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Abstract. Guillou-Quisquater (GQ) signature is an efficient RSA-based
digital signature scheme amongst the most famous Fiat-Shamir follow-
ons owing to its good simplicity. However, there exist two bottlenecks for
GQ hindering its application in industry or academia: the RSA trapdoor
n = pq in the key generation phase and its high bandwidth caused by
the storage-consuming representation of RSA group elements (3072 bits
per one element in 128-bit security).

In this paper, we first formalize the definition and security proof of
class group based GQ signature (CL-GQ), which eliminates the trap-
door in key generation phase and improves the bandwidth efficiency from
the RSA-based GQ signature. Then, we construct a trustless GQ multi-
signature scheme by applying non-malleable equivocable commitments
and our well-designed compact non-interactive zero-knowledge proofs
(NIZK). Our scheme has a well-rounded performance compared to exist-
ing multiparty GQ, Schnorr and ECDSA schemes, in the aspects of band-
width (no range proof or multiplication-to-addition protocol required),
rather few interactions (only 4 rounds in signing), provable security
in dishonest majority model and identifiable abort property. Another
interesting finding is that, our NIZK is highly efficient (only one round
required) by using the Bezout formula, and this trick can also optimize
the ZK proof of Paillier ciphertext which greatly improves the speed of
Yi’s Blind ECDSA (AsiaCCS 2019).

Keywords: Guillou-Quisquater signature · Multi-signature ·
Zero-knowledge proof · Remove trusted setup

1 Introduction

Guillou-Quisquater signature, also called GQ signature, was proposed by Guillou
and Quisquater in 1988 [21]. Together with Schnorr signature [34], GQ signature
scheme is amongst the most efficient and famous Fiat-Shamir [15] follow-ons. GQ
has some applications in cryptographic protocols such as forward-secure signa-
ture [27], identity-based signature with bounded life-span [13], distributed certifi-
cate status protocol [40], distributed authentication algorithm for mobile ad-hoc
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network [37], GQ1 (identity-based) and GQ2 schemes in ISO/IEC 14888-2 stan-
dard [25] and etc. GQ has already been used to construct distributed signing
protocols, including multi-signature schemes [1,2,12,35] and threshold signature
schemes [10,29,36]. Nevertheless, GQ’s application scenarios and research discus-
sions are still rather limited when compared with Schnorr and ECDSA which are
the most widely used two digital signature schemes by virtue of Schnorr’s great
simplicity and ECDSA’s application in blockchains like Bitcoin and Ethereum.

Drawbacks of RSA-based GQ. One obvious flaw of all the aforementioned
GQ applications is that all these applications require a trusted setup to generate
the public/private key pair through generating two large primes p and q secretly
and setting n = pq publicly as the group order. This is prohibitive for practical
adoption of GQ in trustless environments like public blockchain or digital walletd
where no trusted third party (TTP) is involved. In 2000, Hamdy and Möller [22]
informally pointed out that class groups of imaginary of quadratic fields (IQC)
proposed by Buchmann and Williams [6] can be applied in GQ signature, thus
shedding light on how to remove the RSA trapdoor in GQ signature scheme, i.e.,
replacing the RSA group in GQ signature with a class group. Yet, such a class
group based GQ signature lacks a formal definition and a rigorous security proof
for EUF-CMA (Existential Unforgeability under Chosen Message Attack) along
with a suitable hardness assumption. Another shortcoming for GQ protocols is
that, since all the elements in RSA group of order n have to be represented by a
3072-bit string for 128-bit security, it is not bandwidth efficient, especially in a
multi-user setting. On the class group side, to achieve 128-bit security, a group
element only needs a tuple (a, b) which can be represented by a 1665-bit string,
with a 1665-bit discriminant Δ which only needs to be declared for once. Thus,
switching from RSA group to class group can save the bandwidth by 45.8% per
each group element, which makes applying GQ in a trustless distributed setting
more appealing.

Multi-signature and its Applications. Multi-signature is firstly proposed
in [26] which is a joint signing protocol that allows a group of signers to collab-
oratively generate a compact signature on a common message and requires that
the verification time and signature size is constant. Two important applications
of multi-signature are digital wallet and asset custody. Digital wallet usually
requires its user to split his secret key into multiple devices and use all (or some)
of them to transfer the currencies he holds. Asset custody is a bank service of
protecting customer’s currencies or real assets. For security consideration, any
one single entity (bank, customer, or some third party institution) can not access
the secret key directly, especially for some large amount of currencies protected,
so the secret key should be also divided into multiple shares. Here are two major
concerns: can we resist misbehaved devices/parties? And can we identify who is
misbehaving?

Intuitions. In this work, we focus on constructing a trustless multi-signature
scheme, allowing key aggregation and identifiable abort properties. The trustless
property requires a non-trusted setup and security against the existence of any
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number of malicious participants during all phases (for both key setup or sign-
ing). Although the dishonest majority model in [20] can well capture this security
requirement, abort is not a violation of its security definition. Then, a malicious
adversary can easily initiate DoS (Denial of Service) attack on the system. Thus
we require an identifiable abort property, which is defined in [24], ensuring that
the identities of the malicious participants leading to system abort are detectable
to any participants or external entities, which is significant to detect broken or
hacked devices or misbehaving banks or institutions which cause the failure the
joint signing. Additionally, we hope our scheme supports key aggregation, which
means that a signer, instead of using a full list of the public keys (or key shares),
only needs an aggregated public key for everyone to verify a signature, thus sav-
ing computations and storage for devices with limited computing resources. In
this work, we give a pretty nice solution with enough security and promising
efficiency using GQ and class group.

1.1 Related Work

Now, we review the multiparty signature protocols built on top of GQ, Schnorr
and ECDSA in the past few years.

The state-of-the-art GQ multi-signature (identity based) is proposed by Bel-
lare and Neven (CT-RSA 2006 [2]). It is highly efficient in computation and
proved secure using the forking lemma, although the bandwidth is heavier when
compared to Schnorr-based multi-signatures which will be discussed later. But
they adopted a fragile security model where all the signers are required honest,
which is unrealistic to make it work in the presence of dishonest adversaries.
We do not consider the key aggregation property since it is an identity based
scheme, where there is only one secret key required to initialize the system by a
trusted centre.

