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Abstract. In recent years, the demand for cloud-based high-performance
computing applications and services has grown in order to sustain the
computational and statistical challenges of big-data analytics scenarios.
In this context, there is a growing need for reliable large-scale NoSQL data
stores capable of efficiently serving mixed high-performance and interac-
tive cloud workloads. This paper deals with the problem of designing such
NoSQL database service: to this purpose, a set of modifications to the
popular MongoDB software are presented. The modified MongoDB lets
clients submit individual requests or even carry out whole sessions at dif-
ferent priority levels, so that the higher-priority requests are served with
shorter response times that exhibit less variance, with respect to lower-
priority requests. Experimental results carried out on two big multi-core
servers using synthetic workload scenarios demonstrate the effectiveness
of the proposed approach in providing differentiated performance levels,
highlighting what trade-offs are available between maximum achievable
throughput for the platform, and the response-time reduction for higher-
priority requests.

1 Introduction

Cloud Computing has become increasingly popular over the past decade as an
affordable solution for all size businesses, thanks to virtualization technologies
(and containerization, more recently) that add flexibility in the management
of the physical infrastructure. For instance, public cloud providers are able to
maximize resource utilization by multiplexing its access across a wide number
of tenants that can deploy widely heterogeneous workloads. With the increas-
ingly distributed nature of applications and services, cloud providers have been
playing a key role in providing reliable storage solutions, thanks to their abil-
ity to replicate data on multiple sites and fault-independent availability zones.
Storage services are at the heart of distributed cloud-native and big-data pro-
cessing applications, where the always increasing need for higher and higher
capacity, performance and scalability requirements pushed towards departing
from traditional relational data-base architectures to embrace more lightweight,
less feature-rich, NoSQL architectures. The selling points of NoSQL data stores is
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massive scalability and the ability to deal with arbitrary table sizes and numbers
of concurrent clients. The historical work in [8] discussed how such data stores
can be effectively and productively used in cloud services, without any need
for relying on expensive reliable hardware, but achieving reliability by distribu-
tion of the workload across various inexpensive nodes. Later, those principles
were reused for engineering AWS DynamoDB, the industrial real-time data-base
offering in AWS.

In cloud providers, it has become commonplace to find fully managed 24/7
data store services which can be directly and conveniently used by a plethora
of clients submitting widely heterogeneous workload patterns. On one hand, the
elasticity of the Cloud has brought the traditionally owner-centric High Perfor-
mance Computing (HPC) community to explore, in a number of cases, cloud-
based solutions in order to deal with the emergence of extreme-scale simulations
and big-data processing [11,25]. On the other hand, time-sensitive applications
are being increasingly hosted in cloud environments, where a great component
of the end-to-end latency (and its variability) is due to the time needed to
access one or more data stores. Therefore, a cloud provider must be capable
of designing evolved NoSQL data store services for virtualized/containerized
applications exhibiting highly heterogeneous workloads. These include a mix of
high-performance applications and services, that need to process high volumes
of data at the maximum average throughput, as well as (soft) real-time ones
that need to process relatively smaller amounts of data, but with tight timing
constraints for individual requests. A widely adopted mechanism in real-time
systems is the use of priorities, so that higher priority workloads may be served
earlier than lower-priority ones. In this work, we propose a modification to the
popular MongoDB [7] NoSQL data store in order to achieve differentiated per-
client and per-request performance using the aforementioned prioritized access
principle.

1.1 Contributions

This paper extends our prior work, RT-MongoDB [2], which exploits UNIX nice
level combining them with two design choices of MongoDB, the per-client thread-
ing model and optimistic concurrency control, in order to achieve differentiated
performance. The additional modifications we introduced pay special care to
avoid penalizing the achievable throughput in presence of mixed-priority work-
loads, keeping effectiveness in separating performance among different-priority
requests. This is crucial when serving both HPC and interactive cloud workloads
from the same MongoDB instance. We present for the first time results performed
under a heavy-stress for a multi-core MongoDB instance deployed over a pair of
20-cores Xeon-based servers, with a variety of mixed HPC/interactive workload
scenarios, showing the effectiveness of the proposed approach.
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2 Related Work

In the research literature, a number of proposals can be found dealing with
optimizing the performance of databases, including NoSQL data stores for cloud
computing, so to support scenarios with mixed workload types and requirements.

