
Kobbi Nissim
Brent Waters (Eds.)

LN
CS

 1
30

44

19th International Conference, TCC 2021
Raleigh, NC, USA, November 8–11, 2021
Proceedings, Part III

Theory
of Cryptography

Lecture Notes in Computer Science 13044

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this subseries at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Kobbi Nissim • Brent Waters (Eds.)

Theory
of Cryptography
19th International Conference, TCC 2021
Raleigh, NC, USA, November 8–11, 2021
Proceedings, Part III

123

Editors
Kobbi Nissim
Georgetown University
Washington, WA, USA

Brent Waters
The University of Texas at Austin
Austin, TX, USA

NTT Research
Sunnyvale, CA, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-90455-5 ISBN 978-3-030-90456-2 (eBook)
https://doi.org/10.1007/978-3-030-90456-2

LNCS Sublibrary: SL4 – Security and Cryptology

© International Association for Cryptologic Research 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-90456-2

Preface

The 19th Theory of Cryptography Conference (TCC 2021) was held during November
8–11, 2021 at North Carolina State University in Raleigh, USA. It was sponsored by
the International Association for Cryptologic Research (IACR). The general chair
of the conference was Alessandra Scafuro.

The conference received 161 submissions, of which the Program Committee
(PC) selected 66 for presentation giving an acceptance rate of 41%. Each submission
was reviewed by at least four PC members. The 43 PC members (including PC chairs),
all top researchers in our field, were helped by 197 external reviewers, who were
consulted when appropriate. These proceedings consist of the revised version of the 66
accepted papers. The revisions were not reviewed, and the authors bear full respon-
sibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web Submission and Review
software, and are extremely grateful to him for writing it, and for providing fast and
reliable technical support whenever we had any questions.

This was the seventh year that TCC presented the Test of Time Award to an
outstanding paper that was published at TCC at least eight years ago, making a sig-
nificant contribution to the theory of cryptography, preferably with influence also in
other areas of cryptography, theory, and beyond. This year the Test of Time Award
Committee selected the following paper, published at TCC 2005: “Keyword Search
and Oblivious Pseudorandom Functions” by Michael Freedman, Yuval Ishai, Benny
Pinkas, and Omer Reingold. The award committee recognized this paper for “intro-
ducing and formalizing the notion of Oblivious Pseudorandom Functions, and iden-
tifying connections to other primitives such as keyword search, inspiring a vast amount
of theoretical and practical work”.

We are greatly indebted to many people who were involved in making TCC 2021 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro, Kevin McCurley, Kay McKelly, and the TCC
Steering Committee.

October 2021 Kobbi Nissim
Brent Waters

Organization

General Chair

Alessandra Scafuro North Carolina State University, USA

Program Chairs

Kobbi Nissim Georgetown University, USA
Brent Waters NTT Research and University of Texas at Austin, USA

Program Committee

Masayuki Abe NTT, Japan
Ittai Abraham VMware, Israel
Benny Applebaum Tel Aviv University, Israel
Gilad Asharov Bar-Ilan University, Israel
Amos Beimel Ben-Gurion University, Israel
Andrej Bogdanov Chinese University of Hong Kong, Hong Kong
Elette Boyle IDC Herzliya, Israel
Chris Brzuska Aalto University, Finland
Mark Bun Boston University, USA
Yilei Chen Tsinghua University, China
Itai Dinur Ben-Gurion University, Israel
Pooya Farshim University of York, UK
Sanjam Garg NTT Research and UC Berkeley, USA
Rishab Goyal MIT, USA
Siyao Guo NYU Shanghai, China
Iftach Haitner Tel Aviv University, Israel
Mohammad Hajiabadi University of Waterloo, Canada
Carmit Hazay Bar-Ilan University, Israel
Yuval Ishai Technion, Israel
Abhishek Jain Johns Hopkins University, USA
Stacey Jeffery CWI, The Netherlands
Lisa Kohl CWI, The Netherlands
Ilan Komargodski NTT Research and Hebrew University, Israel
Benoit Libert CNRS and ENS de Lyon, France
Huijia Lin University of Washington, USA
Alex Lombardi MIT, USA
Vadim Lyubashevsky IBM Research - Zurich, Switzerland
Jesper Buus Nielsen Aarhus University, Denmark
Ryo Nishimaki NTT, USA
Omkant Pandey Stony Brook University, USA

Omer Paneth Tel Aviv University, Israel
Manoj Prabhakaran ITT Bombay, India
Leo Reyzin Boston University, USA
Alon Rosen Bocconi University, Italy, and IDC Herzliya, Israel
Guy Rothblum Weizmann Institute of Science, Israel
Christian Schaffner QuSoft and University of Amsterdam, The Netherlands
Peter Scholl Aarhus University, Denmark
Gil Segev Hebrew University, Israel
Justin Thaler Georgetown University, USA
Muthu Venkitasubramaniam Georgetown University, USA
Mark Zhandry NTT Research and Princeton University, USA

External Reviewers

Christian Badertscher
Mingyuan Wang
Damiano Abram
Anasuya Acharya
Shweta Agrawal
Adi Akavia
Gorjan Alagic
Bar Alon
Pedro Alves
Miguel Ambrona
Prabhanjan Ananth
Ananya Appan
Anirudh C.
Gal Arnon
Thomas Attema
Benedikt Bünz
Laasya Bangalore
James Bartusek
Balthazar Bauer
Sina Shiehian
Ward Beullens
Rishabh Bhadauria
Kaartik Bhushan
Nir Bitansky
Olivier Blazy
Alex Block
Estuardo Alpirez Bock
Jonathan Bootle
Lennart Braun
Konstantinos Brazitikos
Ignacio Cascudo

Leo De Castro
Suvradip Chakraborty
Sun Chao
Nai-Hui Chia
Arka Rai Choudhuri
Ashish Choudhury
Hao Chung
Kai-Min Chung
Michele Ciampi
Geoffroy Couteau
Jan Czajkowski
Amit Deo
Jelle Don
Xiaoqi Duan
Leo Ducas
Yfke Dulek
Christoph Egger
Jaiden Keith Fairoze
Islam Faisal
Luca de Feo
Cody Freitag
Georg Fuchsbauer
Chaya Ganesh
Juan Garay
Rachit Garg
Romain Gay
Nicholas Genise
Ashrujit Ghoshal
Niv Gilboa
Aarushi Goel
Junqing Gong

Jiaxin Guan
Divya Gupta
Shai Halevi
Mathias Hall-Andersen
Hamidreza Khoshakhlagh
Patrick Harasser
Dominik Hartmann
Brett Hemenway
Justin Holmgren
Thibaut Horel
Pavel Hubacek
Aayush Jain
Dingding Jia
Zhengzhong Jin
Eliran Kachlon
Gabriel Kaptchuk
Pihla Karanko
Akinori Kawachi
Jiseung Kim
Fuyuki Kitagawa
Susumu Kiyoshima
Anders Konrig
Venkata Koppula
Ben Kuykendall
Changmin Lee
Baiyu Li
Xiao Liang
Wei-Kai Lin
Jiahui Liu
Qipeng Liu
Tianren Liu

viii Organization

Sébastien Lord
Julian Loss
George Lu
Ji Luo
Fermi Ma
Bernardo Magri
Mohammad Mahmoody
Sven Maier
Monosij Maitra
Christian Majenz
Nikolaos Makriyannis
Giulio Malavolta
Noam Mazor
Audra McMillan
Jeremias Mechler
Pierre Meyer
Peihan Miao
Brice Minaud
Pratyush Mishra
Tarik Moataz
Tamer Mour
Varun Narayanan
Ngoc Khanh Nguyen
Oded Nir
Ariel Nof
Adam O’Neill
Sabine Oechsner
Eran Omri
Jiaxing Pan
Anat Paskin-Cherniavsky
Alain Passelègue
Naty Peter
Thomas Peters
Rolando La Placa
Bertram Poettering
Antigoni Polychroniadou

Alexander Poremba
Kirthivaasan Puniamurthy
Willy Quach
Yuan Quan
Rajeev Raghunath
Divya Ravi
João Ribeiro
Peter Rindal
Felix Rohrbach
Lior Rotem
Ron Rothblum
Mike Rosulek
Rahul B. S.
Benjamin Schlosser
André Schrottenloher
Gili Schul-Ganz
Nikolaj Schwartzbach
Sruthi Sekar
Srinath Setty
Sina Shiehian
Manasi Shingane
Omri Shmueli
Jad Silbak
Mark Simkin
Jaspal Singh
Luisa Siniscalchi
Adam Smith
Pratik Soni
Jana Sotáková
Akshayaram Srinivasan
Noah

Stephens-Davidowitz
Gilad Stern
Patrick Struck
Hyung Tae
Mehrdad Tahmasbi

Atsushi Takayasu
Aishwarya

Thiruvengadam
Søren Eller Thomsen
Pratyush Ranjan Tiwari
Alin Tomescu
Junichi Tomida
Ni Trieu
Eliad Tsfadia
Rohit Chatterjee
Xiao Liang
Neekon Vafa
Mayank Varia
Prashant Vasudevan
Satyanarayana Vusirikala
Alexandre Wallet
Mingyuan Wang
Mor Weiss
Douglas Wickstorm
David Wu
Keita Xagawa
Zhuolun Xiang
Shota Yamada
Takashi Yamakawa
Avishay Yanai
Kevin Yeo
Wang Yuyu
Shang Zehua
Chen-Da Liu Zhang
Cong Zhang
Jiapeng Zhang
Yiding Zhang
Yinuo Zhang
Yupeng Zhang
Giorgos Zirdelis
Sebastian Zur

Organization ix

Contents – Part III

Covert Learning: How to Learn with an Untrusted Intermediary 1
Ran Canetti and Ari Karchmer

Random-Index PIR and Applications . 32
Craig Gentry, Shai Halevi, Bernardo Magri, Jesper Buus Nielsen,
and Sophia Yakoubov

Forward Secret Encrypted RAM: Lower Bounds and Applications 62
Alexander Bienstock, Yevgeniy Dodis, and Kevin Yeo

Laconic Private Set Intersection and Applications . 94
Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg,
Mohammad Hajiabadi, and Sihang Pu

Amortizing Rate-1 OT and Applications to PIR and PSI 126
Melissa Chase, Sanjam Garg, Mohammad Hajiabadi, Jialin Li,
and Peihan Miao

Ring-Based Identity Based Encryption – Asymptotically Shorter MPK
and Tighter Security . 157

Parhat Abla, Feng-Hao Liu, Han Wang, and Zhedong Wang

Cryptographic Shallots: A Formal Treatment of Repliable
Onion Encryption . 188

Megumi Ando and Anna Lysyanskaya

Grafting Key Trees: Efficient Key Management for Overlapping Groups 222
Joël Alwen, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval,
Karen Klein, Guillermo Pascual-Perez, Krzysztof Pietrzak,
and Michael Walter

Updatable Public Key Encryption in the Standard Model 254
Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs

Towards Tight Adaptive Security of Non-interactive Key Exchange 286
Julia Hesse, Dennis Hofheinz, Lisa Kohl, and Roman Langrehr

On the Impossibility of Purely Algebraic Signatures 317
Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz,
Sven Schäge, and Bogdan Ursu

Policy-Compliant Signatures . 350
Christian Badertscher, Christian Matt, and Hendrik Waldner

Simple and Efficient Batch Verification Techniques for Verifiable
Delay Functions . 382

Lior Rotem

Non-malleable Vector Commitments via Local Equivocability 415
Lior Rotem and Gil Segev

Non-malleable Time-Lock Puzzles and Applications 447
Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin

Vector and Functional Commitments from Lattices 480
Chris Peikert, Zachary Pepin, and Chad Sharp

Author Index . 513

xii Contents – Part III

Covert Learning: How to Learn
with an Untrusted Intermediary

Ran Canetti and Ari Karchmer(B)

Boston University, Boston, MA 02215, USA
{canetti,arika}@bu.edu

Abstract. We consider the task of learning a function via oracle queries,
where the queries and responses are monitored (and perhaps also modi-
fied) by an untrusted intermediary. Our goal is twofold: First, we would
like to prevent the intermediary from gaining any information about
either the function or the learner’s intentions (e.g. the particular hypoth-
esis class the learner is considering). Second, we would like to curb the
intermediary’s ability to meaningfully interfere with the learning process,
even when it can modify the oracles’ responses.

Inspired by the works of Ishai et al. (Crypto 2019) and Goldwasser
et al. (ITCS 2021), we formalize two new learning models, called Covert
Learning and Covert Verifiable Learning, that capture these goals. Then,
assuming hardness of the Learning Parity with Noise (LPN) problem, we
show:

– Covert Learning algorithms in the agnostic setting for parity func-
tions and decision trees, where a polynomial time eavesdropping
adversary that observes all queries and responses learns nothing
about either the function, or the learned hypothesis.

– Covert Verifiable Learning algorithms that provide similar learning
and privacy guarantees, even in the presence of a polynomial-time
adversarial intermediary that can modify all oracle responses. Here
the learner is granted additional random examples and is allowed to
abort whenever the oracles responses are modified.

Aside theoretical interest, our study is motivated by applications to the
secure outsourcing of automated scientific discovery in drug design and
molecular biology. It also uncovers limitations of current techniques for
defending against model extraction attacks.

1 Introduction

A Motivating Scenario. Imagine a biologist, Alice, who wishes to learn a model—
within some class of hypothesized models—for the relationship between the
structure of a molecule and its “activity” (e.g. whether or not the molecule
binds to a certain protein). Alice plans to conduct a variety of lab experiments
in order to learn her model.

Supported by the DARPA SIEVE program, Agreement Nos. HR00112020020 and
HR00112020021. A full version of this work appears in [CK21].

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 1–31, 2021.
https://doi.org/10.1007/978-3-030-90456-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_1

2 R. Canetti and A. Karchmer

However, in Alice’s lab all experiments are public: they are observable by any-
one. Can Alice design experiments so that only she will learn her model? Fur-
thermore, can Alice design the experiments so that they will not leak her initial
hypotheses on the possible models, which encode Alice’s innovative, secret list of
molecule features that are likely to influence activity? In fact, can Alice design the
experiments so that no one else but her learns anything at all fromher experiments?

To complicate things further, suppose that after starting the experiments,
Alice is notified that she has been exposed to COVID-19 and has to quarantine
at home; she has no choice but to delegate the recording of the results from
her experiments to an untrusted colleague, Bob. Thus, in addition to concealing
her learned model, hypothesized class of models, and any information about
the molecular relationship, Alice needs a way to verify the results reported by
Bob. In summary, Alice needs a learning algorithm that will carry the following
(informal) guarantees:

– Learning : If Bob reports the results correctly, then Alice is guaranteed to
acquire some satisfactory model for the studied molecular relationship.

– Verifiability : Even if Bob behaves maliciously, Alice is guaranteed to acquire
a satisfactory model, as long as she does not decide to reject Bob’s report.

– Hypothesis-hiding : Bob does not learn anything about the model Alice has
learned or about Alice’s hypothesized class of models.

– Concept-hiding : Bob learns nothing about the molecular relationship.

The learning requirement mimics classic learning-theoretic formalisms. In
particular, it naturally corresponds to agnostic learning with membership
queries: the molecular relationship corresponds to a concept, Alice’s experiments
correspond to queries to the concept at arbitrary points, and Alice’s task of find-
ing a model within a class of models corresponds to learning a hypothesis out of
a given hypothesis class (e.g. polynomial size decision trees).

