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Abstract This paper studies the effects on learning and performance for a human
using a virtual assistant to perform a design space exploration task—design a
satellite constellation for Earth Observation. We conducted a study at Texas A&M
University with N = 18 STEM students, who were asked to use two versions of an
assistant to perform the task. One version acted as an “Assistant”, answering
questions from the user, while the other version acted as a “Peer”, giving its opinion
and recommendations to the user. Subjects completed surveys on usability and trust
in automation, two learning tests, and a subjective survey on their learning and on
the virtual assistant. The more subjects used and interacted with the assistant, the
more they learned about the problem. While these findings are limited to a par-
ticular application and student population, they provide some evidence that virtual
assistants can improve learning in design space exploration.

1 Introduction

Virtual Assistants (VAs), also known as cognitive assistants, have surged in pop-
ularity in the last 8 years, after the appearance of consumer products from Amazon,
Microsoft, Google, and Apple. The catalyst of the modern vision of what a VA is
and can do can be traced back to CALO (Cognitive Assistant that Learns and
Organizes) [1], a project from DARPA to integrate existing AI technologies to
create a cognitive assistant, which was redefined to mean a software agent that
responds to human commands, questions in natural language, and performs tasks
based on that input. Siri, the commercial VA from Apple, is a spin-off of CALO.

There is a long history of using a variety of AI systems for the design of complex
systems. They have been used to represent and generate design alternatives [2], to
search the solution space [3], to evaluate alternatives [4], and to provide interactive
visualizations for the designer [5, 6].
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In most of these systems, either the AI is a tool to the human designer [7] or the
human is an input to an automated tool [8], but it is rare to find cases where
collaboration between human and machine is emphasized. In contrast, current
research in human—machine interaction suggests that a more collaborative
approach may increase performance [9].

In this context, we started developing Daphne [10] three years ago, with the
purpose of bringing the usability and cognitive unloading abilities of general VAs
to the early design of complex systems, specifically Earth observation satellites.
Daphne is centered on improving design space exploration, which is a vital part of
the early design of complex systems.

Feedback gathered during exit interviews in a prior study with practitioners
emphasized the importance of being able to justify the decisions from such studies
[10]. This means the slightly negative trend for learning we observed in the
experiment in [10] is worrisome, even though the method we used to measure
learning in that experiment may not take into account some kinds of knowledge a
test subject might gain while using Daphne. Even though we showed that perfor-
mance does increase when using Daphne at its full capability, this means nothing if
designers cannot justify the outputs of Daphne to stakeholders. This realization
prompted development of explanation strategies for Daphne [11] and the study
described in this paper.

In this study, we evaluate the response from users to different parts of Daphne,
and we evaluate how learning and understanding of the problem changes based on
the usage of Daphne, in hope of extracting conclusions on how to design VAs for
engineering design problems that can both help improve performance and learning.

We define learning in the context of design exploration as improving the
understanding of the structure of the design space, e.g., the trade-offs between
different design criteria, the sensitivities of design criteria to design decisions, or the
existence of families of similar designs with similar performance. Currently, there
are no agreed upon metrics to measure human learning in design. Bang and Selva,
inspired by Bloom’s taxonomy of learning [12], proposed that these metrics should
encompass different cognitive processes such as remembering information,
understanding concepts, analyzing the information, and creating new concepts [13].

2 Daphne Architecture

Daphne’s main components and data flow are described below. Daphne has a web
frontend that provides access to its capabilities and acts as the main User Interface
(UI) for the system. A screenshot from this interface can be seen in Fig. 1. There are
3 main areas in the interface. The left area has a menu with all the available
functions; the center area contains the design space plot—which allows for design
space exploration—and the different tools available to the user, including a Design
Builder; and the right area has the chat history between Daphne and the user.
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The frontend is in charge of transmitting the user requests to the Daphne Brain, a
web server in charge of forwarding all requests to the correct service. Requests can
be natural language requests (text or voice) or classical interactions such as mouse
clicks, hovering, or drag&drop.