For example, the old concept of a real-time database system (RTDBS) [6,15,
24] refers to a data management system with predictable timing of the opera-
tions requested by clients. Research efforts in this area complemented research
on scheduling of processes on the CPU [3], with investigations on scheduling
of on-disk transactions. Cumbersome issues that have been tackled in the last
decade include: how to work around the high seek latencies of traditional rota-
tional disk drives, dealt with by switching to memory-only data management
systems [12], or recently introducing solid-state drives; the presence of dynamic
workload conditions, that pushed towards the adoption of adaptive feedback-
based scheduling techniques [1,14]. Thanks to their capability of guaranteeing
predictable access times, real-time database systems found applications in tra-
ditional hard real-time application domains, like mission control in aerospace,
process control in industrial plants, telecommunication systems and stock trad-
ing [14]. Unfortunately, the great focus of real-time database research on hard
real-time systems, and the necessarily pessimistic analysis accompanying their
design, causing poor utilization at run-time, caused these systems to remain of
interest only in a restricted domain area.

In contrast, research on distributed and cloud systems has a traditional focus
on maximizing average-case performance and overall throughput, neglecting pre-
dictability for individual requests. Here, the typical feature-richness and ideal
consistency model of relational databases has been progressively dropped, in
favour of NoSQL architectures [13,22] with relaxed consistency models that
implement essentially reliable/replicated distributed hash tables with the ability
to ingest arbitrarily high volumes of data, scaling at will on several nodes.

However, the growing interest in deploying time-sensitive web-based applica-
tions and services in cloud infrastructures, led to a return of interest in enriching
these lightweight NoSQL databases with predictability features, albeit the focus
is not on guaranteeing every single request, but rather to control a sufficiently
high percentile of the response-time distributions. For example, the DynamoDB1

solution from AWS, designed around lessons learnt from the Dynamo project [9],
has been among the first solutions with the capability of providing guaranteed
levels of read and write operations per second for each table, as required by
customers, keeping also a per-request latency (99th percentile) lower than 10ms.

More recently, real-time stream processing [4,17,28] solutions have gained
momentum. These process data as soon as it comes from various sources, without
necessarily storing data on disk, using arbitrarily complex topologies of process-
ing functions. This way, the results of the computation are made available with a
very short latency from when new data arrives. Thanks to cloud technologies, it
is possible to let these systems scale to several nodes, so that end-to-end latency

1 See: https://aws.amazon.com/dynamodb/.
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can be controlled by applying elastic scaling to individual processing functions.
A few works [20,27] tried to build empirical performance models of these system,
so to employ more precise control logics for the end-to-end performance.

ZHT [21] is a key-value data store for extreme-scale system services hosted
on clouds and supercomputers, designed as a zero-hop distributed hash table.
SILT [23] is a high-performance key-value store that uses new fast and compact
indexing data structures to balance the use of memory, storage and computa-
tions. Xyza [26] proposes an extension of MongoDB that combines multiple con-
currency control techniques to achieve high performance and scalability. More-
over, several studies combine MongoDB and Hadoop to build reliable storage
solutions for HPC-Cloud environments [10,16].

Along with MongoDB, another NoSQL data store that gained significant
popularity is Cassandra [18]. This has become also an interesting target for
researchers willing to demonstrate applicability of differentiated performance
methods. For example, a quality-of-service aware allocator (AQUAS) [29] has
been proposed, with the capability of allocating physical resources in a Cassandra
deployment to satisfy individual clients’ performance requirements.

3 Proposed Approach

This paper extends the modified version of MongoDB we presented in [2], improv-
ing the flexibility in replicated scenarios where higher data durability is required.
The key to ensure reliability and data consistency in MongoDB is to deploy a
replica set, a group of multiple database instances residing on different phys-
ical machines that share the same data set, and then reply to a user write
request only after a number of such instances have locally replicated the oper-
ation. In this system configuration, the write operations are all issued to the
same database instance, called the primary node, which logs them in the oplog,
a MongoDB capped collection that stores the history of logical writes to the
database. Each oplog entry is paired with a timestamp in order to assert the
operations order and avoid data corruptions. The other MongoDB instances,
namely the secondary nodes, rely on the oplog to replicate the state of the data
set. For the sake of performance, the replication internals elaborate new oplog
entries in batches, carefully crafted by the so-called OplogBatcher to be appli-
cable in parallel to the local storage unit. Thus each batch represents a “limbo”
state where chronological order is not enforced. While this certainly leads to a
mismatch between how history is depicted by each replica node, the underlying
storage unit, WiredTiger, stores multiple versions of the data in a tree-based
structure [5] and thus is able to return the correct state of the data set to the
user, based on the query timestamp.

