
Data Mining a Design Repository
to Generate Linear Functional Chains:
A Step Toward Automating Functional
Modeling

Katherine Edmonds, Alex Mikes, Bryony DuPont,
and Robert B. Stone

Abstract Populating the different types of data for a design repository is a difficult
and time-consuming task. In this work, we report on techniques to automate the
population of data related to product function. We explore a preliminary method to
automate the generation of the functional chains of components from new products
based on hierarchical data from an existing design repository. We use datasets of
various scale and specificity to find correlations between functions and flows for
components of products in the Design Repository. We use the results to predict the
most likely functions and flows for a component, and then verify the accuracy of
our algorithm by cross-validating a subsection of the data against the automation
results. We apply existing grammar rules to order the functions and flows in a linear
functional chain. Ultimately, these findings suggest methods for further automating
the process of generating functional models.

1 Introduction

Product design in engineering is a well-studied process [1], yet many aspects remain
difficult and hard to define after decades of research, especially the early stages of
concept generation. However, that concept generation phase is the one part of the
design process where there is the most room for creativity and innovation [2].
Additionally, the concept generation phase is the least costly time of the design
process to integrate major changes [3] and exploration during this phase should be
encouraged. We use the term designers broadly to refer to those who are working in
their field to develop new concepts or products, as well as iterating on existing
concepts and products. During concept generation in product design, designers focus
on gathering accurate customer needs, determining engineering specifics, deriving
the functionality of the intended product, and ideating potential form solutions.

K. Edmonds � A. Mikes � B. DuPont � R. B. Stone (&)
Design Engineering Laboratory, School of Mechanical, Industrial and Manufacturing
Engineering, Oregon State University, Corvallis, OR 97333, USA
e-mail: Rob.Stone@oregonstate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. S. Gero (ed.), Design Computing and Cognition'20,
https://doi.org/10.1007/978-3-030-90625-2_37

625

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_37&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_37&amp;domain=pdf
mailto:Rob.Stone@oregonstate.edu
https://doi.org/10.1007/978-3-030-90625-2_37


Functional decomposition is a well-known abstraction technique that allows
designers to develop a graphical representation of a product’s functionality as a
functional model [3, 4]. There has been extensive work done to develop consistency
in the nomenclature, beginning with the development of the Functional Basis terms
[5, 6]. However, as Nagel et al. [7] point out, there is still inconsistency in user
input in the structure of functional models. Novice and experienced designers all
have difficulty building functional models because of the complicated process, and
this can lead to the functional modeling process being entirely omitted from the
concept generation phase. Yet we know that concept generation is more complete
when function is considered [3]. Figure 1 shows how incorporating functional
modeling early into the design phase can shift the majority of resources in the
project lifecycle earlier in the design process when the cost of making changes is
low, but the impact of those changes is high. While the above is true, designers are
often more comfortable with component-based solutions, and tend to focus more on
components rather than the functionality of a sub-assembly or product. This type of
design often benchmarks existing products during the concept generation phase [8].

Eckert and Stacey [9] designate the term “source of inspiration” for the con-
scious use of previous designs in the design process. Design repositories can
provide designers with data at multiple levels of abstraction, such as components,
functional representations (e.g. functions and flows), or high-level customer needs
responses, offering a central location for “source of inspiration” products. Our
research uses data from an existing design repository, known as the Design
Repository, to support this type of reuse in design. Our data-driven design
(DDD) approach leverages research from the multi-decade long project developing
a design repository [10–14]. For our purposes, we define data-driven design as
methodologies for extracting information and insights from data and existing
research to improve design processes [15].

We utilize the extensive previous work on the repository and expand the most
recent work; the Form Follows Form approach [16]. The Form Follows Form
(FFF) approach is based on the concept that most designers think in terms of
components rather than function when in the concept generation phase. Utilizing
this concept, we capture the underlying functionality of the chosen components
using data from the design repository [16]. In the FFF approach, Bohm et al.

