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Abstract. The lattice Boltzmann method (LBM) is an efficient simula-
tion technique for computational fluid mechanics and beyond. It is based
on a simple stream-and-collide algorithm on Cartesian grids, which is
easily compatible with modern machine learning architectures. While it
is becoming increasingly clear that deep learning can provide a deci-
sive stimulus for classical simulation techniques, recent studies have
not addressed possible connections between machine learning and LBM.
Here, we introduce Lettuce, a PyTorch-based LBM code with a threefold
aim. Lettuce enables GPU accelerated calculations with minimal source
code, facilitates rapid prototyping of LBM models, and enables integrat-
ing LBM simulations with PyTorch’s deep learning and automatic differ-
entiation facility. As a proof of concept for combining machine learning
with the LBM, a neural collision model is developed, trained on a doubly
periodic shear layer and then transferred to a different flow, a decaying
turbulence. We also exemplify the added benefit of PyTorch’s automatic
differentiation framework in flow control and optimization. To this end,
the spectrum of a forced isotropic turbulence is maintained without fur-
ther constraining the velocity field. The source code is freely available
from https://github.com/lettucecfd/lettuce.

Keywords: Lattice Boltzmann method · Pytorch · Machine learning ·
Neural networks · Automatic differentiation · Computational fluid
dynamics · Flow control

1 Introduction

Innovations are more important than ever in the face of global challenges such
as climate change and pandemics. Bridging the gap from basic understanding to
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technological solutions often requires physical models in some stages of devel-
opment. Such models can predict aspects of global warming or the spread of
viruses based on fluid dynamics, for example [8,9,32]. However, the models’
equations, usually in the form of partial differential equations (PDEs), require
efficient solution approaches due to their complexity. By using numerical meth-
ods, computers solve these PDEs, which are discretized in space and time. Even
though great care is taken, numerical errors inevitably occur during discretiza-
tion, where the truncation error usually depends on grid and time step size.
Hence, large resolutions are necessary if high accuracy is required, especially if
modeling is reduced as much as possible, e.g., during direct numerical simula-
tions (DNS). When DNS are computationally intractable, alternatives like the
well-known Reynolds averaged Navier-Stokes equations (RANS) or large-eddy
simulation (LES) are routinely used. These approaches require expressing unre-
solved or unclosed terms through known quantities [36,42]. Parameters involved
in these modeling approaches are often not optimally determined or change for
different flows. For this purpose, machine learning (ML) in fluid dynamics is a
rapidly evolving research field that enables new impulses to tackle such prob-
lems and provide interesting new approaches to the modeling problem. The
benefit of ML approaches in computational fluid dynamics (CFD) simulations
has been demonstrated in various recent studies [10,19,39,40]. A successful use
of machine learning in combination with well-known Navier-Stokes solvers was
recently shown by Kochkov et al. [19]. They introduced learned forcing terms
into PDE solvers, thereby reaching the same accuracy as a classical solver at
8-10x finer resolution.

When integrating machine learning into numerical algorithms, it can be ben-
eficial to resort to simulation methods whose mathematical structure is easily
compatible with neural networks. The present work shows that a highly suitable
CFD approach for this purpose is the lattice Boltzmann method [21,27] (LBM),
which is particularly competitive in the fields of transient, turbulent, or multi-
phase fluid dynamics. The LBM is a second order accurate simulation method
that exhibits similar performance as classical finite difference schemes [41]. In
contrast to classical solvers, it involves a linear streaming of particle distribu-
tion functions on a regular grid and a local collision step. Despite its successful
application to many fluid problems, recent studies have only scarcely addressed
possible combinations of ML and LBM. As a prototypical approach, Hennigh [15]
has demonstrated the potential of ML-driven flow prediction based on LBM. He
compressed flow fields onto coarser grids using convolutional autoencoders and
learned the propagation of the latent representations, which can then be decoded
back onto the fine grid. This approach, however, has limited transferability as
it is primarily data-informed and does not encode the underlying physics. Fur-
thermore, Rüttgers et al. [33] have applied deep learning methods to the lattice
Boltzmann method to predict the sound pressure level caused by objects. They
introduced an encoder-decoder convolutional neural network and discussed var-
ious learning parameters to accurately forecast the acoustic fields. To the best
of our knowledge, no further ML-enhanced LBM methods were proposed.
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Although the mathematics and physics behind the LBM are ambitious, the
implementation is relatively simple. This allows beginners to quickly set up
simple test cases in one or two dimensions with popular scripting languages like
Matlab or Python. However, when switching to three dimensions, the algorithmic
and computational complexity of simulations severely limits such prototypical
implementations. More efficient simulations in compiled languages usually rely
on optimized software packages and require initial training to simulate com-
plex flows. This is particularly true for GPU-accelerated codes, which enhance
performance [26,29] but defy fast implementation.