Put in these terms, our work is focused on the following questions: Can we
devise agnostic learning algorithms in the membership query model that satisfy
the above verifiability and hiding guarantees? If so, then for which hypothesis
classes, and under what computational assumptions? In fact, how should we
even define these (so far informal) goals?

Before proceeding to present our contributions, we note that this work has
been inspired by the works of Ishai et al. [IKOS19] and Goldwasser et al.
[GRSY20] that consider related models. We elaborate on these works in Sect. 1.3
and in the full version [CK21] of this paper.

1.1 Our Contributions

We define and construct learning algorithms that satisfy the above requirements.
We first present our definitions, then state our results, and finally overview our
techniques.

New Learning Models: Covert and Verifiable Learning. We propose two
new learning models: the basic Covert Learning model, which considers a passive
adversary only, and the Covert Verifiable Learning model, which considers an
intermediary who may observe queries and even modify responses.

Covert Learning: How to Learn with an Untrusted Intermediary 3

The Covert Learning Model. Our model is grounded in the learning with mem-
bership queries setting, where a learner is allowed to directly query the concept,
with an added twist: every query and response obtained by the learner is also
obtained by a computationally bounded adversary. The high level goal is for
the learner to construct queries that are useful to herself, but are completely
unintelligible to any adversary.

Fig. 1. A Covert Learning scenario. The learner interacts with the concept by making
queries to an oracle that implements access to the concept at arbitrary points. Mean-
while, an adversary attempts to deduce information about the learner’s hypothesis or
about the concept itself, given a view: the set of queries and responses obtained by the
learner.

One may be tempted to formulate this property by requiring that the adver-
sary gains nothing from the interaction between the learner and the concept.
However, this would be too much to demand, since the adversary does (at the
very least) learn the responses to the learner’s queries. We thus somewhat relax
the hiding property to say that the adversary learns nothing except for some
number of random examples from the concept. In other words, the view of the
adversary can be simulated in probabilistic polynomial time (p.p.t.), given only
random examples from the concept. This in particular means that the notion of
Covert Learning is meaningful only when the learning task at hand is computa-
tionally hard in the traditional PAC learning model, where a concept must be
learned from random examples only.

A bit more formally, Let X be a set, and consider a distribution D over
X ×{0, 1}. We will call a sample (x, y) ∼ D an example, where x is an input and y
is a label, and call D a concept1. Let H denote a hypothesis class, which is a subset
of functions h : X → {0, 1}. A learning algorithm under the Covert Learning
model is tasked with finding an hypothesis h ∈ H that best approximates the
concept D on unobserved examples (x, y) ∼ D. This notion is captured by a loss
1 Alternatively, one may think of a concept as a tuple consisting of a distribution DX

over the input domain X and a target function f : X → {0, 1} which labels inputs.
However, the notion described above (and used in the rest of this paper) is more
general, as a joint distribution allows concepts which are probabilistic.

4 R. Canetti and A. Karchmer

function (with respect to a concept). For example: LD(h) = Pr(x,y)∼D[h(x) �= y].
The learning goal of the Covert Learning model is then the requirement that the
learner outputs h ∈ H such that LD(h) ≤ LD(H) + ε = infh∈H LD(h) + ε with
high probability, and we will call such an h ε-good. In order to achieve this goal,
the learner is given access to a (possibly probabilistic) oracle that labels a queried
input xj ∈ X with a corresponding yj . The novelty of the Covert Learning
model is the guarantee that—in addition to the learning goal—no information
about the hypothesis class or the concept is leaked to a passive adversary, except
some random examples from the concept. This guarantee holds even when the
adversary has access to extraneous information on the concept.

Definition 1. Covert Learning (informal version of Definition 9). A covert
learning algorithm—for a collection of hypothesis classes and with respect to a
class of concepts and a loss function—is an algorithm that, for any concept in
the class and accuracy parameters ε, δ, takes as input a target hypothesis class
in the collection, and interacts with an oracle that labels queries to the concept
such that the following are true:

– Completeness. The learning algorithm outputs an ε-good hypothesis for the
concept with probability 1 − δ.

– Privacy. There exists a p.p.t. simulation algorithm that, given access to addi-
tional random examples from the concept, generates a distribution of queries
and responses which is computationally indistinguishable from that of the real
interaction. The simulation algorithm should function without further access
to the oracle, or knowledge of the target hypothesis class within the collection.

On Hypothesis-Hiding. In addition to hiding the learned concept, the above def-
inition also requires that a covert learning algorithm hides the initial hypothesis
class. Let us motivate this requirement. Indeed, when operating in a setting
where the concept is included in a fixed class and can be learned fully, there
is little motivation for hypothesis-hiding. However, in the more realistic setting
of agnostic learning—where no assumptions are made about the concept—one
resorts to learning the best approximation to the concept that is contained in
some chosen hypothesis class. Clearly, the choice of hypothesis class is crucial
in determining the value of the resulting approximation. Therefore, the chosen
hypothesis class reflects the learner’s prior beliefs about the concept, and is itself
valuable information in need of protection. Indeed, the main motivation of toler-
ance testing2 is to decide if a class of hypotheses contains a good approximator
to an unknown concept. Concretely, the learner could be motivated to hide the
results of a tolerant testing procedure that were received as advice. Alterna-
tively, relating back to the motivating scenario, the specific domain knowledge
that Alice has might influence her choices of experiments, which could in turn

2 In tolerance testing [PRR06], a generalization of property testing, the goal is distin-
guish the case where a function is “close” to a class of functions, or “far.” A further
generalization is the problem of estimating the distance of a function to a certain
class of functions.

Covert Learning: How to Learn with an Untrusted Intermediary 5

reveal information about her sensitive domain knowledge. Alice may be moti-
vated to conceal her sensitive domain knowledge.

As a matter of fact, digging deeper into real world applications of learning
with membership queries reveals further motivation for hypothesis-hiding, even
when the concept is known to be from a fixed class (and therefore may be learned
fully). In some specific practical applications (see Sect. 1.2 for more details),
arbitrarily synthesized membership queries are difficult or expensive (in some
measure) to obtain. For example, conducting a biological assay using an unstable
compound. As is the case, and despite the fact that a concept may be known to
be contained in a fixed class, the learner might voluntarily submit itself to an
agnostic learning setting (i.e., settle for a hypothesis from a less expressive, easier
to learn class, that does not contain the full set of potential concepts). Doing
so is motivated by either the desire to reduce the total number of membership
queries needed, or avoid making contrived or artificial queries (e.g. the inclusion
of a highly unstable chemical in the biological assay).

The Covert Verifiable Learning (CVL) Model. The Covert Verifiable Learn-
ing model considers the case where, in addition to observing all queries and
responses, the adversary (henceforth, the adversarial intermediary) also actively
modifies the oracle’s responses. Still, we require the learner to either detect the
modifications and abort, or else come up with a good approximation of the actual
concept represented by the oracle (which may in and of itself be an arbitrary
function).

To make this requirement meaningful—namely, to allow the learner to mean-
ingfully distinguish between responses that were modified by the adversarial
intermediary and those that were not—we give the learner access to some num-
ber of ground truth random examples from the concept (see Fig. 2). We con-
sider three variants of the CVL model, depending when the adversarial inter-
mediary learns these additional random examples: In the weakest variant, the
ground truth examples remain completely hidden throughout. In the interme-
diate model, we consider the case where the examples become known once the
learning process completes. Finally, we consider our strongest variant, where
these examples are publicly known in advance.

In more detail, the Covert Verifiable Learning model requires that, like Covert
Learning, the output of the learner is a hypothesis h ∈ H that such that (with
respect to the concept D) LD(h) ≤ LD(H) + ε with high probability, but only
when the adversarial intermediary simply observes and does not tamper with ora-
cle responses. The Covert Verifiable Learning model then augments the Covert
Learning model by requiring that, for any adversarial intermediary that tam-
pers with the oracle, the output of the learner is an h ∈ H that such that
LD(h) > LD(H) + ε with low probability, assuming that the learner did not
reject the interaction all together.

6 R. Canetti and A. Karchmer

Fig. 2. The “intermediate model” Covert Verifiable Learning scenario. A learner, given
a set of random examples of a concept, accesses supplementary data using an oracle in
the presence of an adversarial intermediary. While attempting to deduce information
about the concept or the learner’s hypothesis, the adversarial intermediary may tamper
with the oracle responses (both to help steal information and to simply deceive the
learner). The learner aims to output a hypothesis that models the concept.

The concept-hiding and hypothesis-hiding guarantees should still hold—
albeit with an adversarial intermediary. To capture this stronger requirement,
we adapt the simulation-based privacy of Covert Learning to embrace the active
nature of the adversarial intermediary. Basically, we require that for any adver-
sarial intermediary, there is a simulator that can interact with the adversarial
intermediary such that no computationally bounded adversary be able to tell
whether the adversarial intermediary is interacting with the actual learner or
with the simulator. As in Covert Learning, the simulator will access random
examples from the concept, but operate with no further knowledge about the
concept and no knowledge of the learner’s hypothesis class. Depending on the
variant we consider, the adversary may have access to the learner’s random
examples (recall that in the intermediate setting, they leak subsequent the inter-
action).

Definition 2. Covert Verifiable Learning (informal version of Defini-
tion 25) A covert verifiable learning algorithm—for a collection of hypothesis
classes and with respect to a class of concepts and a loss function—is a learning
algorithm that, for any concept in the class and accuracy parameters ε, δ, takes
as input a target hypothesis class in the collection, a set of random examples
from the concept, and interacts with an oracle that labels queries on the concept
such that the following are true:

– Completeness. If the adversarial intermediary acts honestly (i.e. no ora-
cle responses are corrupted), then the learning algorithm outputs an ε-good
hypothesis for the concept with probability 1 − δ.

– Soundness. For any computationally bounded adversarial intermediary who
tampers with oracle responses, if the learning algorithm does not reject then
it outputs a hypothesis which is not ε-good with probability at most δ.

– Privacy (intermediate model). For any adversarial intermediary, there
exists a simulator such the following two random variables are indistinguish-
able to an external adversarial entity which chooses the concept, the target
hypothesis class, and accuracy parameters:

Covert Learning: How to Learn with an Untrusted Intermediary 7

Real execution: The output of the intermediary from a real interaction
with the learning algorithm and the oracle, along with the set of random
examples that the learner received in this interaction (the intermediary
does not see the random examples).

Ideal execution: The output of the simulator, along with the set of random
examples that the learning algorithm received in the interaction. The sim-
ulator is given access to the set of random examples that were known to
the learning algorithm, plus an additional set of random examples. How-
ever, the simulator can neither have further access to the concept nor have
knowledge of the target hypothesis class.

If the output of the real execution does not include the random examples given
to the learning algorithm, then we say that the algorithm is a covert verifiable
learning algorithm with fully private examples.
If the random examples given to the learning algorithm are also given to the
intermediary, then we say that the protocol is a public covert verifiable learning
algorithm.

For simplicity, we don’t give the intermediary the ability to modify the queries.
Indeed, an intermediary that is able to modify the learner’s queries is arguably
able to learn the function to begin with.

Overview of Results. As discussed, meaningful covert learning algorithms
can exist only for learning problems where learning from random examples is
hard, whereas learning with membership queries is feasible. However, it is not
a priori clear that meaningful covert learning algorithms exist at all. In fact, to
the best of our knowledge, for all known learning algorithms in the membership
query model, an external observer can learn the function by just observing the
queries and responses. This holds even when no efficient learning algorithms are
known in the traditional PAC model (for instance, consider the algorithm of
Kushilevitz and Mansour for decision trees [KM93], which is thought to be hard
in the traditional PAC model [Blu03,OS07]).

This works constructs polynomial time, covert learning algorithms for salient
learning tasks within the two new learning models.

First, we consider the problem of Covert Learning for noisy parity functions.
In this problem, a secret n-bit parity function is generated by drawing an n-bit
vector k, where each bit is sampled i.i.d. from a Bernoulli random variable with
mean 1/

√
n, and defining the parity function to be f(x) = 〈x, k〉. An example

(x, y) is generated from a concept Dk
LPN which draws a uniformly random input

x, and returns y = f(x) ⊕ 1 with probability 1/
√

n, and y = f(x) otherwise.
By the low-noise LPN assumption [Ale03], learning the hidden vector parity
function from examples (x, y) ∼ Dk

LPN is not possible in polynomial time. On
the other hand, oracle queries to Dk

LPN make the problem tractable. Let DLPN =
{Dk

LPN |k ∈ {0, 1}n}. To this end, we define a hypothesis class HT as the set of
all parity functions on a subset of T ⊆ [n]. We show:

8 R. Canetti and A. Karchmer

Theorem 1. (Informal version of Theorem 7) Assuming hardness of the low-
noise LPN assumption, there is a covert learning algorithm for the collection
C = {HT | T ⊆ [n]}, w.r.t. the concept class DLPN and loss function LD.

Next, we consider the following concept class. Let F be a class of functions
f : {0, 1}n → {−1, 1}. DF is a concept class indexed by f ∈ F , where for any
Df ∈ DF , an example (x, y) ∼ Df is generated by first sampling an input x
uniformly at random, and then a returning (x, f(x)).

The first problem we consider is that of learning the “heavy” Fourier coef-
ficients of a function. In this problem, the goal of a learner (given a function
f : {0, 1}n → {−1, 1}) is to find the set of all k such that Ex[f(x)χk(x)] ≥ τ ,
where τ ≥ 1/poly(n) is a given parameter and χk(x) = (−1)〈k,x〉. We denote
by f̂≥τ

b the aforementioned set of k with the added stipulation that |k| ≤ b.
Achieving this goal using only examples (x, y) ∼ Df is known to be as hard
many longstanding open problems in computational learning theory, such as
PAC learning DNF formulas, even when it is only required to find k such that
|k| = O(log n) [Blu03,Jac97,OS07]. On the other hand, membership queries
make the problem tractable [GL89]. With this in mind, we define a hypothesis
class Hb

T = {χk | ki = 0 =⇒ i �∈ T, |k| ≤ b}, where T ⊆ [n], and a loss function
Lτ,b : P([n]) → [0, 1] given by

Lτ,b(T) = Pr
k∼f̂

≥τ
b

[
χk ∈ T

]

where k ∼ f̂≥τ
b is a uniformly random sample k ∈ f̂≥τ

b and P(S) denotes the
powerset of a set S (we also require that |T | ≤ poly(n)). We show:

Theorem 2. (Informal version of Theorem 9) Let F be the class of all n-bit
boolean functions. Assuming sub-exponential hardness of the standard LPN prob-
lem, there is a covert learning algorithm for the collection C = {Hb

T | T ⊆ [n]},
with respect to the concept DF and the loss function Lτ,b and for b ≤ O(log n),
τ ≥ 1/poly(n).

In the problem of agnostically learning decision trees, a learner is given access
to Df ∈ DF and tasked with finding (close to) the best decision tree that
minimizes some loss function with respect to Df . This learning problem, too,
is thought to be difficult in the traditional PAC model, but is known to be
efficiently learnable with membership queries [KM93,Blu03]. Building on top of
the covert learning algorithm for O(log n)-degree Fourier coefficients, we show:

Theorem 3. (Informal version of Theorem 10) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert learning algorithm for the
collection of all subsets of functions computable by poly(n) size decision trees
with respect to the concept class DF and the loss function LD.

