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Abstract. The main conceptual contribution of this paper is a uni-
fication of two leading paradigms for constructing succinct argument
systems, namely Kilian’s protocol and the BMW (Biehl-Meyer-Wetzel)
heuristic. We define the notion of a multi-extractable somewhere sta-
tistically binding (meSSB) hash family, an extension of the notion of
somewhere statistically binding hash functions (Hubacek and Wichs,
ITCS 2015), and construct it from LWE. We show that when instantiat-
ing Kilian’s protocol with a meSSB hash family, the first two messages
are simply an instantiation of the BMW heuristic. Therefore, if we also
instantiate it with a PCP for which the BMW heuristic is sound, e.g.,
a computational non-signaling PCP, then the first two messages of the
Kilian protocol is a sound instantiation of the BMW heuristic.

This leads us to two technical results. First, we show how to efficiently
convert any succinct non-interactive argument (SNARG) for BatchNP
into a SNARG for any language that has a computational non-signaling
PCP. Put together with the recent and independent result of Choudhuri,
Jain and Jin (Eprint 2021/808) which constructs a SNARG for BatchNP
from LWE, we get a SNARG for any language that has a computational
non-signaling PCP, including any language in P, but also any language
in NTISP (non-deterministic bounded space), from LWE.

Second, we introduce the notion of a somewhere statistically sound
(SSS) interactive argument, which is a hybrid between a statistically
sound proof and a computationally sound proof (a.k.a. an argument),
and

– prove that Kilian’s protocol, instantiated as above, is an SSS argu-
ment;

– show that the soundness of SSS arguments can be proved in a
straight-line manner, implying that they are also post-quantum
sound if the underlying assumption is post-quantum secure; and

– conjecture that constant-round SSS arguments can be soundly con-
verted into non-interactive arguments via the Fiat-Shamir transfor-
mation.
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1 Introduction

In the past decade, there has been a significant effort to construct efficiently ver-
ifiable, succinct, and non-interactive argument systems (also called SNARGs).1

In our work, we propose two paths towards obtaining SNARGs for P as well
as for certain sub-classes of NP. Our approaches are motivated by Kilian’s cele-
brated work [Kil92] that converts any PCP into an interactive argument using a
tree hash [Mer87].

Recall that in Kilian’s protocol, the prover tree-commits to a PCP using a
hash key generated by the verifier and sends the resulting commitment to the
verifier. The verifier then samples a PCP query at random and sends it to the
prover. The prover must then send back answers to the PCP queries along with
verification paths for each answer w.r.t. the previously sent commitment.

We take a somewhat anachronistic view and see Kilian’s four-message, public-
coin interactive argument as a natural interpolation of the two-message, privately
verifiable Biehl-Meyer-Wetzel (BMW) heuristic.

Recall that the BMW heuristic takes any PCP and any (computationally
secure) single-sever PIR scheme, and uses them to construct a two-message suc-
cinct argument where the verifier sends each PCP query to the prover as a PIR
query, and the prover runs the PIR protocol with the database being the PCP
proof string, and responds accordingly (see Sect. 2.5 for more details). The BMW
heuristic is not known to be sound in general [DLN+04,DHRW16]; however, it is
known to be computationally sound if it is instantiated with a PCP with a special
property known as computational non-signaling [KRR13,BHK17]. We note that
not all NP languages have such a (computational non-signaling) PCP, and such
a PCP was constructed only for P [KRR14,BHK17] and some sub-classes of NP
such as NTISP [BKK+18].2 We refer to such PCPs for which the BMW heuris-
tic is computationally sound as BMW-compatible. Note that the BMW heuristic
results in a privately verifiable protocol since the verifier needs to run the PIR
decoding algorithm on the prover’s message, in a sense decrypting it using a
private key.

Constructing two-message publicly verifiable succinct arguments, which in
turn give us SNARGs in the common reference string model, appears to be a
significantly harder challenge. Indeed, the only construction we have of SNARGs
under a post-quantum assumption is restricted to bounded depth computa-
tions [JKKZ20]. One attempt to constructing a SNARG for all of P was recently
made in [KPY19], which showed how to convert the BMW heuristic to a publicly
verifiable one by relying on a primitive called zero-testable encryption [PR17]. In
addition, they gave a construction of this primitive under a complexity assump-
tion on groups with bilinear maps. This left open the problem of relying on
1 An argument system is a computationally sound proof system.
2 The class NTISP(t, s) consists of all the languages that are decidable by a non-

deterministic Turing machine running in time t and space s. The computational
non-signaling PCP constructed in [BKK+18] has query complexity s · polylog(t)
and as a result the communication complexity of the BMW heuristic grows with
s · polylog(t).
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more standard and ideally post-quantum secure assumptions, a problem which
we tackle in this work.

1.1 Multi-extractable Somewhere Statistically Binding (meSSB)
Hash Families

As a starting point, consider instantiating Kilian’s protocol with a somewhere
statistically binding (SSB) hash function [HW15] in place of a generic tree hash.
Recall that an SSB hash family is a hash family H where each hash key hk is
associated with an index i ∈ [L], where L is the length of the input, such that
Hash(hk, x) is statistically binding on xi, and importantly, the key hk hides the
index i. In this work we consider extractable SSB (eSSB) hash families, which
are SSB hash families with the additional property that one can extract xi from
the hash value Hash(hk, x) given a trapdoor td that is generated together with
hk (see Sect. 2.3, Definition 9).

We observe that an eSSB hash family is essentially a (computational) single-
server PIR scheme, where the query corresponding to index i is the hash key hk
associated with the index i, the database answer corresponding to database x
simply runs Hash(hk, x), and given the trapdoor td corresponding to hk one can
indeed extract xi from Hash(hk, x), without revealing the secret index i. Armed
with this observation, we note that if we instantiate Kilian’s protocol with an
eSSB hash family, the first two messages are quite similar to the BMW heuristic,
the difference being that the BMW heuristic uses many PIR queries (as many
as the number of PCP queries), whereas an eSSB families support a single PIR
query.

To remedy this, we consider the notion of a multi-extractable SSB (meSSB)
hash family, where each key hk is associated with several indices i1, . . . , i� ∈
[N ], and is generated with trapdoors td1, . . . , td�, such that one can extract
xi1 , . . . , xi�

from Hash(hk, x). Importantly, since in the BMW heuristic each query
is generated using fresh randomness, to match this heuristic, we need to require
that for every i ∈ [�], the index i remains hidden, even given the key hk and
all the trapdoors {tdj}j∈[�]\{i}. We note that if we instantiate Kilian’s protocol
with a meSSB hash family then the first two messages are precisely the BMW
heuristic! This observation is the first conceptual contribution of this work.

This instantiation of Kilian’s protocol with a meSSB hash family can alter-
natively be thought of as a way of converting the BMW protocol to a publicly
verifiable one, albeit at the cost of adding two rounds. In this instantiation, we
execute the BMW heuristic, but the verifier never decrypts the PIR answers.
Instead, we view the PIR answers as a commitment to the PCP, and we add
two messages, where the verifier sends PCP queries in the clear, and the prover
decommits to the answers. These additional messages are in lieu of the verifier
decrypting the PIR answers by himself.

Starting with this observation, we proceed to offer two paths to convert
Kilian’s protocol into a SNARG.
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The Fiat-Shamir Paradigm. The first approach, which we elaborate on in
Sect. 1.2, considers applying the Fiat-Shamir paradigm to Kilian’s protocol when
instantiated with a meSSB hash family and with a BMW-compatible PCP.3 At
first it may seem that this approach is doomed to fail, in light of the recent
negative result of [BBH+19], which shows that the Fiat-Shamir paradigm is not
sound when applied to Kilian’s protocol. However, we argue that this specific
instantiation of Kilian’s protocol has a special property, which we refer to as
somewhere statistical soundness (SSS), that allows it to evade this specific nega-
tive result. We conjecture that SSS protocols are Fiat-Shamir friendly, meaning
that for any SSS protocol there is some choice of hash function using which
the application of the Fiat-Shamir paradigm to the protocol is sound. Addition-
ally, we argue that SSS protocols are of independent interest. In particular, we
prove that every SSS protocol has a straight-line soundness proof and as a result
is post-quantum sound (assuming the underlying assumption is post-quantum
secure). We elaborate on this in Sect. 1.2.

Using SNARGs for BatchNP. The second approach we consider is to use a
SNARG for BatchNP to convert the first two messages in the above instanti-
ation of Kilian’s protocol for a language L into a SNARG for L. A similar result
was shown independently by [CJJ21]. We elaborate on this in Sect. 1.3.

1.2 Somewhere Statistically Sound (SSS) Interactive Arguments

One noteworthy property of our instantiation of Kilian’s protocol is that due to
the soundness of the BMW heuristic, with high probability a cheating prover is
statistically committed to incorrect answers on the particular locations specified
by the meSSB hash function. Thus, if the verifier’s PCP query points to exactly
the locations that are statistically bound by the meSSB hash function, the ver-
ifier is guaranteed to reject no matter what the final message of the prover is.
We call this somewhere statistical soundness (SSS), in analogy with somewhere
statistical binding.

We can extend this to multi-round protocols just as well, however we focus
on 4-round protocols where, without loss of generality, we assume that the first
message is sent by the verifier. Formally, an interactive argument (P,V) is said to
be SSS if for every legal first message β1, there exists a third message β2 = T (β1)
sent by the verifier such that the following two properties hold:

– For every poly-size deterministic cheating prover P∗, conditioned on the first
three messages being (β1,P∗(β1), T (β1)) the remaining protocol is statisti-
cally sound with overwhelming probability over β1. Namely, for any x /∈ L and
any (deterministic) poly-size P∗, with overwhelming probability, any (even
all powerful) cheating prover cannot convince the verifier to accept x /∈ L
except with negligible probability, conditioned on the first three messages
being (β1,P∗(β1), T (β1)).

3 We note that such a PCP may not always exist, but is known to exist for P and some
sub-classes of NP.
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– The pair (β1, T (β1)) is computationally indistinguishable from a random pair
(β1, β2) of the verifier’s first two messages. We emphasize that this in partic-
ular implies that the function T has to be computationally inefficient.

We study the implications of SSS protocols. As we argue below, SSS inter-
active arguments are of great interest for several reasons.

1. First, we prove that such protocols are post-quantum sound, if the assump-
tion that they rely on is post-quantum secure. We note that in general,
interactive protocols that are proven classically secure under post-quantum
assumptions are not post-quantum secure. This is because the proof of secu-
rity often relies on the rewinding technique, which is not generally applicable
in the quantum setting due to the fact that quantum states are not clon-
able [Wat09,Unr12]. We show that SSS arguments have a straight-line proof
of soundness (i.e., without rewinding the cheating prover), and are thus imme-
diately post-quantum sound. We elaborate on this in Sect. 1.2.

