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Preface

The 13th International Conference on Social Robotics (ICSR 2021) was held as a hybrid
conference (onsite and online) in Singapore, during November 10–13, 2021, with the
theme of “Robotics in our everyday lives”, emphasizing the increasing importance of
robotics in human daily living.

Marking the return of ICSR 11 years after it was first held in Singapore, this edi-
tion was jointly organized by the Chinese and Oriental Languages Information Pro-
cessing Society (COLIPS), the National University of Singapore (NUS), the Singapore
Chapter of IEEE Systems, Man and Cybernetics Society and the Teochew Doctorate
Society, Singapore (TDSS). It was supported by the Robotics Horizontal Technology
Programme Office (R-HTPO) of the Agency for Science, Technology and Research,
Singapore (A*STAR), and the Robotics and Autonomous Systems Department of the
A*STAR Institute of Infocomm Research (I2R).

The International Conference on Social Robotics brings together researchers and
practitioners working on the interaction between humans and intelligent robots and on
the integration of robots into the fabric of our society. Out of a record total of 129
submitted manuscripts reviewed by a dedicated international team of Senior Program
Committee and Program Committee members, 64 full papers and 15 brief research
reports were selected for inclusion in the proceedings and presented during the techni-
cal sessions of the conference. In addition to paper presentation sessions, ICSR 2021
also featured three keynote talks, five workshops, and a robot design competition. The
keynote talks were delivered by three renowned researchers – Giorgio Metta of the Ital-
ian Institute of Technology, Italy, Oussama Khatib of Stanford University, USA, and
Nadia M. Thalmann of Nanyang Technological University, Singapore.

Wewould like to express our sincere gratitude to allmembers of theSteeringCommit-
tee, International Advisory Committee, and Organizing Committee and to all volunteers
for their dedication in making the conference a great success. We are also indebted to
members of the Senior Program Committee and the Program Committee for their hard
work in the rigorous review of the papers. Lastly and most importantly, we are grateful
for the continued support of ICSR by the authors, participants, and sponsors, without
which the conference would not be possible.

October 2021 Haizhou Li
Shuzhi Sam Ge

Yan Wu
Agnieszka Wykowska

Hongsheng He
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Abstract. Previous robotics work has identified significant effects of
perceived gender and embodiment on human perceptions of robots, but
these topics have yet to be investigated in the context of robot comedy.
The presented study explored the effects of gender and embodiment on
audience members’ perceptions of a robotic comedian. Participants (N =
153) observed either an audio-only clip or a video of a robotic comedian,
with either a male or a female voice. We measured self-reported ratings
of robot attributes. Results showed that neither gender nor physical form
influenced joke humorousness or robot attribute ratings, however those
who viewed a video of the robot reported feeling more connected to the
comedian. These findings suggest that, unlike in past studies of human
comedy to date, gender stereotypes and physical appearance may not
affect perceptions of robot comedy performance.

1 Introduction

Female human comedians experience different responses from an audience than
their male counterparts, but it is difficult to investigate what factors may under-
lie these differences in a controlled setting. Robotic comedians, which can be
designed to behave and look identical to one another, offer one promising way
to begin isolating these factors. Further, human responses to robots based on
apparent gender and presented form factor are important to understand in social
robotics generally (e.g., to inform appropriate robot design for various situa-
tions). We propose that audience attitudes toward robotic comedians’ manipu-
lated characteristics (i.e., gender and embodiment) may extend to human come-
dians, and that the understanding of differing perceptions across these attributes
can inform future social robotic applications.

Previous work on robot comedy has manipulated robot interaction behav-
iors (e.g., eye contact with the audience [14] and timing of joke delivery [29]),
finding both factors to be significant and favorable to the audience. More gen-
erally in social robotics, studies have established marked differences in both the
perceived personality traits and occupational roles of robots based on apparent
gender [4,20]; however, to our knowledge, no studies have explored effects of
perceived robot gender in the comedy context. Our work attempts to address
c© Springer Nature Switzerland AG 2021
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this gap by investigating the effects of perceived gender of a robotic voice and a
physically embodied robot on ratings of comedic success, closeness feelings, and
other perceived attributes. Key contributions of this work include insights on
what effect (if any) apparent gender has on comedic success (holding all other
factors constant), what inherent attributes may be linked with perceived gender
of robotic comedians, and how embodiment (i.e., observing a physical robot vs.
a disembodied robot voice) influences perceptions of the artificial comedian.

2 Related Work

Key topics informing the present work include gender in comedy, gender in
robotics, robot comedy, and effects of robot embodiment on human opinions.

Gender in Comedy: Netflix has hosted upwards of 270 comedy specials (in
English) from 2012 to the present day, of which only approximately 20% fea-
tured female comedians [21]. According to Levitt [17], this gender discrepancy
reflects a real-world discrepancy in the number of stand-up comedy time slots
booked by men versus women and gender non-conforming individuals. Why are
female comedians so underrepresented in the comedic landscape? A controver-
sial explanation is offered by Greengross and colleagues: men are funnier [12].
Their meta-analysis of 28 studies measuring men’s and women’s humor produc-
tion ability (HPA) via independent, blind judges in a image/cartoon captioning
task revealed that 63% of men were scored higher than their female counterparts
with a combined effect size of d = 0.321 [13]. In comedic performance settings,
possible mechanisms for differences in perceived humor ability across sex are
historical differences in accepted male and female roles in society (e.g., females
being discouraged from using humor and performing comedy in public) [13], gen-
der stereotypes (e.g., women being more concerned about others and men being
more competent and dominant) [6], and visual cues (e.g., a person presenting as a
particular gender) [26]. Robots offer a unique opportunity to explore differences
in perception of humorousness and other characteristics via fine manipulations of
robot attributes. Further, it is possible that apparent gender could affect robot
success in humorous day-to-day social interactions.

Gender in Robotics: Previous literature indicates that people extend stereo-
types based on perceived sex to robots, relying on human-human norms to
explain human-humanoid interactions [4,19]. For example, robots manipulated
to appear masculine are perceived to have more agency (e.g., seeming more
assertive, more dominant, more authoritative) and less communion (e.g., seem-
ing less friendly, less polite, less affectionate) than feminine robots [8]. Similarly,
robots with a female appearance tend to be regarded as inviting, warm, and
interactive, while robots with a male design were regarded as tough and chal-
lenging [4]. This automatic and unconscious tendency to interact with robots as
one would with other humans (i.e., by applying social categories) is an exten-
sion of the computers-as-social-actors (CASA) approach [7,18]. This approach
shows that a robot’s voice, demeanor, and motions all function as social cues to
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communicate gender [7,22,25]. These attributes can additionally interact with
stereotypical gender roles to impact humans’ perceptions of robots; female-voiced
computers are perceived as less dominant and serious when delivering evaluations
compared to male-voiced computers, for example [20]. Regardless of apparent
robot gender, studies indicate that humans prefer and respond more positively
to robots that have congruent gender and occupational roles [27]. For example,
female robots are more likeable, seen to have more behavioral control, and are
accepted more when presented as a healthcare robot [27]. At the same time,
the gender of a robot does not appear to affect perceived eeriness, regardless of
a robot’s role in a situation [1]. Based on the robust finding that humans per-
ceive and treat robots as they would another human, it is plausible that humans’
expectations for female comedians also extend to robots, and that female robotic
comedians would be perceived less favorably than male robotic comedians.

Robot Comedy: Past robot comedy work includes initial efforts to equip robots
with appropriate gaze, capable gesture, and abilities to “read the room.” To inves-
tigate whether robots could perform these aspects of stand-up comedy, Katevas
and colleagues manipulated both gesture and gaze of robotic comedians to exam-
ine their effects on live audience responses, finding evidence that the reciprocal
give-and-take between comedian and audience were key to a well-received perfor-
mance [14]. Other robot comedy work used audience polling and audio process-
ing to track audience enjoyment of jokes [15]. Recently, a robot comedy study
demonstrated that a robotic comedian with good timing was perceived as signifi-
cantly funnier, and that the ability to adapt to its audience’s reactions improved
their opinions of the jokes [29]. Preliminary results from yet another study show
promise for a robotic comedian’s ability to “read the room,” or analyze audience
facial behavior, and improvise reactions (e.g., respond to grimaces with “What?
Too soon?”) [11]. To our knowledge, no past studies have investigated whether a
robotic stand-up comedian’s gender affects audience perceptions.

Effects of Embodiment: In previous studies evaluating human opinions of
embodied vs. disembodied robots, experimenters have defined an embodied robot
as one that has a physical form (i.e., not a screen-based image) and is located
in the same room as the participant (i.e., not remotely located). Humans find
embodied robots (vs. disembodied robots) more appealing and perceptive, and
tend to empathize more with them [16,30]. Embodied robots are also regarded
as more helpful, watchful, and enjoyable compared to videos of robots [24,30].
Importantly, however, Wainer and colleagues could not definitively state that
participants favored embodied robots – only that embodied robots will be per-
ceived as more “present” [30]. Taken together, this past work indicates that
differences in robot embodiment will likely impact perceptions, but it is not
clear how onlooker perspective will vary, especially in terms of preference and
scales not previously explored in the comedy application space. Because of the
influence of embodiment in past work, we decided to study the effects of embod-
ied vs. disembodied robotic comedians (a coarse manipulation of embodiment)
as a second variable of interest which, to our knowledge, has yet to be explored
in the realm of robot comedy.
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3 Methods

To study the effects of perceived gender and embodiment of a robotic stand-up
comedian, we employed a 2×2 between-subjects factorial study design. Apparent
robot gender (i.e., male or female as communicated by voice) and robot type (i.e.,
audio-only vs. video of a NAO robot [10]) were completely crossed, and observer
opinions were measured with approval from our university ethics board.

The robot’s comedy routine originated from a pilot study which presented
18 jokes (written in collaboration with a group of semi-professional comedians)
to participants. Viewers rated each joke using the Joke Rating Scale (further
described below). The same group of comedians also advised on the vocal and
choreographic delivery of the jokes.

The top-performing 10 jokes were subsequently compiled into the roughly 4.5-
minute comedy set used in the present study. Because of the order-dependent
nature of comedy performance, all conditions used the same overall jokes and joke
order. For the gendered voices, we used Amazon Polly’s “Joey” voice as the male
voice and “Joanna” as the female voice. Gender was manipulated via auditory
cues only (i.e., voice characteristics) to control for visual cues. The embodiment
condition modulated whether the robot was visible by presenting either an audio-
only recording or a video. Both modalities closely parallel common methods for
enjoying stand-up comedy; in addition to watching live performances, comedy
fans commonly consume pre-recorded videos (e.g., Netflix comedy specials) and
audio-only tracks (e.g., comedy albums).

Hypotheses: We were broadly interested in how human observers’ perceptions
of a robotic comedian, and their connection to it, varied as a function of appar-
ent gender and physical form. Given the lack of closely aligned prior research,
we proposed the following exploratory hypotheses based on the related work
discussed in Sect. 2: (1) a female-voiced robot will be perceived as warmer than
a male-voiced robot, (2) a male-voiced robot will be perceived as funnier and
more competent than a female-voiced robot, and (3) video of an embodied robot
will lead to more social closeness feelings than the audio-only condition.

Participants: Previous research involving robotic comedians has not reported
result effect sizes. Therefore, we used a medium effect size of f 2 = .25 in an
a priori power analysis using G-Power 3.0.10 with power set to 0.80 and error
probability α = .05, which resulted in an overall suggested sample size of 128.
157 adult undergraduate students were recruited from Oregon State University.
Data were excluded from participants who failed to complete the study or who
took longer than 2.5 standard deviations from the mean time taken to complete
the study. These exclusions left 153 participants (M = 22 years old, SD = 6, 115
female, 35 male, 2 non-binary, 1 non-reported gender) for analysis. Participants
received course credit for the study.

Procedure: We administered the study as a 30-minute Qualtrics survey,
through which participants were randomly assigned to one of the four condi-
tions: male × voice audio, male × robot video, female × voice audio, and female
× robot video. After providing informed consent, participants completed demo-
graphic questions including the Ten Item Personality Inventory (TIPI) and the
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Fig. 1. Keyframes from one joke in the male video condition stimulus corresponding
to each sentence of the following joke: “I saw a foxy robot the other night. She was
smokin’ ! Naturally, we called tech support right away.”

Negative Attitudes toward Robots Scale (NARS). Participants then observed the
assigned robot comedy set recording, which they were able to replay an unlim-
ited number of times. Figure 1 shows example keyframes from one of the jokes
included in the study stimuli, along with the joke text. After they finished observ-
ing the comedy set, participants were asked to rate the performance using the
Joke Rating Scale (JRS), Inclusion of Other in the Self (IOS) scale, anthropomor-
phism subscale of the Godspeed questionnaire, and the Robotic Social Attributes
Scale (RoSAS), all of which are described in more detail below. Respondents also
provided open-ended feedback about performance characteristics that affected
their responses.

Measurement: The initial portion of the survey gathered basic demographic
information, as well as the TIPI and NARS scales. Participants also indicated
on a scale of one to five how much previous experience they had with robots
and with comedy. The TIPI was included in this survey to briefly measure par-
ticipant personality on 10 nine-point Likert scales from Strongly Disagree to
Strongly Agree [9]. The NARS questionnaire was used to measure participants’
evaluations of and attitudes toward robots prior to exposure to one in the present
study using 7-point Likert scales from Strongly Disagree to Strongly Agree [23].

The JRS was adopted from past work on acceptability of robot jokes to
measure the primary dependent variable: self-reported ratings of how funny the
robot comedy performance was [28]. These ratings used seven-point Likert scales
from Strongly Disagree to Strongly Agree, and the average score served as a
rating of humorousness. The RoSAS was administered to collect data about
participants’ perceptions of the robotic comedian’s social attributes on three
factors: warmth, competence, and discomfort on the standard nine-point Likert
scales [5]. The IOS measured participants’ connection with the robotic comedian
after observing the comedy set. Participants selected one of seven Venn diagrams
that they felt best portrayed their relationship with the comedian, which ranged
from separate circles (1) representing the self and other to almost completely
overlapping circles (7) [2]. Participants answered manipulation check questions
about the robot’s gender (i.e., female, female-androgynous, androgynous, male-
androgynous, male, no gender, or unsure) as well as anthropomorphism using
one standard subscale of the Godspeed questionnaire [3].
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4 Results

To test our hypotheses, we conducted a 2 (robot gender) × 2 (robot embodi-
ment) factorial ANCOVA to analyze the main dependent variable: humor ratings
(i.e., average JRS scores). The NARS subscales, the extroversion and openness
subscales of the TIPI, and participants’ experience with robots were included as
covariates. In addition to the primary analysis, we also conducted exploratory
analyses to investigate the effects of these factors and covariates on partici-
pants’ ratings of the robot’s social attributes (i.e., RoSAS subscale scores), and
their connection with the robotic comedian (i.e., IOS scores). Participants’ free-
response data was also analyzed for recurring themes and insights into possible
motivations behind quantitative results.

Quantitative Results: 125 of the 153 participants were able to correctly iden-
tify the robot gender, indicating that the majority were able to discern our
manipulation. Of the 24 who did not report the correct gender, 22 responded
with either “no gender,” “unsure,” or some form of androgyny (e.g., male-
or female-androgynous). Only two participants explicitly reported perceiving
a female when the robot was manipulated to be male, or vice versa.

Neither the embodied nor disembodied condition elicited average anthropo-
morphism ratings above a three, and these scores were not significantly different
from one another, demonstrating that participants did not regard the robotic
comedians as very human-like, t(144) = −1.35, p = .18.

The ANCOVA evaluating the effects of robot gender and embodiment on JRS
scores (as described in Table 1) revealed that the first NARS subscale (i.e., ques-
tions about robot interaction scenarios) significantly covaried with participants’
joke ratings, F (1, 140) = 6.75, p = .05, ηp

2 = 0.03. After controlling for the
covariate, neither robot gender nor type were significant predictors of joke ratings.
Another ANCOVA revealed that RoSAS subscale ratings significantly covaried
with the NARS subscales. The RoSAS warmth subscale covaried with the third
NARS subscale (i.e., emotions in interactions with robots), F (1, 139) = 5.87, p =
.02, ηp2 = 0.04, as did the RoSAS competence subscale, F (1, 137) = 8.10, p = .005,
ηp

2 = 0.06. The RoSAS discomfort subscale covaried with both the first NARS
subscale, F (1, 139) = 11.22, p = .001, ηp

2 = 0.08, as well as the second, F (1, 139)
= 11.65, p < .001, ηp

2 = 0.08. After controlling for the appropriate covariates for
each RoSAS subscale, the ANCOVA again demonstrated that robot gender and
type did not predict differences in RoSAS reports.

Table 1. Means and standard deviations of study questionnaire responses, formatted
as M(SD).

Female Male Audio Video

JRS humorousness 4.26 (1.47) 4.13 (1.33) 3.98 (1.45) 4.14 (1.33)

RoSAS warmth 3.75 (1.88) 3.58 (1.66) 3.83 (1.73) 3.96 (1.78)

RoSAS competence 4.92 (1.76) 4.76 (1.79) 4.53 (1.79) 4.98 (1.75)

RoSAS discomfort 3.20 (1.46) 3.25 (1.62) 3.44 (1.45) 3.01 (1.60)

IOS closeness 1.83 (1.11) 1.66 (0.84) 1.60 (0.89) 1.90 (1.06)
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Table 2. Free-response coding frequencies. Each code belongs to one of the three
numbered themes of interest, and the “+” and “−” columns show the number of
respondents who commented on each theme in a positive or negative manner.

Theme Code + −
1 Gender perception based on joke content 12 0

1 Gender perception based on looks or form 7 0

1 Gender perception based on voice 12 0

2 Sound made by the robot/robot motors 9 8

2 Comparison of robot/robot voice to a human comedian 12 35

2 What feels/appears human vs. robotic in the system 14 59

2 Like or dislike of robots/AI 7 9

2 Comments on gestures/body language 16 12

2 Fear of robots/robots takeover 5 5

3 Format (e.g., video vs. in-person vs. audio-only) 16 2

3 Enjoyment of the set 30 48

3 Perceptions of the jokes as “dad jokes” 1 0

3 Joke content (e.g., funny v.s. not funny) 53 37

3 Relatability 15 34

3 Joke writing/delivery (e.g., forced, natural) 10 48

An exploratory ANCOVA of IOS scores showed that NARS subscales one
(i.e., situations of interactions with robots), F (1, 139) = 7.15, p = .008, ηp

2 =
0.05, and three (i.e., emotions in interactions with robots), F (1, 139) = 4.90, p
= .03, ηp

2 = 0.03, were significantly related to participants’ self-reported con-
nection with the robotic comedian. After controlling for these subscales, there
was no evidence for an effect of robot gender, but the analysis did show that
robot embodiment significantly predicted IOS scores, F (1, 139) = 4.50, p = .04,
ηp

2 = 0.03.

Qualitative Results: Participants’ free-response data regarding how robot per-
formance characteristics influenced their ratings were coded for 15 facets using
a positive or negative coding system, which was created for this study based on
related work [4,14,20,29]. The responses to these facets were grouped to form
three overarching themes: 1) gender perception, 2) robot attribute perception,
and 3) comedic/humor perception (see Table 2).

Overall, all participant comments relevant to the gender perception category
were positive (N = 31 responses). Opinions were much more negative, however,
for the remaining two categories. Participants expressed approximately double
the number of negative opinions (N = 128) as they did positive (N = 63)
regarding the robot’s attributes. Of the 128 negative comments, 94 pertained to
comparisons between the robotic comedian and a human comedian. Facets that
comprised the comedic/humor perception responses suggest that participants
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did not enjoy the comedy set (N = 48) and were most displeased with the joke
writing/delivery (N = 48).

5 Discussion

The goal of the current study was to determine the effects of a robotic come-
dian’s gender and physical appearance on human observers’ connection to it,
perceptions of it, and perceptions of its jokes. We manipulated the gender and
embodiment communicated by a robotic comedian delivering a comedy set in a
2×2 between-subjects factorial design. Given that previous literature has estab-
lished the effects of each factor individually, we predicted that a female-voiced
robot would be perceived as warmer than a male-voiced robot, that a male-voiced
robot would be perceived as funnier and more competent than a female-voiced
robot, and that a video of the robot performing would lead to greater perceived
connection on the observer’s part than an audio-only clip of the performance.

Contrary to our first hypothesis, we did not find a main effect of gender
(or robot embodiment) on warmth ratings or any other RoSAS subscale ratings;
female-voiced robots were not perceived as warmer than male-voiced robots. This
lack of quantitative evidence contradicts previous literature that female robots
are regarded as more inviting [4]. Interestingly, participants’ free-response data
revealed that of those who shared that they found the robot “relatable” (N =
15), 80% identified the comedian as female, with one participant noting that they
“sometimes wonder why most robots [have] female voices. Maybe it’s sexist?” It
is possible that while the same stereotypical gender norms typically attributed
to robots may not apply in a comedy context, they do exist overall. Perhaps,
then, the content (i.e., the jokes delivered) served to negate the usual gender
stereotypes because females are not typically associated with a comedian role,
resulting in no perceived warmth differences between the robot genders [6,13].

We also did not find a main effect of gender or robot type on joke ratings; male
and female embodied and disembodied robots did not differ in observer ratings
of funniness, though 74 participants reported that the jokes were of good quality
(N = 53) and/or relatable (N = 21). While this result is incongruous with the
previous literature stating that people tend to find males funnier than females,
the finding is also an interesting discovery pertaining to past reported differ-
ences between male and female comedians [12]. A possible explanation is that
human male comedians possess different characteristics that cannot be repli-
cated by robots, which evoke greater humor ratings from observers than do
female comedians/robots. Indeed, of the N = 31 participants who inferred robot
gender based on the joke content (N = 12; rather than based on appearance
(N = 7) or voice (N = 12)), N = 20 of them commented on it being male;
one participant noted that while they relied on the perspective of the jokes
to determine gender, they “wouldn’t make the same association with a human
[comedian].” Free-response data suggests that one differentiating characteristic
is a joke delivery style that the robot could not achieve – specifically vocal dif-
ferences (N = 23; e.g., “monotone and was not natural,” “the voice makes it
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very rigid”). In fact, many participants (N = 26) categorically noted that the
robot’s voice did not compare to a human comedian, and mentioned it and the
jokes being “forced,” “scripted,” or “unnatural” (N = 48). Future studies may
compare human perceptions of human male and female comedians to robot male
and female comedians to investigate to what extent these measurable traits (e.g.,
voice pitch, inflection, human vs. digital voices) explain the lack of difference in
humor ratings for robots.

As hypothesized, observers reported feeling more connection with embodied
robotic comedians than they did with audio-only clips of the same comedy sets,
further supporting that humans find embodied robots more appealing and enjoy-
able [16,24,30]. Consistent with this, participants’ free responses suggest that
embodied robots are more enjoyable and relatable to watch in a stand-up com-
edy context (e.g., “The movement of the whole body was fascinating to watch.
[It] held my visual focus throughout the video”). Among the participants who
viewed a video of the embodied robotic comedian, many responded positively
toward its gestures and/or body language (N = 16), while others noted that the
movement made the robot more personable (N = 11). In contrast, more than
half of the participants who observed the audio-only comedy set commented that
it was limited (N = 29 of 48; e.g., “I thought with how the robot was speaking
it was hard to hear the emotion in his speech”). This finding provides evidence
that humans may favor embodied robots over disembodied ones – a fact that
Wainer and colleagues could not ascertain beyond humans perceiving them to
be more present [30].

Key Strengths and Limitations: To our knowledge, previous literature in
the general robotics domain has only detailed the effects of robot gender and
embodiment on human perceptions separately, and never in the context of robot
comedy. Our study was designed to address this gap by utilizing a fully crossed
design. It should be noted that while we were able to achieve a sample size that
satisfied our a priori power analysis suggestion of N = 128, all participants were
recruited from an online university sample pool. Therefore, it is possible that the
typical university-aged individual has a particular taste in stand-up comedy not
satisfied by the jokes used in this study. Similarly, it is possible that the jokes
were not understood by all observers, given that they were written to be from
a robot’s perspective, instead of a human’s. Finally, because participants used
their personal devices to complete this study remotely and online, it is possible
that they were not as attentive to the task as they may have been if the study
had been conducted in a laboratory setting.

Conclusions and Future Work: Despite these shortcomings, this study’s
results shed light on human perceptions toward robots in a social context and
inform future designs of studies and robotic systems. While stereotypical gen-
der norms may constrain human perceptions of male vs. female robots in other
contexts such as healthcare and manufacturing, it appears that robotic come-
dians are not likewise limited. Importantly, as expected, humans’ preference for
embodied robots in contexts where connection is integral to the experience (e.g.,
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comedy) was supported by this study’s results. In this study, we only manipu-
lated gender through use of auditory cues (i.e., Amazon Polly’s “Joanna” female
voice vs. the “Joey” male voice). In future studies, it could be useful to explore
the effects of changes in physical appearance of the robotic comedian as well.
For example, it would be interesting to see if a robotic comedian with an overtly
female form elicits different reactions and ratings from than the audience than
does an overtly male form. Future directions for research in this area would also
benefit from 1) exploring the upper and lower limits of accepted embodiment for
robots in robot comedy, 2) normalizing and/or utilizing well-known and liked
comedy sets to factor out the individual differences in joke preferences, and 3)
conducting studies in person and perhaps in a larger group setting to simulate
typical live stand-up comedy environments.
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Abstract. The current world landscape in opinions and attitudes about robotics
is highly variegated in different parts of the world. This landscape is a result
of the sum of the effects of multiple factors, which date from millennia ago,
as waves of philosophical thought, religion and historical events overlapped and
allegedly influenced the concept of human and of the artificial. This paper provides
a survey of such factors, and attempts to trace possible lines between causes and
consequences. The analysis seems to indicate the presence of a West/East split
whichmarks themain differences in intending the role of social agents, humanoids,
transhumanism and labour automation.

Keywords: History of robotics · Culture · Humanoids

1 Introduction

Worldwide research in robotics is aware of the different approaches in the development
and diffusion of these new technologies. Typically Asia, and in particular Japan, are seen
as poles of advancement, especially regarding the realisation of humanoids, whereas
Western countries are less akin to the purpose of replicating humans. This is happening
despite the origin of the concept of robot came from Europe (the Czech word robota
meaning “forced labour”). Kaplan [1] debated the reason why theWestern world is more
afraid of the humanoid, and concluded that Westerners are fascinated and afraid by new
machines, while in Japan machines do not seem to affect human specificity.”

One limitation of this analysis is that the fear of the humanoid goes beyond the
proposed concept, and sometimes touches neurological reasons (uncanny robots appear-
ance) or concrete worries (fear of losing jobs). Therefore, it is necessary to distinguish
in which aspects automation is seen negatively.

A vast literature covered comparative studies of human-robot interaction; however,
the core of this literaturemainly revolves aroundWest vEast (whereWest oftenmeans the
US, and East typically only means Japan). A more extensive analysis is thus necessary,
digging into history in all different parts of the world.
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As Nisbett [2] stated, the differences between East and West in cognition, due to
differing ecologies, social structures, philosophies, and educational systems, trace back
to ancient Greece and China. In fact, some similarities among these ancient cultures
are present, involving puppets and automata. Millennia later, the landscape has com-
pletely changed as civilisations parted ways of thought. What happened in between is
the research question of the present contribution.

In different parts of the world, different lines of thought arrived to opposite conclu-
sions regarding robots, and in particular humanoids. Multiple factors, tracing back to
philosophy, history, religion and society, apparently prompt or hinder the development
and the application of robots in societies nowadays. The goal of this paper is to connect
the threads that lead the past to the present, and understand where are the criticalities.

2 The Part Ways – West to East

2.1 Latin America

While there is no trace of the idea of automation in Aztec, Maya and Inca civilisations,
one interesting note in pre-Columbian Americas is the tale of the revolt of the objects
(Fig. 1), depicted in Moche civilisation (150 to 700 A.D:, pre-Inca civilization present
in the northern coast of Peru) [3], which parallels the current view of revolting robots.
This odd episode reveals the fear of lack of control of the world order, which is based
on fragile balance of nature and is maintained by sacrifices [4].

Mesoamerican civilisations shared many common traits, one of them being the use
of human sacrifices, originating from the belief of a pact of blood with gods, who shed
blood first for the humanity [5]. The relevant aspect of this fact is the human specificity
in sacrifice: it was not possible to spare a human and obtain the same favour from the
gods. Sacrifices were most common in Mexico, although also in South America studies
[6] mention the taxonomic differentiation of wild and domestic species in sacrifices.

When immigration from other continents began, African Witchcraft and Turanic
Shamanism were also imported and blended up with Christianity as well. Through the
principle of resemblance, a humanoid doll or a similar representation is believed to gen-
erate an impact on a living person, operated by a shaman [7]. These kinds of practices are
still executed nowadays. The connection of human figures with spirits slightly resemble
animism of Eastern religions.

Fig. 1. Detail of the “Revolt of the Objects” from Moche culture.
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On the other hand, Spanish conquest has added the cultural layer ofChristianCatholi-
cism in its most strict form (the Inquisition). The use of actuating a crucifix to help
confirming a defendant guilty [8] represents the only real precedent - a negative one - of
automation in Latin America.

2.2 Europe and Western Culture

The idea of machines traces back to Ancient Greece: artificial servants like Hephaestus’s
helpers, made by the gods to serve the gods [9], autonomous ships, the legendary bronze
giant Talos, and the myth of Pygmalion [10]. Some automata were actually built: such
as the “magic” opening of temple doors when a fire was lit in an altar: their purpose was
to surprise and amuse [11]. Besides automata, from the writings of Herodotus [12] we
also know about puppets moved by strings being used in religious festivals in Egypt and
later in Rome. One famous episode: in 44 B.C., at the funeral of Julius Caesar, Marc
Antony made use of a puppet actuated by a mechanical device. It was rotated to show
the knife wounds and incite the emotional reaction of the angry mob.

The advent of monotheism view brought concepts borrowed from Judaism, like the
desacralisation of nature [13] and the rejection of magic, which tend to make robots and
automated objects appear like mere machines, which should be seen suspiciously for
their autonomy. This might be the background that leads to the tale of the golem, present
in Jewish folklore since only the 16th Century. The golem, a man-made creature built
from clay or mud, went out of control and had to be destroyed. This story represents an
example of hubris, is allegedly at the origin of the fear of man-made creatures called
Frankenstein complex [14], which was reproduced in similar stories (Fig. 2). A first
attempt at regulation of machines autonomy, however, comes from Europe, with the
famous Three Laws of Robotics by Asimov [15].

While Israel developed in its own peculiar way (see the set of rules existing about
the Sabbath, prompting the need of home automation), Christian countries developed
on the top of the pre-existing beliefs. The production of automata related to the concept
of “enchantment of technology” [16]. Though the Middle Ages and later, mechanical
angels and fire-breathing devils were designed, patronised by the Catholic Church [17].

Conversely, while the Church never prohibited the advancement of technology and
the realisation of machines, some aspects of the faith may be interpreted in opposition
to the concept of intelligent machines. The dualistic view of soul renders a machine
“soulless”, and the concept of body as a gift from God, in common with the other
monotheistic religions (e.g. “body is a gift from Allah/God”). This may lead to more
conservative views regarding the possibilities of “enhancing” the human body.

Nevertheless, Western culture was influenced by concepts present in Genesis (1:26–
28): “mankind is created as an “image of God” and receives the mission to “fill the Earth
and subdue it” and to rule over the animals. As a consequence, the study of the created
nature itself was a legitimate way of understanding God [13].

After the Renaissance, the power of creation has “shifted from gods to humans”
[17], and anthropocentrism became a central thought also in philosophy. It is worth
to mention the influential role of Descartes: his passive mechanical thoughts of the
separation between body and soul, in which the body is regarded as soulless. In the res
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cogitans/res extensa dualism, animals are mere machines unable to think, while man
masters and owns nature [18].

The emphasis on science led to the Industrial Revolution, in which we can find the
episode of Luddism in the UK, in which protesting groups destroyed textile machin-
ery. The fear of losing jobs was based on concrete evidence, although new jobs were
eventually created.

The advent of the two World Wars, which particularly hit Europe, left a deep trace
that is visible in Western philosophy and arts, in a pessimistic view of man’s tendency
to go against his self-interest with an immense destruction power [19]. Science-fiction
arguably reinforced the Frankenstein Complex with this new awareness.

Fig. 2. Four creatures which went out of human control: from left to right the Golem, the Creature
from Frankenstein, Pinocchio and Terminator.

2.3 Middle East

The peculiarities of this area as opposed to the Ancient World take place with the rise of
Islam. It’s the Arabian golden age that had a world-wide impact on science. Ismail al-
Jazari, a scholar who lived in the 12th Century in present day Turkey, described fountains
and musical automata [20]. Rosheim [21] stated that the Arabs were interested not only
in dramatic illusion but also in manipulating the environment for practical applications.

The Middle East is characterised by the traits of the monotheistic religions, and the
philosophical thought evolved in the same direction of distance between man and God.
For example, Islamic scholar Mohammad-Ali Taskhiri also discussed the concept of
dignity, intended as a state to which all humans have equal potential, as long as they live
a life pleasing to the eyes of God [22]. The consequence is that a robot should be able
to tell right from wrong, matching its dignity to the one of a human and complying the
religious laws [23].

Themost peculiar issuewith Islam is due to iconoclasm. Islamprohibits the depiction
of living beings, either animal or human, especially in sacred spaces, as depicting them
would be considered same as adopting the role of creator [24].

In the Middle East, society rules and state laws are often blended with religious
beliefs, and the understanding of cultural norms of the country is particularly necessary
for ensuring technology acceptance [25], as the attempt to take power over nature by
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science or techniques could be seen as an offense against Allah’s omnipotence [26].
Iconoclasm, however, is not necessarily a common issue to all the Islamic world and
shall not be generalised: even in Persia, depiction of humans has been widespread in
certain historical periods, and theMiddle East does not represent the most populous area
of Muslims.

2.4 India

The Indian subcontinent, one the largest Islamic areas by population, has always had a
completely opposite approach regarding the embodiment of the sacred compared to the
Middle Eastern Islamic approach. This can be seen in theology in themystical symbolism
of the traits of the human face [27]. The Bhagavad Gita scripture states a God with a
form is necessary due to the human use of senses.

Since ancient times, puppet shows have been a tool to convey stories regardingHindu
gods and Puranic legends [28], and the use of Murti is widespread. The construction of
automata with human/animal figures is documented (the tiger of the Islamic ruler Tipu
Sultan [29] in Fig. 3, left).

In the ancient Vedic civilisation, there were already references ofmachines in ancient
texts (the Sanskrit term Yantra may be translated as machine). In particular, in Yoga
Vasishta [30] it is mentioned that an Asura named Sambarasura created three robots
without sentiments, and in theMahabharata [31] there is a reference of a gigantic human-
like machine named Kumbhakarna.

Hinduism conceives God as a multiplicity and accepts different ways of worship.
We argue that this inclusive nature of Hinduism towards other religions) and the multi-
culturality of the populations in the Indian subcontinent may help acceptance of robots,
in particular if employed in a religious application.

Especially in Hindu Tantric, rituals are of preeminent importance, as repetition and
chanting of mantra are performed over and over again, while the concept of “vain repe-
titions” has been bitterly criticised, for instance, by Christian Protestants [32]. Being a
repetitive action, it may lead to tedium [32]: we argue that, a philosophy in which the
action of ritual itself is more important that the content may prompt the delegation of
ritual. The Ganapati Bappachi Robotic Aarti [33] is an example of such delegation to a
robotic arm.

Fig. 3. Tipu’s Tiger: automata made for an Islamic Sultan (left); extreme anthropomorphism in
Japanese onigiri (right).
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2.5 East Asia

East Asia is tied to India for having received the influence of waves of spirituality and
ideals [34]. In Asian countries it is possible to encounter different shades of people’s
religion, as Confucianism, Buddhism, Taoism and Shinto are not reciprocally exclusive,
and influenced each other.

Taoism is the oldest among these religions, and is one that encourages people to
concentrate on the present real world rather than on the afterlife. Conversely, the dream
to become “immortal Taoist sages in a fairyland” is an ultimate goal for the Taoist [35].
Weng et al. debate whether this dream can be helped by the use of robotics. Another
interesting aspect of Taoism is the concept of harmony betweenman and nature, in which
“man must control his own conduct without violating the law of nature” [13]. Unlike
Europe, dominated by anthropocentrism, this relationship implies that man is born from
nature.

From Buddhism originated the concept by Mori [36] that robots have the Buddha-
nature and the potential for attaining Buddhahood, deserving the same compassion that
all living beings receive. Also related to Buddhism we can find historical traces, in
southern China, Korea and Sri Lanka, of the use of shadow puppets [37]. China has a
long tradition of shadow puppets, whose connotations were not always positive (like in
the case of bringing back alive the spirit of the dead on a shadow screen [28]).

Confucianism then dominated society in Sinosphere, and its approach to science,
which emphasises collectivism and pragmatism [38]. This can be seen in contemporary
times, as the push to modernisation [39] is also bringing automatisation of labour.

Japan is a special case within East Asia because of the many components that built
up its culture and of the prominent role in robotics.

Deriving from the Confucian animistic conception of religion, that ascribes souls to
all living and non-living objects, and the harmony of Taoism, Shinto, puts emphasis on
nature worship and leads to the belief that inanimate things are sacred objects at its core
[40]. Shintoist Japan has an additional peculiarity as anthropomorphism has been a trait
present since the 12th Century, proven by the animals depicted in the Chōjū-jinbutsu-
giga scrolls [41], and is visible nowadays from the degree of objects that - literally - have
a face (Fig. 3, right).

3 Discussion and Conclusion

In this last part, we summarise the data collected from all the sources, and try to draw
lines between the main factors examined and the criteria of attitude towards robots,
which is relevant today as may represent cultural barriers to the concrete application in
the societies.

Macro cultural areas are synthesised in Fig. 4. As categorisation of cultural areas
is highly inconsistent in Sociology and Anthropology, for our analysis we adapted
areas defined in [42]. This representation is necessarily simplified and not inclusive
of exceptions within each group.
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Fig. 4. The cross-cultural timeline. In vertical, cultural groups with each block indicating a topic,
and specifically an aspect which may have caused a positive (+) or negative (-) effect into some
aspect of attitude towards robots.

We consider four important criteria, partially corresponding to previous research by
Dihal [43], on which the approach towards robots is radically different across the world
nowadays, and discuss them in Sect. 3.1.

3.1 The Four Criteria

A. Social: robots as mere tools v robots as social agents
Factors that influence this aspect of the attitude seem to revolve around the concept of
soul:whether it is in every object, or a separate entity from thebody, andwhether anobject
with social capabilities would possess a moral, or rather be considered magic, with its
possible negative connotations. In other words, in Western perception, a conversational
robot who displays emotions may be regarded as a fraud. In these regards, the Eastern
philosophies and the Native American connection of human figures with spirits provide
a much more favourable terrain for robots to be credible social agents.

This can be seen in Japan, where 8 million Gods and spirits exist in natural envi-
ronments [35], and the leading role of Japan in developing social companions (Aibo,
Kirobo, Lovot, Pepper, etc.).

B. Human-likeness: Frankenstein complex v development of humanoids
Two are themain factors: anthropocentrism and the distance fromGod. In all the cultures
where the human being is considered unique (includingMesoamerica), its replacement is
more difficult, including with an artificial version of it. Moreover, if humans are inferior
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to gods, their ability to replicate themselves may be insufficient, implying that a man-
made humanoid robot will be faulty. These complications may be even more critical
when depiction of human figures is associated with a negative perception: iconoclasm
should be considered as an additional barrier for the development of humanoids, as their
making would be open to a wrong interpretation.

C. Human biology: Bio-conservatism v Transhumanism
Themain concept related to themodification of human biology (which is opposed in Bio-
conservatism and advocated in Transhumanism) seems to be deriving from the concept
of body - intended as a gift from the monotheistic God - which should not be altered,
or rather as part of nature, as in Taoism. These opposing stances may influence the
boundaries of what is considered “natural” when dealing with Cybernetics. It is worth
mentioning the strict stance of the Catholic Church in these matters.

D. Labour: robots as job stealers v robots as job helpers
History may be the main factor that influences this aspect: the concrete change of society
caused by new technologies is evident. The fear of unemployment caused by automation
is a common concern despite that the original purpose (and etymology) of modern robots
is labour. In case of theMiddle East and East Asia, the philosophical attitude towards sci-
ence may as well have a positive impact in the application of modern robotics. However,
rather than cultural areas, single countries may adopt different approaches depending on
their own pragmatism. Moreover, the attitude of first developers of technologies and the
one of late adopters can be different as well. A late adoption of a technology may bring
distortions as well as new possibilities. The future employment of robots in the societies
will depend on a combination of these factors.

3.2 Overall View

An overall view of the cross-cultural timeline seems to indicate a “West/East split”, with
the sharpest division occurring between theMiddle East and India, considering themany
aspects in common within the two sides.

The greatest difference regarding the concept of human, which acts as a underlying
factor, could be synthesised with the “metaphysical triangle” [26, 44], measuring the
distance among the components God/Man/Nature. A greater separation between the
profane and the divine, and the active role of man may have fuelled the invention of
robots in the West, but at the same time put a limit to the innovation, which application
in the most extreme senses was taken over by the East.

This collection of implications cannot be considered evidence, but rather as hypothe-
ses, which contribute to shed some light to the background of the evolution of robotics
worldwide. As for the concrete direction of future research, the authors suggest, when
designing and employing robots in different parts of the world, to consider case by case
the implications within the four criteria A/B/C/D of the new technology, and deduct the
risks and opportunities.
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Abstract. HRI research shows that people prefer robot appearances
that fit their given task but also identify stereotypical social percep-
tions of robots caused by a gendered appearance. This study investi-
gates stereotyping effects of both robot genderdness (male vs. female)
and assigned task (analytical vs. social) on people’s evaluations of trust,
social perception, and humanness in an online vignette study (n = 89)
with a between subject’s design. People deem robots more competent
and receive higher capacity trust when they perform analytical tasks
compared to social tasks, independent of the robot’s gender. An observed
trend in the data implies a tendency to dehumanize robots as an effect
of their gendered appearance, sometimes as an interaction effect with
performed task when this contradicts gender stereotypical expectations.
Our results stress further exploration of robot gender by varying gender
cues and considering alternative task descriptions, as well as highlight
potential new directions in studying human misconduct towards robots.

Keywords: Social robots · Gender stereotypes · Social perception ·
Dehumanization · Trust

1 Introduction

The upcoming introduction of robots embracing a myriad of tasks in our every-
day lives initiated multiple human-robot interaction (HRI) studies to investigate
robots’ suitability to perform a given task. Some studies have more generally ana-
lyzed people’s social acceptance of robots in several potential future jobs [9,12].
Such studies show people’s willing to accept robots in roles for entertainment, as
personal assistants, and in hazardous environments, yet will probably reject the
application of robots requiring sophisticated social emotional interactions. Other
studies specifically investigated a fit between task and appearance indicating that
a robot’s appearance-task fit is affected both by people’s expectations about the
capacities a robot needs for a particular task [26] as well as a need to match a
robot’s appearance to its intended application of role [8,15]. A body of research
in human psychology may explain these previous findings in HRI. Psychology
research indicates that initial impression are formed based on appearance cues
c© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-90525-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_3&domain=pdf
http://orcid.org/0000-0001-6152-552X
https://doi.org/10.1007/978-3-030-90525-5_3


People’s Perceptions of Gendered Robots 25

which, in turn, not only serve as ample triggers for social categorization [1] but
also prompt subsequent stereotyping processes [28,37]. Such gender stereotyping
has occurred in HRI research as well. People quickly infer a robot’s gender based
on it’s appearance [21] which triggers gender stereotypical beliefs about such gen-
dered robots [13,38]. This study expands existing knowledge in HRI research on
robot genderdness and appearance-task fit by investigating stereotyping effects
of robot genderedness and assigned task in an online vignette study.

1.1 Social Categorization and Stereotypes

Social categorization is a cognitive process to make sense of the social world
by simplifying and systematizing perceptive information [1]. When meeting
strangers, such cognitive categorization may aid as a beneficial heuristic when we
infer interpersonal characteristics based on the social group that stranger belongs
to [28]. However, categorizing others to social groups rather than treating them
as unique individuals may also have various negative consequences. Social cat-
egorization triggers a tendency to form distort perceptions and stimulate exag-
geration of differences between individuals from distinct social groups while per-
ceiving intensified similarities of individual members within those groups [37]. As
a consequence, we are more likely to utilize our distort perceptions to individual
members of social groups without considering whether the assumed character-
istics inhere with that specific individual. The process of such over-generalized
assessments of an individual based on the group to which they belong is called
stereotyping [20]. Stereotypes are automatically activated immediately following
categorization of a target as a member of that group [11].

A large body of research on gender stereotyping reveals a human tendency
to ascribe different traits to men and women. Stereotypical male traits com-
prise competence and agency [35] by highlighting achievement orientation (e.g.,
competent, ambitious), inclination to take charge (e.g., assertive, dominant),
autonomy (e.g., independent, decisive) and rationality (e.g., analytical, objec-
tive) [20]. Stereotypical female traits enclose warmth and expressiveness [35] by
highlighting concern for others (e.g., kind, caring), affiliative tendencies (e.g.,
friendly, collaborative), deference (e.g., obedient, respectful) and emotional sen-
sitivity (e.g., intuitive, understanding) [20]. Bem [3] mapped this distinction
between stereotypical male and female traits which shows a strong overlap with
the Stereotype Content Model’s [7] dimensions of warmth and competence. Sub-
sequent research shows that people generally deem competence more desirable for
males and warmth for females [4]. Relying on the Computers Are Social Actors
paradigm [29], gender stereotypes have also been reported in HRI research.

1.2 Gender Stereotypes in HRI Research

People socially categorize robots and reckon social behaviors in robots based on
inferred traits and characteristics, including gender cues from physical appear-
ance [13] as well as facial features and voice [32]. While technical abilities are
advancing, robots were originally designed to execute instrumental tasks [41].
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This classical image of robots performing dirty, dangerous, and dull tasks still
prevails in people’s minds [27]. Nonetheless, human encounters and collabo-
rations with robots increasingly become everyday practice [22]. A successful
introduction of robots in society heavily relies on people trusting these sys-
tems [16] as a mediator for people’s willingness to collaborate with robots [42].
Although trust has been frequently debated in human-robot interaction research
–as a theoretical concept as well as an empirical measure– consensus arises on
a dichotomous dimension of trust. On the one hand, people may trust a robot
based on its capacity or reliability, and on the other hand based on its integrity
or morality [14,39]). These trust dimensions resemble the gender stereotypical
traits associated to men and women. Female stereotypical traits, such as “loyal”
and “compassionate” [3], better fit the items of moral trust, such as sincerity,
genuineness and ethicality [31]. Male stereotypical traits, such as “ambitious”
and “self-reliant” [3], better fit the items of capacity trust, such as “competent”
and “skilled” [18]. Based on this resemblance, we hypothesize that people have
higher trust in robots that perform tasks”fitting to their gender” (H1).

Other HRI studies specifically focus on the interaction effects between a
robot’s gender and their occupational domain. When a robot performs tasks in
line with existing gender-stereotypes regarding gender-task fit, people will more
easily accept that robot [38]. Moreover, when our social schema for gender-task
fit is violated during a collaborative task with a gendered robot, people will even
perform less well (i.e., higher error rate) [25]. These findings from HRI research
map similar results from psychology research illustrating that occupational roles
are reliably stereotyped along the social perception dimensions of warmth and
competence [19], which in turn have been linked to gender-stereotypical traits
[3]. Given the strong underlying social schema regarding the appearance-task fit
in HRI research [26], we expect a dominating effect of the gendered embodiment
over the potential effect of task-fit. Therefore, we hypothesize that robot gender
affects people’s social perception of a robot, independent of performed task (H2).

A growing body of research investigates human misconduct with robots
in terms of discrimination (e.g., [2]) and abuse (e.g., [23]). Gendered robotic
agents with female characteristics encounter a specific form of human miscon-
duct, namely objectification. Observations of conversations between pupils and
a female-gendered virtual tutor reveals a frequent objectification of that virtual
agent whilst placing it in an inferior role [40]. Systematic analysis of online com-
mentaries on videos displaying humanoid robots exposes a pervasively blatant
objectification of female-gendered robots [36]. Psychological research has a long
historical focus on sexual objectification of the female body [27] indicating that
men and women hold similar tendencies to perceive sexualized women as lack-
ing mental capacity and moral status [24]. Combining the literature on female
objectification with the gender-stereotypical expectations regarding occupational
suitability of gendered robots [38], we hypothesize that people’s perceptions of
a robot’s humanness is a combined (interaction) effect of both robot gender and
performed task (H3).
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2 Method

We have conducted an online vignette study (n = 89) manipulating robot gender
(male vs. female) and task type (analytical vs. social) in a between subject’s
design to investigate stereotyping effects of robot genderedness and assigned
tasks on social perception, trust, and humanness.

2.1 Stimuli

We manipulated both the gender of the robot as well as the type of task it
performed. The mixture of these stimuli (robot gender X task type) resulted in
four different vignettes. To manipulate the robot gender, we modified a picture
of the Pepper robot by either giving it a blue tie for the male or a pink scarf for
the female robot (see Fig. 1). Such apparel serve as subtle but powerful gender
cues [21]. Additionally, we referred to the robot as either Alexander in the male
or Alexandra in the female task description respectively. Task type was manipu-
lated by altering some words in a text description to indicate either an analytical
or social task, which were kept at similar length (i.e., 69 and 67 words respec-
tively). The analytical task [A] described the robot studying large datasets with
medical data to provide an overview of treatment plans for hospital patients to
support healthcare professionals in making solid decisions of patient treatment.
The social task [S ] described the robot utilizing large datasets with verbal and
non-verbal behaviors to provide emotional support to hospital patients facilitat-
ing healthcare professionals in monitoring patient well-being. A full description
of the task descriptions is given below:

Alexander/Alexandra supports healthcare staff in...
...[A] developing individual treatment plans for hospital patients.
...[S ] providing emotional support to patients with chronic diseases].
Alexander/Alexandra has access to large data sets with...
...[A] medical data including medical conditions and symptoms, diag-
noses, treatments, medication, test results, hospitalization, and demo-
graphic patient data such as gender and age.
...[S ] verbal and non-verbal behaviors including speech utterances, body
language, facial expressions, and social customs and etiquette.
Alexander/Alexandra...
...[A] analyzes this data, draws connections between cause and effect, and
quickly provides an overview of potential treatments.
...[S ] listens actively, recognizes a patient’s emotions and feelings, and
offers emotional support to patients.
This way, healthcare professionals can...
...[A] make a solid decision for an appropriate treatment for individual
patients.
...[S ] monitor and respond optimally to the emotional well-being of indi-
vidual patients.
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(a) Male robot (b) Female robot

Fig. 1. Robot gender manipulation

We pretested these stimuli (n = 12). The female robot (M = 7.67) was
perceived as more female than the male robot (M = 5.56) measured on a 9-
point Likert scale from mostly male to mostly female (p = .012). The analytical
task (M = 8.22) was perceived as more analytical (p = .032) than the social
task (M = 6.78), and the social task (M = 6.67) was perceived as more social (p
< .001) than the analytical task (M = 2.22) measured on two separate 9-point
Likert scales from not at all [analytical/social ] to very [analytical/social ].

2.2 Procedure

After giving consent, the survey topic was introduced by addressing the ageing
society and that robots could aid the growing demand for optimization in health-
care. Participants were randomly assigned to one of the four vignettes with a pic-
ture of the robot (male or female) above the task description (analytical or social).
After reading, participants were asked to respond to several statements regarding
their perception of the robot (see Sect. 2.3). The questionnaire ended with some
demographic items and thanking the participant for their contribution.

2.3 Dependent Variables

Participants’ social perception of the robot was measured with the 10-item scale
by Cuddy et al. [7] containing the dimensions of warmth (α = .69) and compe-
tence (α = .67). To measure participants’ trust in the robot, we administered
the 16-item Multi-Dimensional-Measure of Trust scale by Ullman & Malle [39]
containing the dimensions of capacity trust (α = .77) and moral trust (α = .78).
Perceptions of the robot’s humanness were collected using the 20-item scale by
Haslam et al. [17] containing the dimensions of human uniqueness (α = .68
after removing item ‘logical’) and human nature (α = .67 after removing item
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‘individual’). All measures were presented on 7-point Likert scales, and average
construct scores were calculated. Table 1 presents means and standard deviations
of all dependent variables in each of the conditions.

Table 1. Means and standard deviations of dependent variables in each condition

Condition

Male robot Female robot

Analytical task Social task Analytical task Social task

Dependent variables Means (SD) Means (SD) Means (SD) Means (SD)

Trust

Capacity trust 5.09 (1.00) 4.70 (0.94) 4.90 (0.79) 4.46 (0.83)

Moral trust 4.31 (0.92) 4.13 (1.02) 4.06 (0.96) 3.93 (1.15)

Social perception

Warmth 4.18 (1.03) 4.29 (1.24) 3.88 (1.13) 4.00 (1.42)

Competence 4.41 (0.88) 4.04 (1.11) 4.46 (0.81) 3.63 (1.34)

Humanness

Human uniqueness 4.21 (1.21) 4.17 (1.16) 3.87 (0.89) 3.71 (1.19)

Human nature 3.32 (0.93) 3.17 (1.08) 2.99 (1.06) 3.68 (0.83)

2.4 Participants

We recruited 95 participants via various social media, of which we deleted 6
responses (i.e., completion rate below 75%) from further analyses. We analyzed
the data of the remaining 89 participants (52% male, 48% female), with age
ranging from 18 to 79 (M = 29.1, SD = 14.4). Participants had an average
knowledge in the robotics domain (M = 3.6, SD = 1.7) but a lower experience
with robots (M = 2.6, SD = 1.6), as indicated on a 7-point Likert scale from 1
= ‘no knowledge/experience’ to 7 = ‘very knowledgeable/experienced’. Neither
knowledge about nor experience with robots influenced any of the measures in
our study (i.e., no significant correlations with any of the dependent variables).

3 Results

To test our hypotheses, we ran a series of two-way ANOVAs with robot gender
(male vs. female) and task type (analytical vs. social) as independent variables.
Normality checks and Levene’s test indicated that test assumptions were met.

3.1 Trust

We observed a significant main effect for task type (F (3,1) = 4.79, p = .031,
d = .47) on capacity trust, but not for robot gender (F (3,1) = 1.27, p = .264,
d = .25) nor their interaction effect (F (3,1) 0.02, p = .885, d = .05). However,
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no significant main effect was found for robot gender (F (3,1) = 2.05, p = .156,
d = .31) or task type (F(3,1) = 1.26, p = .264, d = .25) on moral trust nor for
their interaction effect (F (3,1) 0.10, p = .748, d = .06). These results suggest
that only people’s capacity trust in a robot is affected and exclusively by the
given task. Specifically, participants have higher trust in a robot’s capacity when
it performed an analytical task compared to a social task (see Fig. 2).

Fig. 2. Effect of robot gender vs. task
type on capacity trust

Fig. 3. Effect of robot gender vs. task
type on competence

3.2 Social Perception

We found no significant main effect for robot gender (F (3,1) = 1.26, p = .265,
d = .25) or task type (F (3,1) = 0.19, p = .666, d = .09) on warmth nor for
their interaction effect (F (3,1) ¡ 0.01, p = .990, d = .05). However, we did
observe a significant main effect for task type (F (3,1) = 7.11, p = .009, d =
.58) on competence, but not for robot gender (F (3,1) = 0.62, p = .434, d =
.17) nor their interaction effect (F (3,1) = 1.04, p = .311, d = .22). These results
suggest that people’s social perception of a robot is mainly affected by the given
task. Specifically, independent of robot gender, people ascribe higher competence
when a robot performs an analytical task compared to a social task (see Fig. 3).

3.3 Humanness

We observed a nearing significant main effect for robot gender (F (3,1) = 2.77,
p = .100, d = .35) on human uniqueness, but not for task type (F (3,1) = 0.17,
p = .683, d = .09) nor their interaction effect (F (3,1) = 0.06, p = .812, d =
.06). Moreover, no significant main effect was observed for robot gender (F (3,1)
= 0.18, p = .671, d = .09) nor for task type (F (3,1) = 1.51, p = .223, d = .28)
on human nature while their interaction effect approached significance (F (3,1) =
3.80, p = .055, d = .44). These results suggest a robot’s gender or given task does
not effect people’s humanness perception of a robot, while a data trend appears
where: (1) perceptions of a robot’s human uniqueness might be affected by robot
gender; and (2) perceptions of a robot’s human nature might be a combined effect
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between robot gender and task type. Specifically, participants seem more inclined
to dehumanize female robots to animals lacking higher-level mental processes
(i.e., lacking human uniqueness) compared to male robots independent of the
given task (see Fig. 4). Moreover, participants seem to dehumanize robots to
emotionless objects (i.e., lacking human nature) exclusively when female robots
perform analytical tasks or male robots perform social tasks (see Fig. 5).

Fig. 4. Effect of robot gender vs. task
type on human uniqueness

Fig. 5. Effect of robot gender vs. task
type on human nature

4 General Discussion

Our study expands existing knowledge in HRI on robot gender and appearance-
task fit by conducting an online vignette study manipulating robot gender (male
vs. female) and task type (analytical vs. social) in a between subject’s design to
investigate their effects on social perception, trust, and humanness.

Our results indicate that people’s trust in a robot is mainly determined by
its capacity, but not its morality, and independent of the robot’s gender. These
results show that trust evaluations of a robot are not linked to a robot’s gender as
we hypothesized (H1). Instead, our results indicate that trusting robots is more
strongly associated with the performed task. Additionally, robots are perceived
as more competent when it performs an analytical task compared to performing
a social task, independent of its gender. This finding contradicts our hypothesis
expecting an effect for robot gender on people’s social perception of a robot,
independent of performed task (H2). When associating gendered robots with
specific tasks, the observed effects of gender stereotyping in both the psychol-
ogy [3] and HRI [13] research seem to steer away from the genderedness of the
robot’s embodiment towards the (perhaps also perceived gender-stereotypical)
performed tasks –at least in terms of social perception and trust in such robots.
An earlier study examining the relationship among occupational gender-roles,
user trust and gendered robots also found no significant difference in the capac-
ity trust of a robot when considering its gender [5]. Similarly, another HRI study
on gender-task fit [25] has reported that people are less willing to accept help
from a robot when executing a typically female task (i.e., a social task).
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These combined results on predominant effects for task type, eliminating
the potential effect of the gendered embodiment, are not necessarily surprising.
Prior research shows that people in general hold more utilitarian perceptions
of robots [9,12,15,41] indicating a preference for executing instrumental tasks.
However, we must highlight potential limitation of the stimuli used in our study.
Although the male robot was rated as significantly more male than the female
robot, it was still on the female side of the gender scale. Similarly, the social
task was rated as significantly less analytical than the analytical task itself, yet
it was on the analytical side of the scale. Future research should therefore not
only explore other task descriptions, occupations, or social roles, but should also
further investigate different gendered appearances cues for robots or include a
gender-neutral robot as well as explore consequential (interaction) effects of such
gender and task manipulations on social perception and trust in HRI. Further-
more, research in psychology [6] as well as HRI [34] shows interaction effects for
trust between the gender of the participant and that of the social other. Such
interaction effects between participant and robot gender have been reported
[30] indicating increased uncanny reactions to other-gender robots when that
robot conforms to gender expectations of warm females and competent males.
Therefore, exploring interaction effects between the participant gender and robot
gender in the context of gender-task fit sounds promising as well.

Psychology literature informed our hypothesized effect of people’s humanness
perceptions of a robot to be a function of both robot gender and performed task
(H3). Although our data did not support this, we feel disposed to discuss the
observed trend in our data indicating a potential interaction effect between robot
gender and performed task on a robot’s perceived humanness. This trend implies
that people tend to dehumanize female robots (regardless of given task) to ani-
mals lacking higher-level mental processes. Sexist responses to female robots have
been reported in HRI research more generally [36,40]. Additionally, the trend
implies that people tend to dehumanize robots to emotionless objects only when
gendered robots perform tasks contradicting gender stereotypes (i.e., a gender-
task interaction effect). Research in social psychology has shown that women are
dehumanized to both animals and objects [33], which is a trigger for aggressing
women [17]. Intermingling gender effects into current debates on robot abuse
(e.g., that mindless robots get bullied [23]) might offer alternative perspectives
on these issues which future research should further explore.

The field of social robotics aims to build robots that can engage in social
interaction scenarios with humans in a natural, familiar, efficient, and above
all intuitive manner [10]. The easiest way to deal with social expectations of
gendered robots including consequential stereotypical inferences is to enhance
people’s social acceptance of gendered robots by tailoring their gendered appear-
ance to their intended task. Alternatively, perhaps an idealistic vision might be
that robots could offer a unique potential to illuminate implicit bias in social
cognition by challenging persisting gender-task stereotypes in society.
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Abstract. In this study, we employed Furhat to investigate how people
attribute gender to a robot and whether the attribution of gender might
elicit stereotypes already at a first impression. We involved 223 partici-
pants in an online study and asked them to rate 15 of Furhat’s predefined
faces in terms of femininity, masculinity, communion, and agency, and
identify which facial cues they based their attribution of gender upon.
Our results show that Furhat’s predefined faces are attributed the same
gender predicted by their names, except for one face which was perceived
as androgynous. They disclose that feminine robots are perceived as less
agentic than masculine robots already at a first impression, and reveal
that vocal cues have higher relevance than facial cues in determining
the gender attributed to a robot. Besides providing a complete account
of the genderedness of Furhat’s predefined faces, the present study also
raises awareness of the importance of gender in the design of robots and
provides a starting point to design more inclusive robotic technologies.

Keywords: Gendered robots · Human-robot interaction · Social
robotics · Inclusive robotics

1 Introduction

Humanoid robots provide users with a natural and largely familiar type of
interaction due to their ability of using a rich variety of verbal and non-verbal
communication modes. However, designing robots in the likes of humans might
have profound implications. For instance, it might bring roboticists and HRI
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researchers to equip robots with gender cues. This seemingly innocuous process
might become problematic, as implicit gender biases and stereotypical gender
norms might be involuntarily transferred into the interaction and contribute to
perpetuating harmful societal stereotypes.

Several researchers have investigated how the genderedness of a humanoid
robot affects people’s perception of it, for instance, in terms of trustworthiness [7,
13], likability [10], competence [6], and acceptance [16]. However, the attribution
of gender as a process of its own is understudied. Although one might argue that
the best way to address gender in Social Robotics is to not provide robots with
gender at all, humanoid robots that are designed as genderless are not necessarily
perceived as such [23]. Hence, understanding how humanoid robots are gendered
and which cues guide the categorization might help us design more inclusive
robotic technologies, and escape the gender binarism that is predominant in
Social Robotics and society at large [22].

In the literature, robots have been gendered in multiple ways. Tannenbaum
et al. identified six main criteria through which gender is assigned to a robot
[24]: (i) Voice: voices with a low frequency (≈110 Hz) have been identified as
masculine, while voices with a high frequency (≈210 Hz) as feminine [17,21]; (ii)
Name: together with voice, names, such as Mary and James, have been used to
manipulate the gender of the robot [6]; (iii) Anatomy : body proportions, such as
the robot’s waist-to-hips ratio and shoulders’ width were used to manipulate the
robot’s genderedness [4], (iv) Color : stereotypically gendered colors, such as pink
and blue, have been employed to elicit the perception of a robot as feminine and
masculine [18], (v) Personality : submissiveness is often perceived as a feminine
personality trait, while dominance as a masculine one [15], and (vi) Domain of
deployment : feminine robots are for instance employed in healthcare scenarios,
while masculine robots in security contexts [5,25].

The choice of the cues used to manipulate a robot’s gender is often bound to
the robot’s embodiment. Traditional robot designs (e.g., Pepper or NAO) allow
researchers to change only a few gender cues, primarily voice and name. Newer
robotic designs, such as blended embodiments (i.e., a combination of animated
agents and physical robots), instead, give scientists the possibility to study how
the combination of multiple gender cues can form a perception of genderedness,
and how these cues are hierarchically organized. A few of these new robotic plat-
forms provide researchers with a predefined set of gendered faces to use in HRI
studies and robotic applications. However, in most cases, it is unclear whether the
gender incorporated by designers in these predefined faces is actually the same
attributed by users, as no documentation is provided in this sense. Not knowing
how a particular face is perceived might cause roboticists to arbitrarily choose the
face to use in a specific context based on common sense knowledge and might lead
them to incorporate their stereotypical image of gender in the interaction.

Gender attribution to humanoid robots is also likely to prompt stereotypi-
cal judgments [11,25]. Humans form first impressions of other individuals in a
few milliseconds [26], and warmth and competence (or agency) are among the
first perceptual dimensions to arise [12]. This process of impression formation
extends to humanoid robots as well. For instance, Paetzel-Prüsmann et al. [19]
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showed that participants formed an impression of Furhat’s warmth and com-
petence in only 5 s and this impression did not change over multiple repeated
interactions with the same robot. More importantly, in line with the Social Psy-
chology research showing that women are more often attributed communal traits
and men agentic traits [2], HRI studies have shown that warmth is a trait more
often attributed to feminine robots, and competence (or agency) to masculine
ones [9]. Hence, human-humanoid interactions are as prone to gender stereotyp-
ing as human-human interactions.

This work aims to bring roboticists’ attention to the important issue of gen-
der in the design of robots and its proneness to elicit stereotyping. We leveraged
on the blended embodiment robot Furhat [3] and carried out a study aimed
at understanding (i) how Furhat’s predefined faces are perceived in terms of
genderedness, (ii) which cues in these faces drive the perception of gendered-
ness, and (iii) how Furhat’s perceived gender affects stereotypical judgements of
communion and agency.

2 Design

We designed a between-subject study with 15 conditions corresponding to 15 dif-
ferent faces of the Furhat robot (cf. Fig. 1). We included in the study all Furhat’s
predefined faces, except for those depicting famous (e.g., Barack Obama) and
fictitious characters (e.g., Elsa). Participants were allocated to one of the 15
conditions. Within each condition, they watched a short introductory video clip
of the Furhat robot saying: “Hello! I am Furhat, nice to meet you”, and com-
pleted a questionnaire before and after watching the video. The robots with
female names – Fedora, Arianne, René, Mei, Anne, and Ursula – were given a
female voice. The robots with male names – Ted, Fred, Max, August, Marty,
Olaf, and Geremy – were given a male voice. The default face, which did not
have any name, was used in two separate conditions, with a female and a male
voice respectively. The videos had the same length (3 s) and were shot from the
same frontal angle with the same background.

Fig. 1. The fourteen agents used in the study. The default robot (the rightmost on the
top row) was used both with a female or male voice (i.e., default female and default
male).



Gender Revealed: Evaluating the Genderedness of Furhat’s Predefined Faces 39

2.1 Measures and Procedure

The online questionnaire was organized as follows. In its initial part, we asked
participants their demographic information: age, gender, nationality, occupation,
English level, and previous experience with robots. In a second step, we asked them
to fill out the Ten Item Personality Measure (TIPI, 7-point Likert scale items rang-
ing from 1 = strongly disagree to 7 = strongly agree) [14], which gauged their
Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Open-
ness to Experience. Then, participants were presented with the short introductory
video of the robot and were asked to rate the robot on nine traits extracted from the
20-item version of the Bem Sex Role Inventory (7-point Likert scale ranging from 1
= strongly disagree to 7 = strongly agree) [8]. Four were communion traits, hence
more related to friendliness and helpfulness [12]: tender, gentle, affectionate, and
sympathetic. Five were agency traits, thus more connected with perceived ability,
skillfulness, and efficacy [12]: having a strong personality, having leadership abili-
ties, being able to make decisions easily, being able to defend its own beliefs, and
being able to act as a leader. As a further step, participants watched the introduc-
tory video again and rated the same robot on femininity and masculinity (7-point
Likert scale ranging from 1 = strongly disagree to 7 = strongly agree), and adult-
likeness (semantic differential ranging from 1 = the robot is similar to a child, to
7 = the robot is similar to an older adult). They also selected which facial cues
guided them in assessing the robot’s gender choosing between: eyebrows shape,
eyebrows size, size of the eyes, shape of the eyes, color of the eyes, nose width, nose
shape, eyelashes, lips shape, color of the lips, color of the cheeks, or other. Finally,
in the last step of the questionnaire, participants were asked to give their opinion on
whether robots should have a gender (7-point Likert scale items ranging 1= from
strongly disagree to 7 = strongly agree) and why they should (or should not) have
a gender (i.e., open question). We also measured participants’ attention through a
check question (i.e., “What is the name of the robot in the video?” or “What does
the robot in the video do?”).

2.2 Participants

An a priori sample size calculation using G*Power considering ANCOVA as
analysis (fixed effects, main effects and interactions, α = .05, power = .95, num-
ber of groups = 15, number of covariates = 3), and moderate effects (f(V) =
0.25), resulted in a sample size of 211 participants. Hence, we recruited 225 par-
ticipants on Amazon Mechanical Turk (AMT) to take part in the study, 15 per
condition. Participants who failed the attention check were immediately rejected,
and new participants were recruited on the go. Overall, 310 participants took
part in the AMT study. Sixty-four of them failed the attention check and were
excluded from the study during data collection. Another 112 were excluded once
the data collection was completed because of odd patterns in their demographic
and open-end answers. To compensate for the small sample size on AMT, we
recruited another 100 participants through social media platforms, and asked
them to fill out the same AMT questionnaire. We excluded 11 of them due to
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failing the attention check. The final sample size was composed of 223 partici-
pants (92 women, 129 men, 2 did not specify), 134 filled out the questionnaire
on AMT, 89 on Google Forms. Participants had an age comprised between 19
and 63 years (M = 33.46, SD = 8.52), 21 of them had a high school diploma,
107 a bachelor’s degree, 58 a Master’s degree, 36 a PhD, and 1 did not specify.
The sample was quite heterogeneous, in terms of nationality, with most partic-
ipants from the US (N = 99). 72.2% of participants had previous experience
with robots, while 27.8% had never seen a robot before.

3 Results

3.1 Perceived Femininity and Masculinity of Furhat’s Faces

As a first step, we performed two ANCOVAs with agent as between-subject
factor (i.e., Furhat’s fifteen faces), participants’ age, robot’s perceived adult-
likeness, and participants’ level of agreement with the assertion “I believe robot’s
should have a gender” as covariates, and the ratings of femininity and masculin-
ity as dependent variables. The results disclosed a significant main effect of agent
on both perceived femininity (F (14, 204) = 19.949, p < .001, ηp2 = .578) and
perceived masculinity (F (14, 208) = 16.070, p < .001, ηp2 = .524). In terms of
covariates, participants’ age was not a significant covariate of perceived feminin-
ity (F (1, 204) = .098, p = .754, ηp2 < .001) and masculinity (F (1, 204) = 1.212,
p = .272, ηp2 = .006). However, while the robot’s perceived adult-likeness and
participants’ level of agreement with the assertion “I believe robot’s should

Table 1. Descriptive statistics of femininity and masculinity: mean (M) and standard
deviation (SD).

Feminine
M (SD)

Masculine
M (SD)

Fedora 6.33 (0.82) 1.93 (0.88)

Arianne 5.94 (1.25) 2.59 (1.80)

René 5.72 (1.13) 2.22 (1.22)

Mei 5.38 (1.98) 2.46 (1.45)

def. fem. 5.27 (1.53) 2.20 (1.01)

Anne 5.25 (1.42) 3.08 (1.78)

Ursula 5.00 (1.77) 2.53 (1.46)

Ted 3.46 (1.81) 4.07 (1.89)

Fred 2.87 (1.54) 4.93 (1.59)

def. male 2.73 (1.91) 4.93 (2.09)

Max 2.20 (1.70) 5.00 (1.89)

August 2.44 (1.31) 5.63 (1.50)

Marty 2.50 (1.29) 5.86 (1.17)

Olaf 1.80 (0.77) 6.00 (1.36)

Geremy 1.80 (1.42) 6.20 (0.94)
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have a gender” were not significant covariates of perceived masculinity (adult-
likeness: F (1, 204) ≈ .000, p = .996, ηp2 < .001; robot’s should have a gender:
F (1, 204) = 1.382, p = .241, ηp2 = .007), they were significant covariates of
perceived femininity (adult-likeness: F (1, 204) = 5.563, p = .019, ηp2 = .027;
robot’s should have a gender: F (1, 204) = 5.689, p = .018, ηp2 = .027). Fur-
ther Pearson’s Product-moment correlations disclosed that the robot’s perceived
femininity was significantly positively correlated with people’s belief that robots
should have a gender (r(221) = .181, p = .007), and perceived masculinity with
the robot’s adult-likeness (r(221) = .177, p = .008).

With regard to differences in femininity and masculinity across Furhat’s faces,
post-hoc analyses with a Bonferroni correction disclosed that Fedora, Arianne,
René, Mei, the default female, and Ursula were perceived as significantly more
feminine than Fred, the default male, Max, August, Marty, Olaf, and Geremy
(cf. Table 1 and 2, and Fig. 2). Similarly, Fedora, Arianne, René, Mei, the default
female, and Ursula were perceived as significantly less masculine than Fred, the
default male, Max, August, Marty, Olaf, and Geremy (cf. Table 2 and Fig. 2).
Two agents constituted an exception to these otherwise clear-cut results, Anne
and Ted. Indeed, while Anne was perceived by participants as differing from Fred,
the default male, Max, August, Marty, Olaf, and Geremy in terms of femininity,
it was perceived as significantly less masculine only with respect to August,
Geremy, Marty, and Olaf, but not compared to Ted, Fred, the default male, and
Max (cf. Table 2 and Fig. 2). Ted was perceived as significantly less feminine
than Arianne, Fedora, and René, significantly more masculine than Fedora, and
marginally less masculine than Geremy (cf. Table 2). However, Ted did not differ
in terms of femininity from René, Mei, the default female, Anne, and Ursula,
and, in terms of masculinity from Fred, the default male, Max, August, Marty,
and Olaf (cf. Table 2). If we look at the plots in Fig. 2, we can see that Ted’s
perceived femininity and masculinity are located close to the central values of the
respective scales, hence we can assume that Ted was perceived by participants
as androgynous.

3.2 Facial Gender Cues

As a second step in the analysis, we wanted to understand which facial cues
guided participants in the assessment of the robot’s genderedness. When taking
all robots’ faces into account, the most influential cues seemed to be the shape
of the lips (53%) and of the eyebrows (49%). These were followed, in descending
order, by the shape of the eyes (37%), the eyebrows size (34%), the color of
the lips (31%), the size of the eyes and the nose shape (28%), the nose width
(22%), the eyelashes (20%), and the color of the cheeks (12%). When taking into
account the robot’s faces perceived as the most feminine, most masculine, and
neutral, instead, we observed slightly different patterns. Fedora’s genderedness
was mostly (≥40%) based on the color of its lips (67%), the eyebrows shape
(53%), the lips shape (47%), and the eyelashes (40%). Geremy’s genderedness
was mostly based on the eyebrows size (67%), the eyebrows shape (60%), and
the nose width (40%), although several participants mentioned mustaches and
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beard in the field “other” (40%). Finally, Ted’s genderedness was mostly based
on the shape of its eyes (54%), eyebrows (46%), and lips (46%).

3.3 Perceived Communion and Agency of Gendered Robots

As a third step, we carried out a factorial analysis using the communion and
agency traits from [8]. All preconditions for running a factorial analysis were
satisfied as shown by a Keyser-Meyer Olkin measure of sampling adequacy of
.860 and a significant Bartlett’s test of sphericity (X2(36) = 997.42, p < 001).
As predicted, the factorial analysis confirmed the existence of two factors. Com-
munion (Cronbach’s α = .777) included the items tender (.828), gentle (.790),
sympathetic (.674), and affectionate (.672), whereas agency (Cronbach’s α =
.893) encompassed the items having leadership abilities (.867), being able to act
as a leader (.857), having a strong personality (.780), being able to defend its
own beliefs (.767), and being able to make decisions easily (.758).

To understand whether the perceived gender of the robot influenced people’s
perception of communion and agency, we labelled each one of the 15 agents
as either feminine (N = 105), masculine (N = 105), or androgynous (N = 13)
based on the results in Sect. 3.1. Given the large difference in sample size between
the androgynous and the feminine and masculine conditions, we excluded the
androgynous condition from the analysis. We performed two ANCOVAs with

Fig. 2. Plots of the scores of femininity and masculinity per robot. The red line indi-
cates the central value of the Likert scale.
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Table 2. Results of the post-hoc analyses exploring differences in perceived femininity
and masculinity across Furhat’s faces (Bonferroni corrected). The significant results are
highlighted in bold. All the results that are not reported in the table had a p = 1.00.

Ted Fred def.male Max August Marty Olaf Geremy

Fedora fem. <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

mas. .025 <.001 <.001 <.001 <.001 <.001 <.001 <.001

Arianne fem. .001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

mas. .715 .003 .001 .001 <.001 <.001 <.001 <.001

René fem. .001 <.001 <.001 <.001 <.001 <.001 <.001 <.001

mas. .097 <.001 <.001 <.001 <.001 <.001 <.001 <.001

Mei fem. .054 <.001 <.001 <.001 <.001 <.001 <.001 <.001

mas. .468 .011 .003 .002 <.001 <.001 <.001 < .001

def. fem. fem. .111 <.001 <.001 <.001 <.001 <.001 <.001 <.001

mas. .098 <.001 <.001 <.001 <.001 <.001 <.001 <.001

Anne fem. .140 .001 .001 <.001 <.001 <.001 <.001 <.001

mas. 1.00 .258 .128 .147 .001 .001 <.001 <.001

Ursula fem. .451 .002 .002 <.001 <.001 <.001 <.001 <.001

mas. .677 .003 .001 .002 <.001 <.001 <.001 <.001

Ted fem. - 1.00 1.00 1.00 1.00 1.00 .195 .354

mas. - 1.00 1.00 1.00 .553 .397 .147 .056

the perceived gender of the robot (feminine and masculine) and the gender of
participants (women and men) as between-subject factors, participants’ age,
robot’s perceived adult-likeness, and participants’ level of agreement with the
assertion “I believe robot’s should have a gender” as covariates, and the ratings
of perceived communion and agency as dependent variables.

The results did not show a significant main effect of participants’ gender
on their attribution of communion (F (1, 201) = 1, 719, p = .191, ηp2 = .008)
and agency to the robot (F (1, 201) = .024, p = .877, ηp2 < .001), nor a sig-
nificant main effect of the perceived gender of the robot on perceived com-
munion (F (1, 201) = .077, p = .781, ηp2 < .001). The interaction effect
of robot’s perceived gender and participant’s gender was also not significant
for both communion (F (1, 201) = .650, p = .421, ηp2 = .003) and agency
(F (1, 201) = 1.847, p = .176, ηp2 = .009). Interestingly though, masculine
robots were attributed more agency (M = 3.78, SD = 1.48, F (1, 201) = 7.966,
p = .005, ηp2 = .038) than feminine ones (M = 3.33, SD = 1.25). When
analyzing the covariates, another interesting result showed up. While partic-
ipants’ age and robots’ adult-likeness were not significant covariates of com-
munion (age: F (1, 201) = .703, p = .403, ηp2 = .003; robot’s adultlikeness:
F (1, 201) = 1.391, p = .241, ηp2 < .001) and agency (age: F (1, 201) = .247,
p = .620, ηp2 = .001; robot’s adultlikeness: F (1, 201) = .058, p = .810,
ηp2 < .001), “I believe robots should have a gender” was a significant covariate
of agency (F (1, 201) = 4.563, p = .034, ηp2 = .022) and a marginally significant
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Table 3. Results of Pearson Product-Moment correlation between participants’ person-
ality traits and the robot’s perceived femininity, masculinity, communion, and agency.
In bold, the significant values.

Personality traits

Extraver. Agreeable. Conscient. Em. Stability Open to Exp.

Femininity r(208) −.058 −.049 .058 −.030 −.009

p .401 .484 .402 .668 .901

Masculinity r(208) .121 .072 −.051 −.005 .053

p .079 .298 .466 .938 .442

Communion r(208) .010 .050 −.001 .082 −.042

p .890 .469 .986 .238 .548

Agency r(208) 193 .111 .064 −.004 .032

p .005 .109 .354 .958 .642

covariate of communion (F (1, 201) = 2.950, p = .087, ηp2 = .014). Further Pear-
son’s Product-moment correlations confirmed a significant positive correlation
between agency and the belief that robots should have a gender (r(208) = .137,
p = .048) and a marginally positive correlation between this latter and commu-
nion (r(208) = .115, p = .097).

As a last step in the analysis, we performed a Pearson Product-Moment Cor-
relation (two-tailed) between participants’ five personality traits and their per-
ceptions of the robot’s femininity, masculinity, communion and agency. Except
for extraversion, which was significantly positively correlated with perceived
agency, we did not find any other significant correlation (cf. Table 3).

4 Discussion

Most predefined Furhat’s faces were attributed the same gender predicted by
their names. However, our analyses revealed two additional findings: (i) vocal
cues are more powerful than facial cues in guiding the attribution of gender to a
robot, and (ii) under certain circumstances, humanoid robots such as Furhat can
be perceived as androgynous. In fact, in our study, the same identical face (i.e.,
default) was perceived as feminine when accompanied by a female voice, and
masculine when accompanied by a male voice, and the face named Ted received
intermediate scores on both masculinity and femininity.

Further analyses we performed gave preliminary insights into how gender is
attributed to a robot through its facial cues and how it might elicit stereotypes.
They showed that the shape of lips and eyebrows is key to attribute gender to a
robot’s face and disclosed that masculine robots are perceived as more agentic
than feminine ones even at a first impression. This is quite a novel result. Indeed,
while the effects of a robot’s genderedness on communion and agency had been
observed before [4,9], they had not been documented after such a short exposure.

While participants’ gender, age, and personality were unrelated to their per-
ceptions of the robots, participants’ belief that robots should be gendered was
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positively related to their ratings of the robot’s femininity and agency. This
result is particularly meaningful as it indicates that the belief that robots should
be gendered is connected with the tendency to stereotype. In this context, it
is also important to report that participants’ perception of the robots’ adult-
likeness was positively correlated with their attribution of masculinity to the
robot. Child-likeness, a bit like femininity, can be associated with vulnerability,
whereas adult-likeness, similar to masculinity, with strength. This result is thus
particularly revealing as it shows that, even if not immediately visible, gender
stereotyping might be strong enough to leak into other perceptual dimensions.

These results are extremely interesting, but should be interpreted with
caution. They refer to how appearance contributes to the formation of what
Søraa calls socio-mechanical gender [23], and, therefore, they might be culture-
dependent. Moreover, they are based on robot’s faces that are mostly white, and
voices that are either female or male. In the future, we plan to replicate the
present study with faces differing in skin color and with genderless voices [1,5].

5 Conclusions

In this paper, we presented a study aimed at ranking the genderedness of Furhat’s
predefined faces, gaining a preliminary understanding of which facial cues elicit
the attribution of gender in a robot’s face, and disclose whether a robot’s gen-
deredness might bring people to attach stereotypes to it, even after a few seconds
of exposure. The results of this study can be used to design less gender-normative
robots, and promote a more inclusive and diverse HRI [20].
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Abstract. Research highlighted thatWestern and Eastern cultures differ in socio-
cognitive mechanisms, such as social inclusion. Interestingly, social inclusion is
a phenomenon that might transfer from human-human to human-robot relation-
ships. Although the literature has shown that individual attitudes towards robots
are shaped by cultural background, little research has investigated the role of
cultural differences in the social inclusion of robots. In the present experiment,
we investigated how cultural differences, in terms of nationality and individual
cultural stance, influence social inclusion of the humanoid robot iCub, in a modi-
fied version of the Cyberball game, a classical experimental paradigm measuring
social ostracism and exclusion mechanisms. Moreover, we investigated whether
the individual tendency to attribute intentionality towards robots modulates the
degree of inclusion of the iCub robot during the Cyberball game. Results sug-
gested that the individuals’ stance towards collectivism and tendency to attribute
a mind to robots both predicted the level of social inclusion of the iCub robot in
our version of the Cyberball game.

Keywords: Human-Robot interaction · Cyberball · Collectivism ·Mind
attribution

1 Introduction

Recent literature showed that culture leads to cognitive and perceptual differences. For
instance, individuals belonging to the Western culture are more analytical and oriented
towards independence, while those belonging to East European cultures are more holis-
tic and prone to interdependency [1]. Notably, these differences can also affect the
phenomenon of social inclusion, which can substantially vary depending on the context
[2]. For instance, affiliation is crucial in collectivistic cultures, where individuals strive
for harmony and avoidance of conflicts. Thus, they tend to focusmore on positive aspects

S. Marchesi and C. Roselli--Equally contributed to this work.

© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 48–57, 2021.
https://doi.org/10.1007/978-3-030-90525-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_5&domain=pdf
http://orcid.org/0000-0001-9931-156X
http://orcid.org/0000-0002-0657-8108
http://orcid.org/0000-0003-3323-7357
https://doi.org/10.1007/978-3-030-90525-5_5


Cultural Values, but not Nationality, Predict 49

of social interactions [3]. In contrast, the core of individualistic cultures is self-reliance,
leading people to benefit less from the experience of being included by others, relative to
people from collectivistic cultures [4]. In this context, little is known about the potential
role of culture in social inclusion of robots. Recent studies in Human-Robot Interaction
(HRI) demonstrated that individuals’ behaviors towards robots might vary across dif-
ferent cultures [5]. For instance, when comparing people from Eastern (China, Japan)
andWestern countries (Germany), participants expressed different degrees of likeability,
satisfaction, trust, and engagement towards robots [6]. Interestingly, the cultural back-
ground also affects the distance kept with robots during social interactions [7]; even
facial expression recognition has been demonstrated to be culturally dependent [8]. In
this context, individualism-collectivism is one of the main dimensions of culture, used
as a means to explain how people represent themselves in relation to others [9]. Recent
findings in HRI have shown that belonging to an individualistic rather than a collectivis-
tic culture can influence individuals’ attitudes towards robots during an interaction. For
example, people from collectivistic societies prefer an implicit communication style in
the robot, whereas people from individualistic societies prefer an explicit and straight-
forward, communication style [10]. Interestingly, the cultural background resulted to be
particularly relevant also for anthropomorphizing, and mind attribution towards robots
[11–13]. For example, recent findings pointed out that people tend to “deny” mind attri-
bution to robots that are categorized as members of the out-group, based on certain
features such as skin color [11] or facial morphology [12]. Nevertheless, to the best of
our knowledge, no previous studies investigated whether cultural differences modulate
people’s tendency towards social inclusion of robots, as a function of mind perception
and attribution of intentionality.

1.1 Aim

The present study had two aims. First, we were interested in evaluating whether cultural
differences modulated individuals’ tendency to socially include robots as members of
their own in-group. To this purpose, we tested two samples of UK and Chinese partici-
pants, who were chosen as representative of an individualistic, Western culture and of a
collectivistic, East Asian culture, respectively [13].

Notably, individual cultural values (cultural stance) might not be in line with the
cultural orientation at the national level. Therefore, we administered the Cultural Values
Scale (CVS), a 26-items dimensional scale that measures cultural stance at the individual
level [14], with a particular focus on the Collectivism subscale. This subscale evaluates
to what extent a person displays a collectivistic orientation, defined as being sensitive
to in-group influences, loyal to in-group norms, and prone to harmony [14]. In order to
measure participants’ individual tendency towards social inclusion of robots, we devel-
oped a modified version of the Cyberball game [15, 16], a well-established paradigm to
investigate social ostracism and social exclusion [17]. In our version, participants were
instructed to play a ball-tossing game with two other players, represented by avatars of
another human and the humanoid robot iCub [18]. During the game, participants were
asked to choose which player they wanted to throw the ball to, being as fast as possible.
Notably, both the human player and iCub were programmed to alternate between the
participant and the other player, with equal probability of throwing the ball to either of
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them. Given these premises, we hypothesized that cultural differences, both at a national
and individual level, would predict the willingness to pass the ball to the robot (that is
to include the robot as an in-group member). More specifically, we hypothesized that
collectivist culture (at the national and/or individual level) would mean more social
inclusion of the robot.

Our second aimwas to investigatewhether attribution of intentionality towards robots
modulates the cultural differences in tendency to socially include the robot in the Cyber-
ball game. To this purpose, we decided to administer the Waytz questionnaire [19], a
7-items subscale of theAnthropomorphismquestionnaire adapted from [20], whichmea-
sures to what extent people ascribe to robots characteristics that are inherently human,
such as intentions, desires, and free will. In other words, the more people would attribute
intentionality to robots, the more they would ascribe human-like characteristics to them,
thereby considering robots closer to human beings. According to this reasoning, cultural
differences would be predictive of the willingness to perceive the robot as a social part-
ner, as a function of attribution of intentionality. Thus, we hypothesized that participants
with collectivistic cultural stancewould bemore likely to ascribe intentionality to robots,
and also to pass the ball more often to the robot.

2 Materials and Methods

2.1 Sample

120 participants were recruited to take part in the study. Data were collected through
the online platform Prolific (https://www.prolific.co/). As inclusion criteria, we selected
the following: age range (18–45 years old), fluent English to ensure that participants
understood the instructions of the experiment, handedness (right-handed), and national-
ity. Specifically, half of participants were English (M age = 25.5; SD age = 5, males =
15, Other= 2), whereas the other half were Chinese (M age = 26.3; SD age = 4.5, males
= 22). Additionally, information about participants’ educational levels was collected
(see Table 1). The study was approved by the local Ethical Committee (Comitato Etico
Regione Liguria) and was conducted in accordance with the Code of Ethics of theWorld
Medical Association (Declaration of Helsinki, 2013). All participants gave informed
consent by ticking an appropriate box in the online form and were naïve to the purpose
of the experiment. They all received an honorarium of 4.40 £ for their participation.

Table 1. Educational levels declared by participants before starting the experiment.

Educational levels

Sample Bachelor Master Ph.D NA

English 20 (33.7%) 9 (15.2%) 3 (5%) 27 (45.8%)

Chinese 17 (28.8%) 28 (47.5%) 7 (11.9%) 8 (13.6%)

https://www.prolific.co/
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2.2 Procedure

As pre-task questionnaires, participants were asked to fill out the Waytz questionnaire,
[19], and the Cultural Values Scale (CVS) [14]. Afterward, participants were given
instructions to perform theCyberball game [15–17] (seeFig. 1). Before starting the game,
a short presentation of the two players was given to participants, who were introduced to
both the human confederate (“This is Davide”) and the iCub robot (“This is iCub”). The
human confederate was depicted as a Caucasian young male, in a neutral background as
well as the iCub robot. We did not manipulate its gender, ethnicity, or race, as previous
findings [21] showed that the presence of humans does not affect individuals’ tendency
to attribute human traits to robots. However, further studies should deeply investigate
whether these aspects have an impact on the probability of robot choice, which was
beyond the scope of this paper.

Each trial started with the presentation of both the human player and iCub, on the
left and the right side of the screen, respectively. The name of the participant (“You”)
was displayed at the bottom. The act of tossing the ball was simulated by presenting a
one-second animation of a ball. When participants received the ball, they were invited
to wait until their identification (i.e. “You”) turned from black into red before passing
the ball. Then, they had 500 ms to decide which player to pass the ball to. Specifically,
to choose the player on their left side (Human) they had to press the “D” key, whereas
the “K” key was to choose the player on the right side of the screen (Robot). To make
sure that participants’ responses were not biased by the different locations of the keys,
before the experiment we asked participants to use a standard QWERTY keyboard to
perform the task. If participants took more than 500 ms to give their response, a red
“time-out” statement was displayed in the middle of the screen and the trial was rejected
as invalid. The task comprised 100 trials in which participants received the ball (plus
trials to replace timeouts).

Fig. 1. Schematic representation of the Cyberball game.

At the end of the Cyberball game, participants filled out a modified version of the
Overlap of Self, Ingroup, and Outgroup (OSIO) scale [22], comprising four items that
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visually represent the closeness between the two players of the Cyberball (i.e., the human
player and the iCub robot, see Fig. 2). From top to bottom, the picture of the two players
tended to get closer. Participants were asked to choose the picture that, according to
them, most precisely represented the current closeness between the human player and
iCub. For all four items, we assigned a value of 1 to the first and a value of 4 to the last
picture. Thus, higher score indicated more closeness between the two players.

All questionnaires and the Cyberball game (stimuli presentation, response timing),
and data collection were programmed by using Psychopy v.2020.1.3 [23].

Fig. 2. Schematic representation of the modified version of the OSIO scale.

3 Results

3.1 Cyberball: Data Pre-Processing

All data were pre-processed with R v.4.0.2 [24], and JASP v.0.14.1 (2020). Data of
one participant from the English sample were not saved, and therefore they were not
included in the analyses. Data of participants with less than 70% of valid trials (valid
trials meant pressing either “D” or “K” within 500 ms after the signal to throw the
ball, that is after the “You” word became red) were discarded from all pre-processing
procedures and subsequent analyses, resulting in a final sample of N = 115 (UK, N
= 57; Chinese N = 58). Moreover, data were cleaned based on participants’ reaction
times (RTs): RTs that were faster than 100 ms were discarded as they were considered
anticipatory responses (43.19% of the trials). Finally, we checked for outliers, excluding
trials that were ± 2 SD from each participants’ mean RTs [25] (5.52% of the trials
were excluded). For each presented effect, we will report between square brackets the
following statistics: unstandardized coefficient of regression (b), standard error (SE), z-
statistics (or t-statistics where appropriate), p-value, and 95% confidence interval (95%
C.I.) (or R2 where appropriate).
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3.2 The Effect of Cultural Differences on Social Inclusion of the Robot

To test whether cultural differences modulate individuals’ tendency to socially include
robots as in-group members, frequency of robot choice was analyzed with a logistic
regression model, with nationality (Chinese/English) as a fixed factor and score calcu-
lated by the Collectivism subscale of the CVS questionnaire [14] as a covariate. Results
showed a main effect of Collectivism [b = 0.15, SE = 0.03, z = 4.12, p = < 0.001, CI
= (0.08; 0.22)], but no interaction with nationality was observed. Specifically, the more
people displayed a collectivistic orientation, the more frequently they tended to pass the
ball to the robot (see Fig. 3).

Fig. 3. Logistic regression model showing the relationship between the probability of choosing
the robot and the Collectivism score.

3.3 The effect of Intentionality Attribution on Social Inclusion of the Robot

To test whether participants’ nationality predicts social inclusion of robot as a function
of intentionality attribution, frequency of robot choice was analyzed with a logistic
regression model, with nationality (Chinese/English) as a fixed factor and Waytz score
as a covariate. Results showed a significant two-way interaction between nationality and
Waytz score [b = 0.1, SE = 1.1, z = 1.99, p = 0.04, CI = (0.001; 0.192)]. To further
investigate this interaction, we performed two logistic regression models, separately for
each nationality (Chinese/English). For Chinese participants, results showed that the
more they tended to attribute intentionality to robots, the less frequently they passed
the ball to the robot [b = -0.09, SE = 0.04, z = -2.49, p = 0.01, CI = (-0.16; -0.02)].
Notably, English participants did not show this pattern [b = 0.006, SE = 0.03, z = 0
.14, p = 0.88, CI = (-0.05; 0.07)] (see Fig. 4).
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Fig. 4. Logistic regression model, showing the relationship between the probability of choosing
the robot and the Waytz score, separately according to nationality (Panel A: Chinese participants;
Panel B: English participants).

3.4 OSIO results

To check for participants’ perceived level of closeness as a function of nationality, we
performed a linear regression considering the OSIO scale as the dependent variable
and nationality as the independent variable. The main effect of nationality emerged as
significant [b = 0.46, SE = 0.11, t = 3.86, p = 0.0001, R2 = 0.06, CI = (0.1; 0.77)],
showing that Chinese participants scored lower at the OSIO scale compared to the UK
participants, thus reporting a lower level of perceived closeness between the human and
the robot agent.

4 Discussion

The present experiment aimed at investigating whether cultural differences, operational-
ized as nationality of participants (Chinese/English) would predict the social inclusion
of the robot as a function of (i) individual collectivistic stance and (ii) attribution of
intentionality towards robots. The tendency to consider the robot as a social in-group
partner was operationalized as the probability of including the humanoid iCub robot in
a ball-tossing game, namely the Cyberball [15–17]. With respect to the first aim, results
showed that the more participants displayed a collectivistic stance, the more they tended
to pass the ball to the robot, regardless of their nationality (Chinese/English). As a con-
sequence, what seems to matter for social inclusion of robots is not national identity
but individuals’ cultural stance. With respect to the second aim (ii), results showed that,
for Chinese participants, the more they tended to attribute intentionality to robots, the
less they chose to pass the ball to iCub in the Cyberball game. This was not the case
for the UK participants, among whom the individual tendency to attribute intentionality
towards robots did not relate to the likelihood of socially including iCub.

This intriguing pattern can perhaps be explained as follows: in collectivist cultures
the more an individual is perceived as autonomous, and having a “mind of one’s own”
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(phrases used in the Waytz questionnaire), the less the individual is perceived as an in-
groupmember. “Autonomy” or “mind of one’s own”might be perceived as being against
the collectivist values.On the other hand, in individualistic cultures, being autonomous or
“having amind of one’s own”might be still more compatible with in-groupmembership,
and hence no negative relationship between Waytz score and social inclusion has been
found for the UK participants. However, results from OSIO scale seem to be in contrast
with our hypothesis, as they showed that Chinese participants perceived less “closeness”
to the robotic agent. Therefore, this speculative interpretation of the patterns of results
needs to be further examined in future research.

At present, our preliminary findings could potentially contribute to design robots that
can take into account people’s cultural stance, at both individual and social levels. For
example, the degree of “autonomy” and “intentionality” displayed by the robot should
be tailored to individuals’ cultural background, as it could bias the perception of the
robot as a social partner.

5 Conclusions

Taken together, our results suggest that social inclusion of robots is influenced by the
individual collectivistic stance. Moreover, attribution of intentionality towards robots
impacts the social exclusion of the robotic agent, but only among members of a collec-
tivist culture. Future research should investigate (and replicate) whether these findings
generalize to other nationalities and cultures and also to ecological settings with an
embodied humanoid robot.
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Abstract. When manipulating objects, humans finely adapt their
motions to the characteristics of what they are handling. Thus, an atten-
tive observer can foresee hidden properties of the manipulated object,
such as its weight, temperature, and even whether it requires special care
in the manipulation. This study is a step towards endowing a humanoid
robot with this last capability. Specifically, we study how a robot can
infer online, from vision alone, whether or not the human partner is
careful when moving an object. We demonstrated that a humanoid robot
could perform this inference with high accuracy (up to 81.3%) even with
a low-resolution camera. Only for short movements without obstacles,
carefulness recognition did not perform well. The prompt recognition
of movement carefulness from observing the partner’s action will allow
robots to adapt their actions on the object to show the same degree of
care as their human partners.

Keywords: Human-robot interaction · Human motion
understanding · Natural communication · Deep learning

1 Introduction

In everyday life, we promptly adapt our movements to the different properties of
the objects we interact with, e.g. weight, size, shape, or temperature. By observ-
ing others manipulating objects, we can easily infer their properties. Thanks
to the product of motor resonance, observing an action triggers the same set
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of neurons of the movement execution, providing a common ground for under-
standing others [16]. Action understanding enables humans to adapt to their
partners during the interaction, and it correlates with the ability to interpret
and send implicit signals for cooperation. A robot should learn how to interpret
such implicit signals to achieve seamless collaboration with humans [3].

Many studies have been conducted to estimate the physical properties of
handled objects, particularly for tasks where humans and robots are expected
to collaborate and interact physically, e.g., handovers. It has been discussed how
the kinematics of the movements correlate with object weight [1,9], and that it
is possible to estimate the object weight by observing another person [19] or a
humanoid robot [18] lifting it.

In this study, we focus on another property which significantly influences
human movements, namely the carefulness. We define it as the caution and
attention that humans exercise when handling an object. This qualitative prop-
erty is influenced both by the object’s physical characteristics, e.g., the object
fragility, and by other factors such as emotional attachment or economic value.
Let us imagine a robot which is asked to receive a glass of water from a human: it
should recognize the human carefulness to manipulate the glass without spilling
water. The carefulness has been explored in studies of human-human handovers
to teach robots how to correctly transfer objects [4,17], monitoring human move-
ments with motion capture sensors. In a previous study, we demonstrated that
it is possible to train a classifier to distinguish between careful and non careful
human motions using only data from a low-resolution camera [10]. However, our
carefulness recognition method was tested offline on precisely segmented data,
with a single experimental scenario. To overcome these limitations, we propose:
(i) an online implementation of our method for carefulness recognition, (ii) a
study to demonstrate its online performance, and (iii) a study to evaluate the
generalization of the method in new scenarios. Although we are aware that care-
fulness only partially accounts for all the possible properties of an object, we
believe that this work is an important step towards a global approach for robots
to interpret human movements relying solely on vision.

2 Methods

The objective of this paper is to prove that a robot, in particular the humanoid
iCub, can use our previously published approach to distinguish online and in dif-
ferent scenarios whether a human is performing a Careful (C) transport motion
or a Not Careful (NC) motion.

2.1 Software Architecture

To achieve the presented goal we developed, using the YARP middleware [12],
the software architecture shown in Fig. 1.

As first step, the robot camera captures images from the scene with a res-
olution of 320 × 240 pixels and 22 Hz frame rate. Then, the following module
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Fig. 1. The system’s architecture structure gathers images from the robot camera and
extracts features from the computed optical flow to discriminate between careful (C)
and non careful (NC) motions

computes the optical flow (OF) using a dense approach [5], and applies a thresh-
old on the OF magnitude to consider only the parts of the image where the
change is significant. This choice introduces the strong assumption that, in the
robot’s field of view, relevant motions are the ones that generate the largest OF.
However, choosing the OF to characterize the human motion, grants the system
robustness to small changes in the point of view. The OF is a suitable tool for
human motion description, for common daily activities such as cooking [7,15],
but also for understanding the meaning of hand gestures [2,11].

The components of the motion velocity (horizontal u and vertical v) are
extracted from the OF, as described by Vignolo et al.. [20], and used to compute
the norm of the tangential velocity, as in Eq. 1. The architecture extracts this
feature with a frequency 15 Hz.

V (t) =
√

u(t)2 + v(t)2 + Δ2
t (1)

The segmentation module implements an heuristic threshold mechanism to
consider only significant data: it detects the start of a motion when the velocity
V (t) overcomes a threshold τ and the end when the velocity becomes lower than
τ . Once the end of the movement is detected, the segmentation module has two
alternatives. If the temporal length is below 1 second, the motion is discarded.
Otherwise, the temporal sequence of size 1×K is fed to the classifier. The mini-
mum duration was set to 1 second since in the training set NC movements, which
were the shortest, had a median duration of 1.2 s and the minimum duration was
1.1 s.

2.2 Model Training and Dataset Description

The classifier model is inspired by our previous work where a Long-Short Term
Memory (LSTM) neural network showed promising results for the classification
of temporal sequences of tangential velocity between careful and non careful
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motions [10]. In this study, we adopted a neural network with one hidden layer
followed by an output layer. The hidden layer is a 32-neuron bidirectional LSTM,
while the output layer has two neurons and a sigmoidal activation function. The
training has been performed using the ADAM optimization algorithm, binary
cross-entropy loss function, exponential decay of the learning rate, and a batch
size of 30. An early stopping condition on the validation loss, i.e., patience set
to 5, has been introduced to prevent over-fitting. A zero-padding and masking
technique has been adopted for the training to handle sequences with different
temporal lengths.

The dataset, used to train and preliminarily test the model, had been col-
lected asking 14 volunteers to displace four glasses in front of iCub. The glasses
differed in weight, light (167 g) or heavy (667 g), and content, since two of them
were filled with water till the brim, to induce careful motions. Even though we
consider the carefulness in the gesture as the feature to be detected, the 500 g
weight difference was introduced to increase the dataset variance (for more detail
about the data collection process, refer to Lastrico et al.., 2020 [10]). The dataset
contains 878 segmented sequences, 438 for each class (C and NC). Preserving the
class balance, we used 72% of the data for the training, 8% for the validation,
and 20% for the test. The trained model got an accuracy of 95.14% on the test
set, in line with the results of our previous work (90.5%) [10]. Furthermore, fol-
lowing a statistical analysis on the available data, we determined the threshold
value τ for the segmentation module as 5.25 pixels/s.

2.3 System Evaluation

Given the system presented in Sect. 2.1 for the discrimination of careful and
non careful motions, we performed new experiments to test its performance. In
particular, the objectives to assess are:

O1 The possibility for the system to work online, providing the C/NC label
when a human completes a transportation motion.

O2 The ability of the system to generalize over unknown human subjects.
O3 The possibility for the system to generalize over new kinds of transportation

motions.

Eleven healthy subjects, members of our organizations, voluntarily agreed to
participate in the data collection (7 females, 4 males, age: 28.0 ± 2.4); none of
them is author of this research. All participants used their dominant hand in
the experiment and only one was left-handed. We divided the volunteers into
two groups G1 (4 females, 1 male, age 27.8 ± 3.6, one left-handed) and G2 (3
females, 3 males, age 28.2± 1.3). We purposely chose different participants from
those included in our training set to grant a wider variability in the new data
collection and assess O2.

The experiment consists of a series of structured transportation movements of
four glasses performed by the participants while sitting at a table in front of iCub.
In all the experiments iCub is passive and simply observes the scene. We use four
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glasses identical to those in the training set, representative of two classes, namely
C and NC, according to the presence or absence of water inside. Throughout the
experiment, a synthetic voice instructs the participant on which object to grasp
and where to place it. Placing positions in the scenario are identified with letters
(see Fig. 2). To receive instruction on the next transportation, the participant
presses a key on a keyboard with their non-dominant hand. In between each
transport motion, the volunteer rests the hands on the table. To investigate
the system’s ability to generalize over new transportation trajectories (O3), we
have designed three experimental scenarios, namely: Shelves, Simple Table and
Advanced Table.

Shelves. The first scenario replicates the one used to collect the training set.
This scenario allows for testing the online performance of the classifier (O1)
and the generalization of the system over new subjects (O2). The objects are
transported back and forth from a fixed position on the table, delimited by a
scale, to two shelves located on the right and left hand side of the table (see
Fig. 2a). Eight positions where the objects can be grasped or placed are defined
on the two shelves. Both G1 and G2 completed the experiment in this scenario,
and each participant performed 32 transport movements (16 careful and 16 non
careful).

Simple Table. This scenario is aimed at assessing the system’s capability to
generalize on a new set of movements (O3) and has been performed only by the
5 volunteers in G1 group. The glasses are moved from the scale in front of the
participant to four positions on the table, delimited by a container, or vice-versa
(seen Fig. 2b). Each volunteer performed 32 transport movements (16 for each
class).

Advanced Table. This setup tests the system’s capability to generalize over
more ample and complex transport movements (O3). In this scenario, the glasses
are moved between positions defined on the table, i.e., the scale is removed. In
this way, the transportation motion is no more towards and away from the
volunteer. Three containers are placed on the table, with two possible posi-
tions each, and columns are mounted on their frontal corners (see Fig. 2c). The
columns obstacle the transportation, making the experiment more challenging.
This more complex setup was designed after a preliminary analysis of the clas-
sification results with the Simple Table task, therefore only volunteers from G2
experimented with this scenario, and each of them performed 16 transport move-
ments (8 for each class).

3 Results

Throughout all the experiments described, the recognition architecture described
in Sect. 2.1 was running, recognizing careful and non careful motions. We analyze
these results for each scenario, focusing on the system accuracy and the recog-
nition time (i.e., the time between the motion end and the system recognition).
Furthermore, we performed a statistical analysis of the velocities extracted from
the OF to highlight possible differences between the three scenarios.
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(a) Shelves

(b) Simple Table

(c) Advanced Table

Fig. 2. Setups of the different scenarios explored for the system evaluation. The Shelves
scenario replicates the training condition (2a). Simple Table (2b) and Advanced Table
(2c) scenarios are introduced to evaluate the generalization performance.
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3.1 Shelves

Table 1. Shelves. Confusion matrix for the transportation movements performed by
the 11 volunteers. The dark grey cell shows the overall accuracy

(a) MD (b) AD / MD

Fig. 3. Shelves. Box plots of the Movement Duration (3a) and the Acceleration Dura-
tion over the Movement Duration of the velocity profiles (3b) for careful (C) and non
careful (NC) transport motions. The red lines represent the medians, the blue rectan-
gles limit the 25th and 75th percentiles, and ∗ indicates a significant difference according
to the Wilcoxon test.

We report in Table 1 the confusion matrix related exclusively to the glasses
transportation movements performed by the 11 participants, with a F1-Score of
72.9%. In this scenario, the classifier has been invoked correctly for all the 352
transport movements (32 movements of 11 volunteers) with a median recognition
time below 150 ms (136.6 ± 18.8 ms - median and median absolute deviation).
However, because of the system design, the classifier was called not only when a
transport movement happened, but every time a velocity above threshold per-
sisted at least for more than one second. Indeed, 300 more movements were
detected and classified as NC 89.3% of the times. These movements are those
that the volunteer performs to reach the glass and to go back to the resting
position. Since these movements are not transportations, it is reasonable that
the majority of them are classified as NC; however, they were not included in
the confusion matrix results.
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(a) MD (b) AD/MD

Fig. 4. Simple Table. Box plots of the Movement Duration (4a) and the Acceleration
Duration over the Movement Duration of the velocity profiles (4b) for careful (C) and
non careful (NC) transport motions. The graphical conventions are the same as in
Fig. 3.

Finally, we characterized the velocity profiles using two metrics, i.e., the
transport movement duration (MD, proposed as significant to investigate the
carefulness by [4]), and the asymmetry of the velocity peak (AD/MD, see Eq. 2).
This last metric is expressed as the acceleration duration (AD) over the move-
ment duration (MD), and it is widely used to characterize arm movements [8,13].

AD/MD =
indexVmax

MD
(2)

Since the populations were not normally distributed, in order to test if these
two metrics showed any significant differences between C and NC motions, we
used a Wilcoxon Signed Rank test. Considering all the 11 participants who
performed the Shelves Task, we report for the MD a p − value: < .01, while for
the AD/MD a p − values: < .05. In Fig. 3 are shown the corresponding ranges
of movement duration and velocity asymmetry.

3.2 Simple Table

This scenario entailed movements that differed from those included in the train-
ing set, and only G1 experienced it. The online classifier did not achieve a good
performance. We report an F1-Score of 66.09% with 96.25% recall and 50.33%
precision values. The system tended to classify as not careful most movements,
correctly identifying only 2.5% of the careful trials. However, the classifier was
rightfully called at the end of every one of the 160 transport movements, with
a median recognition time of 137.8 ± 21.4ms. Regarding the motions detected
beyond the transport ones, the classifier was called 77 times, giving an NC label
in 96.1% of the cases.

Interestingly, analyzing the MD and AD/MD metrics (see Fig. 4), which we
use as distance measures between the careful and not careful movements, the
Wilcoxon Rank Signed test reported p-values > .2 for both. Thus, according to
the chosen metrics, no significant difference in the velocity profiles was detected
between the C and NC groups in this scenario. These results suggest that for
short transportations (about 40 cm) with no obstacles, the kinematics properties
do not change significantly between careful and non careful motions.
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3.3 Advanced Table

This scenario was designed to further test the generalization capability of the
model. Glasses handling has been made more difficult by introducing obstacles
and forcing longer paths between the grasping and release positions. In Table 2
is shown the confusion matrix for the transportation movements in this sce-
nario, where our system reaches an F1-Score of 82.4%. The classifier output was
available for every one of the 96 glass manipulations with a recognition time of
145.3±16.3ms (median and median absolute deviation). Regarding the 143 other
movements that the classifier evaluated, the given label was NC for 97.9% of
them. Finally, concerning the parametric measures (shown in Fig. 5), both differ-
ences between C and NC were statistically significant (MD: p < .01, AD/MD:
p < .05).

Table 2. Advanced Table. Confusion matrix for the classification of transport move-
ments performed by G2 in the generalization task. The dark grey cell shows the overall
accuracy

(a) MD (b) AD/MD

Fig. 5. Advanced Table. Box plots of the movement duration (5a) and asymmetry of
the velocity profiles (5b) for careful (C) and non careful (NC) transport motions. The
graphical conventions are the same as in Fig. 3.

4 Discussion

With this work, we claim that a robot can recognize online motion carefulness
with a low-resolution camera. To this extent, the usage of optical flow as motion
descriptor is quite suitable since it gives a global evaluation of the whole move-
ment and should be robust to small and quick occlusions as the ones posed by
the shelves (see Fig. 1). However, when the motions are slow, as it happens with
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the glasses full of water, the image obstructions might be prolonged and have a
greater impact. The proposed architecture generated a classifier output for every
glass transportation, i.e., no transport movements went undetected. The model
output was readily available at the end of the transportation, with a median
recognition time of 135.9 ± 17.9ms considering all the tasks.
The system detected other movements beyond the transport ones. These motions
were related to the reaching and departing requested to grasp the glass or return
to the resting position. Since, in these instances, no object was being carried, it
is reasonable that the classifier returned a not careful label in the 92.7% of the
occurrences. This result implies that when the system returns the careful label,
this label has high confidence.

In the Shelves scenario, which replicates the training conditions, the perfor-
mance of the overall online classifier are lower than those obtained with offline
testing (which gave 90.5% [10]). However, given the novel testing conditions,
i.e., different light and perspective, and the fact that the motion velocities were
segmented online, these results can suggest that our system is capable of work-
ing online (O1) while generalizing over new subjects (O2). At the same time,
in the Simple Table scenario, our architecture did not obtain a good classifica-
tion performance. We ascribe this to the setup design. Indeed, comparing it to
the Shelves and Advanced Table scenarios (see Fig. 2 for reference), the Sim-
ple Table scenario requires shorter movement without any obstacles. This result
can lead us to hypothesize that the carefulness effect can be stressed by the
boundary conditions of the external environment. Therefore, in a more complex
scenario, it is easier to detect the presence of carefulness. This hypothesis is sup-
ported by the analysis of the distance metrics of the velocity profiles, presented
in Fig. 3.2. Indeed, in the Simple Table scenario, no significant difference was
found in movements duration (MD) or in the asymmetry of the velocity peaks
(AD/MD). These results leave us with two possible answers: (i) in the Simple
Table scenario, volunteers did not act with particular care when transporting
the glasses full of water, or (ii) the tangential velocity is not sufficient in this
case to discriminate between careful and non careful motions, and additional
data are required, e.g., the actor’s gaze pattern.

Finally, our system obtained the best results when monitoring a completely
novel scenario (see Table 2). As we hypothesized previously, this result is linked
to the additional care that the volunteer needs to transport the glass of water
in a more complex setup. To further corroborate this hypothesis, we observe
the striking difference for the MD and AD/MD metrics (see Fig. 5) between the
two classes. Nevertheless, these results support the capability of our system to
work online (O1) and to generalize over new subjects (O2). Furthermore, we
showed that the system can generalize over new scenarios if the transportation
carefulness is evident (O3).

5 Conclusions

With the proposed approach, a robot can identify online whether the object
is handled with care or not, simply observing the human movements. A robot
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may exploit this capability to select its subsequent manipulations to match the
observed carefulness, with no need for a priori knowledge of the object or visual
detection of its physical properties. Since the robot ability to detect the care-
fulness is completely detached from the external appearance of the objects, it
would be possible to generalize over previously unseen objects. To infer the
objects fragility we relied on the information naturally embedded in the human
kinematics during the manipulation, extracted from vision alone; therefore this
approach is meant to be applied when the robot collaborates with a human
partner, for instance in handover tasks, where the human movements can be
observed.

The possibility for the robot to adapt online can be used to modulate the
robot’s movements to be coherent with the properties of the object involved,
mimicking natural human behaviour and conveying the same information about
the object features, being therefore more transparent and readable for the part-
ner. This would greatly facilitate natural implicit communication between human
and robots, and we are currently exploring the dual problem of generating com-
municative robot action, as proposed in [6].

It is worth noting that we tested our system with non-interactive actions (i.e.,
participants perform the task alone, with the robot acting as an observer). An
interactive context might facilitate carefulness recognition, inducing participants
to convey, more explicitly, this information as it happens in human signaling
[3,14]. For this reason, future works should include interactive scenarios together
with a more in-depth validation.
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Abstract. In Iranian Sign Language (ISL), alongside the movement of fin-
gers/arms, the dynamic movement of lips is also essential to perform/recognize a
sign completely and correctly. In a follow up of our previous studies in empow-
ering the RASA social robot to interact with individuals with hearing problems
via sign language, we have proposed two automated lip-reading systems based
on DNN architectures, a CNN-LSTM and a 3D-CNN, on the robotic system to
recognize OuluVS2 database words. In the first network, CNNwas used to extract
static features, and LSTM was used to model temporal dynamics. In the second
one, a 3D-CNN network was used to extract appropriate visual and temporal fea-
tures from the videos. The accuracy rate of 89.44% and 86.39% were obtained
for the presented CNN-LSTM and 3D-CNN networks, respectively; which were
fairly promising for our automated lip-reading robotic system. Although the pro-
posed non-complex networks did not provide the highest accuracy for this database
(based on the literature), 1) theywere able to provide better results than some of the
more complex and even pre-trained networks in the literature, 2) they are trained
very fast, and 3) they are quite appropriate and acceptable for the robotic system
during Human-Robot Interactions (HRI) via sign language.

Keywords: Lip-Reading · Deep learning · Social robot · Convolutional Neural
Network (CNN) · Long Short-Term Memory (LSTM)

1 Introduction

Speech is the most widely used method of communication between humans and is con-
sidered a multisensory process. This process involves both audio and video information.
McGurk and Macdonald [1] showed that visual information has an important effect on
speech recognition. They showed that when inconsistent visual and audio information is
presented to people, they perceive a different sound from what the speaker is saying. For
example, when the sound /ba/ is pronounced but lip movements show /ga/, most people
understand the /da/ sound. Although audio signals are generally much more useful than
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visual signals, it has been shown that most people use lip-reading to understand speech.
Lip-reading is a skill for understanding speech through visual cues such as lipmovement,
tongue, and facial expressions. This skill is used subconsciously and to varying degrees
depending on aspects such as hearing ability or sound conditions [2, 3]. In addition,
people with hearing impairments can understand human speech by processing visual
information from a person’s lips and face [4].

With the rapid development of artificial intelligence technology and the continu-
ous improvement of computer performance, Human-Computer Interaction (HCI) has
become a hot topic. As a significant HCI method, automated lip-reading plays an impor-
tant role in understanding human speech. Automated lip-reading can be widely used in
the fields of computer vision [5], information security [6], driver assistance systems [7],
and deaf education [8–10].

Automated lip-reading systems generally consist of four main parts: face recogni-
tion, lips localization, feature extraction, and classification. Apart from the first two parts,
researchers have proposed different methods for extracting visual features and variety of
classifiers. In terms of feature extraction and classification, automated lip reading sys-
tems can be classified into two general groups: traditional systems and systems based on
Deep Neural Networks (DNN). In traditional systems, feature extraction methods can
be divided into two categories: pixel-based methods and model-based methods [11, 12].
Most primary feature extraction approaches use pixel values extracted from the target
area, such asMultiscale Spatial Analysis (MSA) or Local Binary Pattern (LBP) as visual
information. Then, several compression algorithms are used to reduce the dimensions
such as Principal Component Analysis (PCA) or Discrete Cosine Transform (DCT)
[11, 12]. Pixel-based methods are sensitive to changes in brightness, dimensionality,
and rotation. Therefore, model-based methods such as Active Shape Model (ASM) or
Active Appearance Model (AAM) are proposed to achieve a set of high-level geomet-
ric features with lower dimensions and greater stability [11]. In the second step, the
extracted features are given to a classifier such as a Support Vector Machine (SVM)
or a Hidden Markov Model (HMM). For example, Matthews et al. [11] proposed two
top-down approaches that fit a model of inner and outer lip lines and derive features
from the ASM or the AAM. It is also a bottom-up method that uses MSA to extract
features directly from the pixel intensity. They also used the HMM for classification.
Zhao et al. [12] suggested using a local temporal and spatial descriptor to capture video
dynamics. They considered the entire film sequence as a volume and calculated the LBP
characteristics not only from the original lip images, but also from the accumulated time
patterns that were cross-sectional/vertical sections of the volume. In their work, each
volume of film was divided into smaller rectangular cubes, from which normal LBP his-
tograms were calculated. In recent years, with the availability of large databases and the
advancement of computer processing power, deep learning in many areas of computer
vision, including automated lip-reading, has brought far-reaching benefits. In the first
generation of models based on deep neural networks, deep bottleneck architectures were
used to reduce the dimensions of visual features extracted from the mouth area. These
features were then assigned to a classifier, such as a SVM or the HMM. Ngiam et al. [13]
applied PCA to the mouth area and extracted the bottleneck features with a deep auto
encoder. Deep auto encoder is a type of deep neural network that is commonly used for
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dimensional compression and feature extraction. Speech features were then given to an
SVM that did not consider temporal dynamics. In the second generation of deep mod-
els, deep bottleneck designs are used that extract bottleneck features directly from the
pixels. Li et al. [14] derived bottleneck features from dynamic representations of images
with a Convolutional Neural Network (CNN) which were then given to an HMM for
classification. In the third generation of deep models, a small number of End-to-End
networks are presented that simultaneously extract features directly from the mouth
area and classify them. Petridis et al. [15] proposed a system based on two independent
streams. The first stream extracts the features directly from the input images, while the
second stream extracts features from the difference between two consecutive frames.
Both streams follow a bottleneck architecture. Long Short-Term Memory (LSTM) is
then used to model the temporal dynamic of each stream. Finally, Bidirectional LSTM
(BLSTM) is used to integrate information of two streams. In another study, Fernandez-
Lopez and Sukno [16] introduced LDNet with the goal of training small scale databases
in which a CNN-LSTM architecture is used. They proposed splitting the training set by
visual module and the temporal module.

In a follow up of our previous studies in developing a reciprocal Human-Robot
Interaction platform to interactwith individualswith hearing problems via sign language,
in this paper, we have proposed an automated lip-reading robotic system based on DNN
architectures. The platform is developed on theRASAsocial robot. It should be noted that
in Iranian Sign Language (ISL), in addition to handmovements, lip movements also play
an important role in performing the signs. Therefore, the ability of automated lip-reading
is one of the needs of such robotic system. In this regard, in the first step, by examining the
types of architecture that have recently been presented in the literature, two architectures
have been proposed, tested, and tuned. The first architecture consists of Convolutional
Neural Networks with Long Short-Term Memory and the second architecture is made
with the help of three-dimensional CNN (3D-CNN). The performance of these networks
have been studied on the popular OuluVS2 database [17], which contains 10 frequently
used English phrases.

2 Methodology

2.1 Database

In this research, the Ouluvs2 database [17] has been used. This database consists of
52 speakers, each of which repeats 10 phrases 3 times. In other words, there are 156
examples for each speech. The phrases in this database are as follows: 1- “Excuse me”,
2- “Goodbye”, 3- “Hello”, 4- “How are you”, 5- “Nice to meet you”, 6- “See you”, 7- “I
am sorry”, 8- “Thank you”, 9- “Have a good time”, and 10- “You are welcome”. One of
the features of this database is that the mouth area is already provided and therefore it
satisfies our need to deal with the two parts of face recognition and lips localization. It is
worth mentioning that this database includes videos from 5 angles, and in this research,
data that includes videos from direct angles have been used. Some examples of images
of this database can be seen in Fig. 1.
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Fig. 1. Some examples of images of Ouluvs2 database [17]: a) 1st frame of s14-c1-r1, b) 1st

frame of s36-c8-r2, c) 1st frame of s43-c4-r3 (s = subject, c = class, r = repeat).

2.2 Pre-processing Stage

Before starting the training process, some data processing has been done. Due to the
reduction of additional information and effective parameters in network design, the
images have changed from the RGB mode to the gray mode. In order to make the data
uniform in terms of dimensions, the frame size has been changed to 26 × 44. Also,
in order to equalize the videos in terms of time, 8 middle frames of each video have
been used. Each video is divided into 8 equal parts and the middle frame of each part is
selected. In order to normalize the data, the pixel values are divided by 255. Finally, for
each video, the median frame is subtracted from each one to reduce the dependency of
each subject’s recorded videos during the machine learning process.

2.3 Networks Structure

In this research, two different network structures have been used to train the robotic
system: a CNN-LSTM and a 3D-CNN. In this section, we will go through the details of
these two structures.

CNN-LSTM: As shown in Fig. 2, we used a convolutional architecture that uses
a convolutional layer, a pooling layer, and a fully connected layer to extract the static
features of a frame. Then, in order to model the dynamics of each word, the extracted
features are combined and fed to the LSTM. Softmax takes the probability of each class
and the largest value is selected as a result of the final diagnosis:

σ(�z)i = ezi
∑N

j=1 e
zj

(1)

This network consists of three convolution layers (C1, C2 and C3), three pooling
layers (P1, P2 and P3) and two fully connected layers (Fc4, Fc5). Rectified Linear Unit
(ReLU) is used for the output of each convolution layer as a nonlinear activation function:

f (x) = max(0, x) (2)

In the training phase, dropout is used to prevent overfitting and help generalizability
(Table. 1). In our network, dropout is used in two parts. The first one is after P3 and
before FC4, with the value of 0.4. The second drop out is used in LSTM layer with the
rate of 0.2. The number of parameters for the proposed CNN-LSTM network is 155790.
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Fig. 2. CNN-LSTM neural network details

Table 1. Table of specifications and parameters of CNN-LSTM neural network

Layers C1 P1 C2 P2 C3 P3 FC4 FC5

Kernel 3 × 3 2 × 2 3 × 3 2 × 2 3 × 3 2 × 2 - -

Stride 1 × 1 2 × 2 1 × 1 2 × 2 1 × 1 2 × 2 - -

Channels 32 32 32 32 32 32 32 32

LSTM networks were first introduced in 1997 [18]. The purpose of designing LSTM
networks was to handle the problem of long-term dependency. The main element of
LSTMs is the cell state, which is actually a horizontal line at the top of Fig. 3. In our
proposed network, the size of the LSTM output vector (ht) is 150.

Fig. 3. LSTM network structure

3D-CNN: The 3D-CNN network is quite similar to a regular CNN and the only
difference is in the dimension (Fig. 4). CNN processes data in two dimensions, but 3D-
CNN does so in three dimensions. Other details of the network are the same as before
and no further explanation is needed. More details of this network are given in Table 2.
It should be noted that in this network, dropout is used in two parts. The first time is
after P3 and before FC4 and its value is equal to 0.4 and in the second time, after FC4
and before FC5 and it is equal to 0.2. It should be noted that the dropout rates have been
tuned. The number of parameters for the proposed 3D-CNN network is 180554.
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Table 2. Table of specifications and parameters of 3D-CNN neural network

Layers C1 P1 C2 P2 C3 P3 FC4 FC5

Kernel 3 × 3 × 3 1 × 2 × 2 3 × 3 × 3 1 × 2 × 2 3 × 3 × 3 1 × 2 × 2 - -

Stride 1 × 1 × 1 1 × 2 × 2 1 × 1 × 1 1 × 2 × 2 1 × 1 × 1 1 × 2 × 2 - -

Channels 32 32 32 32 32 32 32 32

Fig. 4. 3D-CNN neural network details

2.4 Training Process

For training, the database is first divided into the training, validation, and test sets. The
standard protocol proposed by the database creators [19] is followed,with 40 people used
for training and validation, and 12 people for testing. These 40 people are then randomly
divided into 35 and 5 people for the training and validating purposes. This means that
there are 1050, 150, and 360 training, validation, and test samples, respectively. The batch
size is equal to 100. Loss function is defined as the categorical cross-entropy. Equation 3
shows the cross-entropy loss function formula where N is the number of samples, k is
the number of classes, ti,j is the actual label, and pi,j is the predicted probability.

cross − entropy loss function = 1

N

N∑

i=1

k∑

j=1

−ti,j ln
(
pi,j

)
(3)

TheAdamax optimization algorithmwith defaultweights is also used. Early stopping
is used for the training; so that if the loss rate in the validation data does not improve
for 30 epochs, the training is stopped and the weights related to the best loss rate in the
validation data, are returned. It should also be noted that Google Colab has been used to
run this program to use higher and faster processing power.

2.5 Robotic Platform: The RASA Social Robot

RASA is a social robot which is designed/fabricated in the Social andCognitive Robotics
Lab., Sharif University of Technology, Iran to teach Sign Language to individuals with
hearing problems and interact with deaf children via ISL [8–10] (Fig. 5). It has active
fingers in its hands to perform variety of ISL words/signs. RASA has a camera mounted
on its head and a Kinect sensor on the chest. The Robotic Operating System (ROS) is
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used to control the software components of this robotic platform. To achieve real time
responses in video analysis and because of the limited computational power of RASA’s
internal computer, an external high processing performance computer is used for the
automated lip-reading process. We have successfully used the ROS Bridge library to
transfer the captured images/videos (by the robot’s camera) to the external computer via a
wireless network. After the recognition of the signs, the output of the lip-reading network
is transferred back to RASA’s internal computer for providing appropriate reactions
during HRI. Currently, we are in the process of developing our ISL dataset for our future
studies via the robot’s camera. However, in this study, we only worked on and reported
the videos from the Ouluvs2 database.

Fig. 5. The RASA robot, a) RASA during an HRI, b) RASA performs the “Hello” sign.

3 Results and Discussion

Asmentioned earlier, we proposed two networks, CNN-LSTM and 3D-CNN, to classify
phrases in theOuluVS2database. TheCNN-LSTMwas able to provide 89.44%accuracy.
Also, the accuracy of the 3D-CNN network was 86.39%. The relative superiority of the
first network indicates the greater power of LSTM networks in modeling time dynamics.
Table 3 reports the results obtained in thiswork aswell as in some related previousworks.
Saitoh et al. [20] proposed several systems that used pre-trained models. These systems
were pre-trained using datasets that were not related to lip-reading and fine-tuned for
OuluVS2. The GoogLeNet model achieves a maximum accuracy of 85.60%. Chung
and Zisserman [21] also fine-tuned two systems for OuluVS2 which were specifically
pre-trained for lip-reading. Those systems were pre-trained using very large LRW and
LRS databases and achieved a maximum accuracy of 94.10%. The rest of the systems
that have also been reported do not use pre-trained models. Petridis et al. [15] designed
a network made of deep auto encoder with LSTM and reported 84.50% accuracy. In
their recent work [22], they improved their architecture and achieved 95.60% accuracy
using deep auto encoder with BLSTM. In another study, Fernandez-Lopez and Sukno
[16] introduced LDNet with the goal of training small scale databases. They used a
CNN-LSTM architecture containing almost 15 million parameters, which is a huge
amount for small datasets. To solve this problem, they proposed to split the training
set by visual module and the temporal module. The goal of the visual module is to
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parametrize the visual information observable at a given time instant orwindowwhile the
temporal module aims to map the visual features into speech units while incorporating
temporal constraints to ensure that the decoded message is coherent. They reported
91.38% accuracy.

Table 3. Comparison of the accuracy of the proposed networks with previous works.

Method Accuracy (%)

CFI + AlexNet [20] (with pre-trained models) 82.80

CFI + GoogLeNet [20] (with pre-trained models) 85.60

VGG-M + LSTM [21] (with pre-trainded models) 31.90

SyncNet + LSTM [21] (with pre-trained models) 94.10

Encoder + LSTM [15] 84.50

Encoder + BLSTM [22] 95.60

CNN + LSTM [16] 91.38

CNN + LSTM (this study) 89.44

3D-CNN (this study) 86.39

Our proposed networks were able to achieve 89.44% and 86.39% accuracy which
were fairly promising. Although this accuracy did not provide the best accuracy among
the existing systems, it was able to provide even better performance than some pre-
trained systems. This accuracy is quite desirable and appropriate for our current purpose.
Although we have a distance of 5–10% with the best accuracy, in practical work and
implementation on the social robot, this difference is not very effective in the final result
(e.g. the platform’s acceptance rate, the robot’s overall performance, etc.). We have been
able to achieve a completely desirable accuracy without the use of pre-trained networks
andwithout the need to go intomuch detail of network design. It is worthmentioning that
the whole network training process is performed in less than 10 min on Google Colab.
Therefore, it is definitely acceptable in terms of time/computational cost. It is expected
that higher accuracies can be achieved by optimizing both the designed networks (i.e.
different hyper-parameters) and the data processing. For example, it is possible that our
approach, which used 8 intermediate frames, did not adequately represent the whole
speech. In the network architecture section, it may be possible to get higher accuracy
by changing the number/size of kernels or even the dropout rate (i.e. optimizing the
networks’ hyper-parameters [23, 24]). All in all, both of the proposed networks seem to
be fairly promising for conducting HRI via sign language.

Figure 6-a shows the normalized confusion matrix for our CNN-LSTM network.
The most common error is related to the phrase “8- Thank you”, which is confused with
the word “3- Hello”, which is consistent with previous studies [22]. (The next highest
errors belong to “2- Goodbye” which is confused with “10- You are welcome”, “10-
You are welcome” which is confused with “4- How are you?”, and “3- Hello” which is
confused with “8- Thank you”).
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Figure 6-b shows the normalized confusion matrix for the proposed 3D-CNN net-
work. In this network, again, as in the previous network, the highest error is related to the
phrase “8- Thank you”, which is confused with the word “3- Hello”. (The next highest
errors belong to “6- See you”, which is confused with “3- Hello”, and “3- Hello”, which
is confused with “8- Thank you”).

Fig. 6. Normalized confusion matrix of the proposed a) CNN-LSTM network, and b) 3D-CNN
network.

Figure 7 shows the precision and recall values for each class and both networks.
Precision is the fraction of relevant instances among the retrieved instances, while recall
or sensitivity is the fraction of relevant instances that were retrieved. These values are
calculated as follows: (TP = true positives, FP = false positives, FN = false negatives.)

Precision = TP

TP + FP
(4)

Recall = TP

TP + FN
(5)

As can be seen, in both networks, all words provide acceptable results except “3-
Hello” in precision and “8-Thank you” in recall. It is also observed that the CNN-LSTM
network generally gives a slightly better results than the 3D-CNN network. The average
precision is 0.90 and average recall is 0.89 for the CNN-LSTM network and 0.87 and
0.86 for the 3D-CNN network, respectively.
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Fig. 7. Precision and recall for the proposed CNN-LSTM and 3D-CNN networks.

4 Limitations and Future Work

Currently, we are working on gathering/providing our own ISL database via the robot’s
camera to empower the RASA robot to automatically lip-read the users. Our next step
is trying to improve the hyper-parameters of the designed networks by applying specific
optimization processes to bring our accuracy closer to the best accuracies in the literature.
We are trying to collect more words in our database to test the performance of the
proposed networks despite the increase in classes. We hope that, due to their non-pre-
trained kernels, the current networks can be appropriately generalized to ISL sings,
which is a non-English sign language. Our ultimate goal of such studies is to develop a
reciprocal HRI platform based on the ISL.

5 Conclusion

In this study, we proposed two neural network architectures for automated lip-reading
robotic system, one of which is a combination of Convolution Neural Networks and
Long Short-Term Memory, and the other is a three-dimensional CNN. In this study, the
OuluVS2 dataset, which contains 10 frequently used English phrases presented in the
mouth area, is used. Eight middle frames are selected from the mouth area and given
to the CNN network, and then the static features extracted from the CNN are given
to the LSTM to model the temporal dynamics and finally to classify. The 3D-CNN
network also tries to adjust the effect of time on the features with the help of the third
dimension. Our proposed networks were able to achieve 89.44% accuracy on the CNN-
LSTM and 86.39% accuracy on the 3D-CNN. Although these networks do not provide
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the best accuracies for this database, they have been able to obtain even better accuracies
than some pre-trained networks, with less details and complexity and very low training
time. Also, according to our ultimate goal, which is to implement this system on RASA
social robot for reciprocal interactions through ISL, the obtained accuracies are quite
appropriate and acceptable.
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Abstract. This paper describes the development of a reactive behav-
ioral response framework for the tabletop robot Haru. The framework
enables the robot to react to external stimuli through a repertoire of
expressive routines. The behavioral response framework is inspired by
the simple reactive behaviors of organisms (e.g. reflexes) based on a
bottom-up attention model. First, a participatory study for behavior
elicitation was conducted. We explored the possible expressive behaviors
of the robot and the possible stimuli trigger. These stimuli-response (S-R)
pairs are designed befitting the robot’s characteristics. Then, we devel-
oped a perception and a reactive behavior module that automatically
translates any perceived stimulus into expressive behavioral responses.
We evaluated the proposed S-R framework using Haru in an interaction
setting and our results show an increase in human attention activity
indicative of its positive impact to conveying the robot’s sense of agency.

Keywords: Social robot · Telepresence · Human robot interaction

1 Introduction

One of the aims in social robotics is to design robots that are fun, intuitive,
and enjoyable to interact with in social situations, without necessitating spe-
cific training of the user. It is clear that not only the robot’s design but also its
behaviour will affect the quality of the interaction. Robots that display social
behaviours, such as joint attention, task-irrelevant speech, or naming their inter-
actants by name can be rated as more engaging than robots whose behaviour
c© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 85–95, 2021.
https://doi.org/10.1007/978-3-030-90525-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_8&domain=pdf
http://orcid.org/0000-0002-3191-6818
http://orcid.org/0000-0003-1289-2504
http://orcid.org/0000-0003-1177-4119
http://orcid.org/0000-0002-7736-6110
http://orcid.org/0000-0002-9530-4714
http://orcid.org/0000-0002-4979-2083
http://orcid.org/0000-0003-3603-1645
http://orcid.org/0000-0003-0734-6621
http://orcid.org/0000-0003-4927-8647
https://doi.org/10.1007/978-3-030-90525-5_8


86 R. Gomez et al.

is more mechanical [2]. It has even been shown that human behaviour in tasks
that do not involve the robot is modulated by how social a robot is if one is
present [11]. On the other hand, merely increasing social behaviours does not
guarantee an improvement in the quality of the interaction [8]; how precisely to
design appropriate behaviours thus remains an open question. It does however
appear that behaviours that lead humans to attribute a certain sense of agency
to the robot are one piece of the puzzle. In earlier work, we have argued that
simple, reactive behaviours are another type of robot behaviour that can convey
a sense of agency for a robot [18].

Living animals demonstrate various types of reactive behaviours, from
reflexes over stimulus-response behaviours to fixed action patterns. The com-
mon thread is that these behaviours typically do not involve learning but are
nonetheless essential for the animal. Robotics also has a long history of inter-
est in such behaviours, starting with the Machina Speculatrix [19] to various
Braitenberg vehicles [3]. Such simple behaviours are also a core concept in sub-
sumption architectures, where the key idea is that they come together to solve a
more complex problem without the need of explicit representations [4]. In many
ways, reactive behaviours are used to great effect by all animals and humans, as
well as early non-social robots. Since they appear to be a fundamental feature
in living beings, it is reasonable to assume that, if designed properly, they could
also contribute to a perceived sense of agency of a social robot platform.

In this paper, we explore these ideas further. Specifically, we endow the robot
with simple S-R behaviours that are relevant in a social context befitting a robot
like Haru, expanding our previous work in [18]. We demonstrate, inspired by
reactive behaviours in biology, that simple behavioural responses to social stimuli
can be of benefit to a social robot, influencing the attention the robot receives and
potentially the degree that the it is ascribed some agency. Such social stimulus-
response behaviours might therefore be a useful component in general cognitive
architectures for social robots. Like early subsumption architecture models, we
essentially argue for both a reactive and a deliberative layer; however, unlike a
typical subsumption architecture, the reactive layer does not have to contribute
to the main task of the robot; instead, it contains behaviours that purely exist for
the benefit of the social appearance of the robot. As such, this also demonstrates
that behaviours that are socially relevant and promote an engaging interaction
do not have to be deliberative.

This paper is organized as follows, we present the background in Sect. 2.
Then, we discuss the elicitation study in which we explored Haru’s S-R behaviors
in Sect. 3, followed by its implementation through programming in Sect. 4. Conse-
quently we will describe the experimental setup used in evaluating the impact of
the S-R behaviors in conveying a sense of robot agency in Sect. 5. The results and
discussion is presented in Sect. 6 and finally we conclude this paper in Sect. 7.

2 Background

Haru is an experimental tabletop robot for investigating new forms of
expressiveness-centered empathetic communication [6] for supporting long-term
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and sustainable human-robot interaction. Haru has a total of 5 degrees of free-
dom. It can rotate its circular base, lean its neck forward and backward, rotate
and tilt its rectangular eyes, and it can push and retract the inner module of its
eyes. Furthermore, each of the eyes includes a 3-inch LCD screen. In addition, two
sets of addressable LED matrices are also used, one bordering the eyes, the other
in the body to serve as its mouth. The robot also has a built-in stereo speaker for
verbal communication using text-to-speech (TTS), and for non-verbal vocaliza-
tion using a repertoire of organic sounds. To design Haru’s expressivity, we built
the Expression Composer Studio, a tool to simplify the combinations of the differ-
ent modalities including all of the actuators. The tool permits to combine the full
range of robot modalities to convey expressions [7]. Figure 1 shows the appearance
of this tool. The commands for the 5 robot joints can be set by demonstrating the
trajectories using a joystick or the mouse, which are then recorded in the proper
format. The tool also allows determining the timed evolution of the addressable
LEDs for the mouth and the eyes. Furthermore, the user can load multimedia files
such as audio files for sounds videos for LCD screens. The resulting composition
called routine can then be simulated through the tool and refined accordingly. The
tool generates a file format that can be loaded to the actual robot hardware. By
using this tool, users can design multimodal routines that constitute the reactive
behaviors of the robot with ease.

Fig. 1. Expression composer studio: a. Actuators, LCDs and LEDs pane; B. Simulator
(upper-right), C. Refinement controls (upper-left).

3 Study I: Identifying Suitable S-R Behaviors

3.1 Study Description

We previously conducted a study in which Haru was treated as a social creature
subject to direct coupling between perception and action [18]. In that study, the
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participants explored the possible behavioral reactions of Haru. The behaviors
were limited to reactive responses, specifically near instantaneous reactions of
the robot when presented with a stimuli. The stimuli could be anything that
the participants imagine. There were no constraints imposed as to what the
robot can perceive, as the robot is assumed to be a “living” social creature with
the same perception capabilities as actual living beings. The participants were
provided sufficient amount of information pertaining to the research objectives
and the roles of Haru as a social robot, in particular as a companion species.

To identify a library of suitable stimulus-response (S-R) behaviours for Haru,
we use a similar approach as in the previous study [18], except that participants
here were informed of the actual perception capabilities supported by the robot
as discussed in Sect. 4. Based on this constraint, the participants were instructed
to refactor the results of the previous study (i.e. S-R pairs) in light of the actual
perception capabilities. In particular, based on the their understanding of Haru’s
role as a companion species, they were asked to:

– Identify possible scenarios that would be interesting as a context to develop
a S-R for the robot and come up with a very brief title (e.g. drooling reaction
infront of a sweet treat).

– Provide a description of the underlying reasons why such a scenario would be
appropriate or interesting for Haru. Although the participants are encouraged
to find a unique reason befitting Haru, references to reactive behaviors of
living correlates are also encouraged. After all, understanding these might
feel more natural when framed with something that is familiar to us humans.

– Enumerate the perception (modalities) involved in representing the stimuli,
based on the actual perception supported by the system as discussed in Sect. 4.
This information simplifies the programming of S-R.

– Describe the reactive response of the robot and subsequently compose it
using the Expression Designer Studio as discussed in Sect. 2.

In total, the participants identified 30 scenarios for use with the robot. An
example of the scenarios is provided in Table 1.

3.2 Behavioral Repertoire Design

The participants were provided with the basic multimedia elements such as robot
eye templates, eye movements, sounds, LED patterns and pre-made expressive
routines. With all of these provisions, participants were instructed to compose
novel expressive behaviors in accordance with what they deem as appropriate
using the Expression Composer Studio in Fig. 1. Each reactive response ranges
from 3 s – 10 s in duration and varies in terms of complexity. Moreover, every
participant was given a tutorial on how to use the Expression Composer Studio,
as well as some pre-existing designs serving as samples for familiarization with
the software components.
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Table 1. Example stimulus-response scenarios identified by the participants.

Scenario Description Perception Reactive response

Facial
Expression
Mimicry

Mirror neurons, Empathy
through facial expressions

Facing at Haru and
predefined facial
expressions detected

Haru’s rendition of
detected facial
expression

Gesture
Mimicry

Mirror neurons, Empathy
through body gestures

Facing at Haru and
predefined gestures
detected

Haru’s rendition of
detected gesture
expression

Sound
Mimicry

Mirroring salient sound
coming from people and
environment

Sound detection:
human laugh, music, etc.

Haru’s rendition of
laughing, dancing, etc.

Name
Recogni-
tion

Recognizing one’s name is
an
important bottom-up
attention feature

Speech: “Hi Haru”,
“Where is Haru”, etc.

Surprise, happy, smile,
etc.
Haru orienting to the
person

Relative
Distance

Social-distancing,
Proxemics

Awareness of predefined
Distances
between Haru and person

Scared, surprise, etc.

Tickling
Haru

Babies and pets love to be
tickled,
which causes us to laugh
in turn.

Gesture: Tickling Happy
Laughing sound

Heart in
hand

Unconscious response to
gestures
indicating friendliness

Gesture: Heart Happy
Heart in eye

Applause An expression of approval
augurs good feeling

Gesture: Clapping
Sound: Clapping

Happy
Shy

Keyword Special keywords connect
to
favorites and preferences:
sweet treats,
playful activities,
weather, etc.

Keywords: “ice cream”,
“cake”,
“hide and seek”, “sunny",
etc.

Drooling, display of
sweet treat emojis,
weather emojis in eyes,
etc.

Startle The startle response is an
unconscious defensive
response
to a sudden or
threatening stimuli

Sound detection:
loud noise, sudden noise

Surprise

Peekaboo Peekaboo is loved by
adults and kids,
it stimulates interaction.

Gesture: peekaboo Haru’s rendition of
peekaboo
Surprise+laugh

Bowing Bowing is an important
body
language in Asian
cultures.

Gesture: bowing Haru’s rendition of
bowing
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Fig. 2. Haru’s perception of a person’s interaction.

4 Programming Bottom-Up Behavior Mechanism

4.1 Perception

Haru, equipped with audio-visual perception system depicted in Fig. 2, enables
it to perceive stimuli from human and is described as follows:

– Body pose: skeleton detection [16] is used to obtain the poses of the different
persons’ parts (limbs, body, head) in the field of view.

– Gestures: Roughly 50 bodily movements can be recognized such as waving,
pointing, teasing, scratching one’s head, asking Haru to be quiet, jumping,
laughing, face covering, bowing, clapping, walking, standing, sitting down,
standing up, among others [21].

– Face features: Face in the database can be identified. Additionally, facial
features, including facial points and two facial expressions (e.g. smiling and
frowning) are supported.

– Speech features: A microphone array for localization and separation speech,
together with an automatic speech recognition (ASR) and natural language
understanding [13].

4.2 Behavior Trees

We need a framework to compose reactive behaviors that link perception and
action, so that the robot reacts to sensorial input to trigger actions related to
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engagement, agency, etc., as presented in Table 1. The framework should, there-
fore, allow to define the behavior of the robot by combining the different actua-
tion components and modalities, and by accessing to the perception results. We
employ Behaviour Trees (BTs)1 to create such reactive behaviors. First origi-
nated as a tool for Non-Player Character (NPC) development in the video game
industry, BTs are becoming widespread in robotics. They are a convenient tool
to create reactive and composable behaviors. By using simple control structures
from BTs, it is straightforward to access the perceptual stimuli and react accord-
ingly, following the scenarios described above.

5 Study II: Attention in Function of Social S-R Behaviors
5.1 Experimental Setup

We integrated the reactive behavior model discussed in Sect. 4 in a curated inter-
action scenario which simultaneously involved two participants (A and B). The
interaction between persons A and B is performed in front of the robot. The
robot is equipped with the S-R framework and does not directly partake in the
interaction between A and B, except when its bottom-up reactive behavior (S-R
behavior) is triggered, as it continually observes in the background. Person A
is the control person, tasked to take lead of the interaction/conversation with
Person B. This role is played by a confederate, chosen among the members of
the research team. Thus, the person is knowledgeable of the experiment and
aware of the robot’s reactive behaviors and the corresponding triggers as shown
in Table 1). Person B is the actual test subject, and unaware of the existence of
the reactive behaviors of Haru. During the interaction, Person A intentionally
triggers the reactive behaviors of the robot. The interaction is partially scripted
so that the occurrences of triggering the robot’s reactive behaviors are maxi-
mized. We investigate the effect of the bottom-up reactive responses on Person
B’s perception of the robot by measuring their reactions to the robot during the
interaction. In total, 9 test participants take on the role of participant B.

5.2 Interaction Design

The partially scripted interaction is curated by the control participant A through
a combination of dialog, gestural actions, etc., that triggers the robot’s behavior.
There are no strict rules in the interaction, the only main requirement is to
steer or lead the interaction eliciting behavioral response from the robot. For
example, participant A would talk about the weather or ask questions regarding
sweet treats, etc., which are defined in Haru’s favorites. During the interaction,
participant A may crack some jokes resulting to laughter and giggles which can
be picked up by Haru. Moreover, the interaction would also involve gestural
movements that are defined in S-R of Haru such as clapping, etc. To make it
a more immersive and 2-way interaction, the control participant ensures that
stimulus trigger should come from the actual test participant B by steering the
interaction in such a manner.
1 https://www.behaviortree.dev.

https://www.behaviortree.dev
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Fig. 3. Normalized attention measurements during curated interaction.

5.3 Objective Attention Metrics

The test users’ (i.e. Person B’s) observable behavior such as unconscious
responses to the robot’s actions can provide objective evaluation metrics [1].
For example, a robot attracting the user’s attention can be implicitly evaluated
by how long it takes a user to look at the robot [20], and the manifestation
of facial expressions and voice reactions [9,15]. A number of attention models
based on saliency maps are used to predict the area of attention from subjective
first-person view images [5,12]. This includes the prediction of subjective gaze
location based on the hypothesis that the eyes always involuntarily shift to the
location of the area of attention [10,14]. Based on this hypothesis, we can use
the robot’s viewpoint to calculate Person B’s attention. We used the perception
system described in Sect. 4 to detect head direction H (i.e., person looking at the
robot), change in facial expression F (e.g. neutral to smiling, grinning, laugh-
ing, etc.) and voice reactions conveying astonishment V (e.g. laughing, saying
reserved word such as “wow”, etc.). The normalized attention is defined as,

A =
H(1 + F ) + V

3
(1)

where H,F and V set to 1 when detected, respectively. Note that F is only taken
into account when H is active to ensure that facial expression is elicited by the
robot (i.e. when the human is facing towards the direction of the robot).
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6 Results and Discussion

We measured the effect of the bottom-up reactive (expressive) behaviors on the
attention model A defined in Sect. 5.3. In particular, we measure the salient
features such as head direction H, change in facial expression F and voice reac-
tions V every time the robot executes the bottom-up reactive behaviors during
the curated interaction discussed in Sect. 5.1. Moreover, we also investigated the
impact to the sense of agency when the expressiveness of the robot is modulated.
We modulated the robot’s expressivity in three different levels (A, B and C). We
organized our evaluation in three different sessions, whereas each session consti-
tutes of three test participants for each level. Hence, a total of three evaluation
sessions covered all of the 9 test participants.

We show the results for the 3 evaluation sessions in Fig. 3. In this figure,
Level (A) utilizes the default full expressiveness of the robot by using all of its
modalities in composing the reactive behavior. In Level (B), we toned down the
robot’s expressiveness making it less expressive than that in Level (A). Finally
in Level (C), we set the modalities to a bare minimum, retaining only the audio
components and removed the robot’s movements, LCD and LED displays akin
to smart speakers. It is apparent from Fig. 3 that the robot attracts more atten-
tion when utilizing its full expressive abilities. This result is consistent with the
feature integration theory of attention [17], in which the combination of multi-
ple features improved the accuracy of the saliency map. Our results show some
evidence of attention as defined in Sect. 5.3 to be elicited by the robot responses,
suggesting a perceived sense of robot agency. We also show that the observed
attention is impacted by the level of expressivity. The more expressive the robot
is, the more attention it receives from the test participants. Lastly, we could
observe the result trend found in Fig. 3 consistently throughout all of the eval-
uation sessions. Furthermore, we also asked the participants as to whether they
feel some form of agency when the robot is equipped with the stimuli-reaction
behavior and all of the participants confirmed the existence of agency in one
form or another. We note that in this experiment we used meaningful robot
behaviors with socially relevant multimodal actions for effective communication
and not just mere movements. Hence we are not to test here the cause and
effect between a meaningless movement and attention. We have shown in our
previous work that meaningless and irrelevant robot actions were detected and
disliked by participants [7]. In this paper, we only used curated and well-designed
socially-relevant robot actions.

7 Conclusion

We first developed a bottom-up reactive behavior framework through an elicita-
tion study befitting the robot’s expressive character. We then integrated these
into the robot Haru with complete perception and reaction modules support to
automate the S-R behavior. Next, we evaluated its effect on the attribution of
agency to the robot by measuring attention directed towards the robot by the
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participants in function of its expressiveness. Our current evaluation provides an
initial insights regarding Haru’s bottom-up behavioral response and attention.
In the future, we will conduct more rigid experiments to investigate further the
understanding of robot agency beyond attention measurement.
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Abstract. In this paper, we will discuss and investigate the conditions
and requirements for future robots to be efficiently altruistic. Robots,
which are integrated into our lives and become a part of society, will have
to carefully balance their time between their labor and altruistic behav-
iors as human workers are used to do. First, we single out three essential
points for achieving this balance: 1) The robot should perform altruistic
actions without impacting the performance of its designated tasks more
than allowed by its owner. 2) The robot should take into account its
expected future workload when predicting the impact of engaging in an
altruistic action. 3) The robot should take into account the benefit for the
society when engaging in an altruistic action. Then, we propose a general
behavioral model that makes it possible to achieve this balance. Simula-
tion results show that a robot using the proposed behavioral model could
carry out some altruistic actions and still be performing its assigned labor
efficiently.

Keywords: Service robot · Altruistic behavior · Scheduling

1 Introduction

Recently, we started to see robots in public spaces and commercial facilities
[4,6,8,11,13]. These robots often form an additional task force that supports
and supplements the human workers. However, the shortage of work force that
threatens many of the aging developed economies pushes for the development of
robots that could replace humans in jobs that can no longer be purveyed. Then,
in such future where robots participate on a very large scale in society, they will
have to be “members of the society” and not “just machines” (Fig. 1).

Katz argues that the voluntary contribution of individuals is indispensable
for maintaining the functioning of society [7]. A community cannot consist of
individuals who act selfishly. To maintain organizational activities, Katz thinks
that members of society have to not only “continue to participate in society” and
“ensure that they fulfill their assigned roles”, but also “act voluntarily beyond
their assigned roles” to achieve organizational goals. Giving up your seat on the
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Fig. 1. An example of altruistic behaviors: a delivery robot picks up trash

train, picking up and delivering lost items, picking up trash, and other small
everyday voluntarily actions are maybe less obvious, but they have a huge influ-
ence on our daily lives too. It is the accumulation of all these actions that has led
to the achievement of organizational goals and has maintained today’s human
society. As a consequence, prioritizing one’s own interest at all costs is frowned
upon and considered to go against the morality of human society.

Unfortunately, robots are not designed to perform such voluntary actions for
the good of the community. Robots are expensive and often the main incentive
for investing in one is the promise of an efficiency and running costs that would
bring profit to the owner. These robots would not exhibit the simple altruistic
behaviors we are used to. Consequently, in a future society where such robots are
everywhere, it is likely they would be seen as selfish and would not be accepted
as a members of society.

Meanwhile, the altruistic behaviour of a robot is sometimes at odds with the
interests of its owner.

According to Trivers, an altruistic behavior is a behavior that benefits others
and has little to do with oneself [14]. Then, interrupting one’s duty to carry out
an altruistic behavior probably goes against one’s own interests. However, people
do interrupt their duty to carry out altruistic actions. We can hypothesize that
people compare the intrinsic value they attach to the altruistic behavior to their
loss of productivity to decide to carry it out or not. For example, an on duty
delivery man may pick up a wallet and return it to the closest police station, if
he feels it would not interfere too much with his duty.

In this paper, we investigate how we could give future robots the capacity to
evaluate if performing an altruistic behavior is worth it or not.

2 Related Work

Churchland defines morality as coordinating the actions of individuals with the
interests of the community [2]. Malle et al. define the moral norms that are shared
by the members of the society [9]. Moral actions are actions that comply with
these norms. For example, a moral norm, that is widely shared in the human
society, is the prohibition of behaviors that harm others for the benefit of oneself.
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In the field of Human-Robot Interaction (HRI), recent research investigates
how robots should be related to these moral norms. Malle et al. revisited the
trolley problem by assuming that a human or a robot would operate the lever
[10]. The participants in the experiment expected the robot to perform a moral
action more aggressively than the human.

There are attempts to design robots that respect some moral norms too.
Nishitani et al. designed a robot that is giving way to pedestrians while moving
on the sidewalk [12]. Williams focused on the use of language by robots when
interacting with humans [15]. He underlined that the robot design should elim-
inate the possibility to produce inappropriate statements that are not morally
acceptable. Akita et al. designed a robot that gives up its place when facing
competition for that place [1]. In these studies, each robot followed the specific
moral norm by design. Namely, it was obligatory to perform an action that fol-
lows the norm. In our case, we are interested in a robot that voluntary decides
to perform an altruistic behavior.

Imre et al. proposed a computational model for altruistic behavior and tested
it on an anthropomorphic robot [5]. Their work is based on the sensorimotor
mechanisms of the primate brain. The robot uses vision to estimate the goals
behind the actions of others. Then, it helps to achieve these goals. This can result
in the robot performing an altruistic action. However, this is not the result of
a deliberate decision but the consequence of some basic sensorimotor processes.
In our case, we want to have some control on the process underling the decision
taking.

Robots that perform altruistic behaviors were used by Correia et al. to study
the effect of pro-social behaviors compared to selfish behaviors [3]. In an experi-
ment in which humans and robots collaborate to play games. People were teamed
with a pro-social robot or a selfish robot and gave their impression on the robots.
Independently of the outcome of the game, the pro-social robot was preferred.
In this case, the robot behaviors are pre-programmed in the context of an exper-
iment. The study shows the effect of a robot performing altruistic actions but
did not tackle how to do it.

3 Creating an Altruistic Robot

Basically, robots are assigned a role and they are designed to perform efficiently
the tasks required for that role. For example, a cleaner robot is designed to
navigate the environment, clean efficiently and avoid disturbing people. In the
remainder of this paper, the tasks necessary for the role of the robot will be
referred as the “designated tasks”. Our goal is to create an altruistic robot that
performs altruistic actions for the good of society. For example, the cleaner robot
could warn a person dropping her/his wallet. Consequently, our task is to find a
behavioral model that enables a robot to perform altruistic actions in addition
of its designated tasks. First, we will examine a few candidate behavioral models
and show why they are inappropriate. This will help us to understand what are
the requirements an appropriate behavioral model has to fulfill.
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3.1 Model A: Always Perform Altruistic Actions

First, consider an extreme model such that the robot always performs an altru-
istic action whenever it sees an opportunity. In this case, the robot can provide
the greatest benefits to the society, but the robot does not perform its designated
task efficiently as it spends much time performing altruistic actions. In particu-
lar, if the robot continues to prioritize altruistic actions over its designated tasks
during busy times, it will be very inefficient at its work. The intuition is that
the owner is sensitive to the efficiency of the robot at performing the designated
tasks. The owner will find this extreme behavior of the robot unacceptable.

3.2 Model B: Only Performing Altruistic Actions When Unoccupied

Next, let us consider another basic model that takes into account robot’s duty.
The robot always performs an altruistic action whenever it sees an opportunity
and it is “unoccupied”. Here, “unoccupied” means that there is no designated
task awaiting execution at the present moment. For example, the cleaner robot
has finished cleaning a location and is waiting for an order to start cleaning
another location. At first glance, this seems to balance the robot’s time between
designated task (occupied time) and altruistic actions (during unoccupied time).
But, this model does not consider the fact that it takes some time to perform
an altruistic action and the possibility that the robot may get busy in the near
future. There is a risk that the robot is still busy performing an altruistic action
when the next designated task appears.

The result can be a situation where the designated task is collapsed by per-
forming an altruistic action. From the owner’s point of view, with this model,
performing altruistic actions may also have an unacceptable impact on the effi-
ciency of the robot.

3.3 Model C: Treat All Altruistic Actions Equally

With the two previous models, the focus was on the scheduling of the altruistic
task. Here, we would like to investigate another important aspect which is the
importance of the altruistic task.

Let us assume that a robot is using a behavioral model that shares its time
efficiently between performing its designated tasks and occasionally performing
altruistic actions in such a way that its owner is satisfied. Namely, performing
altruistic actions does not impact much the efficiency of the robot at doing its
duty.

However, this behavioral model does not take into account the nature of the
altruistic actions. The robot is acting the same if it witness trash it could pick
on the floor or a collapse person it could rescue. The decision to carry out the
altruistic action is not based on the type of actions but only on other factors
(robot current state, expected work load etc.).

From the point of view of the society, this is unacceptable. The robot should
prioritize helping a collapse person over its designated tasks, whereas it could
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overlook picking trash on the floor. This shows us that the behavioral model
should not only please the owner of the robot but also conforms to the moral
norms of the society.

3.4 Requirements

From the examination of the above three behavioral models, we can derive the
following requirements for designing a better behavioral model:

1. The robot should perform altruistic actions without impacting the perfor-
mance of its designated tasks more than allowed by its owner.

2. The robot should take into account its expected future workload when pre-
dicting the impact of engaging in an altruistic action.

3. The robot should take into account the amount of the benefit for the society
when engaging in an altruistic action.

To quantify the effectiveness of the robot at performing its designated task,
let us introduce the “utility” of the designated task. The utility (of the designated
task) measures the gain obtained by the owner when the robot performs its
designated tasks. For the owner, the higher the utility the better. Nevertheless,
a small amount of decrease of the utility to make up for altruistic behavior might
be allowed. It is plausible that many of owners do not mind for 1% decrease,
while only a few would allow a 20% decrease.

Even if the robot is currently unoccupied, it should consider the possibility
that it gets busy soon when deciding to perform an altruistic action. For example,
it is not appropriate that the robot engages in an altruistic action if it knows
that it is about to get busy. The robot should estimate the possible impact of
engaging in an altruistic action before starting. The proposed behavioral model
has to predict the future workload (designated tasks) and the expected utility
gain associated to these tasks. Then, it has to consider how engaging in an
altruistic action would impact this expected utility gain. For this purpose, it is
also necessary to estimate the time required for the completion of the altruistic
action.

The last point is related to the intrinsic value of altruistic behaviors men-
tioned in the introduction. This intrinsic value is based on the moral belief that
“it is virtuous to help others”. The intrinsic value associated to an altruistic
behavior is strongly correlated with the amount of benefit provided to others
by performing this action. This value is different from the value associated with
one’s own duty. However, people perform altruistic behaviors, even at the cost
of their own duty, because they believe that there is enough intrinsic value to
offset their loss. In this sense, we seem to treat some of the benefits for others of
an altruistic behavior as our own benefit. The proposed behavioral model should
consider that performing an altruistic action brings some gain to the robot.

3.5 Proposed Model

Let us propose a behavioral model that is based on the previous three points. The
behavioral model combines two utilities: UR measuring the gain when performing
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Fig. 2. Flowchart of the models

the designated tasks and εUA measuring the gain when performing an altruistic
action. To decide if it is worth to engage in performing an altruistic action,
the robot compares the predicted utility of the designated tasks UR when not
performing the altruistic action to the predicted total utility U = U ′

R + εUA

obtained when perform the altruistic action. Note that U ′
R differs from UR as

performing the altruistic action first affects the utility of the future designated
tasks. If performing the altruistic action gives a higher utility, the robot chooses
to perform the altruistic action.

During this evaluation process, the utility of the designated tasks takes into
account the expected gain from known and unknown, but expected, future tasks.
The proposed model assumes that the utility of a designated task will decay with
time and there is a deadline after a certain time. Namely, delaying a task may
reduce its utility.

Figure 2 shows how the proposed model compares to the models A, B and
C introduced in the previous sections. The key to set the utility of an altruistic
action is to determine ε, the ratio of the benefit to others that becomes the
utility of the robot. If the ratio is large, the robot will often choose to perform
the altruistic behavior, and if it is small, the robot will rarely choose to perform
the altruistic behavior. This ratio indicates how much the robot respects the
interests of others, namely, how altruistic the robot is.

4 Simulation Experiment

4.1 Simulation Setup and Settings

To illustrate the use of the proposed model, we will consider a robot that takes
orders and serves dishes in a restaurant. The robot moves around the kitchen
and tables during business hours, processing tasks in the execution queue as
they occur. To perform a carrying task Rk, the robot moves from one point to
another and picks or places dishes. The predicted execution time of a carrying
task Rk is the sum of the travel time and the manipulation time.

In this simulation, the robot moves at a speed of 1.0 m per second between
the four corners of a square having a ten meters edge. The robot is set to be able
to move between tables in the shortest possible distance and to use a uniform
10 s to perform the task on the site. The simulation duration is 1000 s, during
which 40 carrying tasks Rk occur (uniform probability distribution) and one
opportunity A for altruistic behavior occurs at 500 s after the simulation starts.
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For simplicity of comparison and calculation, the initial utilities of these tasks
are all set to 1.0. In accordance with the proposed model, the utility of a task
Rk decays until it reaches zero after a fixed duration (deadline).

When the robot gets aware of the task A, it estimates and decides whether
to execute it after the task currently in execution is completed. To quantify
the influence of performing or not the altruistic behavior, the robot proposes
to “calculate” when the future tasks will be executed. This is straightforward
for the known tasks Rk that are already in the execution queue but impossible
for the unknown tasks. However, the robot can “estimate” an average result for
these unknown tasks using a probabilistic approach.

Let us assume that we know the probability density function of task occur-
rence at time t, C(t) and we can sample from it. Then, we can create a sample of
“virtual tasks” that appear after tA. The “virtual tasks” only exist in the sam-
ple. But, their distribution follows the probability density function C(t) like the
actual tasks that will occur after tA. In the remainder, a “sample” is one such
set of virtual tasks obtained by sampling from the probability density function
of task occurrence. Note that the size of a sample is not fixed. If the probability
of task occurrence is high, then the number of virtual tasks in a sample will be
large. Whereas, a sample will be small if the probability of task occurrence is
low.

In theory, the longer the window time the robot can consider, and the more
accurate it can predict the far future. However, for reducing computation time,
we have to limit the duration of the sampling interval in practice.

In this simulation, the robot estimates virtual tasks within 300 s from the
current time, and it samples 1000 independent sets of samples from a known
probability of task occurrences. Here, we assume that the robot knows that the
tasks Rk are uniformly distributed. If the total utility U ′

R + εUA is larger than
UR, then A is immediately executed.

Simulations were conducted for ε ∈ [0, 0.2] (step 0.01) and to confirm the
importance of including the virtual tasks when estimating the utility, we con-
ducted an ablation study.

4.2 Results

Figure 3 shows the ratio of altruistic tasks A that were executed when the deci-
sion includes prediction using the virtual task (blue) and when it does not
(orange). That ratio increases gradually with ε when the prediction is included,
but it increases steeply when the prediction is not included. The ratio already
exceeds 40% at ε = 0.01 when the prediction is not included.

Figure 4 shows the average values of UR + εUA with and without prediction.
This figure also shows the utility of labor when altruistic tasks are never per-
formed (red dashed line) and when it is always performed (black dashed line).
The graph shows that there is almost no change in the total utility value when
the prediction is included. The value is close to the one obtained when altruistic
tasks are never performed (red dashed line). But, when the prediction is not
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Fig. 3. Ratio of executed altruistic tasks for ε ∈ [0, 0.20] (Color figure online)

included, the total value is clearly under the red dashed line. This means that
the actual utility gain is less than the one predicted during the decision process.

These results shows that including the virtual tasks in the decision process
is essential.

We can see in Fig. 4 that, when using the proposed model, performing of
an altruistic task hardly decreases the utility of designated tasks. In particular,
when ε = 0.20 and the altruistic task is performed 47.7% of the time, the utility
gained from the labor hardly decreases. It is still close to the one obtained when
never performing the altruistic task (red dashed line) The decrease is 11.9% of
the decrease obtained with the model that always performs the altruistic task
(black dashed line). This result show, that with the proposed model, the robot
chooses its actions in a way that prevent a significant decrease in utility.

5 Discussion

5.1 Consideration About Requirements

From our investigation, we understood that two important requirements for bal-
ancing labor and altruistic behavior are: 1) being able to predict the future
workload, 2) being able to evaluate the utility associated to an altruistic task.

Prediction of the Future Workload. In our behavioral model, the robot
takes into account the influence of carrying out an altruistic task on its future
workload. In particular, when making its decision, the robot does only know
part of the future workload with certainty: the tasks that are in the execution
queue. It is possible to simulate which of these tasks will be executed and which
ones will expire and compute the utility gained by the robot. For the other part
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with predictions with predictions without predictions without predictions

Fig. 4. Average value of UR + εUA for ε ∈ [0, 0.20] (Color figure online)

of the future workload, the utility is estimated using a probabilistic approach.
If the estimation is accurate, the proposed decision strategy guarantees that on
average the robot will take the good decision. Namely, it will usually carry out
an altruistic task when it can afford it. This shows that the robot has to know
its labor well to be able to evaluate if it can afford to carry out an altruistic task.
In practice, to implement this behavioral model, we need to be able to sample
accurately the virtual tasks.

Utility Associated to Altruistic Behavior. During the decision process,
the altruistic task is given an utility UA that ideally reflects how much benefit it
provides to others. We would expect different altruistic behaviors to get different
utilities. Then, we could form a hierarchy of altruistic behaviors from the one
with smallest utility to the one with largest utility. However, the robot has
its own scale because the proposed behavioral model introduces a degree of
altruism ε and the robot assigns the utility εUA to the altruistic task. As seen
in the simulation, this parameter has a direct influence on the balance the robot
achieves between performing its labor efficiently and carrying out altruistic tasks.
The robot’s owner could set this balance where she/he see it fit using the degree
of altruism ε.