Each request is processed by the Brain and sent to one of many roles, which are
small programs that are in charge of handling groups of similar requests. All roles
are also capable of being proactive and sending information to the user without a
prompt, as described in [14].

There are 5 roles in Daphne. The first one is the Engineer, which is in charge of
answering questions as a domain expert, as well as handling evaluation of the
designs using models. Both functions of this role are supported by the VASSAR
backend [15], a rule-based system for evaluating the performance and cost of Earth
observation missions. The second one is the Analyst, whose job is to mine the
dataset for knowledge on the shared features of designs in regions of interest in the
objective space. This is supported by the iFEED backend [16], which searches for if
—then rules that best explain a user-defined design region using a variety of rule
mining algorithms. The third one is the Explorer, which controls a background
search for better designs. The search is performed through the algorithm described
in [17], which is an extension of a multi-objective genetic algorithm to include
domain knowledge to make it more efficient. The fourth one is the Historian, which
takes questions about past and current existing missions and answers them based on
the data in the CEOS database.1 The fifth and final one, the Critic, takes a design as

Fig. 1 Daphne’s interface

1 http://database.eohandbook.com/.
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an input and gives feedback on that design to the user. This feedback comes from
all the other roles, but is synthetized in a few sentences from each role.

3 Experimental Design

To study the effects on learning and performance of using Daphne in the Earth
observation task, we conducted a study at Texas A&M University with a diverse
STEM student population. To address concerns about the measure for learning used
in [10], we used a new, more holistic measure for learning in this study, which is
described in the Dependent Variables subsection. We hoped to see that the more
users interacted with Daphne, the more they learned. Also, while it was not the
focus of the study, we explored if certain roles or functions of Daphne help users
more than others in relation to both learning and performance.

Thus, we set the following hypotheses for the experiment:

– H1: There is a positive correlation between degree of Daphne usage and
learning about the problem.

– H2: There is a positive correlation between degree of Daphne usage and per-
formance on the design task.

– H3: There is a difference in the task performance when using Daphne as a Peer
vs Daphne as an Assistant.

– H4: There is a difference in learning when using Daphne as a Peer vs Daphne as
an Assistant.

4 Demographics

We recruited N = 26 Texas A&M Students from STEM degrees. Recruitment was
through mass email on the university network, social media posts, and as part of a
capstone design class for Aerospace Engineering students. All participants were
promised a $15 gift card for a major online outlet as a token of appreciation for
participation in the experiment. The main demographics are summarized below:

– Age range: 20–33 years old
– Gender: 20 identified as Male, 6 as Female, 0 as Others
– Current degree: 14 were BS students, 7 were MS students, 4 were PhD students,

and 1 was a postdoctoral researcher
– Major: 12 were studying an Aerospace Engineering degree, while the rest were

from various disciplines of STEM
– Prior Experience in Satellite Design: 7 subjects had previous experience, while

19 did not
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5 Experiment Protocol and Conditions

After signing all relevant IRB forms, each test subject sat down on a computer
provided by us. Then, the subject was exposed to a tutorial explaining the protocol
being described here and how to use all the functions of Daphne. The tutorial was
interactive and thus had no time limit. This made the experiment have a variable
duration, but we noticed in past experiments that limiting the tutorial time hurt
performance. Once the tutorial was done, each test subject had to solve the design
task under two different conditions, Peer vs Assistant. Each condition’s available
features in Daphne are detailed in Table 1 below. Participants were given 15 min to
solve the task for each condition. After each task, the test subject was asked to
complete a learning test, which was not time limited. At the end of the experiment,
a semi-structured exist interview as conducted where subjects were asked to give
their opinion on the experiment, the tool, and the task, to gather feedback for
improving the system and the experiment.

Each subject performs two tasks (one per condition). The experimental design is
between-subjects for H1 and H2 and within-subjects for H3 and H4. Each partic-
ipant solved a problem of similar difficulty for each condition, and the order in
which the conditions were given to the user was randomized to decrease the
learning effect. All interactions with Daphne were recorded, from questions asked
through the natural language interface to button clicks and hovering.