Bellare and Neven proposed an efficient Schnorr multi-signature scheme
(ACM-CCS 2006 [1]) under a plain public-key model allowing the existence of
dishonest signers. But it does not support key aggregation. In plain public-key
model, the security against rogue-key attack1 can be achieved without relying
on KOSK (Knowledge of Secret Key) assumption like [4,30] and accordingly
reduce some burdensome computation2. Maxwell et al. adopted the same plain
public-key model and proposed a variant of Bellare and Neven’s Schnorr multi-
signature, called MuSig, which adds the property of key aggregation [31] (DCC
19). Later on, MuSig2 [33] and MuSig-DN [32] are proposed both of which opti-
mize the round complexity of MuSig from 3 rounds to 2 rounds. However, MuSig
and MuSig2 have a considerable reduction loss led by a double-forking technique
[31]. MuSig-DN achieves a deterministic signing at a cost of expensive zero-

1 Rogue-key attack refers to that an adversary can forge multi-signature by arbitrarily
choosing his public key, or using a function of the public keys of honest signers.

2 KOSK well resists rogue-key attack but it requires the proof of knowledge of secret
key when mounting attacks by submitting corresponding public keys, and thus incurs
expensive computation.
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Table 1. Comparison with existing multiparty signing schemes. rds is the abbreviation
of rounds; n denotes the number of sigining parties;each round allowing broadcasting
and a point-to-point message sending is considered one round.

Scheme Range proof Key aggregate Identifiable abort* Sign rds.

ECDSA (CCS 18) [17]
√ √ × 9

ECDSA (CCS 18) [28]
√ √ × 8

ECDSA (S&P 19) [14] × √ × 6+log(n)

ECDSA (PKC 20) [9] × √ × 8
ECDSA (PKC 21) [39] × √ × 8
ECDSA (G.G. 20) [18]

√ √ √
7

ECDSA (CCS 20) [7]
√ √ × 4

ECDSA (G.K.S.S. 20)[16] × √
(
√
) 13

Schnorr (CCS 06) [1] × × × 3
Schnorr (DCC 19) [31] × √ × 3
Schnorr (CCS 20) [33] × √ × 2
Schnorr (N.R.S. 20) [32] × √ × 2
GQ (CT-RSA 06) [2] × - × 3
GQ (This paper) × √ √

4

knowledge proofs. All of above schemes on GQ and Schnorr cannot achieve
identifiable abort since there are no checks on the correctness on either Ri or si.

Lindell et al. proposed the first practical threshold ECDSA (ACM-CCS 2018
[28]) and Gennaro et al. proposed a parallel work: the first efficient thresh-
old ECDSA construction relying on game-based security proof (ACM-CCS
2018 [17]), there has been an abundance of follow-up work [7,9,14,16,18,39]
to improve these two schemes and made remarkable improvements on different
aspects, like waiving expensive range proofs, lowering the signing rounds, adding
the identifiable abort functionality. All the mentioned threshold ECDSA schemes
operate in the dishonest majority model, which is much more secure than plain
public-key model, especially for decentralized and trustless settings. Gennaro and
Goldfeder’s scheme [18] achieves the identifiable abort which attributes to a spe-
cific phase. Ga̧gol et al.’s scheme [16] achieves the identifiable abort only in the
online signing phase, thus marked with (

√
) in the identifiable abort option in

Table 1.

1.2 Contributions

We give a brief comparison between our proposed GQ multi-signature
scheme and the above-mentioned multi-signature/threshold signature schemes
in Table 1, which demonstrates that our protocol is well-rounded, with a compet-
itive signing round complexity (4 rounds of interaction), supporting key aggre-
gation and identifiable abort, secure in the dishonest majority model. Our con-
struction can achieve a highly trustless digital wallet and asset custody. We
summarize our contributions as follows.
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(1) Formal definition and security proof for class group based GQ
signature (CL-GQ). Applying class group to GQ signature can make GQ
trapdoorless as mentioned in [22] but no formal discussion is given. We first
formalize the definition of GQ signature over class group of imaginary quadratic
fields, find the suitable hardness assumption prime root assumption for CL-GQ,
and prove that the existential unforgeability under chosen message attack (EUF-
CMA) in the random oracle model (ROM) under the prime root assumption
implied by the root assumption in generic group in [11].

(2) Compact one-round NIZK proofs to resist malicious adversaries
and achieve identifiable abort. In order to detect the malicious behaviour
during the multi-party signing and the protocol can abort once misbehaving is
detected once the malicious message is recieved (a timely identifiable abort with
attributability to the exact malicious message), we design two tailored ZK proofs
including ZKPoKRoot and ZKPoKSig following the 3 moves in the traditional
Σ-protocol. They promise any messages sent during interactions are verifiable.
Our ZK proofs are highly efficient, since no repetition is required after adopting
a Beout trick, although the ZK proofs work in an unknown order class group,
unlike the binary challenge based ZK proofs in [8,9]. This Bezout trick nicely
solves the open problem of how to accelerate the ZK proof of Paillier ciphertext
used in Yi’s blind ECDSA [38], which is illustrated in detail in the full version
of this paper.

(3) Provably secure trustless CL-GQ multi-signature in dishonest
majority model. We generalize CL-GQ to a multi-user setting and combine
non-malleable equivocable commitment used in [9,17] and our ZK proofs to build
up our trustless CL-GQ multi-signature scheme. Our scheme does not rely on
any common reference string (CRS) produced by a trusted party. We reduce
the unforgeability of our new multi-signature in dishonest majority model to
the EUF-CMA of CL-GQ under ROM. Our proof enjoys smaller reduction loss
than [31,33] since we only require one time rewinding when reducing the CL-
GQ to prime root assumption and no rewinding when reducing the CL-GQ
multi-signature to CL-GQ, differing the double-forking technique which needs a
two-layer rewinding framework, and it is much more concise than the ECDSA
schemes [9,17] since our simulator does not need to distinguish any non semi-
correct executions.

