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Abstract Visual rules capture how a shape is perceived and what we choose to do
with it. Shape decompositions reveal alternative sets of shape parts. In visual design,
we can neither determine rigid modes of seeing nor doing or interpreting. Hence,
rules and decompositions cannot be rigid. This paper examines the productive and
interpretive process of visual calculation with shapes in the arts and architecture
context. Four simple computations with squares are presented. Algebras of shape
decompositions with lines are constructed from rules, and lattice diagrams reveal
their order. An identity rule for squares is applied, and a minimal decomposition in
parts of line segments is offered for the generated shapes, presenting all squares.
Decompositions change erratically as emergent squares are presented. When the
parts of a square change locally, new forms are identified globally, and the inter-
pretation of the whole shape shifts arousing the mind in various inventions.

1 Introduction

Rules are associated with play, algorithms, and design. The rules of art and design
are typically considered as the rules of seeing. They are serendipitous and
self-prescribed invented without conscious attention [1]. Kant introduces the idea of
free play in art, arguing that every original artwork ‘discloses a new rule.’ Original
artworks are unexpected and surprising to their producers. They are experienced
retrospectively even by their creators, who do not know how they achieved them
[2]. Csikszentmihalyi [3] agrees that: “a playful attitude is typical of creative
individuals”. Aristotle also [4] emphasized the association between chance (sύvη)
and art (sέvmη): “in a way chance and art are concerned with similar things… art
loves chance and chance loves art.” For similar reasons, the Greeks had placed
players under the protection of Mercury (in Latin), or Hermes (Eqlή1 in Greek).
Hermes was also the god of interpretation or hermeneia (eqlηmeίa), which implies
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that the interpretation of rules is involved in playing, and the interpretation of a
course of action leads to the formation of rules.

This paper examines the playful interpretive process of calculating with shapes
in the context of the visual arts and architecture. The presentation falls within the
area of shape computation theory. The underlying premise is that visual rules
capture how a shape is seen and how we act on it. Even if we choose to do nothing,
identity rules determine its parts. Shape decompositions present sets of parts for
alternative ways of seeing. In creative design, we can neither determine rigid modes
of acting on shapes, nor seeing or interpreting their parts.

The title “Design Without Rigid Rules” acknowledges Wittgenstein’s remarks
on children’s games, where rules and interpretations are made up and abandoned
effortlessly [5]: “In ball-games, there is winning and losing, but when a child
throws his ball at the wall and catches it again, this feature has disappeared”.
Children interpret the playground in unexpected ways. They play to enrich their
experience. They advance into new rules as soon as they get tired or exploit a game.
Pleasure does not depend on knowing where the game is leading. Sometimes it is
pleasant to think of design as a playground, where designers do not commit to rigid
rules. This proposition echoes the approach of Lionel March [6]: “In a shape
grammar, a rule is no fetter but, on the contrary, shape rules liberate. They provide
the language in which the designer speaks”.

Four computations with squares, in the algebra U12, are presented in this paper,
and algebras of shape decompositions with lines are constructed from shape rules.
The calculation starts from an initial square modified through addition and trans-
lation along the horizontal axis. An identity rule for squares is applied to the
produced shape, and lattice diagrams expose the order of the decompositions,
demonstrating that shape parts change erratically as emergent squares are presented.
For each produced shape, a minimal decomposition in parts of line segments is
provided to offer every square in the shape. Since the left-hand side of any visual
rule designates an act of “matching”, the provisions holding for identities hold for
any rule, independently from what is on the right-hand side. The examples
demonstrate that even with a narrow objective such as the recognition of emergent
squares, free interaction with shapes is indispensable. Local interests determine
global possibilities. When the parts of the square change in the local context, new
shapes are identified in the global context. The interpretation of the whole shape
changes globally each time the description of the square changes locally.

