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Preface

The 13th International Conference on Social Robotics (ICSR 2021) was held as a hybrid
conference (onsite and online) in Singapore, during November 10-13, 2021, with the
theme of “Robotics in our everyday lives”, emphasizing the increasing importance of
robotics in human daily living.

Marking the return of ICSR 11 years after it was first held in Singapore, this edi-
tion was jointly organized by the Chinese and Oriental Languages Information Pro-
cessing Society (COLIPS), the National University of Singapore (NUS), the Singapore
Chapter of IEEE Systems, Man and Cybernetics Society and the Teochew Doctorate
Society, Singapore (TDSS). It was supported by the Robotics Horizontal Technology
Programme Office (R-HTPO) of the Agency for Science, Technology and Research,
Singapore (A*STAR), and the Robotics and Autonomous Systems Department of the
A*STAR Institute of Infocomm Research (I?R).

The International Conference on Social Robotics brings together researchers and
practitioners working on the interaction between humans and intelligent robots and on
the integration of robots into the fabric of our society. Out of a record total of 129
submitted manuscripts reviewed by a dedicated international team of Senior Program
Committee and Program Committee members, 64 full papers and 15 brief research
reports were selected for inclusion in the proceedings and presented during the techni-
cal sessions of the conference. In addition to paper presentation sessions, I[CSR 2021
also featured three keynote talks, five workshops, and a robot design competition. The
keynote talks were delivered by three renowned researchers — Giorgio Metta of the Ital-
ian Institute of Technology, Italy, Oussama Khatib of Stanford University, USA, and
Nadia M. Thalmann of Nanyang Technological University, Singapore.

We would like to express our sincere gratitude to all members of the Steering Commit-
tee, International Advisory Committee, and Organizing Committee and to all volunteers
for their dedication in making the conference a great success. We are also indebted to
members of the Senior Program Committee and the Program Committee for their hard
work in the rigorous review of the papers. Lastly and most importantly, we are grateful
for the continued support of ICSR by the authors, participants, and sponsors, without
which the conference would not be possible.

October 2021 Haizhou Li
Shuzhi Sam Ge

Yan Wu

Agnieszka Wykowska

Hongsheng He
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Abstract. Previous robotics work has identified significant effects of
perceived gender and embodiment on human perceptions of robots, but
these topics have yet to be investigated in the context of robot comedy.
The presented study explored the effects of gender and embodiment on
audience members’ perceptions of a robotic comedian. Participants (N =
153) observed either an audio-only clip or a video of a robotic comedian,
with either a male or a female voice. We measured self-reported ratings
of robot attributes. Results showed that neither gender nor physical form
influenced joke humorousness or robot attribute ratings, however those
who viewed a video of the robot reported feeling more connected to the
comedian. These findings suggest that, unlike in past studies of human
comedy to date, gender stereotypes and physical appearance may not
affect perceptions of robot comedy performance.

1 Introduction

Female human comedians experience different responses from an audience than
their male counterparts, but it is difficult to investigate what factors may under-
lie these differences in a controlled setting. Robotic comedians, which can be
designed to behave and look identical to one another, offer one promising way
to begin isolating these factors. Further, human responses to robots based on
apparent gender and presented form factor are important to understand in social
robotics generally (e.g., to inform appropriate robot design for various situa-
tions). We propose that audience attitudes toward robotic comedians’ manipu-
lated characteristics (i.e., gender and embodiment) may extend to human come-
dians, and that the understanding of differing perceptions across these attributes
can inform future social robotic applications.

Previous work on robot comedy has manipulated robot interaction behav-
iors (e.g., eye contact with the audience [14] and timing of joke delivery [29]),
finding both factors to be significant and favorable to the audience. More gen-
erally in social robotics, studies have established marked differences in both the
perceived personality traits and occupational roles of robots based on apparent
gender [4,20]; however, to our knowledge, no studies have explored effects of
perceived robot gender in the comedy context. Our work attempts to address
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this gap by investigating the effects of perceived gender of a robotic voice and a
physically embodied robot on ratings of comedic success, closeness feelings, and
other perceived attributes. Key contributions of this work include insights on
what effect (if any) apparent gender has on comedic success (holding all other
factors constant), what inherent attributes may be linked with perceived gender
of robotic comedians, and how embodiment (i.e., observing a physical robot vs.
a disembodied robot voice) influences perceptions of the artificial comedian.

2 Related Work

Key topics informing the present work include gender in comedy, gender in
robotics, robot comedy, and effects of robot embodiment on human opinions.

Gender in Comedy: Netflix has hosted upwards of 270 comedy specials (in
English) from 2012 to the present day, of which only approximately 20% fea-
tured female comedians [21]. According to Levitt [17], this gender discrepancy
reflects a real-world discrepancy in the number of stand-up comedy time slots
booked by men versus women and gender non-conforming individuals. Why are
female comedians so underrepresented in the comedic landscape? A controver-
sial explanation is offered by Greengross and colleagues: men are funnier [12].
Their meta-analysis of 28 studies measuring men’s and women’s humor produc-
tion ability (HPA) via independent, blind judges in a image/cartoon captioning
task revealed that 63% of men were scored higher than their female counterparts
with a combined effect size of d = 0.321 [13]. In comedic performance settings,
possible mechanisms for differences in perceived humor ability across sex are
historical differences in accepted male and female roles in society (e.g., females
being discouraged from using humor and performing comedy in public) [13], gen-
der stereotypes (e.g., women being more concerned about others and men being
more competent and dominant) [6], and visual cues (e.g., a person presenting as a
particular gender) [26]. Robots offer a unique opportunity to explore differences
in perception of humorousness and other characteristics via fine manipulations of
robot attributes. Further, it is possible that apparent gender could affect robot
success in humorous day-to-day social interactions.

Gender in Robotics: Previous literature indicates that people extend stereo-
types based on perceived sex to robots, relying on human-human norms to
explain human-humanoid interactions [4,19]. For example, robots manipulated
to appear masculine are perceived to have more agency (e.g., seeming more
assertive, more dominant, more authoritative) and less communion (e.g., seem-
ing less friendly, less polite, less affectionate) than feminine robots [8]. Similarly,
robots with a female appearance tend to be regarded as inviting, warm, and
interactive, while robots with a male design were regarded as tough and chal-
lenging [4]. This automatic and unconscious tendency to interact with robots as
one would with other humans (i.e., by applying social categories) is an exten-
sion of the computers-as-social-actors (CASA) approach [7,18]. This approach
shows that a robot’s voice, demeanor, and motions all function as social cues to
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communicate gender [7,22,25]. These attributes can additionally interact with
stereotypical gender roles to impact humans’ perceptions of robots; female-voiced
computers are perceived as less dominant and serious when delivering evaluations
compared to male-voiced computers, for example [20]. Regardless of apparent
robot gender, studies indicate that humans prefer and respond more positively
to robots that have congruent gender and occupational roles [27]. For example,
female robots are more likeable, seen to have more behavioral control, and are
accepted more when presented as a healthcare robot [27]. At the same time,
the gender of a robot does not appear to affect perceived eeriness, regardless of
a robot’s role in a situation [1]. Based on the robust finding that humans per-
ceive and treat robots as they would another human, it is plausible that humans’
expectations for female comedians also extend to robots, and that female robotic
comedians would be perceived less favorably than male robotic comedians.

Robot Comedy: Past robot comedy work includes initial efforts to equip robots
with appropriate gaze, capable gesture, and abilities to “read the room.” To inves-
tigate whether robots could perform these aspects of stand-up comedy, Katevas
and colleagues manipulated both gesture and gaze of robotic comedians to exam-
ine their effects on live audience responses, finding evidence that the reciprocal
give-and-take between comedian and audience were key to a well-received perfor-
mance [14]. Other robot comedy work used audience polling and audio process-
ing to track audience enjoyment of jokes [15]. Recently, a robot comedy study
demonstrated that a robotic comedian with good timing was perceived as signifi-
cantly funnier, and that the ability to adapt to its audience’s reactions improved
their opinions of the jokes [29]. Preliminary results from yet another study show
promise for a robotic comedian’s ability to “read the room,” or analyze audience
facial behavior, and improvise reactions (e.g., respond to grimaces with “What?
Too soon?”) [11]. To our knowledge, no past studies have investigated whether a
robotic stand-up comedian’s gender affects audience perceptions.

Effects of Embodiment: In previous studies evaluating human opinions of
embodied vs. disembodied robots, experimenters have defined an embodied robot
as one that has a physical form (i.e., not a screen-based image) and is located
in the same room as the participant (i.e., not remotely located). Humans find
embodied robots (vs. disembodied robots) more appealing and perceptive, and
tend to empathize more with them [16,30]. Embodied robots are also regarded
as more helpful, watchful, and enjoyable compared to videos of robots [24,30].
Importantly, however, Wainer and colleagues could not definitively state that
participants favored embodied robots — only that embodied robots will be per-
ceived as more “present” [30]. Taken together, this past work indicates that
differences in robot embodiment will likely impact perceptions, but it is not
clear how onlooker perspective will vary, especially in terms of preference and
scales not previously explored in the comedy application space. Because of the
influence of embodiment in past work, we decided to study the effects of embod-
ied vs. disembodied robotic comedians (a coarse manipulation of embodiment)
as a second variable of interest which, to our knowledge, has yet to be explored
in the realm of robot comedy.
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3 Methods

To study the effects of perceived gender and embodiment of a robotic stand-up
comedian, we employed a 2 x 2 between-subjects factorial study design. Apparent
robot gender (i.e., male or female as communicated by voice) and robot type (i.e.,
audio-only vs. video of a NAO robot [10]) were completely crossed, and observer
opinions were measured with approval from our university ethics board.

The robot’s comedy routine originated from a pilot study which presented
18 jokes (written in collaboration with a group of semi-professional comedians)
to participants. Viewers rated each joke using the Joke Rating Scale (further
described below). The same group of comedians also advised on the vocal and
choreographic delivery of the jokes.

The top-performing 10 jokes were subsequently compiled into the roughly 4.5-
minute comedy set used in the present study. Because of the order-dependent
nature of comedy performance, all conditions used the same overall jokes and joke
order. For the gendered voices, we used Amazon Polly’s “Joey” voice as the male
voice and “Joanna” as the female voice. Gender was manipulated via auditory
cues only (i.e., voice characteristics) to control for visual cues. The embodiment
condition modulated whether the robot was visible by presenting either an audio-
only recording or a video. Both modalities closely parallel common methods for
enjoying stand-up comedy; in addition to watching live performances, comedy
fans commonly consume pre-recorded videos (e.g., Netflix comedy specials) and
audio-only tracks (e.g., comedy albums).

Hypotheses: We were broadly interested in how human observers’ perceptions
of a robotic comedian, and their connection to it, varied as a function of appar-
ent gender and physical form. Given the lack of closely aligned prior research,
we proposed the following exploratory hypotheses based on the related work
discussed in Sect. 2: (1) a female-voiced robot will be perceived as warmer than
a male-voiced robot, (2) a male-voiced robot will be perceived as funnier and
more competent than a female-voiced robot, and (3) video of an embodied robot
will lead to more social closeness feelings than the audio-only condition.

Participants: Previous research involving robotic comedians has not reported
result effect sizes. Therefore, we used a medium effect size of f2 = .25 in an
a priori power analysis using G-Power 3.0.10 with power set to 0.80 and error
probability o = .05, which resulted in an overall suggested sample size of 128.
157 adult undergraduate students were recruited from Oregon State University.
Data were excluded from participants who failed to complete the study or who
took longer than 2.5 standard deviations from the mean time taken to complete
the study. These exclusions left 153 participants (M = 22 years old, SD = 6, 115
female, 35 male, 2 non-binary, 1 non-reported gender) for analysis. Participants
received course credit for the study.

Procedure: We administered the study as a 30-minute Qualtrics survey,
through which participants were randomly assigned to one of the four condi-
tions: male X voice audio, male x robot video, female x voice audio, and female
x robot video. After providing informed consent, participants completed demo-
graphic questions including the Ten Item Personality Inventory (TIPI) and the
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Fig. 1. Keyframes from one joke in the male video condition stimulus corresponding
to each sentence of the following joke: “I saw a foxy robot the other night. She was
smokin’! Naturally, we called tech support right away.”

Negative Attitudes toward Robots Scale (NARS). Participants then observed the
assigned robot comedy set recording, which they were able to replay an unlim-
ited number of times. Figure 1 shows example keyframes from one of the jokes
included in the study stimuli, along with the joke text. After they finished observ-
ing the comedy set, participants were asked to rate the performance using the
Joke Rating Scale (JRS), Inclusion of Other in the Self (I0S) scale, anthropomor-
phism subscale of the Godspeed questionnaire, and the Robotic Social Attributes
Scale (RoSAS), all of which are described in more detail below. Respondents also
provided open-ended feedback about performance characteristics that affected
their responses.

Measurement: The initial portion of the survey gathered basic demographic
information, as well as the TTPI and NARS scales. Participants also indicated
on a scale of one to five how much previous experience they had with robots
and with comedy. The TIPI was included in this survey to briefly measure par-
ticipant personality on 10 nine-point Likert scales from Strongly Disagree to
Strongly Agree [9]. The NARS questionnaire was used to measure participants’
evaluations of and attitudes toward robots prior to exposure to one in the present
study using 7-point Likert scales from Strongly Disagree to Strongly Agree [23].

The JRS was adopted from past work on acceptability of robot jokes to
measure the primary dependent variable: self-reported ratings of how funny the
robot comedy performance was [28]. These ratings used seven-point Likert scales
from Strongly Disagree to Strongly Agree, and the average score served as a
rating of humorousness. The RoSAS was administered to collect data about
participants’ perceptions of the robotic comedian’s social attributes on three
factors: warmth, competence, and discomfort on the standard nine-point Likert
scales [5]. The IOS measured participants’ connection with the robotic comedian
after observing the comedy set. Participants selected one of seven Venn diagrams
that they felt best portrayed their relationship with the comedian, which ranged
from separate circles (1) representing the self and other to almost completely
overlapping circles (7) [2]. Participants answered manipulation check questions
about the robot’s gender (i.e., female, female-androgynous, androgynous, male-
androgynous, male, no gender, or unsure) as well as anthropomorphism using
one standard subscale of the Godspeed questionnaire [3].
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4 Results

To test our hypotheses, we conducted a 2 (robot gender) x 2 (robot embodi-
ment) factorial ANCOVA to analyze the main dependent variable: humor ratings
(i.e., average JRS scores). The NARS subscales, the extroversion and openness
subscales of the TIPI, and participants’ experience with robots were included as
covariates. In addition to the primary analysis, we also conducted exploratory
analyses to investigate the effects of these factors and covariates on partici-
pants’ ratings of the robot’s social attributes (i.e., RoSAS subscale scores), and
their connection with the robotic comedian (i.e., IOS scores). Participants’ free-
response data was also analyzed for recurring themes and insights into possible
motivations behind quantitative results.

Quantitative Results: 125 of the 153 participants were able to correctly iden-
tify the robot gender, indicating that the majority were able to discern our
manipulation. Of the 24 who did not report the correct gender, 22 responded
with either “no gender,” “unsure,” or some form of androgyny (e.g., male-
or female-androgynous). Only two participants explicitly reported perceiving
a female when the robot was manipulated to be male, or vice versa.

Neither the embodied nor disembodied condition elicited average anthropo-
morphism ratings above a three, and these scores were not significantly different
from one another, demonstrating that participants did not regard the robotic
comedians as very human-like, ¢(144) = —1.35, p = .18.