(4) Implementation and efficiency analysis. We implement our protocol
in Rust3 to demonstrate the practical efficiency. One signer only needs 2.1/3.6 s
to sign a document for 112/128-bit security level in a 5-user setting. We also
analyze the concrete bandwidth needed in our scheme. In 128-bit security, our
protocol only costs 6 kB (kilobytes) and 10 kB bandwidth for the interactive key
generation and interactive signing phases respectively in a 5-signer setting. For
signing, the bandwidth of our scheme is about one-third of the bandwidth in [17]
since we do not have expensive range proofs led by Paillier encryption or tedious
MtA (Multiplication-to-Addition) protocol led by the non-linear structure of
ECDSA. Both running time and bandwidth are promising.

3 https://www.rust-lang.org/.

https://www.rust-lang.org/
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2 Preliminaries

2.1 Adversary Model and Security Definitions

Our proposed multi-signature scheme works in a dishonest majority model allow-
ing static corruption which was used in [9,17,18,28]. Following [19], we present
a game-based definition of security analogous to EUF-CMA: multi-signature
unforgeability under chosen message attacks (MU-CMA).

Dishonest Majority Model with Static Corruption. In dishonest majority
model, there can exist a majority of malicious adversaries who may arbitrarily
deviate from the protocol and abort is not deemed as violating the security,
assuming the existence of both broadcast channel and point-to-point channel
among each participant, and assuming the static corruption that requires adver-
saries to select the participants to corrupt ahead of the start of the protocol.

Definition 1 (Multi-signature Unforgeability). Consider a multi-signature
scheme MS = (MKeyGen,MSign,Verify) with N parties and a PPT malicious
adversary A who corrupts at most N − 1 players, given the view of MKeyGen
and MSign on inputs of adaptively chosen messages, denoted by M, and the
corresponding signatures on those messages. The multi-signature scheme MS
is said to be existentially unforgeable (EUF-CMA) if there is no such a PPT
adversary A that can produce, except with negligible probability, a valid signature
on a message m /∈ M.

2.2 Guillou-Quisquater Signature (GQ)

We review the original GQ signature scheme in [21].

– KeyGen. Choose randomly two large primes p and q and compute n = pq.
Select an integer v s.t. 0 < v < φ(n) and gcd(v, φ(n)) = 1, where φ(n) is the
Euler function. Select a hash function H : {0, 1}∗ → Zv−1. Randomly select
the secret key B from Zn and compute J = B−v mod n. Set PK = (n, v, J,H)
and SK = (p, q,B).

– Sign. Randomly select r from Zn, then compute T = rv mod n, h = H(M,T )
and t = rBh mod n, where M is the message to be signed. Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJhmod n. If h = H(M,T ′), output 1; otherwise, output 0.

The correctness is by T ′ = tvJh = (rBh)vJh = rv(JBv)h = rv = T mod n.
According to [3], GQ identification is secure under RSA-OMI (RSA one-more
inversion) assumption and after applying Fiat-Shamir transformation, GQ sig-
nature is secure under RSA-OMI assumption in ROM (random oracle model).

RSA Trapdoor. If knowing the p and q, a malicious PKG can easily obtain the
secret key B from public J through simply computing d = v−1 mod (p−1)(q−1)
and then B = J−d. This RSA trapdoor makes the GQ signature infeasible to be
used in trustless scenarios.
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2.3 Class Group of Imaginary Quadratic Field

Let −Δ be a random (large) λ-bit prime such that Δ ≡ 1 mod 4. The ring
OΔ = Z + Δ+

√
Δ

2 Z is an imaginary quadratic order of discriminant Δ. Its field
of fractions is Q(

√
Δ). The fractional ideals of OΔ are of the form q(aZ+ b+

√
Δ

2 Z)
with q ∈ Q, α ∈ Z

+, b ∈ Z and 4a|(b2 − Δ). An ideal is integral if q = 1, and it
can be represented by a pair (a, b). Two factional ideals a, b ∈ OΔ are equivalent
if for some non-zero α ∈ Q(

√
Δ), a = αb. The set of equivalence classes form an

Abelian group under ideal multiplication, which is known as the class group of
imaginary quadratic order CL(Δ). Sometimes we denote the group as Di, where
i = −Δ. One set of equivalence classes can be represented by a unique (a, b)
form through a reduction algorithm satisfying that gcd(a, b, c) = 1,−a < b ≤
a ≤ c,and b ≥ 0 if a = c. The class group of imaginary quadratic order Di is an
Abelian group with ideal multiplication. Meanwhile, class group is always finite
and the group order is unknown. More description can be found in [22,23].

3 GQ Signature Scheme Without Trapdoor (CL-GQ)

When we replace the RSA group by class group of imaginary quadratic field
CL(Δ), the group order and thus factoring of group order are unknown even to
the authority or user who generates the group. Hence, this n = pq trapdoor is
perfectly removed. The GQ signature based on class group is portraited below.
The main difference between GQ and CL-GQ is in the KeyGen phase, where v
has to be a prime and the group is initialized by a prime Δ. Procedures in sign
and verification are basically the same as GQ’s. Group operations in class group
and the necessity of computing modulo. We now describe the details.

– KeyGen. Given the security parameter λ, find a λ-bit prime −Δ s.t. Δ ≡ 1
mod 4 and a λ-bit prime v. Randomly sample a generator B from class group
of imaginary quadratic field CL(Δ). Compute J = B−v. Notice that all
the multiplication and exponentiation in class group should be finalized to a
reduced form. It is for the unity of representation and to lower computation
cost. Choose a hash function H : {0, 1}∗ → Zv−1. Set PK = (Δ, v, J,H) and
SK = (B).

– Sign. On input the secret key B and a message M , randomly selects r from
CL(Δ), then compute T = rv, h = H(M,T ) and t = rBh . Output signature
σ = (t, h).