2 Background

The Roman historian Pliny (23–79 c.e.) mentions the Greek practice of throwing the
sponge soaked with color at the canvas to produce unpremeditated forms. Pliny
describes the struggle of Protogenes in painting the mouth of a panting dog [7].
A variant of this story exists in the 63rd Discourse “On Fortune” of Dio Chrysostom
(40–115, c.e.). This time the painter is Apelles [8]: “…finally in a fit of desperation,
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he hurled his sponge at the painting, striking it near the bit… Apelles was delighted
by what Fortune had accomplished in his moment of despair and finished his
painting, not through his art, but the aid of Fortune”. The tale describes a creative
process that relies on accident, where seeing is of primary importance. In the
Renaissance, artists used these same ancient ideas. Alberti [9] argued that art emerged
by accident when people came across a gnarled tree trunk or a piece of clay, whose
contours ‘needed only a slight change’ to look like something else. For the artist of
the Renaissance, the ordinary experience was a repository of forms if only one was
patient enough to look for them. Mantegna secreted zephyrs in the billowing clouds
of his images, Bellini’s rocks hid human faces, and the folds in Dürer’s drapery
contained a camouflaged catalog of physiognomic types (left part of Fig. 1). Like the
ancients, Botticelli and Leonardo would throw the sponge against the wall and
contemplate the stains. Leonardo [10] made an explicit link between the ambiguous
visual stimulus and creative imagination: “I cannot forbear to mention among these
precepts a new device for study which may seem trivial and ludicrous it is never-
theless extremely useful in arousing the mind in various inventions. And this is when
you look attentively at a wall spotted with stains, or with a mixture of stones and
veined marble of various colors, if you have to devise a scene, you may discover a
resemblance to various compositions, landscapes beautified with mountains, rivers,
rocks, trees, plains, wide valleys and hills in varied arrangements, or again you may
see battles and figures in quick action or strange faces, and costumes, with an endless
variety of objects which you could reduce to complete and well-drawn forms. And
these appear on such walls confusedly, like the sound of bells in whose jangle you
may find any name or form you choose to imagine.” Leonardo’s attentive glance
discovers emergent landscapes, faces, and more from the spots and stains of the wall.
In the eighteenth century, a systematic approach based on Leonardo’s idea of
attentive looking began by the English landscape painter Alexander Cozens, who
noticed the influence of the existing stains on the page: “The stains, though extremely
faint, appeared upon revisal to have influenced me, insensibly, in expressing the
general appearance of a landscape.” Cozens’ method on how to form landscape
compositions from stains (center part of Fig. 1) with the aid of five rules was pub-
lished in 1785 [11]. Making and interpreting random marks became a popular parlor
game in the late 1850s, in which Victor Hugo was an enthusiastic amateur (right part
of Fig. 1). Hugo’s creations influenced the development of automatism in modern
art. In 1921 the Swiss psychologist Hermann Rorschach, whose father was an art
teacher, began subjecting his patients to an inkblot test. Influenced by the poet
Justinus Kerner who made inkblots, drew them, and then wrote poems about what he
saw, and Freud, Rorschach created ten symmetrical plates presented to the subject in
a predetermined order. The doctor was asking: ‘What might this be?’ The blots
triggered associations and offered data that would enable the psychologist to make
judgments of character.

In 1949 John von Neumann noticed [12] that interpreting a shape or picture does
not differ from a Rorschach test: “with respect to the whole visual machinery of
interpreting a picture, of putting something into a picture, we get into domains
which you certainly cannot describe in those terms [of visual analogy]. Everybody
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will put an interpretation into a Rorschach test, but what interpretation he puts into
it is a function of his whole personality and his whole previous history, and this is
supposed to be a very good method of making inferences as to what kind of a
person he is.”If shapes can be interpreted and structured infinitely, they are
excluded from the permanent logical-visual description. In the end, von Neumann
avoided dealing with visual description and preferred game theory, mathematical
economics, quantum logic, and the mathematical models of the atomic bomb.

These references retrace playful processes of different historical ages in which
seeing informs perception, art, and design when an observer distinguishes and
interprets ambiguous visual appearances. A computational equivalent is presented in
this paper, demonstrating that non-rigid modes of seeing are vital in design.
Calculations with shapes and algebras of shape decompositions exhibit that even
with a narrow target in the mind of the observer, the parts of shapes change erratically
when emergent shapes are presented. When the parts of a selected subshape change
locally, new forms are identified globally, and the interpretation of the whole scene
shifts in front of our eyes, “arousing the mind in various inventions”.

2.1 Computational Design

Computational design was introduced in the ’60s to install generative methods in
design and establish mathematical principles through which we can practice and
explain the design process. Different algorithmic accounts of design engaged a
variety of formal means, such as set theory in Alexander [13], graph theory in
Steadman [14], Boolean algebra in March [15], computer programming languages
in Eastman [16], and in Mitchell [17], formal syntax in Hillier et al. [18], and shape
grammars in Stiny and Gips [19]. Process is arguably the most potent notion of
computational design research. Rule-based computational systems were used in the
description, prescription, or reference of design processes. In description, compu-
tational rules were used to map the actions of designers, to capture the productive

Fig. 1 Left: Study of drapery, by A. Dürer. Center: Landscape study by A. Cozens. Right: Inkblot
drawing by V. Hugo
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steps of a process, and to affirm that a particular course of action produces the
desired results. In prescription, rules were used as instructions to determine a norm
of production and for implementing devices with strong generative capacities like
computer scripts or programs. Finally, rule-based design systems enabled a detailed
retrospective reference, analysis, and evaluation of a design process and its
outcomes.