Both the lack of machine learning studies in the context of LBM and the
code complexity of 3D implementations motivate an LBM framework that allows
ease of use, despite extensive built-in functionality for machine learning algo-
rithms. For this purpose, the software package Lettuce has been developed based
on the open-source machine learning framework PyTorch [31]. PyTorch imple-
ments optimized numerical operations on CPUs and GPUs, which can easily
be accessed via Python instructions. Internally, those operations are vector-
ized using efficient backends such as BLAS/LAPACK and highly optimized
CUDA code. By resorting to those efficient PyTorch core routines, the LBM
code remains maintainable and lean, which will be demonstrated throughout this
article. Furthermore, the Lettuce framework can seamlessly integrate PyTorch’s
machine learning modules into the fluid dynamics solver and thereby provide a
substantial contribution to future work in this area.

Lettuce is meant to complement existing optimized codes like the well-
known LBM frameworks OpenLB [17], Palabos [25], waLBerla [1,14], and others
[28,30,38]. It intends to bridge the gap between scripting language codes for local
machines and highly optimized codes based on compiled programming languages
that run efficiently on computer clusters, too. With an off-the-shelf GPU, Lettuce
can simulate fairly complex three-dimensional problems even on a local work-
station with 24 GB of GPU memory. Independent of machine learning research,
this also enables rapid prototyping of general methodological extensions for the
lattice Boltzmann method.

This short paper is structured as follows. Section 2 presents an overview of the
software functionalities and briefly describes the LBM and its implementation.
Section 3 shows simple examples of coupling the LBM with machine learning,
demonstrates the use of PyTorch’s automatic differentiation capabilities in CFD
simulations, and provides a computational benchmark. Section 4 presents a sum-
mary and conclusions. Scripts for all simulations in this paper are accessible on
https://github.com/lettucecfd/lettuce-paper.

2 Software Description

2.1 Software Functionalities

The lattice Boltzmann method (LBM) is based on the kinetic theory of gases,
concretely a discretized version of the BGK-Boltzmann equation. It evolves a

https://github.com/lettucecfd/lettuce-paper
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discrete particle distribution function fi (x, t) according to the lattice Boltzmann
equation

fi (x + ciδt, t + δt) = fi (x, t) + Ωi (f(x, t)) , (1)

where δt and ci denote the time step and discrete particle velocities, respectively.
At its core, the LBM involves two operations. First, the so-called streaming step
shifts the particle distributions fi (x, t) to the neighboring nodes along the trajec-
tories ci. Second, the collision step introduces interactions between the particles
on each node. Among the various collision models available in the literature,
Ω (f) is selected based on considerations such as asymptotic behavior, accuracy,
memory usage and stability. The most commonly used collision operator is the
Bhatnagar-Gross-Krook model:

Ωi (f) = −fi − f eq
i

τ
(2)