– Verify. Upon receiving a signature σ = (t, h) of message M , compute T ′ =
tvJh and h′ = H(M,T ′). If h′ = h, output 1; otherwise, output 0.

Security. Damgård and Koprowski defined root assumption [11] working in
generic group model, as a generalization of RSA assumption, by describing that
given a group element x ∈ G and a number e, finding a group element y s.t.
ye = x is intractable, where G is a finite Abelian group in which the inverse and
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multiplication can be efficiently computed. Thus, we define a prime root assump-
tion as below, working in class group, which rules out composite exponent and
can be directly implied by root assumption. By Theorem 1, the EUF-CMA secu-
rity of CL-GQ can be reduced to prime root assumption in ROM. Due to the
page limit, we provide all the proofs expect for Theorem 1 in the full version of
this paper.

Definition 2 (Prime root assumption). We say that a class group of imag-
inary quadratic fields satisfies prime root assumption for any efficient A if

Pr
[
uv = g : u ← A(Δ, g, v), v ← Primes(λ), g $←− CL(Δ),Δ $←− Primes∗(λ)

]

is negligible in λ, where Primes(λ) is the set of primes less than 2λ and
Primes∗(λ) is the set of λ-bit primes which are equal to 3 modulo 4.

Theorem 1. If prime root assumption holds and H is a random oracle, the
CL-GQ signature is provably secure in the EUF-CMA model.

Proof. Suppose B is given a prime root problem instance (Δ,J∗, v), J∗ is a
group member in CL(Δ) and v is a prime. B tries to find a B∗ from CL(Δ)
s.t. B∗v = J∗ by using an EUF-CMA adversary A against the CL-GQ signature
scheme.
Setup. B prepares an empty list H, set p as the length of each element in H. B
sends (Δ, v, J∗,H) to adversary A as the public key.
Oracle Query. B answers the oracle queries as follows:
– Sign: On input a message M , B picks some random t ∈ CL(Δ), h ∈ Zp and

computes T = tvJh. B puts (h, T,M) in the list H. (If the value of h is
already set in H, B picks another h and repeats the previous step.) B returns
σ = (t, h).

– H: On input (T,M), if (h, T,M) is in the list H, B returns h. Otherwise, B
picks a random h ∈ Zp. B puts (h, T,M) in the list H and returns h.

Output. Finally A outputs an a message M∗ and a forged signature σ∗ = (t∗, h∗).
B can compute h∗ = H(T ∗,M∗) s.t. T ∗ = t∗vJ∗h∗

.
B rewinds H to the point that (T ∗,M∗) was queried, and returns a different

h′ 	= h∗. B eventually obtains another forgery (t′, h′) from A. Therefore, we have
t∗vJ∗h∗

= t′vJ∗h′
and it can be transformed into J∗h∗−h′

= (t′/t∗)v.
According to Bezout formula, there exists a unique pair of non-zero integers

(k,m) where 0 ≤ |k| ≤ v−1 and 0 ≤ |m| ≤ |h∗ −h′|−1 which is easily computed
by Euclidean algorithm s.t.:

mv − k(h∗ − h′) = gcd(v, h∗ − h′) = 1.

Raise equation J∗h∗−h′
= (t′/t∗)v to power k, we have:

J∗k(h∗−h′) = (t′/t∗)vk

J∗mv−1 = (t′/t∗)vk

J∗ = {J∗m(t∗/t′)k}v

Hence, B successfully extracts B∗ = J∗m(t∗/t′)k to solve the problem instance. 
�
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4 Our Multi-signature Scheme

In this section, we give the construction of our multi-signature scheme, which
is a trustless GQ multi-signature with identifiable abort, secure in dishonest
majority model. Both distributed key generation and distributed signing have
six phases, they will either abort or output a CRS and a valid signature in each
phase. We also utilize two zero-knowledge proofs ZKPoKRoot and ZKPoKSig
in our protocol, which will be described in details in next section. Here we note
that a plausible idea to achieve trustless setup is to use Boneh’s distributed RSA
key generation method [5] which will not compromise any secret information of
each signer to others. The reason why we did not adopt this fashion to construct
our GQ multi-signature is that this key generation is only secure assuming all
the parties are honest. This contradicts our dishonest majority setting.

Parameters and Notations. For the security level of 80/112/128-bit security, we
set λ (the bit length of the discriminant Δ of class group) 958/1208/1665 accord-
ing to the estimation in [22] and set η(λ)=160/224/256 bits. Considering the
requirement in [21] that h is smaller than v, h and v are set η(λ) and η(λ)+1 bits
respectively. NextPrime(x) (resp. PrevPrime(x)) is a function using Miller-Rabin
prime test to generate the next (resp. previous) nearest prime. NextPrime*(x)
(resp. PrevPrime*(x)) is a function using Miller-Rabin prime test to generate
the next (resp. previous) nearest prime r such that r ≡ 1 mod 4 after the input
integer x. Com(x) is a non-malleable commitment for a committed value x and
Reveal(c, d) opens the underlying committed value of the non-malleable equivocal
commitment where c is a commitment and d is a decommitment.

4.1 Distributed Key Generation

Our distributed key generation algorithm (Table 2) will either abort or output a
CRS. ZKPoKRoot is used to promise that public key Ji broadcasted by party
Pi is correctly generated. We describe the details as follows.

Phase 1. Each party Pi picks δi
$←− {0, 1}λ and vi

$←− {0, 1}η(λ)+1. Pi com-
putes the commitment [ci, di] ← Com(δi) and [ĉi, d̂i] ← Com(vi). Each Pi broad-
casts to all other parties the commitment (ci, ĉi).

Phase 2. Each Pi broadcasts the decommitment (di, d̂i) to all other parties.
Phase 3. After each Pi received all the (δj , vj) generated by every Pj(j 	= i),

a collaboratively generated (Δ, v) is computed by Δ = NextPrime∗(⊕n
i=1δi) and

v = NextPrime(⊕n
i=1vi). Then, each Pi generate its key pair (Bi, Ji) by Bi

$←−
CL(Δ) and Ji = B−v

i . Pi computes the commitment [c∗
i , d

∗
i ] ← Com(Ji) and

broadcasts to all other parties the commitment c∗
i .