In the early years of computational research, computational design methods have
found immediate application in engineering, especially in the decomposition and
generation of designs from functions [20]. Functional decomposition involves
breaking down the function of a device as finely and clearly as possible in a
hierarchy of functioning parts. In the context of engineering, the novelty was often
superseded by the requirements of economy and efficiency. Conceptual and visual
ambiguity was generally treated as noise. In contrast, in the context of the fine arts
and architecture, the individuality of expression always remained in demand, and
ambiguity was, in most cases, valued as an enabler of creativity. Subsequent
computational design research confirmed the importance of ambiguity as an enabler
of creativity and invention and as a condition of computing intelligence. Suwa et al.
[21] exhibit that the impetus for the invention of essential issues or requirements
leading to creative design rests on “unexpected discoveries”, the acts of attending to
visual-spatial features in sketches, which can be unintentional. In comparing how
visual artists and scientists interpret graphs and visual art, Kozhevnikov [22] shows
that visual imagery supports diverse types of thinking. Visual artists interpret
abstract art as abstract representation, while scientists and humanities professionals
interpret it literally. In contrast, visual artists interpret graphs aspictures, while
scientists interpret graphs abstractly. Tversky [23] claims that creating spatial
representations requires both abstraction and ambiguity. Ambiguity enables the
multiplicity of interpretation that is the foundation of creative thought. Making and
revising these representations reflects the ongoing change of perspective.

The philosopher of computing Brian Cantwell Smith [24] realizes that current
computational systems cannot deal with the ambiguity that results from the mul-
tiplicity of perspectives. “Only recently have we begun to know how to build
systems that support multiple perspectives on a single situation (even multiple
perspectives of much the same kind, let alone perspectives in different, or even
incommensurable, conceptual schemes).” Brian Cantwell Smith notes that
designers and artists drawn into computing are not just users of computation. They
are participants in its invention. In this light, the input of artists and architects
becomes invaluable. Digital, high-speed computing goes beyond the combinatorial
capabilities of the human mind, extending variation to a point where it seemingly
breaks in creative results, but the outcome relies entirely on what is rigidly encoded
in the start. Shape grammar theory was introduced in the ’70s to account for
calculation with unstructured shapes and shape ambiguity without prescribed
underlying representation for shapes.
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2.2 Shape Grammars

Research in shape grammars has demonstrated that a corpus of designs can be
treated formally by rules similar to a mathematical system. Shape grammar theory
was developed for over four decades in a series of papers [25–29], and it was
recapitulated in [30]. Stiny emphasizes the importance of seeing in shape gram-
mars: “seeing informs calculating in art and design so that calculating overtakes
computers and what they hold, whether in logic or with data and learning.”
Another characteristic of shape calculations is their ambiguous disposition: “there’s
plenty of anxiety not knowing what’s next, and plenty of pleasure and delight, too,
trying to find out.” Visual excitement and delight arise when “definite things go
together in one way, only to change into different things arranged in another way.”
Alternate modes of composition and decomposition result from the embed-and-fuse
cycle, which allows spatial elements to fuse and rules to identify parts without
imposing structural constraints. In the context of shape grammars, one is “free to
see, in an open-ended process in which nothing prior is given or known.”

A shape grammar is a rule-based system that generates a set of visual config-
urations (shapes) by capturing the interaction of elements of 0, 1, 2, or 3 dimen-
sions. Shape grammars include a calculating and a syntactic-interpretive part. The
calculating part offers an algebraic framework for computations with shapes. The
syntactic-interpretive part consists of productive rule statements assigning structure
and meaning to the computations.

The algebraic framework of shape grammars includes shape algebras. An
algebra is a set of elements that is closed under a set of operations. Algebras can be
distributive, associative, etc., while axioms can distinguish algebraic structures such
as rings, lattices, and Boolean algebras. A sub-algebra is a subset of an algebra that
is also an algebra.

Shape algebras compute with shapes. A shape algebra U includes the empty
shape (0), and it is closed under the Boolean operations of sum (+), difference (–),
and product (�). Each shape in U is a finite arrangement of shapes. An algebra Uij

includes i-dimensional shapes in a j-dimensional space, with i � j and i = 0, 1, 2,
and 3 for points, lines, planes and solids.