Unsatisfied with only the covert learning algorithms, we demonstrate how
to transform our covert learning algorithms into covert verifiable learning algo-
rithms. We do so both according to the intermediate setting and the stronger
public variant. Specifically, in the intermediate setting we show:

Covert Learning: How to Learn with an Untrusted Intermediary 9

Theorem 4. (Informal version of Theorem 11) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert verifiable learning algorithm
for the collection C = {Hb

T | T ⊆ [n]}, with respect to the concept DF and the
loss function Lτ,b, and for b ≤ O(log n), τ ≥ 1/poly(n).

Theorem 5. (Informal version of Theorem 12) Assuming sub-exponential hard-
ness of the standard LPN problem, there is a covert verifiable learning algorithm
for the collection of all subsets of functions computable by poly(n) size decision
trees with respect to the concept class DF and the loss function LD.

In the public variant, we prove:

Theorem 6. (Informal version of Theorem 13) Let s-DNFn be the class of
all f : {0, 1}n → {−1, 1} computable by a size s DNF formula. Assuming sub-
exponential hardness of the standard LPN problem, there is a public covert ver-
ifiable learning algorithm for the collection C = {Hb

T | T ⊆ [n]}, with respect
to the concept class Ds-DNFn

and loss function and the loss function Lτ,b, for
s ≤ poly(n), b ≤ O(log n), and τ ≥ 1/poly(n).

In particular, the result of Theorem 13 gives the first verifiable PAC learning
protocol without any private examples, even in the model of [GRSY20] which
does not consider privacy.

Due to space constraints, we have omitted all proofs and refer the reader
to [CK21]. Furthermore, we have removed two results, namely, a key exchange
algorithm that arises from Theorem 7 and a statistically sound and perfectly
private covert learning algorithm for the “junta problem” in the fully private
examples model. These results may also be found in the [CK21].

Algorithmic Ideas. We give high level descriptions of the algorithmic tech-
niques. Formal overviews precede the constructions in the following sections.

Covert Learning of Noisy Parities. Our Covert Learning algorithm for learning
noisy parities employs a “masked query” technique which works as follows. To
mask a query q ∈ {0, 1}n, the learner starts by requesting n uniformly random
examples from the oracle. Then, by taking the inputs of those random examples
and drawing a random LPN secret, a “mask” is produced by multiplying the
random inputs with the secret, and corrupting the resulting vector with inde-
pendent random noise for each entry. Each query desired by the learner is then
“masked” by adding the resulting sequence of LPN samples. In other words,
each query is one-time-padded with an LPN instance. By the LPN assumption,
a single masked query is pseudorandom. Moreover, the joint distribution for a
set of masked queries is pseudorandom. The learner proceeds by sending the set
of masked queries to the oracle, and upon receiving the results, decodes each
one using the LPN secrets, the random examples, and by leveraging natural
homomorphic properties provided by the LPN problem (with low noise). The
simulation algorithm works by simply sampling queries from the uniform distri-
bution, and pairing them with uniformly random results. We reduce the hardness

10 R. Canetti and A. Karchmer

of distinguishing the simulated transcript from the real transcript to solving the
low-noise LPN problem.

Covert Learning of Low-Degree Fourier Coefficients and Decision Trees. The
covert learning algorithms for low-degree Fourier coefficients and decision trees
use the same “masked query” technique as the covert learning algorithm for
noisy parities.

In particular, we use our “masked query” technique to run Goldreich-Levin
queries on the (arbitrary) function in question. In contrast to the noisy parity
setting, each individual query is not correctly decoded. Instead, the entire set of
results is aggregated in a way resembling the original technique of Goldreich and
Levin [GL89]. This allows us to then recover heavy Fourier coefficients belonging
to O(log n)-degree parity functions. Due to the noise of the masking, the tech-
nique fails to extract higher degree coefficients. Once the set of O(log n)-degree
parities that have noticeable Fourier coefficients is known, we employ standard
techniques to produce a hypothesis which is the sign of a low-degree polynomial.
We give a Fourier-based analysis that obtains agnostic learning guarantees on
the hypothesis for the class of polynomial size decision trees. To demonstrate pri-
vacy, we adopt a variant of the LPN assumption that works over sparse secrets.
The variant is due to [YZ16], whose hardness is implied by a sub-exponential
hardness assumption on the standard LPN problem. We then construct a simu-
lator that returns uniformly random examples of the function. We reduce solving
the variant of the LPN problem to a constructing putative distinguisher between
a real execution and a simulated execution.

Augmenting the Covert Learning Algorithms with Verifiability. In order to engi-
neer the verifiability guarantee into our covert learning algorithms, we use one
main technique which works as follows. We take the covert learning algorithms
and wrap them with an outer loop, which at each iteration randomly decides to
do a “learning” phase, where the covert learning algorithm is executed, or do
a “test” phase. In a test phase, the algorithm sends a subset of the privately
held queries to the oracle. Naturally, if the intermediary modifies any responses
in this case, then the algorithm will detect that. Crucially, the distribution of
queries in the learning phase (pseudorandom) is computionally indistinguishable
from the distribution of queries in the test phase (uniformly random), due to
the masking technique (and the LPN assumption). Therefore, this allows us to
formalize the notion that no computationally bounded adversarial intermediary
can reliably lie on the learning phase but not the testing phase—it would entail
breaking the indistinguishability of the distributions of queries of the two phases
and therefore the LPN hardness assumption.

When considering verifiability in the Public Covert Verifiable Learning set-
ting (recall, here the learner does not have any private examples to leverage),
the above technique does not immediately work. However, we can modify it in
a simple way as follows. As before, the learning phase consists of executing a
covert learning algorithm. The testing phase is instead conducted by taking the
public random examples and applying the same masking technique as used on

Covert Learning: How to Learn with an Untrusted Intermediary 11

the learning queries. Now, the test phase and the learning phase are still com-
putationally indistinguishable to the adversarial intermediary, but the queries
of the testing phase cannot be linked back to the public random examples. The
learner can then decide if the intermediary is lying on the masked public exam-
ples by using the secret keys of the masks to unlock and measure a correlation
between the oracle’s responses on the masked public examples and the pub-
lic labels. Like above, the adversarial intermediary generating an “acceptable”
correlation, while reliably lying on the learning phase, would entail breaking the
indistinguishability of the distributions of queries of the two phases and therefore
the LPN hardness assumption.

Unconditional Covert Verifiable Learning with Fully Private Examples. We
design a Covert Verifiable Learning with fully private examples algorithm for
O(log n)-juntas. The algorithm works by requesting random hamming neigh-
bors of the privately held uniformly random example set, and using them to
find all the O(log n) relevant variables. Clearly, this means that the distribu-
tion of the membership queries is also uniform, despite the joint distribution
being far from the concatenation of independent and uniformly random distri-
butions. Since the adversary cannot see one component of the joint distribution,
this suffices to give perfect privacy. By planting other private random examples
(those which did not have random hamming neighbors requested), we may also
prove that the protocol achieves statistical soundness against computationally
unbounded adversarial intermediaries.

1.2 Real World Applications

Outsourcing of Drug Design and Discovery. The drug design and discovery
process begins by searching a massive space of chemical compounds for an
“active” compound [LPP04,DAG06,DGRDR08]. A compound is called active
(with respect to some biological structure) if it produces a reaction under some
biological test (e.g. whether or not a molecule or compound binds with a protein).
Quickly finding (and optimizing) active compounds among a massive search
space is a primary goal of the drug discovery process.

The recent trend of drug companies delegating elements of the R&D process
to well-equipped and specialized third parties who can carry out the necessary
biological experiments on behalf of the drug companies has greatly enhanced the
efficiency of the drug discovery process (for more information, see [Cla11] and
the references therein). However, currently the outsourcing of experiments carries
within it the risk of exposure of both the experimental design and experimental
results. Indeed, much of the proprietary knowledge and intellectual property
underpinning pharmaceutical science is generated in this way, but only until
relatively recently was it not conducted in-house [Cla11].

One of the famous methods for carrying out drug discovery is Quantitive
Structure-Activity Relationship modelling, or QSAR (for more information, see
[DAG06] and the references therein). The QSAR methodology attempts to iden-
tify a relationship between compound activity and compound structure. As noted

12 R. Canetti and A. Karchmer

in [BHZ19], a compound or molecule may be described using a predefined set of
features, which may then be linked to positive classification if it is active, and
a negative classification if inactive. A membership query can be simulated by
assembling a compound according to the specific attributes defined by the algo-
rithm’s query and submitting it to face some biological test. Thus, the process
of privately and verifiably delegating QSAR modelling can be distilled to the
following covert verifiable learning setting: Drug company A contracts a private
lab to gather relevant data labelled by a function f , with the end goal of learning
a model that provides a good approximation to f . In this case, A may want to
prevent the private lab from:

1. Reselling or releasing the data (queries to f) to a competing drug company
B, after collecting the data for A.

2. Leaking to B that A is interested in a certain type of model, or certain trade
secrets like cutting edge domain knowledge that is revealed by the design of
the queries.

3. Charging more money for arbitrary, complex or “high value” data (that is,
data needed to learn expressive models like polynomial size DNF formulas).

4. Cutting costs by providing faulty data.

Using a covert verifiable learning algorithm in this setting achieves each of the
above points, while maintaining the usual learning guarantees of the plain learn-
ing with membership queries setting. In particular, the concept-hiding guarantee
prevents (1), as the queries requested by A are essentially useless to any other
(computationally bounded) party. Meanwhile, hypothesis-hiding (for a relevant
collection of hypothesis classes) counters (2) and (3), as ability to efficiently do
either would clearly violate the guarantee. Ultimately, the verifiability require-
ment also prohibits a private lab from (4).

We note that decision trees are one of the standard ways used in QSAR
modelling to obtain a relationship between molecule features and activity. Thus,
the decision tree learning algorithms in this work are highly relevant.

1.3 Related Work

Two recent works explore models related to ours and have influenced this work.

Cryptographic Sensing. Ishai et al. study a related scenario, called Cryptographic
Sensing [IKOS19]. Like the present work, Cryptographic Sensing focuses on the
goal of sensing (or, learning) properties of a physical object, while keeping these
same properties secret to any passive adversary who does not have access to the
internal randomness of the sensing algorithm. However, Cryptographic Sensing
does not consider our notion of hypothesis-hiding, nor does it consider active
intermediaries and verifiability. Furthermore, [IKOS19] chiefly focuses on exact
learning of the object, where the aim is to decode the object exactly with non-
noisy queries, and hiding is achieved for any high-entropy object. In contrast,
our focus is on agnostic learning, where membership queries may return noisy

Covert Learning: How to Learn with an Untrusted Intermediary 13

responses. As a result, our model allows learning parities, whereas [IKOS19] only
obtain learning algorithms for linear functions over larger moduli or over the
integers. Another effect of noisy membership queries is that they allow concept-
hiding even when there is a large and public labeled data set (the latter would
rule out hiding a linear function in the noiseless setting of [IKOS19]). Indeed,
our simulation-based definition will allow us to consider hiding in relation to
auxiliary information about the concept, in a strong, zero-knowledge-like way.

PAC-Verification. Goldwasser et al. initiated the study of PAC-verification
[GRSY20], which aims to answer questions about the complexity of verifying
machine learning models via interactive proofs. Among other scenarios, they
consider the task where a prover, having learned a concept (perhaps via mem-
bership queries), wishes to convey the learned model to a distrusting third party
(a verifier) that has only random examples from the concept. In this setting, they
obtain a protocol for PAC-verification for the heavy Fourier coefficients (of any
degree) of arbitrary functions. Their protocol is statistically sound in a model
that corresponds to our CVL with fully private random examples model. That
is, the prover has no access to the random examples available to the verifier.
We note, however, that Goldwasser et al. do not consider (or obtain) any hid-
ing requirements—neither concept hiding nor hypothesis hiding. Furthermore,
while our covert verifiable learning algorithms offer only computational sound-
ness, some of them provide soundness even in the setting where the random
examples are known to the prover in advance.

Other Related Models

Delegation of Computation. Though bearing some resemblance to the traditional
cryptographic task of delegation of computation, our setting focuses on the spe-
cific task of learning. In this respect, we are focused on good outcomes, that is,
guarantees on the efficacy of the learned hypothesis. In contrast, delegation of
computation provides guarantees on the correctness of the computation steps
themselves, and provides no guarantees on the learned hypothesis. For example,
the delegation of computation model does not address the use of incorrect or
poisoned data.

The PAC+MQ Model. The power of membership queries in the agnostic set-
ting was studied by Feldman in [Fel09]. Feldman defines an agnostic PAC+MQ
learning model and, assuming existence of one-way functions, shows a particu-
lar learning problem that is computationally hard to learn in the agnostic PAC
model with uniformly random examples, while efficiently learnable in the agnos-
tic PAC+MQ model. Essentially, the agnostic PAC+MQ model augments the
agnostic PAC learning model with query access to a membership oracle for the
concept. It is possible to view our Covert Learning algorithms as working in
a model that is between PAC and PAC+MQ, where the membership queries
cannot be synthesized arbitrarily (as in PAC+MQ), but must be generated in a
way that can be emulated by a simulation algorithm.

14 R. Canetti and A. Karchmer

r-Local Membership Queries. Another learning model lying between PAC and
PAC+MQ was introduced in [AFK13]. There, r-local membership queries are
permitted, in that any membership query must have hamming distance r from an
example received from the concept D. This requirement forces the membership
queries to “look” like they are distributed according to D, but it falls short of
our model. In contrast, we require that the membership queries, in conjunction
with the examples from D, can be emulated by a simulation algorithm.

Differentially Private Learning. The study of differentially private learning was
initiated in [KLN+11]. Roughly, the work of [KLN+11] asks what can hypothesis
classes can learned by an algorithm whose output does not depend too heavily
on any one specific training example. In essence, differentially private learning
is concerned with maintaining the privacy of sensitive training data used by
the learner. In contrast, our notion of privacy is orthogonal, as it pertains to
the secrecy (with respect to third parties) of the underlying concept, and the
hypothesis of the learner itself.

2 Covert Learning

In this section, we concentrate on the basic Covert Learning setting, which con-
siders only eavesdropping attacks. We give a formal definition of Covert Learning.
Next, we demonstrate how to construct a Covert Learning algorithm for a noisy
parity learning problem as a warm-up. Then we extend the techniques used in
the warm-up and show a Covert Learning algorithm for learning the O(log n)-
degree Fourier coefficients of any function f : {0, 1}n → {−1, 1}. Using this
algorithm as a subroutine, we obtain a Covert Learning algorithm for functions
computable by polynomial size decision trees.

2.1 Preliminaries

We briefly recall here the standard terminology and notation which we use
throughout the paper.

Definition 3. A concept Dn is a joint distribution over an input domain Xn

and label domain Yn.

Definition 4. A hypothesis class Hn is a set of functions Hn = {h : Xn → Yn}.
We call a sampled (x, y) ∼ Dn an example, where x is the input and y is the

label. We use Xn = {0, 1}n, and either Yn = {0, 1} or Yn = {−1, 1}. We will
use the term concept class denoted by Dn to signify a set of concepts (which are
joint distributions over the input domain {0, 1}n and label domain {0, 1}).

Definition 5. A concept oracle ODn
for a concept Dn is a (probabilistic) ora-

cle with the property that on query z ∈ {0, 1}n, ODn
(z) = y with probability

PrDn
[(x, y)|x = z], and y ⊕ 1 otherwise.

Covert Learning: How to Learn with an Untrusted Intermediary 15

Finally, we very often use the notation to denote random variables of n-bit
vectors.

Definition 6. βn
μ denotes the distribution over an n-bit vector where each of

the bits is drawn i.i.d. from a Bernoulli random variable with mean μ.

