
Round-Efficient Byzantine Agreement
and Multi-party Computation
with Asynchronous Fallback

Giovanni Deligios1, Martin Hirt1, and Chen-Da Liu-Zhang2(B)

1 ETH Zürich, Zürich, Switzerland
{gdeligios,hirt}@inf.ethz.ch

2 Carnegie Mellon University, Pittsburgh, USA
cliuzhan@andrew.cmu.edu

Abstract. Protocols for Byzantine agreement (BA) and secure multi-
party computation (MPC) can be classified according to the underlying
communication model. The two most commonly considered models are
the synchronous one and the asynchronous one. Synchronous protocols
typically lose their security guarantees as soon as the network violates the
synchrony assumptions. Asynchronous protocols remain secure regard-
less of the network conditions, but achieve weaker security guarantees
even when the network is synchronous.

Recent works by Blum, Katz and Loss [TCC’19], and Blum, Liu-Zhang
andLoss [CRYPTO’20] introducedBAandMPCprotocols achieving secu-
rity guarantees in both settings: security up to ts corruptions in a syn-
chronous network, and up to ta corruptions in an asynchronous network,
under the provably optimal threshold trade-offs ta ≤ ts and ta + 2ts < n.
However, current solutions incur a high synchronous round complexity
when compared to state-of-the-art purely synchronous protocols. When
the network is synchronous, the round complexity of BA protocols is lin-
ear in the number of parties, and the round complexity of MPC protocols
also depends linearly on the depth of the circuit to evaluate.

In this work, we provide round-efficient constructions for both prim-
itives with optimal resilience: fixed-round and expected constant-round
BA protocols, and an MPC protocol whose round complexity is indepen-
dent of the circuit depth.

1 Introduction

1.1 Motivation

Byzantine agreement (BA) and secure multi-party computation (MPC) are two
fundamental and widely explored problems in distributed computing and cryp-
tography.

The general problem of MPC allows a set of n parties to correctly carry
out an arbitrary computation, without revealing anything about their inputs

C.-D. Liu-Zhang—This work was partially carried out while the author was at ETH
Zürich.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13042, pp. 623–653, 2021.
https://doi.org/10.1007/978-3-030-90459-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90459-3_21&domain=pdf
https://doi.org/10.1007/978-3-030-90459-3_21

624 G. Deligios et al.

that could not be inferred from the computed output [45,46]. Such guarantees
must hold even when a subset of the parties are corrupted and actively deviate
from the protocol specification. BA can be seen as an instance of MPC, in
which the function to evaluate guarantees agreement on a common output [42,44]
and privacy is not a requirement. Protocols for BA are often used as building
blocks within larger constructions, including crucially in MPC protocols, and
have received renewed attention in the context of blockchain protocols (starting
with [38]).

There are two prominent communication models in the literature when
it comes to the design of such primitives. In the synchronous model, parties
have synchronized clocks and messages are assumed to be delivered within
some (publicly known) delay Δ. Protocols in this setting achieve very strong
security guarantees: under standard setup assumptions, BA [23,31] and MPC
[4,5,7,15,18,19,21,26,27,29,43] are achievable even when up to t < n/2 parties
are corrupted. However, the security of synchronous protocols is often completely
compromised as soon as the synchrony assumptions are violated (for example,
if even one message is delayed by more than Δ due to unpredictable network
delays). This is particularly undesirable in real-world applications, where even
the most stable networks, such as the Internet, occasionally experience conges-
tion or failures. In the asynchronous model, no timing assumptions are needed,
and messages can be arbitrarily delayed. Protocols designed in this model are
robust even in unpredictable real-world networks, but the security guarantees
that can be achieved are significantly weaker. For example, protocols in this
realm can only tolerate up to t < n/3 corruptions [8,14,25].

As a consequence, when deploying protocols in real-world scenarios, one has
to decide between employing synchronous protocols—risking catastrophic fail-
ures in the case of unforeseen network delays—or settling for the weaker security
guarantees of asynchronous protocols.

1.2 Contributions

A recent line of work [9,11] provides BA and MPC protocols that are secure up to
ts < n/2 corruptions when the network is synchronous, and ta ≤ ts corruptions
when the network is asynchronous, for the optimal trade-off ta + 2ts < n.

Such protocols strive to achieve the best of both models, but current solu-
tions are far from being efficient, especially when it comes to running time; in
this paper, we focus on minimizing round complexity when the network is syn-
chronous. This is of primary importance in typical scenarios, where the network
is stable and synchronous most of the time, but may suffer from unexpected
congestion.

Current BA and MPC protocols in this realm [9,11] require a linear number
of rounds in the number of parties. Moreover, known MPC protocols [11] also
have linear round complexity in the depth of the circuit to evaluate.

This is in contrast to the efficiency of state-of-the-art purely synchronous pro-
tocols: fixed-round BA protocols (Monte-Carlo type) require only O(κ) rounds,
and BA protocols with probabilistic termination (Las-Vegas type) require an

Round-Efficient Byzantine Agreement and Multi-party Computation 625

expected constant number of rounds. Furthermore, current MPC protocols only
require a constant number of broadcast rounds.1 We therefore ask the following
natural question.

Do there exist BA and MPC protocols that are 1) round-efficient and
secure for up to ts < n/2 corruptions in a synchronous network, and 2)
secure up to ta < n/3 corruptions in an asynchronous network?

We answer this question affirmatively by providing the following results.

Round-Efficient Synchronous BA with Asynchronous Fallback. We
obtain the first BA protocols in this realm that are round efficient when the
network is synchronous and with the optimal trade-off ta + 2ts < n, by pro-
viding fixed-round and expected constant-round constructions. In doing so, we
completely characterize the feasibility of a primitive that we believe to be of
independent interest: a round-efficient BA that is secure in a synchronous net-
work for up to ts-corruptions, and retains some weak validity guarantee even in
an asynchronous network up to ta-corruptions. We show that its optimal tradeoff
is 2ta + ts < n and ts < n/2. As a side result, we also provide a simpler construc-
tion of the primitive for the trade-off ta +2ts < n. We then use this primitive as
a fundamental building block to design further round-efficient primitives: broad-
cast protocols with similar guarantees, and also synchronous BA/MPC protocols
with asynchronous fallback.

Round-Efficient Synchronous MPC with Asynchronous Fallback. We
obtain the first synchronous MPC protocol with asynchronous fallback with
optimal guarantees (i.e. ta + 2ts < n and (n − ts)-output quality as in [11])
that requires a constant number of all-to-all broadcast/BA invocations. In par-
ticular, the round complexity is independent of the depth of the circuit. When
instantiating the broadcast/BA protocols with our constructions (in their fixed-
round version), we achieve a total round complexity of O(κ).2 For this, we adapt
techniques based on garbled circuits [5,20,46] to our setting.

1.3 Related Work

Protocols achieving security guarantees in both synchronous and asynchronous
networks have only begun to be studied in relatively recent works. Closest to
ours are works by Blum et al. [9,11], which consider the problem of BA and
MPC achieving security guarantees in both communication models. Our work

1 This is when requiring full security. When striving for weaker security guarantees,
such as security with abort, there are solutions that run in a constant number of
rounds (e.g. [3]).

2 Achieving such MPC constructions in the expected constant-round realm requires
composing protocols with probabilistic termination in a round-preserving fashion.
We leave this interesting line of research for future work. See [16,33] for interesting
discussions and challenges in this setting.

626 G. Deligios et al.

improves upon the round efficiency of these protocols. In the same setting, the
work in [10] considers the problem of state-machine replication (SMR).

The work in [28] introduces a variant of the purely synchronous model, which
allows for network partitions, motivated by eclipse attacks. In this model, the
adversary is allowed to disconnect a certain fraction of parties from the rest
of the network in each round. BA and MPC protocols tolerating the optimal
corruption threshold in this model are also provided. In [2], similar results are
achieved for SMR. These results are crucially different from ours, as they rely
on the fact that synchrony is maintained in part of the network. In contrast, our
protocols give guarantees even if the network is fully asynchronous.

Other works that provide hybrid security guarantees include BA achieving
guarantees in synchronous or partially synchronous networks [37], or guarantees
against active corruptions in a synchronous network and fail-stop in an asyn-
chronous network [34].

A different line of work [35,36,39,40] has recently investigated protocols that
achieve responsiveness. These protocols operate under a synchronous network,
and provide the additional guarantee that parties obtain output as fast as the
network delay allows. Note that these works do not provide any security guar-
antees when the network is not synchronous.

2 Model

We consider a set of n parties P = {P1, . . . , Pn}. We denote by κ the security
parameter.

2.1 Communication and Adversarial Models

We consider a complete network of authenticated channels. Our protocols strive
to be secure in the two main communication models in the literature: the syn-
chronous and the asynchronous models.

In the synchronous model, parties have access to synchronized clocks, and all
messages are delivered within a known delay 0 ≤ Δ ∈ R. In this setting, protocols
can be conveniently described as proceeding in rounds: parties begin the protocol
simultaneously, and the r-th round identifies the time interval [(r − 1)Δ, rΔ) for
all integers r ≥ 1. If a party receives a message within this time interval, we
say they receive a message in round r. When a party sends a message in round
r, it means they send it at time (r − 1)Δ. Within each round, the adversary
can schedule the delivery of messages arbitrarily. In particular, we consider a
rushing adversary that generates the messages of corrupted parties after seeing
all messages sent by honest parties.

In the asynchronous model, parties do not have access to synchronized clocks,
and the adversary can schedule the delivery of messages arbitrarily. However,
the adversary cannot drop messages, meaning that all messages are eventually
delivered.

Round-Efficient Byzantine Agreement and Multi-party Computation 627

We consider a static adversary that can corrupt parties in an arbitrary man-
ner at the beginning of the protocol.3

2.2 Cryptographic Primitives

Public-Key Infrastructure. We assume that parties have access to a public-
key infrastructure. This means parties agree on a set of public keys (pk1, . . . , pkn)
and party Pi holds the secret key ski associated with pki.