Euclidean transformations t, acting on shapes, are included in the algebras.
Krstic [32] and [33] describes two alternatives for including the transformations in
the algebras Uij. The first includes transformations as operators in the set of
operations acting on the set Uij

� �
of shapes. This turns algebras Uij, into gener-

alized Boolean algebras with infinite operators. The second proposition is to include
the transformations Tj, in the set Uij

� �
. This turns shape algebras into two-sorted

algebras Uij;Ti
� �

, with a Boolean and a group part that handle structure and
symmetry respectively.

The part relation � applies to shapes made out of lines, planes, or solids, while
points can be only identical or discrete. The part relation � is a formal relation
capturing the fact that spatial elements of the same dimension with i > 0 can be
embedded on one another without predetermined joints. The relation � is an order
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relation and renders the sets Uij of shapes, into relatively complemented lattices.
The relation � is antisymmetric, reflexive, and transitive. Further, each lattice Uij

is distributive.
For any two shapes in Uij there is a least element the empty shape, but in all

algebras—except U00—there is no upper element since there is no shape containing
all shapes. Although there is no upper element for shapes, complements are defined
in a relative manner. Hence, each lattice Uij is a relatively complemented one, and
because the lattice is distributive, all relative complements are uniquely determined.

The lattice-theoretic operations of join \ , meet [ , and complement substituted
with the operations of sum, product, and complement can form a Boolean algebra.
The algebra U00 containing a single point is an example. The rest of U0j, U1j, U2j,
and U33, algebras are not Boolean algebras because they are missing the unit
element: there is no shape containing all shapes. Mendelson [34] notes that similar
algebraic structures with two binary operations, product, symmetric difference, and
0, without unit, are Boolean rings. Birkoff [35] shows a one-to-one correspondence
between Boolean algebras and Boolean rings with unit. Tarski [36] refers to gen-
eralized Boolean algebras as Boolean rings. Since for every shape y 2 Uij, (with
y 6¼ 0), there are potentially infinitely many elements x divisible by y the ring is
atomless.

The syntactic part of a shape grammar uses productive rule statements. Based on
Post, [37] a production system associates a set of conditions to a conclusion that the
conditions are said to produce. A production system consists of a set of initial
strings of symbols and a set of instruction formulas or rules. Given a set of initial
strings {u1,…, un} with n � 1, and/or strings derived from them by the rules, a
production indicating ‘{u1,…, un} produces un+1’, or: ‘u1,…, un ! un+1’.
A shape grammar is a production system consisting of the initial shape and rules
that apply to shapes to derive other shapes. As shown in [19, 25] for shapes A, B,
C, a rule: A ! B applies to an initial shape C to generate the shape C′, whenever
there is a transformation t that makes the shape t(A) part of the shape C. The left
part of the rule plays the role of the condition of the rule statement. Since A is a
shape and C is another shape, t(A) can match on several parts of C. If the t
(A) � C, the rule subtracts the shape t(A) from the shape C and adds the shape t
(B) in its place. Concisely: C′ = [C t(A)] + t(B). The sequence of shapes generated
by the rule A ! B is noted: C ) C0 ) C00 ) . . . ) C0. . ..

Given that the rule search has been carefully done, rule ordering does not
introduce new information. Nonetheless, except generation, shape grammars can
serve as formalized explanatory theories giving account for how rules apply to
generate designs. A grammatical examination of stylistic change in design is found
in Knight [38]. Knight emphasizes the importance of rules and the visual medium
that grammars use to characterize the composition or syntax of designs: “shape
grammars are systems of rules for characterizing the composition or syntax of
designs in spatial languages…the graphic medium in which shape grammars are
expressed is like the medium in which designers and artists conceive and express
their work.” Knight [39] focuses on the emergence of unanticipated shapes, apart
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from the subdivision, and proposes ways to predict them and define rules to handle
them within grammars. Knight [40] examines if grammars can be creative and
expressive devices: “shape grammars were developed to be explanatory, to give
insights into the designs they generate…the pictorial representation of shape rules
endows them with expressiveness and transparency that provide opportunities for
the kind of creativity described.” Recently, Knight [41] demonstrates how gram-
mars can be adapted for calculations with material things. The specification of
material things involves “augmenting shapes with other descriptions.” It is defined
as an ordered pair consisting of a shape specification and a material specification,
with rules illustrating in parallel shape and material states.

