
Progress in IS

Jennifer Hehn
Daniel Mendez
Walter Brenner
Manfred Broy Editors

Design
Thinking
for Software
Engineering
Creating Human-oriented
Software-intensive Products and
Services

Progress in IS

“PROGRESS in IS” encompasses the various areas of Information Systems in theory
and practice, presenting cutting-edge advances in the field. It is aimed especially at
researchers, doctoral students, and advanced practitioners. The series features both
research monographs that make substantial contributions to our state of knowledge
and handbooks and other edited volumes, in which a team of experts is organized by
one or more leading authorities to write individual chapters on various aspects of the
topic. “PROGRESS in IS” is edited by a global team of leading IS experts. The
editorial board expressly welcomes new members to this group. Individual volumes
in this series are supported by a minimum of two members of the editorial board, and
a code of conduct mandatory for all members of the board ensures the quality and
cutting-edge nature of the titles published under this series.

More information about this series at https://link.springer.com/bookseries/10440

https://springerlink.bibliotecabuap.elogim.com/bookseries/10440

Jennifer Hehn • Daniel Mendez •

Walter Brenner • Manfred Broy
Editors

Design Thinking for Software
Engineering
Creating Human-oriented Software-intensive
Products and Services

Editors
Jennifer Hehn
Institute for Digital Technology
Management
Bern University of Applied Sciences
Bern, Switzerland

Daniel Mendez
Department of Software Engineering
Blekinge Institute of Technology
Karlskrona, Sweden

Walter Brenner
Institute of Information Management
University of St. Gallen
St. Gallen, Switzerland

Manfred Broy
Department of Informatics
Technical University of Munich
Garching b. München, Germany

ISSN 2196-8705 ISSN 2196-8713 (electronic)
Progress in IS
ISBN 978-3-030-90593-4 ISBN 978-3-030-90594-1 (eBook)
https://doi.org/10.1007/978-3-030-90594-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-90594-1

Introduction and Overview

The digitization of the economy and society is progressing rapidly. The SARS-CoV-2
pandemic has triggered an additional “digitalization surge” in which, among other
things, working from home has become the new normal. Digitization means that the
importance of software is constantly increasing. There is already almost no challenge
in private and business life for which a software solution does not already exist.
Today, there is software that seems almost perfect from the user's point of view.
Apple, for example, has created a whole range of software solutions and devices,
such as iPhones or iPads, which can be used effortlessly by people of different ages
and with different affinities to the world of software and hardware, not least thanks to
the work of Steve Jobs, who recognized the importance of non-functional aspects
such as usability and appearance very early on. But not all software solutions serve
their purpose. Very often, one stands amazed in front of software that does not do
what it actually promised to do, or that does what it promised to do, but the
functionality is difficult to use due to hard-to-use interfaces. We are all confronted
with faulty or hard-to-use software. These deficits are surprising, because the
development of software is no longer a young discipline, but now looks back on a
history of almost 60 years.

The development of human-centric software solutions is becoming increasingly
important. By human-centered software we mean software that is made by people for
people and is user-appropriate and has functionality that is needed by users. The goal
of this edited volume is to contribute to the improvement of the software develop-
ment process by strengthening human centricity. In recent years, design thinking has
emerged as an approach that combines innovation and human centricity. This
approach has emerged in the environment of leading engineering faculties at uni-
versities such as Stanford University in Palo Alto, the Massachusetts Institute of
Technology in Boston in the USA, and Carnegie Mellon University in Pittsburgh
and has spread worldwide in recent years. Design thinking was originally focused on
the development of new customer-focused physical products or to improve existing
physical products. In recent years, design thinking has increasingly become a
collection of established methods and approaches for the development of software

v

and software-intensive products. These are the focus of this book. We consider a
software-intensive system as “any system where software contributes essential
influences on the design, construction, deployment, and evolution of the system as
a whole” (IEEE; p. 1). Such systems typically consist of software as well as of
hardware.

vi Introduction and Overview

In this book, we focus on the first step of the software development process,
requirements engineering. We want to add design thinking to the “method and
toolbox” of requirements engineering. This edited volume was produced in cooper-
ation between researchers at the Technical University of Munich, its associated
institute fortiss, the Bleking Institute of Technology in Karlskrona in Sweden, the
Institute for Digital Technology Management at Bern University of Applied Sci-
ences, and the University of St. Gallen. The Technical University of Munich, fortiss,
and the Bleking Institute of Technology contributed their extensive knowledge and
experience in software development and requirements engineering, while the Uni-
versity of St. Gallen and the Bern University of Applied Sciences brought its
expertise in design thinking to the collaboration. The cooperation turned out to be
not easy since design thinking and software engineering are two different worlds
colliding. Requirements engineering always aims at the development of software
and defines the basis for software development activities at an early stage. Design
thinking is an open-ended method. Software can be the result but does not have to
be. The focus is on satisfying user needs that have been found. Human centricity in
design thinking is more than operating appropriateness. It is about meeting user
needs. The personalities involved in design thinking and software engineering also
have different characters. Design thinkers are often open personalities with very
different educational backgrounds. Numerous design thinkers come from an artistic-
creative environment or are trained designers. Many design thinkers are extroverted
and communicative. Software engineers are very often people with a penchant for
formal mathematical thinking. They have usually studied computer science and have
a background in the natural sciences. Open-ended work is rather alien to them. They
want to build correct software. Accordingly, it is difficult to bring the two cultures,
worlds of thought, and personalities together. The collaboration was driven by the
common goal of combining the best of both worlds.

On the one hand, we searched for the authors of the invited contributions through
extensive research on the Internet, and on the other hand, we approached personal-
ities from our personal environment and invited them to write a contribution. Our
Internet research showed that there are only some researchers and people from
practice who are already working on the combination of requirements engineering
and design thinking. The existing “body of knowledge” in academia is still small and
probably just emerging. The area we deal with in this edited volume is only at an
early stage. With this book we want to give a starting signal for the development of a
“body of knowledge.” In the end, 12 authors or teams of authors accepted our
invitation. One contribution comes from two of the editors. We would like to express
our sincere thanks for these contributions.

The contributions in this book can be divided into three clusters: Cluster Method,
Cluster Governance, and Cluster Use Cases. Figure 1 gives an overview.

Method
Interview DT and RE (A)
Integrated Artefacts A()
Digital Design (P)
Big Data Analytics (P)
DTSCRUM (W)
RE-DT-UX (P)

Use Cases
Platform Design (P)
Shop Floor Support
System (P)

Digital Platform (P)
Healthcare/Emergency
Department (P)

Smart Personal (A)
Assistant

Governance
Change Management (P)
Strategic Roadmap (A)
Managing Tensions (A)

DT4RE

Fig. 1 Content structure of the twelve contributions in three clusters

Contributions from the field are marked with a P and those from academia with an
A. Five papers deal with methodological issues, six papers present field reports, and
three papers address governance issues.

Introduction and Overview vii

We have organized the contributions in this book according to the three clusters
we have identified. First come the contributions from the “Methodology” cluster,
then the contributions from the “Governance” cluster, and finally come the contri-
butions from the “Use Cases” cluster.

Cluster Method

Interview DT and RE The first contribution of this editor volume, an “Interview
with Manfred Broy and Walter Brenner about design thinking and requirements
engineering,” is a fictitious conversation between two of the editors, Manfred Broy
andWalter Brenner, as the two editors could not meet in person due to the pandemic.
In this dialogue, they elaborate on the goals of this book and explain why combining
requirements engineering and design thinking makes sense and can make a signif-
icant contribution to digitalization and business and society. The conversation also
reveals that there are still many challenges to overcome before requirements engi-
neering and design thinking are “merged.”

Integrated Artifacts Combining design thinking and software requirements engi-
neering to create human-centered software-intensive systems, the second paper is

authored by Jennifer Hehn and Daniel Mendez, who are also editors of this book. It
is really the core contribution of this book. It contains

viii Introduction and Overview

• a description of the central characteristics of requirements engineering and design
thinking

• an artifact model that shows which results are produced by design thinking and by
classical requirements engineering

• how the “result worlds” of requirements engineering and design thinking can be
connected

On the one hand, this contribution is based on Hehn’s (2020) dissertation at the
University of St. Gallen and is partly taken over verbatim as well as preliminary
work on artifact orientation in requirements engineering, the first integration of
which the editors of this anthology have published in a paper in IEEE Software
(Hehn et al. 2020). Both publications focus on the artifact model. Passages from
these two publications have been taken over in part verbatim into this core contri-
bution of this book.

Digital Design In his chapter “From Design Thinking in Software Engineering to
Digital Design as a New Profession - An Essay on Methods and Professions for
Shaping Digital Solutions and Systems,” Kim Lauenroth from Adesso SE takes a
critical look at the use of design thinking in large software projects. Based on his
experience in software engineering, Lauenroth is of the opinion that design thinking
is not suitable as a general approach in large software projects. However, he
concludes that design thinking methods are very suitable for designing innovative
business processes. At the end of his chapter, he calls for a new discipline, digital
design, which combines design thinking and software engineering. He succinctly
describes that the computer science faculties, which are responsible for training in
software engineering, have so far attracted only a few students who are interested in
design. Lauenroth even goes so far as to draw up a competence profile for digital
designers.

Big Data Analytics Michael Lewrick, author of several books on design thinking
and Head of Innovation Labs at Deloitte Switzerland, shows in his chapter “The
Hybrid Model: Combination of Big Data Analytics and Design Thinking” how
design thinking can be combined with data analytics. Design thinking as a mixture
of rather “soft” non-formal methods is combined with statistical analyses. Through
this connection, it is possible very quickly to put measured data alongside the results
of design thinking, which are of a more descriptive nature. The “gut feeling” of
design thinking is supplemented, verified, and sometimes even discarded by data
analysis. Lewrick refers to this as a “hybrid model” that combines design thinking
and data science. In our view, the integration of elements from the fields of classical
requirements engineering, design thinking, and data science is an essential compo-
nent of future software engineering.

DTScrum Daniel Gadner from Internetstores and Michael Felderer from the Uni-
versity of Innsbruck deal with the connection of agile software development and
SCRUM in their contribution “The Collective Process Framework DTScrum for

integrating design thinking into Scrum.” The focus of their contribution is the
collective process framework. It represents a process model that combines agile
software development and design thinking. The first step of their process model is
the Multidisciplinary Knowledge Cafe, in which the preliminary work for the
development process is done.

Introduction and Overview ix

RE-DT-UX In their chapter “RE-DT-UX - Moving from Discipline-Based
Approach to a Role-Based One,” Kerstin Roese, Katharina M. Zeiner, and Rainer
Wasgint from Siemens AG discuss the use of design thinking for the development of
human-centered user interfaces. In their contribution, they address a central chal-
lenge in the development of contemporary information systems, because the design
of the user interface will be of great importance in the future. Only if users like to use
an application, they will use an information system in the long run. In the traditional
“discipline-based approach,” usability engineers, design thinkers, and requirements
engineers work together as independent experts in the project teams. According to
the authors of this chapter, in the future two groups of roles will be distinguished in a
software project, roles that deal with the “what” and roles that deal with the “how.”
This chapter shows how these roles work together to design and implement a good
user interface.

Cluster Governance

Change Management Martha Fritsch describes in her contribution “Understand-
ing the introduction of Design Thinking as a change process” with the help of a
concrete case study that the combination of requirements engineering and design
thinking is not only non-trivial but can also fail. She shows that it takes a well-
organized change process to integrate design thinking into a traditional software
development department. Among other things, the author takes Lewin’s model for
organizational change as a basis and shows that there can be resistance to the
introduction of design thinking. She states that communication is a central success
factor in change management.

Strategic Roadmap Markus Guentert, Holger Rhinow, and Christoph Meinel of
the Hasso Plattner Institute describe in their chapter “From Project Plans and
Backlogs to Strategic Roadmaps: The Evolution Towards Value-Oriented Thinking
in Requirements Engineering” a strategic roadmap that focuses on value, measured
primarily in desirability of a solution for the customer. The three authors are of the
opinion that classical project planning and also the backlogs in agile approaches are
too strongly focused on feasibility. Their proposal for a strategic roadmap is struc-
tured according to the creation of customer value.

Managing Tension Dario Staehelin, Mateusz Dolata, and Gerhard Schwabe focus
in their chapter “Managing Tensions in Research Consortia with Design Thinking
Artifacts” on the use of design thinking to manage tensions in a research project. The
goal of the research project was to develop a language-based customer advisor for a

bank. Using three concrete examples, operational tensions, decision-making ten-
sions, and solution tensions, they show how the people-oriented approach of design
thinking is able to contribute to the resolution of tensions in software projects.

x Introduction and Overview

Cluster Use Cases

Platform Design Michael Jakob from the Deutsche Bundesbank and Jennifer Hehn
who is one of the editors of this book show in their contribution how design thinking
is used in a critical and complex project of the Deutsche Bundesbank to develop an
innovative and human-centered application. The project described is about replacing
the extranet of the Deutsche Bundesbank with a comprehensive innovation platform
for all external partners. In their contribution, Jakob and Hehn show how classical
approaches, agile work forms such as Scrum, and design thinking can be combined
across all phases of a software project to develop an innovative and human-centered
solution. They adapt their approach “prototyping - testing – refinement” to the needs
of a large software project. The contribution of Jakob and Hehn can be seen as a
blueprint for the future approach in software projects where the needs of many users
with different interests have to be considered.

Store Floor Support System Markus Durstewitz from Airbus Operation AG and
Thomas Abrell from Volkswagen AG describe in their chapter “Design Thinking in
a Large Manufacturing Organization - A Case Study for Designing a Smart Support
System for the Store Floor” how design thinking was used in the development of an
intelligent support system for employees in production at Airbus. During the iden-
tification of the requirements for the information system, the future users were
integrated into the development process. The methods of “Needfinding” and
“Prototyping and Testing” were used. It is exciting that the third planned step in
design thinking “Implementing” was not realized, because the project was integrated
into the MES project. The contribution of Durstewitz and Abrell can be classified as
a practical experience report.

Digital Platform In his chapter “Digital Platform Design at the Edge of Complex-
ity,” Emanuel Stöckli from Esuarance AG deals with the use of design thinking in
the development of digital platforms. In doing so, he turns to the topic of reusing
software modules to reduce complexity in the development process. Stöckli treads a
fine line. On the one hand, it is important to maintain the innovative power of design
thinking and, on the other hand, to develop reusable modules in order to increase the
efficiency of the development process and reduce costs. The author shows how this
fine line is mastered in his companies.

Healthcare/Emergency Department In his chapter “Design Thinking in
Healthcare - Enabler for Digitalization in Complex Environments,” Christophe
Vetterli looks at the use of design thinking in the development of software-intensive
ecosystems in healthcare. The use of design thinking in healthcare has gained
importance in Switzerland after the Swiss government selected design thinking as

a key method for innovation in healthcare. Vetterli uses three case studies to show
how design thinking was used as a first step in the development of healthcare
software solutions in his professional environment. In all three projects, the human
centricity of design thinking plays an essential role.

Introduction and Overview xi

Smart Personal Assistant In their chapter “It Takes Two to Tango: Design
Thinking and Design Patterns for Better Systems Development,” Ernestine Dickhaut
from the University of Kassel, Andreas Janson and Jan Marco Leimeister from the
University of St. Gallen focus on the recognition of design patterns by using design
thinking to increase efficiency in software development processes. Specifically, the
focus is on developing software for voice assistants such as Alexa and Siri. From the
spectrum of design thinking methods, interviews with future users are primarily
used. It is exciting to see how design patterns are developed to deal with new data
protection guidelines.

If one evaluates the contributions in this book as a whole, it becomes clear on the
one hand that the use of design thinking in requirements engineering makes sense.
On the other hand, the contributions show that there is still a lot of potential to better
combine design thinking and requirements engineering. Many good approaches are
recognizable in the contributions, but much integration work will still have to be
done in the future. Against this background, the goal of this book has been achieved,
namely to present the state of the art in science and practice and to provide an
impetus for future research and work in practice.

We thank all authors for taking the time to write a contribution for this book. It
was not a matter of course in the time of the pandemic to take time between video
conferences from home or conducting virtual lectures to write a contribution for this
edited volume. We would like to thank Barbara Brenner and Nadine Barth for their
support and Barbara Bethke from Springer Verlag for the unbureaucratic coopera-
tion and for the opportunity to publish this book at Springer Verlag.

We as editors are aware, as mentioned earlier, that this book represents a
beginning. Further research in science and activities in practice are necessary to
realize the potential of using design thinking in requirements engineering. We
welcome all suggestions, contributions to the discussion, criticism, and, of course,
positive feedback. Please direct your comments to jennifer.hehn@bfh.ch

Bern, Switzerland Jennifer Hehn
Karlskrona, Sweden Daniel Mendez
St. Gallen, Switzerland Walter Brenner
Munich, Germany Manfred Broy
January 2022

.

http://jennifer.hehn@bfh.ch

xii Introduction and Overview

References

Hehn J (2020) The use of design thinking for a human-centered requirements
engineering approach. Dissertation, University of St. Gallen. Baier Druck,
Heidelberg

Hehn J, Mendez D, Uebernickel F, Brenner W, Broy M (2020) On integrating design
thinking for human-centered requirements engineering. IEEE Software 37(2):25–
31

IEEE (2000) Recommended practice for architectural description of software-
intensive systems. IEEE Std 1471-2000:1–30

Contents

Interview with Manfred Broy and Walter Brenner About Design
Thinking and Requirements Engineering . 1
Walter Brenner and Manfred Broy

Combining Design Thinking and Software Requirements Engineering
to Create Human-Centered Software-Intensive Systems 11
Jennifer Hehn and Daniel Mendez

From Design Thinking in Software Engineering to Digital Design
as a New Profession: An Essay on Methods and Professions for Shaping
Digital Solutions and Systems . 61
Kim Lauenroth

The Hybrid Model: Combination of Big Data Analytics and Design
Thinking . 73
Michael Lewrick

The Collective Process Framework DTScrum for Integrating Design
Thinking into Scrum . 85
Daniel Gadner and Michael Felderer

RE-DT-UX: Moving from a Discipline-Based Approach
to a Role-Based One . 103
Kerstin Roese, Katharina M. Zeiner, and Rainer Wasgint

Understanding the Introduction of Design Thinking as a Change
Process . 115
Martha Fritsch

From Project Plans and Backlogs to Strategic Roadmaps:
The Evolution Toward Value-Oriented Thinking in Requirements
Engineering . 127
Markus Guentert, Holger Rhinow, and Christoph Meinel

xiii

https://doi.org/10.1007/978-3-030-90594-1_1
https://doi.org/10.1007/978-3-030-90594-1_2
https://doi.org/10.1007/978-3-030-90594-1_3
https://doi.org/10.1007/978-3-030-90594-1_3
https://doi.org/10.1007/978-3-030-90594-1_4
https://doi.org/10.1007/978-3-030-90594-1_5
https://doi.org/10.1007/978-3-030-90594-1_6
https://doi.org/10.1007/978-3-030-90594-1_7
https://doi.org/10.1007/978-3-030-90594-1_8
https://doi.org/10.1007/978-3-030-90594-1_8

xiv Contents

Managing Tensions in Research Consortia with Design Thinking
Artifacts . 137
Dario Staehelin, Mateusz Dolata, and Gerhard Schwabe

Platform Design with Design Thinking and Scrum: An Experience
Report from Deutsche Bundesbank . 155
Michael Jakob and Jennifer Hehn

Design Thinking in a Large Manufacturing Organization: Designing
a Smart Support System for the Shop Floor . 167
Markus Durstewitz and Thomas Abrell

Digital Platform Design at the Edge of Complexity: The Value
of Design Thinking to Balance Between Configuration and
Customization . 181
Emanuel Stoeckli

Design Thinking in Healthcare—Enabler for Digitalization in Complex
Environments: Why Healthcare Is Adequate to Proof the Potential
of Design Thinking for Software-Intensive Ecosystems 191
Christophe Vetterli

It Takes Two to Tango: Design Thinking and Design Patterns for Better
System Development . 201
Ernestine Dickhaut, Andreas Janson, and Jan Marco Leimeister

Epilog: From Requirements Engineering to Design Thinking 213
Manfred Broy and Walter Brenner

https://doi.org/10.1007/978-3-030-90594-1_9
https://doi.org/10.1007/978-3-030-90594-1_10
https://doi.org/10.1007/978-3-030-90594-1_11
https://doi.org/10.1007/978-3-030-90594-1_12
https://doi.org/10.1007/978-3-030-90594-1_12
https://doi.org/10.1007/978-3-030-90594-1_13
https://doi.org/10.1007/978-3-030-90594-1_13
https://doi.org/10.1007/978-3-030-90594-1_14
https://doi.org/10.1007/978-3-030-90594-1_15

About the Authors

Thomas Abrell is a multidisciplinary design thinking practitioner and scholar,
currently working as a Strategist at Volkswagen Commercial Vehicles. Prior to
engaging with Volkswagen, he was working as Innovation Manager at Airbus,
where he was the project lead for the case described here. He holds a Ph.D. in
Business Innovation (University of St. Gallen, Institute of Information Manage-
ment), an M.Sc. in International Design Business Management from Aalto Univer-
sity (Helsinki), and an M.A. in Design (Tongji University, Shanghai).

Walter Brenner joined St. Gallen University in 2001 as a professor after having
held the Chair of Information Systems at the University of Essen (Germany) for two
years, and at Technical University of Freiberg (Germany) for 7 years. Currently,
Professor Brenner acts as Director of the Institute of Information Management. He
published more than 300 articles and more than 35 books. His research focuses on
industrialization of information management, management of IT service providers,
innovation and technology management, and management of artificial intelligence.

Professor Brenner received a graduate degree in business administration (lic.
oec.) and a Doctorate (Dr. oec.) from the University of St. Gallen. Prior to joining
academia, Professor Brenner worked as Head of Application Development with
Alusuisse-Lonza AG (Switzerland).

Manfred Broy’s research is in software and systems engineering in both theoretical
and practical aspects. This includes system models, specification and refinement of
system and software components, specification techniques, development methods,
and verification. One of the main themes is the role of software in a networked world.
Under Manfred Broy’s leadership, as a member of acatech, the study Agenda Cyber-
Physical Systems was created for the Federal Ministry of Research to comprehen-
sively investigate the next stage of global networking through the combination of
cyberspace and embedded systems in all their implications and potentials.

xv

Ernestine Dickhaut is a Ph.D. student and research associate at the Department of
Information Systems and the Research Center for Information System Design
(ITeG) at the University of Kassel. Her research focuses on the codification of
conflicting, domain-specific knowledge, and how this can be made accessible to
system developers.

Mateusz Dolata is a postdoctoral researcher at the Department of Informatics,
University of Zurich. His main areas of expertise include design thinking, human–
AI collaboration, and IT use in frontline services. He applies a multidisciplinary
perspective shaped by his background in computational linguistics, philosophy, and
applied computer science. His research has appeared in journals and proceeding
series in Computer-Supported Cooperative Work and in Information Systems.

Markus Durstewitz has 30 years of work experience in the aviation business. As
Head of Design Thinking at Airbus, he is responsible for developing an effective
innovation framework and ecosystem that delivers value to customers and users. His
special focus is on digital transformation and data-driven services offering new ways
of collaboration along the complete value chain of aviation in product-service design
as well as in operations. He holds a Ph.D. in Cognitive Engineering (University GhK
Kassel, Man-Machine Systems Laboratory in collaboration with Euricso at ISAE,
Toulouse) and a Diploma in Aerospace Engineering (Technical University
Stuttgart).

Michael Felderer is a professor at the Department of Computer Science at the
University of Innsbruck, Austria, and a guest professor at the Department of
Software Engineering at the Blekinge Institute of Technology, Sweden. His fields
of expertise and interest include software quality and testing, software processes,
data-driven software engineering, requirements engineering, and empirical methods
in software engineering. Michael Felderer performs his research in close collabora-
tion with companies and has more than 15 years of industrial experience as a senior
executive consultant, project manager, and software engineer. For more information,
visit his website at mfelderer.at.

Martha Fritsch (née Jagoda) studied Media and Information Studies with a focus
on Management at Offenburg University of Applied Sciences. She then worked as
an academic assistant in the field of usability engineering and as a lecturer in
corporate communications, marketing trends, international marketing, and innova-
tion management at Offenburg University of Applied Sciences. Martha Fritsch
completed her academic career at the end of 2014, initially at the Humboldt
University in Berlin, with a doctorate in internal brand management. Since then,
she has worked in the fields of usability engineering, agile software development,
corporate communication, and innovation management. Design thinking has always
accompanied her, but the introduction of design thinking as a method has been a
challenge on several occasions. For this reason, she dealt in depth with the topic of

xvi About the Authors

change management within her professional career. She is currently Head of User
Experience & Conception at an agency for digitalization.

Daniel Gadner completed his master’s studies at the University of Innsbruck in
Information Systems. He is interested in the integration of design thinking elements
in agile software development frameworks like Scrum. Currently, he takes the role of
a product owner at the ecommerce company Internetstores where he is responsible
for further development of web shops like fahrrad.de or addnature.com. Besides
requirement analysis, refinement, and prioritization, he also coordinates and orga-
nizes the respective implementation activities in an agile web development team.

Markus Guentert is an alumni of the Hasso Plattner Institute and a design thinker
at heart. He started his career as a digital product strategist in a large German
consultancy where he shaped key innovation initiatives of corporates and SMEs
from discovery to MVP launches. Now working as an independent consultant, he
mainly focuses on organizational and product-related coaching. So far, he has
worked with more than 15 major clients in the DACH region, primarily in financial
services, digital health, and mechanical engineering.

Jennifer Hehn is professor at the Institute for Digital Technology Management,
Bern University of Applied Sciences, and associate lecturer at the University of
St. Gallen, Switzerland. Her research interest is focused on combining human-
centered design and agile innovation principles to develop innovative software-
intensive solutions. Jennifer held various positions in the context of design thinking
and innovation, for example as innovation manager at Deutsche Bundesbank or as a
senior manager at the innovation consultancy IT Management Partner St. Gallen
AG (ITMP). She has led numerous innovation projects within companies of all
sizes across various industries, including software, pharmaceuticals, banking,
and insurance. Until 2017, Jennifer was the Executive Director of the Design
Thinking program at the University of St. Gallen and global coordinator of the
SUGAR Network, a global network for design thinking with partner universities
worldwide.

Michael Jakob is senior IT project manager at Deutsche Bundesbank, the central
bank of Germany. He leads strategic IT projects in the area of digitalization and
supports teams to develop and implement new services and solutions, e.g., video
conferencing, Intranet, and eBusiness platform. He is a certified Design Thinking
Coach (HPI), Professional Scrum Master, Professional Product Owner, Project
Management Professional (PMP), and ITIL Expert. Additionally, he has been
supporting the introduction of design thinking and Scrum in the working environ-
ment of Deutsche Bundesbank and the transformation of IT since 2018. From 2007
until 2012, Michael was responsible manager for Mainframe Infrastructure opera-
tions and engineering. During this time, he also supported international projects of
the European System of Central Banks when introducing high-available payments
systems (Target2, Target2-Securities). Currently, his professional focus is on

About the Authors xvii

applying and combining different human-centered and agile frameworks to develop,
implement, and launch user-centric and secure IT solutions at Deutsche
Bundesbank. At the moment, he coordinates the renewal of the extranet platform.

Andreas Janson is a Postdoctoral Researcher at the Institute of Information Man-
agement (IWI-HSG) at the University of St. Gallen, Switzerland. He obtained his Ph.
D. from the University of Kassel, Germany. His research focuses on service design,
smart personal assistants, decision-making in digital environments, and digital
learning. His research has been published in leading information systems and
management journals such as the Journal of the Association for Information Sys-
tems, European Journal of Information Systems, Journal of Information Technol-
ogy, and Academy of Management Learning & Education.

Kim Lauenroth designs digital solutions since 2011 and heads the Competence
Center for Requirements Engineering at adesso SE since 2013. He studied computer
science, business administration, and psychology at the Technical University of
Dortmund and received his Ph.D. in product line engineering from the University
of Duisburg-Essen.

At Bitkom—Germany’s digital association, he is committed to establishing
digital design as a design profession for digitalization. Furthermore, he is active in
the International Requirements Engineering Board for the standardization of profes-
sional education and training in requirements engineering and digital design.

Jan Marco Leimeister is a Full Professor and Director at the Institute of Informa-
tion Management at the University of St. Gallen. He is also Full Professor and
Director of the Research Center for Information System Design (ITeG) at the
University of Kassel. His research covers digital business, digital transformation,
service engineering, and service management. His research has been published in
leading journals such as Information Systems Research, the Journal of Management
Information Systems, Journal of the Association for Information Systems, and
Journal of Information Technology.

Michael Lewrick has worked very intensively with the mindset, which enables us
to solve different types of problems. He is the author of the international bestsellers
Design Thinking for Business Growth, The Design Thinking Toolbox, and The
Design Thinking Playbook, in which he describes the mindful transformation of
people, teams, and organizations. He works intensively with universities and com-
panies and places the self-efficacy of people, in personal and organizational change
projects, at the center of his activities. During the last 10 years, he has extended his
toolbox to the design of data and business ecosystems. As an internationally
recognized expert in the field of digital transformation and the management of
innovations, he was engaged in the realization of many projects, initiatives, and
research projects globally.

xviii About the Authors

Christoph Meinel (*1954) is CEO and Scientific Director of the Hasso Plattner
Institute for Digital Engineering gGmbH (HPI) at the University of Potsdam.

Christoph Meinel is CEO and Scientific Director of the Hasso Plattner Institute
for Digital Engineering gGmbH (HPI). He is also Vice Dean of the Faculty of Digital
Engineering at the University of Potsdam. Christoph Meinel holds the chair of
Internet Technologies and Systems. He is engaged in the fields of cybersecurity
and digital education. He has developed the MOOC platform openHPI.de, super-
vises numerous Ph.D. students, and is a teacher at the HPI School of Design
Thinking, where he is also scientifically active in research. Earlier scientific work
concentrated on efficient algorithms and complexity theory.

Christoph Meinel is author or coauthor of more than 25 books, anthologies, ands
numerous conference proceedings. He has had more than 550 (peer-reviewed)
papers published in scientific journals and at international conferences and holds a
number of international patents. He is a member of the National Academy of Science
and Engineering (acatech), director of the HPI-Stanford Design Thinking Research
Program, honorary professor at the TU Beijing, visiting professor at Shanghai
University, concurrent professor at the University of Nanjing, and member of
numerous scientific committees and supervisory boards.

Daniel Mendez is full professor at the Blekinge Institute of Technology, Sweden,
and Lead Researcher heading the research division Requirements Engineering at
fortiss, the Research and Transfer Institute of the Free State of Bavaria for software-
intensive systems and services. After studying Computer Science and Cognitive
Neuroscience at the Ludwig Maximilian University of Munich, he pursued his
doctoral and his habilitation degrees at the Technical University of Munich. His
research is since then on empirical software engineering with a particular focus on
interdisciplinary, qualitative research in requirements engineering, and its quality
improvement—all in close collaboration with the relevant industries. He is further
editorial board member for EMSE and JSS where he co-chairs the special tracks
Reproducibility & Open Science (EMSE) and In Practice (JSS), respectively.
Finally, he is a member of the ACM, the German Association of University Pro-
fessors and Lecturers, and of the International Software Engineering Research
Network. Further information is available at http://www.mendezfe.org.

Holger Rhinow is the Chief Product Officer for a new digital learning platform that
is being developed at the HPI Academy. Over the last 10 years, Holger consulted
more than 100 companies in implementing design thinking and agile frameworks
into existing organizational landscapes. Between 2011 and 2018, Holger held a
scholarship at the HPI-Stanford design thinking research program.

Kerstin Roese is Head of the User Experience Group Germany at Siemens Tech-
nology. She joined Siemens Corporate Technology in 2011 as Expert for Industrial
UX and worked a long time as Senior Key Expert for UX methods and processes.

About the Authors xix

Her professional experience is built on study of psychology at Humboldt Uni-
versity Berlin with a Master’s in Engineering Psychology, Pedagogical Psychology,
and Clinical Psychology and a well-recognized and award-winning Ph.D. work in
System and Mechanical Engineering at the Technical University Kaiserslautern.
After her Ph.D., she worked several years as Professor for user-centered product
development at the TU Kaiserslautern. After a visiting professorships at Copenhagen
Business School (DK) and at the Industrial Design School at KAIST (KOR), she
stopped her scientific carrier to come back to agile project work and to start her work
as UX influencer at Siemens. In 2018, she founded the UX CAMP at Siemens—an
ongoing initiative to push the human-centered mindset at Siemens. Her publication
record has over 80 articles and paper and she is a well-received keynote speaker at
conferences and discussion partner in several industrial forums. Kerstin is the
founding president of the German UX professional association (GC upa) and active
in other UX-related communities and workstreams. With her background, she is
always interested in innovation for work methods and new impulse for digital user
experience.

Gerhard Schwabe has been a full professor at the University of Zurich since 2002.
He has studied collaboration at the granularity of dyads, small teams, large teams,
organizations, communities, and social networks. In doing so, he follows either an
engineering approach (“design science”) or an exploratory approach—frequently in
collaboration with companies and public organizations. Currently, his research
interests focus on blockchain applications and human–robot collaboration.

Dario Staehelin is a Ph.D. student and research assistant at the Department of
Informatics, University of Zurich. He holds an M.A. in Business Innovation from the
University of St. Gallen. His research interest lies in human–AI collaboration in
dyads, small teams, and organizations.

Emanuel Stoeckli is Platform Product Manager at the Zurich-based InsurTech
company esurance, where he plays a key role in the design and development of a
B2B2C platform. After studies in computational sciences and economics in Zurich
and Uppsala, he graduated in 2015 from the University of Zurich as M.Sc. in
Informatics, followed by a Ph.D. in Management from the University of St. Gallen
(HSG), where he conducted research in collaboration with Allianz Technology in
Munich. During his doctorate, he held positions as Research Associate and Design
Thinking Coach at the Institute for Information Systems at HSG, and he was a
Visiting Researcher at the Center for Design Research (CDR) at Stanford University.
Dr. Stoeckli’s research focuses on digitalization in the insurance industry, design
methodologies, and digital work with a particular focus on feedback exchange. His
research has been published in academic journals such as Electronic Markets and
Journal of Business Analytics and in numerous peer-reviewed conference
proceedings.

xx About the Authors

Christophe Vetterli’s formal academic training was obtained at the University of
St. Gallen (HSG). He holds a Master’s in Business Innovation and a Ph.D. in
Embedding Design Thinking (which was obtained in strong collaboration with
Stanford University). Vetterli is CoFounder and Managing Partner of a leading
healthcare consultancy focusing on transformation of healthcare by using design
thinking in hospitals and clinics as innovation approach for processes, strategy, and
construction projects. He additionally lectures at several international universities
and publishes regularly at the intersection of innovation and healthcare.

Rainer Wasgint currently works as a Technical Project Lead and Requirements
Engineer at Siemens AG, Technology in Research in Digitalization and Automation
in the Technology Field Software & Systems Innovation within the competence
group User Centered Experience Design located in Munich. Rainer does research in
projects using Scaled Agile SW Developments frameworks like SAFe and is a
leading SAFe-certified expert and within Siemens senior key expert. His expertise
and special interests lie particularly in the areas of software system families and
modeling with long background, UML/SYSML, and agile (system) requirements
engineering. His work experience comprises numerous project leadership positions,
program management of Siemens programs, and hands-on project work as technical
product owner in agile projects. Rainer also contributed to several EU research
projects like ESAPS, CAFÉ, and FAMILIES. One of his publications also contrib-
uting to a patent was System Decision Making and Operational State Optimiza-
tion—SDMOSO' which is based on former research in the area of project
engineering and contributed to several internal publications leading to the material
published here.

Katharina M. Zeiner is Design Thinker and User Researcher at Siemens T RDA
SSI UXD-DE. In her work she focuses on the structures and processes we need to
put in place to allow teams to do their best work. This ranges from frameworks for
Agile UX to UX Maturity assessments. Katharina has a background in psychology
(St Andrews, Scotland) and started her professional career studying 3D and lightness
perception (St Andrews, Scotland, and TU Berlin, Germany). During this time she
realized that she wanted to focus more on the experiences we can create for people.
She did so by investigating the factors contributing to positive UX in work contexts
(Stuttgart Media University, Germany). She has published extensively on this and
has created easy-to-use methods that allow even inexperienced teams to take first
steps toward creating products with better UX. Since joining Siemens her focus has
shifted slightly from methods that can be used by teams to asking how we might best
enable teams to create those experiences by addressing how they work.

About the Authors xxi

Interview with Manfred Broy and Walter
Brenner About Design Thinking
and Requirements Engineering

Walter Brenner and Manfred Broy

State of the Art

Mr. Broy, what do you understand as “requirements engineering” and where do you
see a need for further development?

The task of requirements engineering is simple to outline: It is about defining all
requirements for the result of a development project. We focus on software-intensive
systems, especially with regard to their functionality, but also quality characteristics
and additionally further specifications and, if necessary, also restrictions for the
development process and certain realization details. It is obvious that this is of
central importance—both for the usability of a system to be developed and for the
costs of the development. Here, the critical questions are always the same: Which
properties of the system to be developed are the ones really needed? How can often
vague and abstract objectives be translated into concrete requirements, for example,
in terms of functionality, while exploiting all the potential for innovation? How do
you prove that all requirements have been met for the final product? Typically, we
distinguish between the question of whether requirements were correctly elicited and
whether the captured requirements were correctly implemented. Checking these two
properties leads to validation, on the one hand, and verification, on the other hand.
Equally important is the question: Do we end up with the optimal requirements for
the task, i.e., the optimal system properties? Typically, when building such systems,
the idea of the developers is often strongly determined by reproducing existing
solutions with the help of software. Since software provides a huge solution space

W. Brenner (*)
Institute of Information Management, University of St. Gallen, St. Gallen, Switzerland
e-mail: walter.brenner@unisg.ch

M. Broy
Department of Informatics, Technical University of Munich, Munich, Germany
e-mail: broy@in.tum.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90594-1_1&domain=pdf
mailto:walter.brenner@unisg.ch
mailto:broy@in.tum.de
https://doi.org/10.1007/978-3-030-90594-1_1#DOI

and, in particular, opens up completely different possibilities, it is necessary to break
out from traditional ideas and enter innovative solution spaces. This gives rise to
central challenges in requirements engineering for which there is a strong need for
further development.

2 W. Brenner and M. Broy

Mr. Brenner, what do you understand as “Design Thinking” and where do you
see a need for further development?

Design Thinking emerged in the 1960s and 1970s at major American technical
universities, such as MIT, Stanford University, and Carnegie Mellon University. In
my view, Design Thinking is primarily a way of thinking, almost a culture, that puts
people at the center when overcoming challenges or developing new ideas. It is
mainly about discovering obvious and hidden needs of people and taking them as a
starting point for the later solution. These needs can then become requirements for a
software product. Another important component of the Design Thinking approach is
the construction of prototypes that are as concrete as possible and that can be tested
by later users. These tests should be done as early as possible according to the often-
cited principle of “fail fast, fail early.” These tests can serve to validate a solution,
i.e. they provide answers to the questions of whether the correct system is being
built. In the past decades, many methods have emerged in the Design Thinking
environment to help projects take a human-centered approach, build prototypes, test
prototypes, or identify obvious or hidden human needs. There is definitely a need for
further development of Design Thinking. In recent years, a clear trend towards
digitalized (i.e., software-intensive) solutions has emerged in the implementation
of projects with Design Thinking. Design Thinking is, however, technology-
agnostic. Nevertheless, as a result of many projects in which Design Thinking is
used, software comes out as a result. Technology neutrality at the beginning of a
project always leads to unconventional, disruptive solutions, even when it comes to
ideas for new software solutions. However, technology neutrality is also the cause
for large “frictional losses” that can be seen in the implementation of innovative
solutions created with Design Thinking, if said innovative ideas are implemented in
software. In my opinion, it is, therefore, very important to align Design Thinking
more strongly with the challenges of digitization. Specifically, I refer to focusing
Design Thinking more strongly on the development of solutions that result in
software.

Opportunities

Mr. Broy, where do you see opportunities for IT projects when the spectrum of
methods and tools used in requirements engineering is expanded to include Design
Thinking?

As already mentioned above, one of the great challenges in system development
tasks, which are often characterized by outdated ideas of solutions, is to broaden
one’s view and to recognize what other possibilities are there and what the users of a
projected system really need. Let’s take the example of navigation: If we consider

the navigation situation a few decades ago, navigation was essentially done with the
help of paper-based land and roadmaps. A naive implementation in software-
intensive systems would lead to displaying such land and roadmaps in the computer
and perhaps creating possibilities for zooming into such maps very precisely in order
to display all details for which traditionally different maps were required. As we all
know, today’s navigation systems work in a completely different way: they take care
of route determination and directly support the selection of alternatives in the choice
of a route. Even during the current journey, they provide information at the right
time, for example, on when to take a turn within the route. This could be supported
even better with augmented reality. Autonomous driving is then a consequent next
step, in which the vehicle drives the route independently. This example shows how
difficult, but also how important, it is in a system development to understand exactly
which options are available for the functionality of the system based on the diverse
possibilities of software.

Interview with Manfred Broy and Walter Brenner About Design Thinking and. . . 3

Mr. Brenner, where do you see opportunities for Design Thinking projects if
Design Thinking and requirements engineering are better combined?

Design Thinking has traditionally been focused on physical products. Over the
last 15 years, the focus of innovation has shifted. Increasingly, digital innovation has
come to the fore, as demonstrated by the example of making navigation easier.
Design Thinking can help identify the system characteristics that subsequent users
expect from navigation software, while also contributing to making the software
human-friendly to use. That way, Design Thinking can make a contribution to
meeting the challenge of “digitization.” However, we have seen that in many pro-
jects, the implementation of ideas in software, which is used in Design Thinking
projects, is not free of problems. Many innovative ideas that emerge through Design
Thinking are not documented in a way that enables software developers, who
implement the results of projects that use Design Thinking, to understand and
implement important components. It is very unsatisfactory when a good idea is
changed during the implementation in software in a way that the actual innovation is
lost. Based on these experiences, it is an important further development for me to
complement Design Thinking with methods, tools, and experiences of requirements
engineering. The goal must be to work out innovative ideas so that the “friction loss”
during the implementation in software is as low as possible.

Deficits

Mr. Broy, where do you see deficits in IT projects today, especially when it comes to
requirements engineering?

The deficits are manifold. On the one hand, requirements are often not formulated
cleanly, or worse, there is no careful exploration of which requirements are appro-
priate for the problem. This results in systems that, on the other hand, do not contain
important requirements, do not open up innovative possibilities, and, in the worst
case, are incorrect with respect to requirements that have already been found or

implement requirements that are not relevant at all. In practice, this often means that
extensive learning processes take place during a system development. Sometimes
new insights into which functionality is actually needed only emerge after the system
has been delivered, which then has to be laboriously inserted into the systems
through changes. In agile development, one tries to counter this by defining require-
ments in large parts only in the course of the project, when the learning process is
already sufficiently advanced. A more basic attitude is to be ready to make fast and
constant changes to the requirements. But whether this guarantees an efficient
approach is another question. Design Thinking and related techniques can help
here by trying to detach the learning process as much as possible from the question
of implementing specific implementation details and to anticipate them in indepen-
dent, upstream projects so that innovative solutions are not neglected with much
greater certainty.

4 W. Brenner and M. Broy

Mr. Brenner, where do you see deficits in Design Thinking projects when it comes
to digital innovations?

Before I talk about the deficits of Design Thinking, let me briefly discuss the
deficits of requirements engineering that you mentioned and how Design Thinking
can help to compensate for them. An advantage of Design Thinking lies in technol-
ogy neutrality, at least at the beginning of an innovation project. It makes it possible,
together with later users, to go through their requested learning process openly and
as free of restrictions as possible and to begin evaluating implementation alternatives
only when it is clear what the solution should look like. This saves all parties
involved from having to recognize whether the solution or software “fits” or not
only when the fully developed solution or software is available. I see the biggest
shortcomings of Design Thinking in the difficult interface between Design Thinking
and software engineering. Design Thinking is a very “soft” method that focuses on
people and primarily relies on qualitative methods, deliberately neglecting aspects of
implementation. It is about innovative, people-oriented ideas and not primarily about
implementable solutions. This way of thinking is the great advantage of Design
Thinking. It enables disruptive innovations. However, we see that this “remoteness
from implementation” in the development of the innovative ideas, overwhelms the
people who then have to implement them, especially software specialists. The
innovative solutions of Design Thinkers are not formulated in the language of
computer scientists, in particular software engineers, and sometimes the “crux” of
the innovative solutions is hidden in impressive prototypes that are, however,
practically undocumented. In this context, it is increasingly necessary to incorporate
the computer scientists’ computer science-oriented way of thinking and their
methods and tools for defining requirements into the world of Design Thinking.
However, it must be ensured that the deliberately “non-formal” character of Design
Thinking does not get lost.

Mr. Broy, what does human-centeredness mean in requirements engineering
today and how important will it become for IT projects in the future?

Human-centric design is an absolute “must-have” in light of the fact that today’s
software-intensive systems accompany us extensively in our everyday lives. This
requires a clear understanding of the situation in which people use certain systems

and functionalities, and how the functionality of the systems is delivered to people so
that they can optimally support them in their tasks. The use of a software system
always follows a specific purpose and takes place in a specific context of action. This
also requires that there is coordination between the system functions and the
cognitive processes as well as the physical processes that take place at the user.
The coordination is then reflected in the functionality, but also in the design of the
human–machine interaction and leads to the central concept of user experience
(UX), which aims to ensure that a system optimally meets the requirements and
expectations of its users and delights them in its use.

Interview with Manfred Broy and Walter Brenner About Design Thinking and. . . 5

Mr. Brenner, what does human-centeredness mean in Design Thinking and what
methods does Design Thinking provide?

Design Thinking helps to identify the purpose and the context of action of a
solution. A central guiding principle of Design Thinking is: “Innovation is made by
people for people.” The part “for people” is action-guiding for the approach in
Design Thinking. One of the central aspects is the identification of obvious and
latent needs as the starting point of innovative ideas or the solution of problems.
Everyone knows this from their own life. Design Thinking offers numerous methods
to get very close to people’s needs and the context of action. For example, there are
special methods to conduct interviews. For me, shadowing is an excellent example.
Potential future stakeholders of the solution are accompanied by a specially trained
person who observes and documents exactly what the stakeholder is concerned
about. The new insights that are gained as a result are tremendous. Another impres-
sive aspect of human-centeredness in Design Thinking, in terms of validating the
later solution, is the early radical testing of new solutions with affected people,
described by the phrase “fail fast, fail early.” From the very beginning, Design
Thinking aims not to develop written concepts, but rather prototypes that are as
tangible as possible, which are intended to show what the planned innovative idea or
problem solution could look like. Partly the prototypes consist of paper and some-
times videos or role plays show the solution. These prototypes are tested with
affected people as early as possible in the innovation process. Their feedback
radically influences the further development of solutions without compromise. If a
prototype is rejected during testing, the solution “dies.” If a prototype meets with
approval, it is developed further. That is the core of Design Thinking. It is actually a
cleverly designed cyclical process of identifying needs, building, and testing pro-
totypes, and mercilessly considering the results of those tests.

State of the Practice

Mr. Broy, what is the state of practice today when it comes to using Design Thinking
in IT projects?

I think there are big differences here. In many projects, Design Thinking methods
are hardly used at all. However, some companies are already much further along and
routinely use Design Thinking and other exploration and creativity techniques. All in

all, a rethinking process must begin here, a process of realization of how important
and indispensable such approaches are.

6 W. Brenner and M. Broy

Mr. Brenner, what is the state of practice today when it comes to translating ideas
from Design Thinking projects into software?

Design Thinking has become widespread as a way of thinking, problem-solving,
and innovation method in many companies in recent years. Within just a few years,
Design Thinking has gone from being an exotic fringe phenomenon to a central
component of innovation management. Design Thinking also performs outstanding
services in the context of digitization and digital transformation. Numerous user-
friendly websites or apps and many successful digitized products have been created
with the help of Design Thinking. Nevertheless, there are opportunities to better use
the potential of Design Thinking for the development of digital products and
services. In practice, the innovation process that uses Design Thinking and the
implementation process, specifically software engineering, is still too often too far
apart. A spasmodic search is made for an interface between the results of Design
Thinking, usually prototypes, and the subsequent software development process.
This is exactly where we need to start in the future. In my opinion, companies that
integrate both worlds could produce great innovative digital products and services.

Skills and Competencies

Mr. Broy, what additional skills will people need in the future who are involved in
developing human-centered software?

As already indicated above, tailoring systems to people’s requirements, i.e.,
developing human-centered software, means gaining a precise understanding of
the relevant people’s action situation and of how they are going to be supported
by the systems. This requires a great deal of knowledge about people, their cognitive
abilities, their sensitivities, their wishes, values, expectations, and goals. Especially
at the beginning of the information age, software-based systems were often built
where people had to adapt to the requirements of the systems and not vice-versa.
Hence, in the requirements elicitation and system development processes, we have to
focus on the ability to grasp exactly in which situation people use a system and what
is required for this.

Mr. Brenner, what additional skills will traditional design thinkers need in the
future if more and more innovation results in software?

The ideal competency profile for a traditional design thinker corresponds to the
T-profile. The horizontal part of the T corresponds to the breadth of competencies for
a design thinker, the vertical part of the T represents an area of knowledge in which
the design thinker has in-depth knowledge. However, this profile does not only
correspond to the ideal conception of the design thinker. If truth be told, this is how
most people’s competency profile is structured, although of course there are large
differences in the breadth and depth of knowledge. In recent years, numerous new
areas of competence have been added, both in terms of breadth and depth. Today, if

you want to solve central problems of economy and society, you need basic
knowledge in ecology, ethics, gender issues, cybersecurity, data protection, artificial
intelligence and of course software engineering. Therefore, every design thinker
should have basic knowledge in software engineering and requirements engineering.
They are also required to acquire basic knowledge in the important areas of digital
transformation. In terms of depth, today almost every project requires people with a
high level of competence in information technology and software development.
People who have this knowledge must be integrated into the project teams.

Interview with Manfred Broy and Walter Brenner About Design Thinking and. . . 7

Challenges

Mr. Broy, what challenges do you see for traditional computer scientists if they
engage in Design Thinking?

I am not entirely clear on what a “traditional” computer scientist is. Does it refer
to the way computer scientists were trained at the beginning, in the first courses of
study in computer science? At that time, the focus was—for understandable rea-
sons—on getting to know the most important concepts of computer science in the
narrow sense. These were aimed at understanding the structure of computer science
systems: The forms of implementation, the different aspects in algorithms or
programming.

However, this is completely detached from the questions already discussed
above. How do I achieve building systems that respond optimally to the expecta-
tions, demands, and sensitivities of the users? That is a completely different ques-
tion. It is detached from computer science details at the first moment; on the other
hand, it is closely related to them, since certain ideas about how functionalities of
systems should look like can of course not be considered detached from the question
of how to implement such functionalities efficiently and effectively. Computer
scientists must have this understanding today, and then approaches such as Design
Thinking will show valuable ways to implement this practically.

The result of a Design Thinking process is, on the one hand, a prototype and, on
the other hand, a much deeper understanding by all participants of the requirements
for the system to be developed. The understanding is perhaps the most valuable
result, but it also immediately introduces a challenge: How can this understanding
subsequently be transported to the developers of the system, in particular also to the
software engineers? This applies equally to the prototype: With a prototype, it is of
course not clear which features of the prototype are rather coincidental and thus
irrelevant for the successful implementation in the and which approaches in the
prototype are crucial for the applications. In a nutshell: It is a challenge to identify,
implement, and record the respective essential requirements from a prototype so that
they can find their way into the software development process. For this very reason,
we believe that it is important to build a bridge between Design Thinking and
requirements engineering.

8 W. Brenner and M. Broy

Mr. Brenner, what challenges do you see for classic design thinkers if they
become more involved with requirements engineering and software engineering?

After working with Design Thinking and traditional design thinkers for many
years, I see primarily “human” challenges. Design thinkers have to respect that
digital solutions, i.e., software, are the result of many innovation projects and that
they can only leverage the potentials of Design Thinking if they fully use the
potentials of computer science and if there is as little “friction” at the interface
between Design Thinking, requirements engineering, and software engineering as
possible. This means that design thinkers respect requirements engineering and
software engineering methods and tools, and do not refer to people who are at
home in that world as “technocrats” and treat them with disdain. Design thinkers
need to accept that it takes another step to implement in software. Initial conversa-
tions with “real” design thinkers have shown me that they are, to put it mildly, not
very enthusiastic about being asked to use more formal documentation methods.
They counter that they would feel constrained and that the character of Design
Thinking projects is changed in the wrong direction. However, I don’t see an
alternative to extending Design Thinking to include aspects of computer science
and especially requirements engineering. Digital innovations are still gaining impor-
tance for the development of innovative solutions for central challenges for economy
and society. Only if we succeed in incorporating more computer science into Design
Thinking, the potentials of Design Thinking can be used optimally.

Goals for the Book

Mr. Broy, why are you participating in this book and what can a reader learn
from it?

It has a lot to do with my personal experience in dealing with requirements. In the
first few years when I was dealing with this, the focus—to me—was on how to
formulate requirements so that they are clearly described and can subsequently be
used in system development and also in system verification. The question of which
functionalities users really need in which form was rather in the background. Today,
my view has almost reversed: It is crucial to first understand which functionalities
users need and then to address the question of how to model and analyze it to be able
to implement it optimally. The field of requirements engineering is still very
fragmented. There are only a few methods that are generally accepted or even
standardized. This is also reflected in the tools that are important for practical
implementation. The tools are much weaker and less suitable for development
tasks than would be possible in principle today. Only the merging, combining, and
standardizing of approaches can lead to the emergence of a more standardized field
by understanding how the different methods and approaches intertwine. This is
precisely the goal of this book.

Mr. Brenner, why are you participating in this book and what can a reader learn
from it?

Interview with Manfred Broy and Walter Brenner About Design Thinking and. . . 9

For me, this book is a first and important step in connecting Design Thinking,
requirements engineering, and software engineering. This book builds bridges
between the worlds of computer science and Design Thinking from the perspective
of both science and practice. Readers of this book will get an overview of the state of
the art in science and practice as well as valuable advice on how to use Design
Thinking and requirements engineering in combination in projects. I am very
grateful that we are able to produce this book in cooperation with members of the
Faculty of Computer Science and fortiss at the Technical University of Munich,
members of the Institute of Information Management at the University of St. Gallen
and the Blekinge Institute of Technology in Karlskrona in Sweden and numerous
other personalities from science and practice. I would like to thank all those involved
for their cooperation and the time they have invested in the contributions.

Combining Design Thinking and Software
Requirements Engineering to Create
Human-Centered Software-Intensive
Systems

Jennifer Hehn and Daniel Mendez

Introduction

The success of any software-intensive system anchors in the question of how well it
reflects its users’ needs (Maguire and Bevan 2002) and surrounding constraints.
“Getting the requirements right”—which is often associated with the term Require-
ments Engineering—is consequently seen as one of the most significant endeavors in
development projects (Broy 2006; Robertson and Robertson 2013). It is typically
associated with the initial phases of a software development life cycle and its major
aim is to decide upon the relevant functional and nonfunctional properties of
software-intensive products. Elementary tasks toward this goal include the elicita-
tion of requirements, their analysis and negotiation also in terms of reaching
consensus among all relevant stakeholders, their specification to accommodate
subsequent engineering activities, and their validation in terms of ensuring the
requirements’ quality (e.g., correctness and consistency, among other attributes).

In accordance with the terminology introduced by the International Requirements
Engineering Board,1 Requirements Engineering, therefore, denotes the “systematic
and disciplined approach to the specification and management of requirements with
the goal of understanding stakeholders’ desires and needs and minimising the risk of

1See the IREB glossary, available at www.ireb.org

J. Hehn (*)
Institute for Digital Technology Management, Bern University of Applied Sciences, Bern,
Switzerland
e-mail: jennifer.hehn@bfh.ch

D. Mendez
Blekinge Institute of Technology, Karlskrona, Sweden

fortiss GmbH, Munich, Germany
e-mail: daniel.mendez@bth.se

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90594-1_2&domain=pdf
mailto:jennifer.hehn@bfh.ch
mailto:daniel.mendez@bth.se
http://www.ireb.org
https://doi.org/10.1007/978-3-030-90594-1_2#DOI

delivering a system that does not meet these desires and needs.” Given the
human-centric nature of software—in the end, software is made by humans for
humans—Requirements Engineering is undoubtedly a critical determinant for soft-
ware quality, regardless of how Requirements Engineering exactly manifests itself in
practical settings.2 In a world pervaded by software and where most of our daily
routines are supported—if not dominated—by software-intensive systems, excel-
lence in RE is a de facto key. At the same time, many companies struggle with
capturing the users’ needs effectively, often leading to software-intensive systems
which (1) either miss important requirements, (2) reflect incorrect requirements
(or incorrect assumptions), or (3) which reflect—technically speaking—the correct
functionality, but are still rendered unusable as they lack important nonfunctional
properties from the perspective of their end users. This gives rise to the need for new
approaches that allow for a more human-centered Requirements Engineering.

12 J. Hehn and D. Mendez

In the following, we first elaborate on the difficulties and limitations of contem-
porary Requirements Engineering principles and approaches, before motivating their
symbiotic relationship with Design Thinking to create software-intensive systems in
such human-centered way. Exploring the relationship of both historically grown
worlds as part of an integrated approach is in scope of this book chapter.

Requirements Engineering and its Limitations

Many companies struggle in the complex endeavor of establishing a high-quality
Requirements Engineering and, in consequence, many projects suffer from insuffi-
cient Requirements Engineering. One of the key characteristics of Requirements
Engineering is its volatile nature and its sensitivity to its practical context. Many
things are not clear at the beginning of a project and a methodology, method, or tool
that might fit very well the needs of one project could be completely alien to the
needs and the culture of the next. This is what renders Requirements Engineering as
something hardly standardizable with universal one-size-fits-all solutions and, thus,
a discipline difficult to master. It is, therefore, not surprising that 33% of software
development errors are estimated to have their origin in insufficient Require-
ments Engineering (Emam and Koru 2008; Mendez Fernandez and Wagner 2014).
Moreover, 36% of those errors are known to lead to project failures. Requirements
Engineering is therefore not only difficult to handle, but it is also crucial for project
success. Further studies corroborate the criticality of Requirements Engineering as
they show how requirements errors may represent 40% of the total project costs; it is

2We can often observe that RE is subsumed under the umbrella of software process models or
product management approaches, often without using the term “Requirements Engineering.” In this
chapter, we do not distinguish between those various approaches but refer to the handling of
requirements—from their inception to their specification and validation—which is in scope of
any product development regardless of the chosen approach and terminology and regardless of
whether it is done explicitly or implicitly.

Combining Design Thinking and Software Requirements Engineering to Create. . . 13

Fig. 1 Top 21 requirements engineering problems as revealed by the “Naming the Pain in
Requirements Engineering” initiative. See also www.napire.org for more information including
publications and open data sets

commonly accepted that when these errors are found late in the development
process, their correction can make up to 200 times more than when correcting
them during in early development stages (Venkatesh Sharma and Kumar 2013).