These observations suggest that it is not possible to properly propagate pri-
orities to the secondary nodes2 due to the inevitable priority inversion of using
batches: this is particularly noticeable when enforcing data durability, because
the database does not reply to users until the secondaries finish replicating the
2 As of MongoDB v4.4.
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corresponding batch. The checkpoint system conceived in our previous work
attempts to minimize this unbiased replication problem, by providing a priori-
tized channel to temporarily revoke the database access based on the user pri-
ority: low-priority, normal-priority or high-priority. In practice, the checkpoint
system defines an entry and exit point to the processing state of the user session
life-cycle through the means of two primitives, check-in and check-out (Fig. 1).
The checkpoint eventually blocks the underlying worker thread in charge of serv-
ing a certain user, based on these simple rules: low priority users are blocked
whenever normal or high-priority requests are being processed, while normal
priority requests are blocked when high-priority ones are being processed. The
major drawback of this solution is the impact on overall throughput: the lower-
priority requests are completely halted at the checkpoint if there is even just 1
higher priority request under processing. This design choice effectively reduces
the parallelism capabilities of the MongoDB architecture, which on HPC work-
loads with many-core servers is excessively penalizing, considering the underlying
hardware. This paper proposes two additions to RT-MongoDB in order to tackle
the issue:

Fig. 1. A simplified view of the user session life-cycle, highlighting the positions of the
checkpoint entry and exit point. Each user connection to the database is handled by a
distinct worker thread

1. A customizable checkpoint activation threshold to specify the maximum num-
ber of high-priority requests under processing below which lower-priority
requests are still brought forward at the checkpoint. This option allows to
fine-tune the drop in parallelism: a high value implies a lower rate of activa-
tions, whereas a low value implies a higher rate.

2. A collection of CPU pools, user-defined CPU sets that specify the working
space of the underlying threads based on user priorities, so that it is possible
to restrict the number of cores available to those threads serving lower-priority
users whenever higher ones are being processed. In this way, high-priority
users are serviced with reduced interference, without necessarily halting com-
pletely the lower-priority ones.

Regarding the first point, it might be useful to set a high checkpoint activation
threshold in scenarios where data durability is not required, since the primary
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node does not have to wait for the replication process to finish, and thus priority
inversion does not occur. Regarding the last point, the current prototype allows
for three CPU pools: the restricted pool, which is used by lower-priority users
whenever higher ones are being processed; the priority pool, dedicated to high-
priority users for the duration of their session; the standard pool, which serves
the lower-priority users whenever higher priority sessions are present but not in
processing state. The idea is to allocate a sufficient number of cores for high-
priority worker threads and a very small restricted working space, so that lower-
priority ones are slowed down (but not completely halted). Figure 2 shows a
possible allocation of working spaces on a 10-core CPU. Note that this novel
mechanism is integrated to the checkpoint system, thus the migration between
working spaces follows the workflow already depicted in Fig. 1.

Fig. 2. A possible working space allocation on a 10-core CPU: 1 physical core for the
restricted pool, 4 for the standard pool and 2 for the priority pool

In conclusion, the goal is to offer a pair of parameters to database adminis-
trators so that they can adjust the trade-off between reduced response times for
priority users and total throughput, depending on the scenario. The user API
remains mostly unchanged from the previous version of RT-MongoDB, with the
only difference being the addition of the setCpuPools command to configure
the working spaces. A user alters the throughput of its queries by specifying its
priority via the setClientPriority command. Note that the setting persists
for the duration of the session, or until it is changed again. In order to prior-
itize a single request only, the client should issue the query with runCommand,
specifying the optional priority parameter.

4 Experimental Evaluation

The modifications to MongoDB described in Sect. 3 have been experimentally
tested with various (synthetic) stress workloads and the resulting performance
has been compared with the original MongoDB. The test environment comprises
three distinct multi-core server-class NUMA machines: two 20-core servers (Dell
R630 with 2 Intel Xeon E5-2640 CPUs and 64 GB of RAM) to host a 2-member
replica set and one 96-core (Arm 64 server with 2 ThunderX 88XX CPUs and
64 GB of RAM) to execute the client processes concurrently. Note that of the
20 cores, 4 will be dedicated to the mandatory MongoDB activities that are
not related to the management of a user connection in order to avoid unneces-
sary CPU contention. Moreover, hyperthreading and turbo-boost are disabled
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on every machine, and each user process on the 96-core server is pinned to a
different physical core in order to simulate an isolated scenario with stable per-
formance.