Phase 4. Each Pi broadcasts the decommitment d∗
i along with a non-

interactive zero-knowledge proof πi for the relation {(Ji, v) : Bi|Ji = B−v
i }

to all other parties.
Phase 5. Upon receiving πi from Pj(j 	= i), each Pi checks the validity of

πj . If passing the check, Pi accepts πj ; otherwise, abort.
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Table 2. Interactive key generation protocol IKeyGen

IKeyGen(λ)
Pi All users {Pj}, i �= j

δi
$←− {0, 1}λ

vi
$←− {0, 1}η(λ)+1

[ci, di] ← Com(δi)

[ĉi, d̂i] ← Com(vi)
ci,ĉi−−−→
di,d̂i−−−→ δi ← Reveal(ci, di)

vi ← Reveal(ĉi, d̂i)

Δ = NextPrime∗(⊕n
i=1δi)

v = NextPrime(⊕n
i=1vi)

Bi
$←− CL(Δ)

Ji = B−v
i

[c∗
i , d∗

i ] ← Com(Ji)
c∗
i−→

d∗
i−→ Ji ← Reveal(c∗

i , d∗
i )

πi = ZKPoKRoot((Ji, v) : Bi|Ji = B−v
i )

πi←→ Abort if proof π fails
J =

∏n
i=1 Ji

Set CRS = (Δ, v, J, H),

and PKi = Ji;SKi = Bi

Phase 6. After each Pi received all the πj generated by every Pj(j 	= i) and
every πj ’s validity is proved, a common J is computed by J =

∏n
i=1 Ji. Each

party Pi sets CRS = (Δ, v, J), PKi = Ji;SKi = Bi.

4.2 Distributed Signing

Our distributed signing algorithm (Table 3) will either abort or output a valid
signature. We use ZKPoKRoot to ensure the well-formedness of commitment Ti

and use ZKPoKSig to ensure the well-formedness of response ti, thus preventing
malicious behaviors during the signing phase. We describe the details as follows.

Phase 1. Each party Pi picks ri
$←− CL(Δ) and compute Ti = rv

i . Pi com-
putes the commitment [ci, di] ← Com(Ti). Each Pi broadcasts to all other parties
the commitment ci.

Phase 2. Each Pi broadcasts the decommitment di along with a non-
interactive zero-knowledge proof πi for the relation {(Ti, v) : ri|Ti = rv

i } to
all other parties.

Phase 3. Upon receiving πj from Pj(j 	= i), Pi checks the validity of each
πj . If it is valid, Pi accepts πj ; otherwise, abort.

Phase 4. After each Pi received all the Tj and πj generated by every Pj(j 	=
i) and πj is proved valid, a common T =

∏n
i=1 Ti is computed. Then, calculate
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Table 3. Interactive signing protocol ISign

ISign(λ, SK, M)

Pi All users {Pj}, i �= j

ri
$←− CL(Δ)

Ti = rv
i

[ci, di] ← Com(Ti)
ci−→
di−→ Ti ← Reveal(ci, di)

πi = ZKPoKRoot((Ti, v) : ri|Ti = rv
i )

πi←→ Abort if proof π fails
T =

∏n
i=1 Ti

h = H(M, T )

ti = riB
h
i

[ĉi, d̂i] ← Com(ti)
ĉi−→
d̂i−→ ti ← Reveal(ĉi, d̂i)

π̂i = ZKPoKSig((Ti, Ji, ti, h, v) : (ri, Bi)|
ti = riB

h
i , Ti = ri

v, Ji = Bi
−v)

π̂i←→ Abort if proof π̂ fails

t =
∏n

i=1 ti

Output σ = (t, h)

h = H(M,T ). Each Pi computes ti = riB
h
i and the commitment [ĉi, d̂i] ←

Com(ti). Each Pi broadcasts to all other parties the commitment ĉi.
Phase 5. Each Pi broadcasts the decommitment d̂i along with a non-

interactive zero-knowledge proof π̂i for the relation {(Ti, Ji, ti, h, v) : (ri, Bi)|ti =
riB

h
i , Ti = ri

v, Ji = Bi
−v} to all other parties.

Phase 6. Upon receiving π̂j from Pj(j 	= i) , each Pi checks the validity of π̂i.
If it is valid, Pi accepts π̂i; otherwise, abort. Each party computes t =

∏n
i=1 ti.

Output the collaborative signature σ = (t, h).

4.3 Verification

When receiving a signature σ = (t, h) for the message M , the verification is
similar to the original GQ signature scheme. Accept if and only h is equal
to H(M,T ′) where T ′ = tvJh. The correctness follows by T ′ = tvJh =
(
∏n

i=1 ti)v(
∏n

i=1 Ji)h = (
∏n

i=1 riB
h
i )

v(
∏n

i=1 B−v
i )h = (

∏n
i=1 ri)v = rv = T .

Since the operation is based on an unknown order class group and the results
produced by class group multiplication and exponentiation is normalized when
output, we do not need to modulo the result by any integer. Since the validity of
the signature can be checked by any Pj , it is possible for Pi to send Pj the sig-
nature if it confirms the validity of this signature. This will not affect security at
all. Moreover, non-malleable commitments and zero-knowledge proofs promise
that each party cannot deny the message it broadcasts to the network and each
message contributing to collaboratively generated signature is well-formed, and
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thus no malicious behaviors can affect the joint signing. Note that, the verifica-
tion phase only needs the aggregated key J =

∏n
i=1 Ji, not the full list of signers’

public keys {Ji}i∈[1,n].