We initiated, at the time of writing this chapter already a decade ago, a globally
distributed, biyearly replicated family of surveys to gain insights into contemporary
practices and challenges in Requirements Engineering: The Naming the Pain in
Requirements Engineering initiative (short: NaPIRE, see also Wagner et al. 2019,
Mendez Fernandez et al. 2016).3 Among the insights we gained are a clearer
understanding about the most frequently occurring and most critical problems
companies experience, as well as their root causes and their effects (going beyond
a binary view on project failure and success). Here, we discovered that a large share
of problems is related to human factors (see Fig. 1) and the lack of expertise to
deeply penetrate the problem space—and this is regardless of the software process
model employed such as “agile” (Mendez Fernandez et al. 2015).

This is not surprising given that Requirements Engineering is historically grown
out of engineering disciplines and corresponding worldviews and it involves many

3See also the project website NaPiRE.org for further information and related empirical data sets.

http://www.napire.org
http://napire.org

different approaches, methods, tools, and techniques—none of which is suited for all
purposes. In any case, while most of the primary academic debates are centered
around questions related to the specification and refinement of requirements to
measurable and, in particular, verifiable requirements covering various forms of
representation (for models and natural language descriptions) as well as questions
related to facilitating seamless modelling and the transition to the solution space in
engineering, little attention is paid to eliciting the actually relevant requirements to
obtain a sufficiently complete and correct requirements specification.

14 J. Hehn and D. Mendez

In fact, one of the biggest lies we tend to tell ourselves in Requirements Engi-
neering is that the information relevant to understanding the problem space (stake-
holder information, context information, requirements) is omnipresent and simply
needs to be elicited. A typical consequence of this problem is what we call “solution
orientation” (Mendez Fernandez et al. 2012), the tendency of moving too fast to
develop a solution and of focusing on related technical aspects often without a
proper understanding of the problem to be solved by that solution. Here, actual
user needs are often neglected, requirements are invented based on incorrect assump-
tions or blindly reused from other supposedly similar projects and solely based on
the requirements engineer’s intuition, or they lack creativity (see Inayat et al. 2015 as
well as the results of the NaPiRE initiative). This underlines the need for more
problem-oriented ways of thinking.

In fact, today’s complexity growth in product development where system and
domain boundaries become more and more fuzzy and where human factors become
more and more important makes explicit the need for a shift even in RE itself (and
corresponding roles and responsibilities) from often technology-centric ways of
thinking, tasks, and domain-expertise to problem-centric ways of thinking, media-
tion, empathy, and creativity. This gives raise to the need for new approaches in
interdisciplinary team configurations. This is what is promised by Design Thinking.
But how does Design Thinking delineate exactly from Requirements Engineering?

Design Thinking and Requirements Engineering: Two
Distinct, Yet Complementary Approaches

With its growing relevance in agile software development, Design Thinking has
gained recognition as a creative problem-solving method, particularly when the real-
world problem is complex or “wicked” (Buchanan 1992). Industry studies have
highlighted this significant development. For example, based on a survey of the
Hasso-Plattner Institute (Schmiedgen et al. 2015), over 69% of Design Thinking
practitioners and managers identified Design Thinking as one of the major contrib-
utors to conduct an efficient innovation process. In a survey of IBM by Forrester
(2018), Design Thinking was reported to reduce development and testing time by
33%, equating cost savings of around $1.1 Mio per major software development
project. Some researchers even consider Design Thinking a “modern form of

requirements engineering” (Beyhl and Giese 2016, p. 288) addressing some of the
aforementioned challenges in current Requirements Engineering practices. How-
ever, we argue that this is not the case. Design Thinking and Requirements Engi-
neering emerge from different backgrounds and offer different tools and approaches
aiming at different goals, even though these goals are complementary by nature, as
explained next.

Combining Design Thinking and Software Requirements Engineering to Create. . . 15

In principle and as elaborated in more detail in the next sections, when developing
a software-intensive product, we need to accommodate essentially two perspectives.
On the one hand, we need a profound understanding of the socio-technical and the
operational context of the system under consideration. It is important to elaborate on
what problems, needs, and goals stakeholders really have, and what the particular-
ities of the domains including limiting (e.g., regulatory) constraints and demands are.
This constitutes the difficult task of gaining a profound understanding of the
too-often fuzzy goals, rather than requirements or solution proposals, what their
implications are, and what possibilities these goals open for future products. On the
other hand, we need to elaborate a solid foundation for the engineering of a software
product where we clearly specify—as far as possible in a nontechnical, solution-
independent fashion—what the elementary functional and nonfunctional properties
of the software product are. Those properties build the basis for a variety of
engineering and management activities ranging from architectural design over
implementation and verification to project organization and planning activities
such as effort and cost estimations.

The first perspective is what is typically in scope of Design Thinking, which
describes a specific mindset and often nontechnical approaches to penetrate the
problem space from a user perspective and to deliver nontechnical throwaway
prototypes that allow to better understand that problem early on. The second
perspective is what is typically in scope of Requirements Engineering which
describes (engineering) methodologies, approaches, and tools to specify require-
ments in a detailed and testable way that facilitates subsequent development and
management activities in a seamless manner. Here, capturing the problem domains
and user perspectives is in many ways important (think, for example, in terms of
UX), but not always central. A central task in Requirements Engineering is often to
focus on operational environments and underlying infrastructures as well as their
technical constraints, implications, and cost structures, but also on evidently dem-
onstrating compliance to regulatory standards existing for many industries (think, for
example, in terms of safety-critical systems or cyber-physical systems). In that sense,
Requirements Engineering comes in many forms and interpretations which are all
different from the principal ways of working in Design Thinking and yet they are all
complementary to each other.

Design Thinking leverages interdisciplinary teamwork for a structured approach
of ethnographic methods, and fast and simple (non-technical) prototyping cycles to
produce innovative solutions in early product, service, and system development
processes (Brown 2008; Kolko 2015). This rather diverging nature of problem
solving is notably different from the more converging ways of Requirements
Engineering practices in most software-intensive projects (Harte et al. 2017). The

multifaceted opportunities of applying Design Thinking for Requirements Engineer-
ing are highlighted by several research community members. Vetterli et al. (2013)
were one of the first who suggested bringing Design Thinking and Requirements
Engineering together for developing software applications. Academics with a
content-focused view (what value does Design Thinking add) have recognized its
value in terms of product quality, user acceptance, and process speed, mostly in
specific domains like learning environments (Soledade et al. 2013), social innova-
tion (Newman et al. 2015), or health care (Harte et al. 2017). Academics with a more
process-focused view (how does Design Thinking add value), examine usage
schemes of Design Thinking with software engineering techniques and agile devel-
opment toolkits. For instance, authors have investigated the integration of Design
Thinking and Scrum (e.g., Häger et al. 2015; Przybilla et al. 2018) and found
evidence for higher innovation potential stemming from a combination of both
approaches. Although mainly practice-oriented literature suggests potential benefits
of combining Design Thinking and Requirements Engineering, or more generally
speaking Software Engineering, knowledge on how this could be done in a seamless
manner remains still unclear (Beyhl and Giese 2016).

16 J. Hehn and D. Mendez

While Requirements Engineering is a rather mature discipline with a long-
standing history in research and practice, resulting in a plethora of holistic method-
ologies, practices, and tools, there is still limited knowledge about Design Thinking
as Yoo (2017, p.v) emphasizes in his call to “advance the intellectual foundation of
Design Thinking” for Information Systems research. Little is known, in fact, about
the specific impact on Requirements Engineering. A deeper understanding of Design
Thinking would enable both communities, Requirements Engineering and Design
Thinking, to evaluate its application purpose and potential for discovering and
specifying requirements more thoroughly.

This is what is in scope of this chapter in the hope to provide a solid foundation
for the remainder of this book.

Contribution and Outline

In this chapter, we elaborate on an effective integration of Design Thinking into
Requirements Engineering. Note that we do not pretend that there would be one
exclusive way of doing Design Thinking or Requirements Engineering. Rather, our
aim is to introduce the mindset and common practices of both worlds, abstract from
those practices by means of concentrating on the underlying outcomes (artifacts),
and finally to use those resulting more simplified models for an integration of Design
Thinking and Requirements Engineering which we further complement with prac-
tical experiences and recommendations. This provides a common basis for the
various invited expert discussions captured in this book.

In the remainder of this chapter, we focus on the following contributions:

Combining Design Thinking and Software Requirements Engineering to Create. . . 17

• First, we introduce the very fundamentals of Design Thinking and Requirements
Engineering including the principles and practices as often found in literature.

• We then elaborate a first artifact model for Design Thinking that captures the
essential concepts, approaches, and terms, and we will do the same for Require-
ments Engineering. We particularly concentrate on an artifact-centric view as a
process-agnostic means that allows us to concentrate on the essential work
products and their dependencies while abstracting from the particularities of
surrounding, often very complex and unique specific-purpose processes.

• We use the artifact models for Design Thinking and Requirements Engineering to
propose an integration of both.

• To use that integration not only as a conceptual foundation but also allow for its
effective use in practice, we conclude by introducing different operationalization
strategies on how to make efficient use of the introduced combination of Design
Thinking and Requirements Engineering to create human-centered software-
intensive systems.

Rather than merely focusing on presenting an academically oriented concept
model, we aim at elaborating on essential terms, principles, and concepts while
considering (and extending) the perspective on the practical relevance as many
results emerge from academia-industry collaborations.

One central hope we associate with this introductory chapter is therefore to set the
foundation for the subsequent invited chapters and to contribute to the ongoing
debates and efforts in effectively integrating both worlds.

Previously Published Material

Note that the insights provided in this book chapter emerge from previously
published material, among it the dissertation of the first author (Hehn 2020) as
well as the long-term collaboration with the second author. In some parts, we will
explicitly borrow from parts of the dissertation in a verbatim manner.

Conceptual Background

In the following, we introduce the background to the extent necessary for the
contributions of this book chapter. We will first elaborate on the very fundamentals
of Design Thinking before concluding with a brief introduction of Requirements
Engineering.

18 J. Hehn and D. Mendez

Design Thinking as a Human-Centered Problem-Solving
Approach

Design Thinking is referred to as “a human-centered approach to innovation that
draws from the designer’s toolkit to integrate the needs of people, the possibilities of
technology, and the requirements for business success” (Brown 2012). The roots of
Design Thinking date back to the late 1960s, when design academics examined the
mental processes that underlie design activities and transformed them into normative
guidelines for creative problem solving (Simon 1969). These studies have expanded
the scope of design beyond the boundaries of product styling to a way of thinking
that can now be universalized for a multitude of disciplines (e.g., management,
business, software development, and engineering).

The paradigm of human-centered design is both starting point and foundation of
all activities at all stages in Design Thinking (Brown 2008). Design Thinking
solutions evolve from the triad of human values (desirability), technological feasi-
bility, and business viability, combining expertise from the field of design, ethno-
logic and anthropologic research, engineering, and business economics. The
dimension of desirability (what people want and need) anchors in deep empathy
for users and is applied by involving relevant stakeholders systematically throughout
the entire process. Diverse design techniques help facilitate the creative transforma-
tion of user knowledge and insights into new concepts. Subsequently, feasibility and
viability are integrated and explored. The lens of feasibility (how technology can
help), therefore, demands an exploration of organizational capabilities and techno-
logical options in order to translate the human-centered requirement into actual
products and services. Assessing the third dimension of business viability (what is
financially sustainable) entails evaluating market opportunities and their compliance
with the business objectives of the organization. Given its integrative nature, Design
Thinking can be applied to “all aspects of business and society” (Brown 2009, p. 3)
and is equally relevant for designing tangible and intangible solutions, both in public
and in private sectors.

Design Thinking on an Operational Level

On an operational level, Design Thinking is interpreted in three ways: as (1) a
process with a sequence of steps according to a prescriptive process framework,
(2) a toolbox with a collection of methods for situational support, and (3) a mindset
with a set of human-centered principles to be internalized (see Fig. 2). While all three
modes are interlinked, they result in different conceptualizations on a practical level.
As Fraser (2011) suggests, “it takes a combination of the right mindset (being) and a
rigorous methodology (doing) that unlocks a person’s thinking, and that one must
consider all three of these factors.” (p. 71).

Combining Design Thinking and Software Requirements Engineering to Create. . . 19

F
ig
.2

D
es
ig
n
T
hi
nk

in
g
as

a
pr
oc
es
s,
to
ol
bo

x,
an
d
m
in
ds
et
(s
ee

al
so

H
eh
n
20

20
)

20 J. Hehn and D. Mendez

Design Thinking Process

Design Thinking process models, accompanied by a set of design tools, provide a
supportive framework for practical use. Because of their specific character and clear
instructions, those models are often utilized in Design Thinking education to provide
a tangible, formalized approach to the Design Thinking concept. The normative
Design Thinking process model is typically divided into two main phases: (1) prob-
lem exploration with problem definition, needfinding, and synthesis and (2) solution
exploration with ideation, prototyping, and testing (ME 310 2010). The Design
Thinking process as introduced in the left column in Fig. 2 can be summarized in
five iterative steps as illustrated in the following:

1. (Re-)Define: The starting point of a Design Thinking process implies an intensive
level of engagement with the topic under consideration. The complex problem is
transformed into a single sentence (often starting with “How might we. . .?” or
“What if. . .?”) entailing a clear design challenge and, therefore, making the topic
somewhat tangible. Activities in this stage are to identify sources of inspiration,
assess relevant stakeholders and their impact on the problem, explore emerging
trends and market adjacencies, and to prepare research directions.

2. Needfinding and Synthesis: In the second step the topic is concretized by
collecting user data through field research. The design thinking team applies
empathic research techniques to uncover hidden needs and unexpressed desires
by finding out how people work, what they like and dislike, and how they interact
with a product or service. Practical activities in the observation phase include
interviews (e.g., with users, extreme-users, non-users, and experts) and a variety
of observation methods (e.g., self-documentation, on-site observation, and
shadowing). The acquired needfinding data is then transformed into meaningful
insights about (unmet) user needs. Problem framing and reframing helps to
identify patterns and ultimately develop a focus on where to create the highest
value and impact. Applied tools are storytelling, scenarios, empathy maps,
journey maps, and personas.

3. Ideation: Based on the developed insights in step 2, structured creativity methods
support idea generation for new solutions. Ideation focuses on creating ideas and
concepts (for instance by brainstorming techniques) as well as sketching them out
quickly. Brainstorming rules such as “be visual,” “encourage wild ideas,” “defer
judgment,” “go for quantity,” “stay focused on topic,” and “build on the ideas of
others” are applied to stimulate creativity and thinking outside the box.

4. Prototyping: Promising solution ideas are turned into tangible prototypes (e.g.,
(paper-) models, mock-ups, role-plays, storyboards, journey mapping, and short
videos) in order to facilitate communication and feedback from end users.
Therefore, it is not necessary to build perfectly well-engineered products, but
rather simple versions and multiple alternatives in parallel, which focus on the
most important aspects or highlight features for which feedback is crucial. Over
the course of a project, prototypes usually evolve from so-called “Critical func-
tion/experience prototypes” (that define the core functionalities of the solution),

Combining Design Thinking and Software Requirements Engineering to Create. . . 21

Fig. 3 Double diamond (see also Hehn et al. 2020, p. 26)

and “dark horse prototypes” (that challenge key assumptions and boundaries with
visionary ideas) to “system prototypes” (that combine the most promising ele-
ments into one system vision) (Uebernickel et al. 2015).

5. Testing: The ultimate step is the collection of user feedback and definition of
improvement opportunities. Since it is important to understand the physical
interaction of the product in use, feedback from end-users and project stake-
holders is processed for further concept enrichment and revision. Considering the
new information, the Design Thinking team may then go back to earlier steps,
often revising the point of view stage or even starting the entire process over again
by doing additional research about a specific idea and its realization.

Another way of visualizing the innovation workflow is dividing the Design
Thinking process into two exploration stages: (1) the exploration of the problem
space and (2) the exploration of the solution space, both consisting of an interaction
between information gathering (divergent activities) and information processing
(convergent activities). This visualization is also called “Double Diamond” (see
Fig. 3).

The problem space demands a diligent examination of the problem context by
integrating all relevant stakeholders and the synthesis of all collected information to
a clearly defined point of view, including needs and insights. The solution space
encourages the generation of ideas and the creation of prototypes, which can be
evaluated and tested with users. The process is repeated several times until a final
solution can be presented. Reflection points are carried out during the process
wherever necessary as they are crucial steps for adapting to novel information and
developing deeper insights. Each cycle stimulates creativity and encourages rapid
learning through trial and error.

22 J. Hehn and D. Mendez

Design Thinking Toolbox

Design Thinking as a toolbox breaks Design Thinking down into a set of techniques
from which to pick and choose those that work best for the particular context and
situation (see middle column in Fig. 2). A wide range of practitioner catalogues of
Design Thinking methods and tools have emerged in recent years (Doorley et al.
2018; IDEO.org 2015; Uebernickel et al. 2015). In this case, Design Thinking is not
so much considered a prescriptive process or a distinct phase of a process, but rather
a bundle of handy and selective (design) methods and techniques for situational
support. Examples of the most used methods that are attributed to Design Thinking
are summarized in Table 1 (Hehn et al. 2018b).

Table 1 Examples of Design Thinking methods (adapted from Hehn et al. 2018b)

Method Description Phase

Stakeholder
mapping

Analysis of all stakeholders that are affected by the design
challenge

Define

Desk research Desk research is known for collecting data based on literature
and Internet research

Define

Framing and
reframing

Framing and reframing is used to define the scope (and out of
scope) of a project

Define

Interviewing Conversation between two or more people where questions are
asked by the interviewer

Needfinding

Observation Observation and descriptions of happenings in the real world Needfinding

Active listening Technique to elicit needs by understanding and responding to
what someone has said

Needfinding

Clustering Technique to bundle ideas and statements into thematic
buckets

Synthesis

Storytelling Method for exchanging knowledge collected during
needfinding

Synthesis

Insight
formulation

Processes to distill and capture the most important learnings
from needfinding

Synthesis

“How might we”
questions

“How might we . . .” is a way of asking questions to initiate
brainstorming but also entire projects

Ideation

Brainstorming Brainstorming is a group creativity technique, mostly based on
Osborn’s method

Ideation

Brainwriting A similar technique to brainstorming but all ideas are collected
in written format before the information exchange within the
group starts

Ideation

Paper prototype Tangible representation of a product or service to facilitate
testing

Prototyping

Role playing Role playing is used to act out service scenarios quickly and
simply

Prototyping

Sketches/
scribbles

Sketching and scribbling is all about drawing ideas and mak-
ing them more tangible

Prototyping

Feedback cap-
ture grid

Framework to capture user, customer, or stakeholder feedback
while testing (dimensions often are: Likes, Criticism, Ideas,
and Questions)

Testing

Combining Design Thinking and Software Requirements Engineering to Create. . . 23

Contrary to the process perspective, the toolbox offers an even more flexible way
of using Design Thinking and tailoring it to specific project conditions. Thus, it can
be integrated into the daily work routine and into existing company structures
relatively quickly. However, since many of the Design Thinking techniques are
not necessarily exclusive to this approach, it may raise the question from which point
onwards to actually speak of Design Thinking.

Design Thinking Mindset

A growing number of authors stress that the core of Design Thinking goes beyond
process models and tools (e.g., Kröper et al. 2010; Martin 2009). They perceive
Design Thinking primarily as a mindset or general “design attitude” toward creative
problem solving (see right column in Fig. 2). This entails the development of
empathy, an open-minded and optimistic approach to generating insights and
ideas, and the rationality to investigate and fit those ideas in compliance with the
context. The main principles are highlighted in the following:

• Design Thinking emphasizes human values as a starting point and foundation for
all related activities (Brown 2008). Understanding what people need and want
anchors in a deep empathy for users and is achieved by systematically integrating
a variety of stakeholder groups throughout the development process, both
through direct dialog and non-obtrusive observation methods.

• Design Thinking solutions are mainly generated through radical collaboration,
both with users and by composing a multidisciplinary project team that incorpo-
rates different functions and departments (Doorley et al. 2018). By encouraging
interorganizational cooperation on the ground of common principles for a col-
laborative culture, Design Thinking can be regarded as a holistic framework for
co-creation.

• Design Thinking leverages abductive reasoning to constantly generate new
information and consider alternative options early on. The abductive nature of
this way of working induces a “reflective conversation with the situation” (Schön
1984, p. 76) by looking beyond “what is” and exploring the logic of “what might
be” to generate customer and business value (Martin 2009).

• Design Thinking stresses a bias toward action. This means that the preferred
ways for gathering insights and feedback from stakeholders are hands-on activ-
ities such as experimenting with ideas, building prototypes, and testing them
(Doorley et al. 2018).

• Design Thinking is a fundamentally exploratory process that encourages rapid
and iterative learning cycles. According to the “fail early and often”-principle
every iteration leads to further adjustments and new directions in the development
process. In the long run, this iterative approach to development is supposed to
mitigate risks of not meeting customer needs in the long run (Brown 2009).

24 J. Hehn and D. Mendez

Artifact-Based Requirements Engineering and the AMDiRE
Approach

Similar to as it is the case for Design Thinking, Requirements Engineering, too,
comes in various forms and interpretations while none is best for all purposes. In this
chapter, we will not even try to introduce the discipline in its various interpretations
to the extent they deserve, same as it is not our intention to promote any of the
various (and often competing) approaches to Requirements Engineering. Rather, we
aim at laying the foundation for Requirements Engineering that integrates the very
Design Thinking tools and principles introduced above.

In principle, how Requirements Engineering is done in practice—including the
artifacts created and the techniques used—depends on many factors such as sur-
rounding software process models, application domains, industry sectors, and even
engineering cultures including personal, subjective preferences in engineering
teams. Those characteristics render Requirements Engineering approaches as some-
thing unique and barely standardizable with a one-size-fits-all solution. In response
to this complexity in the choice of methods and approaches, various artifact-based
approaches to Requirements Engineering have been elaborated over the last two
decades. All those approaches capture the particularities of the envisioned domains
and serve as reference models to guide the elaboration of precise requirements for
those domains while offering the necessary flexibility in how to do it from the
perspective of processes and activities. To this end, corresponding approaches offer
blueprints of the results and their dependencies rather than a dictate for complex
activities, tasks, or methods. This is what essentially reflects the artifact-centric
philosophy. In such a philosophy, we concentrate on defining the artifacts, their
contents, and their dependencies in a central model that constitutes the backbone of a
(Requirements Engineering) project, and which leaves open when to create which
artifact and which description technique to use (Mendez Fernandez et al. 2019).
Such an artifact model then serves as a guide for engineers in elaborating their results
(e.g., the specification of user requirements via use cases and capturing their
relationship to acceptance test cases to support traceability) while leaving open the
way how to do it (e.g., in an agile manner or a rather plan-driven manner).

In this book chapter, we rely on one specific artifact-based approach to Require-
ments Engineering which we use as integration point for Design Thinking. The
approach we rely on is the Artifact Model for Domain-independent Requirements
Engineering (short: AMDiRE). AMDiRE emerges as a concluding synthesis of the
various approaches developed in recent years for different domains and with differ-
ent partners from the relevant industries, e.g., Capgemini, Siemens, Bosch, BMW, or
Cassidian. The AMDiRE approach thus emerged as the result of consolidating
previously developed approaches and the lessons we learned during their develop-
ment, evaluation, and dissemination.

Here, we focus on the very foundation of AMDiRE to the extent necessary in the
context of our chapter. Details on the approach can be taken from previously
published material (Mendez Fernandez and Penzenstadler 2014).

Combining Design Thinking and Software Requirements Engineering to Create. . . 25

Overview of AMDiRE Components

Figure 4 illustrates all components included in the AMDiRE approach necessary to
use it as a reference at project level. The central component of AMDiRE is defined
by its artifact model. For the sake of simplicity, we see an artifact as a key deliverable
of major interest that abstracts from contents of a specification document. It can be
used as input, output, or even as an intermediate result in Requirements Engineering
created along a particular task or method and by choosing a description technique
(e.g., natural language, structured tables, figures, or models) as long as it complies
with the artifact model as explained next. A more insightful introduction into what
artifacts are in software engineering can be taken from our reflection provided in
previous work (Mendez Fernandez et al. 2019).

For each artifact, we capture two essential views: a structure view and a content
view. The structure view captures for each artifact type (e.g., “requirements speci-
fication”) the content items to be considered (e.g., “use case model”). For each
content item, we define the content view via the modelling concepts, e.g., the
elements and content relations of a use case model and different description tech-
niques that can be used to instantiate these concepts, such as an UML activity
diagram. The structure model thus gives a simplified view on the content and is
used to couple the contents to the elements necessary to define a process, e.g., roles,
methods, and milestones relevant for a use case model. This is in scope of the
integration of AMDiRE into company- and project-specific software process models
(often referred to as static tailoring). The content model then guides by defining what
is necessary to specify the content, e.g., scenarios, actions, and actors, which we use
to create a use case model.

Fig. 4 Overview of AMDiRE components (see also Mendez Fernandez and Penzenstadler 2014)

26 J. Hehn and D. Mendez

Note that we consider—same as for activity-centric approaches to Requirements
Engineering—elements of a process description, but instead of defining the process
based on phases, activities, and methods, we define the process based on the artifacts
to be created and their relationships, as well as related milestones for when these
artifacts should be of sufficient quality to specify the next. Even though the content
model supports the precision of the results in the flexible process definition, the
process itself remains undefined. Regarding the methods and description techniques
for creating the contents (e.g., UML or natural text), we leave open which one to
choose, as long as the contents and relationships proposed by the artifact model are
specified.

AMDiRE Artifact Model

The AMDiRE artifact model comprehends concepts used to specify the contents of
the artifacts over three levels of abstraction: the Context Layer, the Requirements
Layer, and the System Layer (Fig. 5). Each of those levels of abstraction features a
specified number of content items that are detailed in concepts used for a stepwise
refinement of the various (modelling) views we have on a system. The context layer
considers the context of a system, i.e., the domain in which to integrate the system
such as the business domain with the business processes to be carried out. The
requirements layer considers the system from a black-box perspective. That means,
we specify the requirements on the system and the user-visible functionality from a
perspective in which the system is intended to be used, without giving details about
its technical, internal realization. That view is captured by the system layer which
provides the glass-box perspective on the internal (logical and technical) realization
of the system.

The artifact model is in the center of our attention and consists of two basic
models: the content model and the structure model. The content model abstracts
from the modelling concepts used for a particular family of systems in a particular
application domain over the defined levels of abstraction. The structure model gives
a logical structuring to those concepts and is used for the integration with the role
model and the process model (see also the previous section).

Finally, details on the single content items as well as further components which
accompany AMDiRE will be introduced in the context of the integration of our
Design Thinking model into AMDiRE (while also referring the interested reader to
the main article Mendez Fernandez and Penzenstadler 2014).

Combining Design Thinking and Software Requirements Engineering to Create. . . 27

Context Layer

System Layer

Requirements Layer

Stakeholder Model Objectives
& Goals

Constraints
& Rules

!

!

!

!

!

Data Model

E

A

A
A

E

System Vision

Functional
Hierarchy

Architecture Overview

System

Function Model
Fun 1

Fun 2

Component Model

C C

Data Model

E

A

A
A

E

Behaviour Model

Business Cases

Deployment Requirements

System Constraints

Domain Model

Service ModelUsage Model

Quality Requirements

Risk List

Project Scope

Process Requirements

Glossary

Glossary

Glossary

Fig. 5 AMDiRE artifact model (simplified view on structure model, see also Mendez Fernandez
and Penzenstadler 2014)

28 J. Hehn and D. Mendez

An Artifact Model for Design Thinking

In contrast to Requirements Engineering, no artifact model exists for Design Think-
ing—until now. We have taken the multitude of practitioners’ compendia that
present and summarize Design Thinking-specific methods as a basis to logically
infer the results they produce (i.e., artifacts) (Gutzwiller 1994). Hence, we can rely
on the available literature corpus as well as the knowledge we accumulated in our
own more practically oriented work as the foundation for determining, synthesizing,
and summarizing the artifacts in a Design Thinking-based artifact model that is
described in this section. Figure 6 presents the development steps we followed.

Identification of Design Thinking artifacts: Three sources of evidence provide
data triangulation (and construct validity) to identify relevant Design Thinking
artifacts. The results of a Delphi study about the most used methods in Design
Thinking (Hehn et al. 2018b), empirical findings from multiple case studies (Hehn
and Uebernickel 2018; Hehn et al. 2018a), and existing practitioner catalogues
(Doorley et al. 2018; IDEO.org 2015; Uebernickel et al. 2015) serve as our main
basis. The final set of artifacts included 65 Design Thinking-related artifacts.

Construction and evaluation of an initial artifact-based Design Thinking model:
The initial model with 65 Design Thinking artifacts was evaluated in unstructured
interviews with four Design Thinking experts from academia and industry. The
experts were required to have either applied or researched Design Thinking methods
for a considerable amount of time. Specifically, people were chosen when they had a
proven track record of using Design Thinking in the context of innovative
software-intensive projects for the past 3 years. Based on the feedback, three main
findings evolved: First, the completeness of relevant artifacts and their attributions to
the Design Thinking phases have been corroborated by all experts. Second, the
original structure was adapted for better readability and comprehensibility from top
to bottom according to the chronological order in which they typically appear in a

Fig. 6 Development steps of a Design Thinking-based artifact model (see also Hehn 2020)

Combining Design Thinking and Software Requirements Engineering to Create. . . 29

Fig. 7 Design Thinking
artifact model (see also
Hehn 2020)

project. Third, the model was refined to fit the frame of reference in terms of
granularity of the artifacts. The second version of the model encompasses 21 artifacts
and is presented in this book chapter.

Construction of the final artifact-based Design Thinking model: The revised and
final version of the artifact-based Design Thinking model is visualized in Fig. 7. It
encompasses 24 Design Thinking artifacts structured into problem-oriented artifacts

(subclassified into define, needfinding, and synthesis) and solution-oriented artifacts
(subclassified into ideation and prototype and test).

30 J. Hehn and D. Mendez

A more detailed description of each content item can be found in the Appendix.

An Integrated Artifact Model Combining Design Thinking
and Requirements Engineering

In the following, we present an integrated model that combines Design Thinking and
Requirements Engineering artifacts. We motivate the development, the structure,
and implications for researchers and practitioners.

Development of an Integrated Artifact Model

An artifact-oriented reference model, such as those shown in the sections before, and
that aims at integrating Design Thinking into a holistic engineering context is, as we
argue, the only appropriate way to accommodate the variety of processes and
methods of both approaches. Artifacts determine what must be accomplished (the
work products and their interdependencies) instead of how it has to be accomplished
(the steps that have to be taken). Further, defining a comprehensive view of the
“desired” system and its key functionalities and features is an important objective of
both Requirements Engineering and Design Thinking. The artifacts produced along
Design Thinking and Requirements Engineering activities are used to support
product design and project management decisions throughout the development
process and product life cycle. The quality and appropriateness of these artifacts
are therefore imperative for the successful development and acceptance of a
software-intensive system. A model that encompasses the relevant artifacts of
Design Thinking and Requirements Engineering can outline the synergies and
differences between both approaches. While keeping a consistent structure and
terminology, this condensed view focuses on the created work products, their
contents, and dependencies, and it allows to abstract from their particularities of
various processes and methods, which would otherwise render a comparison
difficult.

Our integrated artifact model, therefore, contains and structures all the artifacts
referenced, modified, or created in Requirements Engineering and Design Thinking
in software-intensive development projects. To be useful, the model should support
the re-use of knowledge and should be tailorable to certain situations in an efficient
manner. The aim is to integrate Design Thinking and Requirements Engineering
artifacts to simplify the adoption and configuration (i.e., usage schemes) of Design
Thinking for Requirements Engineering.

Our goal was to establish a reference model that should:

Combining Design Thinking and Software Requirements Engineering to Create. . . 31

Fig. 8 Construction and evaluation of an integrated artifact model (see also Hehn 2020)

1. Support the integration of both approaches respecting their different “flavors.”
2. Provide flexibility in the way of working to cope with the various influences in

individual project environments and for organizational needs.
3. Enable a reproducible creation of work products in the context of innovative

software-intensive development projects.

Similar as done for the development of the artifact model for Design Thinking
itself, we show the steps for the construction and evaluation of our final combined
artifact-based reference model for Design Thinking and Requirements Engineering
in Fig. 8.

The process of mapping artifacts from Design Thinking and Requirements
Engineering was performed by two experts in Design Thinking and Requirements
Engineering. The comparison was performed with 24 Design Thinking artifacts and
24 Requirements Engineering artifacts. Based on these activities an initial integrated
artifact model for Design Thinking and Requirements Engineering was created. This
model has been tested with Design Thinking and Requirements Engineering aca-
demics and practitioners to adapt the relevant artifacts and their interdependencies
for a comprehensive overview. Details on the methodological approach can be taken
from Hehn (2020).

Integrated Artifact Model

The integrated artifact model is presented in Fig. 9. It establishes a blueprint of
relevant artifacts, i.e., the work results, contents, and dependencies of Design
Thinking and Requirements Engineering. All artifacts are denoted in rectangles
including the name of the artifact and a number. Associations depict relations
between the artifacts, however not exhaustively, for reasons of reducing visual
complexity. The Design Thinking phases (dotted line) provide a substructure for
organizing the Design Thinking artifacts.

Table 2 summarizes the elements used to compose the artifact model.

Fig. 9 Integrated artifact model (see also Hehn et al. 2020, p. 27)

Table 2 Overview of elements in the integrated artifact model

Representation Description

The folder box denotes the layers context, requirements, and system as the
overarching structure of the artifact model

The dotted line indicates the Design Thinking phases (Define, Needfinding,
Synthesis, Ideate, Prototype, Test) for means of comprehensibility

The dark rectangle denotes a Design Thinking artifact including the artifact
name, a number in the artifact model, and an icon

The gray rectangle denotes an requirements engineering artifact including the
artifact name, a number in the artifact model, and an icon

The white rectangle denotes a combined artifact (design thinking and require-
ments engineering artifact) including the artifact name, a number in the artifact
model, and an icon

The arrow denotes a unidimensional relation between artifacts. It expresses an
input–output relationship

32 J. Hehn and D. Mendez

Combining Design Thinking and Software Requirements Engineering to Create. . . 33

Fig. 10 Distribution
according to artifact type
(see also Hehn 2020)

The overall structure of the model is orientated along the three layers of the
AMDiRE model (context, requirements, system)—each capturing a collection of
relevant content items from Design Thinking and/or Requirements Engineering.

As discussed earlier, the context layer covers the information relevant to defining
the context and includes, for example, the overall project scope, stakeholder infor-
mation, a domain model, and assumptions of the project team, and underlying goals
and constraints. Hence, much of the information captured in Design Thinking
concentrates on this layer.

The requirements layer encompasses what is necessary to operate in this context
and captures, for example, the system vision, high-fidelity prototypes, a usage and
behavior model, and the function hierarchy as entry points for the system layer.
Similar to the context layer, much of the information here is documented using
natural language, occasionally reflected, however, also in models (e.g., for data and
functional perspectives on user-visible system behavior).

Finally, the system layer includes information on how the system is to be realized
and includes, for example, a logical component architecture and a specification of
the desired behavior, e.g., via function models. Again, information within this layer
is documented using both, natural language and conceptual models (data, function,
behavior).

The integrated artifact model consists of three artifact types that encompass
40 content items with various relations. Out of all content items, 16 can be associated
with Design Thinking, 16 with Requirements Engineering, and eight with both (see
Fig. 10). The latter can be further distinguished into artifacts with similar semantics
but different purposes (three out of eight). These include the design challenge/project
scope (#01), the business case (#03), and the objectives and goals (#05). The main
reason for their different purpose is that in Requirements Engineering these artifacts
have a convergent nature while in Design Thinking they can be considered as open
because they provide the opportunity for a broad context exploration.

The distribution of artifact types according to the specific layers in the artifact
model is depicted in Table 3.

34 J. Hehn and D. Mendez

Table 3 Distribution according to layer (see also Hehn 2020)

Layer
Design
thinking

Design thinking and requirements
engineering

Requirements
engineering Total

Context 14 5 2 21

Requirements 2 3 8 13

System 0 0 6 6

The model positions most artifacts within the context layer (21). Most Design
Thinking-related artifacts can also be found here (14 Design Thinking only arti-
facts and five Design Thinking & Requirements Engineering artifacts). Next to the
data model (#29, #37) the glossary (#09, #34, #40) is a Requirements Engineering-
only artifact that can be found in all layers. This artifact type is revised based on the
specific layer objectives. Starting in the context layer, the design challenge/project
scope (#01) defines the relevant problem and primary scope of a project. Within this
realm, the stakeholder map/model (#04) captures the most relevant stakeholders and
their relationships. They provide one important rationale for the requirements and
goals of the system (#05). The domain model (#06) contains context information and
constraints (#02) about the operational environment connecting it to the require-
ments layer. Design Thinking artifacts complement and expand these mainly
Requirements Engineering-related artifacts with a broad and human-centered per-
spective. For example, field study results (#11) and insights (#15) help to frame the
project scope (#01) and inform specific use cases and scenarios (#25, #26) as defined
in the requirements layer. Low- and medium-fidelity prototypes (#18, #20) are
mainly leveraged to better understand stakeholder needs and system context.

The requirements layer contains five Design Thinking-related artifacts (two
Design Thinking only artifacts and three Design Thinking and Requirements Engi-
neering artifacts) and eight Requirements Engineering artifacts. The system vision
(#24) denotes the general concept and idea of the intended system. High-fidelity
prototypes (#22) are a way to visually enrich the system vision (#24) and to illustrate
the key functionalities and general form of interaction (app, desktop solution, etc.).
Agreed upon by the relevant stakeholders, a system scope, i.e., major features and
use cases as well as its constraints (#32), is specified. A service model (#26) defines
the services the system shall offer complementary to the use cases defined through a
use case model (#25). User-visible system functions are structured in a functional
hierarchy (#28), which is the entry point into the system layer.

The system layer holds six Requirements Engineering artifacts and none of them
are related to Design Thinking. While the context and the requirements layers
include the information aspects that are typically found in Design Thinking- and
Requirements Engineering-related artifacts, the system layer includes the items
addressing what is known as the solution space and providing the interface for
Requirements Engineering into design activities. In the system layer, the functions
of the functional hierarchy (#25) are related to components (#38), a functional model
(#36), and their internal behavior (#39), which also provides the basis to identify the
data model (#37).

Combining Design Thinking and Software Requirements Engineering to Create. . . 35

A more detailed description of each content item can be found in the Appendix.

Organizational Model

The integrated artifact model can be seen as a foundation for a more comprehensive
organizational model that includes the following components: (1) the artifact model
specifies what needs to be produced or exchanged; (2) the role model describes who
should produce it and which particular responsibilities are needed; (3) the activity
model describes what to do in order to create, modify, or use an artifact; (4) the
process model denotes when the artifacts, roles, and activities should be produced or
performed; and (5) standards and tools conceptualize with what all of the above-
mentioned activities are performed (Mendez Fernandez and Penzenstadler 2014).

Figure 11 shows the artifact types in relation to roles and responsibilities (left
side) and in relation to milestones (right side), which can be used to integrate the
model into a process. We distinguish the Design Thinking- and the Requirements
Engineering-view.

Note that in Requirements Engineering and in accordance with AMDiRE, we
assign one role for each artifact type. Each role has the responsibility independent of
other potentially supporting roles such as those provided by the surrounding soft-
ware process model (e.g., product manager), and independent of whether same
people are assigned to different roles in a project. The Business Analyst has the
responsibility for the context specification, the Requirements Engineer has the
responsibility for the requirements specification serving also as a mediator between
the business analyst and the system architect. That system architect, finally, has the
responsibility for the system specification. In Design Thinking, a multidisciplinary

Fig. 11 Overview of artifact types, roles, and milestones

team takes up the role to define the context and system vision. Often this team is
drawn from various disciplines to integrate diverse perspectives constituting an
important aspect in stimulating creativity and generating the potential for more
comprehensive and original results. The willingness to cooperate with different
people is an important aspect in Design Thinking practice since solutions are mainly
generated through collaboration, both with users and by composing a
multidisciplinary project team (around six team members). Typically, Design Think-
ing team structures are not subject to hierarchies and departmentalization but rather a
way of radical collaboration that allows leadership to pass in-between members.
Team members drawn from various disciplines integrate diverse perspectives con-
stituting an important aspect in stimulating creativity and generating the potential for
more comprehensive and original results. The versatile Design Thinker has acquired
the position of a general problem solver possessing strengths in two dimensions
which are commonly visualized as a “T-shape.”Deep Knowledge corresponds to the
academic expertise or a depth of skill that allows the Design Thinker to adapt their
knowledge to the problem and make tangible contributions to the result. Broad
knowledge and skills represent the ability to reach out to other specialists coming
from a wide range of disciplines entailing a general openness to new ideas, people,
and ways of doing.

36 J. Hehn and D. Mendez

For each artifact type, we furthermore define two milestones: An entry-level
milestone indicates the point in time in which the first content item is expected to
have a sufficient maturity in its content; for instance, the system vision in the
requirements specification comprises an overview of the major use cases; its defini-
tion and agreement indicate that the use cases are succinctly defined to be further
refined and modelled and, thus, allowing, for example, for first cost estimations
based on function points. The second one indicates when the corresponding artifact
is formally accepted.

Those milestones are sufficient for process integration and instantiation as they
give us the opportunity to formally embed the artifacts into project-specific deci-
sions. Therefore, we enrich those existing milestones in analogy to the AMDiRE
milestones to cover the Design Thinking artifacts following the same logic.

Findings and Practical Implications

Our integrated artifact model offers several important insights and implications for
using Design Thinking in the context of Requirements Engineering. In the follow-
ing, we highlight those we deem most important.

Various commonalities between Design Thinking and Requirements Engineering
can be seen if the latter is understood as an iterative approach. The differences should
be seen as complementary activities. The integrated artifact model distinguishes
between more problem- and more solution-oriented artifacts, which addresses the
principles of both Design Thinking and Requirements Engineering. Problem-
oriented artifacts contain information about the underlying problem context

including the goals and needs of stakeholders as well as specific system conditions or
constraints. Solution-oriented artifacts contain information about the corresponding
system vision and how to solve the problem stated in the project description.

Combining Design Thinking and Software Requirements Engineering to Create. . . 37

The integrated model shows that Design Thinking mainly contributes to early
Requirements Engineering activities with up to 14 additional context artifacts for a
comprehensive understanding of the problem domain. Accordingly, Design Think-
ing expands the toolbox for Requirements Engineering by emphasizing the creation
of artifacts that describe the relevance of the system vision. Design Thinking could
even be exclusively used to perform these activities. A complementary approach of
Design Thinking and Requirements Engineering, however, seems necessary for
shaping the requirements layer. While both concepts produce overlapping artifacts
(system vision, functional requirements, usage, and service models), their realization
might take different forms. Design Thinking uses mainly a high-fidelity prototype to
describe the system vision and key functionalities. Requirements Engineering spec-
ifies the same mainly by using rich pictures and class diagrams. In addition, other
requirement types, such as quality or deployment requirements are predominantly
specified with common Requirements Engineering techniques. Requirements Engi-
neering is exclusively used to specify system artifacts and to provide the interface to
system design activities. Hence, Requirements Engineering also expands the toolbox
of Design Thinking.

Following our AMDiRE role model as described in Mendez Fernandez and
Penzenstadler (2014) (see Fig. 11), implications can be seen in expanding the
knowledge of business analysts with Design Thinking skills and, vice versa, in
equipping design thinkers with Requirements Engineering skills to gain appreciation
for subsequent software design activities. Lauenroth (2018) calls this role “digital
designer” and defines them as “someone who is capable of creating a vision for
digital products, processes, services, business models, or even entire systems, free
from technical or organizational obstacles as well as apparent reservations (outside-
in thinking). Digital designers are also capable of ultimately turning this vision into
reality. They transfer (technological) possibilities into (new) product/process/ser-
vice/business model/system design. To do all of this, digital designers must be
skilled in design and the available technologies and be capable of interacting with
all stakeholders” (p. 8). For training providers, the integrated artifact model can
support the development of new training programs and learning formats about
combining Design Thinking and Requirements Engineering. A new role with skills
and talents in both approaches may be fostered. Current training courses in Design
Thinking or Requirements Engineering can be enhanced by integrating the respec-
tive other approaches to gain an understanding of the benefits and shortcomings of
the two incorporated concepts.

For project managers, several contributions can be seen. First, the model can be
considered a support system to define and distinguish responsibilities in a project.
Project roles can be directly coupled to the creation of artifacts, for which they must
take responsibility. Second, project managers can assign completion levels and
establish progress control for the creation of artifacts. Quality assurance metrics
can help to objectively measure the degree of completeness of an artifact in the

artifact-based reference model. Third, the model ensures flexibility for integrating
processes and customizing the reference model at the project level. The combined
model allows for variations of the created artifacts in response to individual project
characteristics. For example, by defining the content focus of the project, the creation
of either Design Thinking or Requirements Engineering artifacts might be of greater
help as each approach emphasizes a different content type. For example, to better
understand the user and business context, the creation of Design Thinking artifacts
might be preferred. Requirements Engineering artifacts should be at the center of
attention to better describe the technical perspective and answer feasibility questions.
Teams may also jump back and forth between both approaches if new questions
come up in one or the other area. Fourth, the model can act as a basis for effective
requirements management, where the objective is to administrate the outcome of
Requirements Engineering activities. This administration includes, for example,
progress and traceability control, impact analyses, or risk mitigation (Jönsson and
Lindvall 2005). A structured and consistent content specification is a prerequisite to
perform such activities. Hence, the integrated artifact model can enhance the effec-
tiveness of requirements management activities due to its defined set of interdepen-
dencies and chosen artifacts.

38 J. Hehn and D. Mendez

For team members of software-intensive projects (i.e., requirements engineers,
business analysts, or design thinkers) the model offers a blueprint for creating
syntactically consistent and complete results with respect to the respective applica-
tion domain. While not all artifacts from the model must be considered in every
project, the overview still serves as an orientation and connection to further design
and development activities. The latter point is especially of interest for Design
Thinking as this has been continuously criticized to be insufficiently linked to
development processes (e.g., Häger et al. 2015).

Operationalization Strategies

In the following chapter, we present three operationalization strategies to integrate
Design Thinking into Requirements Engineering when designing innovative
software-intensive systems.

Overview

The integrated artifact model enables a flexible creation of the introduced Design
Thinking and Requirements Engineering artifacts. This means that the decision on
which and when artifacts should be produced needs to be customized according to
specific project characteristics. To provide a guideline three operationalization
strategies are proposed to integrate Design Thinking and Requirements Engineering
in different ways. The strategies reflect existing research findings about integrating

Fig. 12 Navigating upfront, infused, and continuous Design Thinking strategies (see also Hehn
2020)

Design Thinking into software development practices (e.g., Dobrigkeit and de Paula
2019; Lindberg et al. 2012; Hehn and Uebernickel 2018).

Combining Design Thinking and Software Requirements Engineering to Create. . . 39

We suggest the following three strategies: (1) Run Design Thinking prior to
applying Requirements Engineering practices (upfront Design Thinking); (2) infuse
the existing Requirements Engineering process ad hoc with selected Design Think-
ing tools and artifacts (infused Design Thinking); or (3) combine the previous two
strategies and integrate Design Thinking into Requirements Engineering practices
on an ongoing basis (continuous Design Thinking). The ratio between Design
Thinking and Requirements Engineering differs within the three proposed
operationalization strategies. The better the original problem is understood, the
more activities are biased toward straightforward design and implementation tasks
(i.e., Requirements Engineering artifacts) (see Fig. 12). The less it is understood, the
more activities are directed toward context understanding and problem exploration
(i.e., Design Thinking artifacts). Thus, the defined project objective and context are
the guiding parameters for the selection of an appropriate operationalization strategy.

Three Strategies to Operationalize and Integrate Design
Thinking

In the following, we introduce our three strategies to operationalize our integrated
Design Thinking approach. For each, we follow a structured approach of listing
objectives, prerequisites, key activities, necessary roles, and outcomes followed by
showing an exemplary practical case. This shall make our strategies more tangible.

40 J. Hehn and D. Mendez

Upfront Design Thinking

Objective: Upfront Design Thinking is best applied when there is a high level of
uncertainty about the problem (i.e., stakeholder and user needs) and the
corresponding solution. Creating Design Thinking-related artifacts through applying
Design Thinking helps to understand the problem in depth and to define the overall
concept of an idea. It is typically used at an early project stage to provide clarity for
unclear user needs and to define a (high-level) solution vision (e.g., “How does the
future patient support program for multiple sclerosis patients look like?”).

Prerequisites: A problem statement should have been defined as a minimum
starting point for applying upfront Design Thinking. Additional required conditions
are the setup of a multidisciplinary project team, access to potential users and other
stakeholders as well as Design Thinking training for project members.

Key activities: Design Thinking activities are typically performed in the form of a
pre-project to identify relevant features that are worth implementing. The Design
Thinking process model (define, needfinding, synthesis, ideation, prototyping, test-
ing) guides through a cyclical creation of context and requirements artifacts. The
outcome is used as a basis for performing further Requirements Engineering activ-
ities that complement Design Thinking artifacts with Requirements Engineering
specific ones.

Roles: Two roles during the upfront mode are required. First, the Design Thinking
team is responsible for planning and executing the activities. This team consists of
four to six people from different areas of expertise depending on what knowledge
will be relevant for the project, including, for example, subject matter experts, IT,
marketing, sales, design personnel (Häger et al. 2015). Second, a person or group of
people, who has defined the initial design challenge and project scope, is defined as
the project sponsor. The person in this role typically provides continuous feedback to
the team and connects it with others to enable synergistic effects and avoid duplicate
efforts (Häger et al. 2015). The following two roles are optional: First, an extended
team of (internal) experts that provide further domain knowledge and expertise for
the Design Thinking team. Second, a Design Thinking coach or coaches who
support the project team with methodological guidance. They introduce Design
Thinking techniques, facilitate team meetings, and ensure that the team is focused
on delivering the tasks and artifacts. As such, the coach should have a profound
understanding of Design Thinking to provide useful techniques and guidance at
appropriate times (Häger et al. 2015).

Outcome: The main deliverable of the upfront strategy is a clear system vision as
a basis for performing further Requirements Engineering activities. The system
vision usually takes the form of a mockup (i.e., high-fidelity prototype). Along the
way, the team will create a comprehensive set of Design Thinking artifacts, which
should make it clear why each aspect of the prototype is intended in the way it is
designed. High-level user stories and a list of usability requirements based upon test
results accompany the set of artifacts created by following the Design Thinking
process.

Combining Design Thinking and Software Requirements Engineering to Create. . . 41

Case Example
The international Alpha Insurance company wanted to develop a new service
for their new target group of “young professionals.” A project team stemming
from five different business functions (marketing, IT, actuary, product man-
ager, claims) spent 40% of their time to follow the Design Thinking process in
an iterative manner for 3 months. The solution vision resulted in a tested
medium-fidelity prototype for a digital on-demand insurance that could be
activated and deactivated based on the user’s preferences. The Design Think-
ing team handed over the prototype to the implementation team for further
specification, testing, development, and market introduction. Transferred arti-
facts included a project documentation with 20 field studies, two personas, five
opportunity areas, and six low-fidelity prototypes with learnings about fail-
ures. The final solution vision (in form of a mockup) specified key features and
their usability. The implementation team performed tests to validate these
features, their usability, and their service model.4

Infused Design Thinking

Objective: The main goal of this strategy is to support existing Requirements
Engineering activities with selected Design Thinking techniques. This includes,
for example, activities to clarify fuzzy requirements, foster creativity, gain new
ideas, or to better understand user needs.

Prerequisites: The prerequisites for applying this strategy depend on the specific
problem to be addressed. The problem should have a clear scope. The prerequisites
as described in the previous still apply.

Key activities: An infused approach makes use of selected artifacts and leverages
selected methods from the Design Thinking toolbox and integrates them into an
existing Requirements Engineering process. In case of challenges encountered
during the Requirements Engineering process, Design Thinking tools can be initi-
ated; hence, their application is ad hoc. The main activity of this strategy is the setup
of focused workshops with selected Design Thinking tools (Dobrigkeit et al. 2018).
These workshops can last 3 h or several days depending on the objectives. For
example, the goal of a workshop to generate new solution ideas could be formulated
like this: “Create ideas to optimize the user interface of our platform, making it look
and feel more emotional, and letting it appear less technical.” This session used
persona and customer journey artifacts to brainstorm new ideas.

Roles: In the infused setting, the people or person performing the Requirements
Engineering activities are the addressees of receiving Design Thinking guidance in
the form of workshops. Other workshop participants with different areas of expertise

4This case has also been published in Hehn et al. 2020 and Hehn 2020

may be added, e.g., subject matter experts, IT, marketing, sales, design, depending
on what knowledge will be relevant to achieve the workshop goal. A workshop
typically consists of 5–20 participants. Like the upfront approach, a Design Thinking
coach introduces the selected Design Thinking techniques and moderates the work-
shop and team discussions. The project sponsor can also be integrated to provide
feedback and define the context for the general direction of the workshop.

42 J. Hehn and D. Mendez

Outcome: Due to the flexible approach of the infused strategy, the outcome is
situation-dependent based on the previously defined objectives. The deliverables can
be (new) features, user requirements, or test feedback—all following the Require-
ments Engineering process. In the context of the combined artifact model, this means
that the creation of Requirements Engineering artifacts is enhanced by a selected set
of Design Thinking artifacts.

Case Example
Beta Enterprises is an international electronics group that wanted to evaluate
the possibilities of smartphone applications (e.g., emergency apps, task lists,
and maintenance procedures) for container ships in a marine context. The main
goal was to define requirements from a user point of view and to foster
creativity for solution finding. In a highly regulated environment, a Design
Thinking infusion was chosen to support the ongoing Requirements Engineer-
ing activities with selected tools from needfinding and prototyping. Five
Design Thinking infusion sessions (1–2 days) were conducted within
5 months. Produced artifacts included field studies for precise user require-
ments (it was the first time the team had been in close contact with marine
captains) and tested medium-fidelity prototypes to strengthen service and
usage models. According to the workshop participants, having direct user
contact raised the confidence level in the success of the intended solution.
Initial concerns about not finding interview partners in a highly sensitive B2B
setting turned out as unjustified.5

Continuous Design Thinking

Objective: The main goal of this strategy is to integrate Design Thinking principles
with Requirements Engineering activities on a continuous basis. Beyond the specific
project context, this can also become part of an organizational change program or
corporate strategy.

Pre-requisites: Continuous Design Thinking is recommended when addressing
complex (“wicked”) problem settings, which require continuous user involvement
along all software engineering activities. In addition to the prerequisites described
for the previous two strategies, (selected) project members should possess both
Design Thinking and Requirements Engineering knowledge.

5This case has also been published in Hehn et al. 2020 and Hehn 2020.

Combining Design Thinking and Software Requirements Engineering to Create. . . 43

Key activities: Continuous Design Thinking utilizes the Design Thinking mindset
as guiding principle. On an operational level, this translates into a seamless combi-
nation of the upfront and infused strategy and the potential setup of a new project
role for a human-centric requirements engineer. The activities comply with both
Design Thinking and Requirements Engineering elements to establish an end-to-end
view from exploring a user’s need to conceptualizing a solution vision and specify-
ing a functional system. When starting a project, the upfront strategy can be used to
provide clarity about the problem context and to elicit (user) requirements in a
structured yet creative manner. A high-resolution prototype can help to specify the
functionalities of the system vision. When moving on to the more technical side of
requirements specification, an ad hoc usage of Design Thinking methods can still be
initiated in case features are not defined well enough from a user point of view for
example.

Roles: The instantiation of a new role incorporates Design Thinking expertise as
well as Requirements Engineering expertise and mediating between both schools of
thoughts. In this strategy, it is of great importance that the new role can react quickly
when choosing methods and artifacts. The role enables the team to work toward a
final product in incremental steps. The responsibilities of the project team during this
strategy are like the preceding ones as the continuous strategy combines the two
other strategies. The team plans and executes the activities to define the final system.
The project sponsor has similar responsibilities as described in the previous sections.

Outcome: The continuous strategy results in a comprehensive set of Design
Thinking and Requirements Engineering artifacts as shown in Fig. 9. The require-
ments specification and system design are based on and traceable to customer needs
derived from the context specification.

Case Example
Gamma Energy is a large energy provider with subsidiaries worldwide. A
diverse project team applied an upfront Design Thinking approach to explore
the potential of platforms in the utility sector. The outcome was a solution
vision for a digital home improvement platform to advance lead generation. To
ensure a human-centered mindset throughout specification and development, a
new role was established to use selected Design Thinking tools for enhancing
the prototype and filling the backlog with new features. Produced Design
Thinking artifacts included high-fidelity prototypes with usability- and
feature-oriented test feedback and new solution ideas. Scrum became the
guiding framework for development, which enabled the entire project team
to work in sprints. During development Design Thinking prototypes were used
as boundary objects to enhance communication with relevant internal stake-
holders and to foster a human-centered mindset within the team (see Fig. 13).6

6This case has also been published in Hehn et al. 2020 and Hehn 2020.

44 J. Hehn and D. Mendez

F
ig
.1

3
E
vo

lu
tio

n
fr
om

P
ro
ce
ss
,v

ia
T
oo

lb
ox

,t
o
M
in
ds
et
(v
is
ua
liz
at
io
n
ba
se
d
on

fi
nd

in
gs

fr
om

H
eh
n
an
d
U
eb
er
ni
ck
el
20

18
,s
ee

al
so

H
eh
n
20

20
)

Combining Design Thinking and Software Requirements Engineering to Create. . . 45

Discussion

Our presented operationalization strategies reflect the ongoing discourse of describ-
ing Design Thinking at different levels in software engineering approaches (e.g.,
Brenner et al. 2016; Dobrigkeit and de Paula 2019). In line with other authors, we
suggest that the way in which Design Thinking should be used depends on the
specific context and objectives of a project. Accordingly, three different strategies
with different Design Thinking formats (e.g., process phases, workshops, and single
methods) were suggested which are similar to other proposed strategies in research
in the context of (agile) software development. Depending on the situation each
operationalization strategy offers different benefits but also challenges. Table 4
discusses both for each strategy.

Besides the project context, the existing maturity level of Design Thinking within
an organization can be considered an influencing factor when choosing the “right”
strategy. While Requirements Engineering is usually an established practice in

Table 4 Benefits and challenges of each operationalization strategy (see also Hehn et al. 2020;
Hehn 2020)

Strategy Benefits Challenges

Upfront
design
thinking

– The full potential of Design Thinking
is leveraged while changes to Require-
ments Engineering are not necessary
– Due to the focus on problem explo-
ration deep context understanding is
achieved
– The solution concept has traceable
links to user needs

– Resource- and time-intense
– Lost (implicit) knowledge and
potential starvation of results when
handing over Design Thinking results
– Little attention is paid to further
development critical artifacts such as
quality requirements, system con-
straints, or data models

Infused
Design
Thinking

– Intervention requires only minimal
changes in existing Requirements Engi-
neering practices
– Resource and time friendly due to ad
hoc usage of selected tools (especially
compared to upfront approach)
– Low adoption hurdle for Design
Thinking methods

– Risk of neglecting problem under-
standing (especially compared to the
upfront approach)
– No embedding of Design Thinking
mindset due to situational Design
Thinking workshops
– Little attention is paid to further
development critical artifacts such as
quality requirements, system con-
straints, or data models

Continuous
Design
Thinking

– Seamless integration into existing
Requirements Engineering practices
including development of critical arti-
facts
– High likelihood of infusing a human-
centered mindset within the project team
– Precise and traceable (user) require-
ments through continuous identification
of new requirements and testing

– Requires commitment, resources,
and time to develop continuous inte-
gration of both approaches in an orga-
nization
– Continuous Design Thinking is
highly dependent on the staffing of the
project team
– Requires an organizational mind
shift and support, potentially even an
organizational restructuring

industry, Design Thinking is still relatively new. The decision to integrate the two
approaches also depends on the level of courage, given time, and dedicated
resources. As a rough guideline, the infusion strategy provides a reasonable starting
point as it applies focused Design Thinking interventions within established prac-
tices. While the upfront strategy also keeps existing procedures, it requires more time
and resources. Finally, the continuous strategy demands for a commitment from
management to foster mindset change in an organization or department.