Stiny [42] emphasizes the importance of a special computational rule: A ! A.
Applied to a shape C under a transformation t, it leaves C unchanged. The shapes
(C-t{A)) + t[A) and C are identical. Rules of the form A ! A are called identities.
They lack constructive force, but they have observational value. By distinguishing
the shape A within C, the identity organizes its parts in decompositions.
A decomposition represents a shape as a finite, non-empty set of parts that sum to
the shape. Shapes in Uij with i > 0 do not have fixed decompositions. Hence, they
enable shapes that look the same to be described by alternative point sets.

Calculation in a shape grammar starts with the initial shape, which is gradually
changed by recursive rule application that adds, erases, or replaces some parts with
others, or subdivides it in alternative ways.

3 Calculating with Shapes and Their Decompositions

Computational rules encapsulate how a shape is seen and how we act on it. If we
decide to do nothing, a rule may still organize a shape in parts. Shapes with lines,
planes, and solids can be divided in infinitely many ways. However, in
design practice, we only need a finite number of divisions. A composition of shapes
is a shape, a finite arrangement of basic elements of 0, 1, 2, or 3 dimensions
organized in the space of 1, 2, or 3 dimensions—the parts of such a formation fuse
in a unified whole without explicit subdivisions. Decomposition is the analysis of a
shape into a finite, non-empty set of elements that sums to the shape. For shapes in
algebras, Uij with i > 0 decompositions contain shapes rather than collections of
points, and computations with parts are carried out as computations with shapes.
The two acts of decomposition and composition correspond to what Stiny [16] calls
the “embed and fuse cycle”. It allows spatial elements to fuse and rules to identify
parts without structural constraints.

Krstic [43] distinguishes two families of structured decompositions, namely,
discrete and bounded. Discrete decompositions offer a minimum structure because
there is no overlap between their elements. Bounded decompositions contain the
whole shape they analyze and, occasionally, other parts. In bounded decomposi-
tions, the parts are always seen in the context of the whole, while the empty shape
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implies the global context or surroundings. Both global and local contexts are
useful in design practice. Discrete and bounded decompositions can be extended to
more structured entities that handle continuity and the recasting of shape compu-
tations into computations with atoms. Stiny [28, 44] calculates decompositions
through topology and Boolean algebra. Krstic [43] uses lattices, hierarchies,
topologies, Boolean algebras, and Boolean algebras with operators.

Boolean algebra, topology, and lattices construct algebras of shape decompo-
sition in the featured examples. If B(a) denotes the set of all parts of a shape a, then
the set B(a) is a sub-algebra of the algebra in which a is defined. If a is a shape
from Uij, then B(a) is a Boolean algebra [33, 42]. The Boolean algebra B(a) is the
maximal structure of the shape a, and it is a two-sorted shape algebra that is closed
under the symmetry group of a. The algebra B(a) is a proper subalgebra of Ui. The
shape a has parts that are shapes from Uij closed under the Euclidean transfor-
mations and the Boolean algebra B(a) as upper bound.

As in Krstic [33], the structure of a shape can be relativized to each of its parts. If
a is a shape, A its decomposition, and shape b � a, then b is implicitly structured
in decomposition B = {b � x | x 2 A}, which is the relativization of the structure of
a to b.

Jowers et al. [45] show that new shape parts created by a transformation in a
design activity “may decompose the shape into infinitesimal parts for which it is
impossible to make provision”. The authors conclude that it is instructive to take a
shape perspective on designing: “choosing/constructing parts, transforming those
parts, fusing them back together while revealing new parts.” In the four examples
with squares that follow, algebras of shape decompositions with lines are con-
structed from an identity in the algebra U12. The structure of the whole shape
changes globally every time the description of the square is modified locally, and
new shapes become noticeable as the parts change.

3.1 Four Compositions with Squares

The calculation of the example begins with a square. The most common decom-
position of a square is four maximal lines [sqx] = 4 lines. The four maximal lines
form a trivial topology for the square, including 15 subshapes and the empty shape.
A Boolean algebra B(x) is defined. The set of finite subsets of B(x) that sum to x is
the set of all decompositions of x.

A lattice organizes the subshapes based on the � relation. At the top is placed
the whole square and at the root the empty shape. The four maximal lines and their
combinations occupy the leaves.
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The initial square is modified through the addition and translation of squares
along the horizontal axis. The translation of squares produces a grid from where an
identity can retrieve new squares. This approach echoes March [6]: “when two
triangles [squares] intersect, there is the possibility that additional triangles
[squares] will emerge. This characteristic of shapes gives rise to spontaneous
creation (or destruction).”