Definition 1. A (digital) signature scheme is a triple (Sgn,Vfy,Kgn) of algo-
rithms such that:

– given the security parameter κ, the key generation algorithm Kgn outputs a
public/secret key pair (pk, sk) ∈ PK × SK;

– given a secret key sk ∈ SK and a message m ∈ {0, 1}∗, the signing algorithm
Sgn outputs S � σ := Sgn(m, sk);

– given a message m ∈ {0, 1}∗, a public key pk ∈ PK, and a signature σ ∈ S,
the verifying algorithm Vfy outputs Vfy(m,σ, pk) ∈ {0, 1};

– Vfy(m,σ, pk) = 1 if and only if σ = Sgn(m, sk) where (pk, sk) is a key pair
output by Kgn.

We require the signature scheme to be unforgeable against chosen message
attacks.

Coin-Flip. Parties have access to a Coin-Flip functionality, parametrized by t,
that allow mutually distrustful parties to generate a common uniformly random
bit.

Let k be a non-negative integer. Upon receiving message k from at least t+1 distinct
parties, sample coink uniformly at random from {0, 1} and send message (k, coink)
to all parties.

Functionality F t
CoinFlip

Such a functionality can be realized in the asynchronous model (e.g. [1,14,
41]) under general assumptions up to t < n/3 corruptions, or even 1-round using
unique threshold signatures in the random oracle model (e.g. [12]) up to t < n/2
corruptions.

3 Definitions

The definitions we give are somewhat non-standard, out of necessity to
allow for different abort behaviors depending on the network condition (syn-
chronous/asynchronous), which is unknown to the parties at the start of the
protocol. If an honest party outputs symbol �, this means they detected (dur-
ing the execution) that the network is asynchronous. Whenever desirable, our
definitions are equivalent to the standard notions.
3 However, note that our protocols for BA are adaptively secure.

628 G. Deligios et al.

3.1 Agreement Primitives

Byzantine agreement (BA) allows a set of parties (each holding an input) to
agree on a common value, even when a subset of parties has arbitrary behavior.

Definition 2 (Byzantine agreement). Let Π be a protocol executed by parties
P1, . . . , Pn where each party Pj holds input vj ∈ {0, 1} and terminates upon
generating an output fj ∈ {0, 1,�}. We say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if there is v such that
each honest party holds input vj = v, then every honest party outputs fj = v.

– (t-weak validity) if whenever up to t parties are corrupted: if there is v such
that each honest party holds input vj = v, then every honest party outputs
fj ∈ {v,�}.

– (t-consistency) if whenever up to t parties are corrupted: there is v ∈
{0, 1,�} such that each honest party outputs fj = v.

– (t-liveness) if whenever up to t parties are corrupted: no honest party outputs
fj = �.

Together, the t-consistency and t-liveness properties imply the more widely
adopted consistency notion. If a protocol Π achieves t-validity, t-consistency,
and t-liveness, we say it achieves t-security (or that it is t-secure).

Weak consensus (WC) is a primitive that achieves a weaker form of agreement
compared to BA: it guarantees agreement among all the parties that output a
bit, but parties are allowed to output a special symbol ⊥.

Definition 3 (Weak consensus). Let Π be a protocol executed by P1, . . . , Pn

where each party Pj holds input vj ∈ {0, 1} and terminates upon generating an
output fj ∈ {0, 1,⊥,�}. We say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if there is v such that
each honest party holds input vj = v, then each honest party outputs fj = v.

– (t-weak validity) if whenever up to t parties are corrupted: if there is v
such that each honest party holds input vj = v, then all honest parties output
fj ∈ {v,�}.

– (t-weak consistency) if whenever up to t parties are corrupted: if an honest
party outputs fj = v ∈ {0, 1}, no honest party outputs fj = 1 − v.

– (t-liveness) if whenever up to t parties are corrupted: no honest party outputs
fj = �.

3.2 Broadcast Primitives

Broadcast (BC, sometimes called Byzantine broadcast) allows a designated party,
called the sender, to consistently send a message to multiple parties in the pres-
ence of active adversarial behavior.

Definition 4 (Broadcast). Let Π be a protocol executed by parties P1, . . . , Pn

where a designated party P ∗ holds input v∗ ∈ {0, 1} and each party Pj terminates
upon generating an output fj ∈ {0, 1,�}. We say protocol Π achieves

– (t-validity) if whenever up to t parties are corrupted: if the sender P ∗ is
honest, then each honest party outputs fj = v∗.

Round-Efficient Byzantine Agreement and Multi-party Computation 629

– (t-weak-validity) if whenever up to t parties are corrupted: if the sender P ∗

is honest, then each honest party outputs fj ∈ {v∗,�}.
– (t-consistency) if whenever up to t parties are corrupted: there is v ∈

{0, 1,�} such that each honest party outputs fj = v.

Gradecast (GBC) is a primitive that is similar to broadcast, but achieves a
weaker form of consistency guarantees.

Definition 5 (Gradecast). Let Π be a protocol executed by parties P1, . . . , Pn

where a designated sender P ∗ holds input v∗ ∈ {0, 1} and each party Pj termi-
nates upon generating an output value and a grade (fj , gj) ∈ {0, 1,⊥}×{0, 1, 2}.
We say protocol Π achieves

– (t-graded validity) if whenever up to t parties are corrupted: if P ∗ is honest,
then all honest parties output (v∗, 2).

– (t-graded consistency) if whenever up to t parties are corrupted:
a. there is a v ∈ {0, 1} such that all honest parties output either (v, 2), (v, 1)

or (⊥, 0).
b. if some honest party outputs (v, 2) for any v ∈ {0, 1}, no honest party

outputs (⊥, 0).
– (t-weak-graded validity) if whenever up to t parties are corrupted in an

execution of Π: if P ∗ is honest, then each honest party outputs either (v∗, 2),
(v∗, 1) or (⊥, 0).

3.3 Multi-party Computation

A protocol for multi-party computation (MPC) allows a set of n mutually dis-
trustful parties (each holding an input vi) to correctly compute a function
g(v1, . . . , vn) without revealing anything about their inputs that could not be
inferred from the output. The security of MPC is usually described in the UC
framework [13]. At a high-level, a protocol is secure if it is “indistinguishable”
from an ideal functionality with the desired properties.

We recall the ideal functionality for MPC with full security (where parties
are guaranteed to obtain the correct output), and with L-output quality (the
number of inputs taken into account for the computation), as introduced in [11].

Let P be the set of parties and let f : ({0, 1}∗ ∪ {⊥})n → {0, 1}∗ be the function to
be evaluated. For each Pi ∈ P set xi = yi := ⊥. Set S := P.
1: On input (input, v) from party Pi ∈ P, set xi := v and output (input, Pi) to

the adversary.
2: On input (output-set, S′) from the (ideal) adversary, where S′ ⊆ P, and #S′ =

L, set S := S′ and xi := ⊥ for all Pi /∈ S′.
3: Once all honest parties in S have provided input, set each yi = f(x1, . . . , xn).
4: On input (get-output) from party Pi, output (output, yi, sid) to party Pi.

Functionality F sec,L
MPC

630 G. Deligios et al.

A weaker notion of security is also of interest. In MPC with unanimous
output, the ideal world adversary can choose whether all honest parties receive
the correct output or they all receive symbol �. We denote ideal functionality
describing this security notion by Fuout,L

MPC .

Definition 6. An MPC protocol Π achieves t-full security (t-unanimous out-
put) with L-output quality if it UC-realizes functionality F sec,L

MPC (Fuout,L
MPC), when-

ever up to t parties are corrupted in an execution of Π.

4 Round-Efficient Byzantine Agreement with
Asynchronous Weak Validity

We study the feasibility and efficiency of BA protocols that are ts-secure when
the network is synchronous, and at the same time achieve ta-weak validity when
the network is asynchronous. This primitive is of independent interest, as it is
used to construct BA protocols with asynchronous fallback (see Sect. 5). More-
over, it turns out to be fundamental in the design of further distributed pro-
tocols, for example to obtain constant-round synchronous broadcast protocols
with asynchronous weak validity (see Sect. F), which in turn are used to con-
struct synchronous MPC protocols with asynchronous fallback [11].

In this section, we completely characterize the threshold conditions under
which such a primitive exists, and provide different round-efficient constructions
(fixed-round and with probabilistic termination).

In Sect. 4.2, we show a fixed-round BA protocol that runs in O(κ) rounds
when the network is synchronous. In the full version of this paper [22], one can
also find a version running in expected constant-rounds when the network is
synchronous.4

While the optimal achievable trade-off (see [9]) of a BA protocol with full
asynchronous fallback security is ta +2ts < n and ta ≤ ts (which together imply
ts < n/2), we show that there is room for improvement when only requiring
asynchronous weak-validity. In this case, we prove the optimal threshold trade-
off to be 2ta + ts < n and ts < n/2.

4.1 Weak Consensus with Asynchronous Weak Validity

The main tool in our BA constructions is a round-based weak consensus protocol
that is secure in a synchronous network (up to ts-corruptions), and achieves weak
validity even if the network is asynchronous (up to ta-corruptions).

In traditional weak-consensus, parties are allowed to output a symbol ⊥, sig-
naling they are unsure about what bit to output. We also allow parties to output
symbol �, which also signals a lack of information necessary to reach agreement,
but only due to the network being asynchronous. Distinguishing between these
two outcomes is essential, but not trivial. The reason is that, when designing
4 When the network is asynchronous, the adversary can delay messages for any arbi-

trary (but finite) amount of time, and so the protocols may run for longer.

Round-Efficient Byzantine Agreement and Multi-party Computation 631

round-based protocols, if the network is asynchronous one cannot take advantage
of eventual delivery of messages, since parties only wait for a fixed amount of
time Δ per round. Therefore, when an expected message is not delivered within
a round, parties cannot decide if 1) the network is synchronous and the sender
is corrupted, or 2) the network is asynchronous and the message was delayed by
the adversary.