2. Second, we prove that Kilian’s protocol, instantiated with a meSSB hash
family (for which constructions based on the LWE assumption exist) and a
BMW-compatible PCP, is SSS. We elaborate on this in Sect. 1.2. Combined
with (1), this provides a rather simple proof of post-quantum soundness of
Kilian’s protocol, comprehensible to a “quantum dummy.”4

We note that we have constructions of BMW-compatible PCPs only for deter-
ministic languages and for specific classes of non-deterministics languages
such as NTISP, and thus our instantiation of Kilian’s protocol is post-quantum
sound for only such classes. Proving that the classical Kilian protocol [Kil92]
is post-quantum sound for all of NP was a grand challenge, and was only
very recently resolved by Chiesa, Ma, Spooner and Zhandry [CMSZ21] using
highly non-trivial quantum techniques.5

3. Finally, we conjecture that any SSS interactive argument is Fiat-Shamir
friendly; meaning that for any SSS interactive argument (P,V) there exists
a hash family H such that applying the Fiat-Shamir paradigm w.r.t. H to
(P,V) results with a sound non-interactive argument. We elaborate on this
(and define the Fiat-Shamir paradigm) in Sect. 1.2. We mention that prior to
this work, the only interactive argument that was proven to be Fiat-Shamir
friendly, in the work of Canetti et al. [CSW20], is indeed an SSS argument
and was used to construct a (non-succinct) UC NIZK for NP with an adaptive
soundness guarantees.
We emphasize that we do not prove that any SSS interactive argument is
Fiat-Shamir friendly, only conjecture it. We believe that it is a promising
path for obtaining SNARGs based on a standard post-quantum assumption.
In particular, we propose constructing an SSS interactive argument for all

4 https://simons.berkeley.edu/events/quantum-lectures-crypto-dummies.
5 We mention that it is not clear how to simplify their proof for the subclasses of NP

as above, without using a meSSB hash family (rather using an arbitrary collapse
binding hash family), since our simple post-quantum proof strongly relies on the
fact that the first two messages are a sound instantiation of the BMW heuristic.

https://simons.berkeley.edu/events/quantum-lectures-crypto-dummies
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of NP as a great open problem. We note that it is easier than constructing
a (non-adaptive) SNARG for NP, since any such SNARG is in particular
SSS (with two additional arbitrary rounds that are ignored by the verdict
function). Constructing a non-adaptive SNARG for NP has been a major
open problem, and constructing a succinct SSS protocol can be seen as a
stepping stone for achieving this goal.
Note that since we prove that our instantiation of Kilian’s protocol is SSS,
and since we conjecture that any SSS protocol is Fiat-Shamir friendly, as a
special case we conjecture that our instantiation of Kilian’s protocol (with a
meSSB hash family and a BMW-compatible PCP) is Fiat-Shamir friendly.
This is in contrast with the recent work [BBH+19] that showed that in gen-
eral, Kilian’s protocol is not Fiat-Shamir friendly. We remark that it was
already suggested in [BBH+19] to use an SSB hash family as one step to
evade their impossibility result. We suggest to use a meSSB hash family com-
bined with a BMW-compatible PCP. If sound, this would yield a SNARG for
all of P (and some sub-classes of NP, as described above).

SSS, Straight-Line Soundness and Post-Quantum Security. In a nutshell,
the reason that any SSS protocol is post-quantum sound is due to the fact
that it has straight-line soundness, meaning that any (even quantum) successful
cheating prover can be used in a black box and straight-line manner (without
rewinding) to break some complexity assumption.

Theorem 1 (Informal). Any SSS interactive argument has a straight-line
soundness proof.

Loosely speaking, we prove this theorem as follows. Fix any SSS interactive
argument (P,V) for a language L. We construct a (uniform) PPT black-box
reduction R, that takes as input a pair (β1, β2), and distinguishes between the
case that β2 = T (β1) and the case that β2 is chosen at random, given black-box
and straight-line access to any (even quantum) cheating prover P∗.

The reduction R works as follows: It runs the cheating prover with β1, and
then upon receiving α1 = P∗(β1), it sends P∗ the challenge β2. The reduction
then continues emulating the honest verifier until the end of the protocol. If
the transcript is accepting, then R outputs 1 (indicating that β2 is random),
and otherwise it outputs 0. By the assumption that P∗ is convincing with non-
negligible probability, if β1 and β2 are random then the transcript is accepting
with non-negligible probability. On the other hand, by the SSS property, if β2 =
T (β1), then the transcript is accepted with only negligible probability. Thus, the
reduction R outputs 1 with probability that is non-negligibly larger in the case
that β2 is random, as desired.

We note that any interactive argument that has a straight-line soundness
proof is immediately post-quantum sound, assuming that the underlying assump-
tion is post-quantum secure. This is the case since the analysis above extends
readily to the quantum setting. As mentioned above, this is in contrast to
the standard analysis which uses rewinding, and hence often fails in the post-
quantum setting.
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Claim (Informal). Any SSS interactive argument where both SSS properties
are straight-line reducible from an assumption A is also post-quantum sound if
assumption A holds w.r.t. quantum adversaries.

A formal proof of this Claim appears in Sect. 4.2 (Theorem 9). This prop-
erty makes SSS arguments particularly appealing, given the major effort by the
community to make cryptographic protocols post-quantum secure.

SSS and Fiat-Shamir Friendliness. Another reason why SSS arguments
are of interest is that we believe (and conjecture) that such protocols are
“Fiat-Shamir friendly.” Recall that the Fiat-Shamir paradigm converts an inter-
active proof (P,V) for a language L to a non-interactive argument (P ′,V ′)
for L in the CRS model. The CRS consists of randomly chosen hash functions
h1, . . . , h� from a hash family H, where � is the number of rounds in the proto-
col (P,V). To compute a non-interactive proof for x ∈ L, the non-interactive
prover P ′(x) generates a transcript corresponding to (P,V)(x), denoted by
(α1, β1, . . . , α�, β�), by emulating P(x) and replacing each verifier message βi by
βi = hi(α1, β1, . . . , αi−1, βi−1, αi). The verifier V ′(x) accepts if and only if V(x)
accepts this transcript and βi = hi(α1, β1, . . . , αi−1, βi−1, αi) for every i ∈ [�].

This paradigm has been extremely influential in practice, and its soundness
has been extensively studied. For statistically sound proofs, this paradigm is
believed to be sound, at least under strong computational assumptions [KRR17,
CCRR18,HL18,CCH+19]. Moreover, for some protocols such as the Goldwasser-
Kalai-Rothblum protocol [GKR08] and several zero-knowledge protocols for NP
such as Blum’s Hamiltonicity protocol [Blu86] and the GMW 3-coloring proto-
col [GMW91], this paradigm is provably sound under the polynomial or sub-
exponential hardness of learning with errors (LWE) [CCH+19,PS19,JKKZ21,
HLR21], which are standard assumptions.

On the other hand, for computationally sound proofs (known as argu-
ments) the situation is quite grim. There are (contrived) examples of inter-
active arguments for which the resulting non-interactive argument obtained
by applying the Fiat-Shamir paradigm is not sound, no matter which hash
family is used [Bar01,GK05]. Moreover, recently it was shown that the Fiat-
Shamir paradigm is not sound when applied to the celebrated Kilian’s proto-
col [BBH+19].

As a natural interpolation between statistically sound proofs and computa-
tionally sound arguments, it is natural to ask whether the hybrid class of all
(constant round) SSS interactive arguments is Fiat-Shamir friendly.

Conjecture 1. Any constant round SSS interactive argument (P,V) is Fiat-
Shamir friendly.

We note that all known negative results for the Fiat-Shamir paradigm
[Bar01,GK03,BBH+19] are for arguments that are not SSS. In particular, these
interactive arguments are constructed by adding an additional accepting clause,
such that if the prover can predict the verifier’s next message then he can easily
convince the verifier to accept this alternative clause (even false statements).
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This does not harm soundness in the interactive setting since the interactive
prover cannot predict the verifier’s next message and hence cannot use this
additional clause. On the other hand, when Fiat-Shamir is applied, the prover
can, by definition, use the description of the hash function to predict the veri-
fier’s next message, harming the soundness of the non-interactive protocol and
thus demonstrating the insecurity of the Fiat-Shamir paradigm.

Crucially, we emphasize that this additional clause makes the resulting argu-
ment not SSS, since this additional clause inherently does not have statistical
soundness. This is the case because the witness for this additional clause (which
is the Fiat-Shamir hash function) can be larger than the communication com-
plexity, and hence to verify this clause we must use a succinct argument. Impor-
tantly, we note that even if this clause is SSS the entire protocol is not, since
this clause is executed after the first two messages.

We note that Bartusek et al. [BBH+19] give an instantiation of Kilian’s
protocol for the trivial (empty) language for which applying the Fiat-Shamir
paradigm provably results in a sound protocol. Their instantiation employs an
eSSB hash function and a particular PCP for the empty language, and the pro-
tocol is in fact SSS. Indeed, our conjecture is a stronger statement, namely that
the notion of meSSB is sufficient to apply Fiat-Shamir soundly, assuming the
PCP in use makes the BMW heuristic sound.

Instantiating an SSS Version of Kilian. We show that Kilian’s protocol
instantiated with a meSSB hash family, and a BMW-compatible PCP, is an SSS
argument. In particular, we obtain the following corollary.

Theorem 2 (Informal). Kilian’s protocol is SSS, and thus has post-quantum
soundness, if we use a BMW-compatible PCP and if the prover commits to this
PCP using a post-quantum meSSB hash function.

Hubáček and Wichs [HW15] constructed an eSSB hash family assuming the
hardness of LWE. This hash family is post-quantum secure assuming the post-
quantum hardness of LWE. We note that any eSSB hash family can be easily
extended to a meSSB hash family.

Moreover, (adaptive) BMW-compatible PCPs are known for all determinis-
tic languages [BHK17] and languages in NTISP [BKK+18]. For deterministic
languages the (adaptive) soundness relies on the polynomial hardness of the
underlying PIR scheme, whereas for languages in NTISP the (adaptive) sound-
ness relies on the sub-exponential hardness of the underlying PIR scheme.6 The
query complexity for languages in DTIME(t) is polylog(t), and for languages in
NTISP(t, s) it is s ·polylog(t). These results, together with Theorem 2, imply the
following corollary.

6 We mention that the difference stems from the fact that for the non-deterministic lan-
guages we can only construct PCPs that have sub-exponential non-signaling (adap-
tive) soundness, whereas deterministic languages have polynomial non-signaling
(adaptive) soundness.
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Corollary 1 (Informal). There exists an instantiation of Kilian’s protocol that
is SSS, and thus post-quantum sound, for all deterministic computations assum-
ing the polynomial post-quantum hardness of LWE, and for all languages in NTISP
assuming the sub-exponential post-quantum hardness of LWE. For DTIME(t) lan-
guages the communication complexity grows with polylog(t), and for languages in
NTISP(t, s) the communication complexity grows with s · polylog(t).

As mentioned above, we conjecture that this instantiation is Fiat-Shamir
friendly, and leave the proof (or refutation) of this conjecture as an important
open problem.

1.3 SNARGs: From BatchNP to P and Beyond

This view of the first two messages of Kilian’s protocol as an instantiation of the
BMW heuristic leads us to our final contribution: an alternative pathway to get-
ting a SNARG for any language that has a BMW-compatible PCP. Specifically,
we show a reduction from constructing a SNARG for the class of all languages
that have a BMW-compatible PCP to the simpler goal of constructing a SNARG
for BatchNP.

The starting point is the two-round preamble where the verifier sends the
prover the description of a meSSB hash function, and the prover replies with a
multi-extractable commitment to a BMW-compatible PCP. The key observation
is that the remainder of the protocol can be a proof of the following BatchNP
statement (which can be communicated in the first two rounds as well): for every
possible query set Q generated by the PCP verifier, there are values of πQ as
well as openings oQ such that (a) (πQ, oQ) constitutes a valid opening; and (b)
the PCP verifier accepts (Q, πQ).

We argue that this 2-message protocol is sound: If the instance being proven
is false, then by the soundness of the BMW-heuristic the answers that are com-
mitted to by the meSSB hash function are rejecting, and hence by the meSSB
binding property, the resulting BatchNP statement is false. Therefore, it seems
that all we need to instantiate this approach is a SNARG for BatchNP.

There are several issues that come up in making this idea work. First, if
the PCP has negligible soundness error, then the number of possible query sets
generated by the verifier is super-polynomially large, meaning that the (honest)
prover runtime is super-polynomial. Fortunately, all known PCP constructions
(including the ones from [KRR14,BHK17,BK18]) have the property that each
query set can be partitioned into a set of “tests,” where the queries in each test
and their corresponding answers can be verified on their own, and importantly,
the number of possible tests is polynomial.7 Therefore, our BatchNP statement
should rather be that for every test ζ there are values of πζ as well as openings
oζ such that (a) (πζ , oζ) constitutes a valid opening; and (b) the PCP verifier
accepts (ζ, πζ). Note that this BatchNP statement is polynomially large.