The ANCOVA evaluating the effects of robot gender and embodiment on JRS
scores (as described in Table 1) revealed that the first NARS subscale (i.e., ques-
tions about robot interaction scenarios) significantly covaried with participants’
joke ratings, F(1, 140) = 6.75, p = .05, n,2 = 0.03. After controlling for the
covariate, neither robot gender nor type were significant predictors of joke ratings.
Another ANCOVA revealed that RoSAS subscale ratings significantly covaried
with the NARS subscales. The RoSAS warmth subscale covaried with the third
NARS subscale (i.e., emotions in interactions with robots), F(1, 139) = 5.87, p =
.02, 7,2 = 0.04, as did the RoSAS competence subscale, F (1, 137) = 8.10, p = .005,
np> = 0.06. The RoSAS discomfort subscale covaried with both the first NARS
subscale, F'(1, 139) = 11.22, p = .001, ,2 = 0.08, as well as the second, F (1, 139)
= 11.65, p < .001, 7,2 = 0.08. After controlling for the appropriate covariates for
each RoSAS subscale, the ANCOVA again demonstrated that robot gender and
type did not predict differences in RoSAS reports.

Table 1. Means and standard deviations of study questionnaire responses, formatted
as M(SD).

Female Male Audio Video
JRS humorousness | 4.26 (1.47) | 4.13 (1.33) | 3.98 (1.45) | 4.14 (1.33)
RoSAS warmth | 3.75 (1.88) | 3.58 (1.66) | 3.83 (1.73) | 3.96 (1.78)
RoSAS competence | 4.92 (1.76) | 4.76 (1.79) | 4.53 (1.79) | 4.98 (1.75)
RoSAS discomfort | 3.20 (1.46) | 3.25 (1.62) | 3.44 (1.45) | 3.01 (1.60)
10S closeness 1.83 (1.11) | 1.66 (0.84) | 1.60 (0.89) | 1.90 (1.06)
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Table 2. Free-response coding frequencies. Each code belongs to one of the three
numbered themes of interest, and the “+” and “—” columns show the number of
respondents who commented on each theme in a positive or negative manner.

Theme | Code + |-
1 Gender perception based on joke content 12 | 0
1 Gender perception based on looks or form 710
1 Gender perception based on voice 12 | 0
2 Sound made by the robot/robot motors 91| 8
2 Comparison of robot/robot voice to a human comedian | 12 |35
2 What feels/appears human vs. robotic in the system 14 |59
2 Like or dislike of robots/Al 7109
2 Comments on gestures/body language 16 |12
2 Fear of robots/robots takeover 5

3 Format (e.g., video vs. in-person vs. audio-only) 16

3 Enjoyment of the set 30 |48
3 Perceptions of the jokes as “dad jokes” 110
3 Joke content (e.g., funny v.s. not funny) 53 |37
3 Relatability 15 |34
3 Joke writing/delivery (e.g., forced, natural) 10 |48

An exploratory ANCOVA of I0S scores showed that NARS subscales one
(i.e., situations of interactions with robots), F (1, 139) = 7.15, p = .008, 1,> =
0.05, and three (i.e., emotions in interactions with robots), F(1, 139) = 4.90, p
= .03, 1,2 = 0.03, were significantly related to participants’ self-reported con-
nection with the robotic comedian. After controlling for these subscales, there
was no evidence for an effect of robot gender, but the analysis did show that
robot embodiment significantly predicted IOS scores, F/(1, 139) = 4.50, p = .04,
np2 = 0.03.

Qualitative Results: Participants’ free-response data regarding how robot per-
formance characteristics influenced their ratings were coded for 15 facets using
a positive or negative coding system, which was created for this study based on
related work [4,14,20,29]. The responses to these facets were grouped to form
three overarching themes: 1) gender perception, 2) robot attribute perception,
and 3) comedic/humor perception (see Table2).

Overall, all participant comments relevant to the gender perception category
were positive (N = 31 responses). Opinions were much more negative, however,
for the remaining two categories. Participants expressed approximately double
the number of negative opinions (N = 128) as they did positive (N = 63)
regarding the robot’s attributes. Of the 128 negative comments, 94 pertained to
comparisons between the robotic comedian and a human comedian. Facets that
comprised the comedic/humor perception responses suggest that participants
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did not enjoy the comedy set (N = 48) and were most displeased with the joke
writing/delivery (N = 48).

5 Discussion

The goal of the current study was to determine the effects of a robotic come-
dian’s gender and physical appearance on human observers’ connection to it,
perceptions of it, and perceptions of its jokes. We manipulated the gender and
embodiment communicated by a robotic comedian delivering a comedy set in a
2 x 2 between-subjects factorial design. Given that previous literature has estab-
lished the effects of each factor individually, we predicted that a female-voiced
robot would be perceived as warmer than a male-voiced robot, that a male-voiced
robot would be perceived as funnier and more competent than a female-voiced
robot, and that a video of the robot performing would lead to greater perceived
connection on the observer’s part than an audio-only clip of the performance.
Contrary to our first hypothesis, we did not find a main effect of gender
(or robot embodiment) on warmth ratings or any other RoSAS subscale ratings;
female-voiced robots were not perceived as warmer than male-voiced robots. This
lack of quantitative evidence contradicts previous literature that female robots
are regarded as more inviting [4]. Interestingly, participants’ free-response data
revealed that of those who shared that they found the robot “relatable” (N =
15), 80% identified the comedian as female, with one participant noting that they
“sometimes wonder why most robots [have] female voices. Maybe it’s sexist?” It
is possible that while the same stereotypical gender norms typically attributed
to robots may not apply in a comedy context, they do exist overall. Perhaps,
then, the content (i.e., the jokes delivered) served to negate the usual gender
stereotypes because females are not typically associated with a comedian role,
resulting in no perceived warmth differences between the robot genders [6,13].
We also did not find a main effect of gender or robot type on joke ratings; male
and female embodied and disembodied robots did not differ in observer ratings
of funniness, though 74 participants reported that the jokes were of good quality
(N = 53) and/or relatable (N = 21). While this result is incongruous with the
previous literature stating that people tend to find males funnier than females,
the finding is also an interesting discovery pertaining to past reported differ-
ences between male and female comedians [12]. A possible explanation is that
human male comedians possess different characteristics that cannot be repli-
cated by robots, which evoke greater humor ratings from observers than do
female comedians/robots. Indeed, of the N = 31 participants who inferred robot
gender based on the joke content (N = 12; rather than based on appearance
(N =17) or voice (N = 12)), N = 20 of them commented on it being male;
one participant noted that while they relied on the perspective of the jokes
to determine gender, they “wouldn’t make the same association with a human
[comedian].” Free-response data suggests that one differentiating characteristic
is a joke delivery style that the robot could not achieve — specifically vocal dif-
ferences (N = 23; e.g., “monotone and was not natural,” “the voice makes it
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very rigid”). In fact, many participants (N = 26) categorically noted that the
robot’s voice did not compare to a human comedian, and mentioned it and the
jokes being “forced,” “scripted,” or “unnatural” (N = 48). Future studies may
compare human perceptions of human male and female comedians to robot male
and female comedians to investigate to what extent these measurable traits (e.g.,
voice pitch, inflection, human vs. digital voices) explain the lack of difference in
humor ratings for robots.

As hypothesized, observers reported feeling more connection with embodied
robotic comedians than they did with audio-only clips of the same comedy sets,
further supporting that humans find embodied robots more appealing and enjoy-
able [16,24,30]. Consistent with this, participants’ free responses suggest that
embodied robots are more enjoyable and relatable to watch in a stand-up com-
edy context (e.g., “The movement of the whole body was fascinating to watch.
[It] held my visual focus throughout the video”). Among the participants who
viewed a video of the embodied robotic comedian, many responded positively
toward its gestures and/or body language (N = 16), while others noted that the
movement made the robot more personable (N = 11). In contrast, more than
half of the participants who observed the audio-only comedy set commented that
it was limited (N = 29 of 48; e.g., “I thought with how the robot was speaking
it was hard to hear the emotion in his speech”). This finding provides evidence
that humans may favor embodied robots over disembodied ones — a fact that
Wainer and colleagues could not ascertain beyond humans perceiving them to
be more present [30].

Key Strengths and Limitations: To our knowledge, previous literature in
the general robotics domain has only detailed the effects of robot gender and
embodiment on human perceptions separately, and never in the context of robot
comedy. Our study was designed to address this gap by utilizing a fully crossed
design. It should be noted that while we were able to achieve a sample size that
satisfied our a priori power analysis suggestion of N = 128, all participants were
recruited from an online university sample pool. Therefore, it is possible that the
typical university-aged individual has a particular taste in stand-up comedy not
satisfied by the jokes used in this study. Similarly, it is possible that the jokes
were not understood by all observers, given that they were written to be from
a robot’s perspective, instead of a human’s. Finally, because participants used
their personal devices to complete this study remotely and online, it is possible
that they were not as attentive to the task as they may have been if the study
had been conducted in a laboratory setting.

Conclusions and Future Work: Despite these shortcomings, this study’s
results shed light on human perceptions toward robots in a social context and
inform future designs of studies and robotic systems. While stereotypical gen-
der norms may constrain human perceptions of male vs. female robots in other
contexts such as healthcare and manufacturing, it appears that robotic come-
dians are not likewise limited. Importantly, as expected, humans’ preference for
embodied robots in contexts where connection is integral to the experience (e.g.,
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comedy) was supported by this study’s results. In this study, we only manipu-
lated gender through use of auditory cues (i.e., Amazon Polly’s “Joanna” female
voice vs. the “Joey” male voice). In future studies, it could be useful to explore
the effects of changes in physical appearance of the robotic comedian as well.
For example, it would be interesting to see if a robotic comedian with an overtly
female form elicits different reactions and ratings from than the audience than
does an overtly male form. Future directions for research in this area would also
benefit from 1) exploring the upper and lower limits of accepted embodiment for
robots in robot comedy, 2) normalizing and/or utilizing well-known and liked
comedy sets to factor out the individual differences in joke preferences, and 3)
conducting studies in person and perhaps in a larger group setting to simulate
typical live stand-up comedy environments.
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Abstract. The current world landscape in opinions and attitudes about robotics
is highly variegated in different parts of the world. This landscape is a result
of the sum of the effects of multiple factors, which date from millennia ago,
as waves of philosophical thought, religion and historical events overlapped and
allegedly influenced the concept of human and of the artificial. This paper provides
a survey of such factors, and attempts to trace possible lines between causes and
consequences. The analysis seems to indicate the presence of a West/East split
which marks the main differences in intending the role of social agents, humanoids,
transhumanism and labour automation.

Keywords: History of robotics - Culture - Humanoids

1 Introduction

Worldwide research in robotics is aware of the different approaches in the development
and diffusion of these new technologies. Typically Asia, and in particular Japan, are seen
as poles of advancement, especially regarding the realisation of humanoids, whereas
Western countries are less akin to the purpose of replicating humans. This is happening
despite the origin of the concept of robot came from Europe (the Czech word robota
meaning “forced labour”). Kaplan [1] debated the reason why the Western world is more
afraid of the humanoid, and concluded that Westerners are fascinated and afraid by new
machines, while in Japan machines do not seem to affect human specificity.”

One limitation of this analysis is that the fear of the humanoid goes beyond the
proposed concept, and sometimes touches neurological reasons (uncanny robots appear-
ance) or concrete worries (fear of losing jobs). Therefore, it is necessary to distinguish
in which aspects automation is seen negatively.

A vast literature covered comparative studies of human-robot interaction; however,
the core of this literature mainly revolves around West v East (where West often means the
US, and East typically only means Japan). A more extensive analysis is thus necessary,
digging into history in all different parts of the world.
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As Nisbett [2] stated, the differences between East and West in cognition, due to
differing ecologies, social structures, philosophies, and educational systems, trace back
to ancient Greece and China. In fact, some similarities among these ancient cultures
are present, involving puppets and automata. Millennia later, the landscape has com-
pletely changed as civilisations parted ways of thought. What happened in between is
the research question of the present contribution.

In different parts of the world, different lines of thought arrived to opposite conclu-
sions regarding robots, and in particular humanoids. Multiple factors, tracing back to
philosophy, history, religion and society, apparently prompt or hinder the development
and the application of robots in societies nowadays. The goal of this paper is to connect
the threads that lead the past to the present, and understand where are the criticalities.

2 The Part Ways — West to East

2.1 Latin America

While there is no trace of the idea of automation in Aztec, Maya and Inca civilisations,
one interesting note in pre-Columbian Americas is the tale of the revolt of the objects
(Fig. 1), depicted in Moche civilisation (150 to 700 A.D:, pre-Inca civilization present
in the northern coast of Peru) [3], which parallels the current view of revolting robots.
This odd episode reveals the fear of lack of control of the world order, which is based
on fragile balance of nature and is maintained by sacrifices [4].

Mesoamerican civilisations shared many common traits, one of them being the use
of human sacrifices, originating from the belief of a pact of blood with gods, who shed
blood first for the humanity [5]. The relevant aspect of this fact is the human specificity
in sacrifice: it was not possible to spare a human and obtain the same favour from the
gods. Sacrifices were most common in Mexico, although also in South America studies
[6] mention the taxonomic differentiation of wild and domestic species in sacrifices.

When immigration from other continents began, African Witchcraft and Turanic
Shamanism were also imported and blended up with Christianity as well. Through the
principle of resemblance, a humanoid doll or a similar representation is believed to gen-
erate an impact on a living person, operated by a shaman [7]. These kinds of practices are
still executed nowadays. The connection of human figures with spirits slightly resemble
animism of Eastern religions.

Fig. 1. Detail of the “Revolt of the Objects” from Moche culture.
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On the other hand, Spanish conquest has added the cultural layer of Christian Catholi-
cism in its most strict form (the Inquisition). The use of actuating a crucifix to help
confirming a defendant guilty [8] represents the only real precedent - a negative one - of
automation in Latin America.

2.2 Europe and Western Culture

The idea of machines traces back to Ancient Greece: artificial servants like Hephaestus’s
helpers, made by the gods to serve the gods [9], autonomous ships, the legendary bronze
giant Talos, and the myth of Pygmalion [10]. Some automata were actually built: such
as the “magic” opening of temple doors when a fire was lit in an altar: their purpose was
to surprise and amuse [11]. Besides automata, from the writings of Herodotus [12] we
also know about puppets moved by strings being used in religious festivals in Egypt and
later in Rome. One famous episode: in 44 B.C., at the funeral of Julius Caesar, Marc
Antony made use of a puppet actuated by a mechanical device. It was rotated to show
the knife wounds and incite the emotional reaction of the angry mob.

The advent of monotheism view brought concepts borrowed from Judaism, like the
desacralisation of nature [13] and the rejection of magic, which tend to make robots and
automated objects appear like mere machines, which should be seen suspiciously for
their autonomy. This might be the background that leads to the tale of the golem, present
in Jewish folklore since only the 16th Century. The golem, a man-made creature built
from clay or mud, went out of control and had to be destroyed. This story represents an
example of hubris, is allegedly at the origin of the fear of man-made creatures called
Frankenstein complex [14], which was reproduced in similar stories (Fig. 2). A first
attempt at regulation of machines autonomy, however, comes from Europe, with the
famous Three Laws of Robotics by Asimov [15].

While Israel developed in its own peculiar way (see the set of rules existing about
the Sabbath, prompting the need of home automation), Christian countries developed
on the top of the pre-existing beliefs. The production of automata related to the concept
of “enchantment of technology” [16]. Though the Middle Ages and later, mechanical
angels and fire-breathing devils were designed, patronised by the Catholic Church [17].