We address this problem by making use of a gradecast (GBC) protocol
that achieves graded validity and graded consistency when the network is syn-
chronous, and weak-graded validity when the network is asynchronous (see
Sect. B).

By requiring each party to gradecast their input, we can have parties take a
non-� decision only if they receive at least n − ts values with grade 2. Indeed, if
the network is synchronous, honest parties output grade 2 in all executions with
honest senders. Therefore, less than n − ts outputs with grade 2 guarantee that
the network is asynchronous and it is safe to output �.

In case at least n − ts values with grade 2 are received, the output determi-
nation ensures the required guarantees: party Pi outputs v if 1) they received
(v, 2) from n − ts gradecasts, or 2) they received (v, 2) from at least n − ts − ta
gradecasts and (1 − v, ·) from up to ta; in any other case they output ⊥.

In particular, if the network is asynchronous and there are up to ta corrup-
tions, weak validity is achieved: any party that does not output � has received
at least n−ts values with grade 2, and n−ts −ta > ta of those values correspond
to the inputs of honest parties. Moreover, when the network is synchronous and
up to ts parties are corrupted, there cannot be honest parties Pi and Pj that
output different bits v and 1 − v, respectively. This is because 1) if Pi receives
(1 − v, ·) up to ta times, then Pj cannot receive (1 − v, 2) more than ta times,
and 2) if Pi receives (v, 2) at least n − ts times, then Pj receives (v, ·) at least
n − ts > ta times.

We formally describe the protocol below. Let Πt
GBC be a gradecast protocol

running in s rounds. The n executions of Πt
GBC are to be run in parallel to

preserve round-efficiency. Security is proven in Sect. C.

We describe the protocol from the point of view of party Pj holding input vj . We

denote by Π
max{ta,ts}
GBC (j) an execution of protocol Π

max{ta,ts}
GBC in which party Pj

acts as the sender.

Inizialization step. Set bj := �. For b ∈ {0, 1} set Sb
j := ∅, Ub

j := ∅.

Rounds 1 to s.

1: for 1 ≤ i ≤ n do
2: wij := (bij , gij) := Π

max{ta,ts}
GBC (i);

3: if wij = (0, 2) then S0
j := S0

j ∪ {bij};
4: end if

Protocol Πta,ts
WC

(
Π

max{ta,ts}
GBC

)

632 G. Deligios et al.

5: if wij = (1, 2) then S1
j := S1

j ∪ {bij};
6: end if
7: if wij = (0, 1) then U0

j := U0
j ∪ {bij};

8: end if
9: if wij = (1, 1) then U1

j := U1
j ∪ {bij};

10: end if
11: end for

Output determination.

1: if #(S0
j 	 S1

j) ≥ n − ts then
2: if there is b ∈ {0, 1} such that #Sb

j ≥ n − ts then
3: bj ; = b;
4: else if there is b ∈ {0, 1} such that #Sb

j ≥ n−ts−ta and #(S1−b
j 	U1−v

j) ≤ ta

then
5: bj := b;
6: else bj := ⊥;
7: end if
8: end if
9: output bj and terminate;

Lemma 1. Assume protocol Π
max{ta,ts}
GBC achieves the following security guaran-

tees.

– When run over a synchronous network: (max{ts, ta})-graded validity and
(max{ts, ta})-graded consistency.

– When run over an asynchronous network: (max{ts, ta})-weak graded validity.

Then, if 2ta + ts < n and ts < n/2, protocol Πta,ts

WC

(
Π

max{ta,ts}
GBC

)
achieves the

following security guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, ts-weak con-
sistency.

– When run over an asynchronous network: ta-weak validity.

When assuming a worse tradeoff ta+2ts < n and ts ≤ ta (which is optimal to
achieve BA with full asynchronous fallback) one can obtain a simpler and more
efficient weak consensus protocol with asynchronous weak validity (see Sect.D
for a construction and security proof).

4.2 Fixed-Round Synchronous BA with Asynchronous Weak
Validity

We now present a fixed-round synchronous Byzantine agreement protocol with
asynchronous weak validity. If the network is synchronous and there are up to
ts corruptions, agreement is reached with overwhelming probability after O(κ)
rounds. Moreover, even when the network is asynchronous and there are up to
ta corruptions, the protocol achieves weak validity.

Round-Efficient Byzantine Agreement and Multi-party Computation 633

Following the traditional Feldman-Micali paradigm [24], parties run a
sequence of iterations. Each iteration consists of a weak consensus protocol Πta,ts

WC

followed by an invocation to the coin-flip functionality F ts

CoinFlip, where: 1) parties
that obtain a bit as output of Πta,ts

WC keep this value for the next iteration, 2)
parties that obtained ⊥ adopt the value of the coin, and 3) parties that obtained
� keep their initial value of the iteration.

Notice that, if the network is synchronous, the output of an honest party in
the execution of Πta,ts

WC is binary or ⊥. Since weak consensus guarantees that
honest parties do not output contradicting bits, and the coin value is uniform
and independent of the output of weak consensus, agreement is reached with
probability 1/2 per iteration.5

Moreover, if the network is asynchronous, weak validity is achieved. The
reason is that in each iteration, if all honest parties start with the same value v,
then weak validity of Πta,ts

WC ensures that they all output v or �, and the coin
value is ignored. Therefore, they keep v as the value for the next iteration.

We formally describe the protocol below. Security is proven in Section E.

We describe the protocol from the point-of-view of party Pj holding input vj .

Initialization step: Set bj := vj .

1: for k = 1 to κ do
2: bj := Πta,ts

WC (bj)
3: (k, coink) := F ts

CoinFlip(k)
4: if bj = ⊥ then
5: bj := coink

6: else if bj = � then
7: bj := vj

8: end if
9: end for

10: Output bj

Protocol Πta,ts
SBA

(
Πta,ts

WC , F ts
CoinFlip

)

Lemma 2. Assume protocol Πta,ts

WC achieves the following security guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, and ts-weak
consistency.

– When run over an asynchronous network: ta-weak validity.

Then, protocol Πta,ts

SBA

(
Πta,ts

WC ,F ts

CoinFlip

)
achieves the following security guaran-

tees with overwhelming probability.

5 For simplicity, we describe our protocols and proofs assuming an ideal coin flip that
outputs a common uniform random bit to all honest parties in one round (e.g. [12]).
If a q-weak coin flip is used instead, where honest parties agree with probability q,
the round complexity increases by a factor of O(1/q).

634 G. Deligios et al.

– When run over a synchronous network: ts-security. Moreover, the protocol
runs in O(κ) rounds and achieves simultaneous termination.

– When run over an asynchronous network: ta-weak validity.

4.3 Optimality of Synchronous BA with Asynchronous Weak
Validity

In this section we prove the optimality of our constructions with respect to
corruption thresholds. More specifically, we show that the tradeoff assumption
2ta + ts < n is not only sufficient, but also necessary to obtain BA protocols
that are secure up to ts corruptions in a synchronous network, and achieve weak
validity up to ta corruptions in an asynchronous network.

Lemma 3. Assume 2ta + ts ≥ n. There does not exist an n-party Byzantine
agreement protocol that is both

– ts-secure when run over a synchronous network;
– ta-weakly valid when run over a synchronous network

Proof. Assume there exists a protocol Π achieving all the above security guar-
antees. Partition the party set P into sets Sa, Sb and K where #Sa = #Sb = ta
and #K = ts.

– Scenario 1. The network is synchronous. Parties in Sa participate in Π with
input 0. Parties in Sb participate in Π with input 1. Parties in K are corrupted
by the adversary and simply abort.

– Scenario 2. All messages from parties in K are dropped (delayed for longer
than the round time) by the adversary. Parties in Sa participate in Π with
input 0. Parties in Sb are corrupted by the adversary, but participate in Π
as if they were honest with input 1. Parties in K partecipate in the protocol
with input 0.

– Scenario 3. All messages from parties in K are dropped (delayed for time
δ > Δ) by the adversary. Parties in Sb participate in Π with input 1. Parties
in Sa are corrupted by the adversary and participate in Π as if they were
honest with input 0. Parties in K participate in the protocol using input 1.

In scenario 1, parties in Sa and Sb output the same value b1 ∈ {0, 1} by ts-
consistency and ts-liveness of Π. In scenario 2, parties in Sa output 0 or � by ta-
weak validity of Π. In scenario 3, parties in Sb output 1 or � by ta-weak validity
of Π. Since the views of parties in Sa in scenarios 1 and 2 are indistinguishable,
and the views of parties in Sb in scenarios 1 and 3 are indistinguishable, then in
scenario 2 (respectively 3) no party in Sa (respectively Sb) outputs �. However,
this means that 0 = b1 = 1, which is a contradiction (here, we assumed parties
are deterministic, but the same argument can be adapted to probabilistic parties
and their output distributions). �	

Round-Efficient Byzantine Agreement and Multi-party Computation 635

5 Synchronous BA with Asynchronous Fallback

In order to achieve a BA protocol that is ts-secure when the network is syn-
chronous, and ta-secure when the network is asynchronous, we use the com-
piler Πta,ts

HBA introduced by Blum et al. [9]. The compiler assumes 1) a ts-secure
synchronous BA protocol Π1 that is ta-weakly valid even when run over an
asynchronous network, and 2) a ta-secure asynchronous BA protocol Π2 that
achieves validity and terminates for a higher corruption threshold ts ≥ ta when
the network is synchronous. The idea is to run, in sequence, the synchronous BA
protocol followed by the asynchronous one. The output from the first protocol
is used as input to the second.

Intuitively, when the network is synchronous, security is provided by the
synchronous protocol, and preserved by ts-validity with termination of the asyn-
chronous one. On the other hand, when the network experiences delays, security
is provided by the asynchronous protocol, while ta-weak validity of the round-
based protocol ensures an adversary cannot break pre-agreement among honest
parties.