Fig. 1 Cost analysis over
time during concept
generation

626 K. Edmonds et al.



calculated the frequency of function and flow associated with components sepa-
rately. Our research continues to build on this concept by developing a combined
association between component and function-flow of CFF, to predict the most
likely functions and flows associated with each component. We choose to only
consider the incoming flows to simplify our analysis, as we found in analyzing our
datasets that less than 5% of the results have different inflow and outflow. With this
data, we build linear functional chains for components. These linear functional
chains will ultimately help us develop a method for automating the creation of
functional models. As this research develops, machine learning from the combined
CFF combinations is anticipated to help eliminate errors such as illogical or
impossible CFF combinations in attempting to combine them later during func-
tional modeling automation.

There is significant research on developing consistency in the grammar and
syntax of functional models [5, 6, 13]. The Design Repository has this consistency
in language built into the data, for example, functions are entered using the
Functional Basis terms [5], and components with the Component Basis terms [13].
This terminology allows us to create correlations that remain consistent throughout
the datasets.

Our immediate research objectives are to (1) mine the design repository for
datasets (2) calculate frequencies of CFF combinations and apply a classification
threshold with an automation algorithm, (3) validate the accuracy of the automation
algorithm, and (4) apply existing rules to develop linear functional chains based on
our findings.

2 Background

2.1 The Design Repository

A design repository is a product database where data can be searched and retrieved
at different levels of abstraction to help improve design knowledge and data-driven
design decisions [10]. A well-populated repository offers designers a wealth of
information to aid in decision making. The Design Repository1 we are using is
comprised of 142 consumer-based electro-mechanical products and is housed
online through the Design Engineering Lab at Oregon State University. Each
product is divided into seven main categories of design information: artifact,
function, failure, physical, performance, sensory, and media-related information
types. A visual reference of the data schema (i.e., the connections between data) is
shown in Fig. 2 [11]. The repository database was created by reverse engineering
products, and ultimately determining the existing connection between the

1 The Design Repository is a database of design information. A basic web interface is available at
ftest.mime.oregonstate.edu/repo/browse.

Data Mining a Design Repository … 627



component and function and flow. By using existing products, these CFF con-
nections are also known to exist, however the limitation we are working with is
there are connections that exist beyond the products in the database. As we grow the
data in the repository we will also grow the CFF connections, as well.

While there is significant research and information available on how to build
functional models [3, 4, 17], Sridharan and Campbell point out that even though
there is a formal language, the Functional Basis [5, 6], consistency is still chal-
lenging among students and researchers [18]. To help solve the consistency issue
with building functional models, Nagel et al. [7] developed grammar rules. When
applied correctly, these grammar rules help determine the appropriate order of the
linear functional chains. Additional researchers, Sridharan and Campbell and Bohm
and Stone, developed grammar rules and tested their rules with students building
functional models. The students, given the grammar rules, created more consistent
functional models, and had a better understanding of functional decomposition than
the students without the grammar rules [14, 16]. Bohm and Stone developed rules
associated with individual functions and dictate the allowed incoming and outgoing
flows [16]. We found several of the grammar rules in the previous research
applicable to our current research. We apply these grammar rules to the data
returned from the automation algorithm. While there are some limitations, the
functional basis language was used for its repeatability and openness at the time, in
that the physics of the solution is not required to be known [17].

2.2 Machine Learning and Data Mining

Data mining and machine learning are general terms that refer to many different
techniques of using information to predict results. The work that we are doing is
considered data mining because our algorithms extract knowledge from the data
and do not alter it based on the findings, which would be considered machine
learning. However, we borrow some of the terms and methods that are traditionally
applied to machine learning problems to find patterns within our data.

Fig. 2 Design repository
schema [11]

628 K. Edmonds et al.



A classifier is an algorithm learns from data, finds patterns within it, and then
predicts whether something is or is not within a class. An example is a classifier that
predicts whether or not an email is spam [19]. The machine learning algorithm
looks at examples of emails that a person has labeled as spam or not spam and finds
patterns within them to label any other email as spam or not spam [20]. The
accuracy of this classifier is quantified by testing it against other emails labeled as
spam or not spam and recording which predictions were correct and incorrect.

We are using data mining techniques to find the frequency of occurrence of CFF
combinations in products in the design repository. We use that frequency infor-
mation to predict what functions and flows a component will have in a new product.