Conversely, while the Church never prohibited the advancement of technology and
the realisation of machines, some aspects of the faith may be interpreted in opposition
to the concept of intelligent machines. The dualistic view of soul renders a machine
“soulless”, and the concept of body as a gift from God, in common with the other
monotheistic religions (e.g. “body is a gift from Allah/God”). This may lead to more
conservative views regarding the possibilities of “enhancing” the human body.

Nevertheless, Western culture was influenced by concepts present in Genesis (1:26—
28): “mankind is created as an “image of God” and receives the mission to “fill the Earth
and subdue it” and to rule over the animals. As a consequence, the study of the created
nature itself was a legitimate way of understanding God [13].

After the Renaissance, the power of creation has “shifted from gods to humans”
[17], and anthropocentrism became a central thought also in philosophy. It is worth
to mention the influential role of Descartes: his passive mechanical thoughts of the
separation between body and soul, in which the body is regarded as soulless. In the res
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cogitans/res extensa dualism, animals are mere machines unable to think, while man
masters and owns nature [18].

The emphasis on science led to the Industrial Revolution, in which we can find the
episode of Luddism in the UK, in which protesting groups destroyed textile machin-
ery. The fear of losing jobs was based on concrete evidence, although new jobs were
eventually created.

The advent of the two World Wars, which particularly hit Europe, left a deep trace
that is visible in Western philosophy and arts, in a pessimistic view of man’s tendency
to go against his self-interest with an immense destruction power [19]. Science-fiction
arguably reinforced the Frankenstein Complex with this new awareness.

7l

Fig. 2. Four creatures which went out of human control: from left to right the Golem, the Creature
from Frankenstein, Pinocchio and Terminator.

2.3 Middle East

The peculiarities of this area as opposed to the Ancient World take place with the rise of
Islam. It’s the Arabian golden age that had a world-wide impact on science. Ismail al-
Jazari, a scholar who lived in the 12th Century in present day Turkey, described fountains
and musical automata [20]. Rosheim [21] stated that the Arabs were interested not only
in dramatic illusion but also in manipulating the environment for practical applications.

The Middle East is characterised by the traits of the monotheistic religions, and the
philosophical thought evolved in the same direction of distance between man and God.
For example, Islamic scholar Mohammad-Ali Taskhiri also discussed the concept of
dignity, intended as a state to which all humans have equal potential, as long as they live
a life pleasing to the eyes of God [22]. The consequence is that a robot should be able
to tell right from wrong, matching its dignity to the one of a human and complying the
religious laws [23].

The most peculiar issue with Islam is due to iconoclasm. Islam prohibits the depiction
of living beings, either animal or human, especially in sacred spaces, as depicting them
would be considered same as adopting the role of creator [24].

In the Middle East, society rules and state laws are often blended with religious
beliefs, and the understanding of cultural norms of the country is particularly necessary
for ensuring technology acceptance [25], as the attempt to take power over nature by
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science or techniques could be seen as an offense against Allah’s omnipotence [26].
Iconoclasm, however, is not necessarily a common issue to all the Islamic world and
shall not be generalised: even in Persia, depiction of humans has been widespread in
certain historical periods, and the Middle East does not represent the most populous area
of Muslims.

2.4 India

The Indian subcontinent, one the largest Islamic areas by population, has always had a
completely opposite approach regarding the embodiment of the sacred compared to the
Middle Eastern Islamic approach. This can be seen in theology in the mystical symbolism
of the traits of the human face [27]. The Bhagavad Gita scripture states a God with a
form is necessary due to the human use of senses.

Since ancient times, puppet shows have been a tool to convey stories regarding Hindu
gods and Puranic legends [28], and the use of Murti is widespread. The construction of
automata with human/animal figures is documented (the tiger of the Islamic ruler Tipu
Sultan [29] in Fig. 3, left).

In the ancient Vedic civilisation, there were already references of machines in ancient
texts (the Sanskrit term Yantra may be translated as machine). In particular, in Yoga
Vasishta [30] it is mentioned that an Asura named Sambarasura created three robots
without sentiments, and in the Mahabharata [31] there is a reference of a gigantic human-
like machine named Kumbhakarna.

Hinduism conceives God as a multiplicity and accepts different ways of worship.
‘We argue that this inclusive nature of Hinduism towards other religions) and the multi-
culturality of the populations in the Indian subcontinent may help acceptance of robots,
in particular if employed in a religious application.

Especially in Hindu Tantric, rituals are of preeminent importance, as repetition and
chanting of mantra are performed over and over again, while the concept of “vain repe-
titions” has been bitterly criticised, for instance, by Christian Protestants [32]. Being a
repetitive action, it may lead to tedium [32]: we argue that, a philosophy in which the
action of ritual itself is more important that the content may prompt the delegation of
ritual. The Ganapati Bappachi Robotic Aarti [33] is an example of such delegation to a
robotic arm.

Fig. 3. Tipu’s Tiger: automata made for an Islamic Sultan (left); extreme anthropomorphism in
Japanese onigiri (right).
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2.5 East Asia

East Asia is tied to India for having received the influence of waves of spirituality and
ideals [34]. In Asian countries it is possible to encounter different shades of people’s
religion, as Confucianism, Buddhism, Taoism and Shinto are not reciprocally exclusive,
and influenced each other.

Taoism is the oldest among these religions, and is one that encourages people to
concentrate on the present real world rather than on the afterlife. Conversely, the dream
to become “immortal Taoist sages in a fairyland” is an ultimate goal for the Taoist [35].
Weng et al. debate whether this dream can be helped by the use of robotics. Another
interesting aspect of Taoism is the concept of harmony between man and nature, in which
“man must control his own conduct without violating the law of nature” [13]. Unlike
Europe, dominated by anthropocentrism, this relationship implies that man is born from
nature.

From Buddhism originated the concept by Mori [36] that robots have the Buddha-
nature and the potential for attaining Buddhahood, deserving the same compassion that
all living beings receive. Also related to Buddhism we can find historical traces, in
southern China, Korea and Sri Lanka, of the use of shadow puppets [37]. China has a
long tradition of shadow puppets, whose connotations were not always positive (like in
the case of bringing back alive the spirit of the dead on a shadow screen [28]).

Confucianism then dominated society in Sinosphere, and its approach to science,
which emphasises collectivism and pragmatism [38]. This can be seen in contemporary
times, as the push to modernisation [39] is also bringing automatisation of labour.

Japan is a special case within East Asia because of the many components that built
up its culture and of the prominent role in robotics.

Deriving from the Confucian animistic conception of religion, that ascribes souls to
all living and non-living objects, and the harmony of Taoism, Shinto, puts emphasis on
nature worship and leads to the belief that inanimate things are sacred objects at its core
[40]. Shintoist Japan has an additional peculiarity as anthropomorphism has been a trait
present since the 12th Century, proven by the animals depicted in the Chojii-jinbutsu-
giga scrolls [41], and is visible nowadays from the degree of objects that - literally - have
a face (Fig. 3, right).

3 Discussion and Conclusion

In this last part, we summarise the data collected from all the sources, and try to draw
lines between the main factors examined and the criteria of attitude towards robots,
which is relevant today as may represent cultural barriers to the concrete application in
the societies.

Macro cultural areas are synthesised in Fig. 4. As categorisation of cultural areas
is highly inconsistent in Sociology and Anthropology, for our analysis we adapted
areas defined in [42]. This representation is necessarily simplified and not inclusive
of exceptions within each group.
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Science fiction
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Fig. 4. The cross-cultural timeline. In vertical, cultural groups with each block indicating a topic,
and specifically an aspect which may have caused a positive (+) or negative (-) effect into some
aspect of attitude towards robots.

We consider four important criteria, partially corresponding to previous research by
Dihal [43], on which the approach towards robots is radically different across the world
nowadays, and discuss them in Sect. 3.1.

3.1 The Four Criteria

A. Social: robots as mere tools v robots as social agents
Factors that influence this aspect of the attitude seem to revolve around the concept of
soul: whether itis in every object, or a separate entity from the body, and whether an object
with social capabilities would possess a moral, or rather be considered magic, with its
possible negative connotations. In other words, in Western perception, a conversational
robot who displays emotions may be regarded as a fraud. In these regards, the Eastern
philosophies and the Native American connection of human figures with spirits provide
a much more favourable terrain for robots to be credible social agents.

This can be seen in Japan, where 8 million Gods and spirits exist in natural envi-
ronments [35], and the leading role of Japan in developing social companions (Aibo,
Kirobo, Lovot, Pepper, etc.).

B. Human-likeness: Frankenstein complex v development of humanoids

Two are the main factors: anthropocentrism and the distance from God. In all the cultures
where the human being is considered unique (including Mesoamerica), its replacement is
more difficult, including with an artificial version of it. Moreover, if humans are inferior
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to gods, their ability to replicate themselves may be insufficient, implying that a man-
made humanoid robot will be faulty. These complications may be even more critical
when depiction of human figures is associated with a negative perception: iconoclasm
should be considered as an additional barrier for the development of humanoids, as their
making would be open to a wrong interpretation.

C. Human biology: Bio-conservatism v Transhumanism

The main concept related to the modification of human biology (which is opposed in Bio-
conservatism and advocated in Transhumanism) seems to be deriving from the concept
of body - intended as a gift from the monotheistic God - which should not be altered,
or rather as part of nature, as in Taoism. These opposing stances may influence the
boundaries of what is considered “natural” when dealing with Cybernetics. It is worth
mentioning the strict stance of the Catholic Church in these matters.

D. Labour: robots as job stealers v robots as job helpers

History may be the main factor that influences this aspect: the concrete change of society
caused by new technologies is evident. The fear of unemployment caused by automation
is acommon concern despite that the original purpose (and etymology) of modern robots
is labour. In case of the Middle East and East Asia, the philosophical attitude towards sci-
ence may as well have a positive impact in the application of modern robotics. However,
rather than cultural areas, single countries may adopt different approaches depending on
their own pragmatism. Moreover, the attitude of first developers of technologies and the
one of late adopters can be different as well. A late adoption of a technology may bring
distortions as well as new possibilities. The future employment of robots in the societies
will depend on a combination of these factors.

3.2 Overall View

An overall view of the cross-cultural timeline seems to indicate a “West/East split”, with
the sharpest division occurring between the Middle East and India, considering the many
aspects in common within the two sides.

The greatest difference regarding the concept of human, which acts as a underlying
factor, could be synthesised with the “metaphysical triangle” [26, 44], measuring the
distance among the components God/Man/Nature. A greater separation between the
profane and the divine, and the active role of man may have fuelled the invention of
robots in the West, but at the same time put a limit to the innovation, which application
in the most extreme senses was taken over by the East.

This collection of implications cannot be considered evidence, but rather as hypothe-
ses, which contribute to shed some light to the background of the evolution of robotics
worldwide. As for the concrete direction of future research, the authors suggest, when
designing and employing robots in different parts of the world, to consider case by case
the implications within the four criteria A/B/C/D of the new technology, and deduct the
risks and opportunities.
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Abstract. HRI research shows that people prefer robot appearances
that fit their given task but also identify stereotypical social percep-
tions of robots caused by a gendered appearance. This study investi-
gates stereotyping effects of both robot genderdness (male vs. female)
and assigned task (analytical vs. social) on people’s evaluations of trust,
social perception, and humanness in an online vignette study (n = 89)
with a between subject’s design. People deem robots more competent
and receive higher capacity trust when they perform analytical tasks
compared to social tasks, independent of the robot’s gender. An observed
trend in the data implies a tendency to dehumanize robots as an effect
of their gendered appearance, sometimes as an interaction effect with
performed task when this contradicts gender stereotypical expectations.
Our results stress further exploration of robot gender by varying gender
cues and considering alternative task descriptions, as well as highlight
potential new directions in studying human misconduct towards robots.

Keywords: Social robots + Gender stereotypes - Social perception -
Dehumanization - Trust

1 Introduction

The upcoming introduction of robots embracing a myriad of tasks in our every-
day lives initiated multiple human-robot interaction (HRI) studies to investigate
robots’ suitability to perform a given task. Some studies have more generally ana-
lyzed people’s social acceptance of robots in several potential future jobs [9,12].
Such studies show people’s willing to accept robots in roles for entertainment, as
personal assistants, and in hazardous environments, yet will probably reject the
application of robots requiring sophisticated social emotional interactions. Other
studies specifically investigated a fit between task and appearance indicating that
a robot’s appearance-task fit is affected both by people’s expectations about the
capacities a robot needs for a particular task [26] as well as a need to match a
robot’s appearance to its intended application of role [8,15]. A body of research
in human psychology may explain these previous findings in HRI. Psychology
research indicates that initial impression are formed based on appearance cues
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which, in turn, not only serve as ample triggers for social categorization [1] but
also prompt subsequent stereotyping processes [28,37]. Such gender stereotyping
has occurred in HRI research as well. People quickly infer a robot’s gender based
on it’s appearance [21] which triggers gender stereotypical beliefs about such gen-
dered robots [13,38]. This study expands existing knowledge in HRI research on
robot genderdness and appearance-task fit by investigating stereotyping effects
of robot genderedness and assigned task in an online vignette study.

1.1 Social Categorization and Stereotypes

Social categorization is a cognitive process to make sense of the social world
by simplifying and systematizing perceptive information [1]. When meeting
strangers, such cognitive categorization may aid as a beneficial heuristic when we
infer interpersonal characteristics based on the social group that stranger belongs
to [28]. However, categorizing others to social groups rather than treating them
as unique individuals may also have various negative consequences. Social cat-
egorization triggers a tendency to form distort perceptions and stimulate exag-
geration of differences between individuals from distinct social groups while per-
ceiving intensified similarities of individual members within those groups [37]. As
a consequence, we are more likely to utilize our distort perceptions to individual
members of social groups without considering whether the assumed character-
istics inhere with that specific individual. The process of such over-generalized
assessments of an individual based on the group to which they belong is called
stereotyping [20]. Stereotypes are automatically activated immediately following
categorization of a target as a member of that group [11].

A large body of research on gender stereotyping reveals a human tendency
to ascribe different traits to men and women. Stereotypical male traits com-
prise competence and agency [35] by highlighting achievement orientation (e.g.,
competent, ambitious), inclination to take charge (e.g., assertive, dominant),
autonomy (e.g., independent, decisive) and rationality (e.g., analytical, objec-
tive) [20]. Stereotypical female traits enclose warmth and expressiveness [35] by
highlighting concern for others (e.g., kind, caring), affiliative tendencies (e.g.,
friendly, collaborative), deference (e.g., obedient, respectful) and emotional sen-
sitivity (e.g., intuitive, understanding) [20]. Bem [3] mapped this distinction
between stereotypical male and female traits which shows a strong overlap with
the Stereotype Content Model’s [7] dimensions of warmth and competence. Sub-
sequent research shows that people generally deem competence more desirable for
males and warmth for females [4]. Relying on the Computers Are Social Actors
paradigm [29], gender stereotypes have also been reported in HRI research.

1.2 Gender Stereotypes in HRI Research

People socially categorize robots and reckon social behaviors in robots based on
inferred traits and characteristics, including gender cues from physical appear-
ance [13] as well as facial features and voice [32]. While technical abilities are
advancing, robots were originally designed to execute instrumental tasks [41].
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This classical image of robots performing dirty, dangerous, and dull tasks still
prevails in people’s minds [27]. Nonetheless, human encounters and collabo-
rations with robots increasingly become everyday practice [22]. A successful
introduction of robots in society heavily relies on people trusting these sys-
tems [16] as a mediator for people’s willingness to collaborate with robots [42].
Although trust has been frequently debated in human-robot interaction research
—as a theoretical concept as well as an empirical measure— consensus arises on
a dichotomous dimension of trust. On the one hand, people may trust a robot
based on its capacity or reliability, and on the other hand based on its integrity
or morality [14,39]). These trust dimensions resemble the gender stereotypical
traits associated to men and women. Female stereotypical traits, such as “loyal”
and “compassionate” [3], better fit the items of moral trust, such as sincerity,
genuineness and ethicality [31]. Male stereotypical traits, such as “ambitious”
and “self-reliant” [3], better fit the items of capacity trust, such as “competent”
and “skilled” [18]. Based on this resemblance, we hypothesize that people have
higher trust in robots that perform tasks”fitting to their gender” (H1).