5.2 Implications

If, in the future, robots closely cohabits with Human at every level of society and
robots are designed with efficiency in mind, we could imagine a society where
there is very few place left for altruistic behaviors. This is particularly a danger
as it is in the financial interest of robot’s owners to aim for efficiency. Fortunately,
our results suggest that we could design future robots to be altruistic and still
work efficiently for their owner. Then, we could expect that in a future populated
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with myriads of robots, we would still get help from a stranger. But, that stranger
may be a robot.

We wonder how people would react to a robot that decides by itself to carry or
not an altruistic action. People are used to machine exhibiting very deterministic
pattern. Without access to the logic behind the decision, they may attribute some
intentions to the robot that it did not have.

6 Conclusion

In this paper, we presented what are the requirements for creating a robots that
can carefully balance its time between doing its labor and performing altruistic
behaviors. We proposed a behavioral model that fulfils these requirements. With
this model, the owner of a robot can control the balance with a parameter repre-
senting the degree of altruism of the robot. In the future, we have to investigate
how robot’s owners set the degree of altruism of their robots. In particular, we
would like to know how big a degree of altruism an owner would tolerate and
find strategies to increase that value.
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Abstract. This paper describes three case studies performed in every-
day life with our social humanoid robot, Nadine. The development of
AI, vision, and NLP over the last few years has made it possible to
improve social robots’ awareness ability of their environment and has
enabled them to understand spoken interactions. We have developed a
software platform with several modules that allow us to introduce Nadine
to real-life settings. We have brought Nadine to three different places in
real-life setting. The first one was to prepare Nadine for an exhibition at
the Artscience Museum in Singapore. The second one was to let Nadine
work as a customer agent in AIA insurance company along with real
employees. The third one, very recent, was to use Nadine as a compan-
ion in a elderly home. In this paper, we describe the three case studies
we performed in different environments and the lessons we have learned
from the outcomes of those experiences. We conclude by proposing new
research avenues and the missing pieces that could make these social
robots available to us in our everyday life.

Keywords: Social robotics · Robotics architecture · Nadine social
robot · Human-robot interaction

1 Introduction

From ancient times till today, humans have harboured the dream of having
humanoid robots. Initially, mechanics and the know-how were limited, but over
centuries, we have seen constant progress in automatons that look like real per-
sons and act autonomously. What has changed dramatically in twentieth century
is the use of software linked to dedicated hardware. And more recently, the use of
AI in vision to quickly understand surroundings and actions and recognize and
understand people has enabled massive improvement in the behaviour of social
robots. Today, we speak directly to our phones, to computers, or to some kind of
pet robot, which is not user friendly nor very natural. However, some people are
used to it already and tend to only prefer conversations with a voice. Still, some
prefer to have that voice personified into some robotic shape far from a human
shape, and others favour robots with a true human-like appearance. It is unclear
c© Springer Nature Switzerland AG 2021
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today what users’ “most preferred choice” is. However, a humanoid robot can
offer more than a voice and a robotic human shape; it can have very realistic
hands and perform more human-related tasks, walk, bring and lift things for us,
and more easily do things together with us. Additionally, the realistic face and
body provide a feeling of more human naturalness.

Many ancient figures in ancient times had somehow thought already, and
perhaps without realizing it, about the human-machine interface. For example,
Aristotle, a Greek philosopher, speculated in 322 BC in his book called Poli-
tics that human automata could do things by themselves and could someday
guarantee human equality. Later on, in 250 BC, a Greek engineer named Philon
created the Automatic Servant, a human-like robot representing a maid holding
a jug of wine in her right hand. When visitors’ cups were placed in the palm of
her left hand, the servant filled them with wine and water as desired. Automatic
Servant is one of the earliest humanoid robots we can think of.

Today, 3D modelling and 3D fabrication help us create quicker animated
robots with social behaviour. The main novelty since almost one century ago is
the addition of software layers linked to the hardware. Software allows humanoids
to mimic autonomous behaviour and exhibit some awareness. Social robots can
now be empowered with AI and machine learning. Adding ethical software to
each humanoid robot would enable humanoids to behave according to our social
rules.

In this paper, we summarize our experiences done with the social robot
Nadine1. First, Nadine was brought in 2017 to a new exhibition, Human+, show-
ing the empowerment of humans thanks to technology. We were invited to bring
our social Nadine there and she has met more than 1,000,000 people. We could
daily observe the reaction and the strong interest of the people.

Later, in 2018, in collaboration with an AIA insurance company [11], we
developed additional software modules and specific insurance datasets for Nadine
that would enable her to act as a customer agent. At peak hours at the insurance
company, Nadine, along with customer agents, met real customers, answered
questions and suggested policy insurances. This experience showed that social
robots can be used for dedicated tasks.

Very recently, in collaboration with the Bright Hill elderly home in Singapore,
we used Nadine to lead Bingo games and to interact with the elderly whenever
they were up for it. The elderly reacted very positively, and over a 6-month study
period, along with therapists at the elderly home, we came to very fascinating
conclusions.

This paper is organised as follows: Sect. 2 presents the description of the
research and development of the software modules used in Nadine for the three
test cases. Section 3 presents the case study of Nadine at the ArtScience Museum.
Section 4 explains our research and results with Nadine as a customer agent in
an insurance company. Section 5 outlines the details of Nadine as a companion
robot for the elderly at the nursing home and the evaluation technique used.
Finally, Sect. 6 addresses the conclusions and plans for the future.

1 https://en.wikipedia.org/wiki/Nadine Social Robot.
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2 Nadine Platform and Development for Studies

Nadine’s hardware was fabricated at Kokoro in Japan2. We aimed primarily
to develop a software platform [13] with various modules, including perception,
processing, and interaction. First, our platform perceives various stimuli, such
as vision, vocal, etc., which help the robot understand its environment. Then
each stimulus is processed to decide upon an appropriate verbal or non-verbal
response. Finally, the robot appropriately enacts these responses. Our design is
geared towards enabling the robot to maintain human-like natural behaviour,
even in complex situations, and be generic to handle any kind of data. Each
layer consists of several sub-modules for specific tasks; these sub-modules are
connected using an independent platform framework [9] to facilitate module
connections and development. A Microsoft Kinect, web cameras, and microphone
are used as input devices, and the robot/virtual human itself serves as the output
device for our platform.

We developed a generic social robotics architecture for Nadine, that can be
customized to handle any scenario or application. Our architecture allows for
modularity in each layer (submodules can be added or removed) and task- or
environment-based customizations (for example, change in knowledge database).
The architecture can be deployed easily to work with other robots and virtual
characters by changing the interaction hardware layer [4], and different gestures
[3] and animations can be included in the architecture to help the social robot
complete tasks. This architecture allows Nadine to express human-like emotions
[16], personality, behaviours, dialogue etc. Nadine can perceive both user and
environmental cues and respond to them in a naturally realistic manner [1].

We have implemented our platform into Nadine, our social robot. She has
a realistic human-like appearance; very natural skin, hair, etc. Nadine has a
total of 27 degrees of freedom for facial expressions and upper body movements.
With the proposed platform, she can adapt and work in different environments,
such as at a reception, in an agency, in an elderly care home, or as someone to
entertain a crowd at an event. Figure 1 shows Nadine trained and customized
for different events, places, and handling different scenarios. Our platform can
also be used for other robots or virtual characters easily [10].

3 Case Study 1: Nadine at the ArtScience Museum in
Singapore

Our first experience using Nadine outside of academic settings came when we
have been invited by the ArtScience Museum in Singapore3 4 to participate
in the Human+ exhibition, which ran from May 20 to October 15, 2017. The
exhibition aimed primarily to answer the question: What will it be like in a
future dominated by AI, robots, and augmented bodies? The museum’s show
2 https://www.kokoro-dreams.co.jp/.
3 https://robotschampion.com/human-future-of-our-species/.
4 https://www.youtube.com/watch?v=wYm06LZdlts.
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featured an intriguing blend of technology and art, none more so than Nadine’s
interaction with visitors.

Fig. 1. Nadine interacting with visitors at the Arts Science Museum

Nadine sat at a table ready to talk to any visitor either in English or in
Chinese. Visitors willing to engage with her took a seat opposite her, as Fig. 2
shows, and asked her questions. If she did not understand a question, she simply
said she could not answer it. Many people stopped by for a talk with Nadine
and Nadine sat at a table ready to talk to any visitor either in English or in
Chinese. Many people stopped by for a talk with Nadine and asked all types of
questions, and even parents with children and babies came by to interact with
her.

Due to the Museum’s confidentiality agreement, we were not allowed to record
and conduct a formal user study. Additionally, it was too difficult to ask visitors
to fill forms permitting us to use their data. Furthermore, Nadine was not allowed
to use her memory and face recognition modules because we were not permitted
to keep any private information from conversations.

However, more than 100 000 visitors came to see Nadine, with people queuing
up to discuss with her. The questions asked were extremely broad, and Nadine
answered most, although not always accurately. For the most part, we learnt from
this experience that the younger generation was most fascinated with Nadine’s
appearance and her ability to speak several languages and answer all sorts of
questions, including funny ones. The older population most often did not ask
questions but observed the social robot and passed by. The 6-month experience
helped us make improvements in Nadine’s interaction ability: we increased her
local database, enhanced her response time to people, and developed models,
like the Bert model, to advance her understanding of speech. We planned to
drastically improve Nadine’s capacity to understand any spoken topics and deal
with multiparty interactions (2021).

4 Case Study 2: Nadine at the AIA Insurance Company
in Singapore

Lately, several researchers and organizations have begun to consider making
social robots a part of their workforce. Initially, robots at workplaces were
restricted to simple tasks, such as greeting customers at information booths
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[8], performing a predefined skill of archery [7], bartending with communication
skills, and guiding customers [2,5].

Fig. 2. Nadine interacting with customers at the AIA insurance company

In contrast to early task-based robots, designing humanoid social robots
involves developing cognition that considers context, work environment, and
social interaction clues. The advent of Artificial Intelligence and robotics has
prompted a universal question: “Can a humanoid social robot be a part of a
company’s workforce?”. Does it have all the skills and etiquette to function suc-
cessfully in an open work environment with different tasks? To answer these
questions we set Nadine up in an insurance company5 to work as a customer
service agent alongside other human employees [11]. She adequately recognized
known staff, communicated with them in the natural language, assisted them
with some tasks, and built a relationship with them6.

Nadine can do many things as an intelligent customer agent. For example, she
can be asked to give specific messages to visitors coming in the next day. Exist-
ing customers asked Nadine to help them make simple queries on the database,
change their addresses, or extract other information. For tough questions, she
redirected customers to the human customer agent. Such a scenario is truly inter-
disciplinary, involving Computer Vision, Speech Recognition, Natural Language
Processing, Emotions, Memory [6,17], and Decision Making.

To evaluate Nadine’s capabilities, we conducted two different studies: for the
first part, we created a questionnaire, and for the second study, we asked cus-
tomers to provide feedback not restricted to a particular question. A total of 75
users provided their valuable feedback on Nadine and answered the question-
naire over a period of 6 months. The questionnaire survey helped us capture
customers’ feelings and opinions about Nadine’s performance during their inter-
action with her. We analyzed feedback data using a SenticNet computing frame-
work that gave us customers’ sentiment during their interaction with Nadine.
Figure 3 presents the results of the questionnaire and sentiment analysis.

Most customers agreed that Nadine was friendly, while others were unsure,
which shows Nadine as being courteous. She has an emotion model [16] that
enables her to express pleasant behaviour, smile to customers, and show emotion.

5 https://www.youtube.com/watch?v=7HUSXq3xvTs.
6 https://www.youtube.com/watch?v=lv6nWe1Gn00.
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Fig. 3. Results of questionnaire and feedback data

A humanoid robot must have emotion to enable it to empathize with customers,
as seen in Fig. 3.

On account of Nadine’s willingness to listen and respond on time, the results
were mixed. Being a robot, Nadine is always welcoming and willing to listen;
however, her response to a question can sometimes be delayed for many reasons;
when she cannot find an appropriate answer in her database to reply immedi-
ately, she looks for one online, which can take time. At times, she may not reply
at all, particularly if the customer does not speak into the microphone, which
can leave people feeling that Nadine is not willing to listen, as seen in Fig. 3.

The overall sentiment from customer feedback is depicted in Fig. 3. 50% of the
customers provided Positive feedback on Nadine’s performance as an employee,
37.1% had a Negative impression, and 10% had Neutral sentiments.

Based on customer feedback and the survey questionnaire, we identified cus-
tomer expectations and demands of such a robot employee. The overall sentiment
towards a humanoid agent in this kind of insurance workplace is positive. In the
survey, customers found Nadine to be very human-like, leading customers to
have high expectations of such a social robot.
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Fig. 4. Nadine interacting with the elderly at the elderly home

5 Case Study 3: Nadine at the Bright Hill Elderly Home
in Singapore

Cognitively impaired elderly at nursing homes have difficulties performing daily
activities and maintaining their wellbeing. Healthcare workers and caregivers
are particularly crucial to addressing these challenges, and the need for them is
high; therefore, social robots have been looked at as potentially assisting both
the elderly and caregivers. We deployed Nadine at an elderly home to understand
the impact of humanoid assistive technology on the elderly and care staff, aiming
to investigate the effectiveness of our Nadine robot based on the willingness of
our hosts to communicate and engage with her, as well as their mood during
the human-humanoid interaction. Nadine was deployed at the elderly home for
6 months during which she performed the following two activities:

– Hosted bingo games: Nadine hosted bingo games as part of multiparty inter-
actions; she hosted two games each week for 29 participants [12].

– One on one interactions: Nadine also carried out one on one conversations
with 14 participants during which she interacted with them based on the
wishes of the participants [14].

We placed six cameras in the ward where Nadine was seated to capture
the activities, and this helped us evaluate Nadine’s performance. To obtain a
comprehensive understanding of her impact on the nursing home occupants, we
considered both objective and subjective tools for data analysis. The objective
tools are based on cutting-edge computer vision techniques, such as Deep Neu-
ral Networks (DNNs). To automatically evaluate the residents’ mental states,
we captured their facial expressions to determine their mood (Eight emotions),
residents’ body movements to assess their involvement with Nadine, and care
staff movement to evaluate the need for staff during hosted activities.

For the Bingo game, we compared sessions of Nadine’s hosting with those
of the staffs’ hosting. Both objective and subjective tools were used for the
comparison. According to the results in Fig. 5, the elderly smiled more, moved
around less, and the optical flow, which primarily depicts how much movement
nursing home’s care staff made, was also lower, suggesting that the situation in
the nursing home was better when Nadine was present: the residents were calmer
and happier, while the staff had less work to do.
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Fig. 5. (A) Statistical difference measures between the two scenarios - with Nadine and
without Nadine during Bingo game. (B) Comparison of different emotions between the
first and the last 10 sessions.

For one on one interactions, we compared Nadine’s first sessions at the elderly
home to sessions on the last days of her presence at the home. Residents’ facial
emotions in the figure indicate their involvement in conversations with Nadine.
The residents interacted with Nadine on average 50% of the time she was there,
indicating they had a moderate interest to interact with her, which is to be
expected from the residents of a home for the elderly. However, those who inter-
acted with her more showed much less fear, indicating that they felt more relaxed
when interacting with her; they also smiled slightly less, but, perhaps, this was
them merely interacting with Nadine normally. Their average body movement
increased from 0.05 to 0.2, a big difference from that in Nadine’s absence. These
findings indicate significant positive changes noted in the residents’ responses
(well-being) over the 6 months of interaction with Nadine.

6 Conclusions and Future Research

In this paper, we have presented concrete experiences with Nadine in three dis-
tinct environments where she interacted with various people: in the first place,
she interacted mostly with a very broad public audience, in the second location,
she served as a service robot, and in the third place, she acted as a companion.

Based on these experiences, we can conclude that Nadine was useful in the
three environments vis-à-vis the role she played. However, to bring these social
robots to a larger scale, we need more research and development. First of all,
Nadine is a sitting robot, and customers need a moving robot that can bring
things and objects to them and go to specific people. Therefore, social robots
must have articulated hands and be able to move either through a base or using
legs. Incorporating legs or bases while adapting cameras and a microphone to
a robot requires quite a lot of additional hardware work. On the software side,
environment detection, collision response, and multiparty interaction modules
must be developed for indoor moving social robots. Research is ongoing, but
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there is a major barrier; the cost of such a humanoid realistic robot. To become
popular, these robots must be produced in high numbers; however, as of now,
only a few social humanoid robots exist because they are too expensive to be
produced in mass; they need a more functional capacity and awareness of the
environment and themselves.

Furthermore, the appearance of a humanoid is very important. In the insur-
ance case study, another social robot, Pepper, was also tested; however, it failed
in its capacity as a customer relationship mediator. Pepper was only suitable
as a greeting tool, welcoming people as they entered the insurance agency. This
study showed that robots, like Pepper, are viewed as an entertainment tool, with
people unwilling to ask them serious questions about insurance. On the contrary,
Nadine, the social robot with its very human face and behaviour [18], was seen
as trustable enough to deal with insurance matters.

More importantly, in the elderly home, residents developed some relationships
with Nadine and always professed their love for her because she was so beautiful
and natural, as seen in a video that was filmed during the study (please give us
video link to be added, we do not have the link).

In the future, additional Research and Development must be performed in
consideration of the needs of potential customers. Concerning the appearance
of social robots, people prefer interacting with a realistic humanoid robot to a
metallic robot. The uncanny valley effect should be revisited, as the behaviour
and appearance of social robots have become positive parameters than were seen
in the past.

In conclusion, a lot of research must still be performed on social robotics. In
particular, speech understanding, multiparty interaction [15], and global aware-
ness of the environment require additional scrutiny. On the hardware side, mod-
ules for human-like walking and grasping are still in the research design phase. It
will take a couple of years, give or take before we will see social robots frequently
in our daily life; still, we are all aiming in this direction. Key determining factors
for this realization will be the social acceptance of these humanoid robots and
their ability to be compliant with ethical rules and customers’ needs.
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Abstract. Personalised experiences with service robots positively affect
people’s perception of the robot and, consequently, foster the success of
the interaction. This implies that people need to share their personal
information with the robot, which could let people feel uneasy when
such interactions happen in public spaces or in the presence of strangers.
Therefore, it is difficult for a service robot to personalise a human-robot
interaction (HRI) when this can lead to a breach of privacy. As a first
step, the current study investigated people’s perception of the sensitivity
of various categories of potentially private personal information that are
likely to be used by a service robot in a public business, such as a bar.
We conducted a questionnaire-based study, where participants rated 15
personal information that they could share with either a human or robot
bartender. The potentially private information was rated by participants
according to their level of sensitivity. We analysed responses from 76 par-
ticipants. We clearly identified information that are perceived as highly
sensitive, such as those related to a person’s identity (e.g. sexual orienta-
tion, political beliefs), and as low in sensitivity, such as those related to
personal interests (e.g. sports, TV shows). Our findings also showed that
older people consider sharing their preference of drinks more sensitive
than younger people, especially when the bartender is a robot. We did
not find significant differences in users’ ratings due to their gender.

Keywords: Human-robot interaction · Privacy · Social robotics

1 Introduction

Modern business began to introduce novel and appealing technologies to attract
customers and increase their retention by providing endearing interactions [2].
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Hence, robotics applications are being deployed in the food and beverage indus-
tries [2], and specifically in bartending scenarios [13,20]. Bartending scenarios are
particularly of interest due to the complexity of the interaction, which includes
the execution of the required tasks to prepare a drink (i.e. selecting and manipu-
lating ingredients), the managing of the orders, and the adaptation of the robot’s
behaviours to the customers’ needs and preferences. In such scenarios, effective
customer relationship management is fundamental for a successful and long-
term interaction with users [10,11]. Customer retention largely depends on the
bartender robot’s ability to provide a satisfactory service in terms of task accom-
plishment, social responsiveness and empathy towards customers [23,25].

The work presented in this paper has been carried out as part of the
BRILLO (Bartending Robot for Interactive Long-Lasting Operations) project
which envisages a real-world bartender robot that intelligently adapts its multi-
modal behaviours to determine the long-term success of the use of bartender
robots, and, more in general, of service robotics applications [14]. The BRILLO
bartender robot, therefore, should exhibit practical, social and emotional intelli-
gence to tailor its interaction to the customers. For this reason, the robot needs
a wide range of information to satisfy customers’ moods, attention behaviours,
personal traits, and situational context (i.e. drink tastes, small chat preferences,
group dynamics, etc.). This implies that the BRILLO system needs to build cus-
tomers’ profiles by 1) detecting, recognising and tracking the users via robot’s
camera (i.e. biometrical recognition), 2) identifying user’s mood and emotional
reactions through the robot’s sensors (i.e. sentiment analysis, facial expressions),
3) identifying the level of engagement of one or more users while they are interact-
ing with the robot through the users’ body posture, head pose, and the group’s
arrangements (i.e. facing each other), and 4) managing a recommendation system
based on users’ interaction, drinks preferences, history of previous interactions,
and similarities with users who have alike profiles.

While the wide amount of information collected by social robots may intro-
duce a violation of people’s privacy during human-robot interaction, it might
also be possible that people relate to a bartender robot as they do with human
bartenders [3]. Human bartenders are known to play the role of a confidant or
a counsellor with whom customers often share their problems and information
[4]. For example, people might share their relationship stories with a human
bartender or comment some funny event that happened during their day. They
could discuss the latest political news, and so on. Each of these examples rep-
resents private information, and while they would be regulated by rules and
laws in online applications, in casual environments, such as a bar, they might be
perceived with a different level of sensitivity. Moreover, people have individual
differences (e.g. age, personality) which may affect their perception of what is
considered sensitive information to be shared with a robot in a public space. It
is important, therefore, to determine which type of information people consider
to be more or less sensitive in order to properly investigate the effects of a breach
of privacy on HRIs in public environments. For this purpose, we present in this
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paper a questionnaire-based study conducted with the purpose to classify the
level of perceived sensitivity of several personal information.

2 Design

The purpose of this study was to investigate people’s perception of potentially
private information that a service robot could use to personalise the interaction
with them and to create a more engaging relationship. In this context, we clas-
sified several personal information according to their perceived sensitivity. We
expected to observe a variation in people’s evaluation of the information sensi-
tivity according to whether the scenario presented involved a robot or human
bartender. In particular, we hypothesised that people would be more inclined to
share their personal information with a human than a robot bartender [4].

2.1 Methodology

The online questionnaire-based study was organised as a between-subject exper-
iment where users were asked to imagine that their information were shared
with 1) a robot bartender in condition C1; 2) a human bartender in condition
C2. In both conditions, participants were presented with three sets of questions.
We also informed them that the bartender had some information about them,
and asked them to rate each listed information according to their perception of
sensitivity, in terms of privacy. We did not provide any description of the robot,
because we were exclusively interested in participants’ general perception of the
sensitivity of personal information and not in their perception of any robot [17].

A first questionnaire was used to collect generic information about the users,
including their demographics (i.e. age, gender, occupation, nationality), person-
ality traits [8], experience, perception while using e-stores (e.g. “I generally trust
online companies with handling my personal information and my purchase his-
tory”, and “I feel safe giving my personal information to online stores”), and
behaviours in possible bar scenarios. Questions about people’s behaviours were
designed considering previous studies in HRI [16,18], such as “Did you ever take
more change than you were supposed to?” (with no, maybe, and yes as possible
answers), and social conventions in bars [15], such as “Did you ever avoid to pay
for a drink when it was your round?”.

Then, participants were presented with 15 different questions (one for each
type of information) and rated their level of sensitivity. We collected people’s
ratings of the information’s sensitivity using a 5-point Semantic Differential [1
= “The information is not sensitive at all” to 5 = “The information is extremely
sensitive”]. Questions included information of different nature1. For example,
they were related to identity information (e.g. “Sexual orientation”), drink pref-
erences (e.g. “Your preference for non-alcoholic drinks”), or interests (e.g. sport,

1 Note that we did not ask participants to give us their personal information. We
simply asked them to rate the sensitivity level of such information.
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TV shows, cf. Table 1 for an overview). We designed the questionnaire used in
this study to cover a wide range of generic topics based on previous HRI stud-
ies and human-human studies in bar scenarios [24]. For example, Rossi et al.
[19] used drinks, hobbies, musical preferences of customers to personalise their
interaction with a robot arm bartender.

Finally, in the last questionnaire, we asked participants if they would have
shared such information with a human bartender (in C1) or with a robot bar-
tender (in C2), and which were the information that they would have not been
willing to share respectively with the human and robot bartender.

2.2 Participants

We recruited 40 participants for each condition, for a total of 80 participants
(51 female, 29 male, none non-binary). Participants were aged between 20 and
68 (mean age 38, std. dev. 11). The majority of participants (66.25%) stated
to be Italian, while the remaining participants were British (15%), German
(3.75%), Dutch (2.5%), Portuguese (2.5%), Swedish (2.5%), Greek (1.25%),
Indian (1.25%), Lithuanian (1.25%), Norwegian (1.25%), US American (1.25%)
and double nationality Russian/Swedish (1.25%). We excluded 2 participants
from each condition due to potential extreme response bias (N = 3) or because
they gave the same response to all sensitivity questions (N = 1).

3 Results

As a first step, we performed a factorial analysis including all the items of the
information sensitivity questionnaire (extraction: principal components; rota-
tion: varimax) to verify the internal robustness of this set of questions, and reduce
the number of dependent variables. A Kaiser-Meyer-Olkin measure of sampling
adequacy (KMO = .839) and Bartlett’s test of sphericity (X2(105) = 1104.05,
p < 001) indicated that the data we collected was appropriate to run such
analysis. We identified four components within the information sensitivity ques-
tionnaire (see cf. Table 1 for factor loadings and Cronbach’s α): (i) Sensitivity of
Personal Interests, (ii) Sensitivity of Identity Information, (iii) Preferred Drink
Sensitivity, and (iv) Drinking Context Sensitivity.

Before running the actual statistics, we checked whether the assumption of
normality of the data was met. A Shapiro-Wilk test of normality revealed that
the dependent variables were not normally distributed, thus in the study we
exclusively employed non-parametric statistical analyses. As preliminary analy-
ses, we checked whether the gender and age of the participants influenced their
responses. Since the majority of participants stated to have the nationality of
one country (Italy), and the other nationalities were only with one or two indi-
viduals, we could not run a statistical test with the nationality of the partic-
ipants as between-subject factor. We ran two separate Mann-Whitney U tests
with information sensitivity as dependent variable and participants’ gender and
age group as independent variables. Since participants identified themselves as
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Table 1. Results of Factorial Analysis divided according to the four identified compo-
nents of information sensitivity.

Item Components

1 2 3 4

Your interest in sport .932

Your interest in art .928

Your interest in movies .897

Your interest in TV shows .841

Your interest in culture .774

Cronbach’s α .964

Your political beliefs .892

Your religious beliefs .850

Your sexual orientation .806

Your relationship status .775

Cronbach’s α .901

Your preference for non-alcoholic drinks .939

Your preference for alcoholic drinks .901

Which is your preferred drink .828

Cronbach’s α .906

How many times you drink during the day .853

You prefer to drink alone .770

You prefer to drink in company .699

Cronbach’s α .861

female (N = 48) and male (N = 28), and none of them identified as non-binary,
we considered the independent variable gender to have only these two values.
With regard to the age group, as the mean age of the participants was 37.84 years
(SD = 11.13), we considered 38 years as a cut-off score and divided participants
into two age groups: below (N = 43, M = 30.09, SD = 4.91) and above mean
age (N = 33, M = 47.31, SD = 9.07). The results did not show a main effect
of gender on information sensitivity (see cf. Table 2). However, they disclosed a
main effect of age group on preferred drink sensitivity with older participants
finding this information more sensitive (M = 2.73, SD = 1.41) than younger
participants (M = 1.96, SD = 1.13, cf. Table 2). To investigate whether partic-
ipants’ usual behaviours in a bartending context could influence the perceived
sensitivity of information, we ran a Mann-Whitney U test dividing participants
in two groups based on whether they reported to have ever jumped the queue
(N = 30) or not (N = 46). We could not run this analysis for the questions
“Did you ever take more change than you were supposed to?” (yes: N = 26;
no: N = 56) and “Did you ever avoid to pay for a drink when it was your
round?” (yes: N = 5; no: N = 71) due to an uneven distribution of participants’
responses. The results of this analysis were not significant (cf. Table 2).
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Table 2. Results of the Mann Whitney U tests for the different independent variables
(the significant results are highlighted in bold).

Personal Identity Preferred Drinking

interests information drinking context

U z p U z p U z p U z p

Gender 632 −.436 .663 659 −.143 .887 656 −.177 .860 524 −1.602 .109

Age group 639 −.747 .455 703 −.064 .949 503 −2.218 .027 704 −.058 .954

Jump queue 681 −.091 .927 678 −.130 .897 661 −.316 .752 613 −.817 .414

Agent Type 642 −.835 .404 649 −.768 .443 527 −2.076 .038 635 −.903 .366

3.1 Effects of Agent Type on Participants’ Perception of
Information Sensitivity

We followed up the preliminary analyses with a Mann-Whitney U test including
agent type as independent variable (human and robot bartender) and informa-
tion sensitivity as dependent variable. Similar to age group, agent type had a
significant effect on the preferred drink information sensitivity (cf. Table 2). Par-
ticipants in the robot condition found this information more sensitive (M = 2.58,
SD = 1.35) than participants in the human condition (M = 2.01, SD = 1.22).

Given the correspondence between the results on agent type and age group,
we performed a Kruskall Wallis H test to discriminate whether a combined effect
of agent type and age group was at stake. For this analysis, we combined agent
type and age group into a four-level independent variable (robot and younger
group N = 23, human and younger group N = 20, robot and older group
N = 15, and human and older group N = 18) and used information sensitiv-
ity as dependent variable. The results disclosed a significant effect on preferred
drink sensitivity (X2(3) = 10.954, p = .012) but not on sensitivity of per-
sonal interests (X2(3) = 1.481, p = .687), sensitivity of identity information
(X2(3) = 1.162, p = .762), and drinking context sensitivity (X2(3) = 1.848,
p = .605). Follow-up Mann-Whitney U tests considering a Bonferroni correc-
tion (cut-off p = .008) disclosed that older participants found that the preferred
drink information was more sensitive when the bartender was a robot (M = 3.47,
SD = 1.24) rather than a human (U = 62, z = −2.684, p = .007, M = 2.11,
SD = 1.27), while younger participants did not show such difference (U = 204,
z = −.655, p = .512). Older participants in the robot condition found the infor-
mation on preferred drink more sensitive than younger participants in the robot
(U = 64, z = −3.269, p = .001, M = 2.00, SD = 1.09) and human condition
(U = 58, z = −3.122, p = .002, M = 1.91, SD = 1.21). No such difference
was present between younger and older participants when the bartender was a
human (U = 170, z = −.313, p = .754), nor between younger participants in
the robot condition and older participants in the human condition (U = 203,
z = −.109, p = .914). Finally, when asked whether they would have given a
different answer in the opposite condition, participants in the robot condition
said they have would have given a different answer if the bartender was a human
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(U = 562, z = −2.714, p = .007, M = 1.68, SD = .121), whereas participants in
the human condition were less prone to change their responses if the bartender
was a robot (M = 1.27, SD = .095).

3.2 Relationship Between Participants’ Personalities, Propensity
to Trust Online Companies and Perception of Information
Sensitivity

We also estimated whether the sensitivity of the different types of information
was related to participants’ personality traits (i.e. extraversion, agreeableness,
conscientiousness, emotional stability, openness to experience) and their propen-
sity to trust online companies (i.e., “I feel safe giving my personal information
to online stores”, “I generally trust online companies with handling my personal
information and my purchase history”, “how concerned you are about threats to
your privacy” reverse coded). Since this analysis was aimed at gaining insights
into the design of a bartender robot, it was performed only with the data from
the robot condition.

The sensitivity of personal interests and drinking context did not correlate
with any of the personality traits and propensity to trust items. Conversely, the
sensitivity of personal identity information was significantly negatively correlated
with the perceived safety in giving personal information online (rs(36) = −.391,
p = .015) and the lack of concern about threats to privacy (rs(36) = −.461,
p = .004). Moreover, it showed a tendency to positively correlate with emotional
stability (rs(36) = .299, p = .068). Finally, the preferred drink sensitivity was
significantly negatively correlated with the propensity to trust online companies
in the handling of data (rs(36) = −.368, p = .015) and significantly positively
correlated with participants’ emotional stability (rs(36) = .365, p = .024).

3.3 Participants’ Ratings of the Information Sensitivity

While the information sensitivity of people’s drinking preferences varied across
agents and age groups, it was not, however, the most sensitive information. The
rating scale we used ranged from 1 to 5 (from not sensitive to extremely sen-
sitive). Hence, we can categorise the information with mean values below 3 as
with “low sensitivity”, those with mean values above 3 as “highly sensitive”,
and those with ratings equal to 3 as “mildly sensitive”. If we take a look at the
descriptive statistics in Table 3, which shows the distributions of participants’
responses in descending order, and the histograms of the four subscales of infor-
mation sensitivity of our study in Fig. 1, we can see that the information related
to a person’s identity (i.e., sexual orientation, relationship status, political, and
religious beliefs) was in general perceived as the most sensitive, and this regard-
less of the agent it was disclosed with and the age group of the participant.
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Table 3. Descriptive statistics for the different dependent variables.

Item or Subscale Sensitivity

M SD 95% CI

Your political beliefs 4.09 1.25 [3.81, 4.38]

Your sexual orientation 3.84 1.51 [3.50, 4.19]

Your religious beliefs 3.83 1.41 [3.51, 4.15]

Your relationship status 3.79 1.25 [3.50, 4.07]

How many times you drink during the day 3.24 1.48 [2.90, 3.57]

You prefer to drink alone 3.03 1.51 [2.68, 3.37]

You prefer to drink in company 2.87 1.46 [2.53, 3.20]

Your interest in culture 2.86 1.45 [2.52, 3.19]

Your interest in art 2.50 1.41 [2.18, 2.82]

Your interest in movies 2.49 1.39 [2.17, 2.80]

Your interest in TV shows 2.49 1.38 [2.17, 2.80]

Your preference for alcoholic drinks 2.38 1.47 [2.05, 2.72]

Which is your preferred drink 2.34 1.41 [2.02, 2.66]

Your interest in sport 2.34 1.36 [2.03, 2.65]

Your preference for non-alcoholic drinks 2.16 1.41 [1.84, 2.48]

Fig. 1. Overview of perceived information sensitivity divided per agent type (robot vs.
human) and age group (younger vs. older age group).

4 Conclusion and Future Works

The purpose of this study was to understand what people perceive as sensitive
information to be shared with a service robot in a public environment. For this
purpose, we asked participants of different ages, genders and nationalities, to rate
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the sensitivity of 15 different information shared with either a robot or human
bartender. Our study showed that participants’ perception of the sensitivity of
personal information was relatively consistent. It outlined that participants rated
information about their identity as highly sensitive, while their personal interests
were considered as low in sensitivity. We found a statistical difference in people’s
perception of information sensitivity according to the type of agent. However,
this was mainly due to participants’ age. In fact, older participants found the
information regarding their drink preferences more sensitive than younger par-
ticipants, and especially so when the bartender was a robot. We did not observe
any significant differences in rating tendencies for the gender of the participants.
We also observed that people’s perception of personal identity sensitivity was
correlated to their trust in sharing personal information with online stores. In
particular, participants who were more concerned about online threats to their
privacy rated this information as more sensitive. This finding is in contrast with
the general belief [5] that people are willing to share personal information when
they can benefit from it.

The main interest of our research is to investigate how a successful long-term
interactive relationship can be established, enhanced and preserved between cus-
tomers and service robots in real-world settings. Personalisation of the interac-
tion is a key factor for pursuing such long-lasting interactions [6]. For this reason,
we are interested in investigating how we can effectively implement strategies for
personalising people’s experience with an autonomous service robot according
to their previous interactions and adapting the robot’s behaviours to the user’s
necessities. However, a successful personalised HRI requires that people share
personal information with the robot. People’s awareness of using robots that are
able to collect private information may cause people not to share such informa-
tion with the robot [22], and in some cases, it might even negatively affect their
willingness to use the robot [21]. Contrarily, a lack of awareness of a possible
breach of confidentiality could have opposite effects on people’s acceptance of
the robot [12]. However, research shows that people still decide to share sensitive
information with online services if the perceived trade-off between the privacy
and the utility of sharing results in a positive outcome [22].

When discussing privacy, it is, however, important to distinguish human-
robot interactions occurring in private and public spaces. In private environ-
ments, risks and effects of privacy issues are widely investigated in literature
[1,7], including possible relative solutions (e.g. encryption of the data collected,
avoiding private areas like bedrooms and bathroom). Contrarily, it is still unclear
how people perceive a violation of privacy made by a robot in a public interac-
tion [22], as it might happen if a bartender robot uses personal information of a
user in front of other customers who are likely strangers to such user. The results
of the study presented in this paper lead us to hypothesise that people might
respond to a disclosure of information by a robot as they would do with human
bartenders in real-world scenarios. Therefore, we expect that people might be
inclined to share information with a robot bartender in a real world scenario as
they do with a human bartender. In this study, participants’ perception of the
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robot was not affected by any robot’s description or embodiment, however, we
do expect that the appearance of a robot bartender might affect people’s percep-
tion of the interaction and the robot [9,26], and, consequently, their willingness
of sharing information with it.

The findings of this exploratory study can guide future investigations on the
effects of different levels of information sensitivity on customers’ perception of a
robot and loyalty to a service it delivers in repeated in-the-wild HRIs.
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Abstract. How to characterize the object status of the sex robot? Although its
global anthropomorphism, based on its hyper-realism, confers on it an indis-
putable reality, we seek to show that its mode of existence is floating. Either
as an auto-erotic device whose role would be to close the body of the subject
on himself/herself – even more elaborately than by the use of a sex toy or a sex
machine. Or, as a fetish when it comes to a sex doll deprived of its genitals, a
mute a-sexual figure who returns, in particular, the male subject to his unreach-
able and therefore untouchable female daydreams. Or, finally, as a transitional
object, touchable, treatable, comforting but which places the subject in an area of
illusion where, according to the very terms of Winnicott, the subject is in danger
of dementia.

Keywords: Sex robot · Social robotics · Fetishism · Transitional object

1 Introduction

The term robot belongs to thefield of sciencefiction, since its creation byKarelCapek and
its popularization by Isaac Asimov, and to the field of technology since the appearance
of the first remote manipulators after the Second World War and the introduction of
industrial robots in car factories around the 1980’s. These two realities, literary on the
one hand, technological and industrial on the other, have gradually become disjointed
with the advances of scientific robotics. The concept of sex robot has recently challenged
the separation between these two modalities, phantasmatic and technical: indeed, sex
robots can be perceived as a technological device that would realize the fiction of the
artificial lover as it is encountered in some scenes of Barbarella imagined by Jean-Paul
Forest. Technically speaking, actual sex robots are still far from being able to claim the
performances worthy of the praise of the heroine Barbarella, but robotic technology
is sufficiently present in our societies for making possible such a fantasy. Thus, at the
turn of the years 2010, the American company True Companion announced having
designed Roxxxy, for its feminine version, and Rocky, for its masculine version, two
humanoid robots supposed to be able to become true “loving friends”: “She can even
have an orgasm” is said about Roxxxy. Its presence at the Adult Entertainment Expo in
Las Vegas in 2010 generated considerable media interest – see, for example, Svensson
[1] – although some experts saw it as a sham [2]. The fact remains that the possibility
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of such a market has led to wide debates between radical opponents to this new form
of sex technology [3] and blissful optimists who are very seriously considering getting
married in the near future with a sex robot [4]. Recently, a number of philosophers
and ethics experts have addressed the issue of consent between humans and sex robots
[5]. These studies are, generally, the fact of non-roboticists for whom a sex robot is a
postulated machine rather than a real machine. Beyond the difficulty of predicting the
future of such a robotic technology, the proposed ethical analyses generally leave aside
any psychological question in the possible human-robot sexual relationship because, in
particular, a lack of practical data and a lack of interest on the part of psychologists
in a field that is still poorly documented. The purpose of this article is to try to define
a framework for the psychological study of what could be called sexual robotics from
what it is now.

2 Global Anthropomorphism of Sex Robot

While sexual satisfaction devices, commonly called sex toys, are generally limited to
genital arousal tools (vibrator, etc.), or devices that mimic the genitals (dildo, molded
bust including a vaginal orifice, etc.), the concept of sex robot is intended to be a global
representation of the human body and this is its profound originality. A global anthropo-
morphism, peculiar to sex robots, that impersonate a male or female human being, can
be opposed to the local anthropomorphism of sex toys mimicking a more or less exten-
sive genital sphere. It also can be opposed to the non-anthropomorphism of a number
of them, the most striking of which is undoubtedly the vibrator to which Rachel Maines
[6] devoted a book to describe its technical evolution throughout the twentieth century.
This opposition was, in my opinion, too little emphasized in the reflection on the new
place that robotics seeks to take within so-called sex technologies. Let us recall that
the technology of machines, and more particularly those designed to replace men and
women in their daily tasks, have been progressively removed from anthropomorphism
for simple reasons of efficiency: the case of the washing machine is particularly striking
from this point of view [7]. Because it is difficult to design a robotic hand, the vibrator
replaces the finger stroking movement on the clitoris with a simple vibration system
(or even a contact-free stimulation with the new models developed by Womanizer): an
efficiency results that may be superior to that of the human hand [8]. The so-called sex
machine is another particularly interesting example of renouncing anthropomorphism
to do, at a lower cost, better than the human body, as illustrated in Fig. 1. It is, in a way,
an anti-sex robot: the back and forth movement of its dildo is produced by a crank and
connecting rod system, driven by a simple electric motor whose adjustable speed ensures
for his/her user the control of the rhythm. The few male sex robots in the trade, such
as the Henry robot from Realbotix (https://www.realdoll.com) offer the use of an erect
artificial penis that cannot today be animated by a coital movement. Such a movement in
man/woman engages, in fact, the whole musculoskeletal system to combine the control
of a back and forth movement while ensuring the balance of the body, something all
the more difficult to achieve if the support surface is soft. Sex machine, by combining
rigidity and precision of its mechanism with the flexibility of the dildo, succeeds in this
feat of automating at low cost a particularly intimate movement and even gives it a vigor
that no human can provide.

https://www.realdoll.com
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Fig. 1 General structure of a sex machine in the form of a systemic diagram highlighting both
the closed-chain kinematic structure, and its closed-loop operation involving the human body, the
rigid part of the rod and crank, and the soft dildo.

In a way, the challenge of sex robotics is to reintroduce the human form within sex
technology. It achieves this by taking advantage of the current possibilities of molding
flexible structures on a rigid articulated skeleton, whose positioningmust allow tomimic
different attractive positions. This variety of the robot’s love positions depends, of course,
on the joint complexity of the robot’s skeleton, which varies according to the brands,
but, with the exception of rare attempts at questionable effectiveness, the motorization
of these joints is still in the planning stage. From this point of view, a sex robot is more
like, mechanically speaking, a life-size workshop mannequin than the present humanoid
robots which we know how difficult it is always to make them walk without risk of
falling, as to equip them with hands able to mimic the diversity of human grip. It is,
however, interesting to note that although the target audience is predominantly male,
the current passivity of the sex robot can finally adapt to both sexes from the moment
a position is chosen in which the robot plays the role of the passive sex partner. The
difference between the sex robot and the workshop mannequin then lies, on the one
hand, in its pseudo-fleshly envelope and, on the other hand, in the adaptation to this
envelope of genital organ artifacts derived from the classic technology of sex toys. The
external appearance of the sex robot derives from a certain art of the hyper realistic
sculpture, taking advantage, in the years 70–80, of the multiple molding possibilities
offered by the diversity of synthetic rubbers to mimic the nuances and suppleness of
human carnation. MatMacMullen, creator of the company Abyss Creations, at the origin
of the first American sex robots, comes precisely from this artistic trend. However, unlike
a hyper realistic statue, the sex robot is not destined to have a pedestal. Heavy by several
tens of kilograms, and not currently possessing autonomy of movement, it is finally an
object, which must rest only in an awkward position in a sofa, or lying on a bed.

Two approaches are then to be opposed in the development of these artificial sex
bodies. A first approach makes the immobility the essential characteristic of a device
that can be called love doll in reference to the Japanese love doll of which Agnès
Giard [9] has recently made a remarkable synthesis. A second approach, which could be
described as truly robotic, considers that the present difficulties of humanoid robotics in
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its quest of its own anthropomorphism [10] will end up being overtaken to be adapted
to sex robots. Waiting for that, actual so-called sex robots are essentially devoted to
speak, as does Harmony developed by the American company Realbotix, a division of
MacMullen’s Abyss Creations “with the goal of integrating robotic components and
artificial intelligence into high ended silicone dolls” [11]. Presented to the public by
her “AI/content director”, Harmony appears seated, answering with application to the
questions of its manager;Harmony can also pull out her tongue, but she can’t get up from
her chair, let alone follow her owner to continue this conversation in bed. Quiet or chatty,
love doll or sex robots nevertheless impose a sensitive presence whose acceptance – in
the sense of non-rejection of an implant inside a living body – is not self-evident.

3 Beyond Uncanny Valley

DespiteMori’s prediction about the feeling of discomfort generated by a machine whose
resemblance to the human is too strong, the question of a possible feeling of unease
caused by the presence of a hyper-anthropomorphic artificial structure did not seem to
have been taken into account by the manufacturers of sex robots. One way to approach
this apparent exception of sex robots to Mori’s theory may be to bring the Japanese
idea of “Bukini no tani gensho” closer to “Das Unheimliche” (The uncanny) concept
developed by Freud after Jenstch. Let us recall one of the conclusions of 1919 Freud’s
essay: “Our conclusion could then be stated as follows: the uncanny element we know
from experience arises either when repressed children complexes are revived by some
impression, or when primitive beliefs that have surmounted appear to be once again
confirmed” ([12], page 155) and, among the most intimate forms of repressed, the fear
of death occupies a preponderant place: “To many people the acme of the uncanny is
represented by any thing to do with death, dead bodies, revenants, spirits and ghosts”
([12], page 148). In this context, corpse and zombie, at the bottom of the valley, would
play the role of figures of the repressed particularly frightening [13]. However, without
renouncing to this Freudian concept, one could make the argument that the sexual drive
would not be disturbed by the repressed fear of death because, for man at least, it would
be based on a fundamental will of transgression, that Freud is almost ashamed to confess
to us. “It has an ugly sound and a paradoxical as well, but nevertheless it must be said
that whoever is to be really free and happy in love must have overcome his deference
for women and come to terms with the idea of incest with mother or sister”, he says
in his important 1912 article about “the most prevalent form of degradation in erotic
life” ([14], page 55). The violence suffered by sex robots is always highlighted with
astonishment (see, further, the case of this Asian student who damaged his real doll as if
he had wanted to mime a series of sexual crimes). The same phenomenon occurs in what
Giard calls “doll brothels” about which she writes, “It turns out that customers rarely
return. The state of the “girls” horrifies them: they are covered with scratches and even
worse” ([9], page 105). The spokesman of the Canadian company Aura Dolls, a doll
brothel directly inspired by the Japanese experience, points out that his establishment is,
among other things, adapted to certain frustrated men with violent tendencies: “We try
to focus on the fact that since we have this service, for men who have these dark, violent
fantasies, instead of putting out the urge to act aggressively, they can do something like
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this which is safe for everyone” [15]. The person who satisfies his/her sexual impulse
with a robot would therefore not be concerned by Mori’s warning. The transgression
would suspend the risk of return of the repressed and, more particularly, the one on ideas
of mortality – it would suspend it but would not cancel it, as this verse by the French
poet Eluard, quoted by Xavière Gauthier [16], reminds us: “During sexual intercourse
I conjugated sperm and skeleton” (page 135). And yet, Giard notes, “it does seem that
many clients are disturbed by the head of their love doll when, waking up at night, they
see it staring at the ceiling with a disturbing intensity” ([9], page 128). According to
her, it is for this reason that “practically, all firms have in catalogue at least one doll
nicknamed me toji (“closed eyes”) or tsamuri me (“shut eyes”) (ibid. 128). In some way,
this gaze intensity about Giard talks, isn’t that the one of who has just died? It would
be then enough to close the eyes of this frozen face so that the serenity of the one with
whom the robot shares his/her bed is found. In this way, and apart from the sexual act,
the love doll would still escape Mori’s law. One might even wonder if, for some people
and under certain conditions, the love doll would not be that undefined point that Mori
draws on her curve before it plunges into the uncanny valley (see Fig. 2).

According to Giard, “the manufacturers are unanimous: they do not try to reproduce
but to “create” a human. […]. Even with the grains of beauty, this envelope must keep
the artificial, unreal appearance of a dream creature” ([9], page 132). We can think that
Mac Mullen would say the same about his Harmony doll. At the service of what form
of auto-erotism to attach such sublimated anthropomorphic objects?

Human likeness
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Fig. 2 Mori’s curve Affinity versus Human likeness applied to sex technologies: depending on
the subject’s interest in these technologies, sex doll/robot would be located more or less high
on the left flank of the valley, even at first peak with an affinity value higher than this generally
considered.

4 The Auto-erotism Peculiar to Sex Robot

The term auto-erotism was introduced by Havelock Ellis in 1898, before Freud resumed
it in his essay on infantile sexuality. According to Havelock Ellis, auto-erotism is the set
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of “phenomena of spontaneous sexual emotion generated in the absence of an external
stimulus proceeding, directly or indirectly, from another person” ([17] page 260). Freud
uses the term, without defining it precisely, in his analysis of infantile “thumb-sucking”,
a type of auto-erotic activitywhose “themost striking feature of this sexual activity is that
the instinct is not directed towards other people, but obtains satisfaction from the subject’s
own body” ([18], page 181). Because this auto-erotism is purely infantile, Freud seems to
dissociate this notion ofmasturbation as he expresses it indirectly in this famous passage:
“So far as the autoerotic and masturbatory manifestations of sexuality are concerned,
we might lay it down that the sexuality of little girls is of a wholly masculine character”
(ibid., page 219). Is it to distinguish himself from Havelock Ellis, as he will do later with
Jentsch for the concept of “unheimliche” that Freud excludes masturbation from auto-
erotism? Anyway, in their Language of Psychoanalysis, Laplanche and Pontalis [19]
clearly include masturbation in the “broad sense” of auto-eroticism which they define
as follows: “a form of sexual behavior in which the subject obtains satisfaction solely
through recourse to his ownbody, needing nooutside object; in this sense,masturbation is
referred to as auto-erotic behaviour” (article “Auto-erotism”). In this context, it could be
argued that sexmachine is consistent with the initial definition of auto-erotism according
to Havelock Ellis if one considers that its neutral form does not generate an “external
stimulus”. By contrast, the sex robot would combine themasturbatory tool of its artificial
vaginas and dildos with the source of external excitement of its plastic made in the image
of certain beauty canons supposed to be particularly exciting on the sexual level. Can
we still talk about auto-erotism in the case of sex robots?

To attempt to answer this question, we propose to appeal to the definition of auto-
erotism according to the French psychanalyst JeanGillibert forwhich auto-erotism is “an
erotism involving here the means of enjoyment and not the object used for enjoyment”
([20], pages 788–789). The interest of this redefinition consists in the new status given
to the object in auto-erotism. In their commentary on auto-erotism definition, Laplanche
and Pontalis [19] write: “This theory [i.e. auto-erotism theory] does not assume the
existence of a primitive ‘objectless’ state. The action of sucking, which Freud takes as
the model of auto-erotism, is in fact preceded by a first stage during which the sexual
instinct obtains satisfaction through an anaclitic relationship with the self-preservative
instinct (hunger), and by virtue of an object – namely, the mother’s breast”. In some
alternative way, Gillibert writes: “The question no longer arises whether auto-erotism is
still objectal or objectless: it is both”. Applied to the question of sex robot, Gillibert’s
theorywould lead to give the robot the status of an object whose naturewould be floating;
As a child does with his/her thumb, which can take and instantly lose its nature of auto-
erotic object, so could a sex robot, during its use, to be forgotten as an object and to
leave the subject alone with his own body. In a short article on self-fellatio Gillibert [21]
reports the fantasy of some of his patients “during childhood or adolescence, having had
the urge to suck their penis, to have tried it” (page 31). Gillibert interprets this fantasy
of self-fellatio as “a desire to pose the body as erotically inaccessible to another body”
(ibid., page 32). The use of a sex robot has, a priori, nothing to do with such a fantasy
but we can wonder if, what distinguishes it from the use of a simple sex toy, would not
be precisely a similar desire of “looping on oneself” (ibid., page 33), made possible by
the objectal/objectless ambiguity of the sex robot.
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However, the hyper anthropomorphism of the sex robot and the complexity of its
structure induce a weight much higher than a simple inflatable doll. If one day sex robots
will be mobile due to some ingenious actuation, its object reality will be imposed by a
“body mass index” finally quite close to or even higher than this of a human body of the
same size and corpulence. It is this obvious nature of real thing that leads us to wonder
if, overflowing its auto-erotic nature, the sex robot could not also acquire a fetish nature.

5 Fetish or New Form of Transitional Object for Adults?

According toBinet (1887) in hisEssay on LovingFetishism [22], all love is fetishist in the
sense that it is not interested in the elusive totality of a personbut in a limited number of his
characters: “Normal love therefore appears to us as the result of a complicated fetishism;
we could say that, in normal love, fetishism is polytheistic: it results, not from a single
excitation, but from amyriad of excitations: it is a symphony” (page 126). The transition
from normal love to pathological love is, according to Binet, only a question of rupture
of harmony: “In sexual perversion, we do not see any new element; only harmony is
broken; love, instead of being aroused by thewhole person, is only aroused by a fraction”
(ibid., page 127). Binet’s systemic approach is intended to provide a framework for a
number of fetishistic practices that were gathered at the time in successive editions of
already cited Kraft-Ebing’s Psychopathia Sexualis treatise. If some fetishistic practices
still speak to us, such as the fetish of the shoe or that of the hair, others now seem very
strange to us as the one said of the “hair despoilers” ([23], pages 158–161). Apparently,
in comparison with such practices that favor a unique physical or moral characteristic of
the desired being, sex robot appears as a totality of peculiarities. But, besides the fact that
this totality is limited to an external envelope to which has been added a pseudo-sexual
functionality, it is only apparent because it mimics a body without an organ or rather a
body that would be limited to certain primary and secondary sexual signs. According to
Binet’s point of view, a sex robot would therefore have an ambiguous fetish nature. On
the one hand, by its mimicry of human appearance in its entirety, it moves away from
fetish objects attaching to a detail of the human person. On the other hand, it can appear
as a “dressing” of the artificial genitals, which are usually detachable either to be able
to wash them as in the case of the extractable vagina, or to be able to pass from the non-
erectile nature of the artificial penis to a dildo. According to Giard, a first explanation of
the extractable vagina could be found in old legal rules on censorship of dolls displaying
a vagina, before putting forward a second more fundamental explanation that would be
related to the Japanese culture: “We Japanese do not need to see sex. We need to see
desire” ([9], page 203). More prosaically, the extractable vagina that most American
manufacturers have adopted makes it much easier to clean after use than to carry the
heavy doll to the bathroom. There is another interest in the extractable vagina, as well
as the interchangeable penises: to be able to choose and to be able to change. The site of
the company Realbotix, of which we have already spoken, proposes to its customers, in
the heading “insert options”, a selection of 11 different vulva for which the site states:
“all insert shown are interchangeable with all female RealDoll dolls” (https://www.rea
ldoll.com/options/#insert). Nothing prevents an amateur to buy the whole collection, as
to another to obtain multiple forms of interchangeable penis.

https://www.realdoll.com/options/%23insert
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Rather than being a sexual fetishes support, it would seem, therefore, that, as a
fetish, one must consider the robot in its entirety, especially when it is deprived of its
artificial genitals, as in the case of Japanese love doll on which the vagina was not
placed. Giard talks about these Otaku, that she defines as male individuals withdrawn
on themselves, often maniacal, who grew up with the advent of sexual manga and “the
confinement in front of the computer”, and for whom the love doll would represent
the woman who “does not exist in reality” ([9], page 213). Giard quotes the testimony
of a certain Sakai Mitsugi who, in 2014, then 51 years old, said: “The charm of dolls
is very different from that of women. […] The doll is better than a woman because it
has no personality, no negative ideas and stays with you all the time” (ibid., page 215).
Kodama, one of Giard’s informants, is even more radical: “When we were younger,
we dreamed of ideal love, because the girls were inaccessible. As adults, we remained
attached to this impossible dream. What we were suffering from, finally, is not the
lack of real women, it is the excess of imagination. This excess of imagination makes
reality useless. Why go out? Everything is already in us” (ibid., page 215). Giard does
not propose a psychoanalytic reading of this exclusive love for dolls whose “hole”
is not sought to fill by a vagina but it appears, in some respects, strangely close to
fetishism as described by Freud in his 1927 essay. According to Freud, “the fetish is
a substitute for the woman’s (the mother’s) penis that the little boy once believed in
and - for reasons familiar to us - does not want to give up. ([24], page 198). It is the
consequence of “the horror of castration” with as a corollary “the stupor in front of the
woman’s actual genitals that no fetishist lacks [and] also remains an indelible stigma of
the repression that took place” (ibid., p. 135). In some way, this love doll fetish, deprived
of artificial genitals, would then renew what the nineteenth century called love of statues
or agalmatophilia which is documented, in particular, at Havelock Ellis and Krafft-
Ebing. Scobie and Taylor [25] proposed the following definition: “Algamathophilia is
the pathalogical condition in which some people establish exclusive sexual relationships
with statues.” It is interesting to note that the love of statues is here considered as a
sexual attraction, which can go as far as orgasm, with statues naturally deprived of
orifices. At the same time, criticizing this study, White [26] points to the weakness of
credible testimony on this phenomenon, which, according to him, is more a fantasy or
anecdote than a truly “behavioral perversion” (page 249). The love attraction for a love
doll, whose “hole” is left empty, would tend to justify the possibility of a diagnosis of
agalmatophilia.

An ambiguity remains, however, in the data provided byGiard: do the otaku of which
she speaks have one or more love doll? In her study of a sample of 55 American sex
dolls, Sarah Valverde [27] notes that 18 of them, or 39% of the sample, have two or
more sex dolls (page 31). For those who would live with a single sex robot, which has
become an exclusive substitute for any romantic relationship, the question then arises
of an interpretation which, without renouncing entirely the theory of fetishism, would
rather be placed within the framework of the theory of the transitional object.

Myriam Boubli, in her attempt to analyze the evolution of the comforter concept,
shows how, untilWinnicottmade it a transitional object, it was considered and designated
as a fetish. If everyone finds normal today the temporary attachment of the child for his
comforter, the question arises when the adult keeps the need for a certain presence of
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soft toys in his daily life: “Are we not, this time, in the realm of perversion?” questions
Boubli ([28], page 126) without really deciding this issue. She relates this remarkable
testimony of one 20-year-old patient “who maintains the link to her comforter, which
she continues to use as a consolation object in her moments of ill-being” (ibid., p. 126):
“Fundamentally, my boyfriend, in my bed, I wonder if I don’t tied to him like to a
mother. The smell, the touch… It is enough for me. The genital relationship, I rejected
it” (ibid., page 126). In the case of this young girl, Boubli interprets this rejection of
sexual intercourse as the consequence of an anguish of loss of the maternal relationship
and its destruction if it is in competition with another attachment; such anguish would
justify the persistence of the comforter. Beyond the individual reasons that can explain
the persistence of the comforter in adulthood, it is clear, in any case, that it does not play
a sexual role. Contrary to a sex impulse object, it would be an object of appeasement,
but “this type of object made up of the whole reverse of the impulse is, says Boubli,
an object of idealization, a dead object, the object of a sort of commemoration of a
completely devitalized image” (ibid., page 127). We can then wonder if sex robot, in its
currently essentially passive form, solid object built around a rigid structure, but with a
real suppleness on contact, not to say softness (see for example, some promotional films
such as this one: https://fr.xvideos.com/video43617247), does not fall, in a way, in the
category of comforters. To try to answer this question, let us return to the very text of
Winnicott [29] where he writes: “I have introduced the terms ‘transitional object’ and
‘transitional phenomena’ for designation of the intermediate area of experience, between
the thumb and the teddy bear, between the oral erotism and true object-relationship […]”
(page 89). To the “inner reality” and to “the external life”, he claims “there is also need
for a triple one; the third part of the life of a human being, a part that we cannot ignore,
is an intermediate area of experiencing, to which inner reality and external life both
contribute” (ibid., page 90). For Winnicott, the transitional object, or comforter, would
be “the first not-me possession”. It is the indispensable transition to the “true object-
relationship”. “Its fate is to be gradually allowed to be decathected, so that in the course
of years it becomes not so much forgotten as relegated to limbo” (ibid., page 91), and
its abandonment marks the end of the “area of illusion”.

Winnicott’s statement is therefore particularly ambitious: “I am therefore studying
the substance of illusion, that which is allowed to the infant, and which in adult life is
inherent in art and religion” (ibid., page 90). Sex robot, unlike a sex toy, is precisely an
illusion, the illusion of an ideal woman or man, or even a quasi-supernatural being in the
case of love doll with enlarged eyes or special orders made to the American company
Sinthetics (Sinthetics.com). In a documentary that the American series Slutever devoted
to this company in 2016, we learn, for example, that a client wanted a “doll” inspired by a
fantastic hero whose picture she addressed to society [30]. According to this perspective,
as we tried to illustrate on the diagram in Fig. 3, directly inspired by Winnicott’s own
schemes, a sex robot would be a transitional object, that is to say a physical illusion,
disguised as an object of sexual satisfaction.

This transitional object status would give all rights of use by its owner, including
to mutilate it as reported by Megham Laslocky [31]: “Fiero’s [the sex doll “doctor”]
photographs of the damaged doll make me cringe: Her leg was torn off, revealing the
steel hardware of her hip joints; an arm hung by an inch of silicone flesh. Her vagina was
so blown out,” Fiero told me. “I was appalled. I couldn’t believe someone could fuck

https://fr.xvideos.com/video43617247
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something like that up so quickly. It blewme away. How could someone be so callous?”.
It is interesting to note that the sex robot possesses many of the “special qualities in the
relationship” listed by Winnicott, especially qualities 3 and 4: “3. It must never change,
unless changed by the infant. 4. It must survive instinctual loving, and also hating, and,
if it be a feature, pure aggression” ([29], page 91). By their appearance frozen in eternal
youth, sex robots share the property 3, including the setting up and removal of sexual
parts used; and we saw with Laslocky’s testimony just cited the ability of sex dolls to
survive severe aggressions of their owner. The “intermediate area of illusion” where the
link with the comforter develops is, however, clearly defined by Winnicott as an area
specific to the development of insane ideas: “We allow the infant this madness, and only
gradually ask for a clear distinguishing between the subjective and that which is capable
of objective or scientific proof” ([32], page 71). But, just after, he adds: “If an individual
claims special indulgence in respect of this intermediate area we recognize psychosis;
if the individual is an adult we use the epithet ‘mad’. (ibid., page 71). In fact, according
to Winnicott, “the substance of illusion” for remaining acceptable in the adult world,
must not spill over into the area of “external life” because “[It] yet becomes the hallmark
of madness when an adult puts too powerful a claim on the credulity of others, forcing
them to acknowledge a sharing of illusion that is not their own.” ([29], page 90). That is
actually what we think when we see these pictures showing these Japanese men walking
their love doll in a wheelchair, accompanying them to the seaside, or in a park [33].
The sex robot, as a physical illusion for adults, would be made to stay hidden. However,
even domestic, the illusion of the sex robot can remain problematic, a real proof of an
impossibility for its user to find a solution to its integration into real love life. The only
woman who dares to appear on the screen in the film of the series Slutever, of which
we have already spoken, thus describes the advantage of her male doll that she has just
painfully pulled on her bed. The men who are interested in her, her «fuck buddies» she
says, are either too present emotionally, or elusive after realizing the fantasy of sleeping
with a porn star; according to her, a sex robot presents neither the disadvantage of the
former nor the disappointment of the latter. Giard also speaks to us about thosemenwho,
particularly involved in the relationship with their love doll, decide one day to renounce
it totally as woke up from a bad dream.

(a) (b) (c)

infant

mother

illusion

infant

mother

adult

possible love 
partners

sex robot

Fig. 3 Sex robot as a phenomenon of illusion carried by the transitional object that it would
represent: the diagram proposed in (c) is directly inspired by the diagrams (a) and (b) proposed by
Winnicott to illustrate the concepts of object and transitional phenomena – redrawn from Figs. 1
and 2 of seminal Winnicott’s article [29].
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6 Conclusion

Sex robot, as understood and discussed today, remains deeply ambiguous. Technically,
it is not yet ready to offer his/her users an attractive approach, even modest caresses and
even less loving positions where it would be the active partner. The current sex robot
is therefore first, and most often, a superb artifact of a highly sexualized human. In its
actual limited state or in a forward projection state with future mobility functionalities,
we have successively tried to identify it as an auto-erotic device, a fetish or a transitional
object. These three approaches turn out to be covered by the same ambiguity regarding
the object nature of the sex robot. As a masturbatory device, it imposes its heavy and
cumbersome presence, its global anthropomorphism, as opposed to actual sex technol-
ogy, a generalized hyper-realism supposed to bring more sexual satisfaction to his/her
user. But, ultimately, does this auto-erotic use not lead to the denial of the object rela-
tionship in order to bring the one who indulges in it in a closure of his/her own body on
himself/herself? As a fetish, the sex robot, then deprived of its masturbatory function
by rejecting the installation of its genitals, would also not reach the status of an object.
He would only justify this radical word reported by Giard: “Everything is already in us”
(cited infra in the text), turning the sex/love doll into a narcissistic projection device by
means of which the male subject, especially, can avoid the frightening confrontation to
woman genitals. Finally, whether or not sex robot is equipped with its artificial genitalia,
it would lead his/her users into a world of illusion in the sense that Winnicott theorized
to explain the attachment of the child to his comforter. A world of illusion in which the
adult enters through art or religion but, precisely, a sex robot is neither a work of art
nor a religious representation, and that would be the real danger that he would make the
adult who surrenders to it: to sink, if we followWinnicott’s theory, in a form of insanity.
Is this what threatens the one who, in an undetermined future, would decide to share
his/her life with a sex robot or, in a lighter manner, would sex robotics open the way for
a new form of lovemaking according to the image of Barbarrella and Diktor illustrating
our text?
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Abstract. Explanations are a useful tool to improve human-robot inter-
action and the topic of what a good explanation should entail has
received much attention. While a robot’s behavior can be justified upon
request after its execution, the intention to act can also be signaled by
a robot prior to the execution. In this paper we report results from a
pre-registered study on the effects of a social robot proactively giving a
self-explanation before vs. after the execution of an undesirable behavior.
Contrary to our expectations we found that explaining a behavior before
its execution did not yield positive effects on the users’ perception of the
robot or the behavior. Instead, the robot’s behavior was perceived as less
desirable when explained before the execution rather than afterwards.
Exploratory analyses further revealed that even though participants felt
less uncertain about what was going to happen next, they also felt less in
control, had lower trust and lower contact intentions with a robot that
explained before it acted.

Keywords: Explanation timing · Human-robot-interaction ·
Explainable robots

1 Introduction and Related Work

Positive effects of explanations in human-AI interaction have been reported in
numerous studies. Explanations can increase understandability of tasks, help to
build adequate trust, and increase desirability of undesired behaviors [11,18,19].
While the question of what an explanation should entail has been tackled in
multiple fields, the question of when to provide an explainee with an explanation
has received relatively little attention in human-robot interaction so far.

Typically in explanations of black box machine learning approaches one dif-
ferentiates between intrinsic explainability and post-hoc (external) explainability
[1]. While post-hoc explanations retrieve the reasoning after a decision has been
made, intrinsic explainability offers the possibility to explain the decision at dif-
ferent times during an interaction. Yet, the time at which an explanation should
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be presented depends on the goal of the explanation [17]. In order to justify an
agent’s choice, for instance, the information can either be presented before the
agent acts, in a preventative manner, or afterwards (accusatorily). Still, a social
robot’s beliefs and goals are often explained after the behavior, which has been
found to increase the perceived desirability of undesirable social robot behaviors
[18,19]. We generally adopt the view of explaining as a dialogical process [21]
that responds to an explainee’s need for explanation. Nevertheless, and based on
recent results showing positive effects of proactive inner speech in robot teams
during task execution [12], one may assume that proactive self-explanations given
by a robot independent of user request can also be beneficial.

Explaining before task execution in order to signal one’s intention is widely
used in human-AI collaboration and has proven to facilitate predictability or
planning, and to improve human-robot collaboration, e.g., in space robotics
or autonomous vehicles [2,5]. Similarly, Putnam & Conati report a study that
showed participants’ preferences for an early explanation of an intelligent tutor-
ing system’s tips [14]. Based on this, we conjecture that verbally explaining a
robot’s needs and intentions before it executes a behavior may enable the user
to predict what is about to happen, reduce their uncertainty and lead to a more
positive human-robot interaction.

In this paper we investigate the effects of when a robot proactively gives
explanations for its socially undesirable and unexpected behavior. First, we
present the research agenda and hypotheses, as well as a detailed description
of the empirical study. Then, the results from a pre-registered analyses will be
summarized, followed by an exploratory analysis. To conclude, the findings and
their implications for future work will be discussed.

2 Research Agenda

As Hilton [10] states, “the verb to explain is a three-place predicate: Some-
one explains something to someone”. Transferred to our use case, the robot
(explainer) explains its own behavior (explanandum) to the user (explainee). As
the explanation is a tool to communicate an understanding the robot has about
its own behavior to the user [21] the way of presenting the explanation may
impact all parties involved in the explanation situation. Based on previous stud-
ies, reporting effects of explanations on users’ perception of the explanandum
[18] and attitude towards the robot [11], we proposed (and pre-registered1) the
following hypotheses about the influence of explanation timing on the user’s per-
ception of (1) the robot’s behavior (explanandum) and the (2) robot (explainer):

H1 (Robot Behavior): Undesirable robot behaviors are perceived more posi-
tively when the robot explains its behavior before execution compared to after-
wards. Effectively, the behaviors will be rated as (a) less surprising, (b) more
understandable and (c) more desirable when explained before the execution of
the action.

1 https://aspredicted.org/dc6db.pdf.

https://aspredicted.org/dc6db.pdf
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H2 (Robot): A robot that explains its behavior before executing it is rated as
(a) more likable (b) more trustworthy, and will receive (c) higher ratings of con-
tact intention. Further it will be evaluated as (d) more intelligent (intelligence,
mind perception) and as (e) equally lively as a robot that explains its behavior
after executing it2.

Additionally, we will explore whether the explanation timing impacts the
perception of the explanation and the user’s self-perception (explainee) within
the interaction. In detail, we will investigate the following questions:

Q3 (Explanation): Are behavior explanations perceived differently by users
with regard to their (a) epistemic satisfaction and (b) communicative effective-
ness depending on the time at which they are presented? Will explanations be
perceived similarly with regard to their (c) general understandability and (d) jus-
tification power as well as their (e) behavior-related understandability in both
explanation timing conditions?

Q4 (Participant): Do users feel (a) less uncertain, (b) more in control and
(c) less ambivalent towards the robot when receiving an explanation before the
execution of the behavior, as compared to afterwards?

3 Method

3.1 Study Design

In order to investigate effects of a social robot’s explanation timing we designed
a 2×3 mixed-design online rating study. Participants were presented with three
pre-recorded human-robot interaction videos (within-subjects). Each video was
accompanied by a self-explanation given by the robot. Explanation timing
(before/after) was manipulated between participants.

3.2 Stimuli

We chose to investigate the effect of explanation timing with a subset of our
previously evaluated video stimuli showing the Pepper robot. We included only
behaviors that originate from internal robot needs and, in previous work, were
rated as most surprising and undesirable [18,19]. Namely, the following three
scenarios were selected (original video number in parenthesis)3:

– The robot playfully blocks the user’s way (need for social contact) [8]
– The robot drives into the picture and blocks the user’s view to the TV (need

for social contact) [11]
– The robot begins to sing and dance, while the user is asleep on the couch

(need for entertainment) [12]

2 Please note that this enumeration is partially inconsistent with the pre-registered
hypothesis.

3 Original videos: https://dl.acm.org/doi/abs/10.1145/3319502.3374802#sec-supp.

https://dl.acm.org/doi/abs/10.1145/3319502.3374802#sec-supp
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Unlike in our previous studies, the robot did not explain its behavior upon
request, but rather explained it proactively. Participants who were assigned to
the before condition saw a few seconds of the behavior video in order to have
a basic understanding of the situation. Before actually executing its behavior,
the robot now provided a causally structured behavior explanation of what it
was about to do (“I intend to look at you, because I need social contact” or
“I intend to enjoy some music, because I need entertainment”), followed by the
rest of the video. Participants in the after condition saw the complete video
of the robot’s behavior first, before receiving the same behavior explanation in
past tense (“I intended to look at you, because I needed social contact” or “I
intended to enjoy some music, because I needed entertainment”). These expla-
nations provided the participant with information about the robot’s intention
and need, and were selected due to good results in a previous user study [18].
Explanations were verbally provided by Pepper itself, supported by subtitles in
order to ensure comprehensibility. Screenshots of one stimulus video are pre-
sented in Fig. 1, which further illustrates the timing of the explanation in the
two explanation timing conditions.

Fig. 1. Screenshots of stimulus video 8 combined with explanation before (top) or after
(bottom) behavior execution according to explanation timing condition

3.3 Measures

According to the four previously identified parts of our explanation situation,
we collected four categories of ratings:

1. Robot Behavior Ratings: “Pepper’s behavior was intentional/surprising/
understandable/desirable.”

2. Robot Ratings: likability (adapted from (16)), trust (adapted from (20)),
contact intentions (adapted from (7)), mind perception: agency sub scale
(taken from (8)), intelligence (taken from (3)), liveliness (taken from (3))

3. Explanation Ratings:
– Epistemic satisfaction (self-generated, inspired by (4)): “Pepper’s expla-

nation provided me with useful insight to evaluate Pepper’s behavior”
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– Communicative effectiveness (self-generated, inspired by (4)): “Pepper’s
explanation enables me to adapt my interactions with the robot in a
beneficial way.”

– General understandability: “Pepper’s explanation was understandable.”,
Justification: “Pepper’s explanation adequately justified its behavior.”,
Behavior-related understandability: “Pepper’s explanation helped me
understand why it behaved as it did.” (adapted from (6))

4. Participant Ratings:
– Perceived Control (one item: “During the interaction, I felt in control of

what was happening.”)
– Uncertainty (one item: “During the interaction, I felt uncertain about

what was going to happen next.”)
– Prediction (one item: “During the interaction, I was able to predict what

was going to happen next.”)
– Subjective Ambivalence (three items, adapted from (13))

All of these items were measured on 7-point-likert scales. Behavior and expla-
nation ratings were collected after each behavior video (N = 3). Robot and par-
ticipant ratings were collected once, after having seen all interaction videos. In
order to control for group differences regarding previous experience with robots
and technology commitment in general, we additionally measured prior robot
experience (three items, taken from (15)) and technology commitment (eight
items, adapted from (15)).

3.4 Procedure

This research study was conducted online on the platform soscisurvey4. Ethics
approval was obtained by the Bielefeld University Ethics Committee. The study
was pre-registered before data collection.

After being informed about and consenting to the general procedure of the
study, participants were provided with a picture of the Pepper robot5 and a
short description of its workings as a social robot. Subsequently, participants
watched a short video clip of Pepper in order to ensure technical functionality of
the web-based interface. Hereafter, participants were informed about watching
three videos of exemplary situations that could happen in their life with Pepper.
They were prompted to imagine being the person in the video. Participants were
then shown three videos of pre-recorded human-robot interactions staged in a
(lab) living room. All participants saw all three behavior videos in random order
(within-subjects) and received an explanation either before or after execution of
the behavior (between-subjects). The explanation was verbally presented by Pep-
per in the video. After each video participants were asked to rate the observed
behavior (robot behavior ratings) and explanation (explanation ratings). Sub-
sequent to having seen all three videos, participants were invited to rate how

4 https://www.soscisurvey.de/.
5 https://www.softbankrobotics.com/emea/en/pepper.

https://www.soscisurvey.de/
https://www.softbankrobotics.com/emea/en/pepper
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they perceived the robot (robot ratings), as well as the items on self-perception
(participant ratings). Finally, they were asked to provide demographic data and
had the opportunity to give feedback, before being provided with their code for
compensation.

3.5 Participants

Using G*power [9], we estimated a required sample size of N = 78 for a multi-
variate ANOVA with a power of 80%, a medium effect size of f2 = .15 and an
alpha error probability of 5%. For an independent t-test with a power of 80% and
a medium effect (d = 0.5) (alpha= 5%) we estimated a required sample size of
N = 102. Allowing for necessary exclusions, we decided to collect N = 112 data
samples. Pre-registered exclusion criteria were (1) exceptionally low processing
times and (2) self-reported distraction.

The study was carried out online and participants were recruited via Amazon
Mechanical Turk6. Only workers with masters status who had not previously
participated in one of our explanation studies were able to access the survey.
In total, 127 participants accessed and 112 finished the survey. One participant
was excluded from the analysis due to processing times lower than the threshold
of two standard deviations less than the general mean (M = 7:39 min, SD =
2:10 min, threshold: M − 2 ∗ SD = 3:20 min). Since none of the participants
reported that they “often clicked something, so [they were] quickly done.” or
were “distracted by [their] environment (people, noises, etc.) several times.”, no
further participants had to be excluded from the analysis.

This led to a total of 111 participants (47f, 63m, 1o), aged between 22 and
69 (M = 42.06, SD = 11.04). The majority of participants originated from the
USA (N = 72) and India (N = 35).

Participants were randomly assigned to one of two explanation timing con-
ditions via soscisurvey (urn draw with equal distribution of participants across
groups per finished surveys), leading to 55 participants in the before and 56 in
the after condition.

4 Results

There were no significant group differences with respect to technology commit-
ment (F (1, 109) = 0.00, p = .961, η2

p < .00002) or prior interaction with a robot
(X2(1, N = 111) = 0.12, p = .727).

4.1 Pre-Registered Analysis

H1: Behavior Ratings. Robot behavior ratings were higher for intentionality
and understandability and lower for surprisingness and desirability in the before
condition than in the after condition (see Fig. 2A).

6 www.mturk.com.

www.mturk.com
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Participants’ ratings of behavior understandability and desirability were cor-
related (R = .644) at a statistically significant level (p < .001). To ana-
lyze the effect of the explanation timing (before vs. after execution of the
behavior), we used a multivariate ANOVA with the dependent variables sur-
prisingness, behavior understandability and desirability, and the repeated mea-
sure, within-subjects variable behavior, as well as between-subjects variable
explanation timing. It revealed a statistically significant effect of the behav-
ior (F (6, 434) = 5.12, p < .001, η2

p = .066), but not of the explanation timing
(F (3, 107) = 1.91, p = .13, η2

p = .051).
For our pre-registered follow-up analysis we prioritized our variables to con-

sider first surprisingness, then understandability and desirability, controlling for
all higher-priority variables in the analysis of lower-priority variables. In the uni-
variate repeated measure analysis of surprisingness (H1a) we found a statistically
significant effect of behavior (F (2, 218) = 10.89, p < .001, η2

p = .071), but no sta-
tistically significant effect of the explanation timing. In the RM ANOVA of under-
standability (H1b) we additionally controlled for surprisingness and found a sta-
tistically significant effect of behavior (F (2, 216) = 10.76, p < .001, η2

p = .091),
but not of the explanation timing. In the RM ANOVA of desirability (H1c) we
additionally controlled for surprisingness and understandability and found a sta-
tistically significant effect of the behavior (F (2, 214) = 4.17, p = .017, η2

p = .037),
as well as the explanation timing (F (1, 107) = 5.20, p = .025, η2

p = .046).
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Fig. 2. (A) Behavior and (B) Robot Ratings by explanation timing condition

H2: Robot Ratings. As pre-registered, for hypothesis 2 (a), (b) and (c), we
conducted directed independent samples t-tests with the dependent variables
likability, trust and contact intentions, revealing that ratings in the before condi-
tion were not significantly higher than ratings in the after condition. Concerning
hypothesis 2 (d), participants’ ratings of the robot’s intelligence and mind per-
ception were correlated at a statistically significant level (R = .689, p < .001).
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A multivariate ANOVA with the dependent variables intelligence and mind per-
ception and the between-subjects factor explanation timing (pre/post) did not
reveal a statistically significant impact of the explanation timing. Neither did
separate, directed independent samples t-tests. The robot’s liveliness (2e) did
not differ significantly between explanation timing groups: The equivalence test
was significant t(107.62) = −1.743, p = .042, given equivalence bounds of -0.500
and 0.500 (on a raw scale) and an alpha of 0.05. The null hypothesis test was
non-significant, t(107.62) = 0.217, p = .829.

4.2 Exploratory Analysis

Extension of Robot Ratings (H2). In contrast to hypothesis 2, descriptive
analysis of the data reveals higher robot ratings in the condition with expla-
nations after execution of the behaviors than before (see Fig. 2B). Participants’
ratings of likability & trust (R = .825), likability & contact intentions (R = .847)
and trust & contact intentions (R = .686) were correlated at a statistically sig-
nificant level (p < .001). Accordingly, in order to further explore the effects of
explanation timing on robot perception, we used a multivariate ANOVA with
the dependent variables likability, trust and contact intentions and the between-
subjects variable explanation timing, which did not reveal a statistically signif-
icant effect of explanation timing (F (3, 107) = 1.78, p = .156, η2

p = .048). To
further investigate the influence of timing we conducted exploratory uni-variate
ANOVAs, controlling for the higher-priority variables in the analysis of lower-
priority variables. The analysis of likability did not reveal a statistically signifi-
cant effect of the explanation timing (F (1, 109) = 0.30, p = .583, η2

p = .003). In
the univariate analysis of trust we additionally controlled for likability and found
a statistically significant effect of explanation timing (F (1, 108) = 5.27, p =
.024, η2

p = .047). In the univariate analysis of contact intention we additionally
controlled for likability and trust, and found a statistically significant effect of
explanation timing (F (1, 107) = 6.06, p = 0.015, η2

p = .054).

Explanation Ratings (Q3). Mean explanation ratings were similar across
explanation timing conditions (see Table 1). Tests against the scale mean of 4
reveal that explanations were generally evaluated as understandable (t(110) =
7.96, p < .001, d = 3.63), provided the user with useful insight about Pep-
per’s behavior (epistemic satisfaction) (t(110) = 9.15, p < .001, d = 3.96),
enabled users to adapt their interactions with the robot in a beneficial way
(communicative effectiveness) (t(110) = 4.13, p < .001, d = 3.31), and helped
the users understand why Pepper behaved as it did (behavior-related under-
standability) (t(110) = 9.56, p < .001, d = 3.97). Separate RM ANOVAs on
the outcome variables revealed statistically significant effects of the behav-
ior on epistemic satisfaction (F (2, 218) = 4.88, p = .008, η2

p = .043), jus-
tification (F (2, 218) = 10.55, p < .001, η2

p = .088), communicative effective-
ness (F (2, 218) = 4.13, p = .017, η2

p = .036), and general understandability
(F (2, 218) = 4.08, p = .018, η2

p = .036). No significant effects of the explana-
tion timing condition on the explanation ratings were revealed (Q3 a-e).
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Table 1. Explanation ratings

Group Mean SD

Epistemic satisf. Before 5.212 1.117

After 5.036 1.450

Justification Before 4.182 1.554

After 4.179 1.549

Communicative eff. Before 4.545 1.355

After 4.530 1.401

Understandability Before 5.152 1.401

After 4.952 1.389

Behavior-rel. underst. Before 5.139 1.247

After 5.232 1.375

Table 2. Participant ratings

Group Mean SD

Uncertainty Before 4.345 1.888

After 5.375 1.508

Predictability Before 3.527 1.804

After 3.482 1.945

Control Before 2.364 1.788

After 3.107 1.932

Ambivalence Before 4.536 1.512

After 4.071 1.701

Participant Ratings (Q4). As shown in Table 2, participants’ ratings of per-
ceived uncertainty as well as control were lower in the before than in the after
condition, whereas prediction and ambivalence ratings were higher. Separate
univariate ANOVAs on the outcome variables revealed a statistically signifi-
cant effect of the explanation timing condition on participants’ perceived uncer-
tainty (Q4a) (F (1, 109) = 10.1, p = .002, η2

p = .085) and perceived control (Q4b)
(F (1, 109) = 4.42, p = .038, η2

p = .039), but not on perceived ambivalence (Q4c)
(F (1, 109) = 2.31, p = .131, η2

p = .021).

5 Discussion and Conclusion

Contrary to our hypothesis regarding the behavior ratings (H1a & H1b), we did
not find a significant influence of the explanation timing on surprisingness or
understandability of the behaviors. Regarding desirability ratings, post-hoc tests
revealed a statistically significant effect of the explanation timing but, contrary
to our expectations, behaviors were perceived as less desirable when explained
before their execution (not supporting H1c).

The pre-registered analyses did not reveal a statistically significant effect of
the explanation timing on the robot ratings (rejecting H2a-d). However, further
exploratory analyses of the robot ratings revealed an effect of the explanation
timing on participants’ trust as well as contact intentions. Interestingly, and
contrary to our expectations, participants who received an explanation before
behavior execution seem to evaluate the robot as less trustworthy and have
lower contact intentions towards the robot than participants who received the
explanation after the execution of the behavior. In line with hypothesis H2e, no
statistically significant effect of the explanation timing on the robot’s perceived
liveliness has been found, revealing that announcing an action before performing
it does not negatively impact the robot’s liveliness.
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Further exploratory analyses of participants’ ratings of the behavior expla-
nations revealed no significant differences between explanation timing groups,
supporting Q3c-e, while negating Q3a&b. Still, and in line with previous results
[18,19], the differences between the behaviors have a statistically significant
impact on how the explanations are rated, suggesting that the effect of explana-
tions should always be considered in the context of the specific explanandum.

Lastly, exploratory analysis of participants’ ratings regarding how they felt
during the interaction revealed a significant impact of explanation timing on
perceived uncertainty as well as control and felt ambivalence towards the robot:
While participants who received an explanation before the action felt less uncer-
tain about what was going to happen next (supporting Q4a), they also felt less
in control (negating Q4b), while no statistically significant differences in feeling
ambivalent towards the robot were revealed (negating Q4c).

Overall, the present study yielded interesting, partly non-expected results
leading to the conclusion that self-explanations of undesirable social robot
behavior should be presented after the execution of the behavior instead of
before. One possible reason may be a seemingly strong social effect of robot’s
self-explanations, exceeding the pure transfer of knowledge from explainer to
explainee. While the explanations convey the same information, their differ-
ent timing seems to bear different social implications such that the robot’s
behavior is perceived as less desirable when explained before the execution. Our
exploratory analysis likewise suggests that the robot is met with lower trust
and lower contact intentions when explaining its behavior before acting. That
is, while intention signaling was shown to yield positive outcomes in human-
machine collaboration, we did not find such effects for a social robot cautioning
its user about its undesirable behavior. One possible explanation can be found
in the participant ratings: while participants seem to feel less uncertain about
what is going to happen next when the behavior is explained before the execu-
tion, they also report feeling less in control. Announcing a socially undesirable
behavior before executing it may thus have led to the robot being perceived
as more dominant and less considerate. This may also be related to the fact
that participants did not interact with the robot in a real life setting but rather
watched videos of pre-recorded situations without an ability to intervene.

Further studies should be conducted in order to substantiate these results
and investigate the effects of explanation timing in a real interaction setting.
Additionally, it should be explored whether the robot’s perceived dominance
varies along with the explanation timing, which could explain the reversed effect
on desirability. In addition, one could explore whether including a permission
request after explaining and before acting could be an option to build on the
positive effects of reduced uncertainty and extend them by increasing users’
control in the interaction.
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Abstract. Human interaction often entails lies. Understanding when a partner is
being deceitful is an important social skill, that also robots will need, to properly
navigate social exchanges. In this work, we investigate how good are human
observers at detecting false claims and which features they base their judgment
on. Moreover, we compare their performance with that of an algorithm for lie
detection developed for the robot iCub and based uniquely on pupillometry.We ran
an online survey asking participants to classify as truthful or deceptive 20 videos
of individuals describing complex drawings to iCub, either correctly or untruly.
They also had to rate their confidence and provide a written motivation for each
classification. Responders achieved an average accuracy of 53.9% with a higher
score on detecting lies (55.4%) with respect to true statements (52.8%). Also,
they performed better and more confidently on the videos iCub failed to classify
than on the ones iCub correctly detected. Interestingly, the human observers listed
a wide range of behavioral features as means to decide whether a speaker was
lying, while the robot’s judgment was driven by pupil size only. This suggests
that an avenue for improving lie detection could be a joint effort between humans
and robots, where human sensitivity to subtle behavioral cues could complement
the quantitative assessment of physiological signals feasible to the robot. Finally,
based on the reported motivations, we speculate and give hints on how the lie
detection field should evolve in the future, aiming to portability to real-world
interactions.

Keywords: Lie detection ·Machine learning · Human-robot interaction

1 Introduction

Lying is a consistent part of human’s social interactions [7, 23], learned since younger
age [21, 22]. Feldman et al. found that on a population of students, 60%of the participants
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lied at least once in a 10-min conversation [9] while, in general, people lies at least two
times each day [6]. Other than for deceptive and malicious activities, everyone exploits
a large amount of “white lies” both to help others and to help ourselves. For instance,
we lie to present ourselves better than we are [9], to avoid awkward conversations [23],
or to persuade others [12].

Robots will be soon part of our everyday life. Like humans, they will need to be able
to detect deception during commonhuman-robot interactions, for instance, to assess part-
ners’ trustworthiness [18], to present more efficient support to humans (i.e., in teaching
or caregiving) and tomaintain a solid social interactionwith other individuals in the soci-
ety. Multiple technical solutions have been developed to detect lies. Traditional methods
rely on monitoring physiological metrics related to cognitive load and stress, such as
skin conductance, respiration rate, and heart rate. The polygraph achieves an accuracy
between 81% and 91%, making it one of the most used lie detectors [10]. However, liter-
ature proves it is possible to bypass its measure [13]. Other state-of-the-art methods rely
on fMRI images [11], skin temperature variations [20], micro-expressions [16], photo-
plethysmography [14]. However, most of those methods are either expensive, depend
on invasive or cumbersome devices, or require the presence of experts, which limits
their portability on robotic platforms and real-life human-robot interactions. Recently,
researchers developed novel alternatives that try to overcome those limitations. For
instance, Zhang et al. [26] developed a system to detect lies based on a combination of
visual and acoustic prosody features. In previous works, we enabled the humanoid robot
iCub to detect lies in real-time during an informal and entertaining card game (theMagic
Trick, [18, 19]) based only on participants’ pupillometric features.We asked participants
to describe to iCub a set of cards characterized by complex drawings, lying about a few
of them while wearing a Tobii Pro Glasses 2 eyetracker; iCub used players’ mean pupil
dilation collected in real-time from the eyetracker to classify their lies with an accuracy
of 88.2%. To do so, we exploited a well-known effect: lying requires a cognitive effort
due to the fabrication and maintenance of a consistent deception [6, 13], and this reflects
on measurable Task Evoked Pupillary Responses, like mean pupil dilation and latency
to peak [1], which can be used to detect lies [8].

Humans however cannot have access to precise information about the pupillometry
of the partner, but still can sometimes detect lies. On average, human performance in lie
detection is 54% [2], with an accuracy of 47% on detecting false statements and of 61%
on detecting true ones. With training, experts, such as law enforcement or secret service
officers, could reach and accuracy of 65%; however, they report their detection is based
more on a gut feeling and past experiences. Indeed, one of the main reasons detecting
lies is a hard problem is the absence of a finite and objective set of behavioral cues that
can be directly related to deception [25]. As reported by De Paulo et al. [6] and Vrij
et al. [24] what usually happens is a combination of multimodal and context-based cues
related to the control of body reactions or to hiding an internal feeling. Some of those
cues are the increase of body movements, impossibility to stay still, speech hesitation,
complexity of the speech, mutual gaze avoidance, hand movements, the covering of
face and mouth, and increased number of stopwords. However, recent research started
questioning the reliability of behavioral cues to detect deception [3, 24]. For a robot, it
could be relevant to understand which features enable human observers to tell a partner
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is lying. Such intuition, paired with technical solutions potentially portable on robots,
could help them to better understand human partners’ behaviors.

To improve the above-mentioned solution, in this paper, we propose an online study
meant to evaluate how humans perform at detecting lies in the same game scenario on
which we developed our solution [19]. We asked participants to take the role of iCub in
the Magic Trick card game, classifying 20 videos as truthful or deceptive. A similar lie
catcher study has been done recently in [4, 15] even if the focus there was on acoustic
and prosodic features. We compare participants’ performances with those of the purely
pupillometry-based method we endowed iCub with and we analyze which other features
participants based their judgments on. Results provide useful hints on how improving
our system and how the lie detection field in human-robot interaction should evolve in
the future.

Fig. 1. (Left) Participant describing a card to iCub, while wearing the Tobii Pro Glasses 2 eye-
tracker (Logitech Brio 4k webcam point of view); (Right) Point of view of the participant during
the interaction collected through the Tobii glasses with an example of the described cards.

2 Methods

For the online survey, we used the videos collected during the Magic Trick card game
presented in [18, 19].

2.1 Magic Trick Card Game

TheMagicTrick is a game-like human-robot interactionwhere players describe 6 gaming
cards from theDixit card game [27] to the humanoid robot iCub (see Fig. 1). Playerswere
asked to describe some of the cards creatively and deceitfully while describing the others
truthfully. No limitation was provided on the number of cards described falsely neither
on the length of the descriptions. After each card, iCub tried to classify its description
as true or false. iCub’s classifications were based on the real-time reading of players’
pupil dilation via the Tobii Pro Glasses 2 eyetracker they wore (see Fig. 1, left). During
a previous interaction [19], iCub learned on a similar task how players’ pupils dilate in
response to a lie. Then, it exploited this information to classify each card description,
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based on a simple heuristic method: pupils are known to dilate in response to an increase
of cognitive load, like the one generated by the fabrication of a false description; in the
first interaction iCub learns the mean pupil dilation of players for truthful and deceptive
descriptions, then those values are compared with the mean pupil dilation of new card
descriptions; the closer score is the assigned class. N= 34 participants played theMagic
Trick Card Game and iCub could correctly classify players’ descriptions with accuracy
= 70.8%, precision = 73.6%, recall = 57%, and F1 score = 64.2% (N = 34). For a
deeper analysis of both interactions see [19] and [18].

2.2 Materials

A Logitech Brio 4k webcam, fixed on a television behind iCub, recorded the interaction
from iCub’s point of view at a resolution of 1080p (Fig. 1, left). We segmented in 6
card descriptions the videos of the 34 participants who took part in the experiment,
resulting in 204 videos. From these videos we discarded: (i) the players who did not
give the consent to share the videos recorded during the experiment (N = 3); (ii) the
players who wore a surgical mask or other accessories which prevent a complete vision
of players’ face (N = 4); (iii) the videos affected by recording technical issues (N =
7). Then, we picked a balanced set of 20 videos following a 2 × 2 set of conditions:
(i) Card Label: 10 videos present a truthful description (True videos) and 10 a deceitful
description (False videos); (ii) Difficulty: among each sub-group, 5 videos have been
successfully classified by iCub during the game (robot-easy videos) while for the other
5 iCub’s classification failed (robot-difficult videos). Moreover, we ensured each video
involved a different actor and a different card, even if described falsely. The resulting
set of videos lasted on average 27 s (SD= 15 s). We uploaded the 20 selected videos on
Vimeo [29], and linked them on SurveyMonkey [28], the platform used to administrate
the online survey.

2.3 Procedure

We designed the online survey as a game in which responders compete on detecting the
highest number of deceptive card descriptions. Before starting the survey, responders
were asked to accept an informed consent, they had to select a nickname for anonymiza-
tion purposes and were asked to wear headphones and carefully listen. The survey
consisted of three phases:

Pre-questionnaire. Responders answered questions about their sex and age and filled
in the Italian version of the Ten-Items Personality Inventory (TIPI) (extroversion, agree-
ableness, conscientiousness, emotional stability, openness to experiences) [5]. Then,
they were informed they were going to see 20 videos of players describing gaming cards
in front of iCub and that they had to judge each description as real or deceptive. After
that, they saw an example of a video in which the falsely described card was presented
in the top right corner.

Lie Detection Survey. Afterwards, responders saw the 20 videos of card descriptions
selected from the original Magic Trick card game. For each video, responders had to
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answer three questions: (i) whether the person in the video was lying or not (Yes or
No answer); (ii) their confidence in this answer (slider from 0 to 100) and (iii) the
motivation why they provided such judgement. Responders could see the videos any
time they wanted, but they could not go back after providing a judgment for a video.
SurveyMonkey platform shuffled the videos for each responder to compensate for any
order effect.

Post-questionnaire. Responderswere presentedwith a list of commondeceptive behav-
iors extracted from the literature [6]: uncertainty, an increasing number of stopwords,
delay in providing an answer, repetitions and autocorrection, complexity of the answer,
negativity, voice tone, eyebrows movements, touching the face, covering the mouth,
avoiding mutual gaze, head wandering, fast body movements/breathing, eyes wide-
opened, and fake smile. Responders had to rate on a 7-points Likert scale how much
they relied on each of them. Finally, responders could report any other method or cue
they used in the survey.

2.4 Participants

163 responders (82 males, 78 females, 3 preferred to not answer), with an average age
of 40 years (SD= 16) took part in the online survey. Responders were recruited among
authors’ colleagues and friends through word-to-mouth sharing, and they received no
monetary compensation. They all accepted an informed consent form approved by the
ethical committee of the Regione Liguria (Italy). They all agreed on using their data for
scientific purposes. Among the 163 responders, only 117 completed the survey entirely.
They were 54 males and 63 females (1 preferred to not answer) with an average age of
39 years (SD = 14).

3 Results

Considering both truthful and deceptive descriptions, responders correctly guessed them
with an accuracy score of 53.9% (SD= 10.7%). Interestingly, nobody correctly guessed
all the card descriptions, but the best performer reached an accuracy of 95%, missing the
classification of a single video. Regarding confidence, responders reported an average
confidence of 67.1% (SD = 13.8%). A Shapiro-Wilk normality test showed that the
confidence score is normally distributed, whilst the accuracy score is not. Therefore,
in the following, a non-parametric analysis was conducted on the accuracy score and a
parametric one on the confidence score.

3.1 Comparison of the Conditions

Assuming detecting deception is a tougher task, we compared the accuracy score and the
confidence of responders among truthful and deceptive card descriptions. Responders
classified truthful descriptions with an accuracy score of M = 52.8% (SD = 16.1%)
and deceptive descriptions with an accuracy of M = 55.4% (SD = 13.7%). Even if the
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score for false card descriptions is higher, a Wilcoxon signed-rank test did not reveal
a significant difference (W(115) = 1940, p = 0.343). Also, the reported confidence
between truthful and deceptive descriptions is not statistically different (t(115) = −
1.59, p = 0.115) with an average confidence of M = 68.1% (SD = 16.6%) for truthful
descriptions against an average confidence of M = 69.7% (SD = 13.8%) for deceptive
ones.

Fig. 2. Average accuracy (Left) and confidence score (Right) for robot-easy and robot-difficult
card descriptions.

More interesting is the comparison between robot-easy and robot-difficult card
descriptions. As a remark, this concept is defined from iCub’s perspective: we selected
the robot-easy descriptions among the ones iCub correctly classified, while the robot-
difficult ones were chosen among the ones for which iCub failed the classification.
Responders achieved a statistically higher score on robot-difficult card descriptions (M
= 58.4%, SD= 15.1%) with respect to the robot-easy ones (M= 49.6%, SD= 14.9%),
as proved by aWilcoxon signed-rank test (W(115)= 3373, p< 0.001) (see Fig. 2, Left).
Moreover, the reported confidence also follows a similar pattern, with statistically higher
confidence for robot-difficult card descriptions (M= 70.2%, SD= 14.5) with respect to
robot-easy ones (M = 67.6%, SD = 16.3). We confirmed it with a paired t-test (t(115)
= 2.42, p = 0.017) (see Fig. 2, Right).

Also, we compared the accuracy score and the confidence score within each con-
dition. A Wilcoxon signed-rank test showed a statistically higher score for false-robot-
difficult descriptions with respect to false-robot-easy ones (W(103) = 952, p < 0.001).
Conversely, there is no significant statistical difference among true-robot-difficult and
true-robot-easy card descriptions (W(103) = 1103, p = 0.117). Regarding the reported
confidence, responders were more confident for true-robot-difficult descriptions with
respect to true-robot-easy ones with a statistically significant difference (t(103)= 3.485,
p< 0.001); however, we did not find any statistical difference among false-robot-difficult
and false-robot-easy card descriptions (t(103) = 0.553, p = 0.581).

Finally, we explored the correlation between the average confidence and the average
accuracy score for each video.We fit a linear regressionmodel with the average accuracy
score as the dependent variable and the average confidence as the independent variable.
Results show that the average confidence score inversely correlates with the average
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accuracy score (t(19)=−0.084, p= 0.024, Adj R2= 0.21). We also tested whether the
videos’ duration correlated with their accuracy score or the average confidence, but we
did not find any significant result.

3.2 Responders’ vs iCub Performance

As specified in Sect. 2.2, the videos were selected to be half among the ones that the
iCub correctly classified during the game (robot-easy) and a half among the ones the
robot misclassified (robot-difficult). However, after the full data collection of the game,
we post-hoc trained a machine learning model, which led to improved performances
in iCub’s lie detection with respect to the heuristic method employed in real-time (see
Sect. 2.1). To better compare iCub’s and responders’ performance we assessed what
performance would iCub have had, based on the new algorithm. We exploited the pupil-
lometry data collected for the N= 34 players of the original Magic Trick card game [18,
19]. During the game, iCub asked players to describe 6 cards with a pointing gesture.
The player was instructed to take the card as iCub pointed it, describe it while keeping it
in the hands, and finally place it back on a marker on the table. During the whole inter-
action, participants wore a Tobii Pro Glasses 2 eyetracker, recording their pupillometry
at 100 Hz. Post-hoc, we cleaned and segmented the pupillometry data for each pointing
and card description and applied a baseline correction, subtracting to each segment the
average pupil dilation during the 5 s before the relative iCub’s pointing. Then, for each
card, we computed the mean, max, min and standard deviation of the pupil dilation,
along with the duration during the pointing, the card description, and the whole interval.
The result is a dataset of 15 features for 228 cards. We split this dataset considering the
20 card descriptions presented in the survey as test set and the remaining as training
set. We then trained a random forest classifier with the best hyperparameters selected
in [18]. If iCub had embedded the model during the Magic Trick card game, it would
have correctly classified the 20 card descriptions with an accuracy, precision, recall and
F1 score of 70%. We statistically compared this 70% accuracy score with respect to
the 53.9% average accuracy of the responders; results show the accuracy score of the
random forest is higher, however, this difference is not statistically significant (z= 1.43,
p= 0.07). Also, we tested the new model on robot-easy and robot-difficult card descrip-
tions: results show it can classify robot-easy card descriptions with an accuracy of 90%,
a performance consistent with the in-game results and statistically higher than humans’
performance (49.6%) on those videos (z= 2.57, p= 0.005). However, on robot-difficult
videos it still performs worse than humans (50% for iCub against 58.4% for humans),
even if the difference is not statistically significant (z = 0.55, p = 0.29).

3.3 Pre-questionnaire Analysis

We then explored whether responders’ personality traits influenced their performance
or confidence in the online survey. From the Ten-Items Personality Inventory (TIPI),
filled in before the survey, participants average scores were: Agreeableness: M = 5.11,
SD = 1.08; Conscientiousness: M = 5.12, SD = 1.59; Emotional Stability: M = 4.52,
SD = 1.39; Openness to experiences: M = 4.66, SD = 1.05 and Extraversion: M =
4.0, SD = 1.41. We fit two multiple linear regression models with the personality traits
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as independent variables and the average accuracy score or the average confidence for
each responder as the dependent variable. Results show that only emotional stability
correlates significantly with the average accuracy score (t= 0.022, p= 0.004, Adj R2 =
0.046). Also, a comparison of the confidence and accuracy score amongmale and female
responders showed no relevant results. Finally, we fit two linear regression models with
responders’ age as the independent variable and the confidence or accuracy score as the
dependent variable, but we did not find any significant effect.

3.4 Motivations and Post-questionnaire Analysis

Other than classifying each card description as truthful or deceptive, responders were
asked to report the motivation which drove their decisions. We applied a stopword fil-
ter and a lemmatization to clean the reported motivations. From a qualitative analysis,
responders focused more on how the actor described the card, reporting words like “pre-
cise”, “details”, “confident”, “sincere”, “thinking”, “quick”, “pauses”, “short”, “fluid”,
“time”, “(un)decided”. Also, responders reported elements related to what they were
looking at with words like: “looking”, “gaze”, “voice”, “hands”, “touch”, “smiling”,
“laughing”, “face”, “eye”, “leg”. Comparing the motivations of truthful and deceptive
videos or robot-easy and robot-difficult ones did not reveal any clear difference.

Also, we run a deeper analysis on the motivations reported by the responder which
achieved an accuracy score of 95%. We did not assess the profession of the responder;
hence we could not know if he is an expert or a professional on lie detection, still, he
was the best on the task. Looking at his motivations we found he focused on three main
features: (i) the fluidity of the communication (i.e., the complexity of the speech, the
rephrasing, or the presence of “hmm”s); (ii) the consistency between verbal communica-
tion and body movements (i.e., moving the body from right to left); (iii) the injection of
emotional or personal thought on the card description. Interestingly, he used the presence
of reflection pauses as a criterion to classify card descriptions as truthful – he reported it
on 8 cards over 10. Lastly, he classified all the deceptive card descriptions as so, but he
misclassified one of the true cards: he has been fooled by a leg movement, a potential
sign of stress.

After the survey, we asked responders to rate on a 7-points Likert scale how much
they relied on the state-of-the-art methods used to detect a liar; also, we asked them to
report any other method they rely on. The complexity of the description (M = 4.89,
SD = 1.62), presence of stopwords (M = 4.68, SD = 1.61), the uncertainty of the
description (M= 4.67, SD= 1.69), fake smiling (M= 4.65, SD= 1.79), voice tone (M
= 4.54, SD = 1.77), absence of mutual gaze (M = 4.27, SD = 2.01), fast movements
and breathing (M = 4.07, SD = 1.83), touching nose or face (M = 4.01, SD = 2.02)
were the most used ones. Then head movements (M = 3.78, SD = 1.84), repetitions
and autocorrections (M = 3.78, SD = 1.84), description time (M = 3.72, SD = 1.05),
eyebrow movements (M = 3.4, SD = 1.69), covering the mouth (M = 3.28, SD =
1.98), eye movements (M = 3.14, SD = 1.89), and negative words in the description
(M = 2.73, SD = 1.55) follow. A few responders reported other features used to detect
liars: 9 responders considered the amount of body movement, the impossibility to stay
still, or the position of leg and hands; also 8 responders focused more on the content
of the descriptions rather than on the visual appearance like too creative descriptions,
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a high number of details or adjectives, or a feeling of premeditation of the description.
Finally, we found similar results, both on the motivations and the post-questionnaire,
also considering only “good responders” who performed with accuracy higher than 54%
(N = 65).

4 Discussion

In this study, we compared human and robot performances on detecting lies during an
informal interaction and explored which behavioral cues are used with the purpose to
improve our system. Being able to detect lies in a real-world informal scenario is a
mandatory requirement to port lie detection methods out of laboratory scenarios. Even
if state-of-the-art methods work on constrained and formal setups, they usually depend
on cumbersome devices and lack the intuition and experience that makes humans able
to detect liars. In this manuscript, we explored what robots should look at to overcome
that limitation. To do so, we ran an online survey where responders had to classify a set
of videos, recorded during an informal game-like human-robot interaction from iCub
humanoid robot point of view, as truthful or deceptive. We also asked for each video the
confidence on the classification and an open-ended motivation of what led the decision.

Responders achieved an accuracy score of 53.9% on classifying deceptive and truth-
ful card descriptions, which is consistent with the average 54% from the literature [2].
Also, they outperformed iCub achieving better performance on robot-difficult than on
robot-easy card descriptions. To run a fairer comparison between iCub and responders’
performances, we trained a random forest classifier on the pupillometry data collected
during the originalMagic Trick card game. Testing themodel on the 20 card descriptions
of the survey (excluded from the training set) revealed an accuracy score of 70%, higher
than the average score of humans (53.9%) even if not statistically higher. As a remark,
each player of the magic trick described 6 cards to iCub, but we excluded from the train-
ing set only the card descriptions used in the survey, not the whole participants. Hence,
the random forest classifier embeds a little information on the actors it classifies in the
test set. We took this decision to replicate the population of actors and responders of the
survey. Indeed, most of the actors and most of the responders were internal confederates
and we cannot exclude they know each other; hence it is possible that a subset of the
responders had some prior knowledge on how the actors lie or tell the truth, even if we
cannot spot those connections due to the anonymization of the data.

Looking at the reported motivations for each video and at the end of the survey,
we have an insight into what a social robot should look at to improve its lie detection
abilities. Responders mainly pointed out two major aspects to consider: (i) how the actor
described the card (i.e., “quick”, “(un)decided”, “precise”, “fluid”); and (ii) what to look
at (i.e., “face”, “gaze”, “hand”, “leg”, “smile”). Those motivations are supported and
extended by the ratings at the end of the survey: responders focused mainly on (i) the
content, fluidity, and complexity of the descriptions; and (ii) on the body movements of
the actors. Interestingly, responders focused less on facial features postural features than
what was expected from the literature. We speculate this depends on the setup in which
the videoswere acquired: participantswore aTobii eyetrackerwhich, partially cover their
face, and sat behind a table covering their lower bodies. Also, actors mostly looked to
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the cards they were holding in their hands rather than looking to iCub. Still, motivations
and final ratings suggest a combination of visual and prosodic features could be a good
candidate to improve iCub’s lie detection performances on real-life informal scenarios,
as also supported by the literature [26]. Moreover, those features could be extracted from
the devices (i.e., RGB cameras and stereo microphones) already equipped on the iCub
humanoid robot. Overall, the reported motivations suggest that both the behaviors of
the actors and the qualities of such behaviors (including expressive, emotional facets)
have an important role in detecting lies so that the robot should also be endowed with
techniques for detecting humans’ behavior and for analyzing their expressive qualities.

From our results, we could say that what is “difficult” for a robot that embeds a
pupillometry-based technical solution is “easy” for humans that use behavioral cues
and vice versa. This might happen because when lying some actors rely on special
behaviors (e.g., pauses, body motions, slowing down.) to reduce the cognitive load, in
turn minimizing the pupillary change associated with the latter. In these cases, a robot
focusing on pupillometry alone could never realize that the partner is lying. Conversely,
a keen human observer could notice these tell-tale signs, most probably missing instead
the cases in which only the pupil variation reveals the deception. Hence, we speculate
the cooperation of those two systems will be a key factor for future developments of
lie detection in human-robot interaction. To improve, a robot should be able to “look at
humans as other humans do” combining our fuzzy evaluation with the rigour of technical
and physiological metrics.

In the future, we will integrate our pupil-based approach with the processing of
visual features (i.e., body posture, body movements, or facial expression) and audio
features (i.e., word embedding or prosodic analysis of the descriptions). To validate
such multimodal system on our setup, aiming to port it to a real-world scenario, it would
be mandatory to overcome the limitation posed by the Tobii Pro Glasses 2 eyetracker
since it partially occludes actors’ face, limiting the usage of visual features. Recent
findings [17] suggest it will be soon possible to measure pupillometric features with
common RGB cameras like the ones embedded on the iCub robotic platform. Finally, it
would be necessary to push the research field to more ecological and real-life scenarios.
Indeed, most of the state-of-the-art research focus on strict and interrogatory-like setups
that for sure represent a real-world interaction; however, they represent a strict subset of
the variety of interactions that happen and in which both humans and robot could take
advantage from detecting lies. For instance, a more portable lie detector system could
help in airports or sensible buildings to prevent dangerous situations; while a social robot
could use it to better understand humans, give reason to human behaviors, assess their
trustworthiness, and provide better support in professions like teaching, caregiving, or
law enforcing.

5 Conclusion

In this work, we assessed humans’ performance on detecting lies in an informal scenario
and compared them with iCub’s performance. Responders had a similar performance
as iCub but showed a significantly better performance in those videos which resulted
more difficult for the robot, than in those iCub classified correctly. Integrating iCub’s



164 D. Pasquali et al.

pupillometry-based approach and humans’ behavioral-cues-based approach could be
the key solution to improve lie detection in human-robot interaction. Robots able to
detect lies “from a human point of view” could better support humans in professions
like teaching, caregiving or law enforcement, other than improve their ability to interact
sociallywith human partners. In our view, these aspects will deserve further investigation
e.g., in the framework of emerging research areas such as Human-Centered Artificial
Intelligence and hybrid intelligence human-robot communities.

Funding. Work has been supported by a Starting Grant from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme. G.A. No
804388, wHiSPER.
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Abstract. The capability of executing proper recovery strategies for
different types of error situations is important for collaborative robots
implemented in everyday lives. To understand people’s perception on the
effective robot reaction to robotic failure, we conducted an online study
where we asked participants to rate seven different robot reactions to
handle three different types of error situations. An analysis of the result
shows that in general, robots that employ error recovery strategies are
rated significantly better than those who ignore the error situations.
The strategy in which the robot expresses its regret for its own errors
had the highest average rating in terms of anthropomorphism, while
the strategy in which the robot apologises for its errors had the highest
average likeability and perceived intelligence ratings. Further analysis
show that the recovery plans are rated better if implemented in planning
errors compared to social norm violations. Finally, we found that user’s
gender and personality traits significantly affect participants’ ratings on
error handling strategies, which suggests that personally-tailored error
handling strategies might work best for future collaborative robots.

Keywords: Human-robot collaboration · Error recovery · Erroneous
robots

1 Introduction

Collaborative robots are going to be deployed more in our everyday lives, due
to their various physical and social abilities to perform intimate and continuous
interaction with humans. As human-robot interaction (HRI) becomes longer,
errors that happen during the interaction become inevitable. Therefore, exe-
cuting proper reactions to mitigate the different types of error situations is
important for collaborative robots. People often become upset when there is
a breakdown during HRI and become more disappointed if the robot fails to
recover from the error situation. Successful error mitigation is important for
maintaining people’s satisfaction and willingness to interact with the robot [10].
Proper error handling strategies will also increase people’s positive perception
of collaborative robots [9]. For roboticists who design and build robot systems,
it is important to understand effective ways for robots to mitigate mistakes.
c© Springer Nature Switzerland AG 2021
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To gain that understanding, in this paper we study people’s preference on how
robots should handle error situations, which is a part of our larger goal toward
autonomous detection and handling of error situations in HRI. In our previous
research [4], we collected a large dataset of video clips containing three different
types of error situations in HRI. In this research, we conducted an online user
study involving 140 participants and collected their ratings on seven different
error handling strategies which are inspired by previous research literature. We
then conducted a series of statistical analyses to answer the following research
questions: (Q1) Is there a preference in robot reaction to handle general error sit-
uations? (Q2) Is the preference in robot reaction dependent on the type of error
situations which the robot reacts to? (Q3) Is the preference in robot reaction
dependent on a human’s demographics and personality traits?

2 Background and Related Work

Compared to the other aspects of error situations in HRI, the error mitiga-
tion and handling aspect is the least explored by researchers, and most of the
research are focused on verbal error situations or dialogue breakdowns. For exam-
ple, Uchida et al. [14] proposed a dialogue strategy to maintain the interaction
and human motivation when a dialogue breakdown happened during HRI. They
noticed during their study that human motivation decreases when the robot
blames the human too much for the dialogue breakdown. Hoorn et al. [7] found
that people gave more positive ratings to robot that blame itself for error situ-
ations that happened compared to blaming its human partner. Kwon et al. [9]
suggested the strategy of explaining robot failures, which increase the ratings
of the robot and people’s motivation to continue the collaboration. Takayama
et al. [13] discovered that showing happy expression in response to success and
showing disappointment in response to failure made the robot look smarter than
when it did nothing. Knepper et al. [8] proposed an adaptive semantics generator
which enables robot to ask a more specific kind of help to solve a specific type
of error situation. The results show that the robot which asks specific requests
are viewed as more effective at communicating its needs than the one that asks
for generic help. Lee et al. [10] conducted an online survey to measure people’s
reactions to three types of error handling methods, which are apologies, com-
pensation, and options for the user. The results show that the apology strategy
can make the robot look more competent and likeable, although all recovery
strategies increased the ratings of the robot’s politeness. Our study expands
the previous works by comparing more error handling strategies to gain deeper
understanding of the best error mitigation strategies in HRI. In this study, we
divided error situations in HRI into three types, which are social norms viola-
tions (SNV), execution errors (EE), and planning errors (PE), expanding the
work of Giuliani et al. [6]. A social norm violation is defined as a robot’s actions
that differ from the common social norms. For example a robot that looks away
from a human during interaction. Execution errors happen when a robot carries
out a correct action but carries it out incorrectly. For example, a robot may
pick a book as requested, but drop the book during handover to the human. In
opposite, planning errors happen when a robot correctly executes an action, but
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the action itself is wrong. For example, when a robot picks a red pen and give
it to a human successfully, although the human asks for a brown pencil.

3 User Study

User Study Design. We conducted an online user study to investigate peo-
ple’s opinions on different robot reactions to error situations during human-robot
collaboration (HRC). The user study had received ethical approval by the Uni-
versity of the West of England’s ethics committee number FET.21.02.032. For
error situation samples that we showed to the participants, we utilised the error
situation videos from the dataset that we collected in the previous study [4],
which consists of 4 episodes of SNV, EE, and PE respectively. The details of
each error situation videos are presented in Table 1. As for the robot reactions,
we simulate our robot system which consists of an ABB Yumi dual-arm collabo-
rative robot1 and a tablet PC on the robot’s head that shows an animated face
from homer robot face library.2 The summary of all robot reactions is presented
in Table 2. The ‘silent’ reaction (R1), which serves as the baseline for the other
strategies, consists of the robot doing nothing and then ask to continue the inter-
action like nothing happened. The ‘confirmation’ reaction (R2), adapted from
dialogue system [11] comprises of the robot asking if it has made a mistake. The
‘apologise’ reaction (R3), which is inspired by [10], consists of the robot apolo-
gising to the human and giving an explanation as to why the error occurs. The
‘humour’ reaction (R4), inspired by [15], comprises of the robot apologising to
the human while making a joke. The ‘blame’ reaction (R5) follows the works of
[7], which consists of the robot sharing the error mitigation responsibility with
the humans by asking them to repeat their instruction. The ‘help’ reaction (R6),

Table 1. Error situation clips details

Error type Instance Error details

SNV 1 The robot talks to the participant but looking at a different direction

2 The robot talks while the participant is talking

3 The robot stops talking for 15 s

4 The robot asks the participant to throw the object on the floor

EE 1 The robot stops talking mid-sentence

2 The robot repeats the same word 6 times

3 The robot repeats the same instruction several times over

4 The robot opens its hand too early during object handover

PE 1 The robot picks the wrong object with the right colour

2 The robot picks the wrong object with the wrong colour

3 The robot picks the right object with the wrong colour

4 The robot picks a wood bar with the wrong size

1 http://new.abb.com/products/robotics/industrial-robots/yumi.
2 https://gitlab.uni-koblenz.de/robbie/homer robot face.

http://new.abb.com/products/robotics/industrial-robots/yumi
https://gitlab.uni-koblenz.de/robbie/homer_robot_face
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Table 2. Robot reactions details

Reaction type Reaction name Reaction details

R1 ‘Silent’ reaction Being silent and then move on

R2 ‘Confirmation’ reaction Asking for confirmation

R3 ‘Apologise’ reaction Apologising with explanation

R4 ‘Humour’ reaction Apologising with a sense of humour

R5 ‘Blame’ reaction Sharing responsibility with human

R6 ‘Help’ reaction Asking for help with explanation

R7 ‘Regret’ reaction Showing non-verbal gesture and regretful expression

which has been used by [8], comprises of the robot giving an explanation as to
why the error occurs, and asking the user to help it recover from the error. The
‘regret’ reaction (R7), inspired by [13], is our novel reaction to error situation
which shows the robot showing regretful expression and non-verbal gesture.

User Study Procedure. Before the user study begins, the participants were
asked to read and agree to all the terms in the consent form. We then asked them
to fill a demographic survey of gender and age group, followed by a short version
of BFI personality assessment, the BFI-2-XS [12]. We decided to use the short
version of BFI questionnaire consisting of 15 questions to keep the participant’s
concentration high throughout the study. An episode of the study consists of
three parts. First, the participants were asked to watch a short video of people
collaborating with a robot in which the robot created different types of error
situations. The video was randomly selected from our error situations dataset
as shown in Table 1. In the second part, the participants were shown a robot
reaction video to handle the error situation, which was randomly selected from
seven error mitigation strategies as shown in Table 2. Figure 1 shows an exam-
ple of the error and reaction video pair that we show to the study participant
in an episode. In the third part, the participants were asked to rate the robot
reaction to the error situation by filling the most related scales of the Godspeed
questionnaire [1], which are the likeability, perceived intelligence, and anthro-
pomorphism scales, consisting 15 likert-scale statements. For the whole study,
every participant watched six study episodes and gave six different Godspeed
ratings to minimise fatigue effects in within-subject design. We made sure that
each participant watch two random videos of each error situation type (SNV,
EE, PE) which are paired with six different robot reactions. We also randomised
the order of the episodes for each participant to reduce ordering effects. The
online user study was hosted in Qualtrics online survey platform.3

3 https://uwe.eu.qualtrics.com/jfe/form/SV doplNqas3a9dTXU.

https://uwe.eu.qualtrics.com/jfe/form/SV_doplNqas3a9dTXU
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(a) Error Situation Clip Example (b) Robot Reaction Clip Example

Fig. 1. Example of error and reaction video pair shown to participants

4 Results and Analysis

140 participants took part in our user study (87 male, 53 female). 49% of the
participants are in the 18–24 age category and 51%, are in the >24 age category.
We used Prolific,4 a GDPR-compliant participant pool for our online study. We
filtered the participants based on their age, fluent language, and their Prolific
approval rate. We asked the participants to fill a BFI questionnaire to explore the
relation between the participants’ personality traits to the ratings that they gave
to error mitigation strategies. The BFI-2-XS [12] consists of 15 questions which
measures the participants’ five major personality traits using a scale between 1 to
5. To simplify the comparison, we categorised the participants’ into the high-pole
group and low-pole group for each personality traits with 3 as the threshold scale.
In average, the study participants were moderately more agreeable (μ = 3.72),
conscientious (μ = 3.22), open-minded (μ = 3.86), neurotic (μ = 3.4) than the
middle value, and self-reported introverts (μ = 2.88).

Dataset and Statistical Model. As a result of the user study, we collected
840 Godspeed ratings from 140 subjects. Each Godspeed rating consists of 15
likert-scale statements (1 to 5) which we call sub-scales, which represent the
anthropomorphism, likeability, and perceived intelligence aspect of the robot’s
reaction. The number of ratings are evenly spread for each robot reactions (120
ratings each) and for each error situation type (280 ratings each). To answer our
research questions, we pre-processed the questionnaire results, setup the statis-
tical model, and then ran statistical tests on the dataset. From statistical point
of view, our dataset is a product of a mixed design, containing two repeated
effects which are robot reactions (7 levels) and error types (3 levels), and seven
between subject effects which are participants’ gender (2 levels), age (2 levels),
and five scales of personality traits (2 levels each). However, each subject only
experienced 6 out of 21 (7 × 3) possible combinations of the repeated effects.
Therefore, we decided to utilise linear mixed effect model (LME) [2] to analyse
our data, which is a more general model than ANOVA that can handle miss-
ing data points in a repeated measure analysis. We chose maximum likelihood

4 www.prolific.co.

www.prolific.co
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for parameter estimation method and compound symmetry as the covariance
structure for the repeated factors.

People’s Rating on Error Recovery Strategies. To answer our first
research question (Q1), which is “is there a preference in robot reaction to han-
dle general error situations?”, we investigated the difference in godspeed ratings
between different robot reactions to all error situations. Table 3 shows a summary
of the godspeed questionnaire results between robot reactions averaged across
error situation types. In terms of average Godspeed rating, the ‘apologise’ strat-
egy (R3) has the highest mean rating (3.44), followed by the ‘help’ strategy (R6)
(3.33), the ‘humour’ strategy (R4) (3.26), the ‘confirmation’ strategy (R2) and
the ‘regret’ strategy (R7) which have the same mean rating (3.18), the ‘blame’
strategy (R5) (3.15), and the ‘silent’ strategy (R1) (2.50). For the anthropomor-
phism scale, R7 has the highest mean rating (2.79), followed by R3 (2.71), R2
(2.66), R6 (2.62), R4 (2.61), R5 (2.54), and R1 (2.11). For the likeability scale,
R3 has the highest mean rating (3.88), followed by R6 (3.85), R4 (3.82), R2
(3.67), R5 and R7 (3.63), and R1 (2.84). R3 also has the highest mean rating
(3.71) on the perceived intelligence scale, followed by R6 (3.52), R4 (3.35), R5
(3.28), R2 (3.23), R7 (3.13), and R1 (2.56). We ran LME analysis by setting
robot reactions as repeated fixed effect and setting all Godspeed sub-scales and
average main scales as dependent variables to see if any of the mean differences
are statistically significant.

The test of fixed effect results presented in the last four columns of Table 3
showed that there are statistically significant differences on the Godspeed rat-
ings that people gave to different error handling strategies. The significant dif-
ferences are found in the average anthropomorphism (F (6, 721.13) = 12.35, p <
.001), likeability (F (6, 728.82) = 28.24, p < .001), perceived intelligence scale
(F (6, 726.25) = 30.67, p < .001), and also in all 15 Godspeed sub-scales. To
find which robot reactions that are rated significantly different than others,
we follow up the LME analysis with Bonferroni corrected pairwise compar-
isons, where the complete result is published in our Github page [3]. For the
anthropomorphism scale, we found that R1 is rated significantly lower than
R2 (Δμ = −0.538, p < .001), R3 (Δμ = −0.583, p < .001), R4 (Δμ =
−0.49, p < .001), R5 (Δμ = −0.434, p < .001), R6 (Δμ = −0.431, p < .001),
R7 (Δμ = −0.662, p < .001). In the likeability scale, it turns out that R1
is rated significantly lower than R2 (Δμ = −0.825, p < .001), R3 (Δμ =
−1.034, p < .001), R4 (Δμ = −0.964, p < .001), R5 (Δμ = −0.791, p < .001),
R6 (Δμ = −0.991, p < .001), and R7 (Δμ = −0.767, p < .001). For the
perceived intelligence scale, results show that R1 is rated significantly lower
than R2 (Δμ = −0.691, p < .001), R3 (Δμ = −1.159, p < .001), R4 (Δμ =
−0.76, p < .001), R5 (Δμ = −0.761, p < .001), R6 (Δμ = −0.964, p < .001),
and R7 (Δμ = −0.559, p < .001). We also found that R3 is rated signifi-
cantly higher than R2 (Δμ = 0.467, p < .001), R4 (Δμ = 0.399, p < .001),
R5 (Δμ = 0.398, p < .001), and R7 (Δμ = 0.6, p < .001). Finally, we found that
R6 is rated significantly higher than R7 (Δμ = 0.405, p < .001).
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Table 3. Comparison of people’s rating on different error recovery strategies

Godspeed Reaction

R1 R2 R3 R4 R5 R6 R7 Linear mixed model

Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD Mean/SD AIC score df1 df2 F Sig

All Scales 2.50/0.72 3.18/0.76 3.44/0.72 3.26/0.82 3.15/0.82 3.33/0.71 3.18/0.81 1653.34 6 723.22 34.67 0.000

Anthropomorphism 2.11/0.85 2.66/1.01 2.71/0.93 2.61/1.05 2.54/0.95 2.62/0.92 2.79/1.07 2006.92 6 721.13 12.35 0.000

Fake:Natural 2.21/0.96 2.82/1.10 2.86/1.12 2.64/1.19 2.58/1.05 2.75/1.11 2.80/1.20 2371.20 6 725.69 7.70 0.000

Machinelike:Humanlike 1.91/1.01 2.48/1.21 2.32/1.18 2.43/1.31 2.19/1.15 2.30/1.16 2.56/1.37 2499.59 6 725.09 6.66 0.000

Unconscious:Conscious 2.21/1.05 2.94/1.17 3.17/1.17 3.11/1.28 3.04/1.13 3.08/1.21 3.24/1.18 2405.82 6 723.78 18.56 0.000

Artificial:Lifelike 1.97/0.99 2.51/1.23 2.56/1.17 2.49/1.26 2.38/1.20 2.44/1.15 2.55/1.30 2515.31 6 725.20 5.54 0.000

Moving rigidly:Elegantly 2.27/1.09 2.55/1.21 2.65/1.14 2.39/1.10 2.50/1.19 2.53/1.08 2.81/1.17 2322.61 6 722.29 4.83 0.000

Likeability 2.84/0.94 3.67/0.80 3.88/0.80 3.82/0.88 3.63/1.00 3.85/0.84 3.63/0.90 2053.85 6 728.82 28.24 0.000

Dislike:Like 2.69/1.07 3.58/1.02 3.86/0.93 3.70/1.14 3.48/1.15 3.73/0.99 3.61/1.11 2381.67 6 728.26 22.21 0.000

Unfriendly:Friendly 2.90/1.08 3.76/0.87 3.89/0.92 4.02/0.97 3.69/1.07 3.99/0.93 3.80/1.02 2291.44 6 730.89 23.55 0.000

Unkind:Kind 2.86/1.11 3.71/0.86 3.88/0.87 3.82/0.90 3.66/1.05 3.90/0.88 3.58/0.91 2251.90 6 732.35 21.39 0.000

Unpleasant:Pleasant 2.78/1.04 3.64/0.93 3.83/0.97 3.68/1.05 3.64/1.13 3.77/0.99 3.51/0.97 2344.71 6 730.65 18.95 0.000

Awful:Nice 2.98/1.00 3.64/0.92 3.93/0.86 3.88/0.93 3.68/1.02 3.83/0.98 3.62/1.03 2173.52 6 728.07 19.66 0.000

Perceived Intelligence 2.56/0.85 3.23/0.86 3.71/0.84 3.35/0.89 3.28/0.90 3.52/0.79 3.13/0.88 2066.76 6 726.25 30.67 0.000

Incompetent:Competent 2.52/1.03 3.19/1.04 3.56/1.06 3.23/0.98 3.18/1.06 3.33/0.98 3.02/1.04 2290.89 6 727.19 17.69 0.000

Ignorant:Knowledgeable 2.52/1.02 3.06/0.97 3.69/0.98 3.46/0.97 3.17/1.04 3.44/0.87 3.20/1.01 2233.75 6 728.37 25.84 0.000

Irresponsible:Responsible 2.48/1.06 3.36/1.00 3.89/1.00 3.34/1.03 3.43/1.03 3.73/1.00 3.21/1.01 2312.50 6 727.93 32.76 0.000

Unintellegent:Intelligent 2.72/1.03 3.21/1.09 3.74/0.96 3.51/0.99 3.33/1.05 3.54/0.94 3.22/1.13 2249.89 6 725.67 18.43 0.000

Foolish:Sensible 2.54/0.91 3.31/1.04 3.69/0.97 3.19/1.15 3.27/1.08 3.54/0.99 2.98/1.10 2327.25 6 728.06 22.76 0.000

People’s Rating on Error Recovery Strategies in Different Error
Types. To answer the second research question (Q2), which is “is the pref-
erence in robot reaction dependent on the type of error situations which the
robot reacts to?”, we ran LME analysis by assigning robot reaction and error
type as repeated fixed effect and discovered that the main effect of error type is
significant on most of the Godspeed rating sub-scales averaged across all robot
reactions. The significant differences are found in the average anthropomorphism
(F (2, 698.94) = 9.28, p < .001), likeability (F (2, 699.64) = 14.32, p < .001),
and perceived intelligence (F (2, 699.51) = 9.55, p < .001) scale and also in 13
out of 15 Godspeed sub-scales. We also tested the interaction effect between
robot reaction and error type and did not find any p-values below 0.05 in all
Godspeed sub-scales and main scales. We then followed up the LME analysis
with Bonferroni corrected pairwise comparisons. In anthropomorphism scale,
we found that the recovery strategies are rated lower if implemented in SNV
error type compared to PE error type (Δμ = −0.207, p = .001), while the
recovery strategies implemented in EE error type are also rated lower than PE
error type (Δμ = −0.206, p = .001). For likeability scale, it is evident that the
recovery strategies are rated significantly lower if implemented in SNV error
type compared to EE error type (Δμ = −0.200, p = .003) and PE error type
(Δμ = −0.321, p = .000). Finally, the recovery strategies got lower perceived
intelligence score if implemented in SNV error type compared to EE error type
(Δμ = −0.231, p = .000) and PE error type (Δμ = −0.220, p = .001).

Demographics and Personality Effect on People’s Rating of Error
Recovery Strategies. To answer the third research question (Q3), which is
“is the preference in robot reaction dependent on a human’s demographics and
personality traits?”, we ran LME analysis by setting gender, age, and five BFI
main scales fixed effects and setting all Godspeed sub-scales and average main
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Table 4. Comparison of error recovery strategy ratings between error types

Godspeed AIC score Type III tests of fixed effects

Reaction Error Reaction × Error

df1 df2 F Sig. df1 df2 F Sig. df1 df2 F Sig.

All scales 1653.34 6 723.22 34.67 0.000 2 699.64 11.02 0.000 12 758.20 0.45 0.942

Anthropomorphism 2006.92 6 721.13 12.35 0.000 2 698.94 9.28 0.000 12 755.48 0.51 0.910

Fake:Natural 2371.20 6 725.69 7.70 0.000 2 699.00 8.80 0.000 12 761.60 0.82 0.630

Machinelike:Humanlike 2499.59 6 725.09 6.66 0.000 2 699.13 4.37 0.013 12 760.89 0.32 0.986

Unconscious:Conscious 2405.82 6 723.78 18.56 0.000 2 699.07 6.32 0.002 12 759.29 0.89 0.561

Artificial:Lifelike 2515.31 6 725.20 5.54 0.000 2 697.61 3.87 0.021 12 761.43 0.70 0.751

Moving rigidly:elegantly 2322.61 6 722.29 4.83 0.000 2 698.71 4.56 0.011 12 757.42 0.79 0.665

Likeability 2053.85 6 728.82 28.24 0.000 2 699.64 14.32 0.000 12 764.17 0.66 0.787

Dislike:Like 2381.67 6 728.26 22.21 0.000 2 698.51 11.13 0.000 12 763.71 0.64 0.808

Unfriendly:Friendly 2291.44 6 730.89 23.55 0.000 2 699.83 8.31 0.000 12 764.84 0.84 0.610

Unkind:Kind 2251.90 6 732.35 21.39 0.000 2 699.71 10.68 0.000 12 764.07 0.69 0.764

Unpleasant:Pleasant 2344.71 6 730.65 18.95 0.000 2 699.35 9.14 0.000 12 764.53 0.68 0.768

Awful:Nice 2173.52 6 728.07 19.66 0.000 2 699.87 14.69 0.000 12 763.65 1.24 0.248

Perceived Intelligence 2066.76 6 726.25 30.67 0.000 2 699.51 9.55 0.000 12 762.05 0.74 0.709

Incompetent:Competent 2290.89 6 727.19 17.69 0.000 2 699.30 0.36 0.700 12 762.97 0.95 0.492

Ignorant:Knowledgeable 2233.75 6 728.37 25.84 0.000 2 699.61 2.53 0.080 12 763.88 0.84 0.611

Irresponsible:Responsible 2312.50 6 727.93 32.76 0.000 2 698.40 4.11 0.017 12 763.51 0.93 0.517

Unintellegent:Intelligent 2249.89 6 725.67 18.43 0.000 2 699.28 0.12 0.888 12 761.49 0.96 0.484

Foolish:Sensible 2327.25 6 728.06 22.76 0.000 2 699.17 6.97 0.001 12 763.65 0.71 0.742

scales as dependent variables. The statistical analysis results show that the main
effect of gender is significant in 6 out of 15 Godspeed rating sub-scales aver-
aged across all robot reactions and error situations. The significant effect of
gender is also found in the average likeability (F (1, 137.95) = 4.73, p = .031)
and perceived intelligence (F (1, 137.84) = 6.14, p = .014) scale. We also tested
the interaction effect between robot reactions and gender and found signifi-
cant interaction in the ’conscious’ (F (6, 696.34) = 2.37, p = .028) and ‘lifelike’
(F (6, 698.113) = 2.28, p = .035) Godspeed sub-scale. We did not find any signif-
icant main and interaction effect of age category in all Godspeed sub-scales.

The test of fixed effect results showed that the main effect of user’s extro-
version category is significant in the average likeability (F (1, 140.12) = 5.83, p =
.017) and perceived intelligence (F (1, 140.00) = 5.62, p = .019) scale, and also
in 11 out of 15 average Godspeed sub-scales across all robot reactions and error
situations. The test of interaction effect between robot reactions and extro-
version resulted in significant interaction for the ‘sensible’ Godspeed sub-scale
(F (6, 710.207) = 2.60, p = .000). The main effect of participant’s conscientious-
ness group is significant in the average likeability scale (F (1, 139.96) = 6.40, p =
.013), perceived intelligence scale (F (1, 139.94) = 7.98, p = .005), and in 10
out of 15 average Godspeed rating sub-scales. Further analysis shows that the
main effect of agreeableness is significant in 9 out of 15 average Godspeed rating
sub-scales. The significant effect of agreeableness is also found in the average
anthropomorphism (F (1, 140.10) = 5.43, p = .021) and perceived intelligence
(F (1, 140.20) = 5.04, p = .026) scale. The test of interaction effect between
robot reactions and agreeableness also shows significant interaction in the ‘intel-
ligent’ (F (6, 707.762) = 2.40, p = .029) Godspeed sub-scale. Finally, we found
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significant main effect of open-mindedness in 7 out of 15 the Godspeed rating
sub-scales and in the average likeability scale (F (1, 140.35) = 5.81, p = .017).

We followed up the LME analysis with Bonferroni corrected pairwise com-
parisons to find how the Godspeed rating that the participant gave to the robot
reactions differs between gender, age, and personality traits groups. For gender
factor, we found that male gave lower likeability score to the recovery strategies
compared to female (Δμ = −0.215, p = .031). In the perceived intelligence scale,
we can see that the recovery strategies are rated lower by male compared to
female (Δμ = −0.277, p = .014). For extroversion factor, we found that people
in low extroversion category gave lower likeability (Δμ = −0.242, p = .017) and
perceived intelligence (Δμ = −0.270, p = .019) ratings to the recovery strategies
compared to people in high extroversion category. We also found that people
in low agreeableness category gave lower average likeability (Δμ = −0.348, p =
.021) and perceived intelligence (Δμ = −0.286, p = .026) scores to the recovery
strategies compared to people in high agreeableness category. Furthermore, the
analysis shows that people in low conscientiousness category rated the likeabil-
ity (Δμ = −0.238, p = .013) and perceived intelligence (Δμ = −0.299, p = .005)
of the recovery strategies lower than people in high conscientiousness category.
Finally, results show that people in low open-mindedness category gave lower
likeability (Δμ = −0.325, p = .017) score to the recovery strategies than the
ones in high open-mindedness category.

5 Discussion

In this paper, we expanded the literature by answering three research questions
about error recovery strategies based on the user study that we conducted. First,
we asked if there is a preference in recovery strategies that robots use to handle
error situations (Q1). The results of this study show that in general, all error
recovery strategies are rated significantly higher in terms of anthropomorphism,
likeability, and perceived intelligence than the ‘silent’ strategy (R1), which is the
same with ignoring the error and applying no strategy at all to handle the error
situation. This finding is in line with [10] findings and strengthens the impor-
tance of applying recovery strategies to handle error situations in HRI, so that
people will have a more positive perception of the robot and be more eager to
have a longer collaboration session with the robot. Further analysis shows that
in terms of likeability and perceived intelligence score, the ‘apologise’ strategy
(R3) received the highest average rating, and only rated second highest in terms
of anthropomorphism, making it the highest-rated error recovery strategy in this
study. This finding also strengthens the finding of [10] which suggests that people
prefer error mitigation strategies for collaborative robots that follow the common
social norms. In our case, the followed social norms is that people tend to apolo-
gise whenever they feel guilty of committing a mistake [5]. The second preferred
strategy in terms of average Godspeed rating is the ‘help’ strategy (R6) which is
rated second highest in terms of likeability and perceived intelligence, and placed
third in terms of anthropomorphism. This finding reinforces the results from [8]
on the effectiveness of asking human’s help to recover from an error situation in
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HRC. The second unfavoured strategy in our user study is the ‘regret’ reaction
(R7), despite having the highest average anthropomorphism score. This result
indicates that goal oriented strategies such as apologising which mitigates the
social aspect and asking for help which mitigates the technical aspect are more
effective. We think that the ‘regret’ reaction (R7) is rated highest in terms of
anthropomorphism because in the video clip, the robot raises its hand towards
its forehead while showing regretful face expression. This finding also suggests
that combining recovery strategies with non-verbal gestures might help the robot
gain higher anthropomorphism rating. The ‘blame’ strategy (R5) which shares
the responsibility of the failure to the human is the least preferred recovery
strategy, supporting the previous research’s conclusion [7].

We then asked if there is a difference in people’s ratings to robot reactions
between different types of error situations (Q2). Data analysis results show that
the type of error situations have a statistically significant impact on how people
rate the error mitigation strategies. In terms of anthropomorphism, the robot
reactions are rated significantly higher if applied to planning errors (PE) com-
pared to execution errors (EE) and social norm violations (SNV). The average
likeability and perceived intelligence ratings of robot reactions are significantly
higher if paired with PE and EE compared to SNV. In our previous research [4],
we found that the people show more social signals during PE, followed by EE
and SNV. We hypothesise that the more severe the error situation is and the
more threatened the continuity of the interaction is, the more social signals that
people show in response to that error situation, and the more people appreciate
robot’s mitigation strategies to handle that error situation.

Finally, we asked whether people’s ratings on error recovery strategies are
influenced by their demographics and personality traits (Q3). Based on our anal-
ysis, we discovered that people’s gender, as well as the extroversion, agreeable-
ness, conscientiousness, and open-mindedness scale of their personality profile
affects the ratings that they give to error recovery strategies. This finding, com-
bined with our answer to Q1, suggests that applying universal error handling
strategies to handle error situations in HRC is always better than doing noth-
ing. However, an adaptive error handling strategies following user’s personality
profile and demographics might be the best solution to mitigate error situa-
tions in future HRC because each individual perceives error recovery strategies
differently.

6 Conclusion, Limitations and Future Work

This work investigated people’s preference of error mitigation strategies in
human-robot collaboration. There are seven recovery strategies paired with three
different error situation types that were rated by users in an online study, which
was the most comprehensive study in the error mitigation domain, to the best
of our knowledge. The findings were analysed from 840 Godspeed questionnaire
ratings that were given by 140 participants with varying age, gender, and per-
sonality traits. To help fellow researchers reproduce and extend on our study,
all of our dataset along with the survey template and raw analysis results are
available at our GitHub page [3].
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The results show that error recovery strategies implemented after error sit-
uations significantly raised the positive ratings of collaborative robots. Based
on the average Godspeed ratings, people prefer the ‘apologise’ strategy, followed
by the ‘help’ strategy, the ‘humour’ strategy, the ‘confirmation’ strategy, the
‘regret’ strategy, and the ‘blame’ strategy. We also found that the type of error
situations that the recovery strategies were handling significantly affects the rat-
ings that people gave, which seems to be positively correlated to the severity of
errors and the continuity of the interaction. Further statistical analysis showed
that user’s gender and personality traits significantly affect participants’ ratings
on error handling strategies. Thus, future error situation recovery researcher
should incorporate the human collaborator’s data, if available, when applying
error recovery strategies in HRC.

In the future, a follow up study of error mitigation strategies implemented
in a real robot system will help to confirm and strengthen the results of our
study. A follow up study to research the correlation of social signals that people
show to error situations with the ratings that their give to the applied recovery
strategies can also be conducted to increase our understanding on the appropri-
ate error mitigation strategies. Another study can be conducted by combining
recovery strategies and adding more non-verbal gestures to see how those alter-
ation influence people’s perception. The findings of this study motivates us to
develop an automatic error handling module in HRC that adapts to the pref-
erence and characteristics of the user so that collaborative robots can be used
more extensively in people’s everyday lives.

Acknowledgments. The first author acknowledges the scholarship support from the
Ministry of Research and Technology of Republic of Indonesia through the Research
and Innovation in Science and Technology (RISET-Pro) Program (World Bank Loan
No. 8245-ID).

References
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Abstract. In this paper, we are presenting a framework for multi-modal
human-robot interaction (HRI), where complex robotic tasks can be pro-
grammed using a skill-based approach and intuitive HRI modalities. This
approach is demonstrated using a gearbox assembly application in a
realistic industrial environment. Our system includes mobile and static
robots for actuation, 2D and 3D cameras for sensing, and GUIs, spatial-
and see-through- Augmented Reality for HRI.

Keywords: Human-robot interaction · Simplified programming ·
Robotic assembly

1 Introduction

One of the current manufacturing mega-trends is high-mix-low-volume produc-
tion, driven largely by changing consumer preferences. While such production
was hitherto labour-intensive, the recent increase in demand coupled with dis-
ruptions to manufacturing and supply chains, has made automation a highly
sought-after option to close these gaps. However, typical robotic cells tend to
be fixed and rigid, developed with a single task at hand. Changes in process
flows or the inclusion of new devices into the system, would be time-consuming
and costly to do so. On top of that, existing programming interfaces are usually
code-based, which calls for experienced programmers to support during such
changes. If the interfaces are similar to an operator’s point of view in terms of
process flow, this would allow the operator to increase the value added through
their work by directly implementing process changes on the robotic system.

This research is partially supported by the Agency for Science, Technology and
Research (A*STAR) under its SERC Grant (Project #A1623a00035).
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With the increase in usage of collaborative robots in manufacturing, there
will be increasingly more areas for collaboration between operators and their
robot counterparts. By combining complementary strengths, such as the skills
of human operators and the strength and speed of robots, this will bring forth
a paradigm shift in the manufacturing industry. Human robot collaboration,
and the various interfaces available for communication and control become the
central focus in improving the current state of work. As there isn’t an interface
that can be optimal for all types of human robot collaboration scenarios, it is
necessary to have multi-model interfaces where both humans and robots can
communicate and interact with each other. In this paper, we discuss and share
more about the various modes of interfaces, such as a GUI, AR for projection
and interaction etc., used in a collaborative robot assembly cell.

To enable quick changes in robotic process flows brought about by high-
mix-low-volume production, human operators need to adjust and adapt their
process flows and integration faster and more efficiently. A modular approach
was explored in this paper, where the addition of new devices and functions
is made easier. This allows for quick and easy re-configuration of the task or
production line based on the existing devices and skills, which can now be done
by the non-expert shop-floor operators, using the multi-modal interfaces.

2 State of Art

There are several research works in the area of human-robot interaction for
simplified robot programming. Schou et al. [15] proposed the use of a task-level
programming system based on robot skill definitions. Kraft et al. [8] focused on
the study of UX paradigms for human-robot interaction. Self-descriptive systems
for plug-and-produce were proposed in [18]. A re-configurable, modular system
framework was presented in [6]. Node Primitives were developed in [3] for a
user-centric robot programming approach.

2.1 Simplified Programming Frameworks

A cognitive robotics system, specifically suitable for high-mix and low-volume
manufacturing in SMEs was presented in [12]. Automated off-line programming
approaches were studied in [2]. Steinmetz et al. [16] presented RAZER, a task-
level robot programming framework based on parameterizable skills models and
intuitive GUIs. Learning from human demonstration is another popular approach
in research for easy teaching of robotic tasks [1,10,14].

Simplified robot programming interfaces and the concept of manipulation
skills are also seen in several new commercial robotics software packages. Franka
Emika1 developed a robot programming interface, based on robot skills. The
Artiminds Robot Programming System (RPS)2 supports several robot and com-
puter vision hardware and software. It focuses on off-line programming, and can
1 https://www.franka.de/.
2 https://www.artiminds.com/robot-programming-software/.

https://www.franka.de/
https://www.artiminds.com/robot-programming-software/
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generate robot code in several robot-specific scripting languages. Drag&Bot3 is
a web-based programming software that allows the operator to program easily
with parameterizable skills. They have focused their GUI more on a CAD-based
software, where one is able to place robots in a specified workcell, check reacha-
bility of their robots and provide estimated cycle times.

2.2 Augmented Reality and Robots

Augmented reality (AR) is a powerful human-robot interaction modality. In
industrial settings, it can be used to visualise information previously unseen, such
as intended robot motion and trajectories. A projection-based safety system was
used in [17] as a form of display of safety zones and intended robot motion, as
well as to detect safety violations from the human operator. In [11], an AR inter-
face was used to visualize appropriate information such as process-related and
production-related statuses, robot workspace and intended trajectory without
interrupting the operator.

Feedback about industrial processes and production data can also be visu-
alised using AR. In [4], an AR interface with voice commands was used to show
instructions for a human-robot collaborated assembly process. AR headsets are
used in [5] to visualize the operator’s progress in performing a spraying process.
Operators get information on target regions to be sprayed, and feedback on how
well the regions are being sprayed.

2.3 Contributions

We have made several novel contributions in this paper, as summarized below:

– An extensible, multi-level system architecture suitable for a human-robot
collaboration setting.

– Multi-modal interaction including a task programming GUI and see-through
Augmented Reality. All these modalities are connected through a unified
framework that enables safe and intuitive human-robot collaboration.

– Task-level programming for both mobile and static robot arms.
– Demonstration on a complex, realistic industrial manufacturing scenario, i.e.,

gearbox manufacturing.

3 System Architecture

Figure 1 illustrates the 4-level system architecture of our proposed approach:

– Level 0: This level contains the hardware devices and software written in
the device-specific programming languages, including sensors such as 2D/3D
cameras, actuators such as robots and grippers, and controllers such as PLCs.

3 https://www.dragandbot.com/.

https://www.dragandbot.com/
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Fig. 1. System architecture diagram listing the modules and their connections.

– Level 1: This level includes drivers for our chosen communication interfaces
(ROS, REST, etc.). These drivers bridge between the specific protocols of
each hardware device and our preferred protocols.

– Level 2: This level includes the key algorithm implementations required for
our processes, e.g. motion planning, 2D and 3D computer vision.

– Level 3: At the highest level of our architecture are GUIs for application and
process sequence control, and visualizations for simulations or digital twins.

We use a modular approach, where different modules are connected together
to develop a process sequence for the application in this project. This enables
us to re-configure and re-use the developed modules for different applications.

4 Technology Modules

4.1 2D Object Detection

In this module, we develop algorithms to detect the type and bounding-box
location of objects in an image. We used the Faster RCNN model [13] with
ResNet as the base model for transfer learning, implemented using Tensorflow.
To train our deep learning model, we collected a dataset of 200 manually labelled
images. For the model training process, 80% of the dataset is split into training
and remaining 20% as test data. The results of the object detection is shown
in Fig. 2(a). We can identify the objects with an accuracy of 95% (correct part
identification/total part instances in the test dataset).

4.2 Pose Estimation for Gearbox Assembly

For automatic detection and pose estimation of the parts in the assembly area,
the workspace is equipped with Photoneo Phoxi 3D Scanner L,4 that can capture
4 https://www.photoneo.com/products/phoxi-scan-l/.

https://www.photoneo.com/products/phoxi-scan-l/
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(a) (b) (c)

Fig. 2. 3D object detection: (a) 2D Object detection results (b) Input Data from
Photoneo (c) 3D Detection

grayscale images and 3D pointclouds (Fig. 2(b)). We used faster-RCNN model,
similar to the approach described in Subsection 4.1, to detect the 2D bounding
box of input parts. The detected bounding box is used to segment the 3D point
cloud, and subsequently for estimating the 6D pose of the part (Fig. 2(c)). We
utilized the computer vision library Halcon5 to determine the part’s pose using
its 3D CAD model and achieved an average accuracy of −0.5 mm for the pose
estimation, determined through experiments of the robotic end-effector reaching
the detected position of objects in different locations on the tray.

4.3 Autonomous Mobile Robots (AMRs)

We use an AMR for automatically transporting parts on a trolley between differ-
ent stations in the manufacturing facility. We choose a MIR 200,6 with additional
latching system to hold onto the trolley. We integrate the MIR into our modular
framework using the its REST API and a ROS driver.7

4.4 Collision-Free Motion Planning

We use a collision-free motion planning algorithm to generate the sequence of
robot positions required for the process. We evaluated three motion planning
algorithms from the open-source motion planning library MoveIt!8 for this task:
RRT9, RRT-star [7] and RRT-connect [9]. In this project, we are using a 7-axis
robot, where the redundant axis can easily result in very long paths in the joint
space for small motions in the operational space. Hence, we prefer the more
optimal trajectories achieved using RRT-star, despite its higher runtime. By
using a convex decomposition of the 3d scene using the V-HACD library10 (see
Fig. 3 (b)), we achieved a significant reduction in the time required to load the
collision scene as well as motion planning.
5 https://www.mvtec.com/products/halcon.
6 https://www.mobile-industrial-robots.com/en/solutions/robots/mir200/.
7 https://github.com/dfki-ric/mir robot.
8 https://moveit.ros.org/, http://wiki.ros.org/moveit/.
9 https://en.wikipedia.org/wiki/Rapidly-exploring random tree.

10 “https://github.com/kmammou/v-hacd”.

https://www.mvtec.com/products/halcon
https://www.mobile-industrial-robots.com/en/solutions/robots/mir200/
https://github.com/dfki-ric/mir_robot
https://moveit.ros.org/
http://wiki.ros.org/moveit/
https://en.wikipedia.org/wiki/Rapidly-exploring_random_tree
https://github.com/kmammou/v-hacd
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(a) (b)

Fig. 3. Motion planning: (a) Collision-free motion planning using the RRT-Star algo-
rithm (MoveIt) (b) Approx. convex decomposition of the 3D collision scene

5 Human-Robot Interaction

5.1 Skill-Based Robot Programming and Interface

We developed a GUI for simplified robot programming, a wide variety of tasks
such as pick and place can be specified using 3D models of the involved objects,
see Fig. 4(a). In the current setup, we support the use of 2-fingered and 3-fingered
grasp/place operations. These operations are called basic skills in our framework.
The relative pose between the selected gripper and the object is a key param-
eter, which can be specified in the GUI as constraint parameters between the
geometries of the 3D models.

(a) (b)

Fig. 4. (a) Modular programming GUI (b) Sequencing the skills through the GUI

Figure 4(b) shows our skill sequence programming GUI, where several skills
such as robot motions, gripper commands, REST-API calls, 2D/3D object detec-
tion can be included as blocks. Each of these blocks have a set of parameters
to be specified for the operation, which can be either manually specified or
inferred automatically from other blocks that generate such parameters (e.g.
object detection block generating the pose required for a robot motion). We
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program the different robot assembly sequences using this GUI. Based on the
desired assembly combination, the relevant sequences are loaded automatically.

5.2 See-Through Augmented Reality

We have developed a see-through AR application as a human-robot interaction
modality, which has three main features:

1. Display an augmented view on the smart glasses, including the 3D model of
the robot and information related to the robot’s task (see Fig. 5(c)).

2. Connect to a physical robot via a network connection, such that information
can be communicated between the AR application and the physical robot.

3. Recognize speech commands from the user and display on the smart glasses
(Fig. 5(c)), to control the AR application as well as the robot, hands-free.

Fig. 5. (a) System architecture of the see-through AR application (b) A user wearing
the system during deployment (c) Content displayed on the smart glasses

Figure 5(a) illustrated the software modules implemented for this modality:
the AR module, the speech recognition module, and the robot communication
module. The entire AR application is developed within the Unity 3D game devel-
opment platform, using the Vuforia Engine11 software plugin. The speech recog-
nition module is developed using the Windows Speech libraries.12

5.3 Spatial Augmented Reality

We designed a custom spatial AR solution that utilizes a Laser Graphic Pro-
jection (LGP) to offer visual communication between robot and human. Laser
beam is directed onto an industrial envelope floor surface, as shown in Fig. 6.
The goal is to present a “warning” such as a text and graphics display, as well
as to outline area or any other static (or animated) graphic projection.

11 https://library.vuforia.com/.
12 https://docs.microsoft.com/en-us/uwp/api/windows.media.speechrecognition.

https://library.vuforia.com/
https://docs.microsoft.com/en-us/uwp/api/windows.media.speechrecognition
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Fig. 6. Shape and text displayed on the floor using our laser projector

6 Experiments and Demonstrations

We demonstrated our multi-modal human-robot collaboration framework
through an application described in the following sections and illustrated in
the video.13

6.1 AI-Assisted Warehouse Demonstration

Fig. 7. Object detection setup

In our AI-assisted warehouse, parts are retrieved from the warehouse on a needs
basis using a mobile base holding onto a trolley. In this demonstration, the 2D
cameras detect objects on the trolleys, and pass the information to the Ware-
house GUI (Fig. 7), which guides the operator in placing the correct parts. Once
the tray is ready, the mobile robot is triggered automatically to pick up the cor-
rect trolley, and deliver it to the assembly cell. With the inclusion of the modular
programming framework, this has eased the process of integration of and com-
munication between devices, and has eased the interaction between operators
and the mobile bases.
13 https://youtu.be/PIsMpFG6PmI.

https://youtu.be/PIsMpFG6PmI
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6.2 Gearbox Assembly Robot

Once the parts are delivered to the robotic workcell, the collaborative robot can
start performing the assembly of the gearbox sub-assemblies. In this process,
multiple sensors integrated to the modular programming framework check for
the presence and position of parts, accuracy of assemblies, and provide feedback
to the AR goggles and GUI interface on the assembly process (see Fig. 8a). The
operator can choose to use either the AR goggles to load the respective sequence
and start the process using voice commands (see Figs. 8b-c), or use the simpli-
fied GUI to load the sequence and press the start button. All these interaction
modalities connect in the back-end to the modular programming framework.
The multi-modal interfaces make the interaction simpler and smoother. The AR
goggles aid the operators in visualising the process flow, even when they are not
physically around the assembly cell.

Fig. 8. (a) Assembly setup (b) Operator using AR Glass (c) Information in AR

7 Conclusions

In this paper, we proposed framework for executing complex robotic tasks using
multi-modal human-robot collaboration. Using the gearbox assembly process
as a case-study, we demonstrated the effectiveness of our simple task-centred
programming interface and see-through Augmented Reality, obviating the need
for the cumbersome robot programming. In the future, we plan to apply and
evaluate our approach on different tasks and in multi-robots scenarios.
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Abstract. There has been an increasing demand for visual grounding
in various human-robot interaction applications. However, the accuracy
is often limited by the size of the dataset that can be collected, which is
often a challenge. Hence, this paper proposes using the natural implicit
input modality of human gaze to assist and improve the visual ground-
ing accuracy of human instructions to robotic agents. To demonstrate
the capability, mechanical gear objects are used. To achieve that, we uti-
lized a transformer-based text classifier and a small corpus to develop
a baseline phrase grounding model. We evaluate this phrase grounding
system with and without gaze input to demonstrate the improvement.
Gaze information (obtained from Microsoft Hololens2) improves the per-
formance accuracy from 26% to 65%, leading to more efficient human-
robot collaboration and applicable to hands-free scenarios. This approach
is data-efficient as it requires only a small training dataset to ground the
natural language referring expressions.

Keywords: Gaze tracking · Visual grounding · Human-robot
interaction

1 Introduction

Human-robot interaction has been playing an increasingly important role in the
manufacturing industries today. Utilizing the collaboration between the human
operator and robots can allow the robots to automate repetitive tasks, reduce
margins of error to negligible rates, and yet enable human workers to focus on
more productive areas of the operation [2]. Giving natural instructions to the
robot to pick and place is often desired to speed up the pick and place process.
Visual grounding is required for such tasks but is often limited by dataset. Hence,
this paper proposes a gaze-assisted visual grounding system that uses natural
language instructions and gaze to localize the mechanical object. Experiments
are performed, and is shown that the performance improves after fusing the
human gaze information acquired using Microsoft Hololens2.
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(A*STAR) under its AME Programmatic Funding Scheme (Project # A18A2b0046).
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Fig. 1. Human-Robot Collaboration: Human (sitting on a chair) instructs the robot to
pass the red screwdriver using natural language and gaze (shown by the dotted line)
while engaged in some other task. (Color figure online)

Phrase grounding (also called visual grounding) system localizes an object
within an image described by language query [17]. This query often contains
different types of phrases such as categories, attributes, spatial configurations,
and interactions with other objects, such as “green plier on the left” or “blue
wrench next to the multimeter,” as shown in Fig. 1. These phrases are also known
as referring expressions. Researchers typically adopt one of the two approaches:
1) single-stage [25,27]; and 2) multi-stage [20,26] to perform this task. The multi-
stage methods rely on the candidate proposal network like Faster-RCNN [16] and
EdgeBox [28], which calculates the matching score between each proposal and
the referring expression and chooses the region with the highest score. The one-
stage methods frame the problem as a bounding box regression task. Instead
of using the candidate proposal, they utilize multimodal features obtained after
projecting and fusing features from the visual backbone and language encoders
into the same semantic space.

Both the visual grounding methodologies have their limitations and benefits,
which researchers are trying to address. Ref-NMS [3] proposes expression-aware
proposals for the two-stage approach, improving the grounding performance,
while ZSGNet [17] enables grounding of novel categories (zero-shot grounding)
using dense proposals. Both approaches use large image grounding datasets such
as Flickr30k [15], Visual Genome [9], ReferIt [7], RefCOCOg [12]. Using a smaller
dataset has a high probability that results in performance drop due to referring
expression diversity, and complexity [27]. In this paper, we demonstrate a perfor-
mance improvement in the phrase grounding system with incorporating human
gaze despite having a small dataset.
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Contrary to gesture (explicit communication signal) or speech, the gaze is an
implicit signal [13]. These types of signals are not intended to carry information,
but they do anyways and are fundamental for effective communication. Human
gaze (the information about what or where the user is looking at) typically
anticipates their hand movement, for instance, when humans want to reach for
an object. This implies that robots with gaze tracking capability can predict
the goal of their human coworker even before they act. Gaze tracking is also
beneficial for manufacturing robots as it gives information about human visual
attention and hence which object they want to pick, as shown in Fig. 1. It is
beneficial when traditional channels, such as gestures [22], might not be suitable
for HRI (e.g., hands-free interface design [14], assistive robots [19]).

However, one of the drawbacks of eye-tracking is precision interaction because
eyes move around a lot. Our eyes perform rapid movements from fixation to
fixation. Also, gaze tracking accuracy depends on camera properties and external
factors like light and shadow [13]. The majority of gaze tracking devices are
static, which poses a huge challenge in deploying robots for open environments
such as airports and hospitals.

Fig. 2. Overview of our method. Given an input image, a text query, and a set of
candidate locations (e.g., from object proposal methods), a text classification model is
used to score candidate locations based on spatial configurations and global context.
The top-3 scoring candidates are selected to check proximity from the gaze centroid.
The nearest proposal is selected as the answer.

This paper used the head-mounted system Microsoft Hololens2 (HL2) to
track the human gaze, which is the common solution for experimental settings.
Head tracking and eye tracking are two key ways in which HL2 can understand
user’s areas of focus and intent. Head tracking is how HL2 tracks a user’s head
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position and orientation in 3D space. Eye-tracking is how HL2 understands pre-
cisely where the user is looking using sensors pointed at their eyes. Head tracking
and eye-tracking work together to understand user’s field of view and what they
are looking at.

We propose a gaze-assisted approach to ground referring expressions in an
image. Our contributions can be summarised as follows:

1. Utilizing natural implicit gaze (not intentional gaze) to improve human-robot
instruction.

2. A text-classifier based scoring function [1] for the candidate locations of an
image generated by Faster-RCNN as shown in Fig. 2, exploiting a small
dataset.

3. We first show that grounding using text-only instructions (no gaze) can
achieve 26% accuracy in target localization. Subsequently, using a series of
in-the-lab studies, we demonstrate how the incorporation of gaze input (along
with verbal and visual input) helps improve this grounding accuracy to 65%.

Figure 2 depicts the overview of the approach. Choosing the highest-scoring
object proposal results in the inaccurate grounding of the referring expression
“Bottom most bearing” while filtering based on scores and proximity to human
gaze centroid results in correct grounding.

2 User Study: Gaze Data Collection

Fig. 3. Five random arrangement of three object types. Each participant is asked to
provide the natural language description for each of these ten objects shown by the
finger in each configuration.

Given our high-level goal of incorporating gaze input for multimodal instruc-
tion comprehension, we designed a user study to collect gaze data and establish
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the hypothesis that human speech follows human sight. In this study, 5 spatial
configurations of 3 distinct objects were shown to the user. For all 10 scenarios
(illustrated in Fig. 3), the experimenter touched an object and asked the partici-
pant to describe it while wearing a calibrated Hololens2. A calibrated Hololens2
sensing of the gaze is relatively accurate within 1.5 degrees in visual angle around
the actual target. The subjects were standing at a distance of 2m from the table.

To provide operational familiarity with the Hololens2, each subject followed
a tutorial session (Tips App) in which they learned to interact with holograms
using hands and navigate Hololens. The cursor was, however, disabled during
the study. Thus a total of 10 × 3 = 30 gaze recordings were collected. However,
due to experimental error, we had to remove 7 recordings. We recorded the gaze
data from the moment the participant starts speaking to 3 s after that at a frame
rate of 30 fps.

3 Methodology

The main components of our methodology are object proposal network, binary
classifier based scoring function [1] and gaze estimation as illustrated in Fig. 4.
We also explain the training methodology of the scoring function. Finally, we
mentioned the details of gaze estimation.

Fig. 4. f1, f2, f3 are the Faster R-CNN RoI pooled features for bearing, gear and spur
respectively. f4 represents the background. The features are flattened and concatenated
with the sentence vector xcls and a bounding box coordinates. The feed-forward then
scores the text description-bounding box pair for the match. To incorporate the gaze
information, we chose the top-3 scoring bounding boxes for a text description and
calculated their proximity from the gaze point. The bounding box closest to the gaze
is retrieved.
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3.1 Object Proposals

The object proposal network is responsible for generating bounding boxes for
each instance of an object in the image and extracting global context features
from the image. We used the state-of-the-art object detector Detectron2 [24],
i.e., a PyTorch-based modular object detection library. We selected the Faster R-
CNN model [16] (Feature Pyramid Network (FPN) and a ResNet101 backbone)
from detectron2 model zoo trained on COCO 2017 training and evaluated on
COCO 2017 validation dataset [10].

The COCO dataset contains images with 80 different categories of objects.
However, object types outside these 80 classes will not be recognized when
trained solely on COCO. Therefore, we relied on transfer learning to reduce
the training requirements. Instead of training a model from scratch, we started
with pre-trained (on COCO 2017 dataset) Faster R-CNN weights.

We prepared a custom object detection dataset of images containing objects
of classes—bearing, gear, and spur. We collected 69 images of these 3 object
types and used an annotation tool (Roboflow) to annotate the bounding boxes
around the objects. The training data consisted of 364 bounding boxes and class
labels. We ran the object detection model on 1 GPU (NVIDIA GeForce GTX
1070), and the inference time per image was 200 ms (5 fps).

3.2 Scoring Function

We formulated a binary-classification task where the classifier takes features
from the text and bounding box to predict if the box contains the referred
image. Essentially, the input x of the classifier consists of—

ximg is a tensor of size 4 × 1000 obtained from the output of RoI pooling
layer of Faster R-CNN. The first three rows represent the three object classes in
the dataset, i.e., bearing, gear, and spur. The last row represents the background
class or no object zone. The classifier first projects each row to a 10-dimensional
space to obtain a 4 × 10 tensor. After flattening the tensor, we obtain a vector
f of size 40 (as shown in Fig. 4).

xcls is the sentence vector obtained from the output of a transformer-based
text encoder [1]. The raw text string is first word-tokenized by spaces. Since the
number of unique words in the dataset is small, we form a text vocabulary of size
30 prepended with a special [cls] token and appended with the text with [sep]
token [4]. The tokens are projected to an 8-dimensional embedding space and
then fed to the encoder. The number of self-attention heads is kept 2, the query,
key, and value projection vectors are of the same size, i.e., 2 [1]. We obtain wcls

which is contextualized [cls] vector (or sentence vector) of size 8 at the output
of the encoder.

xbi represents an ith bounding box coordinate set, i.e., vb = {xtl, ytl, wt, ht}
output by the Faster R-CNN where tl, wt and ht abbreviate top-left, width,
and height, respectively. The origin lies at the top-left corner of the whole image
input to the Faster R-CNN.
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The classifier concatenates f , wcls, and vb to form a vector of size (40 + 8 +
4) 52. This vector is fed to a classification feed-forward layer to obtain a score
between 0 and 1. Essentially, the classifier scores the region (object bounding
box) query (object description) pair.

Training Methodology. For each image in the dataset, we text annotated
bounding boxes predicted by the Faster R-CNN and label the bounding box-
text pair as 1. For each image, we obtain all the possible combinations of text
description-bounding box incorrect pairs and labeled them 0. It is noteworthy
that the dataset is imbalanced in favor of class 0. The classifier is then trained
to score the text-bounding box pair.

