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Abstract. We study post-quantum zero-knowledge (classical) protocols
that are sound against quantum resetting attacks. Our model is inspired
by the classical model of resetting provers (Barak-Goldreich-Goldwasser-
Lindell, FOCS ‘01), providing a malicious efficient prover with oracle
access to the verifier’s next-message-function, fixed to some initial ran-
dom tape; thereby allowing it to effectively reset (or equivalently, rewind)
the verifier. In our model, the prover has quantum access to the verifier’s
function, and in particular can query it in superposition.

The motivation behind quantum resettable soundness is twofold:
First, ensuring a strong security guarantee in scenarios where quantum
resetting may be possible (e.g., smart cards, or virtual machines). Sec-
ond, drawing intuition from the classical setting, we hope to improve our
understanding of basic questions regarding post-quantum zero knowl-
edge.

We prove the following results:
– Black-Box Barriers. Quantum resetting exactly captures the

power of black-box zero knowledge quantum simulators. Accordingly,
resettable soundness cannot be achieved in conjunction with black-
box zero knowledge, except for languages in BQP. Leveraging this,
we prove that constant-round public-coin, or three message, pro-
tocols cannot be black-box post-quantum zero-knowledge. For this,
we show how to transform such protocols into quantumly resettably
sound ones. The transformations are similar to classical ones, but
their analysis is very different due to the essential difference between
classical and quantum resetting.

– A Resettably-Sound Non-Black-Box Zero-Knowledge Pro-
tocol. Under the (quantum) Learning with Errors assumption
and quantum fully-homomorphic encryption, we construct a post-
quantum resettably-sound zero knowledge protocol for NP. We rely
on non-black-box simulation techniques, thus overcoming the black-
box barrier for such protocols.

– From Resettable Soundness to The Impossibility of Quan-
tum Obfuscation. Assuming one-way functions, we prove that any
quantumly-resettably-sound zero-knowledge protocol for NP implies
the impossibility of quantum obfuscation. Combined with the above
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result, this gives an alternative proof to several recent results on
quantum unobfuscatability.

1 Introduction

Zero-knowledge protocols, introduced by Goldwasser, Micali, and Rackoff
[GMR89], are a cornerstone of cryptography. They allow proving the validity
of any statement in NP without revealing anything but its validity [GMW91].
After over three and a half decades of research, zero knowledge protocols are well
understood in terms of their expressiveness and round complexity, and various
enhancements of zero knowledge have been considered.

In this work, we consider zero knowledge protocols with post-quantum secu-
rity, namely, protocols that can be executed by classical parties, but where both
soundness and zero knowledge are guaranteed against efficient quantum adver-
saries. Starting from the seminal work of Watrous [Wat09], our understanding
of post-quantum zero knowledge has been gradually improving, and yet it is still
far behind our understanding of classical zero knowledge. Beyond the obvious
need for post-quantum computational assumptions, the design and analysis of
post-quantum zero knowledge protocols is challenged by quantum phenomena
such as the no-cloning theorem [WZ82] and state disturbance [FP96], which
often deem classical techniques insufficient.

Resettable Soundness. We focus on the notion of resettable soundness, intro-
duced by Barak, Goldreich, Goldwasser, and Lindell [BGGL01] and by Micali
and Reyzin [MR01]. In the classical setting, resettably-sound protocols remain
sound even against a prover that has the ability to reset the honest verifier to its
initial state and random tape, and repeat the interaction in any way it chooses
(equivalent to the ability to rewind the verifier to any previous message). The
threat of reset attacks arises in various settings, when fresh randomness can-
not be generated on the fly and parties are subject to physical resets. Exam-
ples include verifiers that run on smart cards or virtual machines. Accordingly
security against resetting attacks has received much attention [CGGM00,KP01,
MR01] [DGS09,GS09,COSV12,OV12,COPV13,COP+14,BP15,CPS16].

Beyond the protection it provides in the above settings, resettable soundness
has played an important role in understanding a foundational question regarding
(classical) zero knowledge protocols—the gap between black box zero knowledge
and non black box zero knowledge. In the first, the zero knowledge simulator can
only access the verifier as a black box, whereas in the second, it can make explicit
use of the verifier’s code. Indeed, resettably-sound protocols cannot have a black-
box zero knowledge simulator [BGGL01]; roughly speaking, this is because a
resetting prover effectively has the same rewinding power as a zero knowledge
simulator, and can accordingly use any black box simulation strategy in order
to cheat. In fact, several other black-box zero knowledge impossibilities can be
derived by a reduction to the impossibility of resettably sound black-box zero
knowledge [GK96b,BGGL01,PTW11].
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This Work: Quantum Resettable Soundness. We investigate resettable
soundness in the quantum setting. That is, we consider classical protocols that
are sound against quantum resetting attacks and (plain) zero knowledge against
quantum malicious verifiers. Our goal is twofold: First, constructing such proto-
cols to deal with resetting scenarios in a quantum world. Second, in light of the
role that resettable soundness plays in the classical setting, we expect that in
the quantum setting too, understanding resettable soundness would shed light
on basic questions regarding post-quantum zero knowledge.

1.1 Contributions

We first model resetting attacks in a quantum world and define the corresponding
notion of resettable soundness. We consider a strong definition that provides the
resetting prover quantum access to the honest verifier’s next message function,
for some fixed verifier randomness. In particular, the resetting prover may not
only rewind the verifier, but also do it in superposition. This model aims to
capture the worst possible behavior of an efficient quantum attacker in a setting
where resetting is possible. Furthermore, the model captures the capabilities
of a black box zero knowledge simulator in the quantum setting (the model is
further discussed in the technical overview). Throughout, we restrict attention
to efficient resetting provers and accordingly to arguments [BCC88] (offering
computational soundness) rather than proofs (offering statistical soundness).

We next describe our results regarding the construction and implications of
the above notion of resettable soundness (further discussion of the model and
definition can be found in the technical overview below).

Quantum Black Box Barriers. As intended our definition provides a quan-
tum resetting prover with the power of a quantum black-box zero knowledge
simulator. This yields a black box barrier analogous to the one in the classical
setting.

Observation 1 (Informal). Post-quantum resettably-sound black-box zero
knowledge is impossible, except for languages in BQP.

Building on this fact, we then prove that the Goldreich-Krawczyk black box zero
knowledge barriers from the classical setting [GK96b] translate to the quan-
tum setting. More generally, we show that under minimal assumptions, any
three-message or constant-round public-coin zero-knowledge protocol can be con-
verted into a quantum resettably-sound argument, while preserving black-box
zero knowledge.

Theorem 2 (Informal). Assuming post-quantum one-way functions, post-
quantum zero knowledge protocols that are three message or constant-round
public-coin, with a negligible soundness error, can be made resettably sound.
Such protocols cannot be black-box zero knowledge, except for languages in BQP.
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We note that the classical barriers proven by [GK96b] do not apply here, as they
only consider classical zero-knowledge simulators, rather than the quantum ones
in our setting. The transformation behind the above theorem is in fact the same
as the corresponding classical transformation [BGGL01]. However, the analysis
of the transformation is different and more challenging due to the essential dif-
ference between classical resetting and quantum resetting, which is superposition
resetting attacks (see technical overview).