2.2 Definition of Covert Learning

In defining Covert Learning, we wish to require that the transcript of the inter-
action between a learner and a membership oracle reveals no information to a
passive adversary about either:

– the concept, or
– the learner’s chosen hypothesis class, or any auxiliary information that the

learner has on the concept prior to the interaction.

Furthermore, these requirements should hold even when there is auxiliary infor-
mation (in the form of random examples from the concept) available to the
adversary.

As a starting point, we consider the learning with membership queries model,
where the learner is given query access to a probabilistic oracle that responses
queries about a concept (a concept oracle ODn

for the concept Dn). The learner’s
goal is to find a hypothesis, out of some given class of hypotheses Hn, that best
approximates the concept Dn with respect to a loss function. For example, a
loss function LDn

(h) = Pr(x,y)∼Dn
[h(x) �= y]. This gives us a baseline model for

accuracy guarantees in the learning with access to membership queries setting.
However, we diverge from this model in an important way. Rather than define
learning with respect to a single, fixed hypothesis class (as is common in learning
theory), we use a collection of hypothesis classes. This will provide a natural way
to model the desire to hide auxiliary information on the concept, as well as the
chosen hypothesis class.

In more detail, we fix a collection of hypothesis classes Cn, and require accu-
racy guarantees for every hypothesis class Hn ∈ Cn: the learning algorithm will
receive as input a description of a specific target hypothesis class within the col-
lection, along with accuracy parameters ε, δ > 0. Then, the learning algorithm
will agnostically learn the target hypothesis class with respect to a given loss
function. For example, using the above example loss function, the learner will try
to find an h ∈ Hn such that Pr(x,y)∼Dn

[h(x) �= y] ≤ infh∈Hn
Pr(x,y)∼Dn

[h(x) �=
y] + ε, with probability at least 1 − δ. That is, the algorithm should output
a hypothesis—within the given target class—that best approximates the con-
cept (up to the given accuracy parameters and a distribution over inputs). The
input to the learner naturally models the intent of the learner, by capturing
the particular choice of hypothesis class within the collection, and any auxil-
iary information used to select the class (e.g. the results of a tolerant testing
algorithm or specific domain knowledge).

Finally, we will require that the transcript of the communication between the
learner and the concept oracle does not leak any knowledge to an eavesdropper,

16 R. Canetti and A. Karchmer

in the following sense: we require that there exists a p.p.t. algorithm (a simulator)
that generates an (ideal) simulated transcript of the (real) interaction between
the learner and the concept oracle, with access to random examples from the
concept, but not further access to the concept oracle. Furthermore, the simulator
should operate without knowledge of the learner’s target hypothesis class. The
simulated transcript should be indistinguishable from a real transcript, even to
a (polynomial time) adversary that has access to auxiliary information on the
concept. We define two distributions, {realODn

A } and {idealSim} as follows.

Definition 7. Let Dn be a concept class, and Cn a collection of hypothesis
classes. We define {realODn

A } to be the distribution generated by the following
process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn,
and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.
3. A learner A receives ε, δ and Hn, and begins interacting with the concept by

querying the oracle ODn
on examples of his choosing, receiving back responses

for each queried example. A tries to agnostically learn Hn using this oracle.
Denote the queries and responses as transcriptAODn (Hn,ε,δ).

4. Output
(
Hn, ε, δ, transcriptAODn (Hn,ε,δ)

)

Definition 8. Let Sim be a p.p.t. algorithm, which takes as input a set of ran-
dom examples to a concept, and a length parameter which denotes the number
of queries requested by the learner in the real interaction. We define {idealSim}
to be the distribution generated by the following process.

1. An adversary (a distinguisher) selects ε, δ > 0, a hypothesis class Hn ∈ Cn,
and a concept Dn ∈ Dn.

2. A set of examples S is drawn from Dn.
3. A p.p.t. simulator Sim receives S, �, and “interacts” with the ODn

and out-
puts the set queries and responses denoted as transcriptSim(S,�). Here � is the
number of queries that the learner requests in the real interaction.

4. Output
(
Hn, ε, δ, transcriptSim(S,�)

)

We note that the size of the random example set obtained by the simulator
is given as a parameter of the definition of Covert Learning. Formally,

Definition 9. Covert Learning. Let Cn be a collection of hypothesis classes,
let Dn be a concept class, let ODn

be a class of oracles indexed by Dn ∈ Dn, and
let L be a loss function. A is a (m(n), α)-covert learning algorithm for C with
respect to Dn, ODn

and L if for every ε, δ > 0, A satisfies the following:

– Completeness. For every distribution Dn ∈ Dn, and every Hn ∈ Cn, the
random variable h = AODn (Hn, ε, δ) satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1 − δ

Covert Learning: How to Learn with an Untrusted Intermediary 17

The loss function may depend on the distribution Dn. For proper Covert
Learning, the output of A must be an element of H, i.e. h ∈ Hn.

– Privacy. There exists a p.p.t. simulator Sim such that:
{
real

ODn

A
}

c≈
{
idealSim

}

where
c≈ denotes computational indistinguishability. We stipulate that the

number of random examples given to the simulator is O(m(n)).

See Fig. 3 for an illustration of the model. Often, we will use the terminology
from the computational learning theory literature, and say that a collection of
hypothesis classes C is α-covertly learnable if there exists an α-covert learning
algorithm for C.

Fig. 3. Privacy of Covert Learning. The “real world,” where the adversary views the
learner access the oracle, should be indistinguishable from the “ideal world,” where the
adversary interacts with a simulator that simulates the learner accessing the oracle.
The adversary gets to choose the concept which is implemented by oracle (within the
given class). Observe that, the simulator is also allowed random examples from the
concept, and these are “leaked.”

About the Simulation. We note that the simulation paradigm lends itself well
to our setting: It allows formalizing the requirement that sensitive information
is not revealed by the interaction, while maintaining the overall usefulness of
the interaction. In this case, we formalize the notion that whatever could have
been learned by a passive adversary about the concept or learner’s hypothe-
sis after the interaction, could have been learned before the interaction (given
access to random examples). Furthermore, we can model the presence of other,
unavoidable information leakage (e.g. random examples on the concept).

Our Focus Is on Collections of Hypothesis Classes That Are Not Efficiently PAC
Learnable. When every hypothesis class in a collection is efficiently learnable
without membership queries (i.e. with random examples only), Covert Learning
is considered trivial. This is because in this case the privacy requirement is

18 R. Canetti and A. Karchmer

easily satisfied by a transcript full of random examples (and it does not even
rule out leakage, because the adversary can learn the function from them). We
thus concentrate on the case where the hypothesis classes within the collection
need (or are assumed to need) membership queries to be learned.

2.3 A Warm-Up: Covert Learning of Noisy Parity Functions

In this section, we concentrate on Covert Learning of parity functions with noise.
Indeed, this class of learning problems is broadly assumed to not be efficiently
agnostically PAC-learnable in a very strong sense, as per the Learning Parity
with Noise (LPN) assumption:

Definition 10. Search/Decision LPN assumption: For μ ∈ (0, 0.5), n ∈
N, the (m(n), T (n))-DLPNμ,n assumption states that for every distinguisher D

running in time T (n),∣∣∣∣ Pr
s,A,e

[D(A,As ⊕ e)] = 1 − Pr
r,A

[D(A, r)] = 1
∣∣∣∣ ≤ 1

T (n)

where s
$← Z

n
2 ,A

$← Z
m(n)×n
2 , e

$← β
m(n)
μ , r

$← Z
m(n)
2 .

For μ ∈ (0, 0.5), n ∈ N, the (m(n), T (n))−SLPNμ,n search assumption states that
for every inverter I running in time T (n),

Pr
s,A,e

[I(A,As ⊕ e) = s] ≤ 1
T (n)

where s
$← Z

n
2 ,A

$← Z
m(n)×n
2 , e

$← β
m(n)
μ .

Remark 1. The search and decisional LPNμ,n assumptions are polynomially
equivalent, in that an algorithm that breaks one of them can be turned into
an algorithm that breaks the other in polynomial time. For more information,
consult [Pie12] and the references therein.

One typical setting of parameters gives the DLPN1/
√

n,n problem, which is con-
jectured to be (O(n),poly(n))-hard [Ale03]. However, for even super polynomial
queries, the best known attacks are not asymptotically better than the O(n) case
[YS16]. Furthermore, an important variant was introduced in [ACPS09]. Specif-
ically, it was shown that solving the decisional LPN problem when drawing the
secret from the same distribution as the noise vector is as hard as drawing the
secret from the uniform distribution. Henceforth, when referring to the DLPNμ,n

problem, we refer to this setting.
In the remainder of this section, we construct a Covert Learning algorithm

for the learning parity with noise problem using only the assumption that
DLPN1/

√
n,n is hard itself—the minimal assumption that keeps the problem non-

trivial: for any rate of noise bounded away from one half by an inverse polyno-
mial, it easy (using majority voting) to solve DLPNμ,n when membership queries
are available, and even in the “adversarial” noise case [GL89]. However, this is
not enough for Covert Learning. It is clear that running membership query
algorithms “in the open” (like Fig. 1) may violate all our previously mentioned
privacy goals.

Covert Learning: How to Learn with an Untrusted Intermediary 19

The Learning Problem. As a warm-up, we will consider a distributional variant
of Covert Learning. Here, the learning and privacy guarantees are required when
the concept is drawn from a distribution over the concept class, rather than for
every concept in the class. For privacy, this means that the distinguisher will
not have the privilege of choosing the concept from the class, but instead it is
sampled from the distribution. Our concept class is the following:

Definition 11. Let Xn = {0, 1}n. We define the concept class Dμ,n
LPN to be the

family of distributions over Xn × {0, 1} indexed by a k ∈ {0, 1}n, that have the
following properties,

– The input (marginal) distribution over X of any Dk ∈ Dμ,n
LPN is uniform.

– For any Dk ∈ Dμ,n
LPN, the label y ∈ {0, 1} of the input x is generated by taking

〈k, x〉 and flipping the result with probability μ.

For our learning problem, the concept will be drawn using a distribution over
Dμ,n

LPN:

Definition 12. We define a distribution Mn
LPN over the concept class Dμ,n

LPN as

follows. Dk ∈ Dμ,n
LPN is selected by drawing k

$← βn
1/

√
n
.

The learner will get membership access to the concept by using the following
class of oracles:

Definition 13. Let OD be a concept oracle for a concept D. Recall the concept
oracle that implements “membership query access” to a distribution D over X ×Y
in the following sense: on a query q to the oracle, a sample from the conditional
distribution over Y is returned, given that X = q.

Hence, when the concept Dk is drawn from Mn
LPN, the learner will obtain access

to ODk
. We will do Covert Learning for the following collection of hypothesis

classes:

Definition 14. For a ∈ {0, 1}n, let �a : {0, 1}n → {0, 1}, defined by �a(x) =
〈a, x〉. Let PARITYA,n = {�a | i �∈ A =⇒ ai = 0}. Let CPARITY,n =
{PARITYA,n | A ⊆ [n]}.

Our Covert Learning task is then as follows. We would like to design a learn-
ing algorithm that takes as input any hypothesis class PARITYA,n ∈ CPARITY,n

(we will call A the relevant set). Then, given access to ODk
, the learning algo-

rithm outputs �a ∈ PARITYA,n which minimizes the following loss (with respect
to Dk):

Definition 15. Let the loss function LD be defined as

LD(h) = Pr
(x,y)∼D

[h(x) �= y]

for a concept D.

Meanwhile, the privacy guarantee of Covert Learning should be satisfied. In
particular, any information about A or k should be hidden.

20 R. Canetti and A. Karchmer

The Construction

Overview. We will refer to D
1√
n

,n

LPN as DLow
LPN. We construct Covert Learning for

CPARITY,n with respect to DLow
LPN, ODLow

LPN
, and LD, and where learning is considered

when the concept is drawn from Mn
LPN. The Covert Learning algorithm begins

by requesting “masked queries” from ODk
. For x1, · · · , xn

$← βn
1/2, let

X =

⎡
⎣x1 x2 x3 · · · xn

⎤
⎦

Note that, each xi is a column of X. Furthermore, let e, s
$← βn

1/
√

n
. A masked

query q̂ ∈ {0, 1}n for query q ∈ {0, 1}n is generated by taking

q̂ = Xs ⊕ e ⊕ q

In our algorithm, each query q requested by the learner is a unit vector under the
above masking, plus requests for the columns of X. Indeed, the ith unit vector is
only masked and requested if the ith index is in the relevant set A. Upon receiving
the results to the masked unit vectors, denoted by ODk

(q̂), the algorithm decodes
each one by taking ODk

(q̂)⊕〈y, s〉, where y = (ODk
(x1), · · · ,ODk

(xn)). It turns
out that,

Pr
[
ODk

(q̂) ⊕ 〈y, s〉 = 〈k, q〉
]

> 0.501

Hence, our algorithm requests each masked unit vector some constant number
of times—the final decoding for each is done by taking the majority bit over
the set of results from the duplicate queries. Note that, for a pair duplicate
queries (say, two copies of the ith unit vector), the masks are independently
generated. Once the decoded results to the masked unit vectors are obtained,
the algorithm produces a hypothesis in the natural way: if ri is the decoded
result of the masking query of the ith unit vector, then the output hypothesis is
r(x) = 〈(r1, · · · , rn), x〉.
Theorem 7. Assuming DLPNμ,n is (O(n),poly(n))-hard, CPARITY,n is
(poly(n), 1)-covertly learnable with respect to DLow

LPN, ODLow
LPN

, and LD, and where
the concept is drawn according to Mn

LPN.

The algorithm (called CLP and presented in [CK21]) is efficient. The queries
are constructed in time polynomial in n, and the same is true for the decoding
process. From there, it’s easy to see that since we run O(log(n/δ)) iterations,
the entire algorithm runs in time polynomial in n and log(1/δ).

2.4 Covert Learning of Low-Degree Fourier Coefficients

In this section, we will extend our techniques from the warm-up to present
a Covert Learning algorithm for “heavy” O(log n)-degree Fourier coefficients.

Covert Learning: How to Learn with an Untrusted Intermediary 21

This learning problem will no longer live in the distributional learning case, as
in the warm-up.

The learning problem is nontrivial for Covert Learning: the problem of effi-
ciently identifying heavy, even O(log n)-degree, Fourier coefficients from random
examples is a fundamental problem that has so far evaded intense research effort
from the learning theory community. In particular, such an algorithm would
imply the PAC learnability of DNFs via a “weak learning” parity function and
boosting results [Jac97]. Moreover, such an algorithm would be considered a
massive breakthrough in computational learning theory [Blu03,OS07].

Our Task. We consider the following natural class of concepts.

Definition 16. Let Xn = {0, 1}n, and Fn be a class of functions f : Xn →
{−1, 1}. We define DFn

. to be the concept class containing all distributions over
Xn × {−1, 1} that have the following properties,

– The input (marginal) distribution over Xn of any Df ∈ DFn
is uniform.

– For any Df ∈ DFn
, there exists a polynomial time computable target function

f : Xn → {−1, 1} such that f ∈ Fn and

Pr
(x,y)∼Df

[f(x)y = 1] = 1

The learner will be allowed to interact with a membership query oracle to
any concept in DFn

.

Definition 17. Let OFn
be a class of membership oracles indexed by Df ∈ DFn

,
such that Of implements membership query access to f . To simplify notation,
we may write Of instead of ODf

.

Hence, the learner will have access to Of when tasked with learning the
“heavy” Fourier coefficients of the target function of Df .