This operator describes the relaxation of the particle distribution function
towards an equilibrium distribution influenced by a single relaxation parame-
ter τ . The equilibrium distribution is given by

f eq
i (x, t) = wiρ

(
1 +

u · ci

c2s
+

(u · ci)
2

2c4s
− u · u

2c2s

)
, (3)

where wi and cs are the lattice weights and speed of sound, respectively. The
density ρ and fluid velocity u are obtained as

ρ (x, t) =
∑

i

fi (x, t) and ρu (x, t) =
∑

i

cifi (x, t) . (4)

Lettuce is equipped with a variety of frequently used collision models, such as
the Bhatnagar-Grook-Krook (BGK) model [2], multi-relaxation time collision
models [7,22], the two-relaxation time model [13], the regularized model [23] and
entropic two-relaxation time models by Karlin, Bösch and Chikatamarla (KBC)
[18]. For the latter, implementations are rare in open software packages. Many of
these collision models are implemented in a stencil- and dimension-independent
manner.

2.2 Code Example

After Lettuce is installed, the user can run simulations with minimal code. The
following example demonstrates a lean executable Python script that simulates a
three-dimensional Taylor-Green vortex (TGV3D), one of several flows provided
in the library. The Lettuce library contains various boundary conditions, forcing
and initialization schemes, thus covering a wide range of setups. After importing
Lettuce, the stencil and the hardware are selected. Then, the flow, collision model,
and streaming step are chosen and run through the Simulation class.
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import lettuce as lt
lattice = lt.Lattice(stencil=lt.D3Q27, device=’cuda’) #or ’cpu’

flow = lt.TaylorGreenVortex3D(
resolution=256,
reynolds_number=1600,
mach_number=0.05,
lattice=lattice)

collision = lt.BGKCollision(
lattice=lattice,
tau=flow.units.relaxation_parameter_lu)

streaming = lt.StandardStreaming(lattice)
simulation = lt.Simulation(

flow=flow,
lattice=lattice,
collision=collision,
streaming=streaming)

simulation.step(num_steps=10000)

Lettuce provides various observables that can be reported during the simu-
lation (e.g. kinetic energy, enstrophy, energy spectrum). These observables can
be added easily to the Simulation class and exported for further analysis as
follows:

energy = lt.IncompressibleKineticEnergy(lattice, flow)
simulation.reporters.append(

lt.ObservableReporter(energy, interval=10,))
simulation.reporters.append(

lt.VTKReporter(
lattice,
flow,
interval=10,
filename_base="./output"))

Besides, Lettuce comes with a VTK-reporter based on the PyEVTK library [16].
This reporter exports velocity components and pressure, which both can then
be visualized by third-party software. An example is given in Fig. 1, which shows
the isosurfaces of the three-dimensional Taylor-Green vortex simulation from the
code snippet above.
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Fig. 1. Q-criterion isosurfaces of a three-dimensional Taylor-Green Vortex at time step
t = 5000, 7000 and 10000 colored by streamwise velocity. The Reynolds number and
grid resolution were 1600 and 2563, respectively. (Color figure online)

Figure 2 shows the energy dissipation that is obtained from the kinetic energy
k by calculating −dk/dt (=ν〈ε〉 in isotropic turbulence) using finite differences.
That way it includes numerical dissipation effects and spurious contributions
from LBM, too. The data is compared to the reference taken from Brachet [3],
who used a spectral code with a resolution of 2563 grid points. The dissipation,
−dk/dt, shows excellent agreement with the reference data up to a Reynolds
number of 1600. For Reynolds numbers of Re = 3000 and higher the maximum
dissipation rate deviates slightly due to under-resolution.
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Fig. 2. Energy dissipation rate ε(t) = −dk/dt of a three-dimensional Taylor-Green-
Vortex using the BGK collision model. Reference is taken from Brachet [3].