4.4 Rogue-Key Attack Resistant

In the IKeyGen phase, an adversary, Pj∗ for example, cannot choose its PKj∗

after seeing the public keys of other parties to initiate rogue-key attack. More
specifically, he cannot set his public key as Jj∗ = B−v

j∗ (
∏n

i=1,i �=j∗ Ji)−1 and thus
make the aggregated key equal his arbitrarily selected public key B−v

j∗ , in which
case he can forge valid multi-signature by himself easily, since he cannot prove the
knowledge of the discrete logarithm of Jj∗ by submitting valid ZKPoKRoot. This
rules out the possibility of rogue-key attack following the KOSK assumption.

4.5 Identifiable Abort or Not

If we simply achieve dishonest majority security without identifiable abort, there
is no need to generate and verify the well-formedness ZK Proof of ti in ISign,
namely, the ZKPoKSig. Instead, after obtaining ti, each party directly computes
t =

∏n
i=1 ti, and verify the validity of σ = (t, h), then output this σ if it is valid,

abort if it is invalid. This does not violate the dishonest majority model we
used. However, without using ZKPoKSig the identity of malicious party cannot
be detected in the Phase 5, and thus our scheme cannot reach the property of
identifiable abort.

5 Security Proof of Our Multi-signature Scheme

The security proof of our multi-signature scheme is a reduction to the unforge-
ability of CL-GQ. If there is a PPT adversary A which breaks our multi-party
CL-GQ, then we can construct a forger F to use A to break CL-GQ. F must
simulate the environment of A. Namely, when A corrupts {Pj} where j 	= 1, we
can construct a F to simulate honest party P1 s.t. A’s view of interaction with F
is indistinguishable from A’s view of interaction with P1. Let F have the public
key (Δ, v, J,H) of CL-GQ and owns the access to the signing oracle of its choice.
After a series of queries from F , it can output a forgery signature σ = (t, h) for
a message M chosen by itself which has never been queried. Different from the
security proof of the multiparty ECDSA in [9], F does not need to distinguish a
semi-correct or non semi-correct execution of A (δi in Phase 3, Fig. 5 in [9] sent
from adversary can be malicious) which makes our proof more concise.

Simulating P1 in IKeyGen. F obtains a public key (Δ, v, J,H) from its CL-
GQ challenger and he must set up in its simulation with A this same public
key (Δ, v, J,H). This will allow F to subsequently simulate interactively signing
messages with A, using the output of its CL-GQ signing oracle. F repeats the
following steps by rewinding A until A sends the correct decommitments for
P2, ..., Pn on both iterations.
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1. F randomly selects δ1 ∈ {0, 1}λ and v1 ∈ {0, 1}η(λ)+1, computes [c1, d1] ←
Com(δ1) and [ĉ1, d̂1] ← Com(v1) and broadcasts (c1, ĉ1). F receives
{cj , ĉj}j∈[n],j �=1.

2. F broadcasts (d1, d̂1) and receives {dj , d̂j}j∈[n],j �=1. For i ∈ [n], let δi ←
Reveal(ci, di) and vi ← Reveal(ĉi, d̂i).

3. F randomly selects δ′
1, v

′
1 ∈ {0, 1}λ, subject to the condition Δ =

NextPrime∗(δ′
1 ⊕ (⊕n

2 δi)) and v = NextPrime(v′
1 ⊕ (⊕n

2 vi)). Then F computes
equivocated decommitment (d′

1, d̂
′
1) which reveal δ′

1, v
′
1, rewinds A to step 2

and broadcasts (d′
1, d̂

′
1).

4. All parties compute the common output Δ = NextPrime∗(δ′
1 ⊕ (⊕n

2 δi)) and
v = NextPrime(v′

1 ⊕ (⊕n
2 vi)).

5. F randomly selects B1 ∈ CL(Δ) and computes J1 = B−v
1 . Then F computes

[c∗
1, d

∗
1] ← Com(J1) and broadcasts to all other parties the commitment c∗

1. F
receives {c∗

j}j �=i.
6. F broadcasts d∗

1 and performs a ZKPoKRoot for relation {(J1, v) : B1 : |J1 =
B−v

1 }. F then receives {d∗
j}j �=i. For i ∈ [n], let Ji ← Reveal(c∗

i , d
∗
i ) be the

opened commitment value of each party.
7. F rewinds A to step 6 and equivocates P1’s commitment to d∗′

1 so that the
revealed value now is J ′

1 = J(
∏n

i=2 Ji)−1 and broadcasts d∗′
1 . Then F simu-

lates ZKPoKRoot.
8. If all the proofs and commitments are correct the protocol continues with

J ′ = J ′
1

∏n
i=2 Ji = J .

Theorem 2. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot is honest verifier zero-knowledge proof of knowledge, then the IKey-
Gen simulation above is indistinguishable from a real execution in the view of
potentially corrupted parties P2, P3, . . . , Pn. Moreover, when the simulation does
not abort, all parties output Δ, v in step 4 and J in step 8.

Simulating P1 in ISign Phase

1. As in a real execution, F randomly selects r1 ∈ CL(Δ) and computes T1 = rv
1 .

Then F computes [c1, d1] ← Com(T1) and broadcasts to all other parties the
commitment c1. F receives {cj}j �=i.

2. F broadcasts d1 and performs a ZKPoKRoot for relation {(T1, v) : r1 : |T1 =
rv
1}. F then receives {dj}j �=i. For i ∈ [n], let Ti ← Reveal(ci, di) be the opened

commitment value of each party.
3. F requests a signature (t, h) for a message M from its CL-GQ signing oracle

and computes T = tvJh (note that h = H(M,T )).
4. F rewinds A to step 2 and equivocates P1’s commitment to d′

1 so that the
revealed value now is T ′

1 = T (
∏n

i=2 Ti)−1 and broadcasts d
′
1. Then F simulates

ZKPoKRoot.
5. If all the proofs and commitments are correct, all parties compute T ′ =

T ′
1

∏n
i=2 Ti = T , h′ = H(M,T ) = h. F computes t1 = r1B

h′
1 . and [ĉ1, d̂1] ←

Com(t1). F broadcasts to all other parties the commitment ĉ1. F receives
{ĉj}j �=i.
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6. F broadcasts d̂1 and performs a ZKPoKSig for relation {(T1, J1, t1, h) :
(r1, B1)|t1 = r1B

h
1 , T1 = r1

v, J1 = B1
−v}. F then receives {d̂j}j �=i. For

i ∈ [n], let ti ← Reveal(ĉi, d̂i) be the opened commitment of each party.
7. F rewinds A to step 5 and equivocates P1’s commitment to d̂′

1. The revealed
value is t′1 = t(

∏n
i=2 ti)−1 and broadcasts d̂′

1. Then F simulates ZKPoKSig.
8. If all the proofs and commitments are correct, all parties compute t′ =

t′1
∏n

i=2 ti = t and output σ = (t′, h).

