Five Criteria for Shape Grammar M)
Interpreters e

Tzu-Chieh Kurt Hong and Athanassios Economou

Abstract Shape grammar interpreters have been studied for more than forty years
addressing several areas of design research including architectural, engineering, and
product design. At the core of all these implementations, the operation of embed-
ding—the ability of a shape grammar interpreter to search for subshapes in a
geometry model even if they are not explicitly encoded in the database of the
system—resists a general solution. Here, a detailed account on various construc-
tions of embedding is provided, including determinate and indeterminate ones, to
give a sense of the rising complexity of their implementation in a shape grammar
interpreter, and to provide a visual map of the work accomplished in the field so far,
and the work ahead too.

1 Introduction

Shape grammar interpreters have been studied for more than forty years addressing
several areas of design research. Several useful accounts of existing general shape
grammar interpreters and purpose-built shape grammar interpreters are readily
available in the literature [1-4]. An updated view of these lists is given below in
Table 1 featuring 61 applications including implementations of general and specific
purpose shape grammar interpreters. Note, however, that this list—and most of its
predecessors—includes very few actual shape grammar interpreters (in the general
and technical sense of the word), and that many of the references in the list are just

Be it as it may, the sheer increase of the number of applications should suggest an optimistic
state of affairs on the current state-of-the-art of the field, and yet, the evidence of the impact of
shape grammar interpreters in practice and academia does not readily support such a view.

T.-C.K. Hong (X)) - A. Economou
Georgia Institute of Technology, Atlanta, USA
e-mail: khong@gatech.edu

A. Economou
e-mail: thanos@gatech.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 191
J. S. Gero (ed.), Design Computing and Cognition'20,
https://doi.org/10.1007/978-3-030-90625-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90625-2_11&domain=pdf
mailto:khong@gatech.edu
mailto:thanos@gatech.edu
https://doi.org/10.1007/978-3-030-90625-2_11

192

Table 1 List of shape grammar implementations

T.-C. K. Hong and A. Economou

No Name Author Year
1 Shepard-Metzler Analysis Gips 1974
2 Simple Interpreter Gips 1975
*3 Shape Grammar Interpreter Krishnamurti 1982
*4 Shape Grammar Interpreter Krishnamurti & Giraud 1986
5 Queen Anne Houses Grammar Flemming 1987
6 SEED Flemming & Woodbury 1987
*7 Shape Grammar System Chase 1989
*8 Genesis (CMU) Heisserman 1991
9 GRAIL Krishnamurti 1992
10 Grammatica Carlson & Stouffs 1993
*11 Genesis (Boeing) Heisserman 1994
12 Shape Grammar Editor Shelden 1996
13 Implementation of Basic Grammars Duarte & Simondetti 1997
14 3D Shape Grammar Piazzalunga & Fitzhorn 1998
15 SG Clip Chien 1998
16 Coffee Maker Grammar Cagan & Agawal 1998
*17 | GEdit Tapia 1999
18 3D Shaper Wang & Knight 1999
19 Shaper2D McGill 2001
20 EifForm Shea 2002
21 A Simulated Shape Grammar Yingzao Fashi | Li 2002
22 3D Architecture Form Synthesizer 3D Wang & Duarte 2002
Shaper
*23 | Parametric Shape Grammar Interpreter Cagan & McCormmack 2002
*24 Shape Grammar Implementation U3 Chau 2004
25 Coca-Cola Grammar Chau 2004
26 Computational Environment for Learning Wong & Cho 2004
27 MALAG Duarte 2005
28 Shape Designer V.2 Wong 2005
29 Bracket System Wu 2005
*30 | Curve-based SGI Cagan & McCormmack 2006
31 Implementation of Description Grammar Correia & Duarte 2006
32 Marrakech Medina Grammar Duarte 2007
33 Sub-shape Detector Jowers 2008
34 CityEngine Mueller 2008
35 Grammar Environment Li 2009
36 Classique Ottoman Mosques Sener & Gorgul 2009
37 SGMP (for CNC Router) Ertelt & Shea 2009
*38 | Parametric SG Interpreter Yue & Krishnamurti 2009
39 Shape Grammar and Augmented Reality Chen 2009
*40 | SD2 Jowers 2010

(continued)

Five Criteria for Shape Grammar Interpreters 193

Table 1 (continued)