3 Advanced Functionalities

3.1 Machine Learning

The collision model constitutes the core of the LBM as it determines the macro-
scopic system of PDEs and thereby encodes the solver’s physics. It has long been
known that the choice of collision model for a given PDE is ambiguous, which is
related to the discrepancy between the number of degrees of freedom (discrete
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distribution functions) and macroscopic variables of interest. For example, the
standard D2Q9 stencil uses nine degrees of freedom per lattice node to encode
six physically relevant moments (density, momentum, and stress tensor). The
remaining degrees of freedom (represented by higher-order moments or cumu-
lants) are usually propagated in a way that offers certain numerical advantages
such as improved stability [18,20,23] or accuracy [12].

In the following, we want to exploit this ambiguity to define neural collision
operators as a more accurate alternative to classical collision models. For this
purpose, we define a collision model that relaxes the moments mi towards their
respective equilibria meq

i by individual relaxation rates S = diag (τ0, τ1, ..., τQ−1),
where Q is the number of discrete velocities per grid point. A transformation
matrix M (according to Dellar [7]) maps the distribution function f to the
moments m = Mf = (ρ, ρu,Π,N ,JJJ )T , where ρ is the density, u = (u, v) is
the fluid velocity, Π is the momentum flux, and N and JJJ = (J0,J1) are
non-hydrodynamic moments. These moments are relaxed towards the moment
equilibrium meq = Mf eq with the relaxation rates given by S:

Ω(f) = −M−1S−1(Mf − meq). (5)

The relaxation rates for the conserved moments ρ and ρu have no effect and
are thus set to unity. Since the shear relaxation rates are related to the kine-
matic viscosity ν, they are set to τn = νc−2

s δ−1
t + 0.5, n = 3, 4, 5, which recovers

the Navier-Stokes equations in the weakly compressible regime. A neural net-
work provides the relaxation rates τn, n = 6, 7, 8, for the higher moments. For
this purpose, a shallow network with one hidden layer and 530 parameters is
introduced to keep the computational cost feasible. The network determines the
higher-order relaxation rates based on local moments and is optimized to repro-
duce a finer-resolved reference simulation. Moreover, we want to ensure that the
collision operator is stable. For this purpose, an exponential function is applied
to the output τ̃n of the neural network: τn = exp(τ̃n) + 0.5, n = 6, 7, 8. This
operation renders the output larger than 0.5, which prevents excessive over-
relaxation. The relaxation parameters are not upper bounded as τn → ∞ yields
the identity and is usually uncritical in terms of stability.

Training data was generated by simulating a doubly periodic shear layer at
a Reynolds number of 5000 on a domain of size 1282 using the BGK model
[4]. The shear layer provides both large gradients and smooth areas which need
to be detected. Most relevant engineering flows have features that are locally
present in shear layer turbulence, such that good performance of a model in this
setup will likely transfer to other flows. Instead, training with isotropic flows
only would likely hamper transferability.

Depending on the information contained in the local moments, the network
should adjust the local relaxation parameters. The training procedure optimizes
the network parameters ϑ to minimize the discrepancy between a low-resolution
and a high-resolution simulation. Therefore, the discrete distributions from the
training trajectory are mapped onto a coarser grid with 642 grid points. Batches
of short simulations with the neural collision model are started from each snap-
shot. After 100 simulation steps, the flow fields are compared with the finer-
resolved reference simulation based on energy E, vorticity ω, and velocity u,
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which are all computed on the coarse grid. The mean-squared error (MSE) of
these quantities from the reference are minimized using the Adam optimizer and
the loss function

L (t;ϑ) = wu

N∑
i

MSE (u(xi, t;ϑ), ũ(xi, t))

+ wω

N∑
i

MSE (ω(xi, t;ϑ), ω̃(xi, t))

+ wE MSE
(
E(t;ϑ), Ẽ(t)

)
,

(6)

where N is the number of grid points. The weights are hyperparameters that
were selected as wu := 0.6, wω := wE := 0.2. This choice emphasizes the opti-
mization of dissipation effects, which are critical in under-resolved turbulence.
Such flows exhibit large gradients that occur intermittently, leading to locally
under-resolved spatial structures. Therefore, the model has to strike a balance
between retaining the physical structures on small scales and adding numerical
dissipation for stabilization.