46 J. Hehn and D. Mendez

A “morphing nature” of Design Thinking in software-intensive development
projects can be stipulated, evolving from process guidance, via toolbox support to
the manifestation of a human-centered mindset of the project team. When
approaching “wicked” problems, Design Thinking starts with a structured, upfront
approach to define a clear product vision. Then, it transforms into a loose bundle of
tools and a mindset that links well to common agile practices. Figure 13 visualizes
this evolution.

Synthesis of Findings

The following sections summarize our findings from sections “An Integrated Arti-
fact Model Combining Design Thinking and Requirements Engineering” and
“Operationalization Strategies.”

Leveraging the Best of Both Worlds

Design Thinking and Requirements Engineering are not mutually exclusive but
rather reinforce and complement each other. Using Design Thinking for Require-
ments Engineering means putting more focus on the early phases of the process to
determine customer needs, requirements, and context, which affects the system
vision with its product features and functionalities. Design Thinking expands the
toolbox for Requirements Engineering by emphasizing artifacts for defining the
relevance of the system vision. It fosters a holistic exploration of the problem context
and defines precise user requirements. A prototype shapes the vision of the system.
These artifacts complement the more technical-oriented artifacts from Requirements
Engineering with a human-centered perspective. In addition, Requirements Engi-
neering expands the toolbox of Design Thinking by connecting Design Thinking
artifacts to later-staged software development processes. In this sense, Design
Thinking related artifacts are transformed into functionalities for technical realiza-
tion. What counts in the end in Requirements Engineering is the set of elaborated
requirements, while in Design Thinking, not only the prototype is the ultimate
outcome, but the learning curve leading to it.

Combining Design Thinking and Software Requirements Engineering to Create. . . 47

For creating a lasting impact of the system vision on the upcoming design and
implementation activities, a balance should be found between the benefits of early
experimentation as done in Design Thinking and the advantages of institutionalizing
a proper structure and documentation for subsequent software engineering activities
as achieved by Requirements Engineering.

A Comprehensive Blueprint for Innovative Software-Intensive
Systems

We contribute an evaluated artifact model for Design Thinking and Requirements
Engineering that can be tailored to specific project situations. The model is descrip-
tive and prescriptive at the same time. It is descriptive by depicting the most common
Design Thinking and Requirements Engineering artifacts as used in (innova-
tive) software-intensive development projects. We see the model as a blueprint for
designing new innovative systems, which makes it also prescriptive as it provides a
guideline and orientation for generating the artifacts in development projects. Man-
agers can use the model to evaluate their Requirements Engineering processes and,
thereby, improve effectiveness and create solutions in a more human-centered
fashion.

There is No “One Size Fits All”-Integration Strategy

Operation modes that integrate Design Thinking into (agile) software development
approaches have been proposed before (e.g., Lindberg et al. 2012; Häger et al. 2015;
Dobrigkeit et al. 2018). Building on these findings and triangulating them with
empirical data from industry, three operationalization strategies have been identified
in which Requirements Engineering can profit from Design Thinking and vice versa:
(1) Run Design Thinking upfront to Requirements Engineering practices (upfront
Design Thinking), (2) infuse Requirements Engineering with selected Design Think-
ing tools (infused Design Thinking), or (3) apply Design Thinking and Require-
ments Engineering continuously in a flexible manner (continuous Design Thinking).
The decision on which strategy to follow depends on the project context and
objective. The first strategy is recommended when the problem and solution space
is unclear. Here, the Design Thinking process provides a guiding structure for
requirements elicitation and the specification of a solution vision. The second
strategy offers requirements engineers a way to make use of selected Design
Thinking methods when they feel it is necessary. Typically, these are situations in
which project members face difficulties in an ongoing Requirements Engineering
process that might be addressed by Design Thinking methods. The third strategy
supports a continuous yet flexible application of the Design Thinking process and ad

hoc tools. The continuous approach entails the evolution from using Design Think-
ing as a guiding process to applying it as a toolbox for adaptive support up to
implementing Design Thinking principles in the mindset of project members. This
strategy should be chosen when a sustainable integration of both Design
Thinking and Requirements Engineering is intended and the project requires a
continuous integration of users into the development project. In this context, the
human-centric requirements engineer is a new role that incorporates skills from both
disciplines. Business analysts may leverage Design Thinking to deeply explore the
system context while design thinkers may equip themselves with Requirements
Engineering knowledge to better connect their results to subsequent software design.

48 J. Hehn and D. Mendez

Conclusion

Design Thinking offers great potential for promoting innovative, user-centered
concepts as it promises to place users and their needs at the core of the design
process. This gave rise to great interest in using Design Thinking for the engineering
of software-intensive systems and services which are nowadays challenged by their
pervasive nature, ever-growing complexity, and the inherent difficulty to capture
requirements and development constraints in a user-centric manner. Despite the
popularity of Design Thinking in research and practice, it is, however, often treated
in isolation without much care for a clear, seamless integration into established
software engineering approaches. In fact, too often, we tend to pretend that problem-
solving ends with a deeper understanding of the problem domain and by building
mostly nontechnical prototypes and, thus, leaving open an effective transition into
actual development and quality assurance. At the same time, in software engineering
research and practice, we pretend too often that requirements are just there and that
they simply need to be elicited and documented (if at all) and, thus, missing out great
potential of fully exploring the problem space in a human-centric manner.

The idea of integrating Design Thinking into Software Requirements Engineering
approaches to leverage the potential of a deeper problem exploration and discovering
and specifying requirements more thoroughly is not new. However, Requirements
Engineering and Design Thinking come both in various forms and in interpretations
rendering such an integration cumbersome. Thus, integration efforts typically end at
the high level of abstract principles, values and mindsets, and practices. In this
chapter, we, therefore, took an artifact-centric perspective to (1) synthesize both at a
terminological and conceptual level, and to (2) lay the foundation of effectively
guiding the problem-oriented specification of requirements based on a seamless and
holistic underlying artifact model. Our contributions focus on the following two
aspects:

Combining Design Thinking and Software Requirements Engineering to Create. . . 49

• We elaborated on the very fundamental principles and practices of both Design
Thinking and Requirements Engineering and established two independent artifact
models that reflect those principles. Here, we drew from both the state of the art in
Design Thinking and in Requirements Engineering as well as from experiences
made along two decades of academic–industry collaborations.

• We integrated both, the artifact model for Design Thinking and the model for
Requirements Engineering and presented different operationalization strategies of
how to make efficient use of that integrated approach to create human-centered
software-intensive systems.

Note that rather than merely focusing on a purely academically oriented model,
we aimed at elaborating on essential terms, principles, and concepts while consid-
ering and extending the perspective on the practical relevance as many results
emerge from academia–industry collaborations. The choice of the artifact-centric,
process-agnostic philosophy further served two major purposes. First, it allowed us
to lay such conceptual and terminological foundation for an integrated approach
while, second, not enforcing a rigid, pre-defined structure for one (and only one)
specific way of working (and thinking), hence, accommodating the various project
situations and disciplinary backgrounds we face.

This is in tune with the overall scope of this book. We aim at creating a space to
further foster debates and efforts in integrating both Design Thinking and Software
and Systems Engineering by inviting scholars and practitioners from both interdis-
ciplinary communities while not enforcing respective historically grown worldviews
on each other. One hope we associate with this introductory chapter as well as with
the overall book is to motivate the value of such an integration of both worlds.

Acknowledgments We would like to thank Falk Uebernickel for his continuous support and
feedback in previous articles and research efforts that provided a major influence on our findings
presented in this book chapter. We further thank Manfred Broy and Walter Brenner for stimulating
discussions and feedback on earlier versions of this manuscript.

Appendix

Artifact Description

The following appendix defines the content model of the combined artifact model in
detail giving for each content item a definition of the used concepts.

The Number (#) references the assigned number within the artifact model.
The Name captures the name and the type of the artifact. If the artifact can be

attributed to both Design Thinking (DT) and Requirements Engineering (RE),
different descriptions for both approaches (e.g., Design Challenge and Project

Scope) are marked by a slash (/). In this case, the description for the Design
Thinking-related artifact is provided first and the Requirements Engineering expres-
sion second.

50 J. Hehn and D. Mendez

Description and Purpose denotes the content and main characteristics of each
artifact type. Interdependencies summarize the relationships between the artifacts
regarding their content within the artifact model. The description differentiates
between the input that artifacts receive from the content of other artifacts (‘input
from’) and the output that they provide for other artifacts in the artifact model (‘input
for’).

The Notation suggests appropriate documentation and specification techniques
for each artifact (e.g., natural language, Unified Modelling Language (UML) class
diagrams, model-based documentation).

Context Specification

A description of the content items of the context specification is provided in Table 5.

Requirements Specification

A description of the content items of the requirements specification is provided in
Table 6.

System Specification

A description of the content items of the system specification is provided in Table 7.

(continued)

Combining Design Thinking and Software Requirements Engineering to Create. . . 51

Table 5 Content items in the context specification

Name Description and purpose Notation

01 Design Challenge/
Project Scope
(DT&RE)

Describes the business problem and pro-
vides direction for problem analysis and
development; has an exploratory character
in DT, a convergent objective in RE
Input for (#05), (#08), (#27), (#30)

Natural text

02 Constraints and
Rules (DT&RE)

Restrictions and fixed design decisions
that influence the system design and
implementation and must be obeyed or
satisfied; establishing them helps to run
and manage the project within the
intended business and technical restric-
tions; constraints are often explicitly
challenged in DT
Input for (#05)

Natural text

03 Business Case
(DT&RE)

Provides rationale for a design project and
is used to convince decision maker or
project sponsor; in DT its main objective
is to evaluate available execution budget
(resources and time), in RE it may have
concrete solution options in mind
Input from (#01); input for (#05)

Natural text

04 Stakeholder
map/stakeholder
model (DT&RE)

List of relevant stakeholders (internal and
external) for the project, typically includ-
ing project sponsor or client, project
manager, product manager, other (senior)
decision-makers, investors, end users,
customers, operators, product disposers,
sales and marketing, or regulatory author-
ities; helps to identify key internal and
external stakeholders as sources of
requirements
Input from (#01); input for (#05), (#07),
(#25)

Natural text, diagram,
UML actor hierarchy

05 Objectives and
goals (DT&RE)

Prescriptive statements of intent regarding
business, usage, or system goals issued by
a stakeholder (e.g., quality-related, opti-
mization-specific, behavioral, anti-goals);
provide direction for problem analysis and
system development; in DT the list con-
tains mainly high-level business goals and
objectives provided by the project sponsor
to keep outcome and specifics open for
exploration; in RE they may be more pre-
cise
Input from (#01), (#02), (#03), (#04);
input for (#06), (#24), (#25)

Natural text, goal
graphs

(continued)

52 J. Hehn and D. Mendez

Table 5 (continued)

Name Description and purpose Notation

06 Domain model
(RE)

Composed of all real-life conceptual
objects related to a specific problem (incl.
business entities, attributes, roles, rela-
tionships, constraints); ensures an under-
standing of the landscape of business
entities in the problem area and can be
used to solve problems related to that
domain
Input from (03#), (05#); input for (#09,
#34, #40), (#24), (#25)

UML activity diagrams;
Business Process Model
Notation (BPMN)

07 Design space map
(DT)

Overview of knowledge and knowledge
gaps in the context of the project; helps to
structure the exploration phase and pro-
vides a common understanding of the
design challenge; it evolves over the
duration of a project in which new
knowledge is added
Input from (#01), (#04); input for (#10),
(#11)

Natural text

08 Assumptions (DT) Hypotheses about project and stake-
holders to be explored and tested in the
project; provides a first overview of pos-
sible team biases
Input from (#01), (#04); input for (#17),
(#18)

Natural text

09 Glossary (RE) List of all relevant business or technical
domain-specific terms to ensure their
consistent usage throughout the entire
development life cycle; key elements are
terms, definitions, aliases, and related
terms
Input from (#04), (#06), (#07); input for
(#34), (#40)

Natural text

10 Secondary research
report (DT)

Summary of various sources of informa-
tion and insights from existing market
research about the given subject domain
(e.g., market and benchmarking reports,
sales reports, internal databases, govern-
ment statistics, articles, research studies);
the report supports the project team to
clarify research questions and gain an ini-
tial understanding of the challenge context
Input from (#07); input for (#12), (#15)

Natural text

11 Field studies (DT) Collection of raw data (incl. statements,
observations, pictures, videos) from inter-
viewees; they help the team to create a
common understanding of the raw data
and empathize with the interviewees
Input from (#04), (#07); input for (#12),
(#13), (#14)

Natural text,
pictures, videos

(continued)

Combining Design Thinking and Software Requirements Engineering to Create. . . 53

Table 5 (continued)

Name Description and purpose Notation

12 Thematic clusters
(DT)

Group of user statements, observations,
and other findings from primary and sec-
ondary research that represent a specific
subtopic of the project content; they pro-
vide an overview of relevant topics within
a given domain and help the project team
to recognize patterns
Input from (#11), (#10); input for (#15)

Natural text

13 Personas (DT) Fictional characters that represent a spe-
cific stakeholder group relevant to the
project (incl. a demographic profile,
behavioral patterns, attitudes, goals); they
facilitate the understanding of (potential)
users’ needs, behaviors, motivations, and
frustrations and provide alignment for
discussing design decisions
Input from (#11); input for (#14), (#16),
(#17)

Natural text;
pictures

14 Customer journeys
(DT)

Visual representations of the experience of
a customer when interacting with an
organization, product, or service (activi-
ties, tasks, touchpoints); they offer a sys-
tematic analysis of challenges, pain, and
gain points that help to identify areas with
innovation potential
Input from (#11), (#13); input for (#15),
(#16), (#25)

Natural text;
sequence and activity
diagrams

15 Insights (DT) Findings that occur because of synthesis
and interpretation of primary research;
usually expressed in one sentence to
explain why something is happening
Input from (#11), (#12); input for (#16),
(#17)

Natural text

16 Opportunity Areas
(DT)

Potential for innovation based on insights
and needs found in primary research; they
define specific directions for next steps
while they often go beyond the project
assignment itself; the formulation of
opportunity areas is rather action-oriented,
while the insights describe the status quo
or a desired future state
Input from (#12)–(#15); input for (#17)

Natural text

17 Solution ideas (DT) Specific features and concepts on how to
solve a given problem statement (based on
creativity techniques and brainstorming)
Input from (#09); input for (#18), (#20),
(#22)

Natural text

54 J. Hehn and D. Mendez

Table 5 (continued)

Name Description and purpose Notation

18 Low-fidelity proto-
types (DT)

Tangible and testable artifacts that dem-
onstrate the key functionalities of an idea;
examples are paper prototypes, role plays,
Wizard of Oz; particularly suitable during
the early stages of a project, when the
topic is still abstract or in the process of
forming as costs and effort are extremely
low, which allows the project team to
explore various ideas at once
Input from (#17); input for (#18), (#20)

Different forms, mostly
in a paper-based format

19 Scope-oriented test
results (DT)

Feedback from users and other relevant
stakeholders regarding the basic concept
of an idea; it helps the team to gain more
empathy for their target group and to
decide which ideas to keep, to refine, and
to drop input from (#18); input for (#20),
(#22)

Natural text

20 Medium-fidelity
prototypes (DT)

Non-technical prototype showing key
features of the target product or service;
while low-fidelity prototypes (#18) are
useful to inspire new ideas, medium-
fidelity prototypes are mainly used to test
and refine existing solution ideas; they
usually take more effort to build, yet also
provide a much more realistic representa-
tion of the envisioned behavior and user
interface
Input from (#17), (#18), (#19); input for
(#21), (#22)

Different forms, mostly
in a digital format

21 Feature-oriented
Test Results (DT)

Feedback from users and other relevant
stakeholders regarding key features and
functionalities of the prototype; they vali-
date customer’s expectations and help to
prioritize functionalities for implementa-
tion
Input from (#20); input for (#22), (#25,
26)

Natural text

(connued)

Combining Design Thinking and Software Requirements Engineering to Create. . . 55

Table 6 Content items in the requirements specification

Name Description and purpose Notation

22 High-fidelity pro-
totypes (DT)

Offers a clear vision of how the final system will
look and feel; they help the project team to gain
meaningful feedback for usability testing and
are also suitable to gain buy-in from clients and
internal project stakeholders
Input from (#17), (#18)–(#21); input for (#22),
(#24)

Different forms,
mostly in a digital
format

23 Usability-ori-
ented Test
Results (DT)

Feedback from users and other relevant stake-
holders regarding the interaction with a product;
the results provide areas for improving issues of
understandability and point at directions for
refining design elements and interaction mech-
anisms
Input from (#22); input for (#24), (#25)

Natural text; pic-
tures, videos

24 System Vision
(DT&RE)

Specification of how an information system is to
fit into the business context while supporting
pre-defined restrictions and goals; it serves as a
means for agreeing on what the solution is
about; while the purpose of the system vision is
similar to both DT and RE, its realization might
be different: In DT it is usually comprised of a
high-level natural text specification and a
medium-or high-fidelity prototype (#20, #22), in
RE the system vision is often expressed via rich
picture.
Input from (#03), (#04), (#05), (#06), (#22);
input for (#25), (#33), (#31)

Rich picture, proto-
type, natural text

25 Usage model
(DT&RE)

Illustration of the (black box) system behavior
of the system vision (#24) from the user’s point
of view through an overview of use cases (incl.
actor, task, objective, and causal relationship);
the model provides an understanding about
which system functions are performed for which
actors (in their roles); while the purpose of the
usage model is similar to both DT and RE, its
realization might be different
Input from (#13), (#14), (#24), (#26); input for
(#28), (#29), (#33)

Natural text, UML
activity diagrams

26 Service model
(DT&RE)

Specification of requirements and objectives of
the intended services of the solution (i.e., user-
visible functions through input/output-
relations); it provides a comprehensive under-
standing of the services and their underlying
resources and processes, whether seen or unseen
by the user; while the purpose of the usage
model is like both DT and RE, its realization
might be different
Input from (#24); input for (#25), (#29), (#33)

Natural text; graphs

(continued)

56 J. Hehn and D. Mendez

Table 6 (continued)

Name Description and purpose Notation

27 Process Require-
ments (RE)

Activities that should be performed by the
developing organization (e.g., compliance to
standards and process models, project mile-
stones, style guides, infrastructure); they provide
the guidelines for a consistent design and
implementation of the intended system
Input from (#01)

Natural text

28 Functional hier-
archy (RE)

Specification of functions and subfunctions and
their relationships and dependencies; functions
are user-visible pieces of the system behavior
that correspond to services in (#26) and realize
system actions from (#25); bridges the require-
ments and system specification and can be used
as a guideline for obtaining and organizing sys-
tem requirements
Input for (#29), (#36), (#38), (#39)

Graphs and input–
output tables

29 Data model (RE) Summary of all data objects and relations that
are part of the system’s functions and interaction
scenarios; it supports the development of the
intended system by providing the definition,
format, and structure of the required data
Input from (#25), (#26), (#28); input for (#37)

UML class
diagrams

30 Deployment
requirements
(RE)

Description of demands for making the software
available for use, i.e. specifying the process of
the deployment and the technical infrastructure
during the initial release of the system or specific
parts of it; they contribute to the overall quality
of the resulting system
Input from (#01)

Natural text

31 Risk list (RE) Description of all risks that are related to project-
specific requirements and that potentially
threaten the development or operation of a sys-
tem; risks are typically analyzed along stake-
holder interests and estimated regarding their
probability and potential damage; the risk list
provides the foundation to introduce necessary
countermeasures
Input from (#24)

Natural text

32 System con-
straints (RE)

Logical and technical restrictions for the system
architecture, its functionality, and quality; they
provide the boundaries for development and
deployment
Input for (#38)

Natural text

33 Quality require-
ments (RE)

Desired quality characteristics of a system
beyond functionality and features (e.g., reliabil-
ity, performance, security, usability, adaptabil-
ity); they are assessed by pre-defined
measurements and help to validate the success-
ful completion of an entire system or its respec-
tive functions and features
Input from (#11), (#13), (05#), (#24), (#25);
input for (#36), (#38)

Natural text

Combining Design Thinking and Software Requirements Engineering to Create. . . 57

Table 6 (continued)

Name Description and purpose Notation

34 Glossary (RE) Extends the glossary of context-relevant terms
(#09) with requirements-specific terms; it will
show up again in the system specification (#40)
as more terms are added

Natural text

35 Architecture
overview (RE)

Aggregation of component overview (#38) and
functional hierarchy (#28); offers high-level
understanding of the evolving system’s archi-
tecture and guides the definition of the more
intricate functional and operational architecture
Input for (#36), (#38)

Component
diagram

Table 7 Content items in the system specification

Name Description and purpose Notation

36 Function
model (RE)

Overview diagram of the user-observable func-
tions and their communication relationships; the
model ensures an overview of all functions and
processes and, thus, assists in determining the
scope for implementation and the product and
service costs
Input from (#28), (#33), (#35), (#38); input for
(#39)

Graphs, tables

37 Data model
(RE)

Overview of the coarse-grained data objects and
the relations that are required for the executing the
system’s functions; the “data elements” of the
data model refine the “data objects” from the data
model (#29) in the requirements layer by using a
particular data type; it is part of a stepwise com-
pletion from moving the focus on defining user-
visible functions towards specifying the design
system
Input from (#29); input for (#39)

UML class diagrams

38 Component
model (RE)

Description of the components (i.e., building
blocks) of a system’s services and their respective
channels and interfaces (e.g., application compo-
nents, system software components, technical
components, hardware components); the model
bridges the requirements layer with the system
layer by defining the main design principles and
overall structure of the system
Input from (#32), (#33), (#35); input for (#36),
(#39)

Component diagrams

39 Behavior
model (RE)

Description of the internal behavior of a system
with the goal to execute the defined functionali-
ties; the model depicts a dynamic view of the
system behavior and illustrates how objects or
system components interact to support use cases
Input from (#25), (#36), (#38); input for (#37)

Inter-action diagrams,
behavioral state
machines

40 Glossary
(RE)

Extends the previously defined glossary artifacts
(#09, #34) with technical relevant terms

Natural text

58 J. Hehn and D. Mendez

References

Beyhl T, Giese H (2016) Connecting designing and engineering activities III. In: Plattner H,
Meinel C, Leifer L (eds) Design thinking research, understanding innovation. Springer-Verlag,
Cham, pp 265–290

Brenner W, Uebernickel F, Abrell T (2016) Design thinking as mindset, process, and toolbox. In:
Brenner W, Uebernickel F (eds) Design thinking for innovation: research and practice. Springer,
Cham, pp 3–21

Brown T (2008) Design thinking. Harv Bus Rev 86:84–92
Brown T (2009) Change by design, how design thinking transforms organisations and inspires

innovation. HarperBusiness, New York
Brown T (2012). Design Thinking defined. https://designthinking.ideo.com/. Accessed 12 Jan 2021
Broy M (2006) Requirements engineering as a key to holistic software quality. In: Proceedings of

the 21th international symposium on computer and information sciences. Springer, New York,
pp 24–34

Buchanan R (1992) Wicked problems in design thinking. Des Issues 8(2):5–21
Dobrigkeit F, de Paula D (2019) Design thinking in practice: understanding manifestations of

design thinking in software engineering. In: Proceedings of the 27th ACM joint European
software engineering conference and symposium on the foundations of software engineering,
Tallinn, Estonia. ACM, New York, pp 1059–1069

Dobrigkeit F, de Paula D, Uflacker M (2018) InnoDev - a software development methodology
integrating design thinking, scrum and lean startup. In: Plattner H, Meinel C, Leifer L (eds)
Design thinking – research looking further: design thinking beyond solution-fixation. Springer-
Verlag, Cham, pp 199–228

Doorley S, Holcomb S, Klebahn P, Segovia K, Utley J (2018) Design thinking bootleg. d.school at
Stanford University, Stanford, CA

Emam KE, Koru AG (2008) A replicated survey of IT software project failures. IEEE Softw 25(5):
84–90

Forrester (2018) “The Total Economic Impact™ Of IBM’s design thinking practice. How IBM
drives client value and measurable outcomes with its design thinking framework” A Forrester
Total Economic Impact™ study, commissioned by IBM

Fraser H (2011) Business design: becoming a bilateral thinker. Rotman Magazine, Winter, pp
70–76

Gutzwiller T (1994) Das CC RIM-Referenzmodell für den Entwurf von betrieblichen,
transaktionsorientierten Informationssystemen. Physica, Heidelberg

Häger F, Kowark T, Krüger J, Vetterli C, Uebernickel F, Uflacker M (2015) DT@Scrum: integrat-
ing design thinking with software development processes. In: Plattner H, Meinel C, Leifer L
(eds) Design thinking research, understanding innovation. Springer-Verlag, Cham, pp 263–289

Harte R, Glynn L, Rodríguez-Molinero A, Baker PM, Scharf T, Quinlan LR, Ólaighin G (2017) A
human-centered design methodology to enhance the usability, human factors, and user experi-
ence of connected health systems. JMIR Hum Factors 4(1):e8

Hehn J (2020) The use of Design Thinking for a human-centered requirements engineering
approach. Dissertation, University of St. Gallen, Baier Druck, Heidelberg

Hehn J, Uebernickel F (2018) The use of Design Thinking for requirements engineering – an
ongoing case study in the field of innovative software-intensive systems. In: Proceedings of the
26th IEEE international requirements engineering conference (RE’18), Banff, Canada

Hehn J, Uebernickel F, Stöckli E, Brenner W (2018a) Towards designing human-centered infor-
mation systems: challenges in specifying requirements in Design Thinking projects. In: Pro-
ceedings of the Multikonferenz Wirtschaftsinformatik (MKWI 2018), Lüneburg, Germany

Hehn J, Uebernickel F, Herterich M (2018b) Design Thinking methods for service innovation – a
Delphi study. In: Proceedings of the 22nd Pacific Asia conference on information systems
(PACIS 2018), Yokohama, Japan

https://designthinking.ideo.com/

Combining Design Thinking and Software Requirements Engineering to Create. . . 59

Hehn J, Mendez D, Uebernickel F, Brenner W, Broy M (2020) On integrating Design Thinking for
a human-centered requirements engineering. IEEE Software, special issue Design Thinking, pp
25–31

IDEO.org (2015) Field guide to human centered design. http://www.designkit.org/resources/1.
Accessed 3 Jan 2019

Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S (2015) A systematic literature review on
agile requirements engineering practices and challenges. Comput Hum Behav 51:915–929

Jönsson P, Lindvall M (2005) Impact analysis. In: Aurum A, Wohlin C (eds) Engineering and
managing software requirements. Springer-Verlag, Berlin Heidelberg, pp 117–142

Kolko J (2015) Design thinking comes of age. Harv Bus Rev 93(9):67–71
Kröper M, Lindberg T, Meinel C (2010) Interrelations between motivation, creativity and emotions

in Design Thinking processes – an empirical study based on regulatory focus theory. In:
Proceedings of the 1st international conference on design creativity, Kobe, pp 97–104

Lauenroth K (2018) Digital design manifesto: a self-confident design profession is the key to
successful and sustainable digitalization. Bitkom, Berlin. https://www.digitaldesign.org/
content/1-home/digital-design-manifesto.pdf. Accessed 8 Nov 2019

Lindberg T, Köppen E, Rauth I, Meinel C (2012) On the perception, adoption and implementation
of Design Thinking in the IT industry. In: Plattner H, Meinel C, Leifer L (eds) Design Thinking
research, understanding innovation. Springer-Verlag, Cham, pp 229–240

Maguire M, Bevan N (2002) User requirements analysis. In: Hammond J, Gross T, Wesson J (eds)
Usability. Springer, Boston, MA, pp 133–148

Martin R (2009) The design of business. Why Design Thinking is the next competitive advantage.
Harvard Business Review Press, Boston, MA

ME 310 (2010) ME310 design innovation at Stanford University. Micro Cycle. https://web.
stanford.edu/group/me310/me310_2016/. Accessed 13 Jan 2019

Mendez Fernandez D, Penzenstadler B (2014) Artefact-based requirements engineering: the
AMDiRE approach. Requir Eng J 20(4):405–434

Mendez Fernandez D, Wagner S (2014) Naming the pain in requirements engineering: a design for
a global family of surveys and first results from Germany. Inf Softw Technol 57:616–643

Mendez Fernandez D, Wagner S, Lochmann K, Baumann A, de Carne H (2012) Field study on
requirements engineering: investigation of artefacts, project parameters, and execution strate-
gies. Inf Softw Technol 54(2):62–178

Mendez Fernandez D, Wagner S, Kalinowski M, Schekelmann, Tuzcu A, Conte T, Spinola R,
Prikladnicki R (2015) Naming the pain in requirements engineering: comparing practices in
Brazil and Germany. IEEE Softw Voice Evid 32(5):16–23

Mendez Fernandez D, Wagner S, Kalinowski M, Felderer M, Mafra P, Vetrò A, Conte T,
Christiansson MT, Greer D, Lassenius C, Männistö T, Nayebi M, Oivo M, Penzenstadler B,
Pfahl D, Prikladnicki R, Ruhe G, Schekelmann A, Sen S, Spinola R, de la Vara JL, Tuzcu A,
Wieringa R (2016) Naming the pain in requirements engineering: contemporary problems,
causes, and effects in practice. Empir Softw Eng J. https://doi.org/10.1007/s10664-016-9451-7

Mendez Fernandez D, Böhm W, Vogelsang A, Mund J, Broy M, Kuhrmann M, Weyer T (2019)
Artefacts in software engineering: a fundamental positioning. Softw Syst Model 18:2777–2786

Newman P, Ferrario MA, Simm W, Forshawz S, Friday A, Whittle J (2015) The role of Design
Thinking and physical prototyping in social software engineering. In: Proceedings of the 37th
international conference on software engineering, Florence, Italy. IEEE, pp 487–496

Przybilla L, Schreieck M, Klinker K, Pflügler C, Wiesche M, Krcmar H (2018) Combining Design
Thinking and agile development to master highly innovative IT-projects. In: Mikuzs M,
Volland A, Engstler M, Hanser E, Linssen O (eds) Projektmanagement und Vorgehensmodelle
2018 – Der Einfluss der Digitalisierung auf Projektmanagementmethoden und
Entwicklungsprozesse. Gesellschaft für Informatik, Bonn, pp 113–124

Robertson S, Robertson J (2013) Mastering the requirements process: getting requirements right.
Pearson Education

http://www.designkit.org/resources/1
https://www.digitaldesign.org/content/1-home/digital-design-manifesto.pdf
https://www.digitaldesign.org/content/1-home/digital-design-manifesto.pdf
https://web.stanford.edu/group/me310/me310_2016/
https://web.stanford.edu/group/me310/me310_2016/
https://doi.org/10.1007/s10664-016-9451-7

60 J. Hehn and D. Mendez

Schmiedgen J, Rhinow H, Köppen E, Meinel C (2015) Parts without a whole? – The current state of
Design Thinking practice in organisations. Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam, Study report no. 97

Schön DA (1984) The reflective practitioner: how professionals think in action. Basic Books,
New York

Soledade MP, Freitas R, Peres SM, Fantinato M, Steinbeck R, Araújo U (2013) Experimenting with
design thinking in requirements refinement for a learning management system. In: Anais do
Simpósio Brasileiro de Sistemas de Informação, pp 1–13

Uebernickel F, Brenner W, Naef T, Pukall B, Schindlholzer B (2015) Design thinking: das
Handbuch. Frankfurter Allgemeine Buch, Frankfurt

Venkatesh Sharma K, Kumar PV (2013) Amethod to risk analysis in requirement engineering using
tropos goal model with optimized candidate solutions. Int J Comput Sci Issues 10(6):250–259

Vetterli C, Brenner W, Uebernickel F, Petrie C (2013) From palaces to yurts: why requirements
engineering needs design thinking. IEEE Internet Comput 17(2):91–94

Wagner S, Méndez Fernández D, Kalinowski M, Felderer M, Mafra P, Vetrò A, Conte T,
Christiansson MT, Greer D, Lassenius C, Männistö T, Nayebi M, Oivo M, Penzenstadler B,
Pfahl D, Prikladnicki R, Ruhe G, Schekelmann A, Sen S, Spinola R, de la Vara JL, Tuzcu A,
Wieringa R, Winkler D (2019) Status Quo in requirements engineering: a theory and a global
family of surveys. ACM Trans Softw Eng Methodol 28(2):9

Yoo Y (2017) Design thinking for IS research. MIS Q 4(1):iii–xviii

From Design Thinking in Software
Engineering to Digital Design as a New
Profession: An Essay on Methods
and Professions for Shaping Digital
Solutions and Systems

Kim Lauenroth

Experiences with Design Thinking in Software Projects

My personal journey to the country of Design Thinking started more than 10 years
ago with the documentary “Objectified” from Gary Hustwit.1 This documentary is
dedicated to the profession of industrial design. Famous designer, e.g., Jonathan Ive
from Apple or Dieter Rams from Braun give deep insights into their daily work and
show how designers think about ideas and shape products.

What puzzled me with this documentary was, that software was only a minor part
of this movie. Bill Moggridge, one of the founders of the Design Thinking company
IDEO, briefly talked about software (Hustwit 2015). But not in the same way as the
other designers talked about their products. However, I did not give much attention
to this observation at that time. The documentary was a pointer to Design Thinking
as a keyword and was an important motivation to learn more about this topic.

There are many understandings of Design Thinking out there in practice. Some
people call it a mindset, other call it a method or a framework. My understanding of
Design Thinking has been shaped by Tim Brown’s book (Brown 2009). I understand
Design Thinking as a framework based on the human-centered design process that
provides a rich body of techniques that can be applied within this process.

Now, 10 years later, I have seen a broad spectrum of successes and failures which
can be summarized as follows:

1https://www.hustwit.com/objectified

K. Lauenroth (*)
adesso SE, Dortmund, Germany

University of Applied Science and Arts Dortmund, Dortmund, Germany
e-mail: kim.lauenroth@fh-dortmund.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_3

61

mailto:kim.lauenroth@fh-dortmund.de
https://www.hustwit.com/objectified
https://doi.org/10.1007/978-3-030-90594-1_3#DOI

•

62 K. Lauenroth

Design Thinking for scoping and framing an innovative software product works
very well. When starting a project for an innovative software product, Design
Thinking has supported me very well in creating an environment in which
stakeholders and a first software team can develop a mutual understanding of
the scope and the overall vision of the core innovation ideas of the project. The
results of such Design Thinking workshops were a great input for a team of
requirements engineers who structured the results and then developed a first
specification of the product together with the relevant stakeholders.

• Small, clearly focused Design Thinking workshops are a great tool to tackle
“small” problems. In my professional live, I am often responsible for the
requirements part of larger software projects. This includes defining the process
for working on requirements and leading a team of requirements engineers. In
some situations, our clients feel the need to find innovative solutions to certain
parts of software systems. In such situations, Design Thinking as a timeboxed
workshop with relevant stakeholders (especially potential end-users) and a clearly
defined scope was always a very efficient way of finding appropriate solution
ideas.

• “We need innovation in our software, let’s do Design Thinking” does not really
work. I have also seen a lot of organizations that maintain software systems in
larger companies. Sometimes, such organizations feel an abstract need for inno-
vation in their software. Design Thinking seemed to be a good approach for this
situation. Design Thinking workshops came up with some promising improve-
ment ideas for the software and the prototypes created in workshops got positive
feedback from all relevant stakeholders. Now two things happened most of the
time. Firstly, several promising ideas were discarded at once in the further
development process because of feasibility or budget reasons. Secondly, ideas
that were finally implemented did not meet the expectations that were created
during the Design Thinking workshop.

From an empirical researcher’s perspective, my negative experiences should
certainly be viewed critically. Many causes may have led to the fact that the ideas
could not be successfully implemented. Nor should the fault be seen exclusively in
Design Thinking.

Nevertheless, I have met many people in my professional practice who have had
similar experiences. The invitation letter from the editors of this book somehow
seems to reflect my experiences as well: Integrating Design Thinking more deeply
into software engineering is somehow difficult. But the question is why? In this
essay, I will give my personal explanation for this situation and draw some conclu-
sions for future activities in the area of Design Thinking in software engineering.

From Design Thinking in Software Engineering to Digital Design as a New. . . 63

Design Thinking is Rooted in Industrial Design

Let us come back to my observation from the documentary Objectified. I assume, the
industrial designers from the documentary did not really talk about software because
they do not consider it a relevant part of their job. They design physical products and
not software. And here the starting point for the issues that I see in the application of
Design Thinking with respect to software.

According to Brown (2009), Design Thinking has been derived from the working
style of industrial designers and product designers.2 There is one implicit assumption
that is deeply embedded into these design professions, design is about defining a
product’s form and function in advance of the physical act of making (realizing) it in
(often automated) production processes (de Noblet 1996). The double diamond
design process model always ends with testing prototypes of solution ideas.
Prototyping is even considered a core element of Design Thinking with the Design
Thinking mantra “fail fast, fail early” (Brown 2009).

When looking at what the prototype in industrial design means, it is in the end
often a kind of pre-production prototype: a final version of the product that is ready
for replication. This means, that industrial designers create a perfect original of a
product that is then literately copied in a manufacturing mass production process.
Speaking in terms of software engineering, such an approach could be categorized as
a genuine waterfall process. Every detail is specified upfront and implementation is
understood as a pure mechanical production process. We know from industrial
practice that this approach was considered impractical from the very early days of
software development (Royce 1970) and that the development of software (i.e.,
writing code) is a creative act in itself (Glass 2006).

From my experience, the industrial design category of prototypes is a core
success factor for Design Thinking: creating a prototype which experience is as
close as possible to the solution idea to get realistic feedback (Brown 2009). The
emphasis here is on experience, not on appearance. This is the reason, why Design
Thinking books make excessive use of paper prototypes and other simple material
such as cardboard, wire, etc.

I believe, Design Thinking in software projects can become remarkably success-
ful if the scope of the software to be designed (or the underlying problem) is rather
small and can be captured in the essence by an industrial design prototype. With
small, I do not mean simple or even trivial. The examples given in Brown (2009)
show that Design Thinking has the potential to create innovative product ideas.
However, compared to the typical scope of software-intensive systems, which are
my daily business and are within the focus of this book, the scope of such products is
rather small and simple.

2In order to improve the readability of this contribution, I use the term “industrial design” as
synonym for all product-related design disciplines in the remainder of this contribution.

64 K. Lauenroth

Experiences on the Limits of Design Thinking for Software
Projects: Two Examples

Design Thinking as a Tool Within a Large Software Project

I have been the lead requirements engineer for a software system that was intended to
manage and support all business processes within this organization. The system
handles the management of over 40 diverse types of business processes with more
than 2,500 process executions per day in four diverse types of business units.
Overall, the system will be used by more than 10,000 users per day. The system
further includes the management and assignment of employees to orders and the
planning of orders with optimization of travel times. As a further challenge some use
cases of the system must be offline capable, i.e., the function must be available
without a connection to the system servers.

Now assume that you take my role at the point in time where this project was
planned. There was a small project team, and I had the responsibility to setup the
project that captures the essential requirements and creates an initial specification for
this system to plan for a development project. Is a Design Thinking approach
appropriate in such a situation?

To be honest, we never considered it an appropriate approach for starting this
project because the scope was by far too broad to capture it within the framework and
tools of Design Thinking. Even the scope of one business unit was by far too large
because even on this level, there was a big variance between the different types of
business processes. One theoretical option would have been to approach each
business process with a Design Thinking team to shape an innovative software
solution for this particular business process. However, this option was by no
means realistic because of resources.

Now, one might argue that this is a killer example and that such examples are not
the norm in software business. I do not know if this project is the norm, but in my
experience, most of the software projects I have seen, have a level of complexity that
is similar to the project sketched above. Many software systems have a rather broad
scope of functionalities. Therefore, I am convinced that Design Thinking as a
general approach is not applicable for software-intensive systems.

However, we did apply Design Thinking within this project as an approach to
tackle parts of the business processes that called for an innovative solution. As
mentioned above, some business processes include travel time. This means, a
manager had to plan a team of employees to work at a certain location as part of
the business process. In the legacy system, there were several solutions to this
problem including self-developed software, office software solutions, and even
paper-based planning. One goal of our project was to provide an innovative software
solution for this planning process. Within a short period of time, a group of
stakeholders and project members developed several ideas that eventually evolved
to the final solution. From my understanding, Design Thinking worked in this

context because the scope of the travel planning problem was small enough to fit
within the range that works with Design Thinking.

From Design Thinking in Software Engineering to Digital Design as a New. . . 65

Unfinished Design Thinking as a Starting Point

In another situation, I was in charge of finding innovative ideas for improving
software-based processes in dental practices. At the start of the project, two Design
Thinking workshops were held, one with dentists and one with dental assistants.
During both workshops, the scope of the prototypes was overly broad. Some pro-
totypes described small improvements of the process. However, most of the proto-
type idea described completely new software systems that questioned the structure
and functionality of the existing software systems for dental practice.

In this situation, we decided to stop the Design Thinking process in both
workshops and started to work on the limits of existing software systems to better
understand the problems that the dentists and assistants had. From a Design Think-
ing perspective, this decision may be considered wrong. In hindsight, this approach
was the right one for the project.

Afterwards, we were able to develop a completely new process concept for dental
software based on the input from both workshops, which solved many of the
problems described in the Design Thinking process. I am convinced that continuing
the Design Thinking process with further work and discussion on prototypes would
have never been able to create such a comprehensive concept. Nevertheless, without
the Design Thinking process, it would have been very likely, that we (our client and
our team) would have never gained the confidence to considered going into this
direction. Therefore, the unfinished Design Thinking provided important insights
that were necessary to start exploring the idea of developing a new software from
scratch.

Intermediate Conclusion for Design Thinking Research
and Practice for Software-Intensive Systems

Despite some negative experiences, I am convinced that Design Thinking is an
important and useful tool that is applicable under certain constraints for software-
intensive systems. I see two success factors:

1. Size of the problem scope—the problem scope must be small enough to be
grasped and processed by the Design Thinking framework

2. Size of the solution idea—the size of the solution idea must be small enough to be
captured by the prototyping understanding of Design Thinking

66 K. Lauenroth

My recommendation for industrial practitioners is to consider both factors with
care when thinking about the application of Design Thinking within one’s own
organization. The first factor can be considered from the very beginning whereas the
second factor should be observed during the Design Thinking process. When people
start to think about prototypes, the size of the solution ideas should be considered
carefully. When the prototypes appear to be in the scope of industrial design pro-
totypes, the results can be promising. When the size of the prototypes appears to be
too large, one should even consider stopping the Design Thinking process or decide
to reframe the problem to focus on smaller parts of the problem that can be addressed
with smaller prototypes. To be honest, I have no clear guidelines for both factors. I
rely on my gut feeling and the feeling of my colleagues when we decide for or
against Design Thinking in each situation.

From my personal software research experience, I would consider broad studies
of both factors to be exciting. First, there is the question of whether the two factors
are really as crucial as they seem. On the other hand, it would be interesting to
substantiate both factors with empirically proven data.

Who is the Industrial Designer in Software Engineering?

Although everything discussed so far is interesting, it did not feel right to me for
quite a while. What is wrong with software engineering or Design Thinking that they
only fit to some extend with each other?

Design Thinking is the accumulation of best practices in design. Above, we
already discussed that industrial design has a special worldview in the sense that
design produces prototypes of products than can be copied by means of mass
production. And this paradigm does not really fit with the ways, software is
developed. So, this means that it is not a problem of Design Thinking, but a problem
of the sources of which Design Thinking has been derived from. Maybe, the solution
is to start the process from scratch and go to the people who design software
nowadays to generalize their best practices into a new approach. So, there is a
very simple question: Who is the industrial designers equivalent for software
engineering?

The answer, or at least, my answer to this question can be a surprise: they do not
exist! Industrial design is a dedicated profession with a more than 100 years of
history, dedicated bachelor and master programs, and professional associations all
over the world. According to the SWEBOK (Bourque and Fairley 2014), we have a
knowledge area called software design. But there is no real profession with the self-
understanding and education represented by industrial design.

From Design Thinking in Software Engineering to Digital Design as a New. . . 67

Why is There No Profession Like Industrial Design
for Software?

This insight was quite a surprise for me because it is so obvious. The design of
software should be at least as challenging as the design of physical products. Why
then does such a profession not exist? My answer to this question can be surprising
as well: We did not need such a profession so far!

My explanation for this is that software has played a subordinate role for most of
its existence and that software has only ever had to implement existing ideas. When
looking at the history of computer science, history starts in the 1950th. Software
Engineering can be dated back to the 1968 NATO conference in Garmisch (Naur and
Randell 1969). At that time, software engineering was about controlling machines
(e.g., the eagle moon lander) or about processing data that has been previously
processed on paper (e.g., bank accounts or insurance policies). This subordinate role
has made its way deeply into the methodological structure of software engineering.

Requirements work in terms of requirements engineering and usability engineer-
ing is always considered the starting point of every software engineering endeavor
(Bourque and Fairley 2014) which for me means that there is the implicit assumption
that somebody else outside the software engineering process (the stakeholder) has
understood the often called “real-world problem” that the software must solve. It is
important to recognize that this gap is not a weakness! It is one of the core strengths
of software engineering that makes it an engineering discipline. Engineering good
software is a challenge in itself and requires substantial skills (Glass 2006).

But what does this mean for a stronger integration of software engineering and
Design Thinking? I believe that the methodological level will only create small
improvements like the one indicated in the first part of this contribution. These
improvements are valuable, but a substantial improvement for software-intensive
systems requires another level of consideration.

WeNeed a Dedicated Design Profession that is Able to Design
with Software!

A brief look at other disciplines is a good starting point for discussion about
professions. In the building industry a design-oriented profession (architecture)
and an engineering-oriented profession (civil engineering) have appeared because
the complexity of buildings requires specialist of both directions. I am convinced
that the same is necessary for software.

A general argument against this analogy is that software is different from bricks
and concrete. I disagree with this argument. Creating large buildings is as challeng-
ing as software engineering and I am convinced that the creation of buildings has
more in common with software than other industries. However, this is a topic for
another paper. Even if software is more challenging and different from buildings, it

is even a stronger argument that we need dedicated design and engineering pro-
fessions for software.

68 K. Lauenroth

Why is a profession more important than methods and techniques? Studying
methods and techniques is a core part of software engineering research. This is an
important work for understanding software engineering. However, methods and
techniques are always performed by people. Therefore, people and their capabilities
are at least as important as methods and techniques (Lauenroth and Kamsties 2016).

And there is an even more important argument with respect to the discussion on
Design Thinking and software: Professions attract people and there is a real differ-
ence between people who are attracted by design professions compared to engineer-
ing professions. A study presented in Durling et al. (1996) gives some interesting
insights into the personality and learning preferences of industrial design students.
When looking at this contribution, one could argue that the university education in
software engineering does not really attract people who are interested in a design-
oriented way of working because they want to enter an engineering profession.
Design as understood, for example, in industrial design is considered a different way
of working and knowing (Cross 2006). This difference is not a minor one and should
not be underestimated. This difference could explain the issues that Design Thinking
has in the software engineering world: The design working style does not really
match with the personal preferences of the people that are nowadays involved in
software engineering.

With this argumentation, I am convinced that the next level for developing
software-intensive systems does not only require methodological research in the
area of Design Thinking, but also an initiative to establish a dedicated software-
oriented design profession that works side by side with software engineering pro-
fessionals in the ways as architects and civil engineers nowadays work together in
the building industry.

Digital Design as a New Profession for Shaping Digital
Solutions

An initiative with such a goal was established in 2018 by the German digital
association Bitkom: the digital design manifesto (Bitkom 2018). The core idea
behind this initiative is to establish a design profession that has the same self-
understanding about software and digitalization as architects have about buildings
and industrial designers have about products.

From a terminological perspective, it is important to explain the shift from
software to the term digital design. The term software design is already defined
and is related to the structure of software (Bourque and Fairley 2014). When talking
about software-intensive products, services, or systems, the emphasis is put on
software. This perspective is important, but not sufficient.

From Design Thinking in Software Engineering to Digital Design as a New. . . 69

Outside the software world, the terms digital transformation or digitalization are
used to refer a phenomenon that is larger than software: transforming economy and
society by means of digital technology (e.g., World Economic Forum 2020). Soft-
ware is an important part of digital technology, but only one part beside business
processes, networks, hardware, end user devices, and other technologies. With this
in mind, digital design aims at designing digital products, services, solutions, or
services in the same way as industrial designers shape physical products or architects
shape buildings.

Competence Profile of Digital Designers at a Glance

According to Bitkom (2018), a digital designer has a competence profile with two
focus points: Competence in digital material combined with design competence.

Competence in digital material means an understanding of the capabilities and
limits of digital technology that is sufficient to shape a digital solution in the same
way as other materials (e.g., wood) can be shaped to create physical products (e.g., a
chair). This competence in digital material does not necessarily mean software
engineering skills. A very simple example can be used to illustrate this.

Assume, you own a pizza restaurant and want to offer a very simple digital way
for selling pizza. You could accept and confirm pizza orders with a public instant
messaging service. Payment for the order can be made through an online payment
service. As soon as the pizza is paid, it can be made. When the delivery driver has
left, you then send a short message to your customer to indicate that the pizza is on
the way. This is for sure an oversimplified example, but it shows a way of using
digital technology that is independent from software development. It also shows that
digital technology can be used to shape simple digital solutions (here an online pizza
service).

The other focus point for digital design is design competence. Design competence
includes a deep understanding of design as a way of working (Cross 2006) including
the ability to communicate design ideas by means of concepts and prototypes, design
process competence (e.g., understanding of the human-centered design process, and
Design Thinking), and an understanding of the integration of digital design into the
development process of digital solutions.

Conclusion: Process Competence as a Core Success Factor
for Design of Products with Software Aspects

This contribution started with a discussion of firsthand experiences with Design
Thinking in software development and continued with the discussion of a new
profession called digital design for shaping digital solutions that also include

software. In this section, this contribution is concluded with a deeper look into an
important aspect of digital design, namely competence in the integration of digital
design into the development process.

70 K. Lauenroth

An understanding of how a product is made is considered an important part in
industrial design education (de Noblet 1996). Designers need to understand the
capabilities and limits of the material and the production process in order to design
products that can make use of the material and that can be produced efficiently and
effectively. One important origin of this combination was the Staatliches Bauhaus in
Weimar (Gropius 1923) where Walter Gropius developed a new education program
for architects and designers that combined design competence with technical com-
petence that was summarized with the motto “art and technology, a new unity.”With
this combination, the Bauhaus contributed significantly to the foundations for
industrial design education (de Noblet 1996).

When looking at software, the development process is very different from the
mass production process of physical products. The success of agile development
shows two things with respect to software development (Meyer 2014):

1. A software development can start with a rough understanding of the software to
developed.

2. Many decisions about the form and function of a software can be delayed until
shortly before their implementation.

There are, of course, decisions about software that should be made very early
because changing those decisions later becomes very costly. Good examples for
such decisions are architectural decisions that drive the performance and scalability
of a software system (Meyer 2014).

With this in mind, I see an important weakness in Design Thinking. Design
Thinking neglects the special properties of software development processes in terms
of level of detail and the timing of design decisions. This does not become a problem
as long as Design Thinking is considered separated from software development
processes and provides input in terms of ideas, prototypes, etc.

Furthermore, it is from my experience also not sufficient to invite software people
into a Design Thinking team. A software engineer in a Design Thinking team can
provide interesting impulses for ideas and prototypes. But they cannot anticipate all
the detailed questions and thoughts that come up when ideas are actually
implemented. If this would be possible, the original waterfall idea would have
been successful.

For a deeper integration of Design Thinking in software development, I am not
convinced that new process models (e.g., combining Scrum and human-centered
design) are a proper answer or a good research direction. From my personal
experience, such models can only give a rough guideline.

More important is concrete experience with the parallel design and development
of software. In my project work, I made very good experience with people that have
practical software development experience and now work as requirements engineers
or UX designers. Their hands-on experience in software development gives them a

very good gut feeling on questions about the feasibility of ideas, the level of detail
required for decisions, and the timing of decisions.

From Design Thinking in Software Engineering to Digital Design as a New. . . 71

Outlook: Studying Concrete Examples is More Promising
than Studying Methods

Architecture and industrial design are full-flavored bachelor/master programs at
universities. These programs heavily rely on practical work. Furthermore, graduates
need a lot of practical training to become of good architect or industrial designer.

We have to teach people so that they become great designers and engineers for
software-intensive systems. They need to be able to decide, depending on the
specific situation, how to continue the development process and what the next
methodological steps are.

Process frameworks such as Design Thinking are a good starting point to acquire
these skills and methodological research is important for understanding such pro-
cesses. However, I am convinced that learning design (and engineering) practice is
not a matter of methodological research.

With the industrial design education in mind, I think that empirical research on
concrete example projects and products is at least of equal important. Concrete
example projects and products can provide blueprints and be used as a reflection
point to study and discuss the work of people. Thereby, students and researchers can
learn from the experience of other people in the same ways as architecture or design
research and education benefits from the experience of others.

Design is not an end in itself, it is about results. The literature on industrial design
is full of examples of great products (de Noblet 1996). In comparison, the literature
on software has practically no examples. We should take industrial design and
architecture as a model and look more closely at concrete examples. Only in this
way can we achieve a new level of understanding.

References

Bitkom (2018) Digital design manifesto. Bitkom. https://www.digital-design-manifest.de/en/.
Accessed 10 Aug 2021

Bourque P, Fairley RE (2014) SWEBOK Guide V3.0: guide to the software engineering body of
knowledge. IEEE

Brown T (2009) Change by design: how design thinking transforms organizations and inspires
innovation. Harper Business, New York

Cross N (2006) Designerly ways of knowing. Springer, London
de Noblet J (1996) Industrial design – reflections of a century. Flammarion, Paris
Durling D, Cross N, Johnson J (1996) Personality and learning preferences of students in design and

design-related disciplines. IDATER conference, Loughborough, England
Glass RL (2006) Software creativity 2.0. developer.* Books

https://www.digital-design-manifest.de/en/

72 K. Lauenroth

Gropius W (1923) Idee und Aufbau des staatlichen Bauhauses Weimar. Bauhausverlag, München
Hustwit G (2015) Helvetica, objectified, urbanized: the complete interviews. Versions Publishing
Lauenroth K, Kamsties E (2016) People’s capabilities are a blind spot in RE research and

practice. In: Proceedings of the 22nd international working conference on requirements engi-
neering foundation for software quality, vol 9619. ACM, pp 243–248

Meyer B (2014) Agile – the good, the hype, and the ugly. Springer, Cham
Naur P, Randell B (1969) Software engineering: report of a conference sponsored by the NATO

Science Committee. https://www.scrummanager.net/files/nato1968e.pdf
Royce W (1970) Managing the development of large software systems: concepts and

techniques. In: Proc. IEEE WESTCON, Los Angeles
World Economic Forum (2020) Digital transformation: powering the great reset. http://www3.

weforum.org/docs/WEF_Digital_Transformation_Powering_the_Great_Reset_2020.pdf.
Accessed 29 Dec 2020

https://www.scrummanager.net/files/nato1968e.pdf
http://www3.weforum.org/docs/WEF_Digital_Transformation_Powering_the_Great_Reset_2020.pdf
http://www3.weforum.org/docs/WEF_Digital_Transformation_Powering_the_Great_Reset_2020.pdf

The Hybrid Model: Combination of Big
Data Analytics and Design Thinking

Michael Lewrick

The Combination of Big Data Analytics and Design Thinking

It sounds more than logical to combine analytical approaches and creative thinking.
However, in the reality of today’s business we often experience the opposite. This
was the trigger to create a combined process model in which solutions are developed
with elements from Design Thinking and Big Data Analytics. After more than a
decade of application, our experiences strengthen our confidence that the results and
solutions have in many cases produced better solutions. Thus, the hybrid model is
not only used in the innovation of products, services, and ecosystems, but has also
found widespread acceptance in the training of data scientists. The reason for this is
easily found, because Data reveals the “what” and Design Thinking explores the
“how” (see Fig. 1). Both are relevant for creating impactful innovations and solving
customer/user problems. In 2010, when we started our first experiments with the
hybrid model, a data-driven innovation project was one of the test environments to
find out how a combination of data analytics and Design Thinking can lead to better
results. Later we applied the hybrid model also to Design Thinking projects of all
kinds or projects aiming to kick-start digital transformation efforts. The list below
provides a quick reference of where, what, when, and for whom the hybrid model
might find application:

Where?

Creator of the Hybrid Model and lead-author of the international bestsellers “The Design Thinking
Playbook”; “The Design Thinking Toolbox,” and “Design Thinking for Business Growth”

M. Lewrick (*)
Lewrick & Company, Zürich, Switzerland
e-mail: michael.lewrick@hslu.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_4

73

mailto:michael.lewrick@hslu.ch
https://doi.org/10.1007/978-3-030-90594-1_4#DOI

Fig. 1 Data scientist,
source Lewrick et al. (2018,
p. 312)

– Digitization projects
– Data Science projects

74 M. Lewrick

Design Thinking challenges–

What?

– Developing new products services and processes
– Generally solving problems
– Business Ecosystem Design

When?

– When a data basis exists
– When data can be generated in real-time
– When high agility is required

For whom?

– Interface between customer requirements and customer data
– For the whole organization, customers, or other stakeholders

While applying the hybrid model it was soon recognized that the teams in the
organization were becoming even more interdisciplinary than in Design Thinking
and that the mixed teams were using a different technical language, which initially
did not simplify communication. To the well-known group of team members in
Design Thinking projects (design leads, implementation managers, project sponsors,

business departments heads, product managers, and other management members) a
new species of data experts with various specialties becomes part of the wider team.
The new team members had job titles like business intelligence analysts, database
administrators, data engineers, and data scientists. The biggest challenge has been
having the Big Data specialists interacting with team members already trained and
purely focused on the Design Thinking mindset. As a result, the hybrid teams
become part of the hybrid model which includes also the hybrid mindset, process,
and toolbox explained in this contribution. At the same time, it became also apparent
that workshop facilitators applying the hybrid model needed new skills to orchestrate
the differences and to understand the tools and methods of both, Design Thinking
and Big Data Analytics.

The Hybrid Model: Combination of Big Data Analytics and Design Thinking 75

Categories of Combined Models

In general, the combination of Big Data and Design Thinking can be divided into
three categories, each with different characteristics (see Table 1). The process model
described in this contribution refers to “The hybrid model” which was originally
developed in a joint research project from academia and large enterprises on the
forefront of Big Data Analytics and Design Thinking. Later the model has also found
its way in the context of future tools, methods, and mindsets in the “The Design
Thinking Playbook” authored by Lewrick et al. (2018). Today the hybrid mindset
finds application in many mixed design teams of enterprises, business ecosystem
initiatives, and management and IT consulting companies globally.

The initial motivation to combine Big Data and Design Thinking in a hybrid
model was based primarily on three hypotheses. Today we know that the combina-
tion brings many more advantages and that with AI-enhanced data processing tools
many insights can be generated even faster and are partly already available in real
time.