7 For example, the tests in the PCP of [BFLS91] (and in the PCP of [KRR14,BKK+18])
are either low-degree tests or consistency tests.
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Secondly, even though we ensured that the number of instances in the
BatchNP statement is polynomial, this polynomial, denoted by N , is at least
as large as the runtime of the underlying computation. Note that even though
the proof length scales only poly-logarithmically with N , the verifier runtime
scales at least linearly with N since the verifier needs to at least read the entire
statement. To solve this, we observe that in our case, the BatchNP statement
actually has a succinct description. Thus, if there are succinct, easy to verify,
proofs for succinctly specified BatchNP statements, we are back in business. We
note that even if this is not the case, if the verifier’s verdict function can be
computed by a circuit that has depth only polylog(N) (but size poly(N)), then
again we are in business since we can use the SNARG for bounded depth com-
putations (from sub-exponential LWE) [JKKZ20], and delegate this computation
back to the prover.

Third and finally, note that the BatchNP proof system must have adaptive
soundness since the prover gets to choose the BatchNP statement, in particular
the hash value, after he receives the CRS/first message of the BatchNP proof.
Since the hash value is small in size, this can be easily handled by complexity
leveraging. We therefore only require non-adaptive soundness with appropriate
security. We elaborate on this in Sect. 6.

Concurrent Work. In a concurrent and independent work, Choudhuri, Jain and
Jin [CJJ21] construct SNARGs for BatchNP from LWE. Thus, using their result
together with our reduction from Sect. 1.3, we obtain a SNARG for any language
that has a BMW-compatible PCP, from the LWE assumption. In particular, as
we elaborate on in Sect. 6, we obtain a SNARG for any language in DTIME(t)
or in NTISP(t, s) with communication complexity polylog(t) or polylog(s, log t),
respectively, from the sub-exponential hardness of LWE. We note that [CJJ21]
also showed how to use their SNARG for BatchNP to construct a SNARG for P
as well as for RAM computations.

2 Preliminaries

Definition 1. Two distribution ensembles {Ak}k∈N and {Bk}k∈N are said to
be Ω-indistinguishable if for every poly(Ω)-size distinguisher D there exists a
negligible function μ such that for every k ∈ N,

| Pr
a←Ak

[D(a) = 1] − Pr
b←Bk

[D(b) = 1]| ≤ μ(Ω(k)).

2.1 Straight-Line Reductions

In this section, we define the notion of straight-line soundness, and more gener-
ally straight-line reductions.

Definition 2 (Straight-Line Reductions). We say that an interactive argument
(P,V)(1κ) for a language L = {Ln}n∈N is (adaptively) θ = θ(κ)-straight-line
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sound if there is a PPT black box reduction R and a non-interactive θ-decisional
complexity assumption [GK16],8 such that R, given oracle access to any cheating
prover P∗ that breaks (adaptive) soundness with probability 1/poly(θ), interacts
with P∗ once (without rewinding) by sending P∗ a single message for each round,
and using the transcript obtained, breaks the assumption.

More generally, we say that a primitive is θ = θ(κ)-straight-line secure (or
θ-secure via a straight-line reduction, or its security proof is θ-straight line) if
there is a PPT black box reduction R and a non-interactive θ-decisional complex-
ity assumption9 such that R, given oracle access to any size-poly(θ) adversary
A that breaks the security of the primitive with probability 1/poly(θ), interacts
with A once (without rewinding) and, using the transcript obtained, breaks the
assumption.

Definition 3 ([GK16]). An assumption is a θ-decisional complexity assumption
if it is associated with two probabilistic polynomial-time distributions (D0,D1),
such that for any poly(θ)-size algorithm A there exists a negligible function μ
such that for any κ ∈ N,

∣
∣
∣
∣

Pr
x←D0(1κ)

[A(x) = 1] − Pr
x←D1(1κ)

[A(x) = 1]
∣
∣
∣
∣
≤ μ(θ(κ)).

2.2 Probabilistically Checkable Proofs (PCP)

We first recall the definition of a probabilistically checkable proof (PCP). A PCP
for an NP language L is a (deterministic) function Π that takes as input a
witness w for a statement x ∈ L, and converts it into a proof π = Π(x,w) which
can be verified by a randomized verifier that reads only a few of its bits.

Definition 4 (PCP). A probabilistically checkable proof (PCP) for a language
L is a triple of algorithms (Π,QPCP,VPCP) with the following syntax:

– Π is a deterministic algorithm that takes as input an instance x ∈ L (and
possibly some additional information, such as a witness), and outputs a proof
string π. We will denote the length of the PCP by L = |π|.

– QPCP is a probabilistic query generation algorithm which takes as input a
security parameter 1κ, and generates a set of queries q1, . . . , q� ∈ [L].

– VPCP is a deterministic polynomial-time verification algorithm that takes as
input an instance x, a set of queries (q1, . . . , q�) and a corresponding set of
answers (a1, . . . , a�), and outputs 0 (reject) or 1 (accept).

We require the following properties to hold:

1. (Perfect) Completeness: For every x ∈ L,
Pr[VPCP(x, (q1, . . . , q�), (πq1 , . . . , πq�

)) = 1] = 1 ,

where π = Π(x), and where the probability is over (q1, . . . , q�) ← QPCP(1κ).
8 We focus on decisional assumptions for simplicity, and because our reductions are

from decisional assumptions.
9 It will be clear what the θ-decisional complexity assumption is in each context.
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2. Soundness: For every x /∈ L, and for every (possibly malicious) string π∗ ∈
{0, 1}∗,

Pr[VPCP(x, (q1, . . . , q�), (π∗
q1 , . . . , π

∗
q�

)) = 1] ≤ 2−κ ,

where the probability is over (q1, . . . , q�) ← QPCP(1κ).

We will be interested in PCP’s with an additional property, that each query
set Q = (q1, . . . , q�) ∈ QPCP can be partitioned into several tests, such that the
verifier’s checks are simply the conjunction of checking each test. This property
holds for all PCP’s known to the authors.

Definition 5. We say that a PCP (Π,QPCP,VPCP) is verified via tests if there
is some algorithm UPCP such that each query set Q = (q1, . . . , q�) ∈ QPCP(1κ)
can be partitioned into θ tests ζ1 ∪ · · · ∪ ζθ, where for every j ∈ [θ] there exists a
set of indices Ij ⊆ [�] such that ζj = Q|Ij

, and the PCP verifier accepts a set of
answers A = (a1, . . . , a�) if and only if UPCP(x,Q|Ij

, A|Ij
) = 1 for every j ∈ [θ].

Remark 1. We also consider a stronger notion of PCP soundness known as non-
signaling soundness, and more specifically computational non-signaling sound-
ness. The precise definition (given in AppendixA) is not needed in order to
understand our result: what is important is that computational non-signaling
PCPs are BMW-compatible.

Two remarks are in place. First, two flavors of (computational) non-signaling
soundness have been considered in the literature: adaptive and non-adaptive;
the latter provides non-adaptive soundness of the BMW heuristic, whereas the
former provides adaptive soundness. In this work, we will describe the results
with adaptive soundness. Second, there is a parameter Ω associated with the
computational non-signaling soundness, such that for every Ω1 < Ω2, a Ω2-
computational non-signaling PCP is also a Ω1-computational non-signaling PCP.
Furthermore, each such PCP is associated with a locality parameter �, which for
simplicity can be thought of as the query complexity. We refer the reader to
AppendixA for the precise definitions.

Adaptive computational non-signaling PCP’s have been constructed for sev-
eral classes of languages. One is the language LU (t) = {LU (t(n))}n∈N, where
poly(n) ≤ t(n) ≤ exp(n), such that for any (deterministic) Turing machine M
and input x, (M,x) ∈ LU (t) if and only if M on input x outputs 1 within
t(|(M,x)|) time steps.

Theorem 3 ([KRR14,BHK17]). For any poly(n) ≤ t(n) ≤ exp(n), there exists
an adaptive t-computational non-signaling PCP for LU (t) with locality � = κ ·
polylog(t), where the PCP proof has size L(n) = poly(t(n)) and can be generated
in time poly(t(n)). Furthermore, QPCP(1κ) runs in time poly(�), and VPCP, on
input (M,x), (q1, . . . , q�), and (a1, . . . , a�), runs in time |(M,x)| · poly(�).

Moreover, this PCP is verified via tests, with a total of poly(t) many possible
tests ζ (see Definition 5).
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Another language with an adaptive computational non-signaling PCP is
NLU (t, s), the class of problems that can be solved nondeterministically in time
t and space s. That is, (M,x) ∈ NLU (t, s) if M is a non-deterministic Tur-
ing machine that, on input x, runs in space s(|(M,x)|) and outputs 1 within
t(|(M,x)|) time steps.

Theorem 4 ([BKK+18]). For poly(n) ≤ t ≤ exp(n) and s = s(n) ≥ log t(n),
there is an adaptive 2s-computational non-signaling PCP for NLU (t, s) with local-
ity � = κ · poly(s). The PCP proof has size L(n) = poly(t(n)) and can be gen-
erated in time t(n). Furthermore, the query generation algorithm runs in time
poly(�) and the verifier, on input (M,x), (q1, . . . , q�), (a1, . . . , a�), runs in time
|(M,x)| · poly(�).

Moreover, this PCP is verified via tests. There are a total of poly(t) possible
tests ζ.

2.3 Hash Function Families with Local Opening

In what follows, we assume L ≤ 2κ.

Definition 6 (Hash Family). A hash family is a pair of PPT algorithms
(Gen,Hash), where

– Gen(1κ, L) takes as input a security parameter κ in unary and an input length
L, and outputs a hash key hk ∈ {0, 1}�hk .

– Hash(hk, x) takes as input a hash key hk ∈ {0, 1}�hk and an input x ∈ {0, 1}L

and outputs an element rt ∈ {0, 1}�hash .

Here, �hk = �hk(κ) = poly(κ) and �hash = �hash(κ) = poly(κ) are parameters
associated with the hash family.

Definition 7 (Hash Family with Local Opening). A hash family with local
opening is a hash family (Gen,Hash), along with two additional PPT algorithms
(Open,Verify) with the following syntax:

– Open(hk, x, j) takes as input a hash key hk ∈ {0, 1}�hk , x ∈ {0, 1}L, and an
index j ∈ [L] and outputs an opening o ∈ {0, 1}�o , where �o = �o(κ) = poly(κ).

– Verify(hk, rt, j, u, o) takes as input a hash key hk ∈ {0, 1}�hk , a hash value rt ∈
{0, 1}�hash , an index j ∈ [L], a value u ∈ {0, 1}, and an opening o ∈ {0, 1}�o ,
and outputs 1 or 0 indicating accept or reject, respectively.

These algorithms should satisfy the property:

– Correctness of Opening: For every x ∈ {0, 1}L and j ∈ [L],

Pr[Verify(hk,Hash(hk, x), j, xj ,Open(hk, x, j)) = 1] = 1,

where the probability is over hk ← Gen(1κ, L).
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2.4 Kilian’s Protocol

Kilian’s transformation uses a hash family with local opening and a PCP scheme
to construct a 4-round succinct argument.

For our description of Kilian’s protocol, fix any hash family with local opening
H = (Gen,Hash,Open,Verify) and a PCP scheme (Π,QPCP,VPCP) for a language
L. Denote the length of a PCP proof by L = L(n). Kilian’s protocol is given in
Fig. 1.

Fig. 1. Kilian’s protocol (PKilian, VKilian) for a language L

2.5 The BMW Heuristic

The BMW heuristic converts a PCP scheme into a 2-message, succinct, privately
verifiable argument. It does this by allowing one to query a PCP proof using a
private information retrieval (PIR) scheme, which we define below.