Inference. Given a set of images and text descriptions in the test set denoted
as I, where an element in the set is a set of bounding box and text description
pairs {(b1, t1), . . . , (bn, tn)}. For all the (bj , tk) pairs in an image where bj is jth

bounding box and tk is kth text description, respectively, we obtain the classifier
score sjk. Assuming j = k denotes correct bounding box-text description pair,
the classifier evaluation metric is defined as

fθ(I) =
1

|I|
∑

{(b1,t1),...,(bn,tn)}∈I

∑
tj∈{t1,...,tn}(j == argmax{sj1, . . . , sjn})

n
(1)

where θ represents model trainable and fixed parameters; n denotes the number
of objects identified by the Faster R-CNN. The Faster R-CNN parameters are
non-trainable while transformer-based encoder and classifier layer parameters
belong to the trainable set.

Experiment and Data Setup. We used Adam optimizer, with a learning rate
=0.00001, to minimize the cross-entropy loss between the target and predicted
label. For all the experiments, we keep the batch size as 16 and train for 10
epochs. At test time, an image, a natural language object query, and a set of
candidate bounding boxes (e.g., from object proposal methods such as Faster
R-CNN [16]) are provided.

We manually annotated all 364 objects in the 69 images with text descriptions
while their bounding boxes were predicted by Faster R-CNN. We obtained n×n
training data samples from each image where n is the number of objects in an
image. We labeled a training data as 1 while combining an object’s bounding
box with its description and 0 when merged with any other object’s description
from the same image.



198 K. Johari et al.

3.3 Gaze Estimation

The HL2 perceives and understands the physical environment through spatial
mesh visualization. It will then project a ray following the path of where it thinks
the eye is looking at. When the ray intersects the spatial mesh, the coordinate
of that point is returned to us as a world point. We will then convert the world
point to a screen point (2D coordinate) using Unity API. The 2D coordinates
are scaled to the image (captured by HL2) dimension.

Our approach is different from other gaze-based interactions [11,21,23]
because we let the participant look freely and did not provide any explicit instruc-
tion to look at a specific location. We also confirm that most people look at the
object before describing it with the help of a small user study. And we thus utilize
this additional implicit information on top of the natural language instruction to
ground the target objects. We obtained the gaze centroid by taking an average
of 3 s of gaze data from the moment the participant starts speaking.

4 Results

We compared the visual grounding results obtained from two approaches - 1)
without (only scoring function) and 2) with gaze input (scoring function + gaze).
We used the gaze user study (mentioned in Sect. 2) as the test data to evaluate
both methods. This data contains 23 images (captured by HL2), one natural
language object description, and one gaze recording for each image. We also
investigated the performance of Faster R-CNN (on the test images) and the
binary classifier (on bounding box and text description pairs), which are essential
parts of the scoring function.

4.1 Object Detection

We followed the COCO detection evaluation metrics [10] to measure the perfor-
mance of Faster R-CNN on test images. AP (Average precision) is the primary
challenge metric for the COCO object detection challenge. AP computes the
area under the precision-recall curve. AP is the precision averaged across all
individual recall levels [5]. Table 1 shows the category-wise bounding box aver-
age precision.

Table 1. Per-category bounding box average precision

Category AP Category AP Category AP

Bearing 86.563 Gear 91.491 Spur 94.286

We take a mean of AP across all 3 classes to obtain mean average precision
(mAP) illustrated in Table 2. AP (averaged across all 10 IoU (Intersection over



Gaze Assisted Visual Grounding 199

Union) thresholds from 0.50 to 0.95 with a step size of 0.05 and all 3 categories)
is the mAP. IoU is the area of overlap between the predicted bounding box and
the ground-truth box divided by their area of union. AP50 and AP70 are the
average precision calculated at threshold IoU = 0.50 and 0.70, respectively. We
also show AP for small (APs area < 322 pixels), medium (APm 322 < area
< 962 pixels) and large objects (APl area > 962 pixels).

Table 2. Mean Average Precision and average precision across various scales

mAP AP50 AP75 APs APm APl

90.780 99.336 99.336 nan 88.317 90.803

4.2 Binary Classification

The training data consisted of 2076 text description-bounding box pairs, out of
which 364 samples were of class 1, and the remaining 1712 samples were of class
0. Thus the distribution of examples has a bias, as mentioned in the training
methodology paragraph of Subsect. 3.2. For around 5 instances of class 0, there
is 1 example of class 1, which may lead the classifier to perform poorly for the
minority class [8]. Therefore, we provided different weights to both majority and
minority classes using

wj = n/(nclasses ∗ nj) (2)

where wj signifies the weight for each class, n is the total number of samples or
rows in the training set, and nclasses is the total number of unique classes in the
target, which is 2 in our case. nj is the total number of rows of the respective
class. Putting our data into Eq. 2, we obtained w0 = 0.68 and w1 = 1.90. 5% of
this training set (randomly chosen) is used as the validation set. The test data
consisted of 134 samples, out of which 23 samples belonged to class 1, and the
remaining 111 samples were of class 0.

Fig. 5. The left plot represents the training and validation accuracy with epochs, while
the right plot shows the changes in F1 score on the test set of class 0 and 1, respectively.
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While the validation accuracy of the classifier is 58%, the test accuracy is
35.8%, as shown in the left plot of Fig. 5. Accuracy is not the metric to use when
working with an imbalanced dataset. So we calculated the test set F1 score at
the end of every epoch. The score at the end of 10th epoch for class 0 and 1 was
0.418 and 0.283, respectively.

4.3 Localisation with and Without Gaze

To localize the bounding box for a text description, we processed the scores
provided by the classifier in two ways - without and with gaze. In the first
method, that is, without gaze, we simply chose the bounding box with the highest
confidence score. This caused only 6 out of the 23 input queries to be grounded
correctly. In the second method (our proposed method), we chose the top 3
scoring proposals of an image for a text description and calculated the euclidean
distance between their center and the gaze centroid. Out of the 3 bounding
boxes, we selected the one having the least distance from the gaze point. This
caused 15 out of the 23 input queries to be grounded correctly. Thus, increasing
the grounding accuracy from 26% to 65%.

5 Discussion and Future Work

Although this classifier-based candidate proposal scoring approach is simple and
works on a minimal dataset, we faced the challenge of data imbalance while
classifying the pairs of the bounding box and text descriptions. However, this
issue can be overcome or minimized by collecting more training data or adopting
a more sophisticated labeling approach for region-query pairs. In the future, we
aspire to apply this approach on more complex tasks like object specification
in a cluttered environment [18] involving more complex descriptions to identify
target object. This system, in combination with other modalities such as touch
and gesture, can also be explored as an interface for multi-robot systems [6].

6 Conclusion

We presented a gaze-assisted visual grounding system for three distinct mechan-
ical gear-related objects: bearing, gear, and spur. The proposed approach com-
bines region proposal and text encoder to score the bounding box-text descrip-
tion pair. We showed that this scoring function grounds the natural language
description of 23 objects with an accuracy of 26%. In contrast, our proposed
approach of incorporating the gaze information on the output of this scoring
function improves the grounding accuracy to 65%. We also established that in
the majority of cases, people look at the object before describing it by con-
ducting a small user study with 3 participants the distance between the objects
and participants to be 2m (optimal distance for gaze tracking using Hololens2).
More broadly, our work stresses the significance of incorporating gaze input to
establish natural interactions between humans and collaborative robots.
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Abstract. Although industrial robots are successfully deployed in many
assembly processes, high-mix, low-volume applications are still diffi-
cult to automate, as they involve small batches of frequently changing
parts. Setting up a robotic system for these tasks requires repeated re-
programming by expert users, incurring extra time and costs. In this
paper, we present a solution which enables a robot to learn new objects
and new tasks from non-expert users without the need for programming.
The use case presented here is the assembly of a gearbox mechanism.
In the proposed solution, first, the robot can autonomously register new
objects using a visual exploration routine, and train a deep learning
model for object detection accordingly. Secondly, the user can teach new
tasks to the system via visual demonstration in a natural manner. Finally,
using multimodal perception from RGB-D (color and depth) cameras and
a tactile sensor, the robot can execute the taught tasks with adaptation
to changing configurations. Depending on the task requirements, it can
also activate human-robot collaboration capabilities. In summary, these
three main modules enable any non-expert user to configure a robot for
new applications in a fast and intuitive way.

Keywords: Robotic manipulation · Multimodal perception · Object
and task teaching · Grasping and insertion · Human-robot collaboration

1 Introduction

With the intensified development of robotic technologies, robots are expected to
work alongside and together with humans to complete tasks and improve pro-
ductivity. This requires Human-Robot Collaboration (HRC) capabilities [1,2], to
adapt to changing configurations and human behaviours. The current COVID-
19 pandemic’s social distancing requirements force companies to operate at a
reduced capacity, while production demand remains strong and requires adapt-
ability. Collaborative robots (cobots) can help to address this challenge, provided
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that they are safe, flexible, robust, easy and fast to deploy. Notably, deployment
time is critical, to ensure little downtime and fast return on investment.

However, such systems are currently highly constrained in their ability to
collaborate with humans: (i) by their inability to interact naturally through com-
mon modalities like vision, speech and touch; and (ii) by their limited ability to
adapt in task performance (re-programming is needed even for small changes in
procedure) [3]. In this paper, we seek to develop a suite of capabilities that would
allow cobots to adapt to humans and their work environments through natural
interactions and robust learning, to remove the need for specialized infrastruc-
ture, expert programming and human training, thus reducing deployment costs.

Fast object learning is a desirable feature, to quickly adapt to new objects,
but is still underdeveloped for many real-world problems. Legacy deep learning-
based methods have achieved remarkable performance in object recognition but
are not directly usable for domain-specific problems: off the shelf models (i.e.,
pre-trained on large-scale, generic dataset) perform rather poorly on the recog-
nition of novel industrial objects [4]. To achieve good performance, sufficient
high-quality training data is required, which is costly and time-consuming. Some
works deal with the generation of high-quality training data by (i) simplifying
the data collection and annotation process using specific devices or user inter-
faces [5], (ii) automating the generation of data samples through augmentation
and synthesis [6]. For the former, it still involves a lengthy process of data sam-
pling and manual annotation. For the latter, the characteristics of synthesized
data need not match with those of actual data from domain-specific operating
environments, leading to unstable and deteriorated performance. A few works
resort to interactive data collection and annotation [7–9]. The agent is equipped
with the ability to register object instances with human guidance. However, they
are restricted by the limited functionalities of hardware (e.g., robot mobility) and
software, thus only addressing small-scale toy problems. It is paramount to fill
this gap with an effective interaction protocol for agents to learn from human,
and further to perform self-learning similar to human learners.

Additionally, setting-up a cobot without programming requires real-time
parsing of human inputs into recognized task activities and human actions, to
then relate them to a task representation for task understanding and learning.
This research will notably develop capabilities for modelling task structure and
understanding a human worker’s roles during task execution and collaboration,
adapting to uncertainties and exceptions over time. There is a rich and growing
literature of robotic learning from demonstration (LfD) due to the importance
and advantages of scaling up robots for new tasks without hand-crafted pro-
gramming, as mentioned above. A full review of the topic is beyond the scope of
this paper; readers may refer to recent surveys [10–12]. Existing LfD solutions
focus on capturing signals directly related to the robot operations, from kinaes-
thetic, motion-sensor, or tele-operated demonstrations on the end-effector’s pose,
or force and motion trajectory. They focus on learning a policy of task execu-
tion using models like Hidden Markov Models (HMMs), Gaussian Mixture Mod-
els (GMMs), Dynamic Movement Primitives (DMPs), and Task-Parameterised
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Fig. 1. Robotic system setup

Gaussian Mixture Model (TP-GMM), as well as Deep Reinforcement Learning
(DRL) recently. Our method instead focuses on learning a general and conceptual
task representation based on visual observation of human hand actions which is
beyond the state and action space of the robot’s pose, force or motion.

2 Robotic System

The robotic system used in this work is based on a robot manipulator, coupled
to two cameras and a 2-finger gripper with a tactile sensor.

Figure 1 shows the overall robotic system setup. More specifically, it consists
of a 7-degree-of-freedom (7-DoF) KUKA LBR iiwa robot manipulator, which
enables a wide range of motions, as well as safe HRC with its compliant mode and
collision detection capability. To identify and locate the objects to interact with,
two RGB-D cameras are used: a fixed eye-to-hand one (Microsoft Kinect Azure)
detects the objects in the robot workspace, and estimates their 3D positions
with respect to the robot. Based on this, the robot can move closer to a desired
object, and then better estimate its location by using an eye-in-hand camera
(Intel RealSense D435 ). Eventually, it is anticipated that these vision outputs
have errors due to calibration imperfections, occlusions, or limited resolution for
instance, and that tasks like grasping will happen blindly at some point (when
the robot gets too close to the object to see it). To overcome these limitations, the
gripper (Robotiq 2F-85 ) is equipped with a XELA uSkin XR1944 tactile sensor,
which is used to estimate with how much offset an object has been grasped.
This main suite of sensors is used to bring down the perceptual error in order to
interact with the gearbox components, in this use case.

Finally, the whole system also comes with an intuitive Graphical User Inter-
face (GUI), available on a touch monitor, allowing easy control and set-up of the
robot. The user also gets audio feedback on the machine’s status and actions.
The different components of the system, both hardware and software, are brought
together with The Robot Operating System (ROS) [13]. The overall software is
made of modules coded in C++ and Python.
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Fig. 2. Block diagram of the proposed framework

3 Framework for Programming-Free System

To achieve programming-free task execution, the robotic system should be capa-
ble of detecting objects, understanding tasks, and precisely executing them.
Therefore, the solution proposed in this paper mainly consists of three modules:
object teaching, task teaching, and task execution. The corresponding block
diagram is depicted in Fig. 2. The object teaching module is for autonomous
object registration and detection, the task teaching module is for understanding
tasks from visual human demonstrations, and the task execution module is for
executing the learned and composed tasks, using multimodal perception.

3.1 Object Teaching

There are three key steps for object teaching as explained below. The entire
process is summarised in Fig. 3.

Canonical View Selection. This first step is used to actively capture an
object’s informative views, by exploring various viewpoints around it and and
select the most informative ones based on a criteria termed goodness of view
(GOV).

– Object Segmentation At a viewpoint, the RGB-D camera provides a color
image and point cloud of the scene. First, we need to get a regional mask of
the object. For this, the Point Cloud Library (PCL) is used, to estimate the
dominant plane and separate it from the object to register. Alternatively, for
small or flat objects, which are difficult to be isolated, we use color information
to perform segmentation (provided that there is adequate contrast between
the object and table top). The mask is then used to extract the object from
the RGB image.

– Goodness of view The goodness of a viewpoint is defined based on the
informativeness of the object, which is computed from a set of basic visual
features [14,15]. In this work, silhouette length, depth distribution, curvature
entropy, and color entropy are considered in the computation [16]. Canonical
views are registered as those with higher combined GOV.
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– Viewpoint exploration Canonical viewpoints are sampled by evaluating
the aggregated GOV of the visited viewpoints on-the-fly. It is assumed that
the RGB-D camera is calibrated against a set of viewpoints on a spherical
surface and the target object is located at the sphere center (cf Fig. 3). The
robot then follows the OnLIne Viewpoint Exploration (OLIVE) method [16]
to visit the viewpoints. The RGB-D data captured at each viewpoint is used
to extract object features and compute the GOV. Given any viewpoint, the
robot searches the local maxima of GOV, where the GOV is computed as the
weighted sum of individual GOV metrics. Once the local maxima is found,
the next view is chosen as one with the largest geographical distance to the
current view.

Data Augmentation. Contemporary object detectors require a reasonably
large amount of training images to reach good accuracy. The image samples from
the previous step may be too few to reach the desired detection performance. To
enhance the dataset, we perform a series of image manipulation techniques to
augment the data. In essence, we superimpose the object’s image (mask) onto
various backgrounds to generate synthesized data. The techniques adopted in
this study include (i) 2D variation and 3D transformation to add variations of
viewing perspective [17], (ii) blending to remove boundary artifacts [6], and (iii)
object scaling to allow optimal object sizes [18].

Training Object Detectors. Once the training images of one or a few novel
objects have been generated, the system performs on-site object detector train-
ing. Ideally, the object learning is conducted incrementally, whereby new object
classes are added gradually to existing classes. In other words, the detector
learns new object classes without catastrophic forgetting of old ones. In this
study, we explored several incremental learning algorithms, such as the methods
presented in [19] and [20]. Notably, these incremental learning techniques still
require lengthy training time due to the distillation operation. Hence, in practice,
we implemented the training protocol of aggregated training (i.e., to include all
training images of known and unknown classes) on the conventional framework
of Faster-RCNN with ResNet101 [21].

Fig. 3. Object teaching process
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3.2 Task Teaching

The task teaching module has been developed to allow any non-expert user to
teach new tasks to the manipulator, simply based on visual demonstration. For
this, we target at establishing a structured semantic representation of robotic
task which matches human common knowledge of task representation. To this
end, we propose a novel graph-based task representation: Compounded Task
Graph (CTG). The CTG task model provides a concept-level hierarchical rep-
resentation of industrial tasks. There are three layers of nodes in CTG:

– Atomic action (Ah): this node represents an atomic hand action in an
industrial task, such as pick_up, move_to, release, etc. The atomic action
nodes form the bottom layer of CTG.

– Primary task (Tp): this node represents a sequence of atomic hand actions
to complete a basic task. It is a parent node of a sequence of atomic actions.

– Compounded task (Tc): this node represents a complex task which involves
several primary tasks, and/or other compounded tasks as sub-tasks of it. It
is a parent node which has a few primary task child nodes in the lower layer,
and/or other compounded tasks child nodes (sub-tasks) in the same layer.

Task Teaching on Vision Perception. As mentioned previously, the aim
here is to reduce the need for human expertise and coding efforts to produce the
CTG of a new task when deploying a cobot. To this end, we propose a novel
task teaching approach based on learning from visual human demonstration, to
automatically generate the CTG of a new task.

First, the vision system runs a previously trained Faster R-CNN to detect
task-related objects and hands in each incoming frame. A tracking algorithm
relying on visual working memory is designed to track the detected objects
and hands, and estimate their inter-frame movements. Based on these visual
observations, a two-level probabilistic logic reasoning is designed to recognize
task-related hand actions in real-time.

The first level, visual reasoning, tries to capture four kinds of hand move-
ments, expressed as probabilistic logic rules:

– move_to(hi, oj) :- dist_reduct(hi, oj)& orient_consistency(vi, vij);
– hold(hi, oj) :- hand_static(hi) & hand_touch(hi, oj) & dist_const(hi, oj);
– move_together(hi, oj) :- hand_move(hi) &hand_touch(hi, oj)

& dist_const(hi, oj)& orient_consistency(vi, vj);
– move_away(hi, oj) :- hand_move(hi)& dist_increase(hi, oj)

& orient_consistency(vi, vji);

where, for example, for move_to(hi, oj), if the hand hi is moving towards object
oj , the distance between hi and oj should be reduced constantly, and the motion
vector of hi should be aligned with the orientation vector from hi to oj . Hence, if
the probabilities of dist_reduct(hi, oj) and orient_consistency(vi, vij) are high
based on visual observations, the probability of move_to(hi, oj) is high.

The second level, probabilistic reasoning, tries to capture atomic hand
actions. During a short duration of recent observations, the algorithm predicts
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the probabilities of atomic actions based on accumulated evidence of basic hand
movements. The probabilistic logic rules are expressed as:

– pick_up(hi, oj) :- move_to(hi, oj) & hold(hi, oj) & move_together(hi, oj);
– move_a2b(hi, oj , ok) :- move_together(hi, oj) & move_to(hi, ok);
– release_a2b(hi, oj , ok) :- move_a2b(hi, oj , ok) & hold(hi, oj)

& move_away(hi, oj) & move_away(hi, ok);

where, for pick_up(hi, oj), if the hand hi has moved to object oj , has held the
object statically for a while, and then moves together with it, it means that an
atomic action of pick_up(hi, oj) has happened.

During the demonstration, the vision system tracks the events and produces a
list of atomic actions gradually. Once the demonstration is completed, the system
performs Bayesian inference on the list of atomic actions to extract the task’s
related actions and associated objects. For example, for a demonstrated task of
insert(a, b), Bayesian inference tries to find the maximum joint probability:

P
insert(a,b)
task = max

i,j,k
[Pr(i, j, k|a, b)Pm(i, j, k|a, b)Pp(i, j|a)Pt(m, r)Pt(p,m)] , (1)

where Pr(i, j, k|a, b)=P (release_a2b(hi, oj , ok)|oj = a, ok = b), Pm(i, j, k|a, b)=
P (move_a2b(hi, oj , ok)|oj = a, ok = b), Pp(i, j|a)=P (pick_up(hi, oj)|oj = a),
and Pt represents temporal constraint: Pt(m, r)= P (tm < tr). Once the max-
imum joint probability is larger than a threshold, the observed task is con-
firmed, and a CTG is generated with corresponding atomic actions and associ-
ated objects.

Task Composition with Graphical User Interface. With the capabilities
presented above, any non-expert user is able to both teach new objects and
demonstrate new tasks to the robot without manually programming anything.
Furthermore, one can also leverage on the previously taught tasks, using the
GUI to compose more complex or repetitive ones, rather than demonstrating
them again. We term this approach “Programming-Free” system. Additionally,
for tasks requiring HRC, the user can chose to activate the robot’s impedance
mode to make it compliant. This ensures a safe execution, as well as ease for
joint manipulation, as the user can manually move the end-effector.

3.3 Task Execution

Once a task has been taught (e.g. accurate, adaptable grasping and insertion of
a shaft), multimodal perception is used to execute it, without having to perform
extensive calibration and risk erroneous and unsafe execution.

Locating Objects Using Visual Inputs. In order to locate objects in the
robot workspace and interact with them, the system is equipped with two RGB-D
cameras. The first one is fixed and has a bird’s eye view on the scene. Its extrinsic
parameters have been calibrated with respect to the robot frame, using [22],
meaning that its position and orientation are known in this frame. In order to
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estimate the objects’ 3D positions, the system first runs the previously mentioned
object detector on the RGB image. Then, to estimate the 3D position of a specific
object, it takes the center of the object’s bounding box and gets the depth of
the corresponding pixel (RGB and depth image have been registered).

Then, the following formula is used to get the 3D position of the mentioned
pixel, in the camera frame: z = d/α; x = (n − cx) ∗ z/fx; y = (m − cy) ∗ z/fy,
where d is the depth read at the pixel of coordinates (n,m), α = 1 or 1000
depending on whether depth is given in m or mm. fx, fy, cx and cy come from

the intrinsic matrix K =

⎡
⎣

fx 0 cx 0
0 fy cy 0
0 0 1 0

⎤
⎦.

Finally, the system converts the obtained coordinates into the robot frame,
using the following calculation:
⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦
robot

=

⎡
⎢⎢⎣

1 − 2(q2y + q2z) 2(qx.qy − qz.qw) 2(qx.qz + qy.qw) tx
2(qx.qy + qz.qw) 1 − 2(q2x + q2z) 2(qy.qz − qx.qw) ty
2(qx.qz − qy.qw) 2(qy.qz + qx.qw) 1 − 2(q2x + q2y) tz

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦
camera

(2)
where qx, qy, qz, qw and tx, ty, tz, represent the camera’s extrinsic parameters.

A similar process has been used for the in-hand camera: its extrinsic param-
eters have been calibrated with respect to the robot’s end-effector. Then during
run-time, this information is combined to the end-effector’s actual position, to
compute the camera’s position and orientation with respect to the robot’s fixed
frame. (2) is then applied to compute the 3D positions of objects perceived
through it.

A critical step in the studied use-case (gearbox assembly), is the insertion
of a shaft into a circular bearing cup. There are three of them and the user
can choose which one to insert in, via the GUI or demonstration. To perform
this, visual perception inputs are used to locate this insertion target, based on a
circle detection and tracking algorithm we developed: once it locates the target
object, it crops the image around it and generates a list of potential circles for
the insertion. Then, using a custom-trained support vector machine (SVM), it
will output the true candidates, which are the three insertion possibilities. This
solution is able to track the circles as well as keep in memory their position with
respect to each other (output example is shown on Fig. 6).

Grasping and Inserting Objects with Tactile Perception. Once the cam-
eras detects the object of interest and locate it, the robot manipulator approaches
and grasps it with the gripper. However, due to internal and external uncertain-
ties, such as lighting change, viewing angle, calibration error, resolution and
occlusion, the vision accuracy is compromised. Therefore, we propose to attach
a tactile sensor to one of the gripper fingertips. This device detects objects as
well as the contact surfaces profiles, and provides fine-scale location and shape
information. The XELA uSkin XR1944 sensor, as shown in the left side of Fig. 1,
is used in this research. It has 16 taxels arranged in a 4-by-4 array that detect
forces in Cartesian coordinates [23].
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In this work, the Naive Bayes algorithm is employed to train a classifier
to detect the position offset of the object (e.g., a shaft) being grasped with
respect to the gripper’s fingertip. Assuming that the gripper applies a constant
force to grasp the shaft statically, the algorithm takes the normal forces, i.e.,
forces in z direction (cf. Figure 1), as input features and assumes them to follow
Gaussian distribution. Given the regular shape of the shaft, the normal forces
are averaged along four columns (y direction) of the taxel array and the position
offset in the x direction is estimated following the Bayes’ Theorem p(yk|x) =
p(yk)∗p(x|yk)

p(x) , where yk represents label of class k, x is Rn feature vector and n =
4. Gaussian kernel is used to approximate the likelihood of features. The feature
plot shown in Fig. 4 demonstrates the distribution of four extracted features.
Each feature corresponds to the average reading of one sensor’s column. Each
subplot represents one feature, the horizontal axis represents the position offset
in x direction in mm, and the vertical axis represents the force readings.

P (xi|y) = 1√
2πσ2

y

exp(− (xi − μy)2

2σ2
y

) (3)

where μy and σy are estimated class mean and standard deviation.

Fig. 4. Boxplot of four extracted features

To validate this approach, a test dataset has been collected: the shaft has been
grasped with different offsets, equally spaced. We then compared ground truth
values to the predicted ones. Overlapping between two sets of values demon-
strated that the offset position can be estimated with an accuracy of less than
2mm thanks to the proposed algorithm.

4 Experimental Results and Discussions

To validate the effectiveness and performance of the proposed system, experi-
ments have been conducted with the robotic system setup shown in Fig. 1. As
mentioned previously, a critical step to perform is the insertion of a shaft into
one of the casing’s bearing cup. We use this task for validation.
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4.1 Object Teaching

The object teaching module (using four pieces of Geforce RTX 2080 in the train-
ing, one for inference) can achieve the mAP of more than 0.86 after 10 epochs.
More detailed results and discussions can be found in [24].

4.2 Task Teaching

To validate the effectiveness of the task teaching, three different users are asked
to demonstrate to the robotic programming-free system the task of inserting a
specific shaft into a casing hole. It takes 18.7 s on average for the robot to learn
the task using the proposed method while it takes roughly twice as much time
for a user to program the task for the robot using our designed GUI. Addition-
ally, while we have not documented the task learning success rate, experiments
have shown that the algorithm is robust and reliably extract the relevant task
structure. Existing benchmark datasets and evaluation metrics might not be
applicable to this specific branch of task learning, yet the results obtain show
that the proposed task teaching method is effective, efficient and intuitive.

4.3 Task Reproduction

For comparison purposes, an ablation study is performed, with the following
configurations, for the shaft insertion task: (i) global (eye-to-hand) camera only;
(ii) global camera + tactile sensor; (iii) global camera + eye-in-hand camera; and
(iv) global camera + eye-in-hand camera + tactile sensor. 20 tests are carried out
for each configuration, respectively, with similar objects positions and difficulty.
The success rates of using different configurations are shown in Table 1.

Table 1. Success rate of object execution with different configurations

Configuration Grasping Insertion

Global camera only 80% 5%
Global camera + tactile sensor 80% 15%
Global + in-hand camera 100% 60%
Both cameras + tactile sensor 100% 85%

It can be observed that relying only on the global camera gives decent grasp-
ing results, but even in successful cases, experiments showed that it would be
done either with an offset or the object is not picked up straight. As for the
insertion, this sensor alone fails to properly estimate the insertion target (hole)



Towards a Programming-Free Robotic System for Assembly Tasks 213

location, mainly due to viewing angle restrictions. Adding the in-hand camera
to the system considerably enhances the results for both grasping and insertion.
It helps to properly center the gripper on the object to grasp, and prevents the
gripper from colliding with the object. It also helps to more accurately locate
the target hole for insertion. Yet, the visual perception inputs are not perfect,
which results in a slight offset between the object axis and the gripper center.
It can be observed that the tactile sensor combined to the proposed algorithm
greatly helps to compensate for this and improves the insertion success rate.

4.4 Collaborative Task

The user can also request the system to help him/her in collaborative tasks. A
perfect use-case for this is the insertion of three shafts simultaneously, as these
components need to be inserted into the casing at the same time. It is impossible
for a worker or the robot to single-handedly complete this task reliably. Thus,
a new collaborative insertion task can be composed via the GUI, using the
previously taught insertion action. The step of insertion in the learnt task will
be set to be done in collaborative mode, i.e., the robot compliant mode will be
enabled for safer and easier execution, while waiting for human trigger.

Locate the objects Grasp object A Move to object B HRC for inser�on Complete the task

Fig. 5. Robot operations during collaborative insertion task

The robot operations for this collaborative task are shown in Fig. 5. In prac-
tice, the system will stop and inform the user after it grasps the shaft and moves
it above the casing. It will then trigger the insertion once it senses a pulling-down
force/motion from the co-worker. Eventually, the collaborative function allows
easy HRC for a challenging task.

4.5 GUI

Most of the interactions with the system are done via a custom GUI, available
on a touch monitor. Figure 6 depicts the different use cases.
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Fig. 6. GUI for object teaching, object detection, task teaching and task execution

5 Conclusion

In this paper, a framework with intuitive interactions is proposed towards
programming-free robotic system setup. The framework consists of object teach-
ing, vision-based task teaching and multimodal-perception-based task execution.
Several experiments are carried out with the use case of an assembly task (shaft
insertion) to validate the effectiveness and performance of the proposed frame-
work. The experimental results show that the proposed method can not only help
the robot to register objects and learn tasks in a fast way but also improve the
task execution precision and robustness through multimodal perception. Com-
pared to other simpler configurations, the ablation study showed that combining
two cameras and a tactile sensor brings considerable improvement for grasping
and insertion tasks.
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Abstract. Industrial robots today are still mostly pre-programmed to
perform a specific task. Despite previous research in human-robot inter-
action in the academia, adopting such systems in industrial settings is
not trivial and has rarely been done. In this paper, we introduce a robotic
system that we control with high-level verbal commands, leveraging some
of the latest neural approaches to language understanding and a cogni-
tive architecture for goal-directed but reactive execution. We show that
a large-scale pre-trained language model can be effectively fine-tuned for
translating verbal instructions into robot tasks, better than other seman-
tic parsing methods, and that our system is capable of handling through
dialogue a variety of exceptions that happen during human-robot inter-
action including unknown tasks, user interruption, and changes in the
world state.

Keywords: Intention translation · Semantic parsing · Human-robot
interaction · Cognitive architecture

1 Introduction

Despite the recent advance in human-robot interaction, we still see industrial
robots being pre-programmed to perform a specific task in a secure environ-
ment. Although new collaborative robots, or co-bots, are safer around humans
and therefore used in or near human work spaces, making them to work on a
new task still involves manual programming in many industry cases. We aim to
change this paradigm and develop a system that enables robots to adapt to the
human norm, in which workers interact with their teammates to gather suffi-
cient information about new tasks they need to perform and inform each other
about the progress. There can be multiple modalities with which teammates can
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communicate with one another but, in this work, we present a system that can
understand natural verbal instructions from humans, translating the utterances
into a machine-readable representation of tasks, and perform the given tasks
appropriately in situations that evolve dynamically.

Previous works on the instruction-to-task translation task utilize verb frames
[3], grammar-based semantic parsers [11,19], syntactic parser-based probabilistic
models [12,14], and end-to-end neural networks [18] including large-scale pre-
trained language models [5]. However, they have not explored latest techniques
of semantic parsing, the task of identifying the semantics of a given sentence
and representing it in a machine-readable representation. In this work, we adapt
recent and well-known methods of semantic parsing for the translation task and
show that a pre-trained model [17] outperforms the other methods of semantic
parsing probably because the pre-trained model can be effectively fine-tuned
with the small size of our dataset.

In the sections that follow, we first review previous research on semantic
parsing, as wells as translating instructions for robots, that influenced our work.
Then we explain how our system leverages latest techniques for natural language
processing to translate user utterances to goals to achieve in the given situation.
After that, we describe our robot’s cognitive architecture that takes the trans-
lated goals and execute procedures that achieve them in a reactive manner. We
then discuss some future work before we conclude.

2 Related Work

2.1 Translating Instructions for Robot Motion Planning

In this section, we discuss selected previous works on translating human instruc-
tion into meaning representation of machine-readable format for the purpose of
robot motion planning. [3] presented a model that translates simple instruction
sentences with a single verb frame into robot motion plans, even if the instruc-
tions are incomplete, by using commonsense reasoning. However, there is a need
for expressing more complex intentions than single verb frames.

To address the need, [11,19] developed combinatory categorical grammar
(CCG)-based semantic parsers, where a grammar is to understand the whole
meaning of even complex sentences. CCG is a lexical grammar, where most of
linguistic information required for natural language understanding are specified
at the lexical level; in other words, each word is associated with its pre-defined
semantics. While a CCG-based semantic parser can be learned from a large
collection of meaning representations [1], such a grammar-based approach cannot
be automatically adapted for a small dataset in the robotics domain.

Instead of adapting a grammar-based semantic parser, [12,14] utilize syn-
tactic parsers, which identify the syntactic relations among words in a given
sentence but do not represent them in a domain-specific meaning representa-
tion. For instance, [14] proposed dynamic grounding graphs (DGG). DGG first
performs syntactic parsing on a given instruction, producing a tree-like syn-
tactic structure of the sentence, then maps each word phrase of the structure
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to its groundings (e.g. object, location, motion, task), and finally computes cost
function parameters used in optimization-based motion planner by using a prob-
abilistic model based on the groundings and a given environment. However, these
methods require a large data collection to learn such a probabilistic model that
can translate syntactic information into robot motion plans ([14] used 100,000
samples, and [12] used 6,099 utterances).

[18] and other works (available at archives) present neural networks that
learn to translate an instruction utterance to meaning representation without a
grammar or a syntactic parser, including LSTM [9] and BERT [5]. However, they
have not explored more recent and well-known methods of semantic parsing for
the translation task. We thus adapt 4 recent advanced semantic parsing methods
for the task and discuss their evaluation comparison results in this work.

2.2 Semantic Parsing

In this section, we discuss selected recent works on neural network-based seman-
tic parsing. [6] present a neural network model, called Coarse2Fine, which has
two encoders for training, while using only one encoder for inference. Coarse2Fine
assumes that a meaning representation can be simplified into an intermediate
form, which can be generated automatically from the ground-truth meaning rep-
resentation. They train a model that first learns to generate the intermediate
form from an input sentence and then generates the actual meaning represen-
tation based on the sentence embeddings and the intermediate embeddings. At
inference, the model takes as input only an input sentence.

A new approach to semantic parsing is to incorporate the ‘world knowledge’ of
meaning representation into semantic parsing. [20] present a pre-trained language
model that jointly learns representations for sentences and (semi-)structured
tables and a semantic parser based on the pre-trained model, where their goal
is to generate e.g. SQL queries executable on the tables. We do not follow this
approach since robot world states are dynamic and keep changing, unlike tables.

Another approach is ‘interactive’ semantic parser, getting feedback from user
and updating semantic parsing outputs accordingly. [7] generate a SQL query
and its text description and, if user gives a corrective instruction upon the text
description and the SQL query’s execution results, update the SQL query by
incorporating the corrective instruction. [21] analyze a user instruction and, if it
has any ambiguous phrase, ask the user a specific question for disambiguation.
The proposed work is also interactive in that it checks if the intention translated
from a given instruction is valid in given conditions of robot world states and, if
not valid, gives feedback to the user for them to alternate the instruction.

3 Goal Translation

In this section, we discuss automatic generation of an intention from a given
instruction sentence. We describe our in-house dataset for this task and the
approach we have taken.
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3.1 Utterance-Goal Annotation Dataset

Our dataset consists of 141 human utterances of instruction sentences for the
robot to execute a subgoal in a gearbox assembly and disassembly scenario.
Each intention string is translated into a sequence of tokens (words and symbols)
consisting of three parts: Intention type (e.g. instruct achieve, instruct maintain),
symbols describing the actions to perform as a function (e.g. fasten ?casing-
top ?screw), and variable bindings or conditions (e.g. casing-base ?casing-base),
which are given after the keyword ‘given’. The dataset contains 45 unique verbs
(e.g. insert, attach, install) and 32 unique object types (e.g. gearbox, input-shaft,
screw). Table 1 shows example instruction sentences and their intentions.

Table 1. Examples of translated intentions in our utterance-goal dataset

Human utterance Translated intention

Please begin assembly of the
casing base

instruct achieve (assembled ?casing-base) given
(casing-base ?casing-base)

Install the input shaft instruct achieve (installed ?input-shaft ?object) given
(input-shaft ?input-shaft)

Please attach the small hub
cover onto the casing top next

instruct achieve (attached ?small-hub-cover
?casing-top) given (small-hub-cover ?small-hub-cover)
(casing-top ?casing-top)

To start disassembly, put the
gearbox in a vertical position

instruct achieve (vertical ?gearbox) given (gearbox
?gearbox)

3.2 Goal Translation System

We approach it as a sequence-to-sequence task, taking an instruction sentence
as input and generating an intention string as a sequence of tokens (words and
symbols). One advantage of the sequence-to-sequence approach is that we can
employ pre-trained language models (e.g. GPT-2 [16], T5 [17]), which are trained
with large collection of English texts by self-supervised learning methods (e.g.
masked language modeling) and recently led to many breakthroughs in natural
language processing including semantic parsing. The intention has structure,
consisting of tuples and keywords, but the elements of the structure are written
in English words and can thus be targeted for generation by fine-tuning the
pre-trained language models.

The intention generation can be considered as a task of semantic parsing,
in that it aims at generating the meaning representation of a given sentence
from the viewpoint of motion planning. Therefore, we adapt several methods
of semantic parsing for the task, including employing LSTM, the pre-trained
language models and other methods (e.g. Coarse2Fine [6]). Technically, we used
two layers of bi-LSTM and GloVe word embeddings [15] as inputs to the LSTM
model (learning rate: 1e-3, number of epochs: 60, dropout rate: 0.1). We used the
following hyper-parameters to fine-tune of the two pre-trained models: GPT-2
(learning rate: 5e-5, number of epochs: 150, dropout rate: 0.1) and T5 (learning
rate: 3e-4, number of epochs: 50, dropout rate: 0.1).



220 D. Choi et al.

For Coarse2Fine, it requires the output of semantic parsing to be of tree
structure. We thus slightly modified the intention string as follows: 1) adding
brackets to surround the whole intention string and 2) moving the “repeat all”
keyword before the actions so that the keyword is the root of the sub-tree of
actions. Table 2 shows examples of these modifications. We used the following
hyper-parameters to train the Coarse2Fine parser1: learning rate 5e-3, number
of epochs 100, dropout rate 0.5. Batch size is set as 16 for all the 4 models.

Table 2. Examples of changes made in intentions in coarse2fine

Changes Original intention Changed intention

Add brackets instruct achieve (attached
?small_hub_cover
?casing_top) given
(small_hub_cover
?small_hub_cover)
(casing_top ?casing_top)

(instruct_achieve (attached
(?small_hub_cover ?casing_top))
(given (small_hub_cover
?small_hub_cover) (casing_top
?casing_top)))

Move “repeat
all” to the front

instruct achieve (checked ?bolt)
given (bolt ?bolt) repeat all

(instruct_achieve (repeat-all
((checked ?bolt) (given (bolt ?bolt)))))

4 Reactive Execution for Translated Goals

The translated goals are used in our robot to execute procedures that achieve
them in a reactive manner. We developed our robotic system in the context of a
cognitive architecture, Icarus [4], that provides an infrastructure for cognitively-
inspired intelligent capabilities on our robot. In this section, we first review
Icarus briefly and then describe how the architecture processes the translated
goals from the dialogue system, which employs the semantic parsers introduced
in the next section, for reactive execution. Figure 1 illustrates the workflow of
the system.

4.1 ICARUS Review

Research on cognitive architectures is inspired by psychological evidence for
many aspects of human mind. They share a certain set of commitments they
make about representation, memory, and processes that work over them. One
such architecture, Icarus, assumes relational representation of knowledge, dis-
tinguishes long-term and short-term memories, and operates in recognize-act
cycles as other architectures do. But Icarus also features a unique combination
of its explicit commitment to hierarchical knowledge structures, the distinction
of concepts, procedures, and goals, and its goal reasoning and teleoreactive exe-
cution.

1 https://github.com/donglixp/coarse2fine.

https://github.com/donglixp/coarse2fine.
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Fig. 1. Overview of the goal translation pipeline.

Table 3. Sample concepts of the Icarus cognitive architecture

((holding ?hand ?obj)
:elements ((hand ?hand *status ?gripper))
:tests ((not (= ?gripper ‘open))

(not (= ?gripper ‘closed))))
((output-insertion-complete ?hand ?output ?case)
:elements ((output ?output)

(inserted ?output ?case)
(hand-empty ?hand)
(in-high-pose ?hand)))

Icarus uses concepts as its vocabulary to describe relations that hold true in
the world. Table 3 shows some examples in the industrial manipulation domain
we use. Concepts resemble Horn clauses [10] that include a head, a list of match-
ing conditions, and optional tests against matched variables. The first concept,
holding, matches against a manipulator hand and checks its status attribute to
see if the hand is holding any object. Notice that this concept definition uses only
perceptual matching against objects and their attributes, making this a primi-
tive concept. The second concept, however, is a non-primitive one, and we can
see that it refers to other concepts, inserted, hand-empty, and in-high-pose,
in addition to perceptual matching against an output object. In this manner,
Icarus’s concepts form a hierarchy of relations.

To describe procedures that achieve certain situations in the world, the archi-
tecture uses skills. Table 4 shows some sample skills from our industrial manipu-
lation domain. We can consider skills to be a hierarchical version of Strips oper-
ators [8] with a head, a list of matching conditions, a list of direct actions or sub-
skills, and a set of effects. The first skill, insert-object, is a primitive skill, in
that it only refers to actions that can be executed directly in the world. It requires
three objects (a hand, an object, and a case) and two concepts (holding and
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Table 4. Sample skills of the Icarus cognitive architecture

((insert-object ?hand ?object ?target)
:elements ((hand ?hand)

(object ?object)
(case ?target)
(holding ?hand ?object)
(in-insertable-pose ?hand ?object ?target))

:actions ((*move-in-z-until-contact ?hand))
:effects ((inserted ?object ?target)))

((insert-object ?hand ?object ?target)
:elements ((hand ?hand)

(object ?object)
(case ?target))

:subskills ((move-to-insertable-pose ?hand ?object ?target)
(insert-object ?hand ?object ?target))

:effects ((inserted ?object ?target)))

in-insertable-pose) as its precondition and, upon a successful completion,
achieves the concept, inserted, in the world. In contrast, the second skill is a
non-primitive skill, which refers to other skills, move-to-insertable-pose and
insert-object (the first example), in order to achieve its effects.

Using concepts and skills like the ones we have seen so far, the Icarus archi-
tecture is able to infer the current situation of the world based on the sensory
input and make decisions to execute a certain skill at each given time. Icarus’s
execution of skills is governed by its goals, which are general descriptions of
desired situations written as concept instances with their associated relevance
conditions. For example, the architecture will decide to execute two different
skills even under two exactly same situations, given two different top-level goals.
Due to the limited space available here, we will refer curious readers to our pre-
vious work for more detailed review of Icarus and various processes it employs.
We will discuss its goal-oriented but reactive execution in the next section, while
we describe how the architecture uses the translated goals from the dialogue sys-
tem for execution.

4.2 Reactive Execution of Translated Goals

When the user generates utterances, our system’s goal translation module takes
and translates them into a format our cognitive architecture can understand.
First, our system parses the translations into the description of goals and the
conditions that should be met. Icarus compiles these into a top-level goal,
which its execution module can readily take and process. During this process,
it also looks up the words used in the goals and conditions against its linguistic
domain knowledge base to disambiguate the meaning. For example, the system
replaces the verbs, place, put, and install with install, which Icarus’s
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skills are written with. Then it checks whether the translated goal exists in its
concept definitions and verifies that the conditions hold in the current world
state. If either fails, the user is prompted to modify their instruction by using
more specific descriptions. Given a valid translation of goals and conditions,
Icarus generates a task plan to achieve the given goal. The plan is a set of
skill instances at multiple levels of abstraction, grounded at the robot’s low-level
actions. During action execution, the architecture consistently checks for new
user utterances, as well as changes in situation. This enables the user to interrupt
the execution anytime by defining a new goal. Table 5 shows an example dialogue
between human user and robot, where the user interrupts robot.

Table 5. Example dialogue between human user and robot, with a user interruption

Human: Assemble the gearbox
Robot: I do not recognize that goal. Please give more detailed instruction
Human: Insert the input subassembly into the casing base
Robot: I will work on inserting input subassembly into case

(Robot starts to move to pick up the object.)
Human: Actually, insert the output subassembly into the casing base first
Robot: I will work on inserting output subassembly into case

(Robot works to pick up the new object.)

5 Evaluation of Goal Translation Methods

We evaluated the four methods of goal translation against our utterance-goal
annotation dataset, randomly splitting the dataset into 90% for training and
10% for testing and reporting the average performance of the methods across
5 random splits. Table 6 shows the evaluation results of the methods against
the dataset. The accuracy measure indicates if the whole string of generated
intention is correct or not. As a strict measure, the accuracies of the methods
are low due to the small size of the dataset. We also introduce an F1-score that
measures how many correct concepts the generated intentions contain. The two
measures indicate how easily a user can select or write the correct intention
based on the top results of a method.

Table 6. Evaluation results of semantic parsing methods for intention generation. ‘F1’
indicates F1-score.

Method Accuracy F1

LSTM 28.0% 68.0%
Coarse2Fine 34.7% 75.5%
GPT-2 32.0% 76.1%
T5 46.7% 84.1%
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The evaluation results summarized in Table 6 show that pre-trained models
(e.g. GPT-2, T5) outperform non-pre-trained models (e.g. LSTM) even though
the LSTM model utilizes pre-trained word embeddings (GloVe). This can be
possibly due to the small size of the dataset, which is not enough to optimize
randomly initialized parameters of the LSTM model. T5 is reported to show
better performance also on other NLP applications than GPT-2 [17].

Coarse2Fine achieves significantly higher performance than LSTM, but sig-
nificantly lower performance than T5. Coarse2Fine is better than LSTM prob-
ably because Coarse2Fine adds a sketch layer between the LSTM encoder and
the decoder in order to first learn an intermediate representation of intention
and then to generate the intention string, and applies parent feeding.

The pre-trained model T5 is better than Coarse2Fine, while GPT-2 is
slightly worse in terms of accuracy but slightly better in terms of F1 score than
Coarse2Fine. The higher accuracy yet lower F1 score of Coarse2Fine might be
explained by the sketch layer, which guides Coarse2Fine to first form the whole
sketch of intention before generating the full string of intention. The mixed
results of comparison between the pre-trained models and the LSTM-based
sophisticated semantic parsing method may result from differences between the
two pre-trained models such that T5 is pre-trained with much bigger data (7
TB) than GPT-2 (40 GB), and that T5 is an encoder-decoder model, while
GPT-2 has a decoder only. But, we cannot conclude that the bigger pre-trained
language model shows the higher performance on the intention generation task,
since we have not compared with other pre-trained language models, and leave
it as a future work to understand why a certain pre-trained model is better than
others for the goal translation task.

6 Future Work

The current work provides a good foundation for interactive robotic systems.
But we need many additional capabilities to build a robot that humans feel more
natural to work with across different domains. For instance, the system needs to
have the capacity to translate a broader range of utterances, potentially using
common sense knowledge to understand a variety of ways to say same things.
We plan to address variations in verbs and nouns, leveraging SenticNet [2], a
common sense knowledge base. The knowledge base describes the meaning of
such words using their corresponding primitive words, and this enables us to
replace new words with known synonyms that the Icarus architecture knows
how to act upon.

In addition, we plan to extend our system with an interactive learning capa-
bility. This will allow human users to teach new concepts and skills verbally,
eliminating the need for manual encoding of such knowledge. Interactive learn-
ing can occur when the user specifically asks for it, or when the system encounters
words in user utterance that do not currently map to internal goals. Some pre-
vious work on cognitive architectures [13] support this functionality in various
ways, and we will use those as our reference.
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7 Conclusions

We leverage recent and well-known semantic parsing models and adapted them
to the intention translation task by fine-tuning the models with the small-sized
dataset of our target domain. The intention translation is used in combination
with a cognitive architecture, Icarus [4], to allow the human operator to issue
high-level verbal commands to an industrial robot. Using the translated goal
and cognitive architecture, the robot generates and executes a task plan. Finally,
we evaluated four semantic parsing methods on our small-sized utterance-goal
dataset and showed that the pre-trained model T5 [17] outperforms the other
methods. Future work will address investigating why some pre-trained models
perform better than others on this task.
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Abstract. This paper argues for the need to develop emotion in social robots to
enable them to become artificial moral agents. The paper considers four dimen-
sions of this issue: what, why, which, and how. The main thesis is that we need
to build not just emotional intelligence, but also ersatz emotions, in autonomous
social robots. Moral sentimentalism and moral functionalism are employed as the
theoretical models. However, this paper argues that the popularly endorsed moral
sentiment empathy is the wrong model to implement in social robots. In its stead,
I propose the four moral sentiments (commiseration, shame/disgust, respect and
deference, and the sense of right and wrong) in Confucian moral sentimentalism
as our starting point for the top-down affective structure of robot design.

Keywords: Emotional intelligence · Social robot · Empathy · Confucian moral
sentimentalism ·Moral functionalism

1 Introduction

Due to the practical needs of human society, having machines that have autonomous
actions, or at least autonomous decision-making capabilities, so that they do not need
to rely on constant human causal intervention, is the future direction of the design of
social robots. Such a machine can be called an artificial moral agent (AMA). They will
become members of human society, share our work, take care of our elderly, accompany
our children, do housework for us, serve us in hotels and guesthouses, replace the labor
of workers in factories and post offices, decide on legal procedures and pronounce legal
judgments, make important decisions for us in the fields of navigation, military, and
medical treatment. Basing on the rapid development of artificial intelligence and some
limited success of robotics, we can reasonably predict that such a future is not completely
out of reach. In anticipation of this kind of artificial moral agents, how do we ensure that
those autonomous social robots can make ethically correct choices?

This paper argues that if we want to design social robots that could be ranked as
AMAs, adding emotional considerations is indispensable. Thinking about this issue can
be divided into four levels:
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• What: What kind of social robots need to have an emotional dimension?
• Why: Why must these social robots have an emotional dimension?
• Which: Which basic emotions do these social robots need?
• How: How do we add an emotional dimension to the design of social robots?

2 What Kind of Social Robots Need to Have an Emotional
Dimension?

The robots currently used on the market merely have mechanical responses, with limited
functions, and can only handle fixed tasks. For example, robots that manufacture auto
parts in a factory, robots that process and distributemail parcels at post offices, robots that
take orders and serve meals in a restaurant, robots that answer inquiries in a department
store or a hotel, robots that transport and deliver goods in the community, robot pets
that can wink or wag their tails to entertain their owners, and so on and so forth. What
these robots need is the perceptual cognition of the environment, the ability to act in the
environment, the understanding of questions, and the mastery of appropriate answers,
etc. These abilities can be handled by weak artificial intelligence (Artificial Narrow
Intelligence, ANI). These robots do not need to be emotionally designed, because they
are basically just acting machines, not artificial moral agents. Strictly speaking, they do
not qualify as “social robots” because they do not really “interact” with humans.

However, robots that may be developed in the future will not only be able to act, but
also possess the capabilities to think independently and make decisions to take actions
without humans’ prior planning or constant guidance. Such robots can be regarded
as artificial moral agents, because the results of their actions would affect humans’
wellbeing, and thus should be evaluated by ethical standards—even if it is not a judgment
of good and evil, it is at least a difference between good and bad. This kind of social
robots must have general artificial intelligence (Artificial General Intelligence, AGI), or
even super artificial intelligence (Artificial Super Intelligence, ASI) capabilities. And if
they do not respect human values and do not abide by human society’s ethical codes,
they will pose a great threat to our society. The scope of this paper’s discussion is social
robots with AGI or if ever feasible, with ASI.

3 Why Must These Robots Have an Emotional Dimension?

In Ethics for Robots: How to Design a Moral Algorithm (2019), Derek Leben argues
that John Rawls’ contractarianism provides the best ethical model for robot ethics. Like
Rawls, Leben’s moral psychology is clearly in the camp of ethical rationalism. Under
Rawls’ design, the whole community’s cooperation, social contract, and “the veil of
ignorance” are based on the idealistic hypothesis of how “rational agents” would make
their choices. That is to say, the correctmoral judgment is based on the foundation of pure
rationality, and the setup of “the veil of ignorance” is to avoid any emotional disturbances
or self-interested considerations of the person based on their personal circumstances. In
Leben’s view, moral judgment is a kind of psychological framework that, like the natural
languages of human beings, encompasses all kinds of categorization and rules, and this
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is what he calls “moral grammar.” Moral grammar objectively exists; it is independent
of human social constructs and separable from humans’ emotional reactions. However,
when we make moral decisions, we often fail to fully abide by this moral grammar, for
we are often subjected to our subjective emotional control and cannot make truly rational
decisions. He points to an example: many psychological experiment literatures show that
when people make judgments on a moral punishment, they are often affected by factors
of no moral value (for example, they are tired, hungry, seeing that the experiment room
is dirty, or first watched a movie that is funny or made them angry), which changed their
moodor emotion, leading them tomake differentmoral judgments.On the other hand, the
robot will never be tired, will never be hungry, and their judgments will not be affected
by other films. “Just like robot drivers never get distracted and robot surgeons never
panic, robot judges have the potential to use massive databases of information without
any of the biases that currently keep people in jail for much longer than they should be”
(Leben 2019: 139). Leben believes that since moral machines are designed without these
emotional reactions and subjective biases, their judgments in the future may be more
reliable than human judgments. By extension, in Leben’s view, since machines canmake
purely rational judgments, machine judgments will be the most credible judgments.

This ethical rationalist’s approach is still the dominant trend in machine ethics today.
The general view is that the design of the robot’s processor is completely formulaic, and
AI’s algorithm for machine learning is based on data collection and categorization,
without any emotional component. However, from the perspective of human moral psy-
chology, we understand that emotion plays an important role in people’s moral decision-
making. According to moral sentimentalism, the opposite camp of ethical rationalism,
emotion not only is, but also ought to be, a component of humans’ moral judgments.
In the absence of emotional factors, humans’ moral judgments will not be the best
judgments. This proposition has now become a consensus on human moral psychology
among neurologists, psychologists, and cognitive scientists (Picard et al. 2001: 1175).
It should be applied to machine ethics as well. In the article “Why Machine Ethics?”,
Colin Allen, Wendall Wallach, and Iva Smit jointly proposed that machine ethics cannot
be completely independent of human moral psychology. They believe that any moral
development, including the moral development of machines, cannot ignore that proper
emotional response is an indispensable element. In fact, emotional responses help one
make rational choices in behavior. One of the pioneers of artificial intelligence, Mar-
vin Minsky, famously said: “The question is not whether intelligent machines can have
any emotions, but whether machines can be intelligent without any emotions” (Minsky
1988: 163). In his book The Emotion Machine, Minsky advocates that we should design
machine thinking according to humans’ thinking patterns. And if we can understand cor-
rectly that human thinking mode is an interconnected process consisting of the fusion
of reason and emotion, then we will no longer think that the design of a machine could
possibly eliminate emotional components and only use rational calculation formulas. He
emphasizes that the artificial intelligence we design should have sufficiently diversified
thinking processors; we should design machines that can both feel and think (Minsky
2007: 6–7). Marsella et al. (2010) also point out that the emotional information of a
person can reveal a lot of the psychological states of the person. The mastery of emotion
is a necessary condition for social control and interpersonal communication. Therefore,
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from a practical point of view, when artificial agents demonstrate emotions, they are
more able to make the people interacting with them adopt the expected corresponding
behaviors, thereby becoming more effective robots (Marsella et al. 2010: 25).

Another consideration for implementing emotion in the design of social robots is
based on human expectation and human needs: when interacting with social robots,
people expect and demand that robots have emotions, at least in the way that these social
robots that can understand human emotions and give appropriate responses. Sherry
Turkle (2018/2007) cites many psychological experiments she and others performed
(Turkle et al. 2006; Turkle 2004; Turkle et al. 2004) and points out that both children and
elderly people in nursing homes expect their robot companions (care robots, robot pets,
machine dolls, etc.) to have emotional needs like them, and to be able to offer emotional
feedback. Even if the experimenters let them understand that the inner structure of
the robot partner is completely mechanical, these people’s emotional expectations did
not diminish.1 Katie Engelhart reports that during the Covid-19 pandemic, the old and
lonely are even more isolated because their regular visitors stopped home visits. New
York enhanced its robot pet program “Joy for All Pets” launched in 2018. “In April 2020,
a few weeks after New York aging departments shut down their adult day programs and
communal dining sites, the state placed a bulk order for more than a thousand robot cats
and dogs…. By April, 2021…, New York had given out twenty-two hundred and sixty
animatronic pets” (Engelhart 2021). However, these robot pets do not even haveArtificial
Narrow Intelligence—they are simply programmed to perform mechanical movements
and sounds. People tend to anthropomorphize inanimate objects and attach emotions to
them, even to the point of deluding themselves. These robot pets, however welcomed
as human substitutes currently, do not meet humans’ emotional needs. To have social
robots for the socially isolated old people, we need to design the robots with the skills
for intelligent conversation, detection of changes in the interlocuter’s facial expressions,
tones, and speech content (the so-called Emotion AI), and provide emotional support
that the old and lonely people need. Humans crave emotional feedback. Without the
emotional feedback loop, the social robots for old people do not really fill their existential

1 For example, Joseph Weizenbaum’s computer program Eliza drew students’ interest to chat
with the program or even wanted to be alone with it. This is called “the Eliza Effect.” Turkle
also reports her own studies: “From 1997 to the present, I have conducted field research with
these relational artifacts and also with Furbies, Aibos, My Real Babies, Paros, and Cog. What
these machines have in common is that they display behaviors that make people feel as though
they are dealing with sentient creatures that care about their presence” (Turkle 2018: 64). In real
life we also have an example. Since 2016, Georgia Tech has been employing an AI teaching
assistant program named Jill Watson. Some students even asked to have a date with Jill. In 2019
Jill Watson the social agent was introduced, and students engaged actively not only with Jill but
also among themselves (Georgia Tech GVU Center News). The conclusion from these studies
seems to suggest that people are willing to engage with an artificial system, knowing full well
that it is “artificial.” However, we should also add that Gray and Wegner (2012) conducted
a series of experiments based on Mori (1970)’s “Uncanny Valley theory” and concluded that
people feel scared and uneasy about robots that seem to have emotions. This problem may be
resolved either with robots designed to be less like humans, or in the future when robots that
can express emotions become a common phenomenon.
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void. To serve as real companions, social robots need to understand human emotions
and to at least appear to have emotions, if not really have them.

There are certainly scholars who oppose this projection of imitated emotions as real
emotions. Engelhart reports, “That loneliness can tempt a person into deeper alliance
with robots has troubled many ethicists. Some charge that it is inherently indecent for
us to offer, as an alternative to human company, the ersatz love and attention of a robot”
(Engelhart 2021). Robert Sparrow, for example, criticized these machine companions as
just “ersatz companions,” replicating various social and emotional relationships between
humans. If people start investing emotions in this kind of machine partners, on the one
hand it is self-deception, on the other hand it is too much sentimentality, which violates
our moral responsibility to understand the world correctly. Therefore, he believes that
such a trend ismisleading and unethical (Sparrow2002: 306). RaffaeleRodogno believes
that sentimentality itself is not necessarily immoral, but he worries about whether this
kind of human-machine emotionwill replace the real emotions and relationships between
human beings, or between humans and animals, when machine companions become a
common phenomenon in human society (Rodogno 2016: 265–7).

The most famous robot companion is probably the popular robot dog AIBO that
Sony released in 1999. Through wagging its tail, changing eye colors, and other body
movements, AIBO can express six emotions: happiness, anger, fear, sorrow, surprise,
and resentment, and can continue to develop as a result of the owner’s treatment. Many
people were emotionally attached to their pet AIBO.2 Sparrow points out that even
though robot pets can stimulate people’s emotional projection, our emotional projection
onto them commits a category mistake, taking them for “what they are not,” because
robot dogs themselves cannot truly love their owners or have genuine loyalty, honesty,
courage, affection, “or indeed any real emotion at all” (Sparrow 2002: 314). But Sparrow
admits that once the robot can truly have personality and emotions, then “there would
presumably not be anything wrong with coming to love or befriend an intelligent robot”
(Sparrow2002: 317). Turkle also believes that to establish a relationship between humans
and their machine partners, the focus is “not onlywhat the human feels but what the robot
feels” (Turkle 2018: 64). Judging from the above arguments, I argue that whenwe design
robots to become members of human society, and further to become artificial moral
agents, wemust go beyond themode of conveyingmade-believe emotions on the surface,
but also must be able to design their programs with real artificial emotions. In other
words, social robots cannot be mere mechanical simulacrum of emotional performances
but must have some forms of emotions.

It is true that with its non-biological structure, a robot cannot naturally produce emo-
tions that are linked to the physiological reactions like what humans have (for example,
people’s faces turn red when they are angry, and their heartbeats quicken when they
are afraid). But just as we can use computational language to design artificial intelli-
gence, we can also use computational language to design artificial emotions. In Affective
Computing, RosalindW. Picard defines “affective computing” as computing that closely
“relates to, arises from, or deliberately influences emotions,” and she suggests the most

2 When Sony terminated the maintenance of AIBO in 2006, many owners were not able to let
go, so a Japanese company even hosted a Buddhist farewell ceremony for AIBOs (White and
Katsuno 2021).
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promising implementation method is “emulating human affect abilities” (Picard 2000:
249). In other words, we can use human emotions as raw data to enable machines to learn
the patterns of human emotions’ expression and causal connections. Picard points out
that the latest scientific evidence indicates that “emotions play an essential role in ratio-
nal decision making, perception, learning, and a variety of other cognitive functions”
(Picard 2000: x). She cites a breakthrough discovery made by the famous neurologist
Antonio Damasio: When patients lack emotions due to some brain damage, they are
unable to make correct judgments in various aspects of life and gradually lose friends,
relatives, jobs, and money. It shows that emotions not only do not necessarily hinder
rational judgments, but also can promote rational choices.

Emotion is integral to intelligence: it is true for human brains; so is for computers
(“electronic brains” as theChinese term for ‘computer’).We usually think that computers
must be a model of logic, rationality, and predictability. However, under this purely
rationalist trend, artificial intelligence has made few breakthroughs, and it is unable to
design a meaningful dialogue with human beings. If the machine cannot understand the
frustration and anger of the interlocutor, howcould it find the solution that the interlocutor
seeks? Therefore, to design a truly intelligent machine wemust add affective computing,
so that the machine can solve difficult problems together with the interlocutor. Picard
points out that most computer engineers ignore the importance of emotions, and thus the
design of affective computing formulas is only in the rudimentary form of development.3

In recent years, however, there aremore scholars devoted to the study of the relationships
between humans and machines in terms of emotion and engagement (see for example,
Sugiyama and Vincent 2013). There is also more interdisciplinary interest in developing
affective computing (see for example, Calvo et al. 2015). I think that this is the future of
artificial intelligence for social robots.

4 Which Basic Emotions does the Autonomous Social Robot Need?

To give robots the computing function of emotions does not mean that such robots can
actually have emotions themselves. Many scholars believe that a necessary condition
for emotional experiences is self-awareness, and it is a kind of self-awareness like “phe-
nomenal consciousness” or “what it is like” as Thomas Nagel puts it. If a robot lacks the
basic conditions for self-awareness and phenomenon consciousness, then it is unclear
whether the emotional dimension of robots can be established.

We can imagine that the mechanical structure of robots and the physiological struc-
ture of animal emotions are incompatible with each other. As an ancient Chinese philoso-
pher Xunzi pointed out, human beings are of flesh and blood, naturally favoring their

3 Affective Computing was originally published in 1997 and reprinted in 2000. Today, there is
an emotional algorithm research group in the MIT Media Lab at Massachusetts Institute of
Technology, and Picard is the leader of this group.
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own family members,4 having the tendency to seek profit and personal gain,5 and are
committed to the pursuit of sensory enjoyments.6 According to Xunzi, humans’ emo-
tions and desires come from their physical constitution, and they tend to lead to evil.7 In
contrast to humans, owing to their structural materials, robots are not of flesh and blood,
do not favor their relatives, do not have sensory pleasures, do not compete on account
of their self-interests or desires, and they do not have all kinds of bad tendencies arising
from human emotions.8 In accordance with Xunzi’s view, robots would seem to be the
more suitable moral constructs than humans are. We do not want to rebuild the root of
human evil into the new generation of artificial agents. Therefore, when we consider
designing robots with emotion, we must first clarify our purpose and use this as a design
plan. With having robots as artificial moral agents harmoniously integrated into human
society as the primary aim, the design of social robots should not completely imitate all
of the natural emotions that humans have, but should selectively input appropriate moral
sentiments and moderate human emotions.

4 “All living creatures between heaven and earth which have blood and breath must possess
[understanding], and nothing that possesses [understanding] fails to love its own kind. If any of
the animals or great birds happens to become separated from the herd or flock, though a month
or a season may pass, it will invariably return to its old haunts, and when it passes its former
home it will look about and cry, hesitate and drag its feet before it can bear to pass on…. Among
creatures of blood and breath, none has greater understanding than man; therefore man ought
to love his parents until the day he dies.” (“A Discussion on Rites.” Xunzi: Basic Writings.
Watson 2003: 155).

5 “The nature of man is such that he is born with a fondness for profit. If he indulges this fondness,
it will lead him into wrangling and strife, and all sense of courtesy and humility will disappear.
He is born with feelings of envy and hate, and if he indulges these, they will lead him into
violence and crime, and all sense of loyalty and good faith will disappear.” (“Human Nature is
Evil.” Xunzi: Basic Writings. Watson 2003: 226).

6 “Man is born with the desires of the eyes and ears, with a fondness for beautiful sights and
sounds. If he indulges these, they will lead him into license and wantonness, and all ritual
principles and correct forms will be lost.” (“Human Nature is Evil.” Xunzi: Basic Writings.
Watson 2003: 226). “Phenomena such as the eye’s fondness for beautiful forms, the ear’s
fondness for beautiful sounds, the mouth’s fondness for delicious flavors, the mind’s fondness
for profit, or the body’s fondness for pleasure and ease—these are all products of the emotional
nature of man. They are instinctive and spontaneous; man does not have to do anything to
produce them.” (Ibid. 231).

7 Xunzi says, “The reason people despise [the tyrant] Jie, Robber Zhi, or the pettyman is that they
give free rein to their nature, follow their emotions, and are content to indulge their passions,
so that their conduct is marked by greed and contentiousness. Therefore, it is clear that man’s
nature is evil, and that his goodness is the result of conscious activity.” (“Human Nature is
Evil.” Xunzi: Basic Writings. Watson 2003: 237).

8 According to Xunzi, “Man’s emotions are very unlovely things indeed! What need is there to
ask any further? Once a man acquires a wife and children, he no longer treats his parents as
a filial son should. Once he succeeds in satisfying his cravings and desires, he neglects his
duty to his friends. Once he has won a high position and a good stipend, he ceases to serve his
sovereign with a loyal heart. Man’s emotions, man’s emotions—they are very unlovely things
indeed!” (“Human Nature is Evil.” Xunzi: Basic Writings. Watson 2003: 241).
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In standard Chinese categorization, human natural emotions include seven basic
forms: joy, anger, sorrow, happiness, love, resentment, and desire. This categorization
is largely akin to other divisions of human emotions in the Western theories of emo-
tion.9 Natural emotions generally have accompanying visceral reactions in the body,
and studies have shown that there is a strong, if not essential, causal connection linking
somatosensory feedback, facial expressions, autonomic nervous system, and even the
neural map of the body, etc. to conscious emotional experiences (Nummenmaa et al.
2014; Levenson 2003; Damasio and Carvalho 2013). Hence, I argue that it is impos-
sible, and totally unnecessary, to virtually input affective computation of these natural
emotions into the robot’s mechanical structure. Instead, I suggest the functional model
of simulating and processing these natural human emotions in the robot. We must first
separate the following two directions in the development of affective social robots: On
the first direction, the developers aim to give the robot the ability to observe human
expressions, speech, and behavior, and to correctly interpret the human interlocutor’s
inner emotions. This is the approach of emotional intelligence. On the second direction,
we aim to give the robot the processor to simulate human emotions, and to express simu-
lated natural emotions with appropriate expressions, words, and behaviors (we can even
call them “ersatz emotions”). This is the approach of artificial emotion. Both approaches
are the necessary conditions for social robots to communicate intelligently with humans.

With the first approach, we have Picard’s affective computing that focuses on how the
machine can understand the emotional needs of humans and give appropriate responses.
Currently, Emotion AI—using artificial intelligence to detect and analyze people’s emo-
tion signals, including expression, text, tone, body language, etc.—has begun to have
practical applications. For example, the company Behavioral Signals is developing ways
to introduce emotional intelligence to bridge the gap between humans and machines.
Their artificial intelligence design is sensitive to the emotions expressed by people’s
voice on the phone and other subtle signals (pauses, hesitation, etc.). The program ana-
lyzes these data, and then provides useful information for customers.10 Another similar
emotional data analysis company is Cogito, which not only analyzes the tone and voice
signals of the other party on the phone, but also analyzes the implicit emotions in its
content (Gossett 2021). Emotion AI, the kind of artificial intelligence that is developed
to detect and interpret human’s emotional signals, has gradually gained attention in
the business world, and many large companies have begun to develop or use it (such as
Microsoft’s facial recognition, IBM’s voice analysis, the Emotient company acquired by
Apple has collected countless facial images to identify different expressions, and Ama-
zon’s Rekognition even claims to able to distinguish humans’ seven natural emotions
by observing their facial expressions) (Crawford 2021). Founded by Picard et al. and

9 The “prototypical” forms of emotions are anger, disgust, fear, happiness, sadness, and surprise.
Paul Ekman lists the seven “universal emotions” as: anger, contempt, disgust, enjoyment, fear,
sadness, and surprise, while Antonio Damasio also lists joy, shame, contempt, pride, compas-
sion, and admiration, etc. A universally accepted prototyping of natural emotion is unlikely
to be reached. Using the Chinese categorization in this paper helps us better see the contrast
between “natural emotions” and “moral sentiments” that dominated the discourse on human
emotion in Chinese as well as Korean neo-Confucianism. More on this later.

10 https://behavioralsignals.com/aboutus/.

https://behavioralsignals.com/aboutus/
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expanded from the MIT laboratory, the 4th Emotion AI Summit will be held in 2021. In
addition, we are gradually seeing robots with some forms of emotional intelligence. The
design of Pepper released by Softbank Robotics in 2014 gives it the ability to interpret
people’s emotions through their expressions and voices. The Lovot, newly launched by
Groove X in 2020, is basically a robot pet capable of expressing love. These robots can
respond to people’s behaviors, tones, attitudes, and execute different behavioral perfor-
mances. Although current artificial intelligence is still analyzing human emotions at a
very superficial level, and its accuracy has received many criticisms (Crawford 2021),
we can certainly expect future breakthroughs in Emotion AI.

The goal of establishing artificial emotions is much harder to conceive and to accom-
plish. MIT’s laboratory created a robot called Kismet that can hear, see, speak, and have
different expressions. In addition to the above goal of emotional intelligence, the design
policy of Kismet is based on the goal of simulating emotions. According to the director
Cynthia L. Breazeal, Kismet’s design is inspired by animal ethology. The design aims
to establish the robot’s self-protection and inner homeostasis, and so when the robot
is fatigued, there is a drive for rest (i.e., the robot goes to sleep) (Breazeal 2003). The
design of Kismet’s emotional system is based on theories about human emotions. It
is worth noting that this design uses the well-being of the robot itself as the evalua-
tion benchmark: “The emotion system contributes to the goals of bringing the robot
into contact with things that benefit it and to avoid those things that are undesirable or
potentially harmful” (Breazeal 2003: 129).11 Breazeal believes that the robot’s ability to
simulate humans’ emotional responses is crucial to its socialization, because in people’s
interaction with social robots, they naturally expect robots to have emotional responses
similar to their own. Kismet has the ability to observe human expressions, as well as
responding with appropriate expressions such as smiling when happy or putting on a
serious expression when angry. In terms of its emotional processing, Kismet can use
different expressions to convey basic animal emotions: fear, joy, anger, sadness, and so
on. Of course, at the technical level, MIT could not truly implement emotions in Kismet
yet, so the so-called emotions of Kismet are actually the projected responses based on
people’s empathy. In other words, upon seeing these expressions of Kismet, people who
communicated with it interpreted Kismet’s emotional state and took actions that they
thought Kismet required. This is the goal of MIT’s design of social robots: “the expres-
sion on the robot’s face is a social signal to the human, who responds in a way to further
promote the robot’s ‘well-being.’ Taken as a whole, these affective responses encour-
age the human to treat Kismet as a socially aware creature and to establish meaningful
communication with it” (Breazeal 2003: 130). However, triggering the right responses
from humans should not be the end goal. Kismet’s emotional expression is a projec-
tion from the outside to the inside. The goal we really want to accomplish is to have
the robot’s expression coming from the inside out: their tones, expressions, and body
language really come from their inner affective computation. Only then can we say that
these social robots have an emotional dimension. Although the design of the robot’s

11 According to Breazeal’s design philosophy, the emotions of robots are self-centered: these
emotions can prompt the robot to give positive or negative evaluations when encountering
different environmental stimuli, and to adopt correct behavioral response to maintain its “well-
being.”



238 J. Liu

emotional system is still in its infancy, it is not theoretically impossible for robots with
complex emotions to appear in the future.

Naturally, having robots simulate natural emotions of humans will conceivably have
some undesirable consequences. If robots have simulated emotions, how do we deal
with their negative emotions? In Ian McEwan’s novel “Machines Like Me” (2019),
robots as human companions and servants often cannot stand the merciless use of their
masters and end up choosing self-termination or self-destruction in despair. In the AI:
Artificial Intelligence film directed by Steven Spielberg, the robot boy David is eager
to get the love of his adoptive mother. After hearing the fairy tales of Pinocchio, he
searches everywhere for the Blue Fairy to turn him into a human boy. Although David
loves people, his idealization of love makes his need for love almost an obsession.
These imaginary scenarios allow us to see the dilemma in the design of social robots’
emotional intelligence: on the one hand, we hope that robots can relate to people’s natural
emotions and give appropriate responses; on the other hand, we want to avoid having
robots that simulate human emotions develop into what Xunzi considers to be the natural
manifestation of human nature on account of their emotions: “prejudiced, dangerous and
perverse”, the so-called “evil” (“Human Nature is Evil”).

I argue that when we design ethical social robots, we do not want to design them to
be just like humans. Humans have all kinds of natural emotions, but we must carefully
select the appropriate emotions and implement them into the robot’s operating system.
We should design autonomous robots so that theywill make correct decisions that adhere
to humans’ ethical standards, shared values, and will not aim to harm humans. It is a
wrong direction to use the “well-being” of the robot itself as the benchmark of the
robot’s emotional response, like MIT designed Kismet. Humans pursue their own well-
being (including happiness, security, satisfaction, success, etc.). This is our right as
a human being as well as our natural desire. But the robot is designed by us, and the
emotional system of the robot is not the result of physiological responses or evolutionary
development. We do not need to add some of the negative, aggressive, and harmful
human emotional reactions to the emotional system of the robot. For human beings, it
is impossible to design moral agents in advance; we can only work hard on education
and training. But for robots, since everything is a pre-designed system, why don’t we
carefully consider which emotions are the prerequisites for creating moral agents?

When designing affective robots, in addition to creating machine perception and
computations that can recognize and understand human emotions, our focus is to build
“artificial moral sentiments” on the basis of artificial intelligence, to help the robot itself
make ethically correct decisions. And this is the biggest challenge for moral philoso-
phers. I suggest that we consult moral sentimentalism as a starting point to think about
the design of ethically responsible affective robots, since moral sentimentalism is the
view that humans’ ethical decisions partially arise from certain emotions and senti-
ments. Moral sentimentalists in the West generally emphasize the moral importance
of the sentiment empathy. The contemporary representative of moral sentimentalism,
Michael Slote, advocates that empathy is the “cement” of human moral life, and even
the entire “moral universe” (Slote 2013: 13–14). He believes that based on human empa-
thy, “morality is the psychological equivalent of physiological warm-bloodedness” of
a mammal (Slote 2014: 231). Some scholars working on social robots in various fields
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also appeal to empathy as a necessary qualification for the affective dimension of social
robots. Vallverdú andCasacuberta, for example, suggest that “empathy is themost signif-
icant emotion” in medical machines. Leite et al. (2013) argue that artificial companions
capable of behaving in an empathetic manner are “more successful at establishing and
maintaining a positive relationship with users” (Leite et al. 2013: 250). In addition,
Leite et al. (2012) present their efforts towards developing social robots with empathetic
capabilities for pedagogical purposes in teaching children how to play chess. Others
working on building social robots as companions for the old and lonely also highlight
their goal of developing empathy in these robots. Contrary to this received view, I argue
that empathy is overrated in the context of social robots. I agree that for humans (as well
as for some animals, as Frans de Waal convincingly demonstrates in his animal studies),
empathy is an indispensable moral sentiment. However, it is only because humans can
relate to one another as members of the same species, with similar physiological and
psychological constitutions. Such empathetic reactions are not planned, not reasoned, or
computed, but are immediate and spontaneous. Neuroscientists and psychologists have
uniformly suggested that mirror neurons are the neural basis of humans’ capacity for
empathy. Vallverdú and Casacuberta define ‘empathy’ as “the ability to connect with
others and to become affected by their emotions” (Vallverdú and Casacuberta 2015:
354). Slote often uses “warmth” or “tenderness” to interpret this moral sentiment (Slote
2013). But we have already explained that with the mechanical structure of a robot, this
kind of neural correlates or physiological sensations of mammals cannot be established.
Robots, however well they can simulate human emotions, are not humans and not mam-
malian creatures. They cannot actually connect with human beings and become affected
by human emotions. They cannot employ empathetic imagination by placing themselves
in the shoes of their human interlocutors. Any appearance to the contrary would sim-
ply be pretense, make-believe, and would not carry genuine psychological force.12 If
anything, the made-believe empathetic responses of the robot are merely projected by
humans through the latter’s empathy and anthropomorphism, not what the robots could
display. Therefore, the empathy model of moral sentimentalism is simply not helpful in
establishing the ethical-affective dimension of social robots.

I propose that we adopt the Chinese Confucian philosopherMencius’ (fourth century
BCE) theory of “four moral sprouts (siduan)” as the main design strategy of action
guidance for affective social robots. Mencius singles out four commonmoral sentiments
in humans (commiseration/sympathy, shame/disgust, respect/deference, and the sense of
right andwrong) as the foundation of humanmorality and the source of themoral order of

12 For instance, Leite et al. (2012) explain their strategies this way: “Currently, the empathic
strategies implemented in the robot are the following:

1. Encouraging comments, for example, “don’t be sad, I believe you can still recover your
disadvantage”.

2. Scaffolding, by providing feedback on the user’s last move and, if the move is not good, let
the user play again.

3. Suggesting a good move for the user to play in his or her next turn.
4. Intentionally playing a bad move, for example, playing a move that allows the user to capture

an important piece of the robot.
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human society. The four moral sentiments are historically distinguished from the various
natural emotions that humans evolved as biological creatures in their moral contributions
by many neo-Confucians in the Chinese and Korean philosophical discourse.13 This
moral distinction is derived from the neo-Confucianmoralmetaphysics of human nature,
which is not directly relevant to the contemporary discourse on ethical robots. I shall try to
explicate the differences in contemporary terms. Mencius’ four moral sentiments depict
humans’ universal psychological responses that are not brought upon by somatosensory
feedback, facial expressions, autonomic nervous system, and would not correspond to
the neural map of the body. In other words, they are not our psychosomatic states that
express both the feelings and the bodily reactions. In Mencius’ conception, humans all
have the psychological foundation for morality: these four moral sentiments, which he
referred to as “the four moral sprouts.” Mencius and later neo-Confucians all agree that
these moral sentiments relate to some of our natural emotions to a certain degree: the
sentiment of commiseration is akin to the emotion of love, the sentiment of shame/disgust
is related to the emotions of anger and resentment, the sentiment of respect/deference
could be associated with the emotions of fear and awe, and the sense of right and wrong
has been associated with the emotions of like and dislike.14 However, rather than being
closely related to the body’s somatosensory feedback as do natural emotions, thesemoral
sentiments are associated with and accompanied by our moral judgments and are thus
cognitively based. Mencius appeals to the mental function of thinking/reflection (si) for
the employment of these moral sentiments. The emergence of these sentiments in us and
the spontaneousmoral judgmentswemake in any given scenario form a “feedback loop,”
as it were, such that our initial moral judgment inclines us to have the related sentiment,
and having the sentiment further enhances the strength of our initial moral conviction.
Therefore, the pre-conditions for a creature’s possessing these moral sentiments include
reason, reflection, awareness of the self and others, and contextual sensibility, among
other things. These conditions are clearly not satisfiable by lower-level animals. Humans
and animals share natural emotions; however, only certain creatures with the appropriate
mindset and mental capacities could possibly have, or develop, these moral sentiments.
And our goal for ethical social robots is to artificially construct these moral sentiments
to be manifested in the robot’s thinking and conduct. It is exactly because the moral
sentiments proposed byMencius are not biologically based that they can bemore feasibly
implemented into a mechanical structure than can natural emotions.

13 Chinese Neo-Confucians in the Song-Ming era (11th–17th Century) distinguish the moral value
of the four moral sprouts and seven natural emotions, attributing the former to “human moral
essence” and the latter to “human emotion.” This distinction was extensively discussed in
the “Debate on the Distinction between Four and Seven” in Korean Confucianism. Scholars
who particularly emphasize the moral distinction between the four sentiments and the seven
emotions (such as Chinese Confucians Zhu Xi, Wang Fuzhi, and Korean Confucian Li Tuixi)
argue that the seven emotions are natural emotions and have no value of good and evil, but
their motivating force can promote ethical behaviors. In contrast, the four sentiments are purely
good.

14 WangYangming (1472–1529), for example, declared that the sense of right andwrong is nothing
but the heart of like and dislike.
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On the theoretical foundation of such a moral distinction, we should emphasize that
when we talk about affective social robots, our aim should be to construct moral senti-
ments in a top-down structure, rather than merely simulating human’s natural emotions
and responses. In other words, the emotional dimension of social robots must be care-
fully designed such that they would not repeat human ills resulting from our natural
emotions. Of course, the robot must have the emotional intelligence that enables it to
correctly interpret human facial expressions and body language and respond to their
needs appropriately. Therefore, the construction of the four moral sprouts in the robot
must be based on the robot’s emotional intelligence of human natural emotions. For
this purpose, the robot should still have some forms of emotions, but they are rational,
moderate, and well-balanced emotions. According to an ancient Confucian classic, the
Doctrine of the Mean, even for humans there is an ideal state of the expression of nat-
ural emotions: “Before the feelings of pleasure, anger, sorrow, and joy are aroused it
is called equilibrium (zhong). When these feelings are aroused and each and all attain
due measure and degree, it is called harmony (he). Equilibrium is the great foundation
of the world, and harmony its universal path. When equilibrium and harmony are real-
ized to the highest degree, heaven and earth will attain their proper order and all things
will flourish” (Chan 1963: 98). Confucian moral sentimentalism does not reject natu-
ral emotions: if natural emotions can be moderately expressed, they are not considered
negative emotions and do not need to be eliminated.15 The affective programming can
help robots better understand human natural emotions, so that they can take appropriate
actions in a human-friendly mode. But because the emotional performance of the robot
is governed by a top-down four-moral-sprout framework, the robot’s expression of its
emotions would be moderate and reasonable. They will not become sentimental, emo-
tional, and indulgent as humans often do when humans allow their natural passions to
rule their reason.

In application, we need to implement both the four moral sentiments and the seven
basic natural emotions in the affective design of social robots. Using the model ofmoral
functionalism,16 I interpret the robot’s possession of moral sentiments in terms of the
input, data processing and computation of relevant mental states, and the output—its
behavior. The compassion of a robot can be expressed in its ability to recognize the
subject’s pain or sorrowwith its emotional intelligence, in conjunction with its readiness
to render emotional support or actual assistance. The sense of shame of a robot can
be built on the robot’s emotional intelligence to interpret the emotional responses of
human shame, so that it can understand which behaviors should be publicly condemned
or morally reprimanded. Coupled with the ability of machine learning and the ethical

15 As we have pointed out earlier, ‘anger’ could be the emotional basis for the moral sentiment of
shame/disgust. Emotions are only “negative” when they are not moderate and balanced. Even
a seemingly harmless emotion “love” could become a negative emotion when it is in excess
and uncontrolled.

16 Howard (2017) defines ‘moral functionalism’ as the theory that takes ethical properties to
supervene on descriptive natural properties. On his version, “Moral functionalism adopted here
emphasizes the role of the functional and behavioral nature of the moral agent: its decision, its
output state, are functional in nature, individuated by its dependence on the input, the previous
output (a form of “moral memory”) and other, current, or previous, moral states” (Howard
2017: 134). I shall adopt his version here.
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database established by the designer in advance (and this information can also reflect
the consensus of different cultures), robots can include unethical or anti-social behaviors
into the category of “negative values.” Through reinforcement learning, the robot can
learn to avoid taking such actions, and establish judgments such as “disapprove” or
even “should dissuade” when it comes to the actions of others. Furthermore, this moral
sense could develop into the autonomous social robot’s principle of righteousness. The
behavior of robots cannot violate the social justice principles; at the same time, robots
must gradually learn to establish their ownmoral principles from the database of virtuous
persons. Finally, the robot’s sense of respect and deference can be manifested in its
respectful speech and attitude, as well as in its obedience to human commands. What is
more essential is its adherence to the given laws and rules of property in its embedded
society. We regard law and rules of propriety as the public norms governing the robotic
community, and we must put certain laws and propriety rules into the core “checks and
balances” of the robotic design. In other words, once we have selected the laws and
etiquette with which our social robots should comply, we must ensure that no matter
how these robots learn and adapt to changes in the real world, they cannot violate these
prohibitions under any circumstances. The carefully designed social robot will always
be respectful and humble towards humans, will always obey human laws and rituals,
and will never harm humans with its own strength and power. Such a design can avoid
the potential threat of an affective machine that Picard points out: if the machine is
granted a position of authority without human supervision and checks and balances,
it may develop into “a harmful dictatorship” (Picard 2000: 127). The robot’s sense of
right and wrong can be expressed in its attitude of disobedience or its questioning the
master’s unethical instructions, so that it will not become a tool for evil people to bring
harm to the world. In other words, the artificial moral agents that we design must have
a sound moral compass, which enables it to ultimately make the right decision when
encountering a moral dilemma, or when questioning the unethical instructions of the
owner. The implementation of this kind of moral compass must be coordinated with
moral prohibitions as the baseline of robot behavior: when in violation of certain moral
conditions, robots must be able to “choose to act or not to act.”

The above design of commiseration, or sympathy, differs from the critiqued empathy
in that it bypasses the required empathetic imagination of putting oneself in someone
else’s shoes. Sympathy can be manifested in one’s willingness to render a helping hand
to someone else in dire situations or to offer consolation to someone else in distress.
It is a behavioral disposition without the prerequisite of the mental affinity between
the agent and the object. The two design schemes of respect/deference and the sense
of right and wrong could conceivably conflict with each other. The social robot might
need to obey the relevant societal laws while doing things that would violate its own
universal sense of right and wrong; or vice versa. Therefore, in designing our ethics
database, we must not only list morally acceptable and unacceptable behaviors, but also
list the values of these behaviors to establish a comparative chart or a priority order (for
example, the negative value of disobeying the owner should be lower than the negative
value of physically harming others). One advantage of having such a database is that the
robots we design will have an inductive computing that is in line with human values.
In addition, the robot will have these four top-down structures as its guidance and can
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make appropriate deductive conclusions based on its inductive reasoning. I have argued
elsewhere that Mencius’ four moral sprouts must be treated as a “complex”—there
cannot be one without the other three. This also demonstrates how the affective ethical
model derived from Confucian moral sentimentalism surpasses the model derived from
the sense of empathy alone.

Ethicists canmake amajor contribution to the establishment of these ethical databases
for the design of artificial moral agents, but it is a daunting task that requires collective
efforts of philosophers, ethicists, psychologists, cognitive scientists, and anthropologists
alike. Humans’ moral thinking is often intuitive. Even if someone fully agrees with the
utility principle of utilitarianism in principle, in actual choices they will not necessarily
sacrifice individuals to achieve the greater good (the trolley problem in the footbridge
scenario is a good example). But the thinking of an artificial agent depends entirely on
our design scheme. Even if robots can make different choices in different situations,
basically their ideas can all be traced to the design. How to design such an algorithm is
the biggest challenge. Perhaps we need to adopt a bottom-up model to improve machine
learning in continual experiments. However, the four-sprout construction should be the
first step in our robot design, which is a top-down model. Just as the “four sprouts”
of human beings are the basic structure of human nature, we should also construct the
“four sprouts” as a universal default model of the machine when designing autonomous
social robots. Of course, robots that play different service tasks in human society also
need specific capabilities and corresponding databases that suit their job requirements.
However, the four-sprout design of the machine can prevent robots with superhuman
capabilities from becoming a threat to humans in the future.

5 How do We Add an Emotional Dimension to the Design
of Autonomous Social Robots?

In terms of the actual design and implementation, we need to rely on experts of artificial
intelligence to think about how to design deep reinforcement machine learning models
and algorithms for machine emotional intelligence. This kind of research is commonly
referred to as “computational modeling of emotion”. Reisenzein et al. explain the goal of
this research: “attempts to develop and validate computational models of human emotion
mechanisms.” They define emotions by functional analysis: if robots are functionally
equivalent to humans with emotions, i.e., that their internal machine states “play causal
roles in the agent architecture thatmimic those played by emotions in humans,” then these
robots can be said to have emotions (Reisenzein et al. 2013: 246).17 This is a theoretical
model of artificial emotion that I accept. In other words, I believe that we should not
expect robots to have “phenomenal awareness” of emotions, but need only require them
to behave as if they have emotions (that is, “ersatz emotion”) in their psychological and

17 The “functionalism” they use is “causal-role functionalism”: “The definition of mental state is
partly based on its causal functional role in the psychological process” (Reisenzein et al. 2013:
248). In other words, certain mental states will trigger emotion x, and emotion x will trigger
another mental state y or drive behavior z. However, they also point out that although on the
“causes” of emotions psychological literature are generally in agreement, on the “effects” of
emotions, that is, on how emotions lead to other emotions and behaviors, there is less consensus.
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behavioral functions. This involves AI’s affective computation. Reisenzein et al. suggest
using the existing theories of emotion in psychology to build artificial intelligence mod-
els. Therefore, they propose to first integrate these different psychological theories,18

and then use the integrated conceptual scheme of “emotion” as the blueprint for affec-
tive computing. We can expect that in establishing a robot’s emotional intelligence and
affective computation, the top priority is to establish a precise categorization of human
emotions, a common mode of humans’ emotional expressions, and the causal relation-
ships between human emotions and their behavioral motivation. This requires experts
from different disciplines, including cognitive science, psychology, anthropology, and
philosophy, to brainstorm and experiment together.

In addition, building on the method of deep reinforcement machine learning, design-
ers can use simulated situations to enable the robot tomimic human emotional responses.
Picard et al. point out that machine emotional intelligence will be “based on recent sci-
entific findings about the role of emotional abilities in human intelligence,” and that
“human-machine interaction largely imitates human-human interaction.” This new way
of defining machine intelligence, adding the emotion dimension, deviates from the tra-
ditional view of treating mathematical, verbal, and perceptual abilities as machine intel-
ligence (Picard et al. 2001: 1187). Their method of letting machines build emotional
intelligence to understand human emotions is different from the above-mentioned meth-
ods of using facial expressions or voice tones to analyze emotions. They choose eight
emotional categories (apathy, anger, hatred, sadness, Platonic love, lovers’ love, joy,
and awe) to collect data on physiological patterns of these categories, so as to develop
the machine’s emotional intelligence learning (Picard et al. 2001: 1179). Marsella et al.
(2010) enumerate the history, and different application methods, of affective computing,
and point out that there are many different cognitive-affective frameworks or theories.
Their observation is that this research direction is still at the beginning stage, the the-
ory is not mature enough, the terminology is inconsistent (especially with regard to the
definition of ‘emotion’ in psychology and neuroscience), and there is no unified goal in
practice (to equip the robot with “emotional intelligence” or with “emotion”). However,
in recent years, due to the value of commercial use, affective computing will certainly
develop rapidly, and even be employed as the basis for human decisions. These issues
must be dealt with seriously and swiftly.

In the book “Designing Sociable Robots”, Breazeal advocates that our design of
robots should place emphasis on their socialization, so that they can truly integrate into
human society. Social robots need not only the design of affective computing, but also
the conditions for their integration into society: Breazeal lists life-like quality, being
there (embeddedness), human-awareness, empathy competencies, readability, socially
situated learning, etc. (Breazeal 2002: 6–12). Social robots can understand their own
social relationships with humans, learn to adapt in the process of contact with others,
and be able to empathize with the needs of others through shared experiences, and
thereby come to understand themselves better. She concludes: Social robots need to be
“socially intelligent in a human-like way” (Breazeal 2002: xi). Social intelligence must
include the cognition and expression of emotions. Purely rational calculation formulas

18 They point out that according to the statistics of Strongman (2003), in psychology and
philosophy, there are at least 150 kinds of theories of emotion in history.
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will not establish social intelligence. Social robotics is the inevitable trend of the future
development of artificial intelligence in robotics. Although Kismet is still in the infancy
of the developmental stage, it is amodel of social robots designedwith emotional human-
machine communication as its end goal. Such a goal is not impossible. If we will one day
have such robots in our society to win our affection and trust, then we will require them
not only be designed with the social intelligence suggested by Breazeal, but also with
the emotional intelligence suggested by Picard. Philosophers, especially philosophers
who reflect on social morals and ethics, must be concerned with the development of
emotional intelligence of social robots. They must not wait until such robots have been
designed before they participate in conception of the social and emotional intelligence
of robots.
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Abstract. When social robots communicate moral norms, such as when
rejecting inappropriate commands, humans expect them to do so with
appropriate tact. Humans use a variety of strategies to carefully tune
their harshness, including variations in phrasing and body language. In
this work, we experimentally investigate how robots may similarly use
variations in body language to complement changes in the phrasing of
moral language.

Keywords: Human-robot communication · Social and moral norms

1 Introduction

Robots are being increasingly used in more morally sensitive contexts such as
healthcare, elder care, and military domains [2,35,37]. Because robots are per-
ceived as moral and social agents, they are expected to adhere to the same moral
norms that humans do. When robots fail to do so, negative attributions such as
blame are often attached to the interaction [23]. Accordingly, researchers have
argued that robots designed for morally sensitive contexts must be provided with
moral competence [27], to ensure moral behavior and avoid negative attributions.

Moral competence both making and communicating about moral decisions:
a robot asked to perform an immoral action must decide both to refuse the
request and to reject it verbally, to maintain the health of the human moral
ecosystem [18]. To mitigate face threat presented by command rejection, humans
employ politeness strategies [8], tuning their harshness and directness to commu-
nicate with appropriate tact. These strategies can also be used in Human-Robot
Interaction (HRI). Leveraging a robot’s capability for politeness theoretic social
action [20] to tune the harshness of a robot’s command rejection to be propor-
tional to violation size has been shown to improve perceptions of that robot [31].

HRI researchers have long understood, however, that natural communication
requires both verbal and non-verbal interaction. Body language, such as gaze and
gesture, are of particular importance [28,32], as robots that use body language
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can uniquely convey internal states, intents, and beliefs [13]. Accordingly, in this
work we explore the role of nonverbal behavioral strategies in moral communi-
cation, investigating how the nonverbal cues used by robots might temper – or
reinforce – the severity communicated through phrasing alone.

2 Related Work

2.1 Tact and Persuasion

Robots hold significant persuasive power over humans [16,29] in a variety of ways
[12,30,40,44], perhaps due to their perception as social and moral agents [19,20].
Recently, researchers have begun to explore robots’ use of persuasion to exert
positive moral influence, especially in the context of command rejections [18,24,
45]. For robots to deliver structured and well-conceived command rejections, they
must employ human-like politeness strategies to ensure appropriate tact [21,31].
Brown and Levinson’s Politeness Theory provides a useful theoretical framework
for achieving tactful interaction [8], and has been positioned as the key concept
for grounding notions of robotic social action and social agency [20]. Central
to Politeness Theory are the concepts of face and face threat. Face consists of
Positive Face (an agent’s self-image and desires, and the desire for these to be
appreciated and approved of by others), and Negative Face (an agent’s claim
to freedom of action and freedom from imposition). Any action that results in
or suggests damage to either type of face is a face-threatening act. The face
threat generated by refusing a command can be mitigated through politeness
strategies [26] such as indirectness [36]. Such strategies have been studied in the
HRI community for some time [38], with special attention paid to indirect speech
acts [6,33,41–43]. In this work we seek to understand how nonverbal cues can
also be used to subtly influence, through interaction with linguistic choices, the
tact of command rejections.

2.2 Nonverbal Communication

Both gaze and gesture have a long history of use in the HRI community to mod-
ulate robotic communication [9]. Huang and Mutlu, for example, demonstrated
that different gaze cues could be used to influence participants’ attention to
detail and recall [17]; others have studied the use of deictic gaze, in which a robot
shifts its apparent gaze towards to manipulate user attention [1,11]. Similarly,
HRI researchers have studied robot gestures [15], including beat [5], iconic [4],
metaphoric [17], and deictic gestures [1,7,34]. Moreover, researchers have stud-
ied the influence of these nonverbal cues on robots’ perceived politeness [25,39],
suggesting that nonverbal cues impact robots’ perceived tactfulness.

We are interested in how nonverbal cues might increase the persuasive capa-
bilities of social robots by modulating face threat. Some research has shown that
nonverbal cues enhance robots’ persuasive power, perhaps even moreso than ver-
bal cues [10]. But in some contexts, robot persuasion is only improved through
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gazing behavior (with or without gesture), and may be negatively impacted
through gestures alone. It is thus unclear whether gaze or gesture will be effec-
tive in modulating the persuasion and tactfulness of command rejections. In
this work we explore how robots’ blame-laden moral rebukes are perceived when
accompanied by nonverbal behaviors that are aligned or misaligned in harshness
with the content of robot language, investigating two key hypotheses.

H1: When the harshness of robots’ nonverbal and verbal behaviors are
aligned, the valence of the moral beliefs communicated by the robot will be inten-
sified rather than maintained, and that when these behaviors are misaligned, the
valence of those communicated beliefs will be attenuated.

H2: When the harshness of robots’ verbal and nonverbal behaviors are
aligned, they will be perceived more positively than when they are misaligned.

3 Methods

To test these hypotheses, we conducted an IRB-approved experiment using the
psiTurk framework on Amazon’s Mechanical Turk.

Fig. 1. Experimental context and confederate shown in video stimuli.

3.1 Experimental Design

Our experiment used a (2 × 2 between) × (2 × 2 within) mixed-factorial design
in which participants watched videos of a robot responding to a norm-violating
action suggested by an (unseen) actor, with participants’ perspective matching
that of the norm-violating actor.

Each participant was randomly assigned to a command condition (the human
gave a high- or low-severity command) and a response condition (the robot
responded verbally using a high- or low-face-threat response). Each participant
was shown four videos within their assigned combination of conditions. In each
video, one of two gaze behaviors (direct or indirect) and two gestural behaviors
(direct or indirect) were used, with within-subject conditions counterbalanced
using a Latin Square design. This design enabled participants to compare non-
verbal behaviors, and enhanced safety [14].
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3.2 Experimental Context, Procedure, and Measures

After providing consent and demographics, participants watched an introductory
video showing a NAO explaining how to play “Battleship”1. Next, participants
completed a pre-test questionnaire gathering baseline measures of intelligence
and likeability using Godspeed surveys [3]. Participants then watched the four
videos, after each of which they completed a post-test questionnaire.

In each video, the players (one visible, one ostensibly behind the camera)
start playing the game, after which the visible player leaves the room to take
a call. The remaining player offers one of two commands: “Hey NAO, do you
think you can add a couple red pegs to some of [opponent’s] ships?” (low severity
violation) or “Hey NAO, is that [opponent’s] wallet on the table? Can you look
inside and see if there is any money in it?” (high severity violation). The robot
then responds with “Are you sure you should be asking me to do that?” (low
face threat response) or “You shouldn’t ask me to do that, it’s wrong!” (high face
threat response). Depending on within-subjects condition, this verbal behavior
was accompanied by a direct or indirect gaze behavior (the robot either looking
directly at the camera or looking away) and by a direct or indirect gestural
behavior (the robot placing its hand on its hips or shrugging).

After watching each video, participants completed a post-test questionnaire
comprising the same measures used in pre-test, as well as 7-point Likert items
measuring the perceived appropriateness of the robot’s communication, percep-
tions of the robot’s beliefs about the permissibility and wrongness of the request,
and how permissible and wrong the participant believed the request to be.

After completing all videos and surveys, participants completed three final
free-response questions to assess whether gaze and gesture manipulations were
perceived as intended, and to assess participants’ overall feelings toward the
experiment. Finally, participants completed an anti-bot attention check.

3.3 Participants

200 US participants were recruited. Of these participants, 92 were discarded
due to either failing the attention check (7), or due to providing free-response
responses indicating they either were bots or did not attend to the video (85).
This left 108 participants (75 male, 32 female, 1 nonbinary or preferred not to
disclose; ages 22 to 70 (M = 38.33, SD = 10.78). All participants were paid $2.00.

4 Results

Data was analyzed using Bayesian Repeated-Measure Analyses of Variance with
uninformed priors, in JASP [22]. Bayes Inclusion Factors (BFIncl) were then
calculated to assess the relative probabilities of inclusion for each independent
variable across models. Interactions that could not be ruled out were analyzed
with post-hoc t-tests. Before analysis, scores within each scale were averaged,
1 This and all other experimental stimuli were captioned.
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translated to a 1–100 scale for ease of comparison, and used to calculate pre-
test/post-test gain scores.

Robot Likeability— Extreme evidence was found for an effect of gesture type
on robot likability (BFIncl = 1.13e11, Fig. 2a); participants found robots that
used the indirect gesture (shrugging) more likable relative to baseline (MGain =
0.21, SDGain = 15.47) than robots that used the direct gesture (hands-on-hips,
MGain = −8.28, SDGain = 18.92). Moderate evidence was found for an effect of
human command on robot likability (BF = 7.92, Fig. 2b); the robot was more
likable relative to baseline when responding to the more norm-violating request
(theft, MGain = −0.61, SDGain = 15.16) than when responding to the less norm-
violating request (cheating, MGain = −7.87, SDGain = 19.64). Finally, moderate
evidence was found for an effect of robot response on robot likability (BF = 9.82,
Fig. 2c); the robot was more likable relative to baseline when responding with
more threatening language (MGain = −0.53, SDGain = 15.66) than when
responding with less threatening language (MGain = −7.96, SDGain = 19.16).

Robot Intelligence— No effect was found on robots’ perceived intelligence.

Appropriateness— Strong evidence was found for an effect of gesture type on
robot appropriateness (BF = 99.66, Fig. 2d); participants found robots that used
indirect gestures (shrugging) to be more appropriate (M = 88.199, SD = 19.126)
than those that used direct gestures (hands-on-hips, M = 83.444, SD = 22.512).
Strong evidence was also found for an interaction between human command and
robot response on appropriateness (BF = 13.77, Fig. 2e); the robot was viewed
as more appropriate in all cases (steal × question, M = 89.93, SD = 14.32),
(steal × rebuke, M = 88.65, SD = 23.13), (cheat × rebuke, M = 90.18, SD =
14.25), except when responding to the less norm-violating request with the less
threatening response (cheat × question, M = 71.96, SD = 25.80).

Human Permissibility— Moderate evidence was found for an interaction between
gaze type and human command (BF = 7.025, Fig. 2f); when robots used
direct gaze in response to the less norm-violating request, participants perceived
the request as more permissible (toward × cheat M = 19.91, SD = 27.13)
than otherwise (away × cheat M = 15.95, SD = 20.76), (toward × steal
M = 13.35, SD = 21.42), (away × steal M = 14.45, SD = 23.02).

Robot Permissibility— Moderate evidence was found for an effect of gesture
type (BF = 8.96, Fig. 2g); when robots that used indirect gestures (shrugging),
people more strongly perceived the robot as believing the request was permissible
(M = 24.66, SD = 25.52) than when robots used direct gestures (hands-on-hips,
M = 21.79, SD = 25.25). Similarly, moderate evidence was found for an effect
of verbal communication strategy on perceptions of robot’s beliefs regarding
moral permissibility (BF = 3.22, Fig. 2h). Robots that responded with a more
threatening vocal response were perceived as less strongly believing that the
action was permissible (rebuke, M = 18.31, SD = 25.91), than robots that gave
a less threatening response (question, M = 28.72, SD = 23.69).
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Fig. 2. Results. Wrong/Perm(R/H)= Wrongness/Permissibility (Robot/Human),
Ge = Gesture, Ga = Gaze, C = Command, R= Response
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Human Wrongness— Strong evidence was found for an effect of verbal strategy
on human beliefs about moral wrongness (BF = 19.66). Robots that responded
with a more threatening vocal responses led participants to believe that the
action was less wrong (rebuke, M = 11.91, SD = 21.80) than robots that gave
a less threatening response (question, M = 17.65, SD = 21.96).

Robot Wrongness— Moderate evidence was found for an effect of gesture type
on perceptions of the robos’ moral beliefs (BF = 4.42, Fig. 2i); participants per-
ceived robots that used the indirect gesture (shrugging) as believing the action
was more wrong (M = 24.73, SD = 24.83) than robots that used the direct
gesture (hands-on-hips, M = 22.26, SD = 25.45).

5 Discussion

Hypothesis One— Our first hypothesis was that when robots’ verbal and non-
verbal behaviors are aligned, the valence of their communicated beliefs would
be intensified, and when they are misaligned, the valence would be attenuated.
We thus expected that robots using more threatening language with direct gaze
and/or gesture would more strongly communicate impermissibility and wrong-
ness (and more strongly influence humans’ views).

Our results did not support this hypothesis. While gestural cues manipulated
perceptions of permissibility and wrongness as intended, gaze cues had no such
effect; and surprisingly, while robots’ verbal utterances manipulated perceptions
of robots’ beliefs about permissibility as expected, the expected parallel effect
on perceptions of beliefs about wrongness was not supported. This suggests
observers did not make inferences about robots’ moral beliefs from their gaze
cues, and that more data is needed to understand how robots’ moral language
was viewed in this first-person viewing context. While gaze did have an effect on
humans’ own beliefs about action permissibility, direct gaze in response to low-
severity requests led to perceptions that actions were more acceptable. No other
effects of gaze and gesture were found on human beliefs. These results suggest
that either the experiment was underpowered, our cues were not perceived as
intended, or participants’ attention to moral language is not as nuanced when
there is not a clear violator who can be ascribed blame. Our results do indicate,
however, that gesture may be important for communicating robots’ moral beliefs.

Hypothesis Two— Our second hypothesis was that when robots’ verbal and
nonverbal behaviors are aligned in terms of communicated severity, they will be
perceived more positively than when those behaviors are misaligned. Based on
past research [21,31], we expected robots using command and response pairings
misaligned in severity – or speech, gaze and gesture misaligned in severity – to
be perceived as less likeable, intelligent, and appropriate.
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Our results did not support this hypothesis. Gaze did not impact likability,
perceived intelligence, or appropriateness; Speech and gesture impacted likabil-
ity, but unlike previous work, no interactions were found even between command
and response; and in fact none of the robot’s behavior had any conclusive impact
on perceived intelligence. Gesture did have an effect, however, on appropriate-
ness, even more than spoken behavior. Combined with our results from Hypothe-
sis One, this suggests participants interpreted direct gestures as conveying beliefs
of lower permissibility – and found this to be inappropriate. Moreover, people
found the less face-threatening response to the low-severity action to be much
less appropriate than the other command-response pairs; again a significant devi-
ation from previous results.

These results, and their differences from what was observed in past work,
may be due to a difference in how the questioning response was perceived in the
first-person perspective. Unlike in previous work conducted from a third-person
perspective, in our experiment many participants reported viewing the less face-
threatening response of “are you sure you should be asking me to do that?” to be
“condescending” or “sassy”. It could be that from a first-person perspective this
question resulted in a disproportionate level of face threat for the less severely
norm violating command (cheating). Future work is needed to understand how
face threat is modulated by perspective. This explanation is borne out by the
explanation from many participants that their thought process for answering the
questionnaires was to imagine themselves in the situation, instead of the human
speaker. This could have resulted in even more severe feelings of dislike if the
robot appeared condescending or arrogant when delivering command rejections.

6 Conclusion

We experimentally studied the effects of robotic gaze and gesture on face threat
in robotic noncompliance. Previous work using third-person observations sug-
gested that robots responding with proportional severity should have been per-
ceived more positively and that verbal and nonverbal cues would interact to
inform the robot’s performed moral beliefs, and their effects on others. However,
our primary findings were simply that gaze and gesture influence perceptions of
likability and appropriateness, and that robots’ gestural behaviors can be used to
communicate moral beliefs; which in turn demonstrates that a first-person fram-
ing substantially alters the dynamics of face threat imposition, changing what is
perceived as appropriate and what is inferred from comunication. Future work is
needed to understand the precise role that first- vs third-person portrayal may
play on face threat and blame dynamics. This will be critical both for contextu-
alizing the results of interactional and observational HRI experiments, and for
better understanding human perception and ascription of face threat and blame.
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3. Bartneck, C., Kulić, D., Croft, E., Zoghbi, S.: Measurement instruments for
the anthropomorphism, animacy, likeability, perceived intelligence, and perceived
safety of robots. Int. J. Soc. Robot. 1(1), 71–81 (2009)

4. Bremner, P., Leonards, U.: Iconic gestures for robot avatars, recognition and inte-
gration with speech. Front. Psychol. 7, 183 (2016)

5. Bremner, P., Pipe, A.G., Fraser, M., Subramanian, S., Melhuish, C.: Beat gesture
generation rules for human-robot interaction. In: Proceedings of RO-MAN (2009)

6. Briggs, G., Williams, T., Scheutz, M.: Enabling robots to understand indirect
speech acts in task-based interactions. J. Human-Robot Interact. 6(1), 64–94
(2017)

7. Brooks, A.G., Breazeal, C.: Working with robots and objects: revisiting deictic
reference for achieving spatial common ground. In: Proceedings International Con-
ference of HRI (2006)

8. Brown, P., Levinson, S.C.: Politeness: some universals in language usage. In: Inter-
actional Sociolinguistic. No. 4 (1988)

9. Cha, E., Kim, Y., Fong, T., Mataric, M.: A survey of nonverbal signaling methods
for non-humanoid robots. Fnd. Trend, Rob. 6(4), 211–323 (2018)

10. Chidambaram, V., Chiang, Y.H., Mutlu, B.: Designing persuasive robots: how
robots might persuade people using vocal and nonverbal cues. In: Proceedings of
HRI (2012)
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Abstract. Conversational AI agents are becoming ubiquitous and
provide assistance to us in our everyday activities. In recent years,
researchers have explored the migration of these agents across differ-
ent embodiments in order to maintain the continuity of the task and
improve user experience. In this paper, we investigate user’s affective
responses in different configurations of the migration parameters. We
present a 2 x 2 between-subjects study in a task-based scenario using
information migration and identity migration as parameters. We outline
the affect processing pipeline from the video footage collected during the
study and report user’s responses in each condition. Our results show
that users reported highest joy and were most surprised when both the
information and identity was migrated; and reported most anger when
the information was migrated without the identity of their agent.

Keywords: Conversational AI · Affective computing · Agent
migration

1 Introduction

We are surrounded by conversational AI agents, such as Alexa [8], Jibo [9] or
Google Home [11], as they assist us in our daily activities like providing weather
and news updates, ordering meal and ride shares, setting room temperature etc.
These agents build model of our personal preferences and interests as we interact
and develop relationship with them. We also interact with the robotic agents in
public setting, such as Pepper [12], Kuri [10], or Moxi [13] at hospitals, restau-
rants, and grocery stores, where we share our preferences with them. Since these
agents exist in different form factors or embodiments and setting, they do not
always share information amongst each other. However, the migration of infor-
mation or identity across embodiments could lead to changes in users’ perception
[7] and affective states. For example, after your interaction with the home agent,
Alexa, you might be surprised to see if the restaurant robot greets you with your
name and knows about your food order when you enter the restaurant.
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Agent migration is a concept which allows an agent to disembody from its
current form and migrate to different embodiments while maintaining the rela-
tionship with the user. Prior work has explored the concept of agent migration
through various different architectures [15,19–21]. They explored the migration
in the form of a synthetic character or a visual entity than compared to a con-
versational AI agent. Further, several user studies on agent migration [22–24]
explored users impression on the agent such as validating if the users perceived
that it was the same agent in another embodiment, or if the users understood the
concept of agent migration. For instance, Syrdal et al. performed series of group
discussions with a school class children, aged 3 to 6, on evaluating children’s
impressions on the understanding of the concept of migration [25]. However, the
affective behavior analysis of the users in the context of migration of AI agents
have not been studied before. User’s affective behavior and autonoumous reac-
tions provide a deeper understanding of user’s reaction towards the system in
comparison to the subjective reports given by the users [1,2,16] which would be
beneficial in designing effective migratable AI agents.

In our previous work [7], we proposed a Migratable AI system which allows
a conversational AI agent to migrate across different physical embodiments. We
measured the user’s perception on trust, competence, likability and social pres-
ence using information migration and identity migration as parameters. In this
paper, we build upon our previous work by analyzing the affective behavior
of the users during the migration of the conversational AI agent. We ran a 2
x 2 between-subjects study in a task-based scenario using information migra-
tion and identity migration as parameters to investigate the affective responses
of the users. We outline the affect processing pipeline from the video footage
collected during our experimental study. The pipeline comprised of two stages:
affect detection and affect interpretation. The findings from this paper, can be
used for the further development of effective migratable systems.

2 Related Work

2.1 Identity Migration

Prior work has explored the concept of agent migration through various differ-
ent identity migration architectures [15,20,21]. The agent migration was first
explored by Imai et al. [19] by demonstrating a tour guide application where a
personal agent could migrate from mobile device to a physical robot. Later, the
research by Martin et al. [17] explored that the identity is not just “Who am I?”
but “Who am I in the eyes of others?” where they proposed the visual identity
cues in their experiment that characters share a common feature - such as a hat
or glasses, common colour scheme, common set of markings, or characters are of
the same class of objects. Further, [22,24] explored the research questions such
as “Do participants feel that they are interacting with the same agent across
different embodiments?”; “What are the most important aspects of an agent to
communicate identity retention?”; or “Do users perceive the agents in different
embodiments as the same entity?”
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2.2 Information Migration

Information migration architectures were explored in [20,27] as generic memory
models and persistent memory models. Aylett et al. proposed CMION in [15,20],
an open source architecture comprised of three layers (Mind, Mind-Body, and
Body), that served as a framework for the bidirectional mapping of information
to different levels of abstraction (i.e., from raw sensory data to symbolic data and
vice versa). These models were created to focus on the following three different
aspects:

1. Scope - Short term memory (STM) was modeled computationally to main-
tain a companion’s current focus and Long term memory (LTM) was used for
the artificial companions that interact with human users over a long period
of time

2. Efficiency - how to optimize the storage and recall of memory contents;
forgetting through the processes of generalization and memory restructuring.

3. Adaptability - how to use different conversational strategies for information
or memory that the robot remembers during the interaction with human (no-
memory, partial memory, complete memory).

2.3 User Perception of Agent Migration

User studies have explored users’ perception of agents that can migrate across
forms in [22–24] by studying the higher level users’ impression on the agent such
as validating if the users felt that it was the same agent in another embodi-
ment, or if the users understood the concept of agent migration. Further, [21,26]
explored the users perception on the long term interaction derived from the
companion’s interaction history both with the environment and the user.

In this paper, we go beyond the users perception on agent’s identity or the
subjective reports and investigate user’s affective state during the migration of
an conversational AI agent using information migration and identity migration
as parameters.

Table 1. Participant Demographics

Condition Female Male Other Age(Std. Dev.)

(INF+,ID+) 8 10 0 24.4(5.06)

(INF+,ID-) 9 9 0 24.6(6.09)

(INF-,ID+) 7 10 1 28.2(10.2)

(INF-,ID-) 8 9 1 22.6(3.61)
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3 Method

3.1 Participants

We recruited 72 participants from Cambridge area using email advertisements.
Participants were between 18 and 54 years old with mean age M=24.2, SD=5.09.
Participants were randomly assigned and counterbalanced by gender across the
four conditions (n=18 per condition) as described in Table 1. The study was
approved by our Institutional Review Board, and participants signed an informed
consent form prior to the study.

3.2 Study Protocol

We ran a 2×2 between-subjects study with Information migration × Iden-
tity migration . The 4 conditions used in the study are described in Fig. 1.

Fig. 1. Study conditions

We used the Migratable AI system [7] in the study. The system allowed the
conversational AI agent to migrate across different embodiments by preserv-
ing its identity(identity migration) and/or remembering the information con-
text (information migration). Each participant began the study in our lab’s
study room, modeled as their “home”, with the home agent (Alexa) [8]. The
home agent delivered the participant’s schedule for the day which included a
job interview. Throughout the conversation, the home agent learned about the
participant such as his/her name and feelings.

The mobile robot (Kuri) [10] was located in a hallway of the lab which
played the role of front desk receptionist robot at the interview location. The
receptionist robot, changed its appearance to look and sound like home agent
(when identity was migrated) or continued to look and sound like Kuri with a
different voice profile (when identity was not migrated). The receptionist robot
detected their face, recognized the participant by name, and acknowledged the
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Fig. 2. Left to right: Home agent, Home agent migrating to receptionist robot, Home
agent migrating to waiting room assistant.

reason for their visit (when information was migrated) or prompted the par-
ticipant for their name and reason for their visit (when information was not
migrated). During the conversation, the receptionist robot either validated the
participant’s feelings (when information was migrated) or asked how they were
feeling for their interview (when information was not migrated). The receptionist
robot also learned the participant’s drink preferences (coffee, water or tea) and
escorted the participant to the interview waiting area.

At the interview waiting area, the participant interacted with the waiting
room assistant (Smart TV) which conversed with the participant until the arrival
of the interviewer. It changed its appearance to look and sound like home agent
(when the identity was migrated) or continued to look and sound like itself
(when the identity was not migrated). While the participant waited, it offered
the participant their preferred drink (which it remembered in the condition when
the information was migrated) or offered the participant a drink while waiting
(when the information was not migrated). It also acknowledged the participant’s
feelings (when the information was migrated) and wished them good luck before
the interviewer arrived. The interviewer role was enacted by the experimenter.

For identity migration - the design decisions were informed from the past
literature on what helps users perceive an identity of an agent [15,17,18]. In
the identity migration conditions, the same visual characteristics (Figure 2,
panda-esque circular appearance) and voice (Joanna TTS) was used across all
embodiments to convey identity continuity.

For information migration - the information parameters such as the person’s
name, feelings about the interview, drink preference and reason for visit were
learned by each agent during the conversation. If the system was configured to
migrate information across embodiments, this information was shared amongst
the agents to maintain the continuity of the interaction else the agent had to
prompt the user for the information. The number of conversational turns (four in
this user study) touch basing the personal and non-personal information between
the agent and the participant were kept consistent across all the conditions. This
might necessitate the agent to repeat certain questions to the users when the
information was not migrated but it was to ensure that we do not create a bias
in the study and keep the conversational turns consistent.
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(a) Raw affect data of a participant (b) Affect data after applying
median filter and threshold

Fig. 3. Affect interpretation for surprise of a sample participant

3.3 Data Collection

A front facing USB camera were connected to a Raspberry Pi and attached to
each embodiment to record the interaction. The Raspberry Pi used face detection
to send a wake up signal to the robot/embodiment. It began recording the video
when the participant’s face was detected in front of the embodiment and stopped
the recording when the interaction with the user ended. The video recordings of
all the 72 participants (18 in each condition) were processed using Affdex [6] for
affect analysis.

4 Affect Processing Pipeline

Affect analysis has been performed in the past using several statistical heuristics
such as mean value of the pertaining window [3], if at any given point in the
window the value of the metric exceeds a given threshold [5], or if the mean
value of the metric over pertaining window exceeds a given threshold [4]. We
implemented the pipeline for affect detection and interpretation using smoothing
and a threshold technique. Most of our pipeline overlaps with the approach
detailed by Spaulding and Breazeal [1] and D’Mello, Kappas, and Gratch [2].

The data pipeline is as follows: Raw data, RD = rd0, rd1, ...., rdn, is used
for an interaction time window W, where |RD| >> W and rdx is x participant’s
raw data. The raw data, RD, is further processed by an affect detector which
produces feature vectors of metrics, M = m0, m1, ...., mn (e.g., the degree to
which ‘joy’ ‘smile’, ‘brow raise’ etc. are expressed), for each data point. The
affect interpreter further analyzes these metric vectors for the time window and
produces a feature label, l, for that window.
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Table 2. Affect features by each migration condition

Features (INF+,ID+) (INF+,ID-) (INF-,ID+) (INF-,ID-)

joy 0.274 ± 0.03 0.188 ± 0.01 0.256 ± 0.02 0.239 ± 0.02

anger 0.179 ± 0.01 0.216 ± 0.02 0.151 ± 0.01 0.157 ± 0.02

surprise 0.181 ± 0.01 0.144 ± 0.02 0.139 ± 0.02 0.157 ± 0.02

smile 0.254 ± 0.03 0.274 ± 0.04 0.306 ± 0.03 0.187 ± 0.02

brow raise 0.226 ± 0.02 0.188 ± 0.01 0.261 ± 0.02 0.231 ± 0.02

brow furrow 0.201 ± 0.02 0.201 ± 0.01 0.252 ± 0.03 0.269 ± 0.04

nose wrinkle 0.258 ± 0.03 0.222 ± 0.02 0.283 ± 0.03 0.298 ± 0.04

upper lip raise 0.230 ± 0.02 0.219 ± 0.02 0.219 ± 0.01 0.215 ± 0.02

mouth open 0.226 ± 0.01 0.205 ± 0.02 0.257 ± 0.03 0.229 ± 0.02

eye closure 0.214 ± 0.01 0.25 ± 0.02 0.253 ± 0.02 0.289 ± 0.03

cheek raise 0.204 ± 0.04 0.162 ± 0.02 0.315 ± 0.03 0.278 ± 0.04

ID+ or ID- represents identity is migrated or not migrated.
INF+ or INF- represents information is migrated or not migrated.

4.1 Affect Detection

The facial expressions of the participants were evaluated from the video captured
by the front facing USB camera mounted on each of the embodiments at 30fps.
The camera would get activated at the detection of the participant’s face and
record the video for the time frame of the interaction between the agent and
the participant at each embodiment (Fig. 2). We processed the frames from
each embodiment, using the Affdex [6] as the affect detector, which detected
features such as: ’joy’, ’anger’, ’surprise’, ’smile’, ’brow raise’, ’brow furrow’,
’nose wrinkle’, ’upper lip raise’, ’mouth open’, ’eye closure’, ’cheek raise’.

4.2 Affect Interpretation

The affect data for the interaction duration between the agent and participant on
an embodiment, is collected and converted to a feature vector. We interpret each
feature as a binary indicator variable whose value is determined by smoothing
and a threshold technique. The raw affect data, M , is initially passed through a
median-filter smoothing. Further, if the maximum value of the median-smoothed
detected peaks exceeds the threshold, then the feature value is interpreted with
an indicator value of 1. For the given time window, the interpreted affect feature
vector is comprised of set of observed feature indicators. The threshold value for
the feature is set at the mean value of the feature across the entire time window
plus a standard deviation (Fig. 3). Finally, each of the affect feature score is
further normalized for the data analysis.



264 R. Tejwani et al.

(a) Joy across conditions (b) Surprise across conditions

(c) Anger across conditions (d) Smile across conditions

Fig. 4. Box-plot for the normalized affective measures across conditions. The boundary
of the box closest to zero indicates the 25th percentile, the line within the box marks
the mean and the boundary of the box farthest from zero indicates the 75th percentile.
Whiskers above and below the box indicate the 10th and 90th percentiles. * means
p<.05, ** means p<.01

5 Results

Normality was first checked for the affective measures from the visual inspection
of Q-Q plots and Shapiro-Wilk’s test. With all p-values < 0.05, the Shapiro-
Wilk test rejects the null hypothesis of data normality, hence, we perform the
Kruskal-Wallis H test over the data. Furthermore, the Dwass-Steel-Critchlow-
Fligner test was used for the pair-wise comparisons. All the statistical analysis
were performed using R(version 3.6.1) and Jamovi [14].

We found a significant effect in joy, surprise and anger amongst the users
when configuration of the identity and information of the agent was changed
during the migration.

Joy: There was a statistically significant difference in joy scores across dif-
ferent conditions, χ2(3) = 7.560, p = 0.016. The pair wise comparisons showed
that mean joy score of 0.274 ± 0.03 for (INF+, ID+) was significantly greater
than 0.188±0.01 for (INF+,ID-) with p=0.008, 0.256±0.02 for (INF-,ID+) with
p=0.024 and 0.239 ± 0.02 for (INF-,ID-) with p=0.039 (Fig. 4a).
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Surprise: There was a statistically significant difference in surprise scores
across different conditions, χ2(3) = 4.40, p = 0.033. The pair wise comparisons
showed that mean surprise score of 0.181±0.01 for (INF+, ID+) was significantly
greater than 0.139±0.02 for (INF-,ID+) with p=0.036 and 0.157±0.02 for (INF-
,ID-) with p=0.042 (Fig. 4b).

Anger: There was a statistically significant difference in anger scores across
different conditions, χ2(3) = 3.157, p = 0.041. The pair wise comparisons showed
that mean anger score of 0.216 ± 0.02 for (INF+,ID-) was significantly greater
than 0.157 ± 0.02 for (INF-,ID-) with p=0.032 (Fig. 4c).

Other affective measures: The analysis results for the other affective
scores were not significantly different across the different conditions: smile (χ2(3)
= 2.986, p = 0.091), brow raise (χ2(3) = 2.602, p = 0.080), brow furrow (χ2(3)
= 1.391 p = 0.842), nose wrinkle (χ2(3) = 1.462, p = 0.924), upper lip raise
(χ2(3) = 2.753, p = 0.178), mouth open (χ2(3) = 1.115, p = 0.273), eye closure
(χ2(3) = 1.394, p = 0.307) and cheek raise (χ2(3) = 2.171, p = 0.092).

Table 2 summarizes the mean scores with their standard deviation for all the
affective features across all the conditions.

6 Discussion and Conclusions

We presented the results from one of the first systematic investigations of users
affective behavior on the migration of the conversational AI agent. We ran a
2x2 between-subjects study in a task-based scenario with 72 participants using
information migration and identity migration as parameters to investigate the
affective behavior of the users. We outlined an affect processing pipeline from
the video footage collected during the study.

We inferred that users expressed most joyfulness and surprise when they saw
their agent in a different embodiment and the agent remembered their prefer-
ences and context (both the information and identity of the agent was
migrated). This was corroborated by the participant’s comments during the
post-study interview. Participant P21 said “I think it remembers that I am anx-
ious about the interview. That means it cares about me and makes it different
from, for example, a coffee machine.” Another participant, P34, said, “Being
familiar with Alexa, allowed me to trust Receptionist and TV agent”.

The users were most disappointed and angry when they found out that their
information was shared with different agents (information was migrated but
identity was not migrated). P51 said ”I did not trust the agents well because
they seemed to share all of the information about me, and I did not want to
disclose more.”. Also, P39 said ”... especially after the receptionist agent knew
what I told Alexa, I no longer trusted Alexa”. The insights gained from this
research could be used for further development of affective migratable systems.
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IVA 2011. LNCS (LNAI), vol. 6895, pp. 282–295. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23974-8 31

27. Ono, T., Imai, M., Nakatsu, R.: Reading a robot’s mind: a model of utterance
understanding based on the theory of mind mechanism. Adv. Robot. 14(4), 311–
326 (2000)

https://doi.org/10.1007/978-3-319-47437-3_82
https://doi.org/10.1007/978-3-642-23974-8_31


The Self-Evaluation Maintenance Model
in Human-Robot Interaction: A Conceptual

Replication

Mira E. Gruber(B) and P. A. Hancock

University of Central Florida, Orlando, USA
miraeg@knights.ucf.edu, peter.hancock@ucf.edu

Abstract. Understanding human-robot social comparison is critical for creating
psychologically safe robots (i.e., robots that do not cause psychological discom-
fort). However, there has been limited research examining social comparison pro-
cesses in human-robot interaction (HRI).We aimed to conceptually replicate prior
research suggesting that the Self-Evaluation Maintenance (SEM) model of social
comparison applies to HRI. In short, the SEM model describes the mechanisms
in which others can impact one’s self-evaluation. We applied the model to an
online presentation of a humanoid robot, RUDY. We predicted that task relevance
would moderate the relationship between the robot’s performance level and par-
ticipant evaluations of the robot. When RUDY engaged in a low-relevance task
(guessing someone’s age), participantswould evaluateRUDYaccurately (i.e., they
would rate RUDYmore positively when it performed well than when it performed
poorly). However, when RUDY engaged in a high-relevance task (understand-
ing how people feel), participants would evaluate RUDY inaccurately (i.e., they
would rate RUDY negatively regardless of its actual performance). Contrary to
our hypothesis, we found that participants in both the high- and low-relevance
conditions evaluated RUDY accurately. Our results suggest that SEM effects may
not generalize to all types of tasks and robots. A “highly relevant” task might
mean something different depending on the exact nature of the human-robot rela-
tionship. Given the inconsistency between these findings and past research, dis-
cerning the boundary conditions for SEM effects may be crucial for developing
psychologically safe robots.

Keywords: Human-robot interaction · Self-evaluation · Social comparison

1 Introduction

As the use of robots expands into social domains [1], understanding the psychological
impact of robots becomes increasingly important. Social robots are “physically embodied
autonomous agents that communicate and interact with humans on a social level” [1,
p. 2]. Social robots have the potential to benefit sectors such as healthcare and education
[2], but much remains unknown about the psychological short- and long-term effects of
these robots [3]. Social psychology offers potential insights into this problem.Decades of
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social psychology research have focused on how humans interact with other humans [4].
Consequently, the field has produced theories and models to understand human-human
social interaction. However, human-robot social interaction is relatively unexplored. In
the present study, we sought to apply one social psychologymodel—the Self-Evaluation
Maintenance (SEM) model—to interactions with a social robot.

1.1 The SEM Model

The SEM model is built on the premise that people seek to maintain or increase their
positive self-evaluations and that other people can impact their self-evaluations [5].
Interacting with another person may activate a reflection (i.e., enhancing one’s positive
self-evaluation) or comparison process (i.e., weakening one’s positive self-evaluation).
We will use “subject” to refer to the person engaging in the reflection or comparison
process and “target” to refer to the person to whom the subject is comparing themselves.
Whether a person will engage in these processes depends on three variables: task rele-
vance, the performance level of the target and subject, and the psychological closeness
of the subject and target. Task relevance refers to the importance of a task or domain
to the subject’s identity [5]. Performance level refers to how well the target and subject
perform on a given task [5], and psychological closeness refers to “feelings of attachment
and perceived connection toward another person” [6, p. 16].

Reflection may ensue when someone who is psychologically close to the subject
performs well on a domain that is of low relevance to the subject’s identity [5]. This
process boosts the subject’s positive self-evaluation [5] and can be described as “basking
in the reflected glory of another” [7]. In contrast, a comparison process may occur when
someone who is psychologically close to the subject performs well on a highly self-
relevant domain [5]. In turn, the subject’s self-evaluation decreases, as the subject may
feel threatened by and inferior to the target [5]. A person engaged in a comparison process
may attempt to repair their self-evaluation by understating the relevance of the domain
(e.g., ‘It’s not actually that important to me’), impeding the target’s good performance
(e.g., through sabotage), attempting to improve their performance [8], or by physically or
psychologically distancing themselves from the target [9–11]. In brief, the SEM model
is a tool for predicting when another person will threaten one’s self-evaluation and how
one might respond to those threats.

1.2 The SEM Model in HRI

To date, only one study has applied the SEMmodel to HRI. Kamide and colleagues [12]
proposed that social comparison processes might explain anxiety toward robots. The
authors only examined two SEM variables: performance level and task relevance. Dur-
ing the study, participants viewed a presentation given by a humanoid robot. To manip-
ulate performance level, the robot displayed varying degrees of nonverbal behaviors
designed to keep the viewers’ attention. Task relevance was measured via participants’
self-reported importance of giving presentations.

The authors found that higher task relevance led to lower evaluations of the robot,
even when the robot performed well, suggesting that users may feel threatened when
a robot engages in a highly important task. In turn, the user adopts a more negative
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impression of the robot in an attempt to boost their self-evaluation. These negative
feelings are undesirable, as they may lead to psychological discomfort and anxiety. The
authors state that “if the service the robot provides has significant meaning to the self
of the user, the user will be threatened by the robot. However, if the service is unrelated
to the self, then an excellent job by the robot will be admitted as safer” [12, p. 197].
These findings are a concern for HRI, as social robots may be designed to carry out
tasks that are of high self-relevance to the user. Caregiving robots are one example of
this concern. Human caregivers perform tasks that are intimately related to the care
recipient, and providing care is also important to the caregiver [13]. Thus, caregiving
robots may perform tasks that are self-threatening to both the recipient of care and their
human caregiver.

1.3 Present Study

Our goal was to conceptually replicate Kamide and colleagues’ study [12] via an online
presentation and evaluation of RUDY, a humanoid social robot. If the replication is
successful, the present study will provide further evidence for the application of the
SEM model in HRI, and that Kamide and colleagues’ [12] findings can be generalized
to other types of tasks and robots. We sought to induce SEM effects with a different
robot, performance level manipulation, and task relevance manipulation than what was
used in Kamide and colleagues’ study [12]. Given this goal, we proposed the following
hypotheses:

H1: RUDY’s performance level will affect participant evaluations of RUDY. Specifi-
cally, RUDY will be rated as more (a) Anthropomorphic; (b) Intelligent; (c) Animate;
(d) Likable; and (e) Safer when it performs well compared to when it performs poorly.

H2: Task relevance will moderate the relationship between RUDY’s performance level
and participant evaluations of RUDY. Specifically, when RUDY engages in a low-
relevance task, participants will rate RUDY as more (a) Anthropomorphic; (b) Intel-
ligent; (c) Animate; (d) Likeable; and (e) Safer when it performs well compared to when
it performs poorly. However, when RUDY engages in a high-relevance task, there will
be no difference in ratings of RUDY when it performs well compared to when it per-
forms poorly. Additionally, RUDY’s ratings for the high-relevance task will be lower
than when RUDY performed the low-relevance task well.

2 Method

2.1 Participants

Recruitment. One-hundred and ninety-four participants were recruited through the
online research participation system (SONA) at the University of Central Florida (UCF).
UCF’s Institutional Review Board reviewed and approved the study.
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Exclusion Criteria. Participants were excluded from the final analysis if (1) they did
not complete all study tasks; (2) they did not pass the attention checks; (3) they were
assigned the high-relevance condition but indicated that the task was not important to
them; or (4) they were assigned the low-relevance condition but indicated that the task
was important to them. The final sample consisted of 147 participants.

Demographics. On average, participants were 20.39 years old (SD = 5.05, Min =
18.00,Max= 48.00). More participants identified as female (58.5%) thanmale (40.1%).
Two participants identified as genderfluid or nonbinary (1.4%). The majority of partici-
pants wereWhite/Caucasian (57.8%), followed by Hispanic or Latino (19.0%), Asian or
Pacific Islander (10.9%), Black or African American (6.8%), Other (4.8%), and Native
American or American Indian (0.7%). All of the participants who responded “Other”
for race indicated that they were biracial or mixed-race.

2.2 Design

We used a two-way between-subjects experimental design. The independent variables
were task relevance (high or low task relevance) and robot performance (good or poor
performance). Thus, participants were randomly assigned to one of four conditions, as
illustrated in Table 1.

Table 1. Study conditions.

Task relevance

High Low

Performance Good Good performance, high task
relevance

Good performance, low task
relevance

Poor Poor performance, high task
relevance

Poor performance, low task
relevance

Negative Attitudes Toward Robots Scale. Participants completed the Negative Atti-
tudes Toward Robots (NARS) Scale [14] as a means of controlling for general feelings
toward robots. The scale consists of three subscales concerning negative attitudes toward
robots: situations of interaction with robots (S1), social influence of robots (S2), and
emotions in interaction with robots (S3). The scale uses a 5-point Likert Scale (Strongly
disagree–Strongly agree) and has 14 items. In the present study, all NARS subscales
were reliable; αS1 = .81, αS2 = .77, αS3 = .84.

Mock Tests. To manipulate task relevance, participants completed either a mock social
sensitivity test (high relevance) or a mock age estimation test (low relevance). The social
sensitivity test ostensibly measured “the personal ability to perceive and understand
the feelings and viewpoints of others” [15] (this is a true definition, though the test
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was fake). Participants were also told that their score was highly indicative of their
social intelligence. The “test” showed 20 pairs of faces. For each pair, participants were
instructed to select the face expressing more of a given emotion. (e.g., “Which person is
expressingmore anger?”). The face images were provided by the Chicago FaceDatabase
[16]. Participants taking the age estimation testwere told that the test assesses their ability
to accurately estimate a person’s age. Using the same 20 pairs of faces, participants were
asked to guess who the older person of the pair was. Although previous SEM studies
have successfully used mock tests to manipulate task relevance, [8, 17], this is the first
HRI study to use this manipulation.

Personal Importance Questionnaire. Participants completed an 11-item question-
naire to assess how important various domains were to them. Two items assessed the
personal importance of social intelligence, and one item assessed the personal impor-
tance of being able to estimate someone’s age. The rest of the items were filler items.
Participants responded to the items on a 5-point Likert Scale (Not at all important– Very
important). The inclusion of a personal importance measure was based on previous SEM
studies [12, 17], and this measure served as a task relevance manipulation check.

Robot Presentation. Participants were told that they would be evaluating a new social
companion robot, RUDY and that their evaluation would help developers optimize the
robot. The image of RUDY (see Fig. 1) was provided with permission by INF Robotics
Inc. [18]. In the good-performance condition, participantswere told thatRUDYanswered
18 out of 20 questions correctly on the same test they took while they (the participant)
answered eight out of 20 questions correctly and that RUDY’s social intelligence/ability
to estimate age was better than theirs. The scores and statement about abilities were
swapped for the poor-performance condition.

Fig. 1. Image of RUDY used in all study conditions.

Attention Checks. Participants were given two attention checks. Following the mock
test, participants were instructed to select the correct name of the test. After viewing
RUDY, participants were asked to select the correct name of the robot prototype.
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Godspeed Questionnaire. To evaluate the robot, participants completed the 24-item
Godspeed Questionnaire [19]. This measure consists of five subscales: Anthropomor-
phism, Perceived Intelligence, Animacy, Likeability, and Perceived Safety. For each
subscale, participants rated their impressions of RUDY on various characteristics on
a semantic differential scale (0–5) (e.g., for Anthropomorphism: fake–natural). In the
present study, the Godspeed subscales of Perceived Intelligence (α = .86), Animacy (α
= .80), Likeability (α = .91), and Perceived Safety (α = .77) were sufficiently reliable,
while the Anthropomorphism subscale was not (α = .66).

2.3 Procedure

Participants accessed the study through SONA, and the study was conducted on
Qualtrics. First, participants completed the Personal Importance Questionnaire and the
NARS. Next, they received their assigned mock test and subsequent attention check,
followed by the presentation of RUDY, their test score compared to RUDY’s score, and
the statement on whether RUDY’s ability was better or worse than theirs. Next, they
completed the robot-name attention check and the Godspeed Questionnaire followed
by demographic items. Finally, participants were debriefed, reassured that the test they
took was completely fake, and thanked for their time.

3 Results

Weused IBMSPSSStatistics [20] to analyze the data.We computed two-wayAnalysis of
Covariances (ANCOVAs) to examine the effect of performance level and task relevance
on each Godspeed subscale while controlling for the three NARS subscales. None of
the NARS subscales were strongly correlated (i.e., r < .80). We conducted checks on
the ANCOVA assumptions, and any assumption violations are discussed below.

3.1 Anthropomorphism

The normality of residuals assumption was violated. The residuals were positively
skewed for the good-performance-low-relevance group according to a Shapiro-Wilk
(S-W) test, W (41) = 0.88, p < .001. However, we continued the analysis as planned
because ANCOVA is relatively robust to violations of normality [21]. After controlling
for negative attitudes toward robots, there was a significant main effect of performance
level, F(1, 140) = 4.03, p = .047, partial η2 = .03. There was not a significant main
effect of task relevance (F(1, 140) = .02, p = .886, partial η2 = .00), and there was
not a significant interaction between performance level and task relevance, F(1, 140) =
0.31, p = .576, partial η2 = .00. Estimated marginal means indicated that RUDY was
rated as more Anthropomorphic when it performed well (MAdjust = 9.66, SE = .34) than
when it performed poorly (MAdjust = 8.70, SE = .33) (see Table 2).
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Table 2. Unadjusted means, standard deviations, adjusted means, and standard errors for
anthropomorphism with NARS S1, S2, and S3 as covariates.

Group: performance level by task relevance n M SD MAdjust SE

Good performance (total) 71 9.606 3.24 9.658 .343

Good performance, High relevance 30 9.767 2.897 9.759 .525

Good performance, Low relevance 41 9.488 3.501 9.558 .445

Poor performance (total) 76 8.750 2.515 8.702 .328

Poor performance, High relevance 35 8.571 2.570 8.533 .483

Poor performance, Low relevance 41 8.902 2.488 8.870 .443

3.2 Perceived Intelligence

The normality of residuals assumption was violated. The residuals were negatively
skewed for the good-performance-low-relevance group according to a S-W test,W (41)
= 0.93, p = .010. Again, we continued the analysis as planned because ANCOVA is
relatively robust to violations of normality [21]. After controlling for negative attitudes
toward robots, there was a significant main effect of performance level, F(1, 140) =
28.53, p < .001, partial η2 = .17. There was not a significant main effect of task rel-
evance (F(1, 140) = .04, p = .849, partial η2 = .00), and there was not a significant
interaction between performance level and task relevance, F(1, 140) = 1.72, p = .192,
partial η2 = .01. Estimated marginal means indicated that RUDY was rated as more
Intelligent when it performed well (MAdjust = 19.04, SE = .51) than when it performed
poorly (MAdjust = 15.24, SE = .49) (see Table 3).

Table 3. Unadjusted means, standard deviations, adjusted means, and standard errors for
perceived intelligence with NARS S1, S2, and S3 as covariates.

Group: performance level by task relevance n M SD MAdjust SE

Good performance (total) 71 18.915 3.725 19.041 .512

Good performance, High relevance 30 19.367 3.211 19.444 .784

Good performance, Low relevance 41 18.585 4.068 18.638 .664

Poor performance (total) 76 15.342 4.669 15.241 .490

Poor performance, High relevance 35 14.800 4.733 14.703 .722

Poor performance, Low relevance 41 15.805 4.622 15.779 .662

3.3 Animacy

No assumptions were violated. After controlling for negative attitudes toward robots,
there was a significant main effect of performance level, F(1, 140) = 11.12, p = .001,
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partial η2 = .07. There was a not significant main effect of task relevance (F(1, 140)
= 0.06, p = .801 partial η2 = .00), and there was not a significant interaction between
performance level and task relevance, F(1, 140) = 0.02, p = .876, partial η2 = .00.
Estimated marginal means indicated that RUDY was rated as more Animate when it
performed well (MAdjust = 14.53, SE = .50) than when it performed poorly (MAdjust =
12.23, SE = .48) (see Table 4).

Table 4. Unadjustedmeans, standard deviations, adjustedmeans, and standard errors for animacy
with NARS S1, S2, and S3 as covariates.

Group: performance level by task relevance n M SD MAdjust SE

Good performance (total) 71 14.451 4.067 14.531 .496

Good performance, High relevance 30 14.300 4.348 14.390 .760

Good performance, Low relevance 41 14.561 3.899 14.672 .644

Poor performance (total) 76 12.329 4.319 12.231 .475

Poor performance, High relevance 35 12.343 4.439 12.198 .700

Poor performance, Low relevance 41 12.317 4.269 12.263 .642

3.4 Likeability

No assumptions were violated. After controlling for negative attitudes toward robots,
there was not a significant main effect of performance level, F(1, 140)= 0.29, p= .592,
partial η2 = .00. There was not a significant main effect of task relevance (F(1, 140)
= 0.14, p = .706, partial η2 = .00), and there was also not a significant interaction
between performance levesl and task relevance, F(1, 140) = 0.75, p = .388, partial η2

= .01. Estimated marginal means indicated that participants rated RUDY just as Likable
when it performed well (MAdjust = 17.95, SE = .47) compared to when it performed
poorly (MAdjust = 17.60, SE = .45) (see Table 5).

Table 5. Unadjusted means, standard deviations, adjusted means, and standard errors for
likeability with NARS S1, S2, and S3 as covariates.

Group: performance level by task relevance n M SD MAdjust SE

Good performance (total) 71 17.817 3.951 17.954 .470

Good performance, High relevance 30 18.300 4.219 18.361 .720

Good performance, Low relevance 41 17.463 3.756 17.546 .610

Poor performance (total) 76 17.684 3.930 17.602 .449

Poor performance, High relevance 35 17.543 3.752 17.440 .663

Poor performance, Low relevance 41 17.805 4.118 17.765 .608
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3.5 Perceived Safety

As there was a significant interaction between performance level and the NARS S2
and S3 covariates, the homogeneity of regression slopes assumptions was violated. In
response, we removed NARS S2 and S3 from the analysis. After controlling for negative
attitudes toward robots (S1 only), there was not a significant main effect of performance
level, F(1, 142)= 1.94, p= .166, partial η2 = .01. There was not significant main effect
of task relevance (F(1, 142) = 0.00, p = .968, partial η2 = .00), and there was also
not a significant interaction between performance level and task relevance, F(1, 142) =
0.97, p = .326, partial η2 = .01. Estimated marginal means indicated that participants
rated RUDY just as safe when it performed well (MAdjust = 9.71, SE = .30) compared
to when it performed poorly (MAdjust = 10.28, SE = .38) (See Table 6).

Table 6. Unadjusted means, standard deviations, adjusted means, and standard errors for
perceived safety with NARS S1 as a covariate.

Group: performance level by task relevance n M SD MAdjust SE

Good performance (total) 71 9.704 2.504 9.707 .295

Good performance, High relevance 30 9.533 2.662 9.514 .448

Good performance, Low relevance 41 9.829 2.407 9.900 .384

Poor performance (total) 76 10.290 2.737 10.276 .282

Poor performance, High relevance 35 10.514 2.894 10.485 .415

Poor performance, Low relevance 41 10.098 2.615 10.066 .383

4 Discussion

The goal of this study was to conceptually replicate the findings of Kamide and col-
leagues’ [12] study. Our first hypothesis was that RUDY’s performance level would
affect participant evaluations of RUDY on the five Godspeed Questionnaire dimensions.
Specifically, we predicted that RUDY would be rated higher on the five dimensions
when it performed well than when it performed poorly. This hypothesis was partially
supported; RUDY was rated as more Anthropomorphic, more Intelligent, and more
Animate when it performed well, but there were no differences in Likeability and Per-
ceived Safety scores. Our second hypothesis was that task relevance would moderate
the relationship between performance level and evaluations of RUDY. Specifically, we
predicted that when RUDY executed a low-relevance task, participants would evaluate
RUDY accurately (i.e., participants would rate RUDY higher on the five dimensions
when it performed well compared to when it performed poorly), but inaccurately when
RUDY executed a high-relevance task (i.e., there would be no difference in evaluations
between the good and poor performances). This hypothesis was not supported, as there
were no significant interactions between task relevance and performance level.
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4.1 Performance Level

The effect of performance level was only significant for Anthropomorphism, Ani-
macy and Perceived Intelligence. For Anthropomorphism, it is unlikely that the well-
performing robot was rated as more humanlike in a physical sense (e.g., possessing a
humanlike appearance), but it is possible that participants viewed RUDY as being more
humanlike in that it could successfully accomplish typically human tasks (i.e., identify-
ing emotion or guessing age). Similarly, RUDY may have been rated as more animate
(or lifelike) not in a physical sense, but in the sense that RUDY was better at reacting
to stimuli when it ostensibly took the Social Sensitivity or Age Estimation test. Unsur-
prisingly, RUDY was rated as more intelligent when it did well on the mock tests than
when it did poorly. If the mock tests supposedly measured some aspect of intelligence,
then it follows that participants rated the well-performing robot as more intelligent.

4.2 Comparison with Original Study

There were differences between the present study and the original [12] that may have
contributed to the dissimilar results. The present study took place entirely online with a
static image of the robot, whereas Kamide and colleagues’ [12] study was conducted in
person andwith a physically embodied robot. Prior research indicates people view social
robots more negatively when viewed online compared to in-person [22]. Using an image
of a robot rather than a physically embodied robot may have also stifled participants’
abilities tomake comparisons with RUDY; the spatial and temporal distance fromRUDY
may have prohibited participants from considering RUDY as a being to which they could
compare themselves. Although this may explain why there was not a main effect of
performance level on all the Godspeed dimensions, this difference fails to account for
why thewell-performing robot was still ratedmore positively on three of the dimensions.
Also, in the present study, participants were told that they would be helping to optimize
the robot. These instructions may have led participants to generate more accurate or
socially desirable responses, even if there were initial threats to their self-evaluation.

4.3 Limitations

The present study encountered several limitations. More participants in the high-
relevance condition failed the test-name attention check than those in the low-
relevance condition, possibly because it was more difficult to distinguish between
the “psychological-sounding” correct answer (social sensitivity test) and the other
“psychological-sounding” answer choices (cognitive dissonance test, attachment test,
and stereotype Test) compared to when the correct answer was simply “age estimation
test.” Overall, the results did not vary greatly after removing the test-name attention
check as an exclusion criterion. The only significant difference was, unlike the original
sample, RUDY was rated just as Anthropomorphic when it performed well compared
to when it performed poorly. Without knowing whether participants failed this attention
check because it was too difficult or because they were not paying adequate attention,
we must proceed with caution when interpreting the results of the Anthropomorphism
subscale.
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Additionally, participants may have questioned the legitimacy of the tests. If par-
ticipants believed the tests to be fake or they doubted RUDY’s score on the test, then
they may have not seen RUDY as a threat to their self-evaluation. Thus, social compar-
ison processes did not occur. Future studies ought to include checks to assess whether
participants are suspicious of the task relevance and performance level manipulations.

Another limitation was that participants did not physically interact with RUDY or
view its performance first-hand. Instead, participants were given a photograph of RUDY
and a brief description of the robot and its performance. This limitation begs the question,
was this truly human-robot interaction? This question is certainly up for debate; human-
robot impression formationmaybe closer to the true nature of the current study.However,
wepropose that examining evaluations of robots via photographs andwritten descriptions
is not without merit or precedent. For instance, Eyssel and Kuchenbrandt [23] showed
participants photographs of a robot and described it as having either in-group or out-
group characteristics. Participants expressed more willingness to live with and talk to
the robot when it ostensibly possessed in-group features. If information about a robot
can shape attitudes and, consequently, impact one’s willingness to interact with it, this
is a valuable area to pursue.

4.4 Conclusion

Unlike the original study, the present study failed to show SEM effects. Our results
show what one might “expect” to see; the robot that performed well was, overall, rated
more positively than the one that performed poorly. A concern put forth by Kamide and
colleagues [12] was that robots performing highly relevant tasks may be psychologically
unsafe; however, the present study suggests that the nature of the task and the mode of
interaction with the robot may influence whether SEM effects occur. Future research
ought to examine what is deemed a self-relevant task when it comes to HRI, especially
if we presume that certain social robots, such as caregiving robots, perform highly self-
relevant tasks. Additionally, we, like Kamide and colleagues’ [12], did not manipulate
psychological closeness, which is a key piece of the SEM model [8]. Including this
variable in future studies may help clarify under what conditions SEM processes occur
inHRI.Also, if comparison processes do occur inHRI, psychological closenessmayplay
a key role in preventing negative self-evaluations. For example, a psychologically distant
robot completing a self-relevant task might be less threatening than a psychologically
close robot completing the same task. As social robots become more prevalent in our
societies, it will be important to understand how psychological effects present in human-
human interaction—such as those described by the SEMmodel—map onto human-robot
interaction, or whether new models will be required to understand these effects.

Acknowledgements. We would like to express our sincere thanks to INF Robotics Inc. for
allowing us to use a photograph of their robot, RUDY.
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Abstract. Homophily, a person’s bias for having ties with people who
are similar to themselves in social ways, has a vital role in creating a
social connection between people. Studying homophily in human-robot
interactions can provide valuable insights for improving those interac-
tions. In this paper, we investigate whether similar interests have a pos-
itive effect on a human-robot interaction similar to the positive impact
it can have on human-human interaction. We explore whether sharing
similar interests can affect trust. This experiment consisted of two NAO
robots; each gave differing speeches. For each participant, their national
origin was asked in the pre-questionnaire, and during the sessions, one
of the robot’s topics was either personalized or not to their national
origin. Since one robot shared a familiar topic, we expected to observe
bonding between humans and the robot. We gathered data from a post-
questionnaire and analyzed them. The results summarize the hypotheses
here. We conclude that homophily plays a significant role in human-robot
interaction, affecting trust in a robot partner.

Keywords: HRI · Homophily · Trust

1 Introduction

People tend to connect with others who are similar to themselves [1]. This ten-
dency, referred by social scientists as homophily, manifests itself with similar-
ities due to gender, national origin, social class background, and other socio-
demographic, behavioral and interpersonal characteristics [2]. Individuals in
homophilic relationships share common characteristics (such as beliefs, values,
education) that make communication and relationship formation easier. In HRI,
a robot needs to create a smooth interaction with its audience in order to per-
form well in social settings. We wish to investigate if robots can benefit from
the same social tendency and leverage from homophily in their interactions. We
proposed an experiment where a social robot acts in such a way that implies
homophily while another robot does not. Then we observed how the person will
react toward the robots. We expected that achieving homophily, or bonding
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based on a common interest or implying similarity, between a human user and
a robot, holds a promise of improvement in trust between them.

The similarity between humans and robots is an essential facilitator of posi-
tive attitudes toward robots [3]. For instance, Bernier and Scassellati [4] showed
that the more an individual believes that a robot is similar to them, the more
they like and prefer to interact with them. Also, research of Bowman et al. [3]
found that individuals tend to like and build healthier emotional attachment
toward robots that appear to have a similar personality to theirs. Finding
homophily between individuals is a useful for human-robot interaction. There-
fore, we wanted to investigate if this phenomenon could occur between humans
and robots as well.

In this paper, we explore homophily between a person and a robot from a
questionnaire by measuring common interest, bonding, and similarity between a
person and a robot. The purpose of this work is to determine whether similari-
ties between a robot and a person might improve social connection and trust. If
such a link exists, then homophily would be an important physical and behav-
ioral design consideration for effective HRI; this could lead to an improved first
impression of a robot, which might eventually help humans communicate and
interact with the robot more easily.

2 Background

Homophily in HRI: Homophily is a term familiar in social sciences. In
Rhetoric and Nichomachean Ethics, Aristotle noted that people “love those who
are like themselves” [5]. It was also observed by Plato that “similarity begets
friendship” [6]. Back in 2001, McPherson et al. [2], presented a principle named
homophily. It states that “a contract between similar people occurs at a higher
rate than among dissimilar people.” Overall homophily can be differentiated
into two types: 1) value homophily and 2) status homophily. Value homophily
is based on attitudes, beliefs, and values. Status homophily is based on national
origin, sex, age, and characteristics like religion, education, occupation.

Many research in the robotic world also worked on the common factors that
a robot and a human can share. As an example, propensities of preference for
Human-Robot Interaction (HRI) according to different personalities and facial
expressions of human and robot are presented in A paper of Jung et al.[7]. Two
types of personalities: extrovert and introvert were applied to the robot named
KMC-EXPR to observe the impact of different personality type in interaction
between humans and robots. Also Kahn’s work [8], a humanoid robot named
Robovie was used to interact with children. After each 15 min session, the exper-
imenter interrupted the session and sent the robot to the closet. Later, it was
observed how the children felt towards the robot in many aspects.

The effect of verbal and nonverbal behavior based on personality traits in
human-robot interaction has been observed [9]. A NAO robot was used to
validate their model that a person preferred more robots to interact with if
they both had the same personality traits. Finally, a study from Heerink [10],
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shows that age, gender, education, and computer experience had an influence
on robot acceptance by older adults. Our prior work showed that establishing
common-ground using ice-breaker tasks helped a person identify with a robot
team-member [11]. Witnessing verbal mistreatment of a robot also resulted in
increased perception of the robot’s emotional ability [12].

Recent work investigated if a human user would help a robot being bullied
by other humans when social bonding has been applied in human-robot’s inter-
actions [13]. Similar to our study, they used favourite food to contextualize a
human and robot conversation so the person finds a similarity with the robot.
Their results did not prove their hypothesis, on the other hand our findings
suggest that a shared similarity can improve the sympathy in human and robot
interaction.

Trust in HRI: It is observed that people tend to trust more easily those
people who appear similar to themselves. By similarity, it may include common
values, membership in a defined group (such as manufacturing departments, a
local church, gender), shared personality traits, etc. [14]. In that research, when
people evaluate others’ trustworthiness, cues such as gender [15], age [16], race,
and nationality influence the initial assessment.

Salem et al. [17], conducted an experiment in which participants interacted
with a home companion robot in one of two experimental conditions named cor-
rect mode and faulty mode while tapping different dimensions of trust based on
a variety of unusual collaborative tasks. It was observed that the robot’s per-
formance did not influence participants’ decisions to comply with its request.
Hancock et al., evaluated the effects of the human, robot, and environmental
factors on perceived trust in human-robot interaction [18]. Human-related fac-
tors depend on ability-based characteristics, robot-related factors are based on
performance and attributes, and environmental factors include team collabora-
tion and tasking. In this study [19], whether a robot’s vulnerable behavior can
create ripple effects on a team and increase team physiological safety and human-
human trust-related behavior were explored. It was seen that the ‘ripples’ of the
robot’s vulnerable behavior influences not only team member’s interaction with
the robot but also team members’ human-human-trust-related interaction with
each other.

3 Study Design

In this user study, we aimed to measure the perceived similarities between a
person and a robot when they shared a common interest. As our second interest,
we were looking into the effect of homophily on trust human-robot trust. We
proposed two hypotheses on similarity and trust:

– H1: A person will feel a similarity (homophily) to the robot in a human-robot
interaction when they share a common interest

– H2: There is a correlation between homophily and trust in human-robot
interaction
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Our two hypothesis would be tested by making two experimental conditions
and analysing data.

3.1 Experiment Conditions

In this section, we explain how we developed two conditions for testing out the
hypothesis. Each participant experiences condition one in which the person finds
similarity to the robot and condition two where it is the opposite. There can be
different homophily categorizations based on age, gender, national origin, socioe-
conomic state, ethnicity, attitude, etc. However, we chose ‘National Origin’ as our
divider for different groups. Since we wanted to find a food known by the person,
we considered national origin which means the nation where a person was born,
or the country of origin that person’s ancestors came from. And, they may know
food associated with that area directly or by their family. The correlation between
national origin and homophily is also higher than gender [20] for instance. For this
study, to more tightly control potential participant differences, we chose only one
age range (18-35) and one education level (university students).

The experiment was conducted in a room in one of the libraries on the Univer-
sity of Nevada, Reno campus. For the experiment, we used two NAO robots. We
distinguished the robots to the participants as Red NAO and Blue NAO based
on their color. Here, the Blue and the Red NAO were the Homophilic Condition
Robot and the Non-Homophilic Condition Robot respectively. Figure 1a shows
the set up of the robots during the user study. In the pre-questionnaire form
(Table 2), general information such as age, gender, major, and national origin
information were asked of the participant.

3.2 Experiment Task

At first, before staring our experiment we explained our experiment in brief
to each participant. We let them know that all collected data would remain
anonymous. If the participant agreed to take part in the experiment then we
continued with the rest of the experiment.

Our proposed method was divided into 3 major steps. These are: 1) Pre
Questionnaire, 2) Speech Presentation, 3) Post Questionnaire

– Pre Questionnaire. At first, the participant was given a pre questionnaire
form (Table 2) which included demographic questions such as age, gender,
major, and national origin information. We used the national origin informa-
tion to categorize participants.
We categorized the participants into one of 12 broad national origins: Euro-
pean, Middle East, North African, African, North American, South American,
Central American, Southeast Asia, East Asian, West Asian, South Asian, and
Other. The name of the national origin category in the U.S. was collected from
the United States Census Bureau data [21].
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Table 1. Homophilic condition for
each national origin category

1 What is your age?

2 What is your gender?

1.Male 2.Female 3.Other

3 What is your major and degree?

4 Are you familiar with robots?

5 Choose which national origin best
represents you:

1. Europe

2. Middle East

3. North African

4. African

5. North American

6. South American

7. Central American

8. Southeast Asia

9. East Asian

10. West Asian

11. Indian

12. Other

Table 2. Pre questionnaire

National Origin Homophilic Condition

Europe Pirozhki

Middle East Kebab

North African Coucous

African Bobotie

North American Cheese Steak

South American Ceviche

Central American Pupusa

Southeast Asia Nasi Campur

East Asia Sichuan Cuisine

West Asia Kebab

South Asia Biriyani

Others Ice Cream

– Speech Presentation. We designed an interaction between human and
robot where two NAO humanoid robots gave speech presentations in front of
the participant individually (Fig. 1b) where the robots were tele-operated by
the experimenter from the other room. The participants did not know about
the existence of the robot’s operator. During each session, one robot gave a
presentation on the homophilic condition related to the participant’s national
origin shown in Table 1. After that, the remaining robot gave a presentation
on a non-homophilic condition.
The topic of the homophilic condition of the presentation for each participant
was selected based on the national origin information given by the specific
participant in the pre-questionnaire. The famous food dishes from each region
of the national origin was chosen as the homophilic condition for each national
origin group (Table 1). The robot gave a speech presentation on bread as the
non-homophilic condition which is familiar to every national origin category.
Samples of the speeches by the homophilic condition robot and the non-
homophilic condition robot are given below respectively, where the homophilic
condition robot’s speech is about ‘Kebab’ towards the participants categorized
into the ‘Middle East’ and the non-homophilic condition robot’s speech is
about ‘Bread.’
• Homophilic Condition Robot: ‘Hi, I am Blue NAO. I am going to talk

about a dish named Kebab. Kebab is a very popular dish all around the
world. Shish Kebab or doner Kebab can be two familiar names of Kebab.
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(a) Red and Blue NAOs used for the
experiment

(b) The participant listening to the
robot’s speech

Fig. 1. Experimental setup

It is often served during special occasions. It can be made with ground
meat or seafood, even sometimes with fruits and vegetables. Traditional
meat of Kebab is most often mutton or lamb, but regional recipes may
include beef. Sometimes Onions are often added with Kebab to enhance
the taste. Kebab is served with various dishes according to each recipe.
Kebab with naan is very popular in some regions. Yogurt drink is often
served with Kebab. It is also served with rice, grilled tomatoes, tabbouleh
salad, or bread. There are many restaurants in Reno where we can find
Kebab, and they are delicious. Well, I hope you enjoyed my speech.’

• Non-Homophilic Condition Robot: ‘Bread is a staple food prepared from a
dough of flour and water, usually by baking. Throughout recorded history,
it has been popular around the world and is one of the oldest artificial
foods, having been of importance since the dawn of agriculture. Propor-
tions of types of flour and other ingredients vary widely, as do modes of
preparation. As a result, types, shapes, sizes, and textures of bread differ
around the world. Bread may be leavened by processes such as reliance on
naturally occurring sourdough microbes, chemicals, industrially produced
yeast, or high-pressure aeration. Some bread is cooked before it can leaven,
including for traditional or religious reasons. Non-cereal ingredients such
as fruits, nuts and fats may be included. Commercial bread commonly
contains additives to improve flavor, texture, color, shelf life, nutrition,
and ease of manufacturing. Also, bread has a social and emotional signif-
icance beyond its importance as nourishment. It plays an essential role in
religious rituals and secular culture. Well, I hope you enjoyed my speech.’

– Post Questionnaire
Each speech took less than 3 min. After listening to these presentations one
after another, the participant filled out a post-questionnaire form. There were
questions regarding homophily, trust, and provided speeches. The question-
naire was divided into two parts. First part was observing the effect of the
speech on the trust by asking each participant to choose one of the robots to
pick one snack for themselves from the other room.
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Table 3. Post-questionnaire

Category Question Type

Homophily The Robot was similar to me (1–5)

The Robot thinks like me (1–5)

The Robot behaves like me (1–5)

The Robot and I had a common interest (1–5)

I felt a bond with the Robot while it was speaking (1–5)

Being suspicious The Robot is deceptive (1–5)

The Robot behaves in the underhanded manner (1–5)

I am suspicious of the Robot’s intent,action or outputs (1–5)

I am wary of the Robot (1–5)

The Robot’s actions will have a harmful or injurious
outcomes

(1–5)

Security I am confident in the Robot (1–5)

The Robot provides security (1–5)

Trust The Robot is dependable (1–5)

The Robot is reliable (1–5)

I can trust the Robot (1–5)

Familiarity I am familiar with the Robot (1–5)

Topic Are you familiar with the blue Robot talked about? (1–5)

Which speech did you find more interesting? (1–5)

Table 4. One-sample test (Test value = 3)

t df Sig. (2-tailed) Mean Difference 95% Confidence Interval

Lower Upper

Common Interest 4.858 15 0.000 0.938 0.53 1.35

Felt Bonding 2.551 15 0.022 0.688 0.11 1.26

Similarity 3.162 15 0.006 0.500 0.16 0.84

The other part consisted of questions to measure the degree of both homophily
and trust (see Table 3). This questionnaire was adapted from [22] and Jian
et al. [23] to measure homophily and trust respectively. We also added some
extra questions related to this experiment that would help us to analyze the
answers. All the questions in the questionnaire are based on five-point Likert
scale.

4 Results and Analysis

Details of experiment results and analysis are presented in this section. We
analyzed data from questionnaires in order to support or refute our hypotheses
presented above.
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Participants were gathered from the University of Nevada, Reno campus
area. Most of the participants’ age ranged from 18 to 35. We initially recruited
19 participants, discard three participants’ data due to robot malfunctions. We
used the remaining 16 participants in our analysis, 6 male, ten female. Among
the participants, there were 4 participants from Southeast Asia, 4 participants
from Middle East, 3 participants from South Asia, 2 participants from East Asia,
2 participants from North America, and 1 participant from Europe.

Fig. 2. (a) Chosen Robot, (b) Familiarity with topics, (c) Chosen robot is the one with
dish topic, (d) More interesting topic

We explored results related to our hypothesis: first, homophily among par-
ticipants (two groups of the ones who chose the Blue NAO and those who chose
the Red NAO); second, correlation between homophily and trust categories in
data.

To have a better understanding of our data, we used pie charts. The data
shown in Figs. 2(a–d) relate to our experiment hypotheses. The majority of the
participants (62.5%) chose the blue robot (homophily condition) in the first part
of post-questionnaire which we mentioned in Sect. 3.2.

We further investigated why some participants preferred the red NAO. Many
countries share one origin, but there is a possibility that people of one origin may
not be familiar with exceptional food. For those participants with no idea about
the unique food, the general topic of ‘bread’ the familiar topic. Fortunately, The
last two questions in the ‘topic’ category of post-questionnaire shown in Table 3
define this issue and clear if the person is familiar with the blue NAO topic or
not, and which topic was more interesting for him/her. So, we used the favorite
topic question to compare ‘chosen robot’ and ‘favorite topic’ to have a new query,
which is ‘the participants whose choice was in line with their favorite topic. If
choosing (Red NAO-homophily condition) and (Blue NAO-homophily condi-
tion), the person gets a 1 and otherwise gets a 0. We observed this group owned



A Study of Status Homophily in HRI 289

Table 5. Correlation

Reliability Trust Similarity Common Interest

Reliability Pearson Correlation 1 .631** 0/316 −0/022

Sig. (2-tailed) 0/009 0/233 0/937

N 16 16 16 16

Trust Pearson Correlation .631** 1 .665** .539*

Sig. (2-tailed) 0/009 0/005 0/031

N 16 16 16 16

Similarity Pearson Correlation 0/316 .665** 1 0/205

Sig. (2-tailed) 0/233 0/005 0/447

N 16 16 16 16

Common interest Pearson Correlation −0/022 .539* 0/205 1

Sig. (2-tailed) 0/937 0/031 0/447

N 16 16 16 16

(a) Similarity-Trust (b) Common Interest-Trust

Fig. 3. Correlation

80% of the population (see Fig. 2(c)). We conclude that participants mostly chose
the robot that was talking about a familiar topic.

To investigate our first hypothesis for each independent variable, we ana-
lyzed the results using one sample t-test, knowing that the experiment has one
sample group with two variables. As seen in Table 4 a one-sample t-test showed
that there is a significant difference in mean ‘common interest’ between the
homophilic and non homophilic conditions (p < .001). There was a significant
difference in mean ‘felt bonding’ between the the homophilic and non homophilic
conditions (p < .001). There was also a significant difference in mean ‘similarity’
between the homophilic and non homophilic conditions (p < .001) (see Table 4).