• Increase the efficiency and effectiveness of the innovation process
• Combine the deep customer insights (Design Thinking) and the deep learning

from data (Data Sciences)
• Generating synergies by combining the rather qualitative aspects of Design

Thinking and the quantitative methods of Data Science

Table 1 Categorization of models

Human-centered Data
Science

Design Thinking methodology, method, mindset for Data Science,
organizations, and projects

Data-enhanced Design
Thinking

Gain in efficiency and effectiveness in the Design Thinking process
through data analytics incorporated in each step of the Design Thinking
process

The hybrid model Combination of Design Thinking and Data Science process with a
mutual enrichment of tools and methods

76 M. Lewrick

The Hybrid Mindset

The biggest challenge in the collaboration of design thinkers and data scientists is to
establish a suitable mindset on which the team members from the different areas can
build. On the one hand, the core idea of Design Thinking should not be lost in such a
mindset and, on the other hand, completely new aspects have to be considered,
which are relevant for the work of Data Scientists. The mindset elements shown in
Table 2 illustrate the breadth and depth that a hybrid mindset requires from mixed
teams and at the same time from workshop facilitators guiding those teams from the
problem identification to first ideas, prototypes to the final solution. While the
Design Thinking mindset is focusing on the collaboration in diverse teams,
envisioning a radical new future, embracing uncertainty, and being human-cen-
tered—the Data Analytics mindset are driven by iterating with explainable models,
modeling utilities and inputs, optimizing for speed of learning and being data-driven.

The best results are known to be achieved when different T-shaped participants
work together in hybrid teams, thus realizing the full potential of the hybrid model.
The challenge, however, lies in taking the other perspective, i.e. that data scientists
learn to take the perspective of design thinkers and vice versa or at least understood
that the other approach and the associated procedure brings advantages over the
entire cycle from understanding the problem space to finding solutions. Thus, a
shared mindset is crucial for collaboration because the respective fundamental
beliefs, attitudes, and biases influence how information is processed and the context
in which the world is set. However, it seems to be important that the positive and
optimistic mindset of Design Thinking is maintained, because a winning perspective
and search for market opportunities leads to long-term success.

Table 2 Mindsets: data science, hybrid, and Design Thinking

Mindsets

Data Science Hybrid Design Thinking

Curious

Innovative

Sophisticated analytics and creative problem solving

Experimenting and testing

Visualizing and storytelling

Collaborating

Correlations and
indicators

Accepting indicators and ambiguity Accepting ambiguity

Analytical Combining analytics and intuition Intuitive + (analytical)

Quantitative approach Combining quantitative and qualitative
insights

Qualitative approach

Data-driven Combining data-driven and human-centered
reasoning

Human-centered

The Hybrid Model: Combination of Big Data Analytics and Design Thinking 77

The Hybrid Teams

In addition to the mindset that provides the overarching frame, collaboration requires
appropriate team members who work together in the hybrid teams. In the context of
Design Thinking, great importance has always been attached to working in hetero-
geneous teams (see Fig. 2). The teams often consist of a combination of expertise
from business, marketing, sales, strategy, and IT experts. In hybrid teams, the
respective data scientists and specialists are added. These include nowadays data
engineers, big data engineers, machine learning scientists, business analytics spe-
cialists, data visualization developers, business intelligence (BI) engineers, BI solu-
tions architects, BI specialists, analytics managers, machine learning engineers and
of course statisticians. Most of the necessary experts are fully or partially available in
large organizations, so that hybrid teams can be assembled without any problems.
The bigger challenge is to find suitable workshop facilitators for the Hybrid Mindset.
Only few workshop facilitators have a comprehensive insight into the methods and
tools of both approaches and can use them to guide the teams.

The Hybrid Process

As in Design Thinking, the hybrid process serves only to orient the teams and
provides information about where they are in the process. As a basis for the hybrid
model, the Design Thinking process of the d.school in functioning as reference, with
the phases: Understand, Observe, Point of View, Ideate, Prototype, and Test. For
mapping with the common models from the Data Sciences, the Realize phase was

Fig. 2 Composition of a hybrid team

78 M. Lewrick

Table 3 Phases in Design Thinking, data science, and in the hybrid model

Model Phases

Design
Thinking

Understand Observe Point of
view

Ideate Prototype Test Realize

Data
Science

Data
content

Data
context

Data
diversity

Analytics
simulate

Analytics agility Analytics
improve

Hybrid
model

Understand Observe/
data
mininig

Point of
view

Ideate Prototype/
modeling
experiments

Test/
proof
of
value

added to the following table for a stronger illustration. The Design Thinking process
for creative problem solving has been originally developed by Larry Leifer, David
Kelley, and Terry Winograd at Stanford University. The aim of the approach is to
bring together as many as possible different experiences and perspectives in respect
to a possible problem situation. This approach leads to breakthrough innovations
(Table 3).

Realize/
predict/
improve

The hybrid model has been designed to address a large part of the needs from
both, Data Science and Design Thinking. The needs in Data Science for a common
process model are primarily methods and tools to gain ideas and insights that cannot
be obtained from data. Further, there is the need in Data Science to verify the
correlations gained from the diverse data points or to develop new hypotheses
together with experts from ethnographic research. The combination of Design
Thinking and Big Data Analytics is also welcome in the communication of solutions
(storytelling), which allow to transport emotions as well as hard facts. In
multidisciplinary collaboration of mixed teams, one of the biggest wishes is to
orientate oneself on a model that is easy to accept. For Design Thinkers it is of
central importance not to lose sight of the most important element in Design
Thinking, the customer/user with his needs, because it is one of the central starting
points in the Design Thinking mindset. In addition, there is the need to continue
using the tools used in Design Thinking and at the same time to open the existing
mindset and enrich it with the requirements of more quantitative methods. For both,
Design Thinkers and Data Scientists, it is of paramount importance to work together
in multidisciplinary teams, to apply an iterative approach and to work with a
common mindset in the problem and solution space. A common toolbox is described
as optimal from both the experts in data and design.

The goal of the hybrid process is to establish a common approach to Data Science
and Design Thinking in which teams can work together from problem definition to
final solution and meet at defined times to exchange insights, discuss test results, and
discuss the next experiments and procedures.

The Hybrid Model: Combination of Big Data Analytics and Design Thinking 79

The Hybrid Toolkit

To achieve the best results, it is also necessary to work with a combined toolbox that
incorporates the well-known tools and methods from Design Thinking as well as the
tools and tools from Data Sciences. Fig. 3 shows a small selection of tools and
methods that can be used in each phase. In Design Thinking, 100 additional tools can
easily be added here and the list of models and tools in the field of Data Science is
not shorter.

The tools from Design Thinking and Data Analytics are used across the entire
application. For example, in the first phases of the Design Thinking process
“Observe” and “Understand” Design Thinking tools are applied as described in
“The Design Thinking Toolbox” (Lewrick et al. 2020). Typical Design Thinking
Tools in these first phases are: Interview for Empathy, Explorative Interviews, Ask
5xWhy, Personas, Jobs-to-be-done up to Empathy Maps. Big Data Analytics allows
you to collect and evaluate additional user data. On the one hand, this allows new
insights to be gained, and on the other hand, insights from Design Thinking can be
validated. User data is obtained from data sources ranging from social media and
website analytics to data from neuroscience. Ultimately, it is a matter of selecting the
appropriate tools to best understand the customer/user. This combination seems
particularly important from a Data Science perspective, since a data-driven approach
does not usually pay much attention to the activities involved in building empathy
with the customer/user. Similarly, a hybrid toolbox can be used in the Ideate,
Prototype, and Test phases. Typical Design Thinking Tools here are Brainstorming,
Prototype to Test, Solution Interviews up to A/B Testing. The latter, for example,
can be transferred directly and evaluated via data analytics, provided that two
variants are tested and tried out via digital channels.

The same applies to all kinds of multivariant tests, testing emotional responses
with facial recognition, and generating eye-tracking heat-maps with thousands of
users in seconds. The entire spectrum of technologies significantly increases the
speed to process data and help to emerge actionable insights much faster. Especially
in cases where the behavior model is explored, such experiments can be valuable.
Typical applications are, e.g., Willingness to pay analyses in the context of Mini-
mum Viable Products (MVPs) or for testing individual features. In addition, the first
data acquisition pipeline and analysis components can be developed on this basis,
which later help to continuously improve the products and services at a later point in
time. Big Data Analytics, in combination with Design Thinking, makes it possible to
interpret user feedback and compare it with one’s own observations better and faster.

80 M. Lewrick

F
ig
.3

T
he

hy
br
id

to
ol
ki
t

The Hybrid Model: Combination of Big Data Analytics and Design Thinking 81

The Power of AI-Enhanced Data Processing

With Design Thinking and AI hybrid teams can build a 720○ real-time view of
customers/users to determine their needs and customize services and products
effectively. A 720○ perspective on the customer refers to a three-dimensional
understanding of customers based on big data analytics. It includes information
about each customer’s influencing capabilities, buying behavior, patterns, and needs.
A 720○ view enables enterprises to offer relevant products and experiences and
predict future behavior. When properly implemented, this concept supports enter-
prises to leverage emerging technologies, social media and cloud-based services, and
analytics to sustain lifelong and engaging customer relationships. This kind of
insight-driven targeting is going to be essential in providing mass-customized
services to customers/users. Machine learning and AI help to profile and cluster
customers/users into ever-finer microsegments and even “segments of one.” This
approach enables a new dimension of hyper-personalization that can be used for
experience-centric operations and self-service, customized services and products,
targeted marketing and much more.

AI can also function as an assistant for hybrid teams, performing some heavy
lifting with data collection and analysis. This includes finding patterns, making
connections, and drawing conclusions. In addtion, AI supports the teams scrutiniz-
ing through numerous of surveys, interviews, observations, audio recordings,
videos, and other user research data. Based on all the customer/user data it receives,
AI can even predict what design pattern will work best. Further component libraries,
style guides, and complex business ecosystem design systems can be generated in
minutes. AI tools generate the design systems with ready-to-use code, simulation
and apply updates automatically to the entire hybrid teams. AI is meant to work with
creativity, not replace it—it is an important distinction.

On the opposite Design Thinking can be the basis for coding artificial intelli-
gence, because it will not reach its full potential unless good designers guide the
algorithm execution. Using Design Thinking to generate novel, user-centered appli-
cations for machine learning and define better parameters needed for the machine to
execute upon. Both examples show applications of Data Science and Design Think-
ing beyond the hybrid model and at the same time show how data and design are in
symbiosis rather than in competition.

Value Add of the Hybrid Model

Design Thinking has become a well-known problem-solving mindset promising
customer-led solution through empathy and deep customer insights. It is
implemented through an iterative process in multidisciplinary teams. Data Science
aims to find patterns in growing data (Big Data), to generate stories from deep
learning. Over the last decade both Design Thinking and Big Data Analytics have

found its way into enterprises from all industries and both approaches are taught at
almost all universities. In the meanwhile, also large Management and IT Consul-
tancy powerhouses have explored and validated the value add of hybrid models.

82 M. Lewrick

The McKinsey study “Business Value of Design” (2018) and the Accenture study
“How AI Boosts Industry Profits Innovation” (2017) released in separate research
that shows how organizations that adopt AI and Design Thinking out-perform those
that do not. As of today, however, design thinkers and data scientists still tend to
work separately from each other in large organizations, and universities also tend to
think separately from each other. The hybrid management model with a higher
convergence between Design Thinking and Big Data Analytics aims to connect
those two worlds. Using synergies and promoting collaboration should increase the
efficiency and effectiveness throughout the whole process from problem to solution.
Both Design Thinking and Data Science discover—versus define—the criteria for
success; Data Science discovers the criteria for success buried in the data (patterns,
codifying trends, and relationships) while Design Thinking discovers the criteria for
success buried in the human interactions (using personas, empathy maps, and
storytelling). What it needs is an open culture for sharing and collaboration, allowing
all ideas to be worthy of consideration not mattering if the insights or ideas are
created data-driven or customer-led. Organizations and universities must create a
new joint learning culture through experimentation (and failure), and the willingness
of culture to unlearn old methods that have been held as the gospel truth. Successful
organizations and learning programs apply the hybrid model consisting of four
central parts: The Hybrid process, the hybrid mindset, the hybrid teams, and
applying a combined toolkit.

Practical Example

There are numerous examples of how the hybrid model has given rise to new ideas
and innovation in recent years. Good practical examples can be found among the
large business ecosystem initiatives, it becomes clear that the respective value
propositions have evolved from a combination of Design Thinking and Systems
Thinking, and that the offerings have been expanded through Big Data Analytics and
AI, which now provide personalized services to customers. Ping An Insurance
(Group) Company of China is a good example, which has also used in “Design
Thinking for business growth” book authored by Lewrick (2021) for explaining the
strong link between applying Design Thinking and new and emerging technologies.
Ping An has become a world-leading customer and technology-powered retail
financial services group. With over 214 million retail customers and nearly 579 mil-
lion Internet users, Ping An is one of the largest financial services companies in the
world. With AI, Big Data Analytics, and cloud computing, Ping An’s financial
offering has become more competitive, growing steadily while reducing costs,
increasing efficiency, improving risk management and most importantly, enhancing
the customer experience.

The Hybrid Model: Combination of Big Data Analytics and Design Thinking 83

But the success of Ping An is not only based on the deployment of modern
technologies. In the first place there are the new customer needs and in case of
business ecosystem design the need for complementary offerings that make it easier
for customers to obtain comprehensive solutions to their problems. Ping An realized
by exploring the problem space that its customers wanted not only insurance but also
a means of addressing their medical and well-being needs, it created Good Doctor.
The Good Doctor platform offers 24-7 one-stop health care services that are pro-
vided by pharmacies, hospitals, and about 10,000 doctors. In the meanwhile, Good
Doctor provides a portfolio on services to more than 65 million customers on a
monthly basis. Most of the successful business ecosystem orchestrators offer their
customers greater choice, even when that entails featuring competing offers. Ping An
has become a good example of applying Design Thinking for business growth with a
strong focus on the data ecosystem which allows to expand value propositions
constantly. On top Ping An has realized that the mindset and collaboration of
different teams become key to success.

Top Leaders at Ping An are called upon to promote the cooperation of interdis-
ciplinary teams even more strongly in the future in order to promote innovations that
require the cooperation of different teams.

On the Point

As briefly described in this contribution Data Science can be used very well in
combination with Design Thinking. The hybrid model aims to not only enrich
Design Thinking with Data Science, but to establish from the beginning a common
mindset in which different T-shaped team members contribute their skills throughout
the whole process, in order to get better solutions in a faster and more effective way.

To sum-up: The combination of several data sources and insights (qualitative &
quantitative) leads to:

– A better understanding of the customers/users and his needs
– Improved decision confidence
– Validation and alignment of insights
– Profound decision making and validation of assumptions
– Management approval of solutions enhanced by quantifying intuitions
– Contextualization of data in order to link data insights with stories
– A faster iterative problem-solving process and mass customization
– Reducing risks.

The application of the hybrid model and AI has already and will even more
changing the way we work. The hybrid mindset, tools, and process will make every
team member a better problem-solver and bringing better and more personalized
products and services to customers/users. The practical example from Ping An has
shown how Design Thinking, Systems Thinking and the combination with Big Data

Analytics led to superior business ecosystems in which complementary offerings are
designed around the new or changed needs.

84 M. Lewrick

References

Lewrick M (2021) Design thinking for business growth: how to design and scale business models
and business ecosystems. Wiley, New York

Lewrick M, Link P, Leifer L (2018) The design thinking playbook: mindful digital transformation
of teams, products, services, businesses and ecosystems. Wiley, New York

Lewrick M, Link P, Leifer L (2020) The design thinking toolbox: a guide to mastering the most
popular and valuable innovation methods. Wiley, New York

The Collective Process Framework
DTScrum for Integrating Design Thinking
into Scrum

Daniel Gadner and Michael Felderer

Introduction

It is a well-known fact that the accelerating pace of change in today’s digital world
comes along with disruptive technologies, volatile requirements, wicked problems,
and sophisticated demand. This fast-paced environment is often referred to as the
time of digitalization, where humankind must inherently transform the traditional
ways of product development practices, internal organizing logic, and customer
interactions to stay competitive. In order to describe this transition, Gray and
Rumpe (2015) use the business-oriented definition of digitalization from Gartner:
“Digitalization is the use of digital technologies to change a business model and
provide new revenue and value-producing opportunities; it is the process of moving
to a digital business.” (p. 1319). Despite the benefits that digitalization brings along,
it is difficult to maintain the course in the ever-increasing flood of data resulting in
unpredictable situations and complex problems (Gray and Rumpe 2015). Hand in
hand with such digital transformation efforts goes the diffusion of digital technolo-
gies, and therewith, the digital disruption. Technological diffusion is known for its
far-reaching effects, as, for example, the rapid pace of change in market needs
(Abrell et al. 2016). Stoneman and Battisti (2010) define the technological diffusion
“[. . .] as the process by which the market for a new technology changes over time
and from which production and usage patterns of new products and production
processes result.” (p. 733). In this context, firms must learn to adapt to a volatile
environment and react quickly to change. The challenge is that today’s customers are

D. Gadner (*)
Internetstores, Stuttgart, Germany

M. Felderer
University of Innsbruck, Innsbruck, Austria

Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: michael.felderer@uibk.ac.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_5

85

mailto:michael.felderer@uibk.ac.at
https://doi.org/10.1007/978-3-030-90594-1_5#DOI

very well-informed about the capabilities of new technology and are consequently
more demanding. Competition is hard as customer needs evolve quickly. It is getting
difficult for firms to anticipate the forces of change. The corporate environment is
becoming confusing (Fahey 2016). As a result, the timely reaction to changing
requirements is more important than ever. It can be best managed by using agile
frameworks for digital product development (Fonseca and Domingues 2017). Those
often come along with practices that enable quick accommodation to change rather
than following a defined plan. Especially in the software engineering domain, agile
means short development cycles resulting in fast reactions to changing customer
needs (Abrell et al. 2016). Though many companies are jumping on the bandwagon
of agile software development practices with their fast feedback loops and flexible
functioning, they must not forget, resulting in complex problems. The so-called
wicked problems are one of the reasons why firms fail to survive in the time of
digitalization. Here, tackling such a class of problems plays to the strength of Design
Thinking. The background section will cover the functioning of it, as well as the
principles of the Scrum framework. In addition, potential obstacles and challenges of
an integration will be exemplified. Based on input retrieved from already conducted
expert interviews and practical observations, a conceptual model was developed to
overcome beforehand identified challenges. This integrative model is called Collec-
tive Process Framework and starts with the Multidisciplinary Knowledge Café,
diverging into two process areas running in parallel. The term “Collective” is here
used as it describes the acting in the context of software development processes in a
cooperative way. In other words, the Design Thinking process, as well as the Scrum
process, were emblematic put next to each other to produce a product of collective
effort. This means, one area focuses on irrational beliefs and lateral thinking,
whereas the other one sticks to causal reasoning and organized thinking. In this
context, Plattner et al. (2012) mentioned that “[. . .] Design Thinking focuses on
those ‘fuzzy’ aspects of a design problem, which are in purely engineering-led
approaches left aside and is thus suggested as a useful supplement to a problem
perception and solving in ‘traditional’ IT development approaches.” (p.231).
Although, one might argue about the contradicting focus each process pursues on
its own. On the one hand, Scrum has a focus on iterative development more likely to
respond to change rather than planning for it. On the other hand, Design Thinking
has the goal to discover change opportunities that solve customer problems and thus
imply movement towards an idealized state. This situation provides an additional
motivation to integrate Scrum and Design Thinking in this contribution to benefit
from synergies and minimize potential problems.

86 D. Gadner and M. Felderer

This contribution is structured as follows. We first present the necessary back-
ground on Scrum and Design Thinking. Then, we discuss obstacles and challenges
of the integration of Scrum and Design Thinking. As main contribution, we present
our collective process framework DTScrum. Finally, we conclude this contribution.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 87

Background

The central frameworks, Scrum and Design Thinking, are both very helpful when it
comes to complex problem-solving in a dynamic environment. Scrum, on the one
hand, can be named as an effective approach to developing customer-focused
solutions. That is because, referring to Vetterli et al. (2013), the main task of
Scrum is to implement the user stories which represent the customer requirements
in clear form. On the other hand, Design Thinking can be named as a useful process
framework to identify real customer problems, redefine complex problems, chal-
lenge assumptions and develop novel product designs. Plattner et al. (2012) men-
tioned that requirements, especially for software systems, should be collected and
defined in collaboration with the user, often via the means of Design Thinking.

Scrum

Jeff Sutherland and Ken Schwaber coined the term “Scrum” in the context of agile
software development in 1990 and declared that constant evaluation of requirements,
plans, and results is the rudiment for a common and natural understanding of how to
respond quickly to change. Moreover, Scrum practitioners should embrace change.
It is better to respond to change rather than planning for it. All team members ought
to discuss on daily basis topics such as what had been already delivered and what
kind of tasks are still open. Hereby the Scrum framework promotes an open meeting
culture which should assure constant and effective communication inside the team
and between all involved parties. This also contributes to a common understanding
about the same line of vision on what to achieve, which is mandatory for success
(Nachbagauer and Ortner 2015). Next, the scope is not fixed. More the scope is
initially mirrored in kind of a project plan, which is called the product backlog. It can
evolve and can be seen as a living artifact. Scrum practitioners must always keep in
mind that the next set of features to work on could change because of the
unpredictable customer and market behavior. Therefore, the product backlog should
be updated with each completion of a development cycle. Such a cycle is called an
iteration or sprint and describes the time frame during which the team completes
predefined user stories. Often, it is depicted as a circle because there is not only one
but many iterations. Part of each sprint is a daily meeting, called daily Scrum. As
mentioned before, this should foster a communicative culture within the Scrum team
(Schwaber 2004). The result of each sprint is called an increment of functionality.
Here, the whole team is responsible for the fast and agreeable delivery of the
software product. Working functionality is delivered to the customer as soon as
possible in terms of small and frequent repetitions (Dzamashvili Fogelström et al.
2010). After each sprint, the team should always look back on how they reached the
actual state of delivery and analyze its way of working. All in all, Scrum can be
named an iterative, incremental process. Or in other words, Scrum is an agile project

Fig. 1 Scrum process area

management framework mainly used for software development projects (see Fig. 1
for an overview of the Scrum process), which includes change embracing properties
(Schwaber 2004).

88 D. Gadner and M. Felderer

Design Thinking

In accordance with the research of Gerstbach (2016), it can be stated that most of
today’s people associate the physical figure of a product with a successful design.
Even though successful design evolves out of meaningful and effective development
of products incorporating the needs and wishes of users. Hereby the main task of a
designer must be the investigation of customer behavior in order to solve the right
problem (Gerstbach 2016). In respect to the Collective Process Framework, Damien
Newman’s illustration of the design process is used to exemplify the characteristics
of the Design Thinking process (see Fig. 2 for an overview of the Design Thinking
process). The look-alike scribble is called design squiggle and represents the way
from research over developing prototypes to finally establish a clear design. Fur-
thermore, it shows that the way to the desired solution might be uncertain in the
beginning, but in the end, it will evolve into a single point of clarity. In other words,
every solution is born out of uncertainty (Naiman 2017). If necessary, one might
even need to take a step back or start all over again; because failure is knowledge and
knowledge means success. The path to a successful design consequently unfolds in
iterative loops moving back and forth across phases. “With this acknowledgment, it
is perhaps also worth noting that whether the process is intentional or not, it will
assume a significance upon the final design outcome” (Schneider et al. 2013, p. 117).
As we know by now that there is no ultimate single solution to a problem, four
factors of success, each individually weighted dependent on the respective situation
will be described now. At first, everybody’s own intuition is decisive. Due to the
explorative character of the Design Thinking process, undiscovered problems and
opportunities are more likely to be revealed by trusting the gut instinct. Furthermore,
no generated idea is nonsense. Every unique way to a solution should be chased.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 89

Fig. 2 Design thinking process area

That leads already to the second property, which is the trial-and-error principle.
Besides the negative aspect of trial and error, which is nearly impossible to predict
the duration of the ideation phase, this principle is a great way to gain knowledge.
There are many ways to solve a wicked problem. Especially prototyping should be
used to reveal the right problem and possible solutions to it. All ideas obtain the
opportunity to be sufficiently tested and improved till one idea stands out from the
others. Resulting the third factor of success is the direct implementation of the ideas
in the form of prototypes. Now the last property is necessary to identify the limits of
the human-centered design approach. Those boundaries should not be exceeded.
Within the defined scope Design Thinking can unfold its comprehensive capabilities
to innovate. The boundaries are congruent with the desirability, viability, and
feasibility dimension. As a result, the appropriate balancing between the feasibility
of the technology, the viable business dimension, and the desired customer needs is
essential. Dependent on the situation every aspect should be given more weight,
sometimes less weight, always with the human being in mind (Gerstbach 2016).

Obstacles and Challenges of the Integration

The successful integration of a proper design understanding in the industry sector,
marketing branch, or public had already been an important topic several years ago.
However, little is yet known on how to make effective use of Design Thinking in the
context of agile software development methods. Buchanan (1992), states hereof that,
“Without appropriate reflection to help clarify the basis of communication among all
the participants, there is little hope of understanding the foundations and value of
Design Thinking in an increasingly complex technological culture.” (p. 8). Thus, as a
part of former research, interviews with experts in Design Thinking and/–or Scrum

had been organized and conducted to define such a basis of communication and
further to identify other obstacles and challenges. In this section, the barriers which
may occur on the way to a proper integration will be pointed out, and a process
framework showing how to overcome them, on a conceptual level, will be depicted
next. For exemplification, own experiences will be included as well.

90 D. Gadner and M. Felderer

Resource Allocation

Of course, the first thing which might come into mind when mentioning possible
challenges of a practical integration is the topic of resources. In most of today’s
companies, resource restrictions are a critical issue. It is pretty rare that anyone finds
themselves in the fortunate situation of being able to focus 100% on a specific
problem without any other distractions. Especially, that if all team members are
committed to this one project to the full extent. As Design Thinking relies on the
involvement of the user as well as the knowledge of people from different domains,
it is often difficult to agree on resource capacities. So, depending on the ratio of
wicked problems to more tangible problems, you may need to focus your resources
either on one or another mindset. Design Thinking itself tries to obtain the user
feedback and expertise of other professional roles as often as possible. Therefore, the
resources must need to be allocated before the project starts, i.e., in the form of a
sensible resource allocation meeting. This will be described later on in terms of the
process framework, our starting point for any integrative Design Thinking—Scrum
projects. Here, it is important to fine-tune the occupation of resources and the point
in time when they are presumably available. So the emphasis on the work must be
based on the degree of resource utilization in an appropriate ratio to discover
complex problems and ordinary problems. Too many resources would have been
occupied with several user research topics and ideation sessions before the actual
development phase, in case of Design Thinking is used as an upstream process in
front of the Scrum steps. According to this, another challenge is the limited budget
for a human-centered design project, as well as the pressure from the management to
develop something potentially shippable in a short period. It is, therefore, important
that the management understands that agreeing to incorporate Design Thinking in
software development projects is a comparatively more time-consuming commit-
ment without guarantee for a successful product idea as an outcome. Instead, every
insight gained by the problem discovery and definition phase is a small step toward
understanding your customer demand to its full extent. Thus, the resource invest-
ment seems to be justifiable.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 91

Competing Views and Different Kinds of Problems

According to the different kinds of obstacles to face, it is necessary to mention that
despite all the similarities between Design Thinking and Scrum, they are very
different in nature. The Design Thinking’s problem-solving approach considers
socially ambiguous aspects that build upon heuristics and situational reasoning,
whereas the corresponding problem-solving patterns of Scrum rely more on the
orthodox engineering design paradigms and analytical thinking (Plattner et al. 2012).
With this thought in mind, we must be aware of the competing views between the
design domain and the software engineering domain. The different purposes and
distinct kinds of problems to be treated by the frameworks could be a reason for
conflict when trying to collaborate with each other. Also, the oppositional mindset of
the Design Thinking team and the more analytical thinking Scrum people can be
seen as a challenge here. Consequently, the question arises of how to use two
frameworks together when both have a diverse purpose. “Whereas Design Thinking
allows dealing with the ambiguity of design problems as wicked problems, the
thinking of IT engineers instead supports the effective technical realization.”
(Plattner et al. 2012, p. 230). Also, in practice, you can feel the tension between
those opposed characters. The most problematic thing is when the more open-
minded approach of Designers clashes with more analytical-oriented Scrum practi-
tioners. Both somehow feel a thread in the counterpart’s way of thinking, as it might
disturb its own way of working. Scrum practitioners might feel held back by the
Design Thinking counterpart as the Design Thinking people might feel annoyed by
the disbelief of developers in the value creation of the Design Thinking steps. Here,
it is necessary that all team members should be sensitized to the opposing mindset.
Every project member should have an open mind toward new thinking and working
mode. However, the Scrum framework’s capability to support the path of under-
standing the problem and, in turn, defining certain requirements is limited.
Approaches, like Scrum, are not yet able to cope with a class of problems demanding
techniques reaching from further exploring problems to fully understand them.
Especially when thinking of problems occurring in the fast-paced technological
world, the characteristics of complex problems, especially in the context of the
human-centered design approach, are of high relevance. Especially today’s software
development projects demand more and more for human-centered design
approaches to tackle what is often referred to as wicked problems, i.e., unknown
and inherently volatile requirements. Nevertheless, identifying requirements for a
solution to tackle the right problem is a very sophisticated process. This might also
be the reason why firms fail to survive in the time of digitalization. That is to say,
while software development approaches aim at transferring customer needs into
rapid development cycles as a means to develop software products iteratively and
incrementally, we often still need to first shift our attention to framing and changing
the actual problem. To achieve this, Design Thinking should be used to challenge
assumptions, redefine complex problems, and even explore new possibilities and
paths for problem solving. On the other hand, Scrum is a bit more dedicated to

rapidly develop solutions for tamed or ordinary problems, based on user stories that
represent the customer requirements in clear form. For example, if you have
a problem that is very well defined, you would not necessarily need to conduct a
full-blown Design Thinking project, as it would be too big of an investment and a
waste of resources. This is because here, you already know about the problem space
and the resulting customer pain to be solved. For example, in web development, it is
already common knowledge that an “add-to cart” button on a product detail page
must be shown on the first view and designed in a prominent way to boost the
conversion. Here you can benefit from already existing knowledge and do not
necessarily need to start from scratch. So, in this case, one can directly start with
the development sprint.

92 D. Gadner and M. Felderer

Coordination and Communication

Important for this kind of collaborative procedure of using Design Thinking and
Scrum together is constant and regular communication and coordination between all
participants. This also involves stakeholder management. Especially in terms of
Design Thinking, with all its gatherings of people with diverse backgrounds also
the different types of personalities working together must be considered. This can
create a conflict between the participants, which, at worst, could also have a bad
influence on future cooperation. In order to prevent this potential conflict, an
emphasis must be put on effective communication. Nevertheless, a balance between
meeting overload and too little communication, which might result in knowledge
silos, is crucial. It is important to never underestimate the power of gathering. As
soon as several people meet to work together on a concrete topic, problems can be
defined, and ideas to solve them are collected. Here, the ones responsible for the
output of any implementation must be informed about the current state. People who
will be working on the solution to the problem in the near future do not only want to
receive a list of requirements to be worked on. Rather they prefer to be part of the
journey from the very beginning. Otherwise, people might feel excluded and think
they missed their chance to contribute their thoughts and ideas to it. Sometimes it is
just the simple human behavior of being affronted after somebody has told them
what and how to do something, which puts a successful Design Thinking Scrum
project, or any project in general, at risk. This can also result in a lack of motivation
and decreases the commitment to the project. When it comes to organizational
structure, hierarchical constraints must be mentioned as a possible factor that can
also decrease the effectiveness of applying a design methodology such as Design
Thinking in the software development domain. An example of something which
restricts creative work is design standards given by management. Therefore, “[. . .] a
balance needs to be found between corporate requirements and creative freedom”

(Häger et al. 2015, p. 264). Further, it is crucial that everybody being part of
interdisciplinary teams should know their role and associated responsibilities within
the project. It is a completely different situation working together with someone on a

regular basis, knowing the team’s internal structure and hierarchies, in comparison to
someone who has just recently been added/begun working with it. This can create
tension, especially when it comes to an overlap of responsibilities. That is also why
ownership is a very important part of this topic. If you are responsible for a specific
piece of the project, you are less likely to feel threatened by other one’s actions to
affect your work.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 93

The Collective Process Framework DTScrum

Especially today’s software development projects demand more and more for
human-centered design approaches to tackle what is often referred to as wicked
problems, i.e., unknown and inherently volatile requirements. To achieve this,
Design Thinking should be used to challenge assumptions, redefine complex prob-
lems, and even explore new possibilities and paths for problem solving. Now, as
there are already several kinds of research work that agree on the idea of putting a
Design Thinking approach together with Scrum, we are tackling the issue of really
synthesizing those different mindsets and working modes. In this sense, the concep-
tual model which we intentionally describe as a Collective Process Framework
should be understood as a visual roadmap of:

• Artifacts
• Roles and responsibilities
• Activities

Toward the development of a software-intensive solution using both Design Think-
ing and Scrum. The model is called the collective process framework, with reference
to the work by Malone et al. (2009), who investigated the effectiveness of individ-
uals working together in a collaborative environment. Collective here means that
both, Scrum and Design Thinking, are functioning on their own but are connected in
several ways throughout the overall solution discovery and development process in
order to profit from each other’s respective strengths. Therefore, the collective
process framework emphasizes a collaborative working mode and mindset. This is
achieved by putting the Design Thinking phases in parallel to the Scrum framework,
whereby feedback cycles and coordination meetings are promoted in order to
maintain a constant connection between the Design Thinking work and the Scrum
work. Based on Malone et al. (2009), “The phrase we find most useful is collective
intelligence, defined very broadly as groups of individuals doing things collectively
that seem intelligent.” (p. 2). Consequently, the term “Collective” should, on the one
hand, be used to describe the multidisciplinary characteristic of the process frame-
work, on the other hand, to describe the in parallel functioning Design Thinking and
Scrum processes. In other words, the Design Thinking process, as well as the Scrum
process, were emblematic put next to each other to produce a product of collective
effort. Now having a closer look at the conceptual model, the spectator will notice

so-called process areas, currently four in number. The following represents the
skeleton of the model:

94 D. Gadner and M. Felderer

• Multidisciplinary Knowledge Café
• Design Thinking process area
• Scrum process area
• Product Backlog Design Matching

Multidisciplinary Knowledge Café

The first area must be seen as the groundwork for a successful design implementa-
tion approach and, therefore, starts with a multidisciplinary knowledge café that
involves:

• Bringing people with different backgrounds together
• Connecting diverse points of views
• Preparing a rough roadmap in order to plan and allocate resources appropriately

upfront
• Identifying and classifying problems

So, the term multidisciplinary here is used in reference to the Design Thinking
mindset, which emphasizes knowledge assimilation regarding putting different
points of view together. Incorporating people with diverse fields of expertise is an
advantage. Here, Buchanan used the term liberal arts to describe a vision of an
encyclopedic education of various natural sciences and mathematics, philosophy,
and social sciences. As a result, Design Thinking in the twentieth century must be
recognized as the new liberal art of technological culture. Design is an integrative
discipline to complement art and sciences (Buchanan 1992). In this case, the
advocates of the new liberal art say that “[. . .] the proper study of mankind is the
science of design, not only as of the professional component of a technical education
but as a core discipline for every liberally educated person.” (Simon 2019, p. 138).
This is first, effective in a way that every aspect of a problem is mainly covered, and
second, it will be talked about any concerns and ideas regarding future work. Thus,
such a creative and open-minded approach results either in the identification of a
concrete problem set or in the revelation that there, in fact, is no real problem, which
can save a considerable amount of time. Trying to solve something which you are
not really sure about exist is a complete waste of time. Besides the basic principles of
the Multidisciplinary Knowledge Café, namely fine-tuning resource capabilities,
connecting diverse perspectives, sharing collective discoveries, and acknowledging
different opinions, its main purpose is the identification of subproblems and their
classification. An emphasis must be put on the implication that it will be distin-
guished between wicked problems and well-known, or “ordinary” problems. The
separation into different kinds of subproblem is important as the next process areas
of the collective process framework have different capabilities to handle the outputs

of the Multidisciplinary Knowledge Café. In short, it will be distinguished between
ordinary problems and wicked problems. For example, the purpose of Design
Thinking is directed towards complex problem solving and novel idea generation,
whereas the Scrum process often deals with ordinary or ill-defined problems. Thus,
the Design Thinking part deals with the treatment of wicked problems and innova-
tion opportunities, collected in the so-called “Design Pool” which is the counterpart
of the Scrum processes product backlog. Wicked problems are real-world problems
that are difficult or impossible to solve for some reason. There are no solutions in the
sense of definitive and objective answers. One could say, wicked problems refer
equally to problems of design and planning. The scrum approach is a bit more
dedicated to rapidly develop a solution for tamed or “ordinary” problems. This class
of problems is known for its well-defined requirements where the solution is clear.
Known algorithms can be applied straight to come up with the solution. Even though
the wording might imply it, “ordinary” problems are not less worthy of being solved
than wicked ones. But it would not be sufficient to re-discover the same problem
again and again. Therefore, it is important to differentiate between those. For
example, if you have a problem that is very well defined, you would not necessarily
need to conduct a full-blown Design Thinking project, as it would be too big of an
investment and kind of a waste of resources. This is because here you already know
about the problem and the resulting customer pain. For example, in web develop-
ment, it is already commonly accepted that the basic structure of any product detail
page includes an image of the product, the title, the price, variation selection, and the
add-to-cart button. Maybe in the past, a problem existed, that customers have not
really had added products to the cart. Now we know that it is decisive to show a
clickable element, also known as the “add-to-cart” button, on the first view as it is the
main element on such a template to boost the conversion. In this case, you can
benefit from already existing knowledge and do not necessarily need to start from
scratch. Resulting, one can directly start with the implementation sprint. To make
use of both, the collective process framework is not really about integrating one
framework into another. It is about finding ways of planning both together because
they can also work on their own very well. An emphasis must be put on a
collaborative working mode and mindset. This is achieved by putting the Design
Thinking phases in parallel to the Scrum framework, whereby feedback cycles and
coordination meetings are promoted in order to maintain a constant connection
between the Design Thinking work and the Scrum work. Such collective functioning
is vital for the ultimate implementation of a successful product design. It is depicted
in the conceptual model as process areas two and three, which will be described now.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 95

Diverge into Design Thinking and Scrum

The class of problems must be structured, categorized, and prioritized. Therefore, the
second and third process areas start with backlog management. Here it is important
to get a better overview of the work to be done. The different class of problems

which have been discussed beforehand are going to be revised. On the one hand,
there is the Scrum framework, focusing on organized thinking and causal reasoning,
and on the other hand, there is the Design Thinking approach, more of lateral nature.
First, coming to the Scrum process, which stands for the principles of cause and
effect. It is all about thinking which event leads to one another. Especially, commu-
nication within distributed systems and its determination of the sequence when
several instructions should take place is crucial. So, this way of thinking leads to a
causal order in which the output of one action leads to and, or is needed by the
following operation. As a result, processes can be planned in a more holistic way. It
emphasizes analyzing and categorizing conceptual information using a systematic
and logical thought process. In comparison to this incremental way of thinking, the
Design Thinking approach is more about the opposite. Here, lateral thinking stands
for analysis by intuition. Mental leaps are no shame, and not every interim finding
must make sense in the first place. Especially odd ideas are welcomed. Further,
initial situation and boundary conditions must not be seen as immutable, rather as an
opportunity to shape the context for its own purpose to open up new perspectives.
You should force yourself to believe in something which you normally would not
believe due to objective evidence retained by intrapersonal cognitive structures. In
this sense, Design Thinking ends with a good understanding and confidence of ideas.

96 D. Gadner and M. Felderer

Irrational Beliefs and Lateral Thinking

Process area two is showing the before-mentioned illustration of Damien Newman’s
design squiggle, which refers to the design process and it is way from research over
developing prototypes to finally establish the clear design (Naiman 2017). Here,
irrational beliefs and lateral thinking minimize the risk of developing a solution
towards a non-existing problem and uncertainty about the right problem by engaging
customers through a series of prototypes to learn, test, and refine concepts. Learning
from failures of previous iterations is essential. Now, the roles corresponding to the
Design Thinking work within this collective process framework will be explained.
Here, the role of the Design Owner is the counterpart of the Product Owner and, as a
result, responsible for the Design Outcome, for instance, the mock-up. Important to
mention here is that the Design Owner decides with the consultation of the Design
Thinking team which elements of the Design Pool should be part of the next design
step and if going back or forth to any other step might be beneficial. Another option
would be an innovation opportunity that seems profitable so that more investigation
must be made. Either way, the Design Owner triggers the design sprint, which in turn
will be run iteratively by the Design Thinking team, including the Design Thinking
Coach, and in some cases, subject matter experts. The Design Thinking Coach can
be seen as the counterpart to the Scrum master.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 97

Causal Reasoning and Organized Thinking

For the correct application of Scrum, the applicant must remember the major
principles of agile software development. First, the development of features should
happen right away. Working functionality is delivered to the customer as soon as
possible in terms of small and frequent repetitions. Additionally, embracing change
is a crucial factor. Therefore, Scrum practitioners should be aware that it is better to
respond to change rather than plan for it. Next, the scope is not fixed. More the scope
is initially mirrored in kind of a project plan, which is called the product backlog,
which is one of the four key building blocks of the Scrum process. It can evolve and
be updated between the completion of each iteration. It is kind of a learning process.
The other elements are the increment of functionality, the 24-hour inspection
meeting, and the time frame of an iteration cycle called a sprint. As explained yet,
Scrum is an iterative, incremental process. It all starts with the product backlog. This
artifact is a list of requirements that are mostly requested by the customers and, thus,
by the Product Owner. An iteration of development activities is represented as a
circle because there is not only one iteration but many, one after another. The result
of an iteration is the potentially shippable product increment. So, if a final increment
can be presented to the customer, everything starts from the beginning. The problem
with Scrum is that most organizations nowadays do not allow the direct collabora-
tion of users and the development team. The principles of Design Thinking could
help the Product Owner or any other role involved in the product development
process to establish a better understanding of how to tame complex problems, foster
innovative thinking, and have a customer-focused mindset.

Converge

An important success factor is the same line of vision, which in turn is crucial to
synthesize all tasks. Therefore, it is not enough to just let the two processes run in
parallel in order to benefit from a collective process approach. It must be ensured that
both frameworks benefit from the advantages of their counterparts and still utilize
their own strengths. Important for such a collaborative procedure is constant com-
munication and coordination with each other. That is why we want to introduce the
fourth process area. In this context, the Design Thinking output, like, for example,
nonfunctional prototypes, should be used as an input for further development cycles.
This means that the insights about customer needs and tamed problems must be
included in the development sprints of the Scrum team. “Ideally a requirements
specification could include a description of basic assumptions, needs, and knowl-
edge of the problem domain, needed for designing and implementing an information
system.” (Bubenko 1995, p. 160). Now, it is all about bringing the work back and
learning from each other’s achievements. Important for such a collaborative proce-
dure is constant communication and coordination with each other. The

Multidisciplinary Knowledge Café, which brought together different professions
and personalities in the first run, can also be used to converge the beforehand
diverged working teams. So, for this converging step, an artifact such as a backlog
can be used again as a merging tool to bring the people back together and collect the
different achievements, ideas, and problems in a shared area. This meeting is called
“Product Backlog Design Matching” and offers attendees the possibility to discuss
newly developed functionality, improved mock-ups, tamed problems, and clearly
defined innovation opportunities. Further, recently appeared complex problems that
cannot be implemented due to non-existing clear definition are part of this pool. The
attendees should feel like to be cushioned against the “daily” work (reality). This
melting pot is the heart of past work and the foundation for future achievements. This
means that the insights about customer needs and tamed problems must be included
in the development sprints of the Scrum team. It is important to hand over
the knowledge of each other’s tasks and achievements. When having a look at the
parallel functioning processes on a holistic level, there is still the connection to the
end-user. This is also where you get the knowledge on which new features and
functions should be integrated into the next sprints to solve the right problem.
Further, issues can be discussed so that misunderstandings can be excluded, and
maybe another point of view will reveal an alternative way to solve an issue. The
vision which has been developed in the Multidisciplinary Knowledge Café, there-
fore, can evolve over time by keeping the core problem and goal in mind. It will be
noticed that the knowledge hand-over is a critical but also indispensable milestone
during the solution development process. Critical, because there is so much knowl-
edge that is implicitly within the Design Thinking team and its possible loss of
achievements and insights due to the poor hand-over to the other or a completely
new team, which might happen due to capacity or resource constraints. Mainly this is
critical because Design Thinking does not document that much. And indispensable
because ideas exist, which you need to implement to experience it and to see if the
idea is working. In other words, the team is performing some Design Thinking
stories. Already existing user stories on the part of the Scrum product backlog can be
adapted or removed, and new user stories can be established. As the Product Backlog
Design Matching finishes, the “daily” work begins again.

98 D. Gadner and M. Felderer

Conclusion

All in all, we presented the Collective Process Framework, which unifies Design
Thinking and Scrum on a conceptual level. The framework, visualized in Fig. 3,
comprises four process areas, and it should be understood as a visual roadmap of
general process items, including:

• Artifacts, such as mock-ups and ideas and their relationship development artifacts
such as the product backlog.

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 99

F
ig
.3

C
ol
le
ct
iv
e
pr
oc
es
s
fr
am

ew
or
k

100 D. Gadner and M. Felderer

• Roles, such as the design owner building a counterpart to the Product Owner.
• Activities, such as the Product Backlog Design Matching.

This roadmap serves, as we argue, as one important step toward the development
of a software-intensive solution using both DT and Scrum. Both frameworks benefit
from each other and still utilize their own strengths. Here, Design Thinking is
frequently identified as an engaging process and methodical framework for
approaching complex problems in a multidisciplinary way. Such a design work
often tames complex problems and results in novel design solutions. Scrum is a
simple framework for effective team collaboration in a dynamic environment, in
which communication and collaboration are essential elements. Further, it provides
guidance for effective product development in a dynamic environment. Now, due to
the lack of social aspects within the more analytically arranged software engineering
domain, Design Thinking must help to integrate a proper understanding of humanity
in the software development process. So, this shall contribute to the long-term
objective of using Design Thinking within the Software Engineering domain. We
consider the refinement of the process areas by empirical studies, especially case
studies in an industrial context, as future work, and we cordially invite interested
researchers and practitioners to join our endeavor.

References

Abrell T, Pihlajamaa M, Kanto L, Vom Brocke J, Uebernickel F (2016) The role of users and
customers in digital innovation: insights from b2b manufacturing firms. Inf Manag 53(3):
324–335

Bubenko JA (1995) Challenges in requirements engineering. In: Proceedings of 1995 IEEE
international symposium on requirements engineering (RE’95), pp 160–162

Buchanan R (1992) Wicked problems in design thinking. Des Issues 8(2):5–21
Dzamashvili Fogelström N, Gorschek T, Svahnberg M, Olsson P (2010) The impact of agile

principles on market-driven software product development. J Softw Maint Evol Res Pract
22(1):53–80

Fahey L (2016) John c. camillus: discovering opportunities by exploring wicked problems. Strategy
& Leadership

Fonseca LM, Domingues JP (2017) How to succeed in the digital age? Monitor the organizational
context, identify risks and opportunities, and manage change effectively. Manag Mark Chall
Knowl Soc 12(3):443–455

Gerstbach I (2016) Design Thinking im Unternehmen: Ein Workbook für die Einführung von
Design Thinking. GABAL Verlag GmbH, Offenbach

Gray J, Rumpe B (2015) Models for digitalization. Softw Syst Model 14:1319–1320
Häger F, Kowark T, Krüger J, Vetterli C, Übernickel F, Uflacker M (2015) Dt@scrum: integrating

design thinking with software development processes. In: Plattner H, Meinel C, Leifer L (eds)
Design thinking research: building innovators. Springer, Cham, pp 263–289

Malone TW, Laubacher R, Dellarocas C (2009) Harnessing crowds: mapping the genome of
collective intelligence. MIT Sloan Research Paper 4732(09)

Nachbagauer A, Ortner G (2015) Globale Projekte managen: Neue Wege für die weltweite
Projektarbeit. Symposion Publishing, Düsseldorf

The Collective Process Framework DTScrum for Integrating Design Thinking. . . 101

Naiman L (2017) Design Thinking as a strategy for innovation. The European Business Review.
www.europeanbusinessreview.com/design-thinking-as-a-strategy-for-innovation. Accessed
16 Feb 2019

Plattner H, Meinel C, Leifer L (2012) Design thinking research. Springer-Verlag, Berlin Heidelberg
Schneider J, Stickdorn M, Bisset F, Andrews K, Lawrence A (2013) This is service design thinking.

BIS Publishers
Schwaber K (2004) Agile project management with Scrum. Microsoft Press, Redmond
Simon HA (2019) The sciences of the artificial. MIT Press
Stoneman P, Battisti G (2010) The diffusion of new technology. In: Bronwyn HH, Rosenberg N

(eds) Handbook of the economics of innovation, vol 2. Elsevier, pp 733–760
Vetterli C, Brenner W, Uebernickel F, Petrie C (2013) From palaces to yurts: why requirements

engineering needs design thinking. IEEE Internet Comput 17(2):91–94

http://www.europeanbusinessreview.com/design-thinking-as-a-strategy-for-innovation

RE-DT-UX: Moving from
a Discipline-Based Approach
to a Role-Based One

Kerstin Roese, Katharina M. Zeiner, and Rainer Wasgint

Introduction

Our research group at Siemens AG is comprised of 25 User Experience Designers,
Design Thinkers, and Requirements Engineers. We believe our interdisciplinary
teams allow us to better serve our customers at Siemens. This is not because this
might allow us to have experts focus on their specialties but because working as
T-shaped teams allows us to benefit from a multitude of experiences and opinions
while developing a great user experience for our software solutions. Rather than
focus on our original disciplines, however, we have found that thinking in roles that
can be filled by different individuals when needed allows us to better respond to
quickly changing project requirements.

In this chapter, we describe how the various experience-related roles work
together in our team and how we use them to best support the development of
products with a positive UX.

Joining Forces to Create Offerings with Great UX

Our goal is an efficient design for offerings that create a great User Experience (UX).
UX is about the entire experience in connection with the product or service under
consideration. In this respect, UX encompasses more than usability or UI, where

K. Roese (*)
T RDA SSI UXD-DE, Siemens AG, Erlangen, Germany
e-mail: kerstin.roese@siemens.com

K. M. Zeiner · R. Wasgint
T RDA SSI UXD-DE, Siemens AG, Munich, Germany
e-mail: katharina.zeiner@siemens.com; rainer.wasgint@siemens.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_6

103

mailto:kerstin.roese@siemens.com
mailto:katharina.zeiner@siemens.com
mailto:rainer.wasgint@siemens.com
https://doi.org/10.1007/978-3-030-90594-1_6#DOI

only the direct interaction is considered. The term experience implies the integration
of all relevant aspects, including the information architecture, the performance, the
content presented, etc. It is therefore important for us to involve the customer and all
stakeholders in the design process at an early stage. The Customer Experience can
already be influenced with the idea and the definition of an eco-system (for more
information on this approach see Lowdermilk T and Hammontree M (2020)). This is
only truly possible if we approach the user’s needs empathically from various directions.

104 K. Roese et al.

Tim Brown who coined the term T-shaped people describes them as follows: “T-
shaped people have both depth and breadth in their skills.” Rather than being only
experts in their field, “the horizontal stroke of the “T” is the disposition for collab-
oration across disciplines. It is composed of two things. First, empathy. It is
important because it allows people to imagine the problem from another perspective-
to stand in somebody else’s shoes. Second, they tend to get very enthusiastic about
other people’s disciplines, to the point that they may actually start to practice them”

(Hansen 2010). This is what our current role-based approach at Siemens T allows us
to do.

Our basic understanding as UXD at Siemens Technology is that we work in the
field of customer experience management. This means that the user experience must
already be taken into account while devising the business model, with the definition
of the eco-system, and all other phases of the product lifecycle.

Everything is part of the whole. So, all methods and tools used serve the
overarching goal of finding out the needs of the user and to find “the best fitting
way” to implement them. It is important to ensure that we are talking about analyzed
real user needs and not user wishes. This is where Agile RE comes into play. In Agile
RE methods and best practices of traditional RE are partially incorporated into the
tasks and roles of agile development without violating agile principles. Here,
traditional parts of the traditional RE approach are used to increase the description
quality of Epics, User Stories or Feature definition. For example, wishes identified in
interviews are often equated with needs, without trying to understand the intention of
the user or trying to identify the potential and tasks behind the user’s wish. This
could be a user insisting that a button ‘has to be red’ and the design team blindly
implementing a red button rather than asking why this is so important for the user. It
is like staying at the symptom level in medicine without asking about the causes. In
our button example, this could, for example, be caused by the user wanting to make
sure that they always know where this specific button is located. This can be
implemented with a red button but there are also other interaction and visual design
choices that can fulfill the same need for safety or competence. A good user
experience can arise only if we try to understand the needs behind these wishes
(for more on this see Hassenzahl 2008).

Our “Old” Discipline-Based Approach

In the past, we saw ourselves as different disciplines working in one team. This
included Usability Engineers, Design Thinkers, Requirements Engineers, and others.

RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One 105

Usability Engineer

A Usability Engineer drives the research strategy. By conducting usability studies
and performing contextual inquiry he analyzes the user’s workflow. This allows him
to understand the user and customer needs. The Usability Engineers is also respon-
sible for testing. He evaluates prototypes, runs User Acceptance Tests, and performs
heuristic evaluations. He is also responsible for the interaction modeling. This
includes considering mental models and task models, creation of storyboards and
user journey maps. After initial testing of his concepts, he also creates wireframes
that visualize the concept.

Design Thinker

The goal of a design thinker is to establish a human-centered mindset within the
company. They plan and execute Design Thinking projects that develop innovative
products, and services. A good Design Thinker creates an understanding of a
customer or user, their pains and gains, as well as their needs. They do so through
empathy building and use those insights to iteratively generate ideas for innovative
concepts that are tailored to user’s needs.

Requirements Engineer

In our understanding, a traditional Requirements Engineer’s main task is to establish
a common understanding between the stakeholders of the project. He not only
bridges the gap between business and technology, but also reaches out for the
agreement between all involved parties. In agile teams, he accompanies and supports
the design sprints from Design Thinking, while, for example, applying and enforcing
traditional RE best practices, like precise, testable statements and using the artifacts
created in a structured way.

As more and more of our Siemens internal customers started adopting agile, some
even moving to DevOps, we noticed that this discipline-focused approach was not
serving us well. Therefore, we made the shift towards a role-based approach.

Why We Need a Unified Approach

When it comes to Agile SW-development, tasks and responsibilities associated with
development are typically distributed over different development team members by
roles. Besides developers, typically roles in the projects we work on include Product

Owner, Architect, Requirements Engineer, User Experience Designer and of course
others. However, due to the ever shorter release cycles of SW-Products releases, we
have observed and experienced the following pitfalls, both within and outside our
organization, that work against our goal of creating great UX. In this section, we will
describe these pitfalls and how they affect the overall development goal.

106 K. Roese et al.

No or Very Limited Market(segment) (Over)view, No Business
Model, No Bundling, Vision and Scope (V&S) Not Existent
or Not Agreed, Stakeholders Not Fully Interviewed

Some products that are being developed are technological solutions but do not
address a specific market/customer/user need and do not have a vision of what
they are trying to address. The general development approach itself, be it Agile,
Scrum, SAFe™ or DevOps is often used as an excuse for not applying certain
development best practices. For example, not fully described and agreed on, realistic
and believable project vision exists between stakeholders and team members. There-
fore, there is also no clear scoping of such a vision with respect to a given market or
customer. On the contrary, the market and customers segments have not been
investigated thoroughly, described and neither is the resulting product agreed to be
positioned well within the known market. This often means no business model is
defined and described and its interaction with the intended product/customer is
therefore unclear and the overall applicability has not been thought through. This
would not be a problem if there was a single strong product visionary/product lead.
In some projects, even if benchmarks and market research are performed, they are
not shared with the project team in the project context with respect to the product’s
features and unique selling points. On the contrary, often due to department splits or
responsibility splits also little to nothing is described with the respective domain
expertise at hand. This means the positioning of the product with its intended
features and bundling is completely unclear beforehand. All this often results also
in no pilot or lead customer being included in the project, more or less leading into
the next area of problems.

Non-existing Lead or Insufficient Customer Availability

This lack of research or overview in turn often leads to an unclear mission statement
of the project’s development goals and no real timelines that can be addressed by an
Agile development methodology. This is complicated further if sprints are
conducted delivering features of unclear customer value. Furthermore, in today’s
projects, some crucial aspects and preconditions necessary for a truly Agile devel-
opment approach are often not met. For example, the customer is not at all or not

really permanently on board, thus resulting in the development team being unable to
resolve issues. This results in time delays or the team making decisions. Overall, this
makes the work of the UX Researcher infinitely harder since it is that much harder to
develop insights on development results Of course, one could argue that the Agile
approach has a fail-safe for this at demos and that deliveries can still be rejected.
Nevertheless, in larger organizations, this leads to huge inefficiencies and other roles
taking over the roles of customer or even product owner often leading to sub-optimal
decisions.

RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One 107

Missing Domain Experience and Domain Expertise

Often enough, the person executing the role of Product Owner is also unsure in
details of the domain and thus not able to resolve such questions either. In some
cases, product ownership is not associated with deep domain knowledge. Hence the
product owner also needs to rely on the results from User Research which are
hampered by the lack of access to users. Typically, this deficit in domain expertise
leads also to the requests of Product Owners towards architects to decide on the
product’s functions and features via selection of technologies/components. This
approach automatically limits the feasibility and applicability of the product’s
solution scope. Alternatively, the burden falls on Requirement Engineers to define
the functionality with some creativity at hand. Especially in projects when UX is
only included once development has already started this means it is often too late to
make changes in features and functions that drastically affect the underlying
architecture.

Missing Customer Insights: User Experience Not Investigated
Due to Misprioritization, Too Little Knowledge on Importance
of UX

Last but not least the lack of awareness for the insight of customers’ real wishes and
needs and their intended interaction ala Design Thinking or the elaboration and
design of customer experience in an Agile manner is often neglected either due to
time pressure, the team not being able to apply the methods, not knowing them at all
or the misfit of such methods with existing roles and the development approach. This
could be that no UX expert is part of the development team or the methods required
do not fit into the sprints. This often means even if they are applied, there is not
enough time to deliver the intended improvement in the product’s interaction design
and the resulting user experience.

108 K. Roese et al.

Missing Strong Lead/Visionary

All of these described pitfalls probably would not derail a project if there was a
strong lead or visionary, vouching with single responsibility for the product’s vision,
scope, and technology to be developed/applied, like Steve Job’s iPhone idea, and
willing to accept and carry the associated development risk, having entrepreneurial
spirit and taking the necessary involved business risk from cradle to grave. Such a
single strong product lead role typically does not exist in a large organization’s
development either. Rather, there is a split of associated responsibilities over several
departments, roles, or boards as well as risk averseness, in combination
counteracting real Agility. Not to mention, political aspects such as the blocking
of knowledge between organizational units. Most often, we do, however, simply
observe a lack of time for intense, continuous collaboration between different
organizations/departments like marketing, sales, and development.

