contrast, has
decompositions { , , , , } and { , , ,

}11 as natural and diagonal, respectively. Note that the last two shapes in the
natural decomposition share the same diagonal space so they are replaced with their
sum in the diagonal one. Going the other way, each non singleton shape of a
diagonal decomposition should be replaced with its natural decomposition to get the
natural decomposition of the original shape. Like natural decompositions diagonal
ones are unique. Let na and da be the respective natural and diagonal decompo-
sitions of shape a, then na � da and card dað Þ� card nað Þ.12 The same property of
natural decompositions holds with the diagonal ones: Rda ¼ [ da ¼ a.

Each element x 2 da is a diagonal shape occupying a diagonal space. Let
another element y 2 db, where db is the diagonal decomposition of shape b 2 Uij,
share the diagonal space with x. To calculate say aþ b the partial calculation xþ y
may take place instead of in Uij in an appropriate diagonal algebra Uii related to the
diagonal space of x and y. Different such pairs of elements could be summed in
different diagonal algebras and the union of the results will be aþ b. Elements of
one decomposition with no corresponding elements in another one are paired with
appropriate empty shapes. The other operations of Uij could be calculated in the
same fashion. In this approach algebra Uij is de facto decomposed into a set of
different diagonal algebras Uii each of which is tasked with a partial calculation.
The union of the partial results is the final one. Each diagonal decomposition of a
shape induces the diagonal decomposition of algebra Uij into a set of diagonal
algebras Uii.

The table below shows calculation = defined in U12 as done
in 6 diagonal algebras of a diagonal decomposition of U12.

11 Note that we use brackets around individual geometric elements to distinguish between geo-
metric elements and singleton shapes. When a shape has two or more elements, we do not need
brackets as it is clearly a shape. For lack of the space brackets are omitted in tables.
12 Given two decompositions a and b relation a�b holds if for every x 2 a there is y 2 b such
that x� y and for every y 2 b there is x 2 a such that x� y.
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Algebra Diagonal Algebras 

U12 (U11)1 (U11)2 (U11)3 (U11)4 (U11)5 (U11)6

0 0 

0 0 

Arguments of the calculation, shapes and , as well as their diagonal
decompositions are shown in rows 3 and 4 of the table, respectively. Each shape’s
diagonal decomposition spans 4 diagonal algebras and both decompositions span 6
algebras. The result of the calculation appears in the bottom row together with
its decomposition which has nonzero elements in all 6 diagonal algebras. Diagonal
decompositions of algebra U12 induced by the diagonal decompositions of shapes

and are U11ð Þ1; U11ð Þ2; U11ð Þ3; U11ð Þ4
� �

and U11ð Þ2; U11ð Þ4;
�

U11ð Þ5; U11ð Þ6g, respectively. Calculations in U11ð Þ2 and U11ð Þ4 where decompo-
sitions of both argument shapes have nonzero elements are spatial resulting in new
shapes. The calculations in the rest of the algebras were nonspatial just showing the
nonzero element as the result.

Note that the decomposition of shape is also diagonal and so is the
decomposition of U12 related to this shape U11ð Þ1; U11ð Þ2; U11ð Þ3; U11ð Þ4;

�
U11ð Þ5; U11ð Þ6g.
Because diagonal decompositions are unique, we may introduce an operator

d : Uij ! } Uij
� �

that takes a shape to its diagonal decomposition, or d að Þ ¼ da.
The calculation above exposed an interesting property of diagonal decompositions,
d aþ bð Þ ¼ d að Þþ d bð Þ. This remains true for other Boolean operators (�, −, �),
which gives a rise to an algebra of diagonal decompositions.

3.4 Algebras of Diagonal Decompositions

Given the uniqueness of diagonal decompositions—i.e. their 1-1 relation to shapes–
as well as the expressions like the one above, an algebra of diagonal decomposi-
tions should be isomorphic to an appropriate algebra of shapes. This is expressed
with commutative diagram , where Xij is an algebra of diagonal
decompositions of shapes from Uij.

The table above may provide some guidance on how to do Boolean operations
in Xij.
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Let two shapes a and b defined in Uij be arguments of calculation a � b ¼ c,
where * stands for �, +, −, or �. To do the calculation with diagonal decompositions
in place of shapes we may use the following procedure:

1. Define diagonal decompositions of Uij implied by d(a) and d(b), i.e. A ¼
fUiijx 2 d að Þ; x 2 Uiig and B ¼ fUiijx 2 d bð Þ; x 2 Uiig.

2. Calculate sets of diagonal algebras which are in B but not in A or in A but not in
B, i.e. A

0 ¼ BnA and B
0 ¼ AnB.

3. Augment decompositions d(a) and d(b) with empty shapes of algebras from sets

A
0

and B
0
, i.e. d að Þ0¼ d að Þ [ f0 2 UiijUii 2 A

0 g and d bð Þ0¼ d bð Þ [ f0 2
UiijUii 2 B

0 g so that card d að Þ0
� �

¼ card d bð Þ0
� �

.