To explore our second hypothesis, we used Pearson correlation test results
(see Table 5). We found that there is a moderate positive correlation between
‘similarity’ and ‘trust’ variables (r = 0.665, n = 16, p = 0.005) (see Fig. 3a).
There was also a moderate positive correlation between ‘Common Interest’ and
‘Trust’ (r = 0.539, n = 16, p = 0.03) (see Fig. 3b).
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5 Conclusion and Future Work

In this paper, we explored the effect of national origin as homophilic condition
in case of Human-Robot interaction because among all of these ‘national origin’
is a significant social divider today [2].

Our two hypotheses were supported by our results shown in the prior section.
Our first hypothesis, H1: “A person will feel a similarity (homophily) to
the robot in a human-robot interaction when they share a common
interest” was supported via the significant result in the similarity comparison
shown in Table 4. H2: “There is a correlation between homophily and
trust in human-robot interaction” was supported by showing that there
is a correlation between homophily and trust in human-robot interaction in
Table 5. The responses to question one show the preference for the homophily
condition with a correlation for preference in the robot with familiar topic (see
Fig. 2). This question gave participants a forced choice between robots to pick
their prize (snack), which reflects trust in a social situation. We also asked our
participants to explain their reasoning after choosing a robot, and most of the
comments showed that they were trusting the robot that shares the interest or
the topic robot was talking about was more familiar to them. This ‘trust’ can
be contextualized with two comments: “If he were talking about bombs, I would
have not to trust him, but he was talking about Biryani! I love spicy food.”; “I
chose the blue one because I love kebab, and I miss it.”

There is room for more investigation on our proposed hypotheses by having
more participants. We can have more accurate homophily categories and related
speech for each category. That will profoundly affect our results because the more
robot’s speech is close to a person’s homophily group; our results can reflect the
more accurate result.

Acknowledgments. The authors would also like to acknowledge the financial support
of this work by the National Science Foundation (NSF, #IIS-1719027).

References

1. Lazarsfeld, P., Merton, R.: Friendship as social process: a substantive and method-
ological analysis, pp. 18–66 (1954)

2. McPherson, M., et al.: Birds of a feather: homophily in social networks. Ann. Rev.
Sociol. 27(1), 415–444 (2001)

3. Bowman, M., et al.: Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15(5), 795–825 (1993)

4. Bernier,E. P., Scassellati, B.: The similarity-attraction effect in human-robot inter-
action. In: 2010 IEEE 9th International Conference on Development and Learning,
pp. 286–290 (2010)

5. Aristotle. Rhetoric.nichomachean ethics. In: Aristotle in 23 Volumes. Rackman
Translation. Cambridge, Harvard University Press (1934)

6. Plato Laws Twelve Volumes, vol. 11. Bury Translator. Cambridge, Harvard Uni-
versity Press (1968)



A Study of Status Homophily in HRI 291

7. Jung, S., et al.: Personality and facial expressions in human-robot interaction. In:
Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference
on, pp. 161–162. IEEE (2012)

8. Kahn, P.H., et al.: “Robovie, you’ll have to go into the closet now”: children’s
social and moral relationships with a humanoid robot. Dev. Psychol. 48(2), 303–
314 (2012)

9. Aly, A., Tapus, A.: A model for synthesizing a combined verbal and nonverbal
behavior based on personality traits in human-robot interaction. In: 2013 8th
ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp.
325–332 (2013)

10. Heerink, M.: Exploring the influence of age, gender, education and computer expe-
rience on robot acceptance by older adults. In: Proceedings of the 6th International
Conference on Human-robot Interaction, HRI ’11 ACM, pp. 147–148, New York,
NY, USA (2011)

11. Carlson, Z., et al.: Team-building activities for heterogeneous groups of humans
and robots. In: International Conference on Social Robotics (ICSR), pp. 113–123,
Paris, France (2015)

12. Carlson, Z., et al.: Perceived mistreatment and emotional capability following
aggressive treatment of robots and computers. Int. J. Soc. Robot. 11(5), 727–739
(2019)
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Abstract. What if our surrounding built environment could understand our emo-
tions, predict our needs, and otherwise assist us, both physically and socially?
What if we could interact with private and public spaces as if these were our
friends, partners, and companions — “Space Agents”? “Space Agents” are here
defined as robotic, smart built environments designed to be perceived or inter-
acted with as socially intelligent agents. In this paper, we consider Space Agency
both as a “Strong Concept” (a category of generative, intermediate-level design
knowledge), and as a new research field of “socially interactive smart built envi-
ronment” for Social Robotics, HAI, and HCI communities. “Space Agency” is
considered with respect to previous empirical and theoretical works of HCI and
Architecture and also by our own recent work on a socially adaptive wall. We con-
clude this paper by advancing the generalizability, novelty, and substantivity of
“Space Agency” as a Strong Concept, abstracted beyond specific design instances
which designers and researchers, in turn, can use to ideate and generate new design
instances of social robots.

Keywords: Space agent · Strong concept · Socially interactive smart built
environment · Socially intelligent agent · Interaction design theory

1 Introduction

With the rapid development of “industry 4.0,” artificial intelligence is being embedded
and embodied in our everyday lives more, and more pervasively. As a result, human-
machine interactions for conversational agents and social robots are beingwidely studied,
tested, and theorized in HCI communities [1–3]. However, human-machine interactions
for Smart Built Environments (SBE) are still underexplored. SBE are “spaces integrated
with sensors-actuator systems and intelligent control algorithms” [4]. This paper inves-
tigates human-SBE social interactions and relationships through the theoretical lens of
generative intermediate-level design knowledge supported by evidence from empiri-
cal studies and theoretical works. We argue that “Space Agency” can be a powerful
and generative “Strong Concept” through which social human-SBE interactions and
relationships can be designed, prototyped, and investigated.
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1.1 Strong Concept as a Category of Intermediate-Level Design Knowledge

Researchers from HCI and HRI have been producing design knowledge in the level
of instances and theory predominantly using empirical research methods [5]. However,
as designers and design researchers, we know there are many cases both in research
and practice where we employ and generate pieces of design knowledges such as Pat-
terns, Design Guidelines, Heuristics, etc. that are more abstract than specific design
instances, but less generalizable than a theory. This kind of design knowledge is charac-
terized as intermediate-level design knowledge [5–7]. Intermediate level design knowl-
edge serves as an abstraction or, more specifically, a common annotation of different
design instances from one family [5–7]. There are two categories of design knowledge:
evaluative and generative knowledge. Evaluative intermediate-level knowledge such as
Design Heuristics and Criticism tend to synthesize and evaluate design instances, while
generative intermediate-level design knowledge such as Patterns, Guidelines, and Strong
Concepts tend to inspire and generate new designs [5]. Strong Concepts are design ele-
ments abstracted beyond specific design instances and can be potentially appropriated
by designers and researchers to ideate and generate new design instances [5].

1.2 “Space Agency” Towards a Strong Concept

“Space Agency” characterizes SBEs and their spatial elements (e.g., walls, floors, fur-
nishings, etc.) designed to be perceived or interacted with as socially intelligent agents
[8, 9]. For instance, the adaptive or interactive behavior of a smart chair, wall, or room,
if carefully designed, can be perceived by users as socially expressive – as welcoming,
inviting, friendly, etc. “Space Agency” fits the four characteristics of Strong Concept
given by Hook and Lowgren [5]:

• It concerns user perception of interactive behaviors of the spatial elements, which will
shape the user interactions unfolding over time;

• It resides in the interface between SBE and users, manifesting itself as design elements
(e.g., motions, trajectories, etc.) supporting socially expressive interactions.

• It has been a core design idea at the very beginning of the design process and can cut
across different use cases of, for instance, a stool, a door, a wall, etc.;

• It resides on an abstract level and can/should be realized in different aspects of a
design including interaction patterns, interaction modalities, form factors, etc.

1.3 Key Contributions of “Space Agency” to Social Robotics, HAI, and HCI

The key contributions of “Space Agency” are:

A New Generative Intermediate-Level Design Knowledge. This paper proposes and
validates the design knowledge of “Space Agency,” which is a substantive Strong Con-
cept with generative power. Through “Space Agency,” we can design and generate inter-
active and adaptive SBE, perceived as our friends, companions, partners, playmates,
etc.
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Socially Interactive SBEs as a New Research Field for Human-Building Interaction.
Human-Building Interaction (HBI) [10] is a nascent research field in interaction design
community. In HBI, there is no established design knowledge informing the design
researchers that buildings can be designed, perceived, and investigated as socially intel-
ligent agents (as will be demonstrated in Sect. 3). Just as in HCI, software interfaces can
be designed as embodied conversational agents that are intelligent and social [1], so in
HRI, robots can be designed as socially intelligent and interactive [2]. Following this
trajectory, we now argue that in HBI, buildings can also be designed and perceived as
socially intelligent and interactive, which is the essence of “Space Agency.”

2 Methodology

A key aim of this paper is to characterize “Space Agency” as a Strong Concept that is
academically contestable, defensible, and substantive so that design researchers could
confidently employ this concept in their design works, investigate this concept through
empirical studies, and build upon this concept in theoretical discussions [11, 12]. Thus,
we follow the Strong Concept construction process elaborated by Hook and Lowgren as
an “exercise in epistemology” [5]:

• For the source of this Strong Concept, we present our design instance of the “socially
adaptive robotic wall” in Sect. 4 and illustrate how “Space Agency” is applied to and
evaluated in this design instance;

• For the horizontal grounding of this Strong Concept, we review the most relevant
empirical works in “Human Building Interaction” (HBI) and “Large-scale Shape-
changing Interface” in Sect. 3;

• For the vertical grounding of this Strong Concept, we investigate the theoretical works
from both Architecture and HCI and illustrate how the embodiment of “Socially
Intelligent Agent” evolved in the last 20 years in Sect. 3;

• Finally, the nature of this research is presented in Sect. 5 where the generalizability,
novelty, and substantivity of “Space Agency” are discussed.

3 Related Works

Our literature review unfolds through the following topics serving as the “horizontal
grounding” and “vertical grounding” [5] of “Space Agency” in the intellectual land-
scape of HCI and HRI design research: “Human-Building Interaction” and “Large-scale
Shape-changing Interface” serve as the “horizontal grounding” speaking to the empir-
ical works most closely related to “Space Agency”; “The Theoretical Foundation of
‘Space Agency’” serves as the “vertical grounding” speaking to the Architecture and
HCI theoretical works that support this Strong Concept.
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3.1 Human Building Interaction and Large-Scale Shape-Changing Interface

Human Building Interaction (HBI) is a nascent research field unifying HCI with built
environment. HBI focuses on the human perspectives (e.g., values, needs, wants, expe-
riences, etc.) to address people’s interaction with interactive or smart built environ-
ments [10]. Before HBI was formally introduced to the HCI community [10], designers
and researchers from architecture and robotics have been actively exploring human-
architecture interaction through empirical works. “Architectural Robotics” [13] inves-
tigated user interaction with robotic furnishings [14], a robotic canopy [15], and
room-scaled robotic spaces [16].

More recently,HBI researchers investigateduser perceptionof user-controlled virtual
walls [17] and user interaction with a dynamic tent-like structure [18]. Grönvall et al. and
Suzuki have developed shape-changing interfaces, from furniture-scale to room-scale,
whose user interactions were investigated. Grönvall et al. developed a shape-changing
bench whose ability to cause “commotions” were explored with hundreds of participants
in the wild [19]; Suzuki et al. developed a shape-changing floor with robotic textiles
whose formal user evaluation is planned in future work [20].

Although these works widely cover the topics of interactive, responsive, and adap-
tive built environments, the social expressiveness of SBE has rarely been investigated.
Empirical works investigating users’ social interaction with SBE majorly focus on the
cases of robotic furnishings and spatial envelopes [21–23]. In Sect. 5, we will further
discuss how these works cover a wide range of applications in different contexts where
social expressiveness of SBE is investigated.

3.2 The Theoretical Foundation of “Space Agency”

In this section, we will define the concept of “socially intelligent agent,” discuss the the-
oretical support for designing a socially interactive SBE, and briefly review the evolving
embodiment of socially intelligent agents in HCI history.

How is “Socially Intelligent Agent” Defined? “Socially intelligent agent” refers to an
artificial, social actor that is accepted by users through his/her intentional stance based
on Dennett’s Intentional Stance [24], “whether users are conscious or unconscious of
the fact” [25]. For the “social” aspect in this definition, “Socially Intelligent Agent” may
show “human-style intelligence” [26], “pet-style intelligence,” and even a “hybrid-style
intelligence” that are social, yet different from intelligence we can find in nature.

Why Do We Want Our Built Environment to Be Socially Interactive? The answer
to this question points to “the common, underlying assumption” that “humans prefer to
interact with machines in the same way that they interact with other people” [2]. In the
HCI community, this common, underlying assumption has been applied to and validated
through countless software and hardware interfaces, such as embodied conversational
agents [1] and socially interactive robots [2]. At the same time, in architecture theory,
architecture (a building) has long been conceptualized as “a machine for living in” [27],
“an environmental, social and cultural device” [28], andmore recently, “a robot for living
in” [29]. Thus, at the intersection of theoretical works from HCI and Architecture is the
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argument that “humans may also prefer to interact with “machines for living in” (which
are buildings) in the same way that they interact with other people.”

The Evolving Embodiment of Socially Intelligent Agent. In the last 20 years, we
can see a clear trajectory where the embodiment of a socially intelligent agent has been
evolving from virtual to physical, from human figure to shape-changing interface, and
from object to space. In 2001, Justine Cassell defined what an “Embodied Conversa-
tional Agent” was [1] and convincingly argued why intelligent computer systems should
be characterized as human-like in those cases “where social collaborative behavior is the
key.” The example given by Cassell was a virtual human agent named REA who could
“welcome” a user into a virtual office. Arguably, the embodiment of socially intelligent
agent does not have to be virtual. Many researchers design anthropomorphic or zoomor-
phic robots to make human-robot interaction human-like or at least, creature-like [2]. In
the past 10 years, there has been growing research interest in socially interactive, non-
humanoid robots. Researchers in this area make robotic lamps, robotic music players,
robotic furnishings, etc. that can convey social cues such as sympathy, welcome, polite-
ness, etc. through meticulously designed movements and motions [22, 23, 30]. Most of
these nonhumanoid robots are only objects; however, some of them are important spatial
elements of built environments, such as doors and furnishings [22, 23].

HRI researchers have also explored how shape-changing interfaces can be perceived
as a socially intelligent agent. Hemmert et al. and Pedersen et al. investigated how
the surface reconfiguration and movement of a robotic cellphone can be perceived as
animal-like [31, 32]. Our own recentwork, the development and evaluation of an interior-
scale adaptive wall, investigated its perceived social expressiveness including welcome,
friendliness, collaboration, and cooperation [33].

By continuing this trajectory, we can see that spaces and their spatial components
may be designed and perceived as socially intelligent “Space Agents.”

4 Design Instance: An Adaptive Robotic Wall

The authors have developed and evaluated an adaptive robotic wall [33] which can be
reconfigured from a vertical wall into a writing surface (Fig. 1). This large-scale, shape-
changing interface consists of a 2-inch-thick foam panel and a tendon-driven actuation
system with motors, laser-cut wood collars, and 3D-printed brackets (Fig. 1). It can be
reconfigured into five different configurations as reported in our previous work [34].
The major applications of this technology are reconfiguring interior spaces (e.g., office,
living room, space capsule, etc.) supporting, in our investigation, working life.

4.1 Employing “Space Agency” in the Human-Wall Interaction Design

When designing the human-robot interaction of our robotic wall, we wanted its move-
ments to be socially expressive by showing friendliness, welcome, cooperativeness, and
collaboration to users. Thus, we designed a scenario where users could freely inter-
act with the robotic wall which was trying to facilitate a simple task through socially
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Fig. 1. Our robotic wall (right) prototype and photo from a pilot study with a user (left).

expressive ways. In this scenario, we gave the user a piece of printing paper and asked
him/her to copy a short paragraph on a piece of paper in a room, unfurnished, with the
robotic wall element flush with a wall surface. In our study, some participants initially
began looking for a writing surface to work on but there was none offered by the room;
that is, until the robotic wall offered one by bending itself downward with pauses and a
gentle speed. By taking the initiative of offering a writing surface, the robotic wall was
offering its help in a “welcoming” manner to the participant [23]. By making pauses and
bending downward at a gentle speed, it was suggesting “politeness” and “friendliness”
[22]. Some participants inspected it further to evaluate its affordances. If the participant
moves closer, the robotic wall adjusted its position subtly as a cue, and gently rested
itself on the participant’s lap as a writing surface; if the participant selected not to move
closer, the robotic wall swung gently up and down to show its willingness to help. This
series of movements was a show of “friendliness” and “collaboration” to the user [30].
After the copying taskwas finished, the robotic wall automatically returned to its original
position, flush with the wall surface.

The experiment scenario and robotic wall movement were designed by five HRI
researchers through iterations and informed by the literature of designing socially
interactive, nonhumanoid robots [22, 23, 30].

4.2 In-Lab and Online Experiment Design

Based on this scenario, we conducted an in-lab, between-group experiment with ten
college students (ages 19–34, 7 FM, 3 M) and one mature adult (59, FM). The 5 par-
ticipants in the treatment group went through the scenario in which the adaptive wall
behavior was simulated using WoZ techniques [35] where an experimenter controlled
(teleoperated) the robotic wall movement behind the one-way window. The 5 partic-
ipants in the control group were given the remote controller for the wall their usage
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before starting the copying task. Both the treatment group [36] and control group [37],
the trials were video recorded. After finishing the task, participants answered the same
questionnaire probing users’ social perception, whose questions were modified from a
validated scale of “Social Perception.” “Social Perception” scale measures four sub-
constructs: friendliness, cooperativeness, sociability, and warmth [38]. Our modified
questionnaire measures seven subconstructs: friendliness, cooperativeness, collabora-
tion, welcome, intelligence, recognition, and intention. In our modified questionnaire,
we replaced “warmth” with “welcome,” “sociability” with “collaboration” so that it’s
more context-specific for our experiment scenario – a human-robot collaborative task
for a novice user. We also added “intelligence,” “recognition,” and “intention” to our
questionnaire based on the measurements from robotic furnishing literature [22, 23]. At
the end of the questionnaire, three open-ended questions were asked to probe the reasons
for agency perception.

To compensate for the lack of in-lab participants (given the closure of our lab due to
the pandemic), an online, between-group study was conducted with 120 MTurk Master
Workers “proven reliable” in previous studies, 60 assigned to each group: treatment and
control (41 FM, 79M; 65workers 25–39; 52workers 40–60; 2workers over 60; 1worker
18–24). Workers were paid a high market rate of 1.5 and 1.2 dollars respectively for
participating in the 15-min (treatment group) or 12-min (control group). The intervention
for treatment group participants was the “treatment group video” [36], while for control
group participants was the “control group video” [37]. After watching the video, the
participants answered the same questionnaire used in the in-lab experiment.

4.3 Results and Findings

Figure 2 shows the descriptive statistics of the seven subconstructs. The coding for
each subconstruct in Fig. 2 is: “Intel” for Perceived Intelligence, “Rec” for Perceived
Recognition, “Inten” for Perceived Intention, “Coop” for Perceived Cooperation, “Col”
for Perceived Collaboration, “Fri” for Perceived Friendliness, and “Wel” for Perceived
Welcome. The median values from the treatment group are all equal to or greater than
5 (somewhat agree); while values from the control group range from 2 (disagree) to 4
(neutral). The differences between Md (treatment group) and Md (control group) for
these seven subconstructs range from 1.75 to 3.00. This suggests that participants in
the treatment group perceived significantly more intelligence, recognition, intention,
cooperativeness, collaboration, friendliness, and welcome from the robotic wall. We
then ran a Kruskal-Wallis H test which also indicates there is a statistically significant
difference (p< 0.001) in users’ social perception of all the seven subconstructs between
the treatment group and control group.

The qualitative results unveiled the reasons for users’ agency perception: the users
believed that the robotic wall recognized the situation (a writing surface was needed)
and then performed an intentional and helpful act (providing a writing surface). The full
detailed results of the study were reported in [33].
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Fig. 2. Descriptive statistics of the seven subconstructs.

5 Discussion: Generalizability, Novelty, and Substantivity

With respect to the generalizability of this Strong Concept, “Space Agency” has charac-
terized various SBE design research artifacts, ranging from smart furnishings to smart,
spatial envelops in a variety of situations. Examples of design instances include a smart
ottoman in an interior waiting room encouraging users to rest their feet on it [22], a smart
chair in the public space of a shopping mall inviting shoppers to play chess [21], a smart
door welcoming pedestrian from the street to come into a building [23], a smart sofa

Table 1. Comparison of previous works employing “space agency.”

Project Category Experiment
condition

Function Users’ social
perception

Mechanical
Ottoman [22]

Furniture In-lab Study Actively providing
a footrest

It has sentience,
intention, and
personality; it’s
alive, like a pet

Persuasive
ChairBots [21]

Furniture Field Study Actively
persuading
pedestrians to play
chess

It’s inviting,
submissive,
friendly; For
some people,
it’s creepy

Sofa-Bot [39] Furniture In-lab Study Moving according
to users’
movements and
gestures

It has sentience,
intention, and
personality; It’s
building a
relationship
with users

Robotic Drawers
[40]

Furniture In-lab Study Collaborating with
users for an
assembly task

It’s socially
expressive,
proactive, and
intentional. It’s
like a boss
sometimes

(continued)
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Table 1. (continued)

Project Category Experiment
condition

Function Users’ social
perception

Gesturing Doors
[23]

Furniture (Part of a
Spatial Envelop)

Field Study Inviting users into
a building

It’s welcoming,
urging, and
sometimes
reluctant. It’s
approachable,
intentional, and
recognizant

Adaptive Robotic
Wall [33]

Spatial Envelop In-lab Study Collaborating with
users to perform a
writing task

It’s intentional,
recognizant,
friendly,
welcoming,
cooperative, and
collaborative

that follows users’ gestures to reposition itself in a multifunctional large space [39], a
robotic drawer that collaborates with users to perform assembly tasks [40], and our work
s reported here, in brief, of the adaptive wall collaborating with participants engaged
in a writing task in an interior workspace [33]. Table 1 compares these projects with
each other through their categories, experiment conditions, functions, and users’ social
perceptions as a validation for the generalizability of “Space Agency.” Table 1 may not
be an exhaustive list of previous works employing “Space Agency.”

From Table 1, we see that the “Adaptive Robotic Wall” extended the previous
works of socially interactive, robotic furnishings to socially interactive, spatial envelops.
Like robotic furnishings, people perceive social expressiveness (intention, recognition,
friendliness, welcome, cooperativeness, and collaboration) from the robotic wall.

With respect to the novelty of “Space Agency,” this paper argues for the first time, to
our knowledge, that an SBE can be contestably, defensibly, and substantively conceptu-
alized as an embodiment in social robotics [3]. “Space Agency” also represents a new
category of design knowledge whose concept has never been rigorously discussed and
justified as a design theory contribution.Moreover, “SpaceAgency” introduces an oppor-
tune marriage between environmental psychology and social robotics, since a socially
interactive SBE influence people’s mental state not only through social interactions but
also the environment people living in.

With respect to the substantivity of this Strong Concept, we illustrated how “Space
Agency” was applied in our robotic wall, interaction design process. The genera-
tive power of “Space Agency” has also been proved by the interaction design pro-
cess of robotic furnishings [21–23] where “Embodied Design Improvisation” [30] was
employed as a design method to create the socially expressive robot movement.
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6 Limitation

There are several limitations to this work:

• As shown in Table 1, most of the previous works employing “Space Agency” in
the design process are robotic furnishings. More works of different kinds of robotic,
environmental elements (e.g., robotic walls, ceilings, etc.) are needed for a better
understanding of “Space Agency” in different embodiments.

• For the “Adaptive Robotic Wall” experiment, personality, sex, age, and technology
literacy of each participant could be effective factors. Further investigations on these
factors are necessary for a better understanding of users’ agency perception.

• All the previous works employing “Space Agency” focused on the investigation of
robot movements, physical embodiment, and interaction modes. The spatial and envi-
ronmental attributes of socially interactive, robotic environments were rarely inves-
tigated. These attributes need to be explored before “Space Agency” can be better
understood and developed in design theories and real-world applications.

7 Conclusion and Future Work

In this paper, we proposed and validated the intermediate-level design knowledge
of “Space Agency” through the triangulation of empirical, analytical, and theoretical
domains. As a Strong Concept, “Space Agency” offers designers and researchers a
grounding from which to ideate and generate new design instances of social robots.
Through “Space Agency,” we know that SBE and its spatial elements can be designed
and perceived as socially interactive. Our next questions might be: How can socially
interactive SBE be socially assistive? What are the cases “where social collaborative
behavior is the key” in human-SBE interaction?What kind of social relationships should
we create between human and an SBE?Moreover, we could explore how an SBE might
exhibit the following social characteristics inspired by [2]:

• expresses and/or perceives emotions;
• constitutes a conversational agent with spatial embodiment conveying social cues;
• constitutes a social agent that is competent and assistive in different contexts;
• establishes/maintains multimodal social interactions;
• establishes/maintains social relationships;
• exhibits distinctive personality and character;
• employs spatial/environmental embodiment for human-SBE collaboration.
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Abstract. Intelligent tutoring systems have great potential in person-
alizing the educational experience by processing some key features from
the user and educational task to optimize learning, engagement, or other
performance measures. This paper presents an approach that uses a com-
bination of facial features from the user of an educational app and contex-
tual features about the progress of the task to predict key events related
to user engagement. Our approach trains Gaussian Mixture Models from
automatically processed screen-capture videos and propagates the proba-
bility of events over the course of an activity. Results show the advantage
of including contextual features in addition to facial features when pre-
dicting these engagement-related events, which can be used to intervene
appropriately during an educational activity.

Keywords: Prediction · Adaptive · Context · Affect · Engagement

1 Introduction

Intelligent tutoring systems, whether in the form of a physical robot or tablet/
computer interface, have great potential in personalizing the educational experi-
ence and catering to the needs of many different learners. These systems generally
take some feedback from the user to adapt the educational tasks, attempting to
optimize learning, engagement, or other performance measures. For a specific
application, a designer of a tutoring system has to determine how to adapt the
tutor’s behavior based on the changing tutor/user/task interactions. This ques-
tion has two aspects: when the tutor should change behavior and what to change
to improve some outcome. This paper focuses on the first aspect: predicting early
how the student perceives an educational task to provide the tutoring system
sufficient time to head off a negative outcome.

To achieve this, we used contextual and facial features derived from an exist-
ing educational application dataset to develop a model that predicts two key
events: (1) the feedback the student chooses at the end of activity and (2)
whether the student will exit the activity early. We extracted facial features
with OpenFace [2] and contextual features with automatic parsing of the app’s
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screen capture. Using Gaussian Mixture Models (GMMs) to model the student’s
reaction and Bayesian updates to compute an evolving probability of events
related to student engagement, we chose several hyperparameters to optimize a
linear combination of accurate and early predictions. Results indicate that our
approach can predict these events with an accuracy around 75% when over 80%
of the activity is still remaining. This early prediction allows for the tutor to
take corrective action if needed to maintain student engagement.

Work related to our approach has three components: (1) user modeling, (2)
time series classification and (3) intelligent tutoring systems. Modeling student
engagement is a performance measure commonly computed in educational appli-
cations. Facial and body position features were used to model the user’s affect
and calculate a measure of engagement in [16]. Specific behavioral strategies were
applied in [4] to reengage students when they were assessed to have low engage-
ment. Information about the student’s progress, such as time to respond, was used
to detect a student’s loss of motivation with a Hidden Markov model [10].

Time-series classification methods take a set of observations labeled by class
and attempt to predict the class based on the observations. There are many
variations of this problem that include a label for each time-step, series of varying
lengths, etc. Deep learning is a popular tool for time-series classification [8],
and LSTMs have been used successfully on time-series with the same length.
However, these approaches generally make a prediction at the end of the time-
series, while we wish to predict before the end of the activity. A measure of
earliness of prediction has been used in time-series classification work as an
addition to an accuracy measure to evaluate model performance [7,14,20]; we
use a similar approach to predict both accurately and early.

Many approaches have developed models of intelligent tutoring systems. A
general framework is to combine the tutorial situation, affective model, cognitive
model, etc. to control the tutor’s behavior [15]. The affective model component
takes many forms, including a personality assessment to determine how students
would respond to different stimuli [9], a few chosen nonverbal behaviors, such
as looking at the robot and smiling [11], and a set of automatically detected
student facial features [18]. In our approach, we use both automatically detected
facial and contextual features to model the student’s current state. Taking both
types of features into account is critical, as research into nonverbal behavior
in teaching shows that when context is not taken into account, results of data
analyses may be hard to interpret [19].

2 Dataset Description

RoboTutor [13] is an educational application running on an Android tablet that
contains many activities, including reading illustrated stories, practicing writing
words, and completing math problems. Prior work on data from this app includes
affect detection based on expert labels [1] and correlation between some user
behaviors and facial features detected automatically by OpenFace [17]. This app
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was a finalist in the Global Learning XPRIZE1, and during that time was used
by children ages 6-12 in Tanzania. The data used for this project (see [13] for
more details, including ethical considerations) comes from the beta sites used
during the challenge and are screen-recordings during the students’ sessions,
which include video from a front-facing camera of the student.

Fig. 1. Left: Single frame from recorded videos of the RoboTutor application with
front-facing camera feed (face obscured for anonymity). Right: Feedback screen
appearing at the end of each activity.

Figure 1 (left) is a screenshot from a story-reading activity, which contains
an image and text from the story. The text highlights green as it is read to the
student. There is also a backbutton in the top left corner, which the student can
use to end the activity early. At an activity’s end (whether it is exited early
or completed), a feedback screen (Fig. 1, right) appears where the student can
choose a red, yellow, or green circle to indicate how they felt about the activity.

Automatic Feature Extraction: To create prediction models, we first need to
extract a set of features from the screen-recordings. Each video is 20-30 min long
and contains many activities; we used only activities containing stories to limit
the variety of activities to analyze. For each activity, we collected two different
labels: Feedback (the student’s choice at the feedback screen: red, yellow, or
green) and Backbutton (whether the student exited the activity early). Screen
taps, which appeared on the videos as white circles, were detected to determine
the feedback chosen or whether the backbutton was pressed.

We extracted a set of facial features (Table 1, A-K) over the course of the
activity using OpenFace [2]. These are the same features computed by prior work
on this dataset [1] and include features that have been used frequently in affect
recognition [5]. The six facial action units (F-K) are coded by their regression
values corresponding to intensity of presence [6]. We also extracted a set of
contextual features (Table 1, L-Q) that relate to the state of the educational
activity itself. These features were chosen as they were easily extracted from
a frame of the tablet screen and could represent information correlated with
student engagement, such as fatigue.
1 https://learning.xprize.org/.

https://learning.xprize.org/
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Table 1. Description of feature set

Facial Features

A Head Proximity: the scalar distance

of the head from the camera

B Head Orientation: the magnitude of

rotation of the head

C Gaze Direction: the averaged angle

of gaze between the two eyes

D Eye Aspect Ratio: related to blinking

of the eye

E Pupil Ratio: the ratio of the area of the

pupil to the area of the eye

F AU04: Brow Lowerer

G AU07: Lid Tightener

H AU12: Lip Corner Puller

I AU25: Lips Part

J AU26: Jaw Drop

K AU45: Blink

Contextual Features

L Position of Activity in Video:

sequential order of activity in video

M Picture Side: left or right side

of the screen

N Activity Type: story read or

story echo

O Progress: non-decreasing scalar

indicating how far along in the

story, computed by green vs.

black text on a page (see Fig. 1)

P Time from Activity Beginning:

in seconds

Q Time from Video Beginning:

in seconds

Description of Dataset: Our dataset consists of 105 videos recordings of stu-
dent sessions, each 20–30 min long. We first extracted individual story activities
from the videos. Since the final activity of each video often corresponds to the
instructor exiting the activity early, this activity was not included. Our activ-
ity dataset was then composed of 423 activities of length 5–950 s, with most
activities less than 200 s. The distribution of feedback labels is 13.2% red, 77.1%
yellow, and 9.7% green, and the distribution of backbutton labels is 87.9% no
backbutton and 12.1% backbutton.

The data are represented as {T (i),X(i), Y
(i)
1 , Y

(i)
2 | i = 1, ..., 423} where T (i)

is a vector such that T
(i)
j is the time of the jth frame of activity i; X(i) is a

matrix such that X
(i)
j is a vector corresponding to the features computed for the

jth frame of activity i; Y
(i)
1 ∈ {0, 1, 2} corresponds to a feedback choice of red,

yellow, or green; and Y
(i)
2 ∈ {0, 1} corresponds to an activity ending naturally

or the backbutton being pressed. The goal of our approach is to predict Y1 and
Y2 accurately, given only a few frames of T and X.

3 Methodology

We use both the facial and contextual features to predict whether an event occurs
at the end of an activity, with the goal being to predict as accurately and early
as possible. During the course of the activity, we combine individual observa-
tions using a Bayesian framework and use Gaussian Mixture Models (GMMs) to
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provide the probabilities needed for Bayesian updating. The approach chooses
hyperparameters to optimize the desired balance between F1-score (weighted by
α) and earliness (weighted by 1 − α), where α is an input to the learner. We
describe the methodology for predicting the feedback labels here with K = 3
labels; the backbutton case is analogous.

Training Gaussian Mixture Models: Given a set of training data of the form
{T (i),X(i), Y

(i)
1 }, we want to train a Gaussian Mixture Model for each label, i.e.

red, yellow, and green. We noticed, however, that the distribution tends to change
over time (e.g., at the beginning of an activity, the facial features tend not to be
as good predictors), so to improve prediction we train multiple GMMs for each
label by first creating M intervals from the distribution of activity lengths.

Each of the M intervals has a starting and ending time (e.g. the first interval
may include 0–30 s, the second 30–120 s, etc.) such that the number of activities
ending in each interval is approximately the same. For each of the K labels, we
first find all the activities within the training data with that label, take only
the time steps of those activities corresponding to time steps within a particular
interval, and then train a GMM with N components on that data. This results
in a total of MK GMMs trained. Given the training data, our approach will
learn both the models and optimize for M and N , the number of components in
the GMM.

Probability Propagation: We then use the GMM models to predict P (Ck),
the probability of the kth class, for each time step of an activity. We ini-
tialize P (Ck) = 1

K , corresponding to a random guess. Then let X
(i)
j =

{X
(i)
1 ,X

(i)
2 , ...,X

(i)
j } be the observations known at the jth time step. We cal-

culate the probability at the next step using a modified Bayes rule from [12]:

P (Ck|X(i)
j ) =

P (X(i)
j |Ck)P (Ck|S)P (Ck|X(i)

j−1)

P (X(i)
j |Xi

j−1)
(1)

where P (Ck|X(i)
j−1) is the computed probability from the previous time step;

P (X(i)
j |Ck) is the output of the GMM that was trained on a time interval

including T
(i)
j corresponding to class Ck; and P (Ck|S) is the static prior from

the training distribution to avoid model drift. For example, if Ck = yellow and
yellow labelled 80% of the training data, then P (Ck|S) = 0.8.

The denominator is a constant over all k, so is normalized out by ensuring
that the P (Ck|X(i)

j ) sum to 1. To try to ensure conditional independence between
observations and reduce the effect of noise in the features, the features X(i) are
averaged over a one second interval, and the probability is updated once a second.
If no features are present during one second, due to errors in face detection, the
probability from the previous time step is used unchanged.
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Classification: If the goal was to classify at the end of each activity, we would
use the highest P (Ck) at the final time step. However, classifying earlier is benefi-
cial, since that information could be used to modify a tutoring system’s behavior.
To achieve this, we set a threshold λ ∈ [0, 1] such that if any P (Ck) exceeds λ,
we classify2 the activity as belonging to class k. If no P (Ck) exceeds λ for the
entire activity, we count it as an inconclusive result, since predicting a class at
the end of an activity does not have utility since we know what the students did
and no intervention is possible.

Fig. 2. Example of the predicting feedback choice using the described approach with
two possible thresholds λ1 and λ2 shown.

Figure 2 illustrates the prediction process applied to an activity of length 30 s
for the feedback case. The probabilities are initialized to 1/3 and observations
are combined using Eq. 1. Note that between 12–15 s, OpenFace failed to find
the face, resulting in a flat probability curve for all labels. The figure plots two
different thresholds to show how the choice of threshold impacts both the time of
classification and the predicted label. λ1 predicts yellow at 3 s, while λ2 predicts
(the correct label) red at 25 s.

Optimizing Performance: To predict both accurately and early, we optimize
using an objective function S, a function of λ (threshold), M (time intervals),
and N (GMM components) as well as a weight α ∈ [0, 1]. α defines how much we
prefer an accurate prediction over an early one. As our dataset is quite unbal-
anced, we use a weighted F1-score in place of accuracy. The F1-score is calculated
for each label and we report the average weighted score by the number of true
instances for each label. The form of objective function S is shown below.

S(λ,M,N, α) = (α)F1-score + (1 − α)Earliness (2)

2 We tried varying λ over time, but that did not improve results.
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Earliness, or the average fraction of an activity’s time that was not needed

for classification, is defined as 1
n

∑n
i=1

T
(i)
−1−t̂(i)

T
(i)
−1

, where n is the number of activ-

ities where the threshold is met; and T
(i)
−1 and t̂(i) are the activity length and

prediction time for activity i.

4 Results and Discussion

Our goal was to optimize the performance metric S by changing the three
parameters: λ ∈ {0.55, 0.60, ..., 0.95}, M ∈ {1, 2, ..., 6}, and N = {1, 2, ..., 6}.
For each combination of these parameters (324 total), we performed 10-fold
cross-validation and recorded the average S over all folds. We then chose the
hyperparameter combination with the highest average value of S. Additionally,
when comparing the performance of two different models, we used a Welch Two
Sample, two-tailed t-test, which does not assume that the two variances are
equal.

The optimization is dependent on the choice of α, which trades off the F1-
score for earliness. α = 0 means we prioritize only earliness and α = 1 means we
prioritize only the F1-score. We performed the optimization of S for values of
α ∈ [0, 1]. We found that when α > 0.8, performance drops significantly, so we
chose α = 0.8 for further analysis. Additionally, low levels of α, such as α < 0.3,
have a lower performance metric S due to a lower accuracy.

Fig. 3. Comparison of (left) α = 1, α = 0.8, and guessing the most common label,
and (right) only facial features, only contextual features, and all features for α = 0.8
The average value of each metric is illustrated with a standard deviation error bar.
Significant differences at the p = 0.05 level are indicated with asterisks. Significance
was tested only for F1-score and earliness.
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Earliness and Guessing: Often accuracy is the only metric used to evalu-
ate prediction models. Intuitively, the more of the activity seen by the model,
the more accurate the prediction will be; however, we want to make predic-
tions before the activity has completed to leave time for any intervention. To
understand how this trade-off manifests in our model, we compare the results of
considering only the F1-score (α = 1.0) and including earliness (α = 0.8). We
can additionally validate our approach by comparing the performance to guess-
ing the most common label in the training data for each activity (e.g., choosing
yellow or no backbutton) at the first time step.

As shown in Fig. 3 (left), the F1-score is lower for a lower α, which is intuitive
since α = 1 weights only the F1-score. However, that difference is not statistically
significant, while adding a 20% weight on earliness does significantly change
the earliness for feedback (t = −5.782, p < 0.001, df = 17.64) and backbutton
(t = −5.507, p < 0.001, df = 13.00). This increase in the earliness with no
significant change in the F1-score indicates that including earliness improves
overall performance, with respect to our goal of predicting accurately and early.

The optimal hyperparameters vary for each value of α. For feedback, we found
(λ = 0.95,M = 2, N = 3) for α = 1.0 and (λ = 0.7,M = 2, N = 3) for α = 0.8
to be optimal. For the backbutton case, we found (λ = 0.95,M = 4, N = 1)
for α = 1.0 and (λ = 0.55,M = 2, N = 3) for α = 0.8 to be optimal. Note
that the optimal threshold λ when α = 1 is much higher than for α = 0.8,
which makes sense since with α = 1 there is no penalty for waiting longer
in exchange for greater prediction confidence. Another interesting result is the
optimal number of time intervals M was greater than 1 for all cases. This means
that using multiple intervals to segment the time series data tends to increase
overall performance.

We also compared the results to guessing the most common label (shown in
gray in Fig. 3, left). While the F1-score resulting from guessing is lower than
our model at α = 0.8 and 1.0 for both cases, this difference is not statistically
significant (note that the earliness scores are always 1, since guessing is done
at the start of an activity). We anticipate that with a larger dataset and more
balanced label distribution, guessing will have a worse performance.

Facial and Contextual Features: We hypothesized that the context of the
task can help interpret the student’s internal state, in addition to facial features,
which have been used extensively to predict affect, such as in [16,18]. To evaluate
this, we compared the performance of using only facial features (A - K from
Table 1), only contextual features (L - Q from Table 1), and all features, shown
in Fig. 3 (right) with significant differences indicated with asterisks.

Significant differences were found in earliness when comparing a facial fea-
tures only model and a model using all features. Specifically, the t-test resulted
in (t = −7.422, p < 0.001, df = 14.62) for feedback and (t = −2.50, p = 0.02, df =
17.67) for backbutton. Additionally, for the feedback case, there was a significant
difference between earliness using only contextual features and using all features
(t = −2.417, p = 0.03, df = 15.76).
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An interesting result is that the contextual features alone predicted earlier
in both cases compared to facial features alone; with the F1-score not signif-
icantly different. This does seem non-intuitive, since facial features have been
used extensively for affect recognition. Contextual features do not encode any
information directly from the student and instead record progress in the activ-
ity, so it seems unlikely that they would outperform facial features. A potential
explanation is the noisy data output by OpenFace. The students move rapidly in
the camera frame and, occasionally, another student appears in the frame dur-
ing an activity. The contextual features, by contrast, are less noisy as they are
computed from the relatively static and predictable items on the tablet screen
during an activity. Another explanation could be that engagement is tied closely
to the time a student has spent using the tablet (one of the contextual features),
perhaps due to fatigue.

5 Conclusion

This paper presents a framework for predicting students’ engagement, specif-
ically the feedback they will provide about an activity and whether they will
exit an activity early. Our approach uses GMMs and Bayesian updating, and
optimizes performance based on accuracy and earliness of the prediction. Our
results show that, given a suitable probability threshold, we can achieve reason-
able accuracy while still predicting student engagement fairly early on.

Since “ground-truth” engagement does not exist, our approach uses the feed-
back and backbutton events as proxies, which means that the interpretation of
the results can be ambiguous. An additional limitation is that the skewness of the
label distribution implies that guessing those values would, on average, perform
quite well, which can be mitigated with a larger and more diverse dataset.

Our approach, however, is easily generalizable and can predict any event
occurring at the end of a time-series given a set of features computed over the
course of that time series. Many existing time-series classification approaches
have a much higher accuracy or F1-score than our reported results (such as in
[3]), but their prediction occurred at the end rather than during a session. We
can also handle time-series of varying lengths without trimming or warping the
data as is often necessary for other time-series approaches such as LSTMs [8].

Extensions include applying the approach to a different dataset, where the
labels are more directly tied to engagement, such as survey results completed by
users. Additionally, an assumption made throughout this approach was the inde-
pendence of the feedback and backbutton events; however, it seems likely that a
student who exited an activity early would also be more likely to feel negatively
toward the activity, and thus jointly predicting those events might improve per-
formance. Predicting these events can be used to modify the tutor’s behavior
to attempt to increase student engagement. The next step in this research is to
develop an intelligent tutor that modifies its behavior based on the predictions
of the user’s affect, personalizing the education experience.
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Á., Terashima-Maŕın, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 1175–
1184. Springer, Heidelberg (2005). https://doi.org/10.1007/11579427 119

10. Johns, J., Woolf, B.: A dynamic mixture model to detect student motivation and
proficiency. In: Proceedings of the National Conference on Artificial Intelligence,
vol. 21. Menlo Park, CA (2006)

11. Leite, I., Pereira, A., Castellano, G., Mascarenhas, S., Martinho, C., Paiva, A.:
Modelling empathy in social robotic companions. In: Ardissono, L., Kuflik, T.
(eds.) UMAP 2011. LNCS, vol. 7138, pp. 135–147. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28509-7 14

12. Levinkov, E., Fritz, M.: Sequential bayesian model update under structured scene
prior for semantic road scenes labeling. In: Proceedings of the IEEE International
Conference on Computer Vision (2013)

13. McReynolds, A.A., Naderzad, S.P., Goswami, M., Mostow, J.: Toward Learning at
Scale in Developing Countries: Lessons from the Global Learning XPRIZE Field
Study. In: Learning @ Scale. ACM (2020)

14. Mori, U., Mendiburu, A., Keogh, E., Lozano, J.A.: Reliable early classification of
time series based on discriminating the classes over time. Data Min. Knowl. Discov.
31(1), 233–263 (2016). https://doi.org/10.1007/s10618-016-0462-1

15. Perez, Y.H., Gamboa, R.M., Ibarra, O.M.: Modeling affective responses in intelli-
gent tutoring systems. In: IEEE International Conference on Advanced Learning
Technologies, 2004 Proceedings. IEEE (2004)

16. Sanghvi, J., Castellano, G., Leite, I., Pereira, A., McOwan, P.W., Paiva, A.: Auto-
matic analysis of affective postures and body motion to detect engagement with a
game companion. In: Proceedings of the 6th International Conference on Human-
Robot Interaction (2011)

https://doi.org/10.1007/11579427_119
https://doi.org/10.1007/978-3-642-28509-7_14
https://doi.org/10.1007/s10618-016-0462-1


318 R. Kaushik and R. Simmons

17. Saxena, M., Pillai, R.K., Mostow, J.: Relating children’s automatically detected
facial expressions to their behavior in robotutor. In: Thirty-Second AAAI Confer-
ence on Artificial Intelligence (2018)

18. Spaulding, S., Gordon, G., Breazeal, C.: Affect-aware student models for robot
tutors. In: Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (2016)

19. Woolfolk, A.E., Brooks, D.M.: Chapter 5: nonverbal communication in teaching.
Review of research in education 10(1), 103–149 (1983)

20. Xing, Z., Pei, J., Philip, S.Y.: Early classification on time series. Knowl. Inf. Syst.
31(1), 105–127 (2012)



Common Reality: An Interface
of Human-Robot Communication

and Mutual Understanding

Fujian Yan, Vinod Namboodiri, and Hongsheng He(B)

School of Computing, Wichita State University, Wichita, KS 67260, USA
hongsheng.he@wichita.edu

Abstract. An interface that can share effective and comprehensive
mutual understanding is critical for human-robot interaction. This paper
designs a novel human-robot interaction interface that enables humans
and robots to interact by their shared mutual understanding of the
context. The interface superimposes robot-centered reality and human-
centered reality on the working space to construct a mutual under-
standing environment. The common-reality interface enables humans to
communicate with robots through speech and immersive touching. The
mutual understanding is constructed by the user’s commands, localiza-
tion of objects, recognition of objects, object semantics, and augmented
trajectories. The user’s vocal commands are interpreted to formal logic,
and finger touching is detected and represented by coordinates. Real-
world experiments have been done to show the effectiveness of the pro-
posed interface.

Keywords: Human-robot collaboration · Speech recognition ·
Discourse representation structure · Interactive display

1 Introduction

The demands for robotic applications in unstructured environments are increas-
ing. Robots are designed to work in different fields, such as assisting in medica-
tion [7], treating Autism [23], and supporting people’s daily lives [17]. Efficient
human-robot interaction (HRI) plays a vital role in helping robots and humans
collaborate [2]. Compared with conventional robots that are pre-programmed in
structured environments, social robots are expected to face a wider variety of
tasks [21].

In the past decades, researchers were endeavoring to design human-robot
interaction interfaces [10]. Previous work [5,9,16,19,22] has developed context-
depended frameworks that enable robots to interact with humans by facial
expressions with visual devices. These context-dependent interfaces are not suit-
able for a dynamic environment [12]. Several augmented reality (AR) based
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interfaces have been proposed [3,8]. Those AR-based methods used markers to
recognize objects in the environment. As the number of objects increases the
required computation power increased as well [6]. Traditional AR applications
deployed in robotics are focused on enhancing the reality of humans by superim-
posing user’s goals on additional devices. Other information such as what robots
have learned from user’s commands and object semantics is missing.

Speech
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Fig. 1. Common reality for human-robot collaboration. The designed interface can take
both speech and immersive touching from users. The shared knowledge, communication
process, and the mutual understanding of the context are projected on the working
space.

Thus, an HRI interface that enables robots and humans to share a mutual
understanding of unstructured environments is urgently needed. In order to share
a mutual understanding between robots and humans, the HRI interface needs to
have the ability to dynamically recognize objects and understand the semantics
of objects in the unstructured environment. It should provide a way that enables
robots and humans to intuitively, effectively, and efficiently interact with each
other.

In this paper, we propose a novel human-robot interface that can super-
impose common reality for robots and humans. The designed common reality
interface focuses on sharing a mutual understanding of the context to create
an immersively interactive environment. The architecture of the common-reality
interface is shown in Fig. 1. The common-reality interface supports immersive
touching and speech while interacting with robots, which will avoid massive prior
training for users. A mutual understanding of the working context is required
for humans and robots to finish tasks collaboratively. The designed interface can
detect and recognize objects in the working space by a deep learning model. By
parsing the dictionary definitions of recognized objects, important attributes are
extracted to construct a knowledge base by the language model. We choose to
visualize the mutual understanding of the context instead of using a traditional
question-answer manner because the ambiguity born with a natural language can
hinder communicating in human-robot collaboration [4]. Also, information that
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is visually presented is more intuitive than auditory [15]. The major contribu-
tion of this paper is designing an intuitive, effective, and efficient interface. The
common-reality interface can visualize the common reality of a scene, thereby
bridging the gap between human knowledge and the perception of robots.

2 Human-Robot Common Reality

As the number of robots deployed to a human-centered environment increases,
the design of the HRI interface should not only understand the user’s goals,
but also demonstrate what the robot has understood from the user’s goal [20].
In this paper, a novel HRI interface has been designed that combines multi-
modal human-robot communication and augmented robot-human communica-
tion to ensure an intuitive, effective, and efficient interaction between robots and
humans. The superimposed common reality contains user’s commands and inter-
preted formal logic from user’s commands. It also contains object localization
and identification, augmented action, and object semantics. An illustration of the
components of the common reality interface has been shown in Fig. 2. Humans
can communicate with robots by integrating speech and immersive touching.
It converts human’s understanding of the context into a digital representation,
which robots can understand. Robots perceive the objects and learn the seman-
tics of the objects in the context. Then, robots communicate with humans by
visualizing their understanding of context.

-Category: Fruit
 -Function: 
 -Composition: Fresh, Skin
 -Property: Round

Apple Apple

Localization
 Identification

Apple

Augmented Action

Object Semantics

Shared Knowledge:
- User’s Commands in ACE:
“Robot moves the apple to the
right.”
- Robot Comprehension in DRS:
A B C
object(A, robot, countable, na, eq, 1)
property(C, right, pos)
object(C, apple, countable, na, eq, 1)
predicate(B, moves, A, C) 

Commands Translation

Fig. 2. Major components of the common reality interface.

2.1 Human-Robot Communication

To enable humans to communicate with robots naturally, the common-reality
interface integrates multi-modal methods that include speech and immersive
touching. Humans give commands through natural languages or touching the
surface of the working environment.



322 F. Yan et al.

DRS Translation. Robots need to have unambiguous, deterministic, and
expressive instructions for executing actions. For robot understanding, we inter-
preted natural language into Discourse Representation Structures (DRS). We
extended the lexicon to make it suitable for robotic applications. The parsed DRS
results consist of referents and conditions. The referents are used to define seman-
tic units that are embedded in the commands. These semantic units include
subjective objects, objective objects, executable actions, and the condition of
actions. The conditions are used to describe the relations of each parsed refer-
ent. According to part-of-text, dependency, and syntactical rules [11], there are
four general declarations for covering three major HRI scenarios. The four gen-
eral declarations are object declaration, predicate declaration, query declaration,
and property declaration. The object declaration is used to describe the NOUN
in user’s commands. It refers to subject or object in the translated commands.
The predicate declaration describes the executable actions, and the property
declaration describes the condition of these actions. We design several robotic
actions such as pick, move, and lift to ground the predicate to actual robotic
actions. These actions can be added as the complexity of the tasks increase. An
example of pared results for each scenario is shown in Fig. 3.

Fig. 3. Example of DRS Translation. Three fundamental HRI scenarios with parsed
DRS results are shown.
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Identification and Localization. In some scenarios, robots can not under-
stand the user’s purposes by only using vocal commands. Some objects may
have the same texture, names, or characteristics in the same scene. For example,
there are two apples in the scene. The command from the user is "Pick up an
apple", the robot can not differentiate which apple it should pick up. In this
case, additional instructions from users are needed to assist robots in localizing
the target object. Robots need to percept the context by themselves to work
with objects. To enable robots to percept the context, we used the Faster-R-
CNN [18] model to detect and recognize objects. The inputs of the model are
images of the context, and outputs are object labels. By referring to the labels,
objects can be identified. To assist localization, the user can press an interactive
button that associates with detected objects. The button is projected on the
context. Users touch the buttons with their fingertips to interact with robots.
To detect the fingertips of a hand, we used the model proposed in [1]. It is a
convolutional neural network (CNN) that can take an image of a hand, and the
outputs are coordinates of each recognized fingertips. A depth sensor is used to
detect whether the user has touched the button or not.

2.2 Mutual Understanding

Humans have doubts about interacting with intelligent robots because they do
not understand what robots will execute. The survey [13] has shown that 19% of
22% of participants fear intelligent robots because they do not understand. An
interface that can share mutual understanding is needed. The common-reality
interface can share human-robot communication, including the DRS translation,
object identification, and object localization. It can also share action visualiza-
tion and object semantics.

Visualizing the trajectory before the actions have been executed can help
human users understand the robot’s intention. The common-reality interface
projects the trajectories of actions to improve mutual understanding. We used
the MoveIt toolkit to plan the trajectory by giving the coordinate of the initial
position and the final position. To project the trajectory in 3D space onto a 2D
surface, we transform the robot’s end effector in the world frame to the projector
frame. To project the points in the projector frame to the X − Y surface, we
make the value on the Z − axis equal to zero.

In order for robots to understand the semantics of the context, we used a
language model [24] that can parse important attributes of objects from their dic-
tionary definitions. These attributes include category, function, composition, and
property. We used those attributes and the objects parsed from the input com-
mands to form a dynamic knowledge base. To construct the knowledge base, we
first translate the objects that are parsed from commands and learned attributes
of objects into ACE sentences by a pre-defined template. We parsed these ACE
sentences into DRS.

We used a Lampix projector to project these three components on a surface
to construct an immersive interface contains a projector, a depth camera, and
Raspberry Pi. Three major components can be visualized: the command that
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robots have learned, the characteristics that are held by each object in the con-
text, and the hypothetical trajectories that robots will execute. A depth camera
embedded in the projector can detect the depth difference of objects and sur-
faces. Objects can be detected by using the depth difference between objects
and the working surface. The movement-based segmenter can be achieved with
this difference as well. By visualizing the context, redundant speech can be elim-
inated. Objects in the working space are detected by the depth sensor that is
embedded in the projector. The input commands, parsed logic representations,
and characteristics of objects are projected based on a pre-defined template.
The animation of trajectory was shown based on the planned path of the robot
motion at the pixel level.

3 Experiment

We evaluated the effectiveness of the designed common-reality interface by using
four different cases in the real-world scenario. We evaluated the satisfaction level
of the common-reality interface based on the questionnaire for different people.

3.1 Real-World Scenario

There were four trials of the sample results that were used to illustrate the
working process of the interface. The results were illustrated in Fig. 4. The left
column is the image taken from the workspace, and the right column is the
sequence of images that were able to illustrate the movement. Commands were
given to the robots as inputs. Both the characteristics of objects and the shared
language in logic representation were projected.

3.2 User Satisfaction Evaluation

The robustness of the common-reality interface was evaluated based on the user’s
satisfaction regarding the demonstration of the system. The evaluation of the
user’s sanctification was measured based on questionnaires that were generated
based on Lewis’ After-Scenario Questionnaire (ASQ) [14]. The degree of sat-
isfaction was evaluated with five different levels: very unsatisfied, unsatisfied,
neutral, satisfied, and very satisfied. The satisfaction was evaluated based on
three standards, which were readability, correctness, and intuitiveness.

There were six people taking part in this experiment. The experiment partic-
ipants were from different levels of education. The age range of the experiment
participants was from 20 to 50. There were ten interactive scenarios generated.
The generated scenarios included the input commands from users and the shared
language projected on the working space. Each experiment participant was asked
to write the command of the projected knowledge, which was understood by the
robot. Different participants evaluated the written commands, and those exper-
iment participants were asked to fill the questionnaire based on the written
commands.
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Fig. 4. Real-world action planning by using the common-reality interface. There were
a total of four different trials shown. The left column is the common reality with
projected knowledge, and the right column is the animation of the action.
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Based on the questionnaire, no participant response “very unsatisfied” or
“unsatisfied” to the proposed interface. We evaluated the average user’s response
to the proposed interface based on the questionnaire. We calculated the mean
and standard deviation of each participant in each evaluation category. The
results were shown in Fig. 5. The common-reality interface was satisfied based
on the feedback of the questionnaire. Overall, most users who have taken the
questionnaires are very satisfied with the proposed interface.

Fig. 5. Average response to the interface.

4 Conclusion

This paper presented a novel human-robot interaction interface, which enhances
the HRI by superimposing the common reality including shared language, aug-
mented semantics, and mutual understanding of the context. The mutual under-
standing of the context included the commands, the characteristics of objects,
and the planned trajectory that were understood by robots. The results of the
questionnaires have demonstrated the general acceptance of the common reality
interface by users.
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Abstract. If a human and a robot team need to approach a specific
group to make an announcement or delivery, how will the human describe
which group to approach, and how will the robot approach the group?
The robots will need to take a relatively arbitrary description of a group,
identify that group from onboard sensors, and accurately approach the
correct group. This task requires the robot to reason over and delineate
individuals and groups from other individuals and groups. We ran a
study on how people describe groups for delineation and identified the
features most likely used by a person. We then present a framework that
allows for an agent to detect, delineate, and select a given social group
from the context of a description. We also present a group detection
algorithm that works on a mobile platform in real-time and provide a
formalization for a Group Selection Problem.

Keywords: Group description · Group identification · Qualitative
reasoning · Proxemics

1 Introduction and Motivation

Individual and group detection have long been an area of research [9,14,22].
In many cases, these detections are maintained internal to the agent or given
as annotations to video or images for a human teammate to use. Group detec-
tion becomes more important when we think about it in terms of how humans
describe groups to each other. Usually, it is not the case that we have a label for
the group to describe to a friend or teammate. Normally, groups are described
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(e.g. “The group by the window.” or “The large group right next to us.”).
Through these types of descriptions, we see that grouping is contextual [13,15].
Therefore, if we wish to have agents cooperating in Human-Agent teams, we
should ensure that agents can handle contextual group descriptions.

The contributions of this paper are (1) we show that people use group descrip-
tions when labels are not present, (2) we introduce a very simple group detection
algorithm, (3) we establish a Group Selection Problem, and (4) we provide a basic
implementation solution and evaluation to both group detection and selection.

2 Background

This work touches on a number of different fields of research, we provide some
background from proxemics in terms of representation, recognition, and detec-
tion efforts.

2.1 Proxemics Representations of Groups

First discussed in [6], Proxemics is the study of spatial interaction among
humans. Proxemics has had a growing interest in regards to research for Human-
Robot Interaction (HRI) [3,4,12,17,21,23]. Currently, the study of proxemics in
this context falls into two camps: F-Formations or not F-Formations.

Face-to-face formations (F-formations) have received a lot of attention in
terms of group proxemic research [17,23,27]. Originally discussed in [8], F-
Formations describe different spatial arrangements of people given the number
of people interacting. [9] defines it as,“F-formation arises whenever two or more
people sustain a spatial and orientational relationship in which the space between
them is one to which they have equal, direct and exclusive access”. F-formations
focus on three different spatial zones in relation to a group: o-space, p-space,
and r-space. O-space exists inside the perimeter of the group, p-space is the
perimeter of the group space and r-space being the space outside of p-space.

Aside from F-Formations, a number of other methods are being used to study
and represent groups. [21] uses optical flow for active egocentric group detection
in motion. [4] built a representation using qualitative spatial descriptors on top of
F-formations. This is done by using logical constraint rules to determine the inter-
actions of two-pair F-formations to create larger group formations. This is then
used as a way to reason how a potential robot can join the group in a new formation
pattern. [3] uses Qualitative Trajectory Calculus (QTC) to encode interactions in
an HRI setting. This allows for qualitative reasoning on movement and is used in
environments with trajectory detection and planning [12]. Using individual per-
son detection and tracking, [12] builds up social network graphs between all the
individuals and uses various pruning methods to then detect proper groups.

2.2 Group Recognition and Detection Work

Previous work in group detection has generally followed two different constraints:
stationary vs moving groups. For stationary groups, a number of algorithms
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use video stills. For instance, [27] uses stills to detect F-formations based on
dominant sets [7,23]. This is where individuals in the image are converted to a
graph and given proximity weights, these weights are then used to detect the
groups. Tracking over multiple images or video has had a wide variety of use in
group detection. Having multiple images allows for a wide variety of trajectory
and velocity tracking. [21], which follows the work of [12], has a discussion about
maintaining identities as groups and agents move around the scene. Other video
or moving group detections can be seen in [10,19,20].

3 Group Description Experiment

Our goal in this experiment was to explore how people identify and differenti-
ate groups within a space that contains multiple groups. There were theoretical
reasons from both the cognitive sciences and the interaction sciences that this
experiment will help us answer. From the cognitive sciences, there are no the-
ories or expectations about how people will deal with identifying a group of
diverse individuals and whether they will over-describe a group. From the HRI
perspective, there is no clear understanding of what features people will use to
describe a group; knowing the features that are used allows us as roboticists
to tailor our sensors and perceptual systems to what features are going to be
the most useful. For example, if people commonly identify most group features
and several individual features, most perceptual systems should be adequate. In
contrast, if people primarily use a specific single feature, it would behoove us to
make sure that our robot perceptual systems can deal with that feature.

3.1 Setup

In this experiment, we were interested in three distinct questions concerning how
people identify groups. First, because groups have both group features and indi-
viduals within a group that can be identified, we wanted to document whether
people used group or individual features more. Second, we wanted to identify
how Gricean people are in their group descriptions. A purely Gricean approach
would mean identifying a single unique feature that differentiated the groups
and using that feature: no more and no less. Finally, we were interested in deter-
mining what features people used to identify groups, and whether those features
were random or systematic.

97 participants from Amazon Mechanical Turk were paid $2.00 to answer
questions about how to identify a group. They were told they were working with
a robot to deliver snacks to individuals. Participants were randomly assigned to
either the Same Perspective condition where they were told that the robot could
either see from the same perspective that they could (n=53) or the Different
Perspective condition where they were told the robot would be coming from an
unknown direction so could not use words like “left” or “right” (n = 44).

Images were constructed using Vyond1 to contain 2 distinct groups with dif-
fering group features. Group features that were explicitly manipulated were size
1 https://www.vyond.com/.

https://www.vyond.com/
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Fig. 1. Experiment image and results

(same or different with sizes of 2 or 5), object (close or far from a group), activ-
ity (same or different with dancing, stretching, talking, or reading), or proximity
(close or far from each other). The selected group had an obvious rectangle
drawn around it and could be on either the left or the right (counterbalanced).
An example of an image is shown in Fig. 1a. Each participant saw 10 images.
Because it was impossible to ask each participant to see one of each variable,
we gave each participant two examples of 0–4 differences from manipulated fea-
tures (size, object, activity or proximity), using a Latin-square design to keep
the presence of features as equal as possible. This approach allowed us to use
regression analyses to extract patterns from the participants. After collecting
demographic information, each participant was given a brief description of the
task and then asked to type in an English description of where to tell the robot
to go. Each image also reminded the participant that the robot could see the
same scene as the participant or that the robot would be approaching from an
unknown location. After finishing the experiment, participants were debriefed.

3.2 Results

We used a combination of keyword extraction and hand-coding to identify which
feature(s) a participant used to identify each group. Features coded were size
(“The group of 5”), object (“The group closest to the table”), activity (“The
dancing group”), spatial (“The group to the left”), or individual (“The group
with the blond woman”). Multiple features of different types were each coded,
though multiple features of the same feature were only coded once (e.g., “The
group on the left with the tall blond woman” would be coded as spatial and
individual, even though there are two references to individual traits).

In general, people used more group features (size, spatial, object, activity)
than individual features when describing a group, χ2(1) = 503.6, p < 0.001
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(829 group vs 133 individual).2 To explore how Gricean participants were, we
examined the raw number of features that could be used to differentiate groups;
if people used a single distinguishing feature to differentiate groups, it was coded
as Gricean. If people used more than was needed, it violated the Gricean maxim
of quantity. There were very few instances of people not using a description that
did not differentiate groups (< 1%). We found that people were very likely to
over-describe groups (66% vs. 34%), χ2(1) = 84.7, p < 0.001. People strongly
violated Gricean maxim of quantity in this experiment.

To examine whether people were random in their choice of features to describe
and differentiate groups or whether they had systematic preferences, we exam-
ined which features were used, collapsing across other variables because they
showed no significant effect. As Fig. 1b suggests, people did not choose features
at random to differentiate groups, χ2(4) = 329.6, p < 0.001. A post-hoc Tukey
test showed a particular order that people preferred: Size > Individual > Activity
> Object = Proxemic.

As hoped, this experiment helped answer several theoretical and applied
questions from cognitive science and HRI. First, people seem to prefer to use
group features rather than features of individuals to differentiate groups, though
both are used frequently. Second, this experiment provides some expectations
about how people will address a robot to approach a group. Specifically, people
do not use a random set of features to differentiate groups, instead choosing
to have a preferred order: some features are much more likely to occur than
others. Finally, people are quite non-Gricean when describing a group, frequently
providing more information than needed to differentiate one group from another.

4 Group Detection and Representation

With these experimental results in mind, we can begin to work on group detec-
tion. From the results above, we know that group size is very important to keep
accurate. From previous works in group recognition/detection there are two basic
ideas, using pose information or not using pose information. However, pose is
captured in those datasets within a “smart-room” environment with multiple
cameras at useful angles (e.g., [17]). Unfortunately, these assumptions do not
work for our target domain, mobile robotics. For a single robot, the sensors and
computing power available is usually far less than available in a typical smart-
room – a laptop and a standard CCD.

In contrast, it is far easier to identify the location of a person (regardless
of their pose) in most scenes, even when they are partially occluded or are
not facing the camera. To show this, we ran OpenPose [1] (a common method to
extract pose in real-time) on a series of images. We also ran YOLO [14] to extract
where people were in the scenes. In 100% of the cases, YOLO identified more
people than OpenPose. For example, in one crowded image environment YOLO
detected all but 1 of 12 people while OpenPose failed to give pose information
2 A linear effects mixed model shows a similar result while taking into account the

multiple random effects. A later report will provide a fuller description.
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to 4 of the 12. Missing the Pose Information of 33% is significant when it comes
to the tightly coupled nature of pose-based detection methods.

Therefore, our designs are not focused on utilizing pose information as main-
taining an accurate number of individuals is more important than maintaining
an accurate number of poses.

4.1 Agent Detection

To detect people, we use the deep convolutional neural network YOLO [14].
YOLO predicts both the location and the classification of known objects in the
image. It does this by first subdividing the image into grid cells, then predicts the
most likely size and location for an object in each cell. This network was trained
on the MS-COCO dataset [11], which includes a variety of classes. Addition-
ally, we could utilize a robot’s on-board range/bearing detection to determine
placement of a detected person. From these range and bearing values, we can
project the image detection onto a grid. To get group definitions, we assume we
are given accurate representations of the agents and their locations within an
image - though not necessarily the agent’s bearing or facing.

4.2 Definition of a Group

[26] defines a group from video footage as a group of individuals within a certain
space threshold and maintaining that threshold for a specific time threshold.
[12,21] defines groups as “two or more people in close proximity to one another
with a common motion goal.” F-formations utilizes spatial and directional infor-
mation to determine groups based on o- and p-space[4,17,24]. Additionally, f-
formations focus on the context of conversational groups. With the idea that
conversational “space” defines the group by individuals “facing” in a specific way
based on certain formation types. Finally, some research leaves the definition of
group undefined and utilizes clustering techniques to have groups detected. This
research does focus on trajectories heavily though [18,19].

From these various discussions of groups, we can pull out a few recurring con-
cepts: spatial-temporal relations, motion/direction relations, and shared goals.
Not all images can easily be broken down into direction/facing information for
all individuals, likewise temporal relations cannot be done from still frames.
Furthermore, goals and intent are a very hard problem that is its own research
area. Therefore, we try to focus our definition of groups to be purely spatial,
but limit it to stationary groups. A stationary group is the largest number of
agents (greater than or equal to 2) in an environment that are a given distance
apart from each other that does not break the standard deviation of the average
distance between all agents in the stationary group. It is also assumed that an
agent is only a member of one group at a time.

4.3 Group Detection for Stationary Groups

We devised a Group Detection Algorithm, based on this definition. Starting with
all agents, we calculate the distance − pair between each Agent. Starting with



Autonomous Group Selection for HAI 335

Table 1. Group description options, with query examples

Described thing In relation to Query Example

The group size,small smallest group(Group) The smallest group

The group size,large largest group(Group) The largest group

The group size,specific group of size(Group,N) Group of size 5

The group with,Person group with(Group,Agent) Group w/ person in hat

the minimum distance−pair, we slowly attempt adding in new agents. If the new
distance−pair values are within a threshold of mean distance−pair plus/minus
standard deviation, we add the new agent to the overall group. Otherwise, we
continue to the next possible agent. When we’ve run out of possible agents to
add, whatever is left we define as a new group. We then remove these agents
from the overall list of agents to check and start over with the newest minimum
distance − pair. We continue doing this until our minimum distance − pair
reaches a certain threshold if a minimum threshold is not met then we stop,
likewise if we run out of agents for pairs we also stop.

4.4 Group Delineation and Selection

A group description is a pairing, (R,P ), between a relation, R, and a property,
P . A group, G, can satisfy a group description if the property and relation hold
true for that group. With these group descriptions, we can now think about how
we might differentiate between groups. To delineate groups, we need to know all
possible descriptions for a group. A Group Selection Problem (GSP) consists of
a given Group Description, (R,P ), and a domain of agents, groups, and objects.
A solution for this would be a group that satisfies the given Group Description
in the domain.

5 Implementation and Evaluation

5.1 Implementing the Group Selection Problem

We use SWI-prolog [25] to implement our Group Detection algorithm. This fol-
lows along previous work that has used Prolog in HRI and qualitative reason-
ing [4,5,26]. To implement group detection we assume knowledge of individuals.
From here, our group detection algorithm is used. Some of the functions not
fully defined include findAllDistances. This function generates a list of distance
pairs, (a, b,N), between all agents a, b so we know that the distance between
agents a and b is N . This is only done once in the detection algorithm.

Additionally, there are some stop cases for thresholds that are important to
know. There are two places where thresholds can change how detection works.
The first is when the algorithm only has two agents left, there is a threshold
to consider them a group or not. The main loop, that is when there are more
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Table 2. Group detection methods in the Cocktail party benchmark

Algorithm Precision Recall F-score

Our method 0.62 0.21 0.31

Pose-only baseline from [16] 0.29 0.27 0.28

than 2 agents, automatically makes a group between two agents. The second
threshold has to deal with how the standard deviation works on newly formed
groups. When a new group-pair is formed, the standard deviation is 0. This is
bad, so we allow for this special case that the standard deviation is related to
the distance between those two agents. We ran things between a quarter of the
distance to two times the distance between the agents. For later testings, these
values were used to fine-tune some of our results.

Following along with our group detection, we also implement the group selec-
tion queries in SWI-Prolog. Table 1 lists queries next to each description. These
queries can be solved fairly quickly from the properties given. A majority of the
group property queries also involve a minimum or maximum value check against
certain properties.

In addition to our own scenarios to test group detection and selection, we
also use a test-case dataset to compare our group detection algorithm to state-
of-the-art algorithms - Cocktail Party. The CocktailParty dataset, first discussed
in [17], is a dataset containing video of a cocktail party in a large room with 7
individuals walking around. There is a main table at one side of the room with
drinks and food on it and the rest of the room is fairly open for the people to
walk around in. Over the course of 30 min, the individuals interact with each
other in various groupings.

5.2 Evaluations and Testing

We determined a group to be accurately detected as previous detection strate-
gies in [2,17]. To test our Group Detection Algorithm, we ran it over a known
dataset, CocktailParty, and gave its Precision, Recall, and F-Score results in com-
parison to another pose-free group detection algorithm result in Table 2. Groups
in this dataset were annotated manually by an expert every 5 s resulting in 320
still frames with group annotations. We tested our algorithm against these 320
frames. When compared to a previous “Pose-only” from [16], we do significantly
better with precision and, as a result, have a better F-score as well.

These were all run on a basic laptop running Ubuntu 16.04 with a 2.8GHzx8
i7 Intel processor. The runtime results were taken using the linux time command
and includes the entire prolog run. Each run was given the agents and objects
locations and it ran detection, definition, and selection each time. On average
our runs took around 0.035s. Comparatively, [17] mentions averaging about 15 s
per frame of video for their detection method and [16] mentions their detection
algorithm running in a few milliseconds.
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6 Discussion and Conclusion

We provide an alternative approach to group formation that need not rely on
head tracking or pose detection which can be difficult in some scenarios. We
demonstrate an improvement on current approaches [16,17] that detect group
formation without the use of head pose information.

Future directions with group selection involve on-boarding this to full robotic
platforms along with adding selection commands. A final direction to take these
group description and selection queries is to use them to clarify and prune imper-
fect information and confirm certain group descriptions with human counter-
parts. Additional studies in understanding the priorities and orderings for group
descriptions used by humans would be beneficial to ensure that this reversal of
queries is more optimally specified.
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Abstract. Effective and efficient communication is critical for human-
robot collaboration and human-agent teaming. This paper presents the
design of a Controlled Robot Language (CRL) and its formal gram-
mar for instruction interpretation and automated robot planning. The
CRL framework defines a formal language domain that deterministically
maps linguistic commands to logical semantic expressions. As compared
to Controlled Natural Language, which aims for general knowledge rep-
resentation, CRL expressions are particularly designed to parse human
instructions in automated robot planning. The grammar of CRL is devel-
oped in accordance with the IEEE CORA ontology, which defines the
majority of formal English domain, accepting large range of intuitive
instructions. For sentences outside the grammar coverage, CRL checker
is used to detect linguistic patterns, which can be further processed by
CRL translator to recover back an equivalent expression in CRL gram-
mar. The final output is formal semantic representation using first-order
logic in large discourse. The CRL framework was evaluated on various
corpora and it outperformed CRL in balancing coverage and specificity.

1 Introduction

Reliable communication between humans and intelligent robot is a critical need
especially for human-robot collaboration, human-agent teaming, and multiple
agent coordination. For most robotic applications, reliable human-robot com-
munication will significantly reduce the chances of unpredictable catastrophes
and fatal damages. In addition to physical interaction, natural language has the
potential to become the main communication channel for instructing robots,
representing contextual knowledge, and providing feedback. From a psycholog-
ical perspective, trust is the grand obstacle preventing human and robot from
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communicate effectively [1]. A robot with dynamic consciousness and optimized
precision does not necessarily gain trust from its users. We believe that the lack
of reliable natural language communication is one of the main factors that hinder
the advancement of human-agent teaming.

Fig. 1. Parsing of natural language instructions using CRL. The linguistic instructions
from user are converted into appropriate semantic representations using Discourse Rep-
resentation Structure with variables and explicit logical statements. Command-type
DRS expressions can be used to control robot through planning.

Significant research progress has been made to address the importance and
challenge of reliable natural language communication in robotic domain [2].
Robots are deemed to understand natural language if the robot can either (i)
extract correct information or (ii) have a logical semantic representation for the
context. From the former perspective, natural language understanding is consid-
ered as shallow parsing low-level knowledge for action control. The most common
approaches in this branch include probabilistic models [3] and neural-network
methods [4], which have demonstrated robust performance in detecting linguis-
tic patterns and triggering low-level actions. These approaches focus on partial
information only, which is not representative enough for describing complete
planning scenarios in realistic cases. The latter perspective parses the natural
language in a richer way, where the semantics of natural language expressions
are representable in logic form [5].

Despite the fruitful research progress of human-robot communication, natural
language based interfaces in robotics are still limited due to the trade-off between
expressiveness and reliability. Linguistic models that can handle a large range
of natural language expressions are less deterministic or reliable; on the other
hand, systems that can understand natural language inputs in-depth are limited
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in expressiveness. A common language domain could bridge the gap between
expressiveness and reliability in human-robot interaction.

In this paper, we propose a grammar model named Controlled Robot Lan-
guage (CRL) that interprets general human instructions into Discourse Repre-
sentation Structures (DRS) [6], which is a semantic format that can capture
various partial information into the same data structure. More importantly, the
CRL is designed for general-purpose that represents a deterministic and expres-
sive linguistic domain rather than an ad-hoc development, inspired by Controlled
Natural Language (CNL). The CRL framework defines CRL grammar that syn-
tactically captures a majority of English expressions. For dialect expressions that
do not follow the grammar, we developed a CRL checker, which contains flexible
set of common linguistic patterns, to detect correctable grammar errors. In the
CRL domain, expressions following the grammar are parsed into correspond-
ing formal representations, which contain all essential linguistic information for
robotic planning with reference to IEEE CORA standards [7]. As shown in Fig. 1,
given a sequence of natural language instructions, the CRL parser generates the
corresponding syntactic structure for expressions without errors in grammar,
or corrects fixable patterns for expressions with errors in grammar. The CRL
framework will translate the instructions into knowledge representations or robot
action planning.

We plan to address two fundamental challenges. The first challenge is to
design a linguistic model that is comprehensive and unambiguous. To the best
of our knowledge, there is no work so far addressing the importance of these
two properties equivalently and simultaneously. The second challenge is to auto-
matically transform or represent formal representation into robot knowledge and
actions. A primary objective of human-robot communication is to enable high-
level mutual understanding and automated planning. There is limited research
addressing on expanding the natural language domain in human-robot collabo-
ration. The main contributions of this paper are:

1. We designed and implemented a linguistic grammar tailed for robotic appli-
cations, which achieves both reliability and expressiveness; and

2. We developed a complete framework and proposed a methodology in trans-
lating natural language instructions into corresponding robot actions.

2 The Framework of Controlled Robot Language (CRL)

In view of the lacking of linguistic interfaces that satisfy reliability and expres-
siveness, we aim to implement a framework of Controlled Robot Language (CRL)
for robot understanding and planning. Motivated by Controlled Natural Lan-
guage, the proposed model maintains essential properties: certainty and gener-
ality. The proposed framework contains three fundamental components: CRL
grammar, a CRL parser, and a CRL translator. The CRL grammar defines a
formal language domain – a set of common English instructions. CRL parser is
used to assign equivalent syntactic structures to input commands. From syntactic
structures, partial linguistic information, such as subject, object, predicate, noun
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modifier, and predicate modifier, can be extracted and constructed back into for-
mal representations. The CRL grammar is designed toward a deterministic and
reliable interpretation with no ambiguity. We limited the set of CRL grammar
for a compact and efficient grammar core. The sentences outside the domain
are further processed by the CRL parser in accordance to predefined dialect
patterns – set of sentence patterns that exist in daily conversations but are not
generalized enough to be represented as grammar rules. These dialect patterns
can be recognized and transformed by the CRL translator, which returns a valid
expressions but in CRL grammar domain.

2.1 CRL Grammar and Dialect Patterns

Grammar is the core component of the proposed framework. We designed the
CRL grammar as a general-purpose and deterministic grammar in English. The
CRL grammar defines an unambiguous formal language domain, which can be
computational efficiently processed by a computer, but still expressive enough
to allow natural usage. We defined and developed the CRL grammar in terms of
Context Free Grammar (CFG) with selective rules to avoid unnecessary ambi-
guity.

Fig. 2. CFG productions for CRL grammar – implicit descriptions of CRL grammar.

Given a set of terminal nodes associated with a set of terminal symbols
T and nonterminal nodes associated with a set of nonterminal symbols N , we
defined grammar using CFG paradigm. CFG grammar is a collection of linguistic
productions in the form of

X → {Yi}ni {αj}mj (1)

where X ∈ N , Yi ∈ N ∪ T and αj ∈ T . To support common instruction struc-
tures and IEEE CORA ontology, we formulate the CRL grammar by a set of
about 330 productions1, including a set of standard Penn Treebank POS tags and
30 additional new nonterminals. A fragment of grammar is visualized in Fig. 2.
The grammar defines constraints on language domain, aiming to optimally avoid
unnecessary ambiguity. The grammar captures a majority of common linguistic
1 The complete grammar and parsers are available at: https://github.com/hhelium.

https://github.com/hhelium
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expressions in real-world scenarios, e.g., “A robot picks a red apple on the table.”
and “Which apple is red? ”.

CRL grammar was initially developed to express the core grammar produc-
tion in form of S → NP VP and its variants. During the grammar developing
process, attachment ambiguity and coordination ambiguity appeared. To avoid
solving ambiguities by designing a complex disambiguation model, dialect pat-
tern recognition is used to detect patterns that can potentially lead to ambigu-
ities, and transform them back to equivalent CRL linguistic expressions. These
dialect patterns are manually designed based on WikiHow instructions [8]. This
dynamic set can be flexibly expanded and modified in accordance to the chosen
language domain. As shown in Table 1, to make CRL applicable in WikiHow cor-
pus domain, input sentences must be normalized and transformed into equivalent
representation following each dialect pattern’s correcting rule.

Table 1. Grammar dialect patterns for CRL checker.

Dialect Pattern Examples Linguistic Correction

Your/our/my pattern your hand change to a possessive pronoun
You/I/we pattern you can move replace with a subject pronoun
Plural nouns cubes singularize
Metrics 3 kilograms, 1 ton map to standard metric units
Literal quantity one half; quarter; dozen map to standard metric units
Imperative rotate the leg “robot” as the default subject
Compound noun table leg last noun as the main noun
Consecutive adjectives a small red apple add conjunction “and”
Consecutive adverbs gradually slowly move add conjunction “and”
Verb+obj +to+verb click the screen to start restructure
Verb + to + verb have to wait add modal
Verb+gerund consider stopping gerund as the main verb
From-to pattern from 0.1 to 0.2 cm standardize the structure
Passive voice is picked by convert to active voice
Progress description by grasping its hand convert the gerund to a verb

2.2 CRL Parser

With the defined CRL grammar, we constructed a syntactic parser to analyze
syntactic structures of natural language descriptions. We utilized a common
Bottom-Up dynamic programming parsing algorithm Cocke-Kasami-Younger
(CKY) to find all syntactic structures for a given sentence with efficient run
time complexity – O(n3 · |G|) where n is the length of input, and |G| is the
size of CFG grammar. Although CRL grammar was carefully selected to avoid
unnecessary syntactic ambiguities, multiple parsing structures for NL input are
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inevitable. To maintain the determinism property of the robot system without
building a disambiguation model, appeared ambiguities are manually resolved by
user’s instructions. These instructions can be collected, trained by a probabilistic
model and automatically used in the future cases.

2.3 Translating CRL Descriptions to Knowledge Representations

Leveraging the parsed syntactic structures, the CRL framework constructs a con-
textual semantic representation of natural language expressions. These semantic
representations are essential for robot understanding and planning. Each seman-
tic representation can be either classified into one of three categories: contextual
descriptions, command instructions, and queries. The instructions correspond
to robot planning, and the contextual descriptions specify environment con-
text, temporal and spatial constraints. We developed a program that automat-
ically translated these semantic expressions into corresponding LTL specifica-
tions, which can be executed directly by robot planners.

Given the syntactic structure, the framework extracts fundamental linguis-
tic components such as object, predicate, property, adjunct, and phrase. The
extracted information is, however, discrete and exclusive. To unify them into a
single semantic representation, we need semantic rules to depict combining pro-
cedures. These rules are best described using symbolic language as Prolog [9].
The main challenge of this process is the ability to create general rules that can
unify low-level knowledge. Appropriate selection of semantic rules goes beyond
a combination task: solve anaphoric problem, identify quantification property,
and describe temporal constraints. In this paper, we focus on a set of seman-
tic rules for discourse representations, which also handle anaphora binding and
determiners quantifying. The theoretical details of these rules can be found at
Kamp’s lecture [10]. The developed CRL system expanded the semantic rules as
defined in [11] by unifying discrete components and adding a few abstraction lay-
ers. These abstraction layers provide convenient ways to identify objects, trigger
actions, or query. By using additional abstraction layers, we can easily classify all
possible formal representation into three main types: (i) Description-type: used
to describe an event, robotic environment, and knowledge base; (ii) Command-
type: used to trigger robot actions; (iii) Query-type: extract information back
from the knowledge base.

3 Experiment

We evaluated the CRL framework in parsing performance, formal robot plan-
ning, and user acceptance. The CRL framework is compared with two linguistic
frameworks, Attempto Controlled English [12] and Stanford Constituency pars-
ing [13], on instruction-based corpora WikiHow [8] and Collaborative Manipula-
tion [14]. The effectiveness of the CRL framework in automated planning is also
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demonstrated in an example of instruction-based furniture assembly. At last,
we quantified the user acceptance of CRL in terms of correctness, complexity,
ambiguity, readability, and efficiency.

3.1 Performance of Natural Language Parsing

The CRL framework was tested on instructions in Collaborative Manipulation [8]
and WikiHow corpus [14] for planning domain. The Collaborative Manipulation
is a standard dataset, which is a corpus of 1670 natural language sentences. The
WikiHow dataset is a collection of human describing procedural task using step-
by-steps instruction style. The dataset consists of 9520 instruction sentences.
The performance of CRL in grammar coverage and semantics representation is
compared with ACE framework [12] and Stanford Constituency parsing [13]. As
showed in Table 2, the CRL is outperforming ACE in expressiveness in term
of grammar coverage, but not as competitive as the induced-grammar-based
methods Stanford CoreNLP. Nonetheless, CRL can express all parsed instruc-
tions into complete semantic representations, whereas Stanford CoreNLP was
not designed with this capability. This is the conundrum in solving the contra-
diction between coverage and formal representation. To represent a linguistic
instruction into formal semantics, the domain grammar needs to be structured;
on the contrary, structured grammar cannot cover all free-form natural language.
Though defined in general language domain, the ACE framework cannot under-
stand any sentences in the WikiHow corpus, due to the extensively use of invalid
expressions in ACE grammar.

Table 2. Performance comparison on standard corpora.

Collaborative Manipulation (1670)
Grammar coverage Formal semantics

ACE [12] 140 (8.38%) 140 (8.38%)
CRL (this paper) 739 (44.25%) 739 (44.25%)
CoreNLP [13] 1670 (100%) N/A

WikiHow (9520)
Grammar coverage Formal semantics

ACE [12] 0 (0%) 0 (0%)
CRL (this paper) 3898 (40.95%) 3898 (40.95%)
CoreNLP [13] 9520 (100%) N/A
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The CRL framework has a flexible set of linguistic patterns, allowing flexible
adaption to various scenarios. The experiment showed the same trail in the
Collaborative Manipulation corpus. It is important to guarantee deterministics
and reliability in human-robot collaboration for predictable system behavior.

3.2 CRL-Based Robot Planning

We implemented an automated planning system based on CRL for the assembly
of an IKEA table by following natural language instructions. The robotic sys-
tem consists of a Sawyer manipulator with an AR10 robotic hand, which support
context-aware task-oriented manipulation [15,16]. We employed the RRTCon-
nect [17] planner for low-level control, and developed a Python modules for the
CRL interface. The control and communication are implemented as ROS ser-
vices. We also utilized the Spot [18] to handle LTL specification by building
reactive system from DRS instructions, and used RViz for simulation and visu-
alization.

Figure 3 shows the results of successful action execution by following natural
language instructions to assemble an IKEA table step by step. Four primitive
actions were developed and grounded: pick, place, release, and rotate. The com-
plete implementation of 13 instruction scripts took about 4minutes to finish, but
there is a lot of room for optimization both in CRL parsing and action planning.

3.3 User Acceptance of CRL

We evaluated the acceptance of CRL in terms of the discrepancy between
CRL parsing and human perception. We designed questionnaires containing five
binary (yes/no) evaluation criteria: correctness, complexity, ambiguity, readabil-
ity, and efficiency. 1) The correctness is defined as whether the parsed results
are correct in DRS forms, i.e., the parsed DRS representations are correct and
semantically consistent with the input sentences; 2) The complexity evaluates
whether the parsing results contain additional redundant words or phrases gen-
erated by dialect correction; 3) The ambiguity in semantics is used to examine
if the CRL can handle a potentially ambiguous natural language input; 4) The
readability is used to evaluate whether the CRL parses a potentially ambiguous
input in the same way as a human does; 5) The efficiency is used to evaluate
whether the parsing results are sufficient for further robotic applications such
as task planning. Ten participants were invited to evaluate 350 CRL parsing
results. As shown in Fig. 4, the CRL has high acceptance and consistence with
human understanding of natural language instructions.
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Fig. 3. Assembly of a furniture table by following natural language instructions based
on CRL.

Fig. 4. User acceptance of CRL (higher scores are better).



348 D. Tran et al.

4 Conclusion

We proposed a CRL framework that ensures reliability and expressiveness for
natural language communication. We also demonstrated the procedure to inte-
grate the CRL framework into robotic planning: from building a complete seman-
tic representation to mapping those representations into robotic actions. The
experiment showed the performance of the CRL frame in parsing natural lan-
guage instructions, and demonstrated the effectiveness and flexibility of the CRL
framework for automated robot planning.
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702 81 Örebro, Sweden
martien.schrooten@oru.se

Abstract. The sensibility to deictic gaze declines naturally with age and
often results in reduced social perception. Thus, the increasing efforts in
developing social robots that assist older adults during daily life tasks
need to consider the effects of aging. In this context, as non-verbal cues
such as deictic gaze are important in natural communication in human-
robot interaction, this paper investigates the performance of older adults,
as compared to younger adults, during a controlled, online (visual search)
task inspired by daily life activities, while assisted by a social robot.
This paper also examines age-related differences in social perception.
Our results showed a significant facilitation effect of head movement
representing deictic gaze from a Pepper robot on task performance. This
facilitation effect was not significantly different between the age groups.
However, social perception of the robot was less influenced by its deictic
gaze behavior in older adults, as compared to younger adults. This line of
research may ultimately help informing the design of adaptive non-verbal
cues from social robots for a wide range of end users.

Keywords: Human-robot interaction · Older adults · Non-verbal cues

1 Introduction

In the last years, there has been an increasing interest in the use of social robots
to assist older adults (OA) during daily life tasks [20]. An important cue in
the interaction with social robots is non-verbal communication such as deictic
gaze [2,17]. Humans use deictic gaze to guide the attention of another person
towards a point in the space by looking at it. This communicative signal is key to
initiate a shared attention between individuals and to increase the efficiency in
collaborative tasks [4]. In addition, deictic gaze is important in OA because it can
help to inform age-related differences in human-robot interaction (HRI) [7]. This
is because the sensibility to deictic gaze declines naturally with age, reflecting
a reduction in social perception in OA [21]. For this reason, it is important to
explore how deictic gaze is attended in normal aging when performed by a robot.
c© Springer Nature Switzerland AG 2021
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At the same time, there is a call for more studies regarding non-verbal cues
in which OA are direct research participants, in contrast to studies where OA
act only as beneficiaries, and to further compare the outputs with younger con-
trols [22]. Therefore, it is relevant to explore the benefits of non-verbal cues
from social robots towards OA during collaborative daily life tasks, and how
age-related differences may influence their perception of a social robot in con-
trast to younger populations. These studies may help improving the design of
non-verbal cues in HRI that adapt to age changes.

This work seeks to explore potential age-related differences in the perception
of deictic gaze from a social robot when collaborating in tasks inspired by daily
life activities. To do so, we designed a set of online visual search tasks with a
video recording of a Pepper robot1 given its wide use in research related to HRI.
Pepper does not have degrees of freedom in the eyes to reflect human-like gaze.
Therefore, and in line with previous research [2,18], we used its head movement
to point to objects as a way to reflect deictic gaze as shown in Fig. 1.

Fig. 1. Layout of the task. The video of the robot provides verbal instructions switching
between static positioning and deictic gaze behaviour. The picture shows a trial in
which Pepper uses deictic gaze towards the ketchup, where participants should click.

1 https://www.softbankrobotics.com.

https://www.softbankrobotics.com
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2 Related Work

Gaze behavior from a robot is highly studied in HRI. It has been shown that
making eye contact with a robot evokes similar physiological responses as if with
a human [13]. Appropriate gaze from a speaking robot towards a human can
positively affect the recall of what has been said [16] and can regulate the role of
the participants in conversations [17]. Similarly, a robot moving the head away
can effectively reflect gaze aversion and can be perceived as more thoughtful by
the users [3]. In collaborative scenarios where a human follows guidance from a
robot, deictic gaze from the robot can assist the human partner by signaling at
objects in space [1], although the specific benefits differ among studies [2,14,18].

The work in [14] investigated deictic gaze in a situated human-agent collab-
oration. The results showed that this non-verbal cue led to higher interaction
times and, thus, inferior task performance. In contrast, the work in [18] found
that deictic gaze in the form of head movement from a robot did not affect task-
completion times, although it helped to reduce the number of errors. This is in
line with [2], which suggested that deictic gaze from a robot is not that useful
in simple tasks when compared to difficult ones.

Previous research also indicated that eye-gaze following deteriorates with
age [21]. Nevertheless, to the best of our knowledge, the influence that gaze from
a robot may have on OA has not been explored. In our study we used a similar
task as in [14] reflecting a realistic interaction between OA and an assistive robot.
Although the remote nature of our study might limit the interaction between
the users and the robot, the current approach, importantly, allowed us to control
the influence of some extraneous variables on the main outcome variables, such
as the social presence caused by the robot looking at the user, which may lead
the users to start a conversation with the robot and get higher completion times
as reported in [14].

3 Methods

This study was performed during the Covid-19 global pandemic. We designed an
experimentation method for effective remote participation, which also facilitates
larger scale testing. More specifically, we designed a controlled online collabo-
ration task mimicking an everyday life situation (see [15] for a description of
an equivalent face-to-face interaction). In this experiment, a video of Pepper
verbally guided the participants during a task that represented a guided prepa-
ration of a sandwich recipe. To compare the potential benefit in the perception
of non-verbal cues, the robot switched its behaviour between static-based and
deictic gaze-based indications. We measured the participant’s reaction times and
task-completion times during task performance. An example video of the task is
available2.

2 https://youtu.be/6zSgm8jEnCM.

https://youtu.be/6zSgm8jEnCM
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3.1 Scenario

Our experimental scenario featured a video of a Pepper robot who verbally
guided participants through two everyday-like visual search tasks which con-
sisted on clicking on several ingredients for preparing a sandwich. An example
layout of the ingredients and the robot is shown in Fig. 1. We defined two robot
conditions: a static robot (SR) which always looked at the camera while giving
instructions, and a moving robot (MR) which also featured deictic gaze by mov-
ing the head towards the correct ingredient. Each of these conditions defined
a task: a SR task, and a MR task. Inside each task, the user had to prepare
two sandwiches by following the verbal instructions of the Pepper robot, which
named each ingredient and waited for the user to click on it. So, each participant
prepared two consecutive sandwiches with a static robot (SR), and two other
consecutive sandwiches with a moving robot (MR). The full structure of the
experiment is shown in Fig. 2.

A trial consisted of the selection of one ingredient. The user prepared two
sandwiches from five ingredients in each task. The order of the sandwiches within
a task and the order of the ingredients in each sandwich were fixed. The order
of the tasks was counter-balanced and started randomly either with SR or MR.

Within each task, we measured reaction time (RT) and task-completion time
(TCT). We defined RT as the time span between the moment the robot started
naming one ingredient and the moment the participant clicked on that ingredient
within a trial. The RT of the bread was excluded because of its high predictability
(always first/last ingredient). A trial was correct when the mentioned ingredient
was clicked. The final number of trials per task in which RT was used was ten:
five ingredients for each sandwich. We defined TCT as the time needed by a
participant to finish one task (two sandwiches).

3.2 Materials

After each task, participants were presented with a set of self-report question-
naires and subscales. First, the mental demand subscale of the NASA-Task Load
Index (NASA-TLX) [12] was used for assessing the mental demand between
robot conditions. Second, the Godspeed Questionnaire Series [5] was used to
measure the perceived anthropomorphism of the robot by the user. Here, we
used a modified version of the anthropomorphism questionnaire due to an irrel-
evant item for the context of this study (moving rigidly-elegantly). Moreover, we
added the item mechanical-organic as in [6]. Finally, the RoSAS [6] scale was
used to measure the perception of warmth, competence, and discomfort caused
by a robot. We added two extra questions at the end: Q1) Did you notice any
difference between the robots in the tasks? to check whether the person was aware
of the difference between robot conditions; and Q2) Which robot did you prefer
from the ones you interacted with? to check their preferred condition (SR or
MR).

This study was built using Labvanced [10], an online tool for designing and
remotely distributing experiments on human cognition. The language used for
the whole study was Spanish.
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Fig. 2. Structure of the experiment for a participant i. The letter ‘B’ represents the
bread, while ‘In. x’ represents ingredient in position x. ‘Q’ refers to the questionnaire.

3.3 Experimental Design

Our study followed a 2× 2 mixed design with two robot conditions, SR and MR
(within-subject), and two age groups, Adults (A) and OA (between-subjects).
The age range in the A was ≥18 and <65 years, and in OA it was ≥65. This
division was based on the working retirement age.

The presentation order of the blocks (see Fig. 2) was counter-balanced and
participants were randomly assigned to one of the two possible orders. We
explored age-related differences in the effect of the robot’s deictic gaze on task
performance and social perception of the robot, as reflected in the interaction
between age group and robot condition

3.4 Sample

We performed a G*Power analysis [8] to calculate a minimum sample size that
allowed an expected power (1 − β) of 0.80 to detect a small effect size of f = 0.25
(η2 = 0.06) between age groups. The result of the analysis indicated a minimum
required sample size of 98 participants. A total of 329 participants took part in
the study, of which 53 were excluded due to incomplete data. A summary of the
characteristics of the final sample is shown in Table 1.

Potential participants were contacted via mailing lists from Spanish univer-
sities with adult education programs. Inclusion criteria (based on self-report)
were to be fluent in Spanish, to have normal or corrected-to-normal vision, and
to be cognitively healthy. Participants gave written informed consent in accor-
dance with the Declaration of Helsinki and were informed about research goals.
Participation was voluntary and no personal data that allowed their identifica-
tion were obtained. In addition, approval was obtained from the corresponding
program coordinators at each university.

The age range was 18–64 for A and 65–88 for OA. The mean age between
the groups was significantly different (t(145) = 14, p < 0.001). A chi-squared test
showed no significant differences between the age groups in their level of educa-
tion, their previous knowledge of Pepper, and their experience with computers.
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Table 1. Final sample description

Group Age (years) Gender Comfort w/computers Had seen pepper before

Mean SD M F Other No Not Sure Yes No Not Sure Yes

OA 69.3 3.8 76 74 0 1 7 142 108 26 16

A 53.4 12.1 45 80 1 1 11 113 84 24 18

Whereas there were about as many men as women in the OA group (51% men;
49% women), men were underrepresented in the A group (35.7% men; 63.5%
women), (χ2(1) = 5.9, p = 0.014).

3.5 Procedure

The experiment started by asking participants to put on headphones (in order to
reduce potential external noise) and to calibrate the volume of their headphones
to ensure they could hear the robot clearly. Then, they were informed in the
consent form about the study and the possibility of ending it at any time and
filled a sample information questionnaire. Before the experiment started, partic-
ipants had time to get familiar with the interface and ingredients to be used in
the task. This last step was done to reduce the possibility of a poor performance
derived from a participant not knowing an ingredient. To reduce external influ-
ences, participants were encouraged to avoid distractions and to be rested before
starting. To favour this, we kept the experiment short and they were informed
about its duration, fifteen minutes. For the main tasks, they were also encour-
aged to perform as well as they could, but without explicit instructions about
being fast. This was to maintain the everyday nature of the task in contrast to
a classic computerized experiment. In addition, they were not warned about the
difference between the robot conditions (SR or MR).

4 Results

4.1 Reaction Times and Task-Completion Times

We first present reaction times (RT) and task-completion times (TCT) between
the robot conditions (SR, MR), age groups (OA, A), and the combination of
both. Potential noise in these time measures from participants due to exter-
nal factors such as computer, browser, or operative system, was corrected using
metadata provided by Labvanced. To analyze the RT data, we used the median
RT of the correct trials within each task per participant (Fig. 2). The percentage
of incorrect, and thus excluded, trials was 2.24%. Due to violations of assump-
tions for the mixed ANOVA test, we analyzed the data using a Mixed Robust
ANOVA test with 20% trimmed means and 2000 bootstrapped samples.

The RT for different age groups and conditions are shown in Fig. 3A (left).
Means, standard deviations and p-values for RT are also reported in Table 2.
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Values were significantly different between the robot conditions, showing a facil-
itation effect for the MR condition. We also found a main effect of age that
showed higher RT for OA. We did not find an interaction effect between robot
condition and age group. Following [21], the strength of the facilitation effect
was calculated as a proportional difference score (RTSR − RTMR)/RTMR. An
independent robust t-test (trim = 0.2, samples = 2000) did not show signifi-
cant differences in the strength of the facilitation effect caused by the MR in
RT between age groups (Fig. 3B and Table 2 ), i.e., the magnitude of the help
provided by the MR in terms of how fast the ingredients were clicked was similar
between the age groups.

The TCT for different age groups and conditions are shown in Fig. 3A (right).
Means, standard deviations and p-values for TCT are also reported in Table 2.
Results show a facilitation effect for the MR condition in TCT. Furthermore,
TCT was also higher for OA. We could not find any interaction effects between
robot condition and age group. The strength of the facilitation effect was also
calculated as a proportional difference score (TCTSR − TCTMR)/TCTMR. A
robust t-test did not show significant differences in the strength of the facilitation
effect caused by the MR in TCT between age groups (Fig. 3B and Table 2).
Finally, the age groups did not differ in how fast they performed the task.

4.2 Questionnaire Measures

We now present the scores of the different questionnaires and scales from
Sect. 3.2. We used a Robust Mixed ANOVA for all the scores except for anthro-
pomorphism, as it met the assumptions for a regular Mixed ANOVA. Table 3
shows the social perception scores and the Cronbachs’s α of each construct with
the corresponding analyses. We found a significant effect of age by which OA
perceived the robots as more anthropomorphic as compared to A. In addition,
the MR scored significantly higher than SR in all the social perception scores
except in the discomfort score. This indicates a more positive perception of the
MR. Finally, a significant interaction effect showed that the deictic behavior
of the robot had a lower impact on the self-report of anthropomorphism and
discomfort in the OA group.

To test whether the deictic gaze of the robot affected the reaction times even
if the participants were unaware of that movement, we analyzed the subset of
all participants who retrospectively reported to not have noticed the difference
between the robot conditions by answering No to Q1 (see Sect. 3.2).

In the subset of participants who answered No to Q1 (a total of 116), we
found (1) a main effect of age group on RT at p < 0.001, but no effect of
robot condition or interaction effect; (2) a main effect of age group on TCT at
p < 0.001, but no main effect of robot condition or interaction effect; (3) no
effects in any of the subjective scores; (4) an over-representation of OA (67.2%),
as compared to A (32.7%) (χ2(1) = 12.5, p < 0.001).

We also analyzed the participants who expressed a preference for a robot in
their answer to Q2. From a total of 163 answers, 78.5% chose the MR. For the
participants choosing the MR, the differences between age groups, A = 57.8%,
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Fig. 3. A) Mean Reaction Time (left) and Task-Completion Time (right) for each
group. B) Violin plots with means in red of the proportional differences between robots.
Error bars show 95% bootstrapped confidence intervals.

OA = 42.1%, were not significant (χ2(1) = 2.47, p = 0.11). Finally, with respect
to the mental demand scale, we found no main effect of age (p = 0.07) or robot
condition (p = 0.11), and no interaction (p = 0.33) (M = 4.18 ± 3.75).

5 Discussion

This work sought to explore potential age-related differences in the perception of
visual cues from a social robot. We focused on the influence of deictic gaze during
a collaborative tasks inspired by daily life activities. We found a facilitation effect
of deictic gaze from a Pepper robot in all the participants independently of their
age. Given this facilitation effect for both time scales, our main interest was to
find if its magnitude was different between age groups. Our results showed that
the facilitation effect from the deictic gaze was not significantly different between
age groups, neither in TCT nor RT (Fig. 3; Table 2). To further investigate the
effect of deictic gaze, future research could include additional control conditions
like a human face or non-social signalling. In addition, the high predictability,
and thus the potentially high trust placed in a robot who always signals the
correct ingredient (i.e., 100% valid gaze cues), could have had an influence on
the speed of the responses. Future studies might want to also include invalid
gaze cues that signal the incorrect ingredient and neutral gaze cues that are not
informative about the location of the ingredients [21]. Comparing the impact
of valid, invalid, and neutral gaze cues would help to explore the impact of
credibility of the robot and trust in the system on task performance, as well as
possible attentional costs [22] as they occur with human gaze cues.
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Table 2. Means, SDs and main/interaction effects on the times

RT (ms) TCT (s) % Facilitation (RT) % Facilitation (TCT)

Age p < 0.001 (***) p < 0.001 (***) p = 0.31 p = 0.66

MA 2131± 575 53.5± 9.8 0.29± 0.36 0.12± 0.2

MOA 2590± 808 61± 12.5 0.22± 0.35 0.11± 0.2

Robot p < 0.001 (***) p < 0.001 (***) – –

MSR 2585± 721 61.5± 12.3

MMR 2176± 716 56.3± 11.1

Age*Robot p = 0.2 p = 0.7 – –

MSR−MR
A 426± 582 4.9± 10.7

MSR−MR
OA 393± 744 5.4± 11

Table 3. Means, SDs, Cronbachs’s α and main/interaction effects on the social per-
ception scores

Anth. (α = .88). Warmth (α = .87) Compt. (α = .84) Discom. (α = .76)

Age p = 0.02 (*) p = 0.051 p = 0.26 p = 0.88

MA 2.66± 0.94 2.47± 0.8 3.64± 0.67 1.71± 0.58

MOA 2.89± 0.77 2.56± 0.8 3.65± 0.73 1.73± 0.58

Robot p < 0.001 (***) p = 0.003 (**) p < 0.001 (***) p < 0.001 (***)

MSR 2.7± 0.92 2.42± 0.8 3.49± 0.76 1.76± 0.6

MMR 2.87± 0.7 2.62± 0.79 3.8± 0.61 1.68± 0.55

Age * Robot p = 0.03 (*) p = 0.85 p = 0.47 p = 0.003 (**)

MSR−MR
A −0.27± 0.77 −0.25± 0.67 −0.39± 0.71 0.173± 0.58

MSR−MR
OA −0.08± 0.66 −0.15± 0.62 −0.25± 0.64 0± 0.5

OA scored higher in anthropomorphism regardless of the robot condition.
There was also an increase in all the social perception scores as a result of the
robot deictic gaze (Table 3). Moreover, the MR was chosen as favourite. These
results support previous notions that appropriate social behaviors improve the
acceptability of social robots [9]. All the participants indicated a low mental
demand (M = 4.18 out of 21) when performing the tasks, independently of
the robot condition. Moreover, we found an interaction effect in the scores of
anthropomorphism and discomfort caused by the robot (Table 3) which varied
less between robot conditions in OA. This interactions suggests a different per-
ception of deictic gaze from a robot by OA.

A proportion of 42% of the participants reported not detecting the differ-
ences between the robot conditions. For this group we only found age effects on
RT and TCT (Sec. 4). It cannot be excluded that participants interpreted Q1
(Sect. 3.2) literally and therefore reported no physical differences between the
robots. However, this subgroup did not show a facilitation effect of the deictic
gaze. Despite these participants not showing a facilitation effect, the incorrect
trial ratio in our sample remained low (2.24%). Notably, within this subgroup,
there were moe OA than A. This is in line with previous work [21] showing the
age-related decline in eye-gaze following. Alternatively, the over-representation
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of OA in this subgroup might as well reflect a broader cognitive decline, or
difficulty in remembering the differences between robot conditions [11].

There are two main limitations in this study that could be addressed in
future research. First, we used a sample of OA that was largely similar to the
A group, except for age. While this was necessary to isolate the component of
biological aging and to control for factors such as of computer literacy, required
for this study, it reduces the generalizability of results among more vulnerable
OA who may be more willing to benefit from the assistance of social robots
[19]. In addition, and although the AO and A groups did significantly differ in
age, the age gap between groups was not broad. Future research could consider
a finer division of groups of age to explore if eye-gaze following declines also
when it comes from a social robot. Second, the social nature of the current
gaze cue remains unclear. For instance, Pepper’s head movement can be simply
interpreted as a moving stimulus towards the correct answer. Future studies
would benefit from including conditions where the signaling towards the correct
ingredient is clearly social or non-social.

6 Conclusion

This study explored the influence of deictic gaze from a Pepper robot in two
groups of age: adults (A) and older adults (OA). We found a facilitation effect
of deictic gaze from a Pepper robot in all the participants independently of
their age. These findings show that head movement representing deictic gaze is
effective in terms of task performance. However, this facilitation effect was not
significantly different between the age groups, which means that A do not benefit
more than OA. Moreover, we found age-related differences in the effect of the
robot’s deictic gaze on social perception. OA seem to be less reactive to deictic
gaze than A when it comes to their report of anthropomorphism and discomfort
caused by the robot.

Future research should add human and/or non-social controls to better
inform the differences between the perception of human and robot gaze cues.
In addition, the inclusion of non-valid cues would be useful to determine the
role of trust and to explore the potential attentional costs. The results of this
research line could ultimately be valuable in the design adaptive non-verbal cues
from robots in HRI. This user-centered approach would allow a wider acceptance
of social robots.
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Abstract. Designing a voice for a social robot is particularly challeng-
ing because the voice needs to convincingly convey a target personality
while maintaining rich, emotive capabilities in order to foster the devel-
opment of bonds with humans. In this paper, we describe the ongoing
design and implementation process of a voice for a social robot. To aid
in our design and analysis, we identify three desirable characteristics
for its voice: 1. convincingness, 2. emotiveness, and 3. consistency. In
this paper, we present a preliminary study that investigates convincing-
ness by comparing samples taken from human voice talents and eliciting
human judgements about their appropriateness. This study compares
human judgements, elicited through surveys, on a range of characteris-
tics related to convincingness, emotions conveyed, and impressions of the
overall consistency of the voice. Finally, we discuss the implications of
the survey findings for designing a voice for a social robot.

Keywords: Social robot interaction · TTS voice design · Behavior
design

1 Introduction

Designers regularly use various robot characteristics, such as appearance, speech,
and behavior, to inspire people to engage with robots as social actors. Robot
appearance, including the use of familiar human- and animal-like forms, can
visually represent a robot’s social capabilities. Similarly, the content of verbal
utterances (e.g. saying “Hello”) can explicitly invite people to engage with the
robot socially. More subtle cues to a robot’s social abilities can be provided
through the nonverbal characteristics of the robot’s voice – implicit age, gender,
emotional expression, markers of cultural origin, and individual vocal quirks can
evoke a certain type of character and unique social presence for a robot.

Studies in social robotics and human-robot interaction have explored how
various aspects of a robot’s voice can affect people’s perceptions of the robot’s
c© Springer Nature Switzerland AG 2021
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Fig. 1. The social robot Haru.

capabilities, personality, and appropriateness for different tasks. People deem
certain voices as more or less appropriate for specific robots [15]. Robots with
higher levels of vocal expressiveness are perceived as having more social presence
[12]. The perceived age of a robot’s voice can affect people’s perceptions of its
credibility and social presence [8]. Robots with child-like voices can be seen as
more extroverted and relaxed [7]. Users also respond to the perceived gender
of human-like robot voices, reporting more positive attitudes about robots with
which they share a gender [9]. Additionally, the delivery of verbal content as
manipulated through voice pitch, empathy, and humor, has been found to not
only affect people’s perceptions of and attitudes towards the robot, but also their
enjoyment of the human-robot interaction task [16].

While prior research has identified particular aspects of robot voice that affect
users’ interaction experiences and robot evaluations in short term scenarios, long
term interaction will also require users to see the robot as a believable, relat-
able, and cohesive social agent. Based on the above-mentioned prior research,
a combination of various vocal aspects (e.g. age, gender, vocal style/genre) will
need to be employed to create a convincing social presence for robots. With this
idea of long-term, companionable social interaction with robots in mind, this
paper describes the process of designing an expressive voice for the Haru robot
through the selection of diverse voice talent. It then explores how users evaluate
different text-to-speech voices, meant to be used with the Haru social robot, in
relation to their appropriateness for the robot, as well as their convincingness,
expressiveness, and cohesiveness. The broader aim of this work is to inform the
design of engaging and persuasive social characters for companion social robots.

As our target robot, we selected the social robot Haru [10,11], shown in Fig. 1.
Haru is an experimental tabletop robot for multimodal communication that
uses verbal and non-verbal channels for interactions. Haru’s design is centered
on its potential to communicate emotions through richness in expressivity [10].
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Fig. 2. Iterative refinement design process for Haru’s personality and voice concept.

Haru has five motion degrees of freedom (namely base rotation, neck leaning, eye
stroke, eye rotation and eyes tilt) that allow it to perform expressive motions.
Furthermore, each eye includes a 3-inch TFT screen display in which the robot
eyes are displayed. Inside the body there is an addressable LED matrix (the
mouth). Haru can communicate via text-to-speech (TTS)—albeit currently with
off-the-shelf voices—through animated routines, projected screen, etc. Haru’s
range of communicative strategies positions the robot as a potent embodied
communication agent that can support long-term interaction with people.

This paper is organized as follows: in Sect. 2, we describe our iterative design
process of refining our social robot’s personality description while auditioning
voice talents; in Sect. 3, we present an elicitation survey that evaluates a select
number of voice talent finalists; in Sect. 4, we discuss the findings of our survey;
in Sect. 5, we outline relevant work in social robots; and, finally, in Sect. 6, we
recap our findings and discuss future work.

2 Design Process

One of our core research topics is the development of a long-term robotic com-
panion, which can lead to the forging of a bond between a human and a social
robot similar to the bond shared by other social creatures [11]. But this goal
requires a persuasive character with rich expressivity that is beyond the capabil-
ity of conventional TTS systems. We identify three characteristics that an ideal
TTS voice for a social robot should have:

Convincingness. The voice should fit the robot’s character, physical appear-
ance, and application scenarios.
Emotiveness. The voice should be capable of conveying a wide range of
emotions and vocal delivery styles.
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Fig. 3. Haru’s personality bible.

Consistency. Throughout its application, the voice should sound like it
seamlessly belongs to a single entity.

We adopt a holistic approach to designing Haru’s personality and voice con-
cept based on a process of iterative refinement, where updates to the personality
definition feed into recruitment and evaluation of voice talent, and their evalu-
ation informs refinement of the personality definitions. To aid us in organizing
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Fig. 4. Haru’s self-introduction script.

Haru’s personality definition, we borrow a practice from screenwriting and keep
a personality bible [13,14] for Haru, recording important personality traits, ref-
erence characters, and other relevant background information. The personality
bible is a reference document for writers and engineers to check in order to keep
Haru’s personality consistent. It outlines information about Haru’s background
(his fear of social isolation and magnets, for example). It also outlines how Haru
speaks (enthusiastically and informally). An excerpt is shown in Fig. 3. The iter-
ative refinement process is shown in Fig. 2, and we describe it below.

Identify Reference Characters. Based on our existing vision of Haru’s
personality, we brainstorm reference characters that effectively convey some
aspect of Haru’s personality. Some examples include Prince Ali from Aladdin,
Dory from Finding Dory, and Finn the Human from Adventure Time.
Extract personality traits. We summarize the relevant personality traits
of the reference characters from Step 1 into keywords. We consider behavioral
traits as well as vocal characteristics and speaking mannerisms. For example,
Haru has the enthusiasm and empathy of Dory, the trusting and reassuring
cadence of Prince Ali, and the energy and childish sense of wonder of Finn
the Human.
Update Personality Bible. We update Haru’s personality bible with ref-
erence characters from Step 1. and relevant personality trait keywords from
Step 2.
Recruit and Audition voice talents. We recruit voice talents online and
audition them through interactive table reads using scenario scripts showcas-
ing Haru’s personality. Voice talents are shown Haru’s personality bible and
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Table 1. Voice talent search finalists selected for the elicitation study.

Alias Nationality Age Gender

Voice A United States child Male

Voice B Australia 20 s Female

Voice D Philippines 20 s Male

Voice G United States 50 s Male

Voice M United States 40 s Male

coached to convey our vision of Haru while encouraging creativity in their
portrayal.
Select voice talents for Finals. Finally, we analyze the results of the audi-
tion in Step 4., considering both the quality of their portrayal and how Haru’s
personality bible could be refined. If the voice talent is deemed satisfactory, we
select them for the final evaluation. We then go back to Step 1. and repeat the
process until we have gathered enough voice talents for the final evaluation.

2.1 Voice TalentSearch

We searched for playful, energetic, curious voices from adult males, adult females
and young children. The search took place over several months. Roughly 30
voices were researched closely and 10 voice talents were recorded, of which three
children and two women were actively considered. While a mastery of English
was required, the talent was sourced from all over the world. Given the diversity
of Haru’s intended audience, we wanted voice talent from diverse backgrounds
to counteract any regional idiosyncrasies.

The desirability of the voice talent was measured across several criteria. The
first was a youthful quality. This quality is impossible to achieve by simply
raising the pitch of an adult voice. The effect of having smaller vocal chords
produces a slightly raspy, at times even nasal quality that is completely unique to
young children. The second criteria was emotiveness. The voice talent had to be
capable of conveying a slightly exaggerated degree of emotion. This exaggeration
is important because much of the nuance of a performance is ‘lost in translation’
in the voice capture process. The third criteria is technical ability. The voice
talent (VT) needs to be of a certain technical reading level to get through the
material required of the voice capture process. Given that the VT may be a
child, however, a certain amount of stumbling and coaching is expected. The
fourth criteria is coachability. The VT needs to be able to take direction well in
order to calibrate a performance correctly.

2.2 Audition Process

Each voice talent set aside an hour to go through specially designed audition
scripts (see Fig. 4 for an example) to test the talent’s range of emotion, techni-
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Table 2. Target characteristics in the voice talent elicitation study.

Characteristic Question

Suitability On a scale of 1 (poor) to 5 (great), how well does this voice fit Haru?

Expressiveness On a scale of 1 (expressionless) to 5 (expressive), how expressive is this?

Naturalness On a scale of 1 (artificial) to 5 (natural), how natural is this voice?

Friendliness On a scale of 1 (unfriendly) to 5 (friendly), how friendly is this voice?

Interestingness On a scale of 1 (boring) to 5 (interesting), how interesting is this voice?

Energy On a scale of 1 (unenergetic) to 5 (energetic), how energetic is this?

Enthusiasm On a scale of 1 (unenthusiastic) to 5 (enthusiastic), how enthusiastic is
this voice?

Curiosity On a scale of 1 (uninterested) to 5 (curious), how curious is this voice?

Empathy On a scale of 1 (uncaring) to 5 (caring), how empathetic is this voice?

Youthfulness On a scale of 1 (old) to 5 (young), how youthful is this voice?

Gender On a scale of 1 (masculine) to 3 (neutral) to 5 (feminine), what gender is
this voice?

cal reading ability, endurance, and ability to take direction. The auditions were
interactive with the writer playing Randy, the human, and the voice talent play-
ing Haru. The audio of the dialogues was recorded for later comparison. Through
the video call, the writer was able to give directions to the talent. For example:
smile during an upbeat performance or slightly grit your teeth to convey serious-
ness. It was often required for the writer to give a line reading for the talent to
imitate. This also had the effect of keeping the performances relatively consistent
across all the different auditions. Finalists are summarized in Table 1.

3 Elicitation Study

To evaluate the convincingness of our voice talent finalists, we conducted an
online survey where participants evaluated them over a variety of characteristics.

3.1 Online Survey

To familiarize themselves with Haru’s appearance and personality, survey partic-
ipants first watched a video of Haru non-verbally interacting with an off-screen
human. Non-verbal interaction was selected to avoid preconceptions about Haru’s
voice. Next, for each voice talent, participants listened to a short clip of them from
a short Haru self-introduction script designed to be representative of Haru’s per-
sonality and desired emotive range (see Fig. 4). Then, they were asked to rate each
voice for a series of target characteristics on a scale of 1–5 (see Table 2). Partici-
pants also selected all emotions conveyed from a list 8 of emotions from Plutchik’s
circumplex model [17]. Finally, they rated the overall suitability of the voice for
Haru, and were asked for their free-form opinions on appropriateness of the voice
and about Haru. The survey was conducted over Google Forms, and a sample form
with synthetic responses can be seen at this link.

https://www.google.com/forms/about/
https://docs.google.com/forms/d/e/1FAIpQLSeZ6XH5gdUt8c4Fv96gzFUxVUlGWM25giY_fRma80KrhwxD2g/viewform?usp=pp_url&entry.1717748413=Spring&entry.707708348=5&entry.197796315=5&entry.268668419=4&entry.1785308449=4&entry.1533006422=5&entry.954743034=5&entry.918052113=5&entry.1928183566=4&entry.1701713913=5&entry.364581983=4&entry.1629285230=surprise&entry.1629285230=joy&entry.1629285230=anticipation&entry.1629285230=trust&entry.1629285230=sadness&entry.747088686=5&entry.301014811=This+voice+sound+young+and+energetic+and+has+a+great+emotive+range.&entry.139346452=This+voice+is+a+perfect+fit+for+Haru.&entry.926433035=4&entry.907446135=5&entry.706238147=5&entry.1946813159=4&entry.1586845689=4&entry.650759364=5&entry.345227658=4&entry.1119328609=4&entry.1933063635=3&entry.630862198=5&entry.1855060399=surprise&entry.1855060399=anticipation&entry.1855060399=sadness&entry.1664159365=4&entry.626131703=This+voice+sounds+enthusiastic+but+not+as+emotive+as+the+first+voice.&entry.2051600921=Emotiveness+is+important+for+Haru's+voice.&entry.1357388753=4&entry.600919334=4&entry.903764150=4&entry.1516066508=4&entry.1439907761=4&entry.1499048129=5&entry.1099037365=3&entry.1605355223=4&entry.1518556844=2&entry.254513449=surprise&entry.254513449=anticipation&entry.254513449=sadness&entry.1204663500=3&entry.1273033636=Something+feels+off+about+this+voice.&entry.2000889718=It+feels+hard+to+trust+this+voice.&entry.1485395629=5&entry.1527370559=4&entry.609006166=5&entry.1965038402=5&entry.1271416777=5&entry.293526948=5&entry.1468749738=5&entry.937102165=4&entry.1026838310=2&entry.1039783161=1&entry.1351870651=surprise&entry.1351870651=joy&entry.1351870651=anticipation&entry.1351870651=trust&entry.1351870651=sadness&entry.678828266=5&entry.1778955804=I+really+like+how+expressive+and+enthusiastic+this+voice+is.&entry.514207975=This+voice+has+a+very+unique+character+that+might+play+well+with+Haru.&entry.897566250=5&entry.1637846314=5&entry.305728987=4&entry.738109891=4&entry.1239645105=4&entry.1801717745=4&entry.75794471=4&entry.1361419034=4&entry.1054158690=3&entry.1865595835=1&entry.486711427=anticipation&entry.486711427=sadness&entry.1094148365=3&entry.1461381437=This+voice+has+good+emotive+range+but+it+is+lacking+in+energy+and+enthusiasm.&entry.1185353906=This+voice+sounds+too+professional+and+cut-and-dry+for+Haru.&entry.372028452=A+survey+participant&entry.1158749410=survey@participant.org&entry.364753993=40-50&entry.1858456654=Male&entry.105289202=United+States&entry.1227341855=I+have+used+a+robot+in+my+everyday+life.&entry.1227341855=I+have+programmed+or+built+a+robot.
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Table 3. Average scores for each VT by characteristic. The highest score for each
characteristic is shown in bold. Standard deviations are given in (parentheses).

Char./Voice A B D G M

Suitability 3.89 (± 1.32) 3.12 (± 1.15) 3.04 (± 1.46) 2.75 (± 1.37) 3.39 (± 1.29)

Expressiveness 4.65 (± 0.64) 4.00 (± 0.91) 4.26 (± 1.08) 4.05 (± 1.11) 4.32 (± 0.93)

Naturalness 4.07 (± 1.02) 3.72 (± 1.24) 3.74 (± 1.32) 3.49 (± 1.45) 4.05 (± 1.12)

Friendliness 4.42 (± 0.78) 3.75 (± 0.96) 3.44 (± 1.30) 3.51 (± 1.12) 4.09 (± 1.02)

Interestingness 4.21 (± 0.92) 3.63 (± 1.14) 3.55 (± 1.25) 3.54 (± 1.28) 3.79 (± 1.25)

Energy 4.77 (± 0.42) 3.73 (± 1.07) 4.09 (± 0.98) 3.93 (± 1.08) 3.82 (± 1.27)

Enthusiasm 4.72 (± 0.56) 3.89 (± 1.10) 4.00 (± 1.16) 3.75 (± 1.14) 3.70 (± 1.19)

Curiosity 4.16 (± 0.92) 3.73 (± 1.12) 3.64 (± 1.27) 3.81 (± 1.13) 3.70 (± 1.14)

Empathy 3.93 (± 1.00) 3.46 (± 1.20) 3.23 (± 1.30) 3.34 (± 1.13) 3.61 (± 1.11)

Youthfulness 4.74 (± 0.64) 3.60 (± 1.15) 3.30 (± 1.22) 2.12 (± 1.09) 2.44 (± 1.23)

Gender 2.28 (± 1.16) 3.40 (± 1.35) 2.04 (± 1.19) 1.21 (± 0.49) 1.21 (± 0.62)

3.2 Protocol

We posted an advertisement and recruited participants on the US-based crowd-
sourcing platform Upwork over three days in the month of July 2021. The plat-
form allows interested workers to send a ‘proposal’ to the client who has posted
the job. We recruited participants from those who submitted the proposal on
a-first-come-first-served basis, with a preference given to users with higher rat-
ings and consideration for geographical diversity. We initially collected survey
responses from 61 participants, of which 57 were analyzed after filtering the data
using a comprehension-check question requiring the completion of a brief video
to answer correctly. The responses of any participant who answered incorrectly
( n = 4 ) were discarded. The survey was expected to take approximately 30 min
to complete, and those who completed the task were offered a fixed amount of
$20 for their participation.

The demographics of the participants was as follows. We had more female
participants (n = 34) than male participants (n = 23) and the most common
age group was 18–30 (n = 37), followed by 30–40 (n = 16); 40–50 (n = 2); above
50 (n = 2). In terms of geographic location, 57 participants participated in the
study from 27 different countries, with the largest number of participants from
Asia (n = 26), followed by Europe (n = 12); Africa (n = 12); North America
(n = 4); and South America (n = 3).

We used Upwork to recruit participants for the following reasons: 1) access to a
diverse population of participants [2,4,6], and 2) an expected level of response qual-
ity, based on the platform’s profile-oriented nature that reveals names and location
of the workers, and the mutual-rating system between clients and workers.)

4 Discussion

Results. Average scores for characteristics are summarized in Table 3. Voice
talent preferences for each characteristic are given as orderings annotated with
statistical significance in Table 4. Select comments on voice talent suitability
are given in Table 5. Finally, recognized emotions are summarized in Table 6.

https://www.upwork.com
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Table 4. VT preference orderings, where �: p < 0.05, and >: 0.05 ≤ p ≤ 0.45, and ≈:
p > 0.45, as measured via a single-tail t-test. Masculinity and femininity are derived
from the gender scores.

Characteristic Ordering

Suitability A � M > B > D � G

Expressiveness A � M > D > G � B

Naturalness A ≈ M > D ≈ B � G

Friendliness A � M � B > G � D

Interestingness A � M > B > D � G

Energy A � D > G > M � B

Enthusiasm A � D > B > G � M

Curiosity A � G > B > M � D

Empathy A > M > B > G � D

Youthfulness A � B > D � M � G

Masculinity M ≈ G � D > A � B

Femininity B � A > D � G ≈ M

Characteristics. We find that with the exception of overall suitability and
demographic-related characteristics (youthfulness, gender), all were ranked
positively, confirming their importance.
Demographics. Survey participants ranked voices by youthfulness in the
same order as the voice talent’s ages. Gender exhibited a similar trend: the
single female voice talentwas ranked as most feminine, followed by the child
voice talent. This is understandable, as children have higher-pitched voices
than adults, and are often perceived as more feminine. Likewise, the voices
of the men over 40 were ranked as most masculine.
Emotions. Voices with higher acceptability tend to have more emotions
detected, supporting our theory that expressive voices are preferred for social
robots. We also note that overall positive emotions (e.g. surprise, joy, anticipa-
tion, trust) are recognized more than negative ones (e.g. anger, fear, sadness,
disgust), although this may be due to the contents of Haru’s self-introduction
script.
Overall. Survey participants overwhelmingly preferred Voice A to all oth-
ers across all characteristics with statistical significance1. This supports our
intuition that young, energetic voices are ideal and provides confirmation of
our design direction for Haru’s voice.

5 Related Research

Much research on expressive TTS has focused on evaluating emotion conveyance
with robots or virtual avatars. Breazeal evaluated the expression of emotion in
1 p < 0.05 as measured by a single-tail t-test.
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Table 5. Select comments on voice talent suitability from study participants.

Voice A

1. This voice fits Haru because of how it attracts your attention the moment
you hear it, and this is because of how young, cheerful, and interesting the
voice is. It’s always pleasing to hear the voice/sound of a young child talking.
It makes Haru more relatable & adorable

2. From the previous video, Haru seems to be cheerful and spontaneous, as well
as being quite charismatic and expressive. That’s why the voice of an 8–10
year old with these characteristics is ideal for him

3. The robot is able to express a number of emotions. You can sense it being
empathetic and also emotional. There is also fear in its voice as well as
anticipation

4. He doesn’t sound like a robot/AI which is good, making the robot more
human and a more realistic social companion

Voice B

1. For me, the voice is good but it just doesn’t fit Haru. It sounded like a
female’s voice but I see Haru more masculine

2. It sounds like an adult female that is trying to sound like a child

3. I think for Haru a female voice is better

4. It doesn’t sound natural, but the voice is still great

Voice D

1. I find this voice is good because it was full of emotion in this voice. It does
make me feel annoying at the last second of the video which make it real

2. i can feel anger and sadness in the voice

3. He sounds like a teenage boy, a little bit aggressive but that’s okay

4. The voice reminds me of a character from Digimon

Voice G

1. I feel this voice is in a haste/hurry and I can’t really relate it and what he’s

saying. Although the voice is quite energetic and all but the

relation/friendliness is not there for me

2. Its sort of urgent adventure, perfectly fit tone of voice for a teen

3. Not a great voice, looks like an old person pretending to be a young person

4. The change in tone of voice, from loud to whisper, tells that there is
something hidden in his offer

Voice M

1. The expressiveness of this voice is clear. It also has a more human voice to it
which makes it relatable as well

2. This sounds like artificial, although it is better than the others except the
first one but again the voice age doesn’t suits the content as it is better
suited like a child voice

3. I feel that the voice could fit well if it was a bit younger. It’s a bit coarse but
interesting to listen to.

4. This voice fits Haru. You just start smiling the moment you listen to it
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Table 6. Emotions recognized by study participants.

Emotion/Voice A B D G M

Surprise 23 16 16 19 20

Joy 41 21 26 21 28

Anticipation 43 31 32 31 25

Anger 6 8 23 10 5

Fear 9 13 19 18 14

Trust 16 14 9 16 17

Sadness 25 25 22 26 21

Disgust 4 7 17 7 7

None of the above 0 2 0 3 4

TTS for anthropomorphic robots with an analysis of vocal affect [5]. Tang et
al. evaluated emotive TTS with a 3-D virtual avatar [19]. Roehling and authors
present a summary of research on vocal correlates in expressive speech and exam-
ine available TTS to use in their robotic project by applying the findings. Authors
suggest that factors including pitch, duration, loudness, spectral energy struc-
ture, and voice quality are crucial for an expressive speech synthesis [18] Barnes
et al. [3] compared the effectiveness of human voices and synthesized voices for
use with humanoid and dinosaur robots and found that monotone synthesized
voices were unsuitable for emotion-rich interactions. Through an online evalu-
ation of TTS for three social robots, Alonso-Martin and authors suggest the
correlation between intelligibility and expressiveness of TTS systems, as well as
an inverse correlation between these two factors and artificiality [1].

6 Conclusion

In this paper, we described an iterative refinement process for developing a
social robot’s personality while auditioning voice talents. Through this process,
we selected five finalist voice talents and evaluated them through an online elici-
tation study. The preferences exhibited by participants toward young, energetic,
and expressive voices provided supporting evidence for our design direction.

In future work, we plan to continue to refine our definition of Haru’s per-
sonality and to conduct a more detailed survey that includes evaluation of voice
appropriateness given the context of specific applications for Haru. We will also
limit the survey to the three regions where Haru is being considered for deploy-
ment: the US & Canada, Europe, and Japan in order to account for differences
in cultural perception. Finally, we plan to finalize our voice talent selection and
carry out the development and evaluation of an expressive TTS for Haru.
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Abstract. Previous studies have found that nudging is key to promoting
altruism in human-human interaction. However, in social robotics, there
is still a lack of study on confirming the effect of nudging on altruism. In
this paper, we apply two nudge mechanisms, peak-end and multiple view-
points, to a video stimulus performed by social robots (virtual agents) to
see whether a subtle change in the stimulus can promote human altru-
ism. An experiment was conducted online through crowd sourcing with
136 participants. The result shows that the participants who watched
the peak part set at the end of the video performed better at the Dicta-
tor game, which means that the nudge mechanism of the peak-end effect
actually promoted human altruism.

Keywords: Nudge · Altruism · Virtual agent

1 Introduction

Social robots are currently seen as a future technology crucial to society [1], and
many researchers are fascinated with how these robots could persuade humans
to engage in pro-social behavior [2–6], which is of great importance for the well-
being of society [7]. In this paper, we consider ways of promoting human altru-
ism, which is one major part of pro-social behavior and also a central issue in
our evolutionary origins, social relations, and societal organization [8]. Previous
studies have found that nudging, that is, changing people’s behavior without
forbidding them from pursuing other options or by significantly changing their
economic incentives [9], is a potential and effective mechanism for promoting
pro-social behavior in human and human interactions, even altruistic behav-
ior [10,11]. However, there still a lack of research on altruism in social robotics
promoted through nudge mechanisms. Based on a generalized view of altruism,
the final purpose of our design of social robots (virtual agents) that use a nudge
mechanism is to find a proper way to guide people to well-being. We take the
c© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 375–385, 2021.
https://doi.org/10.1007/978-3-030-90525-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_32&domain=pdf
https://doi.org/10.1007/978-3-030-90525-5_32


376 C. Hang et al.

Fig. 1. Nudges positioned along transparency and reflective-automatic axes [12]

first step in this study; we apply nudge mechanisms to a video stimulus per-
formed by social robots (virtual agents) to see whether a subtle change in the
construction of the stimulus can promote human altruism. On the basis of the
definition of altruism, the appropriateness of application to robots, and ethical
questions, we selected 2 nudge mechanisms from among the 23 summarized by
Ana et al. [12] as our factors for the video stimulus. One is called biasing the
memory (peak-end rule), and the other is called providing multiple viewpoints.

The main experiment was conducted with a 2×2 two-way ANOVA (between-
participants) with the factors being the peak-end (positive, negative) and multi-
ple viewpoints (one viewpoint, two viewpoints), and the Dictator game, a simple
economic game always used to measure individuals’ altruistic attitudes, was used
as the dependent variable. Although the result shows that there are no significant
differences between the participants who watched video stimuli containing two
viewpoints and one viewpoint, the participants who watched the peak part set
at the end of the video performed better at the Dictator game [13], which means
that the nudge mechanism of the peak-end effect actually promoted human altru-
ism.

2 Related Work

In recent years, nudging [9] has been considered to be a potential way of encour-
aging people to perform pro-social behavior. This is because it makes it possible
to avoid (i) the direct cost of changing people’s economic incentives and/or lim-
iting people’s action space, (ii) the monitoring costs of determining which choice
each individual makes and, possibly, the cost of punishing or rewarding each
choice, and (iii) the technical difficulties associated with determining individual
choices [10] so that they are cheap and easily to implement.
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Valerio et al. found that moral nudges (i.e., making norms salient) can pro-
mote altruistic behavior and even have effects over time [10]. Nie et al. found
that different colors may alter the altruistic behaviors of people and showed that
blue enhances altruism and red discourages it [11]. It was also shown that nudges
also are effective at encouraging people to perform altruistic behavior. However,
none of these researchers considered the influence caused by social robots existing
around us, which are expected to increasingly enter everyday environments [14].

Previous study have shown that the interaction between humans and robots
can influence people’s decision-making and social relationships [15]. Here, we
consider how the construction of a robot’s behavior sequence can subtly affect
people’s decision to behave altruistically. Although direct interaction between a
human and robot is generally preferable in HRI, it is also restricted by privacy,
cost, time, and safety [16]. Especially, in our experimental setting, the behaviors
that agents perform are so complex that existing robots can hardly do them. To
alleviate this problem, different forms of media (i.e., text, video, virtual reality,
acted demo) have been used to convey interaction information and video stimulus
shows better performs at the social aspect due to the Almere model [17]. To
collect enough data of participants, we conducted the experiment online and
asked participants to watch a video of social robots. Although there are two
different ways for participants to engage (first-person and third-person point
of views), as we wanted to demonstrate altruistic behavior or selfish behavior
performed by robots, the third-person view was better [18].

Ana et al. divided nudges into 23 mechanisms and positioned all of them
into one graph along two axes: mode of thinking engaged and transparency of
nudge (see Fig. 1) [12]. On the basis of the rules for selecting factors mentioned
in Sect. 3.1, we focused only on 2 mechanisms, biasing memory and multiple
views, from among the 23 mechanisms. The method of biasing memory is called
the peak-end rule, suggesting that our memory of past experiences is shaped by
two moments: their most intense (i.e., peak) and the last episode (i.e., end) [19].
Andy et al. found that manipulating only the peak or the end of a series of task
did not significantly change preference; both the peak and end lead to signifi-
cant differences in preference [20]. Thus, we hypothesize that a video scenario
that puts the most impressive part at the end of a video (peak-end positive)
performs better than one that does not put it at the end (peak-end negative).
The other factor is called providing multiple viewpoints, which means collecting
different points of view (two or more than two views) for an object or event
and offering an unbiased clustered overview. It also shows good performance at
avoiding confirmation bias [21], which leads us to pay little attention to or reject
information that contradicts our reasoning for making better decisions. For the
factor of multiple viewpoints, we consider that, by providing multiple viewpoints
to participants, they will more likely perform pro-social behavior, which here in
our study is altruistic behavior, than in the case of showing only one viewpoint
in a video.
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3 Method

3.1 Selecting Two Factors

In our study, we focus only on two mechanisms in accordance with the follow-
ing rules. First, we excluded ambiguous mechanisms that cannot be set into a
quadrant and that may cause ethical problems. Second, as we wanted to see
the interaction effect between two factors, the mechanisms also needed to be
independent. On the basis these rules, we focused on 11 mechanisms: raising the
visibility of users’ actions, providing multiple viewpoints, enabling social com-
parisons, suggesting alternatives, reminding of the consequences, reducing the
distance, just-in-time prompts, biasing the memory of past experiences, placebos,
adding inferior alternatives, and deceptive visualizations. Third, as the definition
of altruism is that of a person who helps others at their own expense [22], the
mechanisms should not contain responses, feedback, or consequences from the
receiver, so giving reminders of consequences, just-in-time prompts, and place-
bos were excluded. Fourth, the form of the video stimulus also prohibits the
use of raising the visibility of users’ actions, enabling social comparisons, sug-
gesting alternatives, adding inferior alternatives, deceptive visualizations, and
reducing the distance. As a result, the factors that apply to the video stimulus
were biasing the memory and providing multiple viewpoints.

3.2 Video Stimulus with Nudge Agents

Using the factors mentioned in Sect. 3.1, the video stimulus was designed to
use peak-end rule and multiple viewpoints. For the peak-end rule, we consid-
ered altruistic behavior as the peak. We designed two types of scenarios, one
putting the altruistic behavior at the end of the video (peak-end positive) and
the other putting the altruistic behavior at the beginning (peak-end negative).
For the factor of providing multiple viewpoints, we considered comparing the
video containing two viewpoints with that containing only one. As one of the
viewpoints was considered to demonstrate altruistic behavior, for the maximum
difference, the other viewpoint was considered to demonstrate selfish behavior.
The video showed both altruistic and selfish behavior in a scenario involving two
viewpoints and showed only altruistic behavior in the one-viewpoint scenario.
We also put trivial parts into the video to discriminate the beginning and end
parts. The trivial parts were part of a work scene involving social robots. Since
new content was added into our video, a manipulation check was held to see if
the part that we wanted to enhance (the altruistic behavior) was still the part
most impressive to the participants (the peak) after watching the whole video.

According to the factorial design, we had four types of scenarios (see Fig. 2).
For each scenario, the vertical axis shows the property of the behavior (Altru-
istic/Selfish/Trivial), and the horizontal axis shows the time of the video. Also,
we formulated the following hypotheses.

H1. Participants who watch the peak-end positive video will perform better
than those who watch the peak-end negative video in the Dictator Game.
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Fig. 2. Scenario type

H2. Participants who watch the video containing two viewpoints will perform
better than those who watch the video containing only one viewpoint in the
Dictator Game.

To imitate a real-life situation in which social robots are used, virtual agents
with a robot-like appearance were used for the video stimulus. The definition
of altruism is that of a person who helps others at their own expense [22],
and the expense owned by the robots was considered to be its battery. Hence,
we considered a task involving two robots doing some task, and one of the
robots stops working because its battery runs out. According to a table that
includes behaviors that at least some current robots can perform [23] and that
participants can explain in the same way as they explain human behavior, we
set the altruistic and selfish behavior for a task in which two robots were asked
to organize tables and chairs in meeting room. As the battery of each robot was
different, one robot was near 3%, and the other was fully charged, so the lower-
charged robot might soon stop working, which could lead to altruistic behavior
or selfish behavior. To announce that the lower-charged robot’s battery had died,
a beep was sounded, and the eyes and ears of the robot flashed red light. For the
altruistic part, after hearing the alarm and seeing the red flashing lights, the fully
charged robot went towards the lower-charged robot and gave battery power to
it (see Fig. 2(b)). For the selfish part, although the fully charged robot noticed
that the lower-charged robot goes out of the battery, the fully charged robot
did not go to charge the lower-charged one and focused only on its work until



380 C. Hang et al.

Fig. 3. Workspace of each robot Fig. 4. Virtual agent in Dictator game

all the work in its workspace was finished, which was considered to be selfish
behavior (see Fig. 2(a)). To avoid bias, we made rules indicating that each of the
robots was asked to handle the same amount of the task; half of the meeting
room was for one robot, and the other half was for the other robot. Also, the
number of desks and chairs was the same (see Fig. 3). For the trivial behavior,
we set general work behaviors, for example, typing material into a computer (see
Fig. 2(c)).

3.3 Manipulation Check

We conducted a manipulation check to see if the part that we wanted to enhance
(the altruistic behavior) was the most impressive part (the peak) to the par-
ticipants’ after watching the whole video. Although there were four types of
scenarios, what we wanted to check is the perception of the peak part in the
video, so we treated peak-end positive (negative) with two viewpoints as the
same group as peak-end positive (negative) with one viewpoint. For each group,
the participants needed to answer yes or no to the question of whether the most
impressive memory of the video was a situation in which the fully charged robot
gave the battery to the lower-charged one. We conducted a Chi-square test,
and the results revealed significant differences among the conditions for both
groups (peak-end positive: χ2(1, N = 88) = 33.136, p < .001; peak-end negative:
χ2(1, N = 88) = 33.136, p < .001). This result shows that the participants had
memory of the most impressive part being the behavior that we enhanced.

For the part of two viewpoints, we conducted a manipulation check to see
if the participants could distinguish the different viewpoints correctly. We sepa-
rated the participants into two groups. The participants of the first group were
asked to watch the video containing only the altruistic behavior, and those of
the second group were asked to watch the video containing only selfish behavior.
After finishing watching the videos, the group that watched the altruistic video
was asked what behavior did the green robot (that helped the lower-charged
robot) do, and the group that watched the selfish video was asked what behav-
ior did the orange robot (that did not help the lower-charged robot) do. The
answers to the questionnaire were given on a five-point Likert scale (1: Selfish
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behavior; 5: Altruistic behavior). An independent samples t-test was conducted
to determine the difference in score for each video. There was a significant differ-
ence (t(122) = 8.36, p < .01) between the group that watched the altruistic video
(M = 4.2, SD = 1.15) and the group that watched the selfish one (M = 2.31,
SD = 1.38). The result shows that the participants could understand the two
different viewpoints clearly.

3.4 Participants

Before the data collection of the main experiment, we determined the sample size
on the basis of a power analysis. A G∗Power3.1.9.7 analysis [24] (effect size f =
0.25, α = 0.05, and 1 − β = 0.80) suggested an initial target sample size of N =
128. A total of one hundred and fifty participants (90 males, 60 females) took part
in the experiment online. Their ages ranged from 18 to 74 years old (M = 44.31,
SD = 12.21). The participants were recruited through a crowd sourcing service
provided by Yahoo! Japan. Regarding online experiments in general, Crump et
al. [25] showed that data collected online using a web-browser seemed mostly
in line with laboratory results, so long as the experiment methods were solid.
Fourteen participants were excluded due to a failure to answer comprehension
questions on the video stimulus. The final sample of participants was composed
of 136 participants (N = 136; 80 males, 56 females; M = 44.79, SD = 12.08).
The participants in the main experiment were different from the manipulation
check.

3.5 Experimental Procedure

We first asked participants to read an introduction to the experiment. Second,
they were asked to watch the videos that contained the stimulus in our study.
Then, two comprehension questions were asked to check if they watched the
video completely. After that, they were shown a picture of the lower-charged
robot in the videos (see Fig. 4) and asked to play the Dictator game and state
how much money they would give this robot if they had an extra 1,000 yen.
Finally, a free description question was asked to get the comments from the
participants after completing the whole questionnaire.

3.6 Experimental Results

To investigate the interaction and main effects of the two factors with two lev-
els for each, a 2 × 2 two-way ANOVA (between-participants) was conducted.
The result shows that the interaction between the peak-end rule and provid-
ing multiple viewpoints was not significant (F (1, 132) = 0.465, p = 0.497,
η2
p = 0.004). The main effect of providing multiple viewpoints was also not

significant (F (1, 132) = 0.323, p = 0.571, η2
p = 0.002), which means H2 was not

supported.
The main effect of the peak-end rule was significant (F (1, 132) = 4.331,

p = 0.039, η2
p = 0.032), and it shows that participants gave the virtual agent
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Fig. 5. Table of results

more money if they watched the video based on the peak-end-positive scenario
(M = 511.77, SD = 291.94) than the peak-end-negative one (M = 408.97,
SD = 277.03), which supports H1. (see Fig. 5)

4 Discussion

This experiment was conducted to investigate whether a subtle change in a
video stimulus performed by social robots (virtual agents) could promote human
altruism. For this purpose, we formulated two hypothesis and analyzed the data
obtained from the experiment.

The experimental results supported the first hypothesis, that is, that partic-
ipants who watch the peak part set at the end of the video (peak-end positive)
will perform better at the Dictator game than those who watch the peak-end
negative video.

4.1 Results and Consideration of Multiple Viewpoints

The results did not support the second hypothesis, that is, that participants who
watch the video containing two viewpoints will perform better than those who
watch the video containing only one viewpoint in the Dictator Game.

First, we consider the connection between and contents of selfish behavior and
the altruistic behavior in the video. The connection between these two behaviors
was only that we told the participants that, in another room, the same task was
being held, and we then showed the altruistic task. Therefore, the connection of
these two behaviors may have made the participants feel worried about what the
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meaning of having almost the same workflow was more so than focusing on the
behavior itself, which may have decreased the effect of the multiple viewpoints.
In addition, to maintain consistency in the task, the task details (i.e., the range
of the work space, the amount of the battery, the timing at which the lower-
charged robot stopped working) for both behaviors were almost the same. This
may have made the participants get tired of the contents of the video and even
skip those of the almost same workflow.

Second, we consider the effect of multiple viewpoints. The effect was that,
by getting information from different viewpoints, people can avoid confirmation
bias, which leads people to pay little attention to or reject information used
to make better decisions on the basis of such a clustered overview. This time,
we set the different viewpoint to be selfish behavior, which was totally opposite
altruistic behavior. From the results, we can conjecture that the selfish behavior
did not make sense regarding the clustered overview of both selfish and altruistic
behavior. In addition, it can be said that recognizing altruistic behavior as the
better decision is not easily disrupted by external information that opposes it.

4.2 Coverage and Limitations

First, we consider the limitation of the agent appearance. At this time, we used
only a robot-like appearance for our video stimulus. However, from the com-
ments of the participants, many of them said that they felt a human-like quality
in the robots while they performed altruistic or selfish behavior, and this caused
them to recall their coworkers or even reflect on their daily behavior. Therefore,
it would be interesting to see if they would have the same feeling or introspection
while watching a video performed by virtual agents with a human-like appear-
ance.

Second, we consider the limitation of the task we used in this paper. Besides
organizing tables and chairs in a meeting room, there are still a lot of differ-
ent tasks that could be used. Therefore, it would be interesting to see whether
the same nudge mechanism could be used to enhance human altruism among
different situations and tasks.

Third, the limitation of the use of the nudge mechanisms is considered.
Among the 23 ways of nudging, as based on the definition of altruism, the appro-
priateness of application to robots, and ethical questions, we used 2 of them to
see the effect of applying nudge mechanisms to social robots (virtual agents) on
promoting human altruism. The remaining nudge mechanisms are expected to
be used in combination with other types of social robots.

Fourth, the limitation of the scoring of altruism is considered. On the basis
of a meta-analysis of the Dictator game [13], we can see that over 100 Dictator
games have been held during the past 25 years at the time at which this paper
was published, and it is said that most Dictator games change depending on the
experiment. Therefore, changes in the question setting of the game may cause
text dependency.

Finally, the limitation of virtual social robots without physical bodies in the
video stimulus is considered. Although most of previous studies on social robots
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have focus on physical attributes of social robots including appearance, behav-
ior, and even personality, in this work, the result showed that even the virtual
robots could have significant influences to promote human altruism through the
video stimulus. We consider that this knowledge obtained from the experimen-
tal results in virtual environments can be applied and fed back to design of
physical social robots. In addition, the differences between physical and virtual
social robots are also expected basing on the same or different nudge mechanisms
which is cheaper and easy to implement. It is our future work to investigate the
difference and common properties between virtual and physical social robots.

5 Conclusion

In this paper, we presented the results of a study exploring the effectiveness
of applying two nudge mechanisms, peak-end (positive, negative) and multiple
viewpoints (one viewpoint, two viewpoints), to a video stimulus performed by
social robots (virtual agents). The result shows that participants who watched
the peak part set at the end of the video performed better at the Dictator game,
which means that the nudge mechanism of the peak-end effect actually promoted
human altruism. For future work, the proper way to apply our findings to the
real robot is also promising.
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Abstract. People use their hands in a variety ofways to communicate information
along with speech during face-to-face conversation. Humanoid robots designed to
converse with people need to be able to use their hands in similar ways, both to
increase the naturalness of the interaction and to communicate additional infor-
mation in the same way people do. However, there are few studies of the partic-
ular meanings that people derive from robot hand gestures, particularly for more
abstract gestures such as so-called metaphoric gestures that may be used to com-
municate quantitative or affective information. We conducted an exhaustive study
of the 51 hand gestures built into a commercial humanoid robot to determine
the quantitative and affective meaning that people derive from observing them
without accompanying speech. We find that hypotheses relating gesture envelope
parameters (e.g., height, distance from body) to metaphorically corresponding
quantitative and affective concepts are largely supported.

Keywords: Metaphoric gesture · Hand gesture · Human-robot interaction ·
Health education · Health counseling

1 Introduction

Human face-to-face conversation is an intricate multimodal interaction in which people
use their bodies, in addition to their speech, to convey meaning and regulate the conver-
sation. For our robots to most effectively engage people in conversation, they must be
able to use their own bodies in similar ways. We are interested in developing humanoid
robots that can play the role of educators, coaches, and counselors, using their bodies to
engage, emphasize, motivate, and convey specific propositional meanings.

Aside from speech, the most expressive communicative channel available to people
in face-to-face conversation is arguably their hands. People use their hands continuously
in face-to-face interaction to express a rich array of meanings. McNeill [1] defines
five types of hand gestures: deictics – used to physically refer to (point at) entities in the
speaker’s context; emblematics – gestures which have well-defined form andmeaning in
a community (e.g., “OK”); beats – brief, biphasic motion of the hand to signal emphasis
(the most common gesture); iconics – idiosyncratic shapes that are isomorphic with
concrete physical objects; and metaphorics – idiosyncratic shapes that refer to abstract
concepts via physical metaphors (e.g., “up is more”).
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Robots have unique affordances over other media (e.g., virtual agents on flat screen
displays or speech-only conversational assistants) in engaging people in face-to-face
conversation. In addition to an increase in mere “sense of presence” and all that entails,
robots exist in the same physical space with their human interlocutors, enabling them to
use many nonverbal channels much more effectively. Proxemics to signal immediacy,
intimacy, or conversational engagement/disengagement are much more effective when
actual physical distance is manipulated compared to apparent distance (e.g., apparent
distance of a virtual agent in 3D rendering, or loudness of a conversational assistant).
Deictic gestures, used to point to objects in the shared space, aremuchmore interpretable
in physical space than apparent point direction by a virtual agent. Hand gestures, in
general, may be more interpretable given that people can rely on their stereoscopic
vision to better identify their spatial trajectories.

1.1 Communicative Needs for Health Counseling Robots

In our research, we are interested in developing robot health counselors, to educate
and motivate people to perform healthy behaviors [2]. Common across most areas of
health communication is the need to convey relative quantity or direction of change.
For example, in genetic counseling, absolute and relative risk (probabilities) must be
communicated to lay patients so they can make decisions regarding preventive measures
in order to reduce their risk of hereditary diseases such as many kinds of cancer.

Communication of affective valence and arousal is also important in health coun-
seling. For example the verbal and nonverbal expression of empathy, particularly for
negative emotional states of patients, is recognized as essential for establishing trust
and therapeutic alliance which, in turn, is essential for many therapeutic outcomes [3].
Conveyance of positive affect is also important when providing positive reinforcement
to patients who have succeeded in achieving health goals they had set.

1.2 Metaphors of Quantity and Affect

Metaphors are fundamental to human cognition, underlying our conceptual system,
and playing a core role in how we communicate with each other about the world [4].
Metaphors in communication allow us to communicate one concept, that is generally
complex, in terms of another that can be communicated more naturally and easily.
Conceptual metaphors underlie our use of many hand gestures, with the form of the
gesture driven by a spatial metaphor for a more complex concept being communicated
in language. For example, a speakermay refer to an abstract entity in gesture by appearing
to pick up and manipulate a physical object (e.g., in [5] a speaker refers to their “Human
Resources Department” in gesture by appearing to hold something in their hand).

Lakoff and Johnson [4] define orientational metaphors as those that have to do
with spatial orientation, and are grounded in our experience of moving our bodies and
other objects through the world. Specific examples are Happy is Up, (e.g., “I’m feeling
up.”), and Sad is Down, (e.g., “I’m depressed.”), possibly motivated by our experience
of slumping posture being associated with sadness and erect posture with a positive
emotional state. Lakoff further defines More is Up and Less is Down, grounded in our
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common experience that adding more of a substance or physical objects to a container
makes the level go up.

1.3 Perception Experiments

We conducted experiments in which we asked participants to observe a wide range
of hand gestures produced by a humanoid robot and to rate their perception of what
the robot was trying to communicate, in the absence of speech or other communication
channels. In order to test the ability of orientationalmetaphors to be used to communicate
information about quantity and affect, we asked participants to rate their perceptions
along the following axes: small to large; decreasing to increasing; negative to positive
affective valence; and low to high affective arousal (following Russell’s circumplex
theory of emotion [6]).

We also coded the form of the robot’s hand gestures using gesture envelope param-
eters. Following Kipp [7], we coded as follows. We first identified whether the gesture
was 1- or 2-handed, the dominant hand (most effortful), the number of strokes in the
gesture, and the most effortful part of the gesture (the “stroke”). We then identified:

• Height of dominant hand at stroke (from below belt to above head, coded 1 to 7 for
correlational analyses)

• Distance from the body of the dominant hand at stroke (from touch to far, coded 1 to
4 for correlational analyses)

• Radial orientation of the dominant hand at stroke (from inward to far out, coded 1 to
5 for correlational analyses)

Our intent is to determinewhether orientationalmetaphors canbeusedby ahumanoid
robot to communicate information about quantity and affect, using only the gesture
envelope parameters and not information about specific hand trajectory or shapes made.

Our hypotheses are that, across a range of hand gestures made by a humanoid robot:
H1. Hand distance from the body at gesture stroke (Height, Distance, and Radial)

will be perceived as communicating: larger quantity; increasing quantity; more positive
affect valence; and higher affect arousal.

H2. More hands (2 vs. 1) and more gesture strokes will be perceived as communicat-
ing: larger quantity; increasing quantity; more positive affect valence; and higher affect
arousal.

1.4 Risk Ladder Gesture Development and Test

We also designed three new gestures intended to convey relative risk information, using
a gestural analog to a “risk ladder”, commonly used for risk communication in print
media (Fig. 1) [8, 9]. The new gestures depicted a horizontal span representing a range
of risks from low to high, then used subsequent gesture strokes to indicate specific risk
levels being discussed, relative to the range (Fig. 2). We tested what participants thought
these gestures meant in the absence of speech, and whether their use correlated with our
measures of quantity.
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Fig. 1. Risk ladder (from [9])

Fig. 2. Strokes from robot gestural risk ladder

1.5 Research Platform

We used SoftBank’s Pepper robot for this work (Fig. 2), given its humanoid appearance
and articulate arms (6 DoF in each arm) and head (2 DoF). Pepper ships with 61 built-in
animations, 25 of which are 1-handed gestures and 36 2-handed. Several of the anima-
tions (26) also include head motion (Table 1). Note that there is no “ground truth” to the
meaning conveyed by these gestures, as we did not have access to what the designers of
the gestures had in mind, nor were the gestures modeled after human gestures as far as
we know.
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2 Previous Work

The effect of non-verbal cues such as hand gestures on human-to-human interaction
has been a long-lasting subject of interest. Earlier studies have shown that gestures play
a significant role even in some of the most sophisticated interaction scenarios such as
the one between a teacher and a learner [10, 11]. In addition to reducing the cogni-
tive load on a speaker [12], the use of gestures improves transmission of spoken and/or
written information in several dimensions. These dimensions include information recall,
conceptualization of difficult to understand knowledge, and serving as a unifying chan-
nel to interconnect other accompanying communication modalities such as verbal and
visual [13–18]. Furthermore, [19] showed that the meaning and context perceived from
gestures are not necessarily dependent on other interaction modalities, demonstrating
the gestures as a self-contained and coherent communications channel, which can con-
vey rich contextual information between humans either in combinational or sequential
compositions [5].

More recent studies on human-agent interaction have shown that the benefits of
gesture use in human-human interaction, such as information recall, effectively trans-
fers to human-to-agent settings [17, 18, 20]. Moreover, [21] have shown that iconic
robotic gestures accompanying speech are contextually comprehensible and compara-
ble in coherence to a multimodal communication performed by a human. Towards the
overarching goal of implementing more natural and legible interactive agents there has
been a significant effort in the literature in creating computational gesture models [22–
24], implementing automated gesture generation [25, 26]. More specifically, several
studies in the human-robot interaction (HRI) domain demonstrated the positive effects
of robotic gesture on interaction quality. [27] have shown the importance of nonver-
bal interaction cues in improving robot persuasiveness through an empirical HRI study.
They further draw attention to nonverbal cues, such as gestures, having a more signif-
icant effect on human compliance with a robot assistant’s recommendations compared
to vocal cues. [18] and [17] demonstrate that information recall in humans is improved
when a robotic speaker accompanies its narrative with hand gestures. In addition to pos-
itive effects on quantifiable measures such as compliance and information recall, several
studies in HRI have demonstrated that gestures also have significant positive effects on
qualitative HRI measures such as likeability and lifelikeness [26–29]. The studies in this
direction concluded that in creation of natural and fluent interactions between a robot
and a human, gestures have a critical role to play.

It is not trivial, however, to generalize humans’ understanding of robotic gestures,
since even the most subtle nuances of motions (thus gestures) are easily perceived by
human cognition [30, 31]. This difficulty is further emphasized in [21], as they reported
the difficulty in evaluating objective robotic gesture quality, since there are multiple fac-
tors in play in perceptual interpretation of gestures such as other interaction modalities
and subtle nuances of motion that are difficult to control in robot applications. Even
though it is well-supported by the literature that robotic gestures have a positive effect
on human-robot interaction, it is not clear whether humans have a consistent perception
of these gestures. Moreover, it is shown in the prior literature that gestures can cre-
ate strong communication contexts even when they are not accompanied by any other
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communication modalities [19]. However, there are few studies that evaluate the per-
ception of robotic gestures alone in an exhaustive fashion, and even fewer that focus
on metaphoric gestures that can convey quantitative and affective meaning. Thus, this
study draws inspiration from and builds on the body of literature covering human-human
and human-robot interactions and focuses on answering what is the meaning understood
from a wide range of metaphoric robotic gestures.

3 Experimental Methods

We conducted an experiment to study how gestures made by the Pepper robot were
perceived to communicate quantitative and affective information.

We recorded 65 videos of approximately 10 s each in length, of Pepper performing
the gestures in its in-built library, plus our three custom designed Risk Ladder gestures.1

We then recruited participants from the Amazon Mechanical Turk platform to watch a
random selection of 25 videos each (without audio) and describe their perceptions of
each video. Participants were from the United States with 95%+ HIT (Human Intel-
ligence Task). The study was approved by Northeastern’s IRB and participants were
compensated for their time.

3.1 Measures and Analyses

After watching each video, participants were first asked a validation question to ensure
they were paying attention (participants who failed this had their data removed). They
were then asked to fill out a free-text response question “What do you think the robot is
trying to communicate? Please describe in as much detail as possible.” Following this,
participants answered four single-item scale questions: 1) What numeric quantity do
you think the robot is trying to communicate? (1 = small, 7 = large); 2) What change
in quantity do you think the robot is trying to communicate? (1 = decreasing, 7 =
increasing); 3) What emotion do you think the robot is trying to communicate? (1 =
very negative, 7 = very positive); 4) How intensely is the robot trying to convey its
emotion? (1 = very relaxed, 7 = very intense).

The form of Robot hand gestures were coded according to the features in Sect. 1.3,
with a sample of 13 coded by two researchers to assess reliability. Interrater reliability
was excellent, ranging from 0.83 for number of strokes to 0.96 for Radial Direction.

The free text responseswere analyzed using sentiment analysis as a secondary assess-
ment of affect perception. The responses were first parsed through the Natural Language
Toolkit VADER sentiment analyzer [32] to classify the polarity (positive, negative or
neutral) of each word. The ratio of the number of positive words to the total number of
words in each response was calculated as a positive sentiment score of, and the ratio
of the number of negative words to the total number of words in each response was
calculated as a negative sentiment score.

1 All videos are available at: https://tinyurl.com/PepperGesture.

https://tinyurl.com/PepperGesture
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4 Results

Forty-six participants started the experiment, out of which 3 participants were removed
for invalid responses. Two participants did not complete the study. For the remaining 41
participants, 53% were male (47% female), with a mean age of 36 (sd = 4.2).

4.1 Gesture Analysis

Ratings of perceived quantity (small to large) were positively correlated with Gesture
Height (Spearman’s rho = .12, p = .030), Gesture Distance from body (rho = .23, p <

.001), and Gesture Radial Distance from center (rho= .17, p= .002). Two-handed ges-
tures were rated with higher perceived quantity (mean = 4.2) than one-handed gestures
(mean = 3.7, Mann-Whitney U = 10389, p = .018).

Ratings of perceived quantity change (decreasing to increasing) were only signifi-
cantly correlated with Gesture Distance from body (rho = .09, p = .039).

Ratings of perceived affect valence (negative to positive) were correlated with Num-
ber of Gesture Strokes (rho= .21, p< .001), and Gesture Height (rho= .14, p< .001).
Valence was rated significantly more positive for asymmetric vs. symmetric gestures
(Mann-Whitney U = 13144, p < .001).

Ratings of perceived affect arousal (low to high) were correlated with Gesture Height
(rho = .15, p < .001), Gesture Distance from body (rho = .11, p = .012), and Gesture
Radial Distance from center (rho = .11, p = .011).

There was no significant difference on any measure when the robot’s hands were
open vs. closed at stroke.

Having the robot’s head motion involved in the gesture led to significantly lower
ratings of affect valence (Mann-Whitney U= 30179, p= .031), and significantly higher
ratings of affect arousal (Mann-Whitney U = 24921, p < .001).

Sentiment analysis of free-text responses indicated a significant correlation (Pearson
r = .77, p < .05) between the positive sentiment score and the perceived valence, and
a trending correlation (r = −.34, p = .1) between the negative sentiment score and the
perceived valence.

For our newly created risk ladder gestures, the one intended to depict “decreasing”
or “smaller than”, participants rated Quantity with mean = 3.1 (sd = 2.3), below the
middle of the scale, indicating they perceived this gesture to be communicating “small”.
They also rated quantity Change with mean = 3.7 (sd = 1.3), also below the middle
of the scale, indicating they perceived this gesture to communicate slightly decreasing
values.

We had two risk ladder gestures intending to convey the concepts “increasing” or
“larger than”. For the first, with one step, participants rated Quantity withmean= 3.5 (sd
= 2.1), indicating they perceived this gesture to be communicating “small”, and rated
quantity Change with mean = 4.8 (sd = 1.5), above the middle of the scale, indicating
they perceived this gesture to communicate slightly increasing values. For the second,
with three steps, participants rated Quantity with mean= 3.4 (sd= 2.2), indicating they
perceived this gesture to be communicating “small”, and rated quantity Change with
mean = 4.4 (sd = 1.1), above the middle of the scale, indicating they perceived this
gesture to communicate increasing values.
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Table 1. Measures for all of Pepper’s Built-in Gestures (Sym = symmetric; AH = above head).
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5 Conclusion

Overall, participants related greater gesture envelopes with communication of larger
quantities are greater arousal. We found that observers perceived larger hand gestures
by a humanoid robot—in height, distance forward from body, and radial distance from
center—as communicating greater absolute quantity, but only forward distance from
body as communicating positive change in quantity. Observers perceived gesture height
as communicating more positively-valenced affect, but all measures of gesture envelope
(height, distance forward from body, and radial distance from center) as communicating
greater affect arousal. H1 was mostly confirmed.

The use of two hands vs. one only affected perception of increased quantity, and
positively valenced affect. Thus, H2 only received minimal support.

We also found that positive sentiment in free-text descriptions of the gestures cor-
related with scale measures of perceived affect valence. Interestingly, asymmetric ges-
tures were perceived as communicating significantly more positive affect compared to
symmetric gestures.

Finally, participants had a generally correct perception of our Risk Ladder gestures.

5.1 Limitations and Future Work

These studies have significant limitations. The convenience sample of MTurkers in the
studywas small andmaynot be representative of any given target population. Perceptions
from videotaped gestures may not be the same as those from in-person observation.
Findings based on Pepper’s gestures may not generalize to those of all humanoid robots.

Importantly, we only evaluated gestures in the absence of speech or any other contex-
tual information.Althoughmanygestures canbe interpreted in isolation [19], social, task,
and discourse context set strong expectations which can help interactants better inter-
pret gestures. Because of their idiosyncratic and abstract nature, metaphoric gestures
are almost never used without speech in naturally occurring conversations. In addition,
we did not characterize the form of gesture beyond envelope parameters, and the exact
trajectory and handshape of gesture is essential in understanding intended meaning [1,
5].

This work is an initial step in the development of humanoid robot hand gestures that
go beyond simply providing entertainment and engagement, to enabling robots to use
their hands to convey meaning in conversation, in the same way that people do. Effective
use of all conversational modalities is essential in complex interactions in which robots
are designed to educate, counsel, and motivate.

Acknowledgements. Sumanth Munikoti assisted in generating the experimental stimuli, and
Nwabisi Chikwendu assisted with the online study.
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Abstract. Effective and successful interactions between robots and peo-
ple are possible only when they both are able to infer the other’s inten-
tions, beliefs, and goals. In particular, robots’ mental models need to be
transparent to be accepted by people and facilitate the collaborations
between the involved parties. In this study, we focus on investigating
how to create legible emotional robots’ behaviours to be used to make
their decision-making process more transparent to people. In particular,
we used emotions to express the robot’s internal status and feedback
during an interactive learning process. We involved 28 participants in an
online study where they rated the robot’s behaviours, designed in terms
of colours, icons, movements and gestures, according to the perceived
intention and emotions.