The resulting black-box barrier holds for general zero knowledge protocols,
in particular, for arguments. In the case of proofs (with statistical rather than
computational soundness), there is evidence that three-message or constant-
round public-coin zero knowledge (for non-trivial languages) is impossible alto-
gether (even non-black-box) [BLV06,KRR17,FGJ18]. In the case of black-box
zero knowledge, this barrier for proofs was proven (unconditionally) by Jain,
Kolla, Midrijanis, and Reichardt [JKMR09]. Finally, we note that like in the
classical setting, the resulting barriers, in fact, hold also in a semi-black-box
model where the simulator is allowed to depend on the circuit size of the simu-
lated verifier. In the fully black-box model, the barriers can be proven without
relying on one way functions.

A Resettably-Sound Protocol via Quantum Non-Black-Box Tech-
niques. Aiming to constructing post-quantum resettably-sound zero knowledge,
we are faced with the above mentioned black-box impossibility. In the classical
setting, the corresponding black box impossibility of resettably-sound can be
circumvented relying on non-black-box simulation. Indeed, the pioneering work
of Barak shows how to construct constant-round public-coin zero knowledge
arguments from collision-resistant hashing [Bar01], to which one can apply the
[BGGL01] transformation to obtain resettable soundness. In the quantum set-
ting, however, constant-round public-coin zero knowledge arguments for now
remain out of reach.

Nevertheless, under standard assumptions (Quantum Learning with Errors
[Reg05] and Quantum Fully-Homomorphic Encryption [Bra18,Mah18]) we con-
struct a post-quantum resettably-sound zero knowledge protocol relying on
(quantum) non-black-box simulation.

Theorem 3 (Informal). Assuming the hardness of QLWE and the existence of
QFHE there exists a post-quantum resettably sound zero-knowledge argument for
NP.

Our construction starts from the recent construction of post-quantum constant-
round (non-black-box) zero-knowledge [BS20] and modifies it. While non-black-
box techniques do not seem inherent for constant round zero knowledge with
plain soundness (see [CCY20] in related work), in our setting they become essen-
tial. While the non-black-box technique we use is similar to that of [BS20],
resettable soundness, requires a new proof, which encounters several technical
challenges emerging from quantum resetting.
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From Resettable Soundness to Quantumly Unobfuscatable Functions.
In the classical setting, resettably-sound zero knowledge is known to be inti-
mately related to the impossibility of virtual black box obfuscation [BGI+12].
In particular, assuming one-way functions any resettably-sound zero knowledge
protocol for NP implies a family of unobfuscatable functions [BP15]. We show
that this result translates also to the quantum setting; specifically there exists
classical function families that cannot be obfuscated as quantum states according
to the quantum virtual black box notion of Alagic and Fefferman [AF16].

Theorem 4 (Informal). If there exists a post-quantum resettably-sound zero-
knowledge argument for NP and post-quantum one-way functions, then quantum
virtual black-box obfuscation is impossible.

Such an impossibility was recently shown by Ananth and La Placa [AP20b]
and by Alagic, Brakerski, Dulek, and Schaffner [ABDS20]. The combination
of Theorems 3, 4 yields an alternative, albeit more complicated, proof of this
result (under similar assumptions). We note that differently from the classical
setting where the impossibility of black box obfuscation is unconditional, in the
quantum setting it relies on QLWE and strongly relies on quantum homomorphic
encryption. Following the above theorem, any advancement in the construction
of quantumly resettably sound protocols, and in particular the construction of
constant-round public-coin or three-message protocols, is likely to also advance
our understanding of quantum unobfuscatability.

2 Technical Overview

In this section, we provide a technical overview of the paper.

2.1 Defining Post-quantum Resettable Soundness

In the classical setting [BGGL01], a resetting attack by a malicious prover rP
is modeled by providing the prover oracle access to the next-message function
of honest verifier V(x, · ; r) for the common input x and randomness r that is
sampled uniformly and fixed once and for all. The prover then has the ability
to query a partial transcript ts, including prover messages up to some round i,
and obtain back the verifier message in round i + 1. In a successful attack, after
polynomially many queries, the prover manages to output a full transcript ts for
some false statement x, which yet convinces the verifier V(x, ts; r).

Aiming to generalize this to the quantum setting, there are two conceivable
definitions. The first considers quantum provers, which are only given classical
access to V(x, · ; r). The second, which we consider in this work, provides the
prover with quantum access to V(x, · ; r); namely, access to the unitary map
|ts〉|y〉 �→ |ts〉|y ⊕ V(x, ts; r)〉; in particular, it may now query V(x, · ; r) in super-
position. While the first may still provide meaningful security in settings where
classical access can be enforced, the second resists stronger resetting scenarios
in which the attacker can perform quantum resetting and remain secure even in
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settings where classical access could be hard to enforce (similar considerations
arise when considering CCA and signatures against quantum adversaries, see
for instance [BZ13]). Finally, our definition captures the abilities of a black-box
zero-knowledge simulator, and will thus be useful for proving black-box barriers
on post-quantum zero knowledge.

Proving that resettably-sound protocols cannot be black box zero knowledge,
except for languages in BQP, now follows a standard argument similar to the
classical one [BGGL01]. Roughly, speaking this is because a quantum resetting
prover has the ability to run a quantum black-box simulator for the verifier
V(x, · ; r), in order to produce a cheating transcript. Indeed, by zero knowl-
edge and completeness, for any true statement x, the simulator almost always
generates an accepting transcript, and unless it can decide the underlying lan-
guage (meaning that it is in BQP), it must also be able to do so for some false
statements.

Variants. A natural strengthening of the above definition allows the prover to
also choose the statements x that it provides the oracle with; namely get access
to V(· , · ; r). In the body, we prove that this stronger notion can be obtained
from the simpler notion assuming subexponentially-secure (post-quantum) pseu-
dorandom functions. We note that all the implications of resettable soundness
shown in this work, already follow from the simpler notion of resettable sound-
ness.

Also, as already noted we restrict attention to efficient resetting provers,
namely arguments. We note that classically, resettably-sound zero knowledge
proofs, namely against unbounded provers, are only possible for trivial languages
[BGGL01], and this carries over to the quantum setting. Again, all implications
shown in this work already follow from resettably-sound zero knowledge argu-
ments.

2.2 3-Message and Constant-Round-Public-Coin Protocols Can Be
Made Resettably Sound

We now explain how 3-message protocols and constant-round public-coin proto-
cols are made resettably sound. The transformation does not change the honest
prover, and thus preserves black box zero knowledge, and any other privacy
guarantee, such as witness indistinguishability (which we will use later on).
This in turn yields quantum black-box zero-knowledge barriers on 3-message
or constant-round public-coin protocols (with a negligible soundness error).

3-Message Protocols. The transformation for three-message protocols is
essentially identical to the classical one [BGGL01]. Given the original verifier
V for the protocol, we consider a new verifier Ṽ whose randomness consists of
a random seed k for a pseudorandom function secure under quantum access
[Zha12]. Given a statement x and first prover message α, the verifier Ṽ derives
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randomness r by applying the PRF and derives the second message β, by apply-
ing the original verifier with corresponding randomness:

r = PRFk(α), β = V(x, α; r) .