2.2.1 Frequency

In our previous work [21], we used the Apriori algorithm to find associations
between component and function-flow. During data analysis, we found that using
association rules was excessive for the results we wanted to obtain. We simplified
our calculations, focusing on the frequency of CFF combinations, which is
numerically equivalent to the confidence metric from association rules. The Form
Follows Form approach uses a similar method of calculating the frequency of the
function and flows correlated with each component [16].

Frequency determines the probability of two items appearing in the same
itemset. In our datasets, we find the frequency by calculating how often a com-
ponent and function and flow appeared together. The frequency values for all CFF
combinations for each component sum to 100%, regardless of the number of
functions and flows per component. For example, the CFF combination screw and
couple solid appears in the consumer products dataset 589 times out of 647 total
CFF combinations for the component screw, so the frequency of that combination is
589/647 or 91%.

Sometimes a CFF combination may only appear once if it is an unlikely com-
bination or is a specialized component or function only appearing in one product in
the repository, such as pressure gauge and indicate mechanical. In these cases, the
frequency that the CFF combination occurs is 100%.

2.2.2 Threshold

In our work, we are predicting the functions and flows for components, and our
threshold is a cutoff that predicts that the top 70% of functions and flows would be
likely for future components. This 70% threshold was developed based on previous
research by Bohm, who found that 70% of functions and flows are realized within
the first 30% of unique instances of a particular component, which he credited to the
Pareto optimal gaming theory [16]. Additional optimization research has been done
on the threshold values finding the optimum range to start at 55%, however in this
work we chose to stick with the more conservative value of 70% [22]. Our

Data Mining a Design Repository … 629



automation algorithm orders the frequencies from largest to smallest, sums the
frequencies of each CFF combination, and applies a 70% threshold to each com-
ponent. This algorithm is different from a traditional classifier that would discretely
label a class based on individual probability. We found in our data analysis that the
70% threshold is often the point where adding additional functions and flows for a
component contributed a negligible delta to the sum of frequencies and decreased
the accuracy of the automation results.

2.2.3 Cross-validation

A common method to find the accuracy in a machine learning classifier is known as
cross-validation, which withholds a subset of data from the initial set, so the
machine learning algorithm does not learn from this subset. This subset is then used
to find the accuracy of how well the classifier performed at predicting results [23].
Testing with data from which the classifier did not learn is essential for reducing
bias in the results [24]. The subset of withheld data is known as the testing set and
the rest of the data that the machine learning algorithm processes is known as the
training set.

Due to the variability in data, cross-validation is often performed multiple times
with different testing and training sets and averaged over all iterations. Kohavi
found that tenfold cross-validation produces the best results for most applications
even when additional computational power is available [25], so we use this method
to determine the accuracy of our automation algorithm using the metrics of pre-
cision, recall, and the F1 Score. The general method is known as k-fold cross
validation [26].

In our previous work, we used a single product (a Delta jigsaw) for our testing
set, and the Black and Decker dataset was our training set [21]. This initial
exploration helped us gain valuable insight into the initial stages of this process, but
cross validation is a more robust method.

2.2.4 Precision, Recall, and the F1 Score

The method and effectiveness of calculating accuracy varies based on the type of
data being used. Simple accuracy is calculated as a ratio of correct responses to total
responses. In our case, a correct response is when the data mining algorithm finds a
function-flow combination for a component that matches the testing set. Simply
counting correct responses misses some of the additional ways in which the
automation can be wrong. Precision, recall, and the F1 score account for these cases
by using the confusion matrix shown in Table 1 to calculate ratios of the true
positives, false positives, and false negatives [27]. Note that true negatives are not
included in the calculation for metrics because, for many systems, including ours,
most results are true negatives, and including these in our accuracy calculations

630 K. Edmonds et al.



would highly increase our results and make the classifier appear to be performing
better than it is.

Precision is the ratio of correct CFF combinations to all CFF combinations
identified by the automation algorithm (Eq. 1). This number is the ratio of CFF
combinations that were identified as being in the product that are actually in the
product.

Recall is the ratio of correct CFF combinations to all CFF combinations found in
the automation algorithm (Eq. 2). This number is the ratio of the actual CFF
combinations that were correctly predicted.