The stress workload consists of write operations only, since in high concur-
rency scenarios they put more stress than reads on the database. Every operation
waits for the changes to be replicated to the secondary node, in order to simu-
late a high reliability scenario. Our experimental scenarios are composed of the
following steps: each user declares its priority (high-priority or normal-priority,
for simplicity) with setClientPriority, waits a randomized amount of time
uniformly distributed between 0 and 300µs and then issues 1000 insert oper-
ations, sequentially and without delays in-between. The goal of the following
experiments is to show how the trade-off between reduced response times and
overall throughput can be adjusted.

Fig. 3. Writes per second comparison in the 2 cases of: 1 high-priority and 29 normal-
priority concurrent users using two different parameter configurations (left); 4 high-
priority and 26 normal-priority concurrent users using four different parameter config-
urations (right). The dashed line corresponds to the average write throughput of the
original version of MongoDB

The first two charts, depicted in Fig. 3, show how the average throughput is
affected due to priorities in a 30-user scenario. Each line plot corresponds to a
different parameter configuration of RT-MongoDB: (A) does not use CPU pools,
(B) defines a restricted, standard and priority pool of respectively 2, 10 and 4
physical cores, leaving the remaining 4 for the auxiliary MongoDB activities. The
activation threshold is specified in a similar manner: for instance, the configu-
ration (A)(4) corresponds to RT-MongoDB with no CPU pools and checkpoint
activation threshold of 4. Figure 3 (left) presents the average throughput of 29
normal-priority users concurring with 1 high-priority one. In both configurations,
the checkpoint system activates as soon as a priority request is being processed,
thus threshold activation is set to 1 and (A)(1) corresponds to the version of
RT-MongoDB proposed in our previous work. The configuration with CPU pools
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(B) is able to service the high-priority user at higher rates with respect to (A),
achieving 80 more operations per second at the cost of drastic reduction in per-
formance for the remaining users. This is due to the fact that lower-priority users
are forced to compete over the 10 cores of the standard pool, while the high-
priority user has is own interference-free working space. Note that in this case
the restricted pool is never used due to the activation threshold configuration.

Fig. 4. Average response time and variance for a high-priority user (left) and normal-
priority user (right). The scenario comprises 4 high-and 26 normal-priority users. The
dashed line and the first data point corresponds to the average response time and
variance of the original version of MongoDB

The following paragraph describes a more interesting scenario involving mul-
tiple concurrent high-priority users, thus allowing for a greater customization
on the activation threshold. Figure 3 (right) presents a 30-user scenario similar
to the previous experiment, but with 4 high-priority users. The two configura-
tions with activation threshold (1) achieve similar results, because the checkpoint
activates whenever the database receives at least one high-priority request: since
this happens with high probability at any given time in the case of 4 concur-
rent high-priority users, the CPU pool parameter (B) is useless. Consequently,
the throughput for high-priority users is very high, because they monopolize
the database access. The other configurations show that it is possible to adjust
the trade-off between overall throughput and responsiveness for high-priority
requests: for example (A)(4) services high-priority requests with a higher rate
with respect to the original MongoDB, while still being able to provide a good
average throughput for the other users, because they are allowed to be serviced
whenever at least one high-priority request is not being processed. It is rea-
sonable to think that the variance for high-priority users is higher using the
more “relaxed” configurations, as clearly depicted in Fig. 4, which presents the
average response time and variance for high and normal priority users (left and
right plots, respectively). The average variance for high-priority users is of 600
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microseconds in the worst case scenario, which is equal to the variance experi-
enced by a user using an unmodified version of MongoDB, while still perceiving
better response times.

Summarizing the above results, the new version of RT-MongoDB is capable
of better adapting to the requirements of HPC-Cloud workloads: one can use a
very confined working space (restricted resources) for lower-priority users and 1
as activation threshold to reduce response times of higher-priority requests to a
minimum, or fine-tune the available parameters to avoid an excessive degradation
in the overall throughput of the system.

5 Conclusions

This paper discussed improvements to our RT-MongoDB variant of the Mon-
goDB database, to enable differentiated per-user/request performance on a prior-
ity basis. The focus was to adapt it to the key requirements of hybrid HPC-Cloud
workloads, providing the database administrator with a basic set of Quality-of-
Service parameters to tune the trade-off between reduced response time for high
priority queries and overall system throughput.

A future work is to couple RT-MongoDB with the use of more advanced
scheduling techniques, like SCHED DEADLINE [19], and provide a similar inter-
face to that of DynamoDB, where the users declare the number of read/write
requests so as to allow the system to set up a reasonable end-point with perfor-
mance guarantees.
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