As expected Ṽ(x, α, β, γ; k) accepts if the original verifier V(x, α, β, γ; r) accepts.
In the classical setting, resettable soundness is proven by a relatively simple

reduction to the soundness of the original protocol. In the quantum setting, how-
ever, proving security is significantly more challenging. Before we address these
challenges let us start by recalling the classical reduction to develop basic intu-
ition. We are given a resetting prover rP, which without loss of generality, never
makes the same query twice, and always queries the oracle Ṽ on the cheating
transcript it eventually outputs. Roughly speaking, the reduction, which aims to
cheat V in a single interaction, will aim to embed this interaction in a random
position in an execution of the resetting rPṼ(x,· ;k) and forward that execution
to the external verifier V. All other executions are internally simulated by the
reduction. By pseudorandomness, the view of the simulated rP is indistinguish-
able from its view in a resetting attack and will include some cheating execution.
With noticeable probability (inverse proportional to the number of queries that
rP makes), the reduction hits the cheating execution and wins.

In the quantum setting, however, it is not a-priori clear how such a reduc-
tion would work. In particular, any query made by rP to Ṽ may now include
a superposition of super-polynomially many transcripts. Furthermore, merely
observing the prover queries disrupts its state and could affect the probability it
produces a cheating transcript. Embedding an execution at a random position is
also tricky. When we forward some message α to the external verifier, and obtain
back a message β, we have to answer consistently with β all oracle queries to
α. However, whereas in the classical case, we could assume that no α is queried
more than once (because queries can be stored), now it may be that α takes part
in all superposition queries that the prover makes.

Similar difficulties arise when trying to prove the soundness of the Fiat-
Shamir transformation [FS86] in the quantum random oracle model [BDF+10],
and were, in fact, successfully circumvented in recent works [LZ19,DFMS19,
DFM20]. Indeed, both in the Fiat-Shamir setting and in our setting, we can still
hope to obtain an analog of the classical reduction. Specifically, by measuring a
random query made by rP, forwarding the result α to the external verifier, and
consistently answering with β any future query α by reprogramming the classical
function Ṽ.

The intuition is that for the prover to succeed in outputting a convincing
transcript (α, β, γ), the message α has to appear in one of his superposition
queries with noticeable weight; otherwise, it gains almost no information on the
corresponding verifier message β, and will fail to break soundness. Furthermore,
when measuring such a query we are likely to obtain α, without disturbing the
prover’s state too much (in the extreme case that α occurs with probability one,
the state is not disturbed at all). If the reduction hits the first such query (where



Post-quantum Resettably-Sound Zero Knowledge 69

α is significant), then it suffices that it is consistent with α in future queries and
does not have to worry about past queries.

This intuition is elegantly captured and made rigorous by Don, Fehr, Majenz,
and Schaffner [DFMS19,DFM20]. They prove reprogramming and simulation
lemmas that establish the validity of (a slight variant of) the described reduction
in the case of Fiat Shamir, where the message β is chosen uniformly at random.
In our setting, β is an arbitrary message derived by the verifier. Nevertheless,
relying on their reprogramming lemma, we can prove an appropriate simulation
lemma for our setting.

A Useful Generalization: Many-Round Almost Resettable Protocols.
We also show a generalization of the three-message transformation that allows
to take any single-prefix resettably-sound protocol and make it (fully) resettably
sound. Single-prefix resettably sound protocols are almost resettably sound.
They allow the resetting prover to use a single classical first message and accord-
ingly obtain a single response to this message from the verifier. Only starting
from the prover’s next message it is allowed to quantumly reset; namely all inter-
actions (even if in superposition) start with the same classical prover message
and verifier response. A three message protocol is indeed the simplest example
of a single-prefix resettably-sound protocol, since the verifier has a single mes-
sage, and if this message is not reset, then there is no resetting whatsoever, and
resettable soundness is synonymous to plain soundness.

This generalization turns out to be useful, and is used later on in our con-
struction of a resettably sound (non-black-box) zero knowledge protocol for NP.
To obtain this generalization, we first extend the reprogramming lemma from
[DFM20] to the case of reprogramming an entire oracle, specified by some prefix.
This allows us to extend the previously described reduction, which given a fully
resetting prover can turn it into a single prefix resetting prover. The difference
is that now rather than obtaining from the external verifier a response β to the
measured α, it obtains oracle access to an oracle Ṽ(x, α, · ; r) specified by the
prefix α (and implicitly a response β). This oracle effectively allows to perform
resetting attacks, but only starting from the next prover message.

Constant-Round Public-Coin Protocols. Another example where classical
resettable soundness can be achieved is that of constant round public-coin pro-
tocols. Also here we obtain an analogous transformation in the quantum setting,
now based on multi-value reprogramming lemmas from [DFM20], used there to
deal with multi-message Fiat Shamir.

Beyond 3-Message or Constant-Round Public-Coin? We note that we
should not hope to transform arbitrary protocols into resettably-sound ones;
indeed, multi-message post-quantum zero knowledge protocols for NP do exist,
and are even public coin [Wat09]. But what does it take for a protocol to be
(transformable to) resettably sound? Here one bottleneck is the (in)ability of
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the reduction to simulate internally the interactions that are not forwarded to
the external verifier. More specifically, the question is whether the reduction
could simulate continuations that start consistently with the external verifier
and then diverge. In general private-coin protocols, this may not be possible
as the private coins of the external verifier are not known to the reduction. In
contrast, in three-message protocols this is not a problem, as there is nothing
to continue (the verifier has a single message). Similarly, also in public coin
protocols, simulating continuations is easy—the reduction samples the random
messages on its own.

This is, however, not the only bottleneck. A second bottleneck is that the
reduction has to hit the cheating execution with noticeable probability, and since
the reduction has to guess on the fly which messages to forward to the external
verifier, this probability may decrease exponentially in the number of rounds.
Hence, even for public coin protocols, the transformation only works for a con-
stant number of rounds. In fact, this is tight—the round complexity of Watrous’
zero knowledge public-coin proofs [Wat09] can be reduced to any super con-
stant function ω(1). (For instance, by starting from Blum’s Hamiltonicity proto-
col [Blu86] that has constant soundness, repeating it in parallel logarithmically
many times, and then sequentially ω(1) times.)

2.3 Constructing a Resettably Sound Non-Black-Box
Zero-Knowledge Protocol

We now outline the main ideas and techniques behind our construction of a
resettably-sound non-black-box zero-knowledge protocol for NP. Our starting
point is the post-quantum zero knowledge protocol of Bitansky and Shmueli
[BS20]. We next describe the main challenges in turning this protocol into a
quantumly resettably sound protocol.

A Bird’s Eye View of the BS Protocol. At a high level (and oversim-
plifying), the BS protocol consists of two phases. First, the verifier provides a
quantum extractable commitment to a challenge message. Then the parties exe-
cute a standard zero knowledge sigma protocol to prove the statement x, where
the verifier opens the commitment from the first phase. The extractor for the
first-phase commitment is non-black-box, using the code of a sender (the verifier
in this case), it can extract the underlying message while faithfully simulating
the quantum state of the sender. This gives rise to a corresponding non-black-
box simulation strategy, which first extracts the verifier challenge and can then
cheat in the sigma protocol.