CFF combinations that were correctly predicted.
The F1 Score is the harmonic mean of precision and recall that equally balances

the importance of the two metrics and punishes extremes (Eq. 3). F1 is a more
powerful metric than simple accuracy and provides a better analysis of the ability of
an automation algorithm to predict results.

Precision ¼ TP
TPþFP

ð1Þ

Recall ¼ TP
TPþFN

ð2Þ

F1 ¼ 2 � precision � recall
precisionþ recall

ð3Þ

3 Methods

In this work, we mine the design repository for data to find the most likely functions
and flows correlated with each component for several datasets. We refer to this
correlation as component-function-flow (CFF). We are building on previous work
using association rules, where we found associations between component-function-
flow on a single dataset (12 Black and Decker products) [21]. Here, we expand our
learning datasets as well as our validation methods. We chose three data subsets
from the repository driven by component: 23 products with the component heating
element, 32 products with the component blade, and 44 products with the com-
ponents container/reservoir. We applied our automation algorithm (described

Table 1. Accuracy confusion matrix

Data Mining a Design Repository … 631



later) on each dataset separately and calculated the accuracy of its ability to predict
function and flows for an input component. We then compared the accuracy results
of each of the three data subsets to a dataset containing all 142 consumer products
from the design repository and an additional subset containing 12 products that
were all made by Black and Decker.

We chose products with the heating element, blade, and container/reservoir
components in an attempt to single out products with similar functionality. We
chose the Black and Decker products because this was the most extensive dataset
available to provide a company product portfolio, which offers a subset of products
based on construction rather than functionality. We hypothesize that narrowing the
dataset to functionality based on component will yield more accurate function and
flow prediction results. The Black and Decker and consumer product datasets serve
as reference datasets to test our theory. We developed an automation algorithm in
Python, which calculates and sums the frequency of each CFF appearing in each
dataset. The algorithm applies a classification threshold to the top 70% sum of
frequencies for each component. The correlations found within the 70% threshold
in our data mining process can then be used to predict the linear functional chain of
a component.

Step 1. Retrieve Datasets. To extract information, we query the repository to
create five test datasets: (1) all consumer products; (2) all Black and Decker
consumer products to represent a general product family by the same manufacturer;
and three subsets of consumer products with (3) heating element, (4) blade and
(5) container/reservoir as a component in the assembly to represent products with
a similar component and functionality. We chose to combine reservoir and con-
tainer into one dataset because of the similarity of functionality, and combining
them allowed us to have a similar size dataset as the other two component-based
datasets.

Step 2. Automated Frequency and Thresholding. Next, we apply an
automation algorithm to each of the five datasets, implemented in Python v3.7.
First, the algorithm calculates the frequency of the functions and flows for each
component in the input dataset; then, those values are sorted from largest to
smallest, summing to 100%. The threshold is applied to capture the top 70% of the
sum of frequency values for each component in each dataset, based on the Pareto
Frontier from the Form Follows Form method [16]. The results from the electric
cord component from the blade dataset provide a simple example in Table 2.

For the electric cord example, the frequency of the first two functions and flows
sums to 65%, so the third is added to the list to reach the 70% threshold, which
“brings the sum to 80%. Our method assumes that capturing approximately 70% of
the total frequencies will begin to give an accurate representation of the functions
and flows that a component usually performs. Additionally, this Pareto optimal
threshold is the point where adding additional functions and flows for a component
usually contributed a negligible delta to the sum of frequencies and increased the
error in the automation results.

Step 3. Cross-validation. As a means of verifying the accuracy of the
automation algorithm, we use a tenfold cross-validation method to find the

632 K. Edmonds et al.



precision, recall, and F1 score of each iteration. The design repository categorizes
products by an identification number, which we randomize and separate into ten
folds.

For example, the blade product dataset contains 32 products. This number is not
divisible by ten without a remainder, and our data requires each product to remain
intact, so we actually have eleven folds. Ten folds have three products each, and the
eleventh fold has the remaining two products.