No Name Author Year
41 GraphSynth Campbell 2010
42 Embedded Shape Detector Keles, Ozkar & Tari 2010
43 Shape Design V.2 - SGI Trescak 2010
44 Baltimore Row-house Aksamija 2010
*45 QI Jowers 2011
46 Thonet Chair Grammar Barros 2011
47 SG Parsing via Reinforcement Learning Teboul 2011
48 GRAPPA Grasl 2012
49 SGI for Rectilinear Forms Trescak, Esteva & 2012
Rodriguez
*50 | Visual Interactive 3D Spatial Grammar Hoisl & Shea 2012
*51 DESIGNA Correia 2013
*52 | Shape Grammar Implementation Strobbe 2013
*53 GRAPE: Uy, and U3 SG Interpreter Grasl & Economou 2013
54 GRAPE: Agent-based Rule Decision Grasl & Economou 2014
*55 ShaDe Ruiz-Montiel 2014
56 Dirksen Grammar Park & Economou 2015
57 Rabo-de-Bacalhau Grammar Strobbe & Eloy 2016
*58 | SortAL GI Dy & Stouffs 2017
59 Multipurpose Chair Grammar Garcia & Letao 2018
60 Portmino Ligler & Economou 2019
*61 Shape Machine Hong & Economou 2020

Note: Those interpreters listed above with the marks “*” are general-purpose shape grammar
interpreters

implementations of very specific grammars for a very specific design or research
purpose. This is not an accident; the very core values that their underlying shape
grammar formalism has promised, the miraculous calculations with shapes, the
visual treatment of emergence and ambiguity, the seamless interface in design
workflows, are all still in want. Surprisingly, the original account of the list of the
shape grammar interpreters by Gips [1] already accounted for applications that
claimed recognition of subshapes and deployment in 2D and 3D space and yet,
even after all these years, general-purpose shape grammar interpreters seem still
limited by shape types, types of transformation, complexity of geometry, matching
conditions, counting of non-equivalent parts, semantic information, interface design
and so forth. Still, the situation is not as grave as it may seem. It is suggested here
that beyond this seemingly long list of technological hurdles, the operation of
embedding, that is, the implementation of the mathematical concept of the “part
relation” between two shapes, or equivalently, between two drawings, or between a
shape and a design, is the single major obstacle to take on.

The work here focuses exactly on this front foregrounding the criteria that
characterize the underlying machinery for the most important aspect of the shape

194 T.-C. K. Hong and A. Economou

grammar interpreter implementation, namely, the conventions of matching under
which a shape can be a part of a design. These calculations follow the general
structure of the calculations involved for tackling embedding outlined in Stiny [5,
6] and Krishnamurti [7, 8] but are recast here in a slightly different format following
in part the lattice of schemata rules outlined in Stiny [9]. This modified structure
consists of three matching conditions starting from simple queries of determinate
matchings of embedded shapes under restricted conditions, to a rising complexity
of determinate and indeterminate matchings without any restrictions, all charac-
terized by four types of transformations under which each matching occurs. It is
further suggested here that these general calculations for these three conditions of
embedding (including their twelve subcases for the four types of transformations),
along with the calculation for the determination of the non-equivalent mappings for
each type of embedding, plus the familiar calculations for the characteristic sig-
nature of the shape grammar formalism—the maximal representation of shape (for
each type of shape)—altogether do provide a map of the five families of calcula-
tional obstacles that general-purpose shape grammar interpreters face. The work
here considers all three embedding conditions cast within the singular rule schema
x — y [6]. A visual map of the work accomplished in the field in terms of the
current state of embedding and the work ahead is given in the end. Aspects of
interface design and integration to current work design workflows are deliberately
left aside.

2 Requirements of a Shape Grammar Interpreter

A computer implementation of a shape computation requires the implementation of
five distinct processes, all intimately involved in the recognition and replacement of
a shape under a given transformation and all encoded in the structure of the shape
algebras Uj; that shape rules are defined in [6]. More specifically, for u, v and W
shapes, a shape rule u — v and the shape W defined as the current design, the
operation that a shape grammar interpreter should process is:

if f(u) <W s
W =W —f(u)+£(v)

or, a) Encode the shapes u, v and W in the smallest number of basic elements that
can specify them; b) Inquire whether there is transformation f that embeds the shape
f(u) in W, and if yes; c) Subtract the shape f(«) from W; d) Add the shape f(v) in
W; and e) Repeat the above processes for all applicable transformations of the shape
f(u) in W. A visual example is shown in Fig. 1 to demonstrate the five procedures
outlined above underlying a shape replacement.