In plain English, the task is as follows. The learner chooses a hypothesis
class characterized by a subset T of [n] and a bound b < n, where the hypothesis
class consists of a subset of all n-bit parity functions. A parity function is in the
hypothesis class if it is of degree less than b and if all it’s relevant variables are
included in T . The learner must then find all parity functions in the hypothesis
class which have Fourier coefficients larger than some given threshold τ .

More formally, the goal is to learn the following hypothesis class with respect
to the following loss function:

Definition 18. Let k ∈ {0, 1}n. Define the parity function χk : {0, 1}n →
{−1, 1} as

χk(x) = (−1)〈k,x〉

We will call |k| the degree of χk.

22 R. Canetti and A. Karchmer

Definition 19. Let T ⊆ [n]. Define the hypothesis class FOURIERT,b,n =
P{χk | ki �∈ T =⇒ ki = 0,∧|k| ≤ b}. In other words, FOURIERT,b,n is
the powerset of the set all parity functions on subsets of [n] contained in T ,
with degree at most b. Let the collection of hypothesis classes CFOURIER,b,n =
{FOURIERT,b,n | T ⊆ [n]}. For any hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n,
we will call T the relevant set.

Definition 20. Let f : {0, 1}n → {0, 1} be a function. Let P = P{χk | k ∈
{0, 1}n}. Also, let f̂≥τ

b = {χk | f̂(k) ≥ τ, |k| ≤ b}. Lτ,b : P → [0, 1] is a loss
function given by

Lτ,b(T) =

⎧
⎨
⎩

Pr
χk∼f̂

≥τ
b

[
χk ∈ T

]
when |T | ≤ poly(n)

1 otherwise

where χk ∼ f̂≥τ
b is a uniformly random sample χk ∈ f̂≥τ

b .

The learning algorithm, given a hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n,
should hide any information about the relevant set T , as well as any information
about f , as formalized by the privacy guarantee of Covert Verifiable Learning.
Finally, the protocol should achieve computational soundness and be efficient
(i.e. run in time poly(n, 1/τ, log(1/δ) for a soundness parameter δ).

The Construction

Overview. We construct Covert Verifiable Learning for CFOURIER,b,n with respect
to DFn

, OFn
, and Lτ,b. The overall flow of the algorithm will be similar to that

of our Covert Learning algorithm for noisy parities. Instead of using the masking
technique to encode unit vectors, we instead use masking to run Goldreich-Levin
queries.

Theorem 8. Goldreich-Levin learning algorithm. Given query access to
a function f : {0, 1}n → {−1, 1} and given parameters τ, δ, there exists a
poly(n, 1

τ , 1
δ) time algorithm that outputs a list L = {S1, ..., S�} such that the

following hold,

1. if |f̂(S)| ≥ τ , then S ∈ L.
2. if S ∈ L, |f̂(S)| ≥ τ

2 .

with probability 1 − δ.

The Goldreich-Levin queries are those that are selected by the above algo-
rithm. Using the Goldreich-Levin algorithm, all the Fourier coefficients satisfying
|f̂(S)| ≥ 1/poly(n) can be found in polynomial time (with high probability).

For any subset T ⊆ [n], the Goldreich-Levin algorithm can be executed in a
way that it only outputs subsets S such that S ⊆ T . In this case, the algorithm
skips doing majority voting on the indices not in T , and uses less queries. In the
event that the algorthim is executed in the described restricted manner, we will
refer to the queries as the Goldreich-Levin queries on T .

For our construction, we will need the following “chopped tail” binomial
distribution.

Covert Learning: How to Learn with an Untrusted Intermediary 23

Definition 21. Define the distribution, β̃n
μ , as the output of the following pro-

cess. Draw y ∼ βn
μ , and if μn/2 ≤ |y| ≤ 3μn/2 output y, else output ⊥.

For μ = log(n)/n, β̃n
μ can be seen to have min-entropy Θ(log2 n) [YZ16].

Fixing a Df ∈ DFn
, the Covert Learning algorithm begins by requesting

“masked queries” from Of . Let � = Θ(log2n). For x1, · · · , xn
$← β�

1/2 and

y1, · · · , y�
$← βn

1/2, let

U1 =

⎡
⎣x1 x2 x3 · · · xn

⎤
⎦ ,U2 =

⎡
⎣y1 y2 y3 · · · x�

⎤
⎦

Note that, each xi or yi is a column of U1,U2. Now, let X = U2U1 Furthermore,
let s

$← β̃n
μ for μ = log(n)/n. A masked query q̂ ∈ {0, 1}n for query q ∈ {0, 1}n

is generated by taking
q̂ = Xs ⊕ e ⊕ q

In the algorithm, each query q requested by the learner is a Goldreich-Levin
query under the above masking. Indeed, the Goldreich-Levin queries are only
masked and requested if they are one of the Goldreich-Levin queries on the
relevant set T given by the target hypothesis class (as discussed above).

Upon receiving the responses to the masked Goldreich-Levin queries, denoted
by Of (q̂), the secret s for the masked query q̂ is utilized to post-process Of (q̂).
The post-processed responses correlate with f ′(q), where f ′ is a function whose
O(log n)-degree Fourier coefficients are greater than Ω(τn−c) (for some small
constant c > 0) wherever f has a Fourier coefficient greater than τ . By following
the technique of Goldreich and Levin, we recover all the O(log n)-degree Fourier
coefficients of f ′ greater than Ω(τn−c)—and therefore all the O(log n)-degree
Fourier coefficients of f greater than τ .

To prove privacy of the algorithm, the idea is to produce a simulator that
first emulates the learner’s queries, and then interacts with an AI by also pass-
ing as the oracle to the concept. It turns out that, assuming subexponential
hardness of LPN, the masking procedure described above maps each query to
a pseudorandom distribution. Thus, we will construct a simulator that requests
truly random queries. Intuitively, it can then be shown that if there exists and
AI such that an adversary distinguishes between the simulated interaction and
the real interaction (where the requested queries are pseudorandom), then an
adversary distinguishes the pseudorandom masked queries from random queries.

Theorem 9. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNμ,n assumption and for suffi-

ciently large n, there exists a proper (poly(n), 1)-covert learning algorithm for
CFOURIER,b,n with respect to DFn

, OFn
, and Lτ,b, and where b ≤ O(log n), τ ≥

1/poly(n), δ ≥ exp(−n).

24 R. Canetti and A. Karchmer

The algorithm, called CLF, is presented in [CK21]. An important ingredient
in the proof is the following hardness lemma due to [YZ16].

Lemma 1. LPN on squared-log entropy (Simplified from [YZ16]). Let n be
a security parameter and let μ ≤ 1/2 be a constant. Assume that the SLPNμ,n

problem is (2ω(n
1
2), 2ω(n

1
2))-hard, then for every λ = Θ(log2 n), q = poly(n),

and every polynomial time sampleable x ∈ {0, 1}n with H∞(x) ≥ 2λ,

(A,Ax + e)
c≈ (A, u)

where A = Uq×λUλ×n and Um×n is a uniformly random m×n binary matrix, and
e ∼ βq

μ, u ∼ {0, 1}q. We will call the task of distinguishing the above distributions
the decisional squared-log entropy LPN problem.

Proof Idea. We first analyze the “unmasking” procedure φ defined in line 24.
Essentially, the unmasking φi, which is applied to the response for the ith masked
query, reintroduces a dependency on the secret used to construct the masking
for the ith query. In this way, we may cancel some noisy terms in an expanded
analysis of the oracle responses. We then leverage the pseudorandomness of the
masked queries to show that, roughly, the responses to the unmasked queries
can be written as noisy inner products with any O(log n)-degree parity func-
tion which the target function of the concept has a “heavy” Fourier coefficient
attached. Using this fact, we prove that running a “local decoding” of each bit
of any O(log n)-degree parity function where this is true suffices to recover the
parity functions we are interested in. We prove that this is the case by using
techniques inspired by the original analysis of the Goldreich-Levin algorithm
[GL89].

2.5 Covert Learning of Polynomial Size Decision Trees

In this section, we supply a natural application of Covert Learning for low-degree
Fourier coefficients. Specifically, we will show that the collection of hypothesis
classes given by taking all subsets of polynomial size decision trees is covertly
learnable. Recall that we are focused on collections that contain hypothesis
classes which are not (or not known to be) efficiently agnostically PAC learnable
from uniformly random examples. The problem of learning decision trees under
the uniform distribution has long been considered, and yet no polynomial time
(in the size of the smallest decision tree) algorithms exist for arbitrary functions,
and some distributions over functions [BFKL93,IKOS19] (even in the realizable

Covert Learning: How to Learn with an Untrusted Intermediary 25

case). In fact, any such algorithm would be considered a massive breakthrough
in computational learning theory [Blu03,OS07]3.

Definition 22. Let DTn,s be the hypothesis class of all f : {0, 1}n → {−1, 1}
computable by a size s decision tree. Let CDTn,s

= {Hn|Hn ⊆ DTn,s}.
This collection of hypothesis classes is motivated for the following simple rea-

son. If an adversary has no information about which subset of decision trees has
been learned, then the adversary has no information about the learned decision
tree. This claim is easily seen to be true from the contrapositive. The algorithm
is presented as CLDT in [CK21].

Theorem 10. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNμ,n assumption, the collection

CDTn,s for s = poly(n) is (poly(n), 4)- covertly learnable, with respect to DFn
,

OFn
, and LD, and where ε ≥ 1/poly(n), and δ ≥ exp(−n).

3 Covert Verifiable Learning

In this section we define and construct the notion of Covert Verifiable Learning.
The Covert Verifiable Learning setting can be viewed as an interactive protocol
between a learner and an adversarial intermediary (AI). Here, the adversarial
intermediary monitors access to the membership oracle. Figure 2 depicts this
perspective. In this context, the learner must request queries from the oracle,
but the responses are intercepted by the AI who then either truthfully reports
the oracle’s responses, or lies.

3.1 Definition of Covert Verifiable Learning

For Covert Verifiable Learning, we augment the desired properties of Covert
Learning by allowing the learner to abort, and requiring: If the AI corrupts any
queries or results, the learner will not output an incorrect hypothesis except with
small probability. In addition, we will extend the privacy requirements of Covert
Learning to capture the active nature of the adversarial intermediary. Let us
informally describe the Covert Verifiable Learning setting in more detail.

3 Not much formal work has been done on identifying “hard distributions” over DNF
formulas (or other function classes) [BFKL93,IKOS19], as it is not relevant in the
usual learning models. However, even some relatively simple distributions appear to
defy all known techniques. For example, consider the distribution over polynomial
size DNFs (also, decision trees), constructed as follows. Select at random two disjoint
subsets of [n] of size log n each. Let the first subset be denoted S and the second T .
The distribution over DNFs induced by defining f(x) = χS(x) ⊕majorityT (x) seems
hard to even weakly predict over the uniform distribution [BFKL93]. Indeed, such
a distribution over DNF formulas could be used to instantiate our Covert Learning
algorithms of this section.

26 R. Canetti and A. Karchmer

The Learner’s Inputs: Similarly to the Covert Learning setting, the learner will
receive as input a specific target hypothesis class Hn (within a fixed collection
Cn), in addition to accuracy parameters ε, δ. The learner will also receive a set
of auxiliary random examples from a concept Dn within a concept class Dn

which are private—the AI has no information on the identity of these random
examples.

The Interaction: The learner will interact with an oracle ODn
that implements

query access to the concept. However, the responses have the potential to be
corrupted by an AI who lives between the learner and the oracle. The learner
tries to learn Hn with respect to the concept Dn.

The Security Experiment: We define a real and ideal experiment.

Definition 23. Let Dn be a concept class, and let Cn be a collection of hypothesis
classes. Let I be a p.p.t adversarial intermediary algorithm, which takes as input
ε, δ, and a set of queries and the oracle’s responses on those queries. We define
{VrealODn

A,I } to be the distribution generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a
concept Dn ∈ Dn, and accuracy parameters ε, δ > 0.

2. A set of random examples S is drawn from Dn. S is given to the learner,
along with Hn, ε, δ, while the adversarial intermediary I is given ε, δ.

3. The learner begins to interact with the concept oracle ODn
by requesting mem-

bership queries in order to agnostically learn Hn. I sees the learner’s queries
and responses and is given the chance to modify the responses. At the end of
the interaction, I outputs a string denoted by real

ODn

A,I .

4. Output
(
Hn, ε, δ,S, real

ODn

A,I
)

Definition 24. Let Sim be a p.p.t. algorithm, which takes as input two sets
of random examples from the concept and a length parameter � which signifies
the number of queries requested by the learner in the real interaction. Let I be
a p.p.t adversarial intermediary algorithm, which takes as input ε, δ, and a set
of queries and oracle’s responses. We define {VidealSim,I} to be the distribution
generated by the following process.

1. An adversary (a distinguisher) chooses a target hypothesis class Hn ∈ Cn, a
concept Dn ∈ Dn, and accuracy parameters ε, δ > 0.

2. A set of random examples S ′ is drawn from Dn.
3. The simulator is given ε, δ,S,S ′ (where S is the set of examples given to the

learner in the real interaction), while an adversarial intermediary I is given
ε, δ.

4. Sim begins to “interact” with the ODn
by “requesting” membership queries.

I “views” the queries and responses, and is given the chance to change the
responses. The simulator outputs a string, which is denoted by idealSim

I .
5. Output

(
Hn, ε, δ,S, idealSim

I
)

Covert Learning: How to Learn with an Untrusted Intermediary 27

Definition 25. Covert Verifiable Learning. Let Cn be a collection of hypoth-
esis classes, let Dn be a class of concepts, let ODn

be a class of oracles indexed
by Dn ∈ Dn, and let L be a loss function. An algorithm A is an (m(n), α)-covert
verifiable learning algorithm for Cn, with respect to Dn, ODn

and L, if for every
ε, δ > 0, the following are true.

– Completeness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn,
and where S is a set of size m(n) of examples drawn i.i.d. from Dn, the
randomized output of h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) ≤ α · L(Hn) + ε

]
≥ 1 − δ

– Soundness. If for any distribution Dn ∈ Dn, any hypothesis class Hn ∈ Cn,
and where S is a set of size m(n) of examples drawn i.i.d. from Dn, then for
any adversarial intermediary I that corrupts queries or responses from A to
ODn

, the random variable h = AODn (Hn, ε, δ,S) satisfies

Pr
h

[
L(h) > α · L(Hn) + ε

∣∣∣ h �= reject
]

< δ

We say that soundness is computational if I is p.p.t..
– Privacy. For any adversarial intermediary I, there exists a p.p.t. simulation

algorithm Sim that satisfies:
{
Vreal

ODn

A,I
}

c≈
{
VidealSim,I

}

We stipulate that each of the sets of random examples given to the simulator are
of size m(n).

Fig. 4. Privacy of Covert Verifiable Learning. The “real world,” where the AI interacts
with the learner and oracle, should be indistinguishable from the “ideal world,” where
the AI interacts with a simulator that plays both roles of learner and oracle. Impor-
tantly, the simulator works without knowledge of the underlying hypothesis classes or
the actual oracle, though it does have access to random examples from the concept.

In keeping with the terminology from the computational learning theory
literature, we will often say that a collection of hypothesis classes C is verifiably
(m(n), α)-verifiably covertly learnable if there exists a (m(n), α)-covert verifiable
learning algorithm for C (Fig. 4).