Other HRI studies specifically focus on the interaction effects between a
robot’s gender and their occupational domain. When a robot performs tasks in
line with existing gender-stereotypes regarding gender-task fit, people will more
easily accept that robot [38]. Moreover, when our social schema for gender-task
fit is violated during a collaborative task with a gendered robot, people will even
perform less well (i.e., higher error rate) [25]. These findings from HRI research
map similar results from psychology research illustrating that occupational roles
are reliably stereotyped along the social perception dimensions of warmth and
competence [19], which in turn have been linked to gender-stereotypical traits
[3]. Given the strong underlying social schema regarding the appearance-task fit
in HRI research [26], we expect a dominating effect of the gendered embodiment
over the potential effect of task-fit. Therefore, we hypothesize that robot gender
affects people’s social perception of a robot, independent of performed task (H2).

A growing body of research investigates human misconduct with robots
in terms of discrimination (e.g., [2]) and abuse (e.g., [23]). Gendered robotic
agents with female characteristics encounter a specific form of human miscon-
duct, namely objectification. Observations of conversations between pupils and
a female-gendered virtual tutor reveals a frequent objectification of that virtual
agent whilst placing it in an inferior role [40]. Systematic analysis of online com-
mentaries on videos displaying humanoid robots exposes a pervasively blatant
objectification of female-gendered robots [36]. Psychological research has a long
historical focus on sexual objectification of the female body [27] indicating that
men and women hold similar tendencies to perceive sexualized women as lack-
ing mental capacity and moral status [24]. Combining the literature on female
objectification with the gender-stereotypical expectations regarding occupational
suitability of gendered robots [38], we hypothesize that people’s perceptions of
a robot’s humanness is a combined (interaction) effect of both robot gender and
performed task (H3).



People’s Perceptions of Gendered Robots 27
2 Method

We have conducted an online vignette study (n = 89) manipulating robot gender
(male vs. female) and task type (analytical vs. social) in a between subject’s
design to investigate stereotyping effects of robot genderedness and assigned
tasks on social perception, trust, and humanness.

2.1 Stimuli

We manipulated both the gender of the robot as well as the type of task it
performed. The mixture of these stimuli (robot gender X task type) resulted in
four different vignettes. To manipulate the robot gender, we modified a picture
of the Pepper robot by either giving it a blue tie for the male or a pink scarf for
the female robot (see Fig. 1). Such apparel serve as subtle but powerful gender
cues [21]. Additionally, we referred to the robot as either Alezander in the male
or Alexandra in the female task description respectively. Task type was manipu-
lated by altering some words in a text description to indicate either an analytical
or social task, which were kept at similar length (i.e., 69 and 67 words respec-
tively). The analytical task [A] described the robot studying large datasets with
medical data to provide an overview of treatment plans for hospital patients to
support healthcare professionals in making solid decisions of patient treatment.
The social task [S] described the robot utilizing large datasets with verbal and
non-verbal behaviors to provide emotional support to hospital patients facilitat-
ing healthcare professionals in monitoring patient well-being. A full description
of the task descriptions is given below:

Alexander/Alezandra supports healthcare staff in...

...[ A] developing individual treatment plans for hospital patients.

...[ 8] providing emotional support to patients with chronic diseases].
Alexander/Alexandra has access to large data sets with...

...[A] medical data including medical conditions and symptoms, diag-
noses, treatments, medication, test results, hospitalization, and demo-
graphic patient data such as gender and age.

...[S] verbal and non-verbal behaviors including speech utterances, body
language, facial expressions, and social customs and etiquette.
Alezander/Alexandra...

...[ A] analyzes this data, draws connections between cause and effect, and
quickly provides an overview of potential treatments.

...[ 8] listens actively, recognizes a patient’s emotions and feelings, and
offers emotional support to patients.

This way, healthcare professionals can...

...[A] make a solid decision for an appropriate treatment for individual
patients.

...[ 8] monitor and respond optimally to the emotional well-being of indi-
vidual patients.
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(a) Male robot (b) Female robot

Fig. 1. Robot gender manipulation

We pretested these stimuli (n = 12). The female robot (M = 7.67) was
perceived as more female than the male robot (M = 5.56) measured on a 9-
point Likert scale from mostly male to mostly female (p = .012). The analytical
task (M = 8.22) was perceived as more analytical (p = .032) than the social
task (M = 6.78), and the social task (M = 6.67) was perceived as more social (p
< .001) than the analytical task (M = 2.22) measured on two separate 9-point
Likert scales from not at all [analytical/social] to very [analytical/social].

2.2 Procedure

After giving consent, the survey topic was introduced by addressing the ageing
society and that robots could aid the growing demand for optimization in health-
care. Participants were randomly assigned to one of the four vignettes with a pic-
ture of the robot (male or female) above the task description (analytical or social).
After reading, participants were asked to respond to several statements regarding
their perception of the robot (see Sect.2.3). The questionnaire ended with some
demographic items and thanking the participant for their contribution.

2.3 Dependent Variables

Participants’ social perception of the robot was measured with the 10-item scale
by Cuddy et al. [7] containing the dimensions of warmth (o = .69) and compe-
tence (o = .67). To measure participants’ trust in the robot, we administered
the 16-item Multi-Dimensional-Measure of Trust scale by Ullman & Malle [39]
containing the dimensions of capacity trust (« = .77) and moral trust (o = .78).
Perceptions of the robot’s humanness were collected using the 20-item scale by
Haslam et al. [17] containing the dimensions of human uniqueness (o = .68
after removing item ‘logical’) and human nature (a = .67 after removing item
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‘individual’). All measures were presented on 7-point Likert scales, and average
construct scores were calculated. Table 1 presents means and standard deviations
of all dependent variables in each of the conditions.

Table 1. Means and standard deviations of dependent variables in each condition

Condition

Male robot Female robot

Analytical task | Social task | Analytical task | Social task
Dependent variables | Means (SD) Means (SD) | Means (SD) Means (SD)
Trust
Capacity trust 5.09 (1.00) 4.70 (0.94) |4.90 (0.79) 4.46 (0.83)
Moral trust 4.31 (0.92) 4.13 (1.02) |4.06 (0.96) 3.93 (1.15)
Social perception
Warmith 4.18 (1.03) 429 (1.24) | 3.88 (1.13) 4.00 (1.42)
Competence 4.41 (0.88) 4.04 (1.11) | 4.46 (0.81) 3.63 (1.34)
Humanness
Human uniqueness | 4.21 (1.21) 4.17 (1.16) |3.87 (0.89) 3.71 (1.19)
Human nature 3.32 (0.93) 3.17 (1.08) |2.99 (1.06) 3.68 (0.83)

2.4 Participants

We recruited 95 participants via various social media, of which we deleted 6
responses (i.e., completion rate below 75%) from further analyses. We analyzed
the data of the remaining 89 participants (52% male, 48% female), with age
ranging from 18 to 79 (M = 29.1, SD = 14.4). Participants had an average
knowledge in the robotics domain (M = 3.6, SD = 1.7) but a lower experience
with robots (M = 2.6, SD = 1.6), as indicated on a 7-point Likert scale from 1
= ‘no knowledge/experience’ to 7 = ‘very knowledgeable/experienced’. Neither
knowledge about nor experience with robots influenced any of the measures in
our study (i.e., no significant correlations with any of the dependent variables).

3 Results

To test our hypotheses, we ran a series of two-way ANOVAs with robot gender
(male vs. female) and task type (analytical vs. social) as independent variables.
Normality checks and Levene’s test indicated that test assumptions were met.

3.1 Trust

We observed a significant main effect for task type (F(3,1) = 4.79, p = .031,
d = .47) on capacity trust, but not for robot gender (F(3,1) = 1.27, p = .264,
d = .25) nor their interaction effect (F(3,1) 0.02, p = .885, d = .05). However,
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no significant main effect was found for robot gender (F(3,1) = 2.05, p = .156,
d = .31) or task type (F(3,1) = 1.26, p = .264, d = .25) on moral trust nor for
their interaction effect (F(3,1) 0.10, p = .748, d = .06). These results suggest
that only people’s capacity trust in a robot is affected and exclusively by the
given task. Specifically, participants have higher trust in a robot’s capacity when
it performed an analytical task compared to a social task (see Fig. 2).

Capacity Trust

Competence
7.00
7.00
6.00 500 ro 500
500 —_—, 500 4.46 tos
4.90 — !
4.00 4.46 ——Male Robot 400 441 Tee——— ——Male Robot
300 Female Robot 300 363 Female Robot
2.00 2.00
1.00 1.00
Analytical Task  Social Task Analytical Task  Social Task
Fig. 2. Effect of robot gender vs. task Fig. 3. Effect of robot gender vs. task
type on capacity trust type on competence

3.2 Social Perception

We found no significant main effect for robot gender (F(3,1) = 1.26, p = .265,
d = .25) or task type (F(3,1) = 0.19, p = .666, d = .09) on warmth nor for
their interaction effect (F(3,1) | 0.01, p = .990, d = .05). However, we did
observe a significant main effect for task type (F(3,1) = 7.11, p = .009, d =
.58) on competence, but not for robot gender (F(3,1) = 0.62, p = 434, d =
.17) nor their interaction effect (F(3,1) = 1.04, p = .311, d = .22). These results
suggest that people’s social perception of a robot is mainly affected by the given
task. Specifically, independent of robot gender, people ascribe higher competence
when a robot performs an analytical task compared to a social task (see Fig. 3).

3.3 Humanness

We observed a nearing significant main effect for robot gender (F(3,1) = 2.77,
p = .100, d = .35) on human uniqueness, but not for task type (F(3,1) = 0.17,
p = .683, d = .09) nor their interaction effect (F(3,1) = 0.06, p = .812, d =
.06). Moreover, no significant main effect was observed for robot gender (F'(3,1)
= 0.18, p = .671, d = .09) nor for task type (F(3,1) = 1.51, p = .223, d = .28)
on human nature while their interaction effect approached significance (F(3,1) =
3.80, p = .055, d = .44). These results suggest a robot’s gender or given task does
not effect people’s humanness perception of a robot, while a data trend appears
where: (1) perceptions of a robot’s human uniqueness might be affected by robot
gender; and (2) perceptions of a robot’s human nature might be a combined effect
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between robot gender and task type. Specifically, participants seem more inclined
to dehumanize female robots to animals lacking higher-level mental processes
(i.e., lacking human uniqueness) compared to male robots independent of the
given task (see Fig.4). Moreover, participants seem to dehumanize robots to
emotionless objects (i.e., lacking human nature) exclusively when female robots
perform analytical tasks or male robots perform social tasks (see Fig. 5).

Human Uniqueness Human Nature

7.00 7.00

6.00 6.00

5.00 401 417 5.00

400 e ——Male Robot 4.00 332 3.68 ——Male Robot
300 3.87 3.71 Female Robot 3.00 —_— Female Robot

' ' 299 317

2.00 2.00 .

1.00 1.00

Analytical Task  Social Task Analytical Task  Social Task

Fig. 4. Effect of robot gender vs. task Fig. 5. Effect of robot gender vs. task
type on human uniqueness type on human nature

4 General Discussion

Our study expands existing knowledge in HRI on robot gender and appearance-
task fit by conducting an online vignette study manipulating robot gender (male
vs. female) and task type (analytical vs. social) in a between subject’s design to
investigate their effects on social perception, trust, and humanness.

Our results indicate that people’s trust in a robot is mainly determined by
its capacity, but not its morality, and independent of the robot’s gender. These
results show that trust evaluations of a robot are not linked to a robot’s gender as
we hypothesized (H1). Instead, our results indicate that trusting robots is more
strongly associated with the performed task. Additionally, robots are perceived
as more competent when it performs an analytical task compared to performing
a social task, independent of its gender. This finding contradicts our hypothesis
expecting an effect for robot gender on people’s social perception of a robot,
independent of performed task (H2). When associating gendered robots with
specific tasks, the observed effects of gender stereotyping in both the psychol-
ogy [3] and HRI [13] research seem to steer away from the genderedness of the
robot’s embodiment towards the (perhaps also perceived gender-stereotypical)
performed tasks —at least in terms of social perception and trust in such robots.
An earlier study examining the relationship among occupational gender-roles,
user trust and gendered robots also found no significant difference in the capac-
ity trust of a robot when considering its gender [5]. Similarly, another HRI study
on gender-task fit [25] has reported that people are less willing to accept help
from a robot when executing a typically female task (i.e., a social task).
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These combined results on predominant effects for task type, eliminating
the potential effect of the gendered embodiment, are not necessarily surprising.
Prior research shows that people in general hold more utilitarian perceptions
of robots [9,12,15,41] indicating a preference for executing instrumental tasks.
However, we must highlight potential limitation of the stimuli used in our study.
Although the male robot was rated as significantly more male than the female
robot, it was still on the female side of the gender scale. Similarly, the social
task was rated as significantly less analytical than the analytical task itself, yet
it was on the analytical side of the scale. Future research should therefore not
only explore other task descriptions, occupations, or social roles, but should also
further investigate different gendered appearances cues for robots or include a
gender-neutral robot as well as explore consequential (interaction) effects of such
gender and task manipulations on social perception and trust in HRI. Further-
more, research in psychology [6] as well as HRI [34] shows interaction effects for
trust between the gender of the participant and that of the social other. Such
interaction effects between participant and robot gender have been reported
[30] indicating increased uncanny reactions to other-gender robots when that
robot conforms to gender expectations of warm females and competent males.
Therefore, exploring interaction effects between the participant gender and robot
gender in the context of gender-task fit sounds promising as well.

Psychology literature informed our hypothesized effect of people’s humanness
perceptions of a robot to be a function of both robot gender and performed task
(H3). Although our data did not support this, we feel disposed to discuss the
observed trend in our data indicating a potential interaction effect between robot
gender and performed task on a robot’s perceived humanness. This trend implies
that people tend to dehumanize female robots (regardless of given task) to ani-
mals lacking higher-level mental processes. Sexist responses to female robots have
been reported in HRI research more generally [36,40]. Additionally, the trend
implies that people tend to dehumanize robots to emotionless objects only when
gendered robots perform tasks contradicting gender stereotypes (i.e., a gender-
task interaction effect). Research in social psychology has shown that women are
dehumanized to both animals and objects [33], which is a trigger for aggressing
women [17]. Intermingling gender effects into current debates on robot abuse
(e.g., that mindless robots get bullied [23]) might offer alternative perspectives
on these issues which future research should further explore.

The field of social robotics aims to build robots that can engage in social
interaction scenarios with humans in a natural, familiar, efficient, and above
all intuitive manner [10]. The easiest way to deal with social expectations of
gendered robots including consequential stereotypical inferences is to enhance
people’s social acceptance of gendered robots by tailoring their gendered appear-
ance to their intended task. Alternatively, perhaps an idealistic vision might be
that robots could offer a unique potential to illuminate implicit bias in social
cognition by challenging persisting gender-task stereotypes in society.
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Abstract. In this study, we employed Furhat to investigate how people
attribute gender to a robot and whether the attribution of gender might
elicit stereotypes already at a first impression. We involved 223 partici-
pants in an online study and asked them to rate 15 of Furhat’s predefined
faces in terms of femininity, masculinity, communion, and agency, and
identify which facial cues they based their attribution of gender upon.
Our results show that Furhat’s predefined faces are attributed the same
gender predicted by their names, except for one face which was perceived
as androgynous. They disclose that feminine robots are perceived as less
agentic than masculine robots already at a first impression, and reveal
that vocal cues have higher relevance than facial cues in determining
the gender attributed to a robot. Besides providing a complete account
of the genderedness of Furhat’s predefined faces, the present study also
raises awareness of the importance of gender in the design of robots and
provides a starting point to design more inclusive robotic technologies.