The example illustrated in Fig. 1 features a shape rule applied under an isometry
transformation, that is, a transformation that keeps shape and size invariant while
varying handedness and position. In this case, there are eight f transformations that

Five Criteria for Shape Grammar Interpreters 195

.
o
)
@

fifw) < W fifu) < W fif) < W fil) < W fif) < W fifi) < W fifuw) < W fifw) < W

RO KK

W= fifu) W= fifu) W= fifu) W - fifu) W-firu) W-fifu) W-fifu) W-fi(u)

il ORI

W-fiiwp+fiivy - Wefidw)+fiiv) - Wit +fiv) - Wit +fifv) - Wefifupfavy - Wefifuptfiiv) - Wofidutfiov) W-fifnl+f (v

KA]

Fig. 1 A shape computation. a—c¢ Shapes u, v, and W; d Shape rule u — v; e Eight matches of the
shape f(u) in W; f Subtractions of the eight instances of the shape f(u) from W; g Additions of the
eight instances of the shape f(v) to the corresponding eight instances of the shape W — f(u)

embed the shape f(u) in the shape W (that is, make the shape f () part of the shape
W. The implementation of each of these five processes in a shape grammar inter-
preter brings its own set of problems and some more than others. A brief description
of each process is given below.

The first process of encoding the shapes u, v and W in maximal representation,
that is, in the smallest number of basic elements that can specify a shape [6], is to
ensure that the shapes have a unique specification so that they can be compared and
acted upon. The maximal representation of shape is typically defined in different
ways depending on the dimensionality of the shape, that is, 0-, 1-, 2- and
3-dimensions, and its type, that is, line, arc, conic, Bezier, etc., requiring in essence
different algorithms for a maximal point representation, maximal line representa-
tion, maximal curve representation, maximal plane representation, maximal surface
representation, maximal solid representation, and so on [6]. For most shape
grammar implementations, the maximal representation of shape is implemented
with various approaches and typically, by a combined usage of operations (com-
puter programs) of shape instantiation and shape addition or shape subtraction [10].
However, for more complex geometries, such as curves, surfaces, and solids, it is
difficult to obtain the maximal representations of the corresponding elements of the

196 T.-C. K. Hong and A. Economou

shapes [11] and there is still a large number of shape types to be addressed.
A different kind of problem might arise when shapes are perceptually similar but
mathematically different and the implementation might seem to fail or otherwise
cause confusion to users.

The second process of inquiring whether there is a transformation f that embeds
the shape f () in W is the most critical—and elusive—process for most of the shape
grammar interpreters. The part relation between shapes is typically achieved by
checking the boundaries of shapes [12]. The matching transformation, f is typically
a Euclidean transformation—but more generally, a transformation belonging to the
Euclidean, affine and projective geometries. Most detrimentally, most of the
interpreters adopt database query [13] to simulate the desired transformation but
this method, powerful as it may appear, it is severely limited because it assumes that
a shape can be decomposed and represented as a finite set of subshapes and
therefore violates the fundamental definition of shapes. Additionally, most of these
matching calculations in affine and projective spaces accumulate a rounding error so
fast that the matching results are often useless.

The third process of subtracting the shape f () from W is based on the detection
of shape boundaries. Chase [15] has listed 13 cases of two input lines with labeled
endpoints so that the system can derive the results with three different procedures.
The implementation of shape subtraction for lines has been done by Krishnamurti
[7, 10] and has been broadly adopted in other interpreters. However, this shape
operation is highly related to shape type and the complexity of implementation
increases as the dimensionality of shape and the corresponding dimensionalities of
space that the shapes are defined in are both increasing too. As above, shape types
captured by higher degrees might cause severe precision errors and make the
system unstable. For instance, the calculation of descriptors of high degree curves
such as Bezier curves can be heavy because the system has to resolve the coeffi-
cients of high degree polynomials [16].

The fourth process of adding the shape f(v) to W — f(u) is similar to subtracting.
As above, Chase [15] has listed out 13 cases of two input lines with labeled
endpoints so that the system can derive the results with three different procedures.
Similarly, the implementation of shape addition for lines has been done by
Krishnamurti [7, 10] and has been broadly adopted in other interpreters as well. The
same problems that are encountered in the implementation of the subtraction
operation are encountered here too.

The fifth process of repeating the above processes for all applicable transfor-
mations of the shape () in W is straightforward for all shape grammar interpreter.
The recursion can be implemented by re-assigning the result W — f(u) + f(v) from
the previous iteration back to the same variable W for the next iteration. The formal
expression can be written as:

Wi = Wimi—fio1 () +fi-1 (v)

so that the result is:

Five Criteria for Shape Grammar Interpreters 197

Wy = Wy_1—fv—1 (1) +fv-1(v)

after N iterations, where f;() represents the applied transformation for the i
iteration.