While we cannot single-handedly address all these pitfalls, we have noticed that
making small changes in how we, as a team, work in agile projects can lessen their
effect.

A Role-Based Approach

Our experience over the past two decades has been that agility has changed our work
environment dramatically. In a way, software development’s mindset has moved
closer to our mindset. At the same time, strategies that allowed for an integration of
Requirements Engineering, Design Thinking, and User Experience into the devel-
opment process have become harder to implement, if not obsolete. We have found
that shifting to a role-based approach has helped us adjust to this change in our
environment as well as tackle the challenges we observe in agile SW development.
Figure 1 shows the different roles we work with. Note, that not all roles are present in
every project, and we also have times when not all roles are filled within our research
group, but we believe that they all play their role in delivering great UX.

Figure 1 describes the different roles we use. Generally, they can be grouped
based on their focus. The first is on the What (“What should be developed?”). These
roles are especially active at earlier phases of product development. These roles are
Experience Analyst, User Researcher, Business Analyst, Information Architect and
Content Strategist. Somewhere in the middle, we have our UX Strategists. The other
focus is that on How (“How should the thing that is being developed look and
interact?”). These roles are more active during the elaboration and construction
phases of a project. These roles include Interaction Designer, Accessibility, Visual
Designer, Front-End-Developer, and UX Tester.

RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One 109

F
ig
.1

T
hi
s
di
ag
ra
m

sh
ow

s
th
e
di
ff
er
en
t
sp
ec
ia
lti
es

th
at
w
or
k
to
ge
th
er

to
cr
ea
te
gr
ea
t
us
er

ex
pe
ri
en
ce

110 K. Roese et al.

How They Work Together

By differentiating between these roles, we can then make it explicit how and when
they work together when developing products. If you take the average architectural
process (see Fig. 2), not all Roles are always equally active during the process and
not all projects require all roles to work on them.

While the different roles work together one or two roles tend to be in the lead at a
given time.

If you take the initiation phase of the project pictured in Fig. 2. In the Understand
phase, User Researcher, UX Strategist and Business Analyst work together to
develop a vision. The different roles do not have to rely on different methods but
can focus on different aspects of the process. For example, the User Researcher
collects information about user needs in interviews or observations that the UX
Strategist might use to glean important strategic insights when combined with other
pieces of information. The results of the methods employed in the understand phase
are used by the roles involved in later phases. In the next phase, the Experience
Analyst drives innovation to support the development of an opportunity statement
that actually creates impact. This could be in co-creation sessions or in more
“classical” DT workshops. Next, the Information Architect focuses on requirements
that can then be used as input by Experience Analysts and UX Strategists to create
concrete ideas for the product definition. Amongst other methods brainstorming and
ideation methods come to fruition here. The ideas created in this phase can then be
checked by the Content Strategist and Accessibility. At this stage User stories are
defined and the first low-fidelity prototypes are developed before being initially
evaluated by the UX Tester.

After this first evaluation loop, the other roles focused on the How to become
much more active. The Interaction Designer develops interaction concepts while the
Visual Designer defines UI patterns. This is followed by the development of
wireframes from the Interaction Designer while the Visual Designer works on the
UI concept and design.

Here they are being supported again by the UX Tester and Accessibility who
evaluate the increasingly high-fidelity prototypes with users.

At this point, development is in full swing and the evaluated mock-ups are being
implemented this means after this evaluation loop, if not before the Frontend
Developer becomes active and starts building the frontend while the Visual Designer
continues working on the visual design. At this point, we are normally sprinting
together with the development teams and most often use a one-sprint-ahead
approach (Alt-Simmons 2015) if we are not more systematically integrated either
through Dual Track (Sy 2007) or a framework such as SAFe™ (Knaster and
Leffingwell 2020).

There are two/four other roles that were not included in Fig. 1 which both become
relevant if we are supporting agile release trains. Those roles are the Technical
Product Owner (TPO) Design Product Owner (DPO) as well as their Project
Management Office (e.g., PMO Design) counterparts. With these roles, the other

RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One 111

F
ig
.2

T
he

di
ff
er
en
t
ro
le
s
w
or
k
to
ge
th
er

th
ro
ug

ho
ut

th
e
de
ve
lo
pm

en
t
pr
oc
es
s.
R
es
tr
ic
te
d
|©

S
ie
m
en
s
20

20

roles are directly embedded in the agile development process. The TPO, for exam-
ple, not only interfaces the gap between business and technology, but also reaches
out for the agreement between all involved parties with agile methods. Along the line
he accompanies and supports the design sprints from Design Thinking, while, for
example, applying and enforcing traditional RE best practices, like precise, testable
statements and using the artifacts created in a structured way. The TPO keeps the
overview and manages all agilely created artifacts, that are in later stages of
development the basis for further planning, managing, and execution of the project.

112 K. Roese et al.

This integration of UX roles into the development process allows us to leverage
the benefits of both agile development and human-centered design without sacrific-
ing one for the sake of the other.

Conclusion

The working world at Siemens is constantly changing and must also cover various
customer requirements. Our UX department at Siemens Technology has been for
more than 25 years, and a lot has changed here too since it started with Ergonomics
evaluations. It has become a central hub for UX in the Company and is offering UX
consulting services to the different business units.

If you look on our Siemens—internal understanding of UX—you see a huge
number of different roles. How does that influence our work? We no longer discuss
various disciplines like: Design Thinking vs. Requirements Engineering. We try to
avoid these terms. With a focus on the tasks of each team member and the role he/she
is playing in a specific project—we gain a better understanding of the interaction
with the customer and better support from the business. The roles enable us to match
better to standard IT approaches (like PO/TPO/DPO/etc.), and the roles give a clear
frame of responsibilities and more transparency for business partners. Another
relevant point is the situation, that a UX team member can own different roles—in
dependence on his expertise. The focus of the ongoing project defines his
primary role.

Talking about roles makes it easier to see oneself as a part of the UX team instead
of being an expert in the UX team. Growing together as a UX team means also to
learn from each other. In practice, we very often use the power of a 2-expertises-UX-
consulting. That means we try to integrate at least 2 UX roles into a project. That
gives the 2 UX Experts the possibility to work on the same project and exchange the
different expert views, plan together the usage of methods and discuss about pros/
cons and expected results. With this strategy, we strengthen the expertise of the
whole UX team, avoid discipline boundaries and deliver the best possible result for
the customer. These working procedures enable us to support the customer with a
long-term and high quality UX consulting expertise along the product definition and
product development process.

Over the last few years, this has opened the doors to very early integration into the
product definition phase, we are now a partner for the development phase and work

with and in development teams. Being a partner in the development process—and
not only a temporarily expert—that was the target we were aiming to achieve with
this approach.

RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One 113

Outlook

You might ask where we want to focus next. These days, it is more essential than
ever before, to communicate, to build expert communities inside the company and to
coordinate the own work with inner source models, internal exchange events and
support of ongoing learning like a weekly best-practice exchange. We believe these
kinds of activities allow us to increase the UXmaturity of our entire corporation. Our
UX department is realizing this in our UX CAMP. UX Camp is a creative space but
also a virtual UX community hub. We offer weekly Best-Practice-Exchange, free
“first-aid” support, regularly events for experts and management, and free usable
method sources for all business departments inside Siemens. This affects a growing
UX culture, growing UX maturity and over all the focus on customer needs and
values.

References

Alt-Simmons R (2015) Agile by design: an implementation guide to analytic lifecycle management.
SAS Institute Inc., Cary

Hansen MT (2010) IDEO CEO Tim Brown: T-shaped stars: the backbone of IDEO’s collaborative
culture. Chief executive. https://chiefexecutive.net/ideo-ceo-tim-brown-t-shaped-stars-the-back
bone-of-ideoaes-collaborative-culture__trashed. Accessed 10 Feb 2021)

Hassenzahl M (2008) User experience (UX) towards an experiential perspective on product
quality. In: Proceedings of the 20th conference on l'Interaction homme-machine

Knaster R, Leffingwell D (2020) SAFe 5.0 distilled: achieving business agility with the scaled agile
framework. Addison-Wesley

Lowdermilk T, Hammontree M (2020) The customer-driven culture: a Microsoft story: six proven
strategies to hack your culture and develop a learning-focused organization. O’Reilly Media,
Newton

Sy D (2007) Adapting usability investigations for agile user-centered design. J Usability Stud 2(3):
112–132

https://chiefexecutive.net/ideo-ceo-tim-brown-t-shaped-stars-the-backbone-of-ideoaes-collaborative-culture__trashed
https://chiefexecutive.net/ideo-ceo-tim-brown-t-shaped-stars-the-backbone-of-ideoaes-collaborative-culture__trashed

Understanding the Introduction of Design
Thinking as a Change Process

Martha Fritsch

Introduction

If the world we live in was previously complex and dynamic, it now becomes
“VUCA” (volatile, uncertain, complex, and ambiguous) (Eggers and Hollmann
2018). This means companies today are forced to think innovatively to reach their
customers. Developing innovative and customer-oriented products is the command-
ment of the hour and Design Thinking is an excellent way to ensure this. So why
does not every company use Design Thinking in software engineering to identify
requirements and then, at best, dip into agile software development? One reason is
the implementation of Design Thinking in companies and their corresponding
prevailing software development processes is not trivial. It is an intervention in an
established process, leading to profound changes in various areas. Preconditions
have to be established, processes have to be adapted and, in addition, a change in the
mindset of those involved in the development process is needed.

When Design Thinking is introduced into software development projects, this
often happens in an unstructured way and aims were formulated vaguely. It is
usually unclear where changes should be made within the software development
process. Often the introduction is not initiated by management, but by an employee
and tested on a project in an unsystematic way. Usually, such test projects fail and
the introduction of Design Thinking deemed failed.

However, in this contribution we will not discuss how Design Thinking is
integrated into software development, but rather address the integration process
itself. The present text is intended as a contribution to comprehend the introduction
of Design Thinking into software development as a change process, in order to be
able to meet the challenges that arise during implementation in a more targeted
manner and to provide a structure for the integration of Design Thinking into

M. Fritsch (*)
Hemsbach, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_7

115

https://doi.org/10.1007/978-3-030-90594-1_7#DOI

software development. To shed some light on these issues, the contribution begins
with a case study. The following chapter will explain the meaning of Change
Management. Furthermore, two models are explained, which illuminate the change
process from different angles. Afterwards, the topics of resistance and communica-
tion connected to change management are examined and finally a conclusion is
drawn.

116 M. Fritsch

Case Study

Company alpha is a medium-sized service company which, besides other things,
programs software on demand. In addition to classic software development
according to the waterfall model, some development teams work according to
SCRUM. This was seen as a first step to increase the company’s degree of innova-
tion and to bring more speed and flexibility into the development process. The main
challenge of company alpha is that neither the development time nor the quality of
the resulting software products can compete with those of small, flexible, and
innovative software companies.

As part of a company-wide change process, many new ways of working are tried
out and there is basically an open climate that encourages individual employees to go
new ways and try out new methods. In this context, one of the team leaders had the
idea of integrating Design Thinking into agile software development in order to keep
the products competitive and to focus more on customer benefits. So, a small group
of design thinkers emerges that feels capable of holding workshops and promoting
the topic. The idea of starting a Design Thinking Challenge for an outdated product
is approved by middle management, who agrees to release the participants from their
actual tasks for the duration of the two-day “test project” workshop. Highly moti-
vated, special rooms are rented, the participants are selected and invited, and the
workshop is held. The atmosphere during the workshop is good, and the participants
can easily get involved in the challenge and their tasks. The results of the Design
ThinkingWorkshop are excellent. A number of new, innovative requirements for the
aging product emerge, which have to be checked for feasibility and economic
viability in a follow-up step and communicated to the teams.

With this success behind them, Design Thinking is used in parallel for other
products with other challenges. Unfortunately, the workshops cannot follow up on
the success of the first workshop “Test Project.” New participants were invited for
the new challenges, but they already heard rumors about the first workshop. The
atmosphere was far from good, and the first participants started to check their e-mails
during the workshops or to extend the breaks significantly. It turns out that some
participants attend the workshop just out of curiosity to see if anything changes in
requirements engineering. Other voices are raised that the participation is only based
on getting 2 days of diversion from the daily work routine. Still others participate
only because they were sent by their supervisor. In many cases, the impression arises
that the participants are not at all aware of why they are taking part at all, what the

purpose of the event is, or what consequences arise from Design Thinking for the
individual.

Understanding the Introduction of Design Thinking as a Change Process 117

Within the management, voices are getting louder that question the sense of
Design Thinking. No more workshops are held. The results of the past workshops
are swept under the carpet and Design Thinking is no longer followed as a method.
The reasons given for the failure are that Design Thinking simply does not fit into
company alpha, that it is too time-consuming and expensive, and that the results are
too creative.

What happened between the two workshops? Why did the general mood change?
The rumor spreads among the staff that Design Thinking would disrupt the devel-
opment process and that work might have to be done more than once. It was also
speculated that the requirements that arose could not be implemented and were
therefore rather visionary. Not tangible, not concrete enough. Within the manage-
ment, there was a fear that the cost framework would be blown up by the multiple
iterations and that the results would not bring the expected ROI.

In this case, the introduction of Design Thinking was attempted bottom
up. Although the introduction was certainly motivated and also well-intentioned
by the core team, besides the weak technical introduction, it is mainly the lack of
change management that causes the introduction of Design Thinking to fail.

What Does Change Management Mean?

To comprehend the introduction of Design Thinking into software development as a
change process, it must first be clarified what change management exactly means.
Basically, it is not about defining the content of the goal, but rather about designing
the path from the previous way of collecting requirements to the new way of
collecting requirements by using Design Thinking and feeding these new require-
ments into the development process (Lauer 2019).

The implementation of Design Thinking in, e.g., Scrum is a change in process
organization. A software development process is changed, and measures are devel-
oped to create a new process. However, this point of view only refers to the technical
side of the change. Its interdisciplinary aspects are represented by the soft processes,
triggered in those involved, namely management and development team. For a
successful introduction of Design Thinking, it must not only be implemented in
terms of processes, i.e., in a technically adequate way, but also in a cross-disciplinary
way (Stolzenberg and Heberle 2013). Above all, the interdisciplinary aspects within
a change project decide on success or failure. Interdisciplinary aspects include
whether the new approach is accepted, whether its necessity is accepted, and whether
the willingness to actively participate in the Design Thinking process by the team is
given (ibid). Especially in well-rehearsed teams, resistance can arise on the interdis-
ciplinary side of the change. In the following, when speaking of change management
or change projects, it will, therefore, refer to the interdisciplinary part of the change.

118 M. Fritsch

3-Phase-Model According to Kurt Lewin

In the 1940s, Lewin (1963) already describes a 3-phase-model of organizational
development which can be applied to all change processes (Lewin 1963). He
assumes that there are two forces in the framework of change processes: on the
one hand, there are restraining forces that represent the fear of change, i.e. in the
present case the fear that Design Thinking will change the tried and tested form of
raising requirements. On the other hand, there are driving forces making a change
necessary, i.e. market pressure, pressure to innovate, or, as described above, altered
user requirements for the product. Lewin assumes that an imbalance between the two
forces must be created with the purpose of bringing about a change. Resistance must
be kept as low as possible in order to secure a successful change.

Lewin divides the change process into three parts. In the first phase (unfreezing), a
previously established initial state is thawed. In this phase, the change is usually
announced, and the software development team learns about the introduction of the
new way of requirements engineering. In the case of company alpha, mentioned in
the case study, this phase was underestimated. The communication of the possible
change was not initiated by the management, but at the employee level. Accordingly,
Design Thinking was given little weight from the very beginning, even though it was
explicitly welcomed by the management. In the second phase (moving) the desired
state is implemented, meaning that the technical connection between Design Think-
ing and the software development process is set up. Solutions are found to integrate
Design Thinking into software development (Baltes and Freyth 2017). As can be
seen in Fig. 1, a drop in performance is expected in this phase. Having said this, it is

Fig. 1 3-Phase-model according to Lewin (own presentation following Lauer (2019))

advisable to test and practice Design Thinking. It makes sense to carry out test
projects of less economic impact. In the case of company alpha, in fact a test project
with a low economic impact was chosen. But due to the missing management
communication, the signal was the wrong one. The impression was created that
with the unimportance of the product, the new way of requirements engineering was
also unimportant. As a result, the last of Lewin’s three phases never took place.

Understanding the Introduction of Design Thinking as a Change Process 119

In this third and last phase (freezing) the new way of gathering requirements is
consolidated and works—at best—on a higher level as before (ibid).

What is so simply described contains a very important idea for the introduction of
a new method to gather requirements. A change process has a beginning and an end.
Changes have to be prepared and after being made they have to be consolidated
(Kaiser and Schwertner 2020). This is the only way to create new routines among the
team. When change processes seem interminable, the persons involved quickly
become overtaxed and resistance develops which could be avoided at this point.
During the change process, the individuals are expected to do a lot. Especially very
structured employees, as they are prevalent within IT, often find it difficult to step
out of their comfort zone. A clear start and end point create certainty that the change
occurs within a manageable time frame. This also motivates those involved to
contribute a certain amount of additional work (ibid).

7-Phase-Model According to Streich

As mentioned at the beginning of this contribution, the interdisciplinary part of the
change process has a special significance. This primarily means to devote oneself to
the people involved in the change process. The successful introduction of Design
Thinking into software development depends largely on the support of the people
who are directly affected by the change. Every change, especially abrupt ones, leads
to reactions on the part of those affected. The 7-phase-model according to Streich
(2016) describes the emotional reactions of those involved in the change. Depending
on the temporal sequence, the perceived competence of each individual is altered
during the change process (Kreutzer 2018). The management task is to recognize
where individuals are on this way and to guide them to the next developmental stage
within the change process (Baltes and Freyth 2017).

Usually, every change passes the following seven phases: Shock, Negation,
Rational understanding, Acceptance, Exercising, Realization, and Integration. The
newer the change is, the stronger the resistance (negation) against the process itself
and the behavior to be modified will be. For example, the more an organizational
culture suppresses fault tolerance, the more the exercising phase is torpedoed
(Streich 2016). The seven phases described by Streich (2016) are explained in the
following and their interaction is illustrated in Fig. 2:

120 M. Fritsch

Fig. 2 Change curve (own presentation following Kreutzer (2018))

1. Shock: Especially in innovative change projects, an initial phase of shock char-
acterizes the emotional reaction of those involved. Depending on the extent or
characteristics of the shock, it can be smaller or larger.

2. Refusal and negation: The next phase is marked by fears, annoyance, and active
rejection of the change. For less active people, this may simply be a passive
attitude or frustration.

3. Rational understanding: At this point, most of those involved can already
understand the reasons for the change. This means that the change is tolerated
by now, but yet there is no deeper willingness for a personal change.

4. Emotional acceptance: The change is now accepted and approved. The people
involved are aware that they themselves must change something. In this phase,
fears may arise that the new task or role cannot be fulfilled well.

5. Exercising: The employees start to actively deal with the new requirements. They
begin to change their behavior, experience successes and setbacks. If the setbacks
or negative experiences are too great, there is a danger of falling back into
phase two.

6. Realization: In this phase the realization grows that the changes have indeed
positive aspects. The resulting positive basic attitude promotes further changes in
the behavior of those involved and the change becomes more and more
integrated.

7. Integration: Change has become the norm. The new routines are carried out as a
matter of course and integrated into everyday life.

Against the background of the phases of change shown in Fig. 2, it is substantial
to schedule enough time for the integration of Design Thinking into software
development; not only to test the method, but also to grant the participants enough
time to process the change emotionally. Only in this way, the new approach can be

consolidated and at some point, be considered as a normal way of requirement
incorporation.

Understanding the Introduction of Design Thinking as a Change Process 121

If we look at the model, we see that the employees of company alpha could not
leave phase two “refusal.” The negative attitude within the second workshop shows
this quite clearly. This negative attitude then spread beyond the second workshop to
others and influenced the entire introduction. For this reason, the topic of resistance
will be examined in more detail here.

Resistance

A critical phase is the second phase within Streich’s change curve, which is about
negation and resistance. According to a study by Capgemini Consulting (2012)
“realizing and meeting resistance” is the fourth important success factor to accom-
plish a change (Capgemini Consulting 2012). Particularly against the background
that resistance is not always directly recognizable as such, special attention must be
paid here. First of all, it must be stated that resistance per se is not bad. It is rather a
natural reaction to changing conditions (Dahms 2010). Quite the contrary, it should
be regarded critically if resistance is missing, since that might be a sign that the group
does not believe in the introduction of Design Thinking at all.

In order to meet resistance, the organization should be aware of the different
forms of resistance. According to Doppler and Lauterburg (2008), resistance can be
divided into four different manifestations (Doppler and Lauterburg 2008). As shown
in Fig. 3, the characteristics range from active counter-arguments to in-attention,
fatigue, or illness. The last mentioned are often difficult to identify as an expression
of resistance. It is, therefore, all the more important to be attentive to be able to meet
even quiet resistance. Quiet resistance seems uncritical at first glance. However, it is
more difficult to deal with it. To meet open protest is easier, because it is obviously
recognizable as such. Resistance often contains a hidden message and is not related
to change. The reasons for this are to be found in the emotional, interdisciplinary
area.

To look closely is important, because Design Thinking thrives on the people who
work with it. If these people refuse the implementation, it is hardly possible to
introduce it successfully. In many cases, ignoring resistance leads to blockages and
thus to failure, as in the example of company alpha.

Resistance can be subdivided according to whether the motives of those affected
are rather objective or based on power interests. Professional resistance is more
likely to be found at employee level. In concrete terms, concerns arising from a
professional point of view are mainly based on fear of being overwhelmed, criticism
of the working methods, or even the loss of a job due to the change. Resistance based
on power interests is more likely to be found in middle and top management. Fears
arising from power interests are particularly directed at the loss of influence or
reputation or the loss of resources such as personnel (Lauer 2019).

122 M. Fritsch

Fig. 3 Resistance (own presentation following Doppler and Lauterburg (2008))

In the case of company alpha, the resistance of the workshop participants is
shown subliminally by the extension of the breaks or the checking of e-mails. At this
point, it would have already been possible to intervene and seek the dialogue with
the persons concerned.

If resistance is ascertained, it should always be reacted to and intervened.
However, the timing of intervention plays an important role when it comes to
meeting resistance. According to Dahms (2010) two main mistakes are made
when dealing with resistance in groups:

• The leadership reacts too quickly to the resistance although the group would still
be able to work. This can disrupt group dynamics and the resistance to Design
Thinking increases.

• The leadership reacts too slowly, although the group has already lost its ability to
work. Due to the lack of intervention, there is a risk that the ability to work will
decrease further (Dahms 2010).

Resistance can be based on the fear of not being up to the new situation.
Employee training helps to build up necessary skills and simultaneously reduces
resistance. Knowing the background and theory of Design Thinking can help to
reduce resistance to its implementation. Thus, building competence not only pro-
motes development and gaining skills but also has a function in resistance
management.

Understanding the Introduction of Design Thinking as a Change Process 123

Resistance should be channeled, no matter if it arises within the group or if it is
based on power interests. It is absolutely necessary to give space to the employees to
express themselves and to reduce pressure. Communication is the instrument of
choice to involve employees in the change process, thus increasing the probability
that they will support the introduction of Design Thinking.

Communicate Change

Communication should not only be considered when resistance toward the planned
introduction of Design Thinking in software development arises. Change projects
question the current conditions and rearrange them. Accordingly, this creates uncer-
tainty among employees and questions arise (Stolzenberg and Heberle 2013). What
will the new process look like? Which colleagues are involved? What consequences
will this have for my everyday life? To answer these questions in a structured way, it
is often worthwhile to design a plan of communication measures along the intro-
duction, which is created initially and continuously adapted to new circumstances
(Chiess 2016). A communication plan (see Fig. 4), including the communication
needs, the time, the medium used, the aim and affected stakeholders, is a helpful tool
in change management.

Looking at communication according to the phases of change, the initial aim is to
clarify the vision and the background for the introduction of Design Thinking. In
addition, the effects on those affected, expected changes and difficulties have to be
described. During the implementation it is important to maintain the motivation of
those involved. Primarily, it is about communicating successes, i.e., to spread factual
information. But it is also about meeting resistance (Lauer 2019).

In the case of company alpha, there was already insufficient communication at the
beginning of the introduction. The people behind the introduction were not able to
explain Design Thinking in a way that it would be understood by the management.
The importance of the opportunity of Design Thinking was thus possibly misunder-
stood. This could be due to the fact that the management failed to communicate the
introduction widely. This would have given the workshops more weight and reduced
the character of a test balloon. As a result of the lack of communication, the fears of
the individual participants could not be removed.

Fig. 4 Communication plan (own presentation following Stolzenberg and Heberle (2013))

124 M. Fritsch

Change communication must not be seen as a one-way street (Kaiser and
Schwertner 2020). It is not about pure information, but about getting in contact
with those affected and seeking dialog. The appraisal interview can be used here to
provide a forum for the employee’s need for discussion and to specify expectations
(Dahms 2010). Usually, appraisal interviews are held once or twice a year to discuss
work and tasks or cooperation. But especially in the context of a change process, it is
worthwhile to conduct structured appraisal interviews to nip resistance in the bud.
These conversations could have been used in company alpha in several places and at
several hierarchical levels. Especially in the context that it is not a one-way com-
munication. Fears could have been addressed and resistance could have been
overcome. Also, after the discussion among the staff escalated and the rumor mill
about the new confusion in the development process started, more conversations
should have been held. Communication after the failure of the introduction basically
did not take place at all. Successful introduction of Design Thinking requires
openness and honesty, which can both be conveyed best through the spoken word
(Deutinger 2017). Of course there is a potpourri of usable media, but, however,
nothing is so enduring and explains better than personal communication.

Lauer (2019) sums up the importance of communication and sees it as a kind of
catalyst for change management. Communication creates transparency, weakens
resistance, creates motivation, and promotes social integration (Lauer 2019).

Conclusion

To comprehend the introduction of Design Thinking into software development as a
change project can contribute significantly to success. This approach shows the
necessary seriousness in dealing with the process change and signals this to the
participants. The three phases of the change process according to Lewin show that
performance varies within the change process, which is perfectly normal. The seven
phases according to Streich (2016) shed light on the emotional development of the
affected people the change managers have to deal with.

Change takes time. Especially when Design Thinking has failed in a test project,
one should not give up immediately but search for reasons. Hidden resistance within
the team might lead to failure. Employees need time to internalize changes. Consid-
ering the needs of people in change processes is very important. Resistance can be
countered by clear, transparent, and above all understandable communication along
the process.

The reason for a failure of introduction can be a mistake within the new process.
And this is exactly where the big advantage of a planned introduction lies—the
procedure is transparent and can be both, checked and improved. A review and
improvement work if there is a grown error culture in the company, allowing to test
and, if necessary, adjust.

It can also be helpful to engage an external coach. When you think of a Design
Thinking Coach, the first thing coming to mind is a Team Coach accompanying the

design team. Here, however, a coach is someone who accompanies the change
process itself, from the mediation of the various principles, ways of thinking and
working, and methods to the introduction process as such (Tschepe 2017).

Understanding the Introduction of Design Thinking as a Change Process 125

It is important not to underestimate the introduction of Design Thinking. In many
cases, the introduction of Design Thinking fails without finding the actual cause.
This is often a consequence of the false assumption that the process change is too
small to be granted sufficient attention. As a result, the reason for failure is sought
within the Design Thinking method itself and is attributed to the flawed nature of the
method. However, this is often a misinterpretation.

Of course, the failure of the introduction in the case study cannot be attributed
exclusively to a failure of change management, but if more attention had been paid to
the process itself and the interdisciplinary aspects, the introduction would have been
much more promising.

References

Baltes G, Freyth A (2017) Die radikal neuen Anforderungen unserer Zeit und die Konsequenzen für
Veränderungsarbeit. In: Baltes G, Freyth A (eds) Veränderungsintelligenz. Agiler, innovativer,
unternehmerischer den Wandel unserer Zeit meistern. Springer Fachmedien Wiesbaden, Wies-
baden, pp 1–77

Capgemini Consulting (2012) Digitale revolution. Ist Change Management mutig genug für die
Zukunft? Available at: https://www.capgemini.com/consulting-de/wp-content/uploads/
sites/32/2017/08/change_management_studie_2012_0.pdf. Accessed 8 Jul 2021

Chiess S (2016) Change Management bei der Einführung neuer IT- Technologien. Mitarbeiter ins
Boot holen – mit angewandter Psychologie. Springer Fachmedien Wiesbaden, Wiesbaden

Dahms M (2010) Motivieren, Delegieren, Kritisieren. Erfolgsfaktoren der Führungskraft, 2nd edn.
Springer Fachmedien Wiesbaden, Wiesbaden

Deutinger G (2017) Kommunikation im Change. Erfolgreich kommunizieren in Veränderungs-
prozessen, 2nd edn. Springer Fachmedien Wiesbaden, Wiesbaden

Doppler K, Lauterburg C (2008) Change Management. Den Unternehmenswandel gestalten, 12th
edn. Campus, Frankfurt

Eggers B, Hollmann S (2018) Digital Leadership – Anforderungen, Aufgaben und Skills von
Führungskräften in der “Arbeitswelt 4.000 In: Keuper F et al (eds) Disruption und transformation
management digital leadership – Digitales mindset – Digitale Strategie. Springer Fachmedien
Wiesbaden, Wiesbaden

Kaiser M, Schwertner N (2020) Change Management in der Kommunikationsbranche.
Veränderungsprozesse in Medienunternehmen und in der Unternehmenskommunikation.
Springer Fachmedien Wiesbaden, Wiesbaden

Kreutzer R (2018) Führungs- und Organisationskonzepte im digitalen Zeitalter kompakt. Agilität
erreichen, Prozesse beschleunigen, Change-Management implementieren. Springer Fachmedien
Wiesbaden, Wiesbaden

Lauer T (2019) Change Management. Grundlagen und Erfolgsfaktoren, 3rd edn. Springer
Fachmedien Wiesbaden, Wiesbaden

https://www.capgemini.com/consulting-de/wp-content/uploads/sites/32/2017/08/change_management_studie_2012_0.pdf
https://www.capgemini.com/consulting-de/wp-content/uploads/sites/32/2017/08/change_management_studie_2012_0.pdf

126 M. Fritsch

Lewin K (1963) Geplante Veränderungen als Dreischritt: “Auflockern, Hinüberleiten und
Verfestigen eines Gruppenstandards”: Gleichgewichte und Veränderungen in der
Gruppendynamik. In: Cartwright D (ed) Feldtheorie in den Sozialwissenschaften. Ausgewählte
theoretische Schriften. Hans Huber, Bern

Stolzenberg K, Heberle K (2013) Change management. Springer, Berlin
Streich R (2016) Fit for leadership. Führungserfolg durch Führungspersönlichkeit, 2nd edn.

Springer Fachmedien Wiesbaden, Wiesbaden
Tschepe S (2017) Was sind die wichtigsten Eigenschaften und Fähigkeiten von Design Thinking-

Coaches? Erwachsenenpädagogischer Report. Humboldt-Universität zu Berlin

From Project Plans and Backlogs
to Strategic Roadmaps: The Evolution
Toward Value-Oriented Thinking
in Requirements Engineering

Markus Guentert, Holger Rhinow, and Christoph Meinel

Design Thinking Is Desirability-Heavy While Requirements
Engineering Is Feasibility-Heavy

The design agency IDEO popularized the notion of innovation as an intersection of
three different qualities that need to be achieved: (1) desirability from a user’s point
of view, (2) viability from a business point of view, and (3) feasibility from a
technological point of view. Agencies and education organizations such as IDEO
and the Hasso Plattner Institute argue that Design Thinking addresses all three
perspectives and therefore leads to innovative outcomes (Kelley and Kelley 2013).

Following this thought, the most promising ideas are the ones that solve a real
customer problem, generate business value, and are technologically (and legally)
manageable by the company. Especially agile approaches such as Design Thinking,
lean startup, and Scrum propagate the idea of multidisciplinary teams that unite
different skills to cover all three perspectives. However, this notion does not make
explicit how these perspectives come into play during different stages of the
development process. Are all three perspectives relevant in all phases or do they
alternate? Can one perspective be conclusively defined at some point or do all
perspectives represent recurring elements during the entire development process?

In our research on Design Thinking in practice (Schmiedgen et al.
our collaboration with industry partners, we have observed that Design Thinking is
mainly applied as a structural approach at the fuzzy front end of the innovation
process. With Design Thinking, dedicated teams aim to explore problems of poten-
tial customers in situations that are of strategic relevance for the respective company.
Design Thinking can therefore be understood as an approach to bring “outside”

2015) and in

M. Guentert · H. Rhinow · C. Meinel (*)
Hasso-Plattner-Institut für Digital Engineering gGmbH, Potsdam, Germany
e-mail: christoph.meinel@hpi.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_8

127

mailto:christoph.meinel@hpi.de
https://doi.org/10.1007/978-3-030-90594-1_8#DOI

perspectives into the company (Brown 2008) in contrast to developing ideas only
within the company itself. We refer to this as an “outside-in” approach.

128 M. Guentert et al.

Potential customers are hence interviewed or observed and studied in their
underlying needs. Design Thinking encourages framing interesting observations as
“problems” potentially worth solving. This process of explicating real-world prob-
lems constitutes a common starting point to find solutions. Based on the gathered
insights, teams would then iteractively develop ideas, turn them into prototypes, and
test their level of desirability with respect to the problems and needs of the targeted
customers. After a few iterations, a team ideally arrives at a fitting combination of
problem and solution that turns out to be desirable for the customer. Teams often
refer to this milestone as “problem-solution-fit.” The fit represents the team’s
knowledge, embodied in prototypes, and outlines a vision for the solution. Although
this vision generally defines a strategic direction, it usually does not at this point
describe a tangible solution design (which is concrete enough to be implemented).
The creation of one would then follow in a subsequent stage of the development
process, e.g., as part of requirements engineering.

Since the problem-solution-fit is a necessary interim result, we can argue that the
desirability perspective is dominant during the Design Thinking stage. This seems
reasonable as every company should aim to create and deliver solutions that address
valid problems. Although this sounds very plausible in theory, many companies still
fall through the cracks in this regard. It is reported that 7 out of 10 new products fail
to deliver on their expectations, especially due to a lack of desirability (Green 2014).
In conclusion, desirability is necessary—albeit not sufficient—for developing inno-
vative products or services, so investing most of time and energy toward the
desirability perspective in the beginning is valuable. We hence consider it good
practice if a Design Thinking incarnation is desirability-heavy.

Whereas the outside-in nature of a Design Thinking stage pushes teams to
regularly engage with customers, the subsequent requirements engineering stage
does not necessarily foster this sort of engagement anymore. Customer interaction in
the form of interviews or user tests may still happen “naturally” if this is a core belief
of the company and also institutionalized well. For many companies, however, this
may not yet be the case. In our collaboration with industry partners, we have
observed that many initiatives that start with a commendable Design Thinking
stage then turn into “submarine” implementation projects thereafter. This metaphor
is derived from the idea that the company does not seek any sort of feedback from the
outside anymore and is “diving under water”—with the risk of going in a subpar
direction.

The nature of an initiative then shifts from an outside-in desirability-heavy to an
inside-out feasibility-heavy approach as it enters the requirements engineering stage
(see Fig. 1). Inside-out describes the dynamics in discussions that take place inside
the company to determine the resulting product or service—instead of further
focusing on a real-world problem of the customer. These discussions may evolve
around feasibility questions such as compliance, legal implications, and security
concerns or simply around subjective internal stakeholders’ opinions. The same idea
that was regarded as an opportunity for success from a desirability perspective, may

Fig. 1 Value perspectives on Design Thinking and requirements engineering

From Project Plans and Backlogs to Strategic Roadmaps: The Evolution. . . 129

now be regarded as a risk of failure from a feasibility perspective. The feasibility
perspective is certainly necessary to ground new ideas in the direction of a reality
check. However, if a company operates in a one-sided feasibility-heavy manner, it
may end up with undesirable outcomes. If, for example, a compromise is made in
order to minimize development risks, this may result in a decreasing desirability of
the solution. A critical decision for a compromise will not be recognized as such if
customers are no longer involved in the development process.

While we endorse the desirability-heaviness of Design Thinking, we would like
to point out the risk of a pontential one-sided feasibility heaviness in requirements
engineering and subsequent stages of the development process. In this contribution,
we aim to explain how the phenomenon of feasibility heaviness is caused by typical
communication artifacts most often encountered in the industry, namely project
plans and backlogs, and how this issue can be circumvented through strategic
roadmaps. A well-designed strategic roadmap facilitates an outside-in perspective
throughout the entire development process.

Project Plans Resist Adaptation to New Insights and Trigger
the Wrong Conversations

Project plans typically come in the form of Gantt charts (Sutherland 2014). They
layout planned tasks against an upcoming timeline, each activity being defined by its
anticipated start and end date. Such project plans are intuitively understandable and
are an often-encountered corporate practice. However, several concerns remain
whether project plans are a sufficient means to deal with the complexity of
implementing innovative products or services.

130 M. Guentert et al.

1. Project plans primarily speak from the perspective of feasibility. Tasks are often
framed based on what a team “can do,” e.g., based on prior experience or
reference processes in the organization. This, however, may be very different
from what actually needs to be done in order to deliver value to customers (and
therefore successful products or services). Task orientation does not necessarily
deliver on goal orientation. Or, to put it differently, tasks in a project plan focus
on outputs instead of desired outcomes.

2. Project plans primarily trigger conversations on feasibility aspects among stake-
holders who raise questions like “Can we really complete this task in this time
window?” or “Who is responsible to deliver this task?” These are relevant
implementation details; however, they may miss the bigger picture. Discussing
implementation details appears to be a natural reaction when confronted with a
project plan, whereas discussing whether these tasks are the right ones is not.
Project plans often guide conversations on how to get things done (the “how”) at
the cost of understanding what needs to be done (the “what”). The success of the
result in the end is, however, determined by the former rather than the latter.

3. Project plans do not invite a change of scope. A continuous adaptation to new
insights is considered healthy in nearly every innovation process. It does not
make sense to continue executing a plan which is already obsolete. Project plans,
however, in their very nature suggest that the scope is fixed. Once a project plan
has been communicated, it defines expectations on outputs for everyone involved.
Even worse, project responsible people, e.g., project managers, are usually
incentivized on delivering the project exactly as originally planned. Therefore,
they are intrinsically not welcoming of change, even going so far as to resist it.

4. Finally, each innovative product or service should be designed around an overall
life cycle (Moore 2014) rather than as a traditional project-like one-time effort
with a clearly defined end date. Although the “main” development is considered
done as soon as the product or service is initially shipped, the product or service
itself should not be considered finished yet. On the contrary, after being intro-
duced to the market, it needs to be refined according to market feedback and
further enhanced to deliver new value to customers. Key resources, i.e., devel-
opers, designers, and product managers, are hence still required after the initial
release and should not be regarded as freed up for new projects.

Backlogs Foster Reactive Bottom-Up Thinking Instead
of Top-Down Value Orientation

A backlog can be considered an evolution to a traditional project plan which
encourages change by design. The concept of a backlog became a prominent tool
in agile software development processes such as Scrum (Sutherland 2014). In a
typical backlog, backlog items—each usually corresponds to a product feature or
product quality—are prioritized against each other in a dynamic list. This list is
meant to be constantly re-prioritized based on new insights which are collected

during the development process (e.g., as a result from user research or market
feedback). Dedicated rituals, i.e., backlog refinements, trigger such a
re-prioritization explicitly. Therefore, the scope which is managed by a backlog is
not fixed. A Scrum team, for example, is by definition asked to regularly “check in”
to see if what they are doing “is heading in the right direction, and if it’s actually
what people want” (Sutherland 2014, p. 9).

From Project Plans and Backlogs to Strategic Roadmaps: The Evolution. . . 131

Furthermore, framing work packages as product features or product qualities
supports thinking in results instead of tasks to be executed. This is in line with
keeping an eye on the “what” instead of getting lost in the “how”which is a common
critic towards project plans. If backlog items are additionally framed as user stories
(which is optional, but an often-to-be-found combination), the desirability perspec-
tive is manifested in the process as well. User stories describe a requirement from the
perspective of what a user wants to achieve (the “what”) and the value it creates for
them (the “why”). Whereas we argued that project plans mostly focus on feasibility,
we can hence argue that backlogs focus on desirability. Even though backlogs mark
an important improvement compared to project plans, they still come with four
shortcomings:

1. Although backlogs are designed for prioritization, the granularity of individual
backlog items tends to be very small so that they can be implemented within the
capacity constraints of a single sprint (usually 2–3 weeks). However, if the
product or service to be implemented is of a rather high complexity, this will
result in numerous backlog items to be prioritized against one another. This
circumstance, in turn, does not practically enable prioritization on a strategic
value-oriented level, since a large number of items become cognitively
unmanageable in their entirety. Speaking metaphorically, it is difficult to see
the forest when standing in front of too many trees. Critical prioritization deci-
sions should take place at a higher level of granularity, which many backlogs fail
to reveal.

2. We often observe that backlogs foster reactive behavior when confronted with
feedback. Once a new insight is gathered (e.g., through stakeholder feedback or
user research), a corresponding backlog item is automatically pushed to the top of
the backlog. The newness of an insight then subliminally triggers a perceived
urgency for implementation, although this might be a subpar prioritization deci-
sion with regards to the whole. This “anti-pattern” requires an experienced
product owner (or any other role that is responsible for prioritizing the backlog)
and a holistic overview about the rest of the backlog in order to be circumvented,
which may not always be the case.

3. Backlogs are steered from sprint to sprint (Sutherland 2014) and therefore
encourage short-term rather than mid-term thinking. Backlogs let a team “drive
by sight” instead of proactively driving strategic value goals. Whereas the next
2–5 sprints are usually planned to a certain extent, everything that follows
thereafter remains nearly unknown or unmanaged. Requirements are collected
“along the way.” This mode of operations may be regarded as a bottom-up
approach with only a vague overall direction. Again, prioritization is somewhat

132 M. Guentert et al.

dysfunctional if prioritization decisions only happen on the level of immediacy,
but not in view of the whole strategy.

4. The bottom-up perspective of a backlog may result in a subpar phenomenon we
refer to as the “watering can effect.” Ideally, a product or service is grown along
dedicated strategic goals, e.g., in the form of individual user themes which are
rolled out consecutively. Each user theme represents a cohesive set of features
that delivers recognizable additional customer value toward an overarching
customer goal. When the customer uses the product or service again, they shall
notice a “wow, this is new” effect. In this way, the marketing around the product
or service can tell stories (e.g., through blog posts or email campaigns) and target
new customers or re-engage with existing customers. The watering can affect,
however, describes the opposite. Instead of focusing on one plant that is signif-
icantly grown with a large amount of water, all the plants in the garden are given
water but each receives only very little. The result looks marginally changed and
the product or service then tells fewer stories. Over a longer period of time,
changes would still become visible, however, this approach unnecessarily con-
strains the marketing of the product or service.

Strategic Roadmaps Foster Value-Oriented Thinking
Throughout the Development Process

Whereas we considered the idea of a backlog as an evolution to a project plan, we
may further consider a strategic roadmap as an evolution to a backlog. We discussed
that a backlog does not usually scale to products or services of higher complexity
since they would become cognitively unmanageable. In our current world, however,
products and services steadily grow in their complexity as, for example, compared to
the very first smartphone apps. This, in turn, demands new tools for practitioners.

However, a roadmap is not necessarily to be seen as a complete replacement for a
backlog. It is also reasonable and pragmatic to use the two in conjunction with each
other, especially on different levels of granularity and for different purposes. The
roadmap then dedicatedly serves the purpose of strategic prioritization while the
backlog is used for steering work packages on the operational level (see Fig. 2).

Our notion of a well-designed strategic roadmap comes along with distinctive
features, which are described in more detail below.

Communication and Alignment Between Stakeholders

The roadmap is meant as a communication artifact to inform and align stakeholders
on slicing the individual delivery increments of the product or service. A delivery
increment is a set of features that will be released together on a defined milestone
(see Fig. 3). This set of features ideally delivers recognizable value to its customers

Fig. 2 Comparison between project plan, backlog, and strategic roadmap

Fig. 3 Structure of a strategic roadmap

(w.r.t. desirability) or the company itself (w.r.t. viability) to avoid the watering can
effect described above. Therefore, the underlying structure of the roadmap is a time
grid, which corresponds to the release cycle of the product or service. This may, for
example, be a quarterly, monthly, or bi-weekly grid used to define what scope will be
delivered in which release. Whereas backlogs usually plan ahead for just the next
2–5 sprints (2–3 weeks each, that is, no longer than 15 weeks), roadmaps typically
cover the next 12 to 24 months.

From Project Plans and Backlogs to Strategic Roadmaps: The Evolution. . . 133

134 M. Guentert et al.

Holistic Overview for Strategic Prioritization

Seeing the value delivered within the next 12–24 months at a glance reveals a
holistic perspective (compared to the bottom-up view backlogs provide) on the
value strategy of the product or service. In this top-down view, the causal structure
and inter-dependencies of features as well as the overall strategic direction become
visible and guide the discussions.

This holistic perspective is a key enabler for strategic prioritization. Not only does
it encourage value-oriented thinking, but it also allows for prioritizing individual
value items against one another (see Fig. 3). In contrast to a backlog, which typically
consists of many small items, a roadmap fosters discussions on a higher granularity
with more focus on impact (“what is important”) rather than immediacy (“what do
we do next”).

Prioritization Through Meaningful Levels of Granularity

In order to hit the “right” granularity (i.e., level of abstraction) for value items on the
roadmap, we generally propose two guiding principles. The first principle is that
each value item on the roadmap is framed as a macroscopic customer experience (see
Fig. 3)—corresponding to the concept of an EPIC in relation to user stories. The
second is that the entire roadmap should still be printable (and readable) on a single-
page sheet. These two principles allow for a managed cognitive load, but also a
meaningful discussion. If the granularity gets significantly smaller, the roadmap
loses the strategic perspective it provides for the sake of operational details. In our
experience, this is less desirable, especially since the roadmap serves the perspective
of seeing “the forest through the trees.”

Changes and Implications

A roadmap, similar to a backlog, encourages change based on newly gained insights.
In contrast to a project plan, a roadmap is not a fixed plan, but rather a snapshot of the
current discussions around the product or service. Since value items are ideally
framed on a similar granularity, they become interchangeable in their priority,
respectively implementation order (at least unless causal dependencies prevent
this). Discussing a re-prioritization along the roadmap allows understanding its
implications in the context of: “If we shift feature A to the next release for the
sake of feature B, we will delay our expected revenue growth by 3 months. Can we
afford to do this?” If a valuable item is prioritized higher, another value item needs to
be prioritized lower to compensate for the effect, assuming that the implementation
capacity remains the same. This way, different stakeholder interests can be made

explicit and negotiated on a tangible discussion ground while the overall integrity of
the product or service remains in sight.

From Project Plans and Backlogs to Strategic Roadmaps: The Evolution. . . 135

Based on our industry observations, we do not conclude that better tools neces-
sarily produce better results. Framing roadmap items that actually deliver value and
hitting the right granularity are tasks that cannot be taken over by tools. These still
heavily depend on the practice itself. We ourselves often use a custom-designed
sheet and bring a printed copy for every stakeholder at the meeting. That way,
everyone involved can pick up a pencil and suggest alterations to it, rather than
getting lost in an expert tool that only a few people involved can practically use.

Conclusion

The notion of value-oriented thinking is already deeply rooted within many startups
since the need to deliver value is tightly bound to the survival of their existence as a
company. A startup simply cannot afford to not deliver value to their customers.
Hence, keeping a close eye on the strategic prioritization of value to be delivered is
vital. It explains, why startups use strategic roadmaps for the purpose of facilitating
discussions both internally and with external stakeholders (e.g., investors). In con-
clusion, strategic roadmaps serve as an essential means to minimize existential risks
for startups.

In the corporate world, however, we have encountered far fewer strategic
roadmaps in practice so far. This may be caused by (1) the fact that project plans
and backlogs are already manifested as common practice there, (2) this practice is
not actively reflected upon or challenged, and (3) that a strict value-oriented thinking
might not be as existential for the entire corporation as it is for a startup. Corpora-
tions may potentially be more likely to compromise on the value perspective in order
to better manage feasibility risks. Nevertheless, we still consider it beneficial to
utilize strategic roadmaps in the context of a product or service innovation. The
value discussion then becomes explicit, as in Design Thinking, and an outside-in
mindset can be maintained more easily throughout the requirements engineering and
subsequent stages in the development phases as well.

While we have primarily discussed the limits of project plans and backlogs and
how strategic roadmaps can improve strategic prioritization, we do not wish to
downplay the benefits of project plans or backlogs in general. On the contrary,
these two artifacts also have their fitting place, and each serves a meaningful
purpose. At the same time, we do not consider them a sufficient means to facilitate
an ongoing value-oriented strategic prioritization in the context of developing
product or service innovations.

Feel free to contact the authors for a template on strategic roadmaps.

136 M. Guentert et al.

References

Brown T (2008) Design thinking. Harv Bus Rev 86:84–92
Green C (2014) The silent killer of new products: lazy pricing. Harv Bus Rev. https://hbr.

org/2014/09/the-silent-killer-of-new-products-lazy-pricing. Accessed 19 July 2021
Kelley T, Kelley D (2013) Creative confidence. Unleashing the creative potential within us. Crown

Business, New York
Moore GA (2014) Crossing the chasm: marketing and selling technology products to mainstream

customers. Harper Business, New York
Schmiedgen J, Rhinow H, Köppen E, Meinel C (2015) Parts without a whole? The current state of

design thinking practice in organizations. Universitätsverlag, Potsdam
Sutherland J (2014) Scrum: the art of doing twice the work in half the time. Penguin LCC US

https://hbr.org/2014/09/the-silent-killer-of-new-products-lazy-pricing
https://hbr.org/2014/09/the-silent-killer-of-new-products-lazy-pricing

Managing Tensions in Research Consortia
with Design Thinking Artifacts

Dario Staehelin, Mateusz Dolata, and Gerhard Schwabe

Introduction

Innovation projects between industry and universities are popular. The industry
partners receive access to the most recent scholarship, while the researchers benefit
from easier access to the field, supporting the external validity and the relevance of
their research. Additionally, the resulting third-party funds allow more researchers to
pursue their careers in academia. The Information Systems (IS) discipline values
collaborations oriented at the development and evaluation of new systems or tech-
nologies to support the practitioners. However, innovation projects like these are
inevitably related to tensions resulting from differences in culture and incentive
systems between academia and industry, as well as among multiple industrial or
research partners.

Whereas some level of tension was shown to spark creativity (Badke-Schaub
et al. 2010), too much tension might be detrimental (Dolata and Schwabe 2014). It
might generate interpersonal and interorganizational conflicts and turn a visionary
project into a search for the least common denominator. Researchers claim that
Design Thinking maintains a healthy level of tension in creative teams by offering
adequate processes, techniques, as well as a general user-centered mindset (Leifer
and Steinert 2014). The core of Design Thinking is the iterative development and
testing of prototypes with relevant stakeholders. Apart from prototypes, Design
Thinking projects frequently create further artifacts that are not necessarily devel-
oped for evaluation (e.g., meeting reports). Previous research on Design Thinking in
engineering education confirms the role of Design Thinking artifacts for the main-
tenance of shared models among engineering students (Edelman et al. 2009). There
is evidence confirming the role of Design Thinking artifacts in identifying and

D. Staehelin (*) · M. Dolata · G. Schwabe
Department of Informatics, University of Zurich, Zürich, Switzerland
e-mail: staehelin@ifi.uzh.ch; dolata@ifi.uzh.ch; schwabe@ifi.uzh.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_9

137

mailto:staehelin@ifi.uzh.ch
mailto:dolata@ifi.uzh.ch
mailto:schwabe@ifi.uzh.ch
https://doi.org/10.1007/978-3-030-90594-1_9#DOI

maintaining the compatibility of software requirements in Design Thinking-based
consulting (Hehn et al. 2020). However, little attention was paid to innovation
projects between academia and industry (Dolata and Schwabe 2016) and, specifi-
cally, to the role of artifacts in such innovation projects. Different than in student or
consulting projects, various visions, objectives, and work cultures in
interorganizational and cross-disciplinary projects might generate more intense
tensions. It remains unclear if, to what extent, and how Design Thinking artifacts
can contribute towards tension management and effective collaboration in those
projects as well. Thus, in this contribution, we explore how Design Thinking
artifacts can be used to manage tensions in research consortia.

138 D. Staehelin et al.

This contribution is a single-case study zooming in on an ongoing project,
“SpeechAdvice.” Four industry and two academic partners formed a research con-
sortium. The project was established to pursue a vision of a conversational agent for
face-to-face financial counseling. The contribution engages in an analysis of the
six-month exploration part of the project in which the abstract vision should have
been transferred in a set of functional and non-functional requirements to be used in
the subsequent development-evaluation iterations. The reflection shows how various
artifacts developed by the project participants transfer meanings across boundaries,
embody knowledge, and facilitate interaction and direct manipulation. The artifacts
and interaction with the artifacts were shown to support the identification, explica-
tion, and maintenance of the tensions between the project participants. While our
case study focused on a research consortium, we assume the findings to be transfer-
able to interdisciplinary and interorganizational projects without participation from
research institutions.

Related Work

The term Design Thinking describes a family of approaches that propose the use of
product designers’ practices to innovation. Design Thinking originates from acade-
mia, where it was used for teaching mechanical engineering (Carleton and Leifer
2009; Johansson-Sköldberg et al. 2013). Approaches inspired by this paradigm
found their way to industry and were applied to solve practical problems
(Johansson-Sköldberg et al. 2013; Brown 2008). Successes of consulting firms
like IDEO popularized this methodology. Design Thinking was applied in software
development (Lindberg et al. 2011, 2012), service innovation (Ojasalo et al. 2015),
and business process innovation (Luebbe and Weske 2012). Despite the academic
origin of Design Thinking, reports on the application of Design Thinking in collab-
oration between university researchers and industrial stakeholders remain very rare
(Dolata and Schwabe 2016) and mostly attend to situations where Design Thinking
researchers help establish a Design Thinking-oriented innovation culture in a com-
pany (Vetterli et al. 2012). The rare reports on the use of Design Thinking in design-
based research might be related to Design Thinking’s focus on innovation rather than
scientific rigor, unlike other acknowledged paradigms, e.g., design science research

(Hevner et al. 2004). However, some accounts suggesting that Design Thinking is
compatible with design-oriented research and, thus, suits the collaboration between
academia and industry who join forces in an innovation project (Dolata and Schwabe
2016). We speculate that Design Thinking can be beneficial for such collaborations
because of its explicit focus on maintaining contradictions between various ideas or
opinions and its orientation towards artifacts as means of collaboration.

Managing Tensions in Research Consortia with Design Thinking Artifacts 139

Research and innovation processes both involve certain levels of contradiction.
Both need to handle contradictory evidence, differing preferences, and conflicting
lines of reasoning. Of course, they differ in how they value rigor, relevance, and
usefulness of insights and developed diverse ways to maintain tensions that emerge
along the process. In a collaboration between research-oriented institutions and
innovation-oriented industries, the emergence of tensions is natural (Nunamaker
et al. 2015). Typically, tensions are conflicts of opposing mostly independent
interests. Organizational literature regards tensions as conflicting demands that can
only be eliminated through tradeoffs (Smith et al. 2017). With this increased
complexity, organizational research began viewing tensions as interdependent
demands enabling instead of hindering change (Poole and Van de Ven 1989). This
emerging view is that tensions do not necessarily need to be remediated or resolved
but rather that they need to be managed appropriately. Design Thinking provides a
variety of methods to use tensions to spark creativity (Dolata and Schwabe 2016).
However, it remains underexplored how and to what extent those methods are
sufficient to manage tensions in projects between researchers and industry
stakeholders.

Among others, Design Thinking suggests the use of prototypes and other tangible
artifacts as the primary objects of all activities. This aligns with materialistic, socio-
material, and ecological perspectives on work and human activity (Gibson 1979a, b;
Orlikowski 2010). Accordingly, objects co-define the activity at hand by providing
its direction, motivation, and meaning (Leontyev 2009; Karanasios and Allen 2018).
The role of artifacts for innovation and inventions has been widely discussed
concerning capturing, transfer, generation, and broadcasting of knowledge in
intraorganizational innovation (Ciriello et al. 2014) and cross-disciplinary collabo-
ration settings (Nicolini et al. 2012). The research has identified four categories of
artifacts: activity objects, boundary objects, epistemic objects, and infrastructure
objects. Activity objects are artifacts that motivate collaboration and manipulation
among involved individuals (Nicolini et al. 2012). Boundary objects facilitate
translation and transformation across disciplinary or organizational contexts, thus
acting as enablers of collaboration across boundaries (Ciriello et al. 2014; Nicolini
et al. 2012). Epistemic objects raise curiosity about the known and unknown, thus
acquiring emotional, social, or intellectual engagement from its creators (Ciriello
et al. 2014; Nicolini et al. 2012). Finally, infrastructure objects are artifacts that
enable and support interaction between individuals (Nicolini et al. 2012). Studies
using this classification could show that, based on their affordances, artifacts in
innovation projects belong to a specific category.

However, this classification emerged as an outcome of reflection upon research
and engineering projects and not in relation to Design Thinking. Whereas many

innovation projects generate multiple artifacts in the process of creating and man-
aging knowledge and insight, Design Thinking demands the production of artifacts
as a way to create something new in the form of prototypes (Uebernickel and
Brenner 2016). To make it more explicit: whereas in most innovation projects,
artifacts emerge along the process, Design Thinking defines its milestones through
artifacts to be produced. Those artifacts should be subsequently used for the collec-
tion of feedback and manipulation. This suggests that the Design Thinking artifacts
would primarily act as activity objects. But is it that simple? Previous research shows
that engineering student teams use prototypes and other artifacts to align their shared
mental models (Leifer and Steinert 2011). By-products in student teams can even
deal as measurement instruments for progress and performance in Design Thinking
(Dolata et al. 2017). Similarly, Design Thinking artifacts support the translation of
field insights obtained from practitioners into requirements useful for developers
(Hehn et al. 2020). This suggests that Design Thinking artifacts can take on various
roles; however a systematic observation of how Design Thinking artifacts fulfill
those roles is missing.

140 D. Staehelin et al.

Case Description

Financial advice is becoming increasingly complex. Client advisors are required to
provide exceptional customer services, recommend the best products, consider
potential risks, identify cross-selling opportunities, and keep regulatory-relevant
protocols, all while developing and maintaining a sustainable relationship with the
client (Dolata and Schwabe 2017a, b). All these tasks increase the cognitive load on
the advisor, which may decrease the quality of the collaboration and communication
between the client and advisor (Schwabe and Nussbaumer 2009; Kilic et al. 2017).

Artificial intelligence (AI) bears the potential to support advisory sessions by
performing tasks for both the advisor and the client. The client advisor can focus on
his core competency—building relationships with her customers—by seamlessly
integrating a digital assistant that carries out time-consuming tasks in the back-
ground (e.g., looking up a stock chart or filling in a legal document) (Dolata et al.
2019). Optimally, such a digital assistant would not only be operated by command
and control and provide information on simple queries—like existing digital assis-
tants as Siri—but also be able to interact autonomously with the advisor and the
client and handle more complex tasks like risk evaluations of investment decisions.