Already at this level, one can see that the protocol is not resettably sound,
even classically, let alone quantumly. A resetting prover can first run the verifier
until the opening phase, obtain the challenge, then reset the verifier, and like the
simulator use the obtained challenge to cheat in the sigma protocol. Indeed, the
reason that the actual simulator in the BS protocol does not follow this black-
box strategy is that it does not work for malicious quantum verifiers, whereas a
resetting prover only has to cheat a classical verifier.
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Following the above observation, we change the above high level blueprint.
We rely on the Feige-Lapidot-Shamir [FLS99] trapdoor paradigm. In the first-
phase, the BS extractable commitment is used to set up a trapdoor statement t.
In the second phase, the prover provides a witness-indistinguishable proof that
either x is a true statement or t is a true statement. To guarantee soundness, the
trapdoor statement is set up so that it is indistinguishable from a false statement,
and thus relying on the soundness of the second-phase proof, a convincing proof
must mean that x is a true statement. In contrast, a simulator given the code
of the verifier should be able to efficiently extract a witness for the trapdoor
statement t, and can then use it in the second phase proof indistinguishably
from the prover (who uses the witness for x).

Given that we are interested in quantum resettable soundness, we have
to guarantee that the indistinguishability of the trapdoor statement t from
a false statement, holds even against quantum resetting attacks. Further-
more, we have to guarantee that the second-phase proof is resettably sound.
For the latter, we can use standard constant-round public-coin witness-
indistinguishable proofs; indeed, we have already shown that such proofs can
be made quantumly-resettably sound, while preserving witness indistinguisha-
bility. The more involved part is establishing indistinguishability of the trapdoor
statement from a false one under resetting.

A Resettably-Secure Trapdoor Phase. We now dive deeper into the con-
struction of a resettably-secure trapdoor phase. In terms of extractability (of
a trapdoor witness), we first present a trapdoor phase that is only extractable
against a restricted class of verifiers that are non-aborting and explainable. The
notion of non-aborting explainable verifiers considers verifiers whose messages
can always be explained as a behavior of the honest (classical) verifier with
respect to some randomness (finding this explanation may be inefficient); in
particular, they never abort. This simpler setting will already capture the main
challenges we need to deal with. We will later discuss how this restriction is
removed.

Similarly to the BS extractable commitment, we rely on three basic tools:

– Quantum fully-homomorphic encryption (QFHE)—an encryption scheme
that allows to homomorphically apply any polynomial-size quantum circuit
C to an encryption of x to obtain a new encryption of C(x), proportional in
size to the result |C(x)| (the size requirement is known as compactness).

– Compute-and-compare program obfuscation (CCO). A compute-and-compare
program CC[f, v, z] is given by a function f (represented as a classical cir-
cuit) and a target string v in its range; it accepts every input x such that
f(x) = v, and rejects all other inputs. A corresponding obfuscator compiles
any such program into a program ˜CC with the same functionality. In terms
of security, provided that the target v has high entropy conditioned on f , the
obfuscated program is computationally indistinguishable from a simulated
dummy program that is independent of f, v, z, and rejects all inputs.
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– Secure function evaluation (SFE) that can be thought of as homomorphic
encryption with an additional circuit privacy guarantee, which says that the
result of homomorphic evaluation of a circuit, reveals nothing about the eval-
uated circuit to the decryptor, except of course from the result of evaluation.

We now describe a (still simplified) trapdoor phase, which is essentially the
same as the BS extractable commitment, except for how the randomness of the
verifier is handled. In the trapdoor phase the verifier has two randomized steps;
we denote the randomness used in these rounds by r1 and r2, respectively.

1. The prover P samples a secret key sk for SFE, and sends a commitment cmt
to sk.

2. The verifier V uses randomness r1 to sample:
– two random strings u and v,
– a secret key sk′ for an FHE scheme,
– an FHE encryption ct′u = QFHE.Encsk′(u) of u,
– an obfuscation ˜CC of CC[f, v, sk′], where f = QFHE.Decsk′ is the FHE

decryption circuit.
It then sends (ct′u, ˜CC) to the prover P.

3. The prover P:
– sends ctu′ , a string u′ encrypted using SFE (the honest prover sets u′

arbitrarily).
– proves using a resettably-sound witness-indistinguishable argument that
ctu′ is a valid SFE encryption corresponding to the secret key sk under-
lying the commitment cmt.

4. The verifier V:
– uses the SFE homomorphic evaluation to compute the function Cu→v

that given input u, returns v (and otherwise ⊥).
– To derive the randomness for this evaluation, V interprets its randomness

r2 as a seed for a pseudorandom function and applies it to the prover
messages (cmt, ctu′).

– V then returns the resulting ciphertext to P.
5. The trapdoor statement t is set to be:

“There exists a ciphertext ct∗ that the program ˜CC does not reject.”

Basic Intuition. We start by building basic intuition on how the above proto-
col achieves the goal of a trapdoor phase. For starters we will ignore the resetting
attacks, and recall the intuition from BS. Then we will address the main chal-
lenges in proving resettable security, and how they are met. (A reader familiar
with BS may want to skip directly to the resettable security paragraph.)

Let us start by explaining how a non-black-box simulator can use the circuit
of an explainable verifier in order to obtain a witness proving the trapdoor
statement. The simulator acts honestly in the first step, and then obtains the CC
obfuscation ˜CC and FHE encryption ct′u of the string u. The main point is that
now the simulator can homomorphically continue the protocol under the FHE
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encryption. That is, it will evaluate the (quantum) verifier under the encryption,
where it has the secret u in the clear and can use it in the SFE protocol to obtain
back the secret target value v (the hiding of SFE encryption is used to argue that
such an execution is indistinguishable from a real one where a dummy encryption
is sent). Going back out of the encryption, the simulator now actually holds an
encryption ct∗ of v, and in particular ˜CC does not reject ct∗, but rather outputs
the FHE secret key sk′. Thus, the ciphertext ct∗ obtained by the simulator is
a valid trapdoor witness. The reason we require ˜CC to output sk′, rather than
an arbitrary accept value, is for the simulator to be able to decrypt the internal
verifier quantum state and faithfully continue the simulation.

We now turn to explain why to a malicious (but for now, non-resetting)
prover, who does not obtain the code of the verifier, the trapdoor statement is
indistinguishable from a false statement. Specifically, we would like to argue that
we can replace the obfuscation ˜CC with a simulated one that rejects all inputs.
To see this, we first argue that the prover cannot send an SFE encryption ctu′

such that u′ = u , except with negligible probability. Indeed, given only the first
sender message (ct′u, ˜CC), the receiver obtains no information about u. Hence,
we can invoke the CCO security and replace the obfuscation ˜CC with a simulated
one, which is independent of the secret FHE key sk. This, in turn, allows us to
invoke the security of encryption to argue that the first message (ct′u, ˜CC) hides
u. While this means that the prover does not obtain u in the clear, we still need
to argue that it cannot send an encryption of u. This is done using a non-uniform
reduction and is exactly the purpose of the prover commitment cmt to the SFE
secret key sk, which allows us to provide the reduction with sk as non-uniform
advice. Having established that no SFE encryption of u is sent we can invoke
the circuit privacy guarantee to completely remove the value v from the prover’s
view and now we also replace ˜CC with a simulated one that rejects all inputs.