4. Calculate d cð Þ0¼ fx � yjx 2 d að Þ0 ; y 2 d bð Þ0 ; x; y 2 Uii;Uii 2 A[Bg.
5. Finally calculate d cð Þ ¼ fx 2 d cð Þ0 jx 6¼ 0g.

Because an Uij algebra includes transformations one would expect that a related
algebra of diagonal decompositions includes them as well. However, it only handles
the Boolean part while leaving the transformations to Uij. It is possible to include
transformations in the algebra of diagonal decompositions, but that is beyond the
scope of this work.13

Diagonal decompositions and their algebras may be good candidates for storing
shapes and calculating with shapes in computer applications. They simplify spatial
calculations with shapes by breaking them down into simpler calculations with
parts of the shapes. The latter calculations may then be done in parallel. A diagonal
decomposition could easily be turned into the related natural decomposition which
is a version of the maximal representations of a shape. The latter is instrumental in
determining the partial order among shapes.

3.5 Calculating with Shapes and their Boundaries

Proposition 3—i.e. bða� bÞ ¼ b að Þ � b bð Þ where a; b 2 Uii and
b að Þ; b bð Þ 2 Ui�1i–opens possibility for calculating with both shapes and their
boundaries in parallel. This could be done in the framework of direct product
algebra Uii 	 Ui�1i, however, some smaller algebras may provide a better fit. First,
both shapes and their boundaries should be transformed in the same way so that
t; tð Þ are the only ordered pairs of transformations allowed. Second, not all the
shapes from Ui�1i are boundaries of the shapes from Uii. A line in U12 is not the
boundary of any plane in U22. Consequently, the set of boundaries of shapes from
Uii is a proper subset of Ui�1i or b Uiið Þ � Ui�1i. According to proposition 3 set

13 It would require for Uij to be represented as an infinite direct product of Uii algebras with
transformations that are combinations of permutations of the infinite index set–related to the
direct product–and transformations from the diagonal algebras.
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b Uiið Þ is closed under symmetric difference and could be elevated to an algebra Bi

of boundaries of shapes from Uii. Now a subdirect product UBi � Uii 	 Bi oper-
ating on compound shapes where shapes from Uii are matched with their bound-
aries from Bi, or UBi ¼ f x; b xð Þð Þjx 2 Uii; b xð Þ 2 Big, i = 1, 2 or 3, provides an
economical framework for parallel calculations with shapes and their boundaries.
For example, calculation = , carried on in UB2 accounts for
both planar shapes and their linear boundaries. The new algebra is weaker than the
standard algebras of shapes. It has only one operation—symmetric difference—and
works with only one kind of shapes–diagonal shapes. Symmetric difference is not
that limited as it may act as sum or as difference depending on the context. For
example, a� b ¼ aþ b if a � b ¼ 0; a� b ¼ a� b if a� b, and a� b ¼ b� a if
b� a. Calculations defining a shape grammar rule application–which are carried out
in the framework of an algebra of shapes– depend on both sum and difference.
Certain types of grammars like subtractive and collision-protecting ones provide the
right context for symmetric difference to play both roles. Algebras UBi are therefore
the right framework for such grammars to simultaneously generate shapes and their
boundaries.

Alleviating the other limitation of UBi—i.e. the restriction to diagonal shapes—
may be achieved via diagonal decompositions. Unlike Bi set Bij � Ui�1j of
boundaries of shapes from Uij cannot be elevated to an algebra. Instead we
approximate shapes from Uij with their boundary paired or b-paired diagonal
decompositions in which every element of a diagonal decomposition is paired with
its boundary. Because both the diagonal decomposition and boundary are unique
for a shape so is its b-paired diagonal decomposition. Thus, we may introduce
operator d’: Uij ! ℘(Uij 	 Ui-1j) which takes a shape from Uij to its b-paired
diagonal decomposition. Operator d’ is defined as d

0
að Þ ¼ f x; b xð Þð Þjx 2 d að Þg;

x 2 Uij. To go the other way, from b-paired diagonal decompositions to shapes and
their boundaries, we make use of projection operators pru d0 að Þð Þ ¼ fxj x; yð Þ 2
d0 að Þg and prb d0 að Þð Þ ¼ fyj x; yð Þ 2 d0 að Þg so that a ¼ [ pru d

0
að Þ� �� 	

and b að Þ ¼
R prb d0 að Þð Þ½ �, where a 2 Uij and b að Þ 2 Ui�1j. Like diagonal decompositions the
b-paired ones form an algebra X

0
ij, however, this one has only one operation:

symmetric difference �. Like algebra for diagonal decompositions, X
0
ij handles only

the Boolean part while leaving the transformations to Uij.

Proposition 4: Let d
0
að Þ and d

0
bð Þ be b-paired diagonal decompositions of shapes

a; b 2 Uij. The following holds:
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(1) Each element x; b xð Þð Þ 2 d
0
að Þ is an element of some UBi algebra.