We describe the protocol from the point of view of party Pj holding input vj .
1: bj := Π1(vj);
2: if bj = � then
3: bj := vj ;
4: end if
5: bj := Π2(bj);
6: output bj ;

Protocol Πta,ts
HBA (Π1, Π2)

Lemma 4 ([9], Theorem 3). Assume protocol Π1 achieves the following secu-
rity guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-weak validity.

Furthermore, assume protocol Π2 achieves the following security guarantees.

– When run over a synchronous network: ts-validity with termination.
– When run over an asynchronous network: ta-security.

Then, if ta ≤ ts and ta +2ts < n, protocol Πta,ts

HBA (Π1,Π2) achieves the following
security guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security.

By using our round-efficient synchronous BA protocols as the Π1 component
of the compiler (the fixed-round version in Sect. 4.2, or the expected constant-
round version in the full version [22]), and the asynchronous protocols with

636 G. Deligios et al.

increased validity from [9] as the second component Π2,6 we obtain the following
corollaries.

Corollary 1. Let ta ≤ ts and ta +2ts < n. There exists a protocol that achieves
the following security guarantees with overwhelming probability.

– When run over a synchronous network: ts-security. Moreover, it runs in O(κ)
rounds and achieves simultaneous termination.

– When run over an asynchronous network: ta-security.

Corollary 2. Let ta ≤ ts and ta +2ts < n. There exists a protocol that achieves
the following security guarantees with overwhelming probability.

– When run over a synchronous network: ts-security. Moreover, it runs in
expected constant number of rounds.

– When run over an asynchronous network: ta-security.

6 Round-Efficient MPC with Asynchronous Fallback

Blum et al. [11] obtain the first MPC protocol that is ts-secure in a synchronous
network, and ta-secure with (n − ts)-output quality in an asynchronous network
(these guarantees are provably optimal).

Their protocol requires black-box access to 1) a Byzantine agreement primi-
tive that is ts-secure in a synchronous network and ta-secure in an asynchronous
network, and 2) a broadcast primitive that is ts-secure in a synchronous network
and ta-weakly valid in an asynchronous network. Their constructions for these
primitives (borrowed from [9]) both require O(n) rounds. Moreover, their pro-
tocol evaluates the circuit in a gate-by-gate fashion, and therefore requires O(d)
communication rounds, where d denotes the multiplicative depth of the circuit
representing the function to evaluate.

Using our fixed-round BA and broadcast from Sect. 4.2 and Sect. F, and
adapting Yao’s garbled circuit techniques [46], we obtain the first MPC protocol
in this realm with optimal security guarantees and that has a total round com-
plexity of O(κ), independent of the circuit depth. We loosely follow the structure
of [17].

6.1 Multi-party Garbled Circuits

Let g denote the function to evaluate, represented as a boolean circuit circg

containing only NAND gates.7 In general, the circuit-depth d of circg depends

6 The asynchronous protocol described there has probabilistic termination and runs
in an expected constant number of rounds when the network is synchronous. It is
straightforward to achieve a variant of the protocol that runs in O(κ) rounds when
the network is synchronous, following Sect. 4.2, by substituting the weak consensus
protocol with the increased-validity graded consensus protocol from [9].

7 This is without loss of generality, since any arithmetic circuit can be transformed
into a boolean one, and the set {NAND} is functionally complete.

Round-Efficient Byzantine Agreement and Multi-party Computation 637

on g, and MPC protocols following the gate-by-gate paradigm typically require
O(d) communication rounds. Using garbled circuit techniques,8 we obtain an
MPC protocol with round complexity independent of d.

The high-level idea is to use MPC to evaluate a function fGRBL that pro-
duces a garbled version of circg, which parties can then evaluate locally. As we
will discuss, the function fGRBL can be represented as a circuit whose depth is
independent of g.

Roughly speaking, fGRBL outputs an encrypted version of circg, in which all
entries of each function table are encrypted using secret keys associated with
the corresponding input values. A party holding two input values to a gate,
together with the corresponding keys, can decrypt the corresponding entry of
the function table and obtain the output of the gate (and the corresponding key).
To preserve privacy, the values travelling on each wire are masked by XORing them
with random bits. If a party is entitled to learn an output, they are given the
corresponding random mask.

The function fGRBL can be represented by a constant-depth circuit. The rea-
son is that once the secret masks and keys for each wire have been generated,
the garbled function tables of circg can be computed in parallel.

Distributed Encryption. There is a complication with the approach we
described. To compute encryptions of the function table entries within the MPC,
parties need white-box access to an encryption scheme. This is undesirable in
itself, but matters are worsened by the fact that the circuit-representations of
even the most efficient block-ciphers are fairly large (∼6400 AND gates for AES-
128),9 making this approach unfeasible.

To overcome this problem, we use a distributed encryption technique due to
Damg̊ard and Ishai [20]. Let m denote a plaintext. Instead of computing Enck(m)
within the multi-party computation, m is shared among the parties by means
of a secret-sharing scheme (see Sect. A, Definition 8). Party Pi receives a share
[m]i and a secret key Ki as output of the computation, and locally computes
ci = EncKi

([mi]). Each party then sends their encrypted shares to all parties.
Upon receiving a sufficient number of encrypted shares, a party in possession of
the necessary keys can decrypt them and reconstruct the secret (for example, if
Pj is entitled to know the secret, they receive the keys as output from the multi-
party computation). This approach extends to the dual-key setting (see Definition
7, Sect. A), and only requires black-box access to the encryption scheme.

Information Checking Protocol. Moving encryption outside the MPC comes
at the price of secret-sharing the plaintexts to preserve privacy. In our setting, the
secrets are the entries of each function table of circg, together with the key asso-
ciated with the output value. Since we work (at least when the network is syn-
chronous) with an honest majority, authentication of the shares is necessary to
prevent corrupted parties to tamper with the reconstruction phase. This can be

8 Yao first introduced garbled circuits in talks related to his paper [46], but they do
not explicitly appear in the paper. For a formal treatment, cf. [6].

9 Personal communication with Yehuda Lindell.

638 G. Deligios et al.

achieved by requiring the dealer (in our setting, fGRBL) to sign the shares using
digital signatures, but computing signatures within the MPC of fGRBL is also inef-
ficient.

Instead, one can use the Information Checking Protocol by Rabin and Ben-Or
[43]. It works over a finite field Fq. For a secret s, the dealer samples uniformly
random elements (b, y), and computes c = s + by. Party Pi is given (s, y): the
authentication vector. Another party Pj (to whom Pi wishes to forward s at a
later time), is given (b, c): the check vector. Upon receiving the couple (s, y) from
Pi, party Pj can check that c = s + by. If Pi is corrupted and wants to send
s′ �= s to Pj , party Pi has to guess the unique y′ solving c = s′b+ y′, which they
can only do with probability 1/(q − 1), as the field element c− s′b is distributed
according to b.

The resulting function fGRBL is formally described below. The wires of circg

are denoted by lower-case greek letters (α, β, γ, . . .), and the gates with lower
case english letters (a, b, c, . . .). The input bi of party Pi is a vector containing a
boolean encoding of their input to g as well as extra inputs needed to generate
randomness.

Input. For each input wire ω of circg, let bω denote the corresponding input bit.

Random values. For each wire γ of circg generate 2 vectors of n random sub-

keys K0
γ :=

(
K0,1

γ , . . . , K0,n
γ

)
, K1

γ :=
(
K1,1

γ , . . . , K1,n
γ

)
and a uniform random

mask mγ ∈ {0, 1}. For each gate a, for all couples (Pi, Pj) of parties, and for all
(x, y) ∈ {0, 1}2, generate uniformly random Fq elements bxy,ij

a , yxy,ij
a .

Set Bij
a :=

(
b00,ij

a , b01,ij
a , b10,ij

a , b11,ij
a

)
and Yij

a :=
(
y00,ij

a , y01,ij
a , y10,ij

a , y11,ij
a

)
.

Input wires. For each input wire ω of circg compute zω := bω ⊕ mω.

Garbled function tables. For each gate a with input wires α, β and output wire

γ do:
1. for all (x, y) ∈ {0, 1}2 compute zxy

γ := ((x ⊕ mα)NAND(y ⊕ mβ)) ⊕ mγ ;

2. set txy
a :=

(
zxy

γ , K
zxy

γ
γ

)
and Ta :=

{
t00a , t01a , t10a , t11a

}
;

3. compute a (ts + 1)-sharing of Ta (i.e. of each entry). Let [txy
a]i denote the i-th

shares, and let [Ta]i denote the vector
(
[t00a]i, [t

01
a]i, [t

10
a]i, [t

11
a]i

)
;

4. compute cxy,ij
a := [txy

a]i + bxy,ij
a yxy,ij

a . Set Cij
a :=

(
c00,ij
a , c01,ij

a , c10,ij
a , c11,ij

a

)
.

Public Outputs. For each input wire ω the masked input zω and the key Kzω
ω =

(
Kzω,1

ω , . . . , Kzω,n
ω

)
.

Private Outputs. For each wire γ, party Pj receives sub-keys
(
K0,j

γ , K1,j
γ

)
. For

each gate a, party Pj receives, for each other party Pi, the authentication vectors(
[Ta]j ,Y

ji
a

)
and the check vectors

(
Bij

a ,Cij
a

)
. For each output wire δ, if Pj is to learn

that output, they receive mask mδ.

Function fGRBL(circg; b1, . . . , bn)

Round-Efficient Byzantine Agreement and Multi-party Computation 639

In the next section, we describe the MPC protocol we will use to compute
fGRBL.

6.2 MPC with Linear Round Complexity in d and κ and
Asynchronous Fallback

To achieve security in both synchronous and asynchronous networks, we want
to compute fGRBL using the compiler from [11]. We recall the construction and
its security guarantees below.