3 Calculating Embedding

Shape matching in computer-aided design (CAD) systems is enabled by a database
query requesting the retrieval of shapes from a CAD database. Surprisingly, shape
matching under a given Euclidean, affine or linear transformation (visual matching),
the most characteristic part of the shape grammar formalism, is entirely absent from
current CAD systems. It is argued here that the conditions under which these visual
matchings can occur and the calculations to implement them are the most important
requirements for shape grammar interpreters to process rule applications and the
single obstacle to merge shape grammar interpreters with generative CAD
modelers.

The first condition to specify is the transformations themselves: for a shape u, the
shape f(u) to be embedded in a shape W can be modeled by four types of trans-
formations: a) isometry transformations including translations, rotations, and
reflections; b) similarity transformations including isometry transformations, scale
transformations and their combinations; c¢) affine transformations including simi-
larity, stretch, compress, and shear transformations and their combinations; and d)
linear or projective transformations including affine transformations, one-point, and
two-point perspective transformations and their combinations. The rising hierarchy
of the matching transformations f is given in Fig. 2 for a shape in the form of a
capital K.

The calculations for the transformations f of a shape u so that the shape f(u) can
be embedded in a shape W involve the following five processes:

K

(a)

K £ J x K £ £ & A~

+

(b) (¢) (d) (e) (f (g) (h) (1) (k)

Fig. 2 Types of linear transformations. a Identity; b Translation; ¢ Rotation; d Reflection; e Scale;
f Stretch; g Shear; h Stretch and shear; i One-point perspective; k Two-point perspective

198 T.-C. K. Hong and A. Economou

1) Encode the shapes u and W in their maximal representation;

2) Calculate the determinate match of embedded shapes f(u) whose boundaries
are all recorded in the dataset of W (restricted embedding);

3) Calculate the determinate match of embedded shapes f(u) whose boundaries
are not recorded in the dataset of W (unrestricted embedding);

4) Resolve the indeterminate matching for embedded shapes whose boundaries
are not recorded in the dataset of W that in addition can be embedded into W
in infinite ways (indeterminate embedding);

5) Count all non-equivalent matchings of the Left-Hand Side (LHS) and the
Right-Hand Side (RHS) of the rule.

A brief description of the processes and conventions pertaining to the calculation
of the maximal shape representation is given in the previous section. Here the focus
is given in the calculation of the transformations f that make the shape u embedded
in a shape W. A pictorial description of the types and instances of visual matching
follows below.

3.1 Restricted Embedding

The calculation of the determinate embedding of shapes whose boundaries are
defined in the target shapes (restricted embedding) has been viewed as the most
important criterion for the calculation of the inverse transformations because the
ways digital tools represent shapes are discrete and object-based [3, 17]. An
example of a query of a restricted embedding is shown below in Fig. 3. Note that
the shape f(«) has boundary points that are all well defined as registration points in
the shape W.

(@)

T30
Kol ofefelefelole

Fig. 3 An example of a restricted embedding of a subshape f(u). All boundary points of the shape
f(u) are registration points in the shape W. a Shape u; b Shape W; ¢ Registered objects; d Eight
transformations f embedding the shapes f(«) in W

Five Criteria for Shape Grammar Interpreters 199

|’\
(a) L

u S
NOICICICICIOICTS

Fig. 4 An example of an unrestricted embedding of a shape f(u). The boundary points of the
shape f(u) are not registration points in the shape W. a Shape u; b Shape W; ¢ Registered objects;
d Eight matchings of the shapes f(u) in W

(b)

3.2 Unrestricted Embedding

The calculation of the determinate embedding of shapes whose boundaries are not
recorded in the dataset of W (unrestricted embedding) is more involved and limited
progress has been recorded on this front. An example of a query of an unrestricted
embedding is shown below in Fig. 4. The query consists of a composite line of
three segments showcasing two vertices that are registered in the dataset of the two
squares and two that are not.

3.3 Indeterminate Embedding

The calculation of the indeterminate embedding of shapes whose boundaries are not
recorded in the dataset of W can become involved too [5-8]. For such cases of
shape matching, the system should be able to detect the indeterminate condition and
offer processes to resolve the infinite possible matches. An example of an inde-
terminate query is shown in Fig. 5. The LHS shape “k” can be matched in infinite
ways under a similarity transformation.