Funded by InnoSuisse—Swiss Innovation Agency, a project consortium set out
to explore this vision of AI-enhanced bank advice in the project “SpeechAdvice.”
The following six partners belong to this consortium:

• The Swiss cantonal bank “SwissCantonal” and the Swiss regional bank
“SwissRegional” are interested in supporting advisory sessions with the latest
technology to create an excellent experience for the client and reduce the cogni-
tive load on their client advisors. Within the project, both banks are responsible to

Managing Tensions in Research Consortia with Design Thinking Artifacts 141

provide the project team with access to the field (i.e., client advisors and clients)
and guaranteeing that the developed solution aligns with the long-term strategies
of the banks. They hope that the integration of AI in financial advice increases
efficiency and attracts new clients.

• The small IT company “SpeechExcellence” focuses on signal processing and
speech recognition. Its technology enables the development of automatic speech
recognition systems, which is a crucial part of the technology underlying the
vision of the digital assistant. Within the project, SpeechExcellence is responsible
for speech recognition in Swiss German. They are interested in developing and
marketing a showcase for their technology.

• The larger IT company “EngineeringExcellence” has substantial experience in
the implementation of digital trends as software solutions. Within the project,
EngineeringExcellence is responsible for the main development of the digital
assistant. They intend to acquire new capabilities concerning the development of
AI products during the project and see it as a chance to develop a product to be
marketed in the service sector.

• The Institute of Interactive Technologies (IIT) of a university of applied sciences
has substantial experience with interactive technologies, including natural user
interfaces and extended reality. Within the project, IIT is responsible for infor-
mation visualization and augmented reality. Their interest lays in advancing
multi-modal interaction concepts between humans and technology.

• The Information Management Research Group (IMRG) of the Department of
Informatics at the University of Zurich has extensively researched the potential of
collaborative IT systems to enhance advisory quality. Within the project, IMRG
is responsible for the exploration and definition of a use case for the conversa-
tional agent (CA) by applying design science research. They are interested in
generating knowledge in the field of machines as teammates and seek to gener-
alize their findings for the scientific community.

Defining a Use Case with the Double Diamond Process

SpeechAdvice is a technology-driven project: All partners are interested in how
advances in speech recognition, language processing, and machine learning may
change financial advice-giving. Note that such a process is quite typical for compa-
nies “exploring on the edge” (Sambamurthy and Zmud 2012) but at odds with
typical problem-driven design research (Peffers et al. 2007). Design thinking also
typically prioritizes customer needs to technology potential (Brown 2008). So, the
project’s exploration part aims to transform SpeechAdvice into a problem-driven
project by identifying and defining a use case for the conversational agent in
financial advice. To achieve this, the project team adopted the double diamond
process (DDP, see Fig. 1). Unlike typical Design Thinking projects, the consortium
already identified a specific technology as the center of the solution.

142 D. Staehelin et al.

Fig. 1 Double Diamond process

Understand In the first phase, the research consortium aimed at accurately under-
standing the problem of financial advice. For this purpose, the project team acquired
an extensive list of current problems by asking client advisors about their daily
troubles and listening to stakeholders included in the project.

Define The research consortium sorted the problems along the customer journey.
They grouped similar problems reducing the list to meta problems which were then
rated according to their relevance and suitability for the SpeechAdvice project.

Develop Entering the development phase, the research consortium explored a
variety of solutions to the most promising problems. Iteratively, they created and
tested prototypes in close collaboration with the end-user.

Finalize Converging a second time, the research consortium selected the use case
and designed a high-fidelity prototype. A final user evaluation concluded the Double
Diamond Process.

Model Development

During the exploration part of the “SpeechAdvice” project, many conflicts arose as
symptoms of underlying tensions. The goal of the exploration part was to establish a
use case to be realized in the subsequent implementation part (while leaving a
margin of flexibility). While the tensions could be used to identify various problems
and generate diverse ideas, they needed to be addressed to successfully define a use

Fig. 2 Tension model

case while considering the diverging interests of the consortium members. Our
tension model (Fig. 2) gives an over the relationship between conflicting interests,
tensions, artifacts, and design thinking methods.

Managing Tensions in Research Consortia with Design Thinking Artifacts 143

Conflicting Interests The interest in advancing technology-supported advisory
services formed the common ground for the project consortium. Especially, the
idea to develop a CA to reduce the complexity of a service encounter was of specific
interest to all parties. However, the driving forces within the organizations are
diverging fundamentally. On the one hand, the banks and both IT companies have
mostly commercial interests in the project. The IT companies intend to develop a
solution that creates value for their clients. Both banks expect higher efficiency (i.e.,
reduced workload for the advisory) and marketing potential to attract new or retain
existing customers. In both cases, the primary goal is to gain a competitive advantage
over their competitors as fast as possible while at the same time minimizing their
financial risks. On the other hand, IIT and IMRG are especially interested in
advancing knowledge in their respective fields and making their findings accessible
to the public through publications and presentations. This requires a systematic
approach to understand problems, their root causes, and possible solutions. Applying
methodologies, collecting data, and relating insights to the state of the Art of
academic literature requires time and financial resources. One can boil down this
conflict in two statements: EngineeringExcellence wanted to “Fail often, fail fast”
while IMRG wanted to “Fail - based on deep insights.” These conflicting interests
became the main driver for the tensions between the consortium members.

Tensions Tensions are the results of conflicting interests. They manifest in the
behavior of the individual actors. In the exploratory phase, we encountered three
major tensions:

• Operational tensions manifest themselves in different approaches on the
operationalization of the project plan and understandings of the applied methods.

• Decision-making tensions become apparent in contrasting approaches to reach
decisions.

• Solution tensions surface in opposing ideas about the novelty of the intended
solution.

Table 1 Artifacts and their functions

144 D. Staehelin et al.

Design Thinking Methods Design Thinking methods were applied as a method-
ology to manage tensions as part of user-centric IT development. The consortium
agreed that a strong involvement of end-users (i.e., client advisors) would be
necessary to understand their needs and problems better. Design Thinking should
guide the project team towards a relevant use case. Furthermore, the project team
applied Design Thinking as a toolset: Interviews, prototyping, role play, shadowing,
and user testing helped bridge industry and research objectives. The scenario-based
design framework (Rosson and Carroll 2009) provided additional guidance. Design
Thinking, in combination with scenario-based design produced many artifacts
facilitating the management of tensions.

X ¼ primary function, (X) ¼ secondary function

Artifact Artifacts are the outcome of the application of Design Thinking methods.
They helped to resolve tensions by serving as a boundary object, epistemic objects,
or activity objects. Material infrastructures are not highlighted in this paper as they
did not affect the tensions in this project. Table 1 lists the relevant artifacts of the
project and their functions:

Analysis

For the analysis, the author group reviewed the data described above (i.e., interviews
transcriptions, workshop materials) complemented with meeting minutes. In several
workshops, the authors identified sequences of conflicts and their origins. In several
iterations, the authors condensed the sequences into tensions. In the following, we
illustrate the three tensions with episodes from the project. Then we analyze the role
of artifacts in managing these tensions. Table 2 summarises the key drivers of
the stakeholder in each tension.

Operational Tensions The following episode took place during the workshop
“Creating a customer journey.” The goal of this workshop was to understand the

Table 2 Drivers of the stakeholders for each tension

current problems of bank advisory services from the standpoint of the clients and
advisors. The participants were asked to brainstorm problems in interdisciplinary
groups. The identified problems should then be sorted along the customer journey on
a large printout and discussed. Afterward, the groups joined the plenum and
presented and discussed their outcomes.

Managing Tensions in Research Consortia with Design Thinking Artifacts 145

Sarah, Christine, Bill, and Tom participated in the workshop lead by George and
formed a breakout group. At this point, Tom and Christine (working for IMRG and
IIT) have conducted interviews with client advisors and Tom already observed two
advisory sessions. Sarah represented the banks as she is a former advisor now
working as an instructor for junior advisors. Bill is a software engineer working for
EngineeringExcellence.

In the beginning, George, the workshop leader, highlighted the focus of the
workshop. He told the participants about the interviews and observations and
their preliminary results. After this introduction, the breakout group started brain-
storming and writing problems on Post-it notes. They placed the notes on a printed
customer journey after shortly explaining the problems. After a while, Christine
observed that she was the only one brainstorming problems of the clients. She told
Tom her observation and he agreed. He also observed that most problems were
focused on technical aspects of the advisory session disregarding the client’s initial
contact and the advisor’s preparation and postprocessing. Bill and Sarah argued
that the technical solution will probably support the actual advisory session. There-
fore, they should focus on problems during the service encounter due to the
restricted time and resources of the project. Christine and Tom disagreed and
referred to the interviews where the advisors mentioned a lot of potential before
and after the advisory session. Additionally, they emphasized the need to first
understand problems in a broader sense. It became clear, that the group had a
different understanding of the problem and solution scope. They agreed to discuss

this matter in the plenum after the breakout session as they could not reach a
consensus.

146 D. Staehelin et al.

In the plenum, the disagreement proved to affect all other groups as well leading
to discussions about different interpretations of this workshop’s goal. While the
representatives from the bank focused on the advisors’ overall contact with the
clients, the IT companies emphasized the technical limitations of the technology used
during the advisory session. IIT and IMRG applied a broader view to understand the
problems of both parties across the whole journey. George used the project plan to
explain the four phases and their purpose to the participants. The technology
partners and bank representatives realized that a broader mindset would help
them understand the roles of clients and advisors better. Hence, they will be able
to design a better solution supporting both parties. Additionally, George illustrated
how the results of the workshop form the basis of the problem scenarios. In the
following, the teams collaboratively created an abundance of problems for both, the
client and advisor, considering all phases of the journey.

After the workshop, the conflicting views were rejoined by the problem scenarios.
The project team discussed their interests and the current shortcomings. Bill
highlighted several sections where he was missing banking knowledge. Generally,
EngineeringExcellence experienced great difficulty with working on and elaborate
problem definition as the solution—the CA—appeared to be clear from the start. As
a result, they urged to identify problems where a CA would be an obvious solution.
On the other hand, IIT emphasized the need to further understand the clients’
problems as no interviews with clients were conducted so far. The problem scenar-
ios enabled the team to incorporate their different interests and align their
understanding.

In this episode, three tendencies could be observed: Firstly, the banks claimed
that the focus should lie on the bank advisor. Secondly, the technology partner
focused on problems where a CA was a feasible solution. Lastly, the research
partners tried to balance the views and maintain an open mind towards less obvious
problems. The project plan and problem scenarios functioned as boundary objects to
align the conflicting views by establishing a common language. They facilitated
clear communication across disciplines. Even though the project partners agreed on
the overall project approach, the first workshop revealed conflicts when translating
into practice. In the scenario above, George used the project plan as a boundary
object to address the conflict and enable collaboration between the participants. In
this situation, the project plan worked as a translator between the disciplines.
Regardless of the participants’ agreement with the choice of the methods, they
recognized the different interpretations of the goal and aligned their efforts. The
problem scenarios played a very similar role. While the project plan aligned the
understanding of the applied methods, the problem scenario had the same effect on
the problems identified as relevant. The project team explicated their interpretation
of the problem by writing it down. Misunderstandings and diverging interests
explicated through discussions and formed the problem scenarios until a mutual
agreement was achieved.

Managing Tensions in Research Consortia with Design Thinking Artifacts 147

Decision-Making Tensions After understanding and defining relevant problems,
the project team moved on to the development phase. In a workshop, participants
were asked to create solutions to the selected problems by “Enacting the Future.”
They were asked to first rapid prototype material their CA would need. Afterward,
the groups should enact a future advisory session using their prototypes. After
presenting their advisory session in the plenum, the participants would discuss the
different solutions.

Eva, Barbara, Peter, and Joe formed a breakout group and started brainstorm-
ing on functional aspects of the CA. Peter, experienced in human-computer inter-
action, drew screens on paper according to the input of the others. After the group
created a set of screens consisting of different charts and portfolio designs, they
moved on to the physical representation of the CA. Barbara, Peter, and Joe actively
described their vision of the CA and its capabilities to interact with the client and
advisor through gestures and facial expressions. They imagined some kind of
anthropomorphic character, maybe the banks’ mascot if they have one. However,
Eva, working in the IT department of one of the banks, said that CA should not have
a physical representation. In her opinion, the advisors would not welcome a CA with
a physical representation other than something similar to an Amazon Echo. Barbara
insisted that research has shown that an anthropomorphic representation creates a
social attachment between the user and the system. Peter supported Barbara’s
argument while Joe, on the other side, agreed with Eva. Joe’s prior experience
with CA was rather negative and he believes that a physical representation could
raise concerns about the CA with the clients. The two sides argued intensely whether
or not the CA should have a physical representation. Facts, presented by Barbara
and Peter could not convince Eva and Joe. Eva strongly believed that research in
other fields could not be transferred to the financial industry while Joe questioned
the transfer into a real-life setting. With time running short, they settled for a chess
piece as a physical representation of the CA for the time being. However, the dispute
would arise again after the workshop.

The data screens, physical representations, and enacted advisory sessions were
transferred into activity scenarios. The project team discussed the results in one of
their regular meetings. Again, the conflict on the physical representation arose. Still,
Eva argued against an anthropomorphic representation based on her opinion.
However, Joe’s concerns were partially resolved after he looked at the other group’s
creations. He started to engage with the prototypes and envision how the CA could
use even more channels to interact with the users. Nevertheless, the unknown
opinions of the advisors delayed a decision and the argument could not be settled.
Finally, the project team decided after the research partners interviewed advisors.

The conflict described in the episode above arose from different approaches in the
decision-making process. Firstly, the banks based their arguments upon prior expe-
rience with advisors when introducing changes in their work process. Independent
from organizations, others were led by their own experience with CA (e.g., chatbots
in customer services). In contrast, the research partners asked for facts as a basis for
decisions. Consequently, this conflict hindered collaboration as decision-making
was slow.

148 D. Staehelin et al.

Activity scenarios and prototypes facilitated managing the Decision-making
tensions. Especially considered as epistemic objects, these artifacts enabled the
project team to differentiate between opinions and facts. Enhancing the written
scenarios with illustrations allowed the team to question decisions and identify
potential knowledge gaps. As a result, both opinions and facts were included in
the activity scenario. Validating assumptions advanced the knowledge of potential
applications of a CA in bank advisory. Furthermore, prototypes also functioned as an
epistemic object in this context. Brainstorming different types of physical represen-
tation affected people’s beliefs. As seen above, Joe realized the potential of an
anthropomorphic CA only after being confronted with the prototypes. In the follow-
ing, the team members referred to specific prototypes to express their ideas. The
artifacts seemed to stimulate the team and triggered a growing attachment not only to
the prototype itself but to the emerging solutions and the overall project. As a
secondary effect, the activity scenarios and prototypes guided the activities of the
project. The conflicts inherent to the artifacts triggered creative refinement of the
solution as the contradictions were addressed collaboratively. The information
scenario revealed itself as a powerful activity object. As a final form of the use
case description, the information scenario contained some conflicts that triggered
additional artifacts like the job description guiding group work and generating
knowledge by resolving the conflicts.

Solution Tensions Before finalizing the use case for the CA, the project team met
for a final workshop. The vision has already been reviewed by an expert panel and
six bank advisors. Therefore, the goal of this final workshop was not to challenge the
general idea but to elaborate on the requirements of the solution. The workshop was
again led by George and the eight members mentioned above participated. The
information scenario, prototypes, and job description built the foundation for the
workshop.

After George introduced the participants to the workshop by summarizing the use
case, the participants were asked to write down short stories. The goal of this
exercise was to imagine how they, as a CA, would perform a certain task. For
this, the participants should consider both technical and non-technical aspects. For
each story, the group then discussed aspects of the CA that they would like to keep,
omit, or add. In one group, Bill’s concerns about the technical feasibility surfaced
again. He was anxious about the high expectations the others had towards the
CA. In contrast to the stories of his group members, his story was focused on
enhancing the current practice rather than trying to advance advice-giving. In
contrast, Barbara came up with novel ideas about how the CA influence the course
of the session with a certain autonomy. Sarah’s idea went in the same direction. In
the following, they discussed whether or not the functionalities should be restricted
by the technical level of difficulty. Barbara insisted that novelty is a major aspect as
they would participate in a research project. Representing the technology partners,
Bill and Joe argued that too high expectations could potentially doom the project. As
a result, the group presented a conflicting list of feedback to functionalities to the
plenum. As it turned out, the other groups experienced similar conflicts. One part of

the participants favored evolving existing concepts in bank advisory, while the other
part rethought these patterns by inventing new patterns. For example, Tom
envisioned the CA to take an independent role in the advisory session instead of
simply assisting the client advisor. Such a non-functional requirement was immedi-
ately challenged by Bill and Joe as this would be hardly feasible with available
frameworks.

Managing Tensions in Research Consortia with Design Thinking Artifacts 149

Due to the limited time, the conflict had to be addressed after the workshop. The
technology partners were worried about the technical feasibility. They strongly
argued against an overly ambitious vision. Whereas the research partners were
not satisfied with an out-of-the-box solution that may increases efficiency but would
not question existing practices. The banks, in between the two fronts, weighed
commercial against marketing objectives. While an innovative solution might
increase their revenues, a true invention could boost their market share and attract
new clients. The project members agreed on a staggered approach prioritizing the
functionalities by the level of technical difficulty. For this, a high-fidelity prototype
was developed to illustrate the vision. Simultaneously, the project team created a
functionalities map including dependencies between functionalities. As a result,
both, the concerns of the technology partners and the wish for an inventive solution
were considered.

This episode illustrates the origin of the Solution tensions.
The consortium members had a different understanding of the target solution and

its novelty. Both technology partners were driven by commercial interests:
SpeechExcellence intended to demonstrate the capabilities of their speech recogni-
tion in Swiss German in a working product; EngineeringExcellence expects to foster
their connection to the financial industry with a new product offering. On the
contrary, both research partners strive to generate knowledge in their fields. IIT
was interested in expanding interactions between humans and technology. IMRG
researches the implication of a CA on the dynamic of advisory sessions.

The functionalities map and high-fidelity prototype were mainly used by the
project team to address the Solution tensions. Initially, the functionalities map and
prototype explicated the different perceptions of novelty and formed the ground to
overcome the conflicting interests. The project team could agree on a common
understanding of the scope of the prototype as they listed the functionalities required
for the use case and their dependencies. Consequently, both artifacts as boundary
objectsmade the continuance of the collaboration possible. Once the understandings
were aligned, the Prototype (taking the role of an activity object) directed the
activities necessary to realize a first idea of the final solution. The project team
identified conflicts in functional and non-functional requirements they failed to
notice in the information scenario. Finally, they reached a solution the whole
consortium desired to develop.

150 D. Staehelin et al.

Implications and Conclusion

This contribution discusses the effect of artifacts in managing tensions in interdis-
ciplinary Design Thinking projects. It contributes to Design Thinking literature by
explicating the importance of artifacts for collaboration between research and
industry. Additionally, we shed light on the mechanics of managing tensions with
artifacts by applying the framework proposed by Nicolini et al. (2012).

Our study amends existing literature on Design Thinking by utilizing it in
innovation-oriented collaboration between academia and industry, thus going
beyond consulting and purely academic applications (Hehn et al. 2020; Brown
2008; Vetterli et al. 2012). Additionally, our study confirms the suitability of Design
Thinking in technology-driven research. Our results show that techniques proposed
by Design Thinking needed adaptation to the particular context. For instance, the
rigor aspects relevant for academic institutions required considerations along the
process. Academic rigor requires the understanding of theoretical and empirical
underpinnings for major design decisions and capturing their rationale rather than
relying purely on intuition and experience. Adapting Design Thinking methods has
externalized existing or created new tensions because they required more explicit
communication between the stakeholders. Overall, Design Thinking turned out to be
effective in managing tensions by relocating them from interpersonal conversation to
external artifacts. As a result, conflicts were linked less to a particular person or
organization but to an artifact that simplified criticism and let individuals distance
themselves from their idea. Furthermore, artifacts played a crucial role in the
identification of diverging interests and conflicts and the appropriate handling of
these. The material representation could capture the contradictory opinions and
motivate further engagement with the project.

Additionally, our study contributes to the socio-material and materialistic
approaches towards innovation. It applies the categorization proposed earlier
(Ciriello et al. 2014; Nicolini et al. 2012) to new categories of projects, namely,
Design Thinking-driven projects. Whereas previous artifact-oriented analyses of
innovation processes tended to classify artifacts into single categories based on
their affordances, this study suggests an adapting role of the same artifact depending
on the specific context. This is, in essence, not contradictory with the affordance and
ecological theories stating that affordances of an object emerge not only based on
individual features of the object but also based on the context defined by the
surrounding objects and their characteristics (Nicolini et al. 2012). Specifically, in
a conflict situation, a prototype, which previously acted as an activity object,
changes its character to a boundary object (to translate the meaning across disci-
plinary boundaries). This extends the discourse on the roles of objects in innovation
(Ciriello et al. 2014; Nicolini et al. 2012).

Those insights have practical relevance for Design Thinking facilitators as well as
collaboration between academia and industry. Design Thinking prescribes the use of
various artifacts but frequently limits itself to explaining their role in relation to the
content of a project, i.e., an idea, a vision, or an ultimate product. This is reflected by

the naming of these artifacts—they are called prototypes. Our reflection makes clear
that the artifacts simultaneously take on further roles, in particular, they help
managing tensions within the team. Design Thinking facilitators might use this
insight and suggest specific forms of prototypes to bring some tensions to the surface
or to help the team resolve conflicts. Given the variety of methods and prototypes
counted towards Design Thinking, facilitators often face the problem of whether one
or the other is more appropriate and what factors should be considered to assess the
appropriateness. We claim that considering the tensions in the team and the role
which the artifact should play in the subsequent collaboration (boundary, activity, or
epistemic object) might support the decision in this regard. This also suggests that
there is no “one fits all” sequence of Design Thinking methods or prototypes: the
individual situation of the team needs to be considered when deciding about the
subsequent steps. This strengthens the position of Design Thinking facilitators.

Managing Tensions in Research Consortia with Design Thinking Artifacts 151

Collaboration between academia and industry is essential for the effective appli-
cation of scientific progress in practice. However, there is little guidance on how to
set up and conduct such projects, given the inherent tensions and conflicts. This
contribution makes clear that the material aspect of the collaboration is key to
specifying the differences and resolving them. At the same time, the developed
artifacts form a materialized memory of the project allowing for reconstruction of the
decisions taken on the go. This allows for the rigorous presentation of the project and
its results, which is important for academia.

In conclusion, our study broadens the view on artifacts created by applying
Design Thinking and highlights their capabilities in managing tensions in cross-
disciplinary collaboration. We emphasize the importance of consciously choosing
Design Thinking methods to create artifacts that direct activities. Furthermore, we
introduce the multidimensional framework by Nicolini et al. (2012) to Design
Thinking, exploring the potential of artifacts to bridge boundaries and trigger
cross-disciplinary collaboration.

For practitioners, this study offers several implications. Firstly, explicating orga-
nizational and personal interests at an early stage discloses potential tensions. This
enables the project leader to address these tensions by selecting appropriate Design
Thinking methods proactively. Secondly, combining typical Design Thinking
methods with other user-centric design methods (i.e., scenario-based design) for-
malizes activities that would otherwise result in by-products yielding less value.
Lastly, externalizing conflicts from people or organizations to artifacts shifts the
conflict from a subjective to an objective, more manageable perspective.

References

Badke-Schaub P, Goldschmidt G, Meijer M (2010) How does cognitive conflict in design teams
support the development of creative ideas? Creat Innov Manag 19(2):119–133

Brown T (2008) Design thinking. Harv Bus Rev 86:84–92

152 D. Staehelin et al.

Carleton T, Leifer L (2009) Stanford’s ME310 course as an evolution of engineering design. In:
Proceedings of the 19th CIRP design conference

Ciriello RF, Aschoff FR, Dolata M, Richter A (2014) Communicating ideas purposefully-toward a
design theory of innovation artifacts. In: European conference on information systems (ECIS),
Tel Aviv, Israel, 9–11 June 2014

Dolata M, Schwabe G (2014) Call for action: designing for harmony in creative teams. In:
International conference on design science research in information systems. Springer, Cham,
pp 273–288

Dolata M, Schwabe G (2016) Design thinking in IS research projects. In: Brenner W, Uebernickel F
(eds) Design thinking for innovation. Springer, Cham, pp 67–83

Dolata M, Schwabe G (2017a) Tuning in to more interactivity–learning from IT support for
advisory service encounters. i-com. J Interact Media 16(1):23–34

Dolata M, Schwabe G (2017b) Paper practices in institutional talk: how financial advisors impress
their clients. Comput Support Coop Work 26(4):769–805

Dolata M, Kilic M, Schwabe G (2019) When a computer speaks institutional talk: exploring
challenges and potentials of virtual assistants in face-to-face advisory services. In: Proceedings
of the 52nd Hawaii international conference on system sciences

Dolata M, Uebernickel F, Schwabe G (2017) The power of words: towards a methodology for
progress monitoring in design thinking projects. In: 13th international conference on
Wirtschaftsinformatik 2017, St. Gallen, Switzerland

Edelman JA, Leifer L, Banerjee B et al (2009) Hidden in plain sight: affordances of shared models
in team based design. Proceedings of ICED 09, Palo Alto, USA

Gibson JJ (1979a) The ecological approach to visual perception. Houghton Mifflin, Boston
Gibson JJ (1979b) The theory of affordance. In: The ecological approach to visual perception:

classic edition. Psychology Press, Hove
Hehn J, Mendez D, Uebernickel F, Brenner W, Broy M (2020) On integrating design thinking for

human-centered requirements engineering. IEEE Softw 37(2):25–31
Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS

Q 28(1):75–105
Johansson-Sköldberg U, Woodilla J, Çetinkaya M (2013) Design thinking: past, present and

possible futures. Creat Innov Manag 22:121–146
Karanasios S, Allen D (2018) Activity theory in information systems research. Inf Syst J 28(3):

39–441
Kilic M, Dolata M, Schwabe G (2017) Why do you ask all those questions? Supporting client

profiling in financial service encounters. In: Proceedings of the 50th Hawaii international
conference on system sciences

Leifer LJ, Steinert M (2011) Dancing with ambiguity: causality behavior, design thinking, and
triple-loop-learning. Inf Knowl Syst Manag 10(1–4):151–173

Leifer LJ, Steinert M (2014) Dancing with ambiguity: causality behavior, design thinking, and
triple-loop-learning. In: Gassmann O, Schweitzer F (eds) Management of the fuzzy front end of
innovation. Springer, Cham, pp 141–158

Leontyev AN (2009) In: Cole M (ed) The development of mind: selected works. Marxists Internet
Archive, Pacifica

Lindberg T, Meinel C, Wagner R (2011) Design thinking: a fruitful concept for IT development? In:
Meinel C, Leifer L, Plattner H (eds) Design thinking. Springer, Berlin, pp 3–18

Lindberg T, Köppen E, Rauth I, Meinel C (2012) On the perception, adoption and implementation
of design thinking in the IT industry. In: Plattner H, Meinel C, Leifer L (eds) Design thinking
research. Springer, Berlin, pp 229–240

Luebbe A, Weske M (2012) Determining the effect of tangible business process modeling. In:
Plattner H, Meinel C, Leifer L (eds) Design thinking research. Springer, Berlin, p 241

Nicolini D, Mengis J, Swan J (2012) Understanding the role of objects in cross-disciplinary
collaboration. Organ Sci 23(3):612–629

Managing Tensions in Research Consortia with Design Thinking Artifacts 153

Nunamaker JF Jr, Briggs RO, Derrick DC, Schwabe G (2015) The last research mile: achieving
both rigor and relevance in information systems research. J Manag Inf Syst 32(3):10–47

Ojasalo K, Koskelo M, Nousiainen AK (2015) Foresight and service design boosting dynamic
capabilities in service innovation. In: Agarwal R, Selen W, Roos G, Green R (eds) The
handbook of service innovation. Springer, London, pp 193–212

Orlikowski WJ (2010) The sociomateriality of organisational life: considering technology in
management research. Adm Sci Q 34(1):125–141

Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research meth-
odology for information systems research. J Manag Inf Syst 24(3):45–77

Poole MS, Van de Ven AH (1989) Using paradox to build management and organization theories.
Acad Manage Rev 14(4):562–578

Rosson MB, Carroll JM (2009) Scenario based design. Human-Computer Interaction, Boca Raton,
pp 145–162

Sambamurthy V, Zmud RW (2012) Guiding the digital transformation of organizations. Legerity
Digital Press, Tallahassee

Schwabe G, Nussbaumer P (2009) Why IT is not being used for financial advisory. In: 17th
European conference on information systems (ECIS 2009), Verona, Italy

Smith W, Erez M, Jarvenpaa S, Lewis M, Tracey P (2017) Adding complexity to theories of
paradox, tensions, and dualities of innovation and change: introduction to organization studies
special issue on paradox, tensions, and dualities of innovation and change. Organ Stud 38(3–4):
303–317

Uebernickel F, Brenner W (2016) Design thinking. In: Hoffmann CP, Lennerts S, Schmitz C,
Stölzle W, Uebernickel F (eds) Business innovation: Das St. Galler Modell. Springer,
Fachmedien Wiesbaden, Wiesbaden, pp 243–265

Vetterli C, Uebernickel F, Brenner W (2012) Initialzündung durch Embedded Design Thinking—
Ein Fallbeispiel aus der Finanzindustrie und wie dadurch ein Wandel in der Innnovationskultur
einer IT-Abteilung eingeleitet wurde. Zeitschrift für Unternehmensentwicklung und Change
Management 2:22–31

Platform Design with Design Thinking
and Scrum: An Experience Report from
Deutsche Bundesbank

Michael Jakob and Jennifer Hehn

Introduction

Digitalization is transforming the financial sector. Technological developments like
cloud-based solutions and microservices demand for a reconsideration of the status
quo, also in the stability-oriented sector of central banking. The Deutsche
Bundesbank is the independent central bank of Germany with the main objective
to secure price stability in the euro area. In addition, the Bundesbank performs other
key tasks such as national supervision of credit institutions, cash management,
payment systems and financial stability. Moreover, the Bundesbank manages
Germany’s foreign reserves, acts as the government’s fiscal agent, and carries out
important statistical tasks (Deutsche Bundesbank 2020).

In 2018, Bundesbank started a broad digital transformation program to leverage
the new possibilities of technological advancements and to foster innovation and
customer-centricity. Therefore, Bundesbank decided to redesign its ExtraNet, the
largest interaction platform between Bundesbank and its more than 100,000 cus-
tomers, including insurances, public services, monetary finance institutions, and
other companies. The goal of the new platform was to provide (new) user-oriented
services and a user-friendly interface based on a modern IT infrastructure.

Initiated by a then new member of the executive board, the Bundesbank decided
to utilize the explorative approach of Design Thinking to rethink the purpose of the
platform, gain better insight into customer needs, and to generate new ideas for new

M. Jakob
Deutsche Bundesbank, Frankfurt, Germany
e-mail: michael.jakob@bundesbank.de

J. Hehn (*)
Institute for Digital Technology Management, Bern University of Applied Sciences, Bern,
Switzerland
e-mail: jennifer.hehn@bfh.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_10

155

mailto:michael.jakob@bundesbank.de
mailto:jennifer.hehn@bfh.ch
https://doi.org/10.1007/978-3-030-90594-1_10#DOI

ways of user-centric interaction. To that point in time, Design Thinking as well as
collaboration in a multidisciplinary project team spanning departments across the
entire organization was new to Bundesbank.

156 M. Jakob and J. Hehn

In this contribution, we summarize our research protocol and provide a detailed
overview of how Design Thinking was used in combination with Scrum on a
process, toolbox, and mindset level. Our report expresses the authors’ personal
impressions and opinion and does not necessarily reflect the view of Deutsche
Bundesbank.

Project Context and Description

The project to design a new Extranet was initiated based on the need to renew the
existing eBusiness-Platform ExtraNet of Deutsche Bundesbank. The current Extra-
Net has been running reliably for more than 18 years while providing shared services
(e.g., file transfer, user management) and interactive applications (e.g., bidding
systems, reporting platform of banking supervision and statistics). The ExtraNet is
a high-performance data exchange platform used by internal applications of different
business areas. It is provided by the internal IT department as an on-premise
solution including the platform itself, the infrastructure, the application services,
and operational tasks. The reports exchanged between external customers and the
Bundesbank range from six to ten million per year. The renewal of the ExtraNet
became necessary from both a business and technical point of view.

The project manager and sponsor decided to apply Design Thinking to better
understand the problem domain before drawing conclusions too quickly for a
possible solution and IT architecture. Keeping in mind that the data exchange
platform started small and had developed into a large, business-critical Bundesbank
solution, including heterogeneous external customer groups and different internal
business areas, the conditions and technological possibilities for the platform had
completely changed over time.

Until now, the project is divided into three phases: (1) Exploration, (2) IT-
Prototyping, and (3) Final Prototype. Phase (4) Implementation is currently in
planning. Table 1 provides an overview of each project phase with its respective
goal, activities, and deliverables.

In the following, we present and discuss each project phase along the structure of
(1) objective (2) prerequisites, (3) activities, (4) roles, (5) outcome, and (6) reflection
for each phase.

Phase 1 “Exploration”

Objective The goal of the exploration phase was to understand the problem and
needs of the platform users and to create a new clear product vision.

Platform Design with Design Thinking and Scrum: An Experience Report from. . . 157

Table 1 Overview of each project phase with goal, activities, and deliverables

Project phase/activities/deliverables FTEa

Phase 1: Exploration (09/2018–12/2018)
Goal: Understand customer needs and define a clear product vision

10

• 16 qualitative interviews with external users
• 5 qualitative interviews with internal users
• 37 insights, 5 personae, 3 visual frameworks
• 10 internal technical insight sessions
• 10 internal business expert sessions
• Benchmarking and technical market analysis
• 7 opportunity areas for new solution development
• 17 brainstorming sessions and 402 ideas
• 12 low-resolution prototypes
• 3 aggregated prototypes
• 20 test sessions with customers
• Technology screening for IT architecture
• 2 management presentations (“walk-ins”)

Phase 2: IT-prototyping (01/2019 ––09/2019)
Goal: Develop a proof-of-concept and proof of architecture

30

• 4 prototypes (1 failed) derived from Design Thinking
• Experience exchange with 3 companies
• Development of three IT-prototypes
• Implementation of infrastructure platform
• Test sessions with 31 external customers
• Test sessions with 55 internal business experts
• Technology screening with an external agency

Phase 3: Final prototype (04/2020 ––03/2021)
Goal: Build and test a final IT-prototype integrating all core functionalities

20

• Market analysis with external consultancy
• 12 sprints applying scrum and 382 story points
• 31 epics and approximately 700 user stories
• 1 application prototype based on 100 user stories
• 4 IT infrastructures (e.g. Public Cloud, Private Cloud) built and used by

above mentioned application
• Integration of 3 backend applications
• Testing with 100 internal business experts
• Testing and feedback with 20 managers
• Build-up product backlog (700 user stories)
• 5 lessons learned workshops

aFull-time equivalent (FTE)

Prerequisites Before kicking off the project, a design challenge was defined, a
multidisciplinary team was formed, a project war room was booked, management
support was secured, and Design Thinking coaches were contracted. The design
challenge inhabited an exploratory character to provide direction, yet to leave room
for unpredicted discoveries (“How might we redesign the eBusiness-Platform of
Deutsche Bundesbank?”). The core project team was composed by involved busi-
ness areas, core central banking functions (banking supervision, cash, statistics), and
IT-experts from development, infrastructure, and project management. A so-called

extended team was formed to provide fast and easy access to a pool of experts and
management. A large office space was booked to enable collocation and collabora-
tion as the project members worked at different Bundesbank locations.
IT-Management supported all activities and sponsored the external recruitment of
Design Thinking coaches to lead through the innovation process.

158 M. Jakob and J. Hehn

Activities The activities followed the Design Thinking process of problem defini-
tion, need-finding, synthesis, ideation, prototyping, and testing. The team conducted
contextual interviews with (potential) internal and external users of the E-Business
platform. The latter included employees of banks, insurances, public services, and
companies who file reports and messages to Bundesbank. The main purpose of the
interviews was to identify their needs regarding the existing ExtraNet in particular,
and the opinion concerning the digitalization ability of Bundesbank in general. The
project team collected improvement proposals and insights, e.g., “We want
Bundesbank to provide transparent processes and one face to the customer.” The
different quotes of the interviewees were clustered, transferred into insights and
aggregated to opportunity areas (e.g., “get rid of paper”). The team designed five
personae and customer journeys to provide a better visual impression of the most
interesting findings and potential value propositions. While the personae inhabited
the thoughts and feelings of different user types, the customer journey showed the
relevant usage steps from registration to customer support and log out. To develop
new ideas and features the extended team was invited for several brainstorming
sessions based on predefined ideation questions. Another aspect was to gain internal
technical and business knowledge and integrate colleagues in the new Design
Thinking approach. Based on these ideas, the project team created paper-based
prototypes, which were tested and refined iteratively according to the received
feedback. Some of the current services, e.g., the user help desk and the reliability
of the ExtraNet were highly appreciated. Some wishes for the future solution were
mentioned by many customers, e.g., easy-to-use security features and to be able to
use one portal access for all use cases (one face to the customer). Eventually, the
most promising elements of the prototypes were aggregated, while others had failed
and were discarded. The results were presented to Bundesbank management in a
“walk-in” session at the end of phase 1.

Roles During the exploration phase, each team member was involved in all Design
Thinking activities, regardless of their expertise. The goal was to gain the same level
of empathy for the affected customers and the problem statement. The project
manager reported the progress and the results to the organization. The Design
Thinking coaches were externally hired and supported the team along each step of
the process as there was no prior experience with Design Thinking at Bundesbank.

Outcome The deliverables of the Design Thinking process were three
non-technical prototypes called “Octopus,” “User Manager,” and “Transparent
Process” (see Fig. 1). These prototypes represented the key specifications and
needs discovered during the need finding activities. The “Octopus”—having many
arms to contact others—was used to communicate the technological advantages of a

Platform Design with Design Thinking and Scrum: An Experience Report from. . . 159

Fig. 1 Overview of three non-technical prototypes (from left to right: “Octopus,” “User Manager,”
and “Transparent Process”)

modern IT platform. The team used paper wireframes and, in the second step
PowerPoint with interactive functions to specify the ideas of a “User Manager” as
a self-service solution and the “Transparent Process” as a user-friendly and seamless
platform experience.

Reflection on Methodology During the first phase, the Design Thinking approach
was completely new to Bundesbank. The team was able to use an office space
exclusively for the workshops and results. This was an important precondition for
being successful as it saved a lot of time when keeping results on boards and walls. It
turned out to be a safe haven for trustful communication within the team and with
colleagues. It was the ideal working area to work out our Design Thinking tasks
unhindered from the organizational line to which each team member belonged.
Another success factor was the hiring of external Design Thinking coaches in
time, who fitted to the team and brought the needed practical experience in applying
Design Thinking. The need identification techniques (e.g., interviews, ideation,
prototyping) were helpful and allowed a structured way of doing the job. The
prototypes, as a result, reflected the customer requirements. As they were tested
several times, the team perceived that there was little to no risk in omitting customer
wishes by substituting needs through predefined internal objectives.

Reflection on Teamwork Design Thinking activities felt exhausting to many team
members, as they were not only new but also performed in addition to day-to-day
tasks. Nevertheless, the team identified quickly with the mission and was willing to
put in the extra mile. One reason was the aha-momentum when interviewing
customers face-to-face and listening to their needs. This activity felt convincing
and inspiring. The team undertook a commitment to improving things not only for
the IT department or for internal business areas but also for all customers of the
platform. The interdisciplinary work for such a long period of time was not common
at Bundesbank, but the team perceived it as urgently needed to understand different
perspectives. The customer's voice provided common ground for the team, and,
quickly, all team members grew together and reached the performing phase. Mem-
bers stated that openness, responsibility for the result, experiencing customers face-
to-face, encouraging creative methods, high expectations and motivation from

management, but also lots of fun and interdisciplinary collaboration were the main
motivating factors in phase 1.

160 M. Jakob and J. Hehn

Reflection on Business Objective When starting the project, the IT department and
business areas already had their specific expectations of a modernized and new
platform in mind. However, the objective of using Design Thinking early on was to
question previously made assumptions and come up with completely new ideas in
co-creation with the customer. The sponsor encouraged the team to engage with
external customers to clarify their needs and requirements. For example, the strong
wish for one point of communication with Bundesbank was translated into a portal
with full transparent processes and a status overview at any time. The high level of
interest in Design Thinking in phase 1 resulted in multiple (intermediate)
presentions to inform stakeholders and interested colleagues about the activities
and intermediate project artifacts, including European colleagues and the managing
board. An important artifact were distinctive quotes of customers, which superseded
any further discussions. Another convincing method was prototyping and testing.
The prototypes acted as communication starters and sparked new discussion topics
and feedback. Not only did they provide a clear impression of the new platform and
the needed services, but they also revealed attitudes, arguments, and key aspects,
especially of management. When testing prototypes, we gained feedback for our
ideas and strengthened our network at the same time. However, we the team also
faced rising expectations for integrating the elicited requirements.

Phase 2 “IT-Prototyping”

Objective The main goal of the second phase was to provide the proof-of-concept
and architecture for the created prototypes. In comparison to the Design Thinking
phase, a higher level of fidelity concerning the IT-prototypes and their functionalities
was the goal. Finally, the results, including the feedback of the customers and the
IT-prototypes, should lead to one overall solution proposal for the following phase.
A benchmark with external support and exchange was included to ensure a modern
architecture.

Prerequisites Three validated non-technical prototypes in the form of paper and
one clickable PowerPoint presentation as a high-level system vision were the core
input for phase two. To continue with the open working spirit and user-centered
mindset of the first project phase, nearly the complete Design Thinking team
continued to work on the project. We added internal developers, business-related
experts, an IT architect, and a security expert to focus on evaluating the feasibility of
the ideas.

Activities The iterative approach of prototyping, testing, and refinement was the
guiding principle of the second project phase. Three interdisciplinary teams were
formed around one prototype from phase one. Each so-called “prototyping team”

clarified the requirements for their assigned prototype and started to develop an
IT-prototype. A fourth subgroup consisted of IT engineering colleagues who pro-
vided the needed development tools and infrastructure platform. The existing Design
Thinking prototypes were explained to the new team members. Customers were
invited to verify former ideas and add new insights. The development of the
so-called IT-prototypes should consist of developed programs running on
middleware and infrastructure. After the basic IT tools and components were
established, the prototyping teams immediately started developing software based
on validated and concretized requirements. Whenever a particular IT prototype of a
subgroup was executable, customers were invited to test them directly. The test
sessions and results were recorded along results, new ideas, improvement proposals,
and fails. The core IT services were checked and discussed with Gartner architects
and security experts. State-of-the-art services and software components were iden-
tified, among them, for example, Identity and Access Management (IAM), Appli-
cation Programming Interface (API)-techniques and microservices. During this
phase, the non-functional and functional requirements were specified in more detail.
Furthermore, exchange with companies with comparable customers, and business
objectives were undertaken and delivered insights into the market and technical
approaches (technical benchmarking).

Platform Design with Design Thinking and Scrum: An Experience Report from. . . 161

Roles The organizational chart included four sub-teams staffed with team members
from the previous phase and new experts: one team provided the IT infrastructure
and development tools and three teams were to specify and develop three
IT-prototypes. An IT-enterprise architect and an IT security expert were onboarded.
The IT project manager continued to stay on the project. In this phase, no specific
coach was involved.

Outcome The feasibility study with implemented IT-prototypes was successfully
realized. The proof-of-concept was provided by implementing an IT platform and
three IT-prototypes running on it: (1) a technical API for one specific business area
(“Octopus” from phase one), (2) a transparent process with status information and a
landing page (“Transparent Process”), and (3) a user manager self-service including
2-factor-authentification (2FA) for external customers (“User Manager”). The idea
of “one face to the customer” inspired the team to offer shared portal services. The
front-end was programmed using Angular. A middleware solution was used for
communication services. Each prototype was tested after being developed success-
fully in test sessions with internal and external customers.

Reflection on Methodology This phase was guided by no specific method. Being
the outcome of phase one, the Design Thinking prototypes and the principle of
prototyping—testing—refining was applied iteratively and successfully in each of
the subgroups. It worked well and turned out to be the common ground, also for
onboarding new team members. However, the mindset that had been internalized by
the team members of the previous phase could not be transferred completely to all
new team members as too much implicit knowledge was missing. Accordingly, the
former Design Thinking team members did a lot of explaining and reasoning at the

beginning. However, the new team members were convinced when testing started,
and customers were invited to provide feedback. The development was performed in
the background by an internal IT unit. To ensure IT-alignment developers and
business experts met regularly to define requirements ready for implementation.
There was no Scrum or Kanban approach. The results of the subgroups were shared
in a so-called “Design Thinking Board,” an overall board focusing on user needs and
requirements.

162 M. Jakob and J. Hehn

Reflection on Teamwork The main challenge of the Design Thinking team was to
transfer the principles, needs, and ideas to the new team members, e.g., to developers
never having applied Design Thinking or a comparable user-centric approach before.
At first, they were skeptical and focused on development methods. The close
interdisciplinary collaboration in the subgroups with at least two members from
the Design Thinking phase ensured keeping the open and user-centric spirit alive.
Later, the interviews and test sessions with real customers were convincing for all
team members and reconfirmed that the prototypes fulfilled the customer needs.

Reflection on Business Objective From the business perspective, the most impor-
tant aspect of phase two was to validate the feasibility and viability of the developed
ideas. This meant that the prototypes from phase 1 could be developed, transferred,
and implemented with Bundesbank’s IT resources and techniques. The creation of
IT-prototypes validated the Design Thinking prototypes from phase one, which was
an important milestone in removing concerns about the effectiveness of the new
methodology of Design Thinking. Again, there was the notion that the customers
who supported cooperatively in test sessions expected the project to deliver results
quickly.

Phase 3 “Final Prototype”

Objective After having confirmed the feasibility of the prototypes, market analysis
and benchmarking should make sure that we did not overlook any new technical or
business trends. The essential output of this phase was to build and test a final
prototype integrating all core functionalities based on the previously identified needs
and requirements. The final prototype should include an IT architecture and techni-
cal connections to real backend applications. If successfully evaluated, the result
should be the proposal for the productive IT platform to be implemented and
prepared for a productive Go-Live.

Prerequisites The findings, results, and customer feedback from the previous
phases were transferred into the third phase. The project team changed again. Five
individuals of the initial Design Thinking team remained in the project. Internal
developers left the team. Scrum was selected as an agile framework, although this—
again—was a new method for the team. The overall vision was to deliver business
and customer benefits by working out one functioning IT-prototype that should

represent the idea of one-face-to-the-customer with easy-to-use and fully transparent
services based on a technical state-of-the-art cloud-based solution.

Platform Design with Design Thinking and Scrum: An Experience Report from. . . 163

Activities As the remaining Design Thinking team members were experienced with
the mode of prototyping, testing, and customer-centricity, each one took over the
role of the Product Owner, forming a so-called Product Owner Team (POT). Being a
precondition for the later steps, the project team initiated a market analysis and spent
4 months in close cooperation with an external consultancy. Starting with a detailed
explanation of business requirements, the analysis should also evaluate common IT
provider concepts (public, hybrid, private cloud), IT-service models (IaaS, PaaS,
SaaS) and state-of-the-art software products. The task included a solution recom-
mendation describing which provider model and software products should be
applied when designing the final IT-prototype. In the meantime, the POT started to
define the product backlog. Many business requirements could be extracted from the
former IT-prototypes and the legacy platform. A scrum master coached the POT. In
the second half of this phase, the development of the final prototype took place,
which included implementing the IT infrastructure and programming tasks. Many
cloud techniques (e.g., DevOps, microservices) were used. External developers were
hired. They were also accustomed to Scrum. In 12 sprints, the work was completed.
The POT defined the complete business process and user stories. While the code was
developed iteratively, the different IT infrastructure components were also built up
in sprints and tested. They were based on private and public cloud platforms. After
the last sprint, several internal customers were invited to test the final prototype and
to provide feedback. At the end of this phase, several lessons learned workshops
were conducted to preserve the multitude of new insights regarding content created
and methods used.

Roles The POT was again set up as an interdisciplinary team and responsible for
collecting and prioritizing user stories as well as communicating with stakeholders.
A scrum master was hired to implement the new agile method and role. The product
backlog was the first artifact created. Apart from experienced external developers,
four internal colleagues reinforced the development team. A project manager, the
project sponsor, an IT security expert, and an IT architect completed the team.

Outcome The market analysis was an important conceptual output. The final
prototype was the physical result. It covered the specification of the designated IT
solution, the core functionalities, and IT architecture. The new cloud techniques,
e.g., microservices, API, DevOps, turned out to work well and fit the requirements.
From an IT point of view, it was important to evaluate the provider and service
models of private and public cloud and SaaS. A convincing result was the portability
of the programmed application code, which was executable on four different (private
and public) cloud platforms. The business case was validated by internal business
experts. The prototype was a suitable way of communicating and experiencing the
future product vision. Scrum artifacts like the Product Backlog were created and
developed further.

164 M. Jakob and J. Hehn

Reflection on Methodology Scrum was perceived as the right method to ensure an
agile way of working. It was new to the internal team members. Although it took two
sprints to get used to, the POT, Scrum master, and developers started to speak a
common language based on the Scrum terminology (e.g., review, daily, retrospec-
tive). A survey at the end revealed the good mood of the team and the belief that
openness, trust, and transparency are success factors also to apply scrum success-
fully. The best practice of phase two of “prototyping-testing-refinement” made sure
that the needs and requirements of customers were integrated continuously.

Reflection on Teamwork In a short period of time, again, the team had to learn,
adopt, and apply a new method and work together with external experts who needed
to understand the business requirements. This experience and the visible project
progress strengthened the trust in agile and innovative methods such as Design
Thinking and Scrum. The mixture of the team, consisting of business and IT, internal
and external, experienced, and young personnel seemed to be a challenge but it
turned out to be an advantage and essential success factor. A high availability of the
involved staff (>70%) was an important precondition when applying Scrum and not
always easy to be enforced.

Reflection on Business Objective The final prototype was successfully developed
and implemented, including the provisioning of different cloud models. The busi-
ness process ran smoothly. New techniques and tools were provided, all of which
were new to the organization and therefore perceived risky. The team demonstrated
that the development and implementation, which took at least 6 months, including
around a hundred user stories and four infrastructure platforms (Public Cloud, Private
Cloud Bundesbank), was feasible. The connection to the backend applications
showed interoperability of the new cloud technique and the old on-premise world.
From a customer point of view, the portal represented the need “one face to the
customer” and “transparent processes” including different business services in one
integrated IT-prototype. The business process ran successfully from registering users
up to status information returned by backend applications. Feedback given by
internal business experts reconfirmed usability and operability.

Outlook for Phase 4 “Go-Live”

The final prototype had turned out to be desirable from a user point of view, feasible
from an IT perspective, and viable from a business standpoint. In addition, the
advantages of using Design Thinking for problem and solution exploration and
Scrum as an agile implementation approach were confirmed by the project team.
In the final project phase, Go-Live, the team plans to realize the system vision of a
user-centric, state-of-the-art E-Business-Platform which delivers reliable, secure,
and transparent services to external customers and internal business experts. The
main technical task will be the design and implementation of the production plat-
form. The project team, again, will be an interdisciplinary one working with Scrum

and the validated approach of “prototyping-testing-refinement.”After team building,
one of the first activities will be the setup of a cloud-based platform and the
development of the minimum viable product (MVP). This will enable the team to
keep testing new features, especially with external customers. In addition, the
integration of internal applications will be performed. This step will close the gap
to the backend processing and deliver a technical integration of the backend and the
outside world. Concerning the organizational structure, the digitization of existing
paper-bound processes and the new level of automation (e.g., through chatbot-
functionalities and application-to-application integration) will deliver significant
improvements compared to today. Additionally, the relevance of customer satisfac-
tion and the perception of Bundesbank as an innovative and reliable service partner
cannot be overestimated. Customer acceptance will be checked continuously by
analyzing usage patterns, surveys, interviews, and so on. The migration scenario will
be a large work package to be agreed upon with each business area. Whatever it
takes, there is the strong confidence that the MVP is close to the user expectations as
expressed during Design Thinking, while the agile approach will allow for any
needed adaption further down the line.

Platform Design with Design Thinking and Scrum: An Experience Report from. . . 165

Key Learnings

Reflecting on the project so far, we want to summarize and highlight the following
key learnings.

Consistency of the Team Along the Project Is Needed to Keep the User-Centric
Mindset Alive Parts of the project team changed from phase to phase. The risk of
losing Design Thinking members was identified early on. We made sure to keep
50% of the initial team on the project throughout all phases. This not only provided a
continuation of the acquired knowledge about customer needs and requirements but
also manifested a team mindset characterized by openness, trust, creativity, and
radical collaboration. This spirit motivated new team members and convinced them
to explore unknown methods.

Cross-Functional Work and Different Perspectives Are Key to Creating Inno-
vative Solutions From a business objective, the bundle of new methods and time
spent for collaboration across different business areas seemed to be challenging at
first. However, integrating customers and all relevant units continuously provided
ideas that had not been considered before. In addition, the constant collaboration
helped project members to identify themselves with the product in a way we had not
experienced before.

The Continuous Approach of “Prototyping-Testing-Refinement” Provides
a Core Connection Between Methods Across all phases, most of the time was
invested in building prototypes, starting from (non-technical) low-resolution
mockups to the final (technical) IT-prototype. The iterative approach of

“prototyping-testing-refinement” revealed itself to be the common thread among all
project phases linking Design Thinking and Scrum. In doing so, the team ensured a
continuous level of creativity, ongoing interaction with users, and concurrent devel-
opment of new ideas and features. We feel confident now that the future system—

when following the same rules and principles—will be a success.

166 M. Jakob and J. Hehn

Design Thinking and Scrum Motivate to Go the Extra Mile Although the
different working methods seemed exhausting first, they proved to be great motiva-
tional factors to keep the team spirit high. Considering the novelty of methods used,
stakeholder management, and actual project work, we estimate the net time for
getting the job done at around 18 months, starting with Design Thinking until
finishing the final IT-prototype. The rest of the time was spent on internal processes
(e.g., securing approvals and dealing with procurement).

Non-Functional and System Requirements Are a Challenge What remains chal-
lenging to us is the identification and specification of non-functional requirements in
the context of Design Thinking and Scrum. We consider this task not just difficult in
general but especially in the context of our agile and user-focused style of working.
For example, we felt it quite challenging to combine our user stories with architec-
tural or system requirements. This could be a promising topic for further exploration.

Reference

Deutsche Bundesbank (2020) Central Bank of the Federal Republic of Germany. Available at:
https://www.bundesbank.de/en/tasks/central-bank-of-the-federal-republic-of-germany-626946.
Accessed 2 May 2020

https://www.bundesbank.de/en/tasks/central-bank-of-the-federal-republic-of-germany-626946

Design Thinking in a Large Manufacturing
Organization: Designing a Smart Support
System for the Shop Floor

Markus Durstewitz and Thomas Abrell

Introduction: Design Thinking in Manufacturing

Industry in general and large manufacturing companies in particular are focusing on
operational excellence (Issar and Navon 2016), namely on continuous improvement
of process efficiency, aiming for maximizing the output while minimizing the
applied effort in terms of resources, such as energy and manpower. Workers are
there to work. And they should do good work. More precisely, it is expected that
they execute their job with excellence exactly as described and that they deliver
within the predefined time frame. High quality outcomes are expected, and safety
considerations leave no room for interpretations. Continuous improvement schemes
are aiming for process and lead time optimization, avoiding any safety issue while
minimizing the probability and cost of time delays and non-quality.

Unfortunately, real life working conditions are very often not the same as the ones
assumed and predefined by the manufacturing engineer, particularly in the context of
complex products and systems, where manufacturing takes place in comparatively
small batches (Hobday 2000). Actual work situations can differ from day to day due
to unforeseen events that risk occurring at a certain probability. Thus,
non-conformities cannot be fully excluded due to the nature of complex work
resulting in limitations when targeting an absolute control of the working environ-
ment. Unforeseen events triggered by environmental or human factors lead to

Before at Airbus Operations GmbH, involved as project lead in the case described and therefore
independent of the author’s current affiliation with Volkswagen AG

M. Durstewitz (*)
Airbus Operations GmbH, Hamburg, Germany
e-mail: markus.durstewitz@airbus.com

T. Abrell (*)
Volkswagen AG, Wolfsburg, Germany

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_11

167

mailto:markus.durstewitz@airbus.com
https://doi.org/10.1007/978-3-030-90594-1_11#DOI

abnormal situations in job execution, which may result in process disruptions,
quality, and/or safety issues (Hollnagel 2009). Then, the question is how to deal
with these unforeseen abnormal situations? The experienced worker knows how to
overcome unpredicted problems. But unfortunately, the workers themselves are not
systematically involved in the design of the process and only trained to be focused
on executing the job as prescribed.

168 M. Durstewitz and T. Abrell

Participatory design (Grudin 1993) formally integrated user experience in the
design of human–machine interactions (Durstewitz 1994). Today, Design Thinking1

(Brown 2009) represents a holistic human-centered design approach. It helps to
leverage the practical experience of workers that often remains implicit hidden
knowledge (von Hippel 1994) and as such it is not or is only used by chance for
the design of the workflow and work environment.

In the design of software-intensive digital solutions, the designer has to deal with
interaction modes at cognitive level that are more difficult to uncover and therefore
tend to remain more often tacit and hidden (Boy 2011). In addition, software-
intensive solutions are used in general to support, control, and optimize workflows
and manufacturing execution. Therefore, they have to represent the real processes
and map them onto their inherent respective data models and algorithms as close as
possible to reality. Thus, the better we know what the worker thinks and which
rationale the worker applies when assessing a given situation, the more effective and
affordable will be the solution we design for this situation.

Design Thinking is radically user centered. In consequence, the workers’ per-
spective becomes a fundamental and essential design input. And Design Thinking
embraces a holistic empathetic approach encompassing all different aspects of the
user explicitly including the cognitive and emotional side, thinking and feeling. For
this, the workers must be directly involved in the design process itself with a clear
focus on their own practical work experience thus ensuring that workers are working
on the right things (Abrell and Durstewitz 2016), i.e., on the things that matter to get
the job done at any given point in time. Using Design Thinking reduces the risk of
late and then very costly design changes through consequent user involvement along
the complete development process starting with the project framing and early
prototyping. Compared to other agile development approaches, Design Thinking
radically emphasizes the importance of user insights, continuous user participation,
and direct user feedback for each cycle, from the (re)definition of the problem to be
solved to the design and validation of the respective most acceptable and therefore
most valuable solution. For this, Design Thinking relies on open collaboration and
co-creation of multifunctional teams (Leifer and Steinert 2011).

With the here presented case we tried to go further applying Design Thinking to
the very heavy industrial organization of manufacturing, the design of a new final
assembly line (FAL) for a very complex large product.

1For an introduction to Design Thinking, see Brenner et al. (2016)

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 169

Description: Our Approach to Design Thinking in Three
Phases

In our specific case, we followed the basic process of the Design Thinking approach
(Brenner et al. 2016) with a special emphasis on end user engagement through
explorative need finding and co-creation, and therefore focusing on prioritization of
the jobs to be done, i.e., “Doing the right things” before focussing on optimization,
i.e., “Doing things right.” In addition, from a project management perspective we
needed structure to be in synchronization and alignment with the predefined overall
milestone plan of the new FAL global lighthouse project. Thus, we organized our
Design Thinking approach in three subsequent independent phases: Phase1 “Need
Finding,” Phase 2 “Prototyping & Testing,” and Phase 3 “Implementing.”