We describe the protocol from the point of view of party Pj holding input bj .
1: vj := Π1(bj);
2: if vj �= ⊥ then output vj and terminate;
3: end if
4: yj := Π2(bj);
5: output yj and terminate;

Protocol Πts,ta
HMPC (Π1, Π2)

Lemma 5 ([11], Theorem 2). Assume protocol Π1 achieves the following
security guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-unanimous output, ta-weak ter-

mination and (n − ts)-output quality.

Furthermore, assume protocol Π2 achieves the following security guarantees.

– When run over an asynchronous network: ta-security with (n − ta)-output
quality.

Then, assuming ta ≤ ts and ta + 2ts < n, protocol Πts,ta

HMPC (Π1,Π2) achieves the
following security guarantees.

1. When run over a synchronous network: ts-security.
2. When run over an asynchronous network: ta-security and (n − ts)-output

quality.

We provide sub-protocols Π1,Π2 with the security guarantees required by
Lemma 5, and that in addition 1) securely evaluate boolean circuits, and 2)
require O(d) communication rounds.

We take Π1 to be the synchronous protocol Πta,ts

SMPC of [11, Section 4.5], which
requires O(d) rounds; it is the only known synchronous protocol to date providing
the necessary security guarantees.

However, we cannot use Πts,ta

SMPC in a black-box manner, since it evaluates
arithmetic circuits defined over “large” fields (#Fq > n), while in our construc-
tion it is natural to represent the boolean function fGRBL as a boolean circuit. One
solution is to embed the boolean circuit into a larger field through the inclusion

640 G. Deligios et al.

map i : F2 → Fq and to represent NAND gates with arithmetic gates computing
a(x, y) := 1 − xy (it is straightforward to verify that i ◦ a = a ◦ i).

To keep actively corrupted parties from giving inputs in Fq\{0, 1}, a checking
mechanism has to be put into place. The high level idea of Πts,ta

SMPC is that the
inputs of each party are encrypted using an additively-homomorphic threshold
encryption scheme. To ensure correctness, after broadcasting their encrypted
inputs, parties must prove (in ZK) knowledge for the corresponding plaintext.
In addition, we require parties to prove in ZK that the plaintext lies in {0, 1}.

The protocol then follows the gate-by-gate paradigm, with additional inter-
action required to evaluate multiplication gates. After the circuit is evaluated,
parties reconstruct the outputs using threshold decryption. A security proof can
be obtained as for [11, Theorem 1] with minor changes.

We take Π2 to be the modified version (by Coretti et al. [17]) of protocol
πBKR by Ben-Or et al. [8], which evaluates boolean circuits and requires O(d)
rounds. Security is proven in [17, Lemma 2].

Lemma 5, with these choices of Π1 and Π2, yields the following corollary.

Corollary 3. Assume ta ≤ ts and ta + 2ts < n. There exists a protocol Πts,ta

HMPC

evaluating boolean circuits and requiring O(d) communication rounds achieving
the following security guarantees.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security and (n − ts)-output

quality.

Our modification of Protocol Πta,ta

SMPC [11], used as Π1 in compiler Πta,ts

HMPC,
requires black-box access to:

(i) a Byzantine agreement sub-protocol that is ts-secure when run over a syn-
chronous network, and ta-secure when run over an asynchronous network;

(ii) a broadcast sub-protocol that is ts-secure when run over a synchronous
network, and ta-weakly valid when run over an asynchronous network.

At the time of [11], the only known protocols with these guarantees required
O(n) rounds,10 resulting in O(n) round-complexity of the MPC protocol.

In Sect. F, we present a broadcast protocol Πta,ts

SBC

(
Πta,ts

SBA

)
running in a fixed

number of rounds that is weakly valid in asynchronous networks. Our solution is
inspired by a synchronous construction that obtains BC from BA, but requires
some modifications to achieve security guarantees in asynchronous networks.

Combining this with results from previous sections, we obtain an MPC pro-
tocol running in O(κ) rounds with respect to n. More specifically,

– Lemma 1 (or Lemma 8), Lemma 2, and Lemma 4, guarantee that protocol
Πta,ts

HBA

(
Πta,ts

SBA ,Πta,ts

ABA

)
from Sect. 5 (which runs in O(κ) rounds with respect

to the number of parties n) achieves the security guarantees (i);

10 Respectively, the BA protocol and the adaptation of Dolev-Strong broadcast from
[9].

Round-Efficient Byzantine Agreement and Multi-party Computation 641

– Lemma 1, (or Lemma 8), Lemma 2, and Lemma 9, guarantee protocol
Πta,ts

SBC

(
Πta,ts

SBA

)
from Sect. F (that also runs in O(κ) rounds with respect to

the number of parties n) achieves the security guarantees (ii).

Combining this with Corollary 3, we obtain the following corollary.

Corollary 4. Assume ta ≤ ts and ta + 2ts < n. There exists a MPC protocol
with the following properties.

– When run over a synchronous network: ts-security.
– When run over an asynchronous network: ta-security and (n − ts)-output

quality.
– If the network is synchronous, runs in O(κ) rounds.
– Runs in O(d) rounds.

Recall that the security guarantees of Corollary 4 are optimal ([11, Theorems 3,
4]).

6.3 Protocol Description

We now present our fully constant-round MPC protocol that is 1) ts-secure if
the network is synchronous, and 2) ta-secure with (n − ts)-output quality if the
network is asynchronous. The construction, that we already discussed, consists
of three steps.

– (Parties jointly) use an MPC protocol with the properties of Corollary 4 to
compute function fGRBL.

– (Each party) encrypts the authenticated shares of the entries of each gate of
circg received as output of fGRBL (the keys are also part of the output). They
send the resulting ciphertexts to all parties.

– (Each party) evaluates the circuit locally: given two (masked) inputs to a
gate and the corresponding keys, they decrypt the received shares of the
corresponding entry of the gate, recovering the (masked) output value and
the corresponding key. They do this until all gates are evaluated. Finally, they
unmask the accessible outputs.

A phase indicator φ guarantees that, if the network is asynchronous, parties
do not terminate before sending the encryptions of their shares to other parties.
Security is discussed in Sect. G.

We describe the protocol from the point of view of party Pj holding input bj . For
each gate a of circg set evaluateda := false. Set φj := 0.

Step 1. Run Πts,ta
HMPC (circfGRBL ; circg; bj), receiving as output:

– for each wire γ of circg, the sub-keys
(
K0,j

γ , K1,j
γ

)
;

– for each gate a of circg and party Pj , the authentication vectors
(
[Ta]j ,Y

ji
a

)
and

the check vectors
(
Bij

a ,Cij
a

)
;

Protocol Πts
CR−HMPC

(
Πts,ta

HMPC

)

642 G. Deligios et al.

– for each input wire ω of circg, the masked input value zω and the corresponding
key Kzω

ω .
– for each output wire δ of circg, if Pj is entitled to learn that output, the mask

mδ.
Step 2. For each gate a of circg with input wires α, β and output wire γ, do:

– for each (x, y) ∈ {0, 1}2, encrypt the authenticated share of the corresponding
entry of Ta, namely cxy,j

a := Enc
K

x,j
α ,K

y,j
β

(
[txy

a]j , y
xy,ji
a

)
;

– send Cj
a :=

(
c00,j

a , c01,j
a , c10,j

a , c11,j
a

)
to all parties.

Then, set φj := 1.

Step 3. If φj = 1, whenever a ciphertext is received, for each gate a of circg

with input wires α, β and output wire γ, if the masked input values zα, zβ and
the corresponding key (vectors) Kzα

α , K
zβ

β are known, do:

– For ciphertext Ci
a, set

(
[t

zαzβ
a]i, y

zαzβ ,ij
a

)
:= Dec

K
zα,i
α ,K

zβ,i

β

(
c

zαzβ ,i
a

)
. If the

decryption is successful and if c
zαzβ ,ij
a = [t

zαzβ
a]i + b

zαzβ ,ij
a y

zαzβ ,ij
a , then the

i-th shares of zγ and K
zγ
γ are recovered.

– If at least ts + 1 shares have been recovered, reconstruct zγ and K
zγ
γ and set

evaluateda := true.

When all gates are evaluated, compute bω := zω ⊕mω for all accessible output wires
ω. Output bits bω and terminate.

Lemma 6. Suppose that ta ≤ ts and ta + 2ts < n, and assume that pro-
tocol Πts,ta

HMPC achieves the security guarantees of Corollary 4. Then, protocol
Πts,ta

CR−HMPC

(
Πts,ta

HMPC

)
achieves the same security guarantees, and requires a num-

ber of rounds independent of the circuit depth of the function to be evaluated,
when the network is synchronous.

Appendix

A Additional Definitions

Symmetric-Key Encryption. We recall the definition of a symmetric encryp-
tion scheme.

Definition 7. A symmetric encryption scheme is a triple (Enc,Dec,Kgn) of
algorithms such that:

– the key generation algorithm Kgn outputs a secret key K ∈ K;
– given a secret key K ∈ K and a plaintext m ∈ {0, 1}∗, the encryption algo-

rithm Enc outputs a ciphertext C � c := EncK(m);
– given a ciphertext c ∈ C and a secret key K ∈ K, the decryption algorithm

Dec outputs DecK(c) ∈ {0, 1}∗;
– DecK (EncK(m)) = m for all m ∈ {0, 1}∗ and K ∈ K.

Round-Efficient Byzantine Agreement and Multi-party Computation 643

In a dual key encryption scheme, two keys K1,K2 are needed to encrypt and
decrypt. The semantics are otherwise unchanged.

Secret-Sharing. A secret-sharing scheme allows a dealer D to distribute a
secret s among a set P of n parties, so that only certain qualified subsets of
parties can reconstruct the secret. Other subsets should obtain no information
about the secret. A secret-sharing scheme is specified by its access structure
Γ ⊆ 2P : the collection of the qualified subsets of parties.