Definition 8 ([CGKS95,KO97]). A 1-server private information retrieval (PIR)
scheme is a tuple of PPT algorithms (Query,Answer,Reconstruct) with the fol-
lowing syntax:

– Query(1κ, L, q) takes as input a security parameter κ in unary, an input size
L, and an index q ∈ [L], and outputs a query q̂ along with a trapdoor td.

– Answer(q̂, x) takes as input a query q̂ and a database x ∈ {0, 1}L, and outputs
an answer â.

– Reconstruct(td, â) takes as input a trapdoor td and an answer â, and outputs
a plaintext a.

These algorithms should satisfy the following properties:

– Correctness: For every κ,L ∈ N and q ∈ [L],

Pr[Reconstruct(td,Answer(q̂, x)) = xq] = 1,

where the probability is over (q̂, td) ← Query(1κ, q, L).
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– S-Privacy: For any poly(S(κ))-size adversary A = (A1,A2) there exists a
negligible function μ such that for every κ,L ∈ N,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

q0, q1, state ← A1(1κ, L)

b
$← {0, 1}

(q̂, td) ← Query(1κ, L, qb)
b′ ← A2(q̂, state)

⎤

⎥
⎥
⎥
⎥
⎦

=
1
2

+ μ(S(κ)).

Kushilevitz and Ostrovsky [KO97] constructed the first sublinear-
communication single-server PIR scheme and was followed up by several other
works [GR05,Lip05,BV11,DGI+19].

Theorem 5 ([BV11,DGI+19]). For any function S : N → N, there exists a
S-private 1-server PIR scheme with polylog(L) query complexity for length-L
databases, under the S-hardness of the LWE, Quadratic Residuosity, or DDH
assumptions. Moreover, these schemes are S-straight-line secure (see Defini-
tion 2).

Fix any 1-server PIR scheme (Query,Answer,Reconstruct) and any PCP
scheme (Π,QPCP,VPCP) for a language L. The BMW heuristic is a 2-message
succinct argument for L, defined in Fig. 2.

Fig. 2. The BMW protocol (PBMW, VBMW) for L

3 Somewhere Statistically Binding Hash Functions

Central to our paper is the notion of somewhere statistically binding (SSB) hash
functions, first defined by Hubác̆ek and Wichs [HW15]. These are hash functions
with local openings that have an additional special property: for any index i∗, one
can generate a hash key that guarantees statistical binding for the position i∗.
Namely, even an unbounded adversary cannot open the bit at position i∗ to two
different values. Furthermore, the hash key should be index-hiding, namely, it
should hide the index i∗ from all polynomial-time adversaries.
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We augment this notion in two ways. First, we require that the statistically
bound value at position i∗ can be recovered from the hash output using a trap-
door underlying the hash key. It turns out that the Hubác̆ek-Wichs construction
of SSB hash functions from homomorphic encryption already satisfies this prop-
erty. Secondly, we augment the SSB family so that the hash key guarantees
statistical binding for a set of positions I simultaneously. Extractability now
requires that there are |I| trapdoors, where tdi helps us recover the statistically
bound value at the ith position for any i ∈ I. Finally, the index-hiding prop-
erty needs to be augmented to hold even given the other trapdoors. We call the
resulting notion a multi-extractable SSB (or meSSB) hash function.

We first present the definition of extractable SSB (eSSB) hash functions in
Sect. 3.1 and that of multi-extractable SSB (meSSB) hash functions in Sect. 3.2.
We also show how to construct meSSB hash functions from any eSSB hash func-
tion family in a simple way. Finally, in Sect. 3.3 and AppendixA, we reprove the
soundness of the BMW protocol when instantiated with a meSSB hash function.

3.1 Extractable Somewhere Statistically Binding (eSSB) Hash
Functions

Definition 9 (eSSB Hash Family). An S = S(κ)-hiding extractable some-
where statistically binding (eSSB) hash family is a hash family with local opening
(Gen,Hash,Open,Verify), with the following changes:

– Gen(1κ, L, i) takes as additional input an index i ∈ [L] and outputs a hash
key hk ∈ {0, 1}�hk as well as a trapdoor td ∈ {0, 1}�td ,

An eSSB hash family also has an additional PPT algorithm Invert.

– Invert(td, rt) takes as input a trapdoor td ∈ {0, 1}�td and a hash value rt ∈
{0, 1}�hash , and outputs a value u ∈ {0, 1,⊥}.

These algorithms should satisfy the following properties:

– S-Index Hiding: For any poly(S(κ))-size adversary A = (A1,A2) there
exists a negligible function μ such that for any L ≤ 2κ,

Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i0, i1, state ← A1(1κ)

b
$← {0, 1}

(hk, td) ← Gen(1κ, L, ib)
b′ ← A2(hk, state)

⎤

⎥
⎥
⎥
⎥
⎦

=
1
2

+ μ(S(κ)).

– Correctness of Inversion: For any κ ∈ N, L ≤ 2κ, and any i ∈ [L] and
x ∈ {0, 1}L,

Pr[Invert(td,Hash(hk, x)) = xi] = 1,

where the probability is over (hk, td) ← Gen(1κ, L, i).



346 Y. T. Kalai et al.

– Somewhere Statistically Binding: For any κ ∈ N, L ≤ 2κ, i ∈ [L] and
rt ∈ {0, 1}�hash ,

Pr[∃(u, o) s.t. u �= Invert(td, rt) ∧ Verify(hk, rt, i, u, o) = 1] = 0,

where the probability is over (hk, td) ← Gen(1κ, L, i).

Remark 2. We note that our definition of somewhere statistically binding is
different and slightly stronger than the original notion given in [HW15], which
states that for any κ ∈ N, L ∈ N, i ∈ [L] and rt ∈ {0, 1}�hash ,

Pr[∃ (u, o, o′) s.t. u �= u′ ∧ Verify(hk, rt, i, u, o) = Verify(hk, rt, i, u′, o′) = 1] = 0,

where the probability is over hk ← Gen(1κ, L, i). The difference is that our
definition permits “invalid” hash values for which Invert outputs ⊥, and we
require that such hash values have no valid openings. The [HW15] definition
simply requires that there is at most one valid opening for every hash value.
This distinction, however, is not crucial to the rest of our paper.

Hubáček and Wichs constructed SSB hash functions assuming the exis-
tence of a leveled homomorphic encryption scheme, and their construction is
an extractable SSB hash function as well. We state the formal theorem below.

Theorem 6 ([HW15]). Assuming the sub-exponential hardness of the learning
with errors (LWE) problem, there exists a 2κε

-hiding eSSB hash family for some
ε > 0. The 2κε

-hiding is via a 2κε

-straight-line reduction from the 2κε

-hardness
of LWE (see Definition 2).

3.2 Multi-Extractable SSB (meSSB) Hash Functions

Definition 10. An S = S(κ)-hiding multi-extractable somewhere statisti-
cally binding (meSSB) hash family is a hash family with local opening
(Gen,Hash,Open,Verify), where

– Gen(1κ, L, �, I) takes as additional input � locations I = (i1, . . . , i�) ∈ [L]� and
outputs a hash key hk ∈ {0, 1}�hk as well as a trapdoor td = (td1, . . . , td�) ∈
{0, 1}�·�td ,

along with an additional PPT algorithm Invert which works as follows.

– Invert(J, {tdj}j∈J , rt) takes as input a subset J ⊆ [�] of indices as well as
a partial trapdoor {tdj}j∈J and a hash value rt ∈ {0, 1}�hash , and outputs
u ∈ {0, 1,⊥}|J|.
When no subset J is provided, Invert(td, rt) takes as input a full trapdoor
td ∈ {0, 1}�·�td and a hash value rt ∈ {0, 1}�hash and outputs u ∈ {0, 1,⊥}�.

These algorithms should satisfy the following properties:

– S-Index Hiding: For any poly(S(κ))-size adversary A = (A1,A2), there
exists a negligible function μ such that for any L ≤ 2κ,
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Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣

I0 := (i01, . . . , i0� ), I
1 := (i11, . . . , i1� ), state ← A1(1

κ)

b
$← {0, 1}

(hk, tdb) ← Gen(1κ, L, �, Ib)

b′ ← A2(hk, {tdb
j}i0j=i1j

, state)

⎤
⎥⎥⎥⎥⎥⎥⎦

=
1

2
+ μ(S(κ)).

In words, index-hiding requires that even given the trapdoor information for
the overlap of the two ordered sets I0 = (i01, . . . , i

0
�) and I1 = (i11, . . . , i

1
�), the

adversary still cannot distinguish whether hk is statistically binding on I0 or
I1.

– Correctness of Inversion: For any κ ∈ N, L ≤ 2κ, and any I ∈ [L]�,
J ⊆ [�], and x ∈ {0, 1}L,

Pr[Invert(J, {tdj}j∈J ,Hash(hk, x)) = {xij
}j∈J ] = 1,

where the probability is over (hk, td) ← Gen(1κ, L, �, I).
– Somewhere Statistically Binding: For any κ ∈ N, L ≤ 2κ, I ∈ [L]�, i ∈ I

and rt ∈ {0, 1}�hash ,

Pr[∃ (u, o) s.t. u �= Invert((i), {tdi}, rt) ∧ Verify(hk, rt, i, u, o) = 1] = 0,

where the probability is over (hk, td) ← Gen(1κ, L, �, I).

Multi-extractable SSB (meSSB) hash families can be constructed from
extractable SSB (eSSB) families by invoking many independent copies. The for-
mal construction is given in Fig. 3.

Fig. 3. The meSSB hash family (GenmeSSB,HashmeSSB,OpenmeSSB,VerifymeSSB, InvertmeSSB)
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Lemma 1. When the number of statistically bound locations � is at most
poly(S), the hash family HmeSSB defined in Fig. 3 is an S-hiding multi-extractable
SSB hash family. Furthermore, its S-hiding is S-straight line reducible from the
S-hiding of the underlying eSSB hash family. It also holds that

�meSSB,hk = � · �eSSB,hk, �meSSB,hash = � · �meSSB,hash, �meSSB,td = � · �eSSB,td, and �meSSB,o = � · �meSSB,o

where �meSSB,hk, �meSSB,hash, �meSSB,td, �meSSB,o are the parameters associated with
HmeSSB and �eSSB,hk, �eSSB,hash, �eSSB,td, �eSSB,o are the parameters associated with
HeSSB.

Proof. The correctness of inversion and �-somewhere statistically binding proper-
ties follow straightforwardly from the corresponding properties of the underlying
eSSB hash family (Definition 9), so we focus on the S-index hiding property. In
particular, we present a straight-line reduction from the S-hiding of the under-
lying eSSB hash family to the S-hiding of the meSSB hash family.

Suppose that there were a size-poly(S) algorithm A = (A1,A2) such that
for (i01, . . . , i

0
�), (i

1
1, . . . , i

1
�), state ← A1(1κ), A2(·, state) can distinguish between

hkmeSSB generated on index locations {i0j}j∈[�] and {i1j}j∈[�] with probability
δ(S), where δ is a non-negligible function, given partial trapdoor information
tdmeSSB|i0∩i1 . Fix (i01, . . . , i

0
�), (i

1
1, . . . , i

1
�) to be the output of A1 for which A2

has the greatest distinguishing advantage, which is at least δ(S). By a hybrid
argument, there is some index j∗ �∈ i0 ∩ i1 for which A2(·, state) can dis-
tinguish between hkmeSSB generated on indices (i01, . . . , i

0
j∗−1, i

1
j∗ , i1j∗+1, . . . , i�)

and (i01, . . . , i
0
j∗−1, i

0
j∗ , i1j∗+1, . . . , i

�) with probability ≥ δ(S)/�. Then, to break
the S-hiding of the eSSB hash family, an adversary can distinguish between
hk∗

eSSB generated by GeneSSB(1κ, L, i0j∗) and GeneSSB(1κ, L, i1j∗) by generating

(hkeSSB,j , tdeSSB,j) ← GeneSSB(1κ, L, i
b(j)
j ) for j ∈ [j∗ − 1] ∪ [j∗ + 1, �], where

b(j) = 1 if j > j∗ and b(j) = 0 if j < j∗. Then, she runs A2(·, state) on the
meSSB hash key (hkeSSB,1, . . . , hkeSSB,j∗−1, hk

∗
eSSB, hkeSSB,j∗+1, . . . , hkeSSB,�) and

outputs A2(·, state)’s output. This has a distinguishing advantage of ≥ δ(S)/�,
which is non-negligible in S.