Each phase itself consisted of a divergence and convergence part (inspired by the
double diamond scheme (Design Council 2019)) with several agile iteration cycles,
and with respect to Design Thinking always with a clear focus on field activities and
deliverables applicable in the local practice on site, aiming for gathering a maximum
of user insights and direct user feedback. Finally, each phase was expected to
provide its respective deliverables as input to the global development project.

Phase 1 “Need Finding”

The major objective of Phase 1 “Need finding” was the framing of the problem and
the definition of one or several concrete problem statements reflecting the essential,
previously hidden and tacit, user needs. We wanted to gain understanding of the
organizational setting (role), mindset (motivation), and skillset (capabilities) of
different users of the final assembly line in their respective working environment
and under the given working conditions. Who are the users? How and where do
they work? Which jobs do they execute (user segments) that we need to include in
our Design Thinking approach to cover all individual perspectives and a holistic
view of the jobs that need to be done (Ulwick 2016)?

Getting access to end users, in our case ultimately the shop floor workers, and
directly engaging them in need finding and co-creation is the key factor of success
and key differentiator of Design Thinking compared to other, namely engineering-
driven development approaches. Therefore, first we needed to build trust and a good
relationship with all key stakeholders and in particular with the end users. This step
might sometimes be very time consuming. But it is utmost critical for the success of
any Design Thinking project. In our case, it was also a unique opportunity for
promoting Design Thinking while contributing to the design of the new FAL. As a
first contact and engagement measure, we convinced the project leader to conduct a
co-creation workshop using Lego Serious Play (LEGO Group 2010) in order to clear
the project mission, to understand the local environment, working conditions and
specific project needs with respect to user engagement. As a result of our effort, our

approach was adopted and we could initiate a dedicated work stream called “FAL
4 Workers.” As such the Design Thinking team was formally integrated into the
global project structure participating in regular project meetings and progress
reviews. In addition, this enabled us to get introduced by the team to the end
users, the shop floor workers, becoming an intrinsic part and members of a
multifunctional Design Thinking team.

170 M. Durstewitz and T. Abrell

Need Finding itself was conducted during 3 months with only 8 weeks for
in-depth field observations in one of the existing final assembly lines. This is a
relatively short period of time but with a high intensity enough for encompassing
most work situations including all shifts, day and night. Doing so, we gained insights
on the users’ work, working conditions, the shop floor organization, while accessing
both explicit knowledge such as organization charts, process documents, workflows
in IT systems, as well as tacit knowledge of the workers. In order to understand the
complex environment from a user perspective, we observed the users, shop floor
workers, and first line managers in their actual work context, we shadowed them, and
finally conducted contextual interviews (Stickdorn and Schneider 2010). During all
activities, we focused on reaching a general understanding of the entire manufactur-
ing and assembly process from a user perspective and gaining specific insights on
crucial parts of the process. Parallel to the observations and field work, we conducted
an ongoing analysis through affinity-mapping (IDEO 2015) and extensive discus-
sions with users, and therewith triangulating insights and identifying the most critical
themes for further investigation. Then, we distilled the insights to an opportunity
map and associated user journeys (Stickdorn and Schneider 2010). We created a
detailed documentation of each potential opportunity area within these user jour-
neys. Based on the map and user journeys, we conducted a co-creation workshop
explicitly including the actual end users and works council representatives to
prioritize the most relevant opportunity areas. All participants agreed that “Informa-
tion Exchange,” the usage of and access to data and information, represented the
most critical area. The project team identified two major use cases to be both of high
priority and possible to implement in the project timeframe: logistics (material flow
and availability) and exceptions (non-conformity) management.

Phase 2 “Prototyping & Testing”

Compared to other “classical” prototyping approaches, Design Thinking is radically
user centered. The users are always kept in the loop starting with co-creating
experiments to validate assumptions, to pivot and subsequently mature solutions.
The major objective of the prototyping phase is the exploration of the possible
solution space and the selection of the most appropriate solutions, i.e., the ones
matching the problem statement being the right thing to do, and the most promising
solutions, i.e., the ones showing highest evidence and effectiveness by creating the
biggest impact in solving the problem or getting the job done, always based on the
direct feedback of the users. This included the eventual adaptation of the original

work environment and working conditions that best respond to the real (otherwise
hidden) user needs, i.e., which are most effective, and in return create the highest
value for the company, for example, by avoiding cost for non-quality or useless
investment for ineffective and ultimately not used solutions. The first action of Phase
2 was to enrich the findings of Phase 1 with deeper knowledge concerning the
specificity of the information management actually used by the workers and their
respective need for accessing specific information at critical points of the job to be
done. This was not limited to digital solutions but explicitly included offline and
paper-based solutions in use, for example, individual hand-written notes. In addition,
information was gathered about the existing IT systems, the major pain points linked
to the use of these systems and not accomplished information needs. The Design
Thinking team was now complemented by specialists from a digital design agency
with focus on user-centered development of IT solutions, which brought new expert
knowledge and beforehand missing digital prototyping capabilities to the team. But
it also required a ramp-up time for the new team members to become operational. In
the end, the newly formed team was synthesizing the insights from general need
finding and the specific research into design drivers. Then, the team identified core
problems and ideated for possible solutions. The ideas were prioritized considering
all three basic Design Thinking perspectives: user desirability, business viability,
and technical feasibility (Brown 2008).

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 171

On this base, the team started the prototyping activity, organized in cycles. Each
cycle started with user insights, leading toward new prototypes, and closed with a
co-creation workshop to collect user feedback, to validate the prototypes, and to
initiate the next iteration. Based on the outcome of the respective cycle, the team was
able to incrementally increase the maturity of the subsequent prototypes. In our case,
in the short time span of 12 weeks, three prototyping cycles were conducted. The
first cycle delivered a low-fi paper prototype, ideas, and story boards addressing the
use of different devices for the selected use cases (see Fig. 1). This included the use
of individual smartwatches or smartphones, a station tablet, an interactive material
rack, and an interactive team board. The different devices were all assessed and
different user flows prototyped. Then each idea was evaluated by the users
concerning its usefulness for their daily work and respective jobs to be done. The
interaction with the tangible prototypes helped a lot unlocking the tacit user knowl-
edge and quickly progressing toward the next iteration.

At this stage, the smartwatch was excluded because of occupational safety
concerns by the users and at that time too limited functionality. The material rack
was discarded because the users did not see any additional value compared to the use
of the station tablet, which at the same time offered more flexibility and was easier to
implement. Thus, it was decided to focus on the design of a mobile app for use on
individual smartphones and on the station tablet, and to implement the interactive
team board allowing to collect all individual information and collectively assess the
actual work status and exceptions by the shift teams during the daily briefings. It was
important to continue involving all other stakeholders to ensure their commitment
and acceptance for implementing proven solutions. For this purpose, a demo day
was organized on the shop floor to gather feedback for the working final prototypes

172 M. Durstewitz and T. Abrell

Fig. 1 Different devices were evaluated, different user flows prototyped

in close proximity to the real working environment. The outcome of the demo day
materialized in a modular information board for each manufacturing station that
showed the respective staff at work and their tasks as well as the material status and
possible identified exceptions.

Furthermore, we validated the introduction of the mobile app enabling workers to
receive relevant information during their shift, but also to report possible issues or to
ask for support. It was implemented with a working back-end application,
microservice architecture, and matching API’s. The final outcome was fully
documented and represented as the tangible result and deliverable of the prototyping
& testing phase, ready for implementation.

Phase 3 “Implementing”

The major objective of Phase 3 “Implementing” is the integration of a pilot appli-
cation into the operational environment and its adoption by a launching “customer”
by the means of a Minimum Viable Product (MVP, the term is used by the Lean
Startup methodology (Ries 2011)). Here, customer means the respective operational
application area, in our case the final assembly line. The pilot application approach
guarantees fast adaptation rates and a steep learning curve, while limiting the risk of
failure to one selected application area. The MVP is limited to the key functionalities
necessary to solve the problem, in our case providing information about the job
organization and material availability to the worker at the point of use and allowing
them to record and report any exceptions and non-conformities (see Fig. 2). For the
operational proof of software-intensive products and services it is critical to access
real production data, in general provided by the company’s enterprise resource
planning system. This is often very difficult requiring the integration both in the

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 173

Fig. 2 Input for implementation of pilot applications as MVP

real working environment and in the existing (sometimes outdated and closed
legacy) information system infrastructure and architecture.

For the MVP, it is recommended to select a minimum number of core function-
alities necessary to solve the identified problems. In general, this starts with one
functionality and successively new functionality is added to a point that finally the
application creates the impact expected by the end users while remaining easy to
operate at a level that is accepted by them. In our case, the first functional pilot
application just delivered clear work instructions for the job to be done and enabled
the worker to record and report any exception by simply taking a picture of the
non-conformity, adding personal comments and the exact location by just some
clicks, and all this without leaving the actual work position. In the end, Phase 3 could
not be completed by the Design Thinking project team as initially planned. Instead, it
was handed over to the Manufacturing Execution System (MES) project that had
been launched in parallel at a higher level to renew the overall MES. This larger
project was prime and part of the company’s global Digital Transformation initiative
at group level.

Reflection: Critical Success Factors and Global Analysis

Even though we know that some findings are causally linked to the organization and
the specific context of our case, we believe it may serve as a general blueprint for
similar undertakings applying Design Thinking in industrial settings.

174 M. Durstewitz and T. Abrell

Let us first look at the specific insights from our case confirming the criticality of
the respective success factors. Considering methodological, organizational, socio-
cultural, and technical aspects, we have grouped the critical success factors into five
management dimensions as shown in Table 1, and for each focusing on the Design
Thinking key principles, user-centricity and co-creation. These are: (1) Stakeholder
Relationship Management, (2) Objectives Management, (3) People Management,
(4) Project Management, and (5) Solution Consistency Management. They are all
affected by and in return also influence leadership. The table includes guiding
questions for each critical factor and the associated major lessons learned of each
phase.

• Stakeholder Relationship Management is the most critical success factor and
needs continuous highest consideration along the complete project lifecycle. In
general, it is necessary to understand the larger project frame and to find allies to
reach commitment, namely for funding and resources. With respect to Design
Thinking, they need to endorse and adhere to the key principles of user-centricity
and co-creation. This includes top-level sponsors, problem owners, and user
representatives. It requires a strong and ambidextrous leadership (Odgers
Berndtson 2017) to unite all interests and keep them aligned to the common
purpose of the project and specifically keep focus on user needs and desires.
Quick wins and early tangible results help to enforce the willingness of operations
to participate in the generation of user insights and help to create the necessary
evidence of positive impact to keep also investors on board. The larger your
alliance for the project the better it can overcome blocking points and resist
political agendas/concerns and stakeholder conflicts, when they surface at a
later stage. First, it is necessary to onboard at least one initial investor, who
pays and provides resources for the project. In large organizations the account-
ability for planning investments (budget) and the responsibility to execute them
operationally (namely resources assignment) are different functions. The second
important stakeholder group are the developers, who make the prototypes and
finally develop the new solution. The third, probably most difficult and with
respect to Design Thinking most critical stakeholder group consists of the users,
who express their needs and who will ultimately have to use the new solution and
then benefit from it. We also included the works council as the formal user
representatives, who is a natural ally for employee engagement and therefore
Design Thinking. They helped us a lot to open doors and to increase project
reach.

• Objectives Management, the second dimension encompasses the success factors
strategy-fit, framing, and focus. Why is the project important to the company and
to users? What is the proposed value or impact created by the project and which
concrete problem does it solve? The Design Thinking project should contribute
solving complex problems linked to a top-level company objective. Doing so, it
visibly contributes to the success of the company and can more easily increase its
own awareness. But this only works if the project shows evidence on how it helps
to solve a concrete operational problem, to get the job done for end users, in our

in
si
gh

ts
ed

as
so
ci
at

an
d

fa
ct
or
s

su
cc
es
s

C
ri
tic
al

1
T
ab

le

C r
iti

ca
l S

uc
ce

ss
FA

CT
O

R
(1

) S
TA

KE
HO

LD
ER

RE

LA
TI

O
NS

HI
P

M
AN

AG
EM

EN
T

C
om

m
itm

en
t f

or
Fu

nd
in

g
an

d
R

es
ou

rc
es

(2
) O

BJ
EC

TI
VE

S
NA

G
EM

EN
T

M
A at

eg
y

Fi
t,

S
tr

Fr
am

in
g

&
 F

oc
us

(3
) P

EO
PL

E
NA

G
EM

EN
T

M
A

Te
am

in
g,

S
ki

lls
 &

 C
om

pe
te

nc
y

(4
) P

RO
JE

CT
M

AN
AG

EM
EN

T

P
la

nn
in

g,
 A

lig
nm

en
t

&
 S

yn
ch

ro
ni

za
tio

n

(5
) S

O
LU

TI
O

N
CO

NS
IS

TE
NC

Y
M

AN
AG

EM
EN

T

IT
 A

rc
hi

te
ct

ur
e

&
 In

fra
-

st
ru

ct
ur

e,
 D

at
a

M
gm

t.,

P
riv

ac
y

&
 D

at
a

S
ec

ur
ity

G
ui

di
ng

Q
UE

ST
IO

NS
W

ho
 a

re
 th

e
ke

y
st

ak
eh

ol
de

rs
?

W
ho

 p
ro

vi
de

s
fu

nd
in

g?
W

ho
 is

 d
ev

el
op

in
g

th
e

so
lu

tio
n?

W
ho

 n
ee

ds
 a

nd
 w

ill
us

e
it?

W
hy

 is
 th

e
pr

oj
ec

t i
m

po
rta

nt
 to

th
e

co
m

pa
ny

 a
nd

 to
 th

e
us

er
s?

W
ha

t i
s

th
e

va
lu

e
or

 im
pa

ct

cr
ea

te
d

by
 th

e
pr

oj
ec

t?
W

hi
ch

 p
ro

bl
em

 d
oe

s
it

so
lv

e?

W
hi

ch
 s

pe
ci

fic
 e

xp
er

tis
e,

 s
ki

lls

an
d

co
m

pe
te

nc
y

do
 y

ou
 n

ee
d?

W
hi

ch
 e

xp
er

tis
e

is
 a

va
ila

bl
e

in
-

ho
us

e,
 w

hi
ch

 re
qu

ire
s

ex
te

rn
al

su

pp
or

t?

C
an

 D
es

ig
n

Th
in

ki
ng

 b
e

in
te

gr
at

ed
 in

 th
e

pr
oj

ec
t

st
ru

ct
ur

e?
 H

ow
 c

an
 d

iff
er

en
t

ap
pr

oa
ch

es
 b

e
m

an
ag

ed
?

Is
 th

er
e

de
di

ca
te

d
sp

ac
e

av
ai

la
bl

e?

Is
 th

e
so

lu
tio

n
co

m
pl

ia
nt

 w
ith

 th
e

ex
is

tin
g

ar
ch

ite
ct

ur
e

an
d

ca
n

it
be

 s
ea

m
le

ss
ly

 in
te

gr
at

ed
?

H
ow

 c
an

 p
ro

to
ty

pe
s

be
 m

ad
e

fu
nc

tio
na

l w
ith

 re
al

 d
at

a?

Ph
as

e
1

IN
SI

G
HT

S
B

ui
ld

 a
n

al
lia

nc
e

fo
r t

he
 p

ro
je

ct
in

cl
ud

in
g

to
p

le
ve

l s
po

ns
or

s,
 th

e
pr

ob
le

m
 o

w
ne

r,
an

d
us

er
 re

pr
es

en
ta

tiv
es

.

U
nd

er
st

an
d

an
d

bu
ild

 tr
us

t i
n

th
e

la
rg

er
 p

ro
je

ct

fra
m

e,
 i.

p.
 w

ith
 th

e
ac

tu
al

 d
ev

el
op

m
en

t
an

d
th

e
re

sp
on

si
bl

e
op

er
at

io
ns

 te
am

S
et

 th
e

fo
cu

s
on

 th
e

co
m

pa
ny

 to
p

le
ve

l o
bj

ec
tiv

es

an
d

sh
ow

 h
ow

 y
ou

 c
on

tri
bu

te
 to

 s
ol

vi
ng

 a
 c

on
cr

et
e

pr
ob

le
m

.

In
te

gr
at

e
th

e
D

es
ig

n
Th

in
ki

ng
 in

iti
at

iv
e

in
to

 a

lig
ht

ho
us

e
pr

oj
ec

t w
ith

 to
p

le
ve

l p
rio

rit
y.

R
el

y
on

 a
 c

ro
ss

-fu
nc

tio
na

l t
ea

m
 b

ui
lt

of
 p

as
si

on
at

e

T-
sh

ap
ed

 c
ha

ra
ct

er
s.

Fo
cu

s
in

iti
al

ly
 o

n
a

ve
ry

 h
ig

h
le

ve
l o

f m
et

ho
d

kn
ow

le
dg

e
to

 p
er

fo
rm

 n
ee

d
fin

di
ng

 a
nd

 u
nd

er
st

an
d

us
er

s

D
ef

in
e

a
de

di
ca

te
d

su
bp

ro
je

ct
 o

r w
or

k
st

re
am

an
d

in
te

gr
at

e
it

in
 a

 li
gh

th
ou

se
 p

ro
je

ct
;

sy
nc

hr
on

iz
e

m
ile

st
on

e
pl

an
s;

ke
ep

 fu
ll

ac
co

un
ta

bi
lit

y
fo

r d
el

iv
er

ab
le

s.
R

es
er

ve
 a

 d
ed

ic
at

ed
 s

pa
ce

 fo
r c

o-
cr

ea
tio

n.

E
m

ph
as

iz
e

us
er

 jo
ur

ne
ys

 a
nd

 u
se

r s
to

rie
s

as
 m

ea
ns

to

 m
an

ag
e

de
ta

ile
d

re
qu

ire
m

en
ts

 a
nd

 to
 re

ac
h

ac
ce

pt
an

ce
 fo

r n
ew

 d
ig

ita
l s

ol
ut

io
ns

.

G
et

 to
 k

no
w

 th
e

bi
gg

er
 p

ic
tu

re
 a

nd
 b

e
aw

ar
e

of

le
ga

cy
 c

on
ce

rn
s.

 R
es

pe
ct

 th
e

cu
rre

nt
 s

ta
nd

ar
ds

 o
r

be
 a

ut
ho

riz
ed

 fo
r d

ef
in

in
g

th
e

ne
w

 s
ta

nd
ar

ds
.

Ph
as

e
2

IN
SI

G
HT

S
M

ak
e

su
re

 th
at

 o
ve

ra
ll

fu
nd

in
g

an
d

re
so

ur
ce

s
ar

e
co

m
m

itt
ed

 u
pf

ro
nt

; i
f n

ot
co

nt
in

ua
tio

n
of

 th
e

pr
oj

ec
t i

s
at

 ri
sk

.

D
el

iv
er

 q
ui

ck
 w

in
s

an
d

ta
ng

ib
le

 re
su

lts
to

 tr
ig

ge
r t

he
 in

te
re

st
 o

f o
pe

ra
tio

ns
 a

nd
to

 k
ee

p
in

ve
st

or
s

on
 b

oa
rd

.

B
e

re
ad

y
to

 p
iv

ot
 a

nd
 to

 e
ns

ur
e

th
at

 s
po

ns
or

s
an

d
in

ve
st

or
s

ar
e

w
llin

g
to

 d
ea

l w
ith

 u
nc

er
ta

in
ty

an

d
th

e
am

bi
gu

ity

O
ut

co
m

es
 o

f e
xp

lo
ra

tio
n

du
rin

g
th

e
pr

ot
ot

yp
in

g
an

d
te

st
in

g
ph

as
e

ar
e

un
kn

ow
n

In
cr

ea
se

 d
om

ai
n

kn
ow

le
dg

e;
 m

ai
nt

ai
n

th
e

ab
ilit

y
to

 in
vo

lv
e

ad
di

tio
na

l u
se

rs
 a

nd
 d

om
ai

n
ex

pe
rts

.

Fo
cu

s
on

 m
et

ho
d

kn
ow

le
dg

e
fo

r f
as

t p
ro

to
ty

pi
ng

an

d
te

st
in

g;
 if

 re
qu

ire
d

on
bo

ar
d

sp
ec

ia
liz

ed

pa
rtn

er
s.

B
e

ag
ile

:
G

o
fa

st
,

C
o-

cr
ea

te
,

Ite
ra

te
, a

nd
 d

ar
e

to
 p

iv
ot

.
A

dj
us

t s
ki

lls
 a

nd
 re

so
ur

ce
 n

ee
ds

dy
na

m
ic

al
ly

 d
ep

en
di

ng
 o

n
ch

an
gi

ng
le

ve
ls

 o
f e

xp
ec

te
d

ou
tc

om
e.

A
gi

le
 p

ro
to

ty
pi

ng
 le

ad
s

to
 s

ta
nd

al
on

e
an

d
of

te
n

di
sj

un
ct

iv
e

pr
ot

ot
yp

es
. E

ns
ur

e
in

te
rfa

ce
s

(A
P

I)
ar

e
av

ai
la

bl
e

to
 c

on
ne

ct
 p

ro
to

ty
pe

s
w

he
re

-
ev

er
 p

os
si

bl
e

to
 th

e
op

er
at

io
na

l s
ys

te
m

s.
A

nt
ic

ip
at

e
pr

iv
ac

y
an

d
da

ta
 s

ec
ur

ity
 is

su
es

; t
he

y
ne

ed
 to

 b
e

co
ns

id
er

ed
 w

he
n

us
in

g
re

al

pr
od

uc
tio

n
da

ta
.

Ph
as

e
3

IN
SI

G
HT

S
Tr

y
to

 k
ee

p
a

st
ab

le
 c

or
e

te
am

er
an

da
vo

id
 a

 c
om

pl
et

e
ha

nd
ov

at
 la

te
r s

ta
ge

.

…
 if

 n
ot

 th
e

ris
k

of
 d

el
ay

,
te

rm
in

at
io

n,
or

 d
iv

er
si

on
 o

f
th

e
pr

oj
ec

t i
s

ve
ry

 h
ig

h.

P
re

pa
re

 fo
r s

ca
lin

g
w

he
n

ch
oo

si
ng

a
la

un
ch

in
g

cu
st

om
er

.

D
ea

l w
ith

 p
ol

iti
ca

l c
on

ce
rn

s
up

fro
nt

;
th

ey
 w

ill
be

 h
ar

de
r t

o
ov

er
co

m
e

w
he

n
th

ey
 s

ur
fa

ce
 a

t a
 la

te
r s

ta
ge

.

ot
ec

t
A

nt
ic

ip
at

e
co

-lo
ca

tio
n

an
d

pr
pr

oj
ec

t c
or

e
te

am
 a

nd
 le

ad
 u

se
rs

up
.

w
he

n
ch

an
gi

ng
 to

 a
 n

ew
 s

et
-

Fo
cu

s
on

 th
e

in
vo

lv
em

en
t o

f
so

lu
tio

n
ow

ne
rs

 a
nd

 o
pe

ra
tio

ns
.

K
ee

p
th

e
en

d-
to

-e
nd

 p
er

sp
ec

tiv
e

in
 m

in
d

an
d

ad
ap

t i
t t

o
an

y
up

co
m

in
g

ch
an

ge
.

M
an

ag
e

ex
pe

ct
at

io
ns

 to
 e

ns
ur

es
 a

sm
oo

th
 tr

an
si

tio
n

fro
m

 p
ha

se
 to

ph

as
e.

G
et

 c
le

ar
an

ce
 a

bo
ut

 c
ha

ng
e

oj
ec

t.
po

te
nt

ia
l a

t t
he

 s
ta

rt
of

 th
e

pr
A

t i
m

pl
e-

m
en

ta
tio

n
it

is
 to

o
la

te
an

d
to

o
co

st
ly

.
IT

 w
ill

di
sc

ar
d

an
y

ne
w

 “s
ta

nd
ar

d”
 o

r
e

pr
in

ci
pa

l d
es

ig
n

or
 a

rc
hi

te
ct

ur
ch

an
ge

 a
t i

m
pl

em
en

ta
to

n
st

ag
e.

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 175

176 M. Durstewitz and T. Abrell

case reducing lead time and cost of non-quality. In addition, the Design Thinking
project must be ready to pivot while keeping the objectives aligned and must
ensure that sponsors and investors are willing to deal with uncertainty and
literally “dance with ambiguity” (Leifer and Steinert 2011) of the unknown
outcomes of exploration.

• People Management is probably the most important dimension for keeping the
project running. Leadership and the constitution of the team make the difference.
Who are the right people able to form a Design Thinking project team? Which
specific expertise, skills, and competency does the project need? Which expertise
is available in-house, which requires external support? Look for a great leader and
passionate people. For Design Thinking, rely on a cross-functional team built of
T-shaped personal profiles and utmost important, maintain the ability to contin-
uously involve users, experienced operational people as well as newcomers, and
recognized domain experts. At the beginning of the project, end users and their
operational management were very skeptical but with each prototyping cycle we
could increase user engagement and participation. Proficiency in Design Think-
ing methods is the baseline and starting point. The need for operational domain
knowledge increases over time and is subsequently enriched by domain specific
industrialization and integration capabilities. The needs change with each phase
and require a dynamic adaptation of skills and resources depending on changing
levels of expected outcome. In consequence, the project must be ready to add new
team members and to anticipate eventual changes of key partners. For example, in
our use case, on the one hand, we successfully added digital design skills enabling
digital prototyping and agile co-creation in Phase 2. On the other hand, the
change of the team in Phase 3, new prime contractor and development partner,
led to the discontinuation of the project. The missing involvement beforehand
provoked a “not-invented-here” attitude of the new development team and with
the change of site, we lost a large majority of the users. We learned that it is
important to protect the project core team and to avoid a hand over and change of
responsibilities midway.

• Project Management organizes the way of working together, risk assessment and
decision making, the planning of resources, milestones, and deliverables. Again,
here the project leader is the key person to balance interests orchestrating the
team. The question is how to integrate a Design Thinking project in a larger
project structure when cultures clash and as in our case we have to deal with
potentially opposing ways of working between an agile and a classical waterfall
approach? By defining a dedicated project structure for Design Thinking and
integrating it as an independent work stream in one of the company’s lighthouse
projects, we were able to align the formal milestone plans while keeping account-
ability for our deliverables, maintaining the necessary speed and flexibility for our
approach. This helped to manage expectations and to ensure a smooth transition
from phase to phase. We missed to anticipate the radical handover in Phase 3. But
late changes if not anticipated represent a high risk of failure resulting in delay,
termination, or diversion of the project. In our case, new sponsors changed
priorities. The new development team rejected “foreign” change requests since

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 177

the detailed specification of the targeted solution was already finalized and
therewith our opportunity window was closed. An additional success factor is
the availability of an open dedicated project space big enough for the collocation
of the complete project team, with enough room for extensive prototyping and
testing, and with the flexibility to change the space setup depending on changing
project needs. At best, the space should be in proximity to the users. The users
will not follow the project, the project has to come to the users. Thus, with
the change of the project location in Phase 3, it was very difficult to maintain the
contact with the users that had previously worked with the project on the
local site.

• Solution Consistency Management bundles a larger number of associated success
factors and in particular, considering software-intensive products and services,
many technical aspects such as data management, infrastructure and network,
system architecture and integration, as well as data security and privacy policies.
Is the underlying IT architecture fit for a seamless integration? Design Thinking
requires prototypes that can be made functional with real data. Here, standalone
disjunct prototypes are the easiest way to gather user feedback in a short time
frame. The drawback of this approach is that privacy and data security issues
surface when connecting to real production data. We had application program-
ming interfaces (API) proved to be workable but albeit the prototypes were fully
functional and based on state-of-the-art design choices, we did not connect them
to systems in operation. To ensure compliance and consistency of the future
solution, it is important to understand the bigger picture of the global IT system
architecture and infrastructure, protocols, and standards. The Design Thinking
project has to get clearance about the change potential and possible legacy
concerns at the start of the project, because very often they represent the biggest
and remaining obstacle for change. At implementation it is too late and too costly
for principal design or architecture changes.

Finally, let us consider the lessons learned that might be applied to other similar
projects. In the following section, we present the results of our SWOT analysis for
the introduction of Design Thinking in a large manufacturing organization.

• Strengths of the approach are user acceptance and high adoption rates due to the
involvement and participation of users during the entire process. The approach
helps to create a holistic view from a user perspective. Co-creation unlocks tacit
user knowledge and creates in-depth problem understanding. Fast iterations of
prototyping and testing with a focus on minimum viable functions make out-
comes tangible in various maturity levels enabling direct user feedback and
validation until a good and effective, usable and useful, new solution is created.

• Weaknesses however the explorative nature of Design Thinking makes it difficult
to plan required resources upfront, as these are dependent on the outcomes of the
process. In particular, the high efforts required for need finding and problem
understanding are underestimated, as solutions for obviously apparent problems
are demanded leading to difficulties for recruiting end users, who are normally
assigned to operational priorities. Investors are traditionally solution-driven

178 M. Durstewitz and T. Abrell

focusing on optimization and efficiency and are not well suited to deal with
uncertainty of a user-centered problem-driven Design Thinking approach focus-
ing on impact and effectiveness.

• Opportunities are employee engagement and trust building by involving all
stakeholders and in particular end users in co-creation and collaborative design,
namely in large cultural or digital transformation initiatives. Valuable user
insights increase the effectiveness of the design. The application of Design
Thinking results in a strong bottom-up sense of ownership for the solution
(s) developed and increases user acceptance. Integrated in a lighthouse project,
Design Thinking can more easily adopted by the organization becoming an
essential part of the company’s “DNA,” the global product and service develop-
ment, most critical for software-intensive solutions.

• Threats are the fast pace of the Design Thinking project, thus the synchronization
with other initiatives may not be sufficient, particularly if the project teams are not
available for and not used to agile co-creation. Also, the integration with legacy
systems may demand more time and incremental focus. Lastly, by the threat of
not considering alignment and synchronization with parallel or superordinate
projects, a strong not-invented-here reflex can be triggered when eventually
merged at a later stage.

Conclusion: Key Takeaways and Lessons Learned

With our experience gained in this concrete case, we reached a better understanding
of how Design Thinking can be applied for a better design of complex industrial
processes and manufacturing organizations. By involving users and utilizing their
tacit knowledge we could increase awareness about key challenges and set focus on
the real problems, things that really matter. By iteratively making progress tangible
through prototypes, knowledge was made explicit and gathered beyond the incre-
mental. However, in order to use Design Thinking in a large corporation, it is
necessary to stress stakeholder management. Finally, the speed and overarching
approach of the work stream led to issues that several parties felt not to be involved
adequately and definitely too late. It became obvious that it is not enough to include
the otherwise most of the time forgotten end users—the ones who need—but also to
include the solution developers—the ones who make—and last but not least the
business owners and investors—the ones who pay—in a holistic user-centered
approach.

We were able to demonstrate how Design Thinking accelerates and improves the
usability and effectiveness of design, in our case of a smart, collaborative support
system for workers on the shop floor. We learned that there is no general recipe.
Ambidextrous leadership, perseverance and resilience in keeping end-to-end
accountability, and a collaborative mindset are necessary to make Design Thinking
a success. The simplification of our approach in three subsequent phases helped a lot
to make it sizable for a large organization. Overall, Design Thinking is a very

suitable approach for developing a profound problem understanding as a source for
innovation, namely in the design of software-intensive products and services.

Design Thinking in a Large Manufacturing Organization: Designing a Smart. . . 179

References

Abrell T, Durstewitz M (2016) The role of customer and user knowledge in internal corporate
venturing: the viewpoint of the corporate entrepreneur. Int J Technol Manag 71(3/4):171–185

Boy GA (2011) Cognitive function analysis in the design of human and machine multi-agent
systems. In: Boy GA (ed) The handbook of human-machine interaction: a human-centered
design approach. Ashgate Publishing, Surrey, pp 189–206

Brenner W, Uebernickel F, Abrell T (2016) Design thinking as mindset, process, and toolbox. In:
Brenner W, Uebernickel F (eds) Design thinking for innovation. Springer, Heidelberg, pp 3–21

Brown T (2008) Design thinking. Harv Bus Rev 86(6):84–92
Brown T (2009) Change by design. HarperCollins, New York
Design Council (2019) The Double Diamond: 15 years on. Design Council. https://www.

designcouncil.org.uk/. Accessed 11 Jan 2021
Durstewitz M (1994) Reuse of experience for the design of industrial applications - a formal

approach. In: Barthélemy J, Bisdorff R (eds) Cognitive science in industry: proceedings of the
first European Conference on Cognitive Science in Industry, Luxembourg, 28–30 September

Grudin J (1993) Obstacles to participatory design in large product development organizations. In:
Schuler D, Namioka A (eds) Participatory design: principles and practices. Lawrence Erlbaum
Associates, Hillsdale, NJ, pp 99–119

Hobday M (2000) The project-based organisation: an ideal form for managing complex products
and systems? Res Policy 29(7-8):871–893

Hollnagel E (2009) The ETTO principle: efficiency-thoroughness trade-off: why things that go right
sometimes go wrong. CRC Press, Boca Raton

IDEO (2015) Design kit: bundle ideas. IDEO.org. https://www.designkit.org/methods/30.
Accessed 18 Jan 2021

Issar G, Navon LR (2016) Operational excellence - a concise guide to basic concepts and their
application. Springer, Cham

LEGO Group (2010) Lego serious play open source. Introduction to LEGO serious play. https://
seriousplaypro.com/about/open-source/. Accessed 11 Jan 2021

Leifer L, Steinert M (2011) Dancing with ambiguity: causality behavior, design thinking, and triple-
loop-learning. Inf Knowl Syst Manag 10:151–173

Odgers Berndtson (2017) Ambidextrous leadership. Manager Barometer 2017/2018, pp 38–42.
https://www.odgersberndtson.com/media/5652/ob_manager_barometer_2017.pdf. Accessed
12 Feb 2021

Ries E (2011) The lean startup. Penguin Books, London
Stickdorn M, Schneider J (2010) This is service design thinking, basics - tools – cases. BIS

Publishers, Amsterdam
Ulwick AW (2016) Job to be done: theory to practice. Idea Bite Press, Chicago
von Hippel E (1994) “Sticky information” and the locus of problem solving: implications for

innovation. Manag Sci 40(4):429–439

https://www.designcouncil.org.uk/
https://www.designcouncil.org.uk/
https://www.designkit.org/methods/30
https://seriousplaypro.com/about/open-source/
https://seriousplaypro.com/about/open-source/
https://www.odgersberndtson.com/media/5652/ob_manager_barometer_2017.pdf

Digital Platform Design at the Edge
of Complexity: The Value of Design
Thinking to Balance Between Configuration
and Customization

Emanuel Stoeckli

Introduction

Design-orientation has become an essential factor to create unique value proposi-
tions that enable higher margins, faster growth, and better organizational perfor-
mance (Rae 2015). In fact, organizations with a top-quartile McKinsey Design Index
grow twice as much compared to the industry-benchmark (Sheppard et al. 2018). As
such, human-centric design approaches such as Design Thinking gained substantial
traction in the development of software-intensive products and services. The nature
of today’s products and services, however, is shifting toward digital platforms. The
most valuable companies are platform-based and the number of digital platforms is
continuously growing (Cusumano et al. 2019; Evans and Gawer 2016). A distinct
characteristic of platforms is that they bring together multiple sides of actors. Hence,
the needs, concerns, values, and perceptions of various involved users and stake-
holders need to be balanced—a task which is known to be key pillar of human-
centered design approaches (Hehn et al. 2020; Rouse 2007). For example, Design
Thinking artifacts such as prototypes can be used to explicate different perceptions
and conflicting interests, hence, may help to manage tensions that emerge between
stakeholders (Staehelin et al. 2021). However, despite these benefits of human-
centric approaches their focus lies on user requirements while technical system
requirements are neglected (Hehn et al. 2018b) and there is a lack of research on
their application to the design of digital platforms.

This gap is crucial, since the design of digital platforms differs from other
products and services in that it is thoroughly based on modularity to increase variety
and reduce complexity (Gawer 2014). Hence, the very core of platform design is the
systematic reuse of modules. This needs to be considered when triangulating
between desirability, viability, and feasibility. Conversely, satisfying the

E. Stoeckli (*)
esurance AG, Zürich, Switzerland

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_12

181

https://doi.org/10.1007/978-3-030-90594-1_12#DOI

(conflicting) needs of various stakeholders requires a high degree of individual
customization. In turn, it leads to a high degree of complexity and a low degree of
reusability, which is against the core principle of digital platforms. In contrast, pure
maximization of reusability by configuring existing platform modules in the hope to
maximize economies of scope and scale is far away from human-centered design,
neglects user needs, and exhibits solution-fixation (Meinel and Leifer 2019). There-
fore, this contribution triangulates the two perspectives and discusses the value of
Design Thinking as a mindset, process and toolset for Digital Platform Design.

182 E. Stoeckli

Theoretical Foundation

Platform Types: On Seeing the Forest for the Trees

Literature emphasizes the distinction between transaction platforms and innovation
platforms (Cusumano et al. 2019; Evans and Gawer 2016). While the former
facilitates transactions between two or more actors, the latter facilitates the creation
of product and service innovations based on shared resources (Cusumano et al.
2019). As such, platforms per se exist for a long time. For example, physical
platforms bring together people to access shared resources like trains, while product
platforms harness shared resources to create novel products within a common
product family (e.g., car models). In this contribution, we focus on digital platforms
that benefit from both types. In reality, they often act as integrated platforms that
combine an innovation platform (e.g., app development) together with a transaction
platform (e.g., app marketplace) (Evans and Gawer 2016). Digital transaction
platforms benefit from lower transaction costs and exponential scalability (Hein
et al. 2020). Digital innovation platforms benefit from digital (or digitally equipped)
products and services that embrace characteristics such as being (re-)programmable,
addressable, sensible, communicable, memorable, traceable, and associable (Yoo
et al. 2010). The crux is that these characteristics enable flexibility and openness,
which in turn yields in generativity and digital convergence (Yoo et al. 2012).
Generativity implies that the form and function of the facilitated innovations
becomes inherently dynamic and malleable so that a wide and unforeseen variety
of forms and functions can be (re-)configured without need for prior customization.
Convergence implies that the scope of digital platforms is not limited to individual
industries and domains anymore, but functionalities from previously separate disci-
plines are converging.

Platform Economics: On Economies of Scale and Scope

A central success factor of digital platforms is their tremendous network effects
which lead to winner-take-all markets (Constantinides et al. 2018; Katz and Shapiro
1985). Specifically, the value of a platform scales with (and depends on) the number

of actors within one side of the platform (direct network effect) as well as across
multiple sides of the platform (indirect network effects) (Evans and Gawer 2016).
This is why platforms widely face “chicken and egg” problems to attract actors
(Caillaud and Jullien 2003). Apart from economies of scale, the major benefit of
innovation platforms lies in realizing economies of scope through the systematic
reuse of shared modules (i.e., components) for the creation of new complementary
products and service innovations (i.e., complements) (Gawer 2014). In addition, the
value of innovation platforms, then, scales with the number (and quality of) of
reusable components and complements (Cusumano et al. 2019). Accordingly, open-
ing up innovation platforms builds the foundation to create digital platform ecosys-
tems that attract complementors such as developers (Hein et al. 2020).
Consequently, the value creation logic in digital platform ecosystems shifts toward
mutual value co-creation between the actors (Hein et al. 2019). Governance struc-
tures, then, control the access of actors to resources and regulate the interactions and
value allocation between these actors through price and incentive mechanisms
(Boudreau and Hagiu 2009).

Digital Platform Design at the Edge of Complexity 183

Platform Modularity: On Complexity and Variety

The described economies of scope and scale draw on the principle of
modularization. Digital platforms are modular if their structure (i.e., architecture)
is decomposed into smaller building blocks (i.e., modules, components) with well-
defined functions and relations (i.e., interfaces) so that the components can be
operated on independently and the initially complex system becomes manageable
(Baldwin and Clark 2000; Bask et al. 2010). From that, two key benefits arise from
modularity:

First, the complexity of a platform is reduced by limiting the scope of interaction
to a set of well-defined interfaces between a limited number of components (Baldwin
and Clark 2000). This abstraction allows to isolate components so that complex parts
can be hidden from other components (Viana et al. 2017).

Second, the variety of a platform is enhanced by increasing the flexibility of
components through basic operations such as splitting, substituting, augmenting
(including), excluding, inversion, and porting (Baldwin and Clark 2000). Hence, a
tremendous potential for unique product and service innovations is created at each
level of decomposition (i.e., modules or components) (Germonprez et al. 2007).
Thereby, platform owners often introduce different types of modules to control the
possible basic operations. For example, core modules which can be extended with
optional modules (Hein et al. 2020), and unique modules in addition to common and
variant modules (Moon et al. 2010).

184 E. Stoeckli

Platform Design (Thinking): On Configuration
and Customization

Modularity enables to adapt to diverse and continuously changing user needs while
realizing efficiencies of scale and scope (Bask et al. 2010; Brax et al. 2017; Moon
et al. 2010; Yoo et al. 2010). To do so, two ways are distinguished: Configuration
supports variance through setting predefined parameters, while customization sup-
ports meeting individual requirements that go beyond the configurable limit (Sun
et al. 2008). Accordingly, a trade-off becomes apparent: either the satisfaction of
individual needs and requirements is restricted to predefined configurations or
complexity is increased by introducing customized or customer-specific modules
(Brax et al. 2017). It is here where human-centered design methods come into place
to find the right balance between desirability, viability, and feasibility (Cooper et al.
2007).

Approach

This contribution draws on digital platform and design thinking literature to trian-
gulate theory with the design activities made in practice while acting as Platform
Product Manager of a B2B2C InsurTech platform at esurance in Switzerland. The
reflection process grounds in experiences made in the time frame between August
2019 and January 2021. The platform itself has to be seen in the context of the
insurance industry in which value is increasingly created in value networks (Stoeckli
et al. 2018). The platform brings together insurance companies, associations, and
other stakeholders relevant for different target groups (e.g., Gastronomy, IT, insur-
ance company-specific white label solutions) to co-create digital insurance plat-
forms. As an innovation platform, the B2B2C platform facilitates innovation in
form of the creation of new complementary transaction platforms with a variety of
configuration possibilities related to products (e.g., tariffs), pre-sales services (e.g.,
leads), sales services (e.g., partner app), and post-sales services (e.g., invoice
generation). From a transaction platform view, a variety of target group specific
platforms facilitate the digital exchange of insurance products and services in the
context of small and medium-sized enterprises (SMEs). For example, transactions
such as calculating digital offers, buying insurance online with instant temporary
coverage, or accessing previous transactions in a Cockpit. This case is particularly
interesting to investigate the phenomena at hand, since in comparison to product-
oriented insurances, the platform adopts an inherently customer-centric approach
(i.e., variety of platforms with products and services most relevant to stakeholders
from a particular target group).

Digital Platform Design at the Edge of Complexity 185

The Value of Design Thinking for Digital Platform Design

Mindset: Increasing Variety of Addressed Problems per
Solution

Successful product and service innovations—as proposed by human-centered
approaches like design thinking—combine desirability, feasibility, and viability
(Cooper et al. 2007; Jones and Samalionis 2008).

Design Thinking starts with desirability and with a problem-oriented mindset
(Meinel and Leifer 2019). Digital Platforms, in turn, can be seen as a class of
solutions that harness modularity (feasibility) to gain economies of scope and
scale (viability). Consequently, a digital platform mindset is at risk of being biased
toward re-using existing platform capabilities rather than exploring the problems of
users. This risk is widely known as solution-fixation (Meinel and Leifer 2019).
Design Thinking fosters a deep and broad understanding of the problems and pre-
vents bias toward viability and feasibility (Jones and Samalionis 2008). Hence, the
variety of considered problems increases. On the other hand, Design Thinking often
results in finding particular solutions to particular problems (Dolata and Schwabe
2016) and ends with building nontechnical prototypes. Hence, the risk is that the
innovation process is biased toward individual desirable solutions. From a platform
point of view, individual solutions may be feasible in the short term, but the logic of
platform viability lies in satisfying individual user needs through configurations.

Therefore, I argue that the sweet spot is where a wide range of relevant problems
are addressed by a variety of platform configurations (i.e., few solutions) (see Fig. 1).

Fig. 1 Increasing variety of problems and variety of addressed problems per solution

186 E. Stoeckli

Fig. 2 Double Diamond of
divergent and convergent
phases (based on Design
Council 2015)

Therefore, the divergent and convergent thinking of Design Thinking must be
combined with the platform striving to address many problems with a few
configurable solutions.

In the problem space, Design Thinking helps to continuously redefine meaningful
problems for relevant stakeholders. Systematic methods such as “design by analogy”
WordTrees help to identify relevant analogies and problems by mapping more
general and specific terms at various abstraction levels (Linsey et al. 2012). How-
ever, today’s problem space is shaped by (limitations of) the existing solutions.
Hence, it is crucial to incorporate how the identified problems relate to problems
already addressed by the platform without jumping to the solution space. For
example, imagine the context of legal terms that need to be accepted by users. One
way to look at it is to explore the specific problem of legal terms and the trade-off
between completeness and readability. The more general problem is how complex
issues can be shown concisely while the complex details remain available only
where they are needed. As such, links to related problems become apparent (e.g.,
definitions in health declaration surveys). Like this the range of identified problems
expands and the foundation is set to explore solutions that become relevant in a
broader context.

In the solution space, the key is to explore configurable solutions which increase
the variety of addressed problems. Therefore, the malleability and flexibility of
digital solutions can be harnessed to foster generativity. It is helpful to build on
ideas and turn them into more malleable and flexible solutions that tackle multiple
identified problems (see Fig. 2). For example, the illustrated issue with legal terms
was solved with a flexible tooltip tag that can be added to any translation which is
rendered by the frontend. This means it is open to a yet unforeseeable variety of
contexts (e.g., legal terms in a basket, price calculation parameter descriptions,
survey questions) and translations can be configured at any time by non-developers.

Digital Platform Design at the Edge of Complexity 187

Process: Considering the Lifecycle and Setting Boundaries

From a process perspective, Design Thinking adopts a micro cycle that includes
re-defining the problem, need finding, ideation, prototyping, and testing (Brenner
et al. 2016). While the phases may vary, the general logic is to alternate between
divergent and convergent phases as well as between the problem and the solution
space as depicted in Fig. 2 (Design Council 2015). This micro cycle is repeatedly
applied so that the understanding of both spaces continuously increases. Structuring
multiple iterations of micro cycles into an overall innovation process is referred to as
macro cycle. As such, the macro cycle can again be divided into a divergent and
convergent phase so that the fidelity of prototypes gradually increases with every
iteration from low-fidelity prototypes such as paper prototypes to high fidelity
prototypes such as clickable mockups (Brenner et al. 2016). Applied to digital
platform design, this contribution highlights two learnings:

First, in course of transitioning iteratively from prototypes toward actual
implementations, three paths of deriving human-centric requirements can be taken:

1. Platform Configuration: Deriving human-centric requirements on how to reuse
existing platform modules, components, and features.

2. Platform Customization: Deriving human-centric requirements on how to create
new custom modules, components, and features.

3. Platform Expansion: Deriving human-centric requirements on how to extend the
platform by a) altering and enriching the configuration capabilities of existing
modules, or b) by adding new configurable modules, components, or features.

However, in practice, innovations often comprise a mixture of these three paths,
which demands for a careful balancing between configuration and customization.
Thereby two main challenges need to be addressed. On the one hand, there is always
a trade-off between short-term needs of individual customers and long-term needs
such as maintainability, scalability, and extensibility of the platform (De Weck et al.
2011). On the other hand, the challenge lies in distinguishing individual customiza-
tion needs that occur today from needs of multiple future users that demand for
configurability. Design Thinking artifacts such as personas can help to approach this
challenge, for example, by defining primary and secondary personas as well as anti-
personas. This is especially true in earlier stages of digital platform design where the
target users and the direction in which the platform should be expanded are less
steady. Nevertheless, a clear vision is needed on where the platform aims to realize
economies scope in the future. In fact, it is the very essence of strategy is to decide
what to do and what not to do to build unique value propositions (Porter 1996, 2012).

Second, it is crucial to understand that innovation happens at each level of
modular decomposition (e.g., modules, components, features) and different modules
are in different lifecycle phases (e.g., a well-established core module versus a novel
complementary module). Like teams that transition through forming, storming,
norming, and performing stages (Tuckman 1965) modules evolve over time. This
is true not only true from a technical component view, but for the whole

socio-technical system. Specifically, not only modules may be new, but also new
users with different needs may start to engage with an existing module. Hence, both
the problem and the solution space continuously evolve over time. Long-term
success—as proposed by ambidexterity theory—grounds in the ability to simulta-
neously explore (i.e., search and experiment by increasing variety) and exploit (i.e.,
increase productivity and efficiency by limiting variety) (March 1991). In analogy,
car manufacturers only create full redesigns of car models every 4–6 years, while
innovation in between is limited to facelifts. Accordingly, incremental, evolutionary,
and revolutionary innovations should be pursued simultaneously, which is possible
with Design Thinking (Brown 2009). For the design of digital platforms, the
challenge is to manage a portfolio of innovations as part of a hierarchical decompo-
sition of modules, components, and features. When aiming at revolutionary innova-
tions, it is important to start as open minded as possible into the design process and
nothing changes from an ordinary design process. On the contrary, when aiming at
more incremental and evolutionary innovations it is necessary to link the design
process to the related modules. On the one hand, each module has an underlying
value creation logic and solves actual problems of users. On the other hand, the
boundaries need to be defined by deciding carefully to what extent the design space
should be limited (and extended) while also taking into consideration the risk of
solution-fixation.

188 E. Stoeckli

Toolset: Combining Design Methods with Modular Operators

The vast body of methods and tools used in design (thinking) are solution agnostic
and can, thus, be applied to digital platform design as well (Hanington and Martin
2012; IDEO 2015; Uebernickel et al. 2015). The particularities of platform design
thinking do not lie in the methods and tools, but in the way they can be applied to
platforms. Prior research has elaborated on the usefulness of different methods along
the design process (Hehn et al. 2018a). When applying these design methods to
digital platform design, the main particularities lie in the prototyping and testing
phase. Namely, the modular basis operations of splitting, substituting, augmenting
(including), excluding, inversion, and porting (Baldwin and Clark 2000) simplify the
transition from low-fidelity to high fidelity prototypes. For example, substitution
allows us to test a new microservice that generates PDF documents on a single
platform instance.

Concluding Remarks

This contribution has analyzed the value of Design Thinking for the design of digital
platforms. From a mindset view, the contribution proposes to combine the divergent
and convergent thinking of Design Thinking with the platform mindset of addressing

many problems with a few configurable solutions. In the context of digital platforms,
the sweet spot of desirable, feasible, and viable solutions is where a wide range of
problems are addressed by a variety of platform configurations. From a process
view, this contribution underlines the strategic relevance to carefully balance
between configurations and customizations and highlights the challenge of
distinguishing between today’s customization needs and future configuration
needs. From a toolset view, the contribution suggests that existing design methods
and tools together with the modular basis operations simplify the transition toward
high fidelity prototypes. With this discussion, the contribution provides a better
understanding of how Design Thinking can be integrated into the ongoing design
and development of digital platforms.

Digital Platform Design at the Edge of Complexity 189

References

Baldwin CY, Clark KB (2000) Design rules: the power of modularity. MIT Press
Bask A, Lipponen M, Rajahonka M, Tinnilä M (2010) The concept of modularity: diffusion from

manufacturing to service production. Int J Manuf Technol Manag 21(3):355–375
Boudreau KJ, Hagiu A (2009) Platform rules: multi-sided platforms as regulators. Platf Mark Innov

1:163–191
Brax SA, Bask A, Hsuan J, Voss C (2017) Service modularity and architecture – an overview and

research agenda. Int J Oper Prod Manag 37(6):686–702
Brenner W, Uebernickel F, Abrell T (2016) Design Thinking as mindset, process, and toolbox. In:

Brenner W, Uebernickel F (eds) Design Thinking for innovation: research and practice.
Springer, Cham, pp 3–21

Brown T (2009) Change by design: how design thinking transforms organizations and inspires
innovation. Harper Business, New York

Caillaud B, Jullien B (2003) Chicken & egg: competition among intermediation service providers.
Rand J Econ 34(2):309–328

Constantinides P, Henfridsson O, Parker GG (2018) Introduction—platforms and infrastructures in
the digital age. Inf Syst Res 29(2):381–400

Cooper A, Reimann R, Cronin D (2007) About face 3: the essentials of interaction design. John
Wiley & Sons

CusumanoMA, Gawer A, Yoffie DB (2019) The business of platforms: strategy in the age of digital
competition, innovation, and power. Harper Business, New York

De Weck OL, Roos D, Magee CL (2011) Engineering systems: meeting human needs in a complex
technological world. MIT Press

Design Council (2015) What is the framework for innovation? Design council’s evolved double
diamond. Design Council. https://www.designcouncil.org.uk/news-opinion/what-framework-
innovation-design-councils-evolved-double-diamond. Accessed 7 Feb 2021

Dolata M, Schwabe G (2016) Design thinking in IS research projects. In: Brenner W, Uebernickel F
(eds) Design thinking for innovation. Springer, Cham, pp 67–83

Evans PC, Gawer A (2016) The rise of the platform enterprise: a global survey. The Center for
Global Enterprise. http://epubs.surrey.ac.uk/811201/

Gawer A (2014) Bridging differing perspectives on technological platforms: toward an integrative
framework. Res Policy 43(7):1239–1249

Germonprez M, Hovorka D, Collopy F (2007) A theory of tailorable technology design. J Assoc Inf
Syst 8(6):315–367

https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
https://www.designcouncil.org.uk/news-opinion/what-framework-innovation-design-councils-evolved-double-diamond
http://epubs.surrey.ac.uk/811201/

190 E. Stoeckli

Hanington B, Martin B (2012) Universal methods of design: 100 ways to research complex
problems, develop innovative ideas, and design effective solutions. Rockport Publishers,
Massachusetts

Hehn J, Uebernickel F, Herterich M (2018a) Design thinking methods for service innovation—a
Delphi study. In: Proceedings of the 22nd Pacific Asia Conference on Information Systems,
Yokohama

Hehn J, Uebernickel F, Stoeckli E, Brenner W (2018b) Designing human-centric information
systems: towards an understanding of challenges in specifying requirements within design
thinking projects. MKWI proceedings 2018

Hehn J, Mendez D, Uebernickel F, Brenner W, Broy M (2020) On integrating design thinking for
human-centered requirements engineering. IEEE Softw 37(2):25–31

Hein A, Weking J, Schreieck M, Wiesche M, Böhm M, Krcmar H (2019) Value co-creation
practices in business-to-business platform ecosystems. Electron Mark 29(3):503–518

Hein A, Schreieck M, Riasanow T, Setzke DS, Wiesche M, Böhm M, Krcmar H (2020) Digital
platform ecosystems. Electron Mark 30(1):87–98

IDEO (2015). Field guide to human-centered design. IDEO.org. https://www.designkit.org/
resources/1. Accessed 6 Feb 2021

Jones M, Samalionis F (2008) From small ideas to radical service innovation. Des Manag Rev
19(1):20

Katz ML, Shapiro C (1985) Network externalities, competition, and compatibility. Am Econ Rev
75(3):424–440

Linsey JS, Markman AB, Wood KL (2012) Design by analogy: a study of the wordtree method for
problem re-representation. J Mech Des 134(4):041009

March JG (1991) Exploration and exploitation in organizational learning. Organ Sci 2(1):71–87
Meinel C, Leifer L (eds) (2019) Design thinking research: looking further: design thinking beyond

solution-fixation. Understanding innovation. Springer, Cham
Moon SK, Shu J, Simpson TW, Kumara SRT (2010) A module-based service model for mass

customization: service family design. IIE Trans 43(3):153–163
Porter ME (1996) What is strategy. Harv Bus Rev 74(6):61–78
Porter ME (2012) What is strategy: issues for the world bank. Harvard Business School. https://

www.hbs.edu/faculty/Publication%20Files/2012-0802—World_Bank_Strategy_c2726162-
7d36-400b-938c-a87119f5ccac.pdf. Accessed 26 Jan 2021

Rae J (2015) Design value index. Des Manag Rev 26(1):4–8
Rouse WB (2007) People and organizations: explorations of human-centered design. Wiley
Sheppard B, Sarrazin H, Kouyoumjian G, Dore F (2018) The business value of design. McKinsey

Quarterly
Staehelin D, Dolata M, Schwabe G (2021) Managing tensions in research consortia with design

thinking artifacts. In: Hehn J, Mendez D, Brenner W, Broy M (eds) Design thinking for software
engineering - creating human-oriented software intensive products and services. Springer

Stoeckli E, Dremel C, Uebernickel F (2018) Exploring characteristics and transformational capa-
bilities of InsurTech innovations to understand insurance value creation in a digital world.
Electron Mark 28(3):287–305

Sun W, Zhang X, Guo CJ, Sun P, Su H (2008) Software as a service: configuration and custom-
ization perspectives. In: 2008 IEEE Congress on Services Part II (services-2 2008)

Tuckman BW (1965) Developmental sequence in small groups. Psychol Bull 63(6):384–399
Uebernickel F, Brenner W, Naef T, Pukall B, Schindlholzer B (2015) Design thinking: Das

Handbuch. Frankfurter Allgemeine Buch
Viana DD, Tommelein ID, Formoso CT (2017) Using modularity to reduce complexity of indus-

trialized building systems for mass customization. Energies 10(10):1622
Yoo Y, Henfridsson O, Lyytinen K (2010) Research commentary—the new organizing logic of

digital innovation: an agenda for information systems research. Inf Syst Res 21(4):724–735
Yoo Y, Boland RJ, Lyytinen K, Majchrzak A (2012) Organizing for innovation in the digitized

world. Organ Sci 23(5):1398–1408

http://ideo.org
https://www.designkit.org/resources/1
https://www.designkit.org/resources/1
https://www.hbs.edu/faculty/Publication%20Files/2012-0802%E2%80%94World_Bank_Strategy_c2726162-7d36-400b-938c-a87119f5ccac.pdf
https://www.hbs.edu/faculty/Publication%20Files/2012-0802%E2%80%94World_Bank_Strategy_c2726162-7d36-400b-938c-a87119f5ccac.pdf
https://www.hbs.edu/faculty/Publication%20Files/2012-0802%E2%80%94World_Bank_Strategy_c2726162-7d36-400b-938c-a87119f5ccac.pdf

Design Thinking in Healthcare—Enabler
for Digitalization in Complex
Environments: Why Healthcare Is
Adequate to Proof the Potential of Design
Thinking for Software-Intensive
Ecosystems

Christophe Vetterli

Two Different Worlds

Let us step back one step first: Currently, most patient experiences look like the
following emergency example: You are feeling some unusual pain in the belly
region for 2 days, and you have googled several sources. You are waiting for one
more day, with uncertainty because you do not know if you are right from your
googled deviated diagnosis, to then decide to look for the emergency department
(ED) from the regional hospital. Before you could enter ED, you have parked in the
far distanced parking because the six parking lots directly in front of the entrance
were taken. You now head to the receptionist, who tells you to fill out the standard-
ized form. The first five items are name, birthday, civil status, religion, and insurance
status. The latter three do not really match your current needs, and unfortunately, you
have been here 3 weeks ago and already provided that information—nothing has
changed since then. However, you need to fulfill the data again. Your need seems “a
classic” for an ED entry: You want to know what is going on with your belly. After
providing data—again—you start waiting in the waiting area, having the first contact
to an assistant physician after 50 min arriving at the ED. He has left you in the
examination room after 8 min telling you that the senior physician will need to have
a look. To shorten the story, you will wait on average another 30–60 min, depending
on weekday and daytime, to have full transparency of the next treatment options.
Typically, this is still not the end of your ED stay. Central Emergency Departments
in hospitals have between 20,000–80,000 cases a year. Some even have to deal with
a multiple of these numbers, such as the ED of the city of Oslo. This hospital will

C. Vetterli (*)
Vetterli Roth & Partners AG, Zug, Switzerland
e-mail: christophe.vetterli@vetterlirothpartners.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_13

191

mailto:christophe.vetterli@vetterlirothpartners.com
https://doi.org/10.1007/978-3-030-90594-1_13#DOI

have over 300,000 ED cases a year after being finalized. It can be said that the ED
process is a prominent one.