Definition 8. A secret-sharing scheme for access structure Γ is a pair of pro-
tocols (Share,Reconstruct)with the following properties.

– After Share(s), there is a unique value s′ that can be reconstructed, and s′ = s
if the dealer is honest. Furthermore, any subset of parties S ∈ Γ can execute
Reconstruct to reconstruct s.

– After Share(s), any subset of parties S /∈ Γ obtains no information about s.

We are interested in t-out-of-n secret-sharing schemes, that is, secret sharing
schemes where Γ := {S ∈ 2P : #S ≥ t}.

B Gradecast with Asynchronous Weak Validity

We present, using slightly different notation, a 4-round gradecast protocol by
Katz et al. [32] and explicitly show that their construction achieves t-weak graded
validity (q.v. Definition 5) for all t < n/2 when the network is asynchronous.
We refer to the full version [22] for the security proofs.

Unless specified, we describe the protocol from the point of view of party Pj .

Round 1 - Sender P ∗. Send (v∗, Sgn(v∗, sk∗)) to all parties.

Round 1. Let (vj , σj) be the first message received from P ∗. If Vfy(vj , σj , pk
∗) = 1,

forward (vj , σj) to all parties in Round 2. In all other cases, set vj := ⊥ (and do
not send any message in Round 2).

Round 2. Let (vij , σij) be the first message received from Pi. If there is i ∈
{1, . . . , n} such that vij �= vj , set vj := ⊥. If vj �= ⊥, send message (vj , Sgn(vj , skj))
to all parties in Round 3.

Round 3. Upon receiving at least t + 1 valid messages (b, σjk) (i.e. such
that Vfy(b, σjk , pkjk

) = 1) from distinct parties on the same bit b, set Σ :=
{σj1 , . . . , σjt+1}, send (b, Σ) to all parties in Round 4, and output (b, 2).

Round 4. If no output has been generated, upon receiving a message (b′, Σ′) such
that Σ′ is a (t + 1)-certificate for b′, output (b′, 1). If no output has been generated
and no certificate is received, output (⊥, 0). Terminate.

Protocol Πt
GBC

644 G. Deligios et al.

Lemma 7. Assume t < n/2. Protocol Πt
GBC achieves the following security

guarantees.

– When run over a synchronous network: t-graded validity and t-graded consis-
tency.

– When run over an asynchronous network: t-weak graded validity.

C Proof of Lemma 1

Assume that that at most ts parties are corrupted in an execution of protocol
Πta,ts

WC

(
Π

max{ta,ts}
GC

)
over a synchronous network.

[liveness] Synchrony of the network and ts-graded validity of Π
max{ta,ts}
GC guar-

antee that each honesty party Pj sets bij := Π
max{ta,ts}
GC (i) = (vi, 2) each time

party Pi is honest. Therefore, #(Sv
j 	S1−v

j) ≥ n−ts, so that Pj sets bj ∈ {0, 1,⊥}
during output determination and does not output �. This proves ts-liveness.

[validity] Suppose that all honest parties hold the same input v. synchrony of
the network and ts-graded validity of protocol Π

max{ta,ts}
GC guarantee that each

honesty party Pj sets bij := Π
max{ta,ts}
GC (i) = (v, 2) each time party Pi is honest.

Therefore, #Sv
j ≥ n − ts and party Pj outputs v. It is worth noting that if both

#Sv
j ≥ n − ts and #S1−v

j ≥ n − ts, then n ≥ #(Sv
j 	 S1−v

j) ≥ 2n − 2ts > n,
which is absurd. This proves ts-validity.

[weak consistency] Suppose an honest party Pj outputs v ∈ {0, 1}. There are
two possibilities. The first is that

{
#Sv

j ≥ n − ts − ta

#(S1−v
j 	 U1−v

j) ≤ ta.
(1)

If Pi is another honest party, then synchrony of the network and ts-graded
consistency of Π

max{ta,ts}
GBC guarantee that #S1−v

i ≤ ta < n − ts − ta ≤ n − ts.

If this was not the case, by ts-graded consistency of Π
max{ta,ts}
GBC we would have

#(S1−v
j 	 U1−v

j) > ta, which is a contradiction. Therefore, party Pi does not
output 1 − v. The second case is that #Sv

j ≥ n − ts. In this case (reasoning as
above), for an honest player Pi

{
#(Sv

i 	 Uv
i) ≥ n − ts > 2ta ≥ ta

#S1−v
i < n − ts

(2)

so that Pi does not output 1 − v. This proves ts-weak consistency.
Assume that that at most ta parties are corrupted in an execution of protocol

Πta,ts

WC

(
Π

max{ta,ts}
GC

)
over an asynchronous network.

Round-Efficient Byzantine Agreement and Multi-party Computation 645

[weak validity] Assume all honest parties hold the same input v. Suppose an
honest party Pj does not output �. This means #(Sv

j 	 S1−v
j) ≥ n − ts. By ta-

weak graded validity of protocol Πmax{ta,ts}
GC , party Pj sets bij := Π

max{ta,ts}
GC (i) ∈

{v,�} for each honest party Pi. Therefore, #S1−v
j ≤ ta < n − ts − ta ≤ n − ts

(so that party Pj does not output 1 − v), but also
{

#Sv
j ≥ n − ts − #S1−v

j ≥ n − ts − ta

#(S1−v
j 	 U1−v

j) ≤ ta
(3)

so that party Pj outputs v. This proves ta-weak validity and concludes the proof
of the lemma.

D A Simpler Weak-Consensus with Asynchronous Weak
Validity for ta + 2ts < n and ta ≤ ts

We show a simple 3-round construction for a weak consensus protocol that is 1)
ts-secure in a synchronous network, and 2) ta-weakly valid in an asynchronous
network, under the stronger assumptions that ta + 2ts < n, ta ≤ ts (these
assumptions are optimal for BA with full asynchronous fallback [9]). The public
key infrastructure available allows parties to forward cryptographic evidence (in
the form of digital signatures) that they received a given message from other
parties by appropriately combining this evidence to generate what we refer to
as certificates (see e.g. [30]). An -certificate on a bit b is simply a concatenation
of at least valid signatures on b from distinct parties.

We describe the protocol from the point of view of party Pj holding input vj .

Initialization step. Set bj := �, Sj := ∅.

Round 1. Send message (vj , Sgn(vj , skj)) to all parties. Upon receiving (the first)
message mij = (vij , σij) from party Pi, if Vfy(vij , σij , pki) = 1, set Sj := Sj ∪{mij}.

Round 2. If #Sj ≥ n − ts, set bj = ⊥. If there is b ∈ {0, 1} such that
#Sb

j := {(v, σ) ∈ Sj : v = b} ≥ n − ts − ta, set bj := b and send Sb
j to all

parties.

Round 3. If bj ∈ {0, 1}, upon receiving an (n − ts − ta)-certificate on 1 − bj from
any party Pi, set bj = ⊥.

Output. Output bj ;

Protocol Πta,ts
WC

646 G. Deligios et al.

Lemma 8. Assume ta + 2ts < n and ta ≤ ts. Protocol Πta,ts

WC achieves the
following security guarantees.

– When run over a synchronous network: ts-liveness, ts-validity, and ts-weak
consistency.

– When run over an asynchronous network: ta-weak validity.

Proof. Assume that at most ts parties are corrupted in an execution of Πta,ts

WC

over a synchronous network.

[liveness] Each honest party Pj sends message (vj ,Sgn(vj , pkj)) to all parties at
in Round 1. synchrony of the network guarantees all these messages are delivered
within the round. It follows that, in Round 2, #Sj ≥ n−ts for each honest party
Pj , so that Pj sets bj = ⊥. This proves ts-liveness, as bj is never set to �.

[validity] Assume each honest party holds the same input v ∈ {0, 1}. In Round
1, each honest Pj sends message (vj ,Sgn(vj , pkj)) to all parties. synchrony of
the network guarantees that #Sv

j ≥ n − ts ≥ n − ts − ta for each honest party
Pj , so that Pj sets bj = v in Round 2. Notice that #S1−v

j ≤ ts < n− ts − ta. No
honest party signs bit 1 − v at any point in the execution of the protocol, and
the adversary cannot forge signatures on behalf of honest parties. Together with
ts < n − ts − ta, this implies that no (n − ts − ta)-certificate on bit 1 − v can be
produced by corrupted parties, so that no honest party Pj sets bj = ⊥ in Round
3. In conclusion, each honest party Pj outputs bj = v. This proves ts-validity.

[weak consistency] Assume an honest party Pj outputs v. This means Pj sets
bj = v in Round 2, and sends a (n − ts − ta)-certificate on v to all parties in
Round 3. synchrony of the network guarantees that this certificate is delivered
to all honest parties by the end of the round. In conclusion, no honest party
outputs 1 − v. This proves ts-weak consistency.

Assume that that at most ta parties are corrupted in an execution of Πta,ts

WC

over an asynchronous network.

[weak validity] Assume each honest party holds the same input v ∈ {0, 1} and
assume an honest party Pj does not output �. This means #Sj ≥ n− ts. Notice
that Sj = Sv

j 	 S1−v
j . The adversary cannot forge honest parties’ signatures,

which guarantees #S1−v
j ≤ ta; this implies #Sv

j ≥ #Sj − ta ≥ n − ts − ta, so
that Pj sets bj = v in Round 2. The assumption ta ≤ ts guarantees that ta ≤
ts < n− ts − ta, which means corrupted parties cannot produce an (n− ts − ta)-
certificate on 1 − v. In conclusion, party Pj outputs bj = v in Round 3. This
proves ta-weak validity and concludes the proof of the lemma. �	

E Proof of Lemma 2

Assume that that at most ts parties are corrupted in an execution of Πta,ts

SBA over
a synchronous network.