3.4 Counting Non-equivalent Embeddings

Finally, the counting of all non-equivalent embeddings of the LHS and the RHS of
the shape rule completes the requirements for the calculations of the embedding
operation and its interface with the transformations under which a shape rule
applies. An example of a calculation of non-equivalent matchings of the LHS and

200 T.-C. K. Hong and A. Economou

A

(a)

(b)

(c)

sle

,
V4
\/

KK
KA

SHEOICIE

sReleloln

Nelelkekolelels

Fig. 5 An example of an indeterminate embedding of a shape f(u). a Shape u; b Shape W;
¢ Registered objects; d Eight infinite families of similarity transformations f embedding the shapes
f(u) in W

the RHS of the shape rule is shown in Fig. 6. In this example, the eight matches of
the LHS shape are reduced to four non-equivalent matches, which are expanded
again to eight matches of the RHS shape.

4 Three Systems

A sketch of the increasing complexity underlying the implementation of the
modules required for the calculation of shape recognition and replacement, along
with the modules required for the calculation of the various implementations of the
mathematical concept of the part relation between two shapes, is given in Table 2.
Significantly, the arrangement of these modules in three successive sets provides a
common framework of rule-based computation that foregrounds the similarities and
differences between generative geometric modelers, set grammar interpreters and
shape grammar interpreters, respectively.

Five Criteria for Shape Grammar Interpreters 201

(a)

(h) //

(c)

<\

P
4
(d)

4
) « .

K KA KA K
LK K £ K K2 K3 2

Fig. 6 An example of a calculation of counting non-equivalent embeddings and replacements of a
shape f(u) shape by the shape f(v). a Shape u; b Shape v; ¢ Shape W; d Registered objects;
e Shape rule u — v; f Four embeddings of the LHS in W; g Eight embeddings of the RHS in W

(

The two modules given in the first part of Table 2, the rule editor and the rule
compiler, provide the underlying functionality for the implementation of generative
systems (rule-based systems) irrelevant of the actual symbols, strings, shapes and so
on, involved in the computation [17]. A symbolic rule editor and a symbolic rule
compiler can be extended to a shape rule editor and a shape rule compiler by
implementing the five modules in the second part of Table 2.

The five modules given in the second part of Table 2 are commonly found in
most geometric modelers (CAD systems). These modules include geometric
modeling functions to allow instantiation of shapes, modification of shapes and
database query. The interpreters based on the integration of these five modules with
the computational framework of the rule editor and the rule compiler provide
rule-based systems for symbolic shapes and are typically classified as generative
geometric modelers, see for example, Cellular Automata [18], L-system [19],
CityEngine [20], and several more.

The five modules in the third part of the Table 2 outline the fundamentals of an
advanced shape query system to make a symbolic generative modeler a shape
grammar system. The major area of this part of the table—and the least populated
region of the whole table—focuses on the implementation of the mathematical
concept of the part operation (<) for shapes of the shape grammar interpreter,
including the three subcategories of matching and the four transformations under
which the matching is enabled. Note that these modules will be different for

T.-C. K. Hong and A. Economou

o Y Y s3urddepx juoreambe-uoN Jununo)
[) Kureoury
() Ay
() Aureprung
Y Anowosy QJeUTULIO)IPU]
[) Kyureoury
() Ay
() Aureprung
Y Anowosy pajoInsaIun)
() () Ayreaury
) o Arugy
o [) Kurepung (3)
)) Anowos| PAdLISY QRUIULIAN Surppaquig
) o adeyg jo uonejuasardoy [ewrrxej
() () () (+) uonippy :uoneradQ
[[[(—) uonoenqgng :uoneradQ
))) suonewojsuel], :uonerdQ
) Y Y (A1anb aseqeieq) suone[oy
[] [] ([sadeys
® [[)) Toniduo) oy
(] [] [] ® 1001pH oIy
1921dxa1ut 19)21d193u1 I9[opow WA)SAS
rewrwrerd odeys Tewrwrerd 3oS JILIJOWO093 QATIRISUID) QATIBISUAD)

202

10)a1dayur rewrwreld odeys e Jo sjuowannbay g dqey,

Five Criteria for Shape Grammar Interpreters 203

different types of shapes because the implementation of maximal representation of
various types of geometries (lines, arcs, etc.), their embedding conditions, the
definitions of addition and subtraction in terms of their parts, and even the trans-
formations required for different dimensions, requires often radically different
solutions. Clearly, a general account for the state-of-the-art of shape grammar
interpreters requires different accounts of the implementation of distinct types of
shapes, for example, lines, conics, Bezier curves, NURBS, and so forth in the
algebra U, and other types of shape in different algebras too. A brief discussion of
the current state of general-purpose shape grammar implementations of these five
modules for shapes made up of lines in the algebra U, is given below.