192 C. Vetterli

The recent pandemic has underlined the massive problems in healthcare—espe-
cially in terms of data usage, resource transparency and proactive steering ability of
those organizations and patient flows. It has shown that many healthcare organiza-
tions are lacking digitalized data which are gathered in a structured, standardized,
and automated way and represent reality. Hence, it makes it hard for all the key
process owners such as hospitals, medical centers and the linked governmental
authorities to be efficient and provide the right performance. Even there are some
digital “islands,” the connectivity along the value chain hardly exists. The
workarounds to create, e.g., “one correct truth” of capacity takes too long and is
only produced with a tremendous effort from single person. In the pandemic, many
staff members were gathering the number of COVID-19 patients manually running
from one ward to the other to enter their gathered information into excel. By having
entered this data into an printed Excel, the information was already old, since in the
60 min running from ward to ward of a bigger university hospital, the situation has
already changed again. This is happening in the year 2020.

Let us walk through a different patient experience: Imaging a 25-year-old woman,
Ms. Wehrle, again having some unusual pain in the belly region for 2 days, and
yesterday she has had a first consultancy through a videoconference with a medical
expert having asked her specific question to exclude some life-threatening source.
The medical expert has received Ms. Wehrle’s permission to access her health data
on her mobile phone to analyze the vital data. She recommends: “Ms. Wehrle, please
observe it furthermore and go to the Emergency Department if it will not get better in
the next 24 hours.” Ms. Wehrle has been reassured through the short exchange with
the expert. However, today she is feeling worse, so she checks the capacity of the
different emergency departments in the surrounding online and sees that the ED
dependance a few hundred meters is nearly empty. She already has reserved her
parking lot via her parking app in front of the ED dependance. Arriving there, she is
being welcomed since she checked-in to the ED via mobile and provided the basic
data already automatically via check-in: “Welcome Ms. Wehrle, we have the senior
physician ready in examination room 3 for you.” The information from the video-
conference with the physician yesterday has been transmitted upfront, and the “case”
with all the needed information has reached the senior physician on time to be
prepared and create hypotheses about the belly pain. He has already pre-announced
to the radiology department that Ms. Wehrle will be forwarded to the diagnostics
directly after having informed her about his hypotheses. He expects her to stay
overnight, and in the meanwhile, a pre-reserved bed would be ready. Data has been
used intelligently, software was fully embedded in the patient-oriented process, and
the experts could fully focus on applying their expertise to Ms. Wehrle’s need.

To be able to provide a completely different experience to the patient, the
organization needs to suffer from less stress in the system. Many information
which formerly has been “somewhere,” arriving late to the corresponding unit, has
now be gathered at the right time for the right person, and the emergency case was

nearly a planned case before you have entered the door with the resources and
current information at hand.

Design Thinking in Healthcare—Enabler for Digitalization in Complex. . . 193

The Complexity in Healthcare

The described ED case seems simple to achieve. Why is it so hard to achieve this
level of seamless patient experience via human expertise and digital automatization?
Why is the potential of digital solutions hardly activated, even it could provide a
seamless process, would ensure patient safety and improve the efficiency of the
scarce resources? Why are the service providers and clients of the healthcare
processes, such as patients, relatives, physicians, nurses having such a hard time
overcoming the digital and analog fragments to provide or receive the right service,
with the right information at the right time from the right expert? Healthcare is well
known as one of the most complex industries and hospitals especially complex
organizations (Prashant Gandhi et al. 2016). Expert organizations, such as hospitals,
are often still organized as expert-oriented silos. They maintain a specific structure in
each silo, which in itself already provides a certain complexity. The single silos are
sometimes organized efficiently but are losing efficiency as soon as interfaces are
lived with the other silos. This fragmented landscape raises complexity. Some
hospitals have even underlined the different expertise fields in single buildings per
expertise. The patient, therefore, needs to move from one building to another to
receive his multidisciplinary service. By doing so, he moves along different systems
in terms of IT infrastructure, process and medical standards and has different contact
points. Another specialty is the evidence-based approach that healthcare claims to
follow. It takes 17 years from innovation findings to bedside appliances (Morris et al.
2011). There is this need for 100% safety before new procedures or techniques are
being applied in the everyday routine. On the one hand, it seems adequate to be sure
a new approach is working in, e.g., an OR procedure, however other industries
would have lost their legitimization by using so long to bring innovation to the client.
The regulated environment of healthcare combined with the dynamism is another
characteristic. Digitalization has been put the top of the governmental agenda. E.g.,
the German government has launched a 3 billion 3-year program as so-called
“Digital Healthcare Act” which should help hospitals to foster digitalization (Ger-
man Federal Ministry of Health 2021). What is remarkable is the funding of the
accompanying change management in terms of defining the requirements for the
solution has been integrated into the act. This raises another specific of the healthcare
industry: It is labor intensive. Thus, the numerous experts need to be integrated into
any kind of change and development. The Swiss government has even declared
Design Thinking as a key pillar for innovation—also for its Digitalization initiative
in healthcare, “Strategy E-health Switzerland” (eHealth Switzerland 2021). The
approach to define the digital aspects in the healthcare ecosystem need to be
integrative, dominated by the user’s and client’s perspective and therefore generat-
ing a holistic view of the processes, roles, requirements for Infrastructure.

194 C. Vetterli

Design Thinking in Action

Healthcare should be software-intensive, however, it is not yet an integrated, holistic
software environment that is patient flow oriented. The following three cases
demonstrate how Design thinking has proved to be an adequate approach to enable
the transformation of healthcare into a seamless digitalized environment. The right
base to define requirements from a patient flow perspective was crucial. Hence, the
right expert’s involvement and the right data understanding which lead to the right
sustainability in innovating along with the patient flow and integrating the software
development perspective, was key as base. The different examples also provide
practical cases in the logic of Design Thinking in the combination of requirements
engineering provided by Hehn et al. (2020) as “upfront” (example 1), “infused”
(example 3) and “continuous” (example 2).

Example 1: Prototyping the New ED and Outpatient Processes
at a Pediatric University Hospital

A university hospital in the German-speaking Europe had the goal to integrate the
pediatric internistic and the pediatric surgical clinic into one integrated ED depart-
ment. The focus was to integrate and standardize processes, infrastructures, and
roles. Therefore, they decided to use Design Thinking as the approach to define the
multi-sided requirements. The goal was to enable a more patient-centric ED respec-
tively outpatient flow. In a two-phased project they have defined first the future
patient flow and then deviated the architectural and the software infrastruc-
ture requirements from a more detailed process flow. The Design team was staffed
with physicians, nurses, architects, and IT experts.

The different prototypes were developed through several iterations, from
low-resolution to high-resolution prototypes, following the well-known design
cycle (see Fig. 1).

The different iterations created by the multidisciplinary and -professional team
provided a very clear preview of how the future state should be. The translation of
the process prototype to the IT requirements was done continuously as parallel
deviation from IT staff upfront the IT development. The following figure shows
that after a first phase of understanding the design space by creating the first
prototypes within the design sprints II, variations were created to deviate a first
preview of requirements (IT and architectural). The final definition of requirements
was done in the design sprints III when the final prototypes were ready to be
diffused. The overall logic is shown in the following Fig. 2.

The patient process was the reference point, also for the IT design team, which
were continuously part of the process prototyping to fully understand why specific
requirements were defined. This enabled the IT team members to articulate their
understanding from a software perspective directly in the process prototyping

Fig. 1 Design cycle

Fig. 2 Design phases to deviate requirements

sessions. Thus, this leveraged the process quality since software offered efficiency
potential and assured that IT was always in line with the process perspective. The
higher upfront investment from IT side paid off several times through the overall
development process.

Design Thinking in Healthcare—Enabler for Digitalization in Complex. . . 195

196 C. Vetterli

Fig. 3 Continuous
developing and embedding
of solutions

Example 2: Designing a Central Operations Center Software

A major hospital group in Switzerland initiated the development of a central
operations center, in analogy to a NASA mission control in Houston, Texas or in a
hospital setting of the GE command center of the Humber River Hospital in Toronto,
Canada (GE Command Centre 2021). This need already existed but was intensified
during the beginning of the COVID-19 pandemic crisis in March 2020. The goal was
to centralize the data through software that provides transparency of the resources in
the different core processes of the hospital group. The digital solution should provide
front-end dashboards for problem-solving and decision processes. Additionally, this
software should help the crisis task force providing feedback to the frontline
workforce within a maximum timeframe of 90 min after a problem has been raised.
It already existed a data gathering logic in an existing software landscape, which
was, however not stress resistant in times of crisis. Additionally, it was not accom-
panied by an escalation and reporting system from frontline to executive level and
back. Especially in stressful times of a crisis, this escalation and reporting need was
omnipresent, although hospitals would benefit from a standardized structure in
non-pandemic times as well. Finally, the software structure was lacking a connect
to the overall patient flow.

A new software logic needed to be delivered and put into action fast. In parallel to
a role model and standard for problem-solving and decision-making, the relevant
KPIs and data flows were defined from the IT staff together with key users of the data
outputs. This team could develop in parallel to the relevant roles across all function-
alities. If needed, they could address questions or prototypes to the key process
owners such as the OR manager, ED physician or chief nursing officer to test and
feedback the software prototypes. The IT responsible observed and learned the need
of the core process roles in the morning crisis meeting and used nearly every second
day for a next iteration sprint. The first version of a prototype was ready after 7 days
since project start—based on Microsoft’s Excel but functional and directly opera-
tional. Two weeks later a first new software was developed, which was just the
starting point of the development of regular next level prototype as shown in Fig. 3.

Design Thinking in Healthcare—Enabler for Digitalization in Complex. . . 197

The piece-by-piece better software versions had the continuous beta-status but
improved the performance of the leadership iteration by iteration. With the first
levels of software pieces, the leadership meeting in the morning took about 40 min,
after 4 weeks and a few iterations further, this same meeting took<15 min to address
all open issues. This operations center was quickly a reference case in terms of
innovation approach through design thinking, transparency of data and problem
reaction time during the COVID-19 crisis (Vetterli and Roth 2020). In the second
vague, the operations center was further developed and integrated more and more
KPIs from elective cases since those were not present in the first vague. The Design
Thinking culture of development, which was applied under extreme pressure in
spring 2020, was sustainable enough to be the lead development approach also in the
less stressful later stages of the crisis. It has been proved to be efficient. Hence the
integrated translation from users’ requirements as needs oriented requirements to a
more technical, requirements engineering terminology and detail level worked
seamlessly since there were back-and-forth checks on a continuous level.

Example 3: Design Thinking as Game Changer in Healthcare
Digitalization

An endocrinology group of a university hospital in German-speaking Europe has
observed several process restrictions by prescribing insulin to diabetes patients.
First, only physicians are allowed to prescribe the medicine, which lead to process
delays. Second, the prescription process was based on manual counts, which resulted
in mistakes and risks. Thirdly the documentation took long and often could not be
done directly after prescribing the medicine. Therefore, a spin-off of the medical
university of the university hospital decided to head for a paradigm shift in core
process medicine. They observed on the spot how the process was pursued and
which limitations occurred. By doing so, they have started to create a new insulin
prescription process based on a newly developed software.

The development process followed the core Design Thinking principles such as
need orientation of patients, nurses and physicians, ideation, prototyping and testing,
as well as iterating towards a better solution. The IT developers and designers
focused on algorithms that analyzed the relevant diabetes items. Furthermore, they
defined a prescription plan for the bedside prescription. Finally, the software devel-
oped received the CE status as a medical device. Thus, the doctor’s presence in that
process became obsolete and the nurses had the legitimation, together with that piece
of software, to prescribe insulin to the patients. It led to a tremendous efficiency
boost and raised patient safety to a maximum level. This example started to be a
reference case for a paradigm shift: The development through Design Thinking core
principles helped to integrate physicians in the development and create the trust that
the “machine” was able to assure this life-threatening process for diabetes patients

without any physician’s intervention. Finally, a core hospital process was digitalized
and embedded to improve patient care.

198 C. Vetterli

In sum, the following benefits and challenges can be derived from the three case
studies:

Benefits

Healthcare is one of the only industries where the “solution” which design thinkers
are working on (in general improving patient care), is merging with the client of the
solution (the patient).

The needs orientation in healthcare provides the right perspective to define
the precise requirements—even to substitute the physicians own performance.

The integrality of solution development and in the parallel development of
precise requirements provides higher quality in less time overall.

Challenges

Bringing the right people to the table is difficult in healthcare since resources are
scarce and preplanned at minimum 3 months ahead.

Unless the users have not had any prototyping experiences, it takes a special
moderating effort to engage them in physical prototyping.

Too hierarchical cultures provoke that only the “highest” person solutions are
being prototyped.

Summary

To sum up, the above examples were cases from the healthcare industry. Why is
healthcare so relevant for the software development discussion? The fragmented
environment with a tremendous amount of media and system switches, combined
with a continuous change from analog to digital data and the expert organization
status in a highly dynamic regulated environment, makes it a very interesting
playground to apply Design Thinking as prerequisite for adequate software devel-
opment processes. The extremity in so many aspects has shown that if it works in
healthcare, there is a high probability that it will work in other industries as well.

The examples provide core takeaways as follows:

• Design Thinking enables adequate software development in a highly complex
industry such as healthcare.

Design Thinking in Healthcare—Enabler for Digitalization in Complex. . . 199

• Design thinking serves as an enabler for a common language where no translation
is needed from experience prototype to software development processes.

• Parallelism in software development and the client-centric process prototyping
helps foster the software development process accuracy.

• Design Thinking can be applied in extreme situations due to its characteristic
speed in the application.

• Design Thinking enables to change of fundamental principles in expert organi-
zations due to creating a trustful change through involvement in the creation
process towards software development.

As shown Design Thinking applied in highly technical and software-intensive
healthcare provides some explicit benefits and challenges. However, there remain
some critical issues in applying design thinking. Unfortunately, the expert organi-
zation characteristics provide some limits to the design thinking application unless
you engage the experts to really engage in creating tangible prototypes. An example
involving a chief radiology physician who was involved in the design of a new ED
department, and his radiology was not able to reduce his talking (hours long).
Therefore, the prototyping time was significantly reduced, which led to prototypes
that were not tested enough and did not provide enough resolution and details in the
solution preview. He actively boycotted the scarce design time of the design team
and afterwards disrespected the low-resolution prototypes of his colleagues. Design
Thinking is strongly relying on having the people engaging in the design process.
There is no shortcut and no steps that you can leave it when it comes to prototyping.
Additionally, critical people who are suspicious to Design Thinking are hard to push
to the first steps of prototyping together with colleagues. They like to observe the
others and then comment why this is not working. Design Thinking needs the
engagement of all involved parties to lead into common tested and accepted results.
The observing design team members are often emotionally less attached to the
innovation and skip the effort to push it all the way to innovation.

We all carry the risk to be in the patient’s situation. The need of a seamless and
efficient patient-centric healthcare, such as Ms. Wehrles’ experience, using the
potential of digitalization could be yours from 1 s to another. Design Thinking
cannot solve every problem in the healthcare environment. But from a software
development perspective it has proved to be a decisive enabler to foster another
quality level of software development—in healthcare and certainly beyond.

References

eHealth Switzerland (2021) Strategie ehealth Schweiz. https://www.e-health-suisse.ch/politik-
recht/strategische-grundlagen/strategie-ehealth-schweiz.html. Accessed 5 Feb 2021

GE Command Centre (2021) Opening of Canada’s First Hospital Command Centre. https://emea.
gehealthcarepartners.com/insights/17-digital-and-advanced-analytics/544-humber-river-hospi
tal-command-centre-opening. Accessed 3 Feb 2021

https://www.e-health-suisse.ch/politik-recht/strategische-grundlagen/strategie-ehealth-schweiz.html
https://www.e-health-suisse.ch/politik-recht/strategische-grundlagen/strategie-ehealth-schweiz.html
https://emea.gehealthcarepartners.com/insights/17-digital-and-advanced-analytics/544-humber-river-hospital-command-centre-opening
https://emea.gehealthcarepartners.com/insights/17-digital-and-advanced-analytics/544-humber-river-hospital-command-centre-opening
https://emea.gehealthcarepartners.com/insights/17-digital-and-advanced-analytics/544-humber-river-hospital-command-centre-opening

200 C. Vetterli

German Federal Ministry of Health (2021) Digital Healthcare Act (DVG). https://www.
bundesgesundheitsministerium.de/en/en.html. Accessed 5 Feb 2021

Hehli S, Gafafer T (2021) Die Schweiz hat die Digitalisierung des Gesundheitswesens verschlafen –
wie sehr, zeigt ein Vergleich mit Dänemark. Neue Zürcher Zeitung. Accessed 3 Feb 2021

Hehn J, Mendez D, Uebernickel F, Brenner W, Broy M (2020) On integrating design thinking for
human-centered requirements engineering. IEEE Softw 37(2):25–31

Morris ZS, Wooding S, Grant J (2011) The answer is 17 years, what is the question: understanding
time lags in translational research. J R Soc Med 104(12):510–520

Prashant Gandhi P, Khanna S, Ramaswamy S (2016) Which industries are the most digital (and
why)? Harvard Business Review. https://hbr.org/2016/04/a-chart-that-shows-which-industries-
are-the-most-digital-and-why. Accessed 5 Feb 2021

Vetterli C, Roth R (2020) Lean operations Centre. Whitepaper Corona future management.
Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin

https://www.bundesgesundheitsministerium.de/en/en.html
https://www.bundesgesundheitsministerium.de/en/en.html
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why
https://hbr.org/2016/04/a-chart-that-shows-which-industries-are-the-most-digital-and-why

It Takes Two to Tango: Design Thinking
and Design Patterns for Better System
Development

Ernestine Dickhaut, Andreas Janson, and Jan Marco Leimeister

Introduction

Smart personal assistants, such as Alexa and Siri, are becoming increasingly popular
(Knote et al. 2021). They are not only used for private purposes in everyday life, but
also increasingly in learning contexts (Hobert and von Wolff 2019; Winkler and
Söllner 2018; Winkler et al. 2020). The use of smart personal learning assistants
(SPLA) in university teaching differs from their use in private households. Both data
protection regulations and the didactic added value of the system must meet the
requirements of the university. Thus, many different disciplines, such as didactics,
psychology, law, or computer science, are involved in the development of an SPLA
for use in teaching (Hobert and von Wolff 2019). This results in multidimensional
requirements for the SPLA, which must be combined into one system.

For the analysis of the complex and conflicting requirements, as well as the
development of a design solution, Design Thinking offers a useful framework.
Design Thinking has become a well-established approach to developing products,
services, processes, and business models by improving problem solving by people
from different disciplines working together to either solve a problem or develop new
ideas. The approach is primarily used to solve so-called wicked problems, which are

E. Dickhaut (*)
Information Systems, University of Kassel, Kassel, Germany
e-mail: ernestine.dickhaut@uni-kassel.de

A. Janson
Institute of Information Management, University of St. Gallen, St. Gallen, Switzerland
e-mail: andreas.janson@unisg.ch

J. M. Leimeister
Information Systems, University of Kassel, Kassel, Germany

Institute of Information Management, University of St. Gallen, St. Gallen, Switzerland
e-mail: leimeister@uni-kassel.de; janmarco.leimeister@unisg.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_14

201

mailto:ernestine.dickhaut@uni-kassel.de
mailto:andreas.janson@unisg.ch
mailto:leimeister@uni-kassel.de
mailto:janmarco.leimeister@unisg.ch
https://doi.org/10.1007/978-3-030-90594-1_14#DOI

considered to be particularly complex and inconsistent in finding a solution. These
problems require creative and conceptual solutions, which can lead to challenges in
prototypical or final product design. Thus, Design Thinking end with finding a novel
solution that does not support developer to implement the discovered solution.

202 E. Dickhaut et al.

Design Patterns may be a valuable tool to support the implementation of those
novel design solutions. By providing proven solutions for recurring problems
Design Patterns are mainly established in the field of system development and
support developers. We see both theoretical and practical potential in combining
both approaches, namely Design Thinking and Design Patterns, to successfully
develop novel artifacts in a sustainable way. The goal of our contribution is to use
the advantages of the user-centered Design Thinking approach and provide a bridge
to system development through the use of Design Patterns that support developers in
the implementation of design solutions and is based on the following research
question (RQ):

RQ: How can we combine the advantages of the user-centered Design Thinking
approach with Design Patterns to design useful, novel IT artifacts?

To answer our research question, we use the example of developing a lawful
SPLA. For the development of the SPLA, we use Design Thinking to extract creative
solutions of possible SPLAs in an interdisciplinary team of legal experts, developers,
and dialecticians. The entire study takes place in the context of a higher education
lecture at a German university. We then use Design Pattern to implement these
solutions in a prototype, which we then evaluate with users and legal experts using
the law simulation study.

Background and Related Work

Design Thinking

Design Thinking is a structured problem-solving approach to solve real-world
problems (Hehn and Uebernickel 2018). In recent years, different interpretations
of design thinking have become established in both research and practice.
Depending on the approach and goal, different methods and artifacts are pursued
and developed. The approaches aim to improve problem-solving by having people
from different disciplines work together to either solve a problem or to develop new
ideas. Through novel workshop settings and usually a new environment in the
workshops, the creativity of the participants is encouraged. Design Thinking focuses
on the needs and motivations of the user and can be seen as a human-centered
approach. In system development, we pretend too often that requirements somehow
just exist and that they simply need to be elicited and documented, thus missing the
true potential of fully solving the problem in a human-centric manner. Design
Thinking addresses this problem and offers various tools for practical application.

Design Thinking can be seen as a process perspective, which can be used to
structure the procedure from identifying the problem to finding suitable solutions.

Understanding Observing
Defining the

problem
Ideating Prototyping Testing

Fig. 1 Design Thinking process

Thus, many variants have become established in research and practice. In our
contribution, we focus on the following phases: understanding, observing, defining
the problem, ideating, prototyping, and testing (see Fig. 1).

It Takes Two to Tango: Design Thinking and Design Patterns for Better. . . 203

Design Patterns

Design Patterns originally came from the field of architecture and were established in
the work of Alexander (1977), in which they support architects in the designing of
houses and the planning of cities. In design, architects often face recurring problems
to which proven solutions can be applied. Therefore, Design Patterns codify proven
solutions for recurring problems and make them usable for the future.

Thus, the use of patterns has become established in various disciplines. In
Human–Computer Interaction (HCI), patterns have already been proven in many
studies to teach design principles and design concepts (Borchers 2002; Compagna
et al. 2007; Koukouletsos et al. 2009). In system development, patterns were first
established through the Gang of Four (GoF) (Gamma et al. 1994). In addition to the
previously used application areas, patterns can be used to enable a broad under-
standing of periphery disciplines (Wania 2019).

In system development, Design Patterns represent abstract and thus generally
applicable and reusable solutions for recurring problems. Design Patterns codify
“best practices” and make them usable for the future. For this purpose, a Design
Pattern offers a type of “template” that follows the same structure for all patterns. In
terms of content, Design Patterns do not present innovative solutions and do not
reinvent the wheel but rather build on proven solutions. One Design Pattern offers
solutions for many different problems. Thus, Design Patterns can counteract one of
the problems identified by vom Brocke et al. (2020) in the reuse of design knowledge
by codifying said knowledge into an abstract form in Design Patterns.

According to Nonaka and Takeuchi (1995), design knowledge is represented as
implicit knowledge. Thus, the knowledge must be externalized to make it accessible
to other people. This can be achieved either by talking about it or by writing it down
and codifying it. Design Patterns externalize implicit design knowledge by codifying
it and capturing it in written form. According to vom Brocke et al. (2020), Design
Patterns are a component of the design knowledge base. Patterns help to find suitable
solutions for existing problems. By providing information about the context of the
problem, a Design Pattern helps to understand the problem in detail and thus find the

g
most suitable solution. In addition to the description of the problem, one core
component of a pattern is the solution and a corresponding description of the
solution procedure. In addition to the familiar form of Design Pattern (e.g., from
system development), modified forms with new purposes have become established
in recent years, for example, legal Design Pattern, which is considered in this
contribution.

204 E. Dickhaut et al.

Developing Smart Personal Learning Assistants Using
Design-Thinking and Design Patterns

In the following, we demonstrate the use of Design Patterns and Design Thinking in
one exemplary case, namely the development of an SPLA (Fig. 2). First, we use
Design Thinking to collaborate in an interdisciplinary team consisting of dialecti-
cians, lawyers, and developers to extract design solutions for a lawful SPLA that
includes innovative didactic learning concepts and thus conveys the learning content
to the user. Second, to support the development of the SPLA, we used Design
Patterns. The Design Patterns were used where Design Thinking ends. We use
proven, previously developed Design Patterns. The Design Patterns are developed
to design AI-based assistants in a lawful way to meet strict regulation rules such as
the General Data Protection Regulation (GDPR) or privacy aspects. We classify
SPLA as a subgroup of AI-based assistants and thus provide developers with support
for implementing creative design solutions in practice.

Finding the Design Solution Using Design Thinking

The SPLA development project starts with Design Thinking to elaborate design
solutions. Thus, an interdisciplinary team from three disciplines—law, didactics, and
computer science—was involved in the development of the SPLA, as these three
disciplines differ in their methodologies and their viewpoint and thus in their
requirements for an SPLA. To involve all disciplines equally in the development
and to develop a common design solution, we follow the structured procedure of

Understanding Observing
Defining the

Problem
Ideating Prototyping Testing

Extraction of

underlying

challenges in

development

Interviews with

Users

Focus Group

with

Developers,

Lawyers,

Didacticans

Extraction of

Possible

Solution

Designs

Developing

High-Fidelity

Prototypes

Simulation

Study

ngise
D

niknihT
St

ag
es

Design Pattern

Implementation

Design Pattern

Fig. 2 Design Thinking stages

Design Thinking. In the first phase, understanding, we first conducted a joint
workshop of all involved persons. The goal of the workshop was to extract the
challenges in the development of a lawful SPLA.

It Takes Two to Tango: Design Thinking and Design Patterns for Better. . . 205

After enabling a shared understanding of the other disciplines within the project
team, the focus was placed on the user of the SPLA. For this purpose, we conducted
interviews with potential SPLA users, seven students (N ¼ 7). The interviews
allowed us to integrate the user-centered thoughts of Design Thinking into the
development. The subject of the discussion was, for example, the storage of user
data. To enable adaptive learning from a didactic perspective, the user must be
uniquely identifiable, and the progress must be stored and processed. But legal
experts are critical of the idea, since this involves personal data that is particularly
worthy of protection.

Based on the previous workshops and interviews, the project team collaborated
on possible design solutions. So also, to find a solution for the storage and processing
of personal data. For this purpose, the Design Pattern “deletion routine” is used
during the Design Thinking process, because deletion routines present a possible
solution to the problem. Many different creative solutions came out of this. As usual
for Design Thinking, in this phase, solutions are also generated that cannot be
implemented in practice. To avoid this, we used Design Patterns already at this
stage. The Design Patterns supported the project team in thinking about the practical
implementation of the design solution at an early stage as well as supporting them to
implement the design solution later.

In our specific project, we created three design solutions for an SPLA in higher
education. The next step was to implement one solution in an SPLA. For the transfer
from the Design Thinking phase to the actual implementation, a team of three
experienced developers was given both the design solution and the Design Pattern.
The Design Patterns provided proven solutions for the implementation of similar
design problems.

Developing the Design Solution Using Design Patterns

In the following, we describe how we developed the extracted design solutions from
Design Thinking and implemented them with the support of Design Patterns in an
SPLA. The used Design Patterns are a well-established approach in different projects
in information system research (please see Dickhaut et al. 2020b, 2021a, b). With the
Design Pattern, the previously known use in system development was expanded by
providing proven solutions to legal problems in system development for AI-based
assistants. The Design Patterns provide proven solutions for the development of the
lawful SPLAs and were developed and evaluated in the context of another study (for
more details, please see Dickhaut et al. 2020a).

The SPLA was used in the context of a university course as a complementary
preparation for exams, and, together with the user, it repeated the course material in a
playful way. In the learning quiz, the SPLA asked the user a question and offered

206 E. Dickhaut et al.

Deletion Routines

Goal
Erasure of personal data as soon as they are no longer necessary to achieve the purpose of processing.

Requirements

Current Period of Development Process

Consequences Influences
• Data minimisation
• Appropriation
• Protection of privacy and intimacy
• Functionality
• Configurability

Solution
Integration of a deletion concept:
• Localization of personal data, on systems personal data is stored
• Analysis of data with regard to retention and deletion obligations
• Determine deletion and retention periods, group data according to these periods
• Define deletion rules for the individual groups ordered by deadlines.
• Delete or anonymize data, it is important to delete all records in all software systems.
• Data of individuals must be retrievable and separately deletable

Law

Service quality

Patterns of interaction

Learning patterns

Architectural patterns

Data processing pattern

• Ownership of the user over their data
• Right to be forgotten

• Analysis and categorization of data
according to those that are subject to
deletion and retention obligations,
timely deletion of the data in
compliance with the law.

Date SignatureConfirmation of implementation of contents of design pattern

• Differentiated uses

• Non-chain-ability

• Avoidance of personal data

• No complete user profile

Law

Service quality
• Motivation of the provider

• Learning through relevance

assessments

• Secondary function

• Remember Me

Important Data Protection Regulations
• Art. 5 para. 1 lit. b (Purpose limitation), lit. c (Data minimization), lit. e (Storage limitation) (Here, where applicable, opening clauses such as Art. 6 para. 3

of the GDPR and member state regulations based on this in the BDSG, HDSIG and HHG must also be observed, especially for data processing by public
bodies).

• Art. 17 of the GDPR (Right to erasure) (Member State regulations based on Art. 23 of the GDPR may need to be taken into account here).

Deletion Routines

Goal
Erasure of personf al data as soon as they are no longer necessary to achieve the purpose of processing.

Requirements

Current Period of Development Process

Consequences Influences
• Data minimisation
• Appropriation
• Protection of privacy and intimacy
• Functionality
• Configurability

Solution
Integration of a deletion concept:
• Localization of personal data, on systems personal data is stored
• Analysis of data with regard to retention and deletion obligations
• Determine deletion and retention periods, group data according to these periods
• Define deletion rules for the individual groups ordered by deadlines.
• Delete or anonymize data, it is important to delete all records in all software systems.
• Data of individuals must be retrievable and separately deletable

Law

Service quality

Patterns of interaction

Learning patterns

Architectural patterns

Data processing pattern

• Ownership of the user over their data
• Right to be forgotten

• Analysis and categorization of data
according to those that are subject to
deletion and retention obligations,
timely deletion of the data in
compliance with the law.

Date SignatureConfirmation of implementation of contents of design pattern

• Differentiated uses

• Non-chain-ability

• Avoidance of personal data

• No complete user profile

Law

Service quality
• Motivation of the provider

• Learning through relevance

assessments

• Secondary function

• Remember Me

Important Data Protection Regulations
• Art. 5 para. 1 lit. b (Purpose limitation), lit. c (Data minimization), lit. e (Storage limitation) (Here, where applicable, opening clauses such as Art. 6 para. 3

of the GDPR and member state regulations based on this in the BDSG, HDSIG and HHG must also be observed, especially for data processing by public
bodies).

• Art. 17 of the GDPR (Right to erasure) (Member State regulations based on Art. 23 of the GDPR may need to be taken into account here).

Fig. 3 Design Pattern “Deletion Routines” (Dickhaut et al. 2021a)

four possible answers, of which exactly one answer was correct. The used teaching
material was based on the content of the course and was prepared together with the
lecturer and other teachers of the course and implemented into the SPLA.

The Design Pattern, deletion routine (Fig. 3), implied that the purpose of the data
processing had to be specified precisely and differentiated. It also suggested a
granular consent option for this purpose. The proposed solutions from the Design
Pattern were implemented in the development of the SPLA, and personalization was
initially deactivated in the default settings. This allowed the user to select exactly
which data storage option they wanted. For this, the user received additional
information, options that explained exactly why the respective data storage was
necessary, and what added value it had for achieving the goal. In addition, to ensure
transparency with regard to all data processing operations, which was recommended
in the Design Pattern, we designed the SPLA in such a way that users were adaptive
informed about the data processing operations. The user was provided with appro-
priate information, not only during the first use, but whenever relevant data
processing took place. To balance transparency and trouble-free use, we provided
the option to select how often and how detailed they would like to be informed about
data processing. In addition, as recommended in the Design Pattern, users had the
option of viewing their digital self-disclosure about the storage of their data in the
settings at any time. This supported the transparency of data storage.

It Takes Two to Tango: Design Thinking and Design Patterns for Better. . . 207

To meet the requirements of law on purpose limitation, the Design Pattern
recommended a regular check, in which personal data was still required to achieve
the purpose. Deletion routines were a solution approach for this. In our SPLA, we
saw the possibility of performing such automated deletion routines, especially after
the end of a semester.

Overall Evaluation of the Development Process and Legal
Assessment

Evaluation of the Development Process

To the best of our knowledge, with this contribution, we are the first who combine
the two approaches Design Thinking and Design Pattern and demonstrate the
approach with a concrete development example. In the following section, we
would like to look back at the procedure and evaluate it.

Design Thinking provides a framework that enables interdisciplinary project
teams to develop novel design solutions in a structured way. One of the biggest
challenges at the beginning of the project was the different approaches and lan-
guages of the individual disciplines. Through the workshops in the first stages, the
project team was able to broaden their own perspectives and understand the require-
ments of the other disciplines. This made it possible to find a common language
within the project team. The structured framework supports the project team in the
individual stages without limiting them to specific methods.

The combination of Design Thinking and Design Patterns lead to the develop-
ment of runnable novel technologies. The challenge of combining complex and
sometimes conflicting requirements in an SPLA was solved by Design Thinking.
Innovative design solutions were extracted, which could then be implemented with
the support of the Design Pattern. Usually, Design Thinking ends with the proto-
typical implementation and evaluation of a design solution. By using the Design
Patterns, we build a bridge to the final implementation and support the developer in
the implementation of the solution.

Legal Assessment of the Developed SPLA

We conducted a law simulation study which is a well-established evaluation method
under lawyer (Rossnagel and Schuldt 2013) to evaluate the SPLA (Fig. 4). The
simulation study can generally be divided into two parts. In the first part, the system
was examined in a practical evaluation with users for its usability, user experience,
and potential application problems. The second part of the simulation study served to
evaluate the legality of the SPLA. In this second part of the study, simulated court

208 E. Dickhaut et al.

Development Legal Assessment

Requirement Engineering Implementation

Stakeholder

Court CasesUser Study

Simulation Study

Developer Team
Potential

User

Legal

Experts

University System

User
Judge Lawyer

Defendant

Lawyer

Plaintiff

Per court case (in total 4 court cases):

Data

• Documentation of the

development

• Interviews with the developer

• Feedback from users during

longitudinal user study

• Filing of action

• Statement of defense

• Four written pretrial

proceedings

• Recordings of the four court

cases

• Group discussion with the

involved lawyers and judges

• Interviews with the judges

• Written requirements

• Focus group workshops

• User stories

Key

Findings

• Provide solution for specific problem

• Simultaneous development of documentation

• Projectability of design knowledge for future

• Understanding technical facts

• Whiteboxing the development

• Building arguments

Fig. 4 Simulation study (Dickhaut et al. 2021b)

cases were conducted in which the system was evaluated with the participation of
real judges and lawyers for its lawfulness.

To investigate the primary aim of the first part of the simulation study, the use of
the SPLA in practice by real users was essential. For the evaluation, we offered an
exam preparation course in a university basic economics course that complemented
the lecture, in which students could participate voluntarily.

On three dates in a period of 2 weeks, the participants could study together with
the SPLA for 1 h for the exam and repeat the acquired knowledge from the course.
The offer took place on a voluntary basis. We then used questionnaires to survey
student satisfaction with the SPLA. In addition, we asked in a qualitative survey for
suggestions on improving the SPLA in the future and increasing its added value for
students and lecturers.

Based on the user evaluation, we conducted four simulated court cases (for
further information on the evaluation, please see Dickhaut et al. 2021a, b; Thies
et al. 2020). The simulation study was carried out before German courts according to
German and European law. Overall, six legal experts participated in our law
simulation study. Among them were two judges and four lawyers that conducted
the four court cases. All participants had completed the second state examination in
law and already had several years of professional experience as a lawyer or judge.
One participant was female, the other five were males. The oral hearings lasted
45 and 60 min. Each of the four trials involved a judge, a lawyer from the defendant,
a lawyer from the plaintiff, the plaintiff, and the defendant. For the plaintiffs, we
recruited voluntary participants from the first part of the simulation study to present
the process as realistically as possible. In all four cases, the defendant’s side was
represented by the university, which used the IT artifact in the lecture course.

Before the oral hearings, written preliminary proceedings took place in which the
plaintiff’s lawyer set out the facts of the case and the reasons for the action and called
on the defendant to refrain from using the IT artifact in university teaching. The
reason for one of the four actions was the collection of personal data beyond the

purpose of processing, as well as information about the duration and purpose of data
storage. In a five-page statement of defense, the defendant’s lawyer commented on
the action. In the statement of defense, the lawyer referred to the deletion routine
Design Pattern that was used in the development process of the SPLA.

It Takes Two to Tango: Design Thinking and Design Patterns for Better. . . 209

Thereupon, the judge invited the participants to an oral hearing to dispute the
action. In court, the judge first presented the facts of the case and discussed the
reasons for the action. After the plaintiff’s lawyer confirmed the facts of the case and
set out the reason for the action in more detail, the two lawyers and the judge
examined the facts. The reason for the action was the processing of personal data
beyond the actual purpose of use, namely, the adaptation of the SPLA to the learner.
The plaintiff participated in exam preparation with the SPLA last semester. The
plaintiff claims to have achieved poor results in the exam preparation due to private
problems. Nevertheless, she passed the exam. When the plaintiff applied for a job at
the department a few months after the end of the semester and was rejected, the
plaintiff saw a connection between the poor results in the exam preparation with the
help of the SPLA and her not getting the job, so she claimed that the data and results
of the SPLA were used beyond their intended purpose. Both parties then had the
opportunity to present their side and the judge could get an impression of the
situation.

According to the plaintiff, the defense lawyer came to state his case and referred
in his statement to the implementation of regularly deleting routines at the end of the
semester. To confirm this technically, he also referenced the Design Pattern, deletion
routine, used in the development of the SPLA. In the course of the hearing, it turned
out that the responsible chair had already deleted the data at the time of application
and that it was not used beyond its intended purpose, even during its use. The
negotiations ended with the pronouncement of a judgment, which was in favor of the
university. In addition to the four court cases and the written correspondence, we
interviewed the judges and lawyers to gain insights into the support for our pattern
catalog. The interview took place directly after the end of the simulation study with
all participants.

Conclusion

In this contribution, we aim to demonstrate how two approaches, Design Thinking
and Design Pattern, which initially appear to be contrary, can be combined to
provide comprehensive support in the development of innovative IT solutions. By
first using Design Thinking for human-centered solutions, finding wicked problems,
and then implementing the actual solution through Design Pattern, the support no
longer ends before the actual implementation in the system but rather the developers
will be further supported.

Design Thinking usually ends with the prototypical design of the design solution
and therefore does not offer any support in the practical implementation. We see two
possible stages in which Design Pattern can be used in Design Thinking and thus the

potential of both approaches can be elaborated. First, during the analysis of the
problem and the identification of possible solutions. Design Patterns show the
participants the possible solution space and thus support their creativity. Second,
the outcome of Design Thinking is the prototypical implementation and its evalua-
tion of a design solution. Design Pattern provides developers beyond that with
support in the practical implementation of the design solution. By using the Design
Pattern in the final Design Thinking stages, we see several advantages:

210 E. Dickhaut et al.

• Creativity is enhanced by presenting new ideas in the Design Pattern.
• It is possible to think about which design solutions are realistic at an early stage.
• The result of Design Thinking is not only the design solution but also the

corresponding Design Pattern used to implement the design solution.
• Law regulation rules can be considered early in the development process, thus

GDPR compliance can be achieved.

The results of the evaluation also confirm this and show that the combination of
both approaches leads to IT artifacts that produce good results both in user evalu-
ation and in court. Further work should analyze the combination of Design Thinking
and Design Pattern in more detail to expand the deployment scenarios of both
approaches. Our contribution is intended to lay a foundation for an exciting discus-
sion on the extension and application of Design Thinking beyond the previously
known context.

References

Alexander C (1977) A pattern language: towns, buildings, construction. Oxford University Press,
Oxford

Borchers J (2002) Teaching HCI design patterns: experience from two university courses. In: CHI
international conference on human factors of computing systems, Minneapolis, USA,
21–25 April

vom Brocke J, Winter R, Hevner A, Maedche A (2020) Accumulation and evolution of design
knowledge in design science research—a journey through time and space. J Assoc Inf Syst 23:
9–49

Compagna L, Khoury PE, Massacci F, Thomas R, Zannone N (2007) How to capture, model, and
verify the knowledge of legal, security, and privacy experts. International conference on
artificial intelligence and law, pp 149–153

Dickhaut E, Janson A, Leimeister JM (2020a) Codifying interdisciplinary design knowledge
through patterns—the case of smart personal assistants. Design science research in information
systems and technology (DESRIST)

Dickhaut E, Miedzianowski N, Jandt S, Janson A, Knote R, Leimeister JM, Roßnagel A, Söllner M,
Thies LF (2020b) Handlungsbroschüre. Anforderungs- und Entwurfsmuster zur
rechtsverträglichen und qualitätszentrierten Gestaltung kontextsensitiver Applikationen
(AnEkA). Handlungsempfehlungen zur Gestaltung von Entwurfsmustern. Universität Kassel

Dickhaut E, Janson A, Leimeister JM (2021a) The hidden value of patterns—using design patterns
to whitebox technology development in legal assessments. In: 16th international conference on
Wirtschaftsinformatik (WI)

It Takes Two to Tango: Design Thinking and Design Patterns for Better. . . 211

Dickhaut E, Li MM, Janson A, Leimeister JM (2021b) Developing lawful technologies—a reve-
latory case study on design patterns. In: Hawaii international conference on system sciences
(HICSS), vol 54

Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object
oriented software. Addison-Wesley Professional, Boston

Hehn J, Uebernickel F (2018) Towards an understanding of the role of design thinking for
requirements elicitation-findings from a multiple-case study. In: Americas conference on infor-
mation systems (AMCIS)

Hobert S, von Wolff RM (2019) Say hello to your new automated tutor–a structured literature
review on ppedagogical conversational agents. International conference on information systems
(ICIS)

Knote R, Janson A, Söllner M, Leimeister JM (2021) Value co-creation in smart services: a
functional affordances perspective on smart personal assistants. J Assoc Inform Syst 22(2)

Koukouletsos K, Khazaei B, Dearden A, Ozcan M (2009) Teaching usability principles with
patterns and guidelines. In: Kotzé P, Wong W, Jorge J, Dix A, Silva PA (eds) Creativity
and HCI: from experience to design in education, IFIP—international federation for information
processing, vol 289. Springer, Boston, pp 159–174

Nonaka I, Takeuchi H (1995) The knowledge-creating company. How Japanese companies create
the dynamics of innovation. Oxford University Press, Oxford

Rossnagel A, Schuldt M (2013) The simulation study as a method of evaluating socially acceptable
technology design, pp 108–116

Thies LF, Dickhaut E, Janson A, Roßnagel A, Leimeister JM, Söllner M (2020) Die
Simulationsstudie als Evaluationsmethode. Interdisziplinäre Evaluation eines smarten
persönlichen Assistenten. Datenschutz und Datensicherheit (DuD)

Wania C (2019) Exploring design patterns as evaluation tools in human computer interaction
education. MWAIS 2019 Proc 9

Winkler R, Hobert S, Salovaara A, Söllner M, Leimeister JM (2020) Sara, the lecturer: improving
learning in online education with a scaffolding-based conversational agent. In: Bernhaupt R,
Mueller FF, Verweij D, Andres J, McGrenere J, Cockburn A, Avellino I, Goguey A, Bjørn P,
Zhao S et al (eds) Proceedings of the 2020 CHI conference on human factors in computing
systems. ACM, New York, pp 1–14

Winkler R, Söllner M (2018) Unleashing the potential of chatbots in education: a state-of-the-art
analysis. In: Academy of management proceedings

Epilog: From Requirements Engineering
to Design Thinking

Manfred Broy and Walter Brenner

Epilog

Design Thinking has been initially created as a method offering cognitive, strategi-
cal, and practical processes to develop design concepts for products, buildings,
machines, and communications. Initially, Design Thinking was created with empha-
sis on the physical world. However, nowadays, systems and system designs, includ-
ing services and all kinds of complex, distributed cyber-physical systems, gain their
creative power and their innovation to a large extent from the abilities and possibil-
ities of advanced software, including dedicated user interfaces, data analytics, and
service engineering also based on concepts of artificial intelligence. As a result, the
amount and possibilities of innovation are determined to a large extend by software
and by the close interaction between software and the physical world.

Developing and designing software and software-intensive systems is signifi-
cantly different from the creation of mechanical and physical products and pro-
cesses. The software permits a much larger space of solutions, the software does not
need a production process, and it can be changed more flexibly—even after deploy-
ment. These differences are of high significance, in particular, for the goals of
approaches like design thinking.

Traditionally and historically, at the beginning of the application of software,
mainly solutions for existing analog processes were implemented by software.
Consequently, software was not so much innovative but rather an improvement
with respect to precision, efficiency, and the ability to handle large structures. Only

M. Broy
Department of Informatics, Technical University of Munich, Munich, Germany
e-mail: broy@in.tum.de

W. Brenner (*)
Institute of Information Management, University of St. Gallen, St. Gallen, Switzerland
e-mail: walter.brenner@unisg.ch

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Hehn et al. (eds.), Design Thinking for Software Engineering, Progress in IS,
https://doi.org/10.1007/978-3-030-90594-1_15

213

mailto:broy@in.tum.de
mailto:walter.brenner@unisg.ch
https://doi.org/10.1007/978-3-030-90594-1_15#DOI

ways of creating systems and solving problems. This is much closer to the goals of
design thinking.

Epilog: From Requirements Engineering to Design Thinking 215

Therefore, we believe that it is an important step to find out about a kind of
synthesis between design thinking and requirements engineering. It is less simple
than it looks at the first moment. Design thinking, originally, was not specifically
aiming at software-intensive systems. Therefore, it is necessary to analyze a lot of
interesting aspects of the specific techniques of software development and to see
how this can be combined with questions of design thinking.

It covers, in particular, aspects such as the typical artifacts in requirements
engineering for software systems, questions of development processes for software
such as Scrum, the role and potentials of data analytics, the particular roles for
requirements engineering, for design thinking, and user experience, and how these fit
together, but also special issues such as change management, strategic road maps,
managing tensions as well as special application areas. These include shop floor
support systems, digital platform creation, healthcare, and smart personal assistant.

The contributions span a wide spectrum, however, being far from completely
covering the subject. Nevertheless, they show in a quite impressive way the many
topics to consider.

This is what this volume is about. It contains an interesting number of contribu-
tions along these lines. It covers a broad spectrum of questions of the application of
design thinking to requirements engineering and vice versa, including questions of
processes, development, organizational structures, and special issues in the devel-
opment such as treating conflicts or defining roles, for example.

A very promising and interesting contribution is asking for a new kind of
discipline of what is called “digital design,” a field which is already practiced
today to a large extent, but there is still a lot to investigate. Certainly, for instance,
a key result is to find an approach being a good synthesis between classical
requirements engineering and design thinking. This objective also expresses explic-
itly the general goal of this volume: To bring together two important techniques into
a discipline that is about to change the world: digitization and its major discipline for
creating digital systems: digital design thinking.

incidentally, it turned out that the power of software systems brings in a completely
new impact on innovation, and creative solutions. The reasons for the remarkable
power of software are manifold. They include the ability to relate and integrate data
and functionality from other applications. Much more detailed ways to analyze data
are a further reason. And finally, the automation of processes on the one hand and on
the other hand the potentiality to create powerful user interfaces is perhaps most
significant.

214 M. Broy and W. Brenner

This historical development of software already is an indication for a kind of
discrepancy between the conventional development of software, which rebuilds
solutions in the physical world by software, and creative (development of) software,
which allows for completely new applications based on the power of nowadays
communication networks, cyber-physical applications, and inter-operability
between very different systems. This allows solutions and approaches very different
from what can be achieved in a world without software.

This difference is also expressed in the methodological approaches to software
development. Conventional systems are developed in a rather obvious way: Captur-
ing requirements by studying existing physical solutions and translating them into
requirements for software solutions. In this “old” style of building software, there is
not so much space for innovation. Known solutions and processes are transferred to
software, making them automatic, more efficient, and more precise.

This form of development and proceeding is in contrast to a more
creativity-oriented development style. Going in this direction is very challenging.
Development teams have, on the one hand, to understand the rich possibilities and
opportunities of digital technology and, on the other hand, to relate those possibil-
ities to the ultimate demands with respect to the problem and application area under
consideration, and understanding the needs of the customer. In particular, dealing
with wicked problems and—as a result—tricky solutions might bring in completely
new aspects and possibilities as results of a careful combination of the power of
software technology and digitization with deeper insights into the needs of the user
community with respect to the particular problem domain.

These two completely different ways to approach the development of software
are, in particular, visible in the phase of requirements engineering. In a conventional
style, requirements engineering means just to study the physical approaches that
should be reflected in a digital solution: In the requirements. This is a demanding
step. Nevertheless, because formal approaches are based on human perception and
judgment, they have been deeply analyzed and reflected in the requirement artifacts
of systems. A typical example could be found in health systems: If a doctor
communicates with a patient about his symptoms to come up with a hypothesis
about the particular disease, it is a very difficult step to try to replace this task—at
least partially—with software which does the analysis. So difficult it may be, it is just
an attempt to replace a process of human investigation with some software. This
leads to the classical, conventional field of requirements engineering, where this
formalization is the challenge.

However, by such a proceeding, the critical question is whether we are able to
find out about the possibilities of digital solutions to come up with completely new

	Design Thinking for Software
Engineering
	Introduction and Overview
	Cluster Method
	Cluster Governance
	Cluster Use Cases
	References

	Contents
	About the Authors
	Interview with Manfred Broy and Walter Brenner About Design Thinking and Requirements Engineering
	State of the Art
	Opportunities
	Deficits
	State of the Practice
	Skills and Competencies
	Challenges
	Goals for the Book

	Combining Design Thinking and Software Requirements Engineering to Create Human-Centered Software-Intensive Systems
	Introduction
	Requirements Engineering and its Limitations
	Design Thinking and Requirements Engineering: Two Distinct, Yet Complementary Approaches
	Contribution and Outline
	Previously Published Material

	Conceptual Background
	Design Thinking as a Human-Centered Problem-Solving Approach
	Design Thinking on an Operational Level
	Design Thinking Process
	Design Thinking Toolbox
	Design Thinking Mindset
	Artifact-Based Requirements Engineering and the AMDiRE Approach
	Overview of AMDiRE Components
	AMDiRE Artifact Model

	An Artifact Model for Design Thinking
	An Integrated Artifact Model Combining Design Thinking and Requirements Engineering
	Development of an Integrated Artifact Model
	Integrated Artifact Model
	Organizational Model
	Findings and Practical Implications

	Operationalization Strategies
	Overview
	Three Strategies to Operationalize and Integrate Design Thinking
	Upfront Design Thinking
	Infused Design Thinking
	Continuous Design Thinking

	Discussion
	Synthesis of Findings
	Leveraging the Best of Both Worlds
	A Comprehensive Blueprint for Innovative Software-Intensive Systems
	There is No ``One Size Fits All´´-Integration Strategy

	Conclusion
	Appendix
	Artifact Description
	Context Specification
	Requirements Specification
	System Specification

	References

	From Design Thinking in Software Engineering to Digital Design as a New Profession: An Essay on Methods and Professions for Sh...
	Experiences with Design Thinking in Software Projects
	Design Thinking is Rooted in Industrial Design
	Experiences on the Limits of Design Thinking for Software Projects: Two Examples
	Design Thinking as a Tool Within a Large Software Project
	Unfinished Design Thinking as a Starting Point
	Intermediate Conclusion for Design Thinking Research and Practice for Software-Intensive Systems

	Who is the Industrial Designer in Software Engineering?
	Why is There No Profession Like Industrial Design for Software?
	We Need a Dedicated Design Profession that is Able to Design with Software!
	Digital Design as a New Profession for Shaping Digital Solutions
	Competence Profile of Digital Designers at a Glance
	Conclusion: Process Competence as a Core Success Factor for Design of Products with Software Aspects
	Outlook: Studying Concrete Examples is More Promising than Studying Methods
	References

	The Hybrid Model: Combination of Big Data Analytics and Design Thinking
	The Combination of Big Data Analytics and Design Thinking
	Categories of Combined Models
	The Hybrid Mindset
	The Hybrid Teams
	The Hybrid Process
	The Hybrid Toolkit
	The Power of AI-Enhanced Data Processing
	Value Add of the Hybrid Model
	Practical Example
	On the Point
	References

	The Collective Process Framework DTScrum for Integrating Design Thinking into Scrum
	Introduction
	Background
	Scrum
	Design Thinking

	Obstacles and Challenges of the Integration
	Resource Allocation
	Competing Views and Different Kinds of Problems
	Coordination and Communication

	The Collective Process Framework DTScrum
	Multidisciplinary Knowledge Café
	Diverge into Design Thinking and Scrum

	Irrational Beliefs and Lateral Thinking
	Causal Reasoning and Organized Thinking
	Converge

	Conclusion
	References

	RE-DT-UX: Moving from a Discipline-Based Approach to a Role-Based One
	Introduction
	Joining Forces to Create Offerings with Great UX
	Our ``Old´´ Discipline-Based Approach
	Usability Engineer
	Design Thinker
	Requirements Engineer
	Why We Need a Unified Approach
	No or Very Limited Market(segment) (Over)view, No Business Model, No Bundling, Vision and Scope (VandS) Not Existent or Not Ag...
	Non-existing Lead or Insufficient Customer Availability
	Missing Domain Experience and Domain Expertise
	Missing Customer Insights: User Experience Not Investigated Due to Misprioritization, Too Little Knowledge on Importance of UX
	Missing Strong Lead/Visionary

	A Role-Based Approach
	How They Work Together

	Conclusion
	Outlook
	References

	Understanding the Introduction of Design Thinking as a Change Process
	Introduction
	Case Study
	What Does Change Management Mean?
	3-Phase-Model According to Kurt Lewin
	7-Phase-Model According to Streich
	Resistance
	Communicate Change
	Conclusion
	References

	From Project Plans and Backlogs to Strategic Roadmaps: The Evolution Toward Value-Oriented Thinking in Requirements Engineering
	Design Thinking Is Desirability-Heavy While Requirements Engineering Is Feasibility-Heavy
	Project Plans Resist Adaptation to New Insights and Trigger the Wrong Conversations
	Backlogs Foster Reactive Bottom-Up Thinking Instead of Top-Down Value Orientation
	Strategic Roadmaps Foster Value-Oriented Thinking Throughout the Development Process
	Communication and Alignment Between Stakeholders
	Holistic Overview for Strategic Prioritization
	Prioritization Through Meaningful Levels of Granularity
	Changes and Implications

	Conclusion
	References

	Managing Tensions in Research Consortia with Design Thinking Artifacts
	Introduction
	Related Work
	Case Description
	Defining a Use Case with the Double Diamond Process

	Model Development
	Analysis
	Implications and Conclusion
	References

	Platform Design with Design Thinking and Scrum: An Experience Report from Deutsche Bundesbank
	Introduction
	Project Context and Description
	Phase 1 ``Exploration´´
	Phase 2 ``IT-Prototyping´´
	Phase 3 ``Final Prototype´´
	Outlook for Phase 4 ``Go-Live´´

	Key Learnings
	Reference

	Design Thinking in a Large Manufacturing Organization: Designing a Smart Support System for the Shop Floor
	Introduction: Design Thinking in Manufacturing
	Description: Our Approach to Design Thinking in Three Phases
	Phase 1 ``Need Finding´´
	Phase 2 ``Prototyping and Testing´´
	Phase 3 ``Implementing´´

	Reflection: Critical Success Factors and Global Analysis
	Conclusion: Key Takeaways and Lessons Learned
	References

	Digital Platform Design at the Edge of Complexity: The Value of Design Thinking to Balance Between Configuration and Customiza...
	Introduction
	Theoretical Foundation
	Platform Types: On Seeing the Forest for the Trees
	Platform Economics: On Economies of Scale and Scope
	Platform Modularity: On Complexity and Variety
	Platform Design (Thinking): On Configuration and Customization

	Approach
	The Value of Design Thinking for Digital Platform Design
	Mindset: Increasing Variety of Addressed Problems per Solution
	Process: Considering the Lifecycle and Setting Boundaries
	Toolset: Combining Design Methods with Modular Operators

	Concluding Remarks
	References

	Design Thinking in Healthcare-Enabler for Digitalization in Complex Environments: Why Healthcare Is Adequate to Proof the Pote...
	Two Different Worlds
	The Complexity in Healthcare
	Design Thinking in Action
	Example 1: Prototyping the New ED and Outpatient Processes at a Pediatric University Hospital
	Example 2: Designing a Central Operations Center Software
	Example 3: Design Thinking as Game Changer in Healthcare Digitalization

	Benefits
	Challenges
	Summary
	References

	It Takes Two to Tango: Design Thinking and Design Patterns for Better System Development
	Introduction
	Background and Related Work
	Design Thinking
	Design Patterns

	Developing Smart Personal Learning Assistants Using Design-Thinking and Design Patterns
	Finding the Design Solution Using Design Thinking
	Developing the Design Solution Using Design Patterns

	Overall Evaluation of the Development Process and Legal Assessment
	Evaluation of the Development Process
	Legal Assessment of the Developed SPLA

	Conclusion
	References

	Epilog: From Requirements Engineering to Design Thinking
	Epilog

	978-3-030-90594-1_BookFrontMatter
	978-3-030-90594-1_Chapter_1
	978-3-030-90594-1_Chapter_2
	978-3-030-90594-1_Chapter_3
	978-3-030-90594-1_Chapter_4
	978-3-030-90594-1_Chapter_5
	978-3-030-90594-1_Chapter_6
	978-3-030-90594-1_Chapter_7
	978-3-030-90594-1_Chapter_8
	978-3-030-90594-1_Chapter_9
	978-3-030-90594-1_Chapter_10
	978-3-030-90594-1_Chapter_11
	978-3-030-90594-1_Chapter_12
	978-3-030-90594-1_Chapter_13
	978-3-030-90594-1_Chapter_14
	978-3-030-90594-1_Chapter_15