[liveness] We claim that each honest party Pj inputs bj ∈ {0, 1} to the execution
of Πta,ts

WC in iteration k (for all k). This holds trivially for k = 1. Suppose it

Round-Efficient Byzantine Agreement and Multi-party Computation 647

holds for k. synchrony of the network guarantees that, by ts-liveness of Πta,ts

WC ,
bj ∈ {0, 1,⊥} for each honest party Pj after running weak-consensus in iteration
k. Since coink ∈ {0, 1}, then bj ∈ {0, 1} for each honest party Pj at the end of
iteration k, so that Pj inputs bj ∈ {0, 1} to the execution of Πta,ts

WC in iteration
k + 1. The claim follows by induction on k. Therefore, after iteration κ, party
Pj outputs bj ∈ {0, 1}. This proves ts-liveness.

[validity] Assume each honest party Pj holds the same input v ∈ {0, 1}. We
claim that each honest party Pj inputs v to the execution of Πta,ts

WC in iteration k
(for all k). This holds trivially for k = 1. Suppose it holds for k. synchrony of the
network guarantees that, by ts-validity of Πta,ts

WC , bj = v ∈ {0, 1} for each honest
party Pj after round the execution of weak-consensus in iteration k. Therefore,
party Pj ignores the value coink and keeps bj = v at the end of the iteration. In
conclusion, party Pj inputs v to the execution of Πta,ts

WC in iteration k + 1. The
claim follows by induction on k. Therefore, after iteration κ, party Pj outputs
bj = v. This proves ts-validity.

[consistency] synchrony of the network guarantees that, by ts-weak consistency
of Πta,ts

WC , after the execution of weak consensus in iteration k, there is bk ∈ {0, 1}
such that bj = bk or bj = ⊥ for each honest party Pj (for all k). Since coink is
a uniformly random bit (independent of bk, since the adversary only learns the
value coink after each honest party has produced output from weak consensus in
iteration k), then P(coink = bk) = 1/2 for all k. Furthermore, synchrony of the
network guarantees that, by ts-validity of Πta,ts

WC , if coink = bk for some k, then
bj = bk at the end of iteration k for each honest party Pj and for all k′ ≥ k (the
proof is by induction on k′ as above, and we omit it).

For each positive integer k, let agreek denote the event that there exists
b ∈ {0, 1} such that bj = b for each honest party Pj at the end of iteration
k. We denote by agree0 the event that all honest parties hold the same input.
Furthermore, let abortk denote the event that some honest party Pj outputs ⊥
from the execution of Πta,ts

WC in iteration k. For each k ≥ 0 we have

P(agreek+1 | agreec
k) = P

(
agreek+1 ∩ (abortk+1 	 abortck+1) | agreec

k

)

= P
(
agreek+1 ∩ abortk+1 | agreec

k

)

= P
(
agreek+1 | abortk+1 ∩ agreec

k

)
P
(
abortk+1

)

+ P
(
agreek+1 | abortck+1 ∩ agreec

k

)
P
(
abortck+1

)

= P
(
coink+1 = bk+1

)
P
(
abortk+1

)
+ 1 · P(

abortck+1

)

=
1
2

(
P
(
abortk+1

)
+ P

(
abortck+1

))
+

1
2
P
(
abortck+1

) ≥ 1
2
.

(4)

Notice, once again, that the above equality P
(
agreek+1 | abortk+1 ∩ agreec

k

)
=

P
(
coink+1 = bk+1

)
holds because ts corrupted parties alone cannot learn coink+1

in advance, so that the output of honest parties in the execution of Πta,ta

WC is
independent from the value of coink+1 in iteration k + 1. The observation that
agreec

k ⊇ agreec
k+1 allows us to finally estimate

648 G. Deligios et al.

P
(
agreec

κ

)
= P

(
κ⋂

k=1

agreec
k

)

= P

(
agreec

κ

∣∣∣∣∣
κ−1⋂
k=1

agreec
k

)
P

(
κ−1⋂
k=1

agreec
k

)

=
κ∏

k=1

P
(
agreec

k | agreec
k−1

) ≤ 1
2κ

.

(5)

This proves ts-consistency.
Assume that that at most ta parties are corrupted in an execution of Πta,ts

SBA

over an asynchronous network.

[weak validity] Assume each honest party Pj holds the same input v ∈ {0, 1}.
We claim that each honest party Pj inputs v to the execution of Πta,ts

WC in iteration
k (for all k). The claim is trivially true for k = 1. Assume it is true for k. By
ta-weak validity of protocol Πta,ts

WC , each honest party Pj outputs either v or �
from Πta,ts

WC in iteration k. Therefore, each honest party Pj ignores the coin-flip
value and sets bj = v at the end of iteration k, and therefore inputs bj = v to the
following execution of Πta,ts

WC in iteration k + 1. The claim follows by induction
on k. In conclusion, each honest party outputs bj = v at the end of iteration κ.
This proves ta-weak validity.

F Synchronous Broadcast with Asynchronous Weak
Validity

We now explain how to obtain a broadcast protocol that is ts-secure in a syn-
chronous network and ta-weakly valid in an asynchronous network, starting from
a BA with the same guarantees. In addition to the rounds required by the BA,
our construction runs only 2 rounds. In particular, given a fixed-round BA, it
yields a fixed-round broadcast protocol. The opposite construction (BA from
broadcast) is shown in [9]. Together, these result completely resolve the ques-
tion of equivalence of BA and broadcast with asynchronous weak validity.

The idea, well known in the synchronous model, is for the sender P ∗ to
send their input to all parties in the first round; parties then run a Byzantine
agreement protocol on the values they received to ensure consistency. However,
this construction cannot be directly translated to our setting: if an honest party
Pj does not receive a message from the sender P ∗ within the first round, then
P ∗ could be corrupted, or the adversary might have delayed the message. In
the former scenario, an easy patch would be to input a default value to the
BA protocol, but this solution does not allow to achieve weak validity in the
latter scenario. On the other hand, not inputting any message to the Byzantine
agreement protocol fails to provide consistency if the network is synchronous.

Round-Efficient Byzantine Agreement and Multi-party Computation 649

We solve this problem by having parties run two BAs: one to agree on whether
the sender behaved honestly, and one to agree on a received value. These execu-
tions can be carried out in parallel for improved round efficiency.

Let Πta,ts

SBA be a synchronous Byzantine agreement protocol (for example, our
protocol with asynchronous weak validity from Sect. 4.2) which runs in s rounds.

We describe the protocol from the point of view of party Pj .

Initialization step. Set bj := �, received − inputj := 0.

Round 1 (Sender). Send message (v∗, Sgn(v∗, sk∗)) to all parties.

Round 1. Upon receiving a message (vj , σj) from P ∗, if Vfy(vj , σj , pk
∗) = 1, set

received − inputj := 1, bj := vj , and forward message (vj , σj) to all parties in Round
2.

Round 2. If received − inputj = 0 and bj = �, upon receiving (v′
j , σ

′
j) from any

party, if Vfy(v′
j , σ

′
j , pk

∗) = 1 set bj := v′
j .

Round 3 to 3 + s. Set received − inputj := Πta,ts
SBA (received − inputj). If bj �= �,

let bj := Πta,ts
SBA (bj), otherwise participate in protocol Πta,ts

SBA but do not send a mes-
sage whenever supposed to share input.

Output determination. If received − inputj = 1, output bj . Otherwise, output �.

Protocol Πta,ts
SBC

(
Πta,ts

SBA

)

Lemma 9. Assume protocol Πta,ts

SBA achieves the following security guarantees.

– When run over a synchronous network: ts-validity and ts-consistency.
– When run over an asynchronous network: ta-weak validity.

Then, protocol Πta,ts

SBC

(
Πta,ts

SBA

)
achieves the following security guarantees.

– When run over a synchronous network: ts-validity and ts-consistency.
– When run over an asynchronous network: ta-weak validity.

Proof. Assume that that at most ts parties are corrupted in an execution of
Πta,ts

SBC

(
Πta,ts

SBA

)
over a synchronous network.

[validity] If the sender P ∗ is honest, they send (v∗,Sgn(v∗, pk∗)) to all parties in
round 1. synchrony of the network guarantees these messages are delivered within
the round, so that each honest party Pj sets received − inputj := 1 and bj := v∗

in round 1. By ts-validity of Πta,ts

SBA , each honest party sets received − inputj :=
Πta,ts

SBA (received − inputj = 1) = 1 and bj := Πta,ts

SBA (bj = v∗) = v∗ in round 3 + s,
and outputs bj = v∗ from Πta,ts

SBC

(
Πta,ts

SBA

)
. This proves ts-validity.

650 G. Deligios et al.

[consistency] Assume an honest party Pj outputs v �= �. This means that
received − inputj equals 1 in round 3 + s. Then, ts-consistency of Πta,ts

SBC guar-
antees received − inputi = 1 in round 3 + s for each honest party Pi. Further-
more, ts-validity of Πta,ts

SBC guarantees that at least one honest party Pk inputs
received − inputk = 1 to Πta,ts

SBC in round 3. This means party Pk received a validly
signed message from the sender in round 1, and forwarded this message to all
parties in round 2. synchrony of the network then guarantees bi �= � for each
honest party Pi in round 3. Since each honest party provides a valid input, ts-
consistency of Πta,ts

SBC guarantees that bi = bj = v in round 3 + s for each honest
party Pi, so that Pi outputs v from Πta,ts

SBC

(
Πta,ts

SBA

)
. This proves ts-consistency.

Assume that that at most ta parties are corrupted in an execution of protocol
Πta,ts

SBC

(
Πta,ts

SBA

)
over an asynchronous network.