6 Task Details

The task given to the test subjects was the same as in [10] in order to allow for
comparisons. Subjects were asked to design a satellite system to monitor soil
moisture. They were given a set of 5 candidate orbits (e.g., different altitudes and
inclinations) and a set of 5 candidate instruments (e.g., different types of infrared

Table 1 Features available in each condition

Capabilities Condition 1—assistant Condition 2—peer

Design space exploration
p p

Design building
p p

Explorer
p p

Engineer
p

Analyst
p

Historian
p

Critic
p
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and microwave sensors), and were asked to assign instruments to orbits with no
constraints: every instrument can be in any subset of orbits, including none and all
of them. The VASSAR backend [15] was used to assess the scientific value and
cost of each design. Specifically, test subjects were tasked with finding a set of
designs that push the boundary of the cost-science tradeoff (more formally the
Pareto front) for costs between $800M and $4000M.

7 Dependent Variables

1. Performance: The true Pareto front for this design task is not known, so in
order to measure performance we found an approximation of this optimal set by
running a multi-objective genetic algorithm [17] for 10,000 evaluations. With
this reference set, we defined the performance in the task as the distance
between the user’s Pareto front and the “reference” one found with the genetic
algorithm. This distance was measured through the Hyper-Volume (HV) metric,
a well-known metric in multi-objective optimization. We normalized the metric
by bounding it between 0, if the subject’s HV is the same as the starting one, and
1, if it is as good as the HV of the reference set.

2. Learning: One of the main limitations in past experiments was the metric for
measuring learning. For this paper, we build on a study by Bang and Selva [13]
on measures of learning for tradespace exploration problems. Their conclusion
is that a learning test must target different cognitive processes such as remem-
bering, understanding, analyzing, and creating. To do this, we defined three
tests. The first one consists of 12 identification questions, where for a design
chosen from the dataset the user was asked whether that design is close to the
Pareto front or not. The second test also has 12 questions. For each question, the
subject was asked to find the highest science design out of two designs that have
a similar cost. For both tests, the test subjects were also asked to rate their
confidence in their answers. Finally, we asked each subject three subjective
questions on learning, to measure their perception of their own learning.

3. Usability: We conducted a standard usability survey after each task: The System
Usability Scale (SUS) [18]. It consists of 10 Likert items, and has been validated
in a large number of software usability studies, including intelligent systems.

4. Trust: We conducted a standard trust in automation survey after each task: the
Jian’s Trust in Automated Systems Scale [19]. It consists of 12 Likert items.
This survey has been validated in a multitude of studies on automation,
including VAs.
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8 Results

In order to test both H1 and H2, we collected many usage statistics from each test
subject during the 15 min they were performing the task: number of questions
asked to Daphne, number of designs evaluated, and number of interactions. More
detailed information was also recorded such as the number of interactions with each
role (Critic, Engineer, Analyst, Historian), number of designs found by the Explorer
vs the subject, etc. Then, the dependent variable data were separated in two groups
based on usage (more usage versus less usage) and tested for difference in means.
A selection of the results is plotted below. For the sake of brevity, Fig. 2 only
details the interesting results for H1, while Fig. 3 only represents the interesting
results for H2. Most variables had no correlation or trend and are not plotted. As a
disclaimer, results from 8 test subjects were omitted because the Explorer did not
work for those users and thus their scores could not be fairly compared to the
others.

The plots in Fig. 2 show a trend of increased learning with increased usage, but
the p-values for the t-tests are 0.14, 0.15, and 0.13 for #questions, #designs, and
#interactions respectively, which are not significant.

The plots in Fig. 3 also show a trend of increased performance with increased
usage, albeit weaker than that of the learning. The p-values for the t-test are 0.22,
0.42, and 0.76 respectively.