We apply the frequency calculation and thresholding algorithm three times for
each dataset that we queried. The first validation is a traditional cross-validation and
finds the accuracy of the automation algorithm when the training set comes from the
component-specific dataset (blade, heating element, reservoir/container), and the
testing set is also the component-specific dataset. The second validation finds the
accuracy when the training set is the consumer products dataset, and the testing set
is the component-specific dataset. The third validation uses the Black and Decker
dataset as the training set and the component-specific dataset as the testing set.

We stray from traditional cross-validation in two of three of these validation tests
by selecting the folds for the testing set and training set from different datasets. This
method gives us a cross-reference for accuracy between datasets and allows us to
see if one dataset is better at predicting results for itself or for another dataset. The
three variations of accuracy testing are shown in Table 3. These three validations
were performed for each of the three component-specific datasets, resulting in nine
F1 scores.

One of the benefits of traditional cross-validation is that the testing set is with-
held from the training set to reduce bias in the results. With this method of vali-
dation, when the testing set and training set come from different datasets, the folds
contain some overlapping data. To combat bias, we made sure to remove all
products in the fold for the testing set that were also in the folds for the training set.

Table 2. Example dataset to illustrate threshold automation for the component electric cord

Table 3 Validation cases

Data Mining a Design Repository … 633



Step 4. Apply Grammar Rules to Determine Linear Functional Chain. After
analyzing and organizing the results of the top 70% of the functions and flows, we
apply the grammar rules described in Sect. 2.1 to the results to determine the linear
order of the functions in the functional representation. For the electric cord example
in Table 2, the three functions are import, transfer, and export. They all have the
same flow of electrical energy between them. The grammar rules developed by both
Nagel et al. [7] and Bohm et al. [16] state that the import function occurs first and
only once per flow in a chain of components, so it is placed first. The grammar rules
also state that export is the last function in a chain of components, which leaves
transfer as the middle function in this chain. A visualization of this process can be
seen in Fig. 3.

4 Results

4.1 SQL Query

The results of our SQL query can be seen in Fig. 4. The total number of CFF
combinations is the number of times a component has a particular function and flow
regardless of the number of times they repeat in the dataset. The number of unique
combinations is the number of times a component has a particular function and flow
at least once, and additional instances of that combination are no longer unique. The
number of products in each dataset can be seen in Table 4.

Fig. 3 Example of grammar
rule application

634 K. Edmonds et al.



4.2 Automated Frequency Calculation and Thresholding
Algorithm

The algorithm returned CFF combinations for all five datasets filtering out the
combinations that were above the threshold. Figure 5 shows the CFF combinations
for four components in the consumer products dataset, results above the black line
are the CFF combinations found within the threshold. As seen in Fig. 5, the 70%
threshold is often the point where adding additional functions and flows for a
component contributed a negligible delta to the sum of confidence. In order to
remain consistent, all of the results are taken from the consumer database.

As seen in Fig. 5 A, the component screw had one result above the threshold
because the frequency result for couple solid is 91%, the remaining 17 functions
and flows only contribute to 9% of the results. While screw only has one result,
blade (Fig. 5 D) is representative of a component with more function and flows
returning 11 results above threshold, an additional 21 results below threshold were
not shown, for clarity in the figure. Washer and heating element can also be seen in
Fig. 5. Additionally, components with the most results were reservoir, circuit board
and wheel with 22, 20, and 16 function and flow combinations in threshold
respectively. We found that 98% of the dataset has at least 2 or more CFF com-
binations per component.

Fig. 4 Query results

Data Mining a Design Repository … 635



F
ig
.
5

Fr
eq
ue
nc
y
al
go

ri
th
m

re
su
lts

fo
r
co
m
po

ne
nt
s
in

th
e
co
ns
um

er
pr
od

uc
ts
da
ta
se
t

636 K. Edmonds et al.



Frequency is calculated as the ratio of the number of times the CFF combination
occurs over the total number of CFF combinations for that component. Returning to
the screw example, the function and flow screw couple solid occurs the most at 589
times out of a total of 647. Conversely the consumer products dataset had 200 CFF
combinations that only occurred once, which returns a ratio of 1/1 or 100% fre-
quency. The other four datasets followed this same trend with a larger percentage of
results occurring once or twice and a lower percentage occurring more than 20
times. As we expand the data in the repository we hope to decrease the number of
times a CFF combination occurs only once.