Keywords: Gendered robots + Human-robot interaction + Social
robotics - Inclusive robotics

1 Introduction

Humanoid robots provide users with a natural and largely familiar type of
interaction due to their ability of using a rich variety of verbal and non-verbal
communication modes. However, designing robots in the likes of humans might
have profound implications. For instance, it might bring roboticists and HRI
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researchers to equip robots with gender cues. This seemingly innocuous process
might become problematic, as implicit gender biases and stereotypical gender
norms might be involuntarily transferred into the interaction and contribute to
perpetuating harmful societal stereotypes.

Several researchers have investigated how the genderedness of a humanoid
robot affects people’s perception of it, for instance, in terms of trustworthiness [7,
13], likability [10], competence [6], and acceptance [16]. However, the attribution
of gender as a process of its own is understudied. Although one might argue that
the best way to address gender in Social Robotics is to not provide robots with
gender at all, humanoid robots that are designed as genderless are not necessarily
perceived as such [23]. Hence, understanding how humanoid robots are gendered
and which cues guide the categorization might help us design more inclusive
robotic technologies, and escape the gender binarism that is predominant in
Social Robotics and society at large [22].

In the literature, robots have been gendered in multiple ways. Tannenbaum
et al. identified six main criteria through which gender is assigned to a robot
[24]: (i) Voice: voices with a low frequency (=110 Hz) have been identified as
masculine, while voices with a high frequency (~210 Hz) as feminine [17,21]; (ii)
Name: together with voice, names, such as Mary and James, have been used to
manipulate the gender of the robot [6]; (iii) Anatomy: body proportions, such as
the robot’s waist-to-hips ratio and shoulders’ width were used to manipulate the
robot’s genderedness [4], (iv) Color: stereotypically gendered colors, such as pink
and blue, have been employed to elicit the perception of a robot as feminine and
masculine [18], (v) Personality: submissiveness is often perceived as a feminine
personality trait, while dominance as a masculine one [15], and (vi) Domain of
deployment: feminine robots are for instance employed in healthcare scenarios,
while masculine robots in security contexts [5,25].

The choice of the cues used to manipulate a robot’s gender is often bound to
the robot’s embodiment. Traditional robot designs (e.g., Pepper or NAO) allow
researchers to change only a few gender cues, primarily voice and name. Newer
robotic designs, such as blended embodiments (i.e., a combination of animated
agents and physical robots), instead, give scientists the possibility to study how
the combination of multiple gender cues can form a perception of genderedness,
and how these cues are hierarchically organized. A few of these new robotic plat-
forms provide researchers with a predefined set of gendered faces to use in HRI
studies and robotic applications. However, in most cases, it is unclear whether the
gender incorporated by designers in these predefined faces is actually the same
attributed by users, as no documentation is provided in this sense. Not knowing
how a particular face is perceived might cause roboticists to arbitrarily choose the
face to use in a specific context based on common sense knowledge and might lead
them to incorporate their stereotypical image of gender in the interaction.

Gender attribution to humanoid robots is also likely to prompt stereotypi-
cal judgments [11,25]. Humans form first impressions of other individuals in a
few milliseconds [26], and warmth and competence (or agency) are among the
first perceptual dimensions to arise [12]. This process of impression formation
extends to humanoid robots as well. For instance, Paetzel-Priismann et al. [19]



38 G. Perugia et al.

showed that participants formed an impression of Furhat’s warmth and com-
petence in only 5s and this impression did not change over multiple repeated
interactions with the same robot. More importantly, in line with the Social Psy-
chology research showing that women are more often attributed communal traits
and men agentic traits [2], HRI studies have shown that warmth is a trait more
often attributed to feminine robots, and competence (or agency) to masculine
ones [9]. Hence, human-humanoid interactions are as prone to gender stereotyp-
ing as human-human interactions.

This work aims to bring roboticists’ attention to the important issue of gen-
der in the design of robots and its proneness to elicit stereotyping. We leveraged
on the blended embodiment robot Furhat [3] and carried out a study aimed
at understanding (i) how Furhat’s predefined faces are perceived in terms of
genderedness, (ii) which cues in these faces drive the perception of gendered-
ness, and (iii) how Furhat’s perceived gender affects stereotypical judgements of
communion and agency.

2 Design

We designed a between-subject study with 15 conditions corresponding to 15 dif-
ferent faces of the Furhat robot (cf. Fig. 1). We included in the study all Furhat’s
predefined faces, except for those depicting famous (e.g., Barack Obama) and
fictitious characters (e.g., Elsa). Participants were allocated to one of the 15
conditions. Within each condition, they watched a short introductory video clip
of the Furhat robot saying: “Hello! I am Furhat, nice to meet you”, and com-
pleted a questionnaire before and after watching the video. The robots with
female names — Fedora, Arianne, René, Mei, Anne, and Ursula — were given a
female voice. The robots with male names — Ted, Fred, Max, August, Marty,
Olaf, and Geremy — were given a male voice. The default face, which did not
have any name, was used in two separate conditions, with a female and a male
voice respectively. The videos had the same length (3s) and were shot from the
same frontal angle with the same background.

ene
e

Fig. 1. The fourteen agents used in the study. The default robot (the rightmost on the
top row) was used both with a female or male voice (i.e., default female and default
male).
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2.1 Measures and Procedure

The online questionnaire was organized as follows. In its initial part, we asked
participants their demographic information: age, gender, nationality, occupation,
English level, and previous experience with robots. In a second step, we asked them
to fill out the Ten Item Personality Measure (TIPI, 7-point Likert scale items rang-
ing from 1 = strongly disagree to 7 = strongly agree) [14], which gauged their
Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Open-
ness to Experience. Then, participants were presented with the short introductory
video of the robot and were asked to rate the robot on nine traits extracted from the
20-item version of the Bem Sex Role Inventory (7-point Likert scale ranging from 1
= strongly disagree to 7 = strongly agree) [8]. Four were communion traits, hence
more related to friendliness and helpfulness [12]: tender, gentle, affectionate, and
sympathetic. Five were agency traits, thus more connected with perceived ability,
skillfulness, and efficacy [12]: having a strong personality, having leadership abili-
ties, being able to make decisions easily, being able to defend its own beliefs, and
being able to act as a leader. As a further step, participants watched the introduc-
tory video again and rated the same robot on femininity and masculinity (7-point
Likert scale ranging from 1 = strongly disagree to 7 = strongly agree), and adult-
likeness (semantic differential ranging from 1 = the robot is similar to a child, to
7 = the robot is similar to an older adult). They also selected which facial cues
guided them in assessing the robot’s gender choosing between: eyebrows shape,
eyebrows size, size of the eyes, shape of the eyes, color of the eyes, nose width, nose
shape, eyelashes, lips shape, color of the lips, color of the cheeks, or other. Finally,
in the last step of the questionnaire, participants were asked to give their opinion on
whether robots should have a gender (7-point Likert scale items ranging 1= from
strongly disagree to 7 = strongly agree) and why they should (or should not) have
a gender (i.e., open question). We also measured participants’ attention through a
check question (i.e., “What is the name of the robot in the video?” or “What does
the robot in the video do?”).

2.2 Participants

An a priori sample size calculation using G*Power considering ANCOVA as
analysis (fixed effects, main effects and interactions, a = .05, power = .95, num-
ber of groups = 15, number of covariates = 3), and moderate effects (f(V) =
0.25), resulted in a sample size of 211 participants. Hence, we recruited 225 par-
ticipants on Amazon Mechanical Turk (AMT) to take part in the study, 15 per
condition. Participants who failed the attention check were immediately rejected,
and new participants were recruited on the go. Overall, 310 participants took
part in the AMT study. Sixty-four of them failed the attention check and were
excluded from the study during data collection. Another 112 were excluded once
the data collection was completed because of odd patterns in their demographic
and open-end answers. To compensate for the small sample size on AMT, we
recruited another 100 participants through social media platforms, and asked
them to fill out the same AMT questionnaire. We excluded 11 of them due to
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failing the attention check. The final sample size was composed of 223 partici-
pants (92 women, 129 men, 2 did not specify), 134 filled out the questionnaire
on AMT, 89 on Google Forms. Participants had an age comprised between 19
and 63 years (M = 33.46, SD = 8.52), 21 of them had a high school diploma,
107 a bachelor’s degree, 58 a Master’s degree, 36 a PhD, and 1 did not specify.
The sample was quite heterogeneous, in terms of nationality, with most partic-
ipants from the US (N = 99). 72.2% of participants had previous experience
with robots, while 27.8% had never seen a robot before.

3 Results

3.1 Perceived Femininity and Masculinity of Furhat’s Faces

As a first step, we performed two ANCOVAs with agent as between-subject
factor (i.e., Furhat’s fifteen faces), participants’ age, robot’s perceived adult-
likeness, and participants’ level of agreement with the assertion “I believe robot’s
should have a gender” as covariates, and the ratings of femininity and masculin-
ity as dependent variables. The results disclosed a significant main effect of agent
on both perceived femininity (F(14,204) = 19.949, p < .001, np? = .578) and
perceived masculinity (F(14,208) = 16.070, p < .001, np? = .524). In terms of
covariates, participants’ age was not a significant covariate of perceived feminin-
ity (F(1,204) = .098, p = .754, np? < .001) and masculinity (F(1,204) = 1.212,
p = .272, np? = .006). However, while the robot’s perceived adult-likeness and
participants’ level of agreement with the assertion “I believe robot’s should

Table 1. Descriptive statistics of femininity and masculinity: mean (M) and standard
deviation (SD).

Feminine Masculine

M (SD) M (SD)
Fedora | 6.33 (0.82) | 1.93 (0.88)
Arianne |5.94 (1.25) 2.59 (1.80)
René 572 (1.13) | 2.22 (1.22)
Mei 5.38 (1.98) | 2.46 (1.45)
def. fem. | 5.27 (1.53) | 2.20 (1.01)
Anne 5.25 (1.42) 3.08 (1.78)
Ursula 5.00 (1.77) 2.53 (1.46)
Ted 3.46 (1.81) | 4.07 (1.89)
Fred 2.87 (1.54) | 4.93 (1.59)
def. male | 2.73 (1.91) | 4.93 (2.09)
Max 2.20 (1.70) | 5.00 (1.89)
August | 2.44 (1.31) 5.63 (1.50)
Marty | 2.50 (1.29) | 5.86 (1.17)
Olaf 1.80 (0.77) | 6.00 (1.36)
Geremy | 1.80 (1.42) 6.20 (0.94)
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have a gender” were not significant covariates of perceived masculinity (adult-
likeness: F'(1,204) ~ .000, p = .996, np* < .001; robot’s should have a gender:
F(1,204) = 1.382, p = .241, np* = .007), they were significant covariates of
perceived femininity (adult-likeness: F(1,204) = 5.563, p = .019, np? = .027;
robot’s should have a gender: F(1,204) = 5.689, p = .018, np? = .027). Fur-
ther Pearson’s Product-moment correlations disclosed that the robot’s perceived
femininity was significantly positively correlated with people’s belief that robots
should have a gender (r(221) = .181, p = .007), and perceived masculinity with
the robot’s adult-likeness (r(221) = .177, p = .008).

With regard to differences in femininity and masculinity across Furhat’s faces,
post-hoc analyses with a Bonferroni correction disclosed that Fedora, Arianne,
René, Mei, the default female, and Ursula were perceived as significantly more
feminine than Fred, the default male, Max, August, Marty, Olaf, and Geremy
(cf. Table1 and 2, and Fig. 2). Similarly, Fedora, Arianne, René, Mei, the default
female, and Ursula were perceived as significantly less masculine than Fred, the
default male, Max, August, Marty, Olaf, and Geremy (cf. Table2 and Fig.2).
Two agents constituted an exception to these otherwise clear-cut results, Anne
and Ted. Indeed, while Anne was perceived by participants as differing from Fred,
the default male, Max, August, Marty, Olaf, and Geremy in terms of femininity,
it was perceived as significantly less masculine only with respect to August,
Geremy, Marty, and Olaf, but not compared to Ted, Fred, the default male, and
Max (cf. Table2 and Fig.2). Ted was perceived as significantly less feminine
than Arianne, Fedora, and René, significantly more masculine than Fedora, and
marginally less masculine than Geremy (cf. Table 2). However, Ted did not differ
in terms of femininity from René, Mei, the default female, Anne, and Ursula,
and, in terms of masculinity from Fred, the default male, Max, August, Marty,
and Olaf (cf. Table2). If we look at the plots in Fig.2, we can see that Ted’s
perceived femininity and masculinity are located close to the central values of the
respective scales, hence we can assume that Ted was perceived by participants
as androgynous.

3.2 Facial Gender Cues

As a second step in the analysis, we wanted to understand which facial cues
guided participants in the assessment of the robot’s genderedness. When taking
all robots’ faces into account, the most influential cues seemed to be the shape
of the lips (53%) and of the eyebrows (49%). These were followed, in descending
order, by the shape of the eyes (37%), the eyebrows size (34%), the color of
the lips (31%), the size of the eyes and the nose shape (28%), the nose width
(22%), the eyelashes (20%), and the color of the cheeks (12%). When taking into
account the robot’s faces perceived as the most feminine, most masculine, and
neutral, instead, we observed slightly different patterns. Fedora’s genderedness
was mostly (>40%) based on the color of its lips (67%), the eyebrows shape
(563%), the lips shape (47%), and the eyelashes (40%). Geremy’s genderedness
was mostly based on the eyebrows size (67%), the eyebrows shape (60%), and
the nose width (40%), although several participants mentioned mustaches and
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beard in the field “other” (40%). Finally, Ted’s genderedness was mostly based
on the shape of its eyes (54%), eyebrows (46%), and lips (46%).

3.3 Perceived Communion and Agency of Gendered Robots

As a third step, we carried out a factorial analysis using the communion and
agency traits from [8]. All preconditions for running a factorial analysis were
satisfied as shown by a Keyser-Meyer Olkin measure of sampling adequacy of
860 and a significant Bartlett’s test of sphericity (X?(36) = 997.42, p < 001).
As predicted, the factorial analysis confirmed the existence of two factors. Com-
munion (Cronbach’s o = .777) included the items tender (.828), gentle (.790),
sympathetic (.674), and affectionate (.672), whereas agency (Cronbach’s o =
.893) encompassed the items having leadership abilities (.867), being able to act
as a leader (.857), having a strong personality (.780), being able to defend its
own beliefs (.767), and being able to make decisions easily (.758).

To understand whether the perceived gender of the robot influenced people’s
perception of communion and agency, we labelled each one of the 15 agents
as either feminine (N = 105), masculine (N = 105), or androgynous (N = 13)
based on the results in Sect. 3.1. Given the large difference in sample size between
the androgynous and the feminine and masculine conditions, we excluded the
androgynous condition from the analysis. We performed two ANCOVAs with

AT70
65
6,0
55
% 50
= 457
= T
= |40
E 357
L |30
257
2,07
15
1,07
T T L S — T T T ] T
s £ ¢ § & ¢ = 3 3§ E 35 3 B ® B
gz E 2 %8 E g 2 F S8
L5 I L3 I 1 I L3 I 1 ] -
1,07
1,5
2,0
w257
= | 3.0
(35
8 40
? |45
< |50
2|55
6,0
6,5
Y704

Fig. 2. Plots of the scores of femininity and masculinity per robot. The red line indi-
cates the central value of the Likert scale.