Resettable Security. The above argument establishing indistinguishability
of the trapdoor statement from a false statement, does not consider resettable
attackers. We now discuss the difficulties arising from resetting attacks and how
they are dealt with.

Recall that a resetting quantum attacker may perform superposition queries.
Accordingly, now when arguing that it cannot produce an SFE encryption of
u, we would like to argue that SFE encryptions of u have negligible weight in
any query made by rP; in other words, projecting the queries on the space of
non-u queries has little effect on the experiment. Indeed, we can prove this if
the resetting prover is guaranteed to always use the same SFE encryption key,
in which case we can non-uniformly hardwire this key into our reduction like
before. The problem is that a resetting prover may start many executions, each
with a different SFE key; in fact it can run exponentially many such executions
in superposition. This is where we use our reduction to single-prefix resetting
provers (discussed in the previous section). The reduction allows us to obtain
new prover that in all executions sends the same commitment cmt and uses
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the same secret key; any resetting attempt is done from the next message and
onward.

Having established that the prover queries do not include encryptions of the
secret u (or rather have a small projection on this space), we would like to invoke
as before the circuit privacy guarantee. However, this should be done with care.
The problem is the prover still has the ability to send many ciphertexts and
receive evaluations on each one of them. This is the reason we invoke a pseu-
dorandom function to derive randomness in this step, which ensures that each
evaluation uses (pseudo)independent randomness. Proving security, however, is
not straightforward. In the classical setting, this is not an issue—the overall num-
ber of queries is polynomial and thus we can use a standard hybrid argument,
invoking circuit privacy polynomially many times. In the quantum setting, how-
ever, where queries include a superposition over exponentially many ciphertexts,
this is unclear. In fact, there is a basic problem here, which we find interesting on
its own. Assume that for two efficient samplers S0(x) is computationally indis-
tinguishable from S1(x) for any input x; are the two oracles Fi(x) := Si(x;R(x))
indistinguishable (quantumly), when R is a random function? Zhandry [Zha12]
shows that this is the case if Si(x) = Si(y) for any x, y, but the general case is
unclear.

Fortunately, in our case, we can take a straightforward approach to solve it, by
guaranteeing that circuit privacy is statistical, and ensuring that the statistical
error is smaller than the total number of ciphertexts in the support, and thus a
naive hybrid argument still works. Doing so again requires care, as the size of SFE
ciphertexts and the statistical security guaranteed may be related. We show how
to deal with this by forcing the prover to also commit to the randomness used
in SFE encryptions so that the number of hybrids only depends (exponentially)
on the fixed length of the encrypted plaintext.

General Verifiers. In the described trapdoor protocol, we have made two sim-
plifying assumptions regarding the verifier—that it is explainable and that it is
non-aborting. We deal with the first restriction using a common approach based
on witness indistinguishable proofs by the verifier [BKP19,BS20]. This time
however, we need to rely on resettable statistical witness indistinguishability.
Statistically-witness-indistinguishable ZAPs are known under super-polynomial
hardness of QLWE [GJJM20,BFJ+20] and are resettable as they only include
one round. We also give a solution using only polynomial hardness of QLWE,
based on Unruh’s notion of collapse binding statistically-hiding hash functions,
which leads to statistical witness-indistinguishable protocols [Unr16b,Unr16a],
while these protocols are not resettably-witness-indistinguishable as is, we show
how to make them resettably secure.

As for dealing with verifier aborts, we rely on a general approach from [BS20],
which roughly asserts that it is sufficient to be able to construct two separate zero
knowledge simulators, one for verifiers that do not abort and one for verifiers that
do, and which do not affect the probability of aborting (more than negligibly).
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They show that two such simulators can always be combined to one full-fledged
simulator using Watrous’ rewinding lemma [Wat09].

2.4 From Resettable Soundness to Quantum Unobfuscatability

Finally, we outline the construction of quantumly unobfuscatable functions from
resettably-sound zero-knowledge protocols for NP and one-way functions. Infor-
mally, an unobfuscatable function family is a family of classical functions {fk}
indexed by a secret k. Given quantum oracle access to a random fk in the family,
no efficient quantum learner should be able to learn some secret function s(k)
of the key. In contrast, given any quantum state ρ and quantum circuit C such
that for some k and and all inputs x, C(ρ, x) computes the classical value fk(x),
one could efficiently extract from C and ρ the corresponding secret s(k).

Our construction closely follows the construction of classically unobfuscat-
able functions from classical resettably sound zero knowledge protocols [BP15],
while making some adaptations to the analysis stemming from the difference
between the classical and quantum settings. Roughly speaking, our family of
functions {fr,ϕ,s} is indexed by randomness r and statement ϕ for the (honest)
verifier given by our resettably-sound protocol, and some secret s. The state-
ment ϕ is taken from some NP language L where random statements ϕ ∈ L are
indistinguishable from statement not in L (for instance pseudorandom strings
vs random strings for a sufficiently stretching pseudorandom generator). The
function generally computes the verifier next message function V(ϕ, ·; r) with
two exceptions. For some fixed public input statement, the function will output
the statement ϕ. Also, given any accepting transcript ts, the function outputs
its secret s.

To argue unlearnability, we show that any efficient quantum learner L that
given oracle access to a random fr,ϕ,s finds s can be transformed into a prover
that violates quantum resettable soundness. For this, we first show that any
learner that manages find s with noticeable probability, can be translated into a
learner that that given access to V(ϕ, ·; r) finds an accepting transcript ts, still
with noticeable probability. For this we rely on a quantum one-way to hiding
lemma by Ambainis, Hamburg, and Unruh [AHU19]. We then rely on the fact
that ϕ is indistinguishable from a false statement to deduce that the prover will
also succeed for no statements and thus break resettable soundness.

Finally, we show that we can use the non-black-box zero knowledge simula-
tor to extract an accepting transcript with overwhelming probability. Given a
quantum circuit C and state ρ implementing the function fr,ϕ,s, say perfectly
(although almost perfectly would still do). We can realize a quantum circuit
along with quantum auxiliary input ρ that implement the verifier V(ϕ, ·; r). Here
perfect correctness guarantees that when the constructed verifier computes its
next messages, the state ρ is not disturbed, and thus we can repeatedly compute
next messages. We can now run our non-black-box simulator (which also works
relative to quantum auxiliary input), and by zero knowledge and completeness
obtain an accepting transcript.
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2.5 Related Work

We now mention additional related work, elaborate on some of the related works
mentioned earlier, and address concurrent work.

Classical Resettable Security. The notion of resetting attacks was first con-
sidered by Canetti, Goldreich, Goldwasser, and Micali [CGGM00]. They defined
and constructed protocols that are zero knowledge against resetting attacks.
Resettable soundness was then introduced and achieved by Barak, Goldreich,
Goldwasser, and Lindell [BGGL01]. Deng, Sahai, and Goyal showed how to con-
struct a simultaneously resettable zero knowledge protocol [DGS09], this result
was later followed by Goyal [Goy13] who gave a public coin protocol, by Chung,
Ostrovsky, Pass and Visconti [COP+14] who gave a protocol based on one-way
functions, and by Chongchitmate, Ostrovsky, and Visconti [COV17] who gave
a constant round protocol, based on various standard assumptions. Goyal and
Sahai [GS09] and Goyal and Maji [GM11] defined and constructed varioues forms
of resettable secure computation. Bitansky and Paneth [BP12,BP13,BP15] con-
structed resettably-sound protocols with various improved features based on
unobfuscatability. Chung, Pass, and Seth [CPS13] constructed resettably-sound
zero knowledge based on one-way functions. Finally, Chung, Ostrovsky, Pass,
and Venkitasubramaniam [COP+14] presented a 4-round resettably sound zero-
knowledge based on one-way functions.