Composition 1 The additive shape rule (left) adds a square. The produced shape
contains two squares. Based on the initial decomposition sqx = 4 lines, the new
shape is described by a set of 8 maximal lines.

An identity rule for squares (left) is applied to retrieve the squares.
Three squares are distinguished in total. One of them is emergent (right).

Stiny [42] shows that identities work as observational devices. The structure
determined for a shape C is the record of their activity. An identity is applied under
a transformation t, and the mapping h(x) = x for every part x of C. Continuity is
preserved if the closure operations C and C′ for C before and after the identity is
applied, satisfy two conditions: C(t(A)) = t(A), and C(x) = C′(x). The shape t(A) is
closed, and the shape C retains the same topology before and after. The identity
recognizes t(A) as a division of C, and a structure is determined for C. Table 1
presents the shapes C, t(A), and its complement C-t(A). It also presents the closure
of the subshape that appears in the fourth column. Based on Earl [46], the closure
structure associated with the elements of C gives closure of a shape x in C as the
smallest element of C containing x.
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Alternative parts and their complements can form Boolean algebras, which
organize the structures in equivalence classes. The two decompositions with
squares form two distinct Boolean algebras.

The structure of the shape can be relativized to each of its parts. The top row of
Table 2 presents the initial decomposition of shape C, a set of 8 lines. The left
column includes the recognized subshapes b and c. The shapes b � C and c � C
are structured in decompositions B = {b � x | x 2C}, and C = {c � x | x 2 C}.

Table 1 Complement and closure of a subshape A in C

C t(A) C-t(A) Subshape Closure 

Table 2 Relativization of the two decompositions for C
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The lattice presents a decomposition for C that contains twelve lines.

In this composition, six line segments [sqx = 6] describe the initial square.

Two different decompositions (sums of parts) describe the square in C. They
include four and six line segments apiece.

A topology and Boolean algebra, including the 212 permutations of the twelve
atoms and the empty shape, exhaust the sub-shapes of C. Even with the narrow
objective of recognizing squares, structural change fuels new possibilities. New
shapes are accessed globally as the parts of the square change locally. Examples of
other shapes identified in the topology are:
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A non-empty subshape a of shape C (with a, C 2 Uij and i, j 6¼ 0) fills the
algebraic conditions of an ideal (Table 3):

(i) if x � a and y � a then x + y � a;
(ii) if x � a and y � C, then x ⋅ y � a.

(ii) is equivalent to the proposition (ii′): if x � a and y � x, then y � a.

Proof Assume (ii) and let shape x � a and shape y � x. Since y � x, it must
also be y = x ⋅ y. Also, by (ii) y � a. Conversely, assume (ii′) and let x � a and
y � C. Since x ⋅ y � x, it follows by (ii′) that x ⋅ y � a.

The empty shape is part of every shape x. It is also part of every ideal.
Any subshape a of a shape C, with a < C (and a 6¼ C), fills the algebraic

conditions of a proper ideal. An algebra containing the empty shape as the only
proper ideal is called simple. The Boolean algebra U00 containing a single point fills
the conditions to be called simple.

Dually, a non-empty subshape b of shape C (with b, C 2 Uij and i, j 6¼ 0) fills
the algebraic conditions of a filter (Table 4):

(i) if x � b and y � b, then x ⋅ y � b;
(ii) if x � b and y � C, then x + y � b.

(ii) can be replaced by (ii′): if x � b and x � y, then y � b.
The equivalence of the conditions (ii) and (ii′) follows from the equivalence

between x � y and x + y = y. The reader is invited to check that these conditions
hold, and the proof for filters follows dually from that of ideals.

Table 3 A non-empty subshape a of C fills the algebraic conditions of an ideal

C x y x + y x  y 

Table 4 A non-empty subshape b of C fills the algebraic conditions of a filter

C  x y x  y x + y 

Design Without Rigid Rules 119



Given any subshape d of a shape b (d � b) with d, b 2 Uij and i, j 6¼ 0, the
intersection s of all subshapes a of b containing d (i.e., such that d � a), is itself a
subshape of b that contains d. There is at least one subshape of b containing d,
namely the shape b itself. Assume that the shapes x and y are parts of the inter-
section s and that z is part of shape b. If a is any subshape of b containing d, then
x � a and y � a. Hence, the sum x + y � a.

Likewise, x ⋅ z � a. Thus, x + y and x ⋅ z are in s, and therefore s is a subshape
of b and also an ideal.