28 R. Canetti and A. Karchmer

Discussion

Variants. We would like to highlight some salient variants of the model that we
have presented above. The variants are on the nature of the random examples
that are present in the interaction. For example, we could also consider the case
that the learner’s random examples are publicly known. We call this setting the
public Covert Verifiable learning variant. In this public variant, achieving sound-
ness and privacy is much more difficult, as the learner has no private examples to
leverage against the AI. However, this variant significantly increases the practi-
cality of the model because it may be infeasible for the learner to acquire private
examples. In Sect. 3.4, we focus on this case. Another variant of the formally
stated model involves weakening the privacy requirement to require indistin-
guishability of only the membership queries, and not for the joint distribution
of the private random examples and membership queries. This model (called
the fully private examples variant), may be justified, as we already consider pri-
vate examples in order to achieve soundness. In the full version [CK21] of this
paper, we show that this model is quite powerful, even if we require perfect pri-
vacy and statistical soundness. We opt to focus (in Sect. 2.4 and Sect. 2.5) on
the case where privacy is with respect to the joint distribution since it seems
to be the “right” level of difficulty. Additionally, this model provides strong
“zero-knowledge-style” guarantees in a forward focused manner. That is, even if
private examples used for verification (a one time event) become known in the
future, then the privacy guarantees remain intact.

3.2 Making CLF Verifiable

In this section, we show how to add the soundness guarantee of Covert Verifiable
Learning to CLF. More specifically, we want to provide the guarantee that if for
any concept Df ∈ DFn

, any hypothesis class FOURIERT,b,n ∈ CFOURIER,b,n, and
where S is a set of size m(n) of examples drawn i.i.d. from Df , then for any
adversarial intermediary I that corrupts oracle responses from the interaction
between CLF and Of , the random variable h = CLFOf (FOURIERT,b,n, ε, δ,S)
satisfies

Pr
h

[
Lτ,b(h) > α · Lτ,b(FOURIERT,b,n) + ε

∣∣∣ h �= reject
]

< δ

Our basic idea to achieve verifiability is to wrap the CLF algorithm with an
outer loop, which attempts to catch the adversarial intermediary cheating by
randomly deciding to either execute CLF (the “learning” case) or send queries
which are part of the learner’s private example set S (the “test” case). The crucial
point is: the queries of the learning case can be shown to be computationally
indistinguishable from the test queries (which are simply uniformly random).
This system gives an easy proof idea for soundness: The (p.p.t.) adversarial
intermediary must lie a similar amount on the learning case and the test case,
else it would contradict the pseudorandomness of the queries made by CLF.
Therefore, since the AI can always be detected if it lies in the test case, it
cannot reliably lie on the learning case, without being detected.

Covert Learning: How to Learn with an Untrusted Intermediary 29

Theorem 11. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNμ,n assumption, there exists

a (poly(n), 1)-covert verifiable learning algorithm for CFOURIER,b,n with respect
to DFn

, OFn
, and Lτ,b, and where the degree bound b ≤ O(log n) and τ ≥

1/poly(n).

3.3 Making CLDT Verifiable

To make CLDT verifiable, almost all of the work has already been done by con-
structing CVLF. We may modify CLDT by replacing the subroutine of CLF in
CVLF, and this alone suffices. The resulting algorithm, called CVLDT, is pre-
sented [CK21].

All three guarantees of Covert Verifiable Learning intuitively hold for CLDT,
as all the communication of CVLDT is contained in CVLDT.

Theorem 12. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNμ,n assumption, the collection

CDTn,s
for s ≤ poly(n) is (poly(n), 4)- covertly verifiably learnable, with respect

to DFn
, OFn

, and LD, and where ε ≥ 1/poly(n), and δ ≥ exp(−n).

3.4 Verifiability Without Secret Examples

In this section, we pose the question: can we achieve Covert Verifiable Learning
in a setting where the learner has no private examples to leverage against the
adversarial intermediary? Indeed, we are considering the public Covert Verifiable
Learning model briefly discussed in Sect. 3.1.

We will demonstrate that our CVL protocol for low-degree Fourier coeffi-
cients of Sect. 2.4 can be adapted to fit the Public Covert Verifiable Learning
(PCVL) model (formally defined in [CK21]). From there, we can conclude that
an application to decision trees is suitable, similar to that of Sect. 2.5.

Our algorithm CVLF (and soundness proof) falls short of the PCVL model—
it makes crucial use of secret examples. Specifically, the AI will always know
when the learner is executing a “test” case, because it has access to the test
examples before hand, and as a result can distinguish them from the learning
case. Our idea to adapt is as follows. Instead of threatening to send private
random examples at each iteration (with probability 1/2), we threaten to send
the public examples under the same masking that we use on the Goldreich-Levin
queries. In this way, we can show that the computationally bounded AI will be
caught lying with high probability; the AI will not be able to link the masked
public examples with the real public examples. We will require that the concept
is computed by a polynomial size DNF formula4, and this will be essential to
letting the learner detect an AI. Why this is the case will become clear shortly,
but intuitively, we must assume some structure on the concept; otherwise the
learner has no hope in obtaining any correlation on the public examples save
querying for them. Clearly, if the learner cannot get any correlation on the public
examples without querying them, then the AI will always be able to deceive the
learner.
4 Note that, this is still an agnostic setting, despite not being fully agnostic, as before.

30 R. Canetti and A. Karchmer

Definition 26. Let s-DNFn be the class of all f : {0, 1}n → {−1, 1} such that
f is computable by a size s DNF formula. A DNF formula is said to have size s
if it has s clauses.

Theorem 13. Under the (2ω(n
1
2), 2ω(n

1
2))−SLPNμ,n assumption, there exists a

proper (poly(n), 1)-Public covert verifiable learning algorithm for CFOURIER,b,n

with respect to Ds-DNFn
, Os-DNFn

, and Lτ,b, and where δ ≥ exp(−n), b ≤
O(log n), 1/poly(n) ≤ τ ≤ 1/2(2s + 1)2, and the DNF size s ≤ poly(n).

The algorithm is presented as PCVLF in [CK21].

Proof Idea. We begin with a lemma that establishes a correlation between the
“test case” queries of the learner and the publicly available examples. Using this
lemma, we can prove soundness by showing that if the AI lies on a “significant”
amount of queries then the learner will be able to detect this using the correlation
with the public examples. On the other hand, we observe that if the AI lies
on a “less than significant” amount of queries, completeness still holds from
the properties of CVLF—thus we conclude PCVLF is sound. For completeness,
we need to prove that, essentially, the learner will not accidentally abort the
interaction too often. This is done by bounding the probability that an honest AI
is unlucky using standard probabilistic techniques. Finally, the proof of privacy
is done by adapting the simulator and reduction of the proof of Theorem 11 to
appropriately reflect the changes we made in the test case of the algorithm.

Acknowledgements. We would like to thank Shafi Goldwasser and Ronitt Rubinfeld
for very helpful discussions on the model and its motivation.

References

[ACPS09] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic prim-
itives and circular-secure encryption based on hard learning problems. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 35

[AFK13] Awasthi, P., Feldman, V., Kanade, V.: Learning using local membership
queries. In: Conference on Learning Theory, pp. 398–431 (2013)

[Ale03] Alekhnovich, M.: More on average case vs approximation complexity. In:
44th Annual IEEE Symposium on Foundations of Computer Science 2003,
Proceedings, pp. 298–307. IEEE (2003)

[BFKL93] Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives
based on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-48329-2 24

[BHZ19] Bshouty, N.H., Haddad-Zaknoon, C.A.: Adaptive exact learning of deci-
sion trees from membership queries. In: Algorithmic Learning Theory,
pp. 207–234. PMLR (2019)

[Blu03] Blum, A.: Open problems-learning a function of r relevant variables. Lect.
Notes Comput. Sci. 2777, 731–733 (2003)

https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/3-540-48329-2_24

Covert Learning: How to Learn with an Untrusted Intermediary 31

[CK21] Canetti, R., Karchmer, A.: Covert learning: how to learn with an
untrusted intermediary (2021). https://ia.cr/2021/764

[Cla11] Clark, D.E.: Outsourcing lead optimization: the eye of the storm. Drug
Discov. Today 16(3–4), 147–157 (2011)

[DAG06] Dudek, A.Z., Arodz, T., Gálvez, J.: Computational methods in developing
quantitative structure-activity relationships (QSAR): a review. Comb.
Chem. High Throughput Screening 9(3), 213–228 (2006)

[DGRDR08] De Grave, K., Ramon, J., De Raedt, L.: Active learning for high through-
put screening. In: Jean-Fran, J.-F., Berthold, M.R., Horváth, T. (eds.) DS
2008. LNCS (LNAI), vol. 5255, pp. 185–196. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-88411-8 19

[Fel09] Feldman, V.: On the power of membership queries in agnostic learning.
J. Mach. Learn. Res. 10, 163–182 (2009)

[GL89] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way func-
tions. In: Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, pp. 25–32 (1989)

[GRSY20] Goldwasser, S., Rothblum, G.N., Shafer, J., Yehudayoff, A.: Interactive
proofs for verifying machine learning. Electronic Colloquium on Compu-
tational Complexity (ECCC), 27:58 (2020)

[IKOS19] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptographic sens-
ing. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11694, pp. 583–604. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-26954-8 19

[Jac97] Jackson, J.C.: An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution. J. Comput. Syst. Sci. 55(3),
414–440 (1997)

[KLN+11] Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith,
A.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

[KM93] Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier
spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

[LPP04] Landrum, G.A., Penzotti, J.E., Putta, S.: Machine-learning models for
combinatorial catalyst discovery. Meas. Sci. Technol. 16(1), 270 (2004)

[OS07] O’Donnell, R., Servedio, R.A.: Learning monotone decision trees in poly-
nomial time. SIAM J. Comput. 37(3), 827–844 (2007)

[Pie12] Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková,
M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOF-
SEM 2012. LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27660-6 9

[PRR06] Parnas, M., Ron, D., Rubinfeld, R.: Tolerant property testing and dis-
tance approximation. J. Comput. Syst. Sci. 72(6), 1012–1042 (2006)

[YS16] Yu, Yu., Steinberger, J.: Pseudorandom functions in almost constant
depth from low-noise LPN. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 154–183. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 6

[YZ16] Yu, Yu., Zhang, J.: Cryptography with auxiliary input and trapdoor from
constant-noise LPN. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 214–243. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53018-4 9

https://ia.cr/2021/764
https://doi.org/10.1007/978-3-540-88411-8_19
https://doi.org/10.1007/978-3-030-26954-8_19
https://doi.org/10.1007/978-3-030-26954-8_19
https://doi.org/10.1007/978-3-642-27660-6_9
https://doi.org/10.1007/978-3-662-49896-5_6
https://doi.org/10.1007/978-3-662-53018-4_9
https://doi.org/10.1007/978-3-662-53018-4_9

Random-Index PIR and Applications

Craig Gentry1(B), Shai Halevi1, Bernardo Magri2,3, Jesper Buus Nielsen2,3,
and Sophia Yakoubov3

1 Algorand Foundation, New York, USA
shaih@alum.mit.edu

2 Concordium Blockchain Research Center, Aarhus University, Aarhus, Denmark
{magri,jbn}@cs.au.dk

3 Aarhus University, Aarhus, Denmark

Abstract. Private information retrieval (PIR) lets a client retrieve an
entry from a database without the server learning which entry was
retrieved. Here we study a weaker variant that we call random-index PIR
(RPIR), where the retrieved index is an output rather than an input of
the protocol, and is chosen at random. RPIR is clearly weaker than PIR,
but it suffices for some interesting applications and may be realized more
efficiently than full-blown PIR.

We report here on two lines of work, both tied to RPIR but otherwise
largely unrelated. The first line of work studies RPIR as a primitive on
its own. Perhaps surprisingly, we show that RPIR is in fact equivalent
to PIR when there are no restrictions on the number of communication
rounds. On the other hand, RPIR can be implemented in a “noninterac-
tive” setting (with pre-processing), which is clearly impossible for PIR.
For two-server RPIR we even show a truly noninteractive solution, offer-
ing information-theoretic security without any pre-processing.

The other line of work, which was the original motivation for our
work, uses RPIR to improve on the recent work of Benhamouda et al.
(TCC’20) for maintaining secret values on public blockchains. Their solu-
tion depends on a method for selecting many random public keys from
a PKI while hiding most of the selected keys from an adversary. How-
ever, the method they proposed is vulnerable to a double-dipping attack,
limiting its resilience. Here we observe that a RPIR protocol, where the
client is implemented via secure MPC, can eliminate that vulnerabil-
ity. We thus get a secrets-on-blockchain protocol (and more generally
large-scale MPC) which is resilient to any fraction f < 1/2 of cor-
rupted parties, resolving the main open problem left from the work of
Benhamouda et al.

As the client in this solution is implemented via secure MPC, it really
brings home the need to make it as efficient as possible. We thus strive to

J. B. Nielsen—Partially funded by The Concordium Foundation; The Danish Indepen-
dent Research Council under Grant-ID DFF-8021-00366B (BETHE); The Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM).
S. Yakoubov—Funded by the European Research Council (ERC) under the European
Unions’s Horizon 2020 research and innovation programme under grant agreement No
669255 (MPCPRO).

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 32–61, 2021.
https://doi.org/10.1007/978-3-030-90456-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_2

Random-Index PIR and Applications 33

explore whatever efficiency gains we can get by using RPIR rather than
PIR. We achieve more gains by using batch RPIR where multiple indexes
are retrieved at once. Lastly, we observe that this application can make
do with a weaker security guarantee than full RPIR, and show that this
weaker variant can be realized even more efficiently. We discuss one pro-
tocol in particular that may be attractive for practical implementations.

Keywords: Private information retrieval · Batch PIR · Random PIR ·
Large-scale MPC · Secrets on blockchain · Random ORAM

1 Introduction

A Private Information Retrieval (PIR) scheme lets a client fetch an entry from a
database held by a server, without the server learning which entry was retrieved.
The database is typically modelled as an n-bit string DB ∈ {0, 1}n, known in
full to the server. The client has an input index i ∈ [n], and its goal is to retrieve
the bit DB[i]. A PIR scheme is secure if the server cannot distinguish between
any two possible input indexes i, i′ for the client, and it is nontrivial if the server
sends to the client less than n bits. PIR was introduced by Chor et al. [6] who
described a solution with multiple non-colluding servers; a single-server solution
was first described by Kushilevitz and Ostrovsky [14].

1.1 Random-Index PIR (RPIR)

In this work we consider a similar setting, but with a twist. Rather than a spe-
cific index, in our setting the client wishes to retrieve a random index from
the database, without the server learning which index was retrieved. Namely,
instead of the index i being an input to the protocol, we consider it an out-
put, and require that it be random. We call such a scheme random-index PIR
(RPIR). While clearly a weaker variant of PIR, we show below that RPIR suffices
for some interesting applications. Of course, RPIR can be easily implemented
by having the client choose i at random and then run a PIR protocol. But
being a weaker variant, we could hope that RPIR is easier and more efficient
to implement than full blown PIR. Such improved efficiency could be critical
for some applications, including our motivating application of large-scale secure
MPC (which is described below).

One measure of efficiency is the number of communication rounds. We show
that, unlike PIR, RPIR can be implemented in a “noninteractive” fashion.
Namely, after a pre-processing stage in which the client sends to the server some
string whose length depends only on the security parameter κ, we only allow
server-to-client communication and we want to perform arbitrarily many RPIR
executions. It is clear that no such nontrivial PIR protocols exist, since there is no
way for such protocols to incorporate the client’s input. However, we show that
some existing interactive PIR protocols can be adapted to yield noninteractive

34 C. Gentry et al.

RPIR protocols. (These can be based on fully homomorphic encryption or one-
way trapdoor permutations.) Moreover, for the two-server setting we show that
a nontrivial noninteractive protocol is possible even without any pre-processing.
Other examples of settings where RPIR is more efficient than PIR are discussed
in Sect. 1.3 below.