4.3 Using F1 Scores to Validate Accuracy

We used the tenfold cross validation method to quantify the accuracy with preci-
sion, recall, and the F1 score when applying the top 70% of the most frequent
functions and flows found for a component for each of the three testing datasets.
The number of products in each dataset, the size of a single fold (which is also the
size of a testing set), and the size of the remaining nine folds (the size of the training
set) is shown in Table 4.

Each training dataset is tested against three testing datasets, itself, consumer
products, and Black and Decker products. The results of the average F1 scores are
shown in Table 5. For each of the three testing datasets, we performed a single
factor ANOVA test to see if there is a significant difference in our F1 scores across
the training datasets. We found that all three testing datasets (blade, reservoir/
container, and heating element) were significantly different with a = 0.05. We
then performed a two-sample t-Test assuming equal variances to determine within
each testing dataset, which training sets were significantly different. Within each
testing dataset, there was a significant difference found for all combinations, except
the comparison of Blade and Black and Decker within the Blade testing set. The
direction of the significant difference trends toward the consumer products dataset,
which consistently had the highest F1score.

Table 4 Sizes of testing and training sets

Data Mining a Design Repository … 637



4.4 Linear Functional Chains

In this section, we test the automation process described in the methods by building
likely functional chains for four single components, which are the same four
components featured in Sect. 4.2, Fig. 5. The results of the functional linear chains
can be seen in Fig. 6. Screw is a very simple example with only one function and
flow. As demonstrated in the results, components vary in complexity and therefore
vary in functional chains. This complexity is based both on the component itself,
such as the difference between screw and blade, but is also based on the product in
which the component performs the function, for example blade within a knife

Table 5 F1 scores

Fig. 6 Component based
linear functional chains

638 K. Edmonds et al.



versus blade within a more complex product like a jigsaw. We apply the following
grammar rules adapted from Bohm and Stone, to the blade functional chain; a)
import is automatically placed as the first function for a chain and b) export is
automatically placed as the last function for a chain [16]. The grammar rules also
dictate that the convert function has separate inflows and outflows; therefore, the
automation would branch off the function-flow export thermal from convert
mechanical. This same rule is applied to the results of heating element, convert
electrical is branched off into transfer thermal.

5 Discussion

In review, we mined the Design Repository for CFF combinations, we then applied
a Pareto optimal threshold to find the most likely combinations, developed linear
functional chains for individual components, and by validating the accuracy of the
frequency calculation and thresholding algorithm, we were able to test our
hypothesis. We hypothesized that restricting the training set to constitute products
that all share a similar component would give more accurate results for automating
the generation of linear functional chains. For example, products having the
component blade would have more similar functionality with other products having
the component blade as opposed to products outside that dataset. As stated before,
we found support with this hypothesis in previous work, using one product, the
Delta jigsaw, as a validation method [21].

In this research, we had four general findings: Finding 1: With more robust
validation methods, the results in Table 5 show that learning from the most possible
products will return a higher accuracy than any restricted-size dataset. The
component-specific datasets had lower accuracy when cross-validated against
component-specific data than when cross-validated against all consumer products.
The Black and Decker dataset is the smallest, containing 12 products, and con-
sistently had the lowest F1 score when used as the training set. The consumer
products dataset is the largest, containing 142 products, and consistently had the
highest F1 scores.

Finding 2: We suggest that because the F1 score is calculated for an entire
testing set, which often contains rare components that might have only one function
and flow in the testing set, this may decrease the overall accuracy of function and
flow results per component. As is often the case in large datasets, the accuracy of
the data input can be a concern. Over the 20 years of the development of the Design
Repository, many different contributors have worked on this project. This turnover
has led to some inconsistencies in the data; for example, container and reservoir are
often used interchangeably or as seen in Fig. 5, screw is 91% correlated with couple
solid but there are 17 other results, which could be due to individual input varia-
tions. This noise of the additional rare or mislabeled CFF combinations in the
datasets can certainly reduce the accuracy of the results, especially for the larger
consumer products dataset.