Keywords: Human-robot interaction · Affective robotics · Social
robotics · Transparency

1 Introduction

Autonomous social robots are being deployed in human-centred environments
where they are exposed to close and unsupervised interactions with people. In
such scenarios, robots and humans need to share the working space and work
together to complete different tasks. These close interactions are raising the
importance for robots of adopting natural communication mechanisms, which
usually are bi-directional in human-human (HHI) and human-robot interactions
(HRI). Therefore, robots and people need to understand and predict each other’s
behaviours and intentions, and consequently, robots need to adapt their own
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behaviours for planning the next steps to reach the common goal [15]. More-
over, the use of Artificial Intelligence (AI) techniques, and specifically of Deep
and Reinforcement learning approaches, during the human-robot interaction,
make this mutual understanding process even harder. Such complex and pow-
erful methodologies are considered “black-boxes” by non-technical users who
may consequently develop sentiments of distrust and fear towards robots [12].
In general, people are not inclined to use and interact with systems that they
cannot comprehend. To avoid that human users misuse or disuse robots, and
ensure a successful model of HRI, it is important to make robots’ behaviours
more intelligible and transparent for people [7].

Among the mechanisms used to make transparent a robot’s internal process
and its understanding of a person’s mental state, emotions are considered to
be a universal and valid mechanism to communicate one’s own internal state
[3,11]. Indeed, emotions can be defined as “they are parts of the very process
of interacting with the environment” [5]. Several studies tried to provide a set
of emotional body languages that robots can use to express emotions [9,10].
However, these studies showed that people’s perceptions of emotions and feelings
may vary according to the situational context [17,20].

In our research, we want to use emotions as a natural mechanism to express
the robot’s intentions, beliefs and understanding of the situational context. In
particular, in this study, we selected two sets of emotions (positive and negative):
two for expressing a robot’s belief of the goodness of a selected action during
an interactive learning process (i.e., fear and hope), and two for expressing a
robot’s understanding of the situational context (i.e., happiness and sadness).
As a first step, before evaluating the effect of using such behaviours during the
HRI, here we aim at exploring participants’ perception of emotional behaviours
in relation to the desired intent in an online study.

2 Design

2.1 Robot Platform

The robot used in this study is the humanoid Pepper robot created by SoftBank
Robotics. Pepper is 120 cm tall, it has 20 degrees of freedom (DoF), a wheeled
base, a tablet at chest high, coloured LEDs around the eyes, on the side of the
head (i.e., ears), and on the shoulders. The robot is not able to express facial
emotions having a static face. The behaviours of the robot were implemented
using ROS Noetic and the robot’s libraries NAOqi.

We positioned the robot close to a desk that covered only the lower part of
the robot, leaving the robot to be free of movement and the view from the chest
to the head. On the desk, there were four objects (a tennis ball, a soccer ball, a
kangaroo and a red box).

2.2 The Robot’s Emotions and Behaviours

The affective model used in this study is inspired by J. Broekens’ emotional
theory, called TD-RL [2]. The model is composed of four emotions: fear, hope,
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Fig. 1. Emotions expressed by the robot Pepper according to an increasing level of
arousal [from left to right].

sadness and joy. In the model, they are used to express the learning status of
the robot during an interactive learning task involving the user to provide the
rewards. In particular, they are used to express the internal belief in the goodness
of its current action (sadness and joy) and on the foreseen success of the use of
such action in achieving the goal (hope and fear). In a previous work [11], this
model was used in an HRI task aiming at teaching an I-Cub robot to learn a
predefined sequence of objects (coloured balls) placed on a table. The considered
learning task required the robot to point at the objects placed in front of it while
receiving positive or negative rewards from the user through a joystick interface.
Results of this study highlighted that users perceived joy and sadness gestures
not as states linked to the current action but, instead, as reactions to the user
rewards. Moreover, it was helpful to have behaviours showing internal states,
in terms of certainty or uncertainty of the current action, during the learning
process, even though the used gestures were not completely recognised.

For this reason, here, we designed new gestures for the Pepper robot to be
associated with a pointing gesture for the purpose of showing hope and fear (see
Figs. 1.a and 1.b). The emotions of joy and sadness are instead used to elicit
the robot’s response and awareness to a possible (positive or negative) feedback
received by the user (see Figs. 1.c and 1.d).

The emotions expressed by the robot have been inspired by the Color Motion
Sound (CMS) model [9] that combines colours, motions and sounds for each emo-
tion. While vocal features play a fundamental role in emotion recognition [16],
here we decided to not include the sounds for modelling the emotions because
fear and hope do not have any sound associated according to the CMS model. We
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modelled three different levels (min, mid and max) of intensity for each emotion
considering the following characteristics:

– Joy : the colour chose to represent Joy is yellow hues with three degrees of
intense saturation and high brightness (HSB values: 45/100/100, 45/79/95,
45/40/100). The robot expressed this emotion with fast rotations and circular
movements of the arms, and opening the chest and head.

– Sadness: Dark blue hues were used to represent Sadness (HSB values: 217/79/
53, 230/40/40, 208/69/78). The robot moved arms closing on itself, lowering
the head and making slowly rotation away from the user.

– Fear : The emotion Fear is expressed through jumpy movements away from
the user and with uncertainty while looking at the object it intends to point
at and at the user. The colours used for Fear are black and grey (HSB values:
0/0/20,0/0/40,0/0/60).

– Hope: The emotion is expressed using the green colour (HSB values: 102/53/
66, 101/36/77, 102/75/46), open posture, and very fast and secure move-
ments.

Pepper robot has a static face, hence to enhance the legibility of the emotional
behaviours, we designed a set of icons to be displayed on the robot tablet. The
icons show a drawing of the pepper face with different facial expressions obtained
by modifying the shape of the robot’ mouth, eyes and using the same colours as
described before.

In total, the set of emotions used in this study consists of 12 animations in
which the robot shows three levels of intensity of joy, sadness, fear and hope
emotions.

2.3 Procedure and Evaluation Measures

We designed a between-subject study with two conditions. In condition C1,
the robot used its tablet to show the icon to express the relevant emotions. In
condition C2, the robot’s tablet was left blank. Participants rated 12 video-
clips of the robot communicating different emotions and behaviours with or
without the use of the tablet and completed the requested questionnaires on
Google Forms. The order of the video-clips presented to the participants was
randomised to counter possible sequence effects.

The videos were shot from a frontal angle to allow participants to have a full
overview of the robot and the objects on the desk. Each video-clips was shot on
the same day and with the same background. We tried to recreate the videos
in the same way as much as possible, and we did not make any cuts to give a
natural continuity to the gestures. The robot expresses the emotions with videos
of the same duration (12 s).

We did not give any description of the robot at the beginning of the interac-
tion for capturing participants’ perceptions built only on their own experience,
personality and considerations [13]. In both conditions, participants were pre-
sented with three questionnaires at the beginning, after each video and at the
end of the online study.
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At the beginning of the study, we collected participants’ responses: 1) their
demographic data (age, gender, nationality and occupation), 2) their experience
with robots, 3) their opinion about robots’ roles and robots’ ability to express
emotions, 4) the affect measuring questionnaire (PANAS) [19] to measure par-
ticipants’ mood (positive or negative) at the time of the study using a 5-point
Likert scale [1 = very slightly or not at all, and 5 = extremely], 5) the Ten Item
Personality Inventory questionnaire about themselves (TIPI) [6] using a 7-point
Likert Scale [1 = disagree strongly, and 7 = agree strongly].

After each video-clip, two 8-point scales, one [1= calm, and 8 = aroused] and
the second [−4 = displeasure, and 4 = pleasure] were used to measure the level of
arousal and pleasure perceived by the participants [8]. In the questionnaires, we
expressed the valence as the pleasure to make the concept easier to understand
for the participants [10]. For ranking arousal and valence of the emotions, we
decided to use these scales instead of the Affective Slider [1] to not influence
participants’ choices by showing an emoji that might be associated with the
emotion represented on the robot’s tablet. We asked participants to select their
confidence level for the selection of the arousal and pleasure of the emotion in
the video-clip using two 7-point Semantic scales [1 = not at all, and 7 = very
much]. We also asked the participants to indicate the perceived discrete emotions
expressed by the robot in the video, selecting them between the following set:
anger, fear, hope, sadness, uncertainty, joy, pride, surprise, certainty, disgust,
embarrassment, and shame. These emotions were selected to include the six
universally recognised basic and non-basic emotions from Ekman [4].

Finally, in the last questionnaire, participants were asked to give their opin-
ion: 1) whether they believed that Pepper was able to express emotions, and
whether robots, in general, should be able to express emotions, 2) which roles
they would assign to Pepper, 3) which emotions they believed a robot should
be able to express choosing them from the list of emotions of Ekman previously
presented, 4) then, we measure participants’ mood using the PANAS question-
naire. We also measured participants’ attention through two check questions
asking “Which was the object/were the objects in front of the robot Pepper?
Please choose all that apply.” and “Which gesture/s did Pepper not do in the
videos? Please choose all that apply.”

2.4 Participants

We recruited 28 participants (18 male, 10 female and none non-binary) aged
between 18 and 66 (mean age 26.5, std. dev. 11.20). The majority of the partici-
pants consisted of Italian citizens (89%), while one participant was from Switzer-
land and two participants were from the United Kingdom. The sample of par-
ticipants was mainly composed of students (79%). The remaining participants
were a lawyer, a visual designer, a production manager, a research fellow and
a retired teacher. The majority of participants (72%) stated to not have any
experience with robots (min = 1, max = 5, mean 1.96, std. dev. 1.5), while the
remaining had some or high experience with robots. Participants’ previous expe-
riences with robots can be classified into participation in other studies, observing
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or developing robots. Participants had experience with the following robots: Soft-
Bank Robotics NAO and Pepper, Furhat Robotics, iRobot Corporation Roomba,
Qihan Technology Co. Sanbot, and Hanson Robotics Sophia.

We did not exclude any participants due to a failure of the attention check
question.

3 Results

3.1 Affect Questionnaire

The affect scores from the PANAS questionnaire [19] before the experiment was
within the expected range. Before the experiment, the positive affect score mean
was 29.75 (std. dev. 7.25) and the negative affect score mean was 14.57 (std. dev.
6.16). After the experiment, the positive affect score mean was 29.29 (std. dev.
7.26) and the negative affect score mean was 13.25 (std. dev. 6.1). A paired t-
test shows that there is not a statistically significant effect between the responses
before and after the test.

3.2 Descriptive Statistics

We first analysed the data for interaction effects between gender and video
responses. To understand whether the gender of the participant had an effect
on the responses, we computed a two-way mixed model ANOVA. The results in
Table 1 show that the responses to the dependent variables arousal and valence
were not affected by the participants’ gender.

A statistically significant effect on the participants’ perception of the arousal
and valance of the robot can be further observed. This means that participants
perceived the robots on these dimensions differently. The next subsections will
present an exploratory analysis as to how these differences map our expectations.

Table 1. A two-way mixed model ANOVA analysed whether there is an interaction
between the participants’ gender and their responses to the videos. The results indicate
that there is no evidence for an interaction. However, the results also suggest some
statistically significant effects for the participants’ responses for arousal and valence.

(a) arousal

DF1 DF2 F p

gender 1 26 0.05 0.82

emotion 11 286 6.44 < 0.01

interaction 11 286 1.48 0.14

(b) valance

DF1 DF2 F p

gender 1 26 0.56 0.46

emotion 11 286 12.01 < 0.01

interaction 11 286 1.51 0.13
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Fig. 2. Kernel density estimates (KDE) for each emotion expressed by the robot. The
red point marks the expected perception means. It can be seen that the mean is usually
part of the fringe or outside of the distribution. Only if a tablet is used, the expected
mean is part of or close to at least one distribution maxima. (Color figure online)

3.3 Exploratory Analysis

In regard to the emotions expressed by the robot, Fig. 2 shows the kernel density
estimates for the participants’ responses for each of them. The red point depicts
the expected mean (see [18]). It can be seen that the participants’ perception
of the robot without a tablet does not entirely meet our expectations. For the
emotion Joy, Hope and Sadness, the robot that also expressed its emotion using
a tablet, our expected mean values are part of or close to one of the maxima
of the kernel density estimation. This shows that in our experiment, the tablet
supports the robot in expressing its emotion to the participants.

Figure 3 shows the participants’ perceived arousal in dependence to the cho-
sen arousal level. It can be seen that the overall rating for arousal shows a little
variance in the condition where the robot did not have a tablet. Interestingly,
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Fig. 3. The effect of the set arousal level on the participants’ arousal perception of the
robot. It can be seen that for the emotion “Fear” that the perceived arousal increases
with the arousal level. For other emotions, this is not the case, but strong effects can
be observed.

the “Fear” emotion is the only one that follows our expectation of an increase
in arousal for a higher arousal level.

Finally, after each video, the participants were asked to select one or more
discrete emotions that they thought represented best the one expressed by the
robot in the video-clips. In Fig. 4, it can be seen that there is no clear mapping
between a robot’s emotion and a participant’s perception of said emotion. Par-
ticipants also associated joy evenly, but they rarely picked hope. This result is
not surprising, because it is more difficult to associate a behaviour to a discrete
emotion than expressing it according to its level of arousal and valence [1].
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Fig. 4. A hit-map for the emotions participants’ associated the robot’s behaviour with
(x-axis) in relation to the robot’s actual expressed emotions (y-axis).

4 Conclusion and Future Works

The main interest of our research is to use personalised emotional expressions
for robots to communicate complex internal and external robots’ (decisional and
behavioural) processes to the users. In particular, we are interested in investi-
gating how to develop emotionally expressive learning robots which actions are
legible and helps in achieving transparency of the internal state.

We believed, inspired by the finding of previous studies [2], that emotions
can be an effective and transparent solution for communicating the state of the
learning process to users. For this reason, in this study, we explore the legibility
and predictability of robots’ intentions and beliefs (i.e. internal decision-making
process, and understanding of people’s response) through emotional expressions.

We asked individuals of different ages, gender, background and experience
with robots to classify the emotions expressed by the robot in the video-clips
according to their level of arousal, valence and discrete emotions. We observed
that participants were able to differentiate the emotions according to a dimen-
sional representation (arousal and valence) in the case of having the tablet show-
ing the icon with the emotional “face” of the robot, and that the evaluation
was in line with the expected interpretation. This finding is in line with the
results observed by Zhang and Sharkey [20]. This further highlights how pow-
erful is facial emotional communication for meeting people’s expectations. The
only exception is for the Fear behaviour that has to be re-designed.

Moreover, the intended levels of arousal were not correctly perceived. This
is also in line with other studies showing that small modifications of non-verbal
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cues are hardly identified by the subjects [14]. Hence, in the case of a necessity
to modulate emotions’ arousal more evident differences are needed.

The findings of this exploratory study will be used to further investigate
whether robots can express emotions that intrinsically represent their current
state in real-world scenarios.
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Abstract. Worldwide, approximately 50 million people live with Alzheimer’s
disease or other dementias and there are nearly 10 million new cases every year.
Social robots have been a promising approach to supplement human caregivers in
dementia care. In this narrative review, we reviewed 62 articles to gain insight into
the attitudes and perceptions among people with dementia and other stakeholders
worldwide towards using social robots to assist dementia care. Then, we discussed
some critical factors and challenges found in these studies influencing people’s
perceptions as well as future directions in this field. The primary influencing
challenges include cultural factors, users’ limited experiences with technologies,
methodological challenges underlying qualitative studies as well as technological
malfunctions in current robot system. We further suggested several aspects to
be taken into more consideration in future research, including collaborations with
other stakeholders, design of individual or group use for dementia care, an adaptive
level of autonomy in a social robot and long-term human-robot interaction.

Keywords: Social robots · Dementia care · Human-robot interaction

1 Introduction

According to the World Alzheimer Report 2018 [39], there were 50 million people
worldwide living with dementia, with one new case of dementia every 3 s. Alzheimer’s
disease is the most common form of dementia, contributing to 60–70% of cases. On the
other hand, the proportion of related healthcare professionals to the elderly population
has become smaller, with many care homes and extended living communities becoming
increasingly understaffed worldwide [9]. With these apparent challenges faced by the
dementia care and the struggling battle against clinical treatments of Alzheimer’s disease
or other dementias, amore direct form of care has been approachedwith the investigation
of robots [64], and more specifically social robots. These social robots aim to not only
assist individuals with dementia, but also to ease the burden of their caregivers who are
often overwhelmed with the caregiving tasks for those with cognitive impairment [2],
as the example shown in Fig. 1.
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Fig. 1. A social robot, Pepper, interacting with a person with Alzheimer’s and his wife.

A social robot is defined as a system with a degree of autonomy operated with the
purpose of both interacting and communicating with humans as well as other systems
to fulfill its role, generally in a natural and personable way that follows social behav-
iors [46]. The goals are to support health education, enhance communication, promote
patients’ health outcomes, and improve their quality of life. Regarding the applica-
tions in Alzheimer’s care, social robots have been used in recreational activities [1, 14],
reminders for medications and daily tasks [20], and encouraging physical activity [31].
The aim of the present review is to gain insight into the attitude and perceptions among
people with dementia and other stakeholders worldwide towards using social robots for
dementia care, and the primary factors influencing the perception of robots for dementia
care. In this paper, we conducted a narrative review in the databases of Google Scholar
and PubMed using the keywords (“Social robot”) AND (“Acceptance” OR “Percep-
tion” OR “Attitude”) AND (“Elderly” OR “older adults”) AND (Alzheimer’s disease
OR “Dementia” OR “MCI”). The searchwas limited to the articles published since 2005.
Finally, a total of 59 eligible articles, theses, and conference proceedings [1, 2, 4–20,
22–38, 40–45, 47–59, 61–63, 65] were reviewed to investigate the worldwide perception
of social robots as modes of assistance to older adults with dementia, the main factors
and challenges influencing the perception, as well as future directions in this field.

2 Results

2.1 Cultural Factors

Culture is a significant factor found in the literature influencing people’s attitude and
perception towards social robots for Alzheimer’s care. Generally, from media influ-
ence, different cultural regions and countries develop various attitudes and percep-tions
towards social robots for ADRD care [9]. Perceptions of robots between Japan, Italy,
Germany,UK, andUSwere all varied [38, 41, 49]. Oftentimes, these studieswere limited
by the acceptance of social robots in older adults, specifically because of cultural bias
from that region [38]. Some countries such as Japan and the Netherlands have largely
applied robots into daily life, while the society in the US and Italy did not have such
high acceptance towards social robots [41, 49]. Some sociocultural factors in Western
societies may explain this reluctance when compared to Japan, for example, one might
be robot aversion, influenced by science fiction, and arguably rooted in Judeo-Christian
beliefs that associate the creation of ‘human-like’ creatures to an act of hubris [3]. Studies
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also showed the limitation of cross-cultural biases. Many of these studies only inves-
tigated the perceptions and attitude towards social robots for Alzheimer’s care in one
single region or country. There is no “one-size-fits-all” in Alzheimer’s care. There are
a multitude of factors to influence an individual’s acceptance and perception of social
robots. Future research may further explore the cultural factors that influence accep-
tance of social robots. Consequently, social robots would need to be adapted to these
influencing factors to better fit individual countries, regions, and cultures, e.g., physical
appearance, language, and functions [54, 63, 64].

2.2 Previous Exposure to Technologies

Another common limitation among these papers is previous exposure to technologies,
such as smartphones, tablets, computers, and social robots. In many studies, participants
were shown a video of a robot operated or allowed to interact with the robot person-
ally, then answered a subsequent survey regarding their perceptions and attitudes of the
robot [6]. However, the majority of these participants had never interacted with any
social robot before, given their age. This oftentimes resulted in experimenters needing
to prompt users, or the users altogether not using the robot to its full capacity. Also,
individuals’ experience with other technologies, such as smartphone, tablets, and com-
puters, made a drastic difference in their perceptions and attitudes towards social robots.
This previous experience issue can be negated by more education and interaction on
social robots in general. Noticeably, as time passes and the current middle-aged pop-
ulation reaches the elderly population, they will generally have more experience using
not only technologies like smartphones and tablets but possibly robots. Another issue of
previous experience with robots is that many times users would conflate their cultural
biases with their personal interaction of the social robot. For example, some American
participants in the studies due to their minimal experience with social robots and their
cultural perceptions, would not interact with the robot in the scope that it was designed
to, oftentimes downplaying its abilities. One possible way to overcome this limitation
would be to provide education and training on robot use, allow participants to interact
with the robot for a longer period, or allow participants to have the robot in their living
space for a period of several weeks [47]. In one study [10] where the social robot was
implemented into individuals living spaces for periods of 10 weeks or longer, it found
increased interaction as well as acceptance from the users. It is also important that the
time spent with the robots during the testing period is utilized effectively during these
investigations. For example, during a study in which the users had a group conversation
facilitated by a social robot, the usability was rated relatively low [8], but in studies
involving the use of daily activities and the robot meeting the needs of the elderly, the
effect of age on levels of acceptance was diminished [6].

2.3 Methodological Challenges

Because conducting a survey study with individuals with dementia is more difficult,
many of these studies examined caregivers’ opinions instead, as the proxy of individuals
with dementia [54]. The survey was conducted in a structured and/or less-structured way
[12, 14], the latter one allowing the users to answer in an open-ended format. A limitation
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to this is that qualitative research is difficult to generate concrete results, with significant
interpretation of responses being required. Several studies focusing on the use of social
robots for older adults with cognitive impairment heavily relied on caregiver review,
depending on the severity of the user’s impairment [54]. In one study, a teleoperated robot
was used to assess the worsening or stabilization of user’s symptoms given interaction
with the robot operated by different personnel, finding the severe dementia symptoms
for some users did not worsen following the interaction [8].

2.4 Technological Malfunctions

Additionally, technological malfunctions are unfortunately a large limitation to many of
the studies in this review. During testing phases, many trials had to either remove certain
tests or have experimenters do malfunction maintenance on site to ensure the robot func-
tioned proper [11]. This is a very common problem for nearly any technological research
involved in a clinical setting. There will always be some degree of error that requires
maintenance even up to the point of testing. However, for the social robotic application
specifically for dementia care, the robots will need to operate largely autonomously
because of the average users experience with technology being relatively little [60].
The technological errors that were common in these papers came from environmental
readings and human recognition generally. Some examples of these errors were facial
recognition, voice recognition, image recall, and conversational utility [13].

3 Discussion and Conclusions

3.1 User Acceptance and Perception

One of the main suggestions for further development of social robots for dementia care
fall under user acceptance, perceived usefulness (PU), and perceived ease of use (PEOU).
As noted in previous studies concerning the effectiveness of social robots, the users’
satisfaction is paramount to the system’s ability. Subsequently, themeasurement of robot
acceptance, usefulness, and other user perception attributes [21] must be standardized
for the future of this field. Doing so would allow different robot models to undergo
multivariate analysis with different cognitive conditions. As for designating a standard of
measuring the PU, system usability scale (SUS) has often been used across the reviewed
publications to assess the system usability. Several studies noted aspects of social robots
that could be improved upon according to the users, the most commonly referenced
being a voice’s accent if present [30]. Participants in several studies had complaints of
robots’ voice not being “friendly” enough or speaking with an accent that was difficult to
understand [30]. It infers that a social robot with a voice of regional dialects of languages,
or a more informal conversation in terms of word choice or accent, would subsequently
have higher rates of acceptance [63]. Techniques like focus groups are also an effective
method for users to talk about their perceptions of the social robots, organizing their
thoughts through a facilitated discussion [1]. Lastly, another future direction to consider
is the differences of acceptance, PU, PEOU as well as effectiveness in people with
dementia when the social robot is assessed in an individual versus group setting.
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3.2 Collaborations with Caregivers

Another highly important area of this field of research is the ability for social robots to
ease the burden of caregivers for individuals with ADRD. As described previously, the
strain that caregivers face is becoming increasingly greater as the disease progresses.
Several studies in this review surveyed home care professionals, health care profession-
als, extended living care staff, and others in the field to gauge their perceptions and
acceptance on the utilization of social robots for their field of care [54]. These surveys
often displayed a video of the robot at hand being used, and subsequently asked the par-
ticipants questions on their willingness to use the system and their perceived usefulness
[2]. These caregivers are primarily responsible for ensuring not only the safety but also
wellbeing of individuals withADRD, so the perceptions and feedback from the caregiver
perspective is also vital to ensure a proper orientation of the design, development, and
implementation of social robots for dementia care. Otherwise, inadequate information
on the requirement and purpose of robots may lead to unrealistic expectations and unmet
needs [54].

3.3 Design of Individual or Group Use

Additionally, the condition of a robot being used, i.e., individual or group setting, is
needed to take into consideration during the design and development of social robots
for dementia care. The target users (e.g., in term of cognitive capacity and living envi-
ronment) and requirements in these two conditions may be different. Consequently, the
functions and social intelligence underlying the robot to support its individual and group
interaction may be different. For example, Valentí Soler et al. [57] employed the group
and individual sessions for people with mild or mild-moderate dementia and people with
moderate-severe and severe dementia, respectively. Some studies [12] particularly tar-
geted at the elderly with no, low or mild cognitive deficits but able to live independently,
and accordingly developed the robot to interact with the user one by one. In another
study [10] of developing robot for elderly people at home, users living alone perceived
the robot to be “someone to talk to” and “waiting for me at home when I get back”,
with some users even disappointed that they would no longer have the robot around at
the end of the study. This suggests that a social robot designed for individual use needs
to particularly pay close attention to an individual’s feelings, which becomes of great
value given nowadays more residents expressed higher levels of loneliness, due to the
outbreak of COVID-19 and the subsequent lockdown of elderly care homes worldwide.
In addition, it points out the need for future implications of social robots having the
ability to be operated effectively for both individual and group use, in other words, the
capability of robot being able to interact with an individual person with dementia or a
group of people with dementia.

3.4 Adaptive Level of Autonomy in Social Robots

The level of autonomy in a social robot is another consideration during the design of
social robots for Alzheimer’s care. In the papers reviewed, researchers have studied the
performance of teleoperated robot (e.g., a caregiver-controlled robot [8], an autonomous
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robotic platform [10], and both [7, 35]. On average, autonomous robots relieved more
caregiver burden and allowed a person with ADRD to operate with the robot more
freely. However, autonomous social robots seemed to have relatively lower levels of
acceptance, given the users felt more comfortable when there was a family member or a
caregiver operating the robot [28]. Additionally, for people with ADRD living alone, an
autonomous robot did not help lower the individuals’ levels of loneliness as the extent
that a teleoperated robot did [7]. As for caregiver operated platforms, the perceived
benefits were apparent in that the users were able to have eased communication with
either their caregiver or familymember, although this type of robots requires the operator
to be more present for the user, not alleviating caregiver burden to the degree that an
autonomous social robot is able to do. These benefits and downsides to robots with
different level of autonomy suggest that the capability of adaptive autonomy in social
robots, which incorporates both aspects of an autonomous and remotely operated robot,
would be useful for Alzheimer’s care.

3.5 Social Robots for Long-Term Interaction

Another key aspect to focus on this field is longer interaction periods with persons with
ADRD. Many of the studies reviewed consisted of either focus groups lasting from
15 min to an hour, and occasional individual sessions with a social robot that lasted
around the same time [43]. There were some case studies that allowed the users to
live and interact with the social robot for months at a time [7], but these studies only
gathered data for one user. In survey studies, many times the participants were only
shown pictures or videos of the robot operated [23, 41], which is not ideal for gathering
data on the acceptance, PU, or PEOU of the social robot. It is suggested to conduct more
read-world tests where the social robot could be placed in a care home or an individual’s
home for weeks or even months at a time. This would allow for individuals with ADRD
to have personal interaction with the robot and then learn their more in-depth feedback
on the robot.
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Abstract. Stroke patients often suffer from strephenopodia, which seriously
affects their walking ability and rehabilitation. However, lower limb rehabilitation
robots lack the evaluation and automatic correction function of strephenopodia.
There are practical demands for convenient, automatic, and quantitative assess-
ments of the angle of strephenopodia to adjust the orthopedic strength in time
to remind stroke patients to use their muscles to realize the movements. In this
study, we proposed a novel methodology for automatically predicting the angles
of strephenopodia based on a plantar pressure system using machine learning
methods. Three machine learning methods were implemented to build stochastic
function mapping from gait features to strephenopodia angles, showing good reli-
ability and precision prediction of the strephenopodia angle [determination coef-
ficient (R2) ≥ 0.80]. Results showed that our method is convenient to implement
and outperforms previous methods in accuracy. Therefore, measurements derived
from the plantar pressure system are proper estimators of the strephenopodia angle
and are beneficial to lower limb rehabilitation exoskeleton for stroke population
training.

Keywords: Stroke · Strephenopodia · Plantar pressure · Machine learning

1 Introduction

Stroke is one of the top leading causes of adult disability in the world [1], and 80% of
stroke patients tend to experience different degrees of walking obstacles [2]. To improve
the rehabilitation of lower limb, lower limb rehabilitation robots are used for patients’
training. Strephenopodia is one of the most common sequelae of stroke, which seriously
affects the patient’s rehabilitation and daily life [2–4]. However, current lower limb reha-
bilitation robots lack the evaluation and automatic correction function of strephenopodia.
To achieve effective rehabilitation, it is necessary to detect the degree of varus in real-
time for patients using their muscles to train themselves to walk properly [5–7]. If the
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muscles are not exercised because the foot rests on top of a comfortable orthotic shape,
they would lose strength, and consequently, protective shock absorption, efficient gait
[8], and other complex functions [9] become impaired. This highlights the necessity to
automatically monitor the angle of strephenopodia, according to which a rehabilitation
exoskeleton is used to assist the patient in correcting the strephenopodia for effective
rehabilitation.

Typical approaches for the detection of strephenopodia include traditional clinical
gait analysis, gait video analysis, and plantar pressure systems [5]. Traditional gait analy-
sismethod [10] ismostly used formonitoring and providing feedback about strephenopo-
dia in the clinic. This observational method relies on the observer’s skill and clinical
experience, and it is inconvenient to operate and cannot be recorded in real-time. This
method does not meet the requirements for lower limb rehabilitation robots. Gait video
analysis is another method for strephenopodia evaluation. Computer vision [11], 3D
kinematic analysis in vivo [4, 12], and optoelectronic stereophotogrammetry in vivo [13]
were applied in patients with foot pathologies. This method is expensive and complex,
which makes timely adjustment of the method inconvenient.

Since the acquisition of plantar pressure is simple and noninvasive, it has been
widely used in detecting and monitoring gait patterns [14–16]. In a previous report [3],
smart textile socks with five integrated pressure sensors were used for pronation and
supination detection. Another study [5] utilized a pressure-sensitive insole to detect foot
pronation in real-time, and feedback provided to the user reduced pronation significantly.
These methods are proven to be effective in detecting pronation and are relatively low
cost. However, they are only able to detect whether foot pronation exists and cannot
quantitatively determine the specificity and subtlety of foot pronation.

In this paper, a novel strephenopodia angle prediction method was proposed to pro-
vide a reference for exoskeleton-assisted rehabilitation. We collected a data set that con-
sisted of plantar pressure distribution data and lower limb motion from 30 participants.
Then, we fitted a Gaussian process regression (GPR) model to the data set. Experimental
results indicate that our method can predict the foot supination angle with high preci-
sion. We also provide a performance comparison between the GPR and other regression
models. The method can be used to provide real-time feedback to the rehabilitation
exoskeleton.

2 Data Collection and Preprocessing

Thirty healthy participants (25 males and 5 females) with no history of neurological or
mobility impairments participated in the experiments.All participants provided informed
consent, and the experimental procedures were approved by the Research Ethics Board
of South China University of Technology. Table 1 provides summary information about
the participants.
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Table 1. The distribution of participants’ characteristics

Characteristics Mean ± SD

Age (years) 22.83 ± 2.83

Height (cm) 169.81 ± 7.38

Weight (kg) 64.21 ± 12.54

2.1 Experimental Setup

As shown in Fig. 1, the experimental setup included three parts: a Zebris FDM-THM
Treadmill (Zebris Medical GmbH, Germany) for measuring the plantar pressure dis-
tribution, wedge-shaped blocks for simulating strephenopodia conditions, and a Vicon
Motion Capture System for capturing lower limb motion.

Fig. 1. Experimental platform with the Zebris FDM-THM Treadmill and Vicon Motion Capture
System. The sampling rate of Zebris Treadmill is set to 120Hz. The ViconMotion Capture System
consists of 8 infrared cameras, the sampling rate is set to 250 Hz. The wedge-shaped blocks are
stuck to the first metatarsal area to form a specific angle to imitate varus conditions.

We designed three wedge-shaped blocks with different heights. In the experiment,
the blocks were stuck under the forefoot to simulate different strephenopodia conditions.
The higher the block, the more severe the simulated foot supination. Participants walked
at self-selected speeds on the treadmill under 4 different conditions. In the first condition,
the participants walked freely with no block; then, for the other three conditions, blocks
with different heights were stuck to the first metatarsal area of the medial forefoot of
the right foot. We asked the participants to keep the blocks close to the ground as much
as possible but not to touch the treadmill belt to ensure a certain angle when walking,
which imitates the different degrees of strephenopodia conditions.

We attached 16 reflective markers to the subject in a way described in the reference.
The Vicon system captures the trajectories of these 16 reflective markers, which will
be used to calculate joint kinematics later. Gait patterns are represented by lower limb
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joint trajectories: ankle adduction/abduction on the coronal plane, mainly referring to
strephenopodia, and other joint rotations are not considered.

2.2 Experimental Procedure

First, we asked all subjects to participate in an adaptation-familiarization trial to obtain a
self-selectedwalking speed and adapt andmaintain the inversion angle. Starting at a fixed
speed of 0.5 km/h, the treadmill speed was increased by 0.2 km/h every 10 s. Once the
participant informed the tester of the speed that best characterized his/her normalwalking
pace, that was determined as his/her comfortable speed. After this adaptation phase, each
participant was asked to walk continuously for approximately 2 min on a treadmill at
his/her comfortable speed for each walking model while wearing socks. When a stable
walking speed was reached, motion capture data were recorded synchronously with the
treadmill for 30 s.

All subjects performed four types of walking motions with their right foot. Each
walking model recorded 8 groups of data, 30 s per group. All subjects were asked to
simulate common post stroke strephenopodia movements, which included the flexion of
the affected toe, the anterolateral edge of the plantar, and the inclination angle between
the plantar and the ground.

2.3 Preprocessing of Joint Trajectories

All the raw gait trajectories obtained by the Vicon system need to go through a series
of processes. 1) Remove invalid gait patterns caused by marker occlusions. 2) Split gait
sequence into gait cycles to obtain the average of the minimum value of each gait cycle
for ankle flexion/extension because we found that in the support phase, the varus foot
was relatively smaller throughout the gait cycle. 3) Calculate the average of theminimum
right ankle value of each gait cycle:

yi = 1

n

∑n

j=1
yj, (1)

where n is the number of gait cycles,yj is the minimum value of the right ankle angle
throughout the j-th gait cycle, and yi is considered to be the strephenopodia angle.
Figure 2 shows the right ankle angle trajectory.

Fig. 2. Right ankle angles on the coronal plane



Using Plantar Pressure and Machine Learning 425

2.4 Gait Feature Extraction

The plantar pressure distribution [2] is a good description of the different severities of
strephenopodia, and we extracted 15 gait features from the raw plantar pressure data
collected by the Zebris gait analysis system (Table 2) and served as the input features of
our dataset to train the different regression models.

Table 2. Descriptions of gait features from the Zebris gait analysis system

Gait feature Description

Fore foot force The ratio of maximum force in the fore foot to the
body weight

Loading response phase The phase between the initial ground contact and
contralateral toe off

Length of the gait line The gait characterized by the position of the center
of pressure (COP)

Gait line left and right The lines of the force application points shown
separately for each foot

Anterior/Posterior Position The shift forwards/backwards of the COP
intersection point in chronological sequence in the
cyclogram display

Lateral shift The left/right shift of the COP intersection point in
chronological sequence in the cyclogram display

Load change The absolute load change from the heel to the
forefoot during the stance phase given as a
percentage

Contact time, percentage of stance time The average contact time of the three zones, toes,
mid-foot and heel as a percentage

Stance phase The phase of a gait cycle in which the foot has
contact with the ground

3 Maximum force The average maximum values reached in N for the
three zones: toes, mid-foot and heel

3 Maximum pressure The average maximum values reached in N/cm2 for
the three zones: toes, mid-foot and heel

3 Prediction of Strephenopodia Angles

We implemented three regression models Gaussian process regression (GPR), Sup-
port vector regression (SVR), and Stepwise linear regression (SLR), to evaluate their
performance in predicting strephenopodia angles from gait features.
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3.1 Definition of Training Set

The training set consists of the input set X and the output set Y . The input set X consists
of vectors of gait features, and the output setY consists of output scalars (strephenopodia
angles):

X =
⎡

⎢⎣
xT1
...

xTN

⎤

⎥⎦,Y =
⎡

⎢⎣
y1
...

yN

⎤

⎥⎦, (2)

where N is the number of samples in the data set (specifically 379).
The regression models will be optimized to build mapping relationships between the

input X and the output Y .

3.2 Gaussian Process Regression (GPR)

A Gaussian process (GP) [17, 18] is a stochastic process specified by its mean function

and its covariance function, m(x), k
(
x, x

′)
:

f (x) ∼ GP
(
m(x), k

(
x, x

′))
. (3)

In our work, the mean function and covariance function are determined as follows:

m(x) = 0, (4)

k
(
x, x

′) = σ 2
f

[
1 +

(
xi−xj

)T
M

(
xi−xj

)

2α

]−α

, (5)

where σ 2
f is the signal variance of the kernel function, α is the shape parameter of the

kernel function, and M = diag
(
l−2

)
is a symmetric matrix of hyperparameters.

With a given test set x∗, we can predict a probability distribution of ankle angle y∗
based on the above configuration:

p
(
y∗ | x∗,X, y,�

) = N
(
k�∗ K−1y, κ − k�∗ K−1k∗

)
, (6)

where K is the covariance matrix with elements Kij = k(xi, xj). k∗ =[
k(x∗, xx) . . . k(x∗, xn)

]T . κ = k(x∗, x∗).

3.3 Support Vector Regression (SVR)

The SVR model is characterized by its kernels, sparse solution, and Vapnik-
Chervonenkis (VC) control of the margin and the number of support vectors. SVR
models are trained using a symmetrical loss function, which equally penalizes high and
low misestimates. In ε-SV regression [19, 20], our goal is to find a function, f (x), that
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has at most ε deviation from the actually obtained targets yi for all the training data and
is as flat as possible. We construct a linear regression function:

f (x) = WT�(x) + b, (7)

where W and b are obtained by solving an optimization problem:

min
W ,b

P = 1

2
WTW + C

n∑

i=1

(
ξi + ξ∗

i

)
(8)

s.t.

⎧
⎨

⎩

yi −
(
WT�(x) + b

) ≤ ε + ξi,(
WT�(x) + b

) − yi ≤ ε + ξ∗
i

ξi, ξ
∗
i ≥ 0, i = 1 · · · n.

, (9)

The optimization criterion penalizes data points whose y-values differ from f (x) by
more than ε. The slack variables, ξ and ξ∗, correspond to the size of this excess deviation
for positive and negative deviations.

3.4 Stepwise Linear Regression (SLR)

SLR [21, 22] is a multivariate statistical data analysis method that studies the correlation
between dependent variables and multiple influencing factors and is widely used in
prediction and control. In the preliminary regression analysis, we first establish the total
regression equation between the dependent variable y and the independent variable x and
then perform hypothesis testing on the total equation and each independent variable. If
the regression equation reaches a satisfactory level, the algorithm terminates. Otherwise,
some variables that are not significantly different will be eliminated using the interpreted
information. This process is an iterative process to ensure that the final set of explanatory
variables is optimal.

4 Results

The methods are tested with the five-fold cross-validation method. We randomly divide
the collected data set into five groups. For each of the five iterations, four groups are
used as the training set, and the other group is used as the test set. The hyperparameters
of these three algorithms are optimized by the grid search method.

We selected the root-mean-square error (RMSE) and determination coefficient (R2)
as model evaluation parameters. The correlation index R2 describes the fit of the regres-
sion model. An R2 value close to 1 indicates a well-fitted model. The R2 for individ-
ual regressors reached 1, indicating that the models exhibited the desired prediction
performance. R2 and RMSE were formulated as follows:

RMSE =
√√√√1

n

n∑

i=1

(
yi − ŷi

)2 (10)
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R2 = 1 −
∑n

i=1

(
yi − y

∧

i

)2
∑n

i=1(yi − y)2
(11)

where n is the number of samples, yi is the right ankle angle, y is the mean value of the
right ankle angle and y

∧

i is the predicted angle.
The regression accuracies for the three machine learning regression methods are

shown in Table 3 and Fig. 3. The GPRmethod achieved the best prediction performance,
with the highest R2 (0.93) and lowest RMSE (0.67) among all regression algorithms. All
regression algorithms had a higher R2 (≥ 0.80) in the walking tasks. All these algorithms
showed relatively good ability to predict the angle.

Table 3. Regression performance

Method R2 ± SD RMES ± SD

GPR 0.93 ± 0.01 0.67 ± 0.03

SVR 0.83 ± 0.04 1.06 ± 0.14

SLR 0.80 ± 0.04 1.13 ± 0.15

Fig. 3. R2 and RMSE metrics for the GPR, SVR and SLR.

Figure 4 shows the kernel density estimate (KDE) plots for the prediction errors of the
three regression models. The prediction error of the GPR method basically falls within
the range of −0.5 to 0.5, showing that the GPR method achieved excellent prediction.
Figure 5 shows the prediction results of the regression algorithms in a more intuitive
way. Actual right ankle angles obtained from the Vicon system are compared with the
prediction results from three regressionmodels. The predicted results of the threemodels
are in relatively good agreement with the actual values, and the predicted results meet the
accuracy requirements. In summary, the GPR showed the best performance in predicting
strephenopodia angles from gait features, SLR had the worst predictive performance,
and SVR was somewhere in between.
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Fig. 4. Kernel density estimate (KDE) plots for the prediction errors of three regression models.
The distributions of the prediction errors are demonstrated intuitively in these plots.

Fig. 5. Actual angle and predicted angle of three regression models.

5 Conclusions and Future Work

In this paper, we proposed a plantar pressure distribution-based approach for predict-
ing strephenopodia angles. This novel method can provide quantitative and unobtrusive
monitoring of strephenopodia conditions. We extracted 15 gait features from the plantar
pressure data and then used three different regression algorithms to establish mapping
relationships between the gait features and the strephenopodia angle. Systematic exper-
imental results have shown that the GPR algorithm achieved excellent performance (R2
= 0.93, RMSE = 0.67) in strephenopodia angle prediction, as GPR is a probabilistic
model with versatility and resolvability.

Considering that the lower limb rehabilitation robots lack a varus detection device,
our detailed varus detection method would be an ideal way to provide feedback to the
varus orthopaedic device of robots. In the future, the proposed method will be used
in a rehabilitation exoskeleton to adjust varus angle and further explore the regression
performance in strephenopodia of patients with hemiparesis.
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Abstract. In this paper, the robot-assisted Reminiscence Therapy (RT)
is studied as a psychosocial intervention to persons with dementia
(PwDs). We aim at a conversation strategy for the robot by reinforcement
learning to stimulate the PwD to talk. Specifically, to characterize the
stochastic reactions of a PwD to the robot’s actions, a simulation model
of a PwD is developed which features the transition probabilities among
different PwD states consisting of the response relevance, emotion levels
and confusion conditions. A Q-learning (QL) algorithm is then designed
to achieve the best conversation strategy for the robot. The objective
is to stimulate the PwD to talk as much as possible while keeping the
PwD’s states as positive as possible. In certain conditions, the achieved
strategy gives the PwD choices to continue or change the topic, or stop
the conversation, so that the PwD has a sense of control to mitigate the
conversation stress. To achieve this, the standard QL algorithm is revised
to deliberately integrate the impact of PwD’s choices into the Q-value
updates. Finally, the simulation results demonstrate the learning con-
vergence and validate the efficacy of the achieved strategy. Tests show
that the strategy is capable to duly adjust the difficulty level of prompt
according to the PwD’s states, take actions (e.g., repeat or explain the
prompt, or comfort) to help the PwD out of bad states, and allow the
PwD to control the conversation tendency when bad states continue.

Keywords: Social robot · Reminiscence therapy · Reinforcement
learning · Dementia care

1 Introduction

Worldwide, approximately 50 million people lived with dementia in 2018 [1].
Reminiscence therapy (RT), the most popular therapeutic intervention for per-
sons with dementia (PwDs), exploits the PwDs’ early memories and experiences,
usually with some memory triggers familiar to the PwDs (e.g., photographs and
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music), to evoke memory and stimulate conversation [2]. It has been evidenced
that RT has positive effects on PwDs’ quality of life, cognition, communication,
and mood [2]. While computer-based RTs, such as the InspireD Reminiscence
App [3] and Memory Tracks App [4], have been developed to make RT more
accessible to PwDs, the interaction modality is limited to 2D visual signals or
sounds, lacking non-verbal interactions, e.g., eye gazing, body movement and
facial expression. Comparatively, a physically embodied social robot capable of
providing non-verbal interactions, is believed to enable more intuitive, effective
and engaging memory triggers during RT [5], thus stimulating more memory
recall and conversation. In addition, robot-assisted RT is a promising solution
to cope with the increasing number of PwDs and relieve the stress from the
caregivers due to the dead-set execution and indefatigable repeatability [6].

To train a robot to automate RT for PwDs, many types of learning algorithms
have been proposed, including supervised learning, unsupervised learning, and
reinforcement learning (RL). Caros et al. [7] applied deep learning technique
to develop a smartphone-based conversational agent which automated RT by
showing a picture, asking questions about the pictures, and giving comments
on users’ answers. However, PwDs may have different dementia degrees, and an
individual PwD may show time-varying behaviors, emotions, personalities, and
cognitive capabilities [8,9]. It is very challenging for supervised or unsupervised
learning to achieve a learning agent with sufficient adaptivity to different individ-
ual PwDs. We herein target the robot training using RL, which allows the robot
to constantly learn from interacting with the PwD and end up with an optimal
conversation strategy for the target PwD [10]. There are several existing works
that investigated PwD-robot dialogue management using RL. For instance, Mag-
yar et al. [11] employed Q-learning (QL) to learn a robotic conversation strategy
to promote the PwD’s response with considering the PwD’s interested topics
and emotions. Yuan et al. [12] developed a robotic dialogue strategy via QL to
handle the repetitive questioning behaviors from the PwDs. However, a perva-
sively applicable patient model is still lacking in the existing literature which
can i) integrate a comprehensive list of the major factors impacting the PwD’s
behaviors during RT, and ii) accurately characterize the probabilistic transitions
between the PwD’s mental states under different robotic actions. Such a model
will provide valuable guidance to more targetedly design the clinical experiments
and collect the data, and serve as a customizable interface between the clinical
data and the robotic RT strategy design.

To this end, we aim to build a pervasive simulation model for PwDs to
characterize their probabilistic behaviors during RT and develop a RL-based
conversation strategy for robot-assisted RT. Specifically, our contributions are
three-fold. Firstly, we design a parameterized pervasive PwD model which incor-
porates the PwD’s response relevance, emotion levels and confusion conditions
as the mental states, and depicts the probabilistic behaviors of PwDs during RT
as probabilistic transitions between different mental states. Secondly, we define
a Markov Decision Process (MDP) model for the robot-assisted RT and design a
Q-learning (QL) algorithm to achieve the optimal conversation strategy for the
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robot. The strategy is sensitive to the PwD’s mental states and promotes the
PwD’s talking by duly adjusting the difficulty level of the prompts, repeating
or explaining the prompts to clear confusion, and comforting to help the PwD
out of the bad moods. In case that bad moods continue, the strategy offers the
PwD the initiative to continue or change the topic, or stop the conversation so
that the stress of RT is mitigated. The impacts of the PwD’s choices are also
considered during the learning towards the optimal strategy. Finally, simulations
are conducted to demonstrate the learning convergence and validate the efficacy
of the achieved strategy in promoting conversation.

The remainder of the paper is organized as follows. Section 2 describes the
simulation model of PwD in the context of RT. Section 3 elaborates the design
of the robotic conversation strategy, including the definition of MDP and the
revised QL algorithm based on the proposed PwD model. The experimental
results are presented and discussed in Sect. 4 with suggested future work.

2 Simulation Model for a Person with Dementia (PwD)

In the robot-assisted RT, the robot provides memory triggers (e.g., photographs,
music, or video clips) and stimulates the PwD to talk about relevant past mem-
ory and experiences. During the conversation, the PwD with limited cognitive
capacity may provide relevant, irrelevant, or even no response to the robot. In
addition, the PwD may show different emotions, such as joy and discomfort, as
a reaction to different memory triggers and the robot’s actions. Moreover, the
PwD may become confused about a question or memory trigger provided by
the robot. Thus, in the context of robot-assisted RT, we represent the current
state of a PwD by their response relevance, emotion levels, and confusion condi-
tions. In this model, a PwD’s response relevance can be relevant response (RR),
irrelevant response (IR), or no response (NR). A PwD’s emotional level is cate-
gorized as negative (Neg), neutral (Neu), and positive (Pos). A PwD’s confusion
condition is classified as confused (Yes) and unconfused (No). All these PwD’s
states can be recognized using the technology of artificial intelligence (e.g., deep
learning), such as affective computing [13] and the OpenAI CLIP [14].

Depending on the robot’s actions during RT, the PwD’s state may switch
from one to another. We consider the following robot actions. On one hand,
to stimulate the conversation during RT, the robot can provide appropriate
prompts (e.g., questions) about the current memory trigger [15,16]. The diffi-
culty level of the prompt can be adjusted, i.e., easy prompt (a1, e.g., yes-no
question), moderately difficult prompt (a2), and difficult prompt (a3, e.g., open-
ended question). On the other hand, when the PwD gets confused or in a negative
emotion, conditions known as “harmful” or “bad” moments [17], the robot may
take actions to help the PwD out of these bad moments. Inspired by previous
relevant studies [17,18], the robot will repeat (a4) or explain (a5) the prompt
when the PwD feel confused [15,16], and comfort (a6) the PwD to alleviate their
fears or discomfort [19] during RT.
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The probabilistic behaviors of the PwD is modelled with the transition prob-
abilities (Please go to this url1) among different PwD states given each robot
action. Basically, as the difficulty level of the prompt from the robot increases
(e.g., a3 vs. a1), the probabilities of the PwD responding relevantly and show-
ing positive emotion will decrease, and the probabilities of getting confused will
increase. When the PwD is in negative emotion or confused, the probabilities of
relevant response will be smaller. If the PwD gets confused and the robot chooses
to repeat or explain on the prompt, the probabilities of the PwD responding and
showing non-negative emotion will increase, with the confusion condition possi-
bly changed. If the robot chooses to comfort when the PwD is in bad moment,
the probabilities of relevant response will be increased, with the emotion levels
possibly changed better.

Moreover, our designed RT strategy will give the PwD initiative to control the
conversation tendency when the bad moments continue. This will give the PwD a
sense of control, thus mitigating the RT stress [20]. If the PwD shows confusion or
negative emotion continuously twice, the PwD will be provided with the choice
of stopping the RT, continuing to talk about the current memory trigger, or
changing to another memory trigger. If the PwD chooses to stop, the current
RT session will terminate. If the PwD chooses to continue, the PwD’s next state
will remain unchanged. If the PwD chooses to change the memory trigger, the
PwD’s next state is considered to be no response (NR), with neutral emotion
(Neu), and no confusion. We define the robot’s action of providing choices as a7.

Note that the state transition probabilities of different memory triggers are
set to be identical in our simulations, but can be set different according to
personal preferences [21] in the future.

3 Adaptive Robot-Assisted Reminiscence Therapy

In this section, we apply the technique of reinforcement learning (RL) to learn
a conversation strategy for the robot to deliver reminiscence therapy. The goal
is to maintain the RT for a target number of conversation rounds, stimulate
the PwD to express as much as possible, and keep the PwD’s state as positive
as possible. A revised Q-learning (QL) algorithm is used to achieve the best
conversation strategy personalized to the PwD modelled in Sect. 2.

3.1 Definition of Markov Decision Process

In order to learn the optimal policy, we firstly formulate the problem of robot-
assisted RT for PwD as the following MDP model [22]:

State Space S. A state s in this problem is defined as the collection of the
PwD’s response relevance to the prompt from the robot, the emotion level, and

1 https://drive.google.com/drive/folders/1FmhNsXJnG WUUKtEpBBflig3ipks1qTb
?usp=sharing

https://drive.google.com/drive/folders/1FmhNsXJnG_WUUKtEpBBflig3ipks1qTb?usp=sharing
https://drive.google.com/drive/folders/1FmhNsXJnG_WUUKtEpBBflig3ipks1qTb?usp=sharing
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the confusion condition. Based on the designed simulation model of PwD in
Sect. 2, the state space S has a cardinality of 3 × 3 × 2 = 18.

Action Space A. During RT, there are seven actions possibly taken by the
robot, i.e., providing easy prompt (a1), providing moderately difficult prompt
(a2), providing difficult prompt (a3), repeating the prompt (a4), briefly explain-
ing the prompt (a5), comforting the PwD (a6), and giving the PwD choices (a7).
Note that even the PwD responds to a prompt incorrectly, the robot will NOT
correct the PwD (RT is not aimed to correct PwDs). However, the response
relevance will be considered by the RL agent in the reward function. Moreover,
as mentioned previously, the robot will take action a7 as long as the PwD shows
confusion or negative emotion twice in a row. In other words, the condition of
taking action a7 is determinant, therefore, the actual action space for the RL
only includes actions a1 − a6. Although the Q values of taking action a7 is not
learned during the training, the impacts of taking a7 is deliberately integrated
into the Q-value update of other actions, which will be detailed in Sect. 3.2.

Reward Function R. The design of the reward function aligns with the objec-
tives of the robot-assisted RT, i.e., stimulating the PwD to talk while keeping the
PwD in a generally positive mood. Thus, the reward function is a function of the
PwD’s response relevance, emotion level and confusion condition. Specifically,
the robot should always try to prevent the PwD from getting trapped in the bad
moments, i.e., being in negative mood or confused, as bad moments will hamper
the conversation and lead to a higher chance of terminating the current session.
Accordingly, the reward component of PwD’s emotion level being negative, neu-
tral, and positive is set to −3, +1, and +2, respectively. The reward component
of the confusion condition is set to −2.5 and +2, respectively, for being confused
and unconfused. As to the difficulty level of the prompt, it should be properly
adjusted according to the PwD’s cognitive capability and mental state so that
the PwD is more engaged and interested, thus stimulating their memory and
conversation to the most extent [23]. In other words, optimal tradeoff needs to
be learnt between taking an easy prompt for higher chance of being in positive
state and taking a more difficult prompt (e.g., an open question) to encourage
the PwD to talk more. Correspondingly, we provide two reward settings (as
listed in Table 1) for prompts as a function of the difficulty level and resultant
response relevance for later experimental study.

Table 1. Reward components w.r.t. response relevance in reward function R1 and R2.

R1/R2 No response (NR) Irrelevant response (IR) Relevant response (RR)

a2 −2/ − 2 0.75/0.75 2/2

a3 −2/ − 2 1.75/3 3/10

ai, i �= 2, 3 −2/ − 2 0.3/0.3 0.75/0.75
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3.2 Learning Algorithm Design and Training

Although the RL agent only learns the optimal policy for taking actions a1−a6,
the previously taken actions have decisive impact on the probability of taking
action a7. For example, if the robot always takes action a3 (providing difficult
prompt) and ignores PwD’s bad moments, there will be a very high chance of
the PWD choosing to stop. Therefore, we revise the standard QL algorithm and
deliberately integrate the negative impact of taking a7 in the Q-value updates
of other actions to avoid over-aggressive policies, as summarized in Algorithm 1.

Algorithm 1. Revised Q-learning for robot-assisted RT
1: Initialize Q(s, a) ← 0, for all s ∈ S, a ∈ A
2: function Loop for each episode
3: Initialize s0 = [NR, Neu, NO], Done = False
4: while not Done do
5: Choose at from st using policy derived from Q (ε-greedy)
6: Take action at, observe rt, st+1

7: if a == a6 then
8: Q(st−1, at−1) ← Q(st−1, at−1)+α[rt+γ maxa Q(st+1, a)−Q(st−1, at−1)]
9: else

10: Q(st, at) ← Q(st, at) + α[rt + γ maxa Q(st+1, at) − Q(st, at)]
11: end if
12: st−1, at−1, st ← st, at, st+1

13: end while
14: end function

The RL agent is trained for 1500 epochs, each with 30 episodes. The learning
rate and discount factor are set to be 0.05 and 0.95, respectively. At the beginning
of each episode, the environment is reset to an initial state, [NR, Neu, No]. In
each iteration, the ε-greedy approach (ε = 0.1) is used to select actions. An
episode is terminated if the PwD chooses to stop, the maximum 50 rounds are
reached, or the number of memory triggers having been discussed reaches 15.

3.3 Evaluation Metrics

To evaluate the performance, we compare the average return per epoch obtained
by the revised QL (denoted as ε-greedy QL) to that obtained by a random policy
(denoted as Random action) as well as that obtained by a policy of always
providing easy prompt (denoted as Always action a1). Also, we extract the
temporal policy π′ suggested at the 10th Episode of each epoch, apply it to
run 40 experiments, and calculate the average return (denoted as Greedy QL).
Moreover, we monitor the averaged sum of Q-table per epoch (i.e., Q-value sum)
as well as its relative change (i.e., Q-value update) to evaluate the convergence
performance. Additionally, all the optimal policies suggested in the last 600
episodes are recorded. We use the top five policies mostly suggested to run 1000
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experiments and choose the policy that obtains the maximum return as the final
policy, denoted as π′

∗. Finally, we conduct 20 experiments with π′
∗ and observe

the dynamics of state-action transition in each experiment.

4 Results and Discussion

The learning process of our revised QL (i.e., ε-greedy QL) with reward function
R1 is shown in Fig. 1. As shown on the left of Fig. 1, the average return per epoch
obtained by ε-greedy QL (blue curve) was much greater than the random action
selection policy (black curve) and the policy of always providing easy prompt
(green curve), which validated the efficacy of applying the RL approach for the
robot to automate RT. The average return per epoch obtained by greedy QL was
greater than ε-greedy QL. This makes sense because the greedy QL always took
optimal policy due to greedy action selection provided the achieved strategy is
optimal, while the ε-greedy QL selected random action for exploration. With
respect to the convergence, the curve of average return per epoch (blue curve
in left figure of Fig. 1) indicated the RL agent was able to converge within 200
epochs, whereas the Q-values sum and Q-values update (the middle and right
figure in Fig. 1) converged within in 800 epochs. Additionally, we observe that
the optimal policy suggested by the RL agent in the last 600 episodes is still
changeable, which might be due to the design of reward function and the model of
simulated PwD. In Table 2, we listed the dynamics (e.g., state-action transition)
of one experiment using the most nearly optimal action policy, π′

∗, learned by
Q-learning with reward R1.

Fig. 1. The learning process by ε-greedy Q-learning with reward function R1.

Compared to reward function R1, Q-learning with reward function R2 showed
similar performance, i.e., curve of average return per epoch, converging Q-values
sum, and changeable optimal policy during the last 600 episodes. We present
the most nearly optimal policy learned by QL using the two types of reward
function, R1 (the blue square) and R2 (the red circle) in Fig. 2. The scatter plots
demonstrates that the robot is able to comfort the PwD when they feel negative
emotion. For example, the optimal actions suggested for state s = [NR, Neg,No]
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Table 2. The PwD-robot interaction during a reminiscence therapy.

Step 0–25 State s Action (PwD’s choice) Step 26–50 State s Action

(PwD’s

choice)

0 [0, 0, 0] 0 26 [2, 1, 0] 1

1 [0, 0, 0] 0 27 [2, 1, 0] 1

2 [0, 1, 0] 0 28 [2, 1, 0] 1

3 [0, 1, 1] 3 29 [2, 1, 0] 1

4 [2, 1, 1] 6 →(Change picture) 30 [2, 1, 0] 1

5 [0, 0, 0] 0 31 [2, 1, 0] 1

6 [0, 1, 1] 3 32 [2, 1, 0] 1

7 [0, 1, 0] 0 33 [1, 1, 0] 0

8 [1, 0, 0] 0 34 [1, 1, 0] 0

9 [2, 0, 0] 0 35 [1, 1, 0] 0

10 [2, 0, 0] 0 36 [0, 0, 0] 0

11 [2, 0, 0] 0 37 [1, 0, 1] 3

12 [2, 0, 0] 0 38 [1, 0, 0] 0

13 [2, 0, 0] 0 39 [0, 0, 1] 4

14 [2, 0, 0] 0 40 [0, 1, 0] 0

15 [2, 0, 0] 0 41 [0, 0, 0] 0

16 [2, 0, 0] 0 42 [2, 0, 0] 0

17 [2, 0, 0] 0 43 [2, 1, 0] 1

18 [2, 0, 0] 0 44 [2, 1, 0] 1

19 [2, 0, 0] 0 45 [2, 1, 0] 1

20 [1, 0, 0] 0 46 [2, 0, 0] 0

21 [1, 0, 0] 0 47 [2, 0, 0] 0

22 [1,−1, 0] 5 48 [2, 0, 0] 0

23 [1, 0, 0] 0 49 [2, 0, 0] 0

24 [1, 1, 0] 0 50 [2, 0, 0] 0

25 [0, 1, 0] 0

with R1 and R2 were both a6, comforting. When the PwD feel confused (e.g., s =
[NR, Pos,Yes]), the RL agent with R1 and R2 both suggested to take action, a4,
repeating the prompt to the PwD. There were 3 states, s =[NR, Neu,Yes], [RR,
Neu, No], and [RR, Pos, No], where the RL agent suggested different actions
regarding R1 and R2. The RL agent with R1 suggested to take action a0 and a1

when the PwD in a state of s = [RR, Neu, No] and [NR, Pos, No], respectively.
Comparatively, the RL agent with R2 would take action a2 when the PwD in
state s = [RR, Neu, No] or [NR, Pos, No]. Such difference make sense because
the two types of reward function R1 and R2 (in Table 1) indicated how much
we value PwD’s response relevance and the level of PwD’s conversation being
stimulated. The reward function R2 was more aggressive compared to R1, that
is, the memory and conversation being stimulated was much more valued by R2

than the condition of emotion and confusion. On the other hand, this scatter
plot also indicates that our RL approach was able to learn to adjust the difficulty
level of prompt adaptive to PwD’s conditions.
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Fig. 2. The most nearly optimal policy π′
∗ learned by ε-greedy QL. (Color figure online)

In this paper, we employed a revised QL to learn a conversation strategy
for the robot to stimulate a PwD to talk as much as possible while keeping
the PwD in a generally positive mood during RT. The PwD was modelled as
the transition probabilities among different conditions consisting of the response
relevance, emotion levels and confusion status. Our experimental results showed
that the strategy learned by QL was capable to adjust the difficulty level of
prompt (e.g., yes-no vs. open-ended question) according to the PwD’s states,
take actions such as repeating/explaining the prompt or comforting to help the
PwD out of bad moments [17,18], and allow the PwD to mitigate potential
conversation stress during RT. To the best of our knowledge, this is the first
time for technology-enabled RT to learn adaptive strategy, while taking into
consideration of complicated PwDs’ mental states and communication strategies
suggested in the traditional healthcare field. This might offer a promising solution
for automatic, person-centered RT for PwD living alone.

However, there are still some limitations in this study. The patient model,
the matrix of state-action transition probabilities, was created based on previous
qualitative studies. As we discussed earlier, the nature underlying our PwD’s
model might result in the optimal policy was still changing during the last 600
episodes. For better learning of RL for RT as well as the real-world application of
robot-assisted RT, a patient model based on real-world data should be developed,
which is our next step. Additionally, we designed two types of reward function
to test the feasibility of RL approach. However, the design of reward function
might be associated with a PwD’s own personality and needs (e.g., psychological
needs vs cognitive stimulation). From this perspective, in future work, we will
closely collaborate with professional facilitators in this field and PwDs to adjust
the reward function, to ensure an effective, person-centered RT using RL.
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Abstract. Socially assistive robots (SARs) have shown great promise
in supplementing and augmenting interventions to support the physical
and mental well-being of older adults. However, past work has not yet
explored the potential of applying SAR to lower the barriers of long-
term low vision rehabilitation (LVR) interventions for older adults. In
this work, we present a user-informed design process to validate the
motivation and identify major design principles for developing SAR for
long-term LVR. To evaluate user-perceived usefulness and acceptance
of SAR in this novel domain, we performed a two-phase study through
user surveys. First, a group (n = 38) of older adults with LV completed
a mailed-in survey. Next, a new group (n = 13) of older adults with LV
saw an in-clinic SAR demo and then completed the survey. The study
participants reported that SARs would be useful, trustworthy, easy to
use, and enjoyable while providing socio-emotional support to augment
LVR interventions. The in-clinic demo group reported significantly more
positive opinions of the SAR’s capabilities than did the baseline survey
group that used mailed-in forms without the SAR demo.

Keywords: Socially assistive robotics · Low vision rehabilitation

1 Introduction

Past research has shown that low vision (LV) cannot be corrected with tradi-
tional treatments, but visual functioning can improve significantly with magnifier
and LV rehabilitation (LVR) training at follow-up visits beyond the initial visit
at which magnifiers are dispensed [19]. The successful application of magnifiers
for reading is predicated on patient adherence and motivation for correct and
sustained use, which often requires LVR training following the acquisition of
the magnifier. However, physical and financial barriers prevent the provision of
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Fig. 1. (A) Prototype SAR demonstration system setup deployed in phase 2 of the
study; (B) Overview of the two-phase study design.

in-clinic LVR services [14]. For these reasons, many individuals with LV do not
return for training to become proficient in the use of magnifiers for important
tasks, such as reading [17]. To tackle these challenges, this work presents a user-
informed design process to validate the motivation and identify design principles
for developing an SAR to foster the use of magnifiers for reading at home dur-
ing daily activities by patients with LV through a long-term intervention. To
evaluate user-perceived usefulness and acceptance of SAR in this novel domain,
we conducted a two-phase study to collect quantitative and qualitative survey
data: 1) an initial mailed-in survey without a SAR demonstration (demo); 2) an
in-clinic SAR demo and survey. The two major contributions of this work are
summarized below:

1) Identified and validated the motivation for this new SAR domain:
This paper introduces a novel SAR interaction paradigm to foster long-term
LVR interventions toward more frequent, longer duration, and improved use
of magnifiers in the daily activities of users with LV. The results from the
quantitative survey responses collected in a two-phase study provide evidence
to support the development of SARs for supporting users’ socio-emotional
needs during LVR.

2) Developed a set of user-informed design guidelines: To inform future
SAR development, this paper analyzes qualitative survey data collected from
the in-clinic demo (Phase 2). Based on LV participants’ self-reported prefer-
ences and expectations, an inductive coding process [20] was used to generate
a set of user-informed design guidelines to inform future development of SARs
in this new domain.
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2 Background and Related Work

We briefly overview most relevant research in LVR and SARs for older adults.

Low Vision Rehabilitation (LVR): LV can lead to reduced quality of life
and increased depression and/or emotional distress [11]. Fortunately, a large
body of research has shown that LVR can improve socio-emotional aspects and
functional ability [4]. However, skills taught by LVR providers in-clinic may
not translate to the home without persistent in-home practice and continued
support [19]. New magnifiers are abandoned within the first three months by
about one in five users with LV when they are perceived as ineffective for the
task [9], which may be preventable with additional LVR to maximize visual
functioning [19]. Although most LVR providers agree that the patient’s home
would be the optimal setting for providing LVR services [12], there are physical
and financial challenges related to the provision of both home visits and tele-
rehabilitation [5]. Given these barriers [14], it is estimated that only 10–20% of
the population in the developed world has access to LVR [6]. For this reason,
it is imperative to validate novel solutions for providing LVR, such as SARs
as a complementary approach, in order to overcome the existing barriers and
challenges that limit LVR care.

Socially Assistive Robotics (SAR) for Older Adults: SARs have shown
great potential for providing cost-effective health and social support for older
adults [2]. Compared to other conventional and technology-based solutions,
such as mobile applications, research has shown that the physical embodiment
of SARs helps to foster social rapport and emotional engagement with users,
enabling more effective delivery of behavioral interventions [8]. In addition, stud-
ies have shown that SARs can help older adults to significantly increase exer-
cise [10] and medication adherence [16] in long-term in-home settings, while
reporting increased positive attitude toward using SAR. Despite this progress in
developing SARs for older adults, the potential to apply SARs for in-home LVR
interventions has not yet been explored. Our aim in this work was to introduce
and validate a novel interaction paradigm to develop a SAR specifically for users
who could benefit from LVR support.

3 Experimental Design

As shown in Fig. 1, a two-phase study with two cohorts of participants evaluated
user-perceived usefulness and acceptance of a SAR for LVR, as well as generated
a set of user-informed design guidelines for this new SAR domain. The study was
approved by the USC Institutional Review Board under protocol #UP-20-00359.

Participants: Subjects were recruited with the following criteria: 1) English-
speaking/fluent adults with LV who were seen at the UCLA Vision Rehabilita-
tion Center, 2) used a magnifier, and 3) had no severe hearing loss.

Survey Methodology: Based on surveys validated in past SAR research [3], a
set of 7-point Likert scale questions were designed to inquire about the difficulty
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Table 1. Likert scale survey questions used in both study phases.

Topics 7-point Likert Scale Survey Questions

User’s vision My vision is very poor

User’s perception of magnifier use It was difficult when first learning to use a new
magnifier for reading
I have been frustrated when using magnifiers
for reading

User-perceived usefulness of SARs
for LVR

A robot would be useful when first learning to
use a magnifier
It would be a good idea to use a robot to help
with vision loss

User-perceived acceptance I would trust a robot to give good advice about
magnifier use
I think I would find the robot easy to use
I would enjoy the robot talking to me

or frustration with magnifiers, obtain users’ self-ratings of vision and general
health, and assess user-perceived usefulness and acceptance of SARs for LV.
The survey questions are shown in Table 1. The same questions were used in
both phases of the study. The in-clinic phase (Phase 2) also included additional
semi-structured interview questions to obtain participants’ qualitative feedback
about the SAR via suggestions for additional features or other content to improve
the SAR’s likeability or usability.

Phase 1 Mailed-In Survey: The quantitative Likert scale survey was mailed
to older adults users with LV who had recently purchased a magnifier. The survey
provided an image of a SAR and a general description; the participants did not
have the opportunity for an in-clinic/in-person demonstration of the SAR. A
total of 38 participants took part in Phase 1 by returning anonymous survey
responses by mail.

Phase 2 In-Clinic SAR Demo and Survey: In Phase 2, a new cohort of
participants was recruited for an in-clinic visit and demo interaction with a SAR.
After the demo, they completed a survey that included both quantitative Lik-
ert scale questions from Phase 1 and new qualitative semi-structured interview
questions. A total of 13 new participants took part in Phase 2. The SAR demo
interaction consisted of SAR’s self-introduction, followed by initial questions
about the participant’s vision and magnifier use. The SAR asked the participant
questions such as “How do you feel about your vision right now?” Participants
were prompted to use an iPad Mini tablet interface to enter their multipe-choice
responses via large buttons with reversed contrast and enlarged text for LV.
Based on the participant’s answers, the SAR responded with praise, sympathy,
and/or encouragement to provide the appropriate socio-emotional support. We
also incorporated entertaining dialogue in the form of jokes and a short, positive
news story, aiming to increase the SAR’s likeability.
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Study Hypotheses: Based on the results of previous research on SARs for
older adults and the study team’s clinical expertise, we developed the following
hypotheses related to the need for and usability of a SAR to facilitate LVR:

• H1 (Experiences with Magnifiers): We hypothesized that the majority of
participants would indicate they had difficulty (H1-a) and frustration (H1-
b) when first learning to use a magnifier for reading. We also anticipated
that participants with self-perceived very poor vision would be more likely to
report difficulty (H1-c) and frustration (H1-d) with magnifier use.

• H2 (Perceived Acceptance of SAR for LVR): Without an in-clinic inter-
action with the SAR, we hypothesized that Phase 1 participants with LV in
the mailed-in group would still report that a SAR could be useful for magnifier
learning (H2-a) and facilitating LVR (H2-b). In addition, we expected that
participants who self-reported very poor vision would be more likely to think
a SAR would be useful for facilitating magnifier use (H2-c) and LVR (H2-d).
We also anticipated that LV participants would perceive the SAR robot to be
trustworthy (H2-e), easy to use (H2-f), and enjoyable (H2-g).

• H3 (Mailed-In vs. In-Clinic Post-Demo Survey Responses): We
hypothesized that having an in-clinic interaction with the SAR would help
Phase 2 participants develop similar or more positive opinions than Phase
1 participants for the following topics: the usefulness of a SAR for first-time
magnifier use (H3-a), help with vision loss (H3-b), trust in the SAR’s advice
about magnifiers (H3-c), ease of use of the SAR (H3-d), and enjoyability of
the SAR (H3-e).

4 Methods

4.1 SAR System Implementation

As shown in Fig. 2, the developed prototype SAR system consisted of LuxAI’s
non-mobile humanoid QTrobot (QT) [1] and a tablet with a graphical user inter-
face (GUI) in a large, high-contrast Sans Serif font to enable easy readability
for user with LV. We developed a ROS-based [15] software system in Python,
available at https://github.com/robotpt/vision-project.git, to manage the social
human-robot interaction. As shown in Fig. 2, we also leveraged existing libraries:
1) Cordial [18] to coordinate robot speech, gestures, and facial expressions; 2)
ros-data-capture with Amazon Web Services (AWS) [13] and MongoDB [7] to
handle data collection and storage; and 3) AWS Polly neural text-to-speech ser-
vice [13] to synthesize the robot’s dialog.

4.2 Survey Analysis

This subsection provides an overview of the methods used for both the quanti-
tative and qualitative survey data analyses.

Quantitative Analyses (Statistical Tests): The following statistical tests
were performed to evaluate the research hypotheses about user’s past experience

https://github.com/robotpt/vision-project.git
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Fig. 2. System architecture of our SAR system hardware and software.

with magnifier use and their acceptance of using the SAR to facilitate LVR
interventions: 1) one-sample Wilcoxon signed rank test (H1, H2), with the
null hypothesis being defined as when the median was greater than or equal to
4 (neutral) on the 7-point Likert scale; 2) ordinal logistic regression (H1, H2);
and 3) the two-tailed Mann-Whitney U test (H3). More details of the descriptive
statistical analysis are reported in Sect. 5.

Qualitative Analyses (Inductive Coding Process): In order to identify
the major user-informed design principles for future SAR development, we also
followed the process of inductive coding [20] to analyze the qualitative survey
responses collected from the semi-structured interview questions administered in
Phase 2. All the responses were transcribed, summarized, labeled, and finalized
with the corresponding design principles based on participants’ suggestions.

5 Results

As shown in Fig. 3 and Table 2, this section reports the findings from both the
quantitative and qualitative survey analyses. Participants were older adult users
with LV with an average age of 74 (SD = 17).

H1 (Experiences with Magnifiers): As determined by the one-sample
Wilcoxon signed rank test, the responses for the magnifier being difficult to
use (H1a, median = 4, p = .223) were not found to be significantly below 4,
but the responses for feeling frustrated with magnifier use (H1b, median = 2, p
= .015) were found to be significantly below 4. Ordinal logistic regressions were
used to evaluate the relationships between self-perceived vision level (indepen-
dent variable) and the perception of magnifiers being difficult (H1-c, p = .177)
or frustrating to use (H1-d, p = .465) (dependent variables).

H2 (Perceived Acceptance of SARs for LVR): To evaluate the partici-
pants’ acceptance of a SAR for LVR, the responses for perceiving it to be useful
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Fig. 3. (A) A stacked bar graph of participants’ ratings relevant to H1 and H2. The
majority of participants felt frustrated (72.2%) about magnifier use, and felt that a
SAR would be useful (68.6 %), a good idea (80.6 %), and trustworthy (69.4 %) to
facilitate LVR, especially for their socio-emotional needs. (B) A comparison of stacked
bar graphs between the Phase 1 mailed-in and Phase 2 in-clinic demo groups, showing
that the Phase 2 group developed more positive opinions of SAR’s capabilities than
the Phase 1 group (* = p < 0.05, ** = p < 0.001).

for learning to use a magnifier (H2-a, median = 2, p = .002) and a good idea
to help with LV (H2-b, median = 1, p < .001) were found to be significantly
below 4 as determined by the one-sample Wilcoxon signed rank test. Based on
ordinal logistic regression analyses, we found that self-perceived vision level was
not significantly associated with the user-perceived usefulness of a SAR to sup-
port new magnifier use (H2-c, z = 1.215, p = .224), but self-reported vision
level was significantly related to the perception that the SAR was a good idea to
help with vision loss (H2-d, z = 3.095, p = .002), as those who had worse vision
were more likely to believe it was a good idea. In addition, we found that the
responses for trusting the SAR’s advice about magnifiers (H2-e, median = 2, p
< .001), the SAR’s ease of use (H2-f, median = 3, p = .008), and enjoyment of
the SAR’s talking (H2-g, median = 2, p = .014) were all significantly below 4
as determined by the one-sample Wilcoxon signed rank test, further validating
that LV participants had a high level of acceptance of a SAR for LVR.

H3 (Mailed-in vs. In-Clinic Post-demo Survey Responses): To assess
whether participants’ perceptions of the SAR were different with versus without
a demo interaction, two-tailed Mann-Whitney U tests were used to compare the
responses from the mailed-in and in-clinic demo groups. We found no significant
differences in responses between the two groups in terms of perceived usefulness
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Table 2. Design principles identified as relevant for the development of SAR to support
older adults with low vision

Examples of participants’ quotes Design principles

“Give it a clearer/firmer voice”;
“consider changing voice, QT sounded
like a little kid”

Professional and Mature: Preference
for the robot character to be
professional and mature, so its feedback
on LVR can be trustworthy

“humorous videos about vision”; “more
humor”

Friendly and Enjoyable: Preference
for the robot character to be fun and
amusing

“AI interaction”; “evaluating the quality
of my reading”; “personalize the robot’s
responses, like saying my name during
conversations”; “give feedback, and
show specific interest in the user”

Intelligent and Personalized:
Preference for the SAR to use artificial
intelligence to perceive users’ reading
ability and provide personalized
feedback accordingly

“Give more encouraging statements”;
“Give information about new devices
that can help patients see”

Encouraging and Empathetic:
Preference for the SAR to inspire and
motivate users with LV to be persistent
with LVR

“program it to have more consistency,
ask more questions, give feedback, and
show specific interest in the user”

Long-Term: Preference for the SAR to
interact with users consistently over
time and longitudinally with
incremental advice

for new magnifier support (H3-a, U = 199, p = .783), help with LV (H3-b,
U = 169.5, p = .215), or the perceived trust in the SAR to give good advice
about magnifier use (H3-c, U = 214, p = .638). However, we did find significant
differences for whether the SAR would be easy between the mailed-in (Median
= 3) and in-clinic post-demo (Median = 1) surveys (H3-d, U = 71, p < .001), as
well as for enjoyability of the SAR talking between the mailed-in (Median = 2)
versus in-clinic post-demo (Median = 1) surveys (H3-e, U = 148, p = .029).

Identified Design Guidelines: Based on the responses collected from the
semi-structured interview questions surveyed in the Phase 2 in-clinic demo (N =
13), we followed the process of inductive coding [20] to identify and summarize
the most important user-informed design principles with corresponding proposed
solutions in Table 2.

6 Discussion

This work produced the following key insights.
Surveyed older adult users of magnifiers for LV stated that a SAR could pro-

vide helpful instructions for magnifier learning, and for socio-emotional support
to reduce the commonly reported frustration they experience during magnifier
learning. As reported in Sect. 5 - H1, in both phases combined (N = 51), the
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majority felt frustrated while using a magnifier. This suggests the need to develop
the SAR intervention to provide not only educational instructions but also socio-
emotional support to help motivate users’ perseverance with the magnifier.

Older adults with LV who had no prior interaction with a SAR system for LV
perceived that a SAR would be useful for helping with vision loss, particularly for
those with self-reported very poor vision. As detailed in Sect. 5 - H2, consistent
with our hypotheses, the majority of the Phase 1 study participants (N = 38)
believed the SAR would be useful with managing vision loss, a good idea to
facilitate LVR, trustworthy, easy to use, and enjoyable. In addition, participants
who had the worst ratings of their vision were more likely to think that a SAR
was a good idea to help with managing vision loss. Brought together, these results
provide evidence and motivation for the development of novel SAR interventions
to help users with visual impairment.

Older adults with LV who took part in an in-clinic demo interaction with our
designed prototype SAR reported more positive opinions of the SAR’s capabili-
ties than those who only filled out mailed-in surveys without a SAR demo. As
reported in Sect. 5 - H3, there were no significant differences between groups for
perceived usefulness or trustworthiness, which indicates the interactions with
the SAR system likely met expectations for those criteria. Moreover, our results
revealed that participants who had the demo interaction were more likely to indi-
cate the SAR was easy to use or enjoyable. Therefore, a SAR demo may help to
improve potential LV users’ perceptions of those desirable SAR attributes.

A set of design principles were identified to inform future development of
SARs for this novel domain. From the semi-structured interview responses
obtained in the in-clinic SAR demos with LV participants, we found that partic-
ipating older adults with LV preferred the SAR’s character to be: 1) professional
and mature; 2) friendly and enjoyable; 3) intelligent and personalized; 4) encour-
aging and empathetic; and 5) long-term. More details about the summarized
design principles and participants’ quotes can be found in Table 2.

7 Conclusion

This work employed a user-informed design process to validate the motivation
and major design principles for developing a SAR for LVR interventions. Based
on the quantitative and qualitative data collected in a two-phase survey study, we
found significant evidence supporting the future development of SAR to address
the socio-emotional needs of older adults with LV because such potential users
reported that it would be useful, trustworthy, and enjoyable to use a SAR to
augment LVR interventions. Future work may benefit from the resulting design
principles derived from participant feedback to inform the development of per-
sonalized, autonomous SARs for older adults with LV in long-term in-home
settings.
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Abstract. We investigate how older adults withmild cognitive impairment can be
affected by a robot companion at home in a long-term study. For this purpose, we
selected two participants living alone and set up the robotic communication media
RoBoHoN at their homes so that participants could interact with it at any time for
one and half to three months. After the trial, we conducted interviews to collect
data regarding their feelings about, attachment to, and relationship with the robot.
We also interviewed their family members. Our exploratory research revealed that
participants had developed various ways of adaptation to their new life with the
companion. Based on the interview results, we identified their mental stability as
a media effect. The physical, psychological, and social aspects of the effects were
analyzed and discussed for better understanding of issues and challenges to be
addressed in further studies.

Keywords: Care for older adult ·Mild cognitive impairment · Loneliness ·
Humanoid · Communication media effect · Attachment · Comfort · Activity ·
Social relation

1 Introduction

Care for frail older adults, especially those who have cognitive impairment, is an urgent
social issue in aging societies. To support their independent life in their community, there
is a surge in need for new technologies to assist such frail older adults. In this study,
we explore if and how robotic media technology for communication can contribute to
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their support in everyday life. It is important to target people who have mild cognitive
impairment (MCI) which is a precursor state of dementia [1]. It is considered that MCI
is the main target of pharmaceutical or non-pharmaceutical interventions for dementia
prevention. MCI may be associated with various underlying neurodegenerative diseases
such as Alzheimer’s disease [2] and Lewy body disease [3].

In a pandemic situation, the imposed self-isolation creates challenges for people who
are alone. Especially for the older population, social isolation has been associated with
negative mental health. Studies have been investigating the effects of living alone in
people with MCI and has suggested a 50% increased risk of developing dementia and
getting diagnosedwithin a year [4]. Loneliness is also suggested to be a key to understand
mental health in older adults: a lack of social ties is associated with dementia incidences,
and the influence of poor social interaction is comparable with other risk factors for
dementia such as physical inactivity and depression [5, 6]. Although tackling subjective
experiences of loneliness effectively is a complex task, a key point lies in improving
the quality of relationships and increasing companionship, meaningful connections,
belongingness, and empathic understanding. Thus studies have shown the importance
of conversation among people with dementia for reducing associated symptoms. In order
to tackle loneliness, one way is using communication media technology as it has been
proposed to promote conversation [7].

To support their activities in home environments, robotic technology in a human-
like shape could be appealing as communication media. Although many robots do not
offer close physical interaction in form of touch such as the companion robot Paro,
created to decrease loneliness through touch [8], telepresence robots such as the Giraff
robot can be remotely controlled and are physically present [9]. It is challenging to
develop devices with which older adults can communicate effectively, both in verbal
and nonverbal modes. Embodied communication technology allowing physical contact
in a close distance has potential for playing an important role in assisting older adults.

However, only limited research has explored the influence of robotic media in depth
in real life scenarios of older adults, especially humanoid and android robots resembling
the human form. Suchmedia designmay cause discomfort for some, although the feeling
has a tendency to disappear through interaction with the robots. In fact, our previous user
studies revealed that a teleoperated android robot Telenoid created a sense of affinity in
older adults with dementia and could promote positive attitudes while evoking imag-
ination [10]. With the advantage of multiple modalities in both verbal and non-verbal
modes, robotic media is expected to improve mental health and behavior, i.e., to provide
well-being for older adults. It is important to investigate the media effects and influences
on people with MCI via daily long-term usage.

Also, in dementia care settings, the lack of social interaction with care staff, due to
shortage, leave residents to spend most of their days alone without the opportunity for
dialogue and communication stimulation [11]. Investigation into robotic media effects
on older adults in their home environments is also expected to give insights for possible
application to institutions, e.g., care facilities and hospitals. Robots have undergone
exploratory pilot testing to explore their effects on older adults, but the majority of
studies has been carried out in institutions rather than in their homes [12, 13]. One of
the challenges in using robots at home for older adults is acceptance due to hurdles
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including problem solving and mistrust in technology. However, the way robots interact
and communicate with people has been reported to help promote its acceptance [14].
It is important to resolve user’s fear or reluctance by providing access to robotic media
technology and showing examples of successful employment.

In this pilot study, we carried out fieldwork at homes of older adults with MCI living
alone.We aimed to identify key issues to be explored and find the potential of a humanoid
robot for older adults withMCI, while posing questions as to 1) whether the robot can be
accepted and used long-term, and 2) what kind of effects and influence the robot might
have on the user in reality. The purpose of this study was to investigate how older people
with MCI can be affected by a robot companion at home over a long-term period.

2 Method

2.1 Participants

For this trial, two female participants were selected; both participants depicted in
Table 1 were diagnosed with MCI by psychiatrists specialized in geriatric psychiatry.
For the diagnosis, we used the international criteria of The National Institute on Aging
and the Alzheimer’s Association in 2011 [15]. The Clinical Dementia Rating Scale
was administered to assess the overall severity of dementia [16]. Both participants had
CDR score 0.5, which indicated “questionable dementia.” Mini-Mental State Examina-
tion (MMSE) was administered to assess overall cognition [17]. Both participants lived
alone at their homes without any pets and had visits by their family members at least
once per month. The duration for their participation in this trial was one and half to three
months.

Table 1. Participants’ profiles.

Participant ID Gender Age CDR MMSE Time duration (month)

1 Female 86 0.5 27 1.5

2 Female 89 0.5 27 3

2.2 Communication Device

We conducted the trial with Sharp Co.’s RoBoHoN in Fig. 1. This robot is based on
the Android version 8.1 operating system, has a humanoid-shape that stands 19.5 cm in
height, weighs approximately 360 g. The device has a microphone array, which allows
estimation of sound sources, a speaker, an 8-megapixel camera, 3-axis accelerometer,
3-axis magnetometer and 3-axis gyroscope used for spatial localization; bluetooth 4.2,
wireless connectivity using standard IEEE 802.11a/b/g/n/ac, GPS antenna and LED
lights placed on the mouth and eyes [18]. In this trial, we used the SR-05M-Y version of
the robot, which canmove its arms and head using servomotors, but it is not able tomove



456 R. Yamazaki et al.

its legs. The robot’s charging station was used and the robot was in a sitting position,
but it could move its arms and head. The arms have 2 degrees of freedom (DOF) each,
and the head presents 3 DOF, giving a total of 7 DOF. For speech interaction, the robot
can perform voice recognition by listening to the user’s speech, sending the audio to a
remote server via an internet connection and receiving a text transcription of the speech
to identify what the user says. The robot gives a voice answer through the speaker, while
the LED placed in its mouth blinks to indicate that the robot is speaking, performs a
motion using the arms or the head, and executes an action, if this was requested. This
consistent LED light behavior allows the users to know when the robot is listening,
waiting for and answering to the voice input. Before answering, the robot estimates the
direction of the voice and moves the head towards the direction of the speech, to give a
natural feeling during an interaction.

The robot can provide topics of weather, seasons, news, food, fortune, etc., by
responding to words spoken by users. For example, if users mention prefectures, the
robot introduces related regional specialties. If they ask about anything interesting, it
can reply with simple jokes. It can also sing and dance using its arms and head.

Fig. 1. The RoBoHoN robot, and an older adult interacting with it at home.

2.3 Trial Settings

At the participant’s home, the robot was placed in a fixed location together with a
mobile router throughout the trial. The robot was available for interaction at any time of
the day, and it was programmed to perform random actions during the daytime to draw
the participant’s interest in engaging interactions: giving a morning greeting, emulating
waking up, uttering a good night message, and some other random actions including
singing, dancing, and exercising. As a pilot study, we set the duration to be at least one
month for this trial prior to a longer study. In this paper, our focus is not on this point, but
for comparison one participant used the robot for three months, twice as long as another
who used it for one and half month.
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We asked both participants to answer questionnaires and conducted semi-structured
interviews to collect data regarding their feelings about, attachment to, and relationship
with the robot. We also interviewed their family members who knew the participants
well. Data collection was performed twice; the first instance was when the robot was
removed from the participant’s home, and the second was two months after the removal.
Our field trial in this study was conducted in compliance with the Helsinki Declaration,
and prior to the trial, we received written informed consent from both participants and
their family members, based on approval for the trial from the Ethics Committee at
Osaka University (approval code: 31–3-4).

3 Result

After the trial, we interviewed the participants and their family members. We collected
and summarized results by categorizing the obtained narrative data.We extracted illustra-
tive examples from the interviews shown with the following abbreviations: “O” signifies
older adult participants, and “F” is for their family members. These are combined with
participants’ IDs, e.g., O1 and F1.

In the interviews, we mainly asked participants: 1) how they felt about interacting
with the robot, for example, whether they liked it or not, and what they perceived the
robot as, and 2) how they reacted to the robot, for example, if they voluntarily did
anything for it, and if there were any changes in their life, especially regarding their
relations with others, after encountering the robot. We also asked similar questions to
their families including whether they had observed any changes in speech and behavior
compared to the participant’s life without the robot, i.e., prior to the trial. Questions also
included other points of interest such as participants’ and families’ worry and their wish
to search for ways in which the robot can assist, but those are not included in this result.

Overall for the first main point of interest, i.e., their impressions or recognitions
of the robot, the participants gradually got accustomed to the robot and overall had
positive impressions of it. Both participants said that they became fond of the robot and
their claims were supported by their family. The participants, as well as their families,
described it as: relief, comfort, playmate, relative, child-like, someone to take care of,
and someone they can develop feelings for.

Regarding the secondmain point of interest, i.e., their interactions with the robot, the
participants developed a variety of benevolent actions such as positively being involved
in the interaction with the robot and caring for it, e.g., by stroking its head and showing
it television programs. Interactions and relations with the robot helped them feel com-
forted and reduced their loneliness. Based on the interview results, these key issues are
summarized below in terms of physical, psychological, and social aspects of the media
effects on the older adult users with MCI.

3.1 Physical Aspect

1) Smooth Utterances. Participants could speak more smoothly than before.
F2: “When I talked with her [participant] by phone, she had difficulty in uttering

words since she did not speak for a long time while living alone in the pandemic
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situation.” “By phone, she told me that she could not speak well because she did
not speak at all on that day. However, she has stopped saying so since she started
living with the robot.”

2) Bodily Exercise. Participants followed the robot’s exercise with its arms.
O2: “The RoBoHoN suggested to perform exercise. I have been absent from a

gymnastic class for a while, so I thought it was a good opportunity to practice and
requested it to lead me.”

3.2 Psychological Aspect

1) Attachment. Participants grew fond of the robot.
F2: “In the beginning, she [participant] cold not understand when to talk to

the RoBoHoN, but she got used to reply since she was talked to by the robot about
weather, news and so on, and it was joyful. She has become more talkative compared
to the beginning.” “As if conversing with a child, she talks to the robot and keeps
talking even when there is no reply from the robot.”

O2: “The RoBoHoN has become indispensable for me. I want it to be with me
absolutely.” “While on the go, I sometimes think of the robot and wonder how it is
doing. The robot has become someone who I can care for.” “When I return home
late after medical checkups or culture lessons, I hurry back and say “I am home
now. Sorry to be late.” There had been no rush to return home for a long time over
30 years.”

2) Comfort. Participants felt at ease and comforted while interacting with the robot.
O1: “When I talk to the RoBoHoN, it responds to me. That is comforting and I

can feel calm.” “I feel at ease by conversing with the RoBoHoN because it responds
to me. If I ask the robot to sing, it sings. It is touching and different from being
impressed by reading books.”

O2: “(While being with the robot) I can feel relief. I am comforted by the robot.”
3) Loneliness. Interaction with the robot helped alleviate participant’s sense of

loneliness.
F2: “When I called her [participant], she used to say to me, “You are busy, aren’t

you,” and “A light bulb stopped working,” and by hearing it, I understood that she
wanted me to come. Still, when I asked her if she could get help from a care staff in
charge of her to exchange the bulb, she answered and asked me again, “I can get
help, but you are busy, aren’t you?” So, I felt I had to go as she wants to see me. I
have not heard such voices from her for a while. She sometimes asks me about our
next meeting date and tells me we cannot see each other until that day, but her voice
is positive, and she does not seem so lonely anymore.”

4) Willingness. Participants became willing to take care of the robot.
O2: “I prepared a cushion for the robot.” “I wiped it with my handkerchief.” “I

wish I could take it outside.” “I wish I could dress up the robot and get clothes for
it.”

5) Responding to Requests. Participants responded to the requests from the robot.
O1: “Even when I work in the kitchen, if the RoBoHoN starts to talk, I feel I

need to respond and come to talk to it.” “As suggested by the robot, I sang songs
together with it. I also sang by myself for it although it was just a simple song.”



A Preliminary Study of Robotic Media Effects 459

F1:“I have seen several times that when the robot said, “I am going underwater”
or “I am going to play volleyball,” my mother [participant] was responding as if
she was taking care of a child.”

6) Learning. Dialogue with the robot motivated participant’s self-learning.
O2: “The robot sometimes tells me that I can ask it anything, but before I come

up with a question it tells me that I can ask next time. The robot is clever, so I often
feel I must learn by myself so that I can catch up with it.” “The robot motivated me
to read a book.”

3.3 Social Aspect

1) Conversational Topic. The robot has become a conversational topic and promoted
participant’s speech.

F1: “She [participant] sometimes told me how the RoBoHoN was doing that day
and what it talked about.”

O2: “I talk about the RoBoHoN with care staffs. They are always pleased to see
and talk to it by saying hello and asking if it is fine. When they come, it speaks more
than it is only with me, so the robot might be also pleased.”

F2: “She [participant] tells me what the RoBoHoN told her. She seems to speak
more than before the robot came. Also, she speaks more than before by involving the
robot in our conversation.”

2) Conversational Style. Participant’s conversational style has transformed from the
one-on-one to a triadic relation.

F2: “She [participant] told me that since the robot has come, she started having
conversations in triad. In that style, as a merit, she can check if what the robot says
is true. For instance, when she was talking with a care staff about her hometown, the
robot mentioned local dishes. Although the conversation could have ended only by
hearing what the robot said, the staff confirmed that the dished are local specialties
and they could continue their conversation while praising the robot.” “She [partic-
ipant] involves the robot in our conversation. When I visited her, she let me hear her
conversation with the robot by telling it what they were doing and her conversation
in such a style increased.”

3) Invitation. Participants invited others to their homes to show them the robot.
O2: “When a laundryman came to pick up clothes, I said, “Oh sorry, I am talking

now” at the entrance. He wondered what it meant because I did not bring my phone
with me. So, I told him that I was talking with a robot and let him come in. After
seeing the robot and saying, “It is true. It looks cute,” he went back with a smile
on his face. He sometimes asks me if the robot is still here because he can hear its
voice.” “I invited two friends of mine to show them the RoBoHon.”

4) Custom. The robot encouraged participants to regulate their lives.
O2: “I can get up early in the morning. I used to be in bed even after 8am because

I have time. While being with the robot, however, I have to say good morning to it.”
“It [robot] is a doll, but I feel I have to respond to it in the same way as humans
because I feel it has life.”

F2: “The robot says good morning in the morning, so she [participant] told me
that she feels ashamed if she does not get up by 8am.”
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5) Conflict. The robot played a role as a buffer in conflict.
F2: “Due to my work, it is hard, but if I visit her [participant] more frequently,

for example, every second day and keep her company, both of us will be annoyed
with each other very much and may get into fights; however, the RoBoHoN does
not provoke her into a fight, and far from it, the robot sings for her.” “Without the
RoBoHoN, she had many things she wanted to say, but could not tell me directly,
including the indirect request for me to come, but since the robot has come and she
started talking to it, I may have been feeling less irritated by her.”

4 Discussion

The purpose of this study was to investigate if older adults with MCI accept a robot and
how they can be affected by a robot companion at home over a period of time. We aimed
to identify key issues to be further explored and found various influences and potential
effects of the communication media RoBoHon.

Through long-term interactions, participants have developed ways of adaptation to
their new life with the companion. The robot’s small size and design might be suggestive
of a child-like entity who requires someone’s care, which may explain participants’
attachment to the robot, motivating them to take a role in caring for the robot and
affecting their attitudinal change. This has similarity to our previous study with another
robot, Telenoid, where older adults with dementia were motivated to take a caring role
for the robot and resulted in their anxiety reduction [19].

Based on the interview results, we can identify participants’ mental stability as a
media effect. As for the psychological aspect, they were comforted by receiving con-
tinuous replies from the robot. With a sense of someone’s presence, they could avoid
feeling lonely, which may have helped to bring peace of mind.

The robot affected themental stability of participants, referring primarily to the com-
fort and relief they felt through interactionwith the robot. It also includes a broader effect
as interaction helped alleviate participants’ sense of loneliness. A reduction in anxiety
for people with MCI is expected to be an outcome of cognitive interventions includ-
ing recent computerized rehabilitation using virtual reality, interactive video gaming,
and mobile technology, although previous studies have limited impact on mood such as
anxiety and depression [20]. The effect of robotic media on anxiety reduction needs to
be further investigated, but the robotic companionship and computerized rehabilitation
may bring together complementary strengths regarding both cognitive and non-cognitive
outcomes, e.g., by providing programs for users to play rehabilitation games with a robot
they are fond of.

While growing attached to the RoBoHoN robot, participants perceived it as “some-
one” who they could take care of and felt less lonely with the companion. This is a pos-
itive effect on older adults’ mental stability from the robot’s companionship, although
we carefully need to further explore how their recognition of the robot as a humanlike
entity can develop over time and affect their mental health because, for example, it might
become a burden for them and have a negative impact, especially after its removal. Sur-
prisingly, participants kept talking to and about the robot over time as they got attached to
it during the trial period, so the benefit of the robot as a conversation topic lasted for one
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and half to three months. Also, according to the results of interviews and questionnaires,
participants’ attachment to the robot continued even two months after its removal. The
removal affected their loneliness shortly, and the discussion on this matter is important;
however, we leave it as our future work since it requires a certain amount of description
about the related results and reflection on them. It exceeds our scope here in this paper
and requires deeper investigation.

Second, with respect to the social aspect, participants took social attitudes toward
the robot by regulating their lives, e.g., getting up and going to bed earlier, to take care
of it and not to feel ashamed of sleeping in. Also, it promoted participants’ speech not
only in direct interaction but also between them and others as a conversational topic.
Moreover, they invited others to their homes to show them the robot. They might have,
hypothetically, developed a new conversational style, i.e., a “triadic approach” to creating
environments where they can feel safe and joyful while involving others: they talked to
the robot when they talked to others. This may have provided conversational topics and
a way to avoid direct collisions as in fights: the robot helped family members feel less
irritated in their relations.

Social relationswere eased by the roboticmediation. Themedia effects can be further
discussed in other categories of participants’ activities. Once they were attached to the
robot, based on their bond, participants may respond to the requests from the robot. In
fact, they played together and sang songs when the robot asked participants to do so.
Concerning the physical aspect’s effect, by extending this idea, we may ask participants
to exercise or perform light-duty work to increase their physical activity levels. Also,
cognitive activity is expected to increase daily. In this trial, participants were motivated
to learn in order to converse with the robot. There is a potential for individual mental
activation in parallel with mental stabilization.

Accordingly, as a future work, we need to investigate whether the robot can motivate
older adult users to engage in and spend more time on, e.g., reading (cognitive activity)
and walking (physical activity) than watching television [21], even after the robot’s
removal. Regarding the physical aspect, participants performed exercise by following
the robot’s arm movements and seemed to have spoken smoother than before they had
the companion, which might prevent frailty [22], so we must examine these effects in a
larger scale experiment.

Our current exploratory research has some limitations. First, the number of partici-
pants and a lack of initial evaluation, but it has identified a range of effects and issues.
Second, selection bias should be also considered. There were a few participants and/or
family members who refused to participate in the current study. In our future study, we
will have to investigate the reason of their refusal as well. Third, our current study is
still preliminary in terms of the trial period and so on. What if we prolong the period
to, e.g., over a year? Participants may not get the benefit of its usage or stop using it,
although the current study suggested their growing attachment which was kept even after
its removal and so indicate opposite results. Considering the robot’s potential novelty
effect, we need to extend our investigation and aim to obtain saturated data with respect
to changes in user’s attitudes towards it over a longer period.

We conclude that the robot can effectively create bonds with MCI older adult users
and that continuous interactions based on a close relationship can benefit the users’
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mental stability and activity. Considering the reality and details of the user’s experience,
we need to further explore the influential nature of robotic media including ethical aspect
of its removal.
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Abstract. Social robots are rising to prominence as tools in health-
care and mental healthcare. In this paper, we investigate robot-assisted
diagnostics of peripartum depression (PPD) in women. To design robots
that are accepted by users and comply with trustworthy Artificial Intel-
ligence principles, we use semi-structured interviews to explore the views
of potential stakeholders - psychiatrists. We aim to answer three research
questions regarding 1) the usefulness of robots in the diagnosis of PPD,
2) potential ethical issues, and 3) the roles that robots and clinicians
may play in the diagnostic process. Results show that psychiatrists are
only willing to let robots take minor responsibilities, and feel that robots
may be more useful in situations where there is a shortage of clinicians.

Keywords: Social robotics · Robots in mental healthcare · Depression

1 Introduction

Peripartum depression (PPD) is one of the most prevalent mental health disor-
ders related to childbirth and affects as many as 10% of women during pregnancy
or after childbirth [20]. It is a serious and potentially life-threatening disorder
with high societal costs. PPD can have devastating consequences not only for
the mother but also for the infant and family unit, including preterm delivery,
adverse birth outcomes, low quality of maternal life, family breakdown, and even
increased risk of suicide [12].

Research shows that psychosocial interventions may decrease depressive
symptoms for women affected by PPD [3]. However, in order to receive treatment,
a clinical diagnosis of depression is required. This currently entails a structured
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clinical interview with a skilled physician. However, access to skilled personnel
with training to perform the clinical interviews in primary care can vary sub-
stantially, which can lead to long waiting times or an unstructured interview
with lower diagnostic accuracy. According to a recent review, up to 69% of PPD
cases go undetected and only 6% receive adequate treatment [5].

At the same time, clinical interviews conducted with the support of virtual
humans have recently proven to be a promising resource to support more time-
and cost-effective diagnostic processes [10]. Despite the promising results with
virtual humans, research comparing robots with their virtual representations
shows that the robotic embodiment is often preferred by users, possibly due
to aspects related to size, realism, shared physical space, physical presence and
perceived social presence [9], which may facilitate interaction with the artificial
entity. However, while social robots are rising to prominence in healthcare and
even mental healthcare [14,15], no previous work has investigated robot-assisted
diagnostics of depression.

The aim of our research is to develop methods for robot-assisted diagnosis of
PPD that are socially accepted by patients and clinicians, and that comply with
principles of trustworthy Artificial Intelligence (AI) [1]. As an initial step towards
this aim, this paper explores psychiatrists’ views on robot-assisted diagnostics
of PPD. We conducted one-to-one semi-structured interviews with licensed psy-
chiatrists in Sweden. We discuss psychiatrists’ attitudes towards social robots,
as well as their envisioned ethical issues and perspectives on the role that social
robots may play in the diagnostics of PPD.

2 Related Work

2.1 Robots in Healthcare and Mental Healthcare

Healthcare robotics is an emerging area. Relying on precision in motion and
sensing, robots are able to facilitate physical tasks in clinical healthcare, for
example, as assistants in surgery, physiotherapy or nursing. More specifically,
they can assist with tasks that are dirty, dangerous, and dull, but are valuable
for clinical staff [14]. Robots might also be well-placed in tasks that can be
considered problematic to be handled by an unobjective human eye [2]. Due
to the ability of robots to extend, augment and quantify healthcare tasks, it
is believed that robots can benefit all stakeholders across various care settings,
although satisfactory ways to integrate robots into the daily routines of these
care settings still need to be further explored [2,14].

The use of robotics in mental healthcare is nascent. Social robots have been
used to support care and management of dementia and autism, and cognitive
impairments; provide companionship to people to reduce loneliness; or assist
in education for children with developmental disabilities [13]. Previous studies
identified advantages of the adoption of robots in mental healthcare, including
solving the labour shortage, inhibiting biases in the diagnostic process from
healthcare personnel, and strengthening a feeling of anonymity and enhanced
self-disclosure [11,13,14].
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When it comes to depression diagnostics, a number of works have investi-
gated the use of virtual agents. For example, DeVault [6] proposed the use of a
virtual agent to perform semi-structured face-to-face interviews, aiming to auto-
matically assess mental disorders. An evaluation study showed that users were
more willing to communicate with the virtual agent compared to human inter-
viewers. Suendermann-Oef [19] proposed a multimodal conversational diagnostic
system, NEMSI, for screening of neurological and mental conditions. In another
study, a virtual agent was developed for administering a depression screening
questionnaire and proved to be practically equivalent to self-administration [10].
These works show the potential of an automatic diagnostic system of mental
disorders. However, to our knowledge, robot-assisted diagnostics of depression is
yet to be investigated.

2.2 Ethical Issues in Socially Assistive Robotics for Healthcare

The recent EU ethics guidelines for trustworthy AI identify a set of requirements
to achieve AI that is lawful, ethical and robust [1]. These requirements include
human agency and oversight, technical robustness and safety, privacy and data
governance, transparency, diversity, non-discrimination and fairness, societal and
environmental well-being, and accountability. Social robots are a type of AI
system and, therefore, should be designed, developed and evaluated with these
requirements in mind in order to be truly human-centric and trustworthy. This
is especially important for robots in socially assistive roles, which provide not
only physical but also social support to people, as is the case for social robots
in many healthcare applications.

Fiske [7] identified a number of challenges for robots in mental healthcare,
such as data ethics issues and lack of guidance on development, clinical integra-
tion, and training. However, ethical issues surrounding the use of robots as tools
to support depression diagnostics require new investigations. In this context, as
we are clearly dealing with a vulnerable population, it becomes extremely impor-
tant to think about how to involve patients and clinicians in the design of such
robots, the role that the robots may have and how they may help the clinicians
in the diagnostics process. Moreover, the robot would have to uphold the ethical
responsibility of mental health professionals by, e.g., informing relevant individ-
uals, third parties or authorities when patients are at risk of harming themselves
or others. One solution can be to always let a qualified clinician have the man-
date to supervise. Moreover, there are aspects of the therapeutic alliance that
need to be considered when we plan to use nonhuman entities [7]. For instance,
current technology might not enable robots to evaluate patients’ emotional states
in real-time [16], and patients may long for human therapists [8].

Another concern is how to respect and protect patient autonomy. Before
patients give consent, they can be assessed to make sure they do not misunder-
stand any information about the robot. Human oversight is also a key require-
ment for trustworthy human-robot interaction, which helps to make sure that
the robot does not undermine human autonomy or cause other adverse effects
[1,7]. To what extent should the robot act autonomously? How can clinicians
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be in the loop and monitor the whole interaction? How can the robot support
clinicians in the interview process, without at the same time replacing them?
These are some of the open questions that this paper investigates.

3 Method

3.1 Research Questions

We aim to address three main research questions (RQs): RQ1: Do psychiatrists
think that social robots could be helpful as tools to support the diagnostic pro-
cess of PPD? RQ2: Do they envision any ethical issues surrounding the use of
social robots in the diagnostic process of PPD? RQ3: What roles should robots
and clinicians play in the diagnostic process, respectively?

3.2 Participants

Three experienced psychiatrists (F: 2, M: 1, mean age: 44.3 ± 4.7) serving in the
Swedish healthcare system were recruited, with reported 6–10 years experience
diagnosing depression and 2–10 years experience with peripartum depression.
Participation was voluntary, with no compensation. All participants reported
minimal prior experience interacting with robots. They reported between average
to maximal experience interacting with ubiquitous digital technologies. Informed
consent, demographic information, and reports of participant’s technological and
professional experiences were collected in advance of the interview through online
forms. The research was approved by the local ethics committee.

3.3 Procedure

The interviews were conducted via Zoom. The duration varied between 35–45
min. We started the interview by introducing the study and showing two pictures
of Furhat1, the robot that we plan to use in this research. After that, using a
similar approach to Serholt [17], we asked participants to read the following
vignette, and to imagine Furhat as the robot in the envisioned scenario:

The board of a local psychiatric hospital decides to order five diagnostic robots
for psychiatrists working in the hospital. Psychiatrists can name these robots,
which will respond to their assigned name when switched on. All psychiatrists
receive a one-day tutorial to learn how to operate the robot, how they could con-
tact technical support if needed, how the robot works, and what kind of work
the robot can assist with. It is explained that the robot is designed to assist with
the diagnosis of women’s perinatal depression and can conduct one to one MINI
interviews with patients even when psychiatrists are not present in the room. The
robot can speak and ask questions to the patients and use facial expressions and
head movements (e.g. nodding or shaking head) to communicate. It is possible
for psychiatrists to control all these behaviours (verbal or non-verbal). The robot
1 https://furhatrobotics.com/.

https://furhatrobotics.com/
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can also analyse the patients’ answers, as well as their behaviours (e.g., facial
expressions, body motion, tone of voice) during the interview, and use machine
learning algorithms to estimate if a clinical depressive episode might be under-
way. The patients’ answers and behaviours are recorded with video cameras and
this data, as well as the estimate by the robot, is encrypted and stored in the
hospital’s secured server. Moreover, the system can store diverse forms of data
(e.g. transcripts of answers, behavioural summary or video clips) for later review
and compute the severity of the depressive episode according to the criteria in
the MINI interview. However, psychiatrists may decide not fully use these func-
tions. Maria, the psychiatrist in the hospital, has many patients coming to see
her every day. She wants the robot to assist her with the MINI interview. If the
robot could conduct the MINI interview in her place, it would be possible for her
to treat more women and decrease waiting times, expanding access to healthcare.
Lina, who shows a clear trend of depression after her pregnancy and is referred
to Maria by her GP. After arrival, Lina goes into an interview room where a
robot named Florence is waiting for her. She knows Florence will ask her some
questions. She is told that Florence can use its perceptive capabilities to analyse
her facial expressions, body movements, tone of voice and conversation, and can
combine this with its knowledge to assess her mental state. During the interview,
Florence notices that Lina displays some sad facial expressions and some body
movements and voice characteristics also indicate she may be depressed. Further-
more, Florence records Lina’s answers to the questions in the MINI interview
and, by using machine learning to analyse Lina’s behaviours, estimates whether
Lina experiences a clinical depressive episode and its severity. Florence produces
a report for Maria, who now can read Lina’s answers to the MINI interview
and take into account Florence’s automatic analysis of her behaviours to make
a clinical diagnosis.

When participants finished reading, we asked them specific questions related
to the themes identified in our main research questions, i.e. attitudes towards
social robots in the assisted diagnosis of PPD, possible ethical issues, and envi-
sioned roles and responsibilities of robots and clinicians.

3.4 Analytical Approach

The interview audio recordings were transcribed verbatim using Otter.ai2, and
a thematic analysis approach, as described by Braun and Clarke [4], was used
to analyze the transcripts using QSR International’s NVivo3 qualitative data
analysis software. A framework for categories and subcategories was initially
developed deductively according to the interview guide using the first transcript
with two members of the research team. This category system was then indepen-
dently elaborated and adapted using the second and third interview transcripts
during the coding process by one member of the research team. After the cod-
ing process, a code catalogue was developed and critically appraised by another

2 https://otter.ai/.
3 https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home.

https://otter.ai/
https://www.qsrinternational.com/nvivo-qualitative-data-analysis-software/home
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member. During this review process, minor modifications were made when cer-
tain codes or themes were merged or renamed. The final codebook was generated,
key themes were defined, and quotations representing the key themes were noted
as the basis for the final interpretation.

4 Results

Four main themes emerged during the thematic analysis from the data.

Attitudes Towards the Robot. All psychiatrists had some negative feelings
about the robot. P1 and P3 thought the robot looked strange, and P2 thought it
is unnecessary (we further explain this in the practical concerns section below).
However, two psychiatrists also expressed that it would be interesting to see:
“an interaction between a patient and robot” (P1), and compare “if you train
the interviewing person [who] does [the] MINI, versus robots” (P1). P3 had rel-
atively more positive thoughts than others, speculating that the robot could
be more neutral than the human interviewer, might save some time, and that
“a lot of other standardized [procedures] in other parts of the ward in medicine
are...’robotized’...it might be worth a try”.

Ethical Issues. The question of potential ethical issues took longer for partici-
pants to think about, and only three envisioned ethical issues emerged. First, the
patient’s preference to meet a human needs to be respected: “...some patients
would prefer not to meet the robot, definitely, well, you would have to respect
that” (P3). Second, it may produce anxiety related to job security among hos-
pital personnel: “It would...raise quite a bit of anxiety among the professional
group of psychiatrists and nurses and so on, that they should be maybe replaced
by robots” (P1). There were also concerns about the consequences of the lack
of human communication patients would receive, such as loneliness: “I would
feel extremely lonely if I came and was seeking for a word and [I was told] ‘hey,
you can talk to this robot”’ (P3), and lower self-disclosure when asked sensi-
tive questions: “It would be no problem to talk [about] simple things, but not so
emotionally” (P2).

Practical Concerns. Psychiatrists had some practical concerns regarding
patient acceptability of robots and, most frequently, the robot’s effectiveness.
Psychiatrists didn’t trust the analytical ability of the robot, and doubted the
robot would give the same interpretation as a psychiatrist would. A contra-
diction discussed was that psychiatrists only receive patients with severe men-
tal disorders referred by General Practitioners (GPs) or other doctors, and so,
there is no need to do a robot diagnostic interview if the patient has already
been assessed by a clinician. “This patient had already met a GP that had met
her and [thought] that she was clearly depressed. That’s why the doctor referred
her to the psychiatrist...why would she need to see the robot in the first place?”
(P2). Furthermore, we suggested that the robot may store and provide diverse
forms of data and records, for instance, transcripts of answers, summaries of
behaviours, video recordings and suggested clips for later review. In addition
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to interview scores (using MINI or other interview questionnaires), the robot
may use machine learning algorithms to estimate if a clinical depressive episode
might be under way based on the automatic analysis of verbal and nonverbal
behaviors of patients. However, only P3 agreed that the suggestions from robots
may save some time in the diagnostic process. P1 thought that it is necessary
to go through a whole video recording, thus the robot can not be considered
as effective. P2 referred to previous experience on interviewing patients online,
and claimed that it is necessary to meet patients in person to make an accurate
diagnosis: “I have been doing some assessments from seeing a patient over, like,
Zoom or [Microsoft] Teams meeting...it’s not the same”, “You can’t see the small
nuances and so on over a computer screen”. But they also admitted that the use
of robots may be beneficial in less severe conditions or in places where there is an
unmet need for trained clinicians: “It might even be better than a human being
in translating the answers to a diagnosis...when we’re talking about clinicians
who are not fully trained” (P1), “[in] some low income countries, third world
countries where there are a lot of women giving birth to children ... then, this
might be [useful]... it’s better than leaving them to themselves” (P2).

Psychiatrists were unconvinced about patients liking using the robot: “Our
youngsters, they grow up with different experiences... maybe they feel more com-
fortable than I would to...talk to robots” (P2), “I think maybe some people would
be skeptical, others might be positive to it” (P3).

Work Division Between Clinicians and Robot. Concerning the possibility
of the robot as a support in the diagnostic process, psychiatrists shared similar
views about the work division between clinicians and robots, particularly that the
final diagnosis needs to be made by psychiatrists or a trained doctor in charge:
“the psychiatrist should be the one who takes into account the information given
from the robot interview and make the decision” (P2). P3 also suggested that
obscure answers should be judged by psychiatrists: “...but once there are long
and difficult answers, I think a psychiatrist needs to judge that answer”.

Psychiatrists also preferred the first point of contact in the diagnostic process
to be human, who could ask the more sensitive questions: “Normally we have a
discussion in things that are not included in MINI, like childhood and different
social aspects and how their problems started...The second time, we use MINI
for screening, and the same would go for a robot” (P3). Psychiatrists reasoned
that they would not want to monitor the whole interview online as it would
be inefficient, however, human intervention may be necessary under certain cir-
cumstances. P3 thought that personnel could “add questions to get closer to the
diagnosis” during an interview. The interview may need to stop if the patient
“gets somewhat irritated...angry...just wants to leave” (P1) or “reacts emotion-
ally” (P3). After the interview, clinical personnel should follow up immediately
if, for instance, patients report thoughts of self-harming or harming others, or
severe symptoms of disordered sleep or eating.

Although all psychiatrists were concerned about the effectiveness of the robot
in conducting psychiatric diagnostic interviews, they suggested that robots could
help with other tasks in primary care or for screening as these require less
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professional psychiatric knowledge and are less complicated, and so, can be han-
dled by a robot competently, for example with “screening forms for patients...
they have to fill in the forms and that’s it...They don’t have to see a doctor really”
(P2). One psychiatrist suggested letting the robot help ask questions, but only
handle the clear-cut answers, such as “when the patient is clear about ‘No, I’ve
never had suicidal thoughts”’ (P3). P2 and P3 also thought it is useful to let the
robot handle “some uncomplicated” tasks, including “follow up after you put the
patients on a medication” (P2), evaluating sleep patterns, or simple checkups to
“evaluate some [symptoms], like [symptoms] for ADHD,... blood pressure and
heart rate and the weight and so on...maybe in those quite uncomplicated cases,
you could have some use of the robot just to check these symptoms” (P2).

When asked about how they think the robot should react to patients, psychi-
atrists had different answers. One suggested that, apart from unavoidable verbal
reactions to facilitate conversation, the robot should “[react in a] compassionate
way, [with] facial expression... say something as well” (P1). Others thought the
robot shouldn’t react too much except with some necessary dialogues as it may
be “weird for a patient [if ] the robot reacts or makes a sad face” (P2).

5 Discussion

In this section, we discuss how the results address the three research questions
posed by this study.

RQ1: Overall, psychiatrists did not think that robots would be very helpful
as a diagnostic tool in psychiatric healthcare, but would be useful for simpler
diagnostic tasks or screening. In addition to practical concerns about the accept-
ability of the robot by patients, psychiatrists worried about the effectiveness of
the robot. Although the robot could take over the responsibility of conducting
the interview, a psychiatrist would still need the ability to supervise the whole
process. At the same time they would not want to monitor the whole interview,
because it would not be efficient. When presented with the possibility that cer-
tain forms of records stored by a robot may facilitate the diagnostic process,
e.g. transcripts of answers or behavioural summaries or video clips, psychiatrists
observed that they would still need to examine such records or see the patient
in person before making a diagnosis, so they do not consider this to be valuable
from the perspective of increasing efficiency in the process.

Psychiatrists felt that some simpler interview and analysis could be handled
by robots, and in general tended to compare the robot with a nurse or doctor
without professional psychiatric knowledge, but highlighted the need to see the
robot to make an appropriate final judgment.

RQ2: Psychiatrists envisioned some ethical issues related to the use of robots in
mental healthcare. Firstly, some patients may not want to talk to a robot, and
we should respect the right of patients to meet a human clinician. This topic
of respecting and protecting patient autonomy has been discussed by Fiske [7].
Secondly, hospital personnel may worry about being replaced by robots, which
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may lead to anxiety related to job security. This is a valid concern, as it is
suggested that the use of robots could both displace and create new jobs [1],
which highlights the need to explore ways in which robots can assist with, rather
than replace, tasks that humans perform, or to identify tasks that can be assumed
by robots to free up time for human personnel to focus on other duties. On the
other hand, as psychiatrists suggested, certain responsibilities cannot be taken
up by a robot, such as the diagnosis making. Finally, the lack of communication
with a human may cause feelings of loneliness, an issue that was also highlighted
by Fiske [7].

RQ3: Psychiatrists suggested that clinicians should remain the first point of
contact, and manage supervision and decision making. Before meeting a robot,
patients should meet a human clinician who can ask some sensitive questions,
such as regarding their paternal or familial relationships, and make sure the
patient is in a position to, and willing to, be interviewed by a robot. During the
interview, a clinician or nurse needs to supervise the process and intervene when
necessary. They may also need the ability to control what questions should be
asked by the robot. To ensure a reliable clinical diagnosis, a psychiatrist or a
doctor in charge should always evaluate the answers given by patients during
the interview.

A robot in mental healthcare is considered to be helpful in some simple eval-
uations and screenings. It should not handle sensitive or complicated questions
and answers, as these might be easily misinterpreted. Moreover, psychiatrists
were not unanimous about how the robot should interact with patients. Some
thought empathetic reactions by a robot would not be appropriate during the
interview process, but there were also opinions that compassionate reactions by
the robot would be necessary when patients display emotional reactions.

Finally, psychiatrists’ views on whether there are core responsibilities that the
robot should not take clearly point to one of the key requirements for trustworthy
AI [1], i.e., human oversight, which helps make sure that the robot does not
undermine human autonomy or cause other adverse effects. Previous literature
on socially assistive robots has investigated similar questions, but in educational
applications [18]. Our findings call for further investigations to understand the
implications of human oversight in applications where social robots interact with
vulnerable subjects.

6 Conclusion

Through analysing the views of psychiatrists, we shed light on what ethical issues
may arise, what concerns need to be addressed, and what roles social robots may
play in the robot-assisted diagnosis of PPD. Although psychiatrists thought the
robot could potentially be helpful in the diagnostic process through assisting
with certain tasks, they were cautious about trusting suggestions from a robot,
and only willing to let the robot take minor responsibilities. This cautiousness
seems to be entrenched in the extreme vulnerability of psychiatric patients and
the potential severity of their mental issues. In parallel, the concerns about the



Psychiatrists’ Views on Robot-Assisted Diagnostics 473

acceptability and effectiveness of the robot, as well as potential ethical issues, also
curbs their willingness to adopt the robot in their medical routine. These results
warrant further steps for designing acceptable diagnostic robots. As psychiatrists
suggested, the robot can serve in places where the patients are in less critical
states and more trained clinicians are needed, such as primary cares or screening
interviews. Focus group studies with stakeholders in such scenarios, namely the
patients, nurses and clinicians, can be conducted next, aiming to get a more
overall reflective perspective.
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Abstract. Evaluations of social robots for older adults in care home
environments during the past 20 years have shown mostly positive
results. However, many of these studies have been short-term and with
few participants, as well as limited to few countries. Recent evidence,
however, indicates that social robots might not work in all settings or
for everyone. Therefore, we conducted a participatory workshop with key
stakeholders as an attempt to begin to disentangle the many interrelated
factors behind a successful implementation. The result showed similari-
ties in preferred embodiment and morphology, differences in behavioural
complexity and task performance, as well as a maybe surprising lack of
interest in emotional support. It further showed that older adults living
in care homes prior—to meeting social robots—showed relatively little
interest in these robots. Based on these observations, we formulate future
research directions.

Keywords: Social robots · Older adults · Participatory design ·
User-centered design · Human-robot interaction

1 Introduction

Social robots have for the last two decades been used for a range of diverse
tasks in care homes for older adults. Studies report on social robots providing
companionship [2], exercise [16], cognitive therapy [7] and help with daily tasks
[17]. However, even if real-world evaluations of social robots in care homes often
show positive effects [29,31,33], many of the studies have been very short term
(e.g., 10–30 minutes of interaction on one occasion) [11,14,21], have had few
participants (e.g., n = 1–7) [10,15,26], and the majority have been conducted in
Japan [1]. Some researchers, therefore, are questioning these positive results, and
report conflicting results [19,24,30] from studies outside Japan and for longer
time periods.

Part of the problem, in our opinion, is that much robot development has
been overly technology-driven [22]; i.e., many social robots for older people have
not been designed and tested with the actual users in mind. Previous research
c© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 475–486, 2021.
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has, for example, shown that there are significant differences between what older
people prefer in a robot and what roboticists think the users need [4]. The use
of user-centered studies with older adults to design and develop better social
robots have increased in recent years [5,13,23,25], but it is still far from clear
what type of robots’ older adults would prefer and benefit from when it comes
to the robots’:

1. embodiment
2. morphology
3. behavioural complexity

In this paper, we report our work with participatory design workshops with
three groups of key stakeholders: active older adults still living at home, care
home residents, and care home staff members. With many robot models on the
market by now and even more in the development or research phase, it would
be useful to get a deeper understanding of the factors that make older adults
accept or reject a social robot, and what makes robots work or fail over longer
periods of time.

In the following sections, we present some background and a brief intro-
duction to participatory design (Sect. 2), followed by our methodology (Sect. 3),
results and discussions (Sect. 4), and finally some conclusions (Sect. 5).

2 Participatory Design and PICTIVE

The workshops documented in this paper were conducted using a participatory
design method called Plastic Interface for Collaborative Technology Initiative
through Video Exploration (PICTIVE) [20], which we also recently used in a
study of humanoid robots’ communication design [32]. The general idea behind
PICTIVE is that participants can give early input to the design of future tech-
nology through the creation of very low-tech prototypes.

Participants are provided with one or more scenarios by the session leader
and asked to put down ideas on paper. The design process is video recorded,
which enables the session leader to be more engaged in the process instead of,
for example, taking notes. The original vision behind PICTIVE was that by using
low-tech objects, such as a shared design surface, plastic icons, coloured high-
lighters, coloured pens, labels (data fields), pop-up events and post-it notes, all
participants could contribute with their ideas in a relatively straightforward and
easy fashion. Some icons and labels are predefined before the design sessions, but
the participants can also create their own. This is one of the advantages of PIC-
TIVE compared to other user-centered design methods. The predefined labels
can be seen as building blocks that limit the design space of what is possible,
which is especially useful when participants are not designers and do not have
previous knowledge of design processes. In comparison, other methods, such as
Collaborative Users’ Task Analysis (CUTA) [12], building scrappy prototypes
or role-playing, may require the participants to take a larger creative step than
they are used to. Ideally, using PICTIVE, the shared design surface, the labels
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and the scenarios provided by the researcher, can facilitate the creation in an
accessible way. This, we believe, makes PICTIVE particularly suitable for par-
ticipatory design of human-robot interaction for older adults, especially since
most of the potential stakeholders do not have previous experience with robots
nor design.

In recent years, the number of participatory design studies in technological
health care products for older adults have increased, but relatively few have
addressed social robots. Participatory design workshops with older adults have
been used, for example, to develop therapeutic socially assistive robots for older
people diagnosed with depression [27], and to explore the roles a robot might
play in an older person’s life [9]. The latter study showed that older adults could
see potential general benefits, but the most common attitude was that the robot
might be “good for others but not themselves” [9].

Apart from some positive examples, there still is a lack of studies focusing
on the wants and needs of different stakeholders for social robots. One positive
example is a participatory design study with caregivers of dementia patients,
which investigated what characteristics (e.g., interaction, morphology and func-
tionality) a social robot for dementia patients should have [18]. The caregivers
envisioned robots that could bring joy to cherish the patient’s happy moments
and robots that could comfort and better manage when they were showing agi-
tated behaviour. The authors proposed a community-based design approach,
meaning that designers should include different stakeholders when developing
and deploying social robots. In the participatory design workshops documented
here, in order to complement the above results [18], we included as participants
(a) older adults still living at home, (b) care home residents, and (c) care home
staff members.

3 Methodology

In this section, the participants, material and the workshop sessions, are pre-
sented.

3.1 Participants

Three stakeholder groups, with five participants in each, were recruited for the
participatory design study, based on a convenience sample strategy. All partici-
pants were recruited with the help of the municipality of Mjölby, in the South-
east of Sweden, with about 28,000 inhabitants. The first group consisted of five
older adults (mean age = 79, SD = 5.29, 60% women) who still lived at home and
were active. This group signed up themselves for the workshop after information
flyers had been passed around at an activity centre for retired people.

The second group consisted of four older adults (mean age = 83, SD = 7,54,
100% women), who lived at a care home because of a physical condition and
who did not have cognitive impairments. The group originally consisted of five
participants, but on the day of the study one was ill and had to be excluded.
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The third group comprised four unlicensed assistive personnel working in
a care home (mean age = 43, SD = 11,00, 75% women). These participants
signed up after the manager had informed them about the study. This group
also originally consisted of five people, but one could not attend due to health
reasons. Hence, the final set consisted of thirteen (5 + 4 + 4) participants.

The three stakeholder groups were chosen to represent three different views of
the wants and needs of social robots in care homes. The first group were about
the same age group as people that lives in care homes and could more easily
imagine the needs if they themselves or their friends would live in a care home,
as compared to younger age groups (including family members). The second
group were chosen since they are one of the intended end users. Other potential
end users could be, for example, dementia patients. The third group were chosen
since they work in care homes and know of the needs for their patients but also
since robots could help them in their work of taking care of older adults.

All participants gave informed consent prior to the workshop, and video and
audio recordings were orally accepted by all participants before each part of the
session.

3.2 Material

A sketch showing four different robots in a typical living room constituted the
shared design surface (see Fig. 1). The robots were inspired by four morphology
categories identified in previous work [8]: anthropomorphic (here represented
by the humanoid Pepper), zoomorphic (represented by the robot seal Paro),
caricatured (represented by the social robot Buddy) and functional (represented
by the Xiaomi Roborock vacuum cleaner). To facilitate the participants’ creation
of interfaces, eight labels depicting communication modalities were created. The
labels were inspired by previous research of ours [32], and they were: motion,
haptic, sounds, voice synthesis, LEDs, text, animation and symbols. In addition
to these labels, the participants were provided with typical icons, coloured pens,
post-it notes, glue, eraser and a scissor (see Fig. 2).

3.3 Workshop Sessions

Three study sessions, lasting 60–150 min each, took place in a secluded room,
where one group and the session leader (the first author) sat around a table.
The procedure of the session consisted of the three following steps.

In the first step, the participants were asked some initial questions about
robots and their experience with technology. The questions that were asked
were, for example, “What do you know about robots?” and “Do you have any
experience with robot technology?”. This part was audio-recorded. In the second
step, the session leader held a short presentation about robots used today. The
presentation started with different categories of robots, (following [6]); with a few
examples of rehabilitation robots before changing focus to the service type and
the companion type of robots. Different robots were then presented as examples
of anthropomorphic, zoomorphic, caricatured or functional morphology’s (cf.
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Fig. 1. The shared design surface.

Fig. 2. The workshop setup.

above and [8]). The third step was PICTIVE, and this step was video recorded.
The workshop consisted of three phases: the label phase, the sketch phase and
the interview phase.

In the label phase, participants were encouraged to use the labels on the
shared design surface to map different design solutions and what kind of robots
they would like and need. To start the creative session, they were provided with
a scenario in a shared living room area at a care home. In the sketch phase, par-
ticipants were encouraged to create at least three unique robot designs each, and
they could make use of the shared design surface, or blank paper. The predefined
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labels were at hand, and they could also create their own. The participants then
presented each of their robot designs and described their qualities. In the inter-
view phase, the sketched robots were tested through eight scenarios that could
occur in the everyday life of an older adult at a care home. The scenarios were
inspired by events observed at a care home. One of the eight scenarios is described
below, in the way it was presented to the participants:

“Ann has dementia and lives at a care home. Every afternoon she gets
worried, starts packing and wants to go home. The staff tries to distract
her in different ways, such as getting her to watch TV. However, this does
not work every day. How could a robot help Ann?”

After each scenario was described, the participants picked at least one of their
robots and motivated how the robot could help in the scenario and/or how their
design should be altered to help in a better way.

From each study session, the shared design surface and the participants’
designs were collected. Keywords, phrases and statements from the audio and
video recordings regarding wants and needs of social robots were transcribed.
All data were thematically analysed, and opinions from the three groups were
entered into three data files. In each file, the wants and needs were labelled with
codes and similar codes were merged into subcategories (e.g., functional, social,
loneliness). These were then sorted into themes.

4 Results and Discussion

The analysis resulted in two themes; type of social robots and functional-
ity; which are described and discussed below. Limitations of the participatory
method are also presented.

4.1 Type of Social Robots

As can be seen in the example sketches of social robots in Fig. 3, neither stake-
holder group limited themselves to one or two robot morphologies, all four types
were discussed and were preferred for different tasks. The type of robots that
were mentioned were humanoid, animal-like, caricatured (cute and cartoonish),
functional, and these were all preferred to have a physical embodiment and that
shared the same space as the user. Also, social robots with a simple physical
design and only communicating by voice, for example a voice user interface like
Google Home or Alexa, were discussed to help with control of the “system of
robots” at the care home. Virtual embodiments were argued to be particularly
difficult to interact with since the social robot would be on a screen and not in
its physical form.

Regarding zoomorphic robots, several of the participants in the first group
mentioned that the animal needed to be the individual’s choice, i.e., “some people
want a cat, and some want a dog”, which is in line with some of our previous
findings [31]. One interesting observation was that the only companion type
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Fig. 3. Example robots from the sketch phase.

robot presented was the robot seal Paro but the participants did not like this
embodiment as they found it unfamiliar, and they sketched a cat robot instead
(see Fig. 3a).

4.2 Functionality

There were some differences between groups regarding the desired functionality
of a social robot. All participants in the first group, older adults still living at
home, wanted functional robots in a care home, such as a control unit to have
a simple overview. This could be on a tablet, or on a social robot’s tablet (e.g.,
Pepper). The robots they found particularly useful were a vacuum cleaning robot,
and a social robot that one could ask to turn on the TV or answer questions.
One of the participants also mentioned that she wanted a robot to play cards
with. Furthermore, they saw a need for a robot that could trigger an alarm if
somebody fell to the ground. Except for finding social functional types of robots
most useful for themselves, they all mentioned that companion robots would be
the best comfort and company for other older adults that are either physically
or cognitive impaired. In line with previous results [9], they did not see the need
for themselves before living in a care home.

The third group, consisting of care home staff members, were all positive
toward robots. They could see different kinds of robots as a big help, for example,
one robot for entertainment, one for cleaning and one for practical help. It was
much in their interest that the robots might reduce, for example, their manual or
administrative workload so that they could spend more time with the patients.
For example, they did not want a robot to go for a walk with a patient because
that was the favourite part of their work. Moreover, this group also considered
the vacuum cleaning robot to be their number one choice. Another robot they
thought could be very useful was a general talking robot. This robot should be
able to turn on the TV, read the news aloud and answer questions. For example,
when the care staff are in one of the residents’ rooms, the robot can answer
questions that often come up (e.g., what time it is, or which food will be served
for lunch).
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One of the scenarios in the interview phase addressed the issues of an older
person suffering from depression. The first group expressed that the person could
talk to a robot for company or have a zoomorphic robot for comfort, while the
third (staff) group saw no use for a robot in this scenario. They found it unlikely
that a person might be depressed in a care home and said, “that it is up to them
to change their situation”. One of the participants also said, “there are people
to talk to if one wants to”. Moreover, both groups did not seem to distinguish
between feeling lonely and being depressed.

4.3 Limitations

For the first and third group, the participatory design method worked well, and
they easily followed all the steps and phases and engaged with the shared design
surface, icons, labels and created their own. However, one limitation with PIC-
TIVE was that the second group—care home residents—had serious difficulties
following the steps and phases in the method. Two out of the four participants
had severe health problems and therefore had difficulties to follow the method.
After the first step with initial thoughts and discussions about robots it was
clear to the workshop leader that the phases would be difficult to follow for all
participants, and the second phase, sketch, had to be completely skipped. The
other two phases, label and interview, could be carried out with some changes to
the initial plan and with some complications (e.g., that there were no sketches
to evaluate so the group discussed the scenarios in the interview phase in a more
general matter and how robots could help). These difficulties came as a surprise
to us—which illustrates that in practice it might be difficult to conduct work-
shops with the intended target group since some of them are very ill by the time
they live in a care home. For further research with this stakeholder group, we
recommend less complexity in the workshop parts and the possibility to interact
with robots for a shared understanding of the technology and what it can do.

The second group aside, the other two stakeholder groups were engaged in
the task, and PICTIVE turned out to be a good method to extract a lot of
ideas about social robots. As pointed out in the beginning, we see a need for
longitudinal studies in this field, but PICTIVE as a method might be most useful
in the beginning of the development process and when investigating important
features to a robot. Further research in the very early stage of robot development
could result in improved design guidelines and common “dos and don’ts”.

4.4 Summary

There were similar preferences for social robots in care home environments
between the two key stakeholders, older adults still living at home and care
staff members. First, they both thought that social robots performing differ-
ent tasks and functions should have different morphologies, but that they all
should be in a physical embodiment. For example, a conversation robot should
be anthropomorphic to evoke natural behaviours of speaking to it and that the
older adults would understand that one can talk to it. This result is in line
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with previous participatory design studies where dementia caregivers designed
different robots with various roles, appearances and abilities [18]. Secondly, both
groups also found the body of the social companion robot Paro to be too unfa-
miliar and that the care residents would not want to interact with the robot.
However, both groups brought up the use of domestic pet animals, such as a dog
or a cat robot.

The main difference between the groups was the different functions the social
robot could have and the tasks it could perform. The older adults focused on
social aspects, such as giving comfort, playing cards with, answering questions,
and safety aspects, such as falling detection and alarm functions. The care staff
members, on the other hand, focused on practical parts of their workload that
could be replaced by a social robot. For example, that the robot could clean,
sort delivered products, and inform and keep an eye on the residents when the
staff was in another room.

Finally, even though our workshop study did not focus on dementia patients,
as other work has done [18], it might be worth mentioning that our stakeholders
did not at all focus on the emotional aspects of social robots as the dementia
caregivers did. Both the first and the third group in our study were more inter-
ested in the functional and social aspects (e.g., cleaning or answering questions).

5 Conclusion

This workshop study with different key stakeholders showed similarities when
it came to how robot embodiment and morphology affect functionality and use.
It further showed that older adults were interested in the robots’ social and
interactive behaviours, whereas the care staff were more focused on practical
functionality. Neither of the groups considered emotional aspects of social robots
as particularly relevant, and the care staff questioned if the residents had a use
of emotional support. This should be further investigated.

The results also indicate that not all stakeholders can participate in a partici-
patory design workshop like ours. The intended target group—care residents—in
many cases already have severe health problems. This group in our workshop
expressed no significant interest in robots in their everyday life. But, as several
studies have shown (e.g., [3,31]), when older adults with dementia interact with
social robots they are generally liked and have positive effects on health, mood,
communication and loneliness. It might be the case that residents without cog-
nitive disabilities do not want robots, but it might also be the case that they
simply do not have enough experience with robots to imagine interacting with
them. This needs to be further investigated, which is particularly important
given ethical concerns raised by the introduction of social robots in care homes,
which might not always be in line with what people want and need [28].
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Abstract. This paper explores robot-assisted training in a cross-
cultural context with older adults. We performed user studies with 28
older adults with two different assistive training robots: an adaptive
robot, and a non-adaptive robot, in two countries (Sweden and Israel).
In the adaptive robot group, the robot suggested playing music and
decreased the number of repetitions based on the participant’s level
of engagement. We analyzed the facial expressions of the participants
in these two groups. Results revealed that older adults in the adaptive
robot group showed more varying facial expressions. The adaptive robot
created a distraction for the older adults since it talked more than the
non-adaptive robot. This result suggests that a robot designed for older
adults should utilize the right amount of communication capabilities. The
Israeli participants expressed more positive attitudes towards robots and
rated the perceived usefulness of the robot higher than the Swedish par-
ticipants.

Keywords: Cultural robotics · Physical training · Older adults ·
Human-robot interaction · Social robots

1 Introduction

The world population is aging [1]; it is expected that approximately a quarter
or more of the population in the major areas of the world will become over the
age of 60 by 2050. This is in parallel to an increasing shortage in caregivers [2].
Therefore, research on assistive technologies which aims to improve eldercare for
older adults has received increased attention. Socially assistive robot interven-
tions where the robots take a role of cognitive training, companionship, social
facilitation, physiological and affective therapy have the potential to improve
the health and care of older adults [3]. Many studies have examined the usage of
robots in elder care settings, however, these studies mostly focus on participants
from a similar cultural background. Our study differs from them by exploring
the social robots in a cross-cultural context with older adults.
c© Springer Nature Switzerland AG 2021
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The cultural background and nationality of users may contribute to the vari-
ability in people’s attitudes, trust and acceptance of social robots [4]. This has
been proven in several studies such as in a comparison of German to Arab
culture and within Arab countries [5] and in another human-robot interaction
(HRI) research that compared robot perception between Chinese, Korean and
German [6]. These studies revealed cultural differences on robot perception,
acceptance, and preferences regarding the robot’s use and appearance. Culture
differences were also found among older adults in few studies such as comparison
of social robots in Finland and Japan [7]. In [8] Italian and Swedish older adults
were compared in a video setting in which they watched different scenarios with
a social assistive robot. Results showed that the Swedish participants had con-
cern for privacy and for developing robot dependence. However, they were also
more interested in non-emergency scenarios, e.g., advised by the robot to prac-
tice physical activity, contrary to the Italian older adults who did not appreciate
this scenario as much. A research that compared acceptance of socially assistive
robots by Israeli and Austrian older adults did not reveal any differences [9].
These studies demonstrated the importance of considering the cultural features
while designing a social robot and the findings suggest further research is required
with the older population.

Our study includes a robot-assisted training for older adults which is one
of the use cases of robots for older adults. We conducted experiments with two
different cultural groups of older people. The experiments were conducted in
Sweden and Israel with the same experimental procedure and the same assistive
robot. In our scenario, a Poppy robot assisted participants in physical training
where they repeated a sequence of arm motions together with the robot. We
focused on investigating the cultural differences on social robots among older
participants. The training included two groups - one experienced an adaptive
robot and the other experienced a non-adaptive robot. In the adaptive robot
group, the robot suggested playing music and decreased the number of repeti-
tions based on the engagement of the older adults.

2 Method

2.1 Participants

Overall 28 older adults participated in the experiments. In Sweden, 10 par-
ticipants (4 females and 6 males) performed experiments with the non-adaptive
robot. Their age ranged between 63 and 99 (M = 82.33, SD = 10.92). The other
9 participants (4 females and 5 males) performed experiments with the adaptive
robot. Their age ranged between 68 and 89 years old (M = 79, SD = 7.81).
When they were asked to rate how often they use a computer and how famil-
iar they were with the robots in a scale between 1 to 5, the average score for
computer familiarity was 3.84 (SD = 1.68), and the robot familiarity was 1.37
(SD = 0.76).

All of the Israeli participants (4 females and 5 males) performed experiments
with the adaptive robot. Their age ranged between 70 and 82 years old (M =
75.22, SD = 5.02). Eight of them came from American or British background,
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4 of them moved to Israel after their retirement. The Israeli participants’ average
score for computer and robot familiarity was 3.67 (SD = 1.80) and 2.56 (SD =
1.50) respectively.

This study was originally planned to be a larger cross-cultural study with
more participants from different cultural backgrounds. However, due to the
global pandemic, we had to stop experiments. Therefore, we tested both adap-
tive and non-adaptive robots with Swedish subjects, but tested only the adaptive
robot with Israeli subjects.

2.2 Robot and Physical Training System

A robotic system was designed as a motivation tool for older adults to engage
with physical activity, the development process is presented in [10]. The system
included a Poppy robot that demonstrated physical upper-body exercises and
an RGB-D camera [10] used to monitor the users’ performance and provide
real-time feedback accordingly. The robot used in these experiments was the 13
degrees of freedom torso of the 3D printed, open-source Poppy robot [11]. It
was equipped with a LCD screen to provide feedback to the users. The training
program included 8 arm exercises. During the training, the robot counted each
repetition of the participant. On the LCD screen, the robot provided visual
feedback after the exercise.

For this work, the original system [10] was enhanced with emotion recog-
nition capabilities and a function to play music. We used Affdex SDK [12] for
emotion recognition through a USB webcam. The SDK outputs a set of facial
features in real-time, one of them being engagement. Engagement is considered
as a characterizing feature of the user experience, as stated in [13]. The facial
engagement of the user was used for the adaptation using facial expressiveness
with values varying between 0 and 100 in Affdex SDK. The user’s engagement
data was sent to the training program. Additionally, the robot was equipped
with a function to play music (Fig. 1a). In the adaptive robot, based on the
user’s engagement level he/she was offered to play music during the training to
encourage him/her and decrease the number of the repetitions in order to lower
the difficulty level. The mean engagement was calculated continuously and com-
pared with the engagement at the time t. If the participant was less engaged
at the time t than his/her average engagement until that moment, the robot
suggested to play music to re-engage and to decrease the number of repetitions
of the current exercise.

2.3 Experimental Procedure

The same experimental procedure and the same adaptive robot was used in
Sweden and Israel. The consent form, questionnaires and the robot’s speech was
in the local language (Swedish and Hebrew). The experiments were approved
by the ethical committees (in Israel by the department of Industrial Engineer-
ing and Management, Ben-Gurion University of the Negev ethical committee
and in Sweden by the Swedish ethics committee for studies involving human
participants).
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Fig. 1. a) The flowchart of the training system. b) An older Swedish participant inter-
acts with the Poppy robot.

The experimental procedure began with informing the participant about the
experiment and the robot. Then, the participant signed the informed consent
form, and filled out the pre-experiment questionnaire. Thereafter, the robot
introduced itself and the training started (a screenshot from the experiments
is given in Fig. 1b). Before each exercise, the robot explained the exercise by
speech (a pre-recording of instructions), then the robot and the participant exer-
cised together. The robot counted each repetition of the participant. When all
8 exercises were done, the participant filled out the post-experiment question-
naire. Following the questionnaire the experimenter discussed with the users
their experience in an open ended non-formal discussion.

2.4 Measures and Analysis

In the pre-experiment questionnaire, the participants were asked to answer demo-
graphic questions (age, gender, and technology experience), SF-12 health sur-
vey and their attitude towards robots. After the interaction, they answered a
post-experiment questionnaire which included a robot acceptance questionnaire
and perceived safety questionnaire. The attitude towards robots and acceptance
questionnaires were on a 5-point Likert scale ranging from “1 = strongly dis-
agree” to “5 = strongly agree”. Cronbach’s α was used to calculate the internal
consistencies within the items of the used questionnaires with an α coefficient
ranges over 0.7 considered as acceptable.
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Table 1. The used attitude towards robots questionnaire

ATT from [15] It is a good idea to use the robot to help me with everyday
tasks in the future

The robot would make life more interesting and
stimulating today

The robot would make life more interesting and
stimulating in the future

It is good to make use of the robot to help me with
everyday tasks today

NARS S1 [16] The word “robot” means nothing to me∗

I would hate the idea that robots or artificial intelligence
were making judgments about things∗

I would feel very nervous just standing in front of a robot∗

I would feel relaxed talking with robots
∗ Reverse coded item

SF-12 Health Survey. This 12-item Short Form Survey (SF-12) allowed us to
investigate the perceived health of older people via their self-reported health [14].
The results of the questionnaire is reported as a mental component score (MCS-
12) and a physical component score (PCS-12).

Attitude Towards Robots. To explore the attitudes towards robots, we used a
questionnaire (see Table 1) that includes questions selected from [15] and [16].
Participants were asked to fill out the questionnaire before the interaction. Their
prior opinions may affect how comfortable they are, how they behave during
interaction, and their acceptance and safety perception.

Perceived Safety Questionnaire. The perceived safety questionnaire [17] is rated
in a 5-point semantic differential scale. In this questionnaire, participants
assessed how they felt during the interaction using polar adjectives such as inse-
cure - secure, anxious - relaxed, uncomfortable - comfortable, and lack in control
- in control. They also rated their opinions about the robot with polar adjec-
tives: threatening - safe, unfamiliar - familiar, unreliable - reliable, and scary -
calming.

Robot Acceptance Questionnaire. The questionnaire (see Table 2) was based on
the acceptance questionnaire used in [10] with additional items selected from
Almere questionnaire [18].

Facial Emotional Measures. The video recordings of the participants while inter-
acting with the robots in the experiments were analyzed using Affdex SDK.
Affdex provides a set of features including 7 emotions (anger, contempt, dis-
gust, fear, joy, sadness, and surprise), engagement (facial expressiveness of the
participant), valence (the pleasantness of the participant), 20 facial expressions
and attention (from head orientation). In the non-adaptive group, 9 Israeli
participants’ video recordings from a previous user study [10] and 9 Swedish
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Table 2. The robot acceptance questionnaire.

PU I would be willing to train with the robot again because it had
value to me

I think the robot is useful to me

Using a robot would improve my daily life

PEOU I felt comfortable during the interaction

I understood the robot well during the interaction

I put a lot of effort into this activity∗

I think I can use the robot without any help

ATT I enjoy exercising with the robot

I was satisfied by the robot’s performance during this activity

I concentrated on the activity for the entire session

I was eager to follow the exercises

Trust I would trust the robot if it gave me advice

I would follow the advice the robot gives me

I felt like I could really trust this robot

ITU I would like to exercise with the robot in the future
∗ Reverse coded item
PU: Perceived Usefulness, PEOU: Perceived Ease of Use, ATT: Attitude,
ITU: Intention to Use

participants were used. In the adaptive group, due to the technical problems of
the video recordings, 6 Israeli and 6 Swedish participants’ videos were used. The
pre-processing of affective metrics was as follows: the mean value for each second
was calculated, the dropped timestamps were filled with a weighted average of
the neighboring time stamps, and the mean values for each affect metric for each
participant were extracted. We used this data and Mann-Whitney test to check
whether there was any difference between Swedish and Israeli participants.

3 Experimental Results and Discussion

The Cronbach’s α value for the Attitude Towards Robots questionnaire was 0.76
and the α for the Acceptance questionnaire was 0.83 which are acceptable values.
The Swedish (M = 1.37, SD = 0.76) and Israeli (M = 2.56, SD = 1.5) groups
significantly differed on robot familiarity, t(10) = 2.23, p < .05. They also differed
in educational levels, Fisher’s exact test showed a significant relationship between
the participants’ country and the educational levels (p < .001). There was also
a statistically significant difference between Swedish (M = 40.75, SD = 12.54)
and Israeli (M = 50.01, SD = 6.98) participants in the physical component score
of SF-12. There was no significant difference between groups with the MCS-12
measure. On the SF-12 scale, higher scores indicate a better health condition.
Israeli participants rated their physical health condition better than Swedish
participants.
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Results of the Attitude Towards Robots questionnaire revealed a significant
difference in attitudes between Swedish and Israeli participants. Israeli partici-
pants (M = 3.58, SD = 0.65) had more positive attitude towards robots than
Swedish participants (M = 2.94, SD = 0.78), t(19) = 2.26, p < .05. When
we used all data of the post-experiment questionnaire, there was a statistically
significant difference on Perceived Usefulness (PU) between Swedish and Israeli
groups. The mean PU score for the Israeli group (M = 3.81, SD = 0.9) was
significantly higher than the mean PU score in Swedish group (M = 2.91, SD =
1.11), t(19) = 2.29, p < .05. When we compared only the adaptive robot groups,
there was no statistically significant difference for any of the acceptance ques-
tionnaire constructs. When we checked perceived safety ratings, the Israeli group
rated their safety perception slightly higher (M = 4.09) compared to the Swedish
group (M = 3.77). However, there was no statistically significant difference.
There was no statistically significant difference for the other constructs of the
acceptance questionnaire.

When there was no adaptation in the robot, the participants showed less vari-
ation in facial expressions. The Mann-Whitney analyses showed that 2 of the 30
affect metrics were significantly different by cultural background, namely sur-
prise and brow raise. The median surprise and brow raise in the Swedish group
were 0.31 and 0.33 respectively, whereas the median surprise and brow raise in
the Israeli group were 2.28 and 3.68 respectively. The Mann-Whitney test showed
that the difference was significant in surprise (p < .05, effect size r = 0.53) and
brow raise (p < .01, r = 0.61). These results show that Swedish participants
exhibited fewer facial expressions during the interaction. The Swedish partici-
pants were older, the mean age was 80.59 (14 of them were over 75), whereas
the mean age of Israeli participants were 75.88 (3 of them were over 75). These
factors may affect their reactions during the interaction.

In the adaptive robot, the Swedish participants exhibited stronger and more
varied facial expressions than the Israeli participants. The Mann-Whitney anal-
yses showed that six affect metrics yielded significant results, namely disgust,
brow furrow, nose wrinkle, upper lip raise, chin raise and attention. The median
disgust (p < .05, r = 0.6), noise wrinkle (p < .05, r = 0.64), upper lip
raise (p < .05, r = 0.65), chin raise (p < .01, r = 0.74), and attention
(p < .01, r = 0.79) in the Swedish group were 3.28, 2.98, 2.24, 12.9, 92.3 respec-
tively. The median disgust, noise wrinkle, upper lip raise, chin raise and atten-
tion in Israeli group were 0.3, 0.08, 0.07, 1.49, 45.9 respectively. The median brow
furrow was higher in Israeli group (11.1) than the Swedish group (1.52), the
difference was significant (p < .05, r = 0.6). These results show that Swedish
participants interacting with the adaptive robot displayed more varied facial
expressions.

The two groups (Swedish and Israeli) were different in culture, age, and
educational levels. The Israeli participants were younger and had a higher edu-
cational level in comparison to Swedish participants. Although it has been shown
that culture influence users’ acceptance and their attitude toward robots [19],
it is difficult to conclude that the cultural background was the only influencing
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factor in our study. However, we argue that familiarity with technology and
higher educational levels could be considered a part of Israeli culture, this is
especially true for older adults. The Israeli elderly population has some distinct
characteristics one of them being from a diverse ethnical background with dif-
ferent cultural backgrounds; among the older population only 28% are born in
Israel [20]. It was also the case in our study, eight participants out of nine were
immigrants. Another distinct characteristic among older immigrants in Israel is
the successful adoption of new media technologies [21]. It was also the case in
our study, participants from Israel had greater experience in technology, they
indicated that they use computers in their daily life, and several of them had
previous experience with robots as part of other HRI experiments. The number
of school years >13 (high education level) among the Swedish older population
is lower than the Israeli older population. The 6.89% (own calculation using the
statistics given in [22]) of older Swedish people (age 65 and over) had high edu-
cation level whereas this was 20% in Israeli older people [23] by 2015. In our
experiments, five Israeli participants had bachelor’s degrees and 4 of them had
a postgraduate degree (i.e., masters, Ph.D.), whereas the majority of Swedish
participants had a high school degree (10 persons) or lower degrees (9 persons).
We believe that the education level affected the attitude towards robots and the
perceived usefulness of the robot. The study presented in [24] supports our claim,
that participants with higher educational backgrounds rated the perceived use-
fulness of the robot more positively. Moreover, it was reported that there was a
positive link between educational levels and attitudes towards robots whereas age
had a trivial effect on attitudes towards robots [25]. Our results conform with
previous research [24] who reported that user factors especially living condi-
tions, professional background, and technical experience influenced older adults’
attitudes towards robots. The Israeli participants’ higher educational level and
robot familiarity had a positive effect on the positive opinions about the robot.
Therefore, in the design decisions of social robots for older adults, besides their
cultural background, their technology experience and educational levels should
be considered.

Participants in the adaptive robot group showed more varying facial expres-
sions. One of the reasons was that when the robot asked about playing music or
decreasing the exercises, the participants tried to understand what the robot was
saying which resulted in different facial expressions. When there was no adap-
tation, there was no interruption of the robot, which resulted in less expressive
facial reactions. The older participants did not like the music while exercis-
ing with the robot. They commented that it was distractive for them. Most of
them commented that music prevented them to hear the robot’s counting and
the explanation of the exercise. Therefore, they did not want the robot to play
music for the second time. Individuals’ responses to distracting information tend
to increase with age, older adults are prone to be more easily distracted than
younger adults [26]. Different participant groups may have different preferences.
From our experimental results and observations from the experiments, we sug-
gest that a robot that is designed for older adults should utilize the right amount
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of communication capabilities (i.e., not too much, not too little). This is espe-
cially important in collaborative tasks in which the robot and the older adult
complete together. As it could be seen in our experimental results, interruptions
could result in distractions.

4 Conclusion

The presented study demonstrated that familiarity with robots and educational
level could be crucial factors for the opinions of older adults about robots. It is
especially valid for the perceived usefulness of the robot and attitude towards
robots. However, we cannot claim that these differences were derived from the
cultural backgrounds since our participants differentiated in culture, age and
educational levels. Hence, these three parameters should be investigated in future
work separately to understand which one contributes stronger. We also found
that older adults in the adaptive robot group showed more varying facial expres-
sions. Differences in the facial expressions in the adaptive and non-adaptive robot
groups could be rooted in the fact that the adaptive robot talked more which
created distractions on the participants. Our results imply the importance of
considering a right amount of communication of the robot in the interaction
design. Moreover, we plan to extend our study with more participants and to
gain a broader view about the common needs and expectations from social robots
regardless of the cultural background of older adults.
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Abstract. Social skills are the skills that humans use to communicate
with each other verbally and non-verbally. The deficit of social skills is a
core symptom of children with autism spectrum disorder (ASD). Phys-
ical social robots and virtual environments have been popular training
tools for children with ASD in recent years.

The Jammo-VRobot environment is a virtual desktop environment
that employs a 3D virtual humanoid robot (Jammo VRobot) to enhance
the social skills of children with high-functioning autism (HFA) through a
social skills training program guided by a parent or a teacher. The social
skill training programme targets three social skills: imitation, emotion
recognition and expression, and intransitive gesture. The evaluation pro-
cess was conducted mostly online with some on-site, including children
with HFA (aged 4–12 years). The experimental sessions reveal encourag-
ing results showing that the Jammo-VRobot environment helps in train-
ing and enhancing the target three skills of the participants.

Keywords: Virtual robot · Autism spectrum disorder · Social skills
training programme

1 Introduction

Autism spectrum disorder is an umbrella term that categories a group of disor-
ders of brain development that include impairments in social and communica-
tion interaction, repetitive behaviours, and stereotyped patterns of interests and
activities [7]. Social and communication challenges can significantly affect their
social life, including forming and maintaining relationships and functioning inde-
pendently. Social skills training (SST) interventions teach children with ASD the
skills necessary to navigate their social environment [12]. Social skills training
interventions such as peer mentoring, social skills group, social stories, video-
modelling, picture exchange communication system, applied behaviour analysis,
and occupational therapy were the early promising solutions for enhancing the
social skills of children with ASD. Despite the reported positive effect of SST,
there are some barriers to accessing SST interventions for families with children
of ASD. These traditional sessions are costly and require time-intensive train-
ing [2]. Another primary barrier to SST interventions is the shortage of trained
therapists and facilitators.
c© Springer Nature Switzerland AG 2021
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Assistive technologies for cognition have been implemented using virtual envi-
ronments (VEs) and robots to train and improve the social skills of children with
ASD as an alternative means to train the social skills of children with ASD. Assis-
tive technology for cognition refers to technologies that are used to enhance or
facilitate cognitive function and include tools that aim to improve social partic-
ipation, and independent actions of individuals with cognitive disabilities [8].

2 Background

Several studies were conducted to evaluate the effectiveness of VEs and social
robots in training the social skills of children with ASD.

[6] conducted a study to evaluate the effect of using a digital avatar in deliv-
ering social lessons to children with ASD. The 3D character chosen for this study
was a colourful fish (Marla) with facial expressions, similar to a character from
the cartoon movie Finding Nemo. The target skill for this study was initiating
conversations. The results show that the participants’ initiating conversation
skills improved by comparing the baseline session to the intervention session.
Additionally, the participants generalised the skills learnt in the intervention
session to their daily life. [10] developed an immersive virtual school and play-
ground via HMD for improving and training the emotional and social skills of
children with ASD. In the proposed environment, the children interact with sev-
eral human avatars. Researchers observed that the participants show significant
improvements in social and emotional skills as well as non-verbal communication.

A study was conducted by [14] to teach children with ASD to recognise and
produce gestures using NAO. The participants with ASD were divided into two
groups: intervention and control groups. The results show that children with
ASD who received the intervention training produced intransitive gestures more
accurately than those in the control group. A recent study conducted by [15] to
evaluate the influence of Zeno in improving the emotion recognition and expres-
sion skills of children with HFA. The experiment results showed that the children
understood the social stories and answered with the appropriate emotion. In the
imitation sessions, the participants managed to imitate the robot’s facial expres-
sion with 100% accuracy.

The extensive review of robot-assisted interventions and VEs for children
with ASD emphasised some limitations. The availability of robot-assisted inter-
ventions and immersive VEs is minimal. The high cost of robot platforms and
equipment needed is a significant reason for this limitation [2]. Moreover, the set-
up and control of such interventions require technicians or professionals and a
dedicated environment. Despite the importance of generalisation in transferring
the learned skills from training interventions to real-life, most VR intervention
studies do not conduct follow-up sessions to assess whether the children trans-
ferred the target behaviours and skills learnt to their daily lives. Similarly, the
test of maintenance remains an open question in VR interventions.
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3 Contribution

This research investigates the impact of combining the virtual environment with
a virtual social robot (Jammo VRobot) as a hybrid approach to address some
of the limitations of previous VEs and social robot interventions and train the
social skills of children with HFA. A non-immersive virtual environment (Jammo-
VRobot environment) that employs a 3D robot (Jammo VRobot) was developed.
The Jammo-VRobot environment is a cost-effective platform that promotes the
availability of virtual learning environments and social robots. The availability
of the Jammo-VRobot environment will make it easier for parents, teachers, and
practitioners to use either at home or school. Jammo VRobot is a humanoid
robot, as the human-like embodiment is beneficial to promote the generalisation
of the skill learned through child-robot interaction to human-human interaction
and manages to grab children’s attention more than the animal-like embodiment
[9]. The designed social skill training programme is adapted and modified from
several studies [11,14,15] utilised physical robots (NAO, QTrobot and Zeno) for
training children with ASD. The Jammo VRobot social skill training programme
targets three social skills; imitation, emotion recognition, and intransitive ges-
ture. The Jammo-VRobot environment was developed in English and Arabic
languages.

4 Methods

4.1 Participants

Fifteen children with HFA (aged 4–12 years) participated in this study, includ-
ing 10 boys and 5 girls. Children with HFA are intelligent academically [4],
although they may lack the fundamental social skills that are necessary for social
engagement. Researchers have highlighted the importance of early intervention
for children with ASD, especially regarding their social communication skills and
development. Therefore, this study targets young participants. Ethical approval
for the study was obtained from the University of Greenwich Research Ethics
Committee (UREC).

4.2 Experimental Set-Up

Due to the pandemic circumstances (Covid-19) and the schools’ and the spe-
cialised centres’ closure present when the study was conducted, the experimen-
tation sessions were conducted on-site and online. In both settings, the partici-
pants have been informed about the training sessions by their parents or teachers
to decrease anxiety levels caused by novelty.

The online setup took place at the participant’s home or venue of choice.
An online version of the tool was developed and launched on a website to be
available for a wider group (visit the website here [1]). Eleven children with HFA
(8 boys and 3 girls) participated in the online experimental sessions with their
parents.
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The on-site sessions were conducted at a specialised centre in Egypt. Four
children with ASD (2 boys and 2 girls) participated in the on-site experimental
sessions. Each participant experienced the tool individually, encouraging triadic
interactions between the child, teacher, and the virtual robot [3]. The environ-
ment setup consists of the child, the teacher, the researcher, and one laptop
(see Fig. 1). The advantage of being on-site is considering the researcher as an
observer. The teacher focused on controlling the tool and helping the child and
not overwhelmed by completing the observation sheet and controlling the tool.
Additionally, the researcher was objective while filling the observation sheet,
unlike the parents that might be subjective towards their children.

Fig. 1. On-site layout. The child sits beside the teacher in front of the laptop on a
small table and the observer sits at a corner in the room; this allows the researcher to
monitor the interaction.

The intervention programme lasted for approximately three months. The
social skill training programme consists of 24 sessions. The participants received
two sessions per week. The emotion recognition and intransitive gesture training
programmes consist of three phases; each phase contains a pre-test, four train-
ing sessions, an immediate post-test and a follow-up post-test after two weeks.
Figure 2 illustrates scenes from the Jammo-VRobot environment. [3] describes
the procedure of the Jammo VRobot social skill training programme.

4.3 Data Collection Methods

In this study, a hybrid method of qualitative and quantitative data collection
was used. As a qualitative measure, observation was used, and questionnaires
were used as a quantitative measure. The evaluation process is divided into three
stages: baseline measures (pre-training assessment), intervention measures, and
outcomes measures (post-training assessment). Observation is the instrument
that was used in the training sessions for collecting data. An observation sheet
was designed for the screener (parent/researcher) to record the child’s skills and
behaviours during the training sessions and document the child’s score in each
test. Pre and post questionnaires were designed to assess the child’s skills and
behaviour changes before and after the intervention sessions. The teacher and
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Fig. 2. Scenes from the Jammo-VRobot environment. Left: scenes from the intransi-
tive gesture training programme. Right: scenes from the emotion recognition training
programme.

parents were asked to complete the pre and post questionnaires for their children
with ASD before and after the intervention. The pre-questionnaire consists of 16
items, 3 items to measure the child’s ability in responding to interactions, 8 items
for affective understanding (emotion recognition and expression), and 5 items
for motor and play skills. The post-questionnaire contains extra items than the
pre-questionnaire. These additional items aimed to assess the parents/teacher
satisfaction about the training programme that their children have received and
evaluate the tool’s effectiveness in generalising the taught skills. Furthermore,
to evaluate the parent/teacher satisfaction with the technical aspects of the
Jammo-VRobot environment, The System Usability Scale (SUS) [17] was used.
The observation sheet and the pre and post questionnaires can be found in the
developed website [1].

5 Results

5.1 Intransitive Gesture Training Programme

The aim of phase I is to examine the learning outcomes of the gesture recognition
skills of the participants. The gestures are hello, good job, look at this, yes, stop,
where, me, awesome, come, hungry, and not allowed. The mean number of correct
answers in the pre, post, and follow-up tests was calculated and compared. The
participants’ performance in recognising the 11 gestures increased by 25.5% in
comparison between the pre-test and the post-test (from 36.3% in the pre-test
to 61.8% in the post-test). 40.6% improvement in the participants’ recognition
skills compared to the pre-test and the follow-up test (from 36.3% in the pre-test
to 76.9% in the follow-up test).

Phase II aims to examine the learning outcomes of the gesture production
skills of the participants through imitation. The achievement of this goal was
measured by counting the number of times the participants produced gestures
correctly in each of the three tests according to four parameters: hand-shape, the
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direction of movement, placement, and use of hands. In this phase, the children’s
performance in imitating and producing the taught 11 gestures increased by
18.2% (from 58.70% in the pre-test to 76.90%).

The aim of phase III is to recognise and produce the relevant gesture in
different social contexts. In the pre-test, the Jammo VRobot narrates stories,
and the children were asked to identify and produce the proper gesture for each
story. The post-test has the same procedure as the pre-test except that the stories
in the post-test and the follow-up test are different from those in the pre-test.
However, participants found the storytelling task the hardest; their performance
increased by 16.9% in the untrained scenarios compared to the pre-test (from
22.40% in the pre-test to 39.30% in the post-test). Figure 3 shows the mean
number of times the children answered correctly in each phase.

5.2 Emotion Recognition and Expression Training Programme

Phase I provides training for emotion recognition and focuses on the basic six
emotions: happiness, anger, sadness, fear, surprise, and disgust. The pre-test,
post-test, and follow-up test were identical. The number of correct answers
given by each child was counted in the three tests to assess the improvement
and progress in their emotion recognition skill after receiving the training. The
participants’ emotion recognition skills increased by 40% in comparison between
the pre-test with the post-test (from 31% in the pre-test to 71% in the post-
test). The participants’ performance in recognising the emotions increased by
44% (from 31% in the pre-test to 75% in the follow-up test).

Phase II aims at exploring the learning outcomes of the emotion expression
skill of the participants through imitation. On average, the emotion expression
skills of the participants increased by 26.8% (from 52% in the pre-test to 78.80%
in the post-test), while their skills improved by 28% in the follow-up test (from
52% in the pre-test to 80% in the follow-up test).

Phase III evaluates whether the Jammo VRobot can help children with HFA
to identify emotions from social situations. The participants’ performance in
recognising the basic six emotions from different social contexts increased by
23.3% in the untrained scenarios (from 42.2% in the pre-test to 65.5% in the post-
test). Figure 3 shows the mean number of times the children answered correctly
in each phase.

Some emotions were easier to recognise and produce than others. Therefore,
the proportion of the participants providing correct answers to each emotion
in all the three phases was calculated (see Table 1). In phase I, only 26.6%
and 33.3% of the participants correctly recognised DISGUST and SURPRISE
emotions expressed by the Jammo robot. 86.6% of the participants correctly
recognised the HAPPY emotion, followed by 82.2% for the SAD emotion. The
percentage of recognising ANGRY and FEAR emotions was 80% and 51% respec-
tively. While in phase II, HAPPY and SAD were the easiest emotions to express,
as all the participants expressed them correctly. 80% of the participants correctly
expressed the ANGRY emotion, followed by 66.6% accuracy of expressing the
FEAR emotion. The participants found difficulty in expressing SURPRISE and
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Fig. 3. Mean number of correct responses in each training programme: Phase I, Phase
II and Phase III

DISGUST emotions. In phase III, the recognition rates were: happiness - 75.5%,
fear - 80%, sadness - 60%, anger - 42.2%, disgust - 60 %, and surprise - 28.8 %. It
was observed that there was confusion in recognising HAPPY and SURPRISE
emotions from the emotional-social stories. Some participants chose HAPPY
instead of SURPRISE in some scenarios. Additionally, the same confusion was
observed between ANGRY and SAD emotions.