On the other hand, we show that such efficiency gains are necessarily limited,
since every RPIR protocol can be converted into a PIR protocol with only slightly
more communication and rounds. Specifically, given a r-round RPIR protocol
with server communication m < n, we show how to construct:

– A ((r + 1) log n)-round PIR with server communication 1 + m log n; or
– A (r + 2)-round PIR with server communication O(

√
mn).

We note that the latter transformation relies on a long client-to-server message.
We also describe a simple variant with a short client-to-server message, where
the server communication is m + n

2 .

1.2 Applications

Computing on Public Blockchains. Our initial motivation for studying
RPIR came from a recent work of Benhamouda et al. [2] (BGG+) about
maintaining secret values on public blockchains. In that work they construct
a scalable evolving-committee proactive secret-sharing (ECPSS) scheme, that
allows dynamically-changing small committees to maintain a secret over a pub-
lic blockchain. The main challenge in that work was to choose a small committee
from within a large population in such a way that (a) everyone can send mes-
sages to committee members, and yet (b) a mobile adversary does not learn who
they are and therefore cannot target them for corruption. Once chosen, such
committees can execute the proactive secret sharing protocol (or more generally
any secure-MPC protocol).

A drawback of the BGG+ scheme is that, in order to guarantee an honest
majority within the committees, it can only tolerate up to about 1/4 corruptions
overall. The reason is that committee-selection is done by individual parties, who
“nominate” members to the new committee by drawing their public keys from
a list and then re-randomizing them. This nomination style enables a double-
dipping adversarial strategy: corrupted parties can always nominate other cor-
rupted parties, while honest parties nominate randomly selected parties (so they
too sometimes nominate corrupted parties by chance).

To do better, we can try to delegate the nomination task to previous com-
mittees, who would emulate an honest nominator via secure MPC. Roughly, the
function computed by the committee-selection procedure of [2] is

Nominate(n public keys, randomness) = k re-randomized keys.

We can let previous committees compute that randomized function, without the
adversary learning anything about who the honest nominees are, hence depriving
it of the double-dipping strategy above. The problem with this solution, however,

Random-Index PIR and Applications 35

is that it scales poorly with the total number of parties: The circuit of the
Nominate function above has input of size linear in n, hence a naive secure-MPC
protocol for it would have complexity more than n.

This is where RPIR comes in. The only role that the input plays in the
Nominate function is of a database from which we choose k � n random entries.
We therefore employ a variant of MPC-in-the-head, letting previous committees
play the role of the RPIR client while each committee member individually
mentally plays the role of the RPIR server. (The database is the list of n public
keys, which is known to everyone; so, the state of the RPIR server is public.)

The result of the RPIR protocol is the previous committee holding a set of
k random keys, but since we have honest-majority in the committee then the
adversary does not know whose keys were chosen. The committee then runs a
secure-MPC protocol to re-randomize the chosen keys and output the result.
This time, the circuit size depends on the complexity of the RPIR client. For
some RPIR constructions, this depends only on k, not on the total number n of
keys. Putting all these ideas together we get:
Theorem (informal): In the model of [2], there exists a scalable ECPSS scheme
tolerating any fraction f < 1/2 of corrupted parties.

Of course, once we have the committees we can again let them compute on
secrets rather than just pass them along, hence we have:
Theorem (informal): In the model of [2], there exists a scalable secure MPC
scheme tolerating any fraction f < 1/2 of corrupted parties.

PIR with Preprocessing. In many applications it is interesting to consider
offline preprocessing before the inputs are known, which can help improve the
efficiency of the on-line computation once all the inputs are available. This app-
roach is very popular in contemporary secure-MPC work, and was also used for
PIR (e.g., [1,8]).

As it turns out, our PIR-to-RPIR reductions from Sect. 2.4 can be used for
that purpose. These reductions have the following format: They first run the
underlying RPIR protocol on the original database DB, letting the client learn
a few random bits from it. The client then sends a single message to the server,
from which the server computes a new database DB′ of size n′ < n. The parties
then run a PIR protocol on the new (smaller) database, and the client uses what
it learns to compute the bit that it needs from the original DB.

This format makes it possible to run the RPIR protocol in a pre-processing
phase, before the client knowns what index it wants, and only execute the last
part during the online phase. Using a standard PIR to implement the RPIR in
the pre-processing step, we obtain a black-box method of shifting work from the
online to the offline phase of a PIR protocol. If CC(n, κ) is the server communica-
tion complexity of an underlying PIR protocol (as a function of the database size
n and the security parameter κ), the online server communication complexity of
the resulting protocol with preprocessing will be only CC(n′, κ). Specifically:

36 C. Gentry et al.

– Using the SimplePIR protocol from Sect. 2.4, we obtain a PIR-with-
Preprocessing protocol with offline communication CC(n, κ), online commu-
nication CC(n/2, κ), and the client sending one more message of log n bits.

– Using the PartitionPIR protocol from Sect. 2.4, we get for any t < n a PIR-
with-Preprocessing protocol with offline communication t · CC(n, κ), online
communication CC(O(n/t), κ), and the client sending one more long message
(of more than n bits).

1.3 Batch RPIR

In our first motivating application in Sect. 1.2, the client needs to fetch not
one but k random entries from the database, so we would like to amortize the
work and implement it in complexity less than that of k independent RPIR
executions. Building such batch PIR protocols from PIR was studied by Ishai,
Kushilevitz, Ostrovsky, and Sahai (IKOS) [13]. However, their solutions require
the underlying protocol to be a full-blown PIR protocol (rather than RPIR). It is
not clear how to build batch-RPIR protocols from an underlying RPIR protocol
any better than either running k independent instances of RPIR, or converting
to full-blown PIR and using the IKOS solutions.

But it turns out that our motivating application can make do with a weaker
security notion than what RPIR provides. What we care about in this applica-
tion is not quite that the indexes look random to the server, but rather that a
server with limited “corruption budget” in the entire population cannot corrupt
too many of the selected indexes (whp). Roughly, we can replace the pseudo-
randomness of the indexes from the server’s perspective by unpredictability.
Defining this property takes some care. In Sect. 5.1 we provide a definition in
the real/ideal style.

Having lowered the security bar, we take another look at the constructions
from [13] and note that we can use better parameters than are possible for batch-
PIR (or batch-RPIR with strong security). Moreover, we describe in Sect. 5.2 an
even simpler construction that cannot possibly work for batch PIR or strong-
RPIR, but we prove that it meets our weaker security notion of batch RPIR.
The simplicity and efficiency of this construction may be attractive for practical
implementations.

1.4 Multi-server RPIR

It is known that nontrivial single-server PIR cannot offer information-theoretic
privacy; nontrivial single-server RPIR has the same limitation. It is inter-
esting to ask whether by involving multiple non-colluding servers (each with
the same database as input) we can build RPIR that is (a) nontrivial, (b)
information-theoretic and (c) noninteractive (meaning that only a single round
of communication—from each server to the client—is required). We answer
this question in the affirmative; we show a two-server nontrivial, information-
theoretic noninteractive RPIR with communication complexity equal to half the
size of the database.

Random-Index PIR and Applications 37

While it seems that multi-server RPIR cannot be used directly in the appli-
cation of secure computation on public blockchains, it can be used for PIR
pre-processing (either for a multi-server PIR execution with the same servers
that participated in the pre-processing, or perhaps even for a single-server PIR
execution with only one of those servers).

1.5 Organization

In Sect. 2 we formally define (single-server and multi-server) RPIR, and study the
relationship between RPIR and PIR. In Sect. 3 we describe some constructions
of RPIR in the noninteractive setting. In Sect. 4 we describe the application of
batch RPIR with weak security to the architecture of Benhamouda et al. [2]
for large-scale MPC. Motivated by this application, we study in Sect. 5 more
efficient constructions of batch-RPIR.

In Appendix A we describe the notion of a random-index oblivious-RAM
(RORAM), which relates to ORAM in the same way that RPIR relates to PIR. In
particular we show that RORAM can replace RPIR in the same context of large-
scale MPC, offering a somewhat different performance profile. For completeness,
in Appendix B we discuss a third approach for the large-scale MPC context that
uses mix-nets.

2 Random-Index Private Information Retrieval

2.1 Background: Private Information Retrieval

A single-server Private Information Retrieval (PIR) scheme is a two-party proto-
col Π between a server holding a n-bit string DB ∈ {0, 1}n and a client holding
an index i ∈ [n]. In addition, both parties know the security parameter κ.

We assume for simplicity that the server communication complexity, i.e. the
number of bits sent by the server, depends only on n and κ, but not on the specific
values of DB and i (or the protocol randomness), and denote it by CCΠ(n, κ).
The two properties of interest for a PIR protocol Π are its client-privacy (i.e.
the index i is hidden from the server) and its communication complexity.

Definition 1 (Single-server PIR [14]). A two-party protocol Π is a (semi-
honest) single-server PIR if it satisfies:

Correctness. The client’s output is DB[i], except with probability negligible
in κ.

Client privacy. For every n, database DB ∈ {0, 1}n, and indexes i, i′ ∈ [n],
the ensembles serverView(Π(κ, n; i,DB))κ and serverView(Π(κ, n; i′,DB))κ

are indistinguishable.
Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n.

38 C. Gentry et al.

Batch PIR. In this work we are also interested in amortized protocols in which
the client queries more than a single entry of the database at a time, but rather
k indexes at a time. The definition of batch PIR is identical to the above, except
that the single index i ∈ [n] is replaced with a vector �i ∈ [n]k. Everything else
remains the same.

Multi-server PIR. We additionally explore protocols involving multiple non-
colluding servers. The definition of multi-server PIR is similar to the above,
except that client privacy is defined with respect to each of the servers (individ-
ually).

Ideal Functionality. A different approach for defining PIR is via an ideal func-
tionality that gives no output to the server and outputs DB[i] to an honest
client.1 We will use that style of definition for random-PIR below, as it seems
easier to work with than the one above, especially for the weaker-security variant
from Sect. 5.1.

Nevertheless, defining security of PIR using an ideal functionality can some-
times be problematic. If the server is maliciously corrupted, then the simulator
needs an extra input, the database, from the malicious server. However, the
server communication is too small to even define the database, so this extrac-
tion cannot be performed. In this work we only consider semi-honest corruptions
of the server, thus we do not run into this problem.

2.2 Defining RPIR

A random-index PIR (RPIR) protocol is different from PIR in that the index i
is an output of the client, rather than an input. Namely, RPIR is a two-party
protocol between a server holding a n-entry database DB ∈ {0, 1}n and a client
with no input. At the conclusion of the protocol, the client is supposed to get a
pair (i,DB[i]), with i random in [n].

Just like standard PIR, an RPIR protocol is parametrized by the security
parameter κ and the database size n, both known to the two parties. As above,
we assume that the server communication complexity depends only on n and κ
but not on the specific value of DB or the randomness, and we denote it by
CCΠ(n, κ).

It will later (when we define batch RPIR) be convenient to define client-
privacy by means of an “ideal RPIR functionality”, i.e., via simulation-based
security. We give both simulation-based and game-based definitions of RPIR
below, and show that the two definitions are equivalent. Later we only use the
simulation-based style.

1 Note that standard PIR does not provide any privacy to the server, hence the func-
tionality lets a corrupted client get the entire database.

Random-Index PIR and Applications 39

The RPIR Functionality. The functionality FRPIR accepts from the server an
input DB ∈ {0, 1}∗. It leaks DB to the adversary, and waits for the client to
ask for an output. When the client does, FRPIR sets n = |DB|, chooses i ← [n]
uniformly at random, and returns (i,DB[i]) to the client (when the adversary
says it’s time to give output).

Definition 2 (Single-server RPIR (simulation-based)). A two-party pro-
tocol Π is a single-server RPIR if it realizes the functionality FRPIR above with
semi-honest server and honest client in the UC framework [4]. It is nontrivial if
for any κ and large enough n if it holds that CCΠ(n, κ) < n.

Remarks on the Formalization. When defining RPIR we leak the entire database
to the adversary. This models that the database is not required to be kept secret
from the client or anyone in the network. (We only require that the client learns
DB[i]; we do not give the database as output to the client as this would turn it
into an implementation requirement.) Since we give the database to the adver-
sary, the protocol is allowed to leak information on DB to the adversary even if
the server and client are both honest. So, the protocol can run over an authenti-
cated but unencrypted channel. One could have chosen a more complicated for-
mulation where nothing is leaked to the adversary when both server and client
are honest; this complicates the formulation and is not needed in our setting, so
we opted for the simpler formulation.

It is important to consider a corrupt (semi-honest) server in order to ensure
that such a server cannot learn i. However, we choose not to consider a corrupt
(semi-honest) client, since our main application (where the client is run within an
MPC, and thus honest) does not require this. Considering definitions for corrupt
clients, as well as considering malicious corruptions, is left for future work.

Next, for clarity, we look at the relationship of the simulation-based definition
given above to a game-based definition. We can adopt the definition of [14] to
the case of a random index as follows.

Definition 3 (Single-server RPIR (game-based)). A two-party protocol Π
is a (semi-honest) single-server RPIR if it satisfies:

Correctness. The client’s output is (i,DB[i]), where i is statistically close to
uniform on [n].

Client privacy. For every n, database DB ∈ {0, 1}n and a run of the protocol,
let iReal be the index output to the client and let iRan be a fresh uniform value
from [n]. We require that the ensembles (serverView(Π(κ, n;DB))κ, iReal) and
(serverView(Π(κ, n;DB))κ, iRan) are indistinguishable.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n.

In the statement of correctness, we ask that i is statistically close to uniform.
We could have asked for only computational indistinguishability, but these are
equivalent when i is on a domain of polynomial size.

Lemma 1. Let Π be a two-party protocol. If it is an RPIR according to Defini-
tion 3 then it is an RPIR according to Definition 2.

40 C. Gentry et al.

Proof (sketch). Assume the protocol Π fulfills the game-based definition. We
construct a simulator for the simulation-based definition. Assume without loss of
generality an environment E and a dummy adversary. This means the simulator
is de facto interacting with E .

Our simulator engages with E in an honest execution Π(κ, n;DB), where
the simulator plays the role of client. As a result of the interaction, E gets
serverView(Π(κ, n;DB)); the simulator gets iReal. When that happens, the sim-
ulator will instruct FRPIR to deliver output to the client. The effect of this is that
E learns a uniformly random iRan from FRPIR as client output. (It also learns
DB[iRan], but it can compute this value from iRan anyways, since it knows DB.)
So, the view of E is (serverView(Π(κ, n;DB)), iRan).

Consider now a hybrid world with a hacked FRPIR, where we allow the simu-
lator to give iReal to FRPIR when it instructs delivery, and then FRPIR gives iReal

as output to the client instead of a fresh random value. This means that the
view of E becomes (serverView(Π(κ, n;DB)), iReal). We can use a reduction to
client privacy to prove that the simulation and the hybrid are indistinguishable.
Notice that the view of E in the hybrid has the same distribution as the the view
of E in a real protocol execution.

Lemma 2. Let Π be a two-party protocol. If it is an RPIR according to Defini-
tion 2 then it is an RPIR according to Definition 3.

This is clear, since any distinguisher that can break client privacy can be
used to build an environment that can distinguish between the client output in
a real execution and the ideal client output that it sees when interacting with
the simulator.