Gender Revealed: Evaluating the Genderedness of Furhat’s Predefined Faces 43

Table 2. Results of the post-hoc analyses exploring differences in perceived femininity
and masculinity across Furhat’s faces (Bonferroni corrected). The significant results are
highlighted in bold. All the results that are not reported in the table had a p = 1.00.

Ted | Fred | def.male Max | August | Marty Olaf | Geremy
Fedora |fem. | <.001 | <.001 <.001 | <.001| <.001 | <.001|<.001 | <.001
mas. .025 | <.001 <.001 | <.001| <.001 | <.001 | <.001| <.001
Arianne | fem. .001 | <.001 <.001 | <.001| <.001 | <.001|<.001 | <.001
mas. 715 .003 .001 .001| <.001|<.001|<.001 <.001
René fem. .001 | <.001 <.001 | <.001| <.001 | <.001|<.001 | <.001
mas. .097 | <.001 <.001 | <.001| <.001 | <.001 | <.001| <.001

Mei fem. .054 | <.001 <.001 | <.001| <.001|<.001|<.001| <.001
mas. 468 | .011 .003 | .002| <.001|<.001 | <.001 | <.001
def. fem. | fem. 111 | <.001 <.001 | <.001| <.001|<.001|<.001| <.001
mas. .098 | <.001 <.001 | <.001 | <.001 |<.001|<.001| <.001
Anne fem. .140 | .001 .001 | <.001 | <.001 | <.001 | <.001 | <.001
mas. 1.00 .258 128 .147 .001 | .001|<.001| <.001
Ursula | fem. 451 | .002 .002 | <.001 | <.001 | <.001 | <.001 | <.001
mas. .677| .003 .001 | .002| <.001|<.001 | <.001 | <.001
Ted fem. - 1.00 1.00 1.00 1.00 1.00 .195 .354
mas. - 1.00 1.00 1.00 .553 397 .147 .056

the perceived gender of the robot (feminine and masculine) and the gender of
participants (women and men) as between-subject factors, participants’ age,
robot’s perceived adult-likeness, and participants’ level of agreement with the
assertion “I believe robot’s should have a gender” as covariates, and the ratings
of perceived communion and agency as dependent variables.

The results did not show a significant main effect of participants’ gender
on their attribution of communion (F(1,201) = 1,719, p = .191, np* = .008)
and agency to the robot (F(1,201) = .024, p = .877, np®> < .001), nor a sig-
nificant main effect of the perceived gender of the robot on perceived com-
munion (F(1,201) = .077, p = .781, np? < .001). The interaction effect
of robot’s perceived gender and participant’s gender was also not significant
for both communion (F(1,201) = .650, p = .421, np? = .003) and agency
(F(1,201) = 1.847, p = .176, np*> = .009). Interestingly though, masculine
robots were attributed more agency (M = 3.78, SD = 1.48, F(1,201) = 7.966,
p = .005, np? = .038) than feminine ones (M = 3.33, SD = 1.25). When
analyzing the covariates, another interesting result showed up. While partic-
ipants’ age and robots’ adult-likeness were not significant covariates of com-
munion (age: F(1,201) = .703, p = .403, np®> = .003; robot’s adultlikeness:
F(1,201) = 1.391, p = .241, np* < .001) and agency (age: F(1,201) = .247,
p = .620, np?> = .001; robot’s adultlikeness: F(1,201) = .058, p = .810,
np? < .001), “I believe robots should have a gender” was a significant covariate
of agency (F(1,201) = 4.563, p = .034, np? = .022) and a marginally significant
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Table 3. Results of Pearson Product-Moment correlation between participants’ person-
ality traits and the robot’s perceived femininity, masculinity, communion, and agency.
In bold, the significant values.

Personality traits
Extraver. | Agreeable. | Conscient. | Em. Stability | Open to Exp.
Femininity | r(208) | —.058 —.049 .058 —.030 —.009
D 401 484 .402 .668 .901
Masculinity | r(208) 121 .072 —.051 —.005 .053
D .079 .298 .466 .938 .442
Communion | 7(208) .010 .050 —.001 .082 —.042
P .890 .469 .986 .238 .548
Agency r(208) 193 111 .064 —.004 .032
P .005 .109 .354 .958 .642

covariate of communion (F(1,201) = 2.950, p = .087, np? = .014). Further Pear-
son’s Product-moment correlations confirmed a significant positive correlation
between agency and the belief that robots should have a gender (r(208) = .137,
p = .048) and a marginally positive correlation between this latter and commu-
nion (r(208) = .115, p = .097).

As a last step in the analysis, we performed a Pearson Product-Moment Cor-
relation (two-tailed) between participants’ five personality traits and their per-
ceptions of the robot’s femininity, masculinity, communion and agency. Except
for extraversion, which was significantly positively correlated with perceived
agency, we did not find any other significant correlation (cf. Table 3).

4 Discussion

Most predefined Furhat’s faces were attributed the same gender predicted by
their names. However, our analyses revealed two additional findings: (i) vocal
cues are more powerful than facial cues in guiding the attribution of gender to a
robot, and (ii) under certain circumstances, humanoid robots such as Furhat can
be perceived as androgynous. In fact, in our study, the same identical face (i.e.,
default) was perceived as feminine when accompanied by a female voice, and
masculine when accompanied by a male voice, and the face named Ted received
intermediate scores on both masculinity and femininity.

Further analyses we performed gave preliminary insights into how gender is
attributed to a robot through its facial cues and how it might elicit stereotypes.
They showed that the shape of lips and eyebrows is key to attribute gender to a
robot’s face and disclosed that masculine robots are perceived as more agentic
than feminine ones even at a first impression. This is quite a novel result. Indeed,
while the effects of a robot’s genderedness on communion and agency had been
observed before [4,9], they had not been documented after such a short exposure.

While participants’ gender, age, and personality were unrelated to their per-
ceptions of the robots, participants’ belief that robots should be gendered was
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positively related to their ratings of the robot’s femininity and agency. This
result is particularly meaningful as it indicates that the belief that robots should
be gendered is connected with the tendency to stereotype. In this context, it
is also important to report that participants’ perception of the robots’ adult-
likeness was positively correlated with their attribution of masculinity to the
robot. Child-likeness, a bit like femininity, can be associated with vulnerability,
whereas adult-likeness, similar to masculinity, with strength. This result is thus
particularly revealing as it shows that, even if not immediately visible, gender
stereotyping might be strong enough to leak into other perceptual dimensions.

These results are extremely interesting, but should be interpreted with
caution. They refer to how appearance contributes to the formation of what
Sgraa calls socio-mechanical gender [23], and, therefore, they might be culture-
dependent. Moreover, they are based on robot’s faces that are mostly white, and
voices that are either female or male. In the future, we plan to replicate the
present study with faces differing in skin color and with genderless voices [1,5].

5 Conclusions

In this paper, we presented a study aimed at ranking the genderedness of Furhat’s
predefined faces, gaining a preliminary understanding of which facial cues elicit
the attribution of gender in a robot’s face, and disclose whether a robot’s gen-
deredness might bring people to attach stereotypes to it, even after a few seconds
of exposure. The results of this study can be used to design less gender-normative
robots, and promote a more inclusive and diverse HRI [20].
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Abstract. Research highlighted that Western and Eastern cultures differ in socio-
cognitive mechanisms, such as social inclusion. Interestingly, social inclusion is
a phenomenon that might transfer from human-human to human-robot relation-
ships. Although the literature has shown that individual attitudes towards robots
are shaped by cultural background, little research has investigated the role of
cultural differences in the social inclusion of robots. In the present experiment,
we investigated how cultural differences, in terms of nationality and individual
cultural stance, influence social inclusion of the humanoid robot iCub, in a modi-
fied version of the Cyberball game, a classical experimental paradigm measuring
social ostracism and exclusion mechanisms. Moreover, we investigated whether
the individual tendency to attribute intentionality towards robots modulates the
degree of inclusion of the iCub robot during the Cyberball game. Results sug-
gested that the individuals’ stance towards collectivism and tendency to attribute
a mind to robots both predicted the level of social inclusion of the iCub robot in
our version of the Cyberball game.

Keywords: Human-Robot interaction - Cyberball - Collectivism - Mind
attribution

1 Introduction

Recent literature showed that culture leads to cognitive and perceptual differences. For
instance, individuals belonging to the Western culture are more analytical and oriented
towards independence, while those belonging to East European cultures are more holis-
tic and prone to interdependency [1]. Notably, these differences can also affect the
phenomenon of social inclusion, which can substantially vary depending on the context
[2]. For instance, affiliation is crucial in collectivistic cultures, where individuals strive
for harmony and avoidance of conflicts. Thus, they tend to focus more on positive aspects
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of social interactions [3]. In contrast, the core of individualistic cultures is self-reliance,
leading people to benefit less from the experience of being included by others, relative to
people from collectivistic cultures [4]. In this context, little is known about the potential
role of culture in social inclusion of robots. Recent studies in Human-Robot Interaction
(HRI) demonstrated that individuals’ behaviors towards robots might vary across dif-
ferent cultures [5]. For instance, when comparing people from Eastern (China, Japan)
and Western countries (Germany), participants expressed different degrees of likeability,
satisfaction, trust, and engagement towards robots [6]. Interestingly, the cultural back-
ground also affects the distance kept with robots during social interactions [7]; even
facial expression recognition has been demonstrated to be culturally dependent [8]. In
this context, individualism-collectivism is one of the main dimensions of culture, used
as a means to explain how people represent themselves in relation to others [9]. Recent
findings in HRI have shown that belonging to an individualistic rather than a collectivis-
tic culture can influence individuals’ attitudes towards robots during an interaction. For
example, people from collectivistic societies prefer an implicit communication style in
the robot, whereas people from individualistic societies prefer an explicit and straight-
forward, communication style [10]. Interestingly, the cultural background resulted to be
particularly relevant also for anthropomorphizing, and mind attribution towards robots
[11-13]. For example, recent findings pointed out that people tend to “deny” mind attri-
bution to robots that are categorized as members of the out-group, based on certain
features such as skin color [11] or facial morphology [12]. Nevertheless, to the best of
our knowledge, no previous studies investigated whether cultural differences modulate
people’s tendency towards social inclusion of robots, as a function of mind perception
and attribution of intentionality.

1.1 Aim

The present study had two aims. First, we were interested in evaluating whether cultural
differences modulated individuals’ tendency to socially include robots as members of
their own in-group. To this purpose, we tested two samples of UK and Chinese partici-
pants, who were chosen as representative of an individualistic, Western culture and of a
collectivistic, East Asian culture, respectively [13].

Notably, individual cultural values (cultural stance) might not be in line with the
cultural orientation at the national level. Therefore, we administered the Cultural Values
Scale (CVS), a 26-items dimensional scale that measures cultural stance at the individual
level [14], with a particular focus on the Collectivism subscale. This subscale evaluates
to what extent a person displays a collectivistic orientation, defined as being sensitive
to in-group influences, loyal to in-group norms, and prone to harmony [14]. In order to
measure participants’ individual tendency towards social inclusion of robots, we devel-
oped a modified version of the Cyberball game [15, 16], a well-established paradigm to
investigate social ostracism and social exclusion [17]. In our version, participants were
instructed to play a ball-tossing game with two other players, represented by avatars of
another human and the humanoid robot iCub [18]. During the game, participants were
asked to choose which player they wanted to throw the ball to, being as fast as possible.
Notably, both the human player and iCub were programmed to alternate between the
participant and the other player, with equal probability of throwing the ball to either of
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them. Given these premises, we hypothesized that cultural differences, both at a national
and individual level, would predict the willingness to pass the ball to the robot (that is
to include the robot as an in-group member). More specifically, we hypothesized that
collectivist culture (at the national and/or individual level) would mean more social
inclusion of the robot.

Our second aim was to investigate whether attribution of intentionality towards robots
modulates the cultural differences in tendency to socially include the robot in the Cyber-
ball game. To this purpose, we decided to administer the Waytz questionnaire [19], a
7-items subscale of the Anthropomorphism questionnaire adapted from [20], which mea-
sures to what extent people ascribe to robots characteristics that are inherently human,
such as intentions, desires, and free will. In other words, the more people would attribute
intentionality to robots, the more they would ascribe human-like characteristics to them,
thereby considering robots closer to human beings. According to this reasoning, cultural
differences would be predictive of the willingness to perceive the robot as a social part-
ner, as a function of attribution of intentionality. Thus, we hypothesized that participants
with collectivistic cultural stance would be more likely to ascribe intentionality to robots,
and also to pass the ball more often to the robot.

2 Materials and Methods

2.1 Sample

120 participants were recruited to take part in the study. Data were collected through
the online platform Prolific (https://www.prolific.co/). As inclusion criteria, we selected
the following: age range (18-45 years old), fluent English to ensure that participants
understood the instructions of the experiment, handedness (right-handed), and national-
ity. Specifically, half of participants were English (M ;ge = 25.5; SD 44 = 5, males =
15, Other = 2), whereas the other half were Chinese (M age = 26.3; SD 45e = 4.5, males
= 22). Additionally, information about participants’ educational levels was collected
(see Table 1). The study was approved by the local Ethical Committee (Comitato Etico
Regione Liguria) and was conducted in accordance with the Code of Ethics of the World
Medical Association (Declaration of Helsinki, 2013). All participants gave informed
consent by ticking an appropriate box in the online form and were naive to the purpose
of the experiment. They all received an honorarium of 4.40 £ for their participation.

Table 1. Educational levels declared by participants before starting the experiment.

Educational levels

Sample Bachelor Master Ph.D NA
English 20 (33.7%) 9 (15.2%) 3 (5%) 27 (45.8%)
Chinese 17 (28.8%) 28 (47.5%) 7 (11.9%) 8 (13.6%)
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2.2 Procedure

As pre-task questionnaires, participants were asked to fill out the Waytz questionnaire,
[19], and the Cultural Values Scale (CVS) [14]. Afterward, participants were given
instructions to perform the Cyberball game [15-17] (see Fig. 1). Before starting the game,
a short presentation of the two players was given to participants, who were introduced to
both the human confederate (‘“This is Davide”) and the iCub robot (“This is iCub”). The
human confederate was depicted as a Caucasian young male, in a neutral background as
well as the iCub robot. We did not manipulate its gender, ethnicity, or race, as previous
findings [21] showed that the presence of humans does not affect individuals’ tendency
to attribute human traits to robots. However, further studies should deeply investigate
whether these aspects have an impact on the probability of robot choice, which was
beyond the scope of this paper.

Each trial started with the presentation of both the human player and iCub, on the
left and the right side of the screen, respectively. The name of the participant (“You™)
was displayed at the bottom. The act of tossing the ball was simulated by presenting a
one-second animation of a ball. When participants received the ball, they were invited
to wait until their identification (i.e. “You”) turned from black into red before passing
the ball. Then, they had 500 ms to decide which player to pass the ball to. Specifically,
to choose the player on their left side (Human) they had to press the “D” key, whereas
the “K” key was to choose the player on the right side of the screen (Robot). To make
sure that participants’ responses were not biased by the different locations of the keys,
before the experiment we asked participants to use a standard QWERTY keyboard to
perform the task. If participants took more than 500 ms to give their response, a red
“time-out” statement was displayed in the middle of the screen and the trial was rejected
as invalid. The task comprised 100 trials in which participants received the ball (plus
trials to replace timeouts).

|ew)

ol

You

Fig. 1. Schematic representation of the Cyberball game.