Theorem 3. If the commitment scheme is non-malleable and equivocal and
ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge proof of knowl-
edge, then the ISign simulation above is indistinguishable from a real execution
in the view of potentially corrupted parties P2, P3, ..., Pn and on input M the
simulation outputs a valid signature σ = (t, h) or aborts.

Finally, we capture the security of our protocol by Theorem 4.

Theorem 4. Assuming standard CL-GQ is an existentially unforgeable signa-
ture scheme; the ZKPoKRoot and ZKPoKSig are honest verifier zero-knowledge
proof of knowledge; and the commitment scheme is non-malleable and equivoca-
ble, then our GQ multi-signature protocol (IKeyGen, ISign) is an existentially
unforgeable multi-signature scheme.

6 Zero-Knowledge Proofs

In this section, we give the detailed construction of ZKPoKRoot and ZKPoKSig
which are used in our multi-signature protocol. At the first glance, both ZK
proofs seem easy to construct. But one problem of ZK proofs in an unknown
order group is that it requires that the challenge is a binary string and thus
should be repeated for many rounds to achieve an acceptable soundness error,
like the one-bit challenge ZK proofs in [8,38]. We observe an interesting thing
that the Bezout formula utilized in the EUF-CMA of CL-GQ can also be adopted
when proving the special soundness of our ZK proofs, which accordingly waive
the repetition of our protocol, the additional constraint is that the length of
the challenge space should be smaller than v. This trick also answers the open
problem in Yi’s blind ECDSA scheme [38], that how to speed up their ZK proof
of Paillier ciphertext and in the full version of this paper we give a slightly
modified version of the ZK proof they used, which waives any repetition.

6.1 Zero-Knowledge Proof for the −v-th Root

We define a relation for the −v-th root of a class group element x where v is a
prime:

Rroot = {(X, v) : x|X = x−v}.

We put forward a zero-knowledge proof of knowledge (ZKPoK) protocol named
ZKPoKRoot (Table 4) which is needed in our multi-signature scheme. It should
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Table 4. Zero-knowledge Proof ZKPoKRoot for relation Rroot

ZKPoKRoot(X, v)

Pi Pj(j �= i)

r
$←− CL(Δ)

t = rv t−→
k←− k

$←− {0, 1}γ

u = x−kr
u−→ Check: uv = Xkt

Table 5. Zero-knowledge Proof ZKPoKSig for relation Rsig

ZKPoKSig(Ti, Ji, ti, h, v)

Pi Pj(j �= i)

ρ1, ρ2
$←− CL(Δ)

τ1 = ρv
1

τ2 = ρv
2

τ3 = ρ−h
1 ρ2

τ1,τ2,τ3−−−−−→
k←− k

$←− {0, 1}γ

u1 = B−k
i ρ1

u2 = rk
i ρ2

u1,u2−−−−→ Check: uv
1 = Jk

i τ1

Check: uv
2 = T k

i τ2

Check: u−h
1 u2 = tk

i τ3

run for only one round to achieve a soundness error of 2−γ where γ is the length
of the challenge space we set in the ZKPoKRoot protocol, additionally required
that 1 ≤ γ ≤ v − 1. x and X are class group elements and v is a prime.

Theorem 5. The protocol ZKPoKRoot is an honest verifier zero-knowledge
proof of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.

6.2 Zero-Knowledge Proof of a CL-GQ Signature

We need another one-round ZKPoK protocol named ZKPoKSig (Table 5) for the
following relation, where Ti, Ji, Bi are class group elements, h is a positive integer
and v is a prime. We set γ as the challenge space which can be used to adjust
the soundness error of ZKPoKSig, additionally required that 1 ≤ γ ≤ v − 1.

Rsig = {(Ti, Ji, ti, h, v) : (ri, Bi)|ti = riB
h
i , Ti = ri

v, Ji = Bi
−v}

Theorem 6. The protocol ZKPoKSig is an honest verifier zero-knowledge proof
of knowledge with soundness error 2−γ where 1 ≤ γ ≤ v − 1.
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Remarks. To reduce the unnecessary interactions, we adopt Fiat-Shamir trans-
formation [15] to make both ZKPoKRoot and ZKPoKSig non-interactive by
replacing the challenge k in each ZKPoK with H(t) and H(τ1, τ2, τ3) respec-
tively where H is a secure hash function. Due to the security level concern, we
will set v larger than 161 bits in the joint signing protocol while γ is usually
required to be 40/60/80 bits in the industry. Hence, for either ZKPoKRoot or
ZKPoKSig, the additional requirement of 1 ≤ γ ≤ v − 1 is practical.

6.3 ZKPoK with Lower Soundness

Consider an extreme scenario that we want to achieve a strict soundness error,
2−1000 for example, Bezout trick can not be applied in the soundness with extrac-
tor proof since the additional requirement of 1 ≤ γ ≤ v − 1 does not hold (v is
smaller than 257 in our real use, as claimed in Sect. 4). The γ can only be set 1
to construct the successful extractor. Hence,  repetitions of either ZKPoKRoot
or ZKPoKSig are compulsory when we want to achieve a soundness 2−� where
 is a positive integer. The massive running time undermines its practical appli-
cation. In this case, if a low soundness error should be satisfied, with reasonable
computational cost, the LCM (lowest common multiple) trick used in [9] can be
used to reduce the repeating time and thus remarkably improve the efficiency. To
adopt this LCM trick, we need to modify the original ZKPoK protocols in two
places: i) change the challenge space of k from {0, 1} to {0, 1}C for some positive
integer C and ii) change the repeat time from  to /C. Through the revisited
ZKPoK protocols, the relations, where y= lcm(1, 2, 3, ..., 2C), are proved.