Finally, observe that this reduction is straight-line.

3.3 The BMW Protocol with meSSB Hash Families

Recall that the BMW heuristic is a two message succinct argument, where the
verifier queries a PCP via a PCP query consisting of � locations by sending �
parallel independent PIR queries to the prover. The prover computes, under
the PIR, the � answers and sends them back to the verifier. The verifier then
reconstructs the � answers and checks them via the PCP verification algorithm.

We note that a eSSB hash family functions as a PIR scheme, as follows:

– Query(1κ, L, q) calls (hkeSSB, tdeSSB) ← GeneSSB(1κ, L, q) and outputs (q̂, td),
where q̂ = hkeSSB and td = tdeSSB.

– Answer(q̂, π) takes as input q̂ = hkeSSB and π ∈ {0, 1}L and produces â = rt =
HasheSSB(hkeSSB, π).
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– Reconstruct(td, â) takes as input td = tdeSSB and â = rt and outputs
InverteSSB(tdeSSB, rt).

Thus, we can run the BMW heuristic with eSSB hash functions in place of
the PIRs. In fact, the notion of these � parallel eSSB hash functions is captured
by our notion of a meSSB hash function, and thus we can run the BMW heuristic
with a single meSSB hash function (binding on the � locations of a PCP query)
instead of the � parallel PIR queries. Indeed, as we formally state below, the
BMW heuristic is sound when instantiated with a meSSB hash family and a
computationally non-signaling PCP.

Fig. 4. BMW heuristic with a meSSB hash function

Theorem 7. Let (Π,QnsPCP,VnsPCP) be a PCP for a language L with adap-
tive Ω(n)-computational non-signaling soundness and locality �. Assume that the
meSSB hash family is Ω′-hiding, where Ω′ = Ω′(κ) is such that Ω′(κ) = Ω(n)
and 2−κ = negl(Ω′). Then, for any poly(Ω′(κ))-size cheating prover P∗, there
is a negligible function μ such that

Pr [VBMW(x, rt, tdmeSSB, (q1, . . . , q�)) = 1 ∧ x /∈ L] ≤ μ(Ω′),

where (x, rt) ← P∗(hkmeSSB) and where the probability is over (q1, . . . , q�) ←
QPCP(1κ) and (hkmeSSB, tdmeSSB) ← GenmeSSB(1k, L, (q1, . . . , q�). In other words,

Pr

⎡
⎢⎣VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 1 ∧ x /∈ L

∣∣∣∣∣∣∣

Q ← QnsPCP(1
κ
, L)

(hkmeSSB, tdmeSSB) ← GenmeSSB(1
κ
, L, Q)

(x, rt) ← P∗
(hkmeSSB)

⎤
⎥⎦

= negl(Ω
′
).

(1)

Moreover, this is proven via a Ω′-straight-line reduction (Definition 2).

For the sake of completeness, we prove Theorem 7 in AppendixA.

4 Somewhere Statistically Sound Interactive Arguments

4.1 Defining SSS Arguments

Let κ denote a security parameter.
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Definition 11. An interactive argument (P,V)(1κ) for a language L =
{Ln}n∈N is statistically sound if for every (potentially computationally
unbounded) cheating prover P∗ there exists a negligible function μ such that
for every x �∈ L, the soundness error is negligible. That is,

Pr[(P∗,V)(1κ, x) = 1] ≤ μ(κ).

We will sometimes parameterize the soundness error and will call a protocol
θ-statistically sound if its soundness error is at most θ(κ).

Definition 12. An interactive argument (P,V)(1κ) for a language L =
{Ln}n∈N is θ = θ(κ)-somewhere statistically sound (SSS) with respect to a θ-
decisional complexity assumption A if for every first verifier message β1, there
exists a second verifier message T (β1) such that:

– (Adaptive) θ-Somewhere Statistically Soundness: For every poly(θ)-
size (cheating) prover P∗ that generates an instance x, conditioned on the
first three messages being (β1,P∗(β1), T (β1)), the remaining protocol is θ-
statistically sound with overwhelming probability 1−negl(θ) over β1, assuming
A.
Moreover, this condition holds in a θ-straight-line manner; i.e., there is a
black box reduction R such that R, given oracle access to a cheating prover
P∗ that gives x for which the protocol beginning with (β1,P∗(β1), T (β1)) is not
θ-statistically sound with overwhelming probability 1 − negl(θ), simulates the
protocol with the prover by sending a message for every round once (without
rewinding), where the messages for the first two verifier rounds are β1 and
T (β1), and uses the resulting transcript and instance to break the underlying
assumption A.

– θ-Computational Indistinguishability: For any poly(θ)-size distinguisher
D, ∣

∣
∣
∣
Pr
β1

[D(β1, T (β1)) = 1] − Pr
β1,β2

[D(β1, β2) = 1]
∣
∣
∣
∣
≤ negl(θ).

Furthermore, this indistinguishability is θ-straight line, with respect to
assumption A.

We remark that this is a strong definition: our cheating prover proceeds in
two stages, a stage-1 P∗

1 which is computationally bounded and produces the
instance and the second message; and a stage-2 P∗

2 who produces the rest of
the transcript, and has no computational limitations. How could one possibly
use a cheating prover (P∗

1 ,P∗
2 ) to break a computational assumption when P∗

2 is
unbounded? While this seems mysterious at first sight, we remark that similar
situations arise in other places, e.g., in the proof of the [KRR14] protocol. Indeed,
we will use similar ideas in our reduction.

4.2 SSS Implies Straight-Line Soundness

Theorem 8. Any θ-SSS interactive argument (P,V) w.r.t. a θ-decisional com-
plexity assumption A is θ-straight-line sound.
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Proof. To prove straight-line soundness, we will define a straight-line reduc-
tion from the adaptie θ-somewhere statistically sound and θ-computational
indistinguishability assumptions to the θ-soundness of (P,V). Then, combin-
ing with the fact that there is a straight-line reduction from some θ-decisional
complexity assumption A to the adaptive θ-somewhere statistically sound and
θ-computational indistinguishability properties, we obtain that there is a θ-
straight-line reduction from A to the adaptive θ-soundness of (P,V).

Suppose that there is a poly(θ)-size cheating prover P∗ such that
Pr[(P∗,V)(1κ, x) = 1 : x ← P∗(1κ)] = δ(θ), where δ is a non-negligible function.
Now, given (β1, β2), in which either β2 = T (β1) or β2 is random, reduction R
simulates an interaction of V with P∗ using the first two verifier messages β1

and β2. If the resulting transcript for instance x produced by P∗ is accepting,
R outputs 1. Otherwise, it outputs 0.

Note that

Pr
β1,β2

[(P∗,V)(1κ, x) = 1 : x ← P∗(1κ)] = δ(θ),

so the distinguishing advantage of the reduction is

δ(θ) − Pr
β1

[(P∗,V)(1κ, x) = 1 | x ← P∗(1κ), β2 = T (β1)],

which under the θ-somewhere statistically sound assumption is δ(θ) − negl(θ),
which is non-negligible in θ. This means that the θ-somewhere statistically
sound and θ-computationally indistinguishability properties cannot simultane-
ously hold.

4.3 SSS Implies Post-Quantum Soundness

Finally, we prove that the importance of a θ-straight-line sound argument is
that if the underlying θ-decisional complexity assumption is θ-post-quantum
secure, then the argument is sound against poly(θ)-size quantum provers, with
overwhelming probability in θ.

Theorem 9. Any argument (P,V) that is θ-straight-line sound w.r.t. a θ-
decisional complexity assumption A, is also post-quantum sound assuming A
holds w.r.t. quantum adversaries.

Proof. Fix any poly(θ)-size cheating quantum prover P∗ that for infinitely many
κ ∈ N, produces a rejecting instance and convinces V of this rejecting instance
with probability 1/poly(θ(κ)). By the θ-straight-line soundness, there exists a
PPT black-box reduction R that given oracle access to any classical cheating
prover P∗∗ that breaks soundness with probability 1/poly(θ), interacts with P∗∗

once (without rewinding) by sending P∗∗ a single message for each round, and
using the transcript and instance obtained, breaks assumption A.

We next argue that R successfully breaks A even given oracle access to
the quantum adversary P∗. This follows from the following observations. First,
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observe that R interacts with P∗ using completely classical messages. Secondly,
P∗ can be simulated exactly by an unbounded classical adversary P∗∗, which
therefore also generates an accepting transcript with probability 1/poly(θ).
Finally, since the reduction is straight-line, it cannot distinguish between having
oracle access to P∗ and having oracle access to P∗∗. Put together, since the reduc-
tion with oracle access to P∗∗ breaks A, it also breaks A given (non-rewinding)
oracle access to P∗.

5 Kilian’s Protocol Is Somewhere Statistically Sound

We instantiate Kilian’s protocol with two ingredients: an adaptive Ω(n)-
computational non-signaling PCP (Π,QnsPCP,VnsPCP) for a language L, and
a meSSB hash family (GenmeSSB,HashmeSSB,OpenmeSSB,VerifymeSSB, InvertmeSSB).
The resulting protocol is described in Fig. 5.

Fig. 5. The protocol (PnsKilian, VnsKilian) for L

With these ingredients, and setting κ to be (log Ω(n))1/ε such that 2κε

= Ω,
the resulting Kilian’s protocol is a 2κε

-SSS argument assuming the meSSB hash
family is 2κε

-hiding, as we show below. Since 2κε

= Ω(n), in an abuse of notation
we say that the protocol is Ω(n)-SSS.

Lemma 2. (PnsKilian,VnsKilian) is a Ω-SSS interactive argument assuming the
meSSB hash family is 2κε

-hiding.

Proof. For (hkmeSSB, tdmeSSB) ← GenmeSSB(1κ, L,Q), define T (hkmeSSB) = Q. We
will show that (PnsKilian,VnsKilian) satisfies the properties in Definition 12. We will
use the fact that 2κε

= 2((log Ω)1/ε)ε

= Ω. In particular, a 2κε

-hiding meSSB hash
family is in fact Ω(n)-hiding.
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– Adaptive Ω-Somewhere Statistically Sound: The adaptive Ω-
somewhere statistically sound property of Definition 1210 follows from the
fact that for every poly(Ω)-size P∗ = (P∗

1 ,P∗
2 ),

Pr

⎡
⎢⎣

x 	∈ L ∧ ∃{aj , oj}j∈[�]

s.t. VnsPCP(x, Q, (a1, . . . , a�)) = 1

∧ VerifymeSSB(hkmeSSB, rt, qj , aj , oj) = 1 ∀j ∈ [�]

∣∣∣∣∣∣∣

Q ← QnsPCP(1
κ
)

(hkmeSSB, tdmeSSB) ← GenmeSSB(1
κ
, L, Q)

(x, rt, state) ← P∗
1 (hkmeSSB)

⎤
⎥⎦

≤ Pr

⎡
⎢⎣

VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 1

∧ x 	∈ L

∣∣∣∣∣∣∣

Q ← QnsPCP(1
κ
)

(hkmeSSB, tdmeSSB) ← GenmeSSB(1
κ
, L, Q)

(x, rt, state) ← P∗
1 (hkmeSSB)

⎤
⎥⎦

= negl(Ω),

where the last equality follows from Theorem 7 and the fact that the meSSB
hash family is 2κε

-hiding (which is Ω(n)-hiding, as argued above). Further-
more, Corollary 7 gives that the reduction from the 2κε

-hiding of the meSSB
hash family to the Ω-somewhere statistical soundness is 2κε

-straight-line.
– Computational Indistinguishability: In the formatted case, the

pair (β1, T (β1)) is a pair (hkmeSSB, Q) where Q ← QnsPCP(1κ) and
(hkmeSSB, tdmeSSB) ← GenmeSSB(1κ, L,Q). Meanwhile, in the random case,
the pair (β1, β2) is a pair (hk′

meSSB, Q) where Q,Q′ ← QnsPCP(1κ) and
(hk′

meSSB, td′
meSSB) ← GenmeSSB(1κ, L,Q′). The Ω-indistinguishability of these

two pairs follows from the Ω(n)-index hiding property of the meSSB hash
family via a 2κε

-straight-line reduction: The reduction picks Q ← QnsPCP(1κ)
at random. Then, to distinguish between hkmeSSB ← GenmeSSB(1κ, L,Q) and
hkmeSSB ← GenmeSSB(1κ, L,Q′) for an independent Q′ ← QnsPCP(1κ), it
feeds the pair (Q, hkmeSSB) to the distinguisher, and answers according to
its response (without needing to use {tdmeSSB,j}Qj=Q′

j
).