Data Mining a Design Repository … 639



Finding 3: While finding 1 suggests that learning from more data returns more
accurate results, restricting the dataset based on the component may return more
refined results for functionality. For example, the heating element, and reservoir/
container component-specific datasets have six CFF combinations for the compo-
nent heating element, the consumer products dataset has 10, and the blade dataset
only returned one result. Heating element and reservoir/container have a high
overlap in products, such as coffee makers, but blade products are unlikely to
contain heating element as a component. There may be times when a designer
desires more refined results and a smaller learning dataset can be used if the
products have the component of interest in the learning set.

Finding 4: In developing the linear functional chains, we demonstrated more
simple examples, such as screw and washer. As complexity increases, grammar
rules are necessary to order the function and flow results. Only two existing
grammar rules applied to our findings in heating element and blade. As we expand
our work in developing linear functional chains, we will need to expand on the
research around grammar rules to create additional rules required to connect
flows at the interface of components. Individual analysis allows for the development
of new rules to handle each situation, but automation is possible based on inves-
tigating the interactions between component, function, and flow. While significant
future work is required to fully automate the functional modeling of a product, these
findings offer a starting point.

6 Conclusion

Functional modeling is a complicated and challenging process for both novice and
expert designers. However, during concept generation in product design, it is
imperative to derive the functionality of the intended product because the function
of the product is critical in linking customer needs to a form solution. We know
from research, designers often think and design in component-based solutions. Our
research finds connections between component and function and flow, information
that can provide the designer with the functional breakdown of components.
A functional approach to design is specialized; functional design accounts for
variance in design for different purposes. We used data from the Design Repository
to find the CFF combinations for five datasets: all consumer products, a Black and
Decker consumer product family, and consumer products with the component
blade, heating element, and reservoir. Our automation algorithm orders the fre-
quencies from largest to smallest, sums the frequencies of each CFF combination,
and uses a threshold of 70% of the sum of frequencies of combinations for each
component. This threshold is the point where most of the functionality is preserved
with a minimal contribution of error.

We then applied existing grammar rules to create component-based linear
functional chains, the first step in automating functional modeling. Our results
confirm the notion that function and flow correlations can be used to build a linear

640 K. Edmonds et al.



functional chain of individual components within a product. We found that the
accuracy of data mining depends on the size and quality of the learning set used,
with larger datasets providing more accurate results. However, using a broad or
narrow dataset will depend on the goals of the designer.

Research has found inconsistency among designers when building functional
models. We think that our future work towards an automated functional model
generator will ultimately help standardize the language and syntax used in func-
tional models, just as the work on Functional Basis and Component Basis terms
have helped improve language and syntax consistency in the repository. As we
have seen in the data in the design repository, designers are individuals dealing with
human bias and perceptions; automation can help create more uniform functional
models.

This uniformity will improve the process of designers contributing to the design
repository, and enable more products to be added with higher consistency. The
repository provides the user with a wealth of information; however, in its current
form, the repository can be challenging to navigate for novice users. As stated
above, streamlining the process of adding new products with automating functional
modeling allows not only individual products to be added by users but also the
addition of entire repositories. Enabling products to be entered by users will further
increase the size and quality of the data in the Design Repository and increase the
accuracy of our automation process. This automation will also allow engineers to
design a new product based on components and receive the functionality of the
components.

References

1. Otto K (2003) Product design: techniques in reverse engineering and new product
development

2. Yang MC (2009) Observations on concept generation and sketching in engineering design.
Res Eng Des 20(1):1–11

3. Ullman DG (2010) The mechanical design process
4. Pahl G, Beitz W (2013) Engineering design: a systematic approach
5. Stone RB, Wood KL (2000) Development of a functional basis for design. J Mech Des 122

(4):359
6. Hirtz J, Stone R, McAdams D, Szykman S, Wood K (2002) A functional basis for engineering

design: reconciling and evolving previous efforts. Res Eng 13:65–82
7. Nagel RL, Vucovich JP, Stone RB, McAdams, DA (2008) A signal grammar to guide

functional modeling of electromechanical products. J Mech Des 130(5):051101
8. Miller SR, Bailey BP (2014) Searching for inspiration: an in-depth look at designers example

finding practices. In: Volume 7: 2nd biennial international conference on dynamics for design;
26th international conference on design theory and methodology, V007T07A035