[weak validity] Assume the sender P ∗ is honest and has input v∗. Up to (and
including) round 3, an honest party Pj sets bj := v �= � only if they receive a
message (v, σ) such that Vfy(v, σ, pk∗) = 1. Since corrupted parties cannot forge
an honest sender’s signature, bj ∈ {v∗,�} in round 3 for each honest party Pj .
Observe that, if bj = � in round 3, party Pj does not send a message whenever
they are supposed to share their input in Πta,ts

SBC ; this does not break ta-weak
validity of Πta,ts

SBC , since messages can be arbitrarily delayed by the adversary.
Therefore, ta-weak validity of Πta,ts

SBC guarantees that bj ∈ {v∗,�} in round 3+ s
for each honest party Pj . In conclusion, each honest party Pj outputs either v∗

or � from Πta,ts

SBC

(
Πta,ts

SBA

)
. This proves ta-weak validity, and concludes the proof

of the lemma. �	

G Proof of Lemma 6

We sketch the proof. Assume at most ts parties are corrupted and the network is
synchronous. Then, ts-security of Πts,ta

HMPC guarantees that each party receives the
same correct output from the computation of fGRBL in Step 1 (which takes into
account the input of all honest parties). Therefore, each honest party encrypts
their (authenticated) shares of each gate of circg and sends the resulting cipher-
texts to all parties. synchrony of the network guarantees that each honest party
receives at least n − ts > ts valid (i.e. such that the information checking proto-
col succeeds) and consistent shares for each gate within one extra round. Since
dishonest parties cannot forge authentication vectors, even a rushing adversary
cannot compromise the reconstruction of the function table entries. Together
with the masked inputs and the relative keys for each input wire, as well as the
masks for the accessible output wires, the (only) reconstructed function table
entry for each gate allows each honest party Pj to evaluate the garbled version of
circg locally and recover the output. In particular, each honest party terminates.

Now, Assume at most ta parties are corrupted and the network is asyn-
chronous. Then, ta-security of protocol Πts,ta

HMPC (circfGRBL
; circg; bj) guarantees that

each honest party receives the same output (taking into account the inputs of at
least n− ts honest parties) from the computation of fGRBL in Step 1. Notice that

Round-Efficient Byzantine Agreement and Multi-party Computation 651

if φj = 0 (i.e. if Pj has not yet sent their encrypted shares), then party Pj does
not terminate. Eventual delivery then guarantees that each honest party receives
at least n − ta ≥ n − ts ≥ ts + 1 valid and consistent encrypted shares of each
function table entry of circg. Since dishonest parties cannot forge authentication
vectors, each set of ts + 1 valid shares identifies the same secret. Together with
the masked inputs and the relative keys for each input wire, as well as the masks
for the accessible output wires, the (only) reconstructed function table entry for
each gate allows each honest party Pj to evaluate the garbled version of circg

locally and recover the output. In particular, each honest party terminates.

References

1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost-surely terminating polynomial
protocol for asynchronous byzantine agreement with optimal resilience. In: Bazzi,
R.A., Patt-Shamir, B. (eds.) 27th ACM PODC, pp. 405–414. ACM, August 2008

2. Abraham, I., Malkhi, D., Nayak, K., Ren, L., Yin, M.: Sync HotStuff: simple
and practical synchronous state machine replication. Cryptology ePrint Archive,
Report 2019/270 (2019). https://eprint.iacr.org/2019/270

3. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic
MPC with malicious security. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11477, pp. 532–561. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17656-3 19

4. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Rudnicki, P. (ed.) 8th ACM PODC, pp. 201–
209. ACM, August 1989

5. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

6. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 784–796 (2012)

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

8. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with opti-
mal resilience (extended abstract). In: Anderson, J., Toueg, S. (eds.) 13th ACM
PODC, pp. 183–192. ACM, August 1994

9. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous
fallback guarantees. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol.
11891, pp. 131–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36030-6 6

10. Blum, E., Katz, J., Loss, J.: Network-agnostic state machine replication. Cryptol-
ogy ePrint Archive, Report 2020/142 (2020). https://eprint.iacr.org/2020/142

11. Blum, E., Liu-Zhang, C.-D., Loss, J.: Always have a backup plan: fully secure
synchronous MPC with asynchronous fallback. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 707–731. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56880-1 25

12. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: practical
asynchronous byzantine agreement using cryptography. J. Cryptol. 18(3), 219–246
(2005)

https://eprint.iacr.org/2019/270
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-17656-3_19
https://doi.org/10.1007/978-3-030-36030-6_6
https://doi.org/10.1007/978-3-030-36030-6_6
https://eprint.iacr.org/2020/142
https://doi.org/10.1007/978-3-030-56880-1_25

652 G. Deligios et al.

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

14. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal
resilience. In: 25th ACM STOC, pp. 42–51. ACM Press, May 1993

15. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(abstract) (informal contribution). In: Pomerance, C. (ed.) CRYPTO 1987, vol. 293
of LNCS, p. 462. Springer, Heidelberg, August 1988

16. Cohen, R., Coretti, S., Garay, J., Zikas, V.: Probabilistic termination and compos-
ability of cryptographic protocols. J. Cryptol. 32(3), 690–741 (2018). https://doi.
org/10.1007/s00145-018-9279-y

17. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-
party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 33

18. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X 22

19. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

20. Damg̊ard, I., Ishai, Y.: Constant-round multiparty computation using a black-box
pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 23

21. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 15

22. Deligios, G., Hirt, M., Liu-Zhang, C.-D.: Round-efficient byzantine agreement and
multi-party computation with asynchronous fallback. Cryptology ePrint Archive,
Report 2021/1141 (2021). https://ia.cr/2021/1141

23. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

24. Feldman, P., Micali, S.: Optimal algorithms for byzantine agreement. In: 20th ACM
STOC, pp. 148–161. ACM Press, May 1988

25. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM (JACM) 32(2), 374–382 (1985)

26. Fitzi, M., Hirt, M., Maurer, U.: Trading correctness for privacy in unconditional
multi-party computation. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462,
pp. 121–136. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055724

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM
STOC, pp. 218–229. ACM Press, May 1987

28. Guo, Y., Pass, R., Shi, E.: Synchronous, with a chance of partition tolerance. In:
Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 499–
529. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 18

29. Hirt, M., Maurer, U.: Robustness for free in unconditional multi-party computa-
tion. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 101–118. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 6

https://doi.org/10.1007/s00145-018-9279-y
https://doi.org/10.1007/s00145-018-9279-y
https://doi.org/10.1007/978-3-662-53890-6_33
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/11535218_23
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://ia.cr/2021/1141
https://doi.org/10.1007/BFb0055724
https://doi.org/10.1007/978-3-030-26948-7_18
https://doi.org/10.1007/3-540-44647-8_6

Round-Efficient Byzantine Agreement and Multi-party Computation 653

30. Hirt, M., Nielsen, J.B., Przydatek, B.: Cryptographic asynchronous multi-party
computation with optimal resilience. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 322–340. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 19

31. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 27

32. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer,
Heidelberg (2006). https://doi.org/10.1007/11818175 27

33. Lindell, Y., Lysyanskaya, A., Rabin, T.: Sequential composition of protocols with-
out simultaneous termination. In: Ricciardi, A. (ed.) 21st ACM PODC, pp. 203–
212. ACM, July 2002

34. Liu, S., Viotti, P., Cachin, C., Quéma, V., Vukolić, M.: XFT: practical fault toler-
ance beyond crashes. In: 12th USENIX Symposium on Operating Systems Design
and Implementation, pp. 485–500 (2016)

35. Liu-Zhang, C.-D., Loss, J., Maurer, U., Moran, T., Tschudi, D.: MPC with syn-
chronous security and asynchronous responsiveness. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12493, pp. 92–119. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64840-4 4

36. Loss, J., Moran, T.: Combining asynchronous and synchronous byzantine agree-
ment: The best of both worlds. Cryptology ePrint Archive, Report 2018/235 (2018).
https://eprint.iacr.org/2018/235

37. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. In: Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1041–1053 (2019)

38. Nakamoto, S.: A peer-to-peer electronic cash system (2008)
39. Pass, R., Shi, E: Hybrid consensus: efficient consensus in the permissionless

model. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 91. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

40. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 3–33.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8 1

41. Patra, A., Choudhary, A., Rangan, C.P.: Simple and efficient asynchronous byzan-
tine agreement with optimal resilience. In: Tirthapura, S., Alvisi, L. (eds.) 28th
ACM PODC, pp. 92–101. ACM, August 2009

42. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM (JACM) 27(2), 228–234 (1980)

43. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, pp. 73–85 (1989)

44. Shostak, R., Pease, M., Lamport, L.: The byzantine generals problem. ACM Trans.
Programm. Lang. Syst. 4(3), 382–401 (1982)

45. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd
FOCS, pp. 160–164. IEEE Computer Society Press, November 1982

46. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/11426639_19
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/11818175_27
https://doi.org/10.1007/978-3-030-64840-4_4
https://doi.org/10.1007/978-3-030-64840-4_4
https://eprint.iacr.org/2018/235
https://doi.org/10.1007/978-3-319-78375-8_1

	Round-Efficient Byzantine Agreement and Multi-party Computation with Asynchronous Fallback
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work

	2 Model
	2.1 Communication and Adversarial Models
	2.2 Cryptographic Primitives

	3 Definitions
	3.1 Agreement Primitives
	3.2 Broadcast Primitives
	3.3 Multi-party Computation

	4 Round-Efficient Byzantine Agreement with Asynchronous Weak Validity
	4.1 Weak Consensus with Asynchronous Weak Validity
	4.2 Fixed-Round Synchronous BA with Asynchronous Weak Validity
	4.3 Optimality of Synchronous BA with Asynchronous Weak Validity

	5 Synchronous BA with Asynchronous Fallback
	6 Round-Efficient MPC with Asynchronous Fallback
	6.1 Multi-party Garbled Circuits
	6.2 MPC with Linear Round Complexity in d and and Asynchronous Fallback
	6.3 Protocol Description

	A Additional Definitions
	B Gradecast with Asynchronous Weak Validity
	C Proof of Lemma 1
	D A Simpler Weak-Consensus with Asynchronous Weak Validity for ta + 2ts<n and tats
	E Proof of Lemma 2
	F Synchronous Broadcast with Asynchronous Weak Validity
	G Proof of Lemma 6
	References