It follows from Theorem 8 that our instantiation of Kilian’s protocol is 2κε

-
straight-line sound.

Theorem 10. The protocol given in Fig. 5 satisfies the following properties:

– Correctness: For any x ∈ L and ε > 0,

Pr[(PnsKilian,VnsKilian)(x) = 1] = 1.

– Soundness: Assuming that the meSSB hash family is 2κε

-hiding, the argu-
ment (P∗

nsKilian,V∗
nsKilian) for L is 2κε

-straight-line adaptively sound. In partic-
ular, for any poly(Ω(n))-size cheating prover P∗

nsKilian,

Pr[(P∗
nsKilian,VnsKilian)(1κ) = 1] = negl(Ω(n)).

Proof. Correctness is straightforward, and 2κε

-straight-line soundness follows
immediately from Theorem 8 and Lemma 2.
10 In our case, with overwhelming probability over β1, conditioned on the first three

messages being (β1, P∗(β1), T (β1)), the remaining protocol is sound with probability
1.
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Recall that the eSSB hash family from Theorem 6 is sub-exponentially
straight-line hiding assuming the sub-exponential hardness of LWE. Using this
particular eSSB hash family in the construction of the meSSB hash family given
in Fig. 3 and using that the resulting meSSB hash family is 2κε

-straight-line
reducible from the 2κε

-hiding of the underlying eSSB hash family, we obtain a
meSSB hash family that is 2κε

-straight-line reducible from the sub-exponential
hardness of LWE. Combining this with the adaptive computational non-signaling
PCPs given in Theorems 3 and 4, we obtain the following corollaries:

Corollary 2. For any poly(n) ≤ t ≤ exp(n), assuming the sub-exponential
hardness of LWE, there is ε > 0 such that Kilian’s protocol (PnsKilian,VnsKilian),
instantiated with the adaptive t-computational non-signaling PCP for LU (t) from
Theorem3 and the meSSB hash family from Fig. 5 with underlying eSSB hash
family given in Theorem6, is 2κε

-straight-line (adaptive) sound. In particular,
assuming the sub-exponential quantum hardness of LWE, this protocol is (adap-
tive) post-quantum secure against size-poly(t) quantum provers, except with prob-
ability negligible in t.

Furthermore, the prover runs in time poly(t), the verifier runs in time n ·
polylog(t), and the communication complexity is polylog(t).

Proof. It remains to analyze the complexity of the protocol. The complexity
claims follow from the following points:

– By Theorem 3, the size of the PCP proof is poly(t), so PnsKilian can compute
the hash and openings in time poly(t).

– The size of a single eSSB hash and opening is poly(κ) = polylog(t), and the
number of such eSSB hashes and openings is � = κ · polylog(t) = polylog(t),
for a total communication complexity of polylog(t).

– The verifier can check that all the answers and openings are consistent with
rt in time polylog(t). He also runs VnsPCP, which takes time n · poly(�) =
n · polylog(t), for a total verifier runtime of n · polylog(t).

Corollary 3. For any poly(n) ≤ t ≤ exp(n) and s = s(n) ≥ log t(n), assuming
the sub-exponential hardness of LWE, there is ε > 0 such that Kilian’s protocol
(PnsKilian,VnsKilian), instantiated with the adaptive 2s-computational non-signaling
PCP for NLU (t, s) from Theorem4 and the meSSB hash family from Fig. 5 with
underlying eSSB hash family given in Theorem6, is 2κε

-straight-line (adaptively)
sound. In particular, assuming the sub-exponential quantum hardness of LWE,
this protocol is (adaptive) post-quantum secure against size-poly(2s) (and thus
poly(t)) quantum provers, except with probability negligible in 2s.

Furthermore, the honest prover runs in time poly(t), the verifier runs in time
n · poly(s), and the communication complexity is poly(s).

Proof. We analyze the complexity claims.

– By Theorem 4, the size of the PCP proof is poly(t), so PnsKilian can compute
the hash and openings in time poly(t).
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– The size of a single eSSB hash and opening is poly(κ) = polylog(2s) =
poly(s), and the number of such eSSB hashes and openings is � = κ·poly(s) =
poly(s), for a total communication complexity of poly(s).

– The verifier can check that all the answers and openings are consistent with rt
in time poly(s). He also runs VnsPCP, which takes time n ·poly(�) = n ·poly(s),
for a total verifier runtime of n · poly(s).

6 SNARG for Languages with Non-Signaling PCPs

In this section, we construct SNARGs for languages with a (computational) non-
signaling PCP, assuming the existence of a SNARG for BatchNP. This includes
LU (t) for every poly(n) ≤ t ≤ exp(n), and NLU (t, s) for poly(n) ≤ t ≤ exp(n)
and s = s(n) ≥ log t(n).

We begin by defining BatchNP and SNARGs for BatchNP.

6.1 BatchNP

For an NP relation R with corresponding language L, define

R⊗N = {((x1, . . . , xN ), (w1, . . . , wN )) : (xi, wi) ∈ R ∀i ∈ [N ] ∧ |x1| = · · · = |xN |}

and
L⊗N = {(x1, . . . , xN ) : xi ∈ L ∀i ∈ [N ] ∧ |x1| = · · · = |xN |}.

The class BatchNP consists of languages L⊗N for L ∈ NP.

SNARGs for BatchNP. Our SNARG for L relies on the existence of a SNARG
for BatchNP, which we define below. We will be interested in the case where N
is much larger than m, the size of a single instance xi. We will consider two def-
initions. First, we consider a definition where the verifier is super-efficient (runs
in time poly(m, log N)). Note that the size of a BatchNP instance is already
N ·m, so in this case we will consider only BatchNP instances that have succinct
descriptions. Second, we will consider a definition where the verifier is efficient
(but not necessarily super-efficient), i.e. runs in time poly(m,N), but the com-
munication is succinct (size poly(m, log N)). In this setting, the verifier reads
the full instance.

To define SNARGs for BatchNP where the verifier is super-efficient, we first
have to define succinct descriptions.

Definition 13 (Succinct Description of a Tuple). A tuple S ∈ ({0, 1}m)N

of size N has a succinct description if there exists a short string 〈S〉 ∈
{0, 1}poly(m,log N) and a uniform PPT Turing machine B that on input 〈S〉 and
i ∈ [N ], outputs the i’th element of S.

For notation, we let B(〈S〉) denote the set S, i.e. B(〈S〉) = {B(〈S〉, i)}i∈[N ].
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We next define SNARGs for BatchNP, both where the verifier reads the full
BatchNP instance and where the instances have succinct descriptions.

Definition 14 (SNARG for BatchNP (with Succinct Instances)). A SNARG
for a language L⊗N ∈ BatchNP with corresponding relation R⊗N (where
the instance has a succinct description) is a tuple of PPT algorithms
(SetupL⊗N ,PL⊗N ,VL⊗N ) with the following syntax:

– SetupL⊗N (1λ, 1m, N) takes as input a security parameter λ and NP instance
size m in unary, as well as a batch size N (in binary), and outputs a common
reference string crs.

– PL⊗N (crs,X,W ) takes as input a crs ∈ {0, 1}poly(λ,m,log N), an instance X =
(x1, . . . , xN ) ∈ {0, 1}N×m, and a witness W = (w1, . . . , wN ), and outputs a
short proof σ ∈ {0, 1}�L⊗N , where �L⊗N = poly(λ,m, log N).

– VL⊗N (crs,X, σ) (resp. VL⊗N (crs, 〈X〉, σ)) takes as input the crs ∈
{0, 1}poly(λ,m,log N), X = (x1, . . . , xN ) ∈ {0, 1}N×m (resp. a short descrip-
tion 〈X〉 ∈ {0, 1}poly(λ,m,log N) of the instance X), and σ ∈ {0, 1}�L⊗N , and
outputs 1 or 0 indicating accept or reject.

These algorithms should satisfy the following completeness property:
If (X,W ) ∈ R⊗N , then

Pr

[
VL⊗N (crs, X, σ) = 1 (resp. VL⊗N (crs, 〈X〉, σ) = 1)

∣∣∣∣∣
crs ← SetupL⊗N (1λ, 1m, N)

σ ← PL⊗N (crs, X, W )

]
= 1.

Definition 15 (Σ-Soundness). A SNARG (SetupL⊗N ,PL⊗N ,VL⊗N ) for L⊗N ∈
BatchNP is said to be Σ-sound if for every cheating prover P∗

L⊗N running in time
poly(Σ(λ,m,N)), there exists a negligible function μ such that for any λ,m,N
and X /∈ L⊗N where each instance is of size m,

Pr

[
VL⊗N (crs, X, σ) = 1

(resp. VL⊗N (crs, 〈X〉, σ) = 1)

∣∣∣∣∣ crs ← SetupL⊗N (1λ, 1m, N)

σ ← P∗
L⊗N (crs)

]
= negl(Σ(λ, m, N)).

Theorem 11 ([CJJ21]). Assuming the sub-exponential hardness of LWE, there
is some ε > 0 for which there exist 2λε

-sound SNARGs for languages in BatchNP
with succinct instances.

6.2 SNARG for Languages with a Non-Signaling PCP

Suppose we have an adaptive Ω-computational non-signaling PCP
(Π,QnsPCP,VnsPCP) that is verifiable via tests (Definition 5) for a language L.
Let L be the size of the PCP and � be the locality. Let N be the number of
possible tests ζ (see Theorem 3), and let τ be the size of each test (where we pad
tests that are not long enough), so that each test ζ can be written as (ζ1, . . . , ζτ )
with ζi ∈ [L]. Let UnsPCP be the Turing machine that checks each test, as in
Definition 5.
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At a high level, our SNARG for L works as follows: The honest prover first
runs the BMW protocol on an adaptive computational non-signaling PCP with a
meSSB hash function to produce a short commitment rt to the entire PCP. She
then provides a short proof via the BatchNP SNARG that all possible verifier
tests have accepting answers and openings. This final task is precisely a BatchNP
statement: the claim that a given verifier test has accepting answers and openings
is an NP statement, with witness the answers and openings; now the claim that
all possible verifier tests have accepting answers and openings is a BatchNP
statement.