R′
root = {x : Xz = (xy)v}

R′
sig = {(Ti, Ji, ti, h, v) : (ri, Bi)|tzi = ry

i (B
y
i )

h, T z
i = (ry

i )
v, Jz

i = (Bi
y)v}

Caveat. The major concern of such an LCM trick is that the modified relation
is a loosed relation and thus it is questionable if we can initiate any potential
attacks, more specifically, forge a witness which holds in the loosed relation but
does not hold in the standard relation and this issue is not well discussed in [9].

7 Implementation and Evaluation

We implemented the original GQ signature, the CL-GQ signature, and our multi-
party GQ signature without trusted setup in Rust language. We use the Rust
library Class4 to conduct the class group operations, including sampling, reduc-
tion, exponentiation and multiplication. It should be noted that this Rust library
calls the C library Pari and thus it basically ensures the efficiency of the heavy
arithmetic computations for class groups, but can still be improved. We bench-
mark the running times of both KeyGen and Sign for three schemes. All the
programs are executed in a single thread on a MacBook Pro with Intel Core i5
1.4GHz and 16GB RAM.
4 It is a library for building cryptography based on class groups of imaginary quadratic

orders. https://github.com/ZenGo-X/class.

https://github.com/ZenGo-X/class
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Table 6. Running time of original GQ and CL-GQ in different security levels.

Level GQ’s |σ| GQ KeyGen GQ Sign CL-GQ’s |σ| CL-GQ KeyGen CL-GQ Sign

80-bit 1184 bits 30.375 ms 96.130 us 847 bits 221.77 ms 99.250 ms
112-bit 2272 bits 147.94 ms 472.44 us 1433 bits 2.0269 s 300.61 ms
128-bit 3328 bits 455.42 ms 1.1299 ms 1921 bits 6.9179 s 564.09 ms

Table 7. Benchmarks of trustless GQ multi-signature.

Security level # Party Comp. IKeyGen Comp. ISign Comm. IKeyGen Comm. ISign

2 10.908 s 3.139 s 1848 Bytes 2945 Bytes
112-bit 3 15.006 s 5.253 s 2771 Bytes 4417 Bytes
security 4 19.947 s 7.663 s 3695 Bytes 5889 Bytes

5 35.295 s 10.505 s 4619 Bytes 7361 Bytes
2 29.206 s 5.569 s 2466 Bytes 4003 Bytes

128-bit 3 36.594 s 9.298 s 3698 Bytes 6004 Bytes
security 4 40.168 s 13.372 s 4931 Bytes 8005 Bytes

5 47.825 s 17.991 s 6164 Bytes 10006 Bytes

7.1 Standard GQ v.s. CL-GQ

We compare the standard GQ and CL-GQ in three security levels: 80-bit, 112-bit,
128-bit security, where 80-bit security is insecure and over 112-bit is generally
deemed as secure. We set v as η(λ)+1 bits for both GQ and CL-GQ schemes.
We compare the signature sizes, running times of both schemes. As observed
from results in Table 6, removing the RSA trapdoor is obviously a trade-off of
computational efficiency. CL-GQ is much slower for both KeyGen and Sign due
to the complicated arithmetic operations for class group in CL-GQ. For signature
size, our CL-GQ is much shorter than GQ.

7.2 Performance of Trustless GQ Multi-signature

We evaluate the running time and bandwidth of multi-party GQ without trusted
setup in Tables 7. The running time is obtained from the median running time
among 20 test samples each of which sequentially executes the computation of
each signer (in fact the protocol can be executed in parallel but here we consider
achieving a fair comparison). In a 5-user setting without considering the network
constraint, each signer only needs around 2.1 and 3.6 s to sign a message in 112-
bit and 128-bit security levels respectively. We computed the concrete Bytes
needed for multi-party GQ in 112-bit and 128-bit asymmetric security levels,
and gave the calculation formula (Notice that in the given formula λ means the
length of Δ, instead of a security level 112 or 128). Both bandwidth and running
time confirm that our trapdoorless GQ multi-signature is very practical in use.
Our bandwidth is only about one-thirds of the bandwidth of joint signing in [17].
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Comm.cost(IKeyGen) = n × {10 × λ − 1
2

� + 6 × η(λ) + 5} (bits)

Comm.cost(ISign) = n × {18 × λ − 1
2

� + 4 × η(λ) + 9} (bits)

Impacts from the Number of Users. Consider an N-party setting, since we
assume the existence of broadcast channel, each party only computes their com-
mitments and NIZK proofs once, and thus N computations in total are needed.
On the receiver’s side, however, each party should de-commit the commitments
and verify the NIZK proofs received from all other parties, and thus N(N − 1)
computations in total are needed. The accumulations of δi, vi, Ji, Ti, ti are also
in O(N2) complexity. Hence, the computational burden increases in a non-linear
way when participants increase. Besides, as the increasing of the size of Δ and
v, the uncertainty of computing NextPrime∗ and NextPrime increases, which will
lead to a noticeable variance of running time of IKeyGen. On the other hand,
the variance of the running time of ISign is trivial.

8 Conclusion

In this paper, we first formalize the class group based GQ signature and then
propose a trapdoorless GQ multi-signature scheme with identifiable abort prop-
erty and only 4 rounds of interaction in the signing phase, secure in the dishonest
majority model. We have concise security proof (no need for the simulator to
detect a non semi-correct execution) and two compact one-round NIZKs (remov-
ing repetitions led by binary challenge). We give a detailed implementation and
efficiency analysis which demonstrate that our scheme has promising running
time and extraordinary bandwidth.
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