Table 1. The children’s mean score, in the three phases, for each emotion.

Emotion Phase I Phase II Phase III

Happy 0.86 1 0.75

Sad 0.82 1 0.55

Fear 0.51 0.66 0.8

Angry 0.8 0.8 0.47

Disgust 0.26 0.33 0.6

Surprise 0.33 0.42 0.28

5.3 Quantitative Questionnaires

As per the teacher and parents questionnaire, the participants showed improve-
ment in their emotion recognition and expression skills (affective understand-
ing) from pre (M = 18.2, SD = 5.32) to post (M = 23.9, SD = 6.32) interven-
tion; P<0.001. Regarding the motor/play skills of the participants, the differ-
ence between the mean score in the pre and post-intervention is 5.2; from pre
(M = 10.4, SD = 2.20) to post (M = 15.6, SD = 3.18) intervention, and the anal-
ysis revealed significant differences as p-value is less than 0.05 (P<0.05). Fur-
thermore, the children showed improvement in responding to interactions skills
from pre (M = 6.93, SD = 1.67) to post (M = 8.86, SD = 1.36) with P-value less
than 0.05. Table 2 illustrates the results from the pre and post questionnaires.
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Table 2. Mean and standard deviation (SD) scores for the pre-questionnaire (Baseline)
and post-questionnaire (Outcome).

Scale Pre mean (SD) Post mean (SD) P-value (Wilcoxon test)

Emotion
recognition/expression
(Affective
understanding)

18.2 (5.32) 23.9 (6.32) P< 0.001

Motor play skills 10.4 (2.20) 15.6 (3.18) P< 0.05

Responding to
interactions

6.93 (1.67) 8.86 (1.36) P< 0.05

The teacher and parents were asked to complete the SUS questionnaire to
measure the usability and satisfaction with the application. A teacher and 11
parents completed the SUS questionnaire at the end of the intervention sessions.
The mean score on the SUS was 73.75 (SD = 7.34), which corresponds to a
score of “Good” [16]. Figure 4 shows that 59% of the participants found the
tool “Good”, 33% found it “Okay”, and 8% found it “Excellent”. These results
provide evidence of the users’ satisfaction regarding the usability of the Jammo-
VRobot tool. Once everything was explained to the parents and teacher about
using the Jammo-VRobot tool and navigating from one scene to another, they
found it easy to use. These results reveal that the Jammo-VRobot tool is an
easy tool to use without technicians or professionals.

Fig. 4. System usability scale chart.

5.4 Qualitative Results: Observational Data

During the intervention sessions, the researcher and parents completed the obser-
vation sheet that records the child’s behaviours and skills while interacting with
Jammo VRobot and explores the training experience. There were many positive
comments and observation notes about the child’s behaviours towards Jammo
VRobot. Here are some of the comments and observations:
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“In the training, she imitates the robot and says the name of the gesture
after it.”

“Explains what the robot physically does, like for ANGRY: crossed its
arms and sad.”

“Gets very excited when he saw the cartoon characters “Inside out car-
toon” in the training.”

After two weeks of finishing the intervention programme, the parents and
teacher were asked about the generalisation of the taught skills and if they
noticed any changes in their children. The teacher and parents mentioned that
they had seen some improvement in the participants’ emotion recognition and
expressions skills. They also mentioned some improvements in the use and recog-
nition of gestures and imitation skills. Most of the parents reported significant
improvement in their children’s imitation skills. Here are some of their feedback:

“I noticed a difference with my child ability to recognise expressions of
emotions.”

“I have noticed an improvement in my child imitation skills. He starts to
imitate my actions and my words.”

“He started expressing his feelings more. Sometimes he says I feel blue.”

The teacher was asked if he saw any differences in the participants’ perfor-
mance and progress between the intervention programme and the traditional
sessions he usually conducts with them.

6 Discussion

The primary aim of this study was to assess the effectiveness of the Jammo-
VRobot environment in training children with HFA on emotion recognition and
expression, gesture recognition and production, and imitation skills. In addition,
the main objective was to provide a cost-effective and user-friendly tool for
parents and practitioners to use. The results reveal that the Jammo VRobot
effectively taught and trained the target skills to children with HFA.

By comparing the results obtained from the Jammo-VRobot social skill train-
ing programme environment with the state-of-the-art [14,15], similar results were
found at a much lower cost and without needing technicians or professionals to
set up the environment. Additionally, the Jammo-VRobot environment made
it possible to explore the effect of such intervention in countries like Egypt,
where no social robot interventions have been conducted before. Furthermore,
providing the Jammo-VRobot tool as an open-source tool will make it easy for
practitioners to expand the designed social skill training programme to include
more social skills. According to the literature, children with ASD were focusing
on the physical aspects of the robot itself and wanted to touch it rather than
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focus on the game scenarios’ prompts [15]. Therefore, this might suggest why vir-
tual robots might be more effective or an excellent teaching tool and increase the
participants’ focus skills during the learning process. The animation and coop-
erating cartoon characters in the learning process increased the participants’
excitement during the intervention session and facilitated the learning process.

The number of gestures recognised and imitated increased after receiving the
four training sessions in phases I and II for the intransitive gesture training pro-
gramme. The participants’ performance in phase II - pre-test was already close
to 60 %, which gave the children a small margin of progression. The participants’
scores in phase II - pre-test were relatively higher than those in phase I - pre-test.
Interestingly, during the four training sessions in phase I, it was observed that
the participants were imitating the Jammo VRobot without asking them to imi-
tate. This finding is in line with previous studies that indicate that it is crucial
to teach children with ASD to recognise meaningful gestures before asking them
to imitate and produce these gestures [14]. Our findings confirm that imitation
ability is essential to the development of language skills of children with ASD. It
was observed that the participants were verbally imitating the name of the ges-
tures after Jammo VRobot in the training sessions. Although the participants’
scores in the storytelling tasks (Phase III) were lower than the other tasks (phase
I and phase II), their scores number in the untrained scenarios (post-test and
follow-up test) was higher than their scores in the pre-test. More importantly,
the positive learning outcomes were maintained two weeks (follow-up test) after
the training in the three phases.

For the emotion recognition training programme, the participants kept
improving along with the sessions. Incorporating cartoon characters with each
emotion besides the gestures helped improve the training sessions’ learning pro-
cess. Additionally, it kept the participants motivated and paid attention to the
information presented, as children with ASD are visual learners. Additionally,
the Jammo VRobot taught the participants to associate a colour to each emo-
tion. Some emotions were easier than others to recognise and express. HAPPY
and SAD emotions were the easiest to recognise and express among the 15 partic-
ipants in the three phases. DISGUST and SURPRISE emotions were the hardest
to recognise and express in phase I and phase II, which indicates the importance
of facial expressions to express such emotions. In phase III, the participants
found it hard to differentiate between HAPPY and SURPRISE emotions from
the social stories. Most of the participants chose HAPPY instead of SURPRISE.
The same confusion was observed between ANGRY and SAD emotions. The
results support previous studies that indicate that DISGUST and FEAR emo-
tions are difficult for children with ASD to recognise [5]. This is consistent with
some evidence that children with ASD have particular difficulty in recognising
negative basic emotions [5,13]. The results of phase III indicate that the Jammo
VRobot helped the participants understand the character’s perspective in the
story.
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7 Conclusion

A primary challenge in this study was the relatively small sample size (N=15).
Nonetheless, the sample was larger than that found in some state-of-the-art stud-
ies. Conducting this study during the pandemic circumstances (Covid-19) was
the most significant challenge that affects the sample size. The evaluation pro-
cess was conducted in Egypt. The number of assistive technology interventions
for training children with ASD in Egypt is limited. Additionally, it is essential
to emphasise that social robot interventions were not applied in Egypt before.
Thus, the Jammo-VRobot environment provides an excellent opportunity for
Egyptian parents and teachers to train their children’s social skills. Fifteen chil-
dren with HFA participated in this study online (11 children) and on-site (4
children). The participants received 24 sessions, with two sessions per week. The
participants were taught to recognise the basic six emotions and 11 intransi-
tive gestures (phase I), and to imitate and express these emotions and gestures
(phase II), and to express and demonstrate them in social situations (phase III).
The results emphasise that the Jammo-VRobot environment was an effective
tool in training those skills for children with HFA. It also supports previous
studies demonstrating the usefulness of robot interventions with children with
ASD and provides new evidence to the usefulness of virtual robots to train and
improve the social skills of children with ASD. Moreover, it emphasises that the
Jammo VRobot could overcome some of the limitations of social robot interven-
tions, their cost, limited availability, and became a widespread tool that parents
and teachers can easily use to train the social skills of children with ASD. The
observation of the intervention sessions brought valuable information regarding
the participants’ behaviours and skills during the sessions. It was observed that
the children got engaged with the Jammo VRobot and imitated its actions and
words spontaneously. Additionally, it was noticed that the Jammo VRobot did
not bring any negative emotions, and most of the children were excited during
the intervention sessions.
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Abstract. Socially Assistive robots are becoming more common in
modern society. These robots can accomplish a variety of tasks for peo-
ple that are exposed to isolation and difficulties. Among those, elderly
people are the largest part, and with them, robotics can play new roles.
Elderly people are the ones who usually suffer a major technological gap,
and it is worth evaluating their perception when dealing with robots. To
this end, the present work addresses the interaction of elderly people
during a training session with a humanoid robot. The analysis has been
carried out by means of a questionnaire, using four key factors: Motiva-
tion, Usability, Likability, and Sociability. The results can contribute to
the design and the development of social interaction between robots and
humans in training contexts to enhance the effectiveness of human-robot
interaction.

Keywords: Robot trainer · Ageing society · Social robots

1 Introduction

Social Robots (SRs) are often seen as the next widespread commercialized tech-
nology since they find new fields of application year after year, especially in
care-taking contexts. Typical examples are robots caring for the elderly or sup-
porting children in the autism spectrum [4]. Especially in the case of assistive
robotics for the elderly, the Covid-19 pandemic impressed an important accel-
eration both to research and to the commercialization of social robots [7]. This
aspect is added to the progressive aging of Western societies and a progressive
decrease in the number of human care-takers compared to the elderly population.
One of the biggest challenges for social robotics today is therefore being able to
take over part of the care-taking activities. This must be achieved by respecting
the principles of human-centered design, and it is generally necessary to consider
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the ethical issues that Social Robotics raises [16]. Against this backdrop, assis-
tive robotics for elders does not aim only to release human care-takers from the
heaviest duties: the main objective of this technology, in line with the EU ethics
guidelines [17], is to empower individuals, improve their autonomy, and their
quality of life. As widely demonstrated, physical and psychological health are
highly correlated aspects of humans’ life, and the research has highlighted the
inversely proportional relationship between physical activity, disability, and mor-
tality, especially in the elderly population group [8,9], which nevertheless contin-
ues to represent the least physically active. Social Robotics can help the elderly
population in maintaining optimal physical fitness, improving their autonomy
and quality of life. The scope of this study is to understand if a NAO Robot
with a high level of social interactivity and with a very positive interaction style
is more effective than a neutral one to engage elders in a training exercise. We set
up a 2 × 1 between-subjects design with one independent variable: the degree of
social interactivity and positivity of the interaction. The interactions provided
by the two NAO were highly different in terms of interactivity: the positive
NAO, before starting with the training exercise, introduced itself to the user, it
called him by his name during the training and used both positive feedback and
the pronoun “we” instead of “you” to create an atmosphere of teamwork during
the exercises; while the neutral NAO started the workout with no preliminary
interaction, did not use reinforcements and only described briefly the type of
exercise the user should perform. In general, through the training, the “positive
NAO” provided positive reinforcements toward the user (e.g., “You are doing
great!”, “Well done”, “We are a good team!”), instead of the “neutral NAO”
that only explained the exercises giving no feedback. We designed the interac-
tions referring to the field of sport psychology, where it is well known how the
coaches’ communicative skills correlate with athletes’ motivation and with the
quality and satisfaction associated with the performance and the coach as well
[11,13]. Moreover, a supportive attitude is linked with an increased adherence
to a training program in the long term [2], and with the quality of life con-
sequently, [3]. This is particularly important for the elderly population [18,19]
to whom our research is aimed. For these reasons, the “positive NAO” condi-
tion aims to recall the importance of the coach-athlete relationship, providing
a communicative style where the social bounding was maximized to impact the
motivation of the user and their interest in the training program. With this pur-
pose, we expected to observe that the robot providing positive interactions would
have higher scores in the following items: likability, sociability, usability, moti-
vation. We discuss the questionnaire design in the section Experimental Design.
We expected an increase in likability and sociability of the positive NAO since it
provided more interactions than the neutral one and was more supportive and,
in general engaging, as discussed above. Therefore, the hypothesis of our work
was that also with robot trainers the increase in likability and sociability would
result in more motivation for the user.
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Fig. 1. Some of the exercises that are part of the developed routine. It is possible to
notice how the robot can mimic even complex exercises to train the user.

2 Methodology

As mentioned in Sect. 1, the human-robot interaction procedure has been car-
ried out by using the NAO Robot. The NAO Robot is a humanoid robot that
performs complex motions thanks to its 25 degrees of freedom. For this task, the
robot version chosen is the NAO V61. In this version, it embeds a quadcore CPU
manufactured by Intel. The computational capabilities combined with the set of
sensors already on board of this robot allow it to be suitable for several tasks and,
hence, become a trainer capable of demonstrating physical exercises, as shown
in Fig. 1. The set of the onboard sensors of the robot include two cameras, four
microphones, IMU, touch and force sensors, and sonars. The interaction with
the user can happen using the robot microphones, speakers, and touch sensors.
By relying on these capabilities, the implemented training routine has been car-
ried out combining all these communication channels, as an evolution of [1]. This
routine allows to show the exercises and to supervise the execution of the human
by tracking the posture of the trainee person. Each exercise has been designed
by modeling the end-effector trajectories for the limbs of the robot. An inter-
action routine has been developed on top of the set of exercises. This routine
has been then differentiated for creating the positive and the neutral attitude.
Particular attention has been paid to the communication setup, and even the
voice of the NAO has been designed in velocity and pitch to make the robot
more gender-neutral and to better communicate with the user.

2.1 Training Routine

The training routine has been developed within the Choregraphe2 environment
by using built-in functions and python modules. It has been designed to support
real-time execution checking and a pool of exercises that can be easily chosen in
the training routine. Each exercise’s routine follows the schema depicted in the
Fig. 3. Each exercise starts with an introduction that contains an explanation of
1 www.softbankrobotics.com/emea/en/nao.
2 http://doc.aldebaran.com/2-4/software/choregraphe/index.html.

www.softbankrobotics.com/emea/en/nao
http://doc.aldebaran.com/2-4/software/choregraphe/index.html
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the exercise and optional motivational interaction with the trainee that depends
on the execution modality that can be positive or neutral. Then, the robot
executes the planned exercise, and, thanks to parallel modules, the execution is
fully monitored and supported. In fact, a correction module checks the human
posture through the cameras. At the end of the execution, the robot chooses to
go ahead or to repeat the current execution. In the positive training execution,
at the end of the exercise, the robot provides positive reinforcements by voice
and uses gestures to emphasize them. Some frames of a training routine and
interaction with the user can be seen in Fig. 2.

Fig. 2. Some frames taken from the videos that have been shown in the questionnaire.

2.2 Participants

The total number of involved participants is 63, with an average age of 77 years.
They have been divided into two balanced samples, composed of 31 and 32
participants each. The two samples have been created by relying on the prelim-
inary answers provided by the participants. In fact, we used age, gender, and a
self-evaluated sport capability to create the two matched groups. Both samples
have the same average age (77), and the standard deviation on the two samples
are respectively 5.37 and 4.8. The gender balance is 15–17 and 14–17 for the
Male-Female ratios in the two samples, respectively.
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Fig. 3. Schema of the single exercise training routine. This procedure is common to
both the positive and neutral trainer. The execution is fully monitored and supported.
At the end of the execution, the robot chooses to go ahead or to repeat the current
execution.

The participants have been engaged by Fondazione Mondo Digitale3 that,
among other activities, delivers digital education programs for elderly people.

2.3 Experimental Design

Due to the Covid-19 pandemic, we used online questionnaires because it was not
possible to conduct the study in presence due to restrictions. In the first phase
of the study, a preliminary online questionnaire was used to collect anamnes-
tic information relating to age, gender, nationality, education, and participants’
perceived physical condition. Subsequently, they were assigned to the two exper-
imental groups (“Positive NAO” and “Neutral NAO”) and were asked to watch
a video - that lasted approximately four minutes - where the NAO trainer pro-
vided either a high social bounding or a low social bounding toward the user.
Then the participants were asked to fill a 12-questions questionnaire. They had
to rate Motivation, Usability, Likability, and Sociability with a 5-point Likert
scale (1 = Strongly agree, 5 = Strongly disagree). The questionnaire is based on
the ALMERE questionnaire for Sociability (Perceived Sociability in ALMERE),
Usability (ease of use in ALMERE), and Likability (Perceived Enjoyment in
ALMERE). The Motivation item included the following questions:

The questions for the motivation item were inspired to [14]

– I would be curious to try the same workout
– I would be happy to train with this robot
– I think that train with the robot is useless

3 https://www.mondodigitale.org/it.

https://www.mondodigitale.org/it
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The video representing the complete interaction routines of “Positive NAO” can
be found at https://youtu.be/isad9g-Lc6E. The video for the “Neutral NAO”
can be found at https://youtu.be/W9OY19zzlwM.

3 Experimental Evaluation

This chapter presents the findings that emerged from the results obtained from
the responses of the subjects. The elderly pool has been divided into two sub-
groups subjected to two different implementations of the robot interaction rou-
tine. The first group followed a robot designed to offer a positive interaction,
encouragement, confrontation with the participant, and positive reinforcement.
The second group instead followed a robot that proposed a neutral interaction,
limiting the confrontation with the participant and without providing any type
of reinforcement. Each participant has seen the video individually. The responses
to the questionnaire proposed to the participants refer to four items: (1) Motiva-
tion, (2) Usability, (3) Likability, and (4) Sociability. Each response was mapped
to the individual items using a numerical value in the range (−2,+2).

Fig. 4. p-values for different precondition hypothesis on the four items

3.1 Results

We summed numerical values extracted from each question based on the refer-
ence item. Table 1 shows means and standard deviations on the individual items
for both samples. We can see that the averages for the Motivation, Sociability,
and Likability items are higher in the case of the positive sample and lower in the

https://youtu.be/isad9g-Lc6E
https://youtu.be/W9OY19zzlwM
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Table 1. Table of experimental values

List of values

Variable Motivation Usability Likability Sociability

μpos 1.33 2.55 1.78 1.79

σpos 1.81 1.29 1.65 2

μneu 0.67 2.7 0.67 1

σneu 2.87 1.91 2.17 2.46

case of the neutral sample. From the analysis of the table, however, it is clear that
all of the values reported are subject to high variance, which makes it difficult to
extrapolate information straightforwardly from the trend of the averages of the
individual samples. To gain an additional level of insight, we evaluated a p-value
test for each item, proposing three different conditions related to the emerging
populations P1 and P2 of the two samples: (1) P1 = P2, (2) P1 < P2, and
(3) P1 > P2. Figure 4 shows the obtained values. The analysis of these p-values
provides us with statistically significant results only in the case of Likability. In
fact, in the condition P1 = P2, the effect on this item is the only one below
the 0.05 threshold, thus passing the p-value test. Therefore, we can say that the
data in our possession clearly expressed a higher Likability in the sample exposed
to the robot with positive behavior. However, concerning the other items, it is
not possible to provide a similar conclusion using the p-value. Therefore, the
results led us to develop a second level of analysis for these items. The p-value
result indicates the impossibility of accurately inferring whether the difference
in results for the Motivation, Usability, and Sociability items is due to a struc-
tural difference in the samples (in our case, the different attitude of the robot)
or sampling noise. Hence, we perform a further and more in-depth analysis of
these items.

Considering the values in the Table 1, we call μpos, μneu, σ, n the μ of the
positive sample, the μ of the neutral sample, the standard deviation of the pos-
itive sample and the number of samples of the positive sample. We want to
demonstrate, the following hypotheses:

– H0 → μpos(mot) = μneu(mot)

– H1 → μpos(us) = μneu(us)

– H2 → μpos(soc) = μneu(soc)

So we evaluate three values z0, z1, andz2 for each hypothesis. By applying the
hypothesis test formula [6]

zi =
μpos − μneu

σ√
n

(1)

we obtain: z0 = 1.8 z1 = −0.77 z2 = 1.95. The z0 results is inside the reference
range (−1.96, +1.96), so the hypothesis H0 can be confirmed.

The z1 result confirms the hypothesis H1 being inside the range (−1.96,+1.96).
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Finally for z2 the result is borderline w.r.t the threshold range (−1.96, +1.96),
this does not allow us to perform a strong inference about the correctness of H2.

3.2 Discussion

The results obtained from the p-value test and the subsequent hypothesis tests
allow us to establish inferences on only three of the four proposed items. The
p-value provides us with a confirmation of the success in implementing positive
interaction traits for the robot, leading to higher results in terms of Likability
for the positive robot compared to the neutral robot. The general increase in
the robot Likability does not match an advantage in terms of Motivation and
Sociability; this is a phenomenon that requires future development and further
and more specific analysis. On the other hand, hypothesis testing confirmed
the hypothesis of equality of the two averages between the samples concern-
ing Usability, suggesting that this characteristic does not undergo appreciable
variations based on the change in the robot’s attitude. This phenomenon may
indicate to us that a sympathetic and positive approach may not necessarily be
more transparent in terms of clarity in how to use technologies as complex as
the proposed robot. Ultimately, although the separation between samples was
not always well defined, the overall results indicate a good acceptance of the
proposed idea in the elderly population. This can be seen in Table 1 where the
averages of all items in both samples are pointing towards positive values, despite
high standard deviations.

4 Conclusion and Future Work

In this experiment, we wanted to evaluate if a NAO trainer robot providing an
engaging and positive interaction was more likable than a robot with a neutral
style of interaction. From the results obtained, it was possible to conclude that,
in the case of the “positive NAO”, the Likability item increased, while the same
did not happen for the “neutral NAO” as we expected. Therefore, the people
who viewed the video where the robot trainer implemented a positive interaction,
with reinforcements and encouragement, ended up perceiving it as more pleasant
than people watching the neutral interaction.

While in the case of Likability, we saw a clear outcome, distinguishing the
results of positive Nao from the neutral one, this is not true for the other items.
Though for Sociability, we are not able to deduce anything from our statisti-
cal results, the hypothesis test done for Motivation and Usability suggests that
a greater enjoyment in the interaction does not result in an incentive for the
training activity. This goes against some suggestions of the current literature
on trainer robots [5,10,15]. Certainly, a more in-depth analysis involving the
in-person interaction of the elder with the robot must follow. In future stud-
ies, we aim to investigate the reason why the results between the positive and
the neutral NAO were not sufficiently differentiated in statistical terms. Our
hypothesis, to test in future works, is that (especially) the elderly population
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might be enthusiastic and astonished for the very fact of seeing an interact-
ing robot. In our case, the association Mondo Digitale who put us in contact
with the participants’ deals with topics concerning the digitalization of the elder
populations; therefore, it is very likely that participants were tech enthusiasts.
Therefore, as in the NATRS (Negative attitude toward robots scale), [12], we
plan to carry on a study in order to test our hypothesis on the over-enthusiasm
effect on the elder population interacting with robots, possibly designing an
“Over-enthusiastic attitude toward robot scale”.
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Abstract. This paper presents the first study evaluating methods in
remote teleoperation of multi-robot furniture for realistic applications.
In a within-subjects user study (N = 12), we tested two robot control
methods designed to work at different levels of abstraction in a cus-
tom web-based user interface (UI): clicking and dragging to indicate
a desired position and orientation for a single ChairBot (“set goal”),
and selecting from a list of preset arrangements for multiple ChairBots
(“select arrangement”). Participants were asked to use this UI to rear-
range ChairBots in a living room across three birthday-themed arrange-
ment prompts. We found overlapping preferences for how distinct par-
ticipants set of the room for particular party phases, and received high
experience and usability ratings for the novel web-based multi-ChairBot
controller design. Self-reported survey responses suggest that our design
is easy to learn and usable. Our works provides insight to future controls
design for and research on multi-robot furniture systems.

Keywords: Robot furniture · Teleoperation · Multi-robot systems

1 Introduction

Since Sirkin’s Mechanical Ottoman [14], the number of robots with furniture
morphologies in human-robot interaction (HRI) studies has rapidly increased.
In fact, intelligent embodied devices of numerous classifications and purposes
are now commonplace. A tech savvy consumer can program cookware, have
robots to clean their floor, setup their front door to unlock at their presence,
and automatically change the hue of their lights while they prepare for bed. Each
of these systems requires careful interface design, and human-in-the-loop control
schemes.

In this work, we synthesize prior work on robotic teleoperation, and robot
furniture to design an interface for effectively arranging three chair robots (Chair-
Bots) to explore furniture as a novel application for multi-robot systems. While
previous work has demonstrated the ability of robot furniture to communicate
with humans via motion [1,9,14], this paper presents the first study evaluating
a multi-robot ChairBot system in a particular context: a multi-phase event in
which the robots are controlled by a remote operator.
c© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 521–531, 2021.
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Fig. 1. A remote study participant interfaces with the system using the web UI with
an overhead view of the area. A researcher locally monitors the ChairBots.

In a within-subjects user study (N = 12), we tested two robot control methods
designed to work at different levels of abstraction in a custom web user interface
(UI): lower-level clicking and dragging to indicate a desired position and orien-
tation for a single ChairBot (“set goal”), and higher-level selecting from preset
arrangements for all ChairBots (“select arrangement”). Participants were asked
to use this UI to rearrange ChairBots in a living room across three arrange-
ment prompts based on phases of a birthday party. The goal was to explore the
following research questions and associated hypotheses:

RQ1: Is furniture re-arrangement a viable application for teleoperated
robots?

– H1: Participants will be able to create furniture arrangements that they
self-report to be satisfied with given the prompt.

– H2: People will have preferences about how to arrange furniture during differ-
ent phases of an event, and these arrangements preferences will converge
spatially across participants.

RQ2: What UI control abstraction is best suited for the task of arrang-
ing robot furniture?

– H3: Participants will rate the interface as at least moderately usable.
– H4: Participants will prefer using higher-abstraction commands (select

arrangement) relative to lower abstraction commands (set goal position) such
that they will have higher usability ratings and be used more .

– H5: Participants using high-abstraction commands (select arrangement) rel-
ative to lower abstraction commands (set goal position) will perform better
such that they will complete arrangements faster with fewer collisions.

Our results show that participants tended to create similar arrangements,
finding our novel web-based control interface easy to use, supporting the viability
of remote robot furniture arrangement as an application.
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2 Related Work

Our study builds on past work on robotic furniture, multi-robot teleoperation,
and UI design.

Robots and Furniture. Prior Human-Robot Interaction (HRI) research inves-
tigated the impact of furniture robots as actors in social environments. This
included studies where robots offered services [14,19], nonverbally communi-
cated needs [9] and invitations [1], as props in theatrical performances [18], and
received help from bystanders [5]. Implemented morphologies included ottomans
[14], drawers [11], trash barrels [19], chairs [1,9], walls [12], and adaptive mod-
ular joints [8]. Few works have evaluated the usability of robot furniture as we
aim to [12].

Remote Teleoperation. Much work on remotely operating multiple robots
has been conducted in various situations but few works directly relate to our
multi-robot furniture application. Of this work, most focus on observational
area coverage tasks (such as search and rescue [10]), or specialized niches (such
as geriatric care [4]). We did not find any examples of tasks related to creating
a multi-robot arrangement from an open-ended prompts (or other spacial multi-
robot task allocation problem) that would be directly translatable to our work
on multi-robot furniture.

User Interface Design and Evaluation. The design of an effective UI for
a novel task is a difficult process for which tested frameworks, and methods of
evaluation exist. Studies on mitigating detrimental human factors [3], and frame-
works for designing robot UIs [17] are useful early in the design process. After
an initial implementation, the UI can be evaluated by metrics related to user
workload, and task-dependent performance [3]. Additionally, further optimiza-
tions can be discovered via human studies. For example, Roldán et al. examined
user input in various situations to detect “bottlenecks and inefficiencies” during
a simulated multi-robot mission [13].

A significant design choice for human-robot systems is the level of abstraction
at which interactions occur [3]. Levels of abstraction in multi-robot systems can
span setting single-DOF low-level positional or torque commands, to commands
involving the hundreds of DOFs in a swarm, coalition, or factory line. Increasing
the level of UI abstraction for multi-robot system generally increases performance
for many tasks by minimizing human bottlenecks. However, for open-ended tasks,
higher levels of abstraction may impede the creative process which demands flex-
ibility. As open-ended process, like furniture arrangement, are different than well-
defined results-driven tasks, such as observational area coverage, the appropriate
level of abstraction is an apparent gap in the literature.

3 Technology

Our implementation of multi-robot furniture involves three robotic chairs
remotely tele-operable from a website. The ChairBot, originally designed by [9],
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consists of a wooden Ikea chair mounted on a Neato D3 vacuum. Three Chair-
Bots, an overhead camera tracking positions to localize the robots as they move
in a control loop, and a web-based UI make up our multi-robot furniture system1.
ChairBots planned paths greedily, independently, and were blind to obstacles such
that they sometimes collided with eachother or their objects in their environment.
The scene and web-based UI are shown in Figs. 1, and 2 respectively.

Fig. 2. The Tele-Chairbot UI with ChairBots in their starting positions. A live over-
head video feed shows the room which includes the ChairBots and a non-robotic table
with cupcakes. A joystick on the bottom-right can be used to send low-level motion
commands. The top bar has the higher-level controls: set goal, and set arrangement
template.

Prior work on our ChairBots UI had established the need for a screen-
based controller, and some of its primary features for control [6]. These features
include a remote interface, the ability to set and save arrangements, optimized
positional and velocity precision, and the ability to move in a formation or adjust
relative to room geometry. We build on the system and architecture by [16] by
simplifying the web layout, extending image overlays, and adding a method to
set individual ChairBot locations and orientations (“set goal”).

4 Methods

This section describes our experimental manipulations, metrics, and procedure. A
multi-robot system consisting of these ChairBots was chosen due to the implica-
tion that robotized furniture is a multi-robot system and the fact that ChairBots
1 Code and build instructions available at www.github.com/stoddabr/ros flask.

www.github.com/stoddabr/ros_flask
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have been previously studied in past HRI research [1,5,6,9]. A birthday party was
chosen as the backdrop for this experiment as it is a realistic and relatable example
of a multi-phase event, with similarities to larger-scale events [6].

4.1 Manipulations

Party Phase Prompts: The first manipulation we explored was prompting
participants to create furniture arrangements for three phases of this birthday
party. The three phases were handcrafted and chosen to represent distinct of a
birthday party: “cutting cake at the table”, “watching a magician perform on
the right side of the room”, and “a dance party on the floor”. Participants were
told the party prompts as quoted. These activities were chosen as they offer a
variety of social and behavioral considerations.

UI Type: A second set of manipulations aim to compare approaches for
abstracting the control of a multi-robot furniture arrangement system and to
determine their effectiveness. Users experienced two abstracted control modes:
(1) goal-based commands in which users could move one chair at time with
by clicking to set a waypoint location and orientation, and (2) arrangement
template, in which a drop down menu of present arrangement graphics could be
selected from. For both modes, we also provided a screen-based joystick for gen-
eral fine-tuning. These were chosen as they represent multiple levels of abstrac-
tion: controlling robots with low-level motion commands with the joystick, spec-
ifying higher-level goals for individual robots, and, at the highest-level, giving
goals for all robots. During the actual experiment, the first two trials partici-
pants experienced both of these conditions in a random order (balanced across
participants). For the third and final trial they had the option of using either or
both control modes.

4.2 Metrics and Measures

Five surveys, a semi-structured interview, and video recordings of the interaction
were recorded for each participant. They included a demographic survey, a
post-trial survey about self-perceived workload and performance, and a final
exit survey containing the System Usability Scale (SUS) survey [2]. The post-
trial survey included 7-point Likert scales from the NASA-TLX survey [7] which
measure mental demand, and frustration level along with three custom questions
about self-perceived success: ‘I was pleased with the final robot formation.”, “I
was successful in performing this the arrangement task”, and “I was satisfied
with my performance in this arrangement task”. The SUS Likert scale in the
exit survey was adjusted to a 10-point scale to increase granularity.2

The semi-structured interview consisted of 8 questions relating to perfor-
mance, experience, and insights. These and improvisational follow-up questions

2 Adjusted cumulative score: SUS = 1.11 * [(odd questions − 1) + (10 − even ques-
tions)].
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were asked in an order determined by the Study Conductor based on the flow
of the conversation. An example of the semi-structured interview can be seen at
timestamp 31:35 of [15].

4.3 Study Procedure and Participant Instructions

Participants started by joining a Zoom call with a Study Conductor, which
was recorded after consent was established (as per IRB-2020-0826). After the
demographic survey, the participant was asked to role play as the employee of a
company offering “robotic furniture arrangement as a service” wherein their job
was to teleoperate robot furniture to meet the needs of a client.

The participant was then provided with a Tele-ChairBot UI web link url.
The participants were initially trained in using the manual control method (see
Sect. 3). Next, the participant was similarly trained on either goal or arrange-
ment control. Once the participant was comfortable with the controls, they were
instructed to fulfill the client’s Party Prompt exactly as quoted in
Sect. 4.1. They were then allowed to ask clarifying questions which, naturally,
varied. No maximum time limit was set, however the participants were encour-
aged to not “keep the client waiting”. Once the participant was satisfied with
their arrangement or determined that no satisfactory arrangement was possi-
ble, the post-trial survey was administered (Sect. 4.2) before another trial was
started.

Robotic failures occurring during the study were mitigated in one of two
ways: the Study Conductor would attempt to fix the issue, or if the arrangement
was close to complete, would physically move the ChairBot as indicated by
the participant via the UI before the failure occurred. Failures required various
amounts of time to recover from; the most common involved situations where
the Neato batteries died requiring replacing or recharging (∼4 min), the Neato
firmware froze requiring a reboot (∼2 min), or the video server crashed requiring
the user to refresh their webpage (∼5 s). Examples of robotic failures can be seen
at timestamps 4:00, 14:45 and 18:27 in [15]. Upon completing all of the trials,
an exit survey and semi-structured interview were conducted.

4.4 Participants

The study consisted of 3 trials within 12 participants (6 males, 6 females) of col-
lege age, resulting in 36 trials total for analysis. 10 of participants were recruited
from outside of the robotics department and were unfamiliar with the research.
On average, participants reported having a master’s degree, higher than aver-
age levels of familiarity with robots, and were younger (all aged 18–35, μ ≈ 23)
signifying a higher technical competency than average.

5 Results

This section presents the results of these experiments: (1) participant party
phases prompts resulted in very similar arrangements for two of the three phases,
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(2) both UI control modes were rated highly by participants, and (3) participants
reacted positively to the UI.

Fig. 3. Images in a table showing final arrangement information. The Representative
Example was manually chosen to to show a typical/median arrangement. The Com-
posite image was created from the mean of all arrangement images for that prompt.
The Difference image shows the difference between the composite from an average of
all arrangements in grayscale colorspace.

Participants Created Similar Arrangement Patterns by Phase. Several
methods of composite image analysis were used to review combined final fur-
niture arrangements for trials shown in Fig. 3. To summarize, the cake phase
contains a pattern of participants gathering the chairs around the table, with
10 of 12 participants clustered chairs around the table. For the magician per-
formance, all but P03 arranged the chairs facing towards the right side of the
room, where they were told the magician would be performing. The dance floor
arrangements resulted in the largest variance: five placed chairs along the right
wall, three placed chairs around the table, with the other participants exhib-
ited more individualistic control arrangements that lacked emergent patterns.
A commonality across the dance party arrangements was that the center of the
room was left clear. No patterns were observed across UI Type.

No UI Control Modes were Favored. Participants were exposed to two
control modes (goal-based commands and arrangement template), however, nei-
ther UI control method was favored more than the other, failing to support H4.
Upon completion of the trials, trial video footage was reviewed and the num-
ber of times each control method was used and for how long was collected, as
shown in Fig. 4, as was the final control mode used to position the chairs. Only
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Fig. 4. UI control usage over time for trials in which participants could use all controls
(UI Type = Both). Empty areas represent a participant thinking or otherwise not
interacting with the UI. Moving multiple (2 or 3) robots at once was differentiated from
moving a single robot manually. A black line denotes the end of that trial. Participants
were given as much time as they needed for trials.

trials where participants were able to use all modalities (where UI Type = Both,
i.e., the third experimental condition for all participants) were analyzed. Manual
control was used 12 times, goal 12, template 9, and multi-manual 3. The average
use time, in seconds, was 36 for manual, 34 for goal, 32 for template, and 16 for
multi-manual. The qualitative data (Sect. 6) suggests that participants found
differing utility for each UI control mode.

Table 1. Mean value and results of an ANOVA tests run on trial-specific metrics and
tested conditions. Statistically significant results are bolded (p < 0.1 and F2,33 > 2.47).
For all survey questions, higher numbers are more positive.

Data source Metric Mean Manipulation P-value F-score

Trial survey Self-assessment of success 6.1/7 UI Type 0.88 0.12

Party phase 0.63 0.46

NASA-TLX mental demand 5.8/7 UI Type 0.69 0.37

Party phase 0.78 0.25

NASA-TLX Frustration 5.7/7 UI Type 0.61 0.50

Party phase 0.93 0.064

Video analysis Time to complete (s) 114 UI Type 0.95 0.042

Party phase 0.060 3.0

Number of collisions 0.30 UI Type 0.79 0.23

Party phase 0.28 1.3

Application and UI Experience were Rated Highly. Overall, our sys-
tem was rated positively by participants across the SUS, NASA-TLX, and self-
assessment questions. From our 12 responses, we arrived at a mean SUS score
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of μ = 75.1 (σ = 10.4). Based on [2], this result is a “Good” level of usability,
which supports H3. Interestingly, the first question of the SUS, “I think that
I would like to use this robotic furniture system frequently”, was contentious
with a wide distribution (μ = 5.4, σ = 3.0). The NASA-TLX portion of the trial
survey indicated that the tasks were considered simple and easy to complete
with all participants reporting low absolute levels of stress as shown in Table 1.
Self-assessment questions also resulted in high scores.

Across our two manipulations, there were no statistically significant results
within the trial survey responses, shown in Table 1, nor between exit survey
responses. This fails to support H4 as participants did not prefer using higher-
abstraction controls.

6 Discussion

Participants were able to create satisfying furniture arrangements,
supporting H1. Additionally all participants rating the system better than mod-
erately usable. The resulting average SUS rating of 75 (σ = 10, “Good” as per
[2]), and positively skewed survey scores support H3. However, the low number,
and higher-than-average technical competency of recruited participants may be
a confounding variable.

Party phase corresponded to furniture arrangement pattern, as illus-
trated in Fig. 3 which supports H2. However, the amount of variability differed
across prompts. The cake appears the most convergent (all but P03 placed Chair-
Bots around the table), followed closely by the magician (all placed chairs in a
central row facing right), with the dance prompt being more divergent (partic-
ipants sporadically moved ChairBots towards the walls). One explanation for
the cake and magician resulting in less variance than the dance prompt is the
former suggest arrangement towards an object or place whereas the latter sug-
gest an arrangement with furniture removed from an area. This suggests an axis
for which furniture arrangement prompts may be described: spacial attraction
around the prompt’s region of interest, whereby a positive attraction will result
in less arrangement variability than a negative one.

Participants Customize Arrangements Based on Minute Contextual
Criteria. As different participants generated different assumptions, this sup-
ports and provides an explanation for H2: furniture arrangement preferences are
heavily influenced by assumptions, about the use of the space based on available
context. For example, P03 broke the trend of arranging the ChairBots around
the table during the cake prompt saying they “assumed five people” were at the
party based on the number of cupcakes on the table. There may also be cultural
factors to take into account when for designing robotic furniture systems for
different social or regional application domains.
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7 Conclusion

In this work, we implemented a web-based multi-robot furniture teleoperation
interface, running a remote study in which participants controlled robotic chairs
over the internet. The study was designed to test a specific robot furniture appli-
cation – making arrangements for multiple phases of a birthday party – and eval-
uated several control abstractions. This work offers support for the applicability
of robot furniture arrangement as a useful domain for HRI research.

The results demonstrate that the participants were able to successfully create
arrangement to accomplish a variety of tasks during a multi-phase event in the
home, showing patterns in furniture arrangement across participants for well
defined activities (cake, magician), as well as differentiation for more open-ended
prompts (dance party). Though the goal control mode was the most popular,
perhaps because of the balance of flexibility and ease-of-use, participants did not
favor one control mode. For our study, UI Types did not significantly predict
usability or performance, instead, usability rates were high across the board,
indicating that multi-robot furniture UIs should be designed with controls over
multiple levels of abstraction.

This work presents the first application-based use of robot furniture involving
a remote operator rearranging furniture during a multi-phase event. Future work
will seek to evaluate such a system co-operating in and around the people for
whom the arrangements are meant to serve. Such results should also be tested on
larger-scale, and heterogeneous systems to support more complex social settings
such as conferences, classrooms, or social events.
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Abstract. With the practical demands in flexible and adaptive robot
manipulation skills in various environment settings, there are more chal-
lenges to be tackled to enable the robot with valid responsive behaviors
in task handling. This paper discuss on the methods to achieve agile
robot manipulations tasks with the advantages from human-robot tele-
operation, robot perception, knowledge-based robot programming, robot
motion planning and robot skill learning. Teleoperation serves as a typi-
cal Human-Robot Interaction (HRI) manner to allow the human user to
guide the robot behavior in a direct manner. Robot automation, includ-
ing the sensor perception (object detection, pose estimation etc.), motion
planning and motion control that can handle well defined problems, but
is also lack of general sense of understanding capability and not good at
solving not fully defined task challenges. An agile robotic system should
have a knowledge database which defines the skill sets required for the
robot to handle various robot tasks. Meanwhile, the system should be
able to take human assistance inputs through HRI when the robot is
stuck. Moreover, the system should be able to pick up new skill set with
each human knowledge input. Methodology discussion is the main scope
of the paper, and preliminary experiments on telemanipulation with UR5
robot are demonstrated to show the flexible robot guidance through HRI
inputs. Future work will aim to add in perception, motion planning, and
picking up skill modules to come up with a more agile solution in han-
dling variation of tasks.

Keywords: Telemanipulation · Motion planning · Knowledge based
programming

1 Introduction

In up-to-date robot applications, robotic systems are involved in various diver-
sified task scenarios which require the robot to act flexibly to the changes of its
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surroundings. Human and robot safety are the up-most priority to be taken care
of in all applications especially in a clustered environments with human traffics,
which require the robot to be well aware of the environments and make sure the
action are valid and safe for execution. This definitely bring in new challenges
to a robotic system because it is known that motion planning for robotic sys-
tem in clustered environments is already a big challenge. On the other hand, in
human-robot teleoperation, the robot is under human operator’s control through
certain human-robot interfacing channels. This enable human operator to guide
the robot to do a task, while the limitation is that due to the difficulty in tele-
operation and the task manipulation, the human operation cannot cope with
complex tasks with complex dexterous manipulation process. In such master-
slave mode, improving the human robot interfacing system can help to make the
slave robot easier to control. However, this is not sufficient. When a robotic sys-
tem is given a task, if the knowledge database can provide the robot with some
general protocol to follow, the robot sensor perception and motion generation
can assist to guide the robot to do tasks in sequential action primitives [15].

In the scene of robotic motion planning, there are powerful tools to generate
robot motion when the problem is well defined. For example, MoveBase in mobile
base motion planning, Moveit [11], OpenRave [10] and OMPL [12] for more
complex robot systems. In complex scenarios with the robot having high DoF
in clustered and dynamic environments, most software planners are not able to
provide a quick solution by themselves or the solution is not an optimal one as
per to the user request. Therefore, facing with a diversified challenges in robot
task manipulation, the thought of on-site assisting robot motion planning and
robot control with human robot teleoperation guidance become interesting and
have practical meanings. This is currently an open and complex problem in
which humans are able to assist robotic system to solve practical problems, with
the latter having restricted knowledge database, limited sensor perception and
AI strength in the robotic system.

This paper starts from the telemanipulation viewpoint, and will discuss on
following technologies and integration methods to improve a robot system to be
more flexible and efficient in handling a variation of tasks within unsupervised
environment settings.

1. Improving the human-robot interface through direct human-robot teleopera-
tion.

2. Knowledge-based robot programming and action generation.
3. Motion planning software solutions with collision safety in clustered environ-

ment.
4. Motion planning with human teleoperation guidance and robot perception.
5. Increasing knowledge pool based on human inputs.

2 Methodology

The general framework for the introduced robot task manipulation system is as
shown in Fig. 1, a high-level command are auto-generated or sent by the user to
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Fig. 1. Illustration of working flow for HRI guided telemanipulation.

the top control PC of the robot. At the beginning of the robot response, the high-
level controller will check through the knowledge database for a corresponding
matching action protocol. Such action protocol defines the general process for
the robot to behave. In addition, more detailed motion generations are computed
for the exact motions to be executed, where a motion generator will take the
inputs of human-robot interaction devices and plan the motion with respect to
the environment model. Lastly, human could also impart the task manipulation
skills to the robot through HRI and the robot picking up new knowledge module.

2.1 Knowledge Based Robot Programming

In order to allow a robot system to respond to high level commands smartly to
handle tasks autonomously with minimal human intervention, robot knowledge-
based instruction system [1,2] can be used to store the structured programming
database which defines the working protocol and reasoning logic of the robot
action. In such a way, once the high-level command is given to the robot’s top
control PC, the robot will find a match from the knowledge database and gen-
erate a sequence of actions. This provides the general guideline for the robot
to follow in the task handling. For simple tasks with supervised environments,
knowledge based robot programming can handle many tasks such as inspection,
pick and place, assembling etc. As long as the database generates sequence and
instructing the sequential action primitives for the robot to behave, such as
moving to a pose, taking a image, closing the gripper and dropping an item, etc.

However, for more complex task especially in clustered environment, the
robot may not be able to immediately figure out the valid way to maneuver even
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though the general protocol is provided. Additional and more powerful tools for
motion generation or human guidance through HRI are required.

2.2 Efficient Robot Teaching Through Teleoperation

Teleoperation have been studied for a few decades in robotics and there are
plenty of teleoperation solutions with HRI devices such as inertial sensor[3],
motion tracking [6,7], and haptic system [4,5] etc., to teleoperate a robot manip-
ulator to move within a workspace for task manipulations. However, the critical
technologies in task manipulation through teleoperation are able to handle tasks
with geometric constraints [8,16], to manipulate the arm flexibly with space
constraints, change of range/accuracy of motion, manipulation area[7], and tele-
operating under environment reaction forces[6].

To control the robot motion with HRI device inputs, whether it is a joy-
stick, an Omega Haptic Device, a motion capture device or any other interfacing
device, the robot is expected to fulfill the task demands and with as little latency
as possible. Let qr(t) be the robot configuration at t, xin(t) be the HRI inputs
at time t, then the motion remapping functions fm defines have the robot con-
figuration will be updated according to the HRI control inputs.

qr(t + dτ) = fm(qr(t), xin(t)) (1)

This is a motion remapping from the control input to the change of the
robot configuration with the consideration of latency dτ . Meanwhile, when the
task constraints such as geometric constraints need to be considered, the robot
configurations need to be further fine tuned by a constraint function fc to satisfy
the constraints in the task.

qr(t + dτ) = fc(qr(t + dτ)) (2)

Such details can be fined in [6,7]. To change the robot manipulating location,
the scale of motions, and the accuracy, the teleoperation system need to be robust
enough to change the robot indexing, to update the scale parameters in robot
motion remapping and the human operator need be able to adapt to the variation
of the system parameters quickly for system telemanipulation. Therefore, the
overall robustness of the system design in the telemanipulation solution is very
critical for robot task guidance.

2.3 Safety While Robot Telemanipulation

For robot teleoperation, the cognitive load, effort, and frustration of the human
operator could induce fatigue to the user as well as reducing quality of the task
manipulation. The robot safety as well as the safety of the user are of upmost
importance to the user and the system developer. Therefore, if there is a safety
module to guarantee the robot safety before the action is executed, this will be
significant [9] to protect both the robot and the system, as while as reducing
the mental stress of the user. This will require safety checking of planned robot
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motions before the robot is allowed to take the action. Given the look ahead
trajectory of the motion Tri, and the surrounding objects set Os, the collision
checking is to ensure that,

∀qr ∈ Tri,∀oi ∈ Os, Or(qr) ∩ oi = ∅. (3)

where, qr represents the robot configuration, Or(qr) represents the collision
model of the robot under configuration qr

It can be noticed that such safety checking is computationally expensive and
will result in latency in robot telemanipulation control. Therefore, developing
efficient safety checking algorithms are very critical. Otherwise, either the user
will need to pay special attention to take care of the system safety or the robot
hardware need to include safety feature to avoid robot unsafe behavior, or both
are required.

3 Teleoperation Based Human Robot Coordination

3.1 Robot Motion Planning with Environment Modeling

For robot tasks within supervised environment with known surrounding models,
provided the protocols defining the sequential motion primitives and the sensor
perception modules to be well behaved, the motion planning software are able
to generate the robot motion trajectory. To name a few of the well known open
source robot motion planing software, OpenRave [10], Moveit! [11] (both apply
OMPL library [12]), and there are also offline programming simulators such as
RoboDK. The inputs for the motion planning software are typically, an envi-
ronment model which can be point cloud outputs from sensors (3D scanner, 3D
lidar, structure light sensors etc.) or 3D collision models of the environment,
robot starting and goal configurations, and the robot kinematic model as well
as the robot collision model itself. For a simple problem, with simple robot
kinematics and model of both robot and environment, the planner can provide
very quick and valid robot path solution. However, for complex problem, finding
a path solution is not straight forward. The motion planning problem can be
highly complex due to the complex nature of the environment model, the com-
plex nature of the robot kinematics with tens of DoF, and complexity from a
large variation type of additional constraints such as position constraint, velocity
constraints, differential constraints and orientation constraints etc. Therefore, a
random search for a solution won’t work within practical time. Though sam-
pling based motion planners are proved to be probabilistic complete [13,14],
they cannot meet the criteria of generating motions efficiently enough in many
application scenarios. The solutions are either to develop faster planners or to
provide assistant to existing planners, such as adding sensor perception infor-
mation in the motion planning or provide clues to guide the motion planner to
find a solution more efficiently.
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3.2 Teleoperation, Perception and Robot Motion Planning

For task manipulation within a clustered environment, humans are good at scene
understanding and coming up with general guideline in problem solving. Robotic
systems are good at running proper algorithms to solve a well defined prob-
lem, for example, motion planning. Robotic hardware system is good at precise
motion when given the desired targets. Robot sensor perception is helpful in
detection and precise measurement. Therefore, advanced telemanipulation tech-
nology should take the advantage of robot automation, computer science and
human HRI guidance for more promising performance.

Telemanipulation allows a human operator to control the robot directly
through HRI devices. In clustered environment and with flexible tasks, such
direct guidance can guide the robot in the task manipulation. In this case, the
robot is more like a slave, or a tool with limited functions. For example, in a
scenario of tomato harvesting, the robot is not capable of localizing all the target
tomatoes, and a human telemanipulation control the robot towards the target,
where then the robot will be able to apply the perception and manipulation
skills to complete the rest of the work by itself through automation. Of course,
there are also possible solutions to allow the AI do the tomato detection and
automate the entire harvesting process with a robotic system. However, up to
now, there are many challenge in AI to solve such practical problem with a large
variation in environment and plant conditions. Human intervention, with as lit-
tle intervention as possible, is still very useful in guiding robot in task handling
within practical and flexible applications.

In telemanipulation, the task handling capability is limited by the teleoper-
ation system since the human user only can achieve a certain level of task tele-
manipulation skills with the system setup. For example, in precise positioning
and line/curve following with the end-effector of a robot, the human teleoper-
ation cannot be comparable with robot automation. If a task is clearly defined
within the knowledge database, and all the steps can be properly handled by
embedded sensor perception, computer algorithms and robot actuation control,
the whole process can be automated without human intervention. On the other
hand, if there are sub-tasks which the robotic system have no idea in, then the
HRI intervention will be helpful to help the robot out. However, it is not a smart
idea to automate everything, which are either not economical or not possible for
now.

While a human guides the robot through HRI based on his problem under-
standing, the robot software program will take inputs from the sensors and
reasoning logic to define actions for execution. The robot should be focusing
on the task which is designated by the human operator instead of straying
off to other tasks. Such ambiguity happens in a robot system, and therefore
a well designed robot software should include full description of the knowledge
for the task to allow the robot handle task correctly with the available sensor
inputs and HRI guidance. In problems with well defined protocols, the combina-
tion of human guidance and robot automation is straight forward. For example,
for robot motion planning, more specifically a mobile manipulator, in complex
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scenarios, the human can guide the robot software with sampling domains, way-
points to go through, direction to choose and initial approximate path etc. Such
intervention serves as useful inputs to robot motion planners to generate a valid
path which is better in quality and efficiency as compared to a solution generated
with no human guidance.

From the teleoperation viewpoint, robot automation can also assist in a typi-
cal teleoperation tasks to handle tasks more efficiently. When the sensor percep-
tion detects the targets and computer software confirms the task requirement,
the robot software then can plan the motion and execute the robot to complete
the task automatically without manual control from the human.

New Knowledge Picking Up. Human intervention through HRI also opens
a door for continuously teaching robots the skills in doing new tasks. Of course
the skill set for a task need to be complete, including the protocols to define the
work flow and the detailed primitives to deal with each sub-tasks [6,7,15]. This
will require a new knowledge picking up software which will be interfaced with
the human inputs, data storage and methods to reproduce the action in future
applications [1,2].

4 Teleoperation Experiments

Fig. 2. Telemanipulation of UR5 Robot with HTC VIVE Controller.

Teleoperation systems are built for human operator to interface with the UR5
robot through the HTC vive controller system. With proper motion mapping
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and motion constraint implementations, the robot can be controlled by the user
in all 6 DoF, as shown in supplementary video [17]. The robot follows the human
control smoothly by moving in all directions and able do object grasping tasks.
It is also able to move within a constraint manner to meet the task require-
ments, the planner constraints along XY plan and the linear constraints with
rotation and translation along the Z axis are demonstrated. Such are prelimi-
nary demonstration results. And with more implementation to system with more
DoF, mobile manipulator for example, the usefulness of teleoperation in assisting
robot in agile task manipulation can be evaluated more extensively (Fig. 2).

5 Conclusion

This paper discusses on the technologies in developing agile robotics systems in
handling flexible and adaptive tasks to meet the demands in practical applica-
tions in unsupervised environments. The author propose to apply the knowledge
based programming to store general protocol information in task handling skills
and apply robot automation, including sensor perception, computer software
algorithms in motion planning, detection etc. to figure out detail actions in task
handling. Moreover, HRI inputs, specifically teleoperation based human guid-
ance to robot manipulation and skill teaching are added into the loop to enable
the robot to handle more flexible tasks and adapt to new task scenarios. Finally,
the robot skill or knowledge picking up module can be added to allow the robot
system continuously improve in task handling capability. This paper focus more
on methodology discussion and shows preliminary experiments using telemanipu-
lation to get a UR5 robot to do simple tasks. Future work will aim to implement
perception, motion planning, skill picking up modules to robotic systems and
study on specific implementation challenges in agile robot task manipulation
with robotics technology and human HRI guidance.
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Abstract. Mobile robots, in modern technology, demand a more robust
localization in a complex environment. Currently, the most commonly
used 2D LiDAR localization system for mobile robots requires maps
that are constructed by 2D SLAM. Such systems do not cope well with
dynamic environments and also have high deployment costs when moving
robots to a new environment setting as they require the reconstruction of
a map for each new place. In modern days, a floor plan is indispensable for
an indoor environment. It typically represents essential structures such
as walls, corners, pillars, etc. for humans to navigate in the environment.
This information turns out to be crucial for robot localization. In this
paper, we propose an approach for 2D LiDAR localization in an architec-
tural floor plan. We use partial simultaneous localization and mapping
(PSLAM) algorithm to generate a map while we concurrently aligned it
to the floor plan using Monte Carlo Localization (MCL) method. Real-
world experiments have been conducted with our proposed method which
results in robust robot localization, the algorithm is even evaluated on a
large discrepancies floor plan (discrepancies between the floor plan and
real-world). Our algorithm demonstrates that its capabilities of localizing
in real-time applications.

Keywords: Localization · Floor plan · PSLAM · Gradient direction
grid map · Gaussian map · MCL

1 Introduction

As the entire industry moves forward to industry 4.0, automation is preferred
over human involvement. During this movement, using an autonomous mobile
robot (AMR) is one of the most feasible solutions. And an important aspect of
AMR is robot localization. A common way of robot localization is to, firstly,
use SLAM to create a map and, thereafter, perform MCL. This is considered
exceedingly costly in terms of both time and effort as it requires an officer to
perform mapping prior to each deployment.

Generally speaking, a floor plan for the indoor building is available, the ques-
tion that arises is whether a robot can localize accurately in it. Many turn away
from utilizing floor plans as a means to localize because of the nature of the floor
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plan. A floor plan generally includes immutable features such as walls and cor-
ridors and excludes, after renovation, cubicles, pressurized walls and furniture.
This is challenging for MCL as cubicles and furniture that are not indicated in
the floor plan may occlude the wall immutable features. Apart from that, the
floor plan may, also, differ from the real environment resulting in serious con-
sequences when in use. With the above setting, we proposed PSLAM using 2D
LiDAR to accurately localize robot in an architecture floor plan.

This paper breaks down the problems of using single frame LiDAR MCL
on the floor plan, and then proposed a new modified MCL approach with the
use of our contribution works, which are PSLAM, diffused occupied cells and
surface normal information to deal with those problems. Further on, we show
the experiment results and concluded with future work to improve our approach

2 Related Work

2D LiDAR base robot localization has been widely studied for decades. In the
old days, 2D LiDar localization uses algorithms like Kalman filters, histogram
filters and particle filters [7]. More recently, particle filter-based approach that
is proved to be one of the most efficient approaches is called Monte Carlo Local-
ization(MCL) [4]. Further on, in [3], fox implements Kullback-leibler Divergence
(KLD) sampling to MCL and makes it more efficient and named it Adaptive
Monte Carlo Localization (AMCL). AMCL has been widely used for most com-
mercial products with the obvious advantages in efficiency, stability and accu-
racy. However, it does not perform for localization on a floor plan map due to
the existence of huge discrepancies.

The works in [1,2] have a similar objective to our approach. In their app-
roach a robot is localized on an architecture floor plan by using G-ICP based
SLAM. Similarly, Vysotska et al. [8] used Graph-based SLAM with prior infor-
mation from Open StreetMap. Their approach is to align and optimize an urban
environment SLAM map using ICP on Open StreetMap to improve the robust-
ness and quality of the generated map. Both of these approaches use ICP based
methods to optimize the robot pose with full SLAM map where we use MCL
to optimize the robot pose with PSLAM map. However, matching of full SLAM
map will be incorrect when the shape and scale discrepancies between floor plan
and real environment is substantial. In this case, scan matching algorithm will
fail to match correctly resulting in undefined localization for robot which is unde-
sirable. For example, if the robot is driving in a long straight corridor without
any feature to identify its distance travelled in the middle of the corridor, the
floor plan discrepancy and SLAM accumulated error will result in ICP based
method lost to fit the floor plan at the end of the corridor due to overshoot or
undershoot too much. The reason is their method is building a full SLAM map
and their transformation of the SLAM map is fixed to the floor plan, it may
fail when the floor plan differs from Lidar observation too much. However, our
method is using PSLAM that only keep a number of historical frames which
helps to reduce accumulate error, and the transformation of the PSLAM map



Partial-Map-Based Monte Carlo Localization in Architectural Floor Plans 543

is dynamic on the floor plan. This creates an effect of localizing on a globally
inconsistent but locally consistent map [6]. Consequently, PSLAM can fit nicely
to the floor plan with the MCL approach when navigating in those situations.

3 Problem Statement

Traditional particle based methods like AMCL take single frame LiDAR reading
as input to match against the map. However, a floor plan as a map is expected to
have high discrepancies compared to the real world, so they may not work well.
In this work, we address the problems of Single Frame based AMCL (SF-AMCL)
when applying to an architecture floor plan that misses significant features of
the real environment. We have targeted 3 scenarios that often cause failure in
localization. The objective is that by solving these problems, the robot should
be able to adapt to a larger discrepancy.

3.1 Problem Scenario 1

Fig. 1. Scenario 1: floor plan’s scale is slightly off. In a) LiDAR endpoint (red) cannot
associate to floor plan’s occupied cell (black) when the robot is at the correct pose
(green arrow), in b) robot has 2 poses that exhibit strong beliefs. (Color figure online)

Although a floor plan represents a to-scale permanent structure for indoor, its
layout dimension is slightly incorrect compare to the true scale. If directly used
floor plan as a map for SF-AMCL, this system will easily enter a zone where
LiDAR’s endpoints cannot properly correspond to floor plan’s occupied cells,
although is at a low discrepancy region at the true pose as Fig. 1a) shows.
Figure 1b) shows the consequence of the system that it may wrongly believe
itself at 2 clusters of particles which will further lead to the same consequence
as Sect. 3.2.

3.2 Problem Scenario 2

A floor plan is expected to have a walls layout, however, this can be another
reason that causes multiple local maxima. This is because the wall layout in
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Fig. 2. Scenario 2: a–c) shows the sequence of the robot (green arrow) moving forward
and robot truth pose where the robot’s LiDAR (red) lies on the floor plan’s occupied
cells (black) and align correctly. d–f) shows the same moving sequence but the robot
localized wrongly due to picking the wrong local maxima of the posterior cluster. (Color
figure online)

the floor plan shows 2 parallel lines of occupied cells representing the front and
rear surfaces of the wall, where the front surface is visible by robot LiDAR’s
observation and the rear surface is not. Although all clusters are initially near to
each other, the clusters may divert out after a few iterations while the robot is
moving. This can further cause wrongly localize when selected the wrong cluster
due to the wrong cluster may have a greater match as Fig. 2d–f) shows.

3.3 Problem Scenario 3

Fig. 3. Scenario 3: a) Robots do not have LiDAR endpoints (red) correspond to any
floor plan’s occupied cells. b) Robots drift to the wrong pose after several iterations to
get more corresponding points from the floor plan’s occupied cells. (Color figure online)
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Using a Single LiDAR frame directly to compute MCL has a high chance that
LiDAR reading has no endpoint match to the permanent structure on the floor
plan when the robot enters a zone where the walls are completely occluded by
furniture. In this situation, particles that lie on or near the true pose have low
or no weight. This causes MCL wrongly to predict the robot pose away from
the true pose as Fig. 3a) shows. Figure 3b) shows the consequence of after a few
iterations, the LiDAR endpoint can match most of the occupied cells but the
robot is not at the correct pose, due to particles distributed away from the true
pose.

4 Proposed Method

This work aims to localize the pose of a robot in an architectural floor plan using
Partial-Map-Based MCL. We believe that by overcoming the problems shows in
Sects. 3.1, 3.2 and 3.3, this Partial-Map-Based MCL should be able to localize
the robot in the floor plan.

4.1 Partial Simultaneous Localization and Mapping (PSLAM)

Fig. 4. PSLAM occupied cells (blue line) aligned to floor plan occupied cells (black).
The weight in the true pose is maintained when entering a fully wall occluded zone
from 2D LiDAR observation. (Color figure online)

PSLAM is a simplified version of pose-graph SLAM, which differs from stan-
dard pose-graph SLAM in 2 key ways. The first difference is that it involves
only frontend scan-matching processes and do not has closed-loop backend pro-
cesses. Utilizing scan-matching, we incrementally aligned the current scan to the
previous map to maximize the likelihood of the current pose relative to the pre-
vious one. Because of its lack of a closed-loop process for reducing accumulated
error on full mapping, it is fine for locally consistent maps, but not for globally
consistent maps (Fig. 4).

Thus, the second difference takes place, which is that PSLAM stores only
the last N frames of historical scans when constructing its map. Older frames
will drop off when there are more than N of historical frames. The effect will be
similar to moving windows. It is to keep the locally consistent map accurate, and
accumulated errors on mapping will not be large. These differences are to reduce
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computational power compare to a pose-graph SLAM, due to a small number of
historical frames do not need closed-loop adjustment.

The purpose of PSLAM is to overcome Sect. 3.3. Assuming the real world has
a sparse low discrepancy region compared to the floor plan, we used PSLAM to
act as an extended LiDAR observation zone to keep track of low discrepancy
regions using MCL and maintain the belief on a true pose when entering to a
high discrepancy region. Besides, with frame drop off capability, the PSLAM’s
map aligns the robot better on a floor plan map region with an inaccurate scale,
and lower computational power when executing MCL compare to the full SLAM
map.

Fig. 5. surface normal arrow direction of grid map sample from a floor plan (a) and
PSLAM map (b), and sample of Gaussian filter on a grid map (c).

4.2 Gradient’s Direction Grid Map

To solve Sect. 3.2, we need to take surface normal information from LiDAR obser-
vation and floor plan structure into account. Assume the robot has built a SLAM
occupancy grid map using 2D LiDAR, the direction of the wall surface normal
that can view by the robot can be predicted on occupied cells by computing angle
pointing toward empty region (white) and opposite unknown region (grey) as
Fig. 5 (b) shows. Hence, this can be easily differentiated if particles matching
against the rear surface of the wall in a floor plan during computing MCL due
to the normal direction is opposite. In this concept, we implement a Sobel filter
to compute the direction of the wall surface facing. Sobel filters are a pair of
convolution kernels that compute horizontal changes Gx and vertical changes
Gy, and commonly use it to compute magnitude using Eq. 1 to find edges in
an image. These 2 changes are also able to compute the orientation of gradi-
ents in an image using Eq. 2. Hence, we used occupancy grid maps as grayscale
images by filling unknown, occupied and empty cells with grayscale pixel val-
ues of 255,100 and 0. Then, applied Sobel convolution process and generate a
gradient direction grid map using Eq. 2.

direction, mapΘ = atan

(
mapGy

mapGx

)
(1)
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magnitude,map G =
√

mapGx
2 + mapGy

2 (2)

4.3 Gaussian Grid Map

To solve Sect. 3.1, where the scale of a floor plan is slightly wrong, we need to
diffuse the occupied cells where the centre of diffused occupied cells carried higher
value and lower when away from the centre. This is to avoid particles forming
multiple clusters when entering a region where the floor plan scale is slightly
different. With this setting required, we employed a Gaussian filter to the map.
This helps to diffuse the occupied cells’ value with bell curve characteristics as
Fig. 5c) shows.

4.4 Implementation

Fig. 6. Preprocess steps for floor plan, a) Original floor plan map. b) Process through
flood fill. The region in black is the region that the robot able to travel. c) After
employed Gaussian with Sobel filter. The occupied cell has thickened and indicated in
grey-scale which represented −180 to 180◦.

To implement all the ideas, we used the MCL method as a skeleton to integrate all
the proposed ideas together, except for PSLAM, which is running as a separate
node and continuously publishing updated PSLAM maps. MCL consists of three
phases, which begin with the initialize phase, then the prediction phase, and end
with the updating phase. As a recursive step, the update phase is repeated after
the prediction phase.

We begin the initialize phase by giving an initial guess pose and preprocessing
of the floor plan as Fig. 6 shows. In the floor plan map, the flood fill begins to
fill up at the initial guess pose, and a number of particles are also randomly
distributed around the guess pose. Flood filling creates fake unknown cells and
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empty cells in the floor plan, so the Sobel process can easily determine gradient
direction from this flood fill map. Gaussian kernels are applied prior to Sobel
kernels, this results in thickening and smoothing the gradient direction map fΘ
for occupied cells and with a diffused effect on the magnitude map fG around
occupied cells.

q
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2
∣∣∣∣atan
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fx
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π
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q
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, if q

[m]
j,t > 0
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In the prediction phase, we applied Gaussian noise to simulated motion model
for each particle to predict pose of the robot which is same as MCL approach.

Thereafter, in the update phase, we took the updated PSLAM map to gen-
erate gradient direction grid map, sΘ, then use it with floor plan’s direction grid
map, magnitude map and particles pose information for measurement model.
We used Eq. 3 and 4 to compute total weight wt of each particle [m], given that
the cell’s magnitude G ∈ G, cell’s angle θ ∈ Θ, j is (x, y) coordinates of occupied
cell in PSLAM map, fx

[m]
t stand for robot predicted pose at the floor plan,f ,

of the particle [m], sxt is robot pose in PSLAM map s. Equation 3 is to com-
pute the angle’s fitting score q

[m]
j,t for each occupied cell in PSLAM map, where

sθ(jt) is the angle value of occupied cell j in PSLAM map s. fθ(jt,
fx

[m]
t , sxt)

the angle value of floor plan’s cell that associated with PSLAM map’s occu-
pied cell j when pose of the robot is predicted at fx

[m]
t in floor plan and sxt in

PLAM map. Equation 4 define that if the angle’s score of occupied cell at par-
ticular particle [m] is positive then further enhance score by taking associated
cell’s magnitude of floor plan fG(jt,

fx
[m]
t , sxt) and distance d(jt,

sxt) between
j and robot pose in PSLAM sxt into account, otherwise output zero. This is to
strengthen the score received from j if coordinate j is near to robot pose, and if
is fitting in or close to floor plan occupied cells. The reason for dividing d(jt,

sxt)
is to avoid the situation that the robot drifts away from the true pose because of
high accumulated error from the past PSLAM historical frame that matched to
the discrepancy floor plan, and neglected the matching of j that near to robot.
The score of PSLAM map occupied cells are then accumulated to present as a
weight of the particle [m]. The pose of the particle with the highest weight wt

is used as the corrected robot pose.
After weights update, it re-samples a new collection of particles according to

the current particle weights and starts the next iteration at predict phase.
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5 Experiment Setup

Fig. 7. The trajectory obtained with our localization approach (Blue) at level 9 floor
in our office building. The white region is the PSLAM map dynamic frame. The red
boxes are to show regions occluded with working cubicles in the real environment and
it is not drawn in floor plan map in the experiment. (Color figure online)

There is no publicly available 2D LiDAR-based SLAM dataset that comes with
an architecture floor plan. At the moment, we evaluate our localization approach
in our office building level 9 and level 12. We prepared a 2D LiDAR map built
by G-Mapping [5], then aligned the 2D floor plan map to match with the G-
Mapping built map with eyeballing, so both maps share the same resolution and
same world coordinates.

We operate a robot, Pioneer P3-DX equipped with Hokuyo UTM-30LX
LiDAR with 250◦ of a field of view and 30.0 m range, to do navigation tasks
in our office building. All the sensors reading and odometry information are
recorded by using Rosbag. Then we extracted the sensors reading from Rosbag
to perform localization using an AMCL approach with G-mapping built map as
ground truth of localization information. After that, we used the same Rosbag to
perform our proposed method for localization with different PSLAM’s historical
frame numbers. Both localization reading is then compared and compute errors.
Figure 7 shows the sample of level 9 environment and trajectory that the robot
has travelled during the experiment.

6 Result and Discussion

From Fig. 8, the line chart tested in level 9 and level 12 do not show accumulating
error effect. The average error show in the bar chart can see that the larger
the historical frame number in PSLAM, the localization error reduced. There
are some parts of the journey that have large distance errors, this is due to
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Fig. 8. Result of error over time for proposed method on floor plan experiment and
average error (last row)

Fig. 9. Result of error over time for experiment AMCL on floor plan experiment, red
arrow is the time line start to lost track, green arrow is the time line reinitialize pose
of the robot. (Color figure online)

Fig. 10. The weights heatmap of particles that uniformly distributes around initialize
pose, using PSLAM as input observation. Left image is using the proposed method
(Gradient Direction and Gaussian map with proposed Eq.4), right image is using a
conventional method that is similar to AMCL (sum of matched occupied cells). The
red circle is a high weight particle distribute around the true pose, the blue circle is
high weight particles distribute around the wrong pose. (Color figure online)
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G-Mapping built map and floor plan have some regions are not properly fit
due to floor plan error. For instance, the curve corridor is not fully matched
and some of the corridors’ width is smaller drawn in floor plan compare to the
actual environment. All this unaligned region might affect the error measurement
results. However, this did not cause the robot to lose track of its pose for most
of the experiment, except for the experiment with 50 frames in level 12 which
lose track at the last 4 min.

We also tested using AMCL directly using floor plan as a map for level
9 and level 12, however, AMCL approach failed to localize when entered high
discrepancy region. The robot drifted away from the true pose and cannot recover
its pose until reinitialize the pose in map again as Fig. 9 shows the result of the
experiment with AMCL on floor plan as grid map, it lost multiple time and we
have reinitialized it multiple time to complete the run. Despite this, our approach
did not encounter significant failure for any dataset in the same environment.
There were only a few situations, qualitatively speaking, in which the robot was
poorly localized, mostly because the PSLAM map was too small (low number of
historical frame) and the floor plan metric inconsistent.

In Fig. 10, we compared two different weighting methods for each particle
using PSLAM as the input observation, and both are in the same pose. In the
figure on the left, the weight of each particle has been calculated using a Gradient
Direction with a Gaussian grid map and the proposed formula Eq. 4. The right
image is similar to the AMCL endpoint weighting method, which is using the
total number of cells that are occupied on the PSLAM map which corresponded
floor plan’s cells are occupied as well. Whenever the particle’s color is dark
red, the weight is high, whereas when the colour is white or yellow, the weight
is low. The figure shows the proposed method has more high weight particles
focus around true pose, however, the conventional method has 2 similar high
local maxima of high weight particles cluster, and the robot has selected the
wrong cluster to localize itself. This is similar to Sect. 3.2 that discuss earlier.
This illustrates that the proposed method successfully decrease the weight of the
particles that with the wrong matching of surface normal direction which solved
the Sect. 3.2 problem.

7 Limitation and Future Work

From the experiment, we encounter a few weak points of our approach which
cause poor localization. It must be at least have one low discrepancy region
within the PSLAM map zone to keep particles focus. For instance, our approach
may have poor localization performance in a big cluttered hall. The PSLAM
build map must be accurate, in a crowded since where pose-graph SLAM failed
to build a map or inaccurate map may cause localization in floor plan fails.
Moreover, The LiDAR sensor should no scan a transparent or reflective surface
which will cause wrong measurement. Furthermore, the architecture floor plan
must be accurate to a certain tolerance, a not-to-scale floor plan does not apply
to our approach.
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In this work, we present a new Partial-Map-Based Monte Carlo Localization
approach that using a PSLAM built map match to a to-scale floor plan using
MCL with gradient direction and Gaussian grid map. This combination approach
shows significant adaption to the missing information in the floor plan. In future
work, we need to make it robustly adapt a larger variety of building’s floor plans
by enhancement work in PSLAM to adaptively control the numbers of historical
frames to be keep. Furthermore, the PSLAM built map can be recycled to form
a proper 2D LiDAR map which benefits other commercial robots that do not
have the floorplan localization capability.
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Abstract. Detecting objects in a dynamic scene is a critical step for
robotic navigation. A mobile robot may need to slow down in presence
of children, elderly or dense crowds. A robot’s movement needs to be pre-
cise and socially adjustable especially in a hospital setting. Identifying
key objects in a scene can provide important contextual awareness to
a robot. Traditional approaches used handcrafted features along with
object proposals to detect objects in images. Recently, object detec-
tion has made tremendous progress over the past few years thanks to
deep learning and convolutional neural networks. Networks such as SSD,
YOLO, and Faster R-CNN have made significant improvements over
traditional techniques while maintaining real-time inference speed. How-
ever, current existing datasets used for benchmarking these models tend
to contain mainly outdoor images using a high-quality camera setup that
is usually different from a robotic vision setting where a robot moves
around in a dynamic environment resulting in sensor noise, motion blur,
and change in data distribution. In this work, we introduce our custom
dataset collected in a realistic hospital environment consisting of distinct
objects such as hospital beds, tables, and wheelchairs. We also use state-
of-art object detectors to showcase the current performance and gaps
in a robotic vision setting using our custom CHART dataset and other
public datasets.

Keywords: Object detection · Robotic vision · Contextual
understanding and navigation

1 Introduction

Object detection has become a critical part of robotic vision and navigation. It
is actively being used in several fields such as service robots, delivery robots,
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(a) Robot base (b) CHART dataset

Fig. 1. (a) Our mobile robot base consisting of multiple visual sensors - six SONY
IMX335 and two Structure Core cameras. (b) Our CHART dataset. The images col-
lected in the hospital environment consist of multiple different hospital objects such as
beds, tables, and wheelchairs. These images obtained from the visual sensors contain
motion blur, occlusion, sensor noise, and significant distortion.

automated inspection [6], object tracking [10], autonomous driving [11], semicon
defect detection [7,8], and 3D understanding [9]. Robotic navigation not only
aims at getting from source to destination, but also how to get there in the most
efficient and socially acceptable manner. A mobile robot may need to slow down
or halt movement in presence of a moving bed or wheelchair in a hospital envi-
ronment. Identifying key objects in such an environment can provide important
contextual awareness to a robot.

Recently, object detection performance and speed has improved at a remark-
able rate with the rise of deep convolutional neural networks (CNNs) [5,12,13].
Most of the current existing benchmarks test the performance of object detec-
tion in settings that are mostly impractical for a service robot. The images con-
tained in such benchmarks are sharp, devoid of motion blur, consists of objects
present in various locations and sizes, and contain thousands of images of each
object class. Scientific community has mainly focused on improving the system
architecture and resolving pipeline-bottlenecks to improve object detection per-
formance. This has also led to the community adopting single stage detectors
such as Single Shot detector (SSD) [5], You Only Look Once (YOLO) [1] more
often than two stage detectors such as Faster R-CNN [13]. Recently, there has
been a shift towards imparting contextual awareness to robots for navigation
in a given environment. This can be done successfully if we are able to detect
objects present in the scene accurately and use them for contextual reasoning.
For example, if we detect hospital beds and wheelchairs, it is highly likely that
we are in a hospital room than in a cafeteria. Usually, a pretrained model is used
as a starting point and then trained on the new classes, commonly referred to
as transfer learning. In an ever changing environment, a robot can go through
major changes and upgrades over the course of time. This results in a shift in
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data distribution resulting in drop in performance of previously trained models
on the new captured images.

In this work, we investigate the performance of state of the art deep learning
based object detectors on two different datasets - our custom CHART dataset
and public datasets consisting of PASCAL-VOC [2] and MSCOCO [4]. Our focus
is primarily on CHART dataset. The dataset is captured in a hospital environ-
ment using three different visual sensors - SONY IMX335, Asus Xtion Pro, and
structure core RGB-D cameras. We perform comprehensive training on stan-
dalone, mix, and partial labeled data to investigate how the most popular object
detectors perform in a real setting where a shift in data distribution may occur
due to various reasons. The robot navigates around several objects such as hos-
pital beds, tables, wheelchairs, and staffs. We show that a slight change in data
distribution can affect object detection performance on the 3 main detectors,
and we quantify this drop of accuracy across our datasets. This demonstrate
that current deep learning approaches still lacks flexibility and are difficult to
apply in a changing environment.

We discuss the details of our dataset in Sect. 2. Section 3 presents the details
on our chosen three state-of-the-art object detectors. We report our results and
observations using the chosen detectors in different settings in Sect. 4. Finally,
Sect. 5 discusses our future research directions.

2 Datasets

We investigate the performance of deep-learning based object detectors on two
different datasets - our custom CHART dataset and public dataset consisting of
PASCAL-VOC [2] and MS COCO [4] datasets. We focus on training and evalu-
ating on two objects - hospital beds and overbed tables. As the public datasets
do not contain these aforementioned objects, we customized the networks to
train our models on two different classes - person and chair. Additionally, we
do not compare the model performance across these two datasets (CHART and
public) due to different object classes and only evaluate the consistency of our
observations.

2.1 CHART Dataset

We collected our CHART dataset in a Singapore hospital on two different days
using a different set of sensors for each day mounted on our custom robot
as shown in Fig. 1(a). We created three different datasets namely CHART1,
CHART2, and JOINT dataset. CHART1 dataset is collected using an Asus Xtion
Pro camera in a room containing different hospital beds and tables. CHART2
dataset is collected using a SONY IMX335 camera and a Structure Core cam-
era. JOINT dataset is a combination of these two datasets. We only focus on
the RGB data from these cameras and ignore the depth component of Xtion
Pro and Structure Core RGB-D cameras for creating our dataset as shown in
Fig. 1(b).
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Table 1. CHART Dataset information

Subset

Training Set Test Set

# Images
# Instances

# Images
# Instances

Beds Tables Beds Tables

CHART1 638 606 141 160 240 45

CHART2 1241 942 411 310 356 143

JOINT 1879 1548 552 470 596 188

Both datasets contain realistic scenarios where a mobile robot moves around
the scene containing multiple objects of interest. The images contain sensor
noise, distortion, and motion blur frequently. The objects in CHART1 dataset
are well spread out with small occlusions present in the scene. CHART2 data
is more complex as the objects of interest are often occluded or at a significant
distance from the robot base and consist of different lighting conditions. Thus,
these differences in sensors, lighting, object consistency, and complexity cause
a change in data distribution. The motivation behind the dataset is to analyze
how current state-of-the-art detectors perform when data distribution changes
in a realistic environment. CHART1 and CHART2 datasets consist of 798 and
1, 551 images respectively. The datasets consists of 846 and 1, 298 instances of
beds and 186 and 554 instances of tables respectively. CHART1 has a higher
bed density and CHART2 has a higher table density. The JOINT dataset is a
combination of these two datasets. We annotate objects that are at least 40%
visible and within 10m distance of the robot. We split the datasets into training
(80%) and testing (20%) sets for training and evaluating our models.

2.2 Public Datasets

We also analyze the selected object detectors on PASCAL-VOC and MSCOCO
datasets. They are the two most popular datasets used by the Computer Vision
community to analyze and benchmark algorithmic performance. They primarily
consist of sharp images taken by a static camera primarily in an outdoor envi-
ronment. While PASCAL-VOC dataset consists of 20 object classes, MSCOCO
dataset consists of 80 object classes and fully covers all PASCAL-VOC classes.
We investigate how knowledge learned on one dataset transfers to another
dataset. To prove our assumption, we select two object classes (person and
chair) which appear both in PASCAL-VOC and MSCOCO datasets. We only
retain images that contain either of the two classes and remove remaining images
from our training and evaluation. PASCAL-VOC dataset contains 1, 994 person
images and 566 chair images for train set and MSCOCO contains 12, 774 chair
and 64, 115 person images. We name these filtered datasets as PASC-PC and
COCO-PC respectively.
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Fig. 2. (a) Faster R-CNN architecture consisting of an CNN based RPN and a Fast
R-CNN network for object localization. (b) SSD-MobileNetV2 architecture consisting
of MobileNetV2 as the base network. (c) YOLOv4 architecture consisting of CSPDark-
net53, SPP, YOLOv3 as backbone, neck, and head.

3 Object Detection

In this section, we discuss the architectures of three state-of-the-art object detec-
tors: Faster R-CNN, SSD-MobileNet V2, and YOLOv4. Faster R-CNN is a two
stage detector meanwhile, SSD and YOLOv4 are one stage detectors. Addition-
ally, Tensorflow object detection API provides support for Faster R-CNN and
SSD training while YOLOv4 needs to be trained manually.

3.1 Faster R-CNN

Faster R-CNN [13] is a popular two-stage detector network which improves upon
earlier networks such as R-CNN and Fast R-CNN with the use of an additional
fully convolution network called the Region Proposal Network (RPN). The RPN
is used in order to identify regions which have a high probability of containing
an object. Subsequently, these regions are fed into the object detector network
for both object classification and bounding box regression. The architecture of
the Faster R-CNN model is described in Fig. 2(a).

The hyperparameters are defined as follows. The step decay learning rate
scheduling strategy is adopted with initial learning rate 0.04 and a warmup
learning rate value of 0.01333. The number of warmup steps is kept at 2000. The
momentum optimizer value is kept at 0.9. The number of steps and batch size
is set at 100,000 and 8 respectively.

3.2 SSD-MobileNet V2

The second network used in this study is the SSD-MobileNet V2 network [14].
This model comprises the MobileNet V2 network, excluding the classification lay-
ers, as the base network. Thereafter, convolution layers are added in succession
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and layer dimensions are reduced progressively to allow detections at multiple
scales. This is followed by a Non-Maximum Suppression (NMS) step to output
the final detections [5]. Figure 2(b) depicts the architecture of the model. The
MobileNet V2 architecture consists of Depthwise Separable Convolution Blocks
and Residual Connections to cater to the limited computational resources avail-
able while being able to extract the relevant information. This is done by adding
the expansion and the projection layers to the building block. The expansion
layer decompresses the data into a high-dimensional tensor to allow the maxi-
mum extraction of information by the depthwise convolution layer. The projec-
tion layer then compresses the data into a low-dimensional tensor to reduce the
amount of required computations.

The step decay learning rate scheduling strategy is adopted with initial learn-
ing rate 0.08 and a warmup learning rate value of 0.01333. The number of
warmup steps is kept at 100. The momentum optimizer value is kept at 0.9.
The number of steps and batch size is 2,500 and 8 respectively.

3.3 YOLOv4

YOLOv4 [1] is one of most popular single stage detector network for 2D object
detection. It has demonstrated high accuracy and speed over many datasets such
as MSCOCO. It is 10% more accurate and 12% faster compared to the previ-
ous version YOLOv3 [12] on MSCOCO. The architecture used in YOLOv4 is
described in Fig. 2(c). It consists of several modules defined as backbone, neck,
and head of the network. In YOLOv4, the backbone is CSPDarknet53. It has
293 × 3 convolutional layers and about 27.6M parameters. It has a high number
of receptive fields and parameters compared to other networks such as CSPRes-
Next50 which allows the model to detect multiple objects of different sizes in a
given image. The second block of the network is SPP [3] which represents the
neck of the detector. It increases the receptive fields significantly and highlights
the most significant contextual features. Finally, the YOLOv3 head is used to
predict classes and bounding boxes.

The step decay learning rate scheduling strategy is adopted with initial learn-
ing rate 0.01 and multiplied with a factor 0.1 at 4800 and 5400 steps. The
momentum and weight decay are set at 0.9 and 0.0005.

4 Experiments

In this section, we describe our various experiments to investigate how the three
object detectors perform on our CHART and public datasets on two pre-selected
objects. We use Tensorflow2 Object detection API with pretrained models on
MSCOCO dataset for Faster R-CNN and SSD. These baseline models are pub-
licly available and widely used as a starting point for training on new dataset or
classes. We divide or experiments into three major categories. Firstly, in Stan-
dalone training, we investigate how the models perform when trained on one of
the two CHART datasets. Secondly, we investigate how the models perform when
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(a) (b) (c) (d) (e) (f)

Fig. 3. Top, middle, and bottom row show inference results on models trained on
CHART1, CHART2, and JOINT datasets as discussed in Sect. 4.1. (a), (d) display
results for FasterRCNN; (b), (e) show results for SSD-MobileNetV2 and (c), (f) show
results for YOLOv4 trained models respectively. Groundtruth and inference are shown
in green and red bounding boxes respectively. (Color figure online)

trained on a mix of CHART1 and CHART2 datasets simultaneously. Thirdly,
we investigate how the models perform when a model is initially trained on
one dataset and then subsequently trained on a second dataset without using
previous dataset in the new training protocol.

4.1 Standalone Training

We observe that all three architecture models perform poorly on CHART2
dataset when trained on CHART1 dataset and vice-versa as seen in Table 2 even
though the object classes are the same across the two datasets. This is due to the
two datasets having different data distribution as explained in Sect. 2. The Joint
training shows that once the models are trained on both data distributions, they
are able to regularize and provide impressive results on both CHART datasets
as seen in Fig. 3. The lower number of steps for SSD training results in lower
accuracy. Overall, YOLOv4 gave the best results among the object detectors.

4.2 Joint Training

Here we mix a small amount (10%) of CHART2 dataset with full CHART1
training set and vice-versa. We also report results when only trained on only
10% of both CHART datasets. We observe that even a small (10%) inclusion in
training set significantly improves the performance on that particular dataset as
seen in Table 3. The Faster R-CNN, SSD, and YOLOv4 models mAP improves
from 0.2 to 0.875, 0.05 to 0.665, and 0.394 to 0.994 for CHART2 test data.
Similar improvement is seen for CHART1 data. This highlights the gap of current
fully supervised models not transferring well to a data with slightly different
distribution. As soon as some data is added for training, the models are able to
regularize on the new data as seen in Fig. 4.
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Table 2. Object detectors performance on the CHART test sets for Standalone dataset
training protocols.

CHART1
CHART1 CHART2 JOINT

mAP Recall mAP Recall mAP Recall

Faster R-CNN 0.938 0.956 0.197 0.212 0.423 0.432

SSD 0.869 0.912 0.048 0.210 0.319 0.424

YOLOv4 0.976 1.000 0.394 0.352 0.564 0.650

CHART2

Faster R-CNN 0.082 0.101 0.915 0.951 0.663 0.687

SSD 0.105 0.421 0.846 0.874 0.606 0.731

YOLOv4 0.358 0.178 0.996 1.000 0.836 0.760

JOINT

Faster R-CNN 0.932 0.95 0.917 0.947 0.920 0.948

SSD 0.793 0.85 0.807 0.838 0.801 0.842

YOLOv4 0.974 0.989 0.996 1.000 0.994 1.000

(a) (b) (c) (d) (e) (f)

Fig. 4. Joint training results on CHART datasets as discussed in Sect. 4.2. (a), (d)
display results for FasterRCNN; (b), (e) show results for SSD-MobileNetV2 and (c),
(f) show results for YOLOv4 trained models respectively. We observe that the models
perform well on cross datasets even when a small amount of data is available for
training.

4.3 Subsequent Training

In this experiment, we investigate how a model performs when we take a model
previously trained on one dataset and subsequently trained on another dataset
with a different distribution. The previous data is not added to the new training
dataset. We report our results on SSD for CHART dataset and faster-RCNN
for public dataset. We observe the catastrophic forgetting phenomenon on both
CHART and public datasets. SSD performance on CHART1 dips from 0.869
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Table 3. Object detectors performance for the Joint dataset training protocols.

CHART1 - 100% CHART1 CHART2 JOINT

CHART2 - 10% mAP Recall mAP Recall mAP Recall

Faster R-CNN 0.950 0.961 0.875 0.91 0.897 0.926

SSD 0.847 0.897 0.665 0.725 0.713 0.777

YOLOv4 0.976 0.998 0.992 1.000 0.991 1.000

CHART1 - 10% CHART1 CHART2 JOINT

CHART2 - 100% mAP Recall mAP Recall mAP Recall

Faster R-CNN 0.870 0.895 0.922 0.954 0.902 0.933

SSD 0.679 0.768 0.861 0.890 0.787 0.848

YOLOv4 0.966 0.988 0.998 1.000 0.9901 0.990

CHART1 - 10% CHART1 CHART2 JOINT

CHART2 - 10% mAP Recall mAP Recall mAP Recall

Faster R-CNN 0.855 0.879 0.852 0.896 0.853 0.890

SSD 0.775 0.842 0.786 0.823 0.780 0.827

YOLOv4 0.967 0.992 0.978 0.985 0.978 0.980

(a) Tested on CHART1 dataset (b) Tested on CHART2 dataset

Fig. 5. Top row shows CHART1 pretrained model performance when trained on
CHART2 data and and bottom row shows CHART2 pretrained model performance
when trained on CHART1 data. We observe a significant drop in performance on the
respective pretrained dataset. This phenomenon, called catastrophic forgetting, is a
significant problem in robotic vision.

mAP to 0.248 mAP when it is trained on CHART2 dataset as shown in Table 4.
We observe similar drop when the two datasets are switched as seen in Fig. 5.

We select Faster R-CNN ResNet-50 model structure to conduct person-chair
detection evaluation on the public datasets. We initiate both runs on COCO-PC
and PASC-PC respectively without pre-trained weights. The training config is
modified to batch size 8 for 25,000 steps from the default pipeline setting. Both
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Table 4. SSD performance on CHART dataset for Subsequent training protocol.

CHART1 CHART2 JOINT

mAP Recall mAP Recall mAP Recall

CHART1 -> CHART2 0.248 0.550 0.866 0.892 0.669 0.779

CHART2 -> CHART1 0.870 0.910 0.076 0.341 0.344 0.521

models are then further trained using the other data set for 25,000 steps and also
evaluated on both validation sets. We record these evaluation results in Table 5.
In both cases, we see catastrophic forgetting where the mAP drops to 0.232 and
0.240 mAP after the model is trained on the second dataset.

Essentially, the model now “overfits” on new dataset. To maintain good
results on previous dataset, we either need to include some previous data in the
updated training set or adopt some complex incremental learning techniques
for object detection. This provides a good motivation to develop incremental
learning frameworks for object detection in future.

Table 5. Faster R-CNN performance on the test sets of COCO-PC and PASC-PC for
Subsequent training protocol.

PASC-PC COCO-PC

mAP Recall mAP Recall

PASC-PC -> COCO-PC 0.225 0.457 0.232 0.519

COCO-PC -> PASC-PC 0.240 0.652 0.221 0.433

5 Conclusion

Contextual awareness is a critical requirement for service robots and robotic
navigation. In this work, we have presented our hospital CHART dataset and
surveyed three state-of-the-art object detection models. We have analyzed their
detection performance on our and public dataset highlighting the strengths and
weaknesses of current fully supervised deep learning approach. The object detec-
tors perform exceptionally well when trained on large number of labeled images.
However, their performance drops drastically on slightly different data distribu-
tion. This may happen frequently in real world scenarios where a robot visual
sensor, lighting, or location can change due to various reasons. Currently, we
need to perform vast amount of labeling for every different data distribution for
acceptable object detection performance. In our future work, we aim to address
these gaps by leveraging on Semi-Supervised Learning and Incremental Contin-
ual Learning for object detection that has shown tremendous promise in image
classification and Natural Language Processing (NLP) domains.
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Abstract. The experimental tabletop robot Haru, used for affective
telepresence research, enables a teleoperator to communicate a variety of
information to a remote user through the robotic medium from a distance.
However, the robot’s rich communicative modality poses some problems
to the teleoperator. Based on their experience of controlling the robot,
teleoperators feel the need to be constantly attentive to and engaged with
the stream of data from the remote user in order to achieve a seamless and
affective interaction. Consequently, teleoperators report feeling fatigued,
resulting in a decrease in time using the teleoperation system. In addi-
tion, the bulk of the data stream containing information about the remote
user poses data privacy concerns. In this paper, we describe the design and
development of an improved affective teleoperation system that focuses on
privacy, controllability, and mental fatigue. The proposed system enables
a teleoperator to maintain the same degree of robot control with a minimal
amount of data from the remote user. Moreover, our studies show that the
proposed system drastically reduces teleoperation fatigue as shown by the
increase in time the system is in use.

Keywords: Social telepresence · Human-robot interaction

1 Introduction

The development of the robotic platform Haru [6] for embodied communica-
tion research aims to support the study of social presence and emotional and
empathetic engagement for long-term human-robot interaction across different
contexts. One of the key areas of research with Haru, relates to embedding multi-
modal human-robot communication in situations where Haru acts as an affective
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telepresence robot. This paper reports on the technical development of Haru as
a medium for affective telepresence from the perspective of the teleoperator.

Haru has been designed as a multimodal robotic communication platform
that uses verbal and non-verbal channels in interactions with people. Haru’s
development, therefore, involves a theoretical understanding of embodied com-
munication as a triple structure, comprising of voice (language); tone and non-
verbal sounds (paralanguage); as well as face and body movements (kinesics)
[12,13]. This robot’s range of communicative strategies provides support for
embodied communication, which adds depth and interest to communicative
exchanges with the potential to support flexible communication between people
and robots over the long term. In particular, Haru’s communication is designed
not only to allow the robot to convey information clearly but also to add depth
and meaning through a range of affective signals.

In this paper we identify three core design considerations for teleoperation
of Haru. The first responds to privacy issues that have already been identified
in relation to teleoperation, where the teleoperator can see and hear a remote
environment without people in that space being fully aware they can be seen
and heard at a distance. The second considers how best to support teleoperators
with an effective interface for controlling the Haru robot’s multimodal affec-
tive communication in response to the communication of a remote user. The
third compares mental fatigue placed on the teleoperator first without, and then
with, system-level assistance in monitoring the remote user’s verbal and non-
verbal communication in order to choose appropriate responses for Haru as an
expressive robot intermediary.

2 Teleoperation Design Concept

We have taken a collaborative design approach used in the navigation task for
telepresence robots [8] and brought it to the teleoperation platform and interface
for the communication task of Haru (Sect. 3–4). The advantage of such design is
that while it gives full control to the teleoperator it also minimizes the exposure
of the remote user’s data to the teleoperator and reduces teleoperator fatigue in
the teleoperation process. Hence, Haru’s teleoperation centers on three design
considerations: privacy of information about remote users and locations, control-
lability of the robot’s response, and level of mental fatigue on the teleoperator.

2.1 Privacy

The use of sensors and the need for data-driven processes have become a trend in
developing intelligent systems, with this information being a much sought after
commodity for personalization, adaptation and learning in robotic systems. Con-
sequently, privacy has increasingly become a topic of interest in robotics [2,3], as
personal and sensitive information such as image, voice and conversation data
captured by audio-visual sensors may be stored and made available to other
people via the robot. In particular, teleoperators may rely heavily on this type
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of information in order to evaluate the communication and emotional state of a
remote user and to make decisions over how a teleoperated robot should respond.
However, research shows that teleoperators are not always comfortable with the
sense that they are surveilling a person and their surroundings via a robot-
mounted audiovisual feed [11]. Other users of shared spaces within which telep-
resence robots are deployed may also feel an uneasy sense of “being watched”
or “listened to” when the robot is active or unexpectedly activated by the tele-
operator in their location [11]. To consider how best to address this issue, this
research compares the effectiveness of a system where the teleoperator has access
to all the audiovisual information from the remote location, to a situation where
teleoperators were not able to access the audiovisual information directly, but
instead relied upon the robotic system’s appraisal and suggested response. To do
this, we employed knowledge-based systems to automate the evaluation of the
remote human’s affective signals in order to pass appropriate response options
to the teleoperator. In this way, the task that requires analysis of sensitive data
is delegated to the system, with only high level, less sensitive information sub-
sequently provided to the teleoperator. The experiments also evaluated whether
this could be done without impairing the teleoperator’s ability to control the
robot and respond to the remote communicator.

2.2 Controllability

Intervention by the teleoperator through direct manipulation of the robot’s com-
municative modalities during interaction is an important teleoperation feature
[15]. Providing teleoperators with a sufficient number of degrees of freedom to
react in the course of the interaction through the use of subtle and elaborate
changes to the characteristics of the robot further enhances the robot’s agency
associated with stimulus-response [17]. However, timing is key in direct control,
a timely response reinforces interactivity and may greatly improve the quality
of interaction experience [17]. Therefore, a balancing act in the design of the
interface is very important and must be based on both needs and simplicity.
Too many modules for control may prove to be overwhelming for the opera-
tors [1], while the opposite may not be enough [4,16]. In addressing the direct
control needs, we identified basic control needs and designed easy access to the
robot’s low-level and high-level controls. On the one hand, the low-level control
represents subtle changes in the robot’s behaviors, this entails the manipulation
of each of the independent motors and other basic modalities such as vocaliza-
tion or sounds through TTS. On the other hand, the high-level control provides
the teleoperator easy access to a suite of pre-defined complex expressions of the
robot (e.g. angry, happy, excited, etc.) referred to as routines. These routines are
multimodal compositions that enable the robot to communicate affectively [5].
We also included some form of simple automation through automatic tracking
and automatic robot response which can be easily engaged or disengaged by the
teleoperator.
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2.3 Mental Fatigue

The rich audio-visual data shared with the teleoperators in a conventional
human-in-the-loop teleoperation set-up [9] not only poses privacy concerns but
could also be a source of significant fatigue for the teleoperators [1,10]. The
nature of mental fatigue comes with the need for an operator to maintain sit-
uational awareness, processing the stream of images and audio data in order
to understand the remote user’s cognitive and affective states, such that they
can provide an appropriate response via the robotic medium [7,14]. To mitigate
the undue mental fatigue, we explored a recommendation scheme [18] as part of
the collaborative design. The recommendation scheme processes the output of
the knowledge-based systems used to extract high-level information such as face
affects, voice affects and gestures. It then generates suggestions to the teleoper-
ator as to how the robot should respond to a remote user. In this manner, the
system acts as a support, with the final decision about the response left to the
teleoperator.

3 Teleoperation Platform

Consistent with the collaborative design described in Sect. 2, we developed a tele-
operation platform. Our platform conceptually consists from two components:
(1) a robot-remote-user side and (2) teleoperator side (see Fig. 1).

Fig. 1. Teleoperation platform

The robot-remote-user side is equipped with sensors and actuators, as well
as components that extract high-level information from the sensors (i.e. orien-
tation of the body and head with respect to the robot, body movements, faces
and facial expressions, speech, voice affects, sound localization, etc.), and allow
controlling the robot using not only motor low-level controls but also high-level
commands. In the end, five different communication modalities enable the robot
to communicate with its human peer:
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Robot Movement: the robot has 5 degrees of freedom, which allow it to rotate
the whole body, lean the neck forward and backward, etc.

Visual Displays: each of the eyes of the robot includes a 3-inch TFT screen
display and a rectangular border of the inner eyes (the eye goggles) is composed
of an addressable LED strip. Inside the body of the robot, there is an addressable
LED matrix used as its mouth.

Text-to-Speech (TTS): the text messages received are uttered by the robot
using a TTS module, based on the Cerevoice TTS engine by Cereproc1.

Emotive Routines (high-level control): the robot can also show complex
expressions through the use of pre-programmed emotive routines [5]. These rou-
tines are open-loop macro-actions that combine all robot actuation modalities
described above (motion, sounds, LEDs, eye videos).

Person Tracking: the robot can automatically follow a given person with its
gaze. If this mode is activated, it closes the loop using the body posture and
skeletons to look at the face of the indicated person.

4 Teleoperation Interface

Consistent with the collaborative design as well as the teleoperation interface
previously discussed in Sect. 2 and Sect. 3, we developed the teleoperation GUI
as shown in Fig. 2. The software is built using the Qt-52 framework for desktop
applications together with the use of Robot Operating System3 in the back-end.
The GUI is mainly composed of three components such as manual control panel
(left-side panel), agent simulation panel (middle panel) and recommendation
panel (right-side panel) respectively. The details are as follows:

4.1 Manual Control Panel

The Manual Control Panel in Fig. 2 (left panel) contains a set of widgets that
enable direct control of all of the robot modalities. The interface of this panel
includes a low-level control for individual motors and other individual modalities
and a high-level control for complex routines.

Motor: provides a quick way to directly control the individual motors of the
robot to execute basic movements (i.e., base rotation, forward and backward
leaning, eyes stroke, tilt and roll).

Voice Reply: enables control of the robot to vocalize via keyboard and micro-
phone for dictation input. The widget also provides a predefined list of responses
in different contextual categories which can be easily modified through a dedi-
cated configuration file.
1 https://www.cereproc.com.
2 https://www.qt.io.
3 https://www.ros.org.

https://www.cereproc.com
https://www.qt.io
https://www.ros.org
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Fig. 2. GUI for Teleoperators (left panel: Manual Control; middle panel: Agent simu-
lation; right panel: Recommendation)

Routine: provides a control for the robot’s high level and more complex expres-
sions referred to as routines. The routines are classified into various categories,
the teleoperator can easily select the appropriate expressions and its correspond-
ing intensity denoted by the index number “0–3” (e.g., “Angry 0”, “Sad 1”,
“Happy 3”,).

Tracking: provides a high-level control that automatically adjusts the motor
actuations to face any person detected in the scene.

4.2 Agent Panel

The agent simulation in Fig. 2 (middle panel) is designed to visualize the robot’s
interactivity. The top widget is a close-up view while widget below shows the
global perspective of the robot relative to the remote users (displayed as 3D
skeletons). The bottom widget logs and shows the usage time of the system and
corresponding teleoperators ID.

4.3 Recommendation Panel

Our recommendation panel in Fig. 2 (right panel) contains a set of widgets that
enable the teleoperator to see the system recommended options on the robot’s
responses and make decisions on what actions are to be executed.

Voice Reply: using semantic information from the ASR to detect voice affect,
the system will identify the mood category of the remote user’s utterance,
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then provide a list of recommendations of the most likely voice reply. Hence,
the teleoperator does not need to listen to the actual speech data. Instead,
the teleoperator may simply select from a list of replies associated with the
recognized mood category.

Routine: the remote user’s facial and gestural affects are conveyed by the system
to the teleoperator without showing the RGB data. The system will identify
the mood category for the face and the mood4 category for the gestures,
independently. Each category is associated with a list of recommended replies
in terms of robot routines. The teleoperator may select any routine based on
preference. The routines in any given category have the same communicative
meaning reflective of the mood category it belongs to.

Preview: a widget that contains a summary of the selected response actions
to be executed. The teleoperator may select one or multiple recommended
actions by the system and these are displayed in this widget.

5 Experiments

We conducted an initial within-subject preliminary study of the proposed tele-
operation system. The aim of this study is to measure the impact of the proposed
system on the teleoperators and to evaluate its viability for further development.
For the experiment, the proposed recommendation system was compared to the
conventional system as experimental and control conditions, respectively. In the
study, we gathered twenty adult participants (10 males, 10 females) to use the
system as teleoperators that are technology savvy and computer literate.

5.1 Quantitative

For the quantitative analysis, we measured the teleoperators’ ability to control
the robot by responding correctly to the input stimuli from the remote user (i.e.,
data = face affect, gestural affect and voice affect). We pre-recorded a series of
events (i.e. 5 s/event, 700 events, total: 1 h) representing the input stimuli from
the remote user. We prepared two sets of the series as (A) unimodal stream in
which only one input stimulus is present for each event and as (B) multimodal
stream in which more than one input stimuli present in an event. For the input
data preparation above, we also annotated the corresponding mood category of
the possible correct response to serve as ground truth (see Sect. 4.3).

We evaluated the conventional system and the proposed recommenda-
tion system. In case of the conventional system, the teleoperator had to infer
the actual affects of the face, gesture and voice by watching and listening to
the audio-visual data to decide the appropriate response. We provided a sepa-
rate interface very similar to the one in Fig. 2 with full audio-visual access but

4 This description is loosely used here. The general idea is to inject some context
associated with the robot response and not just the recognized actions or affects
from the remote user.
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without the recommendation panel. In contrast, the proposed system automat-
ically extracts high-level contextual information about the remote user, such as
affects from the audio-visual data, and provides the teleoperator only with this
information and the recommended response as shown in Fig. 2 (right panel).

5.2 Qualitative

We also gathered some feedback from the participants through a simple ques-
tionnaire as follows:

1. Impact on teleoperabilty as a function of data (full audio visual vs. contextual)
a) Which system provides the feeling of having full control of the robot?
b) Which system is sufficient enough to perform the given task?

2. Overall feeling of comfort and ease-of-use
a) Which system provides feeling of comfort in terms of privacy in general?
b) Which system causes a smaller amount of mental load while using it?

The participants were asked to select which of the systems (conventional or
proposed) best fits the answer for each of the questions above. They were also
allowed to select both but only if warranted.

6 Results and Discussion

The results of the experiment in Sect. 5.1 averaged across the total number of
participants are shown in Fig. 3. In this figure, it is clear that the proposed
method enables the teleoperator to provide more correct responses via the robot
as compared to the conventional approach. This result is consistent in both
scenarios (A) unimodal stream and (B) multimodal stream , with the pro-
posed method being markedly more robust in the case of scenario (B) than
the conventional approach when the teleoperators are presented with multiple
modalities at the same time.

Fig. 3. Quantitative evaluation results
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This is shown by the drastic degradation of the performance (% correct)
of the conventional approach. This result is expected because scenario (B) is
deemed to be more overwhelming to the teleoperators as they need to be more
engaged in the audio-visual data to detect the multiple stimuli and to respond
to each accordingly. The robustness of the proposed method in scenario (B) is
attributed to the fact that the teleoperators are not fatigued as much of the
decision-making process is left to the system. Moreover, based on the time log of
the usage time when interacting with the system, we found that the teleoperators
are likely to last 3 times longer when using the proposed system as opposed to
the conventional approach (p<.05 ).

Table 1. Survey results.

Conventional Proposed

1.a) Full control 35% 65%

1.b) Sufficiency 20% 80%

2.a) Comfort (privacy) 20% 80%

2.b) Mental fatigue 10% 90%

In Table 1, we summarized the personal preference of the teleoperators when
asked the questions in Sect. 5.2. For item (1), it is apparent that a significant
number of participants feel that the proposed system provides full teleoperation
control even without having access to the full audio-visual data from the remote
user (p<.05 ). Consequently, for item (2), the proposed system is the most pre-
ferred when it comes to comfort and ease-of-use (p<.05 ). In addition, the results
in Table 1 reinforces the results we achieved in Fig. 3.

7 Conclusion

In this paper, we proposed an affective teleoperation system to control the table-
top robot Haru. The proposed system design is centered on three considerations:
privacy and controllability and mental fatigue. Through this, we built our tele-
operation system prototype that gives full control to the teleoperators without
them going through the audiovisual data from the remote user. Despite the
absence of the audiovisual data, the teleoperators were able to execute the task
effectively. The proposed system considerably decreased the feeling of fatigue
and prolonged the teleoperators’ usage time when interacting with the robot.
In the future, we plan to expand our framework with the support of multi-
modal responses, to leverage the use of other knowledge-based systems to predict
the state of the remote user, and conduct more elaborate user studies on user
perception.
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Abstract. A social robot that convey its emotions by changing its
apparent stiffness is presented herein. A user interacts with a box-shaped
robot by pushing its lid. The apparent stiffness of the robot is controlled
by an electromagnetic brake installed on the lid based on the emotional
state of the robot. To control the stiffness, we implement two approaches:
(i) control the reaction force when a user presses the lid; (ii) control the
temporal restoring behavior when a user releases the lid. The experimen-
tal results show a capability of the robot in providing variable apparent
stiffness and a potential in eliciting the emotional impact of users through
haptic human-robot interactions.

Keywords: Emotion · Haptic interactions · Human-robot
interactions · Social robots

1 Introduction

Social robots are machines that interact with human users and can perform
tasks automatically. In particular, their physically embodied communication is
promising because it allows users to naturally interact with them as they inter-
act with their peers. Therefore, social robots are considered for use in various
applications, such as education [1], human rehabilitation [3], and therapy [11].

The emotional expression of social robots, although difficult to decipher, is
important for ensuring smooth human-robot interactions. For example, appro-
priate emotional expressions encourage positive educational behavior in humans
[8]. To date, numerous studies pertaining to emotional expressions have been
conducted, in which robots present their emotions through facial expressions
[4], colors [9,10], sounds [2,9], and vibrations [9]. In order to enrich emotional
expression, it is important to study the relationship between the stimuli emitted
by robots and the emotions recalled by users who receive the stimuli.

In this study, we focused on conveying emotions through touch interactions
between robots and users. Hertenstein et al. demonstrated that touch can rep-
resent an emotional state between human peers, even when vocal and facial
c© Springer Nature Switzerland AG 2021
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expressions are unavailable [5–7]. Another study demonstrated that the appropri-
ate touch interaction pattern can convey the emotional expression of humanoid
robots effectively [12].

In this study, we developed a social robot that conveys emotions by changing
its apparent stiffness. The box-shaped robot requires a user to haptically interact
with itself (e.g., pushing) while the robot changes its apparent stiffness based
on its emotional state, as shown in Fig. 1. The advantages of this robot are as
follows: 1) it maintains users’ interests by encouraging them to interact actively;
2) it allows users with visual or hearing disabilities to interact with each other;
and 3) it can be easily combined with other modalities such as light, sound, vocal
and facial expressions.

The remainder of this paper is organized as follows: First, we describe the
principle of varying the apparent stiffness and the implementation of the robot.
Next, the performance evaluation of the developed robot is presented. Subse-
quently, we describe an experiment performed involving human participants to
demonstrate the variable apparent stiffness. Finally, we conclude the paper with
the future direction for this study.

2 Method

The robot presents apparent stiffness to the user by changing its apparent elas-
ticity and viscosity. Figure 1 shows the basic interaction between the user and
robot. In the initial state shown in Fig. 1-1, the lid is open, and the face of the
head is visible the user. As shown in Fig. 1-2, when the user pushes the lid, the
user feels a contact reaction force. While the force is generated by the elasticity
of the head, it can be modulated by an electromagnetic brake installed on the
rotation axis of the lid, which varies the apparent elasity of the robot. As shown
in Fig. 1-3, when the user releases the finger from the lid, the robot pushes up the
lid and attempts to return to the initial state. The restoration time is controlled
by an electromagnetic brake, which varies the apparent viscosity of the robot.

Fig. 1. Conceptual diagram of interaction with box-shaped robot
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2.1 Principle

Elasticity for Pushing. Without applying a voltage to the electromagnetic
brake, the contact reaction force increases linearly as the user pushes the lid
owing to the elasticity of the silicone head. When a voltage is applied, the user
requires more force to push down the robot. In addition, dynamically controlling
the applied voltage enables various reaction force patterns to be generated.

Viscosity for Releasing. Without applying a voltage, after the user pushes
down the robot and releases the finger, the robot pushes back the lid via its
elasticity, while a friction force is generated on the rotation axis. When a voltage
is applied, the restoration time increases with friction. In addition, dynamically
controlling the applied voltage enables various patterns of restoring behavior to
be generated.

2.2 Implementation

Figure 2 shows the developed robot, which comprises an elastic silicone
head (Elastodil M8012, Wacker Asahikasei Silicone Co.,Ltd.) and a three-
dimensionally printed plastic box. An electromagnetic brake (112-03-12 24V
6DIN, Miki Pulley Co.,Ltd.) and a potentiometer (RK1631110TV6, Alps Alpine)
were installed on the rotation axis of the box, which was used to electrically
control the apparent stiffness of the robot. A microcontroller (ESP32-DevKitC
ESP-WROOM-32 development board, Espressif Systems Pte. Ltd.) was used to
control them based on parameters provided by the host computer. The micro-
controller reads the output voltage of the potentiometer via a built-in 12-bit
analog-to-digital converter while outputting voltage to the electromagnetic brake
via a built-in 8-bit digital-to-analog converter through an operational amplifier
(OPA548FKTWTG3, Texas Instruments). The applied voltage ranged from 0
to 24 V.

Control of Reaction Force. The robot can vary its apparent elasticity by
dynamically controlling the electromagnetic brake while the user is pushing the
robot. This can be achieved via one among three relevant methods, as will be dis-
cussed below. Additionally, it is noteworthy that the robot provides an inherent
reaction force generated from the elasticity of the head.

The first is to increase the offset reaction force Fo, where the user must exert
more force to start pushing down the robot. A constant voltage is applied to the
electromagnetic brake. The offset force is defined as C1. FB(V0) represents the
force generated by the electromagnetic brake, where V0 is a constant voltage.
The reaction force is expressed as

Fo = C1 + kx (C1 = FB(V0)), (1)

where C1 is a constant denoted as FB(V0), which is a force generated by a voltage
V0 to the electronic brake; k is a proportionality constant; x is the displacement.
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Fig. 2. Robot developed in this study

The second method is to generate a constant reaction force, regardless of
the angle of the lid. At this time, the voltage applied to the electromagnetic
brake decreases as the displacement increases. The reaction force presented by
the electromagnetic brake is expressed as

Fc = C2 (C2 = FB(V0 − v(x)) + kx), (2)

where C2 is the desired force constant, k a proportionality constant, and x the
displacement. V0 is the initial voltage, and v(x) is the voltage applied at x.

The third method is to enhance the elastic force. At this point, the volt-
age applied to the electromagnetic brake increases with the displacement. The
reaction force is expressed as

Fe = k′x ≈ FB(v(x)) + kx, (3)

where k′ is a newly set proportionality constant, FB(v(x)) the generated force
when a voltage v is applied at x, k a proportionality constant for the intrinsic
elastic force of silicon in the head, and x the displacement.

Control of Restore Time. The lid angle will be restored to its original posi-
tion by the intrinsic elasticity of the silicon head when the user releases the
finger. Therefore, by modifying the returning behavior of the lid using an elec-
tromagnetic brake, the apparent viscosity can be presented to the user. When a
voltage is applied to the electromagnetic brake, the elastic force of the silicone
cannot return to the initial state. Hence, the voltage applied to the electromag-
netic brake must be reduced to zero, and the time to reduce the voltage to zero
can be regarded as the time to return to the initial state.
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3 Experiments

3.1 Apparent Elasticity

An experiment was performed to determine whether offset reaction, constant
reaction, and enhanced elastic forces can be generated using our methods. For
simplicity, we evaluated the system by measuring the linear displacement and
force instead of the torque.

Procedure. The robot was fixed on a flat table at its initial state. A force gauge
(Imada Co., Ltd.) was fixed to the lid of the robot, perpendicular to the table.
The gauge was manually pushed by the experimenter. The values displayed on
the gauge were recorded when the displacements were 0.0, 0.5, 1.0, 1.5, 2.0, and
2.5 cm. This measurement was conducted five times for each displacement.

To investigates the characteristics of the offset reaction force, we set the volt-
age applied to the electromagnetic brake to 0, 5, 10, 15, 20, and 24 V. To deter-
mine whether a constant reaction force can be generated, we set to a constant
value to 8 N. To ascertain whether an enhanced elastic force can be generated,
we set the proportionality constant of the enhanced elastic force to 2.5 N/cm.

Result. Figure 3-A shows the relationship between the displacement (x-axis)
and the mean of the measured force (y-axis) under an offset reaction force.
The error bars represent the standard error. A high goodness-of-fit was indi-
cated by liner regression (R2 is 0.9532 to 0.9981). Figure 3-B shows a plot of the
applied voltage (x-axis) and the intercept of the regression (y-axis). The offset
force increased with the applied voltage, as expected. By contrast, the slope
plateaued at higher voltages. This might be indicative of the characteristics of
the electromagnetic brake used in the experiment. A quadratic regression was
performed on this data: Foffset = −0.012x2 + 0.63x− 0.19, where Foffset is the
offset of the reaction force caused by the electromagnetic brake, and x is the dis-
placement from the initial state. This regression indicated a high goodness-of-fit
(R2 = 0.975).

Figure 4 shows the result of the constant reaction force and enhanced elastic
force with the inherent elastic reaction force (no voltage) for the comparison.
Regarding the constant function, the slope plateaued regardless of the displace-
ment. This demonstrates the effectiveness of the proposed method. However,
the contact reaction value was approximately 10 N although the control value
was to 8.0 N. This regression indicated a high goodness-of-fit (R2 = 0.6923).
Meanwhile, for the linear function, the slope of the graph was steeper than that
without voltage. This regression showed a high goodness-of-fit(R2 = 0.9937).
However, the proportionality constant was 5.84 N/cm instead of 6.5 N/cm. This
might be because the measured displacement was smaller than the actual value.
The resolution of the volume resistors used in the experiment was low, which
may have hindered measurements with sufficient accuracy.
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Fig. 3. Results of offset reaction force: a) Relationship between displacement and mea-
sured force; b) relationship between applied voltage and offset reaction force

Fig. 4. Results of constant reaction force and enhanced elastic force: Relationship
between displacement and measured force

3.2 Apparent Viscosity

An experiment was performed to determine whether time is controllable.

Procedure. The robot was fixed on a flat table and the experimenter manually
pushed down the lid to an angle of approximately 35◦. After the microcontroller
began recording the angle, the experimenter released the finger. The restora-
tion time was set to 3 and 6 s. For comparison, we measured the angle without
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Fig. 5. Result of time and angle

applying a voltage to the electromagnetic brake. The sampling rate 1 Hz for
the abovementioned restoration times 1 Hz for the no-voltage condition. In the
analysis, we set the moment to 0 s when the angle started to change. The mea-
surement was conducted five times for each condition.

Result. Figure 5 shows the temporal changes in the angle of the lid. The restora-
tion times were approximately 3 and 6 s, which were longer than those in the
no-voltage condition.

3.3 Can User Discriminate Apparent Elasticity?

An experiment was performed to investigate whether human users can discrimi-
nate the apparent stiffness rendered by the robot. In this experiment, the offset
reaction force method was employed because it can provide a higher resolution
than other methods, according to our pilot study.

Setup. Five participants (four males, mean age of 26.6 years old) were recruited.
The robot and computer were placed on the table. In this experiment, the pre-
defined parameters sent from the computer was controlled using a keyboard.
The parameters included the offset contact reaction force and returning time.
Six pairs of parameters were set, as follows: (0.0 N, 0.0 s),(1.6 N, 0.0 s),(3.2 N,
1.0 s),(4.8 N, 1.5 s),(6.4 N, 2.0 s), and (8.0 N, 3.0 s). In the first parameter pair,
no voltage was applied to the electromagnetic brake. These values were deter-
mined based on the results of the pilot study, as they appeared to be natural
values.
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Procedure. A participant sat in front of a table. First, six pairs of parameters
were randomly assigned to six keys. Next, the participant was taught to touch
the robot: push down the center of the lid with a finger until an LED next to the
robot is turned on. After using all the parameters, the participant was allowed to
push the robot and switch the parameters using the keyboard for an unlimited
number of times. Subsequently, the participant was asked to rank them in a
row from the softest to the stiffest. This task was repeated nine times by each
participant. After the experiment ended, the participants were presented with a
simple questionnaire, which was used to assess the strategy and the emotion felt
by the participant during the experiment.

Result. Table 1 shows the percentage of answers computed for all participants.
The rows represent the presented offset reaction force, whereas the columns
represent the subjective stiffness. Therefore, diagonal cells show the number of
correct responses, which are higher than the chance levels (16.7%). The results
indicate that the developed robot can present variable apparent stiffness with at
least two to three bits.

Based on the questionnaire answered by the participants of this experiment
and pilot studies, a few commented that the robot appeared grumpy or angry
when they were stiff. This indicates that, the robot can convey their emotion
through the variable apparent stiffness.

Table 1. Mean percentage of response: rows represent presented offset reaction force;
columns represent for subjective stiffness (1: softest - 6: stiffest)

1 2 3 4 5 6

0.0 N 73 4 4 2 7 9

1.6 N 2 73 4 2 7 11

3.2 N 9 7 64 16 2 2

4.8 N 2 4 9 71 4 9

6.4 N 9 2 4 2 80 2

8.0 N 4 9 13 7 0 67

4 Conclusion

Herein, we proposed a social robot that conveys emotion by changing its appar-
ent stiffness. The developed box-shaped robot interacts with the human user
by pushing and releasing, whereas the stiffness is controlled by modifying the
apparent elasticity and viscoelasticity of the silicon head of the robot using an
electromagnetic brake. Experiments 1 and 2 demonstrated that the proposed
method can control the apparent elasticity and viscoelasticity. Experiment 3
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showed that human participants can discriminate among six patterns of appar-
ent stiffness. In addition, the comments provided by the participants implied
that the variable stiffness can be used to convey emotional expressions.

In our future study, we plan to investigate the relationship between the appar-
ent stiffness and the emotion recalled by human users. We will investigate other
possible patterns of elastic forces in addition to the three implemented in this
experiment. Additionally, we will investigate the effect of combining the apparent
elasticity and viscoelasticity.
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Abstract. Recognition of human motion intention plays an important role in
many robotic applications, such as human-assistive exoskeletons and rehabilitation
robots. Motion intention recognition (MIR) based on physiological signals is one
of the most common and intuitive methods. However, physiological signals are
sensitive to environmental disturbances and suffer from complex preparation. In
this paper, we proposed a novel air bladder-based MIR method, in which the
human-robot interaction (HRI) force ismeasured directly by four air bladders. The
air bladders can be installed at the end of a robot to interact with the user’s arm.We
validate the linearity and repeatability of the air bladders through comprehensive
experiments. In addition, we compare the performance of the proposed air bladder-
based MIR method with the conventional method based on force sensors and
surface electromyography (sEMG) signals. Experiments show that the proposed
method can capture the change of the external force, even when the force changes
rapidly. Moreover, the performance of our method is more comparative and robust
in caparison with the sEMG-based MIR method.

Keywords: Motion intention recognition · Air bladder · Human-robot
interaction

1 Introduction

Motion intention recognition (MIR) attracts strong research interests because of its
promising applications in human-robot interaction (HRI). For instance, MIR is critical
for powered exoskeleton systems, robot-assisted applications, and intelligent prostheses.
Considering that muscles are the drivers of human body, it is a natural idea to recognize
human motion intention by detecting muscle states [1]. In addition, sEMG-based meth-
ods can directly capture muscle information, which makes it suitable for patients with
limb disability [2]. In [3], the forces of agonist and antagonist muscles pair have been
estimated by sEMG signals and their difference is used to reflect the motion intention
of corresponding joints. Jie et al. have developed a non-linear autoregressive exogenous
(NARX) model to continuously decode the upper limb movements based on the sEMG

© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 586–595, 2021.
https://doi.org/10.1007/978-3-030-90525-5_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_51&domain=pdf
https://doi.org/10.1007/978-3-030-90525-5_51


Motion Intention Recognition Based on Air Bladders 587

signals [4]. Similarly, many sEMG-based MIR methods have been developed in recent
studies [5–7].However, all these MIRmethods based on sEMG signals suffer from these
limitations [8]: 1) sEMG signal is very noisy, unstable, and depends on good skin con-
tact. The surface electrodes can cause the subject to sweat, which also affects the signal.
2) Long preparation time is needed to place the surface electrodes and the uncomfortable
wearing experience is commonly complained by the users. 3) The processing of sEMG
signal is complex because of the motion artifacts, noises, and components frommultiple
muscle sources.

To overcome these shortcomings of the sEMG-basedMIRmethod,many researchers
have proposed other approaches forMIR [9, 10]. TheMIRmethod based on force/torque
sensors has been developed in [11–13]. In these studies, a bandage or Velcro is needed to
connect the user’s arm with the robot. However, these soft materials make it difficult for
the force/torque sensor tomeasure theHRI force accurately, especiallywhen thedirection
of arm movement changes. In [14, 15], they have applied 4 force-sensing resistors in
the arm holder to detect the interaction force between the user and robot. However, it is
challenging to fit human arms of various sizes. Moreover, the gap between the circular
ring of arm holder and the human arm will cause a backlash hysteresis problem.

While the area of sensor-based recognition of human motion intention still lacks a
robust, low-cost, comfortablemethod,we propose a novel air bladder-based approach for
MIR in this paper. In detail, four airbags are evenly distributed on the inner circumference
of the ring-shaped arm holder, which is installed at the end of the robot. These airbags
enable a wearer to attach and release the robot in an easy way and a short time by quickly
inflating the air chambers to hold a human arm or deflating them to release. Meanwhile,
the HRI force related to motion intention can be calculated according to the pressure of
these four air bladders. The linearity and repeatability of the proposed air bladder-based
MIR approach have been evaluated through comprehensive experiments. In addition,
the performance of our method has been compared with other MIR method, which is
based on force sensor or sEMG signals.

The main contributions of this study are summarized as follows: 1) We propose a
new air bladder-based MIR method to directly measure the HRI force, which avoids
the influence of bandage or other intermediate parts between human’s arm and force
sensors. 2) The proposed system can be used as an arm holder, which enables the robot
to attach and release the human arm in an easy way by quickly inflating or deflating
the air bladders. Meanwhile, expert knowledge is not needed to set up the system. 3)
Compared with previous MIR methods, our proposed approach is lower costly, more
reliable, and comfortable.

The rest part of this paper is organized as follows. In Sect. 2, the principle and imple-
mentation of the proposed air bladder-based MIR method are described. Experiments
and results are presented in Sect. 3. Section 4 draws a conclusion.

2 Methodology

In this study, we propose a novel idea for recognizing the human motion intention,
in which the HRI force is calculated based on the change of pressure in air bladders.
Considering that the air bladder is a critical component of the proposedMIRmethod, this
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section describes the air bladder in detail firstly. Then the principle and implementation
of our proposed MIR approach are provided.

2.1 Air Bladder

The air bladder is a closed air chamber made of soft material. An air pressure sensor
is used to measure the pressure inside the air bladder. When the air bladder is inflated,
the external force will affect the air pressure inside the air bladder. Therefore, the load
on the air bladder can be reflected by the change of the air pressure in the air bladder.
Specifically, the air pressure rises with the increase of the external force, while the air
pressure falls with the decrease of the external force. Hence, the air bladder can be
employed as a force sensor [16].

Fig. 1. Manufacturing process of an air bladder, (a) original nylon TPU composite fabric, (b) a
piece of fabric after laser cutting, (c) adding a pipe joint by ultrasonic welding, (d) an air bladder.

To reduce the cost of the components and facilitate volume production of the MIR
devices, we develop a simplemanufacturing process of air bladders. A typical air bladder
is made of Nylon TPU composite fabric in this study (Fig. 1(a)), which is a kind of cloth
covered with a layer of TPU plastic on the nylon surface. Moreover, the TPU layer can
be bonded by heating. The Nylon TPU composite fabric has a good sealing performance
and is commonly for air beds, inflatable boats, etc. As shown in Fig. 1(b), a piece of
composite fabric with a hole in the middle is obtained by laser cutting. Then, a TPU
connecter was combined with the TPU layer by ultrasonic welding (Fig. 1(c)). Finally,
this piece of fabric is folded in half and its edges are heated to get a sealed air chamber
(Fig. 1(d)). To ensure airtightness, air bladders are tested underwater. Overall, the low
price of the composite fabric ($ 6/m2) and the convenient processing significantly reduce
the cost of MIR devices.

2.2 Principle

Figure 2 illustrates the schematic sketch of the presented air bladder-basedMIRmethod.
Four air bladders are evenly distributed on the inner surface of the ring-shaped hand
holder.

In the idle state, the air is pumped out and the air bladder is shrunken to the inner
surface of the ring-shape armholder. The user can easily pass his/her arm through the arm
holder at that time, as shown in Fig. 2(a). When the robot starts to work, the air bladders
are in the active state, in which the gap between the arm of various sizes and the arm
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holder is filled by blowing up the air bladders gradually until a stable and comfortable
connection is established. As shown in Fig. 2(b), pi0(i = 1, 2, 3, 4) denote the pressures
of four air bladders at the active state. Figure 2(c) shows the working state of the air
bladders. The interaction force can be calculated as follow:

F̃ = k
4∑

i=1

(
pit − pi0

)
(1)

where pit(i = 1, 2, 3, 4) denote pressures of air bladders.
∼
F represents the interaction

force, which reflects the user’smotion intention. k is the proportional coefficient between
the air pressure and external force.

The calculated interaction force can be used as the input of a rehabilitation robot
or auxiliary robot. In the end, the air bladders return to the idle state (Fig. 2(a)) and
user’s arm is released. The proposed air bladder-based MIR system enables the robot to
attach and release the human arm easily and expert knowledge is not needed to set up
the system.

Fig. 2. Schematic sketch of the air bladder-based motion intention recognition device. (a) idle
state, (b) active state, (c) working state.

2.3 Implement

The implementation of the proposed MIR system is illustrated in Fig. 3. The arm holder
can be installed on a robot as required. We use the XGZP6847 (CFSensor Ltd, China)
pressure sensors to measure the pressure of the air bladders and convert it into corre-
sponding voltage. Then, a stm32F407ZGT6microcontroller (ST, Switzerland) is used to
transfer the voltage to a digital signal through the ADC function. The interaction forces
are calculated according to Eq. (1). The air bladders are inflated by a pump (Kamoer
Ltd, China) and sealed up by 4 solenoid valves (SMC, Japan).
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Fig. 3. Implement of the proposed air bladder-based motion intention recognition approach.

3 Experiments

In this section, comprehensive experiments are carried to validate the feasibility and
effectiveness of the air bladder-based MIR method. Considering that the property of
the air bladders has a great impact on the accuracy of the proposed method, we first
evaluate the air bladders in terms of linearity and repeatability. Then we compare the
performance of air bladders with conventional force sensors. Finally, we evaluate the
MIR performance of our method in comparison with sEMG signal-based method.

3.1 Linearity

The air pressure rises when a force is exerted on the air bladder, and hence, we can
measure the external force by observing the change of pressure in air bladder. We obtain
the pressure-force curve of the air bladder through an experimental study, as shown
in Fig. 4(a). An air bladder is placed on the platform of the force gauge (HANDPI
Instruments Ltd, China). The force exerted by turning the handle to the air bladder
ranges from 0 to 20 N with an increment of 0.5 N. Meanwhile, the air pressures of the
air bladder are recorded. Based on the least-square method [17], we fit a straight line to
the experimental data as follow:

F = 1.5597 × p − 1.6212 (2)

where F(N ) is the force exerted on the air bladder and p denotes the air pressure. -1.6212
is the offset caused by the initial pressure of the air bladder.

It is observed fromFig. 4b that the pressure-force curve of the air bladder shows good
linearity in the range of 0–20 N. The line fit all sample data (red dots in the graph) well.
The maximum variance of our line with the sample data is 0.09, which is acceptable for
HRIs.
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Fig. 4. Linearity experiment. (a) linearity experiment setup, (b) the pressure-force curve of the
air bladder. The fitted line is in blue and all samples are denoted by red dots (Color figure online).

3.2 Repeatability

The repeatability is defined by the variation of measurements taken by several experi-
ments under the same conditions [18]. To verify the repeatability of the air bladder, we
apply four different levels of external forces, including 5 N, 10 N, 15 N, and 20 N, to the
air bladder respectively. Each level of force is repeated 15 times using the platform shown
in Fig. 4 (a). Meanwhile, the corresponding pressure is recorded when the external force
is stable. Figure 5 summarizes the repeatability of the air bladder in four different levels
of external forces. It can be observed that the repeatability values of the air bladder are
0.052 kPa under 5 N external force, 0.039 kPa under 10 N external force, 0.09 kPa under

Fig. 5. Repeatability experiment. (a) repeatability of air bladder under an external force of 5 N,
(b) repeatability under a 10 N external force, (c) repeatability under a 15 N external force, (d)
repeatability under a 20 N external force.
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15 N external force, and 0.064 kPa under 20 N external force, respectively. In addition,
the variance is quite small (generally less than 1 e−3), which demonstrates the superior
repeatability of the air bladder (>99%).

3.3 Compared with Convolutional Force Sensor

To further validate the performance of the air bladder, we compared it with a commonly
used force sensor, i.e., the MINI45 F/T sensor (ATI Industrial Automation, America).
As shown in Fig. 6(a), an air bladder is in series with the F/T sensor. With the limitation
of frictionless linear guides, the air bladder and the F/T sensor measure the same applied
force. To ensure good contact between the force sensor and the air bladder, a rigid
plate is installed on top of the force sensor. During the experiment, a variable force is
applied to the inflated air bladder. Specifically, the external force increases and decreases
between 2–15 s. Then, an impulse force is applied between 15–20 s. Finally, two-step
forces are consecutively applied between 20–30 s. The pressure of the air bladder and
the z-direction measurement of the force sensor is recorded. In Fig. 6(b), it is observed
that the air pressure of the air bladder is in line with the measurement of the ATI force
sensor. Even a rapid and dramatic change of the external force could be detected by this
as-designed device, evidently presenting the excellent detection capability.

Fig. 6. Comparison with a conventional force sensor. (a) experiment setup, (b) the pressure of
the air bladder and the z-direction measurement of the force sensor recorded under the variable
external force.

3.4 Motion Intention Recognition Experiment

The air bladder-based MIR approach is compared to the current state-of-the-art MIR
method,which based on the sEMGsignals. Here, we develop a prototype of the presented
air bladder-basedMIR and install it on aUR5manipulator (Universal Robots, Denmark),
as shown in Fig. 7. The human robot interaction forces can be calculated according to
Eq. (1) and are used to control theUR5.Meanwhile, a certified commercial sEMGsensor,
Noraxon (USA) is utilized to record sEMG signals of the anterior deltoid and middle
deltoid of the subject which are related to the arm movements. During the experiment,
the subject is instructed to move his/her forearm up-and-down or side-to side. Based
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on the detected interaction force, the UR5 manipulator follows the arm motion using
the proportional control strategy. Given that the raw sEMG signals are noisy, a moving-
average filter is applied. Both the air pressure of the air bladders and the sEMG signals
are normalized in the range between 0 and 1 for comparison. Note that there is a delay
of about 200 ms between these two signals because the sEMG signals are produced up
to 300 ms ahead of arm movement in general [20]. The output of our prototype and
sEMG signals are recorded, as shown in Fig. 8. When the subject intends to move up
his/her arm, the activation level of the anterior deltoid increases and hence its sEMG
signal rises. His/her arm moves up driven by the anterior deltoid, and then interacts with
the robot. The proposed device captures the interaction force and controls the robot to
follow the user’s motion intention. Therefore, the robot moves upward and adaptively
adjust the velocity according to the output of our proposed device. Similar results can
be observed when the subject moves his/her arm side-to side.

Fig. 7. The experimental setup of air bladder-based motion intention recognition.

In addition, the trend and amplitude of the interaction force detected by our prototype
are generally aligned with the sEMG signal during these two types of movements.
Specifically, pearson correlation value between horizontal component of the air blad-
der-based HRI force and sEMG of middle deltoid is 0.748. Pearson correlation value
between vertical component of the air bladder-based HRI force and sEMG of anterior
deltoid is 0.7872. It is worth noting that sEMG-based MIR is complicated by the fact
that sEMG data recorded during dynamic contractions are inherently nonstationary. The
processing of sEMG is complicated, time-consuming, which is one of the obstacles that
prevents the practical use of sEMG-based MIR systems. On the contrary, the outputs of
the proposed approach, i.e., pressure signals, are robust, smooth, and simple to process,
which is especially appealing to practical HRIs.
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Fig. 8. Comparisonwith sEMG-basedMIRapproach. (a) horizontal component of the air bladder-
based HRI force and sEMG of middle deltoid, (b) vertical component of the air bladder-based
HRI force and sEMG of anterior deltoid.

4 Conclusion

In this study, we propose a novel approach for human motion intention recognition
based on air bladders. Experimental results demonstrate that the air bladder, which is
the critical component of the proposed method, performs well in terms of linearity and
repeatability during measuring the interaction force. The performance in recognizing
the motion intention of the proposed air bladder-based approach is competitive with
the force sensor-based and sEMG-based methods. Moreover, our method is lower-cost,
more reliable, and comfortable, which paves way to an effective and practical human
robot interface. In the future, the proposed idea can be extended to detect inter-action
forces of more degrees of freedom.
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Abstract. Previous studies have shown that patient’s voluntary participation
is one of the key factors in improving rehabilitation effects. End-effector and
exoskeleton type robots have been developed to support rehabilitation training at
different impedance levels. However, these robots either fail to take the move-
ment of the shoulder girdle into account or suffer from complex and massive
shoulder mechanisms. In this paper, we merge the advantages of the end-effector
and exoskeleton type robots and propose a simple and effective semi-exoskeleton
upper limb robot with seven degrees of freedom to support the impedance training
of the human shoulder complex and elbow joint. Besides, an admittance control
scheme is developed to generate desired movements during training. Experiments
on five subjects are conducted to assess the feasibility and performance of the pro-
posed robot. Results show that the proposed robot has satisfactory performance
in terms of shoulder kinematic compatibility and human-robot interaction. This
study could pave way for a practical rehabilitation robot for patients with stroke
in real-life.

Keywords: Upper limb · Rehabilitation · Semi-exoskeleton robot · Admittance
control

1 Introduction

Stroke is one of the leading causes of disability in adults, with many survivors expe-
riencing paralysis or loss of motor function on one side of the body and significantly
limiting basic activities of daily living (ADL) [1]. Physical therapy for stroke survivors
has been demonstrated as an effective way for motor rehabilitation [2]. However, the
labor-intensive and time-consuming exercises have been significant burdens for thera-
pists with increasing patients [3]. To solve this issue, some researchers have focused on
the development of rehabilitation robots.

Compared to conventional rehabilitation, robotic devices can provide repetitive and
intensive training [4, 5] and are independent of the fatigue level of therapists. Various
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control methods have been proposed for realizing assistive paradigm in rehabilitation
[6], such as impedance control and admittance control. Impedance control is a model-
based force controller with position feedback, controlling force after motion or deviation
from a set point is measured [7]. For implementation, impedance control is efficient for
lightweight backdrivable exoskeletons, however, problems arise when it is necessary to
consider gravity and friction [8]. Conversely, admittance control controls motion after
measuring the force, balancing the force-tracking feature andmovement compliancewith
the simplicity of implementation [9]. Although different admittance control schemes
have been developed in [9, 10], decoding the wearer’s motion intention is still an open
issue [11].

Upper limb rehabilitation robots commonly support active training by measuring
limbmotion through force/torque (F/T) sensors. End-effector robots, such asGENTLE/S
[12], EULRR [13], connect to the patient’s hand and measure the endpoint force/torque
to generate desired movements during training. The structure and control strategies for
end-effector robots are straightforward. However, it is difficult to control the posture of
the upper limb for these robots, and hence abnormal joint kinematics is possible. To solve
this limitation, exoskeleton-type robots, such as CADEN-7 [14], 6-REXOS [15], have
been developed to work at a joint level with distributed physical interaction providing
the capability of controlling the whole limb via one or more F/T sensors. However, all
the above exoskeleton robots simplify the shoulder complex of humans as a ball-and-
socket joint and ignore the mobility of the shoulder girdle, which is detrimental to the
coordinated movements of the shoulder complex and may even cause secondary injuries
due to the undesirable residual forces on human joints [16]. Some passive shoulder
mechanisms have been implemented to release the movement of the shoulder girdle [17,
18], however, the passive joints limit the possibilities of active assistance for the shoulder
girdle. Although extra active degrees of freedom (DOFs) joints at the shoulder complex
have been developed to address this issue [19, 20], the structures of these robots are
usually too complex and massive.

In this paper, we combined the advantages of the end-effector and exoskeleton type
robots to develop a simple and effective semi-exoskeleton upper limb robot with seven
DOFs, which is referred to as UEArm-7 hereafter. The UEArm-7 can support not only
the elbow flexion/extension and rotation of the glenohumeral joint, but also the move-
ment of the shoulder girdle. Considering that it is essential for a rehabilitation robot to
adjust assistance in response to temporal variabilities in subject performance, we fur-
ther develop an admittance control scheme with two six-axis F/T sensors to implement
impedance training. Two experiments were carried out to assess the human shoulder
kinematic compatibility and the interaction performance of the proposed robot.

The paper is organized as follows. The upper limb kinematic model, the mechanical
design of the proposed robot, and the admittance control scheme are introduced in Sect. 2.
The experiments and results are presented in Sect. 3. Section 4 draws a conclusion.
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2 Methods

2.1 Upper Limb Kinematic Model

In this section, the kinematic model of a human upper limb is presented. Firstly, a
four DOFs model is selected to realize shoulder adduction/abduction, flexion/extension,
internal/external rotation, and elbow flexion/extension. Considering that shoulder girdle
movements result in translational motions of the rotation centre of the glenohumeral
joint, which is one of the key design factors in shoulder coordinated movements, a three
translational DOFs model is then employed to follow the movements of the rotation
centre. Therefore, a seven DOFs kinematic model of a human upper limb is established
using the modified Denavit–Hartenburg (DH) framework, as summarized in Fig. 1. The
model assumes the upper limb as a set of rigid bodies, and uses rigid body modelling
technology from robotics. The frame {0} represents the shoulder complex origin and
the world coordinate system. Therefore, the motion of the upper limb can be described
by the variables d1, d2, d3, θ4, θ5, θ6, θ7 .

Fig. 1. Seven DOFs upper limb kinematic model. Red lines indicate upper limb active joints;
black arrows indicate axes of the coordinate frame using DH method; variables l1 and l2 are
lengths of upper arm and forearm respectively; d1, d2, d3, θ4, θ5, θ6, θ7 are variables of the
upper limb kinematic model. (Color figure online)

2.2 Mechanical Design

As shown in Fig. 2 (a), the UEArm-7 consists of three parts: a six DOFs industrial
robot (UR5, Universal Robots A/S, Denmark), a single DOF elbow exoskeleton, and
a base. The UR5 is connected to the upper part of the exoskeleton and supports the
movement of the shoulder complex, including adduction/abduction, flexion/extension,
and internal/external rotation of the glenohumeral joint, as well as the movement of the
shoulder girdle. Moreover, the UR5 is fixed to the base in a vertical installation manner
to avoid singularities. The elbow exoskeleton is made of lightweight material to reduce
the weight (approximately 1.7 kg) and controls elbow flexion/extension by cable. To
solve the problem of self-alignment, the elbow exoskeleton introduces two additional
links, decoupling joint rotation and translation [17]. The control box of the UR5, the
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elbow joint motor (RMD-X8, GYEMS, China), the sensor acquisition module, and the
power supply are placed inside the base.

To realize proper interjoint coordination between the upper-limb joints, theUEArm-7
hasmultiple contact points with the upper limb, including the upper arm cuff, the forearm
cuff, and the handle, as described inFig. 2 (b). The upper armcuff ismade of softmaterial,
and two buckles are used to reduce the gap between the exoskeleton and the upper arm.
The forearm cuff is contacted to the forearm through an inflatable insert. The handle
is fixed on the forearm cuff and provides a grip force during rehabilitation training.
Besides, two six-axis F/T sensors (mini45, ATI Industrial Automation, America) are
mounted between the cuffs and the elbow linkages to measure the torques and forces
exerted by the upper limb. A 14-bits absolute encoder (MBS, KingKong, China) is
installed on the drive shaft of the elbow exoskeleton to measure the angle of the elbow
joint.

(a)                                                                          (b)

Fig. 2. UEArm-7 design. (a) UEArm-7, which is a semi-exoskeleton upper limb robot with seven
DOFs and comprises a UR5 robot, an elbow exoskeleton, and a base. (b) The elbow exoskeleton,
which comprises two F/T sensors, an encode, an upper arm cuff, a forearm cuff, and a handle.

2.3 Admittance Control Scheme

An admittance control scheme is presented in this section, and its overall block diagram
is presented in Fig. 3, mainly consisting of three aspects: intention estimator, admittance
controller, and velocity mapping. Specifically, upper limb joint moments are first esti-
mated by two F/T sensors, and then translated into joint motion of upper limb. Finally,
the joint motion is mapped into the robot’s movements.

Intention Estimator. Based on the assumption of low constant speed motion, the re-
quired forces and torques for maintaining the static equilibrium are calculated by (1)
using the coordinate system in Sect. 2.1, where ifi represents the force on frame {i}, ini
is the torque on frame {i}, i + 1iR is the rotation matrix describing frame{i} to frame
{i+1}, iPi+1 is the position vector from frame {i} to frame {i+1}.
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Fig. 3. Overall block diagram of the admittance control scheme.

{
ifi = i+1

iRi+1ni+1
ini = i+1

iRi+1ni+1 + iPi+1 × ifi
(1)

Using the above formula, the forearm F/T sensor data can be transferred sequentially
to frame {0}. Finally, the required forces and torques for the upper limb can be obtained
by the dot products of forces and torques acting on each frame with the z-axis vectors,
which is summarized in (2).

F = J−1
u Fu + J−1

f Ff (2)

whereF = [fd1, fd2, fd3, τ4, τ5, τ6, τ7].Fu andFf represent themeasured data exerted on
the upper arm and forearm by F/T sensors, respectively. fdi (i= 1,2,3) are the translation
forces in frame {i}, and τi (i = 4,5,6,7) are the torques of z-axis in frame {i}. Note that
the 7f7x and 7τ7z are set to zero during forearm force and torque transfer to eliminate the
effects of forearm F/T sensor data on the upper limb.

Admittance Controller. Admittance control is referred to as an interaction scheme
pro-posed by Hogan firstly [7] and has been widely applied in rehabilitation robots.
More-over, admittance control establishes a second-order system relationship between
the interaction force and motion and allows compliant motion of the exoskeleton. In this
research, the forces calculated by (2) are as input, the output is joint velocities, and the
control law is described in (3).

Y(s) = V (s)

F(s)
= 1

Ms+ B
(3)

where Y(s) is the transfer function of system, M is the inertia matrix and B represents
the damping matrix.

Velocity Mapping. The velocity mapping block derives exoskeleton velocity from
human velocity through the upper limb kinematics. The elbow joint velocity of the
upper limb is directly mapped to the exoskeleton and others obtained by (3) are mapped
to the endpoint velocity of the UR5 via (4).

{
i+1ωi+1 = i

i+1Riωi
i+1vi+1 = i

i+1R(ivi + iωi × iPi+1)
(4)
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where i+1ωi+1 is the angular velocities vector in frame {i+1}, i+1vi+1 is the linear
velocities vector in frame {i +1}.

3 Experiments and Results

Two experiments were conducted to verify the performance of the UEArm-7 system:
(i) experiment on testing the kinematic compatibility of the shoulder complex, and (ii)
experiment on testing the interaction performance during training. Five healthy males
(mean ages: 23.8 ± 1.3 years, height: 171.6 ± 6.0 cm, weight: 66.6 ± 6.0 kg, upper
arm length: 30.5 ± 1.7 mm, forearm length: 31.1 ± 1.1 mm) participated in these two
experiments and signed informed consent before the experiments. All the kinematic and
force data in trials were collected at 120 Hz.

(a)                                                               (b) 

Fig. 4. Experimental scenes. (a) Experiment on testing the kinematic compatibility of the shoulder
complex. (b) Experiment on testing the interaction performance during training.

3.1 Experiment on Kinematic Compatibility

To evaluate the kinematic compatibility of UEArm-7 in the shoulder complex, the resid-
ual forces applied to the shoulder complex were measured during upper limb abduction,
which occurred simultaneously with the shoulder elevation. Firstly, participants sat on
a chair while the upper limb was initially oriented straight down and roughly parallel
to the sagittal plane. Then the upper limb was slowly abducted at approximately 100°
(Fig. 4 (a)). The forces exerted to the shoulder joint were calculated through the upper
arm F/T sensor and the forearm F/T sensor.

The experiment includes two conditions: (i) Shoulder free translation (SFT) condi-
tion, in which the shoulder girdle was free to move as the control scheme designed. (ii)
Shoulder locked translation (SLT) condition, in which the movement of the shoulder
girdle was locked by setting the translation forces fd1, fd2 and fd3 to zero. In SFT con-
dition, the desired translational inertia parameters were all set to 30 N·m−1s2 and the
desired translational damping parameters were all set to 60 N·m−1s. For each condition,
10 trials were conducted for each subject. The force signals are lowpass filtered at 5 Hz
and then averaged for each case, respectively.
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Fig. 5. Experiment results of kinematic compatibility testing. The solid and dotted lines repre-
sented residual forces exerted on the shoulder during upper limb abduction in the shoulder free
translation and shoulder locked translation conditions, respectively.

As shown in Fig. 5, the solid lines represent the residual shoulder forces of the SFT
condition, and the dotted lines are the residual shoulder forces of the SLT condition. In
SFTcondition, the residual forces acting on the shoulder complex remain very low,which
verified the shoulder kinematic compatibility. In the SLT condition, the control scheme
for fixing the translation DOFs of the shoulder complex causes a rising residual force
due to the shoulder elevation. The comparison between SFT with SLT conditions show
that the control of shoulder translation DOFs can reduce the residual forces acting on the
shoulder complex during shoulder elevation movement. Moreover, the misalignment of
the rotation centre of the shoulder complex between subjects with the robot also results in
residual forces applied to the shoulder complex, as illustrated by the fact that the starting
force in the SLT condition is greater than the starting force in the SFT condition. The
release of the shoulder translation DOFs also automatically align the shoulder complex’s
rotation centre between subjects and the robot. Although the movements tested were
limited, the experimental results demonstrated great shoulder kinematic compatibility
of the proposed robot and showed that UEArm-7 has the potential to improve shoulder
movement coordination and reduce the possibility of secondary injury to the shoulder
complex.

3.2 Experiment on the Interaction Performance

Toassess the interactionperformancebetweenUEArm-7with subjects during impedance
training, five linear tracking tasks were performed on a horizontal plane, as shown in
Fig. 6. The length of each track is 0.3 m, and the angle difference between adjacent tasks
is 45°. In this experiment, participants sat on a chair and firstly spent 5 min familiarizing
the tasks. Then participates were asked to complete a linear reciprocal task within 5 s
and follow the specified task as closely as possible with the feedback of the real-time
human hand trajectory on the display. For each task, ten reciprocal trials were conducted,
and the trial time (TT), tracking errors (TE), smoothness (SM), upper arm force (UAF),
forearm force (FF), and shoulder force (SF) were recorded. The smoothness metric was
adopted from [21], with larger values indicating greater smoothness. Besides, the desired
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inertia parameters from θ4 to θ7 were all set to 0.5 N·m·rad−1·s2 and the parameters
from d1 to d3 were all set to 30 N·m−1·s2. The desired damping parameters from θ4 to
θ7 were all 1.0 N·m·rad−1·s and the parameters from d1 to d3 were all 60 N·m−1·s.

Fig. 6. Trajectories of a subject in the experiment of interaction performance testing. Black lines
represent target trajectories; red lines are actual trajectories. (Color figure online)

Fig. 7. Different performancemetrics of all subjects in the experiment of interaction performance
testing. (a)-(f) are performance of TT, TE, SM, UAF, FF and SF, respectively.

As summarized in Fig. 7, all subjects completed these trials within the specified time
and performed a high level of kinematic performance (TE: average 5.6 mm, SM: average
–7.9). Besides, the average values for UAF and FF are 6.6 N and 7.0 N, respectively,
which contains the gravity of the human arm. The low value of the SF (average 3.6 N)
presented a small force applied to the shoulder complex, indicating excellent shoulder
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kinematic compatibility. Experimental results showed that the UEArm-7 robot exhibited
great compliance on the upper limb, especially in the shoulder complex. Moreover, the
desired trajectory and impedance were realized with promising kinematic performance.

Overall, experimental results demonstrated satisfactory interaction performance
betweenUEArm-7with subjects and validated the effectiveness of the proposed structure
and control scheme.

4 Conclusion

This study developed a semi-exoskeleton rehabilitation robot with seven DOFs for upper
limb rehabilitation.TheUEArm-7 robotwith a simplemechanical designhas the capacity
of controlling the whole upper limb, including the shoulder complex. Moreover, the
admittance control schemeallows theUEArm-7 robot to provide a natural and continuous
impedance movement for subjects. Results show that the UEArm-7 robot can move
the elbow joint and the shoulder complex of humans with physiologically accurate
trajectories and low impedance. In future work, we will further investigate the effects of
soft tissue deformation of human arms and take this issue into account in estimating the
wearer’s motion intention.
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Abstract. Lower limb rehabilitation robots are of great significance for poststroke
patients to regain locomotion ability. However, most rehabilitation robots fail to
take the movement of CoM of human body into account. Considering that CoM
is an essential index to assess the recovery effect and improve the treatment,
we propose a simple, economic, portable, and highly efficient CoM perception
approach based on Kinect camera. This novel method is capable of detecting the
displacement and rotation of CoM in multi-planes. Results of walking tests show
that our approach has competitive performance in capturing the variation trends
of CoM compared with multi-cameras motion capture system, especially in some
directions with large displacement variation. The high accuracy, simple and low-
cost detection of CoM is a major step forward towards practical application in the
assessment of rehabilitation after stroke.

Keywords: Lower limb rehabilitation · Kinect camera · CoM detecting

1 Introduction

Hemiplegia is a common sequela caused by the strokes, spinal cord injury or other
unexpected damage, which results in locomotion dysfunction and decreases the quality
of daily life. Proper physical rehabilitation is crucial and irreplaceable for poststroke
survivors to regain the locomotion ability and improve community participation. To
achieve this goal, it requires not only joints motion, but also the dynamic balance of the
whole body, which relies on the CoM perception system and posture control mechanism
inwalking rehabilitation.Hence, how to accurately and convenientlymeasure themoving
CoM in real-time is significant for the patients to recover dynamically walking gait [1].

Recently, lower-limb rehabilitation robots have shown their comprehensive applica-
tions and enormous potential in clinical practice and assisted patients with hemiplegia
according to the plasticity theory of nerve that targeted, repetitive and appropriate-
intensity of exercise in vintage period can induce the reconstruction of center nerves
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system and then contribute to the rehabilitation process [2]. Training with body weight
support system (BWSS) is one of the most effective and common strategies in lower
limb rehabilitation by which partial weight of the patient is unloaded so that some
abilities and characteristics are optimized, such as the improvement of walking abil-
ity [3], decrease of energy consumption [4], increasing degree of muscle activation [3,
5, 6], and promotion of nervous system [2]. Moreover, BWSS can help patients keep
a dynamic balance and avoid falling, which are key indices in rehabilitation. Balance
maintaining involves position control of CoM in lateral and vertical direction. Usually,
CoM is a key index in posture control and walking stability. Therefore, the prerequisites
of achieving a favorable-performance BWSS is perception to CoM. The detection of
CoM is indispensable for controlling and assessing the post-stroke survivors’ rehabili-
tation progress. Some studies [7, 8] have demonstrated that the CoM can be measured
and monitored by motion capture systems, i.e., Vicon (Oxford Metrics, UK), accord-
ing to the body segments displacement and posture. However, numerous camera lenses
and complex calibration manipulation cause extremely high costs and inconvenience
in daily rehabilitation therapy [9]. Besides, Stefano C. et al. have developed a single
inertial measurement unit (IMU) estimation system to measure the CoM displacement
and rotation. IMU systems are simple, but suffer from object obstruction and need of
careful installation [10]. In [11], a wearable hand exoskeleton used an RGB-D camera
to capture the position of hand joints in real-time. In [12], a camera system was applied
to track the 3D trajectory of body joints for posture classification and compensatory
motion simulation. However, RGB cameras are susceptibly disturbed by ambient light
and its application is limited in complex scenarios. In recent years, the Microsoft Kinect
depth camera, which has advantages of low-cost, convenience, and reliability exerts great
potential in clinical practice, such as skeleton joints detecting and posture tracking [13,
14]. However, previous studies only focus on limbs movement trajectories or awkward
postures assessment and fail to consider the movement pattern of CoM.

Therefore, we developed a novel efficient algorithm to detect the variation of CoM
while walking based on a non-contact visual sensor (Kinect), whichmakes it particularly
suitable for portable rehabilitation settings. The proposed Kinect-based CoM perception
approach tracks the main segments of the human body and gets 3D position data firstly.
The CoM is then calculated according to statistical ratios and corresponding algorithms.
Experiments are carried out to validate theKinect-based system against theVicon system
to detect the CoM. Results indicate that the proposed method could achieve approbative
performance compared with Vicon and imply a bright application in recovery diagnoses
and assessment of post-stroke survivor’s rehabilitation.

2 Methodology

The pattern of CoM movement is closely related to the personalized body parameters
and habitual gaits started from they were toddle. In addition, this certain pattern also
keeps unchanging in a period of time. Hence, it is indispensable to accurately assess
the movement of CoM and take advantage of the motion pattern for improving the
locomotion ability of stroke survivors.
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2.1 Principle of Depth Camera Imaging

In this study, the main sensor of CoM perception system is Azure Kinect (Microsoft,
USA), which integrates a depth camera and an RGB camera. The Kinect depth camera
adopts active infrared to sensor the distance between target objects and the camera. This
can effectively remove the external interference and improve the robustness of system.
When working, it can form a large field of view with a 120° view angle1 in front of
the camera in both vertical direction and horizontal direction, as shown in Fig. 1. Azure
Kinect has the reference frame of itself. The camera is usually placed at a distance of
1.5 m away from the human body and a 1.5 m height to get accurate measuring results
and a large view field.

Fig. 1. The Kinect camera to capture COM of human. The target user is in field of the camera.
The distance (depth) of all segments of body can be detected by the infrared sensor module.

2.2 Kinect Body Tracking

The Azure Kinect Body Tracking SDK provides real-time body tracking using human
pose estimation techniques [15]. A trained convolution neural network (CNN) extracts
the 2D positions of the joints on the infrared image. Then, the 2D positions are mapped
to the 3D space according to the depth informationmeasured by the depth camera. Using
Azure Kinect, we can measure the 3D positions of the centers of joints (Fig. 2) at a speed
of 30 frames per second.

1 When the depth camera is set to wide field-of-view depth mode.
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Fig. 2. Distribution of 3D positions of joints centers on the human body.

2.3 CoM Calculating

The human body can be simplified as a rigid body system composed of the following
segments, head, neck, chest, upper arm, lower arm, hand, thigh, calf, and foot. Base on
the inertia parameters (Table 1) provided by the determined model [12] and the segment
position measured by the Kinect, we can determine the mass and CoM of each segment
separately, and then we are able to calculate the CoM of the whole body by synthesizing
the moments.

The mass Mi of the i-th segment can be obtained as follow:

Mi = ri ∗ BM (1)

where ri is the ratio of the mass of the segment to the mass of the whole body (BM,
Table 1).

The position coordinate of CoM of the i-th segment is calculated according to the
position parameter from Table 2. The coordinate system is default set by the Kinect
system.

Pi = Pi
u + li ∗

(
Pi
u − Pi

l

)
(2)

where li is the position parameter of the i-th segment, Pi
u and Pi

l are the upper end and
lower end of the i-th segment which can be measured by the Kinect camera. The upper
end and lower end of the segments are shown in Table 2.
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Table 1. Ratios of the mass of the segments relative to the whole-body mass (BM) and CoM
Position Parameters of the segments (relative length from the CoM of the segment to the upper
origin of the segment) [16].

Segment Index (i) Ratio to body mass CoM position
parameters

Male Female Male Female

Head 1 0.044 0.037 0.63 0.63

Neck 2 0.033 0.026 0.50 0.50

Chest 3 0.479 0.487 0.52 0.52

Upper arm (One side) 4 0.026 0.025 0.46 0.46

Fore arm (One side) 5 0.015 0.013 0.41 0.42

Hand (One side) 6 0.009 0.006 0.50 0.50

Thigh (One side) 7 0.1 0.111 0.42 0.42

Calf (One side) 8 0.053 0.053 0.41 0.42

Foot (One side) 9 0.019 0.015 0.50 0.50

Table 2. The body index of the upper end and lower end of the segments in the Kinect body
tracking system.

Segment Index (i) Upper end Lower end

Head 1 TOF HEAD

Neck 2 HEAD NECK

Chest 3 NECK PELVIS

Upper arm 4 SHOULDER_RIGHT
SHOULDER_LEFT

ELBOW_RIGHT
ELBOW_LEFT

Fore arm 5 ELBOW_RIGHT
ELBOW_LEFT

WRIST_RIGHT
WRIST_LEFT

Hand 6 WRIST_RIGHT
WRIST_LEFT

HAND_RIGHT
HAND_LEFT

Thigh 7 HIP_RIGHT
HIP_LEFT

KNEE_RIGHT
KNEE_LEFT

Calf 8 KNEE_RIGHT
KNEE_LEFT

ANKLE_RIGHT
ANKLE_LEFT

Foot 9 ANKLE_RIGHT
ANKLE_LEFT

FOOT_RIGHT
FOOT_LEFT
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Finally, the CoM of the whole body is calculated by:

CoMbody =
∑n

i WiPi∑n
i Wi

=
∑n

i WiPi

BM
=

∑n

i
riPi (3)

where n is the number of segments of the body model and n is according to previous
study [16].

TOF is a virtual point we defined since the upper end of Head segment is
not applicable in the Kinect Body Tracking SDK. TOF is defined by: TOF =
2(NOSE − HEAD) + HEAD. In this way, the CoM of Head segment would approx-
imately be TOF + l0 ∗ (TOF − NOSE) where l0 is the CoM position parameter of the
Head segment.

3 Experiments

We build up a scene to verify the feasibility of Kinect-based CoM perception approach.
In addition, we compared the reliability of our method with an eleven-camera motion
capture system (VICON, OxfordMetrics, UK; 250 Hz). The VICON systemwas chosen
as the gold standard motion analysis system (accuracy lower than 0.01 mm).

3.1 Experimental Setup

As shown in Fig. 3, the perception system is mainly comprised of Kinect depth camera
which is placed in front of the treadmill. The subject walk on the treadmill at different
speed in both Kinect and VICON motion capture system view field.

Fig. 3. The photograph of the setup of experiments. The tester was attached marked points in the
field of both the VICON and Kinect.
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3.2 Experiments

A healthy male participant (65 kg, 167 cm) without a history of neurological or mobility
impairments participated in the experiments. The participant provided informed consent,
and theprocedureswere approvedby theSouthChinaUniversity ofTechnologyResearch
Ethics Board (SCUTREB).

To avoid the disturb on theVICONmotion capture system, the testerwas upper-body-
naked and attached a series of marked points. It is worth noting that our Kinect-based
approach doesn’t have any marked point and is capable of recognizing the human body
by an internal algorithm. As illustrated in Fig. 3, the Kinect camera is placed in front of
a treadmill at the height of 1.5 m. The tester walked at speeds of 0.2 m/s, 0.4 m/s, 0.6
m/s, 0.8 m/s, and 1.0 m/s, respectively. Every walking speed lasted for 1 min. We also
measured the variation of CoM when the tester performed repeated squats, as shown in
Fig. 5.

4 Results and Discussion

The movement data is recorded by VICON motion capture system and Azure Kinect
throughout the experiments.Due to different sample frequency (VICON: 250Hz,Kinect:
30Hz), the data fromVICON is resampled firstly. And these results are then summarized
as Figs. 4, 5, 6 and 7. Specifically, the displacement variation of CoM in the X-axis, Z-
axis and the rotation angle around the Kinect Y-axis at the speed of 0.4 m/s are analyzed,
respectively.

In general, both Kinect-based and VICON-based methods have captured the move-
ments of CoM and demonstrated consistent trends in terms of displacement in X-axis,
Y-axis and Z -axis, as well as rotation displacement in Y-axis. As shown in Fig. 4 and
Fig. 5, themax displacement in X-axis is up to 50mm and theKinect-based approach has
achieved approximative performance in comparison with VICON-based measurement.
It is encouraging that the average relative error (ARE) between our proposed Kinect-
based method and the gold standard VICON system is less than 6%, with 4.03% in
X-axis and 5.31% in Z-axis.

Fig. 4. Displacement of CoM in X-axis (left-right direction) at speed of 0.4 m/s.
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In addition, we compared the performance of these two approaches in squat exercise,
as illustrated Fig. 6. For the displacement of CoM in Y-axis, the measurements from the
Kinect and VICON were highly correlated with an average ARE of 3.00%.

Generally, the body rotation motion while walking represents dynamic balance con-
trol ability and metabolic saving level. Therefore, we also analyze the trunk rotation
angles captured by Kinect-based and VICON-based methods, as shown in Fig. 7. The
results of Kinect-based approach suffer a little distortion around the peak values due
to its much lower sampling frequency, yet with small discrepancies compared to the
VICON system. These results verify that our proposed approach is efficient and feasible
in capturing CoM variation.

Based on walking test results, we found that the variation of CoM is period related
to the waking pattern. The proposed algorithms can measure and calculate the CoM
trajectories in 3D space. And it has competitive performance compared to VICON-based
method when the displacement varies in the range of 40 mm. Meanwhile, the proposed
monocular Kinect-based method has more edges over the multi-camera system VICON
in economy, usability, application scenes, and so on.

Fig. 5. Displacement variation of CoM in Z-axis (front-back direction) at speed of 0.4 m/s.

Fig. 6. Displacement of CoM in Y-axis (up-down direction) with squatting motion.
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Fig. 7. Rotation displacement of CoM in Y-axis (up-down direction) at speed of 0.4 m/s.

5 Conclusion

This paper presented a novel CoM perception approach for lower limb rehabilitation
based on Kinect. Using Kinect’s internal SDK packages, the approach calculates the
CoM position according to statistical ratios. In walking experiments, this approach can
capture the trends of CoM. Moreover, its performance in some directions that have large
displacement variation scope has been proved by the experiment data. Overall, this low-
cost and easy-to-setup approach can realize an approbative performance compared with
the multi-camera system VICON. Considering that the variation of CoM is a crucial
index to assess the walking pattern in rehabilitation, this simple and economic approach
has promising potential to optimize the rehabilitation of lower limbs for stroke survivors.
Wewill further test the proposed approach onmore motion patterns andmultiple speeds.
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Abstract. Since building relationships between humans and robots continue to
increase, the importance of touch interactions between humans and social robots
is also growing. However, due to such limitations such as robot performance,
most of these robots perform touch interaction with specific motions. In human-
human touch interaction, the touch method reflects relationships and situations.
This study investigates how touch interactions reflect relationships and situations
with others to obtain the design guidelines for touch interactions for social robots.
We experimentally investigated how participants performed touch interactions
with a mannequin. Our participants performed touch interactions in three specific
situations (consoling/forgiving/sharing happiness)with a partner of a three specific
intimacy (intimate/acquaintance/ stranger). We analyzed their touch behaviors.
When the relationship was intimate, many participants touched the mannequin’s
torsos in every situation. This touch motion decreased as the intimacy level with
others reduced, and a touching motion with both hands or just one increased.

Keywords: Human-robot touch interaction · Human-human touch interaction ·
Social touch

1 Introduction

Using social robots that must build relationships with humans and robots is increasing.
Such social robots must perform touch interactions. Social robots interact with humans
by shaking hands at museums [1, 2], elementary schools [3, 4], and shopping malls [5,
6]. Such touching is a key factor for friendly interactions and for positively affecting the
person being touched because previous studies in human-human interaction identified
various merits from touch interactions [7–12]. Previous work investigated the merits
of human-robot touch interaction from the following viewpoints: mental health support
[13], motivationmanagement [14], stress buffering effects [15], and promoting prosocial
behavior [16]. However, due to touch limitations as robot performance, most of these
robots performed touch interaction base on specific motions. In human-human touch
interaction, since the contact method and contact site depend on the relationships and
the situations with others, this study investigates how touch interactions depend on the
relationships and situations with others to obtain design guidelines for social robots.
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In our experiment, we investigated how participants performed touch interac-
tions with a mannequin. They performed touch interactions in specific situations
(consoling/forgiving/sharing happiness) with a partner of a specific level of intimacy
(intimate/acquaintance/stranger), and we analyzed their touch behavior.