9. Eckert C, Stacey M (2000) Sources of inspiration: a language of design. Des Stud 21
(5):523–538

10. Szykman S, Sriram RD, Bochenek C, Racz JW, Senfaute J (2000) Design repositories:
engineering design’s new knowledge base. IEEE Intell Syst 15(3):48–55

Data Mining a Design Repository … 641



11. Bohm MR, Stone RB, Simpson TW, Steva ED (2008) Introduction of a data schema to
support a design repository. Comput Des 40(7):801–811

12. Bryant CR et al (2008) Creation of assembly models to support automated concept
generation. In: ASME 2005 international design engineering technical conferences,
pp 259–266

13. Kurtoglu T, Campbell MI, Bryant, CR, Stone, RB, McAdams DA (2005) Deriving a
component basis for computational functional synthesis. In: Proceedings ICED 05, 15th
international conference on engineering design, vol DS 35, p 4061 (2005)

14. Sridharan P, Campbell MI (2005) A study on the grammatical construction of function
structures. Artif Intell Eng Des Anal Manuf AIEDAM 19(3):139–160

15. Sailer K, Pomeroy R, Haslem, R (2015) Data-driven design-Using data on human behaviour
and spatial configuration to inform better workplace design

16. Bohm MR, Stone RB (2010) Form follow form - fine tuning articial intelligence methods. In:
Proceedings of the ASME 2010 international design engineering technical conferences and
computers and information in engineering conference, pp 1–10

17. Sen C, Summers JD, Mao X (2019) A physics-based formal vocabulary of energy verbs for
function modeling knowledge-based self-generating function modeling system. In:
Proceedings of the ASME 2019 international design engineering technical conferences
IDETC/CIE2019

18. Kurfman MA, Stock ME, Stone RB, Rajan J, Wood KL (2003) Experimental studies
assessing the repeatability of a functional modeling derivation method. J Mech Des
125:682–693

19. Conway D, White J (2011) Machine learning for email: spam filtering and priority inbox.
O’Reilly Media, Inc.

20. Lanzi, P (2000) Learning classifier systems: from foundations to applications, no. 1813.
Springer, Heidelberg. https://doi.org/10.1007/3-540-45027-0

21. Tensa M, et al (2019) Toward automated functional modeling: an association rules approach
for mining the relationship between product components and function. In: Proceedings of the
design society international conference on engineering design, vol 1, no 1, pp 1713–1722

22. Mikes A, Edmonds K, DuPont B, Stone RB (2020) Optimizing an algorithm for data mining a
design repository to automate functional modeling. In: ASME 2020 international design
engineering technical conferences and computers and information in engineering conference

23. Geisser S (1975) The predictive sample reuse method with applications. J Am Stat Assoc 70
(350):320–328

24. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc
Ser B 36(2):111–133

25. Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model
selection

26. Duchesne P, Rémillard B (2005) Statistical modeling and analysis for complex data problems,
vol 1. Springer, Boston. https://doi.org/10.1007/b105993

27. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a
family of discriminant measures for performance evaluation. In: AAAI Workshop - technical
report 2006, vol WS-06–06, pp 24–29

642 K. Edmonds et al.

http://dx.doi.org/10.1007/3-540-45027-0
http://dx.doi.org/10.1007/b105993

	37 Data Mining a Design Repository to Generate Linear Functional Chains: A Step Toward Automating Functional Modeling
	Abstract
	1 Introduction
	2 Background
	2.1 The Design Repository
	2.2 Machine Learning and Data Mining
	2.2.1 Frequency
	2.2.2 Threshold
	2.2.3 Cross-validation
	2.2.4 Precision, Recall, and the F1 Score


	3 Methods
	4 Results
	4.1 SQL Query
	4.2 Automated Frequency Calculation and Thresholding Algorithm
	4.3 Using F1 Scores to Validate Accuracy
	4.4 Linear Functional Chains

	5 Discussion
	6 Conclusion
	References