The fluid velocity is the most natural target as it directly measures numerical
errors. The kinetic energy tracks the dissipation globally but does not resolve
the spatial heterogeneity. In contrast, including the vorticity as a target stresses
the finest resolved structures; the enstrophy, i.e., the integral over the vortic-
ity magnitude, measures the viscous shear stresses that induce dissipation. In
homogeneous turbulence, it peaks at high wave numbers around the Kolmogorov
scale. Consequently, optimizing the loss function (6) deliberately targets the dis-
sipation occurring on small scales. A detailed hyperparameter optimization, the
inclusion of other target properties, and the incorporation of multiple flows with
different boundary conditions in the training set will likely further improve the
model. These next steps as well as a systematic study of transferability are
beyond the scope of this proof-of-concept and will be left for future work.

Fig. 3. Comparison of the kinetic energy evolution of various collision models for the
doubly periodic shear layer at Re = 5000.
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Fig. 4. Evolution of vorticity fields for a doubly periodic shear layer flow for Reynolds
number 5000 using several collision models [4].
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Fig. 5. Vorticity along a diagonal line for a doubly periodic shear layer flow after 4000
steps for Reynolds number 5000.
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Turning to results, Fig. 3 compares the evolution of kinetic energy for the
doubly periodic shear layer. Several collision models were used for this assess-
ment. In the beginning, the energy of the lower-resolved simulations dropped due
to under-resolution. Then, all collision models produced similar energies. How-
ever, the vorticity fields depicted in Fig. 4 clearly show that the simulation using
the BGK operator can no longer capture the vortices from the finer-resolved
reference simulation. In contrast, the neural collision model accurately repro-
duces these structures, as shown in more detail in Fig. 5 by the vorticity along
the diagonals. The improvement compared to the BGK operator becomes clear
while still providing less dissipation than the regularized model.

Fig. 6. Enstrophy evolution (left) and energy spectrum (right) of an isotropic decaying
turbulence at Reynolds number 30000. Colors and line types are equal for both plots.
(Color figure online)

The crucial question is whether the optimized network is transferable to other
flows. Figure 6 shows the vorticity evolution and energy spectrum for an isotropic
decaying turbulence simulation at a Reynolds number of 30000 [37]. Although
trained on a different flow, the neural collision model reproduced the vortex field
far better, while other collision models were either unstable or overly dissipative,
as shown in Fig. 7. The BGK model was not able to handle the high Reynolds
number and introduced unphysical small-scale oscillations. These numerical arte-
facts are visible in the energy spectrum, revealing a lot of unphysical energy
accumulated at high wavenumbers. By contrast, the KBC and regularized colli-
sion models are more dissipative at larger wavenumbers, resulting in much faster
energy and enstrophy decay. In comparison to these baseline models, the ML-
enhanced simulation produced the best match with the reference simulation.
This example demonstrates generalization capabilities and the potential benefit
of using collision models based on neural networks.

A promising future direction of research is to target the current limitations of
the LBM, including high Mach number compressible flows. These flows require
higher-order moments so that current compressible LBMs usually resort to larger
stencils [6,11,24,43], off-lattice streaming [5,43,44], or non-local collision models
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Fig. 7. Evolution of vorticity fields for a isotropic decaying turbulence flow for Reynolds
number 30000 using several collision models.

[34,35] that introduce additional numerical approximations. In this application,
neural collisions could help reduce numerical errors and advance the state of the
art.

3.2 Flow Control Through Automatic Differentiation

The availability of an automatic differentiation framework within a CFD sim-
ulation engine has additional advantages (besides machine learning). PyTorch
provides analytic derivatives for all numerical operations, which is, for example,
useful in flow control and optimization.