Post-Quantum Zero-Knowledge for NP. The study of post-quantum zero-
knowledge (QZK) protocols was initiated by Van De Graaf [VDGC97], who
first observed that traditional zero-knowledge simulation techniques, based on
rewinding, fail against quantum verifiers. Subsequent work has further explored
different flavors of zero knowledge and their limitations [Wat02], and also demon-
strated that relaxed notions such as zero-knowledge with a trusted common ref-
erence string can be achieved [Kob03,DFS04]. Watrous [Wat09] was the first to
show that the barriers of quantum information theory can be crossed, demon-
strating a post-quantum zero-knowledge protocol for NP (in a polynomial num-
ber of rounds). A constant round non-black-box zero knowledge protocol was
constructed by Bitansky and Shmueli [BS20] based on QLWE and quantum fully
homomorphic encryption. Similar techniques for non black-box extraction were
also developed by [AP20a]. Subsequently, Agarwal, Bartusek, Goyal, Khurana,
and Malavolta [ABG+20] extended the BS construction to obtain parallel zero
knowledge based on spooky encryptions for relations computable by quantum
circuits.

Very recently Chia, Chung and Yamakawa [CCY20] showed that the
Goldreich-Kahan protocol [GK96a] satisfies a relaxed notion called (post-
quantum) ε-zero knowledge; the protocol is based on collapse binding hash func-
tions in the case of proofs, and on one-way functions in the case of arguments.

Barriers for 3-Message and Constant-Round Public-Coin Proofs. Clas-
sically, 3-message and constant-round public-coin zero knowledge arguments are
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subject to black-box barriers [GK96b], but can in fact be classically achieved
using non-black-box simulation (under appropriate computational assumptions)
[Bar01,BKP18]. In the case of proofs, there is evidence that they are unlikely
to exists altogether (including non-black-box zero knowledge). Specifically,
constant-round public-coin proofs do not exist assuming appropriate Fiat-Shamir
hash functions [FS86,DNRS03,BLV06]. Kalai and the Rothblums [KRR17] gave
such an instantiation of a Fiat Shamir hash assuming subepxoenential indis-
tinguishability obfuscation, and strong forms of point obfuscation. Jain, Fleis-
chhacker, and Goyal [FGJ18] extended their impossibility to also rule out three-
message proofs. The mentioned implications also hold in the quantum setting,
assuming post-quantum analogs of the corresponding assumptions. Jain, Kolla,
Midrijanis and Reichardt [JKMR09] showed that for black-box zero knowledge,
proofs can be ruled out unconditionally.

Simulating Quantum Oracles. Quantum oracles have been a fundamental
aspect of quantum computation from the start. Querying the oracle in super-
position created the need to develop new proof techniques. Specifically when
proving security of quantum protocols in the Quantum Random Oracle Model
([BDF+10]). The main issue is the lack of ability to record the queries asked by
the adversaries and to easily reprogram the answers. Nevertheless, many results
were achieved even without these abilities [Zha12,Unr14,Zha15,ES15,Unr15,
TU16,ABB+17,KLS18]. Following Zhandry’s work [Zha18] on recording ran-
dom oracles, many other results were proven such as the Fiat-Shamir transform
[LZ19,DFMS19,DFM20], the Micali CS Proofs [CMS19], 4-round Luby-Rackoff
construction [HI19] and more.

Quantum Obfuscation. Quantum obfuscation was first proposed by [AF16].
It’s impossibility is not implied by the impossibility proved in [BGI+12]. In
recent work, [ABDS20] showed the impossibility of such schemes based on the
hardness of QLWE. A related stronger notion called Secure Software Leasing
was dealt in [AP20b] and [KNY20], showing the impossibility of such generic
scheme (based on QLWE and the existence of QFHE), and the possibility of such
schemes for restricted classes of functions (pseudo-random functions and evasive
functions) under sub-exponential QLWE.

Concurrent Work. In a concurrent and independent work, Chia, Chung,
Liu and Yamakawa [CCLY21], prove new black-box barriers on post-quantum
zero knowledge. They show that black-box ε-zero-knowledge is impossible for
three-message and constant-round public-coin protocols, and that black-box zero
knowledge is impossible for general constant round protocols (also private coin).
The barriers on ε-zero-knowledge for public-coin and three-message also follow
directly from our resettable-soundness transformations, but the barrier for gen-
eral constant-round protocols does not. The other results in this paper (the
construction of a resettably-sound protocol and the connection to unobfuscata-
bility) do not overlap with their work.
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Technically, while Chia et al. do not explicitly consider resettable sound-
ness, the barriers on three-message and public-coin protocols are proven simi-
larly (using measure-and-reprogram techniques). To achieve the result on general
constant-round, they first extend a classical result by Barak and Lindell [BL04]
on the impossibility of a strict polynomial-time black-box simulator. This is
again done using similar measure-and-reprogram techniques. Then, they further
extend the result to expected-time simulators. This requires novel ideas and
strongly relies on quantum entanglement; in particular, in the classical setting,
such a barrier does not exist.

3 Defining Post-Quantum Resettable Soundness

In this section, we present our definition of resettable soundness, and show and
immediate implication of this definition, regarding the triviality of black-box
zero-knowledge arguments with resettable soundness.

3.1 Post-Quantum Resettable Soundness

We present our definition for post-quantum resettable soundness. Our definition
deals with giving oracle access to fixed verifier. We shall use V (x, ·; r) to denote
the interaction of algorithm V on instance x fixed randomness r (where the
input is a partial transcript). Also, to denote the application of V’s predicate on
a transcript ts we shall write V (x, ts; r). The definition of resettable soundness
is as follows,

Definition 1 (Post-Quantum Resettable Soundness). A classical inter-
active protocol 〈P,V〉 for language L has resettable soundness against quantum
provers, if for any malicious qpt resetting prover rP = {rPλ, |ψλ〉}λ∈N

there
exists a negligible function μ (·) such for any security parameter λ ∈ N and any
x ∈ {0, 1}λ \ L it holds that,

Pr
r

[

V (x, ts; r) = 1
∣

∣

∣ ts ← rP
V(x,·;r)
λ (|ψλ〉)

]

≤ negl (λ) ,

where ts is a transcript of a possible interaction between P,V. V (x, ·; r) is the
function that computes V’s next message, on instance x and some fixed random-
ness r, given as input a transcript of a partial interaction.