In any shape b 2 Uij with i, j 6¼ 0, a set d of subshapes of b organizes an
inclusion chain of subshapes in b if and only if, for any subshape a1 and a2 in d it is
either a1 � a2 or a2 � a1. The relation � orders d. The union of such an
inclusion chain of subshapes is again a subshape of shape b. Composition 1 is
modified by addition as it is presented next.

Composition 2 A copy of shape (left) is added under the specified translation
(center) to produce the next shape in the sequence (right).

Nine squares are identified. With their complements, the whole shape, and the
empty shape, they form two discrete, bounded decompositions. Three emer-
gent squares are presented (Table 5).

A new decomposition is introduced for composition 2, enabling the recognition
of all nine squares in the shape. In this context, eight line segments describe the
initial square [sqx = 8 lines].

Three different decompositions describe the square in the composition.

Table 5 The nine squares and their complements are presented below. The three emergent
squares are shaded.

Discrete Decomposition 1

Discrete Decomposition 2
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They include four and eight line segments apiece.

The sum of eight line segments per (initial) square yields a set of thirty-two
atoms for composition 2. A Boolean algebra, including the 232 permutations,
exhausts its sub-shapes. The structural change introduced by recognizing the three
emergent squares enables the recognition of other shapes. Examples of new shapes
in the topology are the following:

Composition 2 is modified by translating the second, added pair of large squares
along the horizontal axis.

Composition 3 A part of composition 2 (left shape) is translated towards the left
as shown (center shape) to produce the next shape in the sequence (right shape).

 

Eleven squares are identified in total. With their complements, the whole shape,
and the empty shape, they form four discrete and bounded decompositions,
more specifically, Boolean algebras (Table 6). Each decomposition determines
alternative parts for the shape. Seven emergent squares are presented.

A new decomposition is introduced for composition 3. Ten atomic line segments
describe the initial square [sqx = 10] and enable the presentation of all eleven
squares in the shape.

Five alternative sums of parts describe different occurrences of squares in the
shape.

They include four, eight, and ten line segments apiece.

The sum of ten line segments per (initial) square yields a set of forty atoms for
the description of composition 3. A topology and Boolean algebra, including the
240 permutations of these atoms, exhaust its sub-shapes. The recognition of the
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seven emergent squares enables the recognition of other shapes. Examples of new
shapes in the topology are the following:

Composition 3 is modified again by translating the second pair of large
squares along the horizontal axis.

Composition 4 A part of composition 3 (left shape) is translated towards the
right as shown (center shape) to produce the next shape in the sequence
(right shape).

Thirteen squares are recognized in the new shape, with their complements, the
whole shape, and the empty shape, they form five discrete, bounded decomposi-
tions, Boolean algebras (Table 7). Each decomposition presents alternative parts for
the whole shape. The decompositions are reduced to three if symmetrical structures
are neglected. Nine emergent squares are identified.

A new decomposition is introduced for the whole shape in composition 4. Ten
atomic lines describe the initial square [sqx = 10], enabling the presentation of all

Table 6 The eleven squares and their complements are presented below. The seven emergent
squares are shaded.

Discrete Decomposition 1

Discrete Decomposition 2

Discrete Decomposition 3

Discrete Decomposition 4
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Table 7 The thirteen squares and their complements are presented below. The nine emergent
squares are shaded.

Discrete Decomposition 1

Discrete Decomposition 2

Discrete Decomposition 3

Discrete Decomposition 4

Discrete Decomposition 5

thirteen squares in the shape. Although the number of parts is the same as in
composition 3, the ten line segments differ in position and size.

Four alternative sums of parts describe the different occurrences of squares in
composition 4. They include four, eight, and ten lines apiece. In all four sets, the
line segments differ in position and size from those distinguished in composition 3.

The sum of ten line segments per (initial) square yields a set of thirty-four atoms
for composition 4. A topology and Boolean algebra, including the 234 permutations
of these atoms, exhaust its sub-shapes. The presentation of the nine emergent
squares enables the recognition of other shapes. Examples of such shapes included
in the topology are the following:
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4 Results

Four computations with squares were presented. The sequence of additions and
translations of squares appears next:

In the following Table 8, the top row presents the produced compositions 1, 2, 3,
4. It also presents their products with the initial square and the initial shape.

Table 9 Summarizes the modifications in the structure of the initial square before
and after each step of the computation.

Table 8 The produced compositions 1, 2, 3, 4 (top row) and their products with the initial square
and the initial shape.