(2) B-paired diagonal decompositions are closed under symmetric difference, or
d

0 ða� bÞ ¼ d
0
að Þ � d

0
bð Þ, and form algebra X

0
ij.
14

It follows from (1) that d
0
að Þ implicitly defines a set A of UBi algebras to which

its elements belong, or A ¼ fUBijx 2 d
0
að Þ; x 2 UBig. Consequently, calculation

d
0
cð Þ ¼ d

0
að Þ � d

0
bð Þ can be compartmentalized and carried on in parallel via a

procedure not unlike the one for diagonal decompositions:

1. Define sets A and B of UBi algebras to which elements of d
0
að Þ and d

0
bð Þ

respectively belong, as well as their relative complements A
0 ¼ BnA and

B
0 ¼ AnB.

2. Augment decompositions d
0
að Þ and d

0
bð Þ with empty shapes of algebras from

sets A
0

and B
0
, i.e. d

0
að Þ0¼ d

0
að Þ [ f 0; 0ð Þ 2 UBijUBi 2 A

0 g and

d
0
bð Þ0¼ d

0
bð Þ [ f 0; 0ð Þ 2 UBijUBi 2 B

0 g.
3. Calculate d

0
cð Þ0¼ fðx� u; y� vÞj x; yð Þ 2 d

0
að Þ0 ; u; vð Þ 2 d

0
bð Þ0 ; x; yð Þ; u; vð Þ

2 UBi;UBi 2 A[Bg.
4. Finally calculate d

0
cð Þ ¼ f x; yð Þ 2 d

0
cð Þ0 jx 6¼ 0; y 6¼ 0g.

The table below shows how calculation = carried on

in U23–where a combination of a “smaller-than” and “greater-than” shapes pro-
duces an “X” shape–looks when done with b-paired diagonal decompositions in
place of the shapes.

Algebras Compound UBi Algebras

U23 U13 (UB2)1 (UB2)2 (UB2)3

0

0

0

Argument shapes, their boundaries, and their b-paired diagonal decompositions
are in the third and fourth rows of the table while resulting shape, its boundary, and
its b-paired diagonal decomposition occupy the fifth row.

14 Proof: If x; b xð Þð Þ 2 d
0
að Þ then x 2 d að Þ so that x 2 Uii, for some Uii, therefore,

x; b xð Þð Þ 2 UBi, which proves (1). (2) follows from (1), the fact that dða� bÞ ¼ d að Þ � d bð Þ,
and Proposition 3, i.e. bða� bÞ ¼ b að Þ � bðbÞ.
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The resulting “X” shape is obtained from its decomposition via nonspatial cal-

culation [ = . In contrast, spatial calculation

+ = produces the boundary of “X”. Note that the

original calculation carried on in an U13 with the boundaries of shapes, i.e.

= , results in an incomplete boundary of “X”.

4 Background and Conclusion

Through the paper we dealt with mathematics arising in the context of shape
grammars theory. The latter started in the early nineteen seventies [1] with the
introduction of shape grammars, as production systems capable of generating
shapes, and evolved over the years into a formal design theory [2]. We focused on
algebras of shapes [3, 4] in particular on their two-sorted version [5, 6]. In going
from geometric elements and their partial algebras to shapes and their algebras we
followed [5] while introducing some improvements along the way–like the two
procedures for shape operations + and – based on partial operations for geometric
elements.

In accordance with the title of the paper we examined spatial and nonspatial
calculations with shapes with an eye towards separating them. However, only
geometric elements are combined in the purely spatial fashion. The closest the
shapes get to this is when they belong to diagonal algebras. Diagonal decompo-
sitions are introduced to partition shapes so that each element of a decomposition
belongs to a different diagonal algebra. This way all spatial calculations take place
in diagonal algebras and may be done in parallel. The latter is an important feature
for computer applications. The resulting diagonal decompositions are turned into
shapes via simple nonspatial operations.

Boundaries of shapes [7] are investigated and proposition 3, originally from [7],
got a formal proof.15 Calculating with boundaries of shapes in place of shapes or in
parallel with shapes which was restricted to diagonal shapes only [8] is extended to
(all) shapes. This required the introduction of b-paired diagonal decompositions of
shapes and their algebras. George Stiny does similar calculations with shape
boundaries [2, pp 202–4] by partitioning shapes via coembeddedness equivalence
relation into parts for which proposition 3 holds. He also notes there that such
partitioning “is a nice way to store maximal elements in a computer”. Because only
one operation is available when calculating with shape boundaries, special kinds of
shape grammars are needed. Two such grammars were mentioned here, and more
are given in [8] and [9].

15 Proposition 3 may be seen as a consequence of propositions 6 and 8 of [11].
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Throughout the paper we used flat loci shapes stipulating no loss of generality
under assumption that moving to the curved shapes is a straightforward exercise.
Whether this is right may be assessed from [10] where calculating with curvilinear
shapes is examined in detail.
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