4 Transforming Protocols to Achieve Quantum
Resettable Soundness

In this section we show that classical three-message protocols as well as constant-
round public-coin protocols can be made resettably sound assuming one-way
functions. The transformation is simple and similar to the one from the classical
setting [BGGL01], however, having to deal with quantum resetting attacks, the
analysis is significantly different. The transformation preserves black-box zero-
knowledge; accordingly, we deduce as a corollary that post-quantum black-box
zero-knowledge protocols cannot be 3-message or constant-round public-coin,
except for trivial languages.
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4.1 Quantum Oracle Notations

We rely on a couple of lemmas proved in [DFM20]. We restate them here again,
while augmenting some of the notation, to fit with our conventions. Let AH

be a quantum oracle-aided algorithm. For a q-query algorithm, without loss of
generality, A can be described as having the following registers, query registers
on which we apply the unitary OH computing |x〉|y〉 → |x〉|y ⊕ H (x)〉, X,Z
which are output registers, and E holds any other internal qubits used by A.
More so, the operation of A on its initial state can be described as,

AH = AqOH . . .A1OH ,

where Ai is a sequence of unitaries. Like [DFM20] we use the following notation
for i < j ∈ [q]

AH
i→j = AjOH . . .Ai+1OH .

We also denote AH
i→j = Id for i ≥ j ∈ [q]. Assuming A gets as initial input a pure

state |φ0〉, we denote,
|φH

i 〉 = AH
0→i|φ0〉 .

For a function H we denote by Hx→θ the same function where x is remapped to
θ:

Hx→θ (x′) =

{

H (x′) x′ �= x

θ x′ = x
.

4.2 Transforming 3 Message Private Coin Protocols

We show that any 3 message interactive protocol 〈P,V〉 can be transformed to a
quantum resettably sound one, assuming the existence of quantum secure PRFs.
More formally we show the following,

Proposition 1 (Compiler For 3 Message Protocols). Assuming quantum-
secure one-way functions, any 3 message protocol 〈P,V〉 with negligible soundness
for a language L, can be transformed to into a post-quantum resettably sound
protocol 〈P, Ṽ〉. More so, if 〈P,V〉 is (black-box) zero-knowledge then so is 〈P, Ṽ〉.

Combining proposition 1 with observation 1 immediately implies the follow-
ing corollary,

Corollary 1. If L has a 3 message post-quantum black-box zero-knowledge pro-
tocol, then L ∈ BQP.

Single Value Reprogramming. To prove our construction presented in 4.2,
we shall rely on a lemma by [DFM20].
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Lemma 1 (Single Value Reprogramming Lemma ([DFM20])). Let A be
a q-query oracle quantum algorithm. Then, for any function H : X → Y, any
x ∈ X and θ ∈ Y, and any projection Πx,θ acting on the Z register (which may
depend on x, θ), it holds that

E
i,b

[

∥

∥

∥(|x〉〈x| ⊗ Πx,θ)
(

AHx→θ

i+b→q

)

(

AH
i→i+b

)

(|x〉〈x|) |φH
i 〉

∥

∥

∥

2

2

]

≥
∥

∥(|x〉〈x| ⊗ Πx,θ) |φHx→θ
q 〉∥∥2

2

(2q + 1)2
,

where the expectation is over uniform (i, b) ∈ {0, . . . , q − 1} × {0, 1} ∪ {(q, 0)}.
We emphasize that first |x〉〈x| acts on query register, while the second acts on
the X register.

Remark 1. We state here the technical lemma and not the existence of a simula-
tor, as done in the multiple values reprogramming in the public-coin case, since
unlike [DFM20] we use this lemma to reprogram a non-uniform output function,
in our private-coin transform.

Construction. Fix some language L with a three-message protocol 〈P,V〉 whose
message we denote by (α, β, γ). Assume V uses m (λ) bits of randomness. We
present the protocol 〈P, Ṽ〉. P is exactly the same, where as Ṽ is described in 1.

Algorithm 1: Ṽ (x; k)
1 Use k as a key for PRFk (·), a pseudo-random function.
2 Given α compute β = V (x, α;PRFk (α)).
3 Given a transcript α, β, γ compute V (x, (α, β, γ) ;PRFk (α)) and output it.

The fact that the protocol preserves completeness and zero-knowledge follows
readily, we focus on proving resettable soundness. To show resettable soundness,
we show an efficient reduction from a resetting prover rP to a prover P̃ for the
original protocol, which preserves the cheating probability up to a polynomial
loss.

Fix a malicious quantum resetting prover rP for a false instance x. Assume
that rP makes at most q oracle queries, and has non-uniform advice |ψ0〉. Assume
rP has registers A,Z,E and query registers. The query registers are for querying
a first message α and receiving the corresponding second message β. A,Z will
hold the outputted first and third message, and E holds any internal qubits used.
Then, P̃ will perform as follows,

We show that,

Claim.

Pr
[

〈P̃,V〉 (x) = 1
]

≥ 1
(2q + 1)2

Pr
k

[

〈rP, Ṽ (x, ·; k)〉 (x) = 1
]

− negl (λ) .
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Algorithm 2: P̃ (x) - Malicious Quantum Prover for 〈P,V〉
1 Sample (i, b) ← {0, . . . , q − 1} × {0, 1} ∪ {(q, 0)}.

2 Sample k ← {0, 1}λ.

3 Run rP
Ṽ(x,·;k)
0→i |ψ0〉 and denote the resulting state |ψṼ(x,·;k)

i 〉.
4 Measure the query register to obtain a value α and send it as the first message.

Denote the state after measurement by |φṼ(x,·;k)
i (α)〉.

5 Upon receiving the second message β, run(
rP

Ṽ(x,·;k)α→β

i+b→q

) (
rP

Ṽ(x,·;k)
i→i+b

)
|φṼ(x,·;k)

i (α)〉.
6 Measure A, Z to obtain (α′, γ) if α′ = α output γ as the third message,

otherwise abort.

Proof. We denote by ṼR a version of Ṽ such that Ṽ uses a truly random function
R to derive its randomness (i.e. it runs V (x, ·, R (α)) for a first message α). From
the pseudo-randomness of the PRF it holds that,

Pr
k

[

〈rP, Ṽ (x, ·; k)〉 (x) = 1
]

− negl (λ) ≤ E
R

[

Pr
[

〈rP, ṼR〉 (x) = 1
]]

(1)

We also denote P̃R to be the malicious prover that uses Ṽ R (where R is
a truly random function) instead of V (x, ·; k) as the oracle for rP. Again by
pseudo-randomness of the PRF it holds that,

Pr
[

〈P̃,V〉 (x) = 1
]

≥ E
R

[

Pr
[

〈P̃R,V〉 (x) = 1
]]

− negl (λ) (2)

We define the event W (i, b, α, r,R) to be the event where after sampling an
external verifier’s randomness r, sampling i, b by P̃R and measuring α as the
first message in stage 4, P̃R succeeds in convincing the external verifier. Then it
holds that,

E
R

[

Pr
[

〈P̃R,V〉 (x) = 1
]]

= E
r,R

[

Pr
[

〈P̃R,V (x; r)〉 (x) = 1
]]

=
∑

α

E
r,R

[

E
i,b

[Pr [W (i, b, α, r,R)]]
]

.