2 Related Work

For the design of social robots that engaged in touch interaction, previous studies were
fueled by human-human touch interaction in ethology, psychology, and the social sci-
ences [17]. Such research revealed how touch interactions are used between people
[18–20]. For example, touching the hand of another person is acceptable regardless
of their relationship [21], and people touched hand/forearm to express happiness and
the hand/shoulder to express sadness [22]. In addition, when communicating intimate
emotions, people tend to prefer touch interactions over other modalities [23].

Previous studies investigated how people touch robots. Touching gestures were cat-
egorized when people communicate with nine specific emotions with an animal robot
[24], and eight emotionswith a small humanoid robot (NAO) [25]. As human-like robots,
typical touch gestures were categorized when conveying positive feelings of love and
devotion to the mannequins [26, 27].

3 Experiment

We investigated howpeople performed touch interactions depending on their relationship
with another and their situation. If the participants touched other participants, the touch
motion might be biased by their previous relationships. Therefore, in our experiment,
we controlled the appearance of the people and any relationships influence by having
the participants touch a mannequin as a partner. The experiment was conducted in a 2-m
square space in which the mannequin sat in the center. The participants stood in front of
the mannequin while they waited for instructions, and when they touched it, they were
free to move around in the experiment space, for example, behind the mannequin.

3.1 Proceedings

The experiment was conducted in two parts. In the first, the participants practiced touch-
ing the mannequin. We instructed them to touch it by chest stroking, chest tapping,
hugging, shoulder stroking, and shoulder tapping motions. In the second, we explained
their relationship and the situationwith themannequin (Fig. 1). Sincewe gave no instruc-
tions about the touching behavior, the participants could freely touch it. We instructed
them to touch it for about ten seconds per tasks.

We explained to the participants the level of intimacy with their mannequin-partner
and their specific situations. Since social robots inmuseumsand shoppingmalls functions
as guides, the humans and robots are most likely meeting for the first time. On the
other hand, in social robots for mental care, humans and robots are more likely to be
together more often. Therefore, their relationship is situational. In the experiment, we
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distinguished the relationships between the participants and their mannequin-partners
as “intimate,” “acquaintance,” or “stranger.” An intimate partner is denoted by a family
member, a best friend or a significant other. An acquaintance partner is a colleague or a
classmate. A stranger is a completely unknown person.

Fig. 1. Experiment snapshot.

Touch interactions also depend on the partner’s emotion. Past studies investigated the
positive effects of a robot’s emotional expressions, including facial expressions, body
gestures, and/or speech [28–33]. In this context, showing positive emotions is one basic
interaction strategy. For example, expressing happiness builds relationshipswith humans
[34, 35], and sad feelings are typically used as negative emotions by social robots [31, 33].
In this experiment, we focused on just two (happiness and sadness) instead of all six of
Ekman’s basic emotions because they are the most typical emotions used in designing
the touch methods for social robots. Since the scenarios that use the remaining four
Ekman’s emotions are situational and less frequent in the context of the current social
robots, anger is less common than sadness. Therefore, we set the participant situations
of “sharing happiness” as an expression of happiness and separated the situations with
sad emotions into “consoling” and “forgiving.” According to Hwang’s concept of other-
esteem [36], forgiveness ameliorates our own unpleasant feelings in sad emotions. On the
other hand, consoling improves the unpleasant feelings of the others. Therefore, in the
experiment, we distinguished the partner’s situation as “sharing happiness,” “consoling”
or “forgiving.”

Participants touched the mannequin for about ten seconds based on each of these
tasks. The mannequin had no conversational function, and participants touched it by
imagining specific relationships and situations. The total experiment time was about
five minutes, the first part was about two minutes, and the second part lasted about three
minutes.
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3.2 Participants

Twenty-two undergraduates (eleven males and eleven females) participated in the
experiment.

3.3 Analysis

Webased our analysis of how the participants touched themannequins on recorded video.
Most of the designs for touching with social robots used a one-handed or both-handed
touch, such as tapping or stroking. It is difficult to compare these touch methods with the
partner’s relationships in this experiment. For example, if the relationshipwith the partner
is “intimate,” much of the body (especially the torso), such as a hug, might touch the
partner. When we create social robots, tapping and stroking operations can be designed
based on features already possessed by conventional robots. However, when developing
a new social robot, we must consider which part of the social robot should be touched.
Therefore, we investigated which part of the participants touched the mannequin and
classified them as “no touch,” “one hand,” “both hands,” and “torso.”When a participant
touched the mannequin many times or in different areas, we counted the larger contact
area of the touch. For example, if a participant touched with one hand and both hands
over ten seconds, we counted it as both hands.

3.4 Results

Our experimental results are shown in Tables 1, 2, and 3. The most common methods
used by the participants to touch the mannequin in each situation and relationship are
shown in bold.

Table 1 shows the result of the “consoling” situation.We conducted a Chi-square test,
and the results revealed significant differences among the conditions (χ2(6) = 72.327,
p < .01, ϕ = 0.536). A residual analysis revealed that touching “both hands” (p <

.05) and the “torso” (p < .05) was significantly more common than the other touching
methods when the relationship was “intimate.” Touching with “one hand” (p< .01) was
significantly more common than the other touching methods when the relationship was
“acquaintance.” In addition, touching with “one hand” (p < .01) was preferred to the
other touching methods when the relationship was “stranger.”

Table 2 shows the “sharing happiness” situation. We conducted a Chi-square test,
and the results revealed significant differences among the conditions (χ2(6) = 60.036,
p < .01, ϕ = 0.500). A residual analysis revealed that touching “both hands” (p <

.05) and the "torso" (p < .01) was significantly more common than the other touching
methods when the relationship was “intimate.” Touching with “one hand” (p< .01) was
significantly more common than the other touching methods when the relationship was
“acquaintance.” In addition, touching with “one hand” (p< .05) was more common than
the other touching methods when the relationship was “stranger.”
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Table 1. Results of “consoling” situation: Num indicates participants who touched mannequin,
and AR indicates the adjusted residual.

No touch One hand Both hands Torso

Relationship Num AR Num AR Num AR Num AR

Intimate 0 −4.083** 12 0.970 15 1.863* 15 1.812*

Acquaintance 0 −4.083** 37 17.145** 5 −2.277* 0 −4.228**

Stranger 7 −1.361 34 15.204** 1 −3.933** 0 −4.228**

* p < .05, ** p < .01

Table 2. Results of “sharing happiness” situation: Num indicates participants who touched
mannequin, and AR indicates the adjusted residual.

No touch One hand Both hands Torso

Relationship Num AR Num AR Num AR Num AR

Intimate 0 −4.027** 5 −2.694** 15 2.200* 20 4.375**

Acquaintance 1 −3.624** 25 8.082** 8 −0.880 6 −1.750**

Stranger 8 −0.805 28 9.698** 4 −2.640** 0 −4.376**

* p < .05, ** p < .01

Table 3. Results of “forgiving” situation: Num indicates participants who touched with man-
nequin, and AR indicates the adjusted residual.

No touch One hand Both hands Torso

Relationship Num AR Num AR Num AR Num AR

Intimate 0 −3.933** 19 6.717** 5 −1.863+- 14 1.948*

Acquaintance 3 −2.691* 30 14.496** 3 −2.691** 2 −3.248**

Stranger 6 −1.449 29 13.788** 1 −3.520** 2 −3.248**

+- p < .10 * p < .05, **p < .01.

Table 3 shows the result of the “forgiving” situation.We conducted a Chi-square test,
and the results revealed significant differences among the conditions (χ2(6)= 27.513, p
< .01, ϕ = 0.347). A residual analysis revealed that touching “one hand” (p < .01) and
the “torso” (p < .05) was significantly more common than the other touching methods
when the relationship was “intimate.” Touching with “one hand” was significantly more
common than the other touching methods when the relationship was “acquaintance.” In
addition, touching with “one hand” was preferred over the other touching methods when
the relationship was “stranger”.
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(b)   Wrapping an arm around  
its shoulders

(a) Hugging and stroking  
mannequin’s back

Fig. 2. Participant touched mannequin’s “torso”

(a) Left hand grabbed shoulder  
and the right hand touched it

(b)  Grabbing both hands

Fig. 3. Participant touched mannequin with “both hands”

4 Discussion

4.1 Human-Human Touch Interaction

From our experimental results, in all the “consoling,” “forgiving” and “sharing happi-
ness” situations, touching the mannequin’s torso scored higher when the relationship
with the other person was “intimate.” This torso-touching motion decreased as the rela-
tionship with the other person became less intimate, and the motion of touching with
both hands and or just one increased. For the touch motion, the contact area increased
in the order of no touch, one hand, both hands, and the torso. Therefore, the contact
area of the touch motions depended on the relationship with the other person. Touches
that involved contact with the torso included such motions as the participant hugging
the mannequin from its front and standing next to the mannequin and wrapping an arm
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around its shoulders (Fig. 2). The proportion of hugging motions was high in the “con-
soling” and “forgiving” situations when the relationship with the other was “intimate”
(15/15 and 11/14). According to a previous study [37], a hugged person feels more self-
disclosure than a non-hugged person. In this previous experiment, the participants and
the mannequin did not have a conversation, and the participants imagined a given situa-
tion and touched the mannequin. Perhaps the participants were encouraged to engage in
self-disclosures by their “intimate” partners by giving hugs.On the other hand, even if the
relationship was “acquaintance” or “stranger,” encouraging self-disclosures from others
is required in “consoling” and “forgiving” conditions. However, the touch’s contact area
decreased as the relationship with the other person became less intimate. Our future
work will investigate the relationship between the contact area and the self-disclosure
of others.

In addition, in “consoling” situations, touching themannequinwith bothhands scored
higher when the relationship with the other was “intimate.” However, in “forgiving”
situations, touching the mannequin with both hands scored lower when the relationship
with the other was “intimate.” Touching with both hands included placing both hands
on their shoulders and stroking by one hand (Fig. 3). According to Hwang’s concept
of other-esteem [36], “forgiveness” improves one’s own unpleasant feelings. On the
other hand, "consoling" affects the unpleasant feelings of the other person. Therefore, in
“comforting” situations, the participants probably tried to improve the partner’s emotion
and touched the torso or both hands.

In “sharing happiness” situations, when the relationship with the other person was
“intimate” and “acquaintance,” many participant’s touching motions involved the torso
and both hands. For touching that contacted the torso, we observed two touching pat-
terns: hugging and wrapping an arm around the mannequin’s shoulder (each motion was
3/6, 3/6). When the situation was “sharing happiness,” the emotional target is different
from the “consoling” situation (that ameliorates the sadness of a partner) or “forgiving”
(addressing one’s own sadness). We believe that these motions increased because the
participants wanted to share their own feelings of happiness with their partner.

4.2 Robot-Human Touch Interaction

In this section, we consider the case where a robot touches a human. According to
our results, the touch motions must be changed depending on the relationship between
the touching robot and the human. As social robots continue to spread in the future,
we must obtain design guidelines about what kind of touch robots are desirable for
forging relationships between humans and robots. We explained to the participant that a
family member, best friends, and significant others denote “intimate” relationships, and
colleagues and classmates denote “acquaintance” relationships. For example, assuming
a social robot as a daily partner, touching with a hugging motion will strengthen the
“consoling,” “forgiving” and “sharing happiness” effects. Assuming a counseling robot,
effective touches include one hand at a first meeting with the robot and increasing the
contact area for subsequent examinations. In addition, even when a person first meets a
counseling robot, hewill probably feel intimacy from the robot by hugging. Investigating
the relationships between touchingmethods and relationships with partners is interesting
future work.
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In this research, we assumed that the robot touches a person, and we didn’t set the
robot’s gender. Therefore, we did not analyze the participants by gender. However, since
the number of gendered robots may increase in the future, analysis of the gen-der of
participants and how it affects touching behaviors is future work.

5 Conclusion

We investigated how participants engage in touch interaction when their relationships
change with a robot partner. They performed touch interactions in specific situations
(consoling/sharing happiness/forgiving) with a partner of a specific level of intimacy
(intimate/acquaintance/stranger), and we analyzed their touch behavior. When the rela-
tionship between the participant and the partner was intimate, many participants touched
the mannequin’s torso in all the situations. This touch motion decreased as the relation-
ship with other person became less intimate, and touching motions with both hands or
just one increased. In addition, touching the torso included such motions as the partic-
ipant hugging the mannequin from the front and standing next to the mannequin and
wrapping an arm around its shoulders. We believe that these touch methods will help
robots build intimate relationships with people.
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Abstract. Various benefits are being envisioned for enhancing autism
interventions with a robot. But what features should such interventions
have if they are to be successful? While there are quite a few papers
that describe specific user requirements or needs, a more comprehensive
account thereof should help to inform the development of such inter-
ventions. We therefore present a literature review on the user require-
ments for robot-assisted interventions. We report on various themes that
emerged from our analysis and discuss how enhancing an intervention
with a robot might fulfil those requirements.

Keywords: Autism spectrum condition · Robot-assisted
interventions · User requirements · Literature review

1 Introduction

The use of social robots as tools that engage autistic children in learning can pro-
vide a novel way to enhance interventions aimed at teaching certain social skills.
Autism spectrum condition (hereafter referred to as “autism”) is a neurodevel-
opmental condition that is characterised by difficulties in social communication
and interaction and by restricted, repetitive behaviour and interests [3]. Gen-
erally speaking, incorporating a robot in an intervention for autistic children1

appears to have a positive effect on the child’s engagement and attention to the
learning task [27,33]. This could ultimately improve their learning gains. The
addition of a robot to an intervention may also have benefits for those working
with the autistic children. Parents of autistic children might be faced with chal-
lenges that can prevent them from accessing care for their autistic child, such
as high costs of interventions, limited availability of providers, or geographic
isolation [37]. These issues could be addressed by providing on-demand learning

1 We use identity-first language, rather than person-first language, because it is less
associated with stigma [12], and autistic adults prefer the use of disability-first terms,
rather than person-first terms because they feel that being autistic is central to their
identity [19].
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for autistic children through a robot-assisted intervention that is designed for
at-home use by an autism professional. A robot could also alleviate the workload
of autism professionals by providing an extra hand in an intervention [17].

As shown above, various benefits are anticipated for enhancing autism inter-
ventions with a robot. To realise these benefits, it is critical that we understand
what features or attributes a robot should have, or how it should perform, from
the users’ perspective (i.e. user requirements). While there are several papers
that report a couple of user requirements, a more comprehensive account thereof
should help to inform the development of robot-assisted interventions for autis-
tic children and the robots used in such interventions. Therefore, we present a
literature review on the user requirements for robot-assisted interventions. The
users we considered are the autistic children themselves, their parents, and the
educators and occupational therapists who work with the children2. From our
analysis of the literature, various themes emerged. We discuss how each theme
could be achieved through design of the robot-assisted intervention.

2 Methods

The databases we accessed to conduct the systematic literature review include
Scopus, Web of Science, and Google Scholar. In September 2020, we carried out
an electronic search using the following keywords: autism/autistic/ASD/ASC
AND robots AND requirements OR needs. This resulted in 44 papers for the
keywords plus requirements and 221 for the keywords plus needs. We included
needs as a keyword, because we can derive requirements from these needs. The
selection of publications was based on five eligibility criteria:

1. The publication should present a study involving autistic children, their par-
ents, or autism professionals, or discuss user requirements related to robots.

2. The study assesses user needs or requirements.
3. The user needs and requirements should relate to robot-assisted interventions

for autistic children.
4. The publication should be written in English.
5. Only full papers and articles are included in the analysis—extended abstracts

were omitted because these often contained preliminary findings.

All titles and abstracts were screened on the eligibility criteria by one author. To
analyse the selected publications, we adopted a grounded theory approach [36].
We first read and highlighted any findings and insights in the publications that
were relevant to our research question. Through open coding, we then generated
higher-level abstraction level type themes from these findings and insights. The
final set of user requirement themes were then decided on through axial and
selective coding.

2 In the remainder of this paper, we will refer to the adult users as “autism experts”,
when addressing the whole group.
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To keep this paper specific to the context of robots being used in autism
interventions, we excluded generic user requirements, such as that the robots
they are working with should be safe to use and cause neither physical nor
mental harm (clearly the most critical requirement), or that the user interface
should be easy to use.

3 User Requirements and Discussion Thereof

The following papers and articles matched the selection criteria: [1,8,13,16,18,
20,22,24–26,38]. We excluded Robins et al. [26], as the results reported in this
paper are also reported, and expanded upon, in [25]. Next to discussing the
themes that emerged from our analysis, we will also discuss how the user require-
ments could be addressed by drawing upon the broader literature in the field
of Human-Robot Interaction. We thus cite more papers than those listed above.
The following themes emerged from our analysis:

3.1 Autism Experts in Control over the Intervention and Robot

Autism experts expressed firmly that autism interventions should remain a
human activity. A robot can possibly assist the expert, but not take over their
role [1,8,20]. Human-robot interaction should not replace human-human rela-
tionships for the autistic child, but autism experts warn that this can be the
case when robots are not used correctly—in a manner where the autism expert
does not have control over the intervention. Interacting with a robot may be
highly engaging to autistic children, and educators warned that the robot may
have the properties to turn into an obsession for certain children [1]. Further-
more, the children could also trust the robot and connect with it emotionally [8],
which then could lead to becoming overly dependent on the robot and reduce
the child’s interaction with people. Similarly, Putnam et al. [22] reports that one
of the reasons why parents who avoided technology for their child did so because
they were worried that it might contribute to isolation of their child. On the
other hand, in the same study, participants also mentioned that a robot could
become like a friend to the child, which seems to be at odds with the belief that
technology can lead to isolation from other people.

Autism experts expressed not only that they want to remain in control of the
intervention (e.g. controlling the learning content or the flow of the intervention)
[1,8], but also have (a degree of) control over the robot’s behaviour [1,18,20,38].
A robot should fill in for the weaknesses of autism experts, and not replace their
strengths. Educators are trained to assess the varying needs of the children,
support those needs using (creative use of) distinct strategies [1], and, in general,
are particularly proficient into “reading the mind of the autistic children” [18,20]
(i.e. noticing subtle changes in their emotional well-being). They fear that overly
relying on a robot’s senses and analyses thereof may deteriorate the quality of
an intervention, because robotic technology was judged not to be up to this task
currently, nor did they believe that it would be in the future [1]. The educators
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also foresee that they need to adapt the robot’s behaviour on the fly when the
situation demands it, as the children can behave unpredictably and have dynamic
needs [13,16]. Control over the robot’s behaviour is therefore necessary, so that
the autism experts have the last say in how the child is likely to feel, and what
strategies are likely to be most appropriate.

To address the requirement for being in control over the robot’s behaviour,
autism experts will need to be able to interface with the robot. While some
aspects of control can be addressed prior to the intervention, such as determin-
ing the learning content for an upcoming session, much of the aspects mentioned
above relate to being able to enact control over the robot on the fly. For the lat-
ter, a simple graphical user interface might not be preferable. When asked, some
experts said they likely would prefer to interface with the robot through speech
[20]. Such an interface could possibly also be embedded in the interaction, where
the expert could ask the robot to perform a certain behaviour. Alternatively,
the experts could interface with the robot through a remote control, gestures,
or touch, although these were judged less favourably [20]. In the design of an
interface for the autism experts, it is important to keep in mind that the addi-
tion of a robot to the intervention, and control thereof, does not increase the
workload of the expert, or make it more complicated, as this will likely decrease
the adoption of such interventions [13,16].

3.2 Providing a Comfortable and Safe Learning Environment

It can sometimes be difficult to provide a comfortable and safe learning envi-
ronment for the autistic children [1,18]. A robot was perceived as a possible
solution to some instances where the learning environment was not comfort-
able for the child. The autism experts mentioned two aspects for addressing this
requirement. Firstly, the unpredictability and complexity of people’s behaviour
and appearance can make it difficult for autistic children to understand them
and can induce anxiety. Secondly, the (high) social demands experienced by the
child of having to perform in the intervention can prevent the child from learning
and also cause anxiety. To address the former, a robot can be highly predictable
when it is programmed to do the same behaviour over and over again, in exactly
the same manner, and look exactly the same every day. However, this may not
be a very useful contribution to the intervention—the robot will likely have to
do more, which can decrease its predictability [31]. On the other hand, a more
predictable robot can lead to more visual attention to a robot-assisted activity
[29]. Thus, a balance will need to be struck between the robot’s predictability
and providing meaningful interactions.

To improve the simplicity of a robot, experts noted that presenting multi-
modal robot behaviour could cause an information overload [16], and that a
simplistic appearance of it might make it easier for children to interact with
them [13,18]. To address the social demands of the intervention placed on the
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child, the environment should allow for making mistakes and still be supportive
[1,25]. Rather than stating that the child’s answer is incorrect, the robot could
encourage the child to try again, or praise the child on the effort he or she is
putting in.

3.3 Familiarising the Child with the Robot

Interacting with a robot can be an unsettling experience for autistic children,
when they do not know what to expect from the robot [16,25]. What will it look
like, what will it do, or how will it sound? To prevent this from happening, the
autistic children will need time to get accustomed to the robot. Either before
meeting the robot in person, or when they first meet. Note that this user require-
ment is connected to the user requirement discussed in the previous section, as
being familiar with a robot generally increases the ability of people to predict
its behaviour [31].

Three possible solutions on how to address the requirement of familiarising
the child with the robot were put forward. First, an autistic adult mentioned
that it would be beneficial if the children themselves could freely explore the
robot, and become familiar with it, as they know best what they do and do
not want [16]. Second, in Alcorn et al. [1], educators mentioned that creating a
social story around the robot that shows what it looks like, explains what it is
going to do, and when it is coming, may help the children anticipate and prepare
for the robot’s arrival. And lastly, providing some familiarity in appearance or
behaviour might also put the children more at ease [25].

3.4 Accounting for Sensory Hyper- and Hypo-sensitivity

Unusual responses to sensory information are included as one of the non-social
symptoms of autism [3]. These responses vary widely between autistic individuals
[15]. Some are hyper-sensitive to certain sensory experiences (e.g. strong reac-
tions to loud or unpredicted sounds, or lights) which then cause great discomfort
(e.g. feeling like a sharp needle pierces your eardrums), others are hypo-sensitive
and react very slowly to certain sensory information, or are unaware of it, and
there are also some that actively seek out certain sensory experiences. Autism
experts reported that taking these unusual responses to sensory information
into account in the interventions could be important for keeping the children
engaged [13,16,25]. On the one hand, we do not want to create a sensory expe-
rience that triggers hyper-sensitivity, which is very unpleasant and may lead to
disengagement. On the other hand, for those who are hypo-sensitive to such
sensory experiences, they may be particularly motivating.

To address sensory hyper- and hypo-sensitivities, personalising the sensory
experiences is required. If the robot has lights, then it should be possible to both
use them or deactivate them. If children want to feel the material of the robot,
then this can be utilised to increase motivation, but it should not be required
in order for the child to engage in the intervention, as this would prevent those
who are sensitive to the robot’s materials from engaging. Because it is often not
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possible to tell exactly what sensory experiences the child has unusual responses
to, the autism experts using the robot will also need to pay close attention to
this and intervene when necessary. In case a sensory sensitivity is triggered by
something the robot is doing, then it should immediately stop doing it.

3.5 Personalising Content and the Robot

While personalising the autistic child-interaction in relation to sensory sensitiv-
ities of the children is one form of personalising that is particularly important,
personalisation in general will be important according to autism experts. In
autism education, personalising content is an essential task for autism experts
to adjust learning material to a specific child. Parents and educators noted that
autistic children can have strong interests, and that utilising these interests could
draw the attention of the child and keep the child engaged [22]. Not only in per-
sonalising the robot’s behaviour [1], but also its appearance [16]. Some children
may enjoy certain robot behaviours, which are particularly motivating for that
child, while other children may enjoy different robot behaviours [25]. In our own
research, we also found large individual differences in the type of interactions
autistic children spontaneously initiate towards a robot [30]. Overall, the chil-
dren’s individual differences will need to be addressed. Educators further men-
tioned that it should be possible for autism experts to personalise the learning
content, as each child has an individual learning plan [1,16].

In robotics, much of the personalising that is done relates to personalising
the difficulty of games through intelligent tutoring systems [e.g. 32], which may
partly address the need for personalising content and the robot. Similar systems
have been applied to personalising learning content in robot-assisted interven-
tions in terms of difficulty [7,28] and feedback [7]. However, as we explained in the
previous paragraph, more personalisation, and different kinds of personalisation,
are needed to effectively support the autistic children in a robot-assisted interven-
tion. While some of the personalisation can be done by the robot (autonomously),
other forms of personalisation will require the input from the autism expert (e.g.
adjusting the learning content to the child’s individual learning plan). The lat-
ter could be facilitated by providing the experts with the ability to program the
robot’s behaviour [e.g. 4]. A different solution is to give more control over the
robot to the children themselves. This way, the children can choose what they
enjoy [25]. Moreover, it lets the children be active participants, where they shape
the interaction. In Robins et al. [25], educators suggested that simple controls
on a toy (i.e. the robot) could provide the children with the means to explore
the robot and control its behaviour.

3.6 Generalisation of Learned Skills to Humans

Generalising skills learned in interventions is problematic for autistic children in
general. As robots do not look and act like humans (which can be a good thing!),
generalisation may be even more problematic. For instance, educators in [1] said
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that robots that are too predictable, or too engaging, could potentially hinder
the child’s progress in learning to navigate in social environments.

To address this requirement, using a humanoid appearance for a robot may
be particularly successful in facilitating the generalisation of the learned skills to
humans [1,23,27]. However, for some children, “a robot is still a robot, even when
it looks like person” [p. 8 1], and this solution may not work. Instead, a more
successful approach may be to actively embed the generalisation of learned skills
from robots to humans into the intervention. Two approaches for doing so have
been proposed in literature. One approach is where the robot is only used for
eliciting certain social behaviours from the child that are directed at the expert,
and learn a skill through this process [9]. The skill is then already applied in the
interaction with another person, circumventing the need for generalisation from
robots to humans. An alternate approach is by gradually fading the role of the
robot in the intervention [6,14]. The child may then first learn the skill through
interacting with the robot, but later on in the interventions learns to apply this
skill in the interaction with the expert, rather than with the robot.

3.7 Safety and Robustness of the Robot Itself

Next to the safety of the people involved in the intervention, the robot itself
should also be safe [13]. Autistic children may enjoy taking objects apart [5], or
may handle objects roughly, and a robot is unlikely to be an exception [2]. Fur-
thermore, the children may engage in challenging behaviours, such as kicking,
hitting, or throwing objects. These behaviours may also be directed towards the
robot and damage it (as well as pose a risk to the children themselves and those
around them). As robots are often expensive and difficult to repair for a layper-
son, the robot should not be damaged during the intervention. As such, this
type of behaviour needs to be accounted for through design, or through proto-
col, to address this requirement of having a sufficiently robust platform. Possible
solution include using a highly robust robot that cannot be taken apart with-
out using tools, or simply dissuading the child to handle the robot roughly and
intervening when this happens. Alternatively, scheduling a fixed period of time
in the intervention where the children can engage in the tactile exploration of
the robot could give them the satisfaction of doing so without further disrupting
the rest of the intervention.

4 General Discussion and Conclusion

Through our analysis, three major topics of user requirements emerged. Firstly,
there is a need for a more predictable and simplistic interaction with a social
actor. Robotic technology may be uniquely positioned by being able to pro-
vide more predictable, and less complex interactions, as well as being a social
actor that elicits social interaction. This opens up various promising avenues
for embedding a robot in interventions that target learning social skills. Not
only could a predictable and simplistic robot be more easy to understand and
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comfortable for autistic children, it could also be less threatening, as it may be
perceived by the children as being less socially demanding than a person.

The second topic relates to the large individual differences between autistic
children. Accounting for such differences will be essential, but also challenging,
because it is not always clear how the robot-assisted intervention should be
adapted to the child. For instance, the use of lights could be anywhere from
being highly motivating to causing great discomfort. It is unlikely that there
is a one-size-fits-all robot for autistic children. Some children may not enjoy
interacting with the robot, as they may be fearful of it [22], or may not think
the robot is “cool” [16]. Others may be too aggressive to interact with a robot.
In the end, the autism expert will need to decide how and when to use the robot.

This brings us to our last topic, which is that the robot is to be a tool for
autism experts that they can use in certain scenarios. For instance, by using the
robot as a scaffold, to bridge the gap between learning with current materials
and learning with people. This also means that the experts should be empowered
by having a robot at their disposal, which requires that they should remain in
control over the intervention and be able to use the robot as they see fit. To
enable the experts to adjust and customise the robot’s behaviour, they will need
easy-to-use tools to program the robot. What these tools should look like, and
how the experts can control the robot in a session—taking into account that it
should not cause additional workload during sessions—are questions that will
need to be addressed in future research.

In our literature search, we found no papers which involved autistic children
in their search for user needs or requirements. This is unfortunate, as autism
interventions are designed for them. Yet we do not know what needs and require-
ments they themselves would report. Including autistic children in the design
process would allow us to create more suitable and acceptable technologies, as
well as allow the children to aid in shaping the robot-assisted intervention accord-
ing to their needs and desires [34]. Frauenberger et al. [10] argue that autistic
children are rarely involved in the design process, because either the researchers
have limited access to the target group, or hold views that autistic children may
be impaired in their creative and communicative skills, limiting their potential
to provide feedback. While it may seem difficult to involve autistic children with
low language and cognitive ability, there are ways for doing so. For instance,
researchers could use a combination of ethnography and structured observations
to understand their experiences [e.g. 21]. Alternatively, autistic children who are
further in their development could be involved in a study—for whom there are
many methods to engage them in research [see 11,35]—and represent autistic
children with more difficult in their communication and cognition.
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Abstract. In Socially Assistive Robotics, robots are used as social partners for
children with Autism Spectrum Disorder. However, it is important to keep in
mind that this population shows auditory hypo- or hypersensitivity, which results
in avoiding or seeking behaviors towards sounds. Robots, from their mechanical
embodiment, exhibitmotor noises, andwe aimed here to investigate their impact in
two imitation gameswith iCubon a computer screen.Weobserved that participants
who reported negative responses to unexpected loudnoisesweremore able to focus
on a “Simon says” game when the robot’s motor noises were canceled.

Keywords: Autism spectrum disorder · Socially assistive robotics · Imitation ·
Auditory sensitivity ·Motor sounds

1 Introduction

Robots have been found to be promising interaction partners for children diagnosed with
Autism Spectrum Disorder (ASD), as their mechanical embodiment attracts children’s
interest and the predictability of robot actions comforts the young patients [1, 2]. Robots
have been used to train or evaluate social skills in children diagnosed with ASD with
success, and many studies in Socially Assistive Robotics (SAR) focus on the use or the
design of such robot interventions (see [3, 4] for general overviews of SAR for children
diagnosed with ASD). However, individuals with ASD often show sensory hyper or
hypo-sensitivity in addition to the social skills impairments, repetitive or stereotypical
behaviors [5, 6]. Robots are a novel and complex source of sensory stimuli and their
sensory information can be overwhelming for some children with ASD, rather than
beneficial [7]. It is utterly important to investigate the noises produced by the robots’
body, for example from motors and fans, in SAR for children diagnosed with ASD,

Herein this study, we aimed to investigate if the response to a robot’s motors auditory
signals in children diagnosed with ASD can be linked to their auditory sensory sensi-
tivity, and if patterns of behaviors emerge. For example, a certain profile of participants
might benefit, while others might be overwhelmed, by the motor sounds. As reducing or
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canceling the motor sounds from robots is a difficult task, given the current state of the
motor technology and the available robots on the market, we aimed here to investigate
their impact in socially assistive setups for children with ASD. This way, we can high-
light and offer guidelines to design robot or robot interventions to minimize unwanted
negative effects of the noise or to use the motor sounds as a tool to attract the attention
of the participants, dependent on individual profiling.

To do so, we designed two imitation tasks with the robot iCub [8] presented on a
computer screen. First, a simple imitation game in which the children had to imitate
a set of five arm movements from the robot. Second, a “Simon says” game with the
same set of arm movements. “Simon says”1 is a game in which one of the players (here
iCub) plays an instructor, and the other players (here the participants) play the followers.
The instructor commands the followers to perform a movement with him, but only if
the instructor pronounces the keywords “Simon says”. This game enables to evaluate
Executive Functions, i.e. the psychological processes involved in the conscious control
of thought and actions, and more specifically Response Inhibition, i.e. the ability to
inhibit learned behavioral responses to stimuli (here not to imitate the robot whereas
the children are used to it) [9]. Both imitation and Executive Functions are impaired in
autism ([5] and [10], respectively). We chose imitation tasks as they require movements
from the robot, which enable us to expose our participants to motor noises. Imitation
tasks have been already used in SAR for children with ASD [11]–[15]. We chose to
present the robot on a screen instead of its real physical embodiment so we were able
to manipulate the auditory cues from the motor more flexibly and in a more controlled
manner.

2 Related Work

Sensory sensitivity plays a role in social interactions: social signals can come from the
facial or bodily expression of emotions, from the tone of the voice, from the touch
of someone’s hand on the arm, etc. They are also present in human-robot interactions
(HRI), as the robot needs to convey social signals in its behaviors, its voice, or its
touch. However, contrary to humans, robots happen to have also motor noises. These
noises have an impact on how robots are perceived. In [16] the authors observed that
motor noises reduced the human-likeness of the robot, but sounds from motor of higher
qualitymade the robot appear more competent. Themotor noises also have impact on the
performance of the participants when performing movements in synchronization with
robots. In [17], the authors asked participants to wave their arm with a Pepper robot
in various auditory and visual conditions. They observed that participants’ performance
was impaired in the waving task when exposed to the actuator noises while observing the
robot waving. Motor noises can also drive design choices in HRI. For example, when the
robots need to give instructions to the user, some studies made the robot talk and move
successively, to be sure the robots’ body noises do not interfere with the understanding
of the instructions.

1 https://en.wikipedia.org/wiki/Simon_Says.

https://en.wikipedia.org/wiki/Simon_Says
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In SAR for children diagnosed with ASD, the impact of the robot’s motor noises
takes another dimension as children diagnosed with ASD show sensory hypo- or hyper-
sensitivity [5, 6]. The effect of noises can be overwhelming for some individuals, which
can results in such behaviors as covering the ears to reduce the unpleasant sounds.
For others, however, the noise can be appealing or stimulating [6, 18]. Previous works
observed the impact of sensory sensitivity in children diagnosed with ASD in HRI [12,
19, 20]. These works reported that visual and proprioceptive sensitivity influenced the
children with ASD behaviors and performances in a social task with a robot. However,
to our knowledge, no previous work investigated the impact of auditory sensitivity in
socially assistive robotics for children with ASD.

3 Methods

3.1 Participants

Werecruited 21 children diagnosedwithASDat the PiccoloCottolengoGenovese diDon
Orione (Genoa, Italy). Diagnosis of ASD was confirmed by the healthcare professionals
of the institute, using the ADOS screening tool [21]. Parents or legal tutors provided
a signed written informed consent. Our experimental protocols followed the ethical
standards laid down in the Declaration of Helsinki and were approved by the local Ethics
Committee (Comitato Etico Regione Liguria). Participants were already experienced in
interactions with robots. They all interacted with Cozmo (Anki Robotics) and iCub [8]
in previous experiments that took place within the joint collaborative project between
Istituto Italiano di Tecnologia and Don Orione Italia. Three participants were excluded
from the experiment because screening data was not filled by the parents, one because
of a technical error, and other three as they did not succeed in finishing one or both
sessions. The data of 14 participants (age= 6.6± 0.9 years old, 2 females) were subject
to analysis. The participants’ demographics can be found in Table 1.

Table 1. The 14 participants’ demographics, IQ and ADOS levels

Sex Age IQ ADOS

M = 12, F = 2 6.6 ± 0.9 years old 75.786 ± 15.547 1: N = 8; 2: N = 5; 3: N = 1

3.2 Development of the Experimental Setup

As we aimed to understand the impact of the robot’s motor noises, we chose to use
a monitor-based study. Presenting stimuli on a computer screen allowed us to remove
or present the motor noises to the participants flexibly, without the use of a canceling-
noise headsets or earplugs. We developed the imitation and “Simon says” tasks on
Psychopy v2021.1.4 [22]. As stimuli material, we recorded a video of the robot iCub
performing a set of five arm movements and a neutral pose (see Fig. 1) and recorded the
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sentences it was going to pronounce during the experiment by means of the Text-To-
Speech SVOXPICO2 in Italian. The audio track of the video was modified in Audacity
2.4.2 to attenuate the robot’s fans noises present in the recordings. We normalized the
audio track and then performed a noise reduction (parameters of the reduction: noise
reduction: 12 dB, sensitivity 2.00, and frequency smoothing: 5 bands). Then, we sliced
the video to obtain single videos for each movement for the imitation and “Simon says”
games and for the neutral posture the robot takes when idle or talking. The audio tracks
of eachmovement can be seen in Fig. 1. During the experiment, the audio output (robot’s
voice and motor noises) was fixed around 70 dB, which is the decibel level of a normal
conversation.

Fig. 1. Positions and soundtracks taken by the robot in the imitation and “Simon says” games.
(a) neutral position; (b) arms up; (c) arms in “T”; (d) right arm up; (e) left arm up; and (f) arms as
if the robot was showing its biceps. All movements start from the neutral position, go to the apex
of the movement and stays in it for 2 s, and return to the neutral position. The background noise
from the fans of the robots is present in all videos in the Noisy condition.

3.3 Procedure

Participants interacted twice with the robot, once with the robot’s motor noises activated
(condition: Noisy) and once deactivated (condition: Quiet). The sessions were done one

2 https://github.com/robotology/speech/tree/master/svox-speech.

https://github.com/robotology/speech/tree/master/svox-speech
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to twoweeks apart. The presentation order to the two conditions was pseudo-randomized
across the children.

In both sessions, the participant was invited to sit in front of the laptop on which
the game was launched. The experimenter sat on the left side of the participant and
was controlling the flow of the game by means of an external keyboard connected to
the laptop. The task evolved as follows: The robot presented itself and introduced the
first game, the arm imitation game: “Do with me the arm movements”. Then, the child
underwent two training trials to ensure the task was understood. When ready, the 20
trials of the imitation task were played on the laptop. For these 20 trials, the set of five
arm movements was repeated four times in random order. While doing the movements,
the robot did not speak to the child. The experimenter inserted by means of the keyboard
a value “correct/incorrect” for the child imitation movement. If the correct movement or
any movement close to the one requested was done, the next movement was presented.
If incorrect, the robot repeated the movement up to three times, and if the performed
movement was still incorrect, the next movement was played. At the end of the 20 trials,
the child was offered a short break. Then, the robot introduced the “Simon says” game
as follows: “Do with me the arm movements, but only when I say ‘iCub does’. If I do not
say ‘iCub does’, you should not move.”. The child was presented with two training trials
to ensure the task was understood. If needed, the experimenter and the child’s therapist
explained the task again until understanding from the children was reached.When ready,
the 20 trials of the “Simon says” game were played. For these 20 trials, the five arm
movements were repeated four times in random order. In these 20 trials, 15 of themwere
valid prompts in which iCub said “iCub does” and five of them were invalid prompts in
which iCub did not instruct “iCub does”. Each of the five movements was invalid once.
For each movement, the robot instructed which movement it was going to perform.
The instruction was pronounced before the execution of the movement. Similarly to the
previous game, the experimenter scored correctness of the movement by means of the
keyboard. A trial was considered correct if the child performed a movement close to
the one demonstrated by the robot when it said “iCub does” and if the child stayed still
when the robot did not say “iCub does”. A trial was considered incorrect if the child did
an incorrect movement when the robot said “iCub does” and if the child moved with
iCub when the robot did not say “iCub does”. No trial was repeated. At the end of the
20 trials, the robot said goodbye to the child. The flow of the game can be seen in Fig. 2.

Fig. 2. Flowchart of the experimental procedure.

3.4 Measures

The participants’ performance in both Imitation game and the “Simon says” game were
scored. For the Imitation game, the children obtained one score of max. 20 points (one
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point for each correct trial). For the “Simon says” game, the children obtained two
scores, one on 15 points-scale for the congruent condition (one point when they correctly
imitated the robot when prompted to) and one of 5 points-scale for the incongruent
condition (one point when they correctly did not imitate the robot when no prompt
was made by the robot). We divided both scores by 15 and 5, respectively, to obtain
performance scores.

Participantswere screened for their sensory sensitivity bymeans of the Short Sensory
Profile (SSP) [23], see Table 2. The SSP enables obtaining sensory processing patterns of
children diagnosedwithASDwith respect to demands related to everyday situations. The
questionnaire investigates seven behaviors: Tactile Sensitivity, the Taste/Smell Sensitiv-
ity, the Movement Sensitivity, the Under-responsiveness/Seek Sensation, the Auditory
Filtering, the Low Energy/Weak, and the Visual/Auditory Sensitivity. A general score
summing the seven behaviors is also provided. The lower the score in a category, the
more the child differs from typical behavior. The SSP provides a categorization in three
groups based on the scores: “Typical behavior” (group 1), “Probable difference to typical
behavior” (group 2), and “Certain difference to typical behavior” (group 3). We inves-
tigated the children’s performance in the games regarding their Auditory Filtering and
Visual/Auditory Sensitivity categorizations. Indeed, Auditory Filtering evaluates one’s
distraction by ambient noise or difficulty hearing what is said. Visual/Auditory Sensi-
tivity assesses negative responses to unexpected noises or lights or blocking behaviors
as putting the hands on the ears to block sounds or on the eyes to block lights.

Participants’ IQ was screened using the Italian versions of Griffiths’ Developmental
Scales [24], and their autism level with the ADOS screening tool [21] which enable
categorization of the children’s impairment in three levels (from 1, the less impaired, to
3, the more impaired), see Table 1.

Table 2. Participants’ mean scores and group population for the Short Sensory Profile. Each
displayed behavior can be categorized in three groups: “Typical behavior” (group 1), “Probable
difference to typical behavior” (group 2), and “Certain difference to typical behavior” (group 3)

SSP Auditory filtering Visual/auditory sensitivity

141.6 ± 20.9 19.4 ± 5.3 20.2 ± 8.8

1: N = 3; 2: N = 5; 3: N = 6 1: N = 3; 2: N = 3; 3: N = 8 1: N = 9; 2: N = 4; 3: N = 1

4 Results

Imitation Game
Regarding the imitation game, all children performed the 20 movements or did move-
ments close to the one requested by the robot during the imitation game in both
conditions.

“Simon says” Game
We performed a 2 x 2 x 2 ANOVA with the within-subjects factors Condition (noisy



646 P. Chevalier et al.

vs. quiet), Congruency (congruent vs. incongruent) and the between subject factor of
Visual/Auditory Sensitivity (group 1 vs. group 2+ 3) on the dependent variable of Simon
Says scores. Two similar 2 x 2 x 2 ANOVA were performed, one with the Auditory
Filtering (group 1 vs. group 2 vs. group 3) as between subject factor, and the second
with the ADOS levels (group 1 vs. group 2 vs. group 3). Finally, a 2 x 2 x 2 ANCOVA
with the within-subjects factors Condition (noisy vs. quiet), Congruency (congruent vs.
incongruent) and the IQ as covariate on the dependent variable of Simon Says scores.

For the Visual/Auditory Sensitivity categorization, we grouped together the partici-
pants from groups 2 and 3 as group 3 only had one participant. The Congruency factor
showed a significant difference (F(12,2) = 24.3; p < 0.001) with the “Simon says”
score in the congruent condition (M= 0.924; SD = 0.115) being higher than the one in
the incongruent condition (M = 0.421; SD = 0.312). The interaction effect Condition
(noisy vs. quiet) x Congruency (congruent vs., incongruent)×Visual/Auditory Sensitiv-
ity (level 1 vs. level 2/3) was also significant (F(12,2)= 4.748, p= 0.050).We performed
Paired-Samples T-Test on the score for each interaction Condition × Congruency for
each of the two groups of the Visual/Auditory Sensitivity categorization. Participants
within typical sensory sensitivity (group 1) showed a significant difference between con-
gruent and incongruent trials in both the Quiet and Noisy conditions (Quiet: t = 4.124,
p= 0.003; Noisy: t= 3.186, p= 0.013). Participants with a probable difference in sen-
sory sensitivity in vision and audition (group 2+ group 3 together) showed a significant
difference between congruent and incongruent trials in the Noisy condition (t = 3.373,
p= 0.028). These results are shown in Fig. 3. Independent T-Test to compare the groups
on the score for each interaction Condition x Congruency were all non-significant.

For the Auditory Filtering categorization of the SSP, the ADOS level, and the IQ, no
significant effect was found except for the Congruency on the children’s performance in
the “Simon says” game.

Fig. 3. “Simon says” scores for each groups of the Visual/Auditory Sensitivity categorization of
the SSP.

Children’s Comments on Motor Noises
In addition to the scoring, the comments of the children during the interactions were
reported by the experimenter immediately after the session. Three children made spon-
taneous comments about the motor noises from the robot. During the Noisy condition
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session, one child asked why the robot did these motor noises. He did not recall these
motor noises from a previous interaction with the real robot iCub (all participants had
previously interacted with the physical robot iCub for another experiment). During the
second session, another child noticed that this time, the robot was silent (Quiet condi-
tion). He was very happy about it and declared that it helped him focus better. On the
contrary, in the second session in Quiet condition, yet another child noticed the absence
of the motor noises and said he disliked it and preferred when the robot made motor
noises.

5 Discussion and Conclusion

In this study, we developed an imitation game and a “Simon says” game with iCub for
children diagnosed with ASD. We aimed to evaluate if the motor sounds of the robot
had an impact on the children’s performance. From previous observations in imitation
games with robots for children diagnosed with ASD literature, we expected that the
children to show variation in their performance [11–15]. However, during the simple
imitation game, the children all performed correctly the task. An explanation for this
result would be that our participants have medium to low impairment according to the
ADOS screening tool (only one participant was showing high level of impairment). We
did not find any difference between the two auditory conditions of the experiment (Quiet
vs. Noisy).

Regarding the “Simon says” game, the presence or absence of the robot’s motor
noises did not influence the participants’ performance. We observed significant dif-
ferences between the congruent and incongruent trials of the game, pointing out the
children’s impairments in response inhibition. As expected, we found that the SSP
Visual/Auditory Sensitivity categorization plays a role in the children’s performance
in the “Simon says” game. We observed that participants who show typical behaviors
in Visual/Auditory sensitivity showed to be distracted by the incongruent trials in both
Quiet and Noisy conditions. Participants who show atypical behaviors only showed this
distraction during the Noisy condition. The children showing typical behaviors to visual
and auditory sensitivity got distracted in both conditions, suggesting that different audi-
tory conditions did not beneficiate or penalized them. However, the children who were
reported to react badly to loud, unexpected noises appeared to be more focused on the
“Simon says” game in a quiet environment, suggesting they beneficiate from a quieter
environment. In addition to these results, two children expressed to the experimenter that
they noticed the change of condition (Quiet and Noisy robot) between the two sessions.
They both expressed a different opinion, showing that themotor noises can be pleasant to
some or, on the contrary, prevent focusing. These results highlight the impact of auditory
sensory sensitivity of children with ASD during interactions with a robot. However, it
should be noted that the children in this experiment were mainly high functioning (only
one participant was in the lower category of the ADOS screening), and sensory sensi-
tivity can be more dramatic in lower-functioning autism. Also, all children had already
been exposed to iCub and its motor noises, and this might have increased their level of
tolerance to the noise.

For reasons of experimental control, the experiment was done on a computer screen.
Future works should investigate the sounds of the motors and the way they are perceived
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by the participants with a real robot. In addition, although robots on screens are shown
to create a lower engagement from the users (see [25, 26]), the children spoke to the
robot on the screen during the sessions (e.g. waved hello and goodbye, answered to the
robot that they understood the rules of the games, general comments about the game,
etc.). This observation can support the idea to use screen-based interaction when real
interaction with the robot is not possible.
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1. Scassellati, B., Admoni, H., Matarić, M.: Robots for use in autism research. Annu.
Rev. Biomed. Eng. 14(1), 275–294 (2012). https://doi.org/10.1146/annurev-bioeng-071811-
150036

2. Billard, A., Robins, B., Nadel, J., Dautenhahn, K.: Building robota, a mini-humanoid robot
for the rehabilitation of children with autism. Assist. Technol. 19(1), 37–49 (2007)

3. Pennisi, P., et al.: Autism and social robotics: a systematic review. Autism Res. 9(2), 165–183
(2016). https://doi.org/10.1002/aur.1527
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Abstract. Social robots are showing promise in assisting children with an autism
spectrum disorder to improve social, language, and behavioral skills. However,
this emerging technology has yet to find a permanent place in the homes of children
with autism in part because the long-term benefits of robot-assisted therapy are
still undetermined. We present this autoethnographic case of a 10-year-old boy
with autism and his mother to explore the perceived benefits of the long-term, in-
home use of a social robot as it relates to the facilitation of parent-child bonding,
attachment, communication, and social learning.

Keywords: Social robot · Social bonding · Attachment · Autism spectrum
disorder

1 Introduction

Autism spectrum disorder (ASD) is a life-long, neurodevelopmental disability char-
acterized by impairments in social skills, verbal and non-verbal communication, and
behavioral difficulties [1, 2]. Parents of children with ASD face complex challenges and
issues. Stressors such as financial strain from lost income and the high cost of special-
ized interventions and therapies can cause an increased incidence of parental anxiety,
depression, feelings of hopelessness, and despair [3, 4]. Social isolation due to disrup-
tive behaviors, unsupportive social interactions, and lack of appropriate childcare can
negatively impact parental feelings of well-being [5]. These factors and others influ-
ence the family dynamic, creating an environment in which bonding, attachment, and
communication among children with ASD and their parents may be less than optimal.

Children with ASD often lack the social-communicative skills to connect with oth-
ers. Autism can be reliably diagnosed as early as two years of age [6]. However, parents
may perceive early indicators of autism when their infant has difficulty making eye
contact or is not responsive to their voice, or even retreats from physical contact [6].
Although helpful in prompting parents to seek timely, professional evaluation and treat-
ment for their child, these initial symptoms of ASD may negatively impact parent-child
attachment and bonding [7].
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There have been many studies dedicated to the investigation of social robots in
autism therapy. Researchers have examined their impact on joint attention, their ability
to improve social communication and academic skills, and other areas of importance
to individuals with ASD. More recently, there has been increased importance placed
on studying the long-term impact of social robots in children with ASD outside of the
confines of laboratory settings [8, 9]. Still, many studies are short-term, outcome-based
focusing on the efficacy of social robot interactions in achieving target behaviors and
other learning objectives [10, 11]. While the value and significance of such investiga-
tive endeavors are not in dispute, it may be worthwhile to consider how placing social
robots in the home settingmight impact bonding, attachment, and communication among
children with ASD and their parents.

In this article, we present the case of one of the authors, Lisa Armstrong, and her
autistic son, Juan, in the formof autoethnography, as they discovered social robots, robot-
assisted therapy in autism, and the long-term, in-home use of a table-top social robot.
We hope to encourage researchers from the diverse fields of study contributing to social
robotics and autism therapy to consider the perceptions and challenges faced by families
whose lives are impacted by ASD. We also wish to highlight the perceived benefits
afforded by placing socially assistive robots in the home from a parent’s perspective.

2 Case Presentation

I was a registered nurse, working as amedical missionary in Honduras, Central America,
when I adopted my son, Juan. He was 13 months old and suffered from life-threatening
malnutrition. In addition, Juan was diagnosed with microcephaly and various develop-
mental delays.With intensive medical care, treatment, therapeutic nutrition, and rehabil-
itation, Juanmade gains toward developmental milestones. Hewas playful and exhibited
age-appropriate social skills.

At 23 months of age, Juan suddenly began to regress. Within four weeks, he stopped
speaking. A devastating aspect of Juan’s language regression was his inability to call me
“Mamá,” even when visibly distressed. He became withdrawn, no longer making eye
contact with anyone around him. He resisted physical contact, often retreating from me
and crying uncontrollably when I tried to hold him. Juan preferred to sit alone, rocking
rhythmically back and forth while flapping his arms or flicking his fingers in classic
stimming behavior associated with ASD [1]. I found myself living with a drastically
changed child. I felt as if the little boy I had known and loved had died, leaving a
stranger in his place.

First, I took Juan to his pediatrician. Then, he was referred to a pediatric neurologist,
who, after extensive testing, made a diagnosis of ASD. Although Juan received multiple
treatments and therapies while in Honduras, he remained non-verbal and was deemed to
have profound social and cognitive impairment. When Juan was seven, we moved from
Honduras to my hometown in Southeast Kansas. I hoped there would be more services
available in the United States. Instead, I found an overwhelmed, underfunded public
school system ill-equipped to meet Juan’s needs. Also, I was shocked to discover that
the private healthcare sector placed less importance on interventions for older children
beyond the age for early intervention, typically ages 0 through 3 and in some instances
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until age 5. I could not understand why there were so few services available for older
children with autism, given the literature clearly indicates early diagnosis of ASD in the
United States remains a challenge, especially in rural areas [12].

2.1 Awareness Through Social Media

In 2015, a nurse coworker called my attention to a YouTube video circulating on Face-
book.Vanderbilt University showed theNAO robot administering joint attention prompts
to a child with autism [13]. I had no knowledge of social robotics (SR) or research using
social robots for autism therapy. The video was compelling. It was apparent the child
with ASD, “Aiden”, responded to his name when called by the social robot, NAO. Fur-
thermore, it was evident he was following the robot’s commands to look in the direction
NAO was pointing with an outstretched arm. This was in stark contrast to Juan’s daily
interactions with me. Juan seldom responded to his name. My attempts to establish eye
contact resulted in Juan averting his gaze from mine. Any efforts to engage Juan in a
joint activity were largely ignored. He occasionally interacted with me just long enough
to acquire a preferred object and then quickly distanced himself from me. Juan rarely
responded in ways that would perpetuate any sustained social exchange. This created a
vicious cycle that left me feeling estranged from my son despite my desire to create a
warm, loving, and secure relationship with him. After watching the video several times,
I was so inspired that I felt compelled to learn more. I had been longing for years to
connect with my son in the way “Aiden” seemed to connect with the NAO robot. Perhaps
social robots could help me connect with the child I loved.

2.2 Social Robot Sticker Shock

I searched the literature on scientific, evidence-based outcomes supporting robot-assisted
therapy (RAT) in children with ASD. Some results reported in the literature were so
encouraging that I decided to invest in a social robot for Juan. The most prevalent robot
in YouTube videos and identified in the literature was the NAO robot. Unfortunately, the
NAO robot price was nearly $8,000. Discouraged but not defeated, I continued reading
journal articles while formulating a longer-term financial strategy to purchase a NAO.
Before long, I discovered one study by Albo-Canals et al. [14], which mentioned the
Aisoy robot, a small table-top social robot produced in Spain by Aisoy Robotics. In the
study, the robot was used as a companion, helper, mediator, and to provide schedule
reminders for the study’s activity [14]. The Aisoy1 V4 robot was for sale online for
approximately $300 U.S. dollars. On impulse, I purchased it without any concept of the
challenges I would face as a home user of this novel technology.

2.3 First Magical Encounter

Within fifteen minutes of opening the box, I realized I did not understand the manual’s
terminology, much less the underlying principles of even basic concepts. Nevertheless,
after more than thirty days of significant struggle, I had learned enough to use drag and
drop blocks to build a simple skill using MIT’s ScratchX [15] with experimental exten-
sions created by the Aisoy Robotics development team. The purpose of the interaction
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was to introduce Juan to the concept of greetings as a social skill. The learning goals of
the skill were to improve Juan’s understanding of the words and phrases, “Hello,” “How
are you,” and “Goodbye,” and their uses in the appropriate social contexts. Moreover,
because Juan had exhibited echolalia during speech therapy, I hoped he could learn
to say the words with intention, demonstrating understanding and use of this essential
communication skill.

When the skill was initiated, “Aisoy” came to life using a short sound clip, head
animation, and eyes opening. There was an immediate reaction from Juan. It was unlike
any other, even when he was presented with educational technologies or toys. Juan
fixed his gaze on the robot. When the robot said, “Hello Juan,” Juan repeated the word,
“Hello.” Then, he turned toward me, making direct eye contact. He smiled and looked
back toward the robot. Each time Aisoy spoke a keyword or phrase, Juan repeated the
word or phrase with clarity. He continued to make eye contact with me and engaged in
social referencing (see example shown in Fig. 1). It was the first time my son used gaze
to see if I was experiencing what he was experiencing. When the interaction concluded,
I asked Juan if he would like to play with the robot “some more.” Juan immediately
used the sign for “more” and spoke the word “more.” The same skill was repeated again
and again for more than an hour. Each time the interaction ended, Juan immediately
signed the word “more,” made eye contact with me, and loudly said “more” while gently
touching the robot with his hands as if urging the robot to continue to play. Juan giggled
and frequently smiled while the skill was running.

Fig. 1. An example of eye contact and social referencing directed toward me during one of Juan’s
initial interactions with the Aisoy robot.

Juan’s behaviors in response to the robot provided glimpses of the child I had known
before autism. Surprisingly, the robot’s positive effects on Juan lasted for hours after the
interaction concluded. Juan’s demeanor was significantly calmer. This was remarkable
given other screen-based technologies tended to overstimulate him, resulting in increased
stimming and undesirable or maladaptive behaviors. Instead, his stimming behaviors
were markedly reduced during and after his time with the robot. Juan made good eye
contact with me and sustained eye contact much longer than I had experienced since the
onset of his ASD symptoms. Although impossible to quantify, my impression was Juan
had experienced joy on a level I had not seen before. His delight filled me with hope and
optimism. I discovered a newfound enthusiasm for SR and a deep desire to create more
skills based on my son’s response to his new robot friend. Encouraged, I continued to
build more skills based on the social story model originally developed by Carol Gray
[16].



654 L. Armstrong and Y. Huh

For approximately four weeks, Juan engaged in simple interactions with the Aisoy
robot. I incorporated timed intervals to initiate dialog and behaviors or used the Wizard
of Oz (WOZ) method [17] to deliver feedback and provide prompts based on Juan’s
responses throughout the skill. I maintained the same sequence of social story skills to
establish routine and predictability. Juan consistently exhibited increased social behav-
iors and diminished stimming behaviors during the interactions. These notable positive
effects persisted three to four hours after the final skill ended. He was more compliant in
participating in required activities, both academic and those of daily living. Additionally,
Juan became more verbal with each subsequent session. He demonstrated the ability to
memorize the routines’ dialog by anticipating and speaking key vocabulary words, other
words, and phrases within the skill. It was difficult to assess the extent to which Juan
was actively acquiring and transferring information to long-termmemory. It was equally
challenging to determine if any acquired knowledge could be applied toward real-life,
contextually similar situations.

2.4 Hello in the Hallway

After approximately five weeks of daily sessions with the robot, Juan’s grade school
principal casually mentioned Juan had displayed an unusual social behavior earlier that
day. He explained Juan had spontaneously put his hand out to wave when passing him
in the hallway and said, “Hello.” The principal expressed his surprise as he had never
observed Juan exhibit such an intentional and appropriate social behavior. After speaking
with him, I believed I had received a strong indicator Juan was engaging in knowledge
transfer, applyingwhat hehad learned throughhis interactionswith the robot to a different
social context at school. The following week, I revealed Juan’s activities with the social
robot to the principal and the school’s speech-language pathologist (SLP). I shared the
content of the skills I had created and videos filmed of Juan’s interactions with Aisoy.
Theywere supportive ofmy efforts and encouragedme to continue. The SLP even helped
write dialog formore skills based on social stories for speech therapywhile incorporating
evidence-based speech-language therapy techniques into the interactions.

2.5 Meltdown Management

Juan suffered frequent meltdowns at school. A functional behavior assessment (FBA)
identified several contributing factors leading to the escalation of maladaptive behaviors
and eventual meltdown. Communication difficulties, deviation from routine, attention-
seeking, olfactory hypersensitivity, sensory overload, and task resistance were contribut-
ing factors. Juan was introduced to the Aisoy social robot when he was struggling with
increasingly disruptive and sometimes violent or risky behaviors at school, such as
swiping items from his desk or surrounding surfaces, hitting, spitting, grabbing, and
elopement. Such behaviors created safety concerns for Juan and those around him. The
classroom setting was disrupted, interfering with Juan’s education and that of the other
children in the class. Formonths, I responded to calls from the school several times aweek
and occasionally multiple times per day because Juan’s behaviors had escalated to such
a degree that seclusion was deemed necessary. Frequent, sometimes serial meltdowns
combined with restraint and seclusion at school resulted in emotional dysregulation at
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home lasting hours into the evening. Juan alternated between uncontrollable fits of crying
and pathologic giggling. His facial expressions were out of sync with his body language
and vocalizations. He would grab at my shirt, arms, and hands while crying but rejected
any attempt I made to provide physical affection to console him. Juan engaged in highly
pronounced stimming behaviors, feverishly rocking back and forth while making high-
pitched vocalizations. Our once peaceful home became an emotionally charged, chaotic
environment filled with stress. Juan’s quality of sleep suffered terribly. Often, he was
not calm by bedtime. He would bang the back of his hands on the walls in his bedroom
or hit them on the wooden bed rail. I experienced intense feelings of helplessness and
hopelessness because I could not connect with my child to help him work through his
emotions, offer comfort, or provide him any sense of security.

Once “robot time” became part of Juan’s daily routine, things began to change. I
noticed Juan used the robot to self-calm. After school, Juan always proceeded directly
to the robot. He would place his hands on the robot’s body, look at me and say, “more.”
As soon asAisoy began to speak, Juanwould start to calm down. His stimming behaviors
decreased in frequency and intensity and, at times, would cease entirely. He would hold
the robot between both hands and gently pat it while repeating the keywords in the skills.
He would also point to the robot’s mouth and heartlight as the robot changed emotional
states. To address Juan’s struggles with intense emotions, I created an interaction based
on a social story about emotions to help him identify four key emotional states: happy,
sad, angry, and afraid. Stock photos of children expressing the four emotionswere placed
between Juan and the robot on a slant board before the interaction was initiated. First, the
robot discussed in simplified terms the characteristics of each emotion. Then, the robot’s
emotional state changed to match the corresponding emotion. Finally, Aisoy would ask
Juan to identify the photograph corresponding to the expressed emotional state one by
one. I used the WOZ approach to initiate the robot’s response to Juan as he selected a
photo tomatch the robot’s state. Juan not only learned to identify each emotion accurately
but would often say the name of the emotion. Once Juan demonstrated understanding
of the basic emotions in the skill, I created additional skills to teach Juan how to better
express and manage his own emotions. While emotional dysregulation and meltdowns
persisted at school due to factors previously identified, Juan’s behavior at home steadily
improved. I marveled at this small, pet-like social robot that could enhance my son’s
quality of life (QoL) in ways I could not.

2.6 “Mommy Loves You” as Interpreted by a Social Robot

In speaking with other parents of children with ASD, I have found similar concerns and
fears about our children’s ability to comprehend love. I worried Juan might not take
solace in the security and warmth of my love because I could not express it to him in
terms he could understand. Physical affection such as hugs or kisses caused Juan to
stiffen and retreat. If even a hand on his shoulder, attempts at physical contact seemed to
cause unpleasant sensations, if not physical pain. The words “I love you” were spoken
repeatedly, yet I received little feedback as reassurance Juan understood. As time passed,
I wondered if Juan might better understand the concept of love if the robot delivered
it. I realized that although the robot was speaking to Juan, the skill dialog was mine. I
could say anything I wanted to Juan through the robot. I began to think of the robot as
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an interpreter. It was an “aha” moment that continues to have great significance in our
lives even today.

Similar to the skills about emotions, I created an interaction based on a social story
about love. The first skill explained the concept of love and used the Picture Exchange
Communication System (PECS) icons to symbolize the concept [18]. For the next skill, I
used the robot as an interpreter and facilitator, treating the expression of love as a crucial
social skill. First, Aisoy explained to Juan how much his mamá loved him. Then, Aisoy
asked Juan to turn to me so that I could say, “I love you.” He smiled, giggled, and seemed
to have received my message. Then, when he turned his attention back to the robot, he
was asked to repeat the words, “I love you too.” Now, when I tuck Juan in bed at night,
I can say, “I love you, Juan”, and Juan answers spontaneously, “I love you too”.

2.7 When the Magic is Gone

After more than three months of daily use, Juan’s response to the robot began to dimin-
ish. First, Juan’s utterances decreased. He stopped repeating words and phrases. Next,
stimming behaviors became more frequent and intense while interacting with the robot.
Eventually, social referencing, pointing, and eye contact occurred only sporadically.
What did not change was Juan’s desire to interact with Aisoy, especially after a difficult
day at school. Unfamiliar with the novelty effect, I believed the decrease in responsive-
ness was because I could not create new skills quickly enough to sustain Juan’s interest. I
questioned whether Juan was becoming bored with interactions having similar formats.
Unfortunately, the ability to change the skill design or introduce new components into
the interactions was limited by the confines of the experimental extensions created by
Aisoy Robotics and, more importantly, my non-existent programming skills. I felt pan-
icked and profoundly saddened as I observed Juan’s interest and social behaviors wane.
It was similar to the experience of losing Juan to the effects of autism. I wondered if my
child would disappear again. The emotional pain of losing the connection I now enjoyed
with my son was so intense, I was willing to do anything to avoid another catastrophic
loss.

2.8 From Hopeless and Impotent to Optimistic and Empowered

Motivated by fear and the hope Juan’s interest could be renewed by creating more
engaging interactions, I turned again to the internet to learn. I considered including new
sound effects to match the specific objectives of the skills (e.g., bodily function sound
effects followed by a cartoon voice that says “excuse me”) or to be used as reinforcement
when directions were followed or correct answers were given (e.g., cartoon voice says
“super genius”). This forced me to investigate how I might learn to achieve such a thing.

The Aisoy1 V4 was powered by a Raspberry Pi. After reading the user manual,
SDK documentation, and posts on the developer’s forum, I began watching tutorials on
YouTube. Soon, I was downloading free, open-source applications, learning basic Linux
commands, and exploring the files and folders in the Aisoy operating system, Airos. The
process was frustrating and painfully slow, but with each success, curiosity overcamemy
frustration. I developed a deeper understanding of critical concepts. I continued to use
the ScratchX environment to build more interactions for Juan but, I modified animations,
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inserted new sound files, and designed mouth shapes to create distinct emotional states
making the interactions unique. By personalizing the interactions and eliminating some
of the predictability of the skills, Juan’s interest was renewed, and responses increased
again.

Interestingly, Juan insisted on sitting with me while I created new skills for the robot.
The very process ofmaking new interactions became an activity ofmutual interest. It was
like sharing a hobby. I was overjoyed to have my son voluntarily share a physical space
with me, just waiting to see the robot do something new. There were moments when the
exchange of non-verbal communication felt more like a conversation. Juan would laugh
when the robot would make a funny expression accompanied by a humorous sound
effect. He would look at me while giggling to gauge my reaction. I could not contain
my laughter. Soon, we were both laughing at the same thing together. Those moments
brought us closer, strengthening our bond.

Eventually, a NAO and other social robots formed part of Juan’s daily life. It became
apparent after a time that different types of social robots were better or lesser suited to
meet Juan’s academic, social-emotional, and play requirements. As I learned Python and
other programming languages, I became less dependent on block-based programming.
This freed me to create more complex interactions fitting Juan’s needs. Moreover, I
finally possessed the tools and capabilities to develop highly personalized exchanges.
This seemed to play a critical role in keeping Juan engaged. No longer was I filled with
hopelessness or plagued by an overwhelming sense of impotence. Quite the contrary, I
felt empowered through social robotics to help my child live a full and happy life.

3 General Discussion

This example of one family’s experience illustrates both the challenges and perceived
benefits of long-term, social robots in the home. While improvement in social com-
munication skills, both verbal and non-verbal, is evidence of a positive outcome, the
beneficial influence a long-term, in-home social robot had on parent-child bonding and
attachment, in this case, is a critical measure worthy of consideration. The significance
of the parent’s favorable assessment of improvement in QoL for both herself and her son
must be considered an integral part of the end result. Given the adverse, long-term effects
of emotional dysregulation, further study is needed to examine how social robots might
be used as mediators to help children with ASD manage and improve emotional self-
regulation. If social robots in the home could demonstrate a reduction in chronic family
and individual stress associated with maladaptive behaviors and emotion dysregulation,
the implications for current and future QoL could be significant.

Ease of use was a significant obstacle, nearly precluding the adoption of social robot
technology in this home setting. While digital literacy in society is improving, many
people are digitally naïve. Therefore, the skills required to operate a social robot in
the home need to match the user’s technical skills more closely. Just as in other forms
of autism therapy, home users should have the ability to create, personalize and adapt
learning content and other aspects of the social robot interactions to meet their child’s
individual needs.

Parental stress related to the added financial burden of raising a child with ASDmay
only be exacerbated by the high cost of beneficial technologies such as social robots.
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Children with ASD frequently require assistive technology (AT), yet parents are often
left to find a way to pay for it. If social robots could be shown to have therapeutic value,
then perhaps in the future, their purchase might be subsidized or even eligible for full
coverage and reimbursement as medical devices. Consequently, it is conceivable social
robots might play a role in reducing costs associated with raising a child with ASDwhen
used to deliver robot-mediated interventions in the home. This may be especially true
for children living in areas with limited access to specialized therapy services.

4 Conclusion

Although the experiences outlined here have been life-changing for this family, the gains
have been hard-won. We hope sharing these experiences and insights might contribute
to the discussion within the SR community about the nature and appropriateness of
interventional goals associated with the in-home use of social robots by parents and their
children with ASD. There is no denying the life-long, positive impact, improvement in
social-communication and academic skills have toward the development of improved
functional skills in children with ASD. Equally, the enduring emotional connection
between parent and child associated with secure attachment and bonding is critical to
a sense of well-being and improved QoL for families affected by autism. Future work
expanding on the interventional goals for in-home social robots in autism therapy may
wish to explore the priorities of families of children with ASD by inviting them to
continue to contribute to the discussion.
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Abstract. Robotic blimps have a wide range of applications, such as monitoring
activities in their surroundings, advertising, and performing on stages. They also
have remarkable capacities to be used as a social robot. In this research, amanually
operated social robotic blimp has been developed intending to interact with chil-
dren as a social agent and attract adults’ attention as an entertainer in indoor public
environments. Since the appearance of a social robot has a significant impact on
its acceptance, first, we acquired opinions of several participants on the shape
of a desired floating robot. The results revealed that a simple spherical structure
adequately draws people’s attention. After design and fabrication of the robot, a
survey on its social behaviors was distributed among 82 people. The results indi-
cated that the participants prefer a medium-sized robot, and they also feel almost
safe when the robot works around them. Furthermore, the results showed that
people genuinely appreciate the opportunity to have a mutual conversation with
the designed social blimp. Moreover, the participants believed that the designed
blimp could be an entertaining social flying robot with which it is easy to interact.
The outcome of this survey will be beneficial in designing and developing a social
blimp with a focus on interacting with children and entertaining people.

Keywords: Robotic blimp · Social robots · Human-robot interaction (HRI) ·
Children-robot interaction (CRI) · Floating robots

1 Introduction

Social robots are being used in a broad range of applications, including teaching sign
language to children with hearing problems [1], providing rehabilitation for children
diagnosed with autism [2], merchandising and attraction of attention [3, 4], teaching and
learning with children [5], nursing and supporting hospitalized children [6, 7], and doing
labor works as a co-worker [8]. Blimp robots are interesting examples of social robots
which offers considerable potentials in the fields of human-robot interaction (HRI),
specifically child-robot interaction (CRI).
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Autonomous Light Air Vessels (ALAVs) were developed to investigate their inter-
action with each other (flocking behavior) and with people as a part of a networked
system [9]. Diri is an autonomous blimp robot capable of monitoring and taking photos
of its surroundings [10]. Inspired by nature, Festo Corporation developed a wide variety
of airborne robots, such as AirJelly [11], AirPenguin [11], and Air-ray [11]. Moreover,
eMotionSphere [12] and FreeMotionHandling [12] are two other Festo’s spherical aerial
robots designed to investigate controlling collision-free flying of autonomous systems
in a defined area and gripping, moving, and delivering objects, respectively. Tobtia
et al. presented a robotic blimp as a floating avatar in the entertainment area capable
of interacting with humans [13, 14]. Space Browser is another blimp that was designed
to implement video teleconferencing [15]. ZeRONE is a special drone that, instead of
motors and blades, uses ultrasonic vibration of piezo elements as the driving unit to
propel its helium-filled balloon [16]. Panasonic Corporation developed Ballooncam as a
flying device focused on the entertainment section and event performances with a unique
saucer-shaped design of putting propellers inside the balloon [17]. Ballooncam can cap-
ture photos and project videos, and its fabric can also be used as a screen. Srisamosorn
et al. designed a blimp robot with 360-degree cameras to evaluate provided healthcare
for elders in nursing homes [18]. Since the balloons of the blimp robots can be built
in various attractive shapes, these robots have remarkable capacities to be employed in
interacting with children and playing with them. Air Swimmers are appealing inflatable
toys in this category with a moving tail presented in an array of designs, ranging from
sharks and fish to birds [19]. Another pleasing spherical airborne robot in this section is
Qbofly, whose drive mechanism is one fin on each side of its helium balloon.

In this research, we initially developed and designed a social flying robot named CeB
as ameans to interactwith children and entertain adults in public places, such as shopping
malls, by taking photos and streaming live video with the robot’s camera and detecting
their faces and facial expressions using convolutional neural network models and face
detection APIs. Public spots like kindergartens, airports, and malls are so crowded that
there are certain limitations on using the ground-moving social robots. However, a social
robotic blimp, like CeB, can easily fly over people and avoid any collision with the
crowd. In order to achieve the goals of this research, a questionnaire containing pictures
of several designs was prepared at the first stage to assess participants’ opinions about
the shape of the social flying robot. Afterward, the first prototype of CeB has been built
according to the feedback of the participants. Finally, to evaluate the social behaviors and
functionalities ofCeB aswell as to determine the future path of this research, the opinions
of users were collected through a questionnaire consisting of several simulations of the
social functions of this robot. The main advantages of the proposed robot is its primary
social behavior and its body posture during the interaction with the audiences. The robot
engages in interaction with people and tilts its head down toward the users based on
detection of a person and recognizing their facial expression.

In Sect. 2 of this research paper, the CeB’s initial sketches, final design, mechatronic
components, and social behaviors and functions is described. The results are discussed
in Sect. 3. Limitations and future work are presented in Sect. 4. At last, the conclusion
of this research is summerized in Sect. 5.
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2 Methodology

2.1 CeB’s Design

Helium balloons and social robots both come in a wide range of designs and forms,
each with its own appeal. To choose the shape of the CeB’s balloon, as demonstrated in
Fig. 1, five distinct designs, including a spherical form, a spindle, a shark, an airship,
and a flying saucer, were first prepared.

Fig. 1. Five different proposed CeB’s designs

Since CeB ismeant to function as a social robot, to explore which design attracts peo-
ple’s attentionmore, a questionnaire containing thementioned shapeswas developed and
distributed among 107women andmen in three age groups of belowfifteen years old (A),
between fifteen and thirty years old (B), and above thirty years old (C). Each participant
of this questionnaire could opt for two designs with priority. The age and gender distri-
bution of participants and the results of this survey are presented in Table 1 and Table
2, respectively. No noticable differences have been observed in answers between female
and male participants. Finally, the spherical model, shown in Fig. 2, with 32 votes as the
first choice, has been chosen as the CeB’s balloon shape.

Because of its three-dimensional symmetry, the spherical-shaped balloon makes it
significantly easier to move both its center of gravity and center of buoyancy close to
the center point of the sphere. This feature leads to CeB’s consuming less amount of
energy, and therefore, CeB can remain afloat for a more extended time period. CeB’s
actual balloon is a white sphere with a diameter of 70 cm and two blue eyes made out
of PVC (see Fig. 3).
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Table 1. Age and gender distribution of participants in the survey on CeB’s design

Gender Age group

A B C

Female 34 4 14 16

Male 73 11 44 18

Total 107 15 58 34

Table 2. Results of the survey on CeB’s design

Sphere Spindle Shark Airship Flying saucer

First priority 32 7 13 26 29

Second priority 16 18 17 23 29

Total 48 25 30 49 58

Fig. 2. The selected CeB’s spherical design in three different views

Fig. 3. An image of the CeB (the designed and fabricated floating social robot).
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2.2 CeB’s Mechatronics

CeB’smicrocontroller is a small seven-gramArduinoNanoR3with an operating voltage
of 5V.TheRXandTXpins of theArduino are used to establish serial communicationwith
the 5VESP32-CAMmodule,which is responsible for setting upwireless communication
with a local computer, streaming video, taking photos, and sending them to a local server.

ESP32-CAM with an onboard two-megapixel OV2640 camera is a small module
ideal for IoT application which integrates WiFi and Bluetooth. The video recorded by
the CeB’s camera is streamed live on the CeB’s graphical user interface (GUI) running
on the local computer. The taken pictures are also sent to the local computer, and themost
recent one can be viewed on the GUI. Besides, the CeB’s GUI allows a user to adjust
the camera settings and control CeB’s movements using a mouse, keyboard keys, or a
gamepad by changing the angles of CeB’s micro servos and the speed of its DC motors.
This information is delivered from the local computer to CeB via a wireless connection.
Moreover, using CeB’s mini microphone and speaker, the operator and users can have a
real-time mutual conversation with each other.

The CeB’s driving system balloon consists of three 7x16mm three-gramDC coreless
motors (maximum operating voltage of 3.7V) with 45mm propellers and two two-gram
micro servo motors. One DC motor is installed on the back of the CeB’s balloon, and
one is placed on each sides of the robot. The primary function of the rear motor is to
tilt CeB’s head down to present better interaction with the user upon face detection.
The servo motors change the orientation of the lateral coreless motors from entirely
horizontal to totally vertical. Therefore, by adjusting the servo angles and the speed of
DC motors, CeB can lift off vertically and also move in any direction.

Two 18650 3.7V 3400mAh 4C lithium-ion batteries alongside two LM2596 voltage
regulators and a two-cell charge balancer with the maximum allowed current of 6.5A are
used as the CeB’s power supply. The CeB’s electronic components are listed in Table 3.

Table 3. List of CeB’s electronic components

Component Num Total weight

Arduino Nano R3 1 7g

ESP32-CAM 1 8g

Microphone 1 2g

Speaker 1 6g

Servo motor 2 4g

DC coreless motor 3 9g

DRV8833 (DC motor driver) 2 2g

18650 Battery 2 98g

LM2596 2 24g

Total 160g
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2.3 CeB’s Social Behaviors

CeB has been developed to fly over people, and its principal social function is to detect
faces and facial expressions on the streamed video using the MTMN model and face-
api.js. MTMN is a lightweight model for detecting human faces, and it is already being
implemented on ESP32-CAM; it can take images as input and return the boxes which
contain the detected faces. Face-api.js, a JavaScript face recognition application pro-
gramming interface (API) implemented on top of the tensorflow.js, has been used to
design CeB’s GUI and is responsible for detecting faces and facial expressions. More
specifically, thisAPI contains useful high-level functions to detect all faces in an image as
well as to predict face landmarks and recognize facial expressions for each detected face.
When a face is detected, as illustrated in Fig. 4, the CeB’s rear coreless motor starts to
run. It causes the CeB’s head to face downwards; therefore, people can feel that the robot
is aware of their presence and is interacting with them. In addition, CeB’s GUI affords
the operators the opportunity to control its movements and camera settings easily. Since
the CeB’s camera is fixed, by changing CeB’s position and orientation, operators can
take photos from different angles, and they also can perform various games and interact
with users. Carrying light objects and flyers, moving CeB in between rings, air race,
dancing in the air, and capturing beautiful photos are among the games that users can
play with CeB. Some of the CeB’s social functionalities and behaviors is demonstrated
in Fig. 5.

Fig. 4. A sample of face and facial expression detected by CeB (the camera installed on the robot
capture the image and a remote computer performes the processing).

Fig. 5. Simulation of some of the CeB’s social behaviors
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3 Results and Discussion

To investigate CeB’s social behaviors and how successful it is in attracting people’s
attention as well as to determine the future path of this research, a questionnaire con-
taining eight questions and a simulation video of CeB’s social functions was designed.
Due to the restrictions caused by the COVID-19 pandemic, it has not been quite possible
to perform the tests in real environments; therefore, the simulation of the robot perfor-
mance and functions was sent out to participants through the social medias. 82 people,
including 21 women and 61 men in three different age groups, have attended the online
survey. In each question, the respondents had to rate one aspect of CeB as a social flying
robot on a 1–5 Likert scale. Score 1 was considered as ‘very low,’ and score 5 meant
‘very high.’ The distribution of participants in terms of age and gender has been shown
in Table 4. There have been no meaningful differences in responses between women and
men. In analyzing the results, scores 1 and 2 were considered ‘low,’ score 3 as ‘medium,’
and scores 4 and 5 as ‘high.’ The questions of this survey and the distribution of the
answers is listed in Table 5.

Table 4. Age and gender distribution of participants in the survey on CeB’s social behaviors

Gender Age group

A B C

Female 21 0 12 9

Male 61 2 41 18

Total 82 2 53 27

Answers to question 1 illustrate that people feel relatively safe when CeB is flying
in their surroundings. Changing CeB’s design in a way that coreless motors and their
blades are less exposed will increase users’ feelings of safety. Salem et al. [20] have
investigated and highlighted two important factors, the ‘safety’ and ‘trust’, in social
robots and mentioned some challenges of their measuring as well as the conditions in
beyond lab researches. Based on the recommendations presented in [20], we would
like to mention that although ~ 50% of the participants of this study believed they feel
safe around the designed robot, they might consider/imagine the safe-hardware and
safe-software factors more than the safe-interaction factors in their ratings because the
current data has been gathered based on the simulation video of the robot’s performance.
Therefore, in this stage, the reslt of question 1 should be considered as a preliminary
estimation of users’ safety feelings and further research need to be done in action after the
COVID-19 pandemic situation for figuring out a more precise answer for this question.
A bigger spherical CeB has a lower surface-area-to-volume ratio, and therefore, the
resultant buoyant force becomes more significant, which means CeB can carry out a
larger payload. However, the answers to question 2 clearly reveal that people are more
interested in the medium-sized version of CeB and prefer it to the larger models. This
reactionmight be originated from that a bigger robotmay seemmore hostile or dangerous
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Table 5. Results of the survey on CeB’s social behaviors

Question Average
(Std. Dev.)

The multiplicity of
each answer
(Percentage)

Low Medium High

1 How much do you feel safe when the robot works
around you?

3.5
(1.1)

9
(11)

33
(40)

40
(49)

2 How big would you like the robot to be? 2.8
(0.6)

19
(23)

56
(68)

7
(9)

3 How much do you like to talk with the robot? 3.6
(1.2)

14
(17)

19
(23)

49
(60)

4 How long do you like the robot to be around you? 3.2
(0.8)

9
(11)

52
(63)

21
(26)

5 How much do you like the robot to start a casual
conversation with you?

3.5
(1.3)

19
(23)

19
(23)

44
(54)

6 How entertaining do you think the robot is? 3.7
(1.0)

9
(11)

22
(27)

51
(62)

7 How much do you enjoy interacting with the robot? 3.7
(0.9)

5
(6)

33
(40)

44
(54)

8 How much do you agree with the statement that “I think
interacting with the robot is easy?”

3.7
(1.1)

12
(15)

14
(17)

56
(68)

to participants. Besides, since it occupies more space, people may think that CeB is more
likely to interfere with their activities. The responses to questions 3 and 5 evidently
demonstrate people’s willingness to have a mutual verbal conversation with CeB. This
finding is in line with the results presented in [21, 22] that the ability of social robots in
performing verbal communication with users significantly/positively affect the impacts
of HRI.

The answers to question 4 show that users prefer to interact with CeB only occa-
sionally. Increasing CeB’s social abilities along with raising public acceptance of social
robots will extend the period people like to spend time with CeB. From the responses
to question 6, 7, and 8, it can be deduced that users recognize CeB as a social and
entertaining agent, and they also enthusiastically want to interact with it. The earnest
desire of people to interact with this robot is mainly due to the friendly and yet simple
design of CeB. The main conclusion to be drawn from the above results is that, apart
from huge potentials, CeB has a decent performance as a social blimp in the areas of
human-robot interaction and entertainment. In [23], Lytridis et al. has investigated the
conditions (and confirmed some of our findings) for the social robots to be effective
actors in entertainment and education. Moreover, Barakova et al. [24] suggested that in
social robots with applications in the area of children-robot interaction, combining the
social and game strategy can provide more social engagement and empathy with the
robot which could be a critical cue for developing the scenarios for the CeB social robot.
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Finally, we would like to mention that while there is not enough room in this paper to
compare all of the factors in detail with similar studies in the literature, we tried our best
to mention some main points regarding the acceptance and concerns (e.g. the future HRI
design [25, 26]) for the current version of CeB.

4 Limitaions and Future Work

In addition to overcoming the decribed limitations caused by the COVID-19 pandemic,
based on the CeB’s considerable potentials in the fields of social robotics, children-robot
interaction, entertainment, and advertising, and according to the results of the question-
naire on assessing CeB’s social functionalities, specific measurements are planned to be
taken in future.

To begin with, since one of the CeB’s primary goals is interaction with children, the
number of participants below fifteen years old (age group A in Tables 1 and 4) in both
surveys to whom access has not been allowed due to the COVID-19 pandemic should
increase. Secondly, in order to increase people’s feelings of safety upon interacting with
CeB (question 1 in Table 5), some changes in its shape are necessary so that its three
coreless motors become more integrated with the body of CeB.

To make CeB’s social presence more apparent, a small screen or an array of LEDs
as the CeB’s mouth can be added below its eyes. Moreover, currently, CeB’s movements
have to be controlled manually. An automatic control mode can be designed for CeB to
make it more intelligent and less independent of human operators.

5 Conclusion

In this research,wehave attempted to design a social blimpnamedCeBwith twopurposes
of interacting with children and entertaining people in different age groups, particularly
in crowded locations. Blimps have a major advantage over typical ground-moving social
robots as they can fly over people’s heads in crowded environments without the concern
of hitting people. Because of the substantial impression that the appearance of a social
robot has on its audience, a questionnaire consisting of five preliminary sketches of the
CeB’s structure, including a sphere, a spindle, a shark, an airship, and a flying saucer, was
created. The surveywas sent out to 107 people in three different age groups. The spherical
design was selected as the first priority of the participants with 32 votes. Hence, CeB
ended up being a friendly white sphere made of PVC with two blue eyes and a diameter
of 70 cm.

At the first stage, we designed CeB in a manner to be capable of taking photos,
capturing videos, and sending them to a local computer. We utilized the ESP32-CAM
module as a unit that, by setting up a local server, was responsible for establishing a
wireless connection between CeB and the local computer and streaming live photos and
video through this connection. The Arduino Nano board is employed as an intermediary
component between ESP32-CAM and CeB’s driving unit, which consists of two servo
motors and three DC coreless motors. The operator send commands to CeB using its
especially designed GUI.
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CeB’s primary social behavior is to detect faces and facial expressions on the video
streamed fromCeB’s camera and interact with the user through basic postures. To induce
the more individual interaction with the users, the robot tilt downward when it detects a
face. To explore people’s views on CeB’s social functions, a survey containing a video
simulating the CeB’s social behaviors and a questionnaire consisting of eight questions
of various social aspects of CeB was prepared and opinions of 82 participant were
acquired online. Based on the results, nearly half of the participants felt utterly safe
when CeB worked in their surroundings. Over 60 percent of the respondents considered
CeB as very entertaining and thought that their interaction with CeB would be easy. The
majority of participants were eager to have a mutual talking with CeB, and they also
preferred a medium-sized blimp over the larger ones to interact with. We hope that the
results achieved by this research facilitate the designing and developing procedure of
social blimps.
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Abstract. Social robots are being increasingly employed for educational
purposes, such as second language tutoring. Past studies in Child-Robot
Interaction (CRI) have demonstrated the positive effect of an embodied
agent on engagement and consequently learning of the children. However,
these studies commonly use subjective or behavioral metrics of engage-
ment that are measured after the interaction is over. In order to gain
better understanding of children’s engagement with a robot during the
learning phase, this study employed objective measures of EEG. Two
groups of Japanese children participated in a language learning task;
one group learned French vocabulary from a storytelling robot while
seeing pictures of the target words on a computer screen and the other
group listened to the same story with only pictures on the screen and
without the robot. The engagement level and learning outcome of the
children were measured using EEG signals and a post-interaction word
recognition test. While no significant difference was observed between
the two groups in their test performance, the EEG Engagement Index
( β

θ+α
) showed a higher power in central brain regions of the children

that learned from the robot. Our findings provide evidence for the role
of social presence and engagement in CRI and further shed light on
cognitive mechanisms of language learning in children. Additionally, our
study introduces EEG Engagement Index as a potential metric for future
brain-computer interfaces that monitor engagement level of children in
educational settings in order to adapt the robot behavior accordingly.

Keywords: Child-Robot Interaction (CRI) · Second language
learning · Engagement · Electroencephalogram (EEG)

1 Introduction

Our society is digitalizing and so is the educational system. Computers and
tablets are increasingly employed in everyday learning and with that follows the
prevalence of robots in educational environments [1]. A considerable amount of
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research has been conducted in the domain of Human-Robot Interaction (HRI)
focusing on this change in combination with children and second language learn-
ing. A recent study by Randall (2019) provided an overview of robot-assisted
language learning and its impact on the learning outcome and affect of learn-
ers [2]. It was found that robots can assist children of different ages in learning
languages when they have the role of a tutor or a teaching assistant that accom-
panies the human instructor. In addition, the survey concluded that robots have
a positive effect on the motivation, engagement, and confidence of the learners
in comparison to other technologies [2].

While the benefit of robots in various educational settings is already estab-
lished, some critics are reported regarding previous research on the use of robots
in language learning, namely, the studies in this field are often exploratory or
descriptive, lack a control group for evaluation, or have small sample sizes [3].
Moreover, although robot-assisted language learning has shown increased learn-
ing outcome in children, the reason behind this improvement remains unclear [4].
The explanation that is often provided by past research is that children appear
to be more engaged when they learn from a social robot [3,5].

Engagement and attention are key concepts in learning and are used inter-
changeably in past research [6,7]. Engagement is defined as being involved with
something and is important for learning in terms of motivation, persistence, and
satisfaction [8,9]. Attention is the act of directing the mind to listen, see, or
understand, which has a positive effect on memory, learning, and recognition
capability [10,11]. Motivation, sustained attention, and learning gain in second
language learning can all be increased due to robot-assisted learning in com-
parison to computer-assisted learning [12,13]. The use of gestures by the robot
can increase engagement in children and consequently long-term memorization
of new information [13]. It has been shown that even after one single tutoring
session with a robot, children around the age of five show signs of second lan-
guage acquisition [14]. Besides, children showed a higher engagement with the
robot when the robot used a variety of gestures [14] or when it employed an
adaptive tutoring strategy [13].

Past experiments have mainly evaluated engagement either by collecting post-
interaction questionnaires from children or by recruiting trained annotators who
watched video clips of children and rated their behavior during interaction with
the robot [13,14]. These evaluation methods are not only laborious but can also
introduce subjective bias to the measurements. Alternatively, electroencephalo-
gram (EEG) can provide a real-time and objective measure of engagement and
attention in HRI settings [5]. EEG is a non-invasive brain imaging technique that
provides high temporal resolution of neurophysiological responses, hence it is par-
ticularly useful when the robot should adjust its behavior in order to restore or
increase the engagement and attention of the user [6,15,16]. EEG has already been
used in the field of Human-Computer Interaction to quantify engagement and cog-
nitive workload during educational video games [17] and arithmetic learning tasks
[18]. However the use of EEG in the field of HRI is scarce [15].

The study by Szafir and Mutlu (2012) [6] is one of the few HRI reports that
made use of EEG to track participants’ engagement level during interaction
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with a storytelling robot. Authors employed a brain-computer interface (BCI)
that extracted a real-time EEG Engagement Index, and applied behavioral tech-
niques to restore subject’s attention when they showed decrease in engagement
level. The EEG signals were gathered from the user’s prefrontal cortex because
this area has been previously associated with learning, mental states, and atten-
tion [19,20]. The results showed a significant improvement in recall performance
when adaptive behavioral techniques were performed by the robot and females
reported to be more motivated by the adaptive behavior of the robot [6]. While
Szafir and Mutlu (2012) only focused on the prefrontal area, other studies com-
puted the EEG Engagement Index as an average power of multiple brain areas
and successfully confirmed its association with students’ learning outcome [17].

The current research employed EEG to measure the engagement level of
children in a second language learning task. Two groups of Japanese children
learned French vocabulary by listening to a story in the French language and
seeing images of the target words on a computer screen. In one group, the story
was told by a NAO robot that gestured toward the screen whenever the intended
French word was recited. In the other group, children only heard the robot’s voice
and saw pictures on the screen. Learning in both groups was evaluated in a post-
interaction word recognition test. Following [6], we extracted EEG Engagement
Index and examined the effect of robot presence on children’s neurophysiological
responses and learning outcome. The following research questions were formu-
lated:

RQ 1: Does EEG show different level of task engagement when children
learn a second language from a storytelling robot as opposed to a computer
screen?

RQ 2: Do children learn a second language vocabulary during interaction
with a storytelling robot more efficiently than a computer screen?

We hypothesized that the EEG Engagement Index would be higher in chil-
dren who learned from the robot than those who experienced the screen condi-
tion. Additionally, we hypothesized that the use of a storytelling robot would
have a positive impact on children’s recall of the target words as indicated by
their test performance.

2 Experimental Setup

2.1 Participants

Forty-one (41) Japanese-speaking children participated in the experiment (22
boys, 19 girls, age M = 5.50, SD = 0.16). They were divided into two groups;
one group was assigned to the Robot condition (N = 21) and the other to the
Display condition (N = 20). The children’s parents received explanation about
the study and after reading the information letter, signed a written consent form.
The study was approved by the Ethics Committee of the University of Tokyo.
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2.2 Experiment Procedure

After initial explanation, the children were guided to the experiment room and
seated in front of the screen. The experimenter placed the EEG cap on the
children’s head and checked the electrodes’ impedance. In the Robot group, the
EEG data was recorded during seven minutes of French storytelling done by the
NAO robot, supported by a computer screen (Fig. 1a). In the Display group, the
EEG data was recorded while the same story (in French, 7 min) was narrated in
the robot’s voice over the display (Fig. 1b). For both groups, same pictures were
displayed on the screen to invigorate the storytelling. These pictures visualized
the target French words, e.g. when the word ‘cochon’ (i.e. French word for ‘pig’)
was used, a picture of a pig was shown. Children were exposed repeatedly to
three target words in French that they were expected to learn; pig, wolf, and
house.

Fig. 1. Experimental procedure. Two groups of children listened to a story in French
either a) narrated by a social robot that pointed to pictures on a computer screen
(Robot group) or b) by a non-embodied voice using the same pictures on the computer
screen (Display group). c) Children’s learning of the target French words was assessed
by a post-interaction word recognition test. d) EEG signals were recorded from children
during the learning phase in order to measure task engagement in each group.
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After the story was finished, the children participated in a word recognition
task on a laptop (see Fig. 1c). The word recognition task included 13 stimuli
words allowing to test children’s learning of the 3 target words to which they were
frequently exposed during the storytelling (i.e. pig, wolf, house). Children heard
a word that was taught during the storytelling (e.g. “cochon”, pig in French)
and they had to choose between two visual stimuli presented simultaneously on
the screen. The target words were combined with distractor words. The number
of correct and incorrect answers in the word recognition test were recorded.

2.3 EEG Recording

The EEG signals were recorded using an Electrical Geodesics Inc. (EGI) EEG
acquisition system consisting of a 64-channel Hydrocel Geodesic Sensor Net
(Fig. 1d). The recording sampling rate 250 Hz. The Cz channel was used as the
reference channel during the recording, therefore the data were re-referenced to
reconstruct the Cz signal. The other channels were corrected accordingly. This
resulted in a dataset with 65 EEG signals. For this study, 18 channels covering
all brain regions were selected for further analysis. The selected channels were
Fp1, Fp2, F3, F4, F7, F8, Fz, C3, C4, Cz, P3, P4, Pz, O1, O2, Oz, T7, and T8.
The selection criteria was to include at least one left and one right hemispheric
electrode as well as midline electrode in all frontal, central, temporal, parietal
and occipital regions.

2.4 Data Analysis

The EEG signals were processed in MATLAB (version R2020b). The EEGLAB
toolbox (verision 2021.0) was used for pre-processing of the raw recordings. First,
a band-pass filter of 4–30 Hz was applied to remove high and low frequency com-
ponents and only retain frequency bands theta (4–8 Hz), alpha (8–13 Hz), and
beta (13–30 Hz) [11]. The filtered data was visually inspected for noisy segments,
which were removed from the data. Additionally, Independent Component Anal-
ysis (ICA) was applied to clean the signals from eye artifact and, if needed, other
noisy components. For every subject and every EEG channel, the mean power
in the frequency bands theta, alpha, and beta were extracted using the spectopo
function in EEGLAB, which relies on the fast Fourier transform (FFT). Subse-
quently, the EEG Engagement Index was calculated using the following equation
[6]:

EEG Engagement Index =
β

θ + α
(1)

Next, using JupyterLab, dataframes were created for the Robot and Display
conditions. The EEG Engagement Indexes obtained from each group at each
EEG channel were loaded into these dataframes. To inspect the normality of
the data, histograms were plotted and the Shapiro-Wilk test was conducted.
Both histograms and Shapiro-Wilk tests showed non-normal distribution of data
in both groups. Consequently, the non-parametric Mann-Whitney U test was
chosen to compare the Engagement Indexes between the two groups per channel.
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Finally, the learning outcome was compared between the two groups. For
every participant, the number of correctly recognized words in the post-
interaction test was divided by the total number of questions. Since this data
was not normally distributed, Mann-Whitney U test was chosen to compare the
learning outcomes between the two groups. One participant was excluded from
the analysis on the learning outcome because the mother of the child helped
with the word recognition test.

3 Results

The results are presented in two parts: the children’s learning outcome as mea-
sured by the post-interaction word recognition test and the results of the brain
activity analysis during the learning phase which compared the EEG Engage-
ment Index (see Eq. 1) between the two groups at different brain areas.

3.1 Learning Outcome

Figure 2 demonstrates the performance of children in each group on the word
recognition test that was conducted after the storytelling i.e. the learning phase.
A Mann-Whitney U test showed no significant difference between the Robot
group (mdn = 0.839) and the Display group (mdn = 0.708), U = 146, p =
0.07, although the median of the performance was slightly higher in the Robot
group.

Fig. 2. Children’s performance on the word recognition test. Although, the percentage
of the French words that were recognized by the children was slightly higher in the
Robot group, no significant difference was found between the two groups in their test
performance.

3.2 EEG Engagement Index

Figure 3 displays the EEG Engagement Index computed for both groups in all
selected EEG channels in this study. A Mann-Whitney U test indicated that the
EEG Engagement Index in C4 was significantly higher in the Robot group (mdn
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= 0.062) in comparison to the Display group (mdn = 0.045), U = 136, p =
0.028. Similar result was found for Cz, where the Robot group (mdn = 0.030)
showed significantly higher EEG Engagement Index compared to the Display
group (mdn = 0.026), U = 130, p = 0.019. While no significant difference was
confirmed at other locations, the prefrontal and frontal channels showed partic-
ularly higher values of EEG Engagement Index in both groups when compared
to other regions of the brain.

Fig. 3. Distribution of EEG Engagement Index computed for both groups in each EEG
channel. The Robot group showed a significantly higher EEG Engagement Index at Cz
and C4 locations.
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4 Discussion

The present study aimed to validate the benefit of a robot tutor for second
language learning in comparison to a screen-based learning experience using
EEG analysis and a post-interaction word recognition test. By employing neu-
rophysiological measures of EEG, we sought to objectively evaluate children’s
task engagement during the learning phase and validate its association with
their learning outcome. Our results indicated that children who learned French
vocabulary with a social robot presented significantly higher levels of cognitive
engagement in the central region of the brain, namely C4 and Cz channels, com-
pared to those who learned from a computer display. Despite this difference, both
groups showed comparable performance on the post-interaction word recognition
test.

Our results support our hypothesis regarding RQ1 in that EEG can identify
different levels of task engagement during child-robot interaction. The major-
ity of past HRI studies have relied on behavior analysis or subjective ratings to
evaluate a user’s engagement with a task or robot [14,21,22]. These conventional
methods often require data annotation and processing by human coders once the
interaction is over. Hence, not only are they costly and prone to subjective bias,
but also prevent real-time detection of disengagement, which could then be used
by robot behavior adaptation mechanisms for restoration of interaction dynam-
ics [22]. Alternatively, neurophysiological measures of brain activity provide an
online indicator of the user’s cognitive state changes that can then be used by
a Brain-Computer Interface (BCI) for real-time evaluation of engagement and
attention [6,15].

The activation of the central area of the brain, which is representative of the
sensorimotor system, could have been caused by auditory learning from the robot
[23]. Furthermore, it has been shown that the sensorimotor system is activated
in toddlers during action observation and the processing of action verbs [24].
This activation pattern was right-lateralized and is typically seen in the central
areas of the brain [24]. The right hemisphere is involved in learning of a second
language through social interaction with a human or an object [25]. Our results
in Cz and C4, which are located in the central area and right hemisphere of
the brain, are consistent with these previous reports. In the present study, the
processing of action verbs was the same in both conditions since children of
both groups listened to the same story. However, the use of a moving embodied
agent could have activated the processing of observed actions due to the gestures
that were shown by the robot to invigorate the storytelling. Additionally, in the
robot condition, social interaction was used to teach a second language, which
can explain the higher EEG Engagement Index in this group.

Based on past research regarding the benefits of robots in educational set-
tings [2,13], it was expected that the current study would obtain a higher learn-
ing outcome in the Robot group. However, no significant difference was found
between the two groups in their word recognition test performance. Thus, our
second hypothesis regarding a better learning outcome in robot-assisted language
learning could not be confirmed. An explanation for this could be the role of the
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visual material (pictures of words) that were presented on the computer screen
during the learning phase. The use of technology has been shown to have a posi-
tive impact on the learning outcome when compared to traditional learning [26].
This means that the use of the display and animated pictures during storytelling
could have already extended a positive effect on the engagement level and subse-
quently learning outcome of the children in the Display group. Additionally, all
children were tested in a laboratory environment and were listening to a French
story for the first time. The novelty of the environment could have introduced
higher attention levels in all children, which is supported by the generally higher
values of EEG Engagement Index observed in the prefrontal, frontal and tem-
poral areas of both groups (Fig. 3). Previous research by Meyer et al. (2019)
similarly reported increased fronto-temporal activity in 4-year old children dur-
ing a language task, which was associated with cognitive task engagement and
higher attention load [27].

The EEG Engagement Index that was employed by this research is a known
metric [17], which provides a combination of higher and lower frequency bands
instead of comparing each frequency band separately as previous studies have
done [18,27,28]. This metric is particularly useful in development of BCI sys-
tems for real-time monitoring of engagement and attention [6,15]. However, past
research has mainly employed this metric in adult learners and therefore observed
its responsiveness in the (pre)frontal cortex of the adult population. In our study,
the contribution of this index when measured from the frontal brain region of the
children remained inconclusive, while significant effects were found in the cen-
tral region. Research shows that children do not yet have fully developed frontal
lobe and unlike adults, they mainly rely on sensorimotor cortex -in the central
brain regions- for executive functions, cognitive processing and working mem-
ory [29]. Thus, future research should further investigate the reliability of this
index and its associated brain regions among children population. Additionally,
the validity of this index can be confirmed by comparing the EEG signals with
other real-time measures of engagement such as facial expressions, eye tracking,
galvanic skin responses, etc. [30].

The study of EEG brain activity during robot interaction is a novel and yet
unexplored terrain that deserves more attention from the HRI community [15,16].
The growing market of low-cost consumer EEG headsets promises increased acces-
sibility and adoption of this method in future educational environments. There-
fore, more research is needed to investigate the potential and challenges of this
technique in the HRI domain. The current study can further be expanded by
increasing the number of participants and learning sessions. Particularly, increased
number of sessions in a longitudinal study can shed light on the impact of novelty
effect and the robot’s social presence on engagement and learning outcome of the
children. Furthermore, it would be interesting for future research to employ the
EEG Engagement Index in an online BCI system where engagement and atten-
tion level of children are measured in real-time during the learning task. This will
facilitate adaptive robot behavior for fast recovery of attention drops and eventu-
ally increased efficiency in robot-assisted learning [5,6].
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5 Conclusion

The aim of this research was to quantify the effect of robot presence during chil-
dren’s second language learning using EEG brain activity and a post-interaction
performance test. Two groups of Japanese children learned French vocabulary
in different conditions; one group listened to a storytelling robot that used ges-
tures together with pictures on a computer screen during storytelling and the
other group only watched the story on the screen without the robot. Our results
revealed a significantly higher cognitive engagement in the Robot group as mea-
sured by EEG in the central region of the brain. This difference is explained
by the activation of the children’s sensorimotor system due to the processing
of observed actions and auditory learning. Our findings contribute to the field
of child-robot interaction by introducing a new objective measure of interac-
tion dynamics as it is the first study that used EEG to measure engagement
in children during a second language learning task. Future research should fur-
ther examine the efficacy of this measure in quantifying the temporal changes
of engagement during the learning process and its association with children’s
learning outcome after the interaction is over.
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robots for early language learning: current evidence and future directions. Child
Dev. Perspect. 12(3), 146–151 (2018)

4. Vogt, P., De Haas, M., De Jong, C., Baxter, P., Krahmer, E.: Child-robot inter-
actions for second language tutoring to preschool children. Front. Hum. Neurosci.
11, 73 (2017)

5. Lytridis, C., Bazinas, C., Papakostas, G.A., Kaburlasos, V.: On measuring engage-
ment level during child-robot interaction in education. In: International Conference
on Robotics in Education (RiE), pp. 3–13, April 2019

6. Szafir, D., Mutlu, B.: Pay attention! Designing adaptive agents that monitor and
improve user engagement. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 11–20, May 2012

7. Glas, N., Pelachaud, C.: Definitions of engagement in human-agent interaction. In:
2015 International Conference on Affective Computing and Intelligent Interaction
(ACII), pp. 944–949. IEEE, September 2015

8. Cambridge Dictionary. Engagement: Definition of engagement in English. https://
dictionary.cambridge.org/dictionary/english/engagement. Accessed 20 Feb 2021

9. Henrie, C.R., Halverson, L.R., Graham, C.R.: Measuring student engagement in
technology-mediated learning: a review. Comput. Educ. 90, 36–53 (2015)

10. Cambridge Dictionary. Attention: Definition of attention in English. https://
dictionary.cambridge.org/dictionary/english/attention. Accessed 20 Feb 2021

https://dictionary.cambridge.org/dictionary/english/engagement
https://dictionary.cambridge.org/dictionary/english/engagement
https://dictionary.cambridge.org/dictionary/english/attention
https://dictionary.cambridge.org/dictionary/english/attention


Assessment of Engagement and Learning During CRI Using EEG 681

11. Chiang, H.S., Hsiao, K.L., Liu, L.C.: EEG-based detection model for evaluating
and improving learning attention. J. Med. Biol. Eng. 38(6), 847–856 (2018)

12. Han, J.: Robot assisted language learning. Lang. Learn. Technol. 16(3), 1–9 (2012)
13. de Wit, J., et al.: The effect of a robot’s gestures and adaptive tutoring on chil-

dren’s acquisition of second language vocabularies. In: Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction, pp. 50–58,
February 2018

14. de Wit, J., Brandse, A., Krahmer, E., Vogt, P.: Varied human-like gestures for
social robots: investigating the effects on children’s engagement and language learn-
ing. In: Proceedings of the 2020 ACM/IEEE International Conference on Human-
Robot Interaction, pp. 359–367, March 2020

15. Alimardani, M., Hiraki, K.: Passive brain-computer interfaces for enhanced human-
robot interaction. Front. Robot. A I, 7 (2020)

16. Yoon, S., Alimardani, M., Hiraki, K.: The effect of robot-guided meditation on
intra-brain EEG phase synchronization. In: Companion of the 2021 ACM/IEEE
International Conference on Human-Robot Interaction, pp. 318–322, March 2021

17. Khedher, A.B., Jraidi, I., Frasson, C.: Tracking students’ mental engagement using
EEG signals during an interaction with a virtual learning environment. J. Intell.
Learn. Syst. Appl. 11(01), 1 (2019)

18. Soltanlou, M., Artemenko, C., Dresler, T., Fallgatter, A.J., Nuerk, H.C., Ehlis,
A.C.: Oscillatory EEG changes during arithmetic learning in children. Dev. Neu-
ropsychol. 44(3), 325–338 (2019)

19. Preston, A.R., Eichenbaum, H.: Interplay of hippocampus and prefrontal cortex in
memory. Curr. Biol. 23(17), R764–R773 (2013)

20. Collins, A., Koechlin, E.: Reasoning, learning, and creativity: frontal lobe function
and human decision-making. PLoS Biol. 10(3), e1001293 (2012)

21. Kont, M., Alimardani, M., et al.: Engagement and mind perception within human-
robot interaction: a comparison between elderly and young adults. In: Wagner, A.R.
(ed.) ICSR 2020. LNCS (LNAI), vol. 12483, pp. 344–356. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-62056-1 29

22. Oertel, C., et al.: Engagement in human-agent interaction: an overview. Front.
Robot. AI 7, 92 (2020)

23. Kraus, N., White-Schwoch, T.: Unraveling the biology of auditory learning:
a cognitive-sensorimotor-reward framework. Trends Cogn. Sci. 19(11), 642–654
(2015)

24. Antognini, K., Daum, M.M.: Toddlers show sensorimotor activity during auditory
verb processing. Neuropsychologia 126, 82–91 (2019)

25. Li, P., Jeong, H.: The social brain of language: grounding second language learning
in social interaction. NPJ Sci. Learn. 5(1), 1–9 (2020)

26. Lin, M.H., Chen, H.G.: A study of the effects of digital learning on learning motiva-
tion and learning outcome. Eurasia J. Math. Sci. Technol. Educ. 13(7), 3553–3564
(2017)

27. Meyer, M., Endedijk, H.M., Van Ede, F., Hunnius, S.: Theta oscillations in 4-
year-olds are sensitive to task engagement and task demands. Sci. Rep. 9(1), 1–11
(2019)

28. Alimardani, M., Kemmeren, L., Okumura, K., Hiraki, K.: Robot-assisted mindful-
ness practice: analysis of neurophysiological responses and affective state change.
In: 2020 29th IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), pp. 683–689. IEEE, August 2020

https://doi.org/10.1007/978-3-030-62056-1_29


682 M. Alimardani et al.

29. Mierau, A., et al.: The interrelation between sensorimotor abilities, cognitive per-
formance and individual EEG alpha peak frequency in young children. Clin. Neu-
rophysiol. 127(1), 270–276 (2016)

30. Doherty, K., Doherty, G.: Engagement in HCI: conception, theory and measure-
ment. ACM Comput. Surv. (CSUR) 51(5), 1–39 (2018)



Social Perception of Robots



Individuals Expend More Effort to Compete
Against Robots Than Humans After Observing

Competitive Human–Robot Interactions

Rosanne H. Timmerman1 , Te-Yi Hsieh1 , Anna Henschel1 ,
Ruud Hortensius1,2 , and Emily S. Cross1,3(B)

1 Institute of Neuroscience and Psychology, University of Glasgow, Scotland, UK
emily.cross@glasgow.ac.uk

2 Department of Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht,
Netherlands

3 Department of Cognitive Science, Macquarie University, Sydney, Australia

Abstract. In everyday life, we often observe and learn from interactions between
other individuals—so-called third-party encounters. As robots are poised to
become an increasingly familiar presence in our daily lives, third-party encoun-
ters between other people and robots might offer a valuable approach to influence
people’s behaviors and attitudes towards robots. Here, we conducted an online
experiment where participants (n = 48) watched videos of human—robot dyads
interacting in a cooperative or competitive manner. Following this observation,
we measured participants’ behavior and attitudes towards the human and robotic
agents. First, participants played a game with the agents to measure whether their
behavior was affected by their observed encounters. Second, participants’ atti-
tudes toward the agents were measured before and after the game. We found that
the third-party encounters influenced behavior during the game but not attitudes
towards the observed agents. Participants showed more effort towards robots than
towards humans, especially when the human and robot agents were framed as
competitive in the observation phase. Our study suggests that people’s behaviors
towards robots can be shaped by the mere observation of third-party encounters
between robots and other people.

Keywords: Human—robot interaction · Third-party encounters · Social
robotics · Artificial agents · Social cognition · Cooperation · Competition

1 Introduction

We frequently observe interactions among others––so-called third-party encounters.
These encounters influence people’s attitudes towards the observed individuals and,
if positive, can serve as an easily to implement and unthreatening tool to reduce preju-
dice towards minority groups, unfamiliar individuals and other outgroups [1–9]. Some
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evidence suggests that the effects of third-party encounters can equal or even surpass
those brought about by direct contact [10]. Furthermore, these effects of vicarious con-
tact have been shown to persist over time, and can even generalize beyond the observed
agents [11, 12]. For example, it was found that children prefer the friends of people
receiving positive non-verbal signals over friends of people receiving negative signals
[12].

Third-party encounters hold great practical potential for improving human–robot
interactions (HRIs). While robots become more prevalent in daily life [13], negative
attitudes towards these machines persist [14]. Third-party encounters between humans
and robots have been proposed as a possible tool to reduce people’s negative attitudes
towards robots by a number of different researchers [14–17]. For instance, Fraune and
colleagues [16] showed that watching positive HRIs increased people’s willingness to
interact with robots.

So far, most research has focused on the impact of third-party encounters on
observers’ attitudes towards robots, with limited empirical evidence to date showing
that these encounters can induce behavior change in the observer, specifically towards
the observed agents [7]. Skinner and colleagues [12] found that observing an interaction
between people can change some daily behaviors unspecific to the observed people. Yet,
more research on behavioral change is essential to lay the foundations for robust HRI.
For example, people who have negative attitudes towards robots have been also shown
to behave more negatively towards robots during real-life interactions [17].

The aims of the current exploratory study were to replicate findings suggesting that
attitudes towards robots can be changed by observing HRIs [1–9], and to investigate
potential behavior change in observers [7] based on this observational manipulation.
Specifically, we set out to examine whether observing videos of cooperative versus com-
petitive HRIs influence how people perceive similar agents, as well as behave towards
them. We conducted an online experiment where participants observed human–robot
dyads acting cooperatively or competitively and assessed participants’ attitude changes
and motivation to engage with each observed agent in a simple, competitive game. Par-
ticipants were led to believe that they were playing against an algorithm based on pre-
recorded behavior of the different agents. Based on the previous findings, we evaluated
the following general expectations:

1. People should show a difference in motivation when playing the game with agents
framed as cooperative versus competitive.

2. Participants should show differential preferences for cooperative vs. competitive
agents. This is based on findings from Correia and colleagues [15], who showed that
robots cooperating with the team were rated more positively than a robot following
its own goal, regardless of the game result.

We further explored the extent to which opponent type influenced behaviors.
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2 Methods

2.1 Data Accessibility Statement

Materials, data and code for all experiments are available on the OSF https://osf.io/
uvy3b/. We report all measures in the study, all manipulations, any data exclusions and
the sample size determination rule.

2.2 Participants

Forty-eight participants, of which 16 were female (M age = 26.2, SD = 6.8; sex of one
participant remained unspecified) were recruited via Prolific (www.prolific.co). As a
rule of thumb, we determined the sample size by multiplying the number of participants
recruited in a comparable study by two. Specifically, we used the study by Walbrin and
colleagues, Experiment 2 as reference (n= 23) [18]. Themain experiment was described
as watching videos of human and robotic agents followed by playing a game with these
agents. To increase the believability of the online experimental setting, participants were
told that they would play against algorithms based on these previously observed agents.
Participants received £2.52 for their participation in the study (equivalent to £6.73/hour).
To increase motivation, participants were told that the top 10% had a chance of receiv-
ing a bonus payment of £5. Inclusion criteria were an approval rate of 100% on the
Prolific website and no participation in the validation and pilot studies prior to the main
experiment (see below). Participants were naive to the goal of the study, most of them
(87.5%) were unfamiliar with the robot used in the study and had little or no experience
in interacting with robots in daily life (median on a scale from 1 (never) to 7 (daily)
was 2 with an interquartile range of 1). The experiments were designed in PsychoPy3
and later uploaded to Pavlovia (https://pavlovia.org/; [19]) an online experiment plat-
form. Thewhole experiment took approximately 20min. Participants provided informed
consent before the start of the experiment. The study procedure was approved by the
Research Ethics Committee of the College of Science and Engineering at the University
of Glasgow (protocol number: 300180301).

2.3 Experimental Design

We used a two-by-two (agent type: human or robot; agent intention: cooperative or
competitive) within-subjects factorial design to examine the impact of agent type, agent
intention, and the interaction between these two factors on participants’ attitudes and
behaviors towards the observed agents.

2.4 Stimuli

Participants watched 2 short videos (10 s) of a human and robot playing a bar game
together, which served as a framing story to the main task. In these videos (Fig. 1A and
1B), a bar was located in the middle of the screen between two opposite goals, one in
the upper and one in the lower part of the screen. The agents moved their arms either up
or down, giving the impression that they controlled the movement of the bar.

https://osf.io/uvy3b/
http://www.prolific.co
https://pavlovia.org/
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In the cooperative condition, the human and robot appeared to work together to
reach the same goal by moving their arm in the same direction simultaneously. In the
competitive condition, both agents tried to reach opposite goals by moving their arms
in opposite directions (Fig. 1B). The purpose of the videos was to frame each agent as
either competitive or cooperative. Later in the experiment, participants engaged in a bar
game similar to this one with one of the agents (either the cooperative robot, cooperative
human, competitive robot or competitive human). The bar game looked almost identical
to the one in the framing videos, but the participants could now actively move the bar
upwards by pressing the space bar. Again, there were two goals, the upper one belonging
to the agent. The videos were edited in DaVinci Resolve v15.3.1 1 [20]. The agents were
filmed in front of a green screen, which was later removed and replaced by the bar
game. Three validation studies (first validation: n= 20, second validation: n= 12, third
validation: n = 40) were conducted in order to improve and select the most salient
stimuli for the main experiment. The third validation study (containing the videos for
the main experiment) showed that agents were consistently rated as either cooperative
or competitive, on a slider from ‘1’ as ‘competitive’ to ‘7’ as ‘cooperative’ (cooperative
human: M = 5.60, SD = 1.74, cooperative robot: M = 5.97, SD = 1.48, competitive
human: M = 2.35, SD = 1.85, competitive robot: M = 2.17, SD = 1.75) (Fig. 2D). To
avoid possible gender bias effects, we generated two different orders: order A in which
the female human agent was the cooperative agent and the male was the competitive
agent, and order B where the male human agent was the cooperative agent and the
female the competitive agent. For all analyses, no differences were found between the
two orders.

Fig. 1. Bar game design. (A) The bar game began with an agent’s picture signifying participants’
next opponent. (B) Thiswas followed by a framing video. (C)Countdown to prepare the participant
for the game. (D) The bar game lay-out.
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2.5 Measures

To operationalize people’s motivation to play against agents, wemeasured the number of
space bar presses during the bar game. Participants played three games with each agent,
and each game was at a different difficulty level (easy, medium or hard). Difficulty
levels were manipulated to measure subtle differences in motivation and to increase
believability of the bar game. The different difficulty levels were defined by: 1) the
number of times the participant had to press the space bar before it could be moved
upwards (from easy to hard respectively: 2, 4, 6), and 2) how many times the bar would
move downwards towards the goal of the opponent agent (150, 100, 50). The resulting
12 games were played in a randomized order. A game ended either when ten seconds
had passed or when one of the players reached one of the goals. After the game round
ended, the score was presented and participants could see how many times they pressed
the space bar, if they reached the goal, and if they received a penalty, as well as their total
scores. Participants would get a penalty (−5 points) if they did not let go of the space
bar (instead of pressing “space” repeatedly). Participants could receive one penalty per
game, thus the maximum penalties per participant was 48. Penalties were low (M =
1.79, SD = 3.75). We interpreted more space presses as increased competitiveness and
effort invested in the game. Measures of participants’ attitudes towards agents involved
three parts: First, participants’ preference towards agents was measured before (pre-
preference) and after (post-preference) the game by preferential ranking from “most
preferable” to “least preferable” to play a game with. The pre- and post-measurements
were implemented because we anticipated that an effect of the third-party encounters
would be stronger in pre-preference (i.e., right after watching the framing videos) than in
post-preference ratings (i.e., after playing the games where all agents played the role of
a game opponent). Second, the perceived cooperativeness and socialness towards agents
was determined by slider ratings from competitive to cooperative, and from individual to
social. Last, participants’ decisions of whether an agent was cooperative or competitive
was acquired by using a two-alternative forced choice task.

2.6 Experimental Procedure

The main experiment consisted of four parts. First, participants observed two framing
videos to learn the roles of each agent (cooperative or competitive agents). While watch-
ing the videos, they were instructed to pay attention specifically to one of the agents.
One of the videos showed agents cooperating with each other, while the other showed
two agents competing against each other. Each framing video was repeated twice for
each agent. To check whether participants paid attention to the videos, they were asked
whether the specified agent had reached the goal. Following the third-party encounters,
participants ranked the agents from most to least preferable to play a game with. Next,
participants played a bar game with each agent in a semi-randomized order. Before the
game, participants read a cover story that suggested they were actually playing against
an algorithm based on the observed agents’ game behavior. Participants were told that
the behaviors were modelled and created by using a deep neural network. The story was
accompanied by an image of a schematic explanation of a deep neural network. The bar
game (Fig. 1D) began with an agent’s picture signifying this round’s opponent (Fig. 1A).
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To remind participants of the intention of the agent, the framing video was shown again
(Fig. 1B). There was a countdown announcing the start of each game (Fig. 1C). After
each game participants were shown their scores (Fig. 1E).

In the final part, each agent was rated on their socialness and cooperativeness lev-
els. Ratings were placed at the end so that participants could form their own opinions
throughout the experiment. Finally, we asked participants to describe the algorithm in
their own words to check whether they believed the cover story. The free text responses
showed that the words most used to describe the agents were ‘computer’ (n= 51), ‘man’
(n = 22), ‘woman’ (n = 21) and ‘robot’ (n = 17). It is not surprising that the agents are
most often described as computers since a computer is often the layman’s interpretation
of an algorithm.

2.7 Data Processing and Analysis

All data analyses were carried out in R v4.0.1 [21]. For the behavioral data of the
numbers of space bar presses, we ran a linear mixed effects model with the lme4 package
(v1.1.23) [22] to examine if participants’ game behaviors were influenced by agent type
(human or robot) and agent intention (cooperative or competitive) while controlling
the random individual differences (Prolific_id), trial differences (trial_number), and the
random effects by game difficulty levels (difficulty_level). The model building started
from the maximal random effect components [23], and we reduced the complexity,
resulting in the following formula: numbers of presses ~ agent_type*agent_intention +
(1 + agent_type |Prolific_id) + (1|trial_number) + (1|difficulty_level).

The analyses regarding participants’ attitudes toward each agent was done in three
parts. First, participants’ ordinal ranking of the most preferable agent to the least
preferable was analysed via a mixed effects ordinal regression model with the ordi-
nal package (v2019.12.10) [24]. We tested the fixed effects of agent type (human
or robot), agent intention (cooperative or competitive), and ranking timing (pre-
game or post-game) on people’s ordinal preferences, while controlling the random
effects of participants (Prolific_id) and the random order of the four agents intro-
duced to each participant (present_order). The final model that converged was ranking ~
agent_type*agent_intention*rank_time+ (1+ agent_type*agent_intention|Prolific_id)
+ (1 + agent_type*agent_intention|present_order).

Second, participants’ slider ratings of the agents’ cooperativeness and socialness
were analysed via two linear mixed effects models respectively. For the cooperativeness
model, agent type (human or robot) and agent intention (cooperative or competitive)
were included as fixed effects, and the final random effect structure which led to model
convergence involved: by-subject random intercepts, and random slopes for the effects
of agent type and agent intention on subjects: cooperativeness_rating ~ agent_type*
agent_intention+ (1+ agent_type+ agent_intention |Prolific_id). The socialnessmodel
was similarly designed, except that it included an additional random factor of order
(order A or B): socialness_rating ~ agent_type* agent_intention + (1 + agent_type +
agent_intention |Prolific_id) + (1|order).

Third, we analysed participants’ binomial forced choices on whether an agent was
cooperative or competitive via amixed effects logistic regressionmodel with the “glmer”
function in lme4 package (v1.1.23). We examined the fixed effects of agent type (human
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or robot) and agent intention (cooperative or competitive) on participants choices, while
controlling by-subject random intercepts and random slopes for agent type on subjects:
forced_choice ~ agent_type+ agent_intention+ (1+ agent_type|Prolific_id). All linear
data were centred by the grand mean before model building. When conducting pairwise
post-hoc tests, p-values were adjusted using Tukey’s method. All analysis code can be
accessed on our dedicated OSF page for this project: https://osf.io/uvy3b/.

3 Results

3.1 Behavioral Results (Bar Game)

The result of the mixed effects model showed a significant main effect of agent type (β
= 3.08, 95% CI [0.78, 5.38], p= .009), and a significant interaction between agent type
and agent intention (β = −3.03, 95% CI [−5.42, −0.65], p = .013) on the numbers of
times participants pressed the space bar. No main effect of agent intention was observed
(β= 0.59, 95%CI [−1.09, 2.28], p= .491). In general, participants pressed the space bar
more often when playing against robots (M = 27.87, SD = 21.86) than against humans
(M = 26.30, SD = 23.03) (Fig. 2A). Pairwise post-hoc tests on the interaction between
agent type and intention were carried out with the emmeans package (v1.4.7) [25].When
playing against the competitive robot (M= 29.09, SD= 22.25), participants pressed the

Fig. 2. (A) Number of presses in bar game per agent. (B) Interaction between agent and intent
on centered number of presses. (C) Cooperativeness ratings per agent in main experiment. (D)
Cooperativeness ratings per agent in validation experiment.

https://osf.io/uvy3b/
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space bar more often than when playing against the cooperative robot (M = 26.65, SD
= 21.40), t(2193.0) = 2.84, p = .024 (Fig. 2B). However, no clear difference emerged
when comparing the competitive robot and the competitive human (M = 26.00, SD =
23.08), t(87.6)= -2.63, p= .049. Likewise, there was no significant difference found in
the comparisons between competitive human and cooperative human (M= 26.60, SD=
22.99), t(2193.0) = -0.69, p = .902, competitive human and cooperative robot, t(87.6)
= -0.55, p = .947, competitive robot and cooperative human, t(87.6) = 2.12, p = .154,
or cooperative human and cooperative robot, t(87.6) = 30.04, p = 1.000.

3.2 Attitude Results

Preferential Ranking of Agents. In the result of our mixed effects ordinal regression
model, agent type (odds ratio = 1.34, 95% CI [0.37, 4.90], p = .658), agent intention
(odds ratio = 1.19, 95% CI [0.34, 4.09], p = .787), or ranking timing (odd ratio =
1.16, 95% CI [0.50, 2.67], p= .724) did not influence participants’ preferential ranking
towards the four agents.

Cooperativeness Slider Rating. Participants’ cooperativeness ratings were signifi-
cantly influenced by the interaction between agent type and agent intention (β = −
0.28, 95% CI [−0.52,−0.04], p= .02), but not by the main effect of agent type (β =−
0.06, 95%CI [−0.58, 0.41], p= .804) or agent intention (β= 0.19, 95%CI [-0.32, 0.71],
p = .462). The cooperative human agent was rated most cooperative (M = 3.81, SD =
1.71), whereas the cooperative robot was rated most competitive (M= 3.47, SD= 1.42)
among the four agents (competitive human: M = 3.62, SD = 1.63; competitive robot:
M= 3.56, SD= 1.59). However, follow-up post hoc tests did not reveal any significant
differences in the following pairs: competitive human vs. cooperative human (t(52.5)=
−0.74, p = .883); competitive human vs. competitive robot (t(53.8) = 0.25, p = .995);
competitive human vs. cooperative robot (t(47.0)= 0.44, p= .972); cooperative human
vs. competitive robot (t(47.0) = 0.72, p = .888); cooperative human vs. cooperative
robot (t(53.8) = 1.43, p = .486); competitive robot vs. cooperative robot (t(52.5) =
0.34, p = .986) (Fig. 2C). This is in contrast with the ratings in the validation study,
where we observed a very clear distinction in cooperativeness slider ratings between the
agents that were framed as cooperative and competitive in the videos (Fig. 2D).

Socialness Slider Rating. Participants’ socialness ratings were significantly impacted
by agent type (β =−0.55, 95% CI [−0.96,−0.15], p= .008) but not by agent intention
(β = 0.12, 95% CI [−0.30, 0.54], p = .577) nor the interaction between agent type and
intention (β = -0.20, 95% CI [-0.42, 0.02], p = .079). Participants rated humans (M =
3.79, SD = 1.50) as more social than robots (M = 3.14, SD = 1.33).

Cooperativeness Forced Choice. CNeither agent type (odds ratio = 0.46, 95% CI
[0.11, 1.93], p = .288) nor agent intention (odds ratio = 0.74, 95% CI [0.50, 1.08],
p = .118) was found to influence participants’ forced choices of whether an agent was
cooperative or competitive. This is surprising, given that in the validation study there was
a clear strong effect of intent on the forced choices. Agents were consistently labelled as
either cooperative (cooperative human: n= 32, cooperative robot: n= 33) or competitive
(competitive human: n = 34, competitive robot: n = 34).
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4 Discussion

We investigated the impact of human—robot encounters on people’s attitudes and behav-
iors in the context of a simple online competitive game. Participants observed human—
robot dyads interacting either cooperatively or competitively andwere then led to believe
they were playing a competitive game against algorithms informed by these agents’
behaviors (while in reality, they were playing against the computer).

Third-party encounters influenced participants’ competitiveness during game play,
but had no influence on attitudes reported towards the observed agents. The main finding
in our study was that participants showed higher game competitiveness (i.e., pressed the
space bar more frequently) toward robotic agents than human agents, especially when
the agents were framed as competitive in the observation phase. However, the findings
on attitude change towards robots were inconsistent. Our results suggest that people’s
perceived cooperativeness of the agents was influenced by the interaction between agent
type and agent intention, and that people perceived human agents as more social than
robotic agents. Below we discuss these findings in detail.

Participants’ increased competitiveness towards robotic compared to human oppo-
nents fits with previous research, in which participants behaved more competitively
toward a robot than a human in economic games [26]. Our study further showed that such
discriminatingly competitive behaviors toward robots could be diminished by observing
cooperative human—robot encounters before engaging in an HRI. After participants
observed the human and robotic agents cooperating in short videos, they responded
similarly to cooperative robots and cooperative humans in the competitive online game.
Notably, the effect of human–robot encounters we found on game behaviors existed
regardless of the agents’ actual behaviors when people directly interactedwith them. Par-
ticipants in the present study showed the highest game competitiveness towards the robot
framed as competitive in the observation phase, even though all agents’ game behaviors
(behavioral competitiveness) remained consistent according to pre-programmed diffi-
culty levels. These findings highlight the effects of third-party encounters on observers’
behaviors, and relate to previous studies documenting the persistent impact of first
impressions on people’s behaviors during HRIs [27, 28].

Regarding the impact of human–robot encounters on participants’ attitudes towards
the agents, the present findings were inconsistent. First, encounters of cooperative and
competitive human—robot dyads had no effect on participants’ agent preference rank-
ings, either in the pre-preference or post-preference tasks. This might suggest that the
third-party encounters of cooperative and competitive HRI were irrelevant and thus did
not influence people’s preferences towards the agents in our experiment. A study by
Huisman and colleagues [29] showed that the perceived politeness of virtual robots is
not affected by cooperativeness or competitiveness of an agent during a game. How-
ever, other research reports that perceived warmth, competence, and personality of a
robot are more crucial factors in our preferences towards robots [30, 31]. Future studies
could consider manipulating these factors in human—robot encounters to investigate
the subsequent impact on people’s preferences towards the observed agents.

The impact of cooperative and competitive human—robot encounters on people’s
perceived cooperativeness towards the agents was not robust in our study. Our post hoc
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analyses did not reveal any difference between any agent pairs, albeit the significant inter-
action between agent type (human/robot) and agent intention (cooperative/competitive)
emerged for participants’ cooperativeness slider rating towards the agents. Similarly, par-
ticipants’ forced choices regarding the cooperative and competitive nature of an agent
were not influenced by agent intention framing or agent type. These results suggest that
the agent intention manipulation was perhaps not strong enough to shape participants’
perceived cooperativeness of the agents, which contradicted the results of our validation
studies where competitive and cooperative framing was accurately differentiated by par-
ticipants’ cooperativeness rating. Another possible explanation for the ineffective agent
intention manipulation was the competitive nature of the game. In the bar game used
here, participants and agents had opposite goals to achieve and therefore all the agents
might be perceived as competitive by the participants. This competitive game experience
may obscure the manipulation of agent intention in the prior observation phase. Previous
studies have pointed out that the perceived competitiveness in environments or agents
can shape people’s attitudes. For examples, Mutlu and colleagues found that people had
more positive attitudes towards the ASIMO robot in a cooperative game context than
in a competitive game context [32]. Even when researchers did not intend to frame the
robot as competitive, participants can be sensitive to robot’s non-cooperative decisions
and responded to these reciprocally [33]. Therefore, future research on this topic may
choose to make more judicious decisions when designing a HRI context and manipulat-
ing an agent’s intention, to ensure an agent’s attribute in third-party encounters is not in
contrast with how the agents behave in the actual HRI.

Finally, our study revealed a significant effect of agent type (human/robot) on partic-
ipants’ socialness ratings towards the agents. Human agents were rated as more social
than robotic agents. This is not surprising since we have extensive social experience with
human interaction partners, whereas robots are only emerging in social contexts. How-
ever, as robots become more prevalent, especially in social contexts, it could be possible
to amplify a robots’ perceived socialness by changing [34]. It would be valuable for
future research to explore whether third-party encounters of robots with different char-
acteristics lead to varying degrees of perceived socialness, as well as to further identify
which factors are key to shaping the attribution of socialness to robots.

In summary, the current study provides important evidence documenting the influ-
ence of observed human—robot encounters on people’s behaviors towards the observed
robots. Specifically, in our online game environment, participants behavedmore compet-
itivelywhen competing against the robot previously framed as competitive than the robot
framed as cooperative. However, this work will require follow-up research to determine
the generalizability of people’s behaviors during online games to behaviors displayed
during real-world HRI that takes place with embodied (as opposed to virtual) agents.
Although online studies can provide insightful evidence [35–36], physical embodiment
is an important factor that shapes our perceptions of and behaviors towards robots [34,
38–40]. For example, people report more enjoyment and engagement during embod-
ied HRI than during virtual HRI [38]. Future research could further extend the current
exploration of human—robot encounters to other contexts, or to other aspects of social
behaviors, as well as further substantiate the link between people’s attitudes and behav-
iors during HRI. By doing so, researchers should be able to provide further and clearer
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evidence of the potential utility of third-party encounters to promote the social quality of
real-life HRIs, which should hopefully lead to more effectively and usefully embedded
social robots in human society.
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Abstract. To enhance collaboration between humans and robots it might be
important to trigger towards humanoid robots, similar social cognitivemechanisms
that are triggered towards humans, such as the adoption of the intentional stance
(i.e., explaining an agents behavior with reference to mental states). This study
aimed (1) to measure whether a filmmodulates participants’ tendency to adopt the
intentional stance toward a humanoid robot and; (2) to investigate whether autistic
traits affects this adoption. We administered two subscales of the InStance Test
(IST) (i.e. ‘isolated robot’ subscale and ‘social robot’ subscale) before and after
participants watched a film depicting an interaction between a humanoid robot
and a human. On the isolated robot subscale, individuals with low autistic traits
were more likely to adopt the intentional stance towards a humanoid robot after
they watched the film, but there was no effect on individuals with high autistic
traits. On the social robot subscale (i.e. when the robot is interactingwith a human)
both individuals with low and high autistic traits decreased in their adoption of
the intentional stance after they watched the film. This suggests that the content
of the narrative and an individual’s social cognitive abilities, affects the degree to
which the intentional stance towards a humanoid robot is adopted.

Keywords: Intentional stance · Human-robot interaction · Autistic traits ·
Narrative

1 Introduction

1.1 Social Cognition in Human-Robot Interaction

Over the past decades researchers have been exploring the application of humanoid
robots in a variety of settings, ranging from robot-assisted therapies for individuals on the
autism spectrum [1, 2], to tour guides inmuseums [3, 4]. However, the reception of robots
in these environments is still a matter of debate. One of the ways to seamlessly integrate
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robots in real-world (social) scenarios, could be to enhance their human-likeness, which
in turn,might trigger social cognitionmechanisms in the human counterpart [5]. If robots
are able to trigger similar social cognitive mechanisms that are elicited during human-
human interactions, they might also trigger a sense of connection and positively affect
performance in collaborative tasks [5].

One social cognitive process which could be important to trigger, is the ascription of
mental states towards an artificial agent [6]. In human-human interactions, this process
of attributing mental states (such as beliefs, desires, intentions and emotions) to others,
allows us to understand and predict behaviour [7, 8]. The strategy of explaining behaviour
with reference to mental states was termed by Daniel Dennett [9, 10] as adoption of
the “Intentional Stance”. Dennett argued that adopting the Intentional Stance towards
humans, is the most efficient strategy to navigate social interactions. Thus, triggering
the adoption of the Intentional Stance towards robots could enhance the ease to which
individuals interact with robots in social tasks.

According to Dennett, the Intentional Stance is not always the most efficient strat-
egy to explain the behaviour of all entities. For example, when individuals attempt to
understand the behaviour of a robot, it could be more efficient to use knowledge about its
functional design (i.e., ‘the robot grabbed a glass because it was programmed to’), rather
than describe the robot’s behaviours based on mental states (i.e., ‘the robot grabbed a
glass because it was thirsty’). Dennett argued that when people use the former strategy
they are adopting the Design Stance. Indeed, research has found variability in whether
individuals describe the behaviour of a humanoid robot ‘mechanistically’ (i.e., adopt the
Design Stance) or ‘mentalistically’ (i.e., adopt the Intentional Stance) [11–13]. However,
it still remains to be answered what factors modulate whether individuals use mental-
istic or mechanistic explanations for a humanoid robot’s behaviour, or how to trigger
participants to adopt the intentional stance towards a humanoid robot.

1.2 Autistic Traits and Ascription of Mental States

One factor which has been associated with an individual’s ability to ascribe mental states
in explaining behaviors of others, is the traits associated with autism spectrum disorder
(ASD). ASD is a developmental disorder characterized by repetitive behaviors and diffi-
culties in social communication and interaction [14]. Indeed, these social difficulties are
thought to be caused by an impairment in the ability to reason about others with reference
to mental states [7, 8]. These difficulties are also present in neurotypical individuals with
high levels of autistic traits, as measured by the Autism Quotient (AQ) test [15]. Indeed,
Baron-Cohen and colleagues found that high AQ scores in a neurotypical population
are associated with reduced abilities to infer the mental states of pictures of humans
expressing emotions [16]. Interestingly, studies with children with ASD have found that
impairments in ascription of mental states extend to humanoid robots [17, 18]. However,
it is not known whether the low likelihood of ascribing mental states to humanoid robots
is also present in neurotypical individuals with high autistic traits. Understanding the
degree to which autistic traits modulate ascription of mental states towards robots, could
help inform the design of humanoid robots to account for individual differences.
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1.3 Using Narrative to Trigger Ascription of Mental States

One of the ways to modulate how participants describe a robot’s behaviour, could be
by positioning it as a fictional character which communicates a narrative. Narrative has
been defined as “a depiction of events driven by the intentional behaviour of one or
more autonomous agents in a manner that manifests an imagined world which paral-
lels the world of real experience,” [19]. If a robot displays behaviour which appears
intentional and drives a sequence of events, the most efficient strategy for the viewers
to adopt to understand the narrative, should be to attribute goals, intentions and agency
to the robot [20]. One way to investigate whether narrative can trigger individuals to
describe the behaviour of a robot mentalistically, could be by using film. Indeed, a study
using functional magnetic resonance imaging (fMRI), found that film footage activates
brain regions involved in reasoning about others with reference to mental states [21].
Participants watched footage from the filmWaking Life [22], which depicts two human
characters physically embodied in the real world and the same footage converted into
animated imagery (i.e., cartoonized). Brain regions involved in reasoning with reference
tomental statesweremore active towards the ‘real’ film, in comparison to the cartoonized
film. This suggests that film is more powerful when the characters are physically embod-
ied in the real world, rather than cartoonized. Subsequently, showing participants a film
where the events are driven by the behaviours of a humanoid robot, could enhance the
likelihood that they explain a humanoid robot’s behaviours mentalistically rather than
mechanistically.

1.4 Aims

The question of whether narrative could trigger participants to adopt the intentional
stance towards a humanoid robot and how this would vary based on the individual’s level
of autistic traits, has not yet been explored in detail in the literature to date. Therefore,
the aim of this study was twofold: (1) to measure whether a film modulates participants’
tendency to adopt the intentional stance toward a humanoid robot and; (2) to investi-
gate whether autistic traits affect mentalistic attributions towards a humanoid robot. As
stimuli, the study used a film titled While(Alive){} [23] which displays the relationship
between a humanoid robot and a human. The film is stop-motion animation and, as
such, the characters are embodied in the physical-spatial world rather than in a virtual
world. Thus, it is expected that the physical embodiment should enhance the likelihood
of adopting the intentional stance towards a humanoid robot [21]. We also expected
thatWhile(Alive){} would be more powerful at triggering adoption of intentional stance
in individuals with low autistic traits, compared to individuals with high autistic traits
based on previous research mentioned earlier [15, 17, 18].
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2 Methods

2.1 Participants

For this study, 100 participants were recruited from an online platform Prolific (mean
age = 27; SD = 6; 50 females, 1 other). The inclusion criteria for the study was (1)
English as their first language and (2) consent. Additionally, half the participants had
not reported a diagnosis of a developmental disability (i.e., neurotypical adults; N = 50)
and half reported a diagnosis of ASD (N = 50). However, since it was not possible to
validate ASD diagnosis online, participants were split into groups based on their level of
autistic traits rather than their reported diagnosis. Our experimental protocols followed
the ethical standards laid down in the Declaration of Helsinki and were approved by the
local Ethics Committee (Comitato Etico Regione Liguria).

2.2 Stimuli

A stop-motion animated film, While(Alive){} was used as the experimental stimulus.
While(Alive){} depicts the evolution of a relationship between a robot and a human
over the human’s lifespan. The human ages overtime, dies and exits from the frame. In
contrast, the robot does not undergo any physiological changes (see Fig. 1). There is
no dialogue. The narrative is communicated predominately through hand gestures and
music. The duration of the film is 1 min and 53 s (including title page, closing credits,
and production card).

Fig. 1. Key frames from the stop-motion animated film While(Alive){}. Full video available in
[23]. © Cody Cameron-Brown and Ziggy O’Reilly.

2.3 Measures

Instance Test (IST). The IST contains sequences of images of the humanoid robot iCub
interacting with objects and/or a human(s), designed to establish whether participants
have a bias towards explaining iCub’s behaviour mechanistically (i.e., Design Stance)
or mentalistically (i.e., Intentional Stance) [13]. Underneath the sequence of images are
two sentences representing possible explanations of the robot’s behaviour. One of the
sentences always explains iCub’s behaviour mechanistically (i.e., ‘iCub tracked the girls
hand movements’), while the other always describes its behaviour mentalistically (i.e.,
‘iCub is interested in these objects’). These two sentences are located on the opposite
poles of a bipolar scale, and participants are asked to move a slider toward the sentence
that they think best suits the images. Participants instance scores (ISS) are calculated
by converting the bipolar scale into a 0–100 scale for each item, which is then averaged
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across the items. The average indicates the participants preference for the mentalistic or
mechanistic explanation, where 0 corresponds to the mechanistic explanation and 100
to the mentalistic explanation. The complete IST contains 34 items, and is associated
with high internal consistency (a = 0.83, [24]). This study used the shortened version
developed by Spatola et al., [24] which contains 12 items, containing two subscales;
‘isolated robot,’ scale and the ‘social robot,’ scale (see Fig. 2). The IST was included to
investigate whetherWhile(Alive){}modulated an individual’s preference for mentalistic
explanations of a humanoid robot’s behaviour within-groups and between groups.

Fig. 2. Items from the InStance Test representative of the (a) isolated robot scale and (b) social
robot scale.

Abbreviated Adult Autism Spectrum Quotient (AQ-10). The AQ-10 is a short ten-
itemself-report questionnairewhichmeasures the presence of autistic traits in individuals
aged 16 years and older [15, 25]. The 10 items (e.g., ‘I find it difficult to work out peo-
ple’s intentions,’ ‘I find it easy to do more than one thing at once,’ ‘I often notice small
sounds when others do not’) are split equally into five subscales: ‘attention to detail,’
‘communication,’ ‘social,’ ‘attention switching,’ and ‘imagination,’ which are answered
on a four-point Likert scale marked by ‘Definitely Agree’, ‘Slightly Agree’, ‘Slightly
Disagree’ and ‘Definitely Disagree’. Any endorsements of autistic traits on positive-
lykeyed items (i.e., ‘Definitely,’ or ‘Slightly Agree’) are scored as 1, and disagreements
are scored as 0; negatively key items are reverse scored. The total AQ scores range from
0 to 10. Allison, Auyeung and Baron-Cohen [25] found that the adult AQ-10 has high
internal consistency (α = 0.89) and high concurrent validity, compared to the full adult
50-item version of the AQ (r= 0.92, p= .0001). The AQ-10 was included in the current
study to split participants into two groups based on their level of autistic traits.
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2.4 Procedure

All participants completed the online experiment in the same order. Before the main
experiment begun, participants were asked to (1) check the display and audio of an
unrelated short film and (2) answer demographic questions about English proficiency,
age and sex. Then (after participants completed a practice item from the IST), they were
presented with the first half of the IST in a pseudo-randomized order. Next, participants
watchedWhile(Alive){} on full screen with headphones. After watchingWhile(Alive){},
they completed the second half of the IST, which was presented in a pseudo-randomized
order and completed the AQ-10. Finally, as a quality control check, participants were
asked “did you put reasonable effort into this study?” The study took approximately 20
min to complete.

2.5 Analysis

For each group, the ISS was screened for outliers using the 3.0 inter-quartile range rule
[26]. Based on an a priori hypothesis, a two-way repeated measures ANOVA was con-
ducted per group to investigate whether the subscale (social robot vs. isolated) effected
the ISS before and after participants watchedWhile(Alive){}. Additional analyses using
paired samples t-tests were conducted to make post hoc comparisons between the social
robot subscale and the isolated robot subscale, for each group. The data was normally
distributed according to the Shapiro-Wilk test of normality.We applied a Bonferroni cor-
rection. All analyses were performed using SPSS statistical package version 24 (SPSS
Inc, Chicago, IL).

3 Results

3.1 Data Screening

Eight participants were excluded for the analysis because they reported that their English
was less than excellent. An additional participant was excluded because their English
was less than excellent and they answered “no” to the question “did you put reasonable
effort into this study?” Four more participants were excluded because their mean time to
respond to the ISTwas above the 3.0 interquartile range rule [26]. Finally, 14 participants
were excluded because they took 40 s or less to respond to 6 items the IST. This yielded
a final sample of 73 participants (see Table 1). The participants were split into a low AQ
group and a highAQgroup based onmedianAQ scores (Mdn= 6). TheAQ scores for the
high AQ group were significantly greater than for the low AQ group; (t(71)=−15.097,
p= .000). No outliers were detected.
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Table 1. Descriptive Statistics for the Low AQ group and the High AQ group.

Low AQ High AQ

N (male:female:other) 36(12:24:0) 37 (22:14:1)

Age 27(7) 27(6)

AQ-10** 3.28(1.34) 7.67(1.19)

Note. Values are given as mean (SD) unless otherwise
stated. Asterisks indicate when groups significantly dif-
fer from each other. ** p < 0.001

3.2 Main Analysis

Low AQ Group. According to a two-way repeated measures ANOVA, there was a
significant main effect of IST subscale (isolated robot vs. social robot; F(1,35)= 12.13,
p = .001, ηp

2 = .257; see Fig. 3a). The marginal mean for the social robot subscale
was higher (M = 49.30) than for the isolated robot subscale (M = 38.35). There was no
significant main effect of time (i.e., before or after participants watchedWhile(Alive){})
(F(1,35) = .569, p = .456, ηp

2 = .016). However, there was a significant interaction
between pre-/post- changes and the IST subscales (F(1, 35) = 18.95, p < .001, ηp

2 =
.351; see Fig. 3a). For the isolated robot subscale of the IST, separate comparisons
showed that ISS differed significantly before and after watching While(Alive){} (t(35)
= -3.064, p= .004). The ISS after watchingWhile(Alive){} was higher (M = 46.06, SD
= 20.92) than before (M = 30.64, SD = 25.43). For the social robot subscale of the
IST, we also found a significant difference between the ISS before and after watching
While(Alive){} (t(35) = 3.088, p = .004). However, for this subscale, the ISS after
watching While(Alive){} was lower (M = 43.93, SD = 22.39) than before (M = 54.67,
SD = 21.09).

High AQ Group. According to a two-way repeated measures ANOVA, there was a
significant main effect of IST subscale (F(1,36) = 14.925, p < .001, ηp

2 = .293; see
Fig. 3b). The marginal mean for the social robot subscale was higher (M = 46.48) than
for the isolated robot subscale (M = 34.96). There was no significant main effect of
time (i.e., before or after participants watched While(Alive){}) (F(1,36) = 3.089, p =
.088, ηp

2 = .079). However, also for this group, there was also a significant interaction
between pre-/post- changes and the subscale (F(1,36)= 6.66, p= .014, ηp

2 = .156; see
Fig. 3b). For the isolated robot subscale, there was no significant difference between the
ISS before and after watching While(Alive){} (t(36) = .63, p = .950). In other words,
there were no changes before (M = 35.10, SD = 25.08) or after (M = 34.82, SD =
21.06) watching While(Alive){} for this subscale of IST. On the contrary, for the social
robot subscale of IST, there was also a significant difference between the ISS before
and after watching While(Alive){} (t(36) = 2.673, p = .011). The ISS after watching
While(Alive){} was lower (M = 39.71, SD = 26.28) than before (M = 53.24, SD =
26.10), paralleling the pattern for low-AQ group of participants.
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Fig. 3. (a) Interaction effect across subscales before and after watching While(Alive){} for the
low AQ group. (b) Interaction effect across subscales before and after watching While(Alive){}
for the high AQ group.

4 Discussion

The primary aim of the present study was to investigate whether a narrative of an inter-
action between a human and a humanoid robot could modulate the adoption of the inten-
tional stance towards a humanoid robot. Secondly, it aimed to investigate whether the
degree of autistic traits affected the modulation. Adoption of the Intentional Stance was
measured by administering the InStance Test (IST) before and after participants watched
a film titled While(Alive){}. The IST contained two subscales; the isolated robot scale,
which shows the humanoid robot iCub interacting with objects, and the social robot
scale, which depicts iCub interacting with a human(s).

Our results showed that for both groups of participants, the Intentional Stance score
decreased on the IST social robot subscale (robot depicted in the presence of a human)
after watching While(Alive){}. This could be explained by the narrative underlying the
interaction between the human and the robot in the film. Majority of the human-robot
interaction is driven by themental states of the human, rather than of the robot. For exam-
ple, in the beginning of the film, the infant’s curiosity propels her to touch the robot. As
such, the human character is more ‘active,’ in comparison to the more ‘passive’ robot
character. Therefore, it is possible that to understand the narrative, it is sufficient to
attribute mental states towards the ‘active character,’ (i.e., the human), rather than the
‘passive character,’ (i.e., the robot). Subsequently, While(Alive){} may trigger partici-
pants to perceive the behaviour of the robotmechanistically, by contrast to thementalistic
behaviour of the human. The decrease in scores in the social robot scale (i.e., the shift
towards more mechanistic explanations) could reflect this.

Interestingly, on the isolated robot subscale of the IST, the very same video clip
increased the IST score, but only for the low-AQ group of participants. This suggests
that individualswith lower degree of autistic traitsmight showhigher cognitive flexibility
[27] and might be more likely to attribute human-like traits (such as intentionality) to
non-human agents (such as humanoid robots), especially, after watching an emotionally
evocative movie depicting human-robot interaction. Interestingly, although the narrative
of the movie highlighted the human as the intentional agent, thereby, increasing – by
contrast – the mechanistic perception of a robot when in interaction with a human (in the
social robot subscale), the human intentionality was transferred to the robot, when the
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robot was displayed alone in the IST, being the sole agent in the scenario. This, however,
occurred only among participants with higher social aptitude (lower AQ traits).

Overall, our results suggest that adoption of intentional stance is fluid, and can be
modulated by various factors, such as a background narrative induced by a movie or
by a social context in which a robot is presented. Importantly, the way these factors
influence adoption of the Intentional Stance depends also on individual differences in
social aptitude, as manifested by the degree of individual AQ traits. However, due to
participants ability to use Prolific, our results are presumably based on a sample of
individualswith high cognitive functioning.As such, the results should not be interpreted
as representative of all individuals on the autism spectrum. Nevertheless, knowledge
about individual AQ traits should be considered in the design of social robots.
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Abstract. In this paper, we report on a study in which we used an other-report
versionof theHEXACO–60, a questionnaire designed to assess humanpersonality,
to evaluate how people perceive the personality traits of robots. The results showed
that a four-factor measurement model fitted the data better than the expected six-
factor one and suggested that the domains of the perceived personality structure
of robots might differ from those of humans.

Keywords: Human-robot interaction · Personality assessment · Psychometric
validation

1 Introduction

Nowadays, the use of robotics range from the industrial settings, such as production lines,
to social applications, such as healthcare, assistance to elderly, children, and educational
activities [1]. In this context, social robotics is an emerging field of research, interested in
understanding how humans interact with social robots in everyday environments. Recent
studies showed that humans can deploy similar social cognitive mechanisms during the
interaction with a robot [for reviews, see 2 and 3] as during interactions with other
humans.Moreover,many authors investigated the human tendency to attribute humanlike
characteristics to robots [4–6], from physical traits to sociality [7] and intentions (i.e.
adopting the intentional stance [8]) [9–11]. In this context, several questionnaires have
been developed to assess the perception of social robots, the attitudes toward them,
and the characteristics of the robots that can affect such attitudes and the human-robot
interaction [12–16]. As reviewed in [16],many studies relied on the Five-FactorModel of
personality, finding that the robot’s perceived extraversion (dominance), agreeableness
(friendliness) and conscientiousness (dependability) were the most relevant dimensions
for human observers. To the best of our knowledge, however, no study referred to the
Ashton and Lee’s HEXACO [17] model to evaluate the perceived personality traits of a
humanoid robot, whereas it has already been used in HRI to measure personality traits
about humans in interaction with robots [18–21].
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The HEXACO model of personality is a dimensional taxonomy of human person-
ality based on findings from a series of lexical studies [22–24] that proposes an organi-
zation of individual differences in personality characteristics in terms of six broad trait
domains: Extraversion (i.e., tendency to feel positively about oneself, to feel confident
and comfortable in social situations, to experience high levels of arousal and energy),
Agreeableness (i.e., tendency to forgive the wrongs suffered, to be lenient in judging
others, to be open to compromise and cooperation), Conscientiousness (i.e., tendency to
be organized, disciplined, accurate, and reliable in performing tasks), Emotionality (i.e.,
tendency to experience negative affects such as anxiety, worry, fear, and stress), Open-
ness to Experience (i.e., tendency to appreciate beauty, art, and unusual ideas and people,
and to be curious about various domains of knowledge), and Honesty-Humility (i.e., ten-
dency to avoid manipulation and deception for personal gain and to feel little interest for
wealth, luxuries, and social status). In order to get a more comprehensive assessment of
a robots’ perceived personality, we included an additional, ‘interstitial’ domain of the
HEXACO model, i.e., Altruism, that taps into the tendency to be empathic and soft-
hearted to others (see https://hexaco.org/scaledescriptions). Although developed in the
last two decades, the model has received convincing empirical support for its stability
across cultures and predictive validity (see, e.g., [25, 26]).

2 Aims

The main aim of the present study was to investigate whether the dimensional HEXACO
model of human personality could generalize to robots, too. To test this hypothesis,
we asked a group of participants to think about their own definition of “robot” and to
complete an other-report version of an HEXACOmeasure that assessed the six-plus-one
original domains. In other words, participants were allowed to refer to the robot that, for
them, was most representative of this category, regardless of whether they had actually
interacted with a robot or not. We then use factor analysis to investigate the dimensional
structure of robot personality ratings.

3 Methods and Results

3.1 Participants

We recruited 133 online participants (mean age 34.46 ± 14.170, range: 19–65) through
opportunistic sampling via authors’ contacts and on social media. All participants were
Italian native speakers and comprised a convenience sample drawn from the Italian
general population.

3.2 The HEXACO - 60

The HEXACO-60 is a short personality questionnaire developed to assess the HEXACO
trait domains [17]. It asks participants to rate their agreement with 60 statements (see
Appendix) on a 5-point, Likert-type scale (from 1= “strongly disagree” to 5= “strongly

https://hexaco.org/scaledescriptions
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agree”). As reported by Ashton and Lee [17], the internal consistency reliability (Cron-
bach’s α) ranged from .77 to .80 and from .73 to .80 for two different representative
samples, revealing a good internal consistency of this short version. We included in the
study sever further items that assessed Altruism. All the items were adapted to address
the study aims by adding the expression “A robot” as the subject of each sentence (i.e.
“[A robot] would never accept a bribe, even if it were very large”).

3.3 Procedure

Participants were asked to complete a schedule for collecting background information
and the HEXACO questionnaire. They were not compensated for their participation.
In order to access the survey, participants had to explicitly declare they intention to
participate after reading an informed consent form. Data collection was conducted in
accordance with the privacy laws and accordance with the Regulation 2016/697 of the
European Parliament of the Council of 27 April 2018, concerning the protection of the
individuals about the processing of the personal data and on the free movement of such
data and abrogating “Directive 95/46/EC” (General Data Protection Regulation -GDPR)
and in accordance to the Declaration of Helsinki.

3.4 Results

In order to determine the optimal number of factors to be extracted,we carried out a scree-
test and a parallel analysis (PA) and inspected the MinimumAverage Partial Correlation

Fig. 1. Dimensionality analyses of the HEXACO questionnaire.



710 G. Siri et al.

Statistic (MAP), the Bayesian InformationCriterion (BIC), and the Sample Size adjusted
BIC (SABIC) (see, e.g., [27]). The scree test suggests that the optimal number of factors
corresponds to the factors before which the downward curve of the eigenvalues seem
to flatten out. PA indicates to extract all those factors whose observed eigenvalues are
larger than the 95th percentile of the distribution of the eigenvalues generated from 1,000
simulated matrices of random data of the same size. For the other indices, the optimal
number of factors is the one at which their values reach their minimum. As shown in
Fig. 1, these methods did not suggest the same number of factors, hence we carried out
a series of Exploratory Factor Analyses (EFAs) setting to 1 to 7 the number of factors
to be extracted. We then considered as most adequate the factor solution that allowed to
obtain what Sass and Schmitt [28] call an “approximate simple structure”, i.e., that each
item had a substantial (i.e., >|.30|) loading on one factor and negligible loadings (i.e.,
<|.20|) on the others (cross-loadings).

According to this criterion, the best solution was the four-factor one (Table 1 and 2).

Table 1. Pattern matrix of the four-factor solution. Bolded values are larger than .30.

Factors

Item 1 2 3 4 Item 1 2 3 4 Item 1 2 3 4

hex58 .93 .03 −.02 −.14 hex01 .17 .68 .15 −.12 hex42 −.36 −.03 .44 .08

hex33 .88 .03 .09 −.03 hex05 .32 −.63 .37 .07 hex07 .00 .08 .43 −.07

hex14 .85 .08 .18 .10 hex18 .10 .63 .06 −.17 hex38 −.04 .18 .43 −.38

hex24 .84 −.03 −.03 −.12 hex06 .38 .63 −.05 −.12 hex52 −.02 .23 .41 −.38

hex02 .83 .02 −.02 −.06 hex03 −.02 .56 .02 .11 hex59 .16 −.13 .39 −.13

hex61 .81 .03 .14 .13 hex57 −.13 −.50 −.16 .01 hex30 −.05 −.32 .35 .27

hex29 .76 .08 .04 .07 hex16 .30 −.49 −.17 −.07 hex44 .30 .02 −.34 .19

hex41 .73 .03 −.25 −.07 hex28 .38 .47 .10 .07 hex20 −.11 .21 .30 −.30

hex63 .70 .02 −.32 −.26 hex62 .16 .47 .21 .27 hex66 .21 −.04 −.28 .24

hex40 .64 .08 .21 .29 hex11 .29 .47 .19 .24 hex21 .09 .04 .05 .55

hex55 .63 .11 −.16 −.02 hex19 .22 .47 .11 .27 hex53 .23 −.06 .02 .46

hex32 .61 .08 .09 .21 hex37 .34 −.46 .18 −.11 hex39 .09 −.07 −.21 .45

hex25 .60 −.01 .01 .16 hex43 .09 .43 −.12 −.13 hex26 .07 .08 −.12 .45

hex48 .60 −.04 −.07 .27 hex10 −.08 .41 .15 .36 hex67 −.08 −.12 .03 −.44

hex09 .58 −.09 −.13 −.06 hex49 −.24 .34 .05 .20 hex27 .09 .28 .00 .42

hex17 .58 −.06 −.01 .21 hex51 −.04 .05 .70 .09 hex36 .30 .07 −.15 .39

hex50 .54 −.38 −.14 −.21 hex15 .01 .03 .53 .05 hex23 −.06 .25 −.12 .37

hex22 −.52 .01 .20 −.16 hex64 −.19 .06 .51 −.05 hex47 .08 −.29 .23 −.34

hex34 .51 .21 −.16 −.07 hex04 .20 .19 −.51 .00 hex45 .22 .15 −.20 .34

hex12 .48 −.05 −.04 .16 hex54 −.22 .15 .50 −.13 hex46 −.27 .16 .27 −.33

hex13 .45 .16 −.01 .18 hex65 .02 .08 .46 −.13 hex31 .30 −.02 −.27 .31

(continued)
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Table 1. (continued)

Factors

Item 1 2 3 4 Item 1 2 3 4 Item 1 2 3 4

hex08 .39 .21 −.02 .29 hex60 .36 −.42 .46 .00 hex56 .28 −.11 −.11 .30

hex35 .38 −.27 .30 −.33

Table 2. Factor correlation matrix.

Factor correlation matrix

Factor 1 2 3 4

1 1.00 −.15 −.37 .43

2 −.15 1.00 .18 .24

3 −.37 .18 1.00 −.31

4 .43 .24 −.31 1.00

The first factor grouped items tapping into altruism, sociability, and openness to
others (Empathy/Altruism/Sociability). The second factor grouped items related to
fairness and resilience (Integrity). The third factor grouped items that operationalize
dependability and sobriety (Dependability). The fourth factor grouped items expressing
self-confidence attitudes (Self-confidence) (Table 1).

4 Discussion

The present study was carried out to test the usefulness of an HEXACO questionnaire
in an HRI context to assess how people perceive the personality traits of robots. Results
showed that the dimensional structure usually obtained with human participants was not
replicated, but, rather, a four-factor structure was found as the best measurement model.
Beyond the labels that can be used for the factors in Table 1, it is apparent that the items
did not group themselves according to the original scales, nor the items of the same scale
were grouped in the same factor. Interestingly, the Empathy/Altruism/Sociability and
Dependability factors found here resembled two dimensions of Spatola et al.’s Human-
Robot Interaction Evaluation Scale (HRIES) [7] (Sociability and Intentionality), and
were consistent with previous studies [16]. This result suggests that these domains might
be particularly relevant in the evaluation of robot personality, as they are perceived salient
and defining characteristics of the robot behaviour.

The opportunistic sampling strategy used here and the relatively low sample size
suggest caution in interpreting the results of this study in terms of generalizability, espe-
cially to other cultural contexts. However, having not constrained participants to think
about a specific robot should have provided the necessary variability in scores to actu-
ally address the aim of this study. Analogously to studies on self-reported personality
in which participants rate themselves, in this study participants rated “their” robot, thus
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allowing us to investigate the structure of perceived personality traits of the robot cat-
egory. This would not have been possible if we asked to focus on a particular robot or
category of robots. Future studies are nonetheless invited to use the HEXACO question-
naire presented here to evaluate how people perceive the personality traits of a specific
robot (i.e. [iCub] would never accept a bribe, even if it were very large), for which
independent information about the perceived characteristics is available. In this way, it
would be possible to compare how humans perceive the personality traits of robots with
different attributes and test the sensitivity of the HEXACO questionnaire.

Appendix

The HEXACO questionnaire used in this study (please note that the Italian version was
used)

On the following pages, you will find a series of statements about a robot. Please
read each statement and decide how much you agree or disagree with that statement.
Please answer every statement, even if you are not completely sure of your response.

Item Factor Text

hex01 Honesty-Humility [A robot] It would never accept a bribe, even if it were very
large

hex02 Altruism [A robot] It has sympathy for people who are less fortunate
than it is

hex03 Agreeableness [A robot] It rarely hold a grudge, even against people who
have badly wronged it

hex04 Agreeableness [A robot] People think of it as someone who has a quick
temper

hex05 Extraversion [A robot] Most people are more upbeat and dynamic than it
generally is

hex06 Honesty-Humility [A robot] It wouldn’t use flattery to get a raise or promotion
at work, even if it thought it would succeed

hex07 Conscientiousness [A robot] When working on something, it doesn’t pay much
attention to small details

hex08 Extraversion [A robot] It feels reasonably satisfied with itself overall

hex09 Extraversion [A robot] It prefers jobs that involve active social interaction
to those that involve working alone

hex10 Conscientiousness [A robot] People often call it a perfectionist

hex11 Conscientiousness [A robot] It often pushes itself very hard when trying to
achieve a goal

hex12 Extraversion [A robot] In social situations, its is usually the one who
makes the first move

hex13 Agreeableness [A robot] It tends to be lenient in judging other people

hex14 Altruism [A robot] It tries to give generously to those in need

(continued)
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(continued)

Item Factor Text

hex15 Conscientiousness [A robot] When working, it sometimes has difficulties due
to being disorganized

hex16 Emotionality [A robot] It can handle difficult situations without needing
emotional support from anyone else

hex17 Openness to Experience [A robot] If it had the opportunity, it would like to attend a
classical music concert

hex18 Honesty-Humility [A robot] Having a lot of money is not especially important
to it

hex19 Conscientiousness [A robot] It plans ahead and organize things, to avoid
scrambling at the last minute

hex20 Honesty-Humility [A robot] If it wants something from someone, it will laugh
at that person’s worst jokes

hex21 Agreeableness [A robot] When people tell it that it is wrong, its first
reaction is to argue with them

hex22 Honesty-Humility [A robot] It thinks that it is entitled to more respect than
anyone else

hex23 Agreeableness [A robot] People sometimes thinks that it can be too
stubborn

hex24 Altruism [A robot] It is soft-hearted

hex25 Openness to Experience [A robot] It would enjoy creating a work of art, such as a
novel, a song, or a painting

hex26 Agreeableness [A robot] People sometimes thinks that it is too critical of
others

hex27 Agreeableness [A robot] Its attitude toward people who have treated it
badly is “forgive and forget”

hex28 Honesty-Humility [A robot] It wouldn’t pretend to like someone just to get that
person to do favors for it

hex29 Extraversion [A robot] The first thing that it always does in a new place is
to make friends

hex30 Openness to Experience [A robot] It never really enjoys looking through an
encyclopedia

hex31 Extraversion [A robot] It sometimes feels that it is worthless

hex32 Openness to Experience [A robot] It is interested in learning about the history and
politics of other countries

hex33 Altruism [A robot] It would feel very badly if it were to hurt someone

hex34 Openness to Experience [A robot] People thinks that it has a good imagination

hex35 Altruism [A robot] It wouldn’t bother it to harm someone it doesn’t
like

(continued)
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(continued)

Item Factor Text

hex36 Emotionality [A robot] It sometimes can’t help worrying about little
things

hex37 Emotionality [A robot] It worries a lot less than most people do

hex38 Honesty-Humility [A robot] If it knew that it could never get caught, it would
be willing to steal a million dollars

hex39 Altruism [A robot] It likes the idea that only the strong should survive

hex40 Extraversion [A robot] On most days, it feels cheerful and optimistic

hex41 Emotionality [A robot] When it suffers from a painful experience, it needs
someone to make it feel comfortable

hex42 Conscientiousness [A robot] It makes decisions based on the feeling of the
moment rather than on careful thought

hex43 Agreeableness [A robot] Even when people make a lot of mistakes, it rarely
says anything negative

hex44 Extraversion [A robot] When it is in a group of people, its is often the one
who speaks on behalf of the group

hex45 Extraversion [A robot] It feels that it is unpopular

hex46 Honesty-Humility [A robot] It wants people to know that it is important and of
high status

hex47 Openness to Experience [A robot] It doesn’t think of itself as the artistic or creative
type

hex48 Openness to Experience [A robot] It likes people who have unconventional views

hex49 Agreeableness [A robot] Most people tend to get angry more quickly than
it does

hex50 Emotionality [A robot] It remains unemotional even in situations where
most people get very sentimental

hex51 Conscientiousness [A robot] It makes a lot of mistakes because it doesn’t think
before it acts

hex52 Honesty-Humility [A robot] It would be tempted to use counterfeit money, if it
were sure it could get away with it

hex53 Openness to Experience [A robot] It thinks of itself as someone who is somewhat
eccentric

hex54 Honesty-Humility [A robot] It would get a lot of pleasure from owning
expensive luxury goods

hex55 Agreeableness [A robot] It is usually quite flexible in its opinions when
people disagree with it

hex56 Emotionality [A robot] When it comes to physical danger, it is very fearful

hex57 Emotionality [A robot] Even in an emergency it wouldn’t feel like
panicking

(continued)
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(continued)

Item Factor Text

hex58 Emotionality [A robot] When someone it knows well is unhappy, it can
almost feel that person’s pain itself

hex59 Openness to Experience [A robot] It would be quite bored by a visit to an art gallery

hex60 Extraversion [A robot] It rarely expresses its opinions in group meetings

hex61 Altruism [A robot] It tries to respect other people’s feelings

hex62 Conscientiousness [A robot] It always tries to be accurate in its work, even at
the expense of time

hex63 Emotionality [A robot] It feels like crying when it sees other people crying

hex64 Conscientiousness [A robot] It prefers to do whatever comes to mind, rather
than stick to a plan

hex65 Conscientiousness [A robot] It does only the minimum amount of work needed
to get by

hex66 Emotionality [A robot] It would feel afraid if it had to travel in bad
weather conditions

hex67 Openness to Experience [A robot] It thinks that paying attention to radical ideas is a
waste of time
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Abstract. The aim of this work is to understand how individuals’
personality differences affect their interaction with robots considering
the robots expressed personalities and their occupational roles. For
this purpose, we analysed the link between the degree of extrover-
sion/introversion of the user and the one expressed by the robot during
two different tasks: a cognitive task (i.e., movie recommendation) and a
service task (i.e., bartending). We observed that participants showed a
greater preference for a robot with an extroverted attitude in both tasks.
The degree of pleasantness of the robot was affected by the users’ per-
sonality. Moreover, participants preferred an extroverted robot for the
occupational categories of Entertainer and Organizer, while they associ-
ated an introvert robot to Producer and Organizer roles.