We define the BatchNP language we will be concerned with, as well as the
succinct description of the instances. Fix an meSSB hash family

(GenmeSSB,HashmeSSB,OpenmeSSB,VerifymeSSB, InvertmeSSB)

(see Construction 3).
Let R be the NP relation where (y, w) ∈ R if

1. y = (ζ, x, hkmeSSB, rt) ∈ [L]τ × {0, 1}n × {0, 1}�meSSB,hk × {0, 1}�meSSB,hash ;
2. w = ((u1, . . . , uτ ), (o1, . . . , oτ )) ∈ {0, 1}τ × {0, 1}τ ·�meSSB,o ;
3. UnsPCP(x, ζ, (u1, . . . , uτ )) = 1; and
4. VerifymeSSB(hkmeSSB, rt, ζi, ui, omeSSB,i) = 1 ∀i ∈ [τ ].

Let M be the corresponding language. Notice that the size of an instance is

m = τ · log L + n + �meSSB,hk + �meSSB,hash. (2)

We are interested in the BatchNP language M⊗N .
Let B be a poly-time Turing machine that takes as input 〈Y 〉, which is a

succinct description of an element in M⊗N , and an index j ∈ [N ], and outputs
the j’th NP statement defined by 〈Y 〉. More specifically, 〈Y 〉 = (x, hkmeSSB, rt),
and B(〈Y 〉, j) = (ζj , 〈Y 〉), where ζj is the j’th possible test (enumerating them
in some order). We let Y denote the M⊗N instance corresponding to 〈Y 〉.
SNARGs for L from SNARGs for BatchNP with Succinct Instances.
We first construct SNARGs for L from SNARGs for BatchNP, assuming that the
BatchNP SNARG verifier is super-efficient when the BatchNP instance admits a
succinct description. This is indeed the case: our BatchNP instance is determined
by the output of the hash on the PCP and thus can be described succinctly.

In what follows, let (SetupM⊗N ,PM⊗N ,VM⊗N ) be a SNARG for M⊗N with
succinct instances, as in Definition 14.

Theorem 12. The algorithms (SetupL,PL,VL) defined in Fig. 6 satisfy the fol-
lowing properties:

– Correctness: For every x ∈ L,

Pr

[

VL(crs, x, σ) = 1

∣
∣
∣
∣
∣

crs ← SetupL(1κ, 1λ)
σ ← PL(crs, x)

]

= 1.
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– Soundness: Assuming that
• the meSSB hash family is 2κε

-hiding,
• the PCP is adaptive n ≤ Ω = Ω(n)-computational non-signaling and is
verified via tests, and that there are N ≤ poly(Ω) possible tests,
• the BatchNP SNARG is Σ-sound, such that λ (defined in Fig. 6) is ≤ Ω,

then for any poly(Ω)-size P∗,

Pr

[

VL(crs, x, σ)) = 1 ∧ x �∈ L
∣
∣
∣
∣
∣

crs ← SetupL(1κ, 1λ)
x, σ ← PL(crs)

]

= negl(Ω).

Fig. 6. SNARG (SetupL, PL, VL)(x) for L

Proof. Correctness is straightforward. We now focus on proving soundness.
Suppose for the sake of contradiction that there is a poly(Ω)-size prover P∗

for which there is non-negligible δ such that

Pr

[

VL(crs, x, σ)) = 1 ∧ x �∈ L
∣
∣
∣
∣
∣

crs ← SetupL(1κ, 1λ)
x, σ ← P∗(crs)

]

= δ(Ω).
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This is equal to

δ(Ω) = Pr

[
VL(crs, x, σ)) = 1 ∧ x �∈ L

∧ VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 1

∣∣∣∣∣
crs ← SetupL(1κ, 1λ)

x, σ = (rt, σM⊗N ) ← P∗(crs)

]

+ Pr

[
VL(crs, x, σ)) = 1 ∧ x �∈ L

∧ VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 0

∣∣∣∣∣
crs ← SetupL(1κ, 1λ)

x, σ = (rt, σM⊗N ) ← P∗(crs)

]

≤ Pr

[
VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 1

∧ x �∈ L

∣∣∣∣∣
crs ← SetupL(1κ, 1λ)

x, σ = (rt, σM⊗N ) ← P∗(crs)

]

+ Pr

[
VL(crs, x, σ)) = 1 ∧ x �∈ L

∧ VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 0

∣∣∣∣∣
crs ← SetupL(1κ, 1λ)

x, σ = (rt, σM⊗N ) ← P∗(crs)

]
.

By Theorem 7 and the fact that a 2κε

= 2((log Ω)1/ε)ε

-hiding meSSB hash family
is Ω(n)-hiding, the first term above is negl(Ω). In the above and what follows, Q
denotes the � locations the meSSB hash family are binding on (used to generate
hkmeSSB), and tdmeSSB is the trapdoor generated alongside hkmeSSB.

Therefore, the above implies that there exists δ′(Ω) = δ(Ω) − negl(Ω) such
that

δ
′
(Ω) ≤ Pr

[
VL(crs, x, σ)) = 1 ∧ x 	∈ L

∧ VnsPCP(x, Q, InvertmeSSB(tdmeSSB, rt)) = 0

∣∣∣∣∣
crs ← SetupL(1

κ
, 1

λ
)

x, σ = (rt, σM⊗N ) ← P∗
(crs)

]

= Pr

[ VM⊗N (crsM⊗N , 〈Y 〉, σM⊗N )) = 1

∧ Y 	∈ M⊗N

∣∣∣∣∣
crs = (hkmeSSB, crsM⊗N ) ← SetupL(1

κ
, 1

λ
)

x, σ = (rt, σM⊗N ) ← P∗
(crs)

]
,

where 〈Y 〉 denotes (x, hkmeSSB, rt), and the equality follows from the facts
that VL simply runs VM⊗N , and that VnsPCP(x,Q, InvertmeSSB(tdmeSSB, rt)) = 0
implies that Y �∈ M⊗N , since there is at least one test ζ ⊆ Q for which
UnsPCP(ζ, InvertmeSSB(tdmeSSB, rt)

∣
∣
ζ
) = 0.

We will use P∗ to break the Σ-security of the M⊗N SNARG as follows.
By an averaging argument, there is some hk∗

meSSB for which P∗(crs) outputs
(x, rt, σM⊗N ) with x �∈ L, Y �∈ M⊗N , and VM⊗N (crsM⊗N 〈Y 〉, σM⊗N ) = 1 with
probability ≥ δ′(Ω) conditioned on crs = (hk∗

meSSB, crsM⊗N ) for some crsM⊗N .
Furthermore, there is some x∗ and rt∗ for which, with probability ≥ δ′(Ω)

2n+�meSSB,hash
,

this occurs and the x and rt output by P∗ are equal to x∗ and rt∗. In particular,
for Y ∗ defined by 〈Y ∗〉 = (x∗, hk∗

meSSB, rt∗), we have that Y ∗ �∈ M⊗N .

Pr

⎡

⎢
⎣

VM⊗N (crsM⊗N , 〈Y ∗〉, σM⊗N )) = 1
∧ (x, rt) = (x∗, rt∗)

∣
∣
∣
∣
∣
∣
∣

crsM⊗N ← SetupM⊗N (1λ, 1m, N)
crs := (hk∗

meSSB, crsM⊗N )
x, σ = (rt, σM⊗N ) ← P∗(crs)

⎤

⎥
⎦

≥ δ′(Ω)
2n+�meSSB,hash

≥ δ′′(Σ(λ,m,N)),

where δ′′ is a non-negligible function; such δ′′ exists since we assumed that

Σ(λ,m,N) ≥ 2�meSSB,hash ≥ 2poly(κ) = 2polylog(Ω) ≥ Ω ≥ n.
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We next construct a cheating prover P∗∗ for the M⊗N SNARG that breaks
the Σ-soundness condition w.r.t. Y ∗ �∈ M⊗N , as follows. The cheating prover
P∗∗ takes as input crsM⊗N ← SetupM⊗N (1κ, 1m, N), runs P∗ on inputs crs =
(hk∗

meSSB, crsM⊗N ), to get x and (rt, σM⊗N ). When the Merkle root rt that P∗

output is equal to rt∗ and x is equal to x∗, he outputs σM⊗N , which fools VM⊗N

with probability non-negligible in Σ(λ,m, n). Furthermore, P∗∗ runs in time
poly(Ω) ≥ poly(λ,m,N), since N ≤ poly(Ω) and λ ≤ Ω by assumption. This
contradicts the Σ-security of the M⊗N SNARG.

Piecing together the following ingredients:

– a 2κε

-hiding meSSB hash family, which exists for some ε > 0 assuming sub-
exponential LWE (by Theorems 6 and 1),

– the adaptive t- or 2s-computational non-signaling PCPs with N = poly(t)
tests for LU (t) and NLU (t, s) given in Theorems 3 and 4, respectively,

– the 2λε

-secure SNARG for M⊗N given in Theorem 4 which exists for some
ε > 0 assuming sub-exponential LWE, which means we may take λ =
(�meSSB,hash)1/ε (which equals polylog(t) and poly(s) in the case of LU (t) and
NLU (t, s)) to satisfy Σ(λ,m,N) = 2λε

= 2�meSSB,hash ,

and taking ε > 0 to be such that a 2κε

-hiding meSSB hash family and a 2λε

-
secure SNARG for M⊗N simultaneously exist assuming sub-exponential LWE,
we have the following corollaries:

Corollary 4. Let t = t(n) be such that poly(n) ≤ t(n) ≤ exp(n). Then, assum-
ing sub-exponential LWE, there is a non-interactive argument for LU (t) that
is adaptively sound except with probability negl(t) against poly(t)-size cheating
provers, where the honest prover runs in time poly(t), the verifier runs in time
poly(n, log t), and the communication complexity is poly(n, log t).

Proof. The SNARG for LU (t) is precisely that given in Fig. 6 with the adaptive
t-computational non-signaling PCP for LU (t) such that N = poly(t), which exists
by Theorem 3, and setting ε > 0 such that a 2κε

-hiding SSB hash family and a
2κε

-secure M⊗N SNARG exist assuming sub-exponential LWE. In this protocol,
note that the prover first hashes the PCP, which takes time poly(t) (Theorem 3),
and then emulates the prover from the M⊗N SNARG, which definitionally runs
in time poly(λ,m,N) = poly(t) (Definition 14). Note that m = τ · log L + n +
�meSSB,hk + �meSSB,hash = poly(n, κ, log L) = poly(n, log t). The proof string σ
thus satisfies |σ| = |rt| + |σM⊗N | = poly(κ) + poly(λ,m, log N) = poly(n, log t).
The verifier simply emulates VM⊗N , which runs in time poly(λ,m, log N) =
poly(n, log t).

Corollary 5. Let t = t(n) be such that poly(n) ≤ t(n) ≤ exp(n) and let
s = s(n) ≥ log t(n). Assuming sub-exponential LWE, there is a non-interactive
argument for NLU (t, s) that is adaptively sound except with probability negl(2s)
against poly(2s)-size cheating provers, where the honest prover runs in time
poly(t), the verifier runs in time poly(n, s), and the communication complexity
is poly(n, s).



Somewhere Statistical Soundness, Post-Quantum Security, and SNARGs 361

Proof. The SNARG for NTISP(t, s) is that given in Fig. 6, instantiated with an
adaptive 2s-computational non-signaling PCP for NTISP(t, s) with N = poly(t)
as given in Theorem 4, and ε > 0 such that a 2κε

-hiding SSB hash family
a 2κε

-secure M⊗N SNARG exist assuming sub-exponential LWE. We analyze
the runtimes. First, the prover runs in time poly(t), since the PCP generated
is of size poly(t), and the SNARG for M⊗N can also be generated in time
poly(t). Since m = τ · log L + n + �meSSB,hk + �meSSB,hash) = poly(n, κ, log L) =
poly(n, s, log t) = poly(n, s), the proof string σ satisfies |σ| = |rt| + |σM⊗N | =
poly(κ) + poly(λ,m, log N) = poly(n, s, log t) = poly(n, s). Finally, the veri-
fier emulates VM⊗N , which runs in time poly(λ,m, log N) = poly(n, s, log t) =
poly(n, s).