Table 9 Modifications in the structure of the initial square at the consecutive steps of
the computation.

Shape # of 
initial 
squares

# of
atoms 
per 
square 
before

# of 
emer-
gent 
squares

# of 
squares 
after
compu-
tation

# of
atoms 
per 
square
after

# of
atoms 
per
design

Atoms 
per
initial 
square
[sqx]

1 4 -- 1 4 4 

2 4 1 3 6 8 

4 6 3 9 8 32

4 10 7 11 10 40

4 8 9 13 10 34
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5 Discussion

Rules are associated with play, algorithms, and design. Shape rules encapsulate
how a shape is seen and how we act on it. If we decide to do nothing, rules can still
distinguish the parts of a shape and form a decomposition. In this paper, Boolean
algebras, topology, and lattice diagrams were used to construct algebras of shape
decompositions from rules, to encapsulate how a shape is seen. A Boolean algebra
B(a) of a shape a is the maximal structure of the shape a that serves as its upper
bound. The parts of a are also shapes in the same algebra. The Boolean algebras
presented in this paper were proper sub-algebras of U12.

Shapes are usually perceived unanalyzed. A composition of shapes involves
spatial elements that fuse in a unified whole without explicit subdivisions in parts.
However, in creative design and technical disciplines, we explore shape decom-
positions to satisfy various demands. A shape decomposition analyzes a shape into
a finite, nonempty set of parts that sums up the shape. Shape decompositions recast
computations with shapes into computations with sets of points. They have an
important role because they emphasize diverse ways of seeing. The two acts of
composition and decomposition of shapes correspond to the “embed and fuse cycle”
[31], which allows rules to identify parts and spatial elements to fuse without
constraints. Using unanalyzed shapes is of paramount importance for inventing new
things. Providing a structure is necessary for assigning semantic, functional,
material, and other properties. The interplay between shape and structure is
dynamic. Shapes stand for anything we imagine, and having the ability to revise
shape and structure to reflect a change in perspective is critical.

The featured calculations with shapes included adding and translating squares
along the horizontal axis. An identity rule was used to present every square in each
composition. Transformations like translations apply globally, while shape rules
apply locally. Emergent squares were retrieved from the produced shapes with an
identity rule. With a narrow, local interest in identifying squares, the examination
of decompositions before and after the identity revealed that the sums of parts were
changing erratically. When the decomposition of a square was changing locally, the
parts of the overall shape were shifting globally. The interpretation of the whole
shape was shifting in front of our eyes, arousing the mind in various visual
inventions.

In design, shape transitions happen haphazardly, and logical structure and
interpretation apply retrospectively. The conversion of unstructured shapes to
structured sets and back is an essential component of the design process. Having a
simultaneous view of both worlds is vital. This is a unique strength of shape
grammars in algebras with elements of higher and zero dimensions. We break a
shape into parts, provide an interpretation, and then fuse everything back to a
unified whole and start anew. The process demands a fair amount of reflection and
imagination that slows down progress. It differs from object-oriented programming
or using a computer program. Shape, structure, and interpretation evolve slowly,
and transparency is critical. Doing the same with a computer, in exchange for speed
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and efficiency, is an entirely different experience. The computer presents a “correct
answer” and removes the seeing/thinking from the process. Design was not meant
to be fast nor efficient in this way. More recently, a new generation of computa-
tional technology, the Shape Machine, presented in Economou et al. [47], promises
to “fundamentally redefine the way shapes are represented, indexed, queried and
operated upon” and resolve many of the long time overdue problems. Last, a sloppy
description with which the designer might feel free to identify alternative modes of
interpretation might be better than a meticulously visualized, polished one. The
more determined is a description, the more rigid the rules that intervene in inter-
pretation, and the more one has to adjust the action to certain predefined routines of
operation. The less determined these details are, the more direct the way of inter-
acting and interpreting in intuitive terms is, and the fewer predetermined rules
intervene.

Future research on algebras of decompositions may focus on the requirements of
subfields of design, such as architectural design, product design, or engineering.
A parallel study on decompositions serving specific subdomains of a workflow
could be advanced. An example is the inclusion of material properties, like in
Knight’s making grammars. The approach could be extended to include other
properties, such as semantics, utility, time, or other. The sole provision to all the
above is to adhere to the visual character of shape grammars. As Stiny [31] puts it:
“shape grammars from the start have been part and parcel of a full-fledged aes-
thetic enterprise in open-ended visual perception, and other modes of sense
experience.”
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