4.1 Case Studies of Shape Grammar Interpreters of Lines
inU 12

The maximal representation of shapes consisting of lines has been successfully
implemented in SGI by implementing line addition operation (Boolean union for
lines), and most of the interpreters have been following this method—see for
example, SGS [15], GEdit [13, 14], ShaDe [21] and Shape Machine [22]. Some
interpreters have adopted a graph representation of maximal lines such as GRAPE
[23] and SortAl GI [24] and use hypergraphs [25] to simulate the procedure. And
still others, such as Curve-based SGI [26] and QI [16] use algorithms to achieve the
maximal representation for Bezier curves and in doing so they solve the problem of
maximal representation for lines because straight lines can be viewed as degree one
Bezier curves.

The restricted embedding of shapes consisting of lines has been successfully
implemented by adopting the 3 x 3 matrix algorithm in SGI and in particular for
Euclidean and affinity transformations. SGI uses the 3 x 3 matrix method to derive
the possible transformations that can make f(u) <W true with two given regis-
tration points, and the algorithm of the 3 X 3 matrix is adopted by most of the
interpreters such as SGS, GEdit, Curve-based SGI, QI, SGIRF [27], ShaDe and
Shape Machine. Significantly, the two registration points, which are the points
registered in the database of the design, can provide enough information to calculate
transformations up to the Euclidean transformations and SGS, Curve-based SGI,
Shape Machine and other interpreters have adopted three registration points to do
so. Still, three points are not enough to calculate the complete range of all linear
transformations: The new transformations that are added in the list, the one-point
and two-point perspectivities, require four distinguishable points and a 9 x 9
matrix. Despite the seemingly straightforward extension of the approach in this new
domain, the 9 x 9 matrix requires a heavy computation load taxed by severe pre-
cision or rounding errors. Some interpreters such as SortAl GI and GRAPE are
looking for the data description of shapes to simulate the transformations. Shape
Machine uses a non-numerical algorithm to derive the linear transformation and

204 T.-C. K. Hong and A. Economou

successfully avoids these issues. Significantly, the interpreters that provide maximal
representation of shapes and restricted embedding are classified as set grammar
interpreters [3, 17, 28] following the theoretical distinction between set grammars
and shape grammars [29].

The unrestricted embedding foregrounds the main difference between the set
grammar interpreters and the shape grammar interpreters as the productions of the
former (and the generative geometric modelers at large) are symbolic and thusly
indifferent to the richness of shape recognition and the open-ended calculations
with shape rules. The unrestricted embedding of shapes consisting of lines has been
partially implemented in SGI, GEdit and SGIRF. SGI provides a partial foundation
for the unrestricted embedding. GEdit and SGIRF includes projection intersections
as the registration points to achieve a partial unrestricted embedding only for a
limited range of shapes. Shape Machine appears to succeed in this front integrating
and extending SGI and GEdit’s existing algorithms to offer a general solution of
this type of matching for lines.

The indeterminate embedding of shapes consisting of lines is a set of cases that
the matching results are indeterminate until users provide more information to
consolidate the results. The indeterminate embedding of shapes consisting of lines
has been partially implemented in Grape and SortAl GI by specifying floating
endpoints but only for a specific class of shapes, including the K-shape. Shape
Machine appears to be the only interpreter able to deal with the indeterminacy of
rules by detecting the special cases and offering a structure for users to pass the
parameters to the system.

The enumeration of non-equivalent matchings of shapes consisting of lines for
all three types of embedding has been implemented in various ways using diverse
approaches pertinent to the representation of the shape and the type of embedding.
GEdit uses diagonal vectors to manage the matching results and remove the visual
equivalent results. GRAPE eliminates the equivalent results by checking the
symmetry of the graph representations. SortAl GI uses a predefined description of
shapes to prevent the system from equivalent counting. Curve-based SGI, QI,
ShaDe and Shape Machine remove the equivalent matches by checking the pictorial
equivalency [5] between the matches.

5 Discussion

The review of the shape grammar interpreters within the lens provided in this work
showed the profound complexities that are involved in the implementation of the
part operator “ <” (embedding)—and the different ways that this operator can be
implemented. Unrestricted and/or indeterminate embedding are two of the hall-
marks of the shape grammar formalism and the only general-purpose shape
grammar interpreter that appears that successfully tackles this problem for shapes
consisting out of lines is the Shape Machine. Shapes consisting of lines, arcs and
their combinations—the subject matter of Euclidean geometry and an expressive

Five Criteria for Shape Grammar Interpreters 205

space for design—also appear that they have been successfully tackled in Shape
Machine so far for all Euclidean transformations along with some promising work
on conics in affine and projective geometries [30].