As a demonstration of these capabilities, forced isotropic turbulence is simu-
lated, i.e., the energy spectrum is maintained throughout the simulation using a
forcing term as detailed below. A cost functional R is introduced as the relative
deviation of the instantaneous spectrum σ(u) from the target spectrum σ0 with
a cutoff at c := 2 · 10−5. R is defined as

R(u) = ‖ ln max(σ(u), c) − ln max(σ0, c)‖22,

where the logarithm and maximum are taken elementwise.
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To incorporate this restraint into the simulation, the equilibrium distribution
f eq(ρ,u + Δu) is expanded around a velocity that is locally shifted by a forcing
term Δu := −κ·∇uR with a force constant κ = 5·10−5. Computing the gradient
requires differentiating through various numeric operations, including a Fast
Fourier Transform, which is easily done within PyTorch due to the automatic
differentiation facility.

Fig. 8. Energy spectrum E[k] (left column) and evolution of vorticity fields in isotropic
turbulence. Upper row: free simulation; lower row: restrained simulation.

Figure 8 shows the vorticity fields and energy spectrum for a simulation at a
resolution of 1282 grid points with Re = 2000 and Ma = 0.1. While the unre-
strained simulation decays, the restrained simulation maintains the spectrum
after an initial adjustment phase took place, starting from the artificial initial-
ization field. This example shows that complicated forces are easily incorporated
into simulations through automatic differentiation. This feature can be useful in
many other applications.

3.3 Benchmark

Lettuce attains a satisfactory performance due to the GPU operations provided
by PyTorch. The optimized backend code enables fast CUDA-driven simulations
on both cluster GPUs and even standard GPUs for workstations. We evalu-
ated the performance of Lettuce by simulating a Taylor-Green vortex in both
2D (D2Q9) and 3D (D3Q19). The results are compared for both an NVIDIA
Tesla V100 and an NVIDIA RTX2070S in single and double precision. Figure 9
compares the performance in MLUPS (Million Lattice Updates Per Second) for
different resolutions.
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Fig. 9. Performance of Lettuce for simulating a Taylor-Green vortex.

With increasing domain size 642; 1282; 2562; 5122, the simulation speed
increases to 140 MLUPS in two dimensions and 83 MLUPS in three dimen-
sions using an NVIDIA Tesla V100 in double precision. The simulation speed
increases by over 60% to 75% when calculations are performed in single preci-
sion. Using an off-the-shelve NVIDIA RTX2070S, the computational efficiency
was lower, as expected. Performance peaked at 58 MLUPS using a domain size
of 2562 in two dimensions. For higher resolutions, the performance decreased
to 44 MLUPS. By using single precision, the performance can be increased by
180% for higher resolutions. This comparison shows that even on a commer-
cially available consumer-grade GPU high-performance simulations can be per-
formed in an acceptable time. Further speedups will be obtained by implementing
custom C++ and CUDA extensions, for which PyTorch offers a modular and
well-documented interface. Such extensions as well as a distributed multi-GPU
implementation through torch.distributed are natural enhancements that are
currently in progress.

4 Conclusion

We have introduced Lettuce, a PyTorch-based lattice Boltzmann code that
bridges lattice Boltzmann simulations and machine learning. We have demon-
strated how simulations can be set up and run with minimal use of source code.
This eases code development significantly and flattens the learning curve for
beginners. Scientists and engineers can run GPU-accelerated three-dimensional
simulations even on local workstations, which benefits rapid prototyping of lat-
tice Boltzmann models. Besides machine learning routines, the framework sup-
ports automatic differentiation for flow control and optimization. As an example,
a forced isotropic turbulence simulation was run with a maintained energy spec-
trum. Furthermore, we have defined a neural collision model to demonstrate the
benefits of incorporating neural networks into the lattice Boltzmann method.
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The presented results indicate that neural collision models can outperform tra-
ditional collision operators and reduce numerical errors, which motivates further
research in this direction.
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