Also, we note that,

Pr [W (i, b, α, r, R)] =

∥
∥
∥
∥
|α〉〈α| ⊗ Πα

V(x,·;r)

(

rP
ṼR

α→V(x,α;r)
i+b→q

) (

rPṼR

i→i+b

)

|α〉〈α||ψṼR

i 〉
∥
∥
∥
∥

2

,

where
Πα

f =
∑

c:f(α,f(α),c)=1

|c〉〈c| ,
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the first |α〉〈α| is applied to the query register, the second |α〉〈α| is applied to
the A register, and Πα

V (x,·;r) is applied to the Z register. Hence, it holds,

E
R

[

Pr
[

〈P̃R,V〉 (x) = 1
]]

=

∑

α

E
r,R

[

E
i,b

[

∥

∥

∥

∥

|α〉〈α| ⊗ Πα
V(x,·;r)

(

rP
ṼR

α→V(x,α;r)

i+b→q

)

(

rPṼR

i→i+b

)

|α〉〈α||ψṼR

i 〉
∥

∥

∥

∥

2
]]

.

For any fixed α, r,R by the single value reprogramming lemma (1), it holds that,

E
i,b

[

∥

∥

∥

∥

|α〉〈α| ⊗ Πα
V(x,·;r)

(

rP
ṼR

α→V(x,α;r)

i+b→q

)

(

rPṼR

i→i+b

)

|α〉〈α||ψṼR

i 〉
∥

∥

∥

∥

2
]

≥
∥

∥

∥

∥

(|α〉〈α|) ⊗ Πα
V(x,·;r)|ψ

ṼR
α→V(x,α;r)

q 〉
∥

∥

∥

∥

2

(2q + 1)2
.

Above, |ψṼR
α→V(x,α;r)

q 〉 = rPṼ R
α→V(x,α;r) |ψ0〉 . Hence it holds that,

E
R

[

Pr
[

〈P̃R,V〉 (x) = 1
]]

≥
∑

α

E
r,R

⎡

⎢

⎢

⎢

⎣

∥

∥

∥

∥

(|α〉〈α|) ⊗ Πα
V(x,·;r)|ψ

ṼR
α→V(x,α;r)

q 〉
∥

∥

∥

∥

2

(2q + 1)2

⎤

⎥

⎥

⎥

⎦

=
∑

α

E
r,R

⎡

⎢

⎢

⎢

⎣

∥

∥

∥

∥

(|α〉〈α|) ⊗ Πα
ṼR

α→V(x,α;r)
|ψṼR

α→V(x,α;r)
q 〉

∥

∥

∥

∥

2

(2q + 1)2

⎤

⎥

⎥

⎥

⎦

=
(∗)

∑

α

E
r,R

⎡

⎢

⎣

∥

∥

∥(|α〉〈α|) ⊗ Πα
ṼR

|ψṼR

q 〉
∥

∥

∥

2

(2q + 1)2

⎤

⎥

⎦

=E
R

⎡

⎣

Pr
[

〈rP, ṼR〉 (x) = 1
]

(2q + 1)2

⎤

⎦ ,

where (∗) follows for any x, α and uniformly sampled r,R the oracles Ṽ R and
Ṽ R

α→(x,α;r) are perfectly indistinguishable. Thus, it holds

E
R

[

Pr
[

〈P̃R,V〉 (x) = 1
]]

≥ E
R

⎡

⎣

Pr
[

〈rP, ṼR〉 (x) = 1
]

(2q + 1)2

⎤

⎦ .

Hence, by combining Eqs. 1, 2 with the equation above, the claim follows.
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4.3 Deterministic-Prefix Resetting Provers

5 A Post-Quantum Resettably Sound Zero Knowledge
Protocol

In this section we present a post-quantum resettably-sound zero-knowledge pro-
tocol. The protocol is also constant-round.

Ingredients and Notation:

– A post-quantum pseudorandom function PRF.
– A post-quantum non-interactive commitment scheme Com.
– A post-quantum compute and compare obfuscator Obf.
– A quantum fully-homomorphic encryption scheme (QFHE.Gen,QFHE.Enc,
QFHE.QEnc,QFHE.Dec,QFHE.QDec,QFHE.Eval).

– A delayed-input 3-message post-quantum WI proof (WI.P,WI.V) for NP.
– A delayed-input 4-message sub-exponential statistical WI argument system

(sWI.P, sWI.V) for NP.
– A 2-message post-quantum input hiding, sub-exponentially statistically func-

tion hiding secure function evaluation scheme (SFE.Gen, SFE.Enc, SFE.Eval,
SFE.Dec).

– Denote by ε ∈ (0, 1) a constant such that both the 4-message WI and SFE
have sub-exponential statistical security with respect to (in the statistical
indistinguishability guarantee in both primitives, the statistical distance is
bounded by O(2−λε

)).

The protocol is described in Subsect. 5.1.

5.1 Protocol Construction

The protocol is as follows,

Common Input: An instance x ∈ L, security parameter λ := |x|. Below we
denote λ̄ = λ2/ε.

P’s private input: A classical witness w ∈ RL(x) for x.

1. Prover Commitment: P sends the following,
– Non-interactive commitments to the witness, and two strings of zeros of

length λ̄:

cmt1 ← Com(1λ, w), cmt2 ← Com(1λ, 0λ̄), cmt3 ← Com(1λ, 0λ̄) .

– Two independent first messages α1, α2 for two independent executions of
3-message, delayed-input WI proofs (WI.P,WI.V).

– First message h of a 4-message delayed-input statistical WI argument
(sWI.P, sWI.V), with security parameter λ̄.

2. Extractable Commitment to Verifier Secret: V samples a PRF seed
s ← {0, 1}λ. V’s randomness for the first message is generated by applying
PRFs(·) to the first prover message.
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(a) V computes u ← {0, 1}λ, v ← {0, 1}λ, (pk, sk) ← QFHE.Gen(1λ). V sends

pk, ctV ← QFHE.Encpk(u), ˜CC ← Obf
(

CC
[

QFHE.Decsk(·), v, sk
]

)

.

V also sends β1, β2 following α1, α2, and αs following h.
(b) P sends,

– ctP ← SFE.Enc(1λ̄; 0λ) an encryption of 0λ encrypted with security
parameter λ̄.

– βs for h, αs as the last message of sWI.V in the 4-message WI protocol.
– A WI proof γ1, following α1 and β1, that x ∈ L or, (1) the randomness

used to generate ctP is the content of cmt2
1, and (2) the randomness

for h, βs is the content of cmt3.
(c) V applies PRFs(·) to (ctP, βs, Prover’s first message) to generate random-

ness for its current message. It sends,
– ĉt ← SFE.Eval

(

CC
[

Id(·), u, v
]

, ctP
)

executed with security parame-

ter λ̄, where Id(·) is the identity function.
– γs, for h, αs, βs, proving that the transcript of the verifier so far is

explainable or, cmt1 is a commitment to a non-witness z /∈ RL(x).
The witness that V uses for the proof is its randomness, that proves
that the transcript is explainable.

3. Final WI by the Prover: P sends γ2 which proves that x ∈ L or, that cmt1
is a valid commitment and there exists a string c such that ˜CC(c) �= ⊥. The
witness that P uses for its proofs γ1, γ2 is w, which proves x ∈ L.

4. Acceptance: V accepts if the WI statements by the prover are verified.
5. Aborts: During the protocol, if either party does not respond, sends a mes-

sage of an incorrect form or provides a non-convincing WI proof it considered
as an abort, and the other party terminates the interaction.
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