Future development of shape grammar interpreters will be highly related to the
types of geometry they will support. The implementation of the corresponding
maximal representations and Boolean operations for different kinds of geometries
requires the descriptors of corresponding geometries as their underlying structures.
Still, finding the geometry descriptors can be a difficult task because there are many
different types of shapes—lines, arcs, conics, Bezier, etc. Defining the range of
geometry types that are commonly used in a design process might help reduce the
complexity of the implementation. Another possibility is to use rational elements to
approximate complex geometries. For instance, a NURB curve might be hard to
model with the descriptor but it can be approximately decomposed into a compo-
sition of arcs. By adopting this concept, a complex geometry might be decomposed
into a composition with rational elements such as lines, arcs, conic elements,
planes, spheres, ellipsoids and so forth. Along with the increased complexity of the
geometries, management of the performance will be one of the main tasks in the
future. A major bottleneck of performance will surely be related to the calculations
involved in the various procedures of embedding outlined above. The complexity of
embedding follows the number of the registration points of the current design, W.
The method of 3 x 3 matrix allows the system to use two registration points to
achieve a Euclidean transformation, thus, the complexity of the embedding under
Euclidean transformation is O(n*) where n is the number of the registration points
of W. For affinity transformation, the complexity increases to O(n*) for requiring
three registration points. For a linear transformation, the complexity increases to
o(n*).

A second trajectory for the future development of shape grammar interpreters
will be highly related to parametric shape representations. The interpreters reviewed
in this paper are mostly based on transformational geometry because geometric
transformations provide a precise recognition match. As a production system, the
accuracy of subshape matching is important because the system has to guarantee
that the computational tasks can be precisely executed. Thus, parametric shape
grammar interpreters will require a certain level of accuracy to make sure the
parametric computation process is precise too. Graph representation of shape
cannot satisfy this accuracy in advance because it is too abstract to guarantee the
uniqueness of shapes. For example, the k-shape in Fig. 7 cannot be matched
through a linear transformation: the connection of its boundaries makes a concave
quadrilateral and there is no geometric transformation that can match a convex
quadrilateral to a concave quadrilateral; and the graph representation could not help
either because it would not be able to distinguish between a k-shape and a \-shape.
As in shape grammar interpreters, a unique representation of a parametric shape is
required to implement a parametric shape grammar interpreter [31].

The expansion of the range of geometry descriptors for various types of shapes
in different dimensions and the unique representation of parametric shape are two of

206 T.-C. K. Hong and A. Economou

Fig. 7 Parametric
deformation of the k-shape

the possible directions for the implementation of shape grammar interpreters.
Additional directions pertaining to the design of interfaces for these systems and
their seamless integration with current and future modes of practice provide a bright
future for their development.

References

1. Gips J (1999) Computer implementation of shape grammars. In: Proceedings of the workshop
on shape computation, MIT. https://www.academia.edu/3089939/Computer_Implementation_
of_Shape_Grammars. Accessed 20 Apr 2020

2. Chau HH (2004) Evaluation of a 3D shape grammar implementation. In Gero JS (ed) Design
computing and cognition 2004. Kluwer Academic Publishers, Dordrecht, pp 357-376

3. Chase SC (2010) Shape grammar implementations: the last 35 years. In: Proceedings of the
4th international conference design computing and cognition, Stuttgart. https://www.
researchgate.net/publication/227441758_Spatial_grammar_implementation_From_theory_
to_useable_software. Accessed 20 Apr 2020

4. Eloy S, Pauwels P, Economou A (2018) A Promises of shape grammars in advances in
implemented shape grammars: solutions and applications. Al EDAM Special Issue: Artif
Intell Eng Des Anal Manuf 32(2):131-137. Cambridge University Press

5. Stiny G (1975) Pictorial and formal aspects of shape and shape grammars. Interdisciplinary
Systems Research, Birkhduser

6. Stiny G (2006) Shape: Talking about Seeing and Doing. MIT Press, Cambridge

7. Krishnamurti R (1982) SGI: a shape grammar interpreter. Centre for Configurational Studies.
The Open University, Milton Keys

8. Krishnamurti R, Stouffs R (1997) Spatial change: continuity, reversibility and emergent
shapes. Environ Plann B Plann Des 24(3):359-384

9. Stiny G (2011) What rule(s) should I use. Nexus Netw J 13(1):15-47

10. Krishnamurti R, Giraud C (1986) Towards a shape editor: the implementation of a shape
generation system. Environ Plann B Plann Des 13(4):391-404