At the end of the Cyberball game, participants filled out a modified version of the
Overlap of Self, Ingroup, and Outgroup (OSIO) scale [22], comprising four items that
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visually represent the closeness between the two players of the Cyberball (i.e., the human
player and the iCub robot, see Fig. 2). From top to bottom, the picture of the two players
tended to get closer. Participants were asked to choose the picture that, according to
them, most precisely represented the current closeness between the human player and
iCub. For all four items, we assigned a value of 1 to the first and a value of 4 to the last
picture. Thus, higher score indicated more closeness between the two players.

All questionnaires and the Cyberball game (stimuli presentation, response timing),
and data collection were programmed by using Psychopy v.2020.1.3 [23].

;i‘*& i (A)
;iu@, ‘i (B)
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Fig. 2. Schematic representation of the modified version of the OSIO scale.

3 Results

3.1 Cyberball: Data Pre-Processing

All data were pre-processed with R v.4.0.2 [24], and JASP v.0.14.1 (2020). Data of
one participant from the English sample were not saved, and therefore they were not
included in the analyses. Data of participants with less than 70% of valid trials (valid
trials meant pressing either “D” or “K” within 500 ms after the signal to throw the
ball, that is after the “You” word became red) were discarded from all pre-processing
procedures and subsequent analyses, resulting in a final sample of N = 115 (UK, N
= 57; Chinese N = 58). Moreover, data were cleaned based on participants’ reaction
times (RTs): RTs that were faster than 100 ms were discarded as they were considered
anticipatory responses (43.19% of the trials). Finally, we checked for outliers, excluding
trials that were = 2 SD from each participants’ mean RTs [25] (5.52% of the trials
were excluded). For each presented effect, we will report between square brackets the
following statistics: unstandardized coefficient of regression (b), standard error (SE), z-
statistics (or t-statistics where appropriate), p-value, and 95% confidence interval (95%
C.1) (or R? where appropriate).
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3.2 The Effect of Cultural Differences on Social Inclusion of the Robot

To test whether cultural differences modulate individuals’ tendency to socially include
robots as in-group members, frequency of robot choice was analyzed with a logistic
regression model, with nationality (Chinese/English) as a fixed factor and score calcu-
lated by the Collectivism subscale of the CVS questionnaire [14] as a covariate. Results
showed a main effect of Collectivism [b =0.15, SE =0.03,z=4.12,p= < 0.001, CI
= (0.08; 0.22)], but no interaction with nationality was observed. Specifically, the more
people displayed a collectivistic orientation, the more frequently they tended to pass the
ball to the robot (see Fig. 3).
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Fig. 3. Logistic regression model showing the relationship between the probability of choosing
the robot and the Collectivism score.

3.3 The effect of Intentionality Attribution on Social Inclusion of the Robot

To test whether participants’ nationality predicts social inclusion of robot as a function
of intentionality attribution, frequency of robot choice was analyzed with a logistic
regression model, with nationality (Chinese/English) as a fixed factor and Waytz score
as a covariate. Results showed a significant two-way interaction between nationality and
Waytz score [b = 0.1, SE = 1.1, z = 1.99, p = 0.04, CI = (0.001; 0.192)]. To further
investigate this interaction, we performed two logistic regression models, separately for
each nationality (Chinese/English). For Chinese participants, results showed that the
more they tended to attribute intentionality to robots, the less frequently they passed
the ball to the robot [b = -0.09, SE = 0.04, z = -2.49, p = 0.01, CI = (-0.16; -0.02)].
Notably, English participants did not show this pattern [b = 0.006, SE = 0.03,z =0
.14, p = 0.88, CI = (-0.05; 0.07)] (see Fig. 4).
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Fig. 4. Logistic regression model, showing the relationship between the probability of choosing
the robot and the Waytz score, separately according to nationality (Panel A: Chinese participants;
Panel B: English participants).

3.4 OSIO results

To check for participants’ perceived level of closeness as a function of nationality, we
performed a linear regression considering the OSIO scale as the dependent variable
and nationality as the independent variable. The main effect of nationality emerged as
significant [b = 0.46, SE = 0.11, t = 3.86, p = 0.0001, R? = 0.06, CI = (0.1; 0.77)],
showing that Chinese participants scored lower at the OSIO scale compared to the UK
participants, thus reporting a lower level of perceived closeness between the human and
the robot agent.

4 Discussion

The present experiment aimed at investigating whether cultural differences, operational-
ized as nationality of participants (Chinese/English) would predict the social inclusion
of the robot as a function of (i) individual collectivistic stance and (ii) attribution of
intentionality towards robots. The tendency to consider the robot as a social in-group
partner was operationalized as the probability of including the humanoid iCub robot in
a ball-tossing game, namely the Cyberball [15—17]. With respect to the first aim, results
showed that the more participants displayed a collectivistic stance, the more they tended
to pass the ball to the robot, regardless of their nationality (Chinese/English). As a con-
sequence, what seems to matter for social inclusion of robots is not national identity
but individuals’ cultural stance. With respect to the second aim (ii), results showed that,
for Chinese participants, the more they tended to attribute intentionality to robots, the
less they chose to pass the ball to iCub in the Cyberball game. This was not the case
for the UK participants, among whom the individual tendency to attribute intentionality
towards robots did not relate to the likelihood of socially including iCub.

This intriguing pattern can perhaps be explained as follows: in collectivist cultures
the more an individual is perceived as autonomous, and having a “mind of one’s own”
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(phrases used in the Waytz questionnaire), the less the individual is perceived as an in-
group member. “Autonomy’ or “mind of one’s own” might be perceived as being against
the collectivist values. On the other hand, in individualistic cultures, being autonomous or
“having a mind of one’s own” might be still more compatible with in-group membership,
and hence no negative relationship between Waytz score and social inclusion has been
found for the UK participants. However, results from OSIO scale seem to be in contrast
with our hypothesis, as they showed that Chinese participants perceived less “closeness”
to the robotic agent. Therefore, this speculative interpretation of the patterns of results
needs to be further examined in future research.

At present, our preliminary findings could potentially contribute to design robots that
can take into account people’s cultural stance, at both individual and social levels. For
example, the degree of “autonomy” and “intentionality” displayed by the robot should
be tailored to individuals’ cultural background, as it could bias the perception of the
robot as a social partner.

5 Conclusions

Taken together, our results suggest that social inclusion of robots is influenced by the
individual collectivistic stance. Moreover, attribution of intentionality towards robots
impacts the social exclusion of the robotic agent, but only among members of a collec-
tivist culture. Future research should investigate (and replicate) whether these findings
generalize to other nationalities and cultures and also to ecological settings with an
embodied humanoid robot.
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Abstract. When manipulating objects, humans finely adapt their
motions to the characteristics of what they are handling. Thus, an atten-
tive observer can foresee hidden properties of the manipulated object,
such as its weight, temperature, and even whether it requires special care
in the manipulation. This study is a step towards endowing a humanoid
robot with this last capability. Specifically, we study how a robot can
infer online, from vision alone, whether or not the human partner is
careful when moving an object. We demonstrated that a humanoid robot
could perform this inference with high accuracy (up to 81.3%) even with
a low-resolution camera. Only for short movements without obstacles,
carefulness recognition did not perform well. The prompt recognition
of movement carefulness from observing the partner’s action will allow
robots to adapt their actions on the object to show the same degree of
care as their human partners.

Keywords: Human-robot interaction + Human motion
understanding - Natural communication - Deep learning

1 Introduction

In everyday life, we promptly adapt our movements to the different properties of
the objects we interact with, e.g. weight, size, shape, or temperature. By observ-
ing others manipulating objects, we can easily infer their properties. Thanks
to the product of motor resonance, observing an action triggers the same set
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of neurons of the movement execution, providing a common ground for under-
standing others [16]. Action understanding enables humans to adapt to their
partners during the interaction, and it correlates with the ability to interpret
and send implicit signals for cooperation. A robot should learn how to interpret
such implicit signals to achieve seamless collaboration with humans [3].

Many studies have been conducted to estimate the physical properties of
handled objects, particularly for tasks where humans and robots are expected
to collaborate and interact physically, e.g., handovers. It has been discussed how
the kinematics of the movements correlate with object weight [1,9], and that it
is possible to estimate the object weight by observing another person [19] or a
humanoid robot [18] lifting it.

In this study, we focus on another property which significantly influences
human movements, namely the carefulness. We define it as the caution and
attention that humans exercise when handling an object. This qualitative prop-
erty is influenced both by the object’s physical characteristics, e.g., the object
fragility, and by other factors such as emotional attachment or economic value.
Let us imagine a robot which is asked to receive a glass of water from a human: it
should recognize the human carefulness to manipulate the glass without spilling
water. The carefulness has been explored in studies of human-human handovers
to teach robots how to correctly transfer objects [4,17], monitoring human move-
ments with motion capture sensors. In a previous study, we demonstrated that
it is possible to train a classifier to distinguish between careful and non careful
human motions using only data from a low-resolution camera [10]. However, our
carefulness recognition method was tested offline on precisely segmented data,
with a single experimental scenario. To overcome these limitations, we propose:
(i) an online implementation of our method for carefulness recognition, (ii) a
study to demonstrate its online performance, and (iii) a study to evaluate the
generalization of the method in new scenarios. Although we are aware that care-
fulness only partially accounts for all the possible properties of an object, we
believe that this work is an important step towards a global approach for robots
to interpret human movements relying solely on vision.

2 Methods

The objective of this paper is to prove that a robot, in particular the humanoid
iCub, can use our previously published approach to distinguish online and in dif-
ferent scenarios whether a human is performing a Careful (C) transport motion
or a Not Careful (NC) motion.

2.1 Software Architecture

To achieve the presented goal we developed, using the YARP middleware [12],
the software architecture shown in Fig. 1.

As first step, the robot camera captures images from the scene with a res-
olution of 320 x 240 pixels and 22 Hz frame rate. Then, the following module
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Fig. 1. The system’s architecture structure gathers images from the robot camera and
extracts features from the computed optical flow to discriminate between careful (C)
and non careful (NC) motions

computes the optical flow (OF) using a dense approach [5], and applies a thresh-
old on the OF magnitude to consider only the parts of the image where the
change is significant. This choice introduces the strong assumption that, in the
robot’s field of view, relevant motions are the ones that generate the largest OF.
However, choosing the OF to characterize the human motion, grants the system
robustness to small changes in the point of view. The OF is a suitable tool for
human motion description, for common daily activities such as cooking [7,15],
but also for understanding the meaning of hand gestures [2,11].

The components of the motion velocity (horizontal u and vertical v) are
extracted from the OF, as described by Vignolo et al.. [20], and used to compute
the norm of the tangential velocity, as in Eq.1. The architecture extracts this
feature with a frequency 15 Hz.

V(1) = \Ju(t)? +o(t)? + A2 (1)

The segmentation module implements an heuristic threshold mechanism to
consider only significant data: it detects the start of a motion when the velocity
V (t) overcomes a threshold 7 and the end when the velocity becomes lower than
7. Once the end of the movement is detected, the segmentation module has two
alternatives. If the temporal length is below 1 second, the motion is discarded.
Otherwise, the temporal sequence of size 1 x K is fed to the classifier. The mini-
mum duration was set to 1 second since in the training set NC movements, which
were the shortest, had a median duration of 1.2 s and the minimum duration was
1.1s.

2.2 Model Training and Dataset Description

The classifier model is inspired by our previous work where a Long-Short Term
Memory (LSTM) neural network showed promising results for the classification
of temporal sequences of tangential velocity between careful and non careful
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motions [10]. In this study, we adopted a neural network with one hidden layer
followed by an output layer. The hidden layer is a 32-neuron bidirectional LSTM,
while the output layer has two neurons and a sigmoidal activation function. The
training has been performed using the ADAM optimization algorithm, binary
cross-entropy loss function, exponential decay of the learning rate, and a batch
size of 30. An early stopping condition on the validation loss, i.e., patience set
to 5, has been introduced to prevent over-fitting. A zero-padding and masking
technique has been adopted for the training to handle sequences with different
temporal lengths.

The dataset, used to train and preliminarily test the model, had been col-
lected asking 14 volunteers to displace four glasses in front of iCub. The glasses
differed in weight, light (167 g) or heavy (667 g), and content, since two of them
were filled with water till the brim, to induce careful motions. Even though we
consider the carefulness in the gesture as the feature to be detected, the 500 g
weight difference was introduced to increase the dataset variance (for more detail
about the data collection process, refer to Lastrico et al.., 2020 [10]). The dataset
contains 878 segmented sequences, 438 for each class (C and NC). Preserving the
class balance, we used 72% of the data for the training, 8% for the validation,
and 20% for the test. The trained model got an accuracy of 95.14% on the test
set, in line with the results of our previous work (90.5%) [10]. Furthermore, fol-
lowing a statistical analysis on the available data, we determined the threshold
value 7 for the segmentation module as 5.25 pizels/s.

2.3 System Evaluation

Given the system presented in Sect.2.1 for the discrimination of careful and
non careful motions, we performed new experiments to test its performance. In
particular, the objectives to assess are:

O1 The possibility for the system to work online, providing the C/NC label
when a human completes a transportation motion.

02 The ability of the system to generalize over unknown human subjects.

O3 The possibility for the system to generalize over new kinds of transportation
motions.

Eleven healthy subjects, members of our organizations, voluntarily agreed to
participate in the data collection (7 females, 4 males, age: 28.0 & 2.4); none of
them is author of this research. All participants used their dominant hand in
the experiment and only one was left-handed. We divided the volunteers into
two groups G1 (4 females, 1 male, age 27.8 & 3.6, one left-handed) and G2 (3
females, 3 males, age 28.2 +1.3). We purposely chose different participants from
those included in our training set to grant a wider variability in the new data
collection and assess O2.

The experiment consists of a series of structured transportation movements of
four glasses performed by the participants while sitting at a table in front of iCub.
In all the experiments iCub is passive and simply observes the scene. We use four
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glasses identical to those in the training set, representative of two classes, namely
C and NC, according to the presence or absence of water inside. Throughout the
experiment, a synthetic voice instructs the participant on which object to grasp
and where to place it. Placing positions in the scenario are identified with letters
(see Fig.2). To receive instruction on the next transportation, the participant
presses a key on a keyboard with their non-dominant hand. In between each
transport motion, the volunteer rests the hands on the table. To investigate
the system’s ability to generalize over new transportation trajectories (O3), we
have designed three experimental scenarios, namely: Shelves, Simple Table and
Advanced Table.

Shelves. The first scenario replicates the one used to collect the training set.
This scenario allows for testing the online performance of the classifier (O1)
and the generalization of the system over new subjects (O2). The objects are
transported back and forth from a fixed position on the table, delimited by a
scale, to two shelves located on the right and left hand side of the table (see
Fig. 2a). Eight positions where the objects can be grasped or placed are defined
on the two shelves. Both G1 and G2 completed the experiment in this scenario,
and each participant performed 32 transport movements (16 careful and 16 non
careful).

Simple Table. This scenario is aimed at assessing the system’s capability to
generalize on a new set of movements (O3) and has been performed only by the
5 volunteers in G1 group. The glasses are moved from the scale in front of the
participant to four positions on the table, delimited by a container, or vice-versa
(seen Fig.2b). Each volunteer performed 32 transport movements (16 for each
class).