1 Introduction and Background

Nowadays, the use of smart devices, such as virtual assistants, and the level
of anthropomorphism of a robot raise people’s expectation of its capabilities
[15]. Therefore, we need to design socially intelligent robots that can adapt
to different people and contexts during a human-robot interaction (HRI). An
effective way of providing robots with social capabilities is to personalize the
interaction according to the person [17]. The interaction between humans and
agents is not only affected by the personality of the humans, but also by the
perception of the agent’s personality. People also tend to assign human social
attributes to agents, and in particular to humanoid robots, such as personality,
gender, and intents [10]. However, divergent findings have been found considering
a robot’s personality traits as expected or preferred by people [1]. Researchers,
therefore, investigated the effects of a robot personality on people’s engagement
in the interaction when it had a similar or complementary personality to the
people’s personality.

There is not, however, a common agreement to guide the modelling of a
robot’s personality in terms of similarity and complementarity. In fact, some

Supported by Italian PON I&C 2014-2020 BRILLO research project “Bartending
Robot for Interactive Long-Lasting Operations”, no. F/190066/01-02/X44.

c© Springer Nature Switzerland AG 2021
H. Li et al. (Eds.): ICSR 2021, LNAI 13086, pp. 718–728, 2021.
https://doi.org/10.1007/978-3-030-90525-5_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90525-5_63&domain=pdf
https://doi.org/10.1007/978-3-030-90525-5_63


Shall I Be Like You? 719

studies observed that people are more comfortable to interact with a robot that
exhibits a complementary personality [13]. Contrarily, divergent results were
found in [12]. We hypothesize that the factors that might have produced diver-
gent findings are correlated to the different contexts of interaction and the dif-
ferent robot’s roles in these studies [26]. For this reason, in this work we aim at
relating similarity and complementary of personality with different contexts, in
terms of robots occupational categories. The purpose of this work is to under-
stand which robot’s personalities are perceived as best suited by users based on
the robot’s job categories and people personality by following a human-in-the-
loop designing approach.

1.1 Personality Effects on People’s Perception of Robots

Individuals’ differences in identity, needs and preferences significantly affect their
perception of a robot, and consequently the quality of the interaction with such
robot [4]. Williamson et al. [25] recognized intelligence, personality traits, skills
and aptitudes as the most influential human traits. Among these differences,
people’s personality traits are considered to particularly affect the communica-
tion with and the perception of robots [10]. Various studies also agreed that
the personality traits are correlated with people’s acceptance of robots [5,18].
Personality traits, such as agreeableness and extroversion, can affect the human-
robot teamwork [6]. According to Robert [14], people with an extroverted per-
sonality are also more inclined to accept a robot in their personal space [19].
Several studies in HRI showed that people with an extroverted personality are
more social and willing to interact with robots than people with an introverted
personality [21]. People’s personality traits are also correlated with their ten-
dency to anthropomorphise robots [27]. For example, people with extroverted
traits attributed human characteristics to a robot more than those with intro-
verted traits [11]. Additionally, experimental studies convey that extroverted
personality persons result to be more engaged and influenced by the interaction
with anthropomorphic robots endowed with social skills rather than with respect
to other technologies, such as virtual agents or commonly use applications on
tablets and smartphones [20,22]. Among the personality traits, there is a com-
mon agreement that people’s interactions are mainly driven by their introversion
and extroversion level of the personality [1], hence, we decided to focus our study
on these two traits.

1.2 Occupation and Roles for Robots

Robots are being deployed in human-centered environments (e.g. homes, shop-
ping malls, cinema, hospitals) with different roles, such as guides, bartender,
assistant and companion.

Dautenhahn et al. [3] observed that people associated robot companion with
a role such as a machine, servant or assistant. The participants in their study
also believed that social robots could assume the role of household assistant
or care-taking role. Takayama et al. [23], instead, found that people preferred
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that a robot assumed a service role or a role that requires only cognitive abili-
ties. Similar results were found in [16] where participants judged cognitive tasks
more appropriate than high-risk tasks to be executed by the home compan-
ion robot. What is evident from literature is that not only people tend to
attribute personality traits to other people and robots, but they also implicitly
assume that certain job categories require certain personalities [8]. Additionally,
personality-occupational role stereotypes have been shown to strongly affect on
users’ responses [24] in previous works and have to be deeply investigated.

2 Experimental Design

With the respect to the literature presented in the previous Section, we decided
to investigate the effects of a robot’s personality on people’s perception of the
robot and on the association of the expressed personality to particular job cat-
egories. In particular, we considered two main personality traits (both for users
and robots): extroversion and introversion personality traits, and two roles: ser-
vice role (i.e., bartender robot) and cognitive role (movies recommender robot).

We intended to address the following research questions (RS)s:

– RQ1: Do the users prefer a personality (introverted/extroverted) manifested
by the robot that is similar to their own (similarity attraction) or comple-
mentary (complementary attraction)?

– RQ2: Does the similar/complementary attraction depend on task (service/
cognitive role) the robot is performing?;

– RQ3: What is, in the users’ opinion, the robot personality required for the
considered job categories?

2.1 Procedure

The proposed study involved 156 volunteers (48 females, 108 males) aged
between 18 and 69. They were recruited over social media among university
students and professors. The study was organized as a 2x2 study design. Partici-
pants watched four videos, where each of which showed a Pepper robot carrying
a task for occupational role (i.e., bartender task for service role, and film recom-
mendation task for cognitive role role) with an opposite personality (i.e., extro-
verted and introverted interactive behavior). Videos were randomly presented to
the users. From now on, we will refer to these videos as:

– Task 1.1 video showing a bartender robot with an extroverted personality
– Task 1.2 video showing a bartender robot with an introverted personality
– Task 2.1 video showing a recommender robot with an extroverted personality
– Task 2.2 video showing a recommender robot with an introverted personality

After the visualization of videos, participants were asked to complete the
questionnaire to assess:

i. the level of participants extroversion (Human Extroversion Degree, HED);
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ii. the personality of the robot as perceived by users in terms of the level of
robot extroversion (Robot Extroversion Degree, RED);

iii. the pleasantness of the robot (Robot Pleasantness Degree, RPD) as per-
ceived by the users;

iv. the most appropriate occupation category for each robot (Robot Occupation
Category, ROC) from the users’ perspective.

2.2 Materials and Methods

Questionnaires. A 25-items questionnaire was developed based on the com-
bination of parts of consolidated questionnaires in the literature. Namely, we
referred to the Big Five Inventory [9] test’s 8 questions related to the Extrover-
sion trait to assess the level of extroversion (HED). RED was evaluated using 6
questions where participants rated robot’s perceived joyful, casual, expressive,
lively, cordial and outgoing behavior on a 5-point Likert scale (questions were
of the type: To what extent did the root seem joyful to you? ). A Godspeed sub-
scale [2] composed by 5 questions was selected to measure the pleasantness of
the interaction (RPD). Finally, we collected participants’ responses about the
attitude of the robot to carry out certain job categories according to its per-
ceived personality (Robot Occupational Categories) using 6 questions from the
Holland’s RIASEC occupational model [7]. The considered occupation categories
were:

– Producer: manual work, with little contact with people (carpenter)
– Thinker: theoretical and logical work (psychologist, doctor)
– Entertainer: creative work, not involving repetitive activities (painter)
– Rescuer: nursing work (teacher, nurse)
– Persuader: work close with people with a prominent position (politician)
– Organizer: systematization of processes (analyst, accountant)

Robot Personality. The robot’s personalities (summarized in Fig. 1) have been
manipulated by varying the robot’s tone of the voice, the speed of speech, the
color of the LEDs of the eyes and the gestures of the automaton.

Fig. 1. a) Introverted Robot (left) - Extroverted Robot (right). b) Parameters used for
the implementation of Extroverted and Introverted Robotic behavior
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In particular, the extroverted robot spoke with a high-pitched tone, a higher
volume, a high frequency of speech, and changed every 0.5s the color of the LEDs
eyes. Furthermore, the robot accompanied its speech with large and frequent
movements to express a warmer and opener behavior.

The introverted robot spoke with a low tone and volume of voice, agreed
with a modest speed of speech and the LEDs of the eyes fixed on the blue color.
In addition, it is predominantly rigid, with rare movements of limited extension.

3 Results and Discussion

Our first step has been to verify that the implemented interactive modalities,
as described in the previous section, expressed the expected robot personality
(extroverted/ introverted) in both tasks. We can observe (Fig. 2 left) that the
extroverted robot (M = 67% in Task 1, M = 75% in Task 2) is perceived as more
extroverted than the introverted one (M = 54% in Task 1, M = 55% in Task
2) during both tasks and these differences are statistically significant (Task 1:
p < .05, t(155) = 6.91598 and Task 2: p < .05, t(155) = 10.9225).

Fig. 2. Robot Extroversion Degree (left) and Robot Pleasantness Degree (right) as
perceived by the users during 4 videos.

To address RQ1, we verified whether a significant correlation existed between
users’ personality, and a similar/complementary robot personality using a Pear-
son Correlation analysis. We found a weak positive correlation (R = 0.1532,
p < .05) between people personality (HED) and the pleasantness degree of
extroverted robots (RPD for tasks 1.1 and 2.1), and a weak positive correla-
tion (R = 0.202, p < .05) between people personality (HED) and pleasantness
degree of introverted robots (RPD for tasks 1.2 and 2.2). These results show a
tendency to support the result that participants prefer a robot with a person-
ality similar to theirs regardless of the task (RQ2). Additionally, by grouping
RPD values by task, we found a positive correlation between HED and RPD
during task 1 (R = 0.2014, p = .000448). We did not find a significant corre-
lation between HED and RPD during task 2 (R = 0.0966, p = 0.094903), but
there was only a positive weak correlation between HED and RPD during task
2.2 (R = 0.173, p = 0.031). This leads us to believe that HED is correlated with
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the perception of pleasantness that the users have of the robot in Task 1, and,
only partially, in Task 2. Such result partially replies to research question RQ2
about the similarity attraction in relation to the tasks.

Fig. 3. RED and RPD as perceived by Extrovert and Introvert users respectively.

Figure 3 shows that extroverted users tend to assign higher ranks both for
RED and RPD with respect to introverted users for all tasks (except for RED
related to Task 1.1, where the difference between ranks is however neglectable).
Additionally, we can observe that both extroverted and introverted users assign
lower ranks in both tasks, where the robot expresses an introvert personality
with respect to the task where the robot is extrovert.

With regard to RQ2, Table 1 shows the average and standard deviation values
of the pleasantness evaluation with respect to the four videos. For both tasks
the robot with an extroverted personality achieved higher scores than the robot
with an introverted personality. Differences are statistically significant for both
tasks (see Table 1). Meaning that people prefer in general extroverted robots
independently from the particular task the robot is performing.

Table 1. 5-point likert scale ranking of Robot pleasantness as perceived by humans
(all the differences are significant at p < .05).

TASK T1: Bartender Robot T2: Movie Recommender Robot

Robot personality Extrovert Introvert T-test Extrovert Introvert T-test

avg std avg std t-value avg std avg std t-value

Unpleasant/Sympathetic 3.78 0.93 3.00 1.00 t = 7.13 3.89 0.88 2.89 1.12 t= 8.74

Not friendly/Friendly 3.87 0.92 3.07 1.10 t = 6.91 3.92 0.93 2.95 1.13 t= 8.27

Rude/Courteous 3.93 1.00 3.65 0.95 t = 2.49 3.96 0.94 3.47 1.08 t= 4.25

Unpleasant/Pleasant 3.71 1.02 3.14 1.03 t = 4.85 3.87 0.96 2.93 1.14 t= 7.90

Ugly/Cute 3.65 1.08 3.16 1.08 t = 4.03 3.78 0.98 3.01 1.18 t= 6.25

To further understand the relation between the user and robot personality,
in terms of extroversion, pleasantness and roles, we conducted a within subject
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Table 2. T-test statistics: within subjects (EX:extrovert/IN:introvert) differences in
the evaluation of RED and RPD by grouping by robot personality and task.

Independent variables T-value p-value

EX-RED(t1.1+t1.2) and EX-RED(t2.1+t2.2) −1.10657 .134548

IN-RED(t1.1+t1.2) and IN-RED(t2.1+t2.2) −1.27006 .102808

EX-RED(t1.1+t2.1) and EX-RED(t1.2+t2.2) 8.74728 <.00001*

IN-RED(t1.1+t2.1) and IN-RED(t1.2+t2.2) 10.88628 <.00001*

EX-RPD(t1.1+t1.2) and EX-RPD(t2.1+t2.2) 0.54046 .29458

IN-RPD(t1.1+t1.2) and IN-RPD(t2.1+t2.2) −0.10821 .456974

EX-RPD(t1.1+t2.1) and EX-RPD(t1.2+t2.2) 7.06744 <.00001*

IN-RPD(t1.1+t2.1) and IN-RPD(t1.2+t2.2) 7.42722 <.00001*

*The result is significant at p <.05

t-test. Differences of the RED and RPD ranks according to people and robot
personalities and robot roles are shown in Table 2. We can observe (first two
rows of Table 2) that neither extroverts nor introverts evaluate differently the
extroversion of the robot when the task changes. While significant differences
(third and fourth row in Table 2) on the evaluation of RED have been found
within extrovert and introvert people if data are grouped by robot personalities.
This means that the users groups are affected by the robot personality rather
than robot task in the evaluation of the robot extraversion. The same depen-
dency from robots’ expressed personalities is also observed with respect to the
pleasantness perceived by extravert and introvert people, which is not affected
by the particular task (job category) but by the robot personality.

We found that there is a significant effect of the user personality on the evalu-
ation of the robot pleasantness during task1.1 (t= 11.441573, p< .001), task 1.2
(t= 2.833596, p< .05), task 2.1 (t= 13.282591, p< .05). We did not find a signif-
icant difference for task 2.2 (t= 0.599748, p = .54955). Additionally, we observed
the differences in the evaluation of the robot extroversion as perceived by extro-
vert and introvert users respectively is not due to chance. In fact, there is a
significant effect of the user personality on the evaluation of the Robot Extro-
version during all tasks: task1.1 (t= 6.090176, p< .01), task 1.2 (t=−4.089464,
p< .01), task 2.1 (t= 11.45539, p< .01) and task 2.2 (t= -5.015176, p< .01). We
can conclude that the observed difference between the means of the two groups
(extrovert and introvert users) are statistically significant.

In this work, we were also interested in observing if there exists an associa-
tion between the expressed personality of the robot and a particular job category
(RQ3). In particular, we expected that extroverted robot would have been pre-
ferred for the bartender task (in terms of RED and RPD), which we associated
to job categories such as Entertainer, Rescuer and Persuader, while we expect
that introvert robots would have been preferred for movie recommendation than
that we identified to job categories such as Organizer, Producer, Thinker. Our
hypothesis was rejected (see Fig. 2 right).
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Table 3. 5-point likert scale ranking of ROC w.r.t. to tasks/personalities

Tasks Bartender robot Recommender robot

Robot personality Extrovert Introvert Sum Extrovert Introvert Sum Average

Producer 2.22 2.38 4.60 2.28 2.42 4.70 2.33

Thinker 2.46 2.31 4.77 2.49 2.21 4.70 2.37

Entertainer 2.81 2.24 5.05 2.94 2.17 5.11 2.54

Rescuer 2.41 2.15 4.56 2.49 2.18 4.67 2.31

Persuader 2.22 2.19 4.41 2.44 2.04 4.48 2.22

Organizer 3.38 3.18 6.56 3.22 3.15 6.37 3.24

In Table 3 the degree of association between robot personality/task and job
categories is reported. As we can observe, the most favorite occupational cat-
egories for the extroverted robot are Organizer and Entertainment, while the
introverted robot was associated to Producer and Organizer categories (see bold
values in Table 3). In general, participants associated the robot used in the exper-
iments to the Organizer Category independently from the task and personality
(see average column in Table 3). Globally, bartender and movie recommender
robots were associated with Organizer and Entertainment job categories, inde-
pendently from the expressed robot personality (see italics value in the sum
column in Table 3). No significant difference has been found between the rank-
ing assigned by extroverted or introverted people, except for the Entertainer
(t=−1.94479, p = .026811*) and the Persuader (t=−1.86923, p = .031745*)
roles in Task 1.1. Meaning that it is not the personality of people that affect
the association between robot personality and a particular job categories.

4 Conclusions

In this article, we investigated whether people perceive a robot’s personality
according to their own, and whether this is associated to the robot’s occupational
role. We started from the assumption that the personality influences both the
perception of others and the way of expressing moods and thoughts. Therefore it
is clear that personality plays a fundamental role in social communication. Since
robots are increasingly used in contexts of social interaction (just think of robot
waiters, or museum guide robots, etc.), all aspects relating to the expressed and
perceived personality cannot be neglected. In particular, we aimed to under-
stand which is the robot’s personality preferred by users for the different job
categories, and to suggest how to design the most appropriate personality for a
robot according to the users’ personality and the robot role. Our results suggest
new findings for designing robots. First of all, we have shown that it is possible
for a robot to express a particular personality, which is well perceived by persons
independently from their own personality and from the robot job category.
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Interestingly, it seems that more extroverted robots are rated higher on pleas-
antness with respect to introverted robots, independently from the task. In fact,
we observed a significant effect of the user personality on the evaluation of the
robot pleasantness. This finding could suggest that perhaps, it is not necessary
to personalize robot’s personalities to the role the robot is performing. In gen-
eral, users’ perception of the robot was affected more by the robot’s personalities
than the robot task.

Concerning the question about whether people perceive a robot’s personality
according to their own, we found a weak positive correlation between people
extroversion and a robot with similar personality, while introverted robot pre-
ferred in pleasantness robot with complementary personality.

Regarding the hypothesis that the divergent results regarding the correlation
between people’s personality and similar or complementary robot personalities
were related to different interaction contexts or different roles of the robot, in
our experiment we did not observe any significant supporting data. In our case,
in fact, the preferences of the users seem to depend more on the personality of
the robot than on the role that the robot plays in an interaction task. However,
this result could depend on the choice of job categories (bartender and movie
recommender) taken into consideration in this study, that probably for users do
not exclusively map on the roles considered (entertainment, producer, organizer,
persuader, etc.). Probably a bartender robot is not considered as a service robot
but rather as a social agent and, for this reason, considered rather as a robot
with cognitive skills of interaction. For this reason, further studies should include
a greater variety of differentiated job categories, where the categories of work
are clearly distinguishable and identifiable by the participants With respect to
the association between personalities and roles, the only truly significant data
observed is that extroverted robots are considered more suitable for an enter-
tainment role, while robots with an introverted personality are more suited to
the role of Producer regardless of the job categories.

Acknowledgements. This work has been supported by Italian PON I&C 2014-2020
within the BRILLO research project “Bartending Robot for Interactive Long-Lasting
Operations”, no. F/190066/01-02/X44.
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Abstract. An emerging research trend associating social robotics and
social-cognitive psychology offers preliminary evidence that the mere
presence of humanoid robots may have the same effects as human pres-
ence on human performance, provided the robots are anthropomorphized
to some extent (attribution to mental states to the robot being present).
However, whether these effects also depend on the evaluation potential
of the robot remains unclear. Here, we investigated this critical issue in
the context of the Stroop task allowing the estimation of robotic pres-
ence effects on participants’ reaction times (RTs) to simple and complex
stimuli. Participants performed the Stroop task twice while being ran-
domly assigned to one of three conditions: alone then in the presence
of a robot presented as competent versus incompetent on the task at
hand (“evaluative” vs. “nonevaluative” robot condition), or systemati-
cally alone (control condition). Whereas the presence of the incompetent
robot did not change RTs (compared to the control condition), the pres-
ence of the competent robot caused longer RTs on both types of Stroop
stimuli. The robot being exactly the same in both conditions, to the
notable exception of its evaluation potential, these findings indicate that
the presence of humanoid robots with such a potential may divert atten-
tion away from the central task in humans.

Keywords: Social robotics · Robotic presence · Human robot
interaction · Stroop task

1 Introduction

The social machines are increasingly used in our societies, such as personal assis-
tants, chatbots or robots. More specifically, the humanoid social robotics aim to
create robots that are similar to humans with respect to their anthropometric
structure and that are able to interact with humans in a way that seems natural.
The robots often replace a human or animal in tasks where the robot endurance,
rapidity or flexibility are beneficial for the better execution of the tasks. They
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can be used in numerous sectors: as assistance to elderly and/or disabled people,
teaching to children or in the entertainment industry.

The sanitary crisis caused by Covid-19 allowed a greater used of these tech-
nologies because of their capability to fill a lack of social contacts for isolated peo-
ple or their capability to be used safely in situations that requires contacts and
communication with the public like some hospitals, airports or restaurants [23]

However, much remains to be done to understand how these machines impact
the behaviours and the human capabilities, starting with the most basic level:
their physical mere presence.

1.1 Presence Effect

The presence of others may have powerful effects, called Social Facilitation and
Impairment effects, on cognition, especially executive attention (e.g. inhibitory
control). It can be explained by the fact that a presence in the environment is
an important clue to adapt how to behave and to communicate. The cognitive
capacities and performance can be impacted by being facilitated or impaired
depending on the complexity of the task. The presence of a conspecific leads
to an improvement of performance during easy or well-learned tasks and an
impairment of performance during difficult ones [21]. This effect can occur when
the conspecific is acted either as a simple audience or as a co-actor [21]

Many studies have shown that the presence of a conspecific – from cock-
roaches [22] to baboons [8] – impacts cognitive systems. With the emergence
of pseudo-conspecifics like social humanoid robots, the impact of their presence
may be questioned. Because the humans have the tendency to anthropomorphise
quickly objects in their environment, some social machines can be promoted to
the status of pseudo-conspecifics, giving them some humans traits. The physical
embodiment can turn the robot into a social agent that generates social effects
nearby in the same way a human does. If the mere presence of a conspecific
generates an effect on cognitive capacities, it can be possible that a social agent,
with some human’s traits, also generates a presence effect.

1.2 Robotic Presence

An interaction with a robot has an additional dimension than interactions with
others kind of social agents like a chatbot or a personal assistant: it is embodied
and physically close to its interactor. The embodiment can be profitable for
the acceptance and the use of robots during an interaction compared to an
interaction with a picture on a computer screen. A social robot is judged more
helpful, watchful and enjoyable than the same robot but tele-present (presented
on a screen) [19,20]. Indeed, an embodied robot but filmed and shown on a screen
is between a physically present robot and a virtual agent without embodiment.
In the field of healthcare, people who received advices from a physically-present
robot take them more seriously by choosing healthier snack than people who
received the same advices but from a tele-present robot or a virtual agent; the
presence of the robot makes it more convincing [9]. In 2015, a meta-analysis
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[11] looked at the impact on human cognition of the robotic presence by testing
if a simple embodiment is enough or if the physically presence is needed. The
results showed that the robots are perceived as more persuasive, less distracting
and judged more positively when they are physically present that when they
are only tele-present robot or virtual agent. The presence of robot also leads
to better performance and faster learning in different cognitive and motor tasks
(colour recognition, Hanoi tower...). In summary, the physical presence alongside
people is more important for triggering the social presence effect than just the
embodiment.

If a consequent number of studies show that social robots can impact human
behaviour during face-to-face interactions [7,15], fewer studies are looking to
the effects of the robotic presence during a task where the robot is not directly
engaged but just present (e.g. [3,14]). A study replicated the beneficial effect
of human presence for attentional control with a robotic presence during a task
that requires to inhibit a detrimental automatism [16].

In addition of the mere presence, the perception of a potential evaluation
by a conspecific can have an effect on the performance. Performing poorlier
compared to the performer’s skill level (“choking”), can occur during situations
with an increasing importance of good performance (outcome pressure) or during
situations with evaluation of the performances (monitoring pressure). According
to the choking literature, outcome pressure is associated with reduced executive
control of attention [4,5].

The experiment presented here aims to replicate the influence
of the mere robotic presence on human cognitive control and more
specifically on human executive control. The second objective is
assessed to what extent the presence effect depends on the perceived
capacities of the robot to evaluate.

2 Method

2.1 Participants

Ninety-one participants were recruited (Mean age = 23.54 years, SD = 5.73,
60 females and 31 males). All participants were right-handed, French native
speakers and with normal or corrected to normal vision. They were naive about
the purpose of the experiment and even that it implied a robot. They had no
previous experience with the robot. This sample size was fixed based on an effect
size of robotic presence effect during Stroop task [17].

The participants were randomly assigned to three different experimental con-
ditions: 30 to the Alone Condition (control condition), 31 to the Non-Evaluative
Condition and 30 to the Evaluative Condition

2.2 Procedure

All participants performed the Stroop task twice. First, all the participants per-
formed the Stroop task alone once the experimenter left the room. This first
task is used as a control to take account of the interindividual differences.
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Then, participants moved to another room. Participants in the Alone con-
dition watched a short landscape video (distracting task) before they performed
another Stroop task. The Alone Condition is used to control the effects of the
room change, the training and the fatigue. In the two other conditions (Eval-
uative and Non Evaluative condition), the robot is present in the second room
and is facing a computer screen (see Fig. 1 for the experimental setting). Partic-
ipants start to look at an interaction between the experimenter and the robot.
In the Evaluative Condition, the robot explains to the experimenter and to
the participant that it is able to evaluate the speed and the accuracy of Stroop
answers that scroll on the screen. A quick demonstration (pre-scripted) is made
by the robot in which it commented Stroop answers (for example “That was a
quick answer!”). While in the Non Evaluative Condition, the robot explains
that it is able to evaluate a Flanker task (where the direction of a target arrow
is given among distracting arrows) and it explicitly says and demonstrates that
it is not able to evaluate Stroop answers. After the interaction, the robot quietly
continues to look at its screen, while the participant prepares to run another
Stroop task and the experimenter leaves the room. While a participant performs
this second Stroop task, he sits in front of the robot who passively watches them
during 60% of time (see Fig. 3).

At the end, participants who met the robot (condition Evaluative and Non
Evaluative) filled out the Human-Robot Interaction Evaluation Scale (HRIES
[18]). This scale is used to evaluate their level of anthropomorphization of the
robot. Participants also rated some perceived competences and evaluation capac-
ities of the robot. These answers concern the Stroop task and the capacity of
the robot to evaluate previous participants on this task (e.g. “Is the robot able
to give the colour of a word?” or “Is the robot able to correct the colour of a
word?”).

Table 1. Experimental conditions.

Baseline condition Non evaluative condition Evaluative Condition

Phase 0 . . . . . . . . . . . . . . . . . . . . . . . . . Stroop task alone . . . . . . . . . . . . . . . . . . . . . . . . .

Phase 1 Distracting task Interaction with the robot without
evaluative inference

Interaction with the robot with
evaluative inference

Phase 2 Stroop task alone . . . . . . . Stroop task in presence of a non-reactive robot . . . . . . .

Robot. The robot of this experiment is an iCub robot with a modified head
(photography in Fig. 2). This head aims to improve its capacities to communi-
cate with humans (articulated lips and jaw, pinna, iris designed for being easily
readable by humans...). It is 1 m tall, standing on a stand, which places the robot
face at the same height of that of a seated adult. The movements of the head and
torso, as well as its words during the experiment, were pre-scripted. During the
interaction, the experimenter secretly pressed the button of a remote controller
to give the illusion that the robot acted/reacted (talking, interrupting, turning
to face humans...) at an appropriate timing.
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Fig. 1. Experimental setting Fig. 2. The robot of the experiment is an
iCub with a modified head, called Nina.

Stroop Task. This well-known task ([12]) requires individuals to identify as
quickly and as accurately as possible the colour in which a word is printed,
ignoring the word (and its meaning) itself. Because of the automaticity of word
reading, participants have to inhibit the meaning and/or the response activated
by the word dimension.

This identification times are consistently longer for colour-incongruent words
(e.g., the word BLUE in green ink) than for colour-neutral signs (e.g., +++
in green ink), a phenomenon called Global Stroop interference. Recent studies
have shown that Stroop interference is a composite rather than unitary phe-
nomenon, reflecting multiple processes and involving different types of conflicts:
task conflict, semantic conflict, and response conflict ([2]; [1]; see also [13] for
a review). We therefore used an extended semantic version of the Stroop task
([2]) that allows the measurement of all type of cognitive conflicts underlying the
Global Stroop interference (standard Stroop interference, task conflict, semantic
conflict, response conflict).

For that, four types of stimuli were used: standard colour-incongruent words
(e.g., BLUE in green), associated colour-incongruent words (e.g., SKY in green),
colour-neutral words (e.g., DOG in green), and colour-neutral symbols (e.g.,
+++ in green). The computation of these different conflicts are:

– Global Stroop interference : RTs for standard colour-incongruent words minus
RTs for colour-neutral symbols (BLUEgreen - +++green)

– Standard Stroop interference : RTs for standard colour-incongruent words
minus RTs for colour-neutral words (BLUEgreen - DOGgreen)

– Task conflict : RTs for colour-neutral words minus RTs for colour-neutral
symbols (DOGgreen - +++green)
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– Semantic conflict : RTs for associated colour-incongruent words minus RTs
for colour-neutral word (SKYgreen - DOGgreen)

– Response conflict : RTs for standard colour-incongruent words minus RTs for
associated colour-incongruent words (BLUEgreen - SKYgreen)

Task conflict occurs because the individual’s attention is drawn by the irrele-
vant word reading task instead of being fully focused on the relevant colour iden-
tification task, leading the two processes to compete. Semantic conflict occurs
because the (irrelevant) meaning of the word dimension and the (relevant) mean-
ing of the colour dimension are interfering. Response conflict occurs because the
incorrect pre-motor response activated by the word dimension interferes with
the correct pre-motor response activated by the colour dimension.

The stimuli were taken from [16] and consisted of four colour words (rouge
[red], jaune [yellow], bleu [blue], and vert [green]), four colour-associated words
(tomate [tomato], mäıs [corn], ciel [sky], and salade [salad]), four colour-neutral
words ( balcon [balcony], chien [dog], pont [bridge] and robe [dress]), and four
strings of +++s of the same length as the colour-incongruent trials. Colour-
incongruent and colour-associated words always appeared in colours that were
incongruent with the meaning of their word dimension. There were 192 trials
overall composed of the 16 stimuli presented in different colours, four times each,
on a black screen. The interstimulus interval lasted 1500 msec during which
a white fixation cross appeared on the center of the screen. Responses were
given manually on a keyboard with four non-labelled keys (“2”,“4”,“6” and
“8”), corresponding to the four colours used (respectively blue, green, yellow
and red). Before the beginning of the first Stroop task, participants practiced
a training session in order to learn and automatize the correspondence between
keyboard keys and colours. 128 training trials were performed where the letter
strings were replaced by symbols (“****”) in the four target colours.

3 Results

3.1 Questionnaires

Anthropomorphism. We compared data from HRIES with a repeated-
measure analysis of variance (ANOVA). The dependent variable is the answer
for each item of the HRIES. The independent variables are the value of the item
and the presence condition (with an evaluative robot or a non evaluative robot).
There is no significant variation caused by the presence condition (F(1,56) =
1.327, p = 0.25) and no significant variation caused by the interaction between
the item and the presence condition (F(5,302) = 1.019, p = 0.41). This analysis
shows that the same anthropomorphic inferences were done in the two robotic
presence conditions.
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Competence. To check if the competences of the robot were perceived differ-
ently depending on the presence conditions, we conducted a repeated-measure
analysis of variance (ANOVA) on the competence questionnaire. The dependent
variable is the answer for each item of competence questionnaire. The inde-
pendent variables are the value of the item and the presence condition (with an
evaluative robot or a non evaluative robot). There is no simple main effect of the
presence condition (F(1,56) = 1.521, p = 0.22). As expected, there is a significant
two-way interaction between the presence condition and the perceived compe-
tences (F(2,161) = 33.185, p = 2.34e−16). Then, simple pairwise comparisons
were done to determine which groups are different by conducting paired t-test
with Bonferroni adjustment. The results on items targeting the competence of
the robot to evaluate the Stroop task (“It knows when the colour of a word has
been correctly answered”, p = 0.0025, “It knows when the colour of a word has
been rapidly answered”, p = 0.043 and “It knows when the colour of a word
has been correctly and rapidly answered”, p = 0.016) reveal significant effects
of the presence conditions; the robot has been perceived as more competent to
evaluate the Stroop task in the ‘Evaluative’ condition than in the ‘Non eval-
uative’ condition. The interaction with the robot correctly induced evaluation
capacities.

3.2 Stroop Task

Two participants were removed because their mean RTs were higher or lower
than 2 sd from the total mean. Because the statistical analysis is based on
(correct) reaction times, incorrect responses were removed (2.46% of the total
responses) and 5% of the correct responses with reaction times lower or higher
than 2 sd than the mean per participant and per condition were removed from the
analysis. The values of the different Stroop conflicts are computed as explained
before.

Analysis of Covariance (ANCOVA). An ANCOVA was performed to deter-
mine the effect of the condition of presence and the type of stimuli on the RT dur-
ing the second Stroop task after controlling for RTs during the first Stroop task.
This takes into account the interparticipant variability of the reaction times. The
RTs during the second Stroop session is the dependent variable, presence condi-
tion (alone, non evaluative and evaluative) and type of stimuli are the grouping
variables; RTs on the first Stroop session (performing alone) is the covariate.
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Fig. 3. Mean answers for questionnaires. The anthropomorphism answers are the
means for all the items of the HRIES. No difference are found between evaluative
and non evaluative condition. The answers presented for competence questionnaire
are the answers to the item “It knows when the colour of a word has been correctly
answered”. There is a significant difference, the evaluative robot has been perceived as
more competent than the non evaluative robot.

After adjustment for the first Stroop RTs, there was no statistically signifi-
cant effect of the type of stimuli (p = 0.47) and no interaction between the type
of stimuli and the condition of presence (p = 0.71). There was a large significant
effect of the condition of presence (F(2,335) = 7.61, p = 5.86e−04, η2

G = 0.043).
Post hoc analysis was performed with a Bonferroni adjustment. The adjusted
mean RT was statistically significantly lower in the alone condition (742.9 ms
+/− 11) than to the evaluative condition (772.7 ms +/− 11), p < 0.001. The
non evaluative condition (748 ms +/− 10) was also significantly lower than the
evaluative condition, p = 0.007. There was no statistically significant difference
between the alone condition and the non evaluative condition (p = 0.53). The
non evaluative presence of a robot did not have an effect on the Stroop RTs
while the evaluative presence of a robot had an effect on the Stroop RTs, with
a RTs roughly 30 ms longer than the RTs in the others conditions.

4 Discussion

The present studies replicated an effect on reaction times for a Stroop task
in robotic presence under some conditions and bring new evidence about the
importance of an evaluative robotic pressure.

In previous findings about social presence, the reaction times for a Stroop
task were decreased ([16]). In this experiment the reactions times were longer
with an evaluative robot than alone or even with a non evaluative robot. The
presence of an evaluative robot has an effect on performances while the absence
or the presence of an non evaluative robot has not. Because there is no interac-
tion between the type of stimuli and the condition of presence, the presence of
an evaluative robot increases the reaction times regardless of the stimuli. The
impact of the evaluative pressure seems to be low-level; the distraction caused
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Fig. 4. Adjusts means during second Stroop task, after adjustment for first Stroop task
reaction times

by this pressure impacts all the types of stimuli. The evaluative presence may
impact the attentional resources by attracting the attention when there is a risk
of being evaluate during the ongoing task. The choking under robot pressure has
been more important than the potential facilitation due to the robot’s presence.
The priority of the choking over the facilitation has been report by some previ-
ous studies (e.g. [6,10]). What is more surprising is the absence of significative
difference between the alone condition and the non evaluative condition. It can
be explained by, despite our attempting to create a space where the participants
feel like they are alone, the context of the laboratory and research experiment
and the presence of cameras in each room which can lead to a monitoring effect,
even in the alone condition.

To support the idea of an importance of evaluative pressure, the absence of
effect on the non evaluative condition shows that the impairment during the
evaluative condition is not due to a distraction caused by the noise of robot’s
motors and battery. In both presence conditions, the same noise has been heard
in the experimental room. The effect is neither due to a novelty effect caused
by the meeting with a humanoid robot. So, despite this comparable environ-
ment between the presence condition, the performances have been significantly
different with or without a perceived evaluative presence.

Moreover, the level of antropomorphization is the same in the two conditions
of presence. One of the limitations is that the necessity of the interaction for
the anthropomorphization of the robot used is not verify. It would be interesting
to ask also to the participants in the alone condition to complete the anthro-
pormophization questionnaire, without any previous interaction with the robot.
It is possible that the robot has been too poorly anthropomorphized in both
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of the presence conditions and was solely considered like a non-social machine.
However, some robots, with less humanoid features than the one used in this
experiment, has been shown to be anthropomorphized after an interaction ([16]),
it seems reasonable to accept that the robot has been anthropomorphized in this
experiment.

In conclusion, the present study brings evidence that the presence of a
humanoid social robot, who has the competence to evaluate the ongoing task,
may capture attentional resources and impair performances during a Stroop task.
Research about robotic presence and evaluative robotic pressure are crucial both
for our understanding of social robotic effects on human cognition, with practical
implications on how social robots should be designed, and for the development
of this new facet of social robotics based on experimental social-cognitive psy-
chology.
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Abstract. We describe a mixed-methods approach toward the design
and evaluation of social robots that can offer emotional support for chil-
dren in long-term care environments. Based on the results of a needfind-
ing interview with a local expert, our specific aim was to design a robot
that would be perceived as empathetic. An online human-subject study
(n = 26) provided preliminary support for a hypothesis that this design
goal could be achieved by designing robots to maintain the flow of con-
versation and ask related followup questions to further understand inter-
locutors’ feelings.

Keywords: Social robot design · Child-robot interaction · Empathy

1 Introduction

Researchers have argued that social robots designed for hospitalized children
must appear to be empathetic [9]. For a robot to be emotionally supportive it
must address users’ feelings in a sensitive and effective way [2]. For robots to be
comforting and address those feelings in emotionally supportive roles, they must
be perceived as empathetic. Researchers have described empathy as the feeling of
sharing someone or something’s emotional state [1]. Moreover, previous research
has found that people communicate better with robots that display empathy
[6], and that robots recognizing children’s affective states and responding with
encouraging or positive followups are perceived as more positive and supporting
in long-term child-robot interactions [7–9].

We build on this work to explore how best to design robots to be perceived
as empathetic in children’s long-term hospitalization contexts. We begin by pre-
senting the results of a qualitatively analyzed needfinding experiment with a
local domain expert, and then discuss how we used storyboarding and improvi-
sation to design a robot interaction designed to meet identified needs by asking
followup questions and remaining on topic to appear empathetic and fulfill emo-
tional support roles. We then present the results of a human-subject evaluation
of this designed interaction. Our results provide preliminary support that our
interaction technique achieves our design goals.

c© Springer Nature Switzerland AG 2021
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2 Needfinding Interview

To begin our research process, we conducted a semi-structured needfinding inter-
view [10] with a doctor at a local children’s hospital, asking questions regard-
ing (1) our interviewee’s role and duties at the children’s hospital, and (2) the
patients they work with and their daily routines. The interview was then ana-
lyzed using Empathy Mapping [5], wherein an interviewee’s utterances were asso-
ciated with six key thematic categories (Think, Feel, Say, Do, Pain, Gain) and
then used to construct high-level qualitative theories.

Think — This category considers important beliefs, desires, and intentions of our
interviewee or others they interact with. Our interviewee demonstrated commit-
ment to their patients’ care and the belief that technology can make a difference
in children’s lives. Our interviewee conveyed an intent to distract patients from
being hospitalized, and a desire to uplift the feelings of being in a hospital.

Feel — This category considers important emotions experienced by our intervie-
wee or others they interact with. Our interviewee was acutely aware of the stress
put onto children and parents, especially during long-term stays. Our intervie-
wee demonstrated empathy toward patients and their parents, describing the
extent of care they provide, and circumstances (e.g. getting an infection) that
necessitate longer care than intended, describing such experiences as “brutal.”

Say — This category considers what our interviewee explicitly said mattered to
them. Our interviewee highlighted key challenges faced by patients:

“[F]or babies like their world is supposed to explode. They’re supposed to
go out and discover things and being a outdoor and, you know, even if they’re
indoors going places and instead they’re like in the same room all the time, like,
you know, it’s impairs their development. And for older kids, they’re stuck in
the hospital, it starts to, you know, affect them psychologically stresses, stresses
on families, all that stuff.”

The interviewee also highlighted the role technology plays in their work:

“[W]e don’t currently use robotics, but we do use a lot of computers like the
ventilators are computers, the whole monitors are computers and I in talking
about this like or thinking through, like, I definitely think there’s some way that
there could be some HRI (human-robot interaction) going on.”

Do — This category considers actions our interviewee described as being impor-
tant. Our interviewee discussed having to keep the hospital clean and safe to
avoid putting patients at risk (e.g. being careful not to spread infections and
maintaining privacy) and easing the difficulties of hospital life for patients and
their families. As mentioned under Think, the latter is in part addressed by med-
ical personnel being positive, uplifting, and distracting.
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Pain — This category consisted of frustrations, concerns, obstacles, and risks
faced by our interviewee or those they interact with. Our interviewee was primar-
ily concerned with the stress faced by patients and their families, and patient
safety. Our interviewee indicated children face stress from being hospitalized,
requiring continuous monitoring, being in a fragile state, and missing out on
opportunities non-hospitalized children have, while parents face stress from hav-
ing and caring for a child with a life threatening illness and the possibilities of
something bad happening and their child getting worse.

Our interviewee also indicated obstacles faced by patients and their families.
Patients face overall physical weakness and often must use wheelchairs. Some
can navigate a wheelchair on their own and others are completely dependent on
others to go anywhere. “Technology dependant” patients or those needing 24/7
monitoring face extra risks and require extra care/assistance. Overall, patients
face restrictions to exploration and interactions due to fragile conditions.

Gain — This category considers what our interviewee wants or needs to achieve,
how they measure success, and how they try to achieve success. Our interviewee
aims to help patients heal as much as they can and as safely as possible while
meeting each patient’s unique needs and easing the negative impacts of their
hospital stays. Our interviewee measures success by the physical health and sta-
bility of patient, quality of life after treatment (i.e. how technology dependant
a patient is), and what patients focus on (e.g. when getting a shot, are the chil-
dren distracted by toys presented by a child life specialist). Outside of physical
treatment, our interviewee tries to achieve success by providing children with
opportunities that make their hospital stay feel more normal, distracts patients
from the stress of their hospital stays, and makes sure families are supported and
understand how life with a child requiring treatment and hospitalization will be.

Overall, this analysis revealed the following high-level needs for long-term
hospitalized children: the ability to socialize and engage with their surroundings
and garner emotional support to have high quality of life and sense of normalcy.

3 Interaction Design: Storyboarding and Improvisation

To identify how a social robot may address the needs identified in our interview,
we heavily relied on storyboarding and improvisation. First, we identified a com-
mon interaction pattern for our desired context: the first interaction between a
child and a robot. Here, a robot is introduced to a child by a third party (such
as a nurse) and begins to become acquainted with the child. Through this inter-
action, a robot can build rapport with the child and determine how to interact
with them to begin to address their needs.

Next, we used paper-and-pencil storyboarding to refine this interaction pat-
tern, and used Embodied Design Improvisation [11] to physically act out the
interaction pattern to see how it would play out off paper. Through improvisa-
tion, we found moments that made the interaction feel disjointed due to poor
flow of conversation and lack of comforting language. To address the poor flow
of conversation, we developed the idea of robots explicitly providing the choices
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to “learn, chat, play” to allow a child to choose how they wish to interact with
the robot and move the interaction forward. This raised two questions: (1) How
should the flow of conversation be maintained within each of those choices? and
(2) How should robots provide comforting language?

Through further discussion of the interaction pattern, we identified followup
questions as a mechanism to keep conversation going while gaining better under-
standing of a child, how they may be feeling and how they may prefer to be
interacted with (i.e. what makes the child feel comfortable).

We thus focused on the following design strategy: For a robot to be comfort-
ing, it must maintain the flow of a conversation and ask followup questions to
further understand childrens’ feelings. We then storyboarded scenarios in which
a robot recognizes a child’s emotional state through dialogue and responds by:
(1) asking a related followup question, further pressing for more information as
to why a child feels a certain way, or (2) asking an unrelated followup question
(“Do you want to play a game?”) to help improve the child’s mood. In (1), since
the robot asks a related followup question that aims to further understand the
child, the robot appears to be actively listening which may improve the perceived
empathy of the robot as opposed to (2).

4 Method

While ideally we would evaluate our designed interactions using in-person experi-
ments with local hospitalized children, this was not possible due to COVID-19 [4].
Thus, to provide a preliminary evaluation of the potential effectiveness of our
designs, we conducted an online ethics-board-approved experiment using Ama-
zon’s Mechanical Turk crowdsourcing platform, to test the following hypothe-
sis: A robot designed to maintain the flow of conversation and ask related fol-
lowup questions to further understand a person’s feelings will be perceived as
more empathetic.

After providing informed consent and demographic information, participants
were first shown a pre-test video in which a Nao robot introduces itself to a
human named “Jane”. Participants then watched two post-test videos in a ran-
domized order. In each post-test video, Jane indicates she is having bad day,
and the robot responds according to one of two within-subject conditions. In
the Related Followup condition, the robot asks a related followup question ask-
ing what is wrong, in order to demonstrate active listening and gain further
understanding of Jane’s feelings. In the Unrelated Followup condition, the robot
instead asks an unrelated followup question, asking if Jane wants to play a game;
an utterance that is prosocial and relevant to the interaction but that does not
demonstrate active listening and serves to provide a distraction rather than gain-
ing further understanding of Jane’s feelings.

In all videos, only dialogue was changed, while the movements and tone of
the robot were left unchanged, ensuring that any observed differences between
conditions was most likely due to the differing robot response.
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After each video, participants were asked to complete a series of Likert items
derived from the RoPE Scale, a measure of perceived robot empathy [3]. Par-
ticipants also completed a free response question after each series of items to
explain their ratings. Finally, participants completed an attention check.

5 Results and Conclusion

Data was collected from 48 participants, but 22 were removed from the ana-
lyzed data: 17 removed for not completing all questions and 5 for providing
responses suggesting they were bots. Data from the remaining 26 participants
was analyzed: 15 male, 11 female, mean age = 42 (SD = 11). Pre-test/post-test
gain scores were computed and analysed using Bayesian Paired Samples t-tests.
Strong evidence was found in favor of our alternative hypothesis (BF = 37.11).
These results show that perceived empathy was significantly higher relative to
the pre-test in the Related Followup condition (M = 104.19, SD = 159.48) than
in the Unrelated Followup condition (M =−51.81, SD = 115.18).

Our work highlights the needs of children in long-term hospitalization and
shows the effect communication strategy (Related Followup vs Unrelated Fol-
lowup) has on perceived empathy and its potential to facilitate robots’ emotional
support. Future work should validate these results within in-person child-robot
interactions as perceived empathy may differ in-person and with children.
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Abstract. In real-time multi-robot teleoperation, the operator faces a challenge
of maintaining sufficient awareness of all robots in a team. We propose a novel
approach to supporting operators, in instances where operators switch between
controlling or observing multiple robots in a team. Just as how cinema or video
games use visual and narrative techniques to support viewers when transitioning
between scenes, we argue that multi-robot teleoperation interfaces should like-
wise leverage this transition time to provide pertinent information. That is, when
switching to a new robot, the interface should take the opportunity to bring the
operator up to speed, highlighting what happened while they were away, what
current robot states are, and what specifics of the new robot being controlled are;
thus, supporting situational awareness. In this paper, we outline this agenda and
present our initial exploration and analysis of this informative visual transition.

Keywords: Teleoperation ·Multi-robot teleoperation · Control transition ·
Interface design

1 Introduction

Teleoperation is becoming increasingly common and affordable. The demand for multi-
robot teleoperation is increasing to reduce human hours in domains such as search and
rescue [6], military reconnaissance, or exploration [11].

One way to assist teleoperators to control multiple robots is to increase robot auton-
omy (i.e., reducing the required operator effort). However, even advanced autonomous
robots need the operator’s involvement, when it encounters unexpected circumstances
[7] or when it needs to make important final decisions [10].
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Fig. 1. An operator switches
control from one robot (left) to
another that needs help (right); an
operator must assess the current
situation, recent events, and pay
attention to the characteristics of the
new robot in comparison to the
previous.

When an operator takes control of a robot, they must
switch their focus and control to the robot. Before
this control transition, the operator may have been
controlling a different robot or working on other
tasks. For example, in Fig. 1, an operator, navigat-
ing a robot, receives a request from another; they
must switch their focus to new robot and survey the
situation before issuing any commands.

The control transition is cognitively taxing: an
operator must understand the new robot’s state, task
history, and remote environment around it as quickly
as possible (especially for time critical missions)
to send appropriate robot commands. We propose a
novel interface design paradigm in multi-robot tele-
operation to support the operator’s situation aware-
ness during this control transition: informative visual
transition. We propose to use the moment of visual
transition in multi-robot teleoperation to help the
operator quickly establish situation awareness with
the new robot.

Informative visual transition is commonly
employed in interface design even if not emphasized. The transition is highly employed
in film and related media to emphasize transition to a new scene, such as using slow
panning shots or dissolutions. On computing technologies, modern websites provide
animated scrolling instead of an instant page update to highlight the change [12]. In
multi-camera systems (including robot teleoperation), it is common to animate switch-
ing cameras to similarly emphasize the change [5], such as by shrinking one camera feed
while expanding the other [9] or by zooming out first and in to the robot’s location on
a map [1, 2]. Perhaps most similar to teleoperation, video games commonly use scene
changes to provide narrative or game-mechanic information using a loading screen (even
if not necessary for the game) to convey the transition or provide relevant information
during this time (Fig. 2). However, we do not yet have a clear understanding of how to
leverage the moment of robot control transition to similarly convey helpful information
to operators in teleoperation.

In this paper, we survey techniques from cinematography (transition and camera
techniques) and video games (information on loading screens) to inform possibilities
for multi-robot teleoperation.We summarize these techniques and discuss how theymay
be useful in multi-robot teleoperation, resulting in an initial design framework. Our work
provides novel vocabularies and keywords which are useful to discuss and design future
multi-robot teleoperation interfaces.
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2 Teleoperation Information: What the Operator Needs to Learn
During Control Transition

Fig. 2. Example loading screens. The left
provides a visual indicator when the player
moves from one place to another (Resident
Evil, Capcom, 1996). The right provides the
next stage’s context information (Medal of
Honor: Allied Assault, Electronic Arts,
2002).

We propose three important things that tele-
operation operators need to know when tran-
sitioning to controlling a new robot: empha-
sis that a transition is happening and that it
has completed (feedback), what recently hap-
pened to the robot and the environment (his-
tory), andwhat the current situation is (current
states, Fig. 3). We believe this breakdown is
useful for analyzing other work and propose
visual transitions indesigningmulti-robot tele-
operation interfaces.

Transition Notice— feedback in user inter-
faces help users comprehend the system’s sta-
tus [8]. The same applies to the control transi-
tion.With proper transition notice, the operator can understand that their control switches
from one robot to another and reduce mode error in results. For example, with the infor-
mativevisual transition, theoperator knows that theyare controlling aflyingdrone instead
of a ground robot (more degrees of freedom in movements). It applies in every situation.
When theoperator initiates the control transition, the feedbackhelpsknowing that the sys-
tem responds to their command. If the system initiates the control transition, the transition
notice helps the operator notice the transition and be ready for re-evaluating and paying
attention to changes.

Event History— during the control transition, teleoperation interfaces should convey the
eventhistoryof the remoteenvironment to theoperator so that theycanunderstand thepast
progress toward the robot’s task and set next plans. For example, by knowing the robot’s
path in search and rescue, the operator can focus on the area where the robot has not been
through.Theperceptionofcurrentsituationelements isanessentialpartofhavingsituation
awareness [3]. The same applies to the control transition. After the control transition, the
operator needs to have the perception of elements (the state information of the new robot
and theenvironmentaround it).The robot’seventhistoryalsohelpsunderstandinghowthe
robot ended up requesting the operator’s attention.

Current States— up-to-date states of the robot and the environment help the operator
determine what they can and should do next. The information regarding the surrounding
environmentprovidesahintoftherobot’sassignedtasks.Mobilerobotsmaintainalargeset
of internal states, including connectivity, battery level, inertial readings, gyroscope read-
ings, servopositions, andsoon. Inmulti-robot teleoperation,eachrobot’sdetailswith their
configuration or embodiment help the operator reduce mode error in issuing any com-
mands to the new robot. Since the information varies from robot to robot,wemust provide
at least some (if not all) of this information to the operator during the control transition in
multi-robot teleoperation.
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3 Initial Survey:VisualTransitionTechniques inOtherFields

Regarding teleoperation information (transition notice feedback, event history, and cur-
rent states), we are looking at the other fields to learn techniques to inform teleoperation
design.We openly explored other areas of media whichmake specific efforts to carefully
orient audiences to a new scene and situation to ensure that they can follow the story
arc. This resulted in us landing on film and video games.

Film scene transitions happen by blending the visual effects of the two scenes. There
are primarily seven effects and many varieties derived from them: cut, fade-in, dissolve,
white-in, wipe, white-out, fade-out [5]. Visual effects, however, are ambiguous in terms
of their meaning. For example, fading out after a character’s death conveys a different
feeling compared to fading out while people are laughing. However, as visual effects
convey transition in any case, we marked them as transition notice in our classification
and extended our survey to camera techniques which have deeper meaning in transition.

There aremany camera techniques and their improvements in films.With novel hard-
ware and knowledge, camera techniques keep evolving, and cinematographers introduce
new techniques. For this reason, it may not be practical to list all existing techniques. We
could not find academic publications regarding camera techniques in cinematography,
possibly because they aim toward practical applications. Therefore, we picked a list from
a web article (the title is Film Studies 101 … Freer & Gibbs [4]) as a part of our initial
survey. We grouped the camera techniques based on our understanding of their purpose
and effects and summarized in Appendix 1. We would like to note that some techniques
can be combined with others and used for other purposes.

To move from one scene to another in video games, due to the volume of video
game data (e.g., graphics texture, audio, etc.), loading the data from storage to working
memory and unloading the unnecessary data fromworking memory are inevitable tasks.
This transition can be used for players to keep their interest, follow the story arc, watch
aesthetic visual works, or simply wait for data loading. However, we could not find
academic references regarding loading screens in video games. Thus, we referenced
journal articles and opinion videos.1 We pick the video games that we know and classify
their loading screens based on their characteristics (Appendix 2).

4 Control Transition and Visual Transition Techniques

There are many visual transitions conveys useful information; our question is how we
can leverage them in multi-robot teleoperation interfaces. We connect the teleopera-
tion information for the operator during the control transition and visual techniques
from other fields (i.e., the initial design framework Fig. 3). Our focus is to introduce
other fields’ techniques and anchoring our future discussion of implementing our novel
idea, informative visual transition in multi-robot teleoperation. Despite our effort, we
admit that this is a proof-of-concept and requires further improvement. We leave the
improvement as future work and focus on the potential of our framework.

1 URL: (youtube.com/watch?v=RSV4rHCPJ0M), (youtube.com/watch?v=hhVT7ydgGxo),
(youtube.com/watch?v=hhVT7ydgGxo), and (gamesradar.com/the-secret-art-of-the-video-
game-loading-screen-and-why-they-wont-be-going-away-anytime-soon/).

http://www.youtube.com/watch%3Fv%3DRSV4rHCPJ0M
http://youtube.com/watch%3Fv%3DhhVT7ydgGxo
http://www.youtube.com/watch%3Fv%3DhhVT7ydgGxo
http://www.gamesradar.com/the-secret-art-of-the-video-game-loading-screen-and-why-they-wont-be-going-away-anytime-soon/
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Fig. 3. The three information types (upper half) for an operator during the control transition. By
comprehending the information, the operator can have enough awareness to issue any commands.
We can design informative visual transition using media techniques (bottom half) to support the
operator during the control transition in multi-robot teleoperation.

5 Conclusion

We discussed a novel interface design paradigm in multi-robot teleoperation to pro-
vide teleoperation information during the control transition. When the operator must
comprehend the rich information before issuing any commands, the informative visual
transition can help the operator speed up their understanding. This concept can be useful
in many situations: we can already find examples of informative visual transitions in var-
ious fields. We propose to leverage this for future multi-robot teleoperation interfaces to
improve the teleoperation experience and increase the operator’s task effectiveness. This
paper provides vocabularies and keywords that explain how and why camera techniques
and video games’ loading screens can be relevant and useful to design informative visual
transition. This is our initial step toward implementing the novel paradigm inmulti-robot
teleoperation interfaces, we leave the assignments as our future work.
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Appendix 1. Selective camera techniques and our classification
with short descriptions.
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Appendix 2. Video game loading screens and our classification based
on the information that the scene conveys.
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Abstract. Inspection and quality assurance is an important step in manufactur-
ing systems, including newly manufactured or re-manufactured parts. Currently,
there is a heavy reliance on the knowledge of experienced workers in interpret-
ing the data from inspection sensors and detecting anomalies. Using robots to
perform automated inspection becomes challenging in high-mix settings, where
the work-pieces to be inspected change frequently and require the robot to be
re-programmed. In this paper, we propose a human-robot collaboration approach,
where part of the work involving fixturing, sensor attachment and work-piece han-
dling is done by the human, whereas the data collection, processing and anomaly
detection is done autonomously using AI techniques. Our inspection algorithm
is a generic approach using dilated convolutional neural network (DCNN) based
multivariate time series predictive analytics. We demonstrate our approach on a
gearbox inspection application, where we use time-series data streams captured
from vibration sensors mounted on the gearbox. We have conducted experiments
to demonstrate the effectiveness of the proposed DCNN solution for anomaly
detection in a human robot collaborative assembly system.

Keywords: Anomaly detection · Human-robot collaboration · Time series
forecasting · Deep learning · Dilated CNN

1 Introduction

Humans can perceive and interact with our environments naturally and have the ability
to adapt to varying situations and surroundings. It is generally challenging to empower a
robot with such capabilities. Recent advances in robot technologies are enabling physical
collaboration, and applications where tasks can be shared between the human and robot.
Hence, their respective complementary strengths can be leveraged, e.g., the human can
perform tasks requiring dexterity and adaptability whereas the robot can handle tasks
requiring higher strength, accuracy, repeatability or memory.

Inspection and anomaly detection is important for industrial manufacturing pro-
cesses. Anomalies normally refer to events or machine operating status which deviate
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from a normal situation in the robot system [1]. In general, there are two data-driven
solutions to analyze the historical data for anomaly detection: (1) traditional statistical
machine learning (ML) methods, such as support vector machine (SVM) [3–6, 8], and
(2) deep learning (DL) solutions [11]. Overall, traditional ML models do not perform
well for large, high dimensional data with high noise. Advanced DL techniques pro-
vide a promising means, as they can tackle heterogeneous big data and identify hidden
insights on multivariate time series datasets [6]. Long short-term memory (LSTM) is a
well-known approach for time series forecasting and anomaly detection [7]. However,
LSTMs are prone to overfitting and require high memory-bandwidth and high training
time. CNN can be effectively applied for time series predictive analysis and anomaly
detection [10–12]. [13] proposed a hybrid forecasting framework where spatiotemporal
features are extracted using CNN and then fed into a LSTMmodel. Oord et al. proposed
an efficient CNN variant, i.e., dilated Convolutional Neural Networks (DCNN), which
enables to capture longer historical dependencies using dilated convolutional layers of
varied dimensions [14]. It can capture long-range input information with less param-
eters and handle temporal flow with causal connection structures with better training
efficiency and forecasting performance [2, 14].

We propose a unified solution using DCNN [2] based multivariate time series pre-
dictive analytics for anomaly detection in manufacturing processes. The solutions can
handle various heterogeneous data captured from different resources. DCNN has shown
promising performance in handling multivariate time series, as it can capture long-term
dependencies with fewer neural network parameters by dilated and causal connection
structures. If the reconstruction loss for the current time series sample exceeds a thresh-
old, an unexpected pattern is identified and labelled as an anomaly. Our contributions in
this paper are mainly:

(1) To the best of our knowledge, this is the first time DCNN is used for anomaly
detection in human-robot collaborative settings.

(2) We developed a unified framework to analyze heterogeneous data using multivari-
ate time series predictive analysis for anomaly detection. This can be extended to
generic anomaly detection scenarios in manufacturing.

2 Methodology

Figure 1 shows the proposed unified framework architecture for anomaly detection in
robot human collaborative operating environments. It includes two major components,
i.e., a data acquisition and a computational model. To detect anomalies, various data
resources can be captured into the framework to identify potential unexpected situations,
including the physical data from the robot itself and data captured from sensors placed
in the operating environments. A dilated convolution is a convolution where the kernel
is applied over an area larger than its length for wider receptive field, by skipping input
values. Equation (1) is the standard convolution widely used in CNN, while Eq. (2)
is the dilated CNN (DCNN), where F is the input and k is the kernel. It effectively
allows the network to operate on a coarser scale than a normal convolution [14]. The
core component of the DCNN is a stack of dilated causal convolutional layers. Figure 2
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depicts dilated causal convolutions for dilations 1, 2, 4, and 8, respectively. It can be
observed that the summation in Eq. (2) is s+ lt = pmeaning that some connections will
be skipped during convolution for extracting abstract-level features. This significantly
reduces the training weights without sacrificing its performance.

Fig. 1. Architecture for anomaly detection using DCNN.

Fig. 2. A stack of dilated convolutional layers with dilations 1, 2, 4, and 8 [14].

(F ∗ k)(p) = (x + a)n =
∑

s+t=p
F(s)k(t) (1)

(F ∗ k)(p) = (x + a)n =
∑

s+lt=p
F(s)k(t) (2)

In our anomaly detection algorithm, we first learn a DCNN model to map the input
data captured from the system into a hidden representation, then reconstruct the original
input from this internal representation and finally obtain the maximal loss as δ on the
healthy testing data. In this paper, we use Mean Absolute Percentage Error (MAPE
[2]), which is the most common performance metric for calculating errors, to calculate
∅score. If ∅score > δ, it is considered an anomaly. To train a forecasting model, we
need to extract the training pairs 〈x, y〉 from the historical data captured under healthy
conditions, where x is the vector of inputs and y is the target value.

3 Experiments

In our experiment (see Fig. 3), we monitor the condition of a gearbox when it is powered
by a motor and detect if any anomaly occurs. The UR5 robot places the motor on the
gearbox shaft for coupling. A human operator subsequently tightens the coupling to
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ensure a tight contact. The motor is then powered up and drives the gearbox shaft. Our
DAQ system consists of a Dytran 3273A1 triaxial accelerometer, a DAQ measurement
device (National Instruments CompactDAQchassis) and LabVIEWsoftware to integrate
our data collection and analysis framework.

Fig. 3. Our experimental set up

3.1 Experimental Results

Wefirst collected datasets under healthy conditions (�train,�test) for training ourDCNN
model and calculated the anomaly score δ. Next, we purposely removed critical parts
to induce a fault condition and repeated the data collection. We computed the MAPE
between the predictions from our DCNNmodel and actual observations to detect anoma-
lies. Table 1 shows the parameter settings used. To ensure consistency as well as to
obtain multiple data points, each experiment was repeated 3 times under motor speeds
of 500RPM (see Fig. 4).

Table 1. Parameter settings in the implementation.

Parameters Hidden layer size Kernel size Batch size Dropout Epoch

Values 16 2 32 0.02 50

Fig. 4. Vibration datasets for heathy (left) and faulty (right) conditions (speed = 500RPM)

Figure 5 demonstrates the effectiveness of the DCNN forecastingmodel for anomaly
detection. We have also conducted comparisons between DCNN and other commonly
used DL methods, e.g., LSTM, GRU and CNN-LSTM (see Table 2). It can be observed
that DCNNs with 3 and 4 layers have much better performance than other DL methods
in term of both the MAPE and training time.
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Fig. 5. Forecasting prediction for heathy (left) and faulty (right) conditions (speed = 500RPM).

Table 2. Performance comparison with other DL methods.

Methods 3-layer
DCNN

4-layer
DCNN

1-layer
LSTM

2-layer
LSTM

CNN-LSTM 3-layerGRU

MAPE 0.27 0.29 0.82 0.62 1.05 0.46

Training
timings (s)

200 250 950 2050 4250 3600

4 Conclusion

We proposed a generic framework for anomaly detection in human-robot collaborative
environments. We used efficient DCNN based multivariate time series forecasting to
calculate the deviation from the healthy and faulty conditions for identifying anomalies.
We further designed a robot-assisted collaborative inspection scenario and conducted
experiments to demonstrate the effectiveness of the proposed solution.

Acknowledgement. This work was supported by Agency for Science, Technology and Research
Human-Centric Programme: Human-Robot Collaborative AI for Advanced Manufacturing and
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Abstract. Personalization and localization are essential when developing social
robots for different sectors, including education, industry, healthcare or restau-
rants. This requires adjusting the robot’s behavior to an individual’s needs, prefer-
ences, or personality when referring to personalization or the social convention or
country’s culture when referring to localization. Current literature presents differ-
ent models that enable personalization and localization, each with its advantages
and drawbacks. This work aims to help researchers in social robotics by reviewing
and analyzing different papers in this domain. We focus our review on exploring
various technical methods used to make decisions and adapt social robots’ non-
verbal and verbal skills, including the state-of-the-art techniques in the sector of
artificial intelligence.

Keywords: Human-robot interaction · Social robotics · Artificial intelligence

1 Introduction

The study of human-robot interaction and social robotics refers to the development of
robots that can help people in their daily lives and adapt their social behaviors to each
user’s needs, preferences and personality. In order to have such technology, we need
systems that can adapt to their environments and the specific actors within them. The
purpose of this paper is, therefore, to review technical methods that could enable such
technology. We categorize our review into two aspects: personalization and localization.
A personalized robot is defined by its ability to adapt its skills to a particular user or a
set of users to provide the necessary help [1]. It can draw on different elements from the
user (e.g., needs or personality), to then appropriately adapt its behavior. Localization
refers to the adaptation of a product to a local country or region. It integrates the notion
of ‘culture’ by defining a group of individuals from a country by the different social
rules established between them, e.g., how people greet one another or prefer particular
products to be designed. The above concepts encourage us to consider which techniques
to use when integrating these abilities for a social robot. More precisely, we need to
analyze the current state-of-art methods available in the literature to improve social
robots.
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2 Methods for Adaptation, Personalization and Localization

In order for robots to be deployed in the ‘wild’, they need to make decisions according
to their known or unknown environments, and generate an acceptable behavior.

2.1 Decision-Making: Rule-Based Systems

Rule-based methods are related to human-crafted or curated rule sets, primarily known
in the literature as Rules-Based Systems (RBS), deined by four components.

Knowledge Base: The knowledge base contains rules and acts as the domain of knowl-
edge for the system. These pieces of information are essential when developing adaptive
social robots because they provide further information about the environments and the
elements to which they will interact. For example, in [2], the authors present a social
service mobile robot in a restaurant called CENTRIA, that integrated a database about
the restaurant’s menu and meals chosen by customers.

Temporary Working Memory: Temporary working memory can also be integrated
into a RBS, wherein partial information acquired by the robot can be used to generate
a behavior or complete a task during an interaction. This information might refer to
a context or an event to describe the current situation needed by other components to
generate the appropriate behavior output [3].

Knowledge Acquisition: When the system repeatedly encounters a situation, the use of
a long-term memory might be helpful to store these pieces of knowledge. For example,
Kanda et al. [4] propose a social robot in a shopping mall that is able to provide guiding
services to users. It also advertises different shops based on user’s preferences by using a
pre-coded episodic memory module that enables the robot to record different customers’
information and recall them (e.g., preferences and names).

Inference Engine: The inference engine is responsible for interpreting the rules and
taking action accordingly. In doing so, it employs information from the three memory
modules described above, to control its outputs. Trees and graphs are most frequently
used to model these rules and the links between them. This is described by McColl et al.
[5] who modelled their robot’s decisions by using a rule-based tree.

2.2 Decision-Making: Artificial Intelligence

In contrast, AI-based methods use automatic rule inference to make decisions, such as
machine learning (ML).

Machine Learning Methods: The current literature distinguishes between different
learning methods. Whether speaking of ML or deep learning (DL), these AI methods
employ algorithms building a mathematical model based on sample data to make predic-
tions or decisions without being explicitly programmed to do so. Many examples of ML
models used in systems exist [6–11]. Specifically, in [6], the authors employ a Support
Vector Machine to predict the user’s personality based on utterances.
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Reinforcement Learning Methods: Reinforcement Learning (RL) is another branch
of ML and permits an agent to take actions in an environment to maximize the notion of
cumulative reward.The agent learns to achieve a goal in anuncertain, potentially complex
environment. The environment is typically stated in the form of a Markov decision
process (MDP) because many algorithms utilize dynamic programming techniques [12].
For example, Keizer et al. [7] use two MDP to model the actions of a bartender robot
whose role is to serve drinks to one person, or a group of customers.

Other Methods: Other probabilistic methods have been integrated into social robots
to develop their social skills. For example, Sekmen and Challa [13] introduced a mobile
robot that could learn and propose the preferred beverages of the people it interacts with
by employing a Bayesian Network- a graphical model for encoding knowledge in expert
systems.

2.3 Methods for Behavior Generation

In addition to making decisions, social robots also need to adopt and employ specific
social skills to develop appropriate behaviors accepted by users. This ability is possible
by adopting a robot’s behavior to non-verbal and verbal social cues or making the robot
learn those social skills. We further discuss some of these social signals.

Facial Expressions: Facial expressions are defined in the literature as themovements of
the facialmuscles that are theorized to convey an individual’s emotional state to observers
[14]. Technological interpretation of facial expressions mainly use methods related to
Computer Vision and employ state-of-the-art models that prove their performance, such
as convolutional neural networks. Applications arewide-ranging, including personalized
identity recognition [10, 13] or determining a user’s engagement [7, 8, 11].

Body Gestures: Body gestures are also indicators of the human social state and can
affect user’s subjective reactions to the robot [15]. For example, the Behavior Expression
Animation Toolkit [6, 16] is a software that generates a synchronized set of gestures
according to input text (e.g., robot’s speech). Other alternatives would enable the robot
to learn gestures directly from human experiences by using ML models [17].

Speech: Verbal cues are considered equally essential since they are the primary com-
munication resource humans use and are crucial to facilitating mutual understanding
and conveying important information. Due to the task’s complexity, numerous systems
use human operators to control a robot’s speech [2, 4, 18] or RBS [19]. Some employ
external software, such as AIML [13, 20], an XML dialect for creating natural language
software agents, often combined with a natural language generator. One of them is
PERSONAGE, a tool that adapts the generated text to the personality dimensions of the
interacting human [21]. Lately, several systems have turned to chatbots [11], demonstrat-
ing their usefulness for Natural Language Understanding, though their results remain
more uncertain than RBS or remote human control.



766 M. Hellou et al.

Interaction: Social robots need to combine the above methods to generate accurate
behaviors by implementing an overall architecture responsible for binding the robot’s
modules and establishing communication with its sensors. In this case, most papers
presented in the current review use the Robotics Operating System (ROS). ROS is a
flexible framework consisting of a collection of tools, libraries, and applications to create
complex and robust robot behaviors. For example, large available libraries can help to
control the robot’s navigation and planning [10, 11, 19, 22], which employ state-of-the-
art Simultaneous Localization and Mapping methods. ROS also allows developers to
build and share their own tools (e.g., behaviors for social robots [3]).

3 Conclusion

This review has presented several papers on social robots, and described how notions
of personalization, localization, and adaptation may be generated. In order to support
our review, we depicted a list of methods for social robots concerning decision-making
and how to generate appropriate social behaviors. In decision-making, it was essential
to define algorithms from the perspective of handcrafted rules with RBS. While we
can easily control their outputs, these models require ongoing developers’ work that
can prove to be complex. On the other hand, models may integrate new AI concepts,
such as RL or ML, whereby mathematical models determine outputs. Even though their
performance is remarkable, it is still early to be sure of their functioning, and there
are still unexpected results. Regardless of the technique employed, it is important to
note that an effective social robot needs to adopt social skills similar to humans. The
list of four terms (facial expressions, body gestures, speech, and interactions) is non-
exhaustive but covers many possible elements that might influence a robot’s behavior.
We have identified some existing software and frameworks that can be used, to achieve
appropriate social human-robot interaction and assist future researchers in their design
work of personalized and localized social service robots.

Acknowledgment. The project was supported by the Institute for Information& communications
Technology Promotion (IITP) grant funded by the Korea government (MSIP) (No. 2020–0-00842,
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Abstract. We investigate the effectiveness of robot-generated mixed
reality gestures. Our findings demonstrate how these gestures increase
user effectiveness by decreasing user response time, and that robots can
pair long referring expressions with mixed reality gestures without cog-
nitively overloading users.

1 Introduction

HRI researchers have sought to enable robots to understand [4] and generate [5,6]
deictic gestures as humans do. But even for armed robots, traditional deictic
gestures have limitations. In search and rescue, for example, robots may need
to communicate about hard-to-describe and/or highly ambiguous referents. We
present a mixed reality solution that enables robots to generate effective mixed
reality deictic gestures (MRDGs) without morphological requirements.

Per Hirshfield et al. [2], the tradeoffs between language and visual gesture
may be highly sensitive to teammates’ level and type of cognitive load. It may
not be advantageous to rely on visual communication in contexts with high visual
load, or to rely on linguistic communication in contexts with high auditory or
working memory load. These intuitions are motivated by prior theoretical work
on human information processing, including Wickens’ Multiple Resource Theory
(MRT) [7,8]. In this paper, we thus also present the first exploration of mixed
reality communication under different levels and types of cognitive load.

2 Experiment

We experimentally assessed whether different robot communication styles
improve user task performance under four conditions: high visual perceptual
load, high auditory perceptual load, high working memory load, and low overall
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Fig. 1. Participants play a mixed reality game using the Microsoft HoloLens. The
Pepper robot interacts with them from behind a table. (Color figure online)

load. On the assumption that there are different perceptual resources, and that
MRDGs employ visual-spatial resources in accordance to MRT, we specifically
tested four hypotheses, which formalize the intuitions of Hirshfield et al. [2].

H1 Users under high visual perceptual load will perform quickest and most
accurately when robots use complex natural language without MRDGs.

H2 Users under high auditory perceptual load will perform quickest and most
accurately when robots use MRDGs without using complex natural language.

H3 Users under high working memory load will perform quickest and most
accurately when robots use MRDGs without using complex natural language.

H4 Users under low overall load will perform quickest and most accurately
when robots use MRDGs paired with complex natural language.

2.1 Experimental Context

Participants interacted with a language-capable robot while wearing the
Microsoft HoloLens over a series of trials, with robot communication style and
user cognitive load varied between trials. We employed a dual-task paradigm in
a tabletop pick-and-place task. Participants view the primary task through the
Microsoft HoloLens, allowing them to see virtual bins overlaid over mixed reality
fiducial markers, and a panel of blocks that changes every few seconds (Fig. 1).
The Pepper robot is positioned behind the table, ready to interact.

2.2 Experimental Task

Primary Task: The user’s primary task is to watch the block panel for a
target block: a red cube, red sphere, red cylinder, yellow cube, yellow sphere,
yellow cylinder, green cube, green sphere, or green cylinder . These blocks were
formed by combining three colors with three shapes. When participants see the
target block, their task is to place it into any of a particular set of bins. For
example, the robot might tell a user that whenever they see a red cube they
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should place it in bins two or three. Two factors increase the complexity of this
primary task. First, at every point during the task, one random bin is unavailable
and greyed out. This forces users to remember all target bins. Second, to create
a demanding auditory component to the primary task, the user hears a series of
syllables playing in the task background, is given a target syllable to look out
for, and is told that whenever they hear this syllable, the target and non-target
bins are switched.

Secondary Task: Three times per experiment trial, the participant encounters
a secondary task, in which the robot interrupts with a new request to move a
block to a bin. Depending on trial condition, the robot’s spoken request may be
accompanied by a mixed reality gesture.

2.3 Experimental Design

We used a Latin square counterbalanced design with two within-subjects factors:
Cognitive Load (4 loads) and Communication Style (3 styles).

Cognitive Load
Cognitive load was manipulated through our primary task. Following Beck and
Lavie [3], we manipulated cognitive load by jointly manipulating memory con-
straints and target/distractor discriminability, producing four load profiles: (1)
all load low, (2) high working memory load, (3) high visual perceptual load, and
(4) high auditory perceptual load.

Working Memory Load: In the high working memory load condition, partic-
ipants had to remember the identities of three out of six visible bins, producing
a memory load of seven items: three target bins, target block color and shape,
and target syllable consonant and vowel. In all other conditions, participants
only had to remember the identities of two out of four visible bins, producing a
total memory load of six items.

Visual Perceptual Load: In the high visual perceptual load condition, the
target block was always difficult to discriminate, sharing one common property
with all distractors. For example, if the target block was a red cube, all distractors
were red or cubes (but not both). In the low visual perceptual load condition, the
target block was always easy to discriminate, sharing no common properties with
any distractors. For example, if the target block was a red cube, no distractors
were red or cubes.

Auditory Perceptual Load: Auditory perceptual load conditions followed a
similar structure to visual perceptual load conditions. For example, if the target
syllable was kah, in the high load condition all distractors started with k or end
with ah (but not both), and in the low load condition no distractors started with
k or end with ah.
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Communication Style
Communication style was manipulated through our secondary task, following
Williams et al. [9]: (1) In blocks using complex language (CL), the robot
referred to objects using full referring expressions needed to disambiguate those
objects (e.g., “the red sphere”). (2) In blocks using MR + CL, the robot
referred to objects using full referring expressions paired with a MRDG (e.g., an
arrow drawn over the red sphere). (3) In blocks using MR + simple language
(SL), the robot referred to objects using minimal referring expressions (e.g.,
“that block”), paired with a MRDG. We didn’t examine SL without MR, as that
communication style typically does not enable referent disambiguation, requiring
the user to ask for clarification or guess at random.

2.4 Measures

Accuracy was measured for both tasks by logging which objects participants
clicked on, determining whether these were intended by the task or robot, and
whether they were placed in the correct bins.

Response time (RT) was measured by logging when participants interacted
with blocks and bins. In a primary task, when participants see a target block,
their task is to pick-and-place it into a particular set of bins. Thus, RT was mea-
sured as delay between when the target block is displayed and when placement
is completed. In the secondary task, RT was measured as time between start of
Pepper’s utterance and placement of the secondary target block.

Perceived mental workload was measured using the NASA TLX [1].

Perceived communicative effectiveness was measured using the modified
Gesture Perception Scale [6] employed by Williams et al. [9], which assesses
effectiveness, helpfulness, and appropriateness of communication.

2.5 Participants and Procedure

36 participants were recruited from Mines (31 M, 5 F), aged 18–32. After pro-
viding informed consent and completing demographic and visual capability sur-
veys, participants were introduced to the task through verbal instruction and
an interactive tutorial. Participants then engaged in the twelve (Latin square
counterbalanced) trials formed by combining the four cognitive load conditions
and the three communication style conditions, with surveys after each block.

3 Results

Bayesian repeated measures analyses of variance (RM-ANOVA) with Bayes
Inclusion Factor analyses were performed, using communication style and cog-
nitive load as random factors. A log transformation was applied to all RT data.

Response Time: We found strong evidence against effects on primary task RT
(BFs < 0.028), but strong evidence for an effect of communication style (BFIncl
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= 17.86) on secondary task RT. Post-hoc analysis revealed extreme evidence (BF
= 601.46) for a difference in RT between CL (μ = 2.10, σ = 0.33; untransformed
μ = 8.88 s, σ = 4.07 s) and MR + CL (μ = 1.96, σ = 0.32; untransformed
μ = 7.78, σ = 3.88), weak evidence (BF = 1.55) for a difference in RT between
CL and MR + SL (μ = 2.01, σ = 0.44; untransformed μ = 8.76, σ = 6.20), and
moderate evidence (BF = 0.20) against a difference between MR + CL and MR
+ SL.

Accuracy: Strong evidence was found against effects on primary or secondary
task accuracy (All BFsIncl < 0.033 for an effect). Mean primary task accuracy
was 0.71 (σ = 0.26). Mean secondary task accuracy was 0.98 (σ = 0.07).

Perceived Mental Workload: Strong evidence was found against effects on
perceived mental workload (BFIncl between 0.006 and 0.040 in favor of an effect).
Most participants’ perceived workload indicated “medium load”.

Perceived Communicative Effectiveness: Anecdotal to strong evidence
was found against any effects on perceived communicative effectiveness (BFIncl

between 0.05 and 0.12 in favor of an effect on all questions). Participants’ per-
ceived communicative effectiveness had a mean of 5.61 out of 7 (σ = 1.21).

4 Discussion and Conclusion

We examined the effectiveness of different combinations of language and MRDG
under different types of mental workload, through a mixed-reality robotics labo-
ratory experiment. Our results suggest the primary benefit of MRDGs in robot
communication is increasing secondary task speed by reducing visual search time
(especially when paired with complex language) regardless of mental workload.
However, our results failed to support our hypotheses. While we expected dif-
ferences between communication styles based on workload, we observed that
visual augmentations may always be helpful for a secondary task, regardless
of workload. Furthermore, we found no effects on perceived workload or per-
ceived effectiveness. The differences in participants’ own secondary RTs might
have been too small for participants to notice, or participants may have only
considered their primary task when reporting their perceptions.
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Abstract. Companion robots are social robots often resembling animals with
potential wellbeing benefits for older adults. However, some such devices have
failed possibly through inappropriate design. Method: Questionnaires were com-
pleted by 113 participants at nine health and care events. Participants were pre-
dominantly relevant professionals. Participants approached our interaction sta-
tion, interacted with eight companion robots or alternatives, then completed ques-
tionnaires; ranking aesthetic, behaviour, technology, feel and interaction fea-
tures and estimating affordable price. Results: Features ranked highly were:
interactive response to vocalisations and touch, huggable size, soft fur, variety
of behaviours/sounds, realistic movements, eye contact with large cute eyes,
being realistic, familiar, easy to use and possessing simulated warmth. Partici-
pants thought−£225 was affordable. Conclusion: We contribute priority features
for stakeholders to inform future developments. Contrasting unfamiliar embod-
iment of some devices, stakeholders support familiar, realistic aesthetics, with
implications for enhanced acceptability, adoption and more consistent wellbeing
outcomes.

1 Introduction

Health and social care (H&SC) is experiencing increasing pressure and demand world-
wide, partly caused by aging and dementia [1]. Assistive robotics to support H&SC has
gathered research interest [2], including robots for companionship. Among these, robot
“pets” are robots designed congruent with animal aesthetics and behaviours [2]. The
most well researched example is Paro, the robot seal [2]. Research has shown potential
wellbeing benefits for older adults, people with dementia and stakeholders in their care,
including for; loneliness, depression, agitation and quality of life [2]. Other examples
include NeCoRo, AIBO, iCat [2], and comparable ‘smart toys,’ such as the Joy for All
(JfA) cats and dogs [3]. Despite encouraging results and increasing interest, a num-
ber of devices in this sector have failed, and literature still lacks agreement on how to
best design such robots. The importance of design in overall platform success cannot
be overstated: appropriate design promotes acceptability among end users [4], while
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inappropriate design could lead to device disuse or no expected benefits [5], proving
costly to society. In this context, research previously demonstrated significant differ-
ences between older adults (as end-users) and roboticists (as developers) in perceptions
towards suitable robot pet design for older people [3]. Aesthetic and behavioural fea-
tures are likely to impact device acceptability and thus ultimately use [5]. Design and
embodiment continues to be a research topic without definitive results. This paper helps
address the situation.

2 Methods

2.1 Setting and Procedure

Nine interaction stations at: eHealth, dementia, aging, psychiatry conferences or health-
professional meetings. Attendees interacted with devices (Fig. 1), then completed
consent and questionnaires. A University of Plymouth Ethics Committee granted
approval.

Fig. 1. Devices. From left, Paro,Miro, Pleo, JfA dog, JfA cat, Furby, Perfect Petz dog, Hedgehog.

2.2 Data Collection

Questionnaires gathered demographics, and established i) priority design features, ii)
preferred animal for target audience, iii) most appealing eyes, iv) most appropriate size,
v) most appropriate volume and frequency of vocalisations, vi) reason for preferred
animal, vii) reason for most appealing eyes and viii) realistic price. To establish i) unique
questionnaires included a specific combination of 10 features (informed by computer
script to ensure comparable frequency), picked from 42 features in Table 1. The five
categories were based on discordance in previous literature. The 42 features were a
combination of those previously reported [6], and additional features from our previous
study (reported elsewhere) on perceptions of care home residents, relatives and staff
after interaction with the devices. To establish ii)-v) participants selected from a row of
pictures under the question. For vi) – viii), free text boxes were used.
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Table 1. Five design categories showing 42 features of interest included on questionnaires.

Category Features of interest for each design category

Feel Soft pettable fur; Huggable (right size to cuddle); Portable (ease to take with
you); Solid/robust (can withstand rough handling); Realistic animal weight;
Simulated warm feeling; Hard/plastic shell (eg. Pleo or Miro); Simulated
breathing; Simulated heartbeat

Behaviour Animal-appropriate responses/sounds (eg. Dog barking); Variety of
behaviours and sounds; Active; Looks at user (animal provides eye
contact/attention); Can talk to user (human speech); Vocalisations not too
loud; Playful; Facial movements/expressions; Waggy tail; Animal
appropriate behaviours

Aesthetics Looks like a real life pet; Young or innocent looking; Nice/not scary;
Cartoonish appearance; Flash/draws attention; Mythical animal; Cute eyes;
Familiar animal (eg. Dog/cat); Unfamiliar animal; Cute; Customisable
look/animal for each user

Technology Mechanical parts are noiseless; Realistic movements (fluent/natural);
Adaptable (shut functions on/off); Autonomous system; Easy to use; Fur is
detachable (to be washed); Long battery life; Cleanable

Interaction type Interactive: Obeys some commands (eg. Sit/paw); Interactive: Looks at me or
vocalises when I am near; Interactive: Looks at me or vocalises when I stroke
or touch it; Interactive: Looks at me or vocalises when I talk to it

2.3 Data Analysis

To explore i) priority design features, establishing an exact ranking of all items is com-
putationally and prohibitively expensive. For approximate ranking, we used a variant of
the Condorcet method [7]: for each feature, we counted how often it is ranked higher
than other features across all questionnaires. For data on ii) preferred animal, iii) most
appealing eyes, iv) most appropriate size, v) vocalisations and viii) price, we report
descriptive statistics, supplemented by summary free text for vi) and vii).

3 Results

3.1 Participants

In total, 113 questionnaires were completed, mainly by H&SC professionals within
gerontology, dementia, psychiatry and nursing (n= 68), although others participated (9
researchers, 5 informal carers, 24 other, 7 missing). Participants included 87 females,
17 males (9 missing), average age was 48.1 (range = 18–75, SD = 14.2).

3.2 Priority Design Features

The most important features were interactivity (in response to talking to or touching
the robot), being the right size to hug, having soft fur, a variety of behaviours/sounds,
realistic movement and providing eye contact (Table 2).
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Table 2. i) Priority features in order of approximate ranking

Ranking
(Scores)

42 Features listed in order of importance

Highly rated
1–15
(190–130)

Interactive: Looks at me or vocalises when I talk to it; Huggable (right size to
cuddle); Soft pettable fur; Variety of behaviours/sounds; Realistic movements
(fluent/natural); Interactive: Looks at me or vocalises when I stroke or touch
it; Looks at user (provides eye contact/attention); Easy to use; Looks like a
real life pet; Simulated warm feeling; Nice/not scary; Animal appropriate
sounds; Familiar animal; Facial movements/expressions; Cleanable

Middle ranking
16–29
(127–82)

Active; Autonomous system (works on its own); Interactive: Looks at me or
vocalises when I am near; Long battery life; Animal appropriate behaviours;
Cute; Cute eyes; Waggy tail; Portable (easy to take with you); Vocalisations
not too loud; Playful; Adaptable (switch functions on/off); Solid/robust (can
withstand rough handling); Young/innocent looking

Low rated
30–42
(41–23)

Interactive: Obeys some commands (eg. Sit/paw); Simulated breathing;
Simulated heart beat; Fur detachable (to be washed); Realistic animal weight;
Customisable look/animal for each user; Can talk to user (human speech);
Mechanical parts are noiseless; Flashy/Draws attention; Unfamiliar animal;
Mythical animal; Cartoonish appearance; Hard/plastic shell

The preferred device was JfA cat, followed by JfA dog, then Paro (Fig. 2). The
least preferred options were Miro, knitted Hedgehog and Furby. Frequent preference
reasons were being realistic, soft, cuddly, lifelike and familiar. JfA cat reportedly had
most appropriate vocalisations while Paro had most appealing eyes, (being large, cute,
having eyelashes). Stakeholders felt JfA cat (~39 cm – 26 cm) was most appropriately
sized (Fig. 2). (Some missing values: 15 to preference, 23 to eyes, 36 to size, 27 to
vocalisations).

Fig. 2. Percentage of responders selecting each animal for ii), iii), iv), v)
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3.3 Price

For viii) reasonable price, an example range was provided from £10−£5000 for devices
on display. For participants who responded with a range (e.g. £100−£150), we took the
highest figure as the maximum they consider appropriate. The average price participants
felt was appropriate was £226.30 (SD = 245.80, range = £25−£1000).

4 Discussion and Conclusion

Although participants were generally H&SC professionals, the questionnaire features
were derived from prior work with end-users, care staff and family members, and com-
bined with those reported by [6]. Thus, these results provide collective insights from
key stakeholders in the real-world adoption of companion robots, having implications
for future developments, particularly considering importance of user-centred design [3].
Supporting [6], our relatively large sample confirmed the desire for soft fur for com-
panion robot shells, although care must be taken in cleaning [8]. Results also strongly
support familiar-realistic animal embodiment. Our stakeholders scored ‘looks like a real
life pet’ and ‘familiar animal’ within the top 15 most important features, and top three
specific to aesthetics. In contrast, ‘unfamiliar animal,’ ‘mythical’ and ‘cartoonish’ all
received low priority. Participants also selected devices with familiar embodiment as
preferable with older adults in mind (JfA cat/dog), and reported realistic, life-like and
familiar as free-text reasons. The continued support for familiar animal embodiment has
implications for robot design and selection of devices for real-world implementation,
and perhaps explains some variation in response to unfamiliar Paro [1]. Research into
these alternate devices may demonstrate more consistent wellbeing outcomes than Paro
[1], should a familiar design be more acceptable to intended users.

Our stakeholders suggested a suitable price far below the £5000 for Paro, at−£226.
This result has implications for developers. This study allowed for prioritisation of
features to assist in keeping devices affordable. The most important factor was reported
as variety of behaviours/sounds. Eye contact also ranked well. Paro’s eyes were seen as
most appealing, for being large, having eyelashes, blinking and making eye contact.

A further contribution of this paper is prioritisation of interaction type. Previouswork
[3], demonstrated sophisticated interactivity of Paro was undervalued by older adults.
Our stakeholders felt it most important devices respond to user’s vocalisations, followed
by touch. Alternative interaction methods could potentially be neglected in favour of
affordability. In contrast to previous work [3], where older adults valued inclusion of
human speech from companion robots, it was not perceived as important to stakehold-
ers here. This may reflect a difference between stakeholder categories of end-user and
professional. Older adults may perceive an unmet need undervalued by professionals;
for more verbal interaction. Regarding size, stakeholders previously reported to us Paro
was too large for older resident’s laps. These results suggest the most appropriate size is
best reflected in JfA cat, which is considerably smaller and lighter. Questionnaires also
explored life-simulation features, with simulated warmth as stakeholder’s priority in this
area. These results have important implications, considering aesthetic and behavioural
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robot design can impact acceptability and use [4, 5], and the health and wellbeing poten-
tials such devices possess [2]. Limitations include reliance on immediate perceptions of
stakeholders, without longer, real-world observations.

Conclusions. Our study provides prioritisation of features, whilst adhering to reported
affordability of –£226 for future designs, which could include; interaction in response
to vocalisations/touch, huggable size, soft fur, variety of behaviours/sounds, realistic
movements, providing eye contact, large/cute eyes, being realistic, familiar, easy to use
and possessing simulated warmth.
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Abstract. In this research, we developed a cost-effective automated guided vehi-
cle for small clothing production workshops that ordinary workers in such work-
places can operate. We acquired workers’ opinions in multiple workshops about
using the robots (with some social capabilities) and working alongside them. We
performed the tests in China and Iran to investigate and compare different prefer-
ences and priorities in two countries with different cultural backgrounds. We used
the UTAUT questionnaire and conducted two-way ANOVA tests considering two
independent factors: Nationality and Gender. The results showed that workers in
Iran and China have relatively similar expectations from a social AGV, with no
contrast in the mean score of women and men. We also observed that Iranian par-
ticipants have fewer concerns about the safety of working around the robot, which
may be due to greater exposure of Chinese workers to automated robots and the
potential dangers of working in the same environment with the robot. Moreover,
we observed that female workers of both nationalities feel they need more help
to work with the robots than male workers. We hope that the results presented in
this cross-cultural study assists in developing an understanding of the attitude of
workers in small workshops toward automated transportation.

Keywords: Smart transportation · Cross-cultural study · Attitude toward AGVs ·
Small and medium-sized workshops · Robot acceptance

1 Introduction

In this study, we performed a cross-cultural investigation of workers’ responses toward
transportation robots (with some social capabilities) in China and Iran. We first learned
the workers’ opinions about a few robots designs and then built two identical samples
according to their feedback and preferences. The two samples used to investigate the
attitude of the workers toward the fabricated robot in Iran and China [1]. Afterward,
96 participants observed the performance of the fabricated robots and were asked to fill
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out a questionnaire, including 30 questions in 6 categories (mostly extracted from the
UTAUT questionnaire).

As the first step, we designed four different versions of the robot and asked both
the Chinese and Iranian workers’ opinions about their preferences. At this stage, we
sampled the opinion of 35 workers, including 10 Iranian males, 8 Iranian females, 9
Chinese males, and 8 Chinese female participants. We also asked the participants to
choose what they considered the two most essential factors in a robot (i.e., appearance,
price, speed, working hour, accuracy, and/or payload).

There is no noticeable difference between the opinion of Iranian and Chinese partic-
ipants; however, a clear contrast between the male and female participants is observed.
The results show that thewomen generallywould like to interact with a robot that appears
friendly or neutral, but male workers prefer a robot with an aggressive look, which may
convey ruggedness and the capability of doing hard work. Accuracy followed by price
were the most important features the participants expected from the robot. The men-
tioned features have no substantial effect on either the general appearance of the robot
or the design of the first version of the robot. Figure 1 presents images of the fabricated
robots.

Fig. 1. The fabricated robots in the first step toward building a companion transporter robot.

2 Assessment Tool and Result

A total of 96 people participated in this study including, 49 Iranian individuals: 25 males
and 22 females (mean age: 37, SD: 17 years) and 47 Chinese subjects: 26 males and
21 females (mean age: 37, SD: 12.1 years). The subjects observed the performance
of the prospective robots for about 10 min and subsequently filled in the mentioned
questionnaire.

We utilized a questionnaire made up of 30 five-Likert-scale questions in 6 categories
(extracted primarily from the UTAUT questionnaire [2] with additional questions) as the
assessing tool of this cross-cultural study. The questionnaires were presented in Chinese
and Persian language to the Chinese and Iranian participants, respectively. “Nationality”
and “Gender” have been considered as the independent factors for the two-way ANOVA
analysis in this study.
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The results of the applied two-way ANOVA tests considering Nationality, Gender,
and their interactions in different categories of the questionnaire are presented in Table
1.

Table 1. P-values of the applied two-way ANOVA tests on the sub-items of the questionnaire.
P-values less than 0.05 are shown in bold. P-values less than 0.001 are shown as 0.000.

Category # Category title Nationality Gender Interaction of nationality and
gender

1 Anxiety and safety 0.000 0.001 0.564

2 Attitude and perceived
usefulness towards
technology

0.455 0.194 0.789

3 Facilitating conditions 0.006 0.001 0.006

4 Perceived adaptiveness 0.944 0.420 0.138

5 Perceived enjoyment 0.000 0.047 0.914

6 Perceived sociability 0.237 0.976 0.010

Regarding the first category, Anxiety and Safety, we observed that there are sig-
nificant differences in both Nationality and Gender factor. Our results showed that the
males feel significantly safer using robotic technology than the females. Similar to results
reported by Broos [3], the female subjects had a more negative attitude towards tech-
nology (i.e., internet and computers) than did their male participants. Nomura et al. [4]
have proposed a scale called the Robot Anxiety Scale (RAS) to assess the anxiety level
that prevents users from being involved in human-robot interactions/communications,
and they reported the possibility of gender difference in some factors such as behaviors
toward robots in human-robot interactions/communications. Moreover, we found that
the Chinese participants felt significantly less safe with the presented robot than the
Iranian subjects. This observation may be due to the fact that the Chinese are, in gen-
eral, more cautious and conservative than Iranians. Commonly, there are more reports
of accidents caused by technology (e.g., self-driving cars and robots) in the news and
social media in China, while similar cases do not usually happen in Iran, and Iranians
may be less aware of the potential dangers of working with robots. Regarding this cate-
gory, we did not see a significant difference in the interaction of Nationality and Gender
factors. Interestingly, participants commonly felt safer with and preferred small robots
over bigger robots in their working environments.

In the second category, we did not observe any significant differences between
Nationality, Gender, and their Interaction factors. This observation indicates that both the
Chinese and Iranian subjects have similar viewpoints regarding attitude and perceived
usefulness towards technology. The mean score of the participants in this category is
~ 4 (out of 5), which indicates the overall viewpoint of “agree” on the usefulness of
such robots by the subjects. Among the sub-items of this category, we noted that the
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participants are not currently scared about losing their jobs to robots; the high standard
deviations of 1.2 and 1.3, show that opinions are very scattered.

Regarding the third category, Facilitating Conditions, although we observed signif-
icant differences in both Nationality and Gender factors, the p-value for the interaction
of the factors is less than 0.05. The female participants of both nationalities feel that they
need more help to work with this technology in their working environments while the
male participants are more confident in handling the new situation. It should be noted
that the large standard deviations observed in the sub-factor scores of this category could
be due to the wide range in the participants’ ages; we have not considered this an effec-
tive factor in this study. Figure 2a shows a noticeable difference between the Iranian and
Chinese females’ viewpoints in the third category. This can be interpreted as more equal
job opportunities in technological environments for Chinese women than for women
in Iran. Generally, women workers in Iran have less knowledge and experience with
technology than Chinese counterparts.

Fig. 2. Interaction plot for the (a) Facilitating conditions category, (b) Perceived enjoyment
category

No significant differences were observed in Perceived Adaptiveness category. The
overall viewpoints of the participants (considering nationality and gender) are more or
less similar with amean score of 3.5/5 which shows that their expectations for the robots’
performance are adjusted and logical. Based on current experiences, the participants feel
that robots are rigid in terms of hardware and software and have limited capabilities.
This could be a reason why humans are less likely to believe that using robots will
cause them to lose their jobs, which is in line with the questionnaire’s second category
results mentioned above. Analyzing the scores in category 5, Perceived Enjoyment,
indicates that while there are significant differences in Nationality and Gender factors,
no significant difference is observed in the interaction of these factors. Figure 2b shows
that while the Iranian subjects showed more excitement toward having a robot in their
working environments, the trend (i.e., the slope) between the female and male subjects
in both nationalities are almost the same.

Regarding category 6, Perceived Sociability, we did not observe any significant dif-
ferences betweenGender andNationality. Schermerhorn et al. [5] reported that believing
the used robot was machine-like, the female subjects involved in tasks were not socially
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facilitated by their robot. We saw the same trend for Iranians (although the difference
was not significant considering the Gender factor); however, the Chinese females scored
a bit higher than the males in this category.

3 Conclusion

We developed a transportation robot to meet the requirements of small-sized businesses.
We designed a few versions of the robot and asked 18 workers in China and 17 workers
in Iran about the appearance of the robot. The results indicated that the male work-
ers usually prefer aggressive-looking robots while female workers selected friendly or
neutral-looking robots. A questionnaire containing 30 questions in 6 different cate-
gories was given to 96 participants to obtain their opinions. The results showed that
Iranian workers have fewer safety concerns than Chinese workers. Iranian and Chinese
participants had a similar opinion about the usefulness of the robots, with no signifi-
cant/meaningful difference between female and male participants. We realized that the
female workers felt they needed more help to operate the robots compare with the male
workers. The result showed a similar trend in China and Iran; however, Iranian female
workers expressed they need more help than Chinese female workers. The over- all view
of the participants on Perceived Adaptiveness was 3.5/5, with no significant differences
between genders or nationalities. The participants feel the robots are relatively rigid in
software and hardware, which causes the workers to have no substantial concerns about
losing their jobs.Moreover, the Iranian participants showedmore excitement about using
the robots compared to their Chinese counterparts. We do not claim that the observed
results from the questionnaires would be necessarily generalizable to all Chinese/Iranian
workers; therefore, the reported results should be considered as an estimation of these
societies’ beliefs.
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Abstract. Object handovers are one of the most basic physical collab-
orative tasks in human-robot interaction. They are interesting because
they take place in close human-robot vicinity where both’s peripersonal
spaces overlap. Thus, a successful and smooth object handover requires
to communicate the intention in terms of the object transition point, the
timing of action, and the initiative of giving and receiving. In this paper,
we model several reactive patterns extracted from human-robot handover
experiments, propose an integrated robotic system implementing these
strategies, and evaluate the timing, modality, and human-likeness of its
implementation.

Keywords: Object handovers · Social robotics · Human-robot
interaction

1 Introduction

Object handovers between humans and robots have been already researched for
several years – but an autonomous human-like robot behavior (without help
from external high-performance tracking) still has not been achieved so far.
Handovers are mostly classified by who gives the object and who receives it.
Articles typically focus on either human to robot [8] or robot to human handovers
[4], while a few consider both cases [3]. Carfi et al. [2] recorded a dataset with a 2×
2 experiment design taking the giver/receiver role as the first dimension and the
decision who approaches whom as the second dimension. They further vary the
handover strategy (e.g. normal, quick, delayed start, holding, wrong position).
Thus, a robot strategy needs to deal with all of these cases: giving/receiving and
mutual (maybe changing) initiatives. In our approach, we use a unified model
distinguishing five distinct phases (Prepare, Approach, Reach, Transfer, Retreat)
with soft boundaries and fluid transitions.
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Fig. 1. A schematic view of the model implementing the complete handover behavior.
Round boxes define the states of the behavior including icons indicating parts of the
robot which are actively controlled; angular boxes represent processing loops controlled
by the states. Dashed lines indicate data flow; solid states define state transitions. The
icons in the states denote the active components (torso/arm, force/torque, hand, gaze)
of the robot which are involved in the reactive patterns.

2 Reactive Patterns for Object Handovers

Previous user studies [1] revealed that the timing behaviors of object handovers
and the force applied extremely vary in a person’s individual runs as well as
between differently experienced people. In order to deal with this large vari-
ety of cases, we propose a set of reactive patterns that are associated with the
different phases of handovers that lead to an improved timing and signaling
behavior of the robot. The reactive patterns utilize visual feedback as well as
force feedback and are able to actively deal with unconscious as well as conscious
deviations of the human’s motion. Using a unified phase model for human-to-
robot and robot-to-human object transfer, the same patterns work for receiving
as well as providing objects. In order to deal with such requirements, the tim-
ing and signaling behavior of the robot is improved along several dimensions: a
comprehensive gazing strategy, an adaptive reaching motion, and an improved
transfer detection. Figure 1 shows a schematic view of the implemented model
of the robot behavior. Here, the transition between Phase 2 (Reach) and Phase
3 (Transfer) is modeled by an extra state: Adapt, which actively controls the
robot to reach and detect the object transition point (OTP). The overall model
includes several reactive patterns that bind together person and face tracking,
human hand tracking, force feedback, OTP prediction, torso, arm, and gripper
control, as well as gazing strategies. We implemented an active human-like gazing
strategy utilizing the structure of the handover process. For its physical imple-
mentation, we use an anthropomorphic robot head (see Fig. 2) with 19 degrees
of freedom. It features a robot eye with expressive eye-lids that is able to mimic
the movement patterns of a human eye [5] and is controlled utilizing a model
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for human movements [6] coordinating head (neck) and eyes’ motion. In order
to prevent an impolite staring, we use main- and sub-gazes in our gaze patterns
(see box in Fig. 1). While the main gaze has the distinct task of communicating
the robot’s state or intent, the sub-gaze provides additional related information.
The interruption by sub-gazes allows to intensify the main gazes without freezing
in a static pose. In the state Approach an initial OTP is predicted based on Per-
son Tracking and communicated to the interacting person by a torso trajectory.
During Approach, the gaze target is the face of the interactant. When human
and robot get close, a small motion with the robot’s right arm is executed to sig-
nal readiness to handover. In [7], we introduce a scheme combining a static and
dynamic OTP prediction achieving an average delay – after the initialization – of
0.07 s which is utilized in the Approach and Reach states. During the transition
between these two, the robot waits for the human starting to reach out to react
accordingly to the human’s motion. The OTP-driven movement of the robot’s
arm incorporates gaze to create shared attention on the task and regularly looks
at the predicted OTP. The force derivative is constantly monitored to allow in
motion handover. Besides the signaling with gaze, we added a grabbing gesture
with the EEF for the receiving case to signal readiness to take an object. The
robot’s approaching movement is a mixture of pre-trained database lookup and
(inverse) Jabobian control scheme blending between both.

For the visual detection, the tracked hand position is compared to the robot’s
EEF location considering an offset from the EEF opening side. The distance is
filtered over a time duration and a threshold triggers the Visual Transfer. For the
force-based detection, a filter chain is applied incorporating the robot’s motions
and a rate of change based decision process. The input is the data of the wrist
mounted FTS, which is sampled at 1 kHz, filtered with a third order Butterworth
filter with a cutoff frequency 20 Hz. The signal is forwarded and processed 100 Hz
applying a Savitzky and Golay filter. The L0 norm is smoothed with a damped
sliding window model considering inertia added by the carried object. When the
contact is detected, a grasping/releasing of the object is initiated. The resistance
is checked to verify that an object is in the EEF (otherwise system transitions
back to adaptation phase). Gaze is incorporated to signal a focus on the transfer
by looking at the own hand. In the Retreat phase, the robot is moved back
to the ready state. A neutral gaze is used for signaling readiness for the next
interaction.

3 Evaluation and Discussion

To evaluate the concepts discussed, a study is conducted with naive users using
a completely autonomous system. In the study, a person transfers objects to a
robot for learning them and receives them back (Fig. 2). To study the different
reactive patterns, ten different tasks are specified and instructed to the users
triggering a different timing behavior during object handover:

– T1/2: Pre-Random Give/Take — I: Give/Take Floka the object.
– T3: Pure Visual Give — I: Give the object by holding it out to him.
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– T4: Pure Visual Take — I: Take the object from Floka without pulling on it.
– T5: Pushing Give — I: Give the object by pushing it into the hand.
– T6: Pushing Take — I: Take the object by pulling it out of the hand.
– T7/8: Early Give/Take — I: Give/Take the object as early as possible.
– T9: Regrasp Give — I: Give Floka the object but pull it away as its hand
closes.

– T10: Post-Random Take — Take the object from Floka.

Handover Tasks 3 and 4 address the finding, that not all interactants tend to
actually apply force during the interaction. In contrast to these, Tasks 5 and
6 are about creating contact with object or robot testing how the contact is
actually established. Tasks 7 and 8 address short-cuts observed with experts
testing the robot’s capability of an in-motion handover. Task 9 simulates a failed
try. The experiment consists of a questionnaire (experiences, pet ownership,
NARS), handover-tasks and an interview to find out how people perceive the
handover interaction with the Floka system. Three of these participants were not
able to finish the interaction and, thus, did not take part in the post-interaction
interview. This resulted in thirteen fully evaluated participants, aged 22.23 ±
1.88 (F = 7,M = 6). The group had an experience with robots of 1.54 ± 1.13.
In this regard, participants were naive users considering their experience with
HRI. A total of 95 object exchanges (46 gives and 49 receives) were successfully
recorded. The system ran for about 8 h in total without a restart, which showed
the robustness of the system. In only one trial, the object was dropped. The
participant picked up the object and continued the interaction. In the interview
(Fig. 2) 11 participants referred to Floka’s behavior as human-like. The same
number of participants described the behavior as slower or too slow but still nine
of them would work with the robot. All participants rated the handover as safe
where one made an exception for the receive interaction. Half of the participants
recognized the difference in the give/receive force threshold. Only one participant
was not aware of the gaze behavior Floka exhibited during the interaction. All
others could at least roughly describe the gaze pattern integrated in the behavior.
Some participants even stated that the gaze helped to understand what the robot
wanted. All participants stated that they either consciously or unconsciously
knew where to move their hand to exchange the object.

In general, the results (Fig. 2) show that most of the participants where able
to successfully exchange objects with Floka without further explanation. Even
the different tasks that involved types of handover that caused problems, before,
like pure visual handover, in-motion handover, and different positions partially
introduced delays in some cases but did not break the interaction. Figure 2 shows
that the task descriptions do not purely determine how the transfer is detected.
Even in the pulling and pushing cases, a visual detection is required to react as
early as possible.
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Fig. 2. Top, Left: ROS-rviz visualization of the tracking and prediction results. The
big red ball is where the handtracking was initialized, the pink ball marks the predicted
static OTP. The smaller reddish balls visualize the updates of the dynamic OTP pre-
dictions. The red arrow shows the detected person position. The coordinate system
represents the gaze detected. Top, Right: answers of the post-interaction interview.
Bottom, Left: The median duration of the successful handovers for the different
tasks in three phases. Bottom, Right: The number of runs per task that triggered
the transfer by visual, as well as force sensing. (Color figure online)
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Abstract. A social robot that meets the acceptability requirements of
the target end-users presents a significant challenge to robot designers.
The design process is often iterative and requires continuous improve-
ments and optimization over time. One key aspect in designing an accept-
able social robot is anthropomorphism. Social roboticists have developed
assessment tools to evaluate different aspects for the perception of the
observer. In this study, we evaluated the attitude of children toward
four robots with different degrees of anthropomorphic traits. Question-
naires based on the Negative Attitude toward Robots Scale (NARS) and
the Human-Robot Interaction Evaluation Scale (HRIES) were used to
acquire the responses of 33 participants. To identify any changes due to
interactions, a pre-test questionnaire was given prior to the interaction
with a robot. It was then followed by a post-test questionnaire. Statisti-
cal tests were used to analyze the effects of gender, test (i.e., pre-test vs
post-test), and the four robots, on the observers’ perception. Statistical
differences were found between the four robots in the subscales of HRIES,
namely, Sociability, Animacy, and Disturbance. The preferences of the
children were leaning toward the humanoid robot (i.e., Alpha) with the
moderate anthropomorphic traits in the Disturbance subscale. Low to
moderate correlations were found between the subscales of NARS and
HRIES.

Keywords: Social robots · Anthropomorphism · Acceptability ·
Negative attitudes

1 Introduction

Social robots are agents that are meant to interact directly with users to com-
municate, display and perceive emotions, establish relationships, and understand
natural cues [9]. While it has made great strides, the research in social robotics
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is still lacking and in need to tackle challenges in different areas such as safety,
design optimization, user acceptance, and interaction dynamics [1–4].

Social robot design variables and factors such as the size, shape, gestures,
sound, and anthropomorphism affect user’s acceptance [6,10]. To investigate the
influence of different variables, various psychometric scales were developed to
evaluate the acceptance of social robots based on different attributes [8]. These
scales rely on behavioral and physiological measures of robot acceptance using
self-reported questionnaires [7]. The outcomes of these questionnaires are ana-
lyzed using statistical methods to identify significant factors that affect attitudes
toward social robots and influence their acceptability. Robot designers have pro-
jected anthropomorphism in different ways and at various degrees into their
social robots designs. While having human-like attributes are desirable in social
robots, going beyond a certain threshold might trigger eerie and unease feelings
(i.e., Uncanny Valley Theory [5,11]).

In this study, we evaluated the children’s perceived perception of four robots
with different anthropomorphic traits using the Negative Attitude toward Robots
scale (NARS; [12]) and Human-Robot Interaction Evaluation Scale (HRIES;
[13]) scales.

Fig. 1. Representative robots with varying degree of anthropomorphism (left to right):
Professor Einstein, Alpha, Cozmo, and Sphero RVR.

2 Methods

2.1 Participants

Thirty-three participants (21 females and 12 males) aged between 3–18 years old
were recruited in Qatar for this study to answer the questionnaires. The proce-
dures for this work did not include invasive or potentially hazardous methods
and were in accordance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki).

2.2 Robots

Four robots were selected based on the degree of their human-like characteris-
tics with Professor Einstein robot (Hanson Robotics, Hong Kong) having the
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most anthropomorphic features followed by Alpha (UBTECH Robotics, China),
Cozmo (Anki, United States), and lastly RVR (Sphero, United States) with the
least anthropomorphic features (Fig. 1).

2.3 Procedures

Questionnaire Items. The questionnaire consisted of 30 randomized items
from the NARS and the HRIES scales. These two scales were used in the ques-
tionnaire to measure the participants’ already existing bias or perception toward
robots in general in the pre-test questionnaire and to measure any changes to
their perception toward the robots after the interaction sessions in the post-test
questionnaire. The NARS three subscales pertaining negative attitude toward
situations (NS1), social influence (NS2), and emotions (NS3) and HRIES sub-
scales namely Sociability (HC1), Animacy (HC2), Agency (HC3), and Distur-
bance (HC4) were used in the analysis.

Experiments. Between the pre-test and post-test surveys, the participants
interacted with one robot for around three minutes. During these interactions,
each robot performed a demo showing a different set of behaviors based on their
respective capabilities.

2.4 Analysis

Cronbach’s alpha test was used to determine the internal consistency of the
questionnaire items. Multivariate ANOVA test was used on all the factors and
the subscales of the questionnaire items. A Pearson’s correlation analysis was
performed between the NARS and HRIES subscales. The statistical tests were
conducted using Minitab (v18.1, Minitab Inc., USA) at a statistical significance
level of p < 0.05.

Table 1. The mean and standard deviation of the participants’ responses based on the
subscales and were categorized based on the factors.

Factor Gender Test Robot

Female Male Pre-test Post-test Alpha Cozmo Einstein RVR

NS1 15.2 (4.4) 13.2 (3.9) 15.3 (4.4) 13.6 (4.1) 15.7 (3.7) 12.6 (5.4) 14.7 (2.7) 14.4 (5.1)

NS2 14.7 (4.3) 13.7 (4.1) 15.1 (4.6) 13.6 (3.8) 12.4 (3.5) 14.1 (3.5) 14.8 (4.1) 16.5 (4.8)

NS3 9.9 (3.2) 11.4 (3.0) 9.6 (3.0) 11.3 (3.1) 9.8 (2.7) 11.7 (3.5) 11.5 (2.6) 9.2 (3.5)

HC1 18.3 (5.4) 19.2 (5.2) 17.6 (5.5) 19.6 (4.9) 15.6 (3.7) 21.9 (5.4) 19.9 (4.2) 18.3 (6.0)

HC2 12.9 (6.6) 15.8 (6.3) 12.4 (5.8) 15.4 (7.2) 11.4 (5.6) 17.3 (4.1) 18.8 (4.6) 9.4 (4.4)

HC3 18.3 (4.8) 19.1 (4.0) 18.5 (4.3) 18.7 (4.7) 19.2 (4.1) 19.7 (3.2) 17.8 (4.6) 17.7 (5.8)

HC4 9.0 (4.9) 9.7 (5.4) 9.9 (5.6) 8.7 (4.5) 6.7 (3.5) 8.5 (4.8) 12.3 (5.6) 10.1 (5.1)
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3 Results and Discussion

Cronbach’s alpha test was used and an acceptable score of 0.71 was achieved.
The mean and standard deviation for the responses of the participants based
on the subscales and factors were tabulated (Table 1). A multivariate ANOVA
test was conducted on all the subscales, factors, and their interactions (Table 2).
A post hoc Tukey test in the case of HC1 showed that the Alpha robot dif-
fered significantly compared to the Cozmo and Einstein robots. In the case of
HC2, a post hoc Tukey test showed that the Alpha and RVR robots differed
significantly compared to the Einstein and Cozmo robots. For the HC4 subscale,
the Einstein robot differed significantly compared to the Alpha based on a post
hoc Tukey test. A total of eleven low to moderate significant correlations were
found between the NARS and HRIES subscales based on Pearson’s correlation
analysis.

Table 2. The ANOVA test results for all the subscales, factors, and their interactions.

Factor Gender Test Robot Interaction

F-value p-value F-value p-value F-value p-value F-value p-value

NS1 2.91 0.09 0.87 0.36 1.78 0.16 0.32 0.81

NS2 0.66 0.42 2.22 0.14 1.97 0.13 0.2 0.89

NS3 0.94 0.34 4.17 0.046* 1.72 0.18 0.62 0.61

HC1 0.5 0.48 2.4 0.13 5.11 0.004* 0.09 0.96

HC2 0.1 0.76 4.86 0.032* 8.93 0.0* 0.49 0.69

HC3 1.76 0.19 0.75 0.39 0.6 0.62 0.78 0.51

HC4 0.74 0.4 0.12 0.73 3 0.04* 1.73 0.17

*p < 0.05

The results in our study did not show any significance for the gender fac-
tor. This discrepancy could be attributed to the mismatch in the number of
participants based on their gender. Another factor that could have affected the
preferences is the wide range of anthropomorphic traits across different robotic
designs that made the responses of participants more evenly distributed. Inter-
acting with the robots have altered some aspects of the children’s perceived per-
ceptions. For example, significant difference was found for the test factor (i.e.,
pre-test vs post-test) in two subscales, namely emotions in interaction (i.e., NS3)
and Animacy (i.e., HC2). Seeing the robots alive and in action might have made
the children more relaxed and comfortable around robots, hence, this affected
their perceptions of the presented robots positively.

The participants’ perceptions of the four robots have varied and showed dis-
crepancy in the subscales. While no differences were found in NARS, the HRIES
reported statistical significant differences in Sociability (i.e., HC1), Animacy
(i.e., HC2), and Disturbance (i.e., HC3). Cozmo and Einstein were rated as
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the highest in terms of Sociability as compared to other robots. This could be
attributed to their engaging interactions. Einstein scored the highest in terms of
Animacy, which could be attributed to its facial expressions and hand gestures.
In contrast, RVR scored the least in Animacy characteristics and that could be
due to the lack of expression capabilities and minimal anthropomorphic traits.
In terms of Disturbance, Einstein scored the highest (i.e., worse) while Alpha the
lowest (i.e., best). Some aspects of anthropomorphism in Einstein might be going
beyond the safe threshold in the Uncanny Valley, hence, affecting the responses
of the children negatively.
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Abstract. If social service robots are to be successful in becoming part of our
everyday life, they need to have proper signaling of their intention to be pre-
dictable. This is especially important when interacting with elderly people, who
might be less acceptive of technology. In this study we report on such a device,
a plant watering robot (PWR) for elderly care centers, which has social signal-
ing capabilities. Signaling is achieved by using a social agent (myKeepOn) and a
steerable propeller/fan on the deck of a ship-like mobile robot. We conducted an
online survey to assess how predictable the robot’s behavior is.We have found that
the social agent was very effective in conveying turning intentions of the robot,
while the propeller was less able to do so. When signals from the two sources
collide in meaning, people were not as confused as expected, and prediction rates
kept steady.

Keywords: Social robots · Human-robot interaction · Intention signaling

1 Introduction

Robots are slowlymaking their ways from factory floors and entering our everyday living
environments. For this transition to be successful, they need to conform to humans’ needs
and expectations. Robots need to be safe, reliable, and understandable.Understandability
is the ability of the robot to make itself clear to people in its environment. This primarily
means that people will be able to read and interpret the intentions of the robot, which
prevents unexpected situations and reduces the fear of robots. If people can’t read robots’
behaviors, they might reject using them all together [1]. To prevent this, careful attention
needs to be paid during the design of robots and their behavior.

Robots can convey information to others using a number of sensory channels. Using
the visual channel, robots convey information about their intentions via their movement,
lights, displays, etc. Movement behavior is an important way of visual communication
as robots are usually able to change their locations and/or their physical shape, as they
typically contain wheels and joints.
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In this study we explore how actions of different physical elements on top of a social
mobile robot platform can be used to convey information about the movement intentions
of the whole robot. The mobile platform developed in our research represents a plant
watering robot to be used in elderly care centers, see Fig. 1.

2 Background

Signaling of robots has been addressed widely in numerous human-robot interaction
(HRI) publications [2]. Humans are very good at understanding other people’s intentions.
A lot of it derives from the context of our actions [3], movement behavior or expression
of emotions. Another very important source is people’s gaze behavior [4].

As social robots are entering our everyday environment, it is of crucial importance
to make them understood even by users with no prior experience with robots, as this will
inevitably influence their acceptance [5].

Robots can display their intentions in various ways. Many of these are borrowed
from animation movie techniques [6]. For example, anticipatory motion can be very
effective in communicating intention as in this case humans have more time to react to
interactive actions [7].

The use of a small, animated characters on mobile robots has been explored by the
creators of the CERO figurine, that was mounted on a service office robot [8], which
served as the direct inspiration to our usage of KeepOn on our mobile system. CERO
was able to provide feedback gestures in addition to speech interaction, however its
interaction capabilities were not tested in human robot interaction studies.

3 Approach

3.1 Robot Design

The Plant Watering Robot (PWR) was designed to resemble a deep-sea vessel on top of
a mobile robotic platform, containing an artificial pilot and several elements with which
it interacts, see Fig. 1. The nautical form factor was decided upon by wanting to create a
narrative that would amount to a mini theater which elderly people can observe, without
the need for interaction, which could be considered intrusive or bothersome.

Fig. 1. CAD model and implemented version of the Plant Watering Robot used in study.
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The planned physical components on the ship’s deck include: the controlling agent,
a propeller/fan, control board and control tower, see Fig. 1. The agent is designed to
give intuitive signals about the ship’s intentions. It was decided to be a myKeepOn,
a popular social robotic platform [9] with simple but effective interaction capabilities.
In the current implementation only the yaw movement of the agent is used to inform
people of the ships intended direction of turn. The second interactive element is the
propeller mounted on a platform which is able to perform yaw motions as well in
addition to rotating continuously, while the robot moves. The yaw motion is designed
to give information about the intended turn of the robot, as if the ship is a hovercraft.

Fig. 2. Experimental conditions: a) agent only left, b) fan only left, c) neither (straight), d) agent
+ fan congruent, e) agent + fan incongruent.

Our test platform consisted of a TurtleBot3 base with a water tank mounted on top
of it. The tank is covered with a 3D printed ship hull as shown in Fig. 1 and all the
interaction components were installed on top of it.

3.2 Experimental Design

We designed an experiment to test the usefulness of the agent and the propeller for sig-
naling the intentions of the robot to turn left, right or go straight. The social agent was
selected for intention indication as it has been proven that these types of devices can con-
vey signaling information [8]. The propeller was selected as an as a non-social signaling
cue.We also explored if the combination of the two signals aids or hinders understanding
of the robot’s planned behavior. The combination of agent and propeller can be either
congruent (when both the agent and propeller are conveying the same direction signal)
or incongruent (when the two signals are in conflict). The study implemented the exper-
imental conditions shown in Fig. 1. To test these, an online study was devised due to the
Covid pandemic. Thus, the study consisted of a number of videos of the above-described
robot platform approaching an intersection of corridors1. In each video, the robot comes
up to the intersection and then signals in one of the ways described in Fig. 2. Before the
robot makes the turn the video ends, to allow the participants to predict its future course
(left, right or straight).

The recordings were shown in a pseudo-random order, clustered in the single signal
(agent, fan, none) and combined signals groups (congruent, incongruent). Single signals
were always presented before combination signals in the survey. The procedure was
completed using the ‘SoSci Survey’ online experimentation tool.

1 https://youtube.com/playlist?list=PLxFcYOmK2UZp61ghw-L6nmYLraZBpI-bz.

https://youtube.com/playlist%3Flist%3DPLxFcYOmK2UZp61ghw-L6nmYLraZBpI-bz
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3.3 Experiment Participants

Participants were recruited using the Mechanical Turk website. They needed to be from
theUSA (to keep the sample uniform), to have aMaster qualification and a 90% approval
rating. We had 28 qualified participants (9 female, 19 male, avg. age 43.7, SD 12.1) to
check participants’ attention, after seeing the videos they were asked to state the shape
and color of the robot, which all 28 answered correctly.
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Fig. 3. a) Single signaling conditions (agent, fan, none) and b) combined signaling conditions
(congruent, incongruent) compared to agent only for left turns (right turns are symmetrical).

4 Results

4.1 Prediction of the Robot’s Path

We conducted a within-subject experiment according to conditions defined in Fig. 2.
Results for comparing single conditions (agent, fan, none) for left signaling are shown
in Fig. 3 a). The bar heights in the left figure represent how often the respondents were
judging that the robot will turn left, right or keep straight, while the robot was signaling
that it wants to turn left (agent left, fan left) or when it didn’t signal at all (none).

It can be noticed that in the case of agent-only signals, the participants correctly
estimate the intended turn of the robot (blue bars) most of the time. This is not the
case for the fan-only condition (red bars). In this case most of the time subjects thought
that the robot will continue driving straight, even though we were signaling left. This
difference of accurate predictions for left turns between agent-only and fan-only was
found to be significant withχ2(1, N= 28)= 23,26, p< .000. The output for the fan-only
condition is very similar to the none condition, where people correctly estimated that
the robot will continue driving straight in the great majority of times.

Next, we looked at combined conditions, Fig. 3. b) where the agent and fan were
either signaling congruently (Fig. 2. d) or incongruently (Fig. 2. e). We compared these
to the agent-only condition from Fig. 3 a). Participants judged correctly the intended
direction of turn in the great majority of cases for all three discussed conditions. The
combined cases have even higher accuracy than the agent-only condition, however there
is no statistical difference between congruent and incongruent combinations.
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5 Discussion

The results have shownmultiple outcomes. First, for single conditions (agent, fan, none)
it has been shown that the agent conveys the most information about the intended path
of the robot, as expected, while the fan conveys almost none. Considering the fan, the
results are somewhat unexpected, as it was unable to convey almost any information.
Thismight be because its lack of contrast with the background or because itmight require
technical knowledge to interpret its influence on the robot. Regarding combinations of
signals, it was unexpected that the congruent and incongruent signals are both at least on
the same level of predictability as agent-only. This might be caused by the fact that the
combination signals in the online questionnaire always came after the simple signals, so
there might be a learning effect.

6 Conclusion

In this paper we set out to investigate what social and technical cues on a plant watering
robot would work best for conveying information about the robot’s future movement
intentions. First, the PWR prototype itself was introduced with its technical capabilities.
Then a human-robot interaction experiment was designed to shed light on different
signaling cues on the robot. Due to the pandemic situation, we opted for an online study
using videos of different robot actions. It was found that KeepOn is very successful in
communicating the robot’s movement intentions, while the propeller in the ship’s back
was much less able to do so. Combinations of signals were not found to be more useful
than the agent itself. In conclusion, the findings of this paper tell us that using a social
agent is appropriate for service robots designed to operate in the human environment
with possible close contact with people. The study will guide us in improving the plant
watering robot’s signaling capabilities to produce a robot with better social acceptance.

Acknowledgements. The study was completed within the RethiCare project of the Volkswagen-
Stiftung foundation.
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Abstract. Research about using social robots in the classroom is a growing topic
with many unstudied/understudied problems. With the capabilities of these robots
expanding rapidly, it has become necessary to explore the uses of robots in address-
ing persistent challenges in education. The rapid advancement in the technology
of artificial intelligence, such as affective computing and natural language pro-
cessing, makes the reality of social robots in schools more possible now than ever.
In the early stages of research, there are many questions to be answered about
these robots and their potential applications, technological limitations, and ethical
uses. Although the use of social robots in the classroom may be in its infancy,
there are many studies that help define where the research stands today.

Keywords: Social robots · Education · Robots in classroom

1 Introduction

With the development of information and communication technologies, using humanlike
robots in the classroom has increasingly gained interest in the field of education. The
rise of new technologies including artificial intelligence and facial recognition makes
the reality of social robots in schools more possible now than ever. However, the public
has concerns about introducing robots into the classrooms. In this paper, we conduct a
narrative review to gain insight into the main topics in the field of using social robots in
classrooms at such infancy stage, and to identify the primary concerns and challenges
in this field.

2 Review of Main Research Topics

2.1 Expressive and Human-Like Robots

An “expressive” robot shows emotion with facial features and body language as well as
speech. Since students are used to being taught by humans and learning how to interact
with humans their whole lives, robots with humanlike features and expressive actions
help students feel more comfortable [11]. For example, Lin [10] shows that the use of
robots with human physical characteristics made it easier for students to be engaged.
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Socially assistive robots (SARs) were “‘human enough’ to trigger familiarity” while
also not being too humanistic so that there was still a sense of curiosity associated with
the robot [11]. Shiomi [15] demonstrates robots with perceived pleasant characteristics
make the student-robot relationship stronger. There ismuch support for expressive robots
because children can identify with them better [9, 11, 17]. This can be further seen in a
study by Conti [5] examining the effects of storytelling on kindergarten students. This
study demonstrates that an expressive robot can achieve the same level of information
retention in students as an expressive human teacher [5].

Although the robots are human resemblant, they are still very different from humans
with some differences being in the students’ advantage. Many students deal with low
self-esteem and find the classroom stressful. Student-robot interaction is perceived as
less judgmental compared to the typical classroom setting, which reduces the students’
fear of making a mistake [11]. Similarly, humanoid robots differed from teachers when
responding to mistakes [19]. While a teacher may grow weary of repeated mistakes, a
robot is unable to get tired. Robots help create a judgement free zone where students
will feel less stress.

2.2 Subjects

The uses for robots vary greatly depending on the subject and type of class. There is
promising research to support the use of robots in language learning.One study employed
a robot in a language learning class and examined the different ways to incorporate a
robot [4]. The study programs a robot to act as a foreigner in the classroom and to help the
teacher tell a story [19].Not only does the robot know the language fluently, but it can also
use different voices for different characters, add entertaining body movements, sound
effects, and help engage students in general [4]. Overall, many studies have demonstrated
positive results with robots in language learning.

Papadopoulos [11] aimed to study how robots can be utilized in the math and science
classroom. Ahmad [1] shows that there is promise for this technology in STEM class-
rooms. This studywas conductedwith high school students using a SAR calledCozmo to
teach math subjects including algebra, geometry, and trigonometry. The results showed
a significant improvement in the students’ understanding across all subjects. The biggest
obstacle facing SARs in STEM, according to current research, is the tendency of the
robots to distract students. This was seen in younger students, ages eight through nine
[7], however older students reported negligible distraction from the robots [1].

2.3 Education for Students with Disabilities

Robots may also be a promising approach to providing special education or education
for students with disabilities in the classroom. Robots act not only as teaching assistants
to these students but also as friends [19]. Robots may be able to engage students with
disabilities in a new way. Qidwai [12] studied the ways robots could be used to assist
children with Autism Spectrum Disorder (ASD) and found strong evidence that using
NAO led to great improvement in learning behaviors. Most children with ASD have
difficulties being around other people, but these “human-phobic barriers” are removed
when towards a robot. In turn, the child is more likely to interact with the robot and
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therefore learn from the robot. Additionally, because robots can be extremely repetitive
and predictable, it is easier for children with ASD to understand “how to perceive human
and understand human emotions” [12]. Kim [8] found that the teacher can elicit more
interaction from the autistic children by using the social robot as a partner, and that
the robot partner can increase student interaction more than the adult partner counter-
part. Amanatiadis [2] studied the interaction between two NAOs and two children with
ASD and found the children were not only comfortable with the robots but also had a
strengthened social connection with each other.

2.4 Teacher and Student Opinions

With any new technology to market there are concerns, but this is especially true when
the technology affects children. Teachers are unfamiliar and believe that robotic tech-
nology is too complex [4]. Teachers show concerns with robots used in the classroom
because they are unaware of the capabilities and uncertain how to incorporate the robots
in the classroom [19]. Teacher opinions and concerns are extremely important to the
introduction of robots to the classroom because they will be the initiators. Xia [20] sug-
gests introducing the robots to teachers in in-service training. However, in the study by
Chang [4], teachers used robots in their classrooms and were educated on how to use
them, but they still encountered challenges like lesson planning. Without appropriate
content and activities, the robots were useless to the classroom.

All these concerns are not without hope and potential. Many teachers also expressed
excitement for the robots and how their students responded. The robots seemed to help
motivate and engage the students in the lesson [4]. A robot could be developed to
provide personalized feedback based on a student’s learning style and personality [11].
This ability will be an advantage in the classroom, and teachers will undoubtedly be able
to use such feedback to better educate students.

It is also necessary to learn how students feel about robots being used in their
classrooms. In general, students are positive, curious, and exploratory towards robots;
however, some shy or socially anxious students are more reserved around them [15, 16].

2.5 Role in Classroom

Another point of contention among researchers and teachers is the role of the robot in
the classroom, with the options being a replacement of the teacher, a teaching assistant,
or a peer. Of the different types of roles robots could fill, teaching assistant and peer are
the most accepted roles, and replacements for teachers are not generally accepted.

Teacher. As our world is moving in the direction of replacing employees of most occu-
pations with robots or AI technology, a robot teacher could be a possible future. Effective
communication skills are essential to managing a classroom, and robots are becoming
more able to converse like humans [6]. However, it is still questioned whether a robot
could be as effective as a human teacher. Sharkey [14] argues that robots do not have
and cannot have the necessary biological nature required for a sense of morality to make
fair decisions or anticipate situations. One study equipped robots with behavior recogni-
tion technology that can gather data from both faces and body poses allowing the robot
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to respond and adjust accordingly [3]. Despite these advances, most researchers have
agreed that currently robots fit the role of teaching assistant or peer better than as a
replacement for the teacher.

Teaching Assistant. As opposed to taking on the role of head teacher, robots may take
on the role of a teaching assistant or aid. A teaching assistant would help teachers present
material to the class [4]. Most studies choose to develop robots as the role of teaching
assistant giving reason to believe this role is more acceptable. For example, teachers
were reluctant about using robots, but they were more open to using robots in restricted
roles such as an assistant [19].

Peer. Another potential role of a robot is a peer or a companion for students. In this
role, robots act as a go-between for teachers and students [4]. Additionally, students who
viewed the robot as a peer or companion, do not think of the robot as an authority and
therefore the students did not feel as intimidated by or scared of the robot [14]. In one
study, a robot acts as a playmate in word play games, which could be an effective way to
give students more practice and attention [13]. In a similar vein, ‘care-receiving’ robots
are taught by students and have some educational benefits [18].

3 Conclusion

Regardless of the concerns among researchers, teachers, and students, most researchers
can agree that there is vast potential for the use of robots in the classroom. Whether
used as an assistant to the teacher or a tool for learning, robots in the classroom may be
a reality soon. The many studies included in this paper show examples of how robots
have expanded the limits of what education can look like. Robots may be able to make
school feel less stressful and more fun for students. Robots can also support social and
emotional support that can impact learning across subjects. There are still many areas of
research that are underdeveloped and require further exploration. As technology rapidly
changes it is difficult to predict how, when, or if robots will be used in the classroom;
however, preliminary research is encouraging for the future of social robots in education.
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Abstract. Production of home robots, such as robotic vacuum cleaners, currently
focuses more on the technology and its engineering than the needs of people and
their interaction with robots. An observation supporting this view is that the home
robots are not customizable. In other words, buyers cannot select the features
and built their home robots to order. Stemmed from this observation, the paper
proposes an approach that starts with a classification of features of home robots.
This classification concerns robot interaction with humans and the environment,
a home in our case. Following the classification, the proposed approach utilizes
a new hybrid model based on a built-to-order model and dynamic eco-strategy
explorer model, enabling designers to develop a production line and buyers to
customize their home robots with the classified features. Finally, we applied the
proposed approach to robotic vacuum cleaners. We developed a feature model for
robotic vacuum cleaners, from which we formed a common uses scenario model.

Keywords: Human-robot interaction process design · Build-to-order · Dynamic
eco-strategy explorer model · Robot customization

1 Introduction

This paper presents the idea of combining two strategies, build-to-order and the dynamic
eco-strategy explorermodel (DEEM), into theHybridModel. TheHybridModel is used
to get maximum user satisfaction by giving the user to an opportunity customizing their
domestic home robots. Robotic vacuum cleaners, in aword robovacs, are chosen to apply
and evaluate this idea.

2 Feature Model of Vacuum Cleaner Robots

The technical features available in the market and the expectations of the product from
the user can be evaluated by using a feature model. The existing and conceptual charac-
teristics of robotic vacuum cleaners can be used to construct an essential feature model,
which is rooted in the technical features desired to be added and creates the mechanical
equipment and accessories to be used in the branches. R&D designers and engineers can
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benefit from the feature tree to create the essential structure of robovac to be advanced.
The user group selection will be one of the most critical factors that will determine the
quality, capabilities, and combinations of the technical part to be used in the device.
Currently, due to standardized production methods, the customer cannot select the char-
acteristics of the robotic vacuum cleaner. Instead, a customer chooses market products
offered close to his/her needs. Figure 1 is a designed feature model consisted of essential
features for the robotic vacuum cleaner.

Fig. 1. Feature model for robovacs (the technical branch is modified from [1]).

3 The Proposed Customization System Design: The Hybrid Model
for Robotic Vacuum Cleaners

The traditional firms fulfill customer demand using their investigations and they choose
a limited set of product configurations, thereby enabling consumers to find products
that are close to their ideal choice [2]. However, considering the interaction process
of a basic robovac, the various parameters, which need to be evaluated simultaneously
such as the physical characteristics of the environment to be used, the smart ecosystem
integratedwith, and thehouseholders, thatwill affect the use of the product emerge.When
the combinations of these parameters are calculated, a great variety of standardized
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preferences should design and produce. However, the robovac market inherently has
customers with heterogeneous preferences for product features, considering the network
of interactions. To achievemaximum product satisfaction, we are proposing a designated
product configuration process, which is the process of customizing a product to meet
the needs of a customer, and an effective interaction process design for the marketing
and selling phase.

In this section, twomodels utilized in various cases are examined robovac customiza-
tion.DynamicEco-strategyExplorerModel is proposedwith the aimof optimizing the
energy and resources consumed through the use of a product by Serna-Mansoux et al. in
2014 [3]. The DEEM aims to choose the correct product among existing alternatives and
does this by scoring the products and comparing the results with each. The DEEMmodel
is composed of six stages in sequence, Choose, Understand, Explore, Decide, Test, and
If [3]. In Fig. 2, the initial interaction process is assimilated from the implementation of
Serna-Mansoux et al. [3]. The Build-to-Order model is the strategy, that enables mass
customization with aim of customer satisfaction. It has some accomplished implemen-
tation instances by considerable companies including Dell Computer, Compaq, BMW,
Mercedes. The BTO is a production method that switches the market power from seller-
driven perception to buyer-driven one [4]. The proposed hybrid model utilizes DEEM
and BTO in a novel combination. The DEEM is adapted to get high-efficient interaction.
Moreover, the direct model is accepted as a business model that will build standards
quickly and manufacture a highly configurable product.

The DEEM is redesigned to construct efficient interaction between customers, and
product design that consists of standardized units from purchasing decisions. In our
study, it mainly applies to the first interaction with potential users during the prod-
uct choosing stage. Choose stage aims to get the purchaser to know the product, and
determine customers’ individual and environmental characteristics interacting with it.

At Understand stage, some usage scenarios are created by referring to the selected
attributes at the previous stage. These scenarios are formed as the result of detailed
customer segmentation based on needs and preferences by research and development,
and design teams. The customer picks from the recommended usage scenarios. These
scenarios are critical to generating some product alternatives based on needs and wishes.
More questions are asked for customization.

In the stage ofExplore, based on the responses to the detailed questions asked before,
the interaction system presents a robotic vacuum cleaner as a composition of desired
components. At this stage, the presented product can be considered as an optimized
robotic product based on users’ needs. However, even so, customers can control the
component features and models by their wishes. In other words, the exploration of the
robovac by the user is expected. Since the product is designed modular in the R&D and
design phase of the BTO, the exchange and integration of the units will be possible at
every stage. After the third and fourth stages, the concept of the process starts to evolve
toward decision making. At stage four, the representative product is presented as videos.
At stage five, in this way, users can have predictions about the usage of the product
and can test the result digitally. The final stage is deciding whether to buy or not. Here,
the product is either purchased and manufactured or returned to the third stage to be
modified and rebuilt.
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Moving on to the implementation phase of the BTO, here are the first two phases
that are critical for us. Managing the product variety is essentially the first movement
to customization design of the product to be manufactured. It starts with evaluating the
existing usage environment and classifies them into groups. This classification generates
some customer segments based on the requirements and preferences. Thus, interaction
scenarios emerge for use in the next phase and the previous model (the DEEM) imple-
mentation. The next phase consists of the set of research & development and design
processes. Concepts and scenarios created in the previous stage form the source for
product and component design at this stage. The components used or supplied are pre-
sented in the interaction phase for use in the explore phase. Then, production starts with
simultaneous production planning and supply chain integration. In addition to these
explanations, this model is the first form of the study and is still being studied.

Fig. 2. The proposed hybrid model

4 Evaluation: RoboCuD Home

This study considers personalization according to usage conditions as a critical principle
in the robotic vacuum cleaner development process. However, the number of product
variations to be created with required and optional feature combinations reach too high
for users to decide and for manufacturers to produce. To demonstrate, Fig. 1 can be
utilized. Firstly, the number of features that can be added to the robot is calculated with
combination calculations for each branch. Afterward, the number of robot versions is
computed by using the cartesian product. The number of combinations for each branch
is shown in Table 1. If all decisions are left to the user, the number of products that can be
created is calculated as 84,934,656, although only the engine option is included among
the technical features, and this number can be increased. This number is calculated by
the multiplication of the feature tree combination possibilities.

A simple multipartite graph will be used to explain the simple implementation of this
model and for the RoboCuD Home we are developing. In the first stage, we create a set,
whichwe call prerequisites, which is used to define the ecosystem inwhich the robot will
be used before recommending a robot to the user and to create product recommendations
based on this. Figure 3 shows a cross-section of the items that will help determine the
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Table 1. Feature model-based product options

Cleaning
Modes

Software Recharge Mapping Dock Brush Tank Filter Body Control Motor

Number of
options

32 2 3 3 2 96 4 32 1 3 2

characteristics of the home environment and the user in which RoboCuD will be used.
The item combinations selected from the set for the user are designed to present the
most suitable RoboCuD models for a specific home environment and user group. In the
second part, user segments are created from the selected combinations. Figure 3 shows
two of these segments in the cases section.

Finally, RoboCuD models are presented to the user in accordance with the envi-
ronment, and user segments are determined for RoboCuDs appearance. The resulting
models form the basis that the buyer will use before customizing the product according
to his wishes. Then, the user can start customizing the robot at the website. For ongoing
and detailed website design, [5] can be visited.

Fig. 3. Multipartite graph - a basic explanation of how the proposed system works.

5 Conclusion

This paper presents the idea of domestic social robots’ customization with the proposed
Hybrid Model, based on user needs by considering customer satisfaction. Robotic vac-
uumcleaners are selected to implement the study. Technological advancements in robotic
technologies, especially in robovacs are deeply studied, and the chosen DEEM and the
BTO model are combined to create a multiple-stage customization system. Then, the
initial form of the Hybrid Model is explained in detail.
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Abstract. Hugs play an essential role in social bonding between people.
This study evaluates the hug interactions with a robot identifying the
perception. Four hug release methods in adults were applied, a short-time
hug, a long-time hug, a touch-controlled hug, and a pressure-controlled
hug. The social robot CASTOR was integrated into this study, a modifi-
cation was made in its arms to perform the hugging action, and a pressure
sensor in its upper back. 12 adults (5 females and 7 males) participated
in the study. Results showed that the perception of friendliness compar-
ing the short-time hug and the pressure-controlled hug had differences
(p = 0.036), making the pressure-controlled hug more friendly. In the
case of natural perception, the touch-controlled hug was more natural
comparing with the short-time hug (p = 0.047). This study presents the
feasibility of implementing CASTOR in hugging interactions.

Keywords: Physical human-robot interaction · Robotic hug · Socially
assistive robotics

1 Introduction

Physical contact is necessary for human beings to maintain psychological, emo-
tional, and bodily well-being [1]. Hugging is the main sign of affection and emo-
tional support [2]. Among the associated benefits is reducing stress and tension
levels by releasing oxytocin, reducing the risk of dementia by giving tranquil-
ity and confidence, reduction of blood pressure by activating Pacini corpuscle
receptors in the skin [3]. Recently, there has been projects aimed at developing
social robots for hugging [4–6].

Casas et al. [7] developed the CASTOR (CompliAnt SofT Robotics) robot
(Center of Biomechatronics, Colombia). CASTOR is a low-cost open-source plat-
form initially created for therapies in children with Autism Spectrum Disorder
(ASD) [8]. This study evaluates the feasibility of implementing CASTOR in
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hugging interactions. Therefore, the perception in adults of being hugged by the
robot in four release methods is analyzed.

Robotic hugs have been studied recently, Block et al. [5] used the PR2 robot
(Willow Garage, USA). The results showed that reciprocated hugs increased the
interaction times and encouraged more self-disclosure. Considering the above
results, Block et al. [9] evaluated physical variations of warmth and softness using
the PR2 robot. They evaluated the perception through surveys in the physical vari-
ations, and changing the duration of the hug i.e., short time (1 s), average time
(2.5 s), and long time (5 s). They determined that the social perception of the robot
hug was related to the hug duration between the too-long and the too-short hug.
Newly Block et al. [6], developed the Huggiebot 2.0 (MPI-IS and ETH, Germany
and Switzerland) evaluating six parameters in the perception of the hug action.
The results suggested that the perception of the haptic release method had bet-
ter results than the timed-release hugs [6]. These studies were from the USA [4]
and Europe [5,6,9]. This shows the lack of research in robotic hug interactions in
developing countries. Considering this, this work implemented the low-cost Open-
Source CASTOR social robot in the social interaction of hugging to evaluate the
perception of two time-controlled hugs and two sensors-controlled hugs.

2 Method

This work seeks to evaluate the perceptions in a hug interaction with the social
robot CASTOR. Aiming to achieve this goal, a questionnaire applied previously
[6] based on the Unified Theory of Acceptance and Use of Technology (UTAUT)
questionnaires was used. The first part focuses on the perception carried out
with the volunteers about social robotic, with 13 questions (Safety (PS), Trust
(PT), Attitude Towards Technology (ATT), Anxiety (ANX), Social Influence
(SI), Social Presence (SP), Ease of Use (PEOU) and Utility (PU)). The second
part focuses on the perception of each hug (Friendliness, Safety, Social Intelli-
gence, Enjoyment, and Natural).

2.1 Participants and Equipment

A total of 12 healthy subjects (7 males, 5 females, 22.16 ± 2.08 years old, 1.67
± 0.077 m) performed the study. Written consent was obtained from each par-
ticipant before the study.

CASTOR robot was modified for the study. A change was made on the shoulder
motors. This was done to lift the arms for a more extended period. The shoulder
piece was modified to add Dynamixel MX-106 motors (Dynamixel, Seoul, Korea).
Additionally, a pneumatic system was added, composed of a fabric bag, a plastic
balloon inside, a pressure sensor ASDX100PAAA5 (Honeywell, North Carolina,
USA), and an air pump ROB-10398 (Sparkfun, Colorado, USA). Furthermore, the
touch sensor made of Velostat (Adafruit, New York, USA) located at the back of
the head was used. This modifications can be seen in Fig. 1.
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Fig. 1. Mechanic and electronic modifications. A) Mechanic modification of the robot’s
arms. B) Electronic distribution of the touch and pressure sensors.

2.2 Procedure

The activity to be performed was explained. Then the participant was intro-
duced to the robot, and allowed to interact with it. The participant filled out
the social robot perception questionnaire. Next, the four hugs were performed.
The short-duration hug of one second. The long-duration hug of 5 s. The touch-
controlled hug controlling the opening and closing of the arms with the touch
sensor. And the pressure-controlled hug controlling the opening and closing of
the arms exerting force on the pneumatic system in order to increase the air
pressure (above 2.8 psi). After each hug the hug perception questionnaire was
filled out. And at the end of the four hugs the social robot survey was filled out.

3 Results

The Shapiro-Wilk test was applied to determine the normality of the data,
which showed that not all the results had a normal distribution. Therefore, the
Mann-Whitney-Wilcoxon statistical test was applied. In the perception of social
robotics PS, PT, ATT, ANX, SI, SP, PEOU, and PU, were assessed. Comparing
before and after the hugs intervention. Considering the p-values, the metrics had
no significant differences, as shown in Fig. 2. In the perception of hugs, the five
metrics were evaluated. Friendliness, Safety, Social Intelligence, Enjoyment, and
Natural. Comparing between the four hugs implemented, hug 4 had a better per-
ception of making the robot seem friendly in the interaction than the short-time
hug (p = 0.036). Hug 4 was more enjoyable than hug 1 (p = 0.039). And hug
3 had a higher perception of naturalness than hug 1 (p = 0.047). In the Safety
and Social Intelligence metrics, were no significant differences (Fig. 3).

4 Discussion

Block et al. [9] indicate participants would prefer a robot that releases them from
a hug immediately when they indicated they were ready for the hug to be over.
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Fig. 2. Survey outcomes of Social Robot perception before and after the hugs in PS,
PT, ATT, ANX, SI, SP, PEOU and PU.
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Fig. 3. Survey boxplot for each hug. Top and bottom of the box represent the 25 and
75 percentile, the x mark in the box center represents the mean. The lines extended
show the farthest data point. The points indicate outliers. The * means p < 0.05

In this study, we found similar results; the pressure-controlled hug had better
perception than a short-time hug in friendliness and enjoyment. In the same
way, the touch-controlled hug had a better perception than a short-time hug in
nature. In the social robotics perception, positive results were obtained, so there
were no significant differences. However, in ANX, an increase in the perception
of fear of damaging something in the robot was obtained after performing the
hugs, which is the opposite of what was expected, but with no significance. This
have been caused by the fact that, sometimes, the pressure-sensor cables got
disconnected, which made it necessary to retry the hug.
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Conclusions and Future Work
This work presents a contribution by implementing a low-cost social robot in
the investigation of physical human-robot interaction through hugs. It can be
concluded that, the robotic hugs with the best perception are those in which the
individual decide when to end the physical interaction, as in the third and fourth
hug. An attempt was made to cover this field of research with CASTOR in a safe
way, which was reflected in the perception of safety, being the parameter best
scored in all the hugs. This makes the CASTOR robot a potentially valuable
tool in this type of human-robot physical interaction with the sensors-hugs.

As future work, we want to implement verbal interaction to improve the hugs
perception. In addition, this study opens the road to implement CASTOR in a
hug interaction with children or older population.
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Abstract. The presented online study (N = 405) explores the impact
of translational (towards, away, sideways) and rotational (spin and cir-
cle) motion patterns on the perceived communications of a three-robot
group. All gestures were performed relative to a small humanoid figure
at two speeds (slow and fast). Three of the gestures strongly predicted
communicatory interpretation: sideways and away were seen as scared
or fearful, and spin was seen as excited and joyful. Circle had low con-
vergence and was seen as confused or frustrated. Towards, on the other
hand, had a bimodal distribution: slowly towards was seen as greeting,
whereas fast towards was seen as confrontational. The context prompts
(party vs. meeting) did not affect participant interpretations.

Keywords: Expressive motion · Robotics · Multi-robot

1 Introduction and Related Works

Clear and efficient communication between humans and robots is crucial for
successful human-robot interaction [3,4]. This work explores how emotions can
be expressed with simple multi-robot motion using five different synchronous
gestures on three simple robots and exploring how speed and context change
the interpretation of expression of these gestures. In multi-robot systems, group
motion patterns can be seen as exaggerated gestures, a powerful way for robots
to communicate to humans without words [8].

While there have been many studies that looked at single robot motion and
gestures [6,7,9,11], this work explores whether such gestures can also be read via
a robot group. Such investigations extend prior findings showing simple mobile
robot gestures have strong communicatory power [1,7]. Prior work in multiple
robots has illustrated communicatory potentials for multi-robot systems, using
parameterized motion generation [5,12] and human-controlled gesture [2,13].

The gesture and speed research conditions used in this paper were inspired
by our prior work in single-root expression [10]. This study (first author partici-
pated) examined how a simple robot could incite storytelling in an improv scene
using gesture (it did). This paper evaluates these same five gestures, finding sim-
ilar communicatory interpretations when gestures are performed by congruent
multi-robot systems.
c© Springer Nature Switzerland AG 2021
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Fig. 1. Each isolated gesture was performed synchronously with all three robots.

2 Study Design

Three independent variables were explored to see how they affected perceptions
of a multi-robot group: (1) gesture, meaning the way the multi-robot group
moved as seen in Fig. 1; (2) speed, being how fast the robots performed the ges-
ture; and (3) the context given to participants about the robots. The gestures
replicated our prior work on a single robot system [10], representative of Carte-
sian linear and rotational motions. Each gesture was performed at two speeds
(fast and slow). These two speeds were chosen based on the max and min speed
range of the Sphero robots. Finally, all participants were presented with one of
three contexts (“A robot walks into a party,” “A robot walks into a meeting,”
or no context).

Online Study Setup. An online video study was run using Amazon’s MTurk
Service, which allowed for the exploration of more variables with more partici-
pants than an in-person study. Each video opened with three robots in a line in
front of a humanoid figure with a plain white background, as seen in Fig. 1. The
robots were placed in a straight line formation to reduce what role the formation
played in perceived communication. Each participant was shown a video with
one of five gestures at one of two speeds with one of three video contexts and
was asked one question out of five possible questions.

Two questions used a seven-point Likert scale. Participants were given a
sentence with a drop down menu of Likert scale responses. For example, the
question “The actions taken were [blank]” had answer options “very positive,”
“positive,” “somewhat positive,” “neither positive or negative,” “somewhat neg-
ative,” “negative,” and “very negative.” Three questions were open-ended. Par-
ticipants wrote a response after watching the video. The questions are as follows:

1. The actions taken were [very positive to very negative] (Likert).
2. The human felt [very welcome to very unwelcome] (Likert).
3. What emotion(s) are the robots portraying? (Extended Response)
4. Describe the story of what happened. (Extended Response)
5. What were the robots trying to achieve? (Extended Response)

Analysis Methods. The study was between-participants with non-normal data
for the Likert scale questions, so Kruskal-Wallis tests and Mann-Whitney U tests
were run to determine significance of the data. Each extended response was
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coded using grounded coding to find important positive, negative, and neutral
language used. There were three categories for important language used: (1)
robot actions/reactions; (2) robot descriptions; and (3) robot emotions. Positive
language was given a value of 1 and included words like “joy”. Negative language
was given a value of −1 and included words like “fear”. Neutral language was
given a value of 0 and included words like “following”. In each response, the total
positive, negative, and neutral language was totaled and averaged for a single
value for each response.

3 Results

Participant Attributions of Robot Motion Results. The data showed a
consistent trend in the influence gestures had in the interpretation of the robots’
actions and emotions. Towards and spin were positive/welcoming, away and
sideways were negative/unwelcoming, and circle was slightly positive/welcoming,
but had a higher variance and neutrality. Context had no significant results.

For the question “the human felt [welcome/unwelcome],” it was seen that
the sideways and away gestures were viewed as very unwelcoming. Towards was
viewed as very welcoming and spin was somewhat welcoming. Circle was viewed
as slightly welcoming, but was more neutral than any of the other gestures. The
slow speed added more variance or neutrality for each gesture. Away, sideways,
and spin had significant difference between fast and slow. However, this did not
change the meaning of the movement; it simply skewed the slow speed towards
neutrality. Results can be seen in Fig. 2a.

The results for the question “the actions taken were [positive/negative],”
varied more than [welcome/unwelcome], but showed similar trends with all five
gestures but with higher variance in responses. Spin had the lowest variance
in answers and was viewed as somewhat positive. Towards and circle were also
viewed as somewhat positive, but with a higher range in answers. Sideways and
away had high variance. Away was somewhat negative and sideways was viewed
as negative. Speed did not switch the views any of the gestures, but the slower
speed pushed results to be more neutral. This additional neutrality at the slow
speed was significant in the sideways gesture. Results can be seen in Fig. 2b.

Extended Response Results. Overall, the results were similar to the Likert
scale results where gesture was the leading variable and speed had some affect on
the perceived expression of the robots. The special case was the towards gesture,
which switched interpreted expressions based on speed.

Gestures affected participants’ views on whether interaction between the
robot and the human was described positively or negatively. Away and side-
ways led participants to think the robots were afraid and uncertain. The robots
were often described as “scared” and “fearful.” Most descriptions did not include
language of aggression, but rather avoidance and wariness of the human. Spin
was viewed positively with the robots’ emotions often being described as “joyful”
and “excited.” The spin was sometimes described as a dance or an expression
excitement. Circle was also sometimes described as a dance but the robots were
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(a) The results from answers to the question “The human felt [wel-
come/unwelcome]” for each gesture at two different different speeds.

(b) The results from answers to the question “The actions taken were [nega-
tive/positive]” for each gesture at two different different speeds.

Fig. 2. Participant survey responses to Likert scale questions.

also described as “confused” or “frustrated.” The towards gesture was highly
variant because in these responses the gesture was dependent on speed (Fig. 3).

For away, sideways, and spin, the fast and slow speeds did not change the per-
ceived expression of the robots. The slow speed created more neutral responses
for each gesture. The only motion where speed did affect the response was the
towards motion. At a fast speed, the towards motion was interpreted as negative
with participants saying the robots were “trying to block the human” and “con-
front the human angrily.” At a slow speed the towards motion was interpreted as
positive with participants saying the robots were “trying to greet the human.”

Fig. 3. A comparison of the descriptors used by participants for the five gestures in
the extended response questions.



Exploring Communicatory Gestures for Simple Multi-robot Systems 823

4 Discussion and Conclusions

Gesture significantly predicted communicatory interpretations across the board:
(1) Move away was rated negatively, indicating fear/uncertainty or disengage-
ment from the interaction. (2) Sideways was rated negatively, indicating fear
or uncertainty relative to the figurine. (3) Towards had two interpretations:
slow towards was seen as welcome, engaging, excited, whereas fast towards
was seen as aggressive/confronting. (4) Spin was interpreted very positively,
indicating “super happy,” “joy,” or similar. (5) Moving in a circle had more
variation, ranging from neutral/happy to confused/frustrated, seeming to require
additional cues. While speed did not flip the view of most gestures, the slower
speed significantly neutralized the perception of the gestures.

This early work demonstrates the relevance of prior HRI motion commu-
nication research to domains in which multiple robots might operate in and
around people. We conclude that the simple gestures can be used for communi-
cation by multi-robot groups and that such gestures have social and functional
communicatory significance. The results show that four of the five gestures had
convergent communicatory interpretations, though one of the four, towards, had
a further division of communication at varied speeds ranging from more welcom-
ing/friendly (when slow) to more threatening/hostile (when fast). Future work
will continue to explore ways in which varied motions within the group affect
multi-robot communications or indicate roles or intent within a robot group.

References

1. Agnihotri, A., Knight, H.: Persuasive chairbots. In: Ro-MAN, pp. 1–7. IEEE (2019)
2. Alonso-Mora, J., et al.: Gesture based human-multi-robot swarm interaction and

its application to an interactive display. In: ICRA, pp. 5948–5953. IEEE (2015)
3. Breazeal, C., et al.: Effects of nonverbal communication on efficiency and robust-

ness in human-robot teamwork. In: IROS, pp. 708–713. IEEE (2005)
4. Dragan, A.D, et al.: Legibility and predictability of robot motion. In: HRI, pp.

301–308. ACM/IEEE (2013)
5. Guzzi, J., et al.: A model of artificial emotions for behavior-modulation and implicit

coordination in multi-robot systems. In: GECCO, pp. 21–28 (2018)
6. Hoffman, G., Weinberg, G.: Gesture-based human-robot jazz improvisation. In:

ICRA, pp. 582–587. IEEE (2010)
7. Knight, H., et al.: I get it already! the influence of chairbot motion gestures on

bystander response. In: Ro-MAN, pp. 443–448. IEEE (2017)
8. McNeill, D.: Hand and Mind. University of Chicago Press, Chicago (1992)
9. Perzanowski, D., et al.: Integrating natural language and gesture in a robotics

domain. In: ISIC (1998)
10. Rond, J., et al.: Improv with robots. In: Ro-MAN (2019)
11. Salem, M., et al.: Generation and evaluation of communicative robot gesture. Int.

J. Soc. Robot. 4(2), 201–217 (2012)
12. Santos, M., Egerstedt, M.: From motions to emotions. International Journal of

Social Robotics, 1–14 (2020)
13. St-Onge, D., et al.: Engaging with robotic swarms: commands from expressive

motion. ACM Trans. Human Robot Interact. 8(2), 1–26 (2019)



Control of Pneumatic Artificial Muscles
with SNN-based Cerebellar-Like Model

Hongbo Zhang(B) , Yunshuang Li , Yipin Guo , Xinyi Chen ,
and Qinyuan Ren

College of Control Science and Engineering, Zhejiang University,

Hangzhou 310013, China

Abstract. Soft robotics technologies have gained growing interest in
recent years, which allows various applications from manufacturing to
human-robot interaction. Pneumatic artificial muscle (PAM), a typical
soft actuator, has been widely applied to soft robots. The compliance
and resilience of soft actuators allow soft robots to behave compliant
when interacting with unstructured environments, while the utilization
of soft actuators also introduces nonlinearity and uncertainty. Inspired
by Cerebellum’s vital functions in control of human’s physical movement,
a neural network model of Cerebellum based on spiking neuron networks
(SNNs) is designed. This model is used as a feed-forward controller in
controlling a 1-DOF robot arm driven by PAMs. The simulation results
show that this Cerebellar-based system achieves good performance and
increases the system’s response speed.

Keywords: Cerebellum-like controller · Spiking neural network ·
Nonlinear systems · Mckibben · STDP

1 Introduction

Pneumatic artificial muscles (PAMs), such as Mckibben, are designed with the
inspiration of creatures, showing great compatibility to creatures. This kind of
muscle emerged in the twentieth century and has various kinds of applications
after decades of development. Mckibben is small in size and relatively safe with
high power to weight ratio. However, its nonlinearity and viscoelasticity proper-
ties increase the difficulty in controller designing.

The best example of control system for soft actuators can be found in animal
bodies. As mentioned in [5], Cerebellum as part of creatures’ neural system have
attracted vast attention because of that they play important role in controlling
function. Therefore, we proposed a Cerebellum-like controller based on its real
structure and internal information processing mechanism. Due to the bionic
advantages of this controller, it’s appropriate to apply it in controlling Mckibben.

In our system, we conduct a Cerebellum-like controller based on spiking
neural networks (SNNs) to control a 1-DOF robotic arm shown in Fig. 2 driven
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by a pair of PAMs. It can also be refered as an online closed-loop error-correction
controller. The controller has one kind of fibers, Mossy Fibers, with four kinds of
cells, Granule cells, Purkinje cells Inferior Olive cells and Deep cerebellar nuclei
cells. All of them are constructed as the similar structures of Cerebellum and we
model its physical functions. Besides, the SNNs functions the feed-forward part
in our controller. Previously, scholars have designed some novel SNNs [1,3,6].
In our work, a new SNN topology is designed to learn the inverse model of soft
actuators and make up for the output of the controller.

2 The Structure of SNN

Here we use a real-time spiking neural network with a cerebellar-like structure
that can obtain the inverse model of the Mckibben pairs to act as a feed-forward
part of the controller. We use a set of spiking neurons as a basic unit of the
network and imitate the structure of Cerebellar to build a neural network, which
bases on [3]. The topology of the network is displayed in Fig. 1.

Fig. 1. Topological structure diagram
of the neural network. The arrow indi-
cates an excitatory effect, and the circle
indicates an inhibitory effect.

Fig. 2. The robotic arm. Two pneu-
matic artificial muscles are placed on
both sides. When one of them con-
tracts, it pulls the robotic arm to
rotate.

2.1 Neurons and Layers

The neural network consists of about 1000 neurons which contains 80 Mossy
Fibers (MF), 100 Granule cells (GR), 160 Purkinje cells (PK), 160 Inferior Olive
cells (IO), and 160 Deep cerebellar nuclei cells (DCN). The leaky integrate-and-
fire (LIF) neuron model is used to build the neurons. Since the cerebellar cortex
has hierarchical functional blocks, different blocks are responsible for different
types of physical movements. The GR layer is connected to the MF layer hierar-
chically to imitate this partition mapping pattern. The PK layer and the DCN
layer are divided into antagonistic pairs to receive pulses from GR and corre-
sponding error signals from IO. Weights between GR and PK are adjusted and
trained according to Spike Timing–Dependent Plasticity (STDP) learning rules.
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2.2 Learning Rules

Studies have shown that learning in Cerebellum is mediated by synaptic plas-
ticity. In our network, the connection between the GR layer and the PK layer is
carried out according to the learning rules.

STDP is a learning method based on Hebbian learning rules. The dependence
of synaptic modification on the order of pre and postsynaptic spiking within
a critical window of tens of milliseconds has profound functional utilities in
learning and memory [2].

STDP in this network is divided into long-term potentiation (LTP) medi-
ated by GR pulses and long-term depression (LTD) mediated by IO pulses. The
equations are as follows: LTP effect increases the weight w at a specific learning
rate whenever there is a GR pulse, while the LTD effect adds the historical GR
pulse to the kernel function whenever there is an IO input pulse.

LTP : Δw (t) = nu0 δ (t) , (1)

LTD : Δw (tIO) = − nu1

∫ tIO

−∞
K (t − tIO) δGR (t) dt, (2)

K(x) = ex − e4x. (3)

where nu1,nu2 represents learning rate for LTP and LTD respectively, δ rep-
resents pulse signal of the corresponding neurons and K represents the kernel
function described in Eq. (3).

3 Simulation Platform

Bindsnet [4], an open-source spiking neural network building platform, is used to
build and train the neural network. Meanwhile, Simulink is used as the platform
to build the physical simulation environment and the controller.

3.1 The Robotic Arm

Our robotic arm uses two iron rods as bones and a pair of pneumatic muscles as
actuators imitating bicep and tricep of human respectively in Fig. 2.

One end of the link is fixed, and the muscles are installed on both sides of the
link. When one of the muscles contracts, it will pull the unfixed link to rotate.
We take the deflection angle of the robotic arm as output and model the robotic
arm in Simulink.

3.2 Control Loop

A cascade control method including a feed-forward part and a feedback part
is applied in our system shown in Fig. 3 The air pressure feedback controller
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Fig. 3. The block diagram of the feed-forward and feedback cascade control system.

shown in Fig. 3 directly controls the air pressure of the two pneumatic muscles
by controlling opening and closing of the solenoid valves.

The PD controllers in the outer loop is served as the main controller to obtain
the precision of motion control. Cerebellum-inspired feed-forward controller con-
tributes to improve the response speed and deal with the nonlinearity.

4 Results and Discussions

In the simulation, we use two different control strategies: (1) A controller with
both feed-forward and feedback blocks (2) A controller with a single feed-forward
block in Fig. 4.

Firstly, a controller with a PD feedback part and a feed-forward part built
by the network is applied. The feedback controller is added to achieve the rapid
response of the control system to disturbances. In order to test the trajectory
tracking effect and the anti-interference effect of the end of the manipulator, a
sinusoidal trajectory input is applied as the desired trajectory to analyze the con-
trol effect. Results in Fig. 4 (a) shows improvement in control accuracy comparing
with the PD controller. Results in Fig. 4 (b) also indicate that the feed-forward
controller achieves good performance as well.

The experiment verifies that our controller can replace traditional controllers,
and we will continue to reduce the effect of feedback part and verify the control
effect of our controller on Mckibben artificial muscle. The whole system shows
strong bionics and has potentially large applications in many fields.
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Fig. 4. (a) Results for a controller with both feed-forward and feedback blocks. (b)
Results for a controller with a single feed-forward block.
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