SNARGs for L from SNARGs for BatchNP with Low Depth Verifier.
In this section, we show that the assumption that the BatchNP SNARG verifier
is super-efficient and takes as input succinct descriptions of BatchNP instances
is not needed: in the case where the BatchNP SNARG verifier takes as input the
full instance Y and runs in time polynomial in N , we can simply delegate these
verifier checks back to the prover assuming that the checks are computable by a
low depth circuit.

For this delegation of the verifier checks, we will use the SNARG for bounded
depth computations constructed by [JKKZ21].

Theorem 13 ([JKKZ21]). (SNARG for Size-S, Depth-D Circuits) Assuming
the sub-exponential hardness of LWE, there is some ε > 0 such that for any
log-space uniform circuit C of size S and depth D, there are PPT algorithms
(SetupJKKZ,PJKKZ,VJKKZ) with syntax:

– SetupJKKZ(1η, S, 1D) takes as input a security parameter η in unary, the size
S of the circuit in binary, and the depth D of the circuit in unary. It outputs
a string crs.

– PJKKZ(crs, C, x) takes as input the crs, circuit C of size S and depth D,
and input x. She runs in time poly(η, S) and outputs a proof σ of size
D · poly(η, log S).

– VJKKZ(crs, 〈C〉, x, σ) takes as input the crs, a log S size description of the cir-
cuit C, the input x, and a short proof σ ∈ {0, 1}D·poly(η,log S). He runs in time
(D + |x|) · poly(η, log S) and outputs either 0 or 1 indicating reject or accept.

These algorithms satisfy the following properties:

– Correctness: For C, x such that C(x) = 1,

Pr

[

VJKKZ(crs, 〈C〉, x, σ) = 1

∣
∣
∣
∣
∣

crs ← Setup(1η, S, 1D)
σ ← PJKKZ(crs, C, x)

]

= 1.

– 2ηε

-Soundness: For C, x such that C(x) �= 1, for any poly(2ηε

)-size P∗, and
for η ≥ polylog(S),

Pr

[

VJKKZ(crs, 〈C〉, x, σ) = 1

∣
∣
∣
∣
∣

crs ← Setup(1η, S, 1D)
σ ← P∗(crs)

]

= negl(2ηε

).
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Fix a SNARG (SetupM⊗N ,PM⊗N ,VM⊗N ) for M⊗N as in Definition 14,
where VM⊗N takes as input the full instance X rather than just a description.
Suppose that the circuit VM⊗N has size S = poly(λ,m,N) and depth D. Let
V ′

M⊗N denote the algorithm that takes as input (crsM⊗N , 〈Y 〉, σM⊗N ), computes
Y = B(〈Y 〉), and then runs VM⊗N (crsM⊗N , Y, σM⊗N ). Denote by S(B) and
D(B) the size and depth respectively of a circuit computing B(·, ·), as defined in
Definition 13. Note that the circuit computing V ′

M⊗N has size S′ = S+N ·S(B) =
S + N · poly(m, log N) and depth D′ = D + D(B) = D + poly(m, log N). Let
(SetupJKKZ,PJKKZ,VJKKZ) be the SNARG for circuits of size S′ and depth D′

given in Theorem 13.
Our SNARG for L is described in Fig. 7.

Fig. 7. SNARG (SetupL, PL, VL)(x) for L

Theorem 14. The algorithms (SetupL,PL,VL) defined in Fig. 7 satisfy the fol-
lowing properties:

– Correctness: For every x ∈ L,

Pr

[

VL(crs, x, σ) = 1

∣
∣
∣
∣
∣

crs ← SetupL(1κ, 1λ)
σ ← PL(crs, x)

]

= 1.
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– Soundness: Assuming that:
• the meSSB hash family is 2κε

-hiding,
• the PCP is adaptive n ≤ Ω-computational non-signaling and verified
via tests, of which there are N ≤ poly(Ω),
• the M⊗N SNARG is Σ-sound, such that λ (defined in Fig. 7) is ≤ Ω,
• VM⊗N is a log-space uniform circuit of depth D,
• (SetupJKKZ,PJKKZ,VJKKZ) has 2ηε

-soundness,
then for any poly(Ω)-size P∗,

Pr

[

VL(crs, x, σ)) = 1 ∧ x �∈ L
∣
∣
∣
∣
∣

crs ← SetupL(1κ, 1λ)
x, σ ← PL(crs)

]

= negl(Ω).

For the sake of space, we omit the proof of Theorem 14.
Assuming sub-exponential LWE, there is some ε > 0 such that both the follow-

ing hold: a 2κε

-hiding meSSB hash family exists and (SetupJKKZ,PJKKZ,VJKKZ)
has 2ηε

-soundness. Assuming this, and assuming that there is a Σ-sound SNARG
for M⊗N such that the verifier is a log-space uniform circuit of depth D, and
using the adaptive computational non-signaling PCPs for LU (t) and NLU (t, s)
from Theorems 3 and 4, it follows that there exist SNARGs for LU (t) and
NLU (t, s) such that the prover runs in time poly(t), and the verifier runtime and
communication complexity are D · poly(n, λ, log t) and D · poly(n, λ, s) respec-
tively. For the sake of space, we omit the formal statements of these results as
well as the proof of Theorem 14.

Acknowledgements. We thank the anonymous TCC 2021 reviewers for their detailed
and insightful comments.

A Proof of Theorem7

Theorem 7 shows the adaptive soundness of the BMW heuristic when applied to
an adaptive computational non-signaling PCP and a meSSB hash family. The
proof is nearly identical to that in [KRR13,BHK17] using an (adaptive) com-
putational non-signaling PCP and a private information retrieval (PIR) scheme,
and is provided here for completeness.

We first define the notion of an adaptive computational non-signaling PCP.
For any ordered set11 U = (u1, . . . , u�) and J ⊆ [�], we let UJ = (uj)j∈J .

Definition 16 (Computational Non-Signaling Distributions). A family
of distributions {DQ}Q⊂[L],|Q|=� is Ω-computational non-signaling with locality
� if, for any q1, . . . , q� ∈ [L] and q′

1, . . . , q
′
� ∈ [L], letting J = {j ∈ [�] : qj = q′

j},
the following two distributions are Ω-indistinguishable (see Definition 1).

11 The works of [KRR13,BHK17] consider unordered sets. The analysis is nearly iden-
tical, however.
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– DJ where D = (d1, . . . , d�) ← D(q1,...,q�),
– D′

J where D′ = (d′
1, . . . , d

′
�) ← D(q′

1,...,q′
�)

Definition 17 (Adaptive Computational Non-signaling PCP). An adap-
tive Ω-computational non-signaling PCP with locality � is a PCP (Π,QPCP,VPCP)
where soundness holds against adaptive cheating provers mounting an Ω-non-
signaling attack with locality �. That is, for every Ω-computational non-signaling
distribution {AS}S⊂[L],|S|≤� with locality �,

Pr [VPCP(Q,x,A) = 1 ∧ x /∈ L] ≤ 2−κ,

where the probability is over (q1, . . . , q�) ← QPCP(1κ) and (x,A) =
(x, a1, . . . , a�) ← AQ, where Q = (0, q1, . . . , q�).12

Let (GenmeSSB,HashmeSSB,OpenmeSSB,VerifymeSSB,OpenmeSSB) be a meSSB
hash family. We restate Theorem 7 below.

Fig. 8. BMW heuristic with a meSSB hash function

Theorem 15 (Theorem 7, restated). Let (Π,QnsPCP,VnsPCP) be a PCP for
a language L with adaptive Ω(n)-computational non-signaling soundness and
locality �. Assume that the meSSB hash family is Ω′-hiding, where Ω′ = Ω′(κ)
is such that Ω′(κ) = Ω(n) and 2−κ = negl(Ω′). Then, for any poly(Ω′(κ))-size
cheating prover P∗ there is a negligible function μ such that

Pr [VBMW(x, rt, tdmeSSB, (q1, . . . , q�)) = 1 ∧ x /∈ L] ≤ μ(Ω′),

where (x, rt) = P∗(hkmeSSB) and where the probability is over (q1, . . . , q�) ←
QPCP(1κ) and (hkmeSSB, tdmeSSB) ← GenmeSSB(1κ, L, �, (q1, . . . , q�)). Furthermore,
the scheme is Ω′-straight-line sound.

12 We add the dummy 0 query because x is chosen adaptively depending on the PCP
queries, and we think of it as the answer corresponding to this dummy query.
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Proof. Suppose otherwise, that there is a poly(Ω′(κ))-size cheating prover P∗

and a non-negligible function δ such that

Pr [VBMW(x, rt, tdmeSSB, (q1, . . . , q�)) = 1 ∧ x /∈ L] ≥ δ(Ω′),

where (x, rt) = P∗(hkmeSSB) and where the probability is over (q1, . . . , q�) ←
QPCP(1κ) and (hkmeSSB, tdmeSSB) ← GenmeSSB(1κ, L, �, (q1, . . . , q�)).

We will use P∗ to construct an adaptive Ω-computational non-signaling strat-
egy {AQ}Q⊂[L],|Q|≤� such that

Pr [VPCP(Q,x,A) = 1 ∧ x /∈ L] ≥ δ(Ω′), (3)

where the probability is over (q1, . . . , q�) ← QPCP(1κ) and (x,A) =
(x, a1, . . . , a�) ← AQ, where Q = (0, q1, . . . , q�). This would contradict the Ω-
computational non-signaling soundness of the PCP.

Fix any q1, . . . , q� ∈ [L] and let Q = (0, q1, . . . , q�). The distribution AQ is
defined as follows:

1. Sample (hkmeSSB, tdmeSSB) ← GenmeSSB(1κ, L, �, (q1, . . . , q�)).
2. Compute (x, rt) = P∗(hkmeSSB).
3. Compute A = (a1, . . . , a�) = InvertmeSSB([�], tdmeSSB, rt).
4. Output (x,A).

Our contradiction assumption immediately implies that Eq. (3) holds. Thus
it remains to argue that {AQ} is a collection of Ω-computationally non-signaling
distributions.

Fix any q1, . . . , q� ∈ [L] and q′
1, . . . , q

′
� ∈ [L], and let J = {j ∈ [�] : qj = q′

j}.
Let

Q = (0, q1, . . . , q�) and Q′ = (0, q′
1, . . . , q

′
�),

let
(x, a1, . . . , a�) ← AQ and (x′, a′

1, . . . , a
′
�) ← AQ′ ,

and let
AJ = (aj)j∈J and A′

J = (a′
j)j∈J .

We need to prove that the distributions (x,AJ ) and (x′, A′
J ) are Ω-

indistinguishable.
Suppose otherwise, that there exists q1, . . . , q� ∈ [L], q′

1, . . . , q
′
� ∈ [L] such

that the corresponding distributions (x,AJ ) and (x′, A′
J ) (as defined above) are

not Ω-indistinguishable. Namely, there exists a poly(Ω)-size distinguisher D and
a non-negligible function ε such that

|Pr[D(x,AJ ) = 1] − Pr[D(x′, A′
J ) = 1]| ≥ ε(Ω).

We will use this to break the Ω′-index hiding of the meSSB hash. An adversary
for the Ω′-hiding of the meSSB hash picks the two sets of indices i0 = (q1, . . . , q�)
and i1 = (q′

1, . . . , q
′
�). Then, given hkmeSSB generated by (hkmeSSB, tdmeSSB) ←

GenmeSSB(1κ, L, �, i(b)) and trapdoor information tdmeSSB|J , does the following:
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1. Compute (x, rt) = P∗(hkmeSSB).
2. Compute A′′

J = InvertmeSSB(J, tdmeSSB|J , rt).
3. Output D(x,A′′

J ).

Note that the distinguishing advantage of this adversary is the same as the
distinguishing advantage of the D, which is ε(Ω). This contradicts the Ω-hiding
of the meSSB hash family.
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