Advanced Table. This setup tests the system’s capability to generalize over
more ample and complex transport movements (O3). In this scenario, the glasses
are moved between positions defined on the table, i.e., the scale is removed. In
this way, the transportation motion is no more towards and away from the
volunteer. Three containers are placed on the table, with two possible posi-
tions each, and columns are mounted on their frontal corners (see Fig.2c). The
columns obstacle the transportation, making the experiment more challenging.
This more complex setup was designed after a preliminary analysis of the clas-
sification results with the Simple Table task, therefore only volunteers from G2
experimented with this scenario, and each of them performed 16 transport move-
ments (8 for each class).

3 Results

Throughout all the experiments described, the recognition architecture described
in Sect. 2.1 was running, recognizing careful and non careful motions. We analyze
these results for each scenario, focusing on the system accuracy and the recog-
nition time (i.e., the time between the motion end and the system recognition).
Furthermore, we performed a statistical analysis of the velocities extracted from
the OF to highlight possible differences between the three scenarios.
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(c) Advanced Table

Fig. 2. Setups of the different scenarios explored for the system evaluation. The Shelves
scenario replicates the training condition (2a). Simple Table (2b) and Advanced Table
(2¢) scenarios are introduced to evaluate the generalization performance.
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3.1 Shelves

Table 1. Shelves. Confusion matrix for the transportation movements performed by
the 11 volunteers. The dark grey cell shows the overall accuracy

Target class

2 NC C Precision

E«j NC 163 - 46.3% 109 -31.0% | 59.9% - 40.1%
F;L C 13-3.7% 67 -19.0% 83.8% -16.2%
© | Recall 92.6%-7.4% | 38.1%-61.9% |653% -34.7%
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Fig. 3. Shelves. Box plots of the Movement Duration (3a) and the Acceleration Dura-
tion over the Movement Duration of the velocity profiles (3b) for careful (C) and non
careful (NC) transport motions. The red lines represent the medians, the blue rectan-
gles limit the 25'® and 75" percentiles, and * indicates a significant difference according
to the Wilcoxon test.

We report in Table 1 the confusion matrix related exclusively to the glasses
transportation movements performed by the 11 participants, with a F1-Score of
72.9%. In this scenario, the classifier has been invoked correctly for all the 352
transport movements (32 movements of 11 volunteers) with a median recognition
time below 150 ms (136.6 £+ 18.8 ms - median and median absolute deviation).
However, because of the system design, the classifier was called not only when a
transport movement happened, but every time a velocity above threshold per-
sisted at least for more than one second. Indeed, 300 more movements were
detected and classified as NC 89.3% of the times. These movements are those
that the volunteer performs to reach the glass and to go back to the resting
position. Since these movements are not transportations, it is reasonable that
the majority of them are classified as NC; however, they were not included in
the confusion matrix results.
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Fig. 4. Simple Table. Box plots of the Movement Duration (4a) and the Acceleration
Duration over the Movement Duration of the velocity profiles (4b) for careful (C) and
non careful (NC) transport motions. The graphical conventions are the same as in
Fig. 3.

Finally, we characterized the velocity profiles using two metrics, i.e., the
transport movement duration (MD, proposed as significant to investigate the
carefulness by [4]), and the asymmetry of the velocity peak (AD/MD, see Eq. 2).
This last metric is expressed as the acceleration duration (AD) over the move-
ment duration (MD), and it is widely used to characterize arm movements [8,13].

indexymaz

AD/MD = =20 2)

Since the populations were not normally distributed, in order to test if these
two metrics showed any significant differences between C and NC motions, we
used a Wilcoxon Signed Rank test. Considering all the 11 participants who
performed the Shelves Task, we report for the MD a p — value: < .01, while for
the AD/MD a p — values: < .05. In Fig. 3 are shown the corresponding ranges
of movement duration and velocity asymmetry.

3.2 Simple Table

This scenario entailed movements that differed from those included in the train-
ing set, and only G1 experienced it. The online classifier did not achieve a good
performance. We report an F1-Score of 66.09% with 96.25% recall and 50.33%
precision values. The system tended to classify as not careful most movements,
correctly identifying only 2.5% of the careful trials. However, the classifier was
rightfully called at the end of every one of the 160 transport movements, with
a median recognition time of 137.8 4+ 21.4 ms. Regarding the motions detected
beyond the transport ones, the classifier was called 77 times, giving an NC label
in 96.1% of the cases.

Interestingly, analyzing the MD and AD/MD metrics (see Fig. 4), which we
use as distance measures between the careful and not careful movements, the
Wilcoxon Rank Signed test reported p-values > .2 for both. Thus, according to
the chosen metrics, no significant difference in the velocity profiles was detected
between the C and NC groups in this scenario. These results suggest that for
short transportations (about 40 ¢m) with no obstacles, the kinematics properties
do not change significantly between careful and non careful motions.
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3.3 Advanced Table

This scenario was designed to further test the generalization capability of the
model. Glasses handling has been made more difficult by introducing obstacles
and forcing longer paths between the grasping and release positions. In Table 2
is shown the confusion matrix for the transportation movements in this sce-
nario, where our system reaches an F1-Score of 82.4%. The classifier output was
available for every one of the 96 glass manipulations with a recognition time of
145.3+£16.3 ms (median and median absolute deviation). Regarding the 143 other
movements that the classifier evaluated, the given label was NC for 97.9% of
them. Finally, concerning the parametric measures (shown in Fig. 5), both differ-
ences between C and NC were statistically significant (M D: p < .01, AD/M D:
p < .05).

Table 2. Advanced Table. Confusion matrix for the classification of transport move-
ments performed by G2 in the generalization task. The dark grey cell shows the overall
accuracy

Target class

2 NC C Precision
<
E NC 163 - 46.3% 109 - 31.0% 59.9% - 40.1%
=
FS’- C 13-3.7% 67 -19.0% 83.8% -16.2%
© Recall 92.6% - 7.4% 38.1%-61.9% | 65.3% - 34.7%
6 — 0.8
* *
3 E — 0.6
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Fig. 5. Advanced Table. Box plots of the movement duration (5a) and asymmetry of
the velocity profiles (5b) for careful (C) and non careful (NC) transport motions. The
graphical conventions are the same as in Fig. 3.

4 Discussion

With this work, we claim that a robot can recognize online motion carefulness
with a low-resolution camera. To this extent, the usage of optical flow as motion
descriptor is quite suitable since it gives a global evaluation of the whole move-
ment and should be robust to small and quick occlusions as the ones posed by
the shelves (see Fig. 1). However, when the motions are slow, as it happens with
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the glasses full of water, the image obstructions might be prolonged and have a
greater impact. The proposed architecture generated a classifier output for every
glass transportation, i.e., no transport movements went undetected. The model
output was readily available at the end of the transportation, with a median
recognition time of 135.9 £ 17.9ms considering all the tasks.

The system detected other movements beyond the transport ones. These motions
were related to the reaching and departing requested to grasp the glass or return
to the resting position. Since, in these instances, no object was being carried, it
is reasonable that the classifier returned a not careful label in the 92.7% of the
occurrences. This result implies that when the system returns the careful label,
this label has high confidence.

In the Shelves scenario, which replicates the training conditions, the perfor-
mance of the overall online classifier are lower than those obtained with offline
testing (which gave 90.5% [10]). However, given the novel testing conditions,
i.e., different light and perspective, and the fact that the motion velocities were
segmented online, these results can suggest that our system is capable of work-
ing online (O1) while generalizing over new subjects (02). At the same time,
in the Simple Table scenario, our architecture did not obtain a good classifica-
tion performance. We ascribe this to the setup design. Indeed, comparing it to
the Shelves and Advanced Table scenarios (see Fig.2 for reference), the Sim-
ple Table scenario requires shorter movement without any obstacles. This result
can lead us to hypothesize that the carefulness effect can be stressed by the
boundary conditions of the external environment. Therefore, in a more complex
scenario, it is easier to detect the presence of carefulness. This hypothesis is sup-
ported by the analysis of the distance metrics of the velocity profiles, presented
in Fig.3.2. Indeed, in the Simple Table scenario, no significant difference was
found in movements duration (MD) or in the asymmetry of the velocity peaks
(AD/MD). These results leave us with two possible answers: (i) in the Simple
Table scenario, volunteers did not act with particular care when transporting
the glasses full of water, or (ii) the tangential velocity is not sufficient in this
case to discriminate between careful and non careful motions, and additional
data are required, e.g., the actor’s gaze pattern.

Finally, our system obtained the best results when monitoring a completely
novel scenario (see Table2). As we hypothesized previously, this result is linked
to the additional care that the volunteer needs to transport the glass of water
in a more complex setup. To further corroborate this hypothesis, we observe
the striking difference for the MD and AD/MD metrics (see Fig.5) between the
two classes. Nevertheless, these results support the capability of our system to
work online (O1) and to generalize over new subjects (O2). Furthermore, we
showed that the system can generalize over new scenarios if the transportation
carefulness is evident (O3).

5 Conclusions

With the proposed approach, a robot can identify online whether the object
is handled with care or not, simply observing the human movements. A robot
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may exploit this capability to select its subsequent manipulations to match the
observed carefulness, with no need for a priori knowledge of the object or visual
detection of its physical properties. Since the robot ability to detect the care-
fulness is completely detached from the external appearance of the objects, it
would be possible to generalize over previously unseen objects. To infer the
objects fragility we relied on the information naturally embedded in the human
kinematics during the manipulation, extracted from vision alone; therefore this
approach is meant to be applied when the robot collaborates with a human
partner, for instance in handover tasks, where the human movements can be
observed.

The possibility for the robot to adapt online can be used to modulate the
robot’s movements to be coherent with the properties of the object involved,
mimicking natural human behaviour and conveying the same information about
the object features, being therefore more transparent and readable for the part-
ner. This would greatly facilitate natural implicit communication between human
and robots, and we are currently exploring the dual problem of generating com-
municative robot action, as proposed in [6].

It is worth noting that we tested our system with non-interactive actions (i.e.,
participants perform the task alone, with the robot acting as an observer). An
interactive context might facilitate carefulness recognition, inducing participants
to convey, more explicitly, this information as it happens in human signaling
[3,14]. For this reason, future works should include interactive scenarios together
with a more in-depth validation.
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Abstract. In Iranian Sign Language (ISL), alongside the movement of fin-
gers/arms, the dynamic movement of lips is also essential to perform/recognize a
sign completely and correctly. In a follow up of our previous studies in empow-
ering the RASA social robot to interact with individuals with hearing problems
via sign language, we have proposed two automated lip-reading systems based
on DNN architectures, a CNN-LSTM and a 3D-CNN, on the robotic system to
recognize OuluVS2 database words. In the first network, CNN was used to extract
static features, and LSTM was used to model temporal dynamics. In the second
one, a 3D-CNN network was used to extract appropriate visual and temporal fea-
tures from the videos. The accuracy rate of §9.44% and 86.39% were obtained
for the presented CNN-LSTM and 3D-CNN networks, respectively; which were
fairly promising for our automated lip-reading robotic system. Although the pro-
posed non-complex networks did not provide the highest accuracy for this database
(based on the literature), 1) they were able to provide better results than some of the
more complex and even pre-trained networks in the literature, 2) they are trained
very fast, and 3) they are quite appropriate and acceptable for the robotic system
during Human-Robot Interactions (HRI) via sign language.

Keywords: Lip-Reading - Deep learning - Social robot - Convolutional Neural
Network (CNN) - Long Short-Term Memory (LSTM)

1 Introduction

Speech is the most widely used method of communication between humans and is con-
sidered a multisensory process. This process involves both audio and video information.
McGurk and Macdonald [1] showed that visual information has an important effect on
speech recognition. They showed that when inconsistent visual and audio information is
presented to people, they perceive a different sound from what the speaker is saying. For
example, when the sound /ba/ is pronounced but lip movements show /ga/, most people
understand the /da/ sound. Although audio signals are generally much more useful than
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visual signals, it has been shown that most people use lip-reading to understand speech.
Lip-reading is a skill for understanding speech through visual cues such as lip movement,
tongue, and facial expressions. This skill is used subconsciously and to varying degrees
depending on aspects such as hearing ability or sound conditions [2, 3]. In addition,
people with hearing impairments can understand human speech by processing visual
information from a person’s lips and face [4].

With the rapid development of artificial intelligence technology and the continu-
ous improvement of computer performance, Human-Computer Interaction (HCI) has
become a hot topic. As a significant HCI method, automated lip-reading plays an impor-
tant role in understanding human speech. Automated lip-reading can be widely used in
the fields of computer vision [5], information security [6], driver assistance systems [7],
and deaf education [8—10].

Automated lip-reading systems generally consist of four main parts: face recogni-
tion, lips localization, feature extraction, and classification. Apart from the first two parts,
researchers have proposed different methods for extracting visual features and variety of
classifiers. In terms of feature extraction and classification, automated lip reading sys-
tems can be classified into two general groups: traditional systems and systems based on
Deep Neural Networks (DNN). In traditional systems, feature extraction methods can
be divided into two categories: pixel-based methods and model-based methods [11, 12].
Most primary feature extraction approaches use pixel values extracted from the target
area, such as Multiscale Spatial Analysis (MSA) or Local Binary Pattern (LBP) as visual
information. Then, several compression algorithms are used to reduce the dimensions
such as Principal Component Analysis (PCA) or Discrete Cosine Transform (DCT)
[11, 12]. Pixel-based methods are sensitive to changes in brightness, dimensionality,
and rotation. Therefore, model-based methods such as Active Shape Model (ASM) or
Active Appearance Model (AAM) are proposed to achieve a set of high-level geomet-
ric features with lower dimensions and greater stability [11]. In the second step, the
extracted features are given to a classifier such as a Support Vector Machine (SVM)
or a Hidden Markov Model (HMM). For example, Matthews et al. [11] proposed two
top-down approaches that fit a model of inner and outer lip lines and derive features
from the ASM or the AAM. It is also a bottom-up method that uses MSA to extract
features directly from the pixel intensity. They also used the HMM for classification.
Zhao et al. [12] suggested using a local temporal and spatial descriptor to capture video
dynamics. They considered the entire film sequence as a volume and calculated the LBP
characteristics not only from the original lip images, but also from the accumulated time
patterns that were cross-sectional/vertical sections of the volume. In their work, each
volume of film was divided into smaller rectangular cubes, from which normal LBP his-
tograms were calculated. In recent years, with the availability of large databases and the
advancement of computer processing power, deep learning in many areas of computer
vision, including automated lip-reading, has brought far-reaching benefits. In the first
generation of models based on deep neural networks, deep bottleneck architectures were
used to reduce the dimensions of visual features extracted from the mouth area. These
features were then assigned to a classifier, such as a SVM or the HMM. Ngiam et al. [13]
applied PCA to the mouth area and extracted the bottleneck features with a deep auto
encoder. Deep auto encoder is a type of deep neural network that is commonly used for
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dimensional compression and feature extraction. Speech features were then given to an
SVM that did not consider temporal dynamics. In the second generation of deep mod-
els, deep bottleneck designs are used that extract bottleneck features directly from the
pixels. Li et al. [14] derived bottleneck features from dynamic representations of images
with a Convolutional Neural Network (CNN) which were then given to an HMM for
classification. In the third generation of deep models, a small number of End-to-End
networks are presented that simultaneously extract features directly from the mouth
area and classify them. Petridis et al. [15] proposed a system based on two independent
streams. The first stream extracts the features directly from the input images, while the
second stream extracts features from the difference between two consecutive frames.
Both streams follow a bottleneck architecture. Long Short-Term Memory (LSTM) is
then used to model the temporal dynamic of each stream. Finally, Bidirectional LSTM
(BLSTM) is used to integrate information of two streams. In another study, Fernandez-
Lopez and Sukno [16] introduced LDNet with the goal of training small scale databases
in which a CNN-LSTM 