Fig. 2 Correlations between usage (#questions, #interactions, #designs evaluated) of the
Daphne VA and learning
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Finally, we also found an interesting relationship between the perceived usability
(U), perceived trust (T), learning (L), and performance (P), which are detailed in
Fig. 4 below. In this case, the p-values for the null hypothesis of zero slope (or no
correlation) are 0.12 (L vs T), 0.00035 (L vs U), 0.07 (P vs T), and 0.57 (P vs U).

In order to test for H3 and H4, we compared the performance on the tasks and
the learning scores of users when they used Daphne as a Peer vs Daphne as an
Assistant. The distributions of results are shown in Fig. 5. They show no appre-
ciable difference, and the p-values for the t-test confirm it, with values of 0.20 for
the performance and 0.75 for learning.

9 Discussion

The results support H1 and H2, but not H3 and H4. The first two hypotheses are not
supported with much strength, especially the second one. The trend that can be
observed in most variables plotted for both H1 and H2 is that the more a user
interacts with Daphne, the higher the lower bound is for both learning and per-
formance. Some users are able to get great results with few interactions with the
system, but having this lower bound raised by simply using the system more for the
same amount of time is a result worth pointing out. If further studies can confirm
this trend, we have an actionable way of fostering good learning and performance.

Fig. 3 Correlations between usage and performance
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This trend is also what one would expect: the more someone uses a system, the
more proficient they become at it, so they also get more out of it.

We observe a strong correlation between the perceived usability of Daphne and
how much learning there is according to the learning test score. It makes sense that
the more a user learns, the more it finds Daphne usable, and vice versa.

Similarly, we observe that trust is correlated with performance. Although the
relationship is not as strong as that of usability and learning, it seems that again,
performing well with the system leads to higher trust scores with it. A further
causality study could confirm these two findings.

Fig. 4 Correlations between trust, usability, learning, and performance

Fig. 5 Distributions of task performance and learning for each condition
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We learn from the results that the tools available to the designer under each
condition improve learning or performance by the same amount. A future study
should look at whether the combination of the two roles (Peer + Assistant) results in
higher learning or performance than either.

As far as time spent using different functionalities, users spent the most time
using functions in the graphical UI, including both Design Space Exploration and
Design Creation. These are followed in usage by backend roles such as the Analyst
role and the Peer role. The Historian role was not used at all, and the Engineer role
went almost unused by most users.

As the results lack significance, we also studied the qualitative feedback from the
users’ exit interviews. One consistent piece of feedback both in the interview and
usage metrics is that subjects preferred roles such as the Data Mining and the Critic
when compared to other roles such as the Engineer and Historian. Some subjects
mentioned that these roles are more efficient to use in time-constrained situations
such as the one in this experiment. The same effect was not seen when analyzing
data from a previous experiment with subject matter experts; in fact, subjects
familiar with satellite design mentioned that the Engineer tools were more helpful to
them. A future experiment comparing the usage patterns of expert vs non-expert
populations is needed to learn more about the trends we are seeing here, cater
Daphne to the users that will end up using it, and learn whether it is appropriate to
use students as subjects for further experiments.

10 Conclusion

This paper described an experiment to try to improve our understanding of the
relation between key parameters in human-machine collaborative design space
exploration. Specifically, we measure how using a VA may improve learning and
performance in design space exploration. The main takeaways from this experiment
are that increased interaction is linked to increased performance and learning, and
that trust, usability, performance and learning tend to go hand in hand. We also
found that STEM students (not real designers) prefer features that help them syn-
thesize large amounts of data, as they spent more time using those features than
others.

This study is not without limitations. Most results are not statistically significant,
so more experiments are needed in order to confirm or deny the trends we have
seen. Another important limitation is the allotted time for each experiment, which
can be too short to both perform well on the task and learn meaningful facts about
it. This means the findings and recommendations in this paper can be proven false
in the future and should be tested independently. Further research is also warranted
to understand the differences between non-experts (students) and expert practi-
tioners in their usage of VAs and their various roles for design space exploration.
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