11. Krishnamurti R (2015) Mulling over shapes, rules and numbers. Nexus Netw J 17(3):927-945

12. Earl C (1997) (1996) Shape boundaries. Environ Plann B Plann Des 24:669-687

13. Tapia M (1999) A visual implementation of a shape grammar system. Environ Plann B Plann
Des 26:59-73

14. Tapia (1996) From shape to style. Shape grammars: issues in representation and computation.
PhD thesis, Department of Computer Science, University of Toronto, Toronto, Canada

15. Chase SC (1989) Shapes and shape grammars: from mathematical model to computer
implementation. Environ Plann B Plann Des 16:215-242

16. Jowers I, Earl C (2011) Implementation of curved shape grammars. Environ Plann B Plann
Des 38(4):616-635

https://www.academia.edu/3089939/Computer_Implementation_of_Shape_Grammars
https://www.academia.edu/3089939/Computer_Implementation_of_Shape_Grammars
https://www.researchgate.net/publication/227441758_Spatial_grammar_implementation_From_theory_to_useable_software
https://www.researchgate.net/publication/227441758_Spatial_grammar_implementation_From_theory_to_useable_software
https://www.researchgate.net/publication/227441758_Spatial_grammar_implementation_From_theory_to_useable_software

Five Criteria for Shape Grammar Interpreters 207

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

31.

Krishnamurti R, Stouffs R (1993) Spatial grammar: motivation, comparison, and new results.
In: CAAD Future 1993, conference proceedings, Pittsburgh, 1993

Wolfram S (2002) A new kind of science. Wolfram Media Inc

Lindenmayer A (1968) Mathematical models for cellular interaction in development I
Filaments with one-sided inputs. J Theor Biol 18:280-289

Muller P, Wonka P, Haegler S, Ulmer A, Gool LV (2006) Procedural modeling of buildings.
In: SIGGRAPH 2006: ACM SIGGRAPH 2006 papers, July 2006, pp 614-623
Ruiz-Montiel M, Belmonte MV, Boned J, Mandow L, Millan E, Badillo AR, Pérez JL (2014)
Layered shape grammars. Comput Aided Des 56:114-119

Hong TK, Economou A. Shape machine. Accessed 14 Apr 2020. https://shape.design.gatech.
edu/Research/Projects/2019_ShapeMachine/index.html

Grasl T, Economou A (2013) From topologies to shapes: parametric shape grammars
implemented by graphs. Environ Plann B Plann Des 40(5):905-922

Dy B, Stouffs R (2018) Combining geometries and descriptions: a shape grammar plug-in for
Grasshopper. In: eCAADe 2018, Lodz, Poland, vol 2, pp 499-508

Earl C, Johnson J (1981) Graph theory and Q-analysis. Environ Plann B Plann Des 8:367-391
McCormack JP, Cagan J (2006) Curve-based shape matching: supporting designers’
hierarchies through parametric shape recognition of arbitrary geometry. Environ Plann B:
Plann Des 33(4):523-540. Des Stud 25(1):1-29

Trescak T, Rodriguez I, Esteva M (2009) General shape grammar interpreter for intelligent
designs generations. In: Proceedings of the 2009 6th international conference on computer
graphics, imaging and visualization: new advances and trends, CGIV 2009, pp 235-240
McKay A, Chase S, Shea K, Chau HH (2012) Spatial grammar implementation: from theory
to usable software. Artif Intell Eng Des Anal Manuf 26:143-159

Stiny G (1982) Spatial relations and grammars. Environ Plann B Plann Des 9:113-114
Economou A, Hong TK, Ligler H, Park J (2019) Shape machine: a primer in visual
composition. Cultural DNA: Computational Studies on Cultural variation and Heredity.
KAIST, South Korea, pp 79-102

Economou A, Yu J, Park J. Shape signature. https://shape.design.gatech.edu/Research/
Projects/2019_ShapeSignature/index.html. Accessed 20 Apr 2020

https://shape.design.gatech.edu/Research/Projects/2019_ShapeMachine/index.html
https://shape.design.gatech.edu/Research/Projects/2019_ShapeMachine/index.html
https://shape.design.gatech.edu/Research/Projects/2019_ShapeSignature/index.html
https://shape.design.gatech.edu/Research/Projects/2019_ShapeSignature/index.html

	11 Five Criteria for Shape Grammar Interpreters
	Abstract
	1 Introduction
	2 Requirements of a Shape Grammar Interpreter
	3 Calculating Embedding
	3.1 Restricted Embedding
	3.2 Unrestricted Embedding
	3.3 Indeterminate Embedding
	3.4 Counting Non-equivalent Embeddings

	4 Three Systems
	4.1 Case Studies of Shape Grammar Interpreters of Lines in {{{\varvec U}}}_{12}

	5 Discussion
	References