2.3 Defining Multi-server RPIR

We also consider a multi-server version of RPIR. An �-server RPIR protocol
involves � servers Server1, . . . ,Server� each holding the same database DB ∈
{0, 1}n, and a client who wants to retrieve a random index i of the database.
Multi-server RPIR is interesting since, while nontrivial single-server RPIR can-
not provide information-theoretic privacy, nontrivial multi-server RPIR can. We
therefore require perfect correctness and client-privacy for multi-server RPIR.
Since we do not extend multi-server RPIR to the batch setting, we use the simple
definitions of multi-server RPIR that are analogous to those for PIR (Sect. 2.1).

Definition 4 (Multi-server RPIR). An (�+1)-party protocol Π is a (semi-
honest) �-server RPIR if it satisfies:

Correctness. For every n, every database DB ∈ {0, 1}n, and every index i ∈
[n], the client’s output in Π(n; ⊥, DB, . . . ,DB) is (i,DB[i]) with probability
1
n .

Client privacy. For every n, every database DB ∈ {0, 1}n, and every server
index j ∈ [�], the view serverViewj(Π(n; ⊥, DB, . . . ,DB))κ is independent of
the index i that the client outputs.

Nontriviality. For any κ and large enough n, it holds that CCΠ(n, κ) < n
(where the CCΠ(n, κ) is communication complexity of all the servers).

Random-Index PIR and Applications 41

2.4 RPIR is equivalent to PIR

In terms of existence, it is obvious that PIR implies RPIR: the client chooses
a random index i ∈ [n] and the parties then run a PIR protocol in which the
client learns DB[i]. The opposite direction is less clear: how can the client get
a specific index in the database using the RPIR tool that only provides random
indexes? Below we show, however, that RPIR does imply PIR with very small
overhead. We begin with a simple PIR protocol that works when n is a power
of two, makes a single RPIR call, and has the server send n/2 additional bits.
This protocol is described in Fig. 1.

Fig. 1. A simple PIR protocol with one RPIR call and n/2 bits of communication

Lemma 3. For n a power of two, the SimplePIR protocol from Fig. 1 is a non-
trivial PIR protocol in the hybrid-RPIR model in which the client sends log n
bits and the server sends n/2 bits.

Proof. Correctness and complexity are obvious. For client privacy, note that in
the hybrid-RPIR model the client gets a uniformly random index j ∈ [n], and
since n is a power of two then j is also a uniformly random log(n)-bit string.
Hence from the server’s perspective, the message δ = i⊕ j from the client is also
a uniformly random log(n)-bit string, and in particular it carries no information
about the client’s input i.

Next, we note that Steps 3–4 in the SimplePIR protocol actually implement
the trivial PIR protocol for a database of size n/2: The server sends all the
n/2 bits and the client looks up the one that it needs. We can do better by
replacing these steps with a recursive call for the same PIR protocol on this
smaller database, as described in Fig. 2.

Theorem 1. An r-round RPIR with server-communication m = m(n, κ) and
client-communication k = k(n, κ) can be transformed into a PIR protocol with
(r+1)�log n	 rounds, server communication 1+

∑�log n�
i=1 m(2i, κ) ≤ 1+m(n, κ) ·

�log n	, and client communication
∑�log n�

i=1 i + k(2i, κ) ≤ (�log(n)�
2

)
+ k(n, κ) ·

�log n	.
Proof (sketch). On a size-n database, the server pads it to size the nearest power
of two and then the parties run the RecursivePIR protocol from Fig. 2. The com-
plexity is obvious, and correctness and privacy are argued by induction, following
the same proof as for Lemma 3.

42 C. Gentry et al.

RecursivePIR Client(i ∈ [n]), Server(DB ∈ {0, 1}n) (n is a power of two)

0. If n = 1 the server sends DB to the client. Else continue to Step 1.
1. The server and client run RPIR Client, Server(DB) , client gets (j, DB[j])
2. Client sends to server δ = i ⊕ j (i, j are viewed as log(n)-bit strings)
3. Server partitions the index-set [n] into n/2 pairs p = {k, k ⊕ δ} and computes

for each pair the bit σp = DB[k] ⊕ DB[k ⊕ δ].
4. Let DB = (σp)p be the resulting database of size n/2, and let i ∈ [n/2] be

the index corresponding to the pair {i, j} in this database.
The parties run RecursivePIR Client(i), Server(DB) , client gets σi .

5. Client outputs DB[i] = DB[j] σi .

Fig. 2. A recursive PIR protocol with log n calls to RPIR and one bit of communication

PIR from RPIR with Fewer Rounds. While the protocol in Fig. 2 has a low
communication complexity, it has a large number of rounds. Below we describe
instead a protocol that has the same number of rounds as the SimplePIR protocol
from Fig. 1, but lower server communication complexity. The basic idea is for
the client to learn more random indexes DB[j], then partition the bits in DB
into larger sets instead of the pairs {i, i ⊕ δ} from SimplePIR. Specifically, we
have a parameter t that tells us how large should these groups be (Fig. 3).

PartitionPIR Client(i ∈ [n]), Server(DB ∈ {0, 1}n) (n is divisible by t)

1. Server and client run in parallel t executions RPIR Client, Server(DB) ,
where t is large enough to ensure that the client gets whp at least t − 1
distinct entries (j1, DB[j1]), . . . , (jt−1, DB[jt−1]), all different from i.

2. Client chooses a random partition P of [n] into sets of size t, with one of them
being I = {i, j1, j2, . . . , jt−1}, and sends P to server.

3. For each t-subset J ∈ P , the server computes the bit σJ = ⊕j∈JDB[j], and
sends these n/t bits to the client.

4. Client computes DB[i] = DB[j1] ⊕ · · · ⊕ DB[jt−1] ⊕ σI .

Fig. 3. A partition-based PIR protocol

Exactly the same proof as Lemma 3 shows that this is a secure PIR protocol
in the RPIR-hybrid model, with t′ executions of the RPIR protocol all on the
same database DB, and additional server communication of n/t bits. If we have
a r-round RPIR protocol with server communication m = m(n, κ) < n/2, we can
set t ≈ √

n/m and t′ = t(1 + o(1)), and then we would get a (r + 2)-round PIR
protocol with server communication t′m+n/t = (1+o(1))

√
nm+

√
mn ≈ 2

√
nm.

Theorem 2. Given a r-round RPIR protocol with server-communication m,
there is a PIR protocol with r + 2 rounds and server communication O(

√
mn).�

Random-Index PIR and Applications 43

We note that the client communication in the protocol is large, since describ-
ing a random partition of [n] into t-subsets takes more than n bits. Finding a
protocol with few rounds and small client communication is an open problem.

3 RPIR Protocols

3.1 Noninteractive RPIR

While equivalent in terms of existence, RPIR can still be cheaper to implement
than PIR by some measures. In particular, the fact that the client has no input in
RPIR means that it can be (almost) noninteractive, something that is obviously
impossible for PIR. Many interactive PIR protocols can be converted to nonin-
teractive RPIR protocols; below we sketch two such protocols. One is based on
FHE, and the other on trapdoor permutations (similar to Kushilevitz-Ostrovsky
[15]). We suspect that many other PIR protocols can be similarly modified to
obtain noninteractive RPIR; we leave it to future work to explore whether those
other protocols can give better parameters.

In both of the protocols described in this section, the client sends a short
“pre-processing message” to the server, and then the server can succinctly send
to the client arbitrarily many random entries from the database, without learning
what they are and without any more messages from the client. (These proto-
cols can be upgraded to handle a malicious server by adding succinct proofs of
correct behavior; however, we only need semi-honest security for our primary
application, described in Sect. 4.)

Noninteractive RPIR from FHE. It is fairly easy to implement noninterac-
tive RPIR from FHE. For example, the client sends to the server “once and for
all” an encryption of a seed s for a PRF fs(·) with range [n]. Then the server can
run many instances of a protocol, where it chooses a random x, and homomor-
phically computes i = fs(x) and y = DB[i]. The server sends the ciphertexts
encrypting (i, y) to the client, who can decrypt them.

Noninteractive RPIR from One-Way Trapdoor Permutations. This
construction is based on the Kushilevitz-Ostrovsky PIR protocol from [15]. In
this protocol the client sends the description of a permutation to the server, and
then the server can send as many random indexes to the client as we want. As
in the original Kushilevitz-Ostrovsky protocol, each random index costs just a
little less than n bits of communication for an n-bit database.

Background: UOWHFs from One-Way Permutations. Recall that Naor and
Yung described in [16] a construction for 2-to-1 universal one-way hash func-
tions (UOWHF) based on one-way permutations. Namely, given a one-way per-
mutation π over {0, 1}k (and some other public randomness that we ignore here)
they define a 2-to-1 function hπ : {0, 1}k → {0, 1}k−1, such that given π and a
random x ∈ {0, 1}k, it is hard to find the second pre-image x′ �= x such that

44 C. Gentry et al.

hπ(x′) = hπ(x). However given a trapdoor π−1, it is easy to compute the two
pre-images of any y ∈ {0, 1}k−1. Finally, applying the Goldreich-Levin hard-
core predicate [12], we also know that given the permutation π and random
x, r ∈ {0, 1}k, the inner product 〈r, x′〉 mod 2 is pseudorandom, where x′ is the
second pre-image of hπ(x).

A Noninteractive Variant of the Kushilevitz-Ostrovsky Construction. In a pre-
processing phase, the client chooses a one-way permutation π over {0, 1}k

together with its trapdoor π−1, and sends π to the server. Let hπ(x) be a Naor-
Yung UOWHF based on π, that has input length k and output length k − 1.

The server partitions the database into pairs of k-bit blocks (x0
i , x

1
i), i =

1, 2, For simplicity, we assume below that x0
i �= x1

i for all i (we mention at
the end how to change the protocol when this is not the case). The server also
chooses a random r ∈ {0, 1}k that defines a Goldreich-Levin hard-core predicate
[12] ρr(x) = 〈x, r〉 mod 2. The server sends to the client the k-bit string r, and
also for each pair (x0

i , x
1
i) it sends a tuple
(
hπ(x0

i), hπ(x1
i), ρr(x0

i) ⊕ ρr(x1
i)).

Note that each tuple is only (2k − 1)-bits long, whereas the pair itself has 2k
bits, so this is a nontrivial protocol (as long as there are more than k pairs).

For each received tuple (y0
i , y1

i , σi), the client uses its trapdoor to invert
the hash function, computing the two possible pre-images u0

i , v
0
i ∈ h−1

π (y0
i) and

u1
i , v

1
i ∈ h−1

π (y1
i). By construction, x0

i = u0
i or x0

i = v0
i and similarly x1

i = u1
i or

x1
i = v1

i . Next, the client finds an index i such that,

(a) either ρr(u0
i) = ρr(v0

i) and ρr(u1
i) �= ρr(v1

i), or
(b) ρr(u0

i) �= ρr(v0
i) and ρr(u1

i) = ρr(v1
i).

As r was chosen at random and x0
i �= x1

i for all i, there is at least one such index
whp. If there are more than one then the client chooses one of them at random.
Moreover it can be shown that the index used by the client is uniform in [n].

In case (a) the client knows that ρr(x0
i) = ρr(u0

i) = ρr(v0
i), and so it can

use σ = ρr(x0
i) ⊕ ρr(x1

i) to determine the value of ρr(x1
i), and therefore decide

whether x1
i = u1

i or x1
i = v1

i . Similarly in case (b) the client knows that ρr(x1
i) =

ρr(u1
i) = ρr(v1

i), so it can use σ to decide if x0
i = u0

i or x0
i = v0

i . In either case,
the client learns a single k-bit block of the database.

The security of this protocol follows from the OWUHF property and the
Goldreich-Levin hard-core predicate, in exactly the same way as in [15].

Theorem 3. If trapdoor one-way permutations exist, then there exists a non-
trivial noninteractive random-PIR protocol. �
Remark: To deal with generic databases where we could have x0

i = x1
i for some i,

the server can choose another k-bit string w ∈ {0, 1}n which is also sent to the
client, and use x′1

i = x1
i ⊕ w instead of x1

i for all i. This ensures that x0
i �= x′1

i

except with exponentially small probability, and the client can mask-out w at
the end of the protocol if needed.

Random-Index PIR and Applications 45

3.2 Multi-server RPIR Protocols

It is well known that nontrivial single-server PIR cannot offer information-
theoretic security, and RPIR is no different. To get nontrivial information-
theoretic security we need to look at multi-server solutions, where two or more
non-colluding servers are used. In this section, we describe two non-interactive
multi-server solutions. The first one (Sect. 3.2) is an information-theoretic two-
server RPIR; the second one (Sect. 3.2) uses some symmetric cryptography, and
is based on Reed-Muller PIR.

Note that converting existing multi-server PIR schemes to noninteractive
multi-server RPIR schemes is only possible under very specific conditions. Multi-
server PIR schemes always have a message from the client to the servers, to
encode the query; to convert multi-server PIR to noninteractive multi-server
RPIR, we need the servers to generate these messages locally on their own.
However, in many PIR schemes (such as the Reed-Muller and matching-vector
PIR schemes), these messages need to be highly correlated, making local gener-
ation by the servers (instead of coordinated generation by the client) difficult.
In Sect. 3.2, we describe a construction where the servers don’t need any corre-
lated messages; in Sect. 3.2, we adapt the Reed-Muller construction—which does
require correlated messages—by giving the servers some correlated information
as setup, which they are able to expand to support an arbitrary number of
RPIR executions. (Note that not all forms of correlated messages are amenable
to this kind of expansion from efficient cryptographic primitives. The random-
ness required for the matching vectors PIR construction does not appear to be,
given the state of the art in non-interactive randomness expansion.)

Non-interactive Information-Theoretic Two-Server RPIR. In Fig. 4
below we describe a nontrivial two-server solution that offers information-
theoretic security and in addition is completely noninteractive. Differently than
the protocols from Sect. 3.1, this protocol does not even have a pre-processing
phase. All it has are two messages, one from each server, from which the client
can deduce DB[i] for a random index i, with i independent of the view of each
server (separately). In this protocol, one server sends a single database record,
while the other sends n/2 values each of which correspond to the XOR of two
database records. The client is able to use the record sent by the first server to
recover another record from one of the values sent by the second server. (Reduc-
ing the communication complexity in this noninteractive multi-server setting
below n/2 for a size-n database remains an interesting open problem.)

Lemma 4. For even n, the SimpleMSPIR protocol from Fig. 4 is a noninterac-
tive, nontrivial two-server RPIR protocol with information theoretic security in
which the servers send n/2 + log(n) + 1 bits.

Proof. Correctness and complexity are obvious. For client privacy, we separately
consider privacy against Server1 and Server2. Server1, who chooses j, learns
nothing about i since the random and uniform δ is unknown to Server1, and

46 C. Gentry et al.

Fig. 4. A simple multi-server RPIR protocol with n/2 bits of communication

each choice of δ leads to a different choice of i. Similarly, Server2, who chooses
δ, also learns nothing about i since the random and uniform index j is unknown
to Server2, and each choice of j leads to a different choice of i.

Non-interactive Computational Multi-server RPIR with a Better
Rate. We can use Reed-Muller codes and ideas from pseudo-random secret
sharing to get a non-interactive multi-server scheme based on the existence of
pseudo-random generators. (Note that, since this scheme relies on computational
assumptions, it meets only a weaker—computational—version of Definition 4.)
The construction follows the usual roadmap to get PIR from Reed-Muller codes,
and then uses pseudo-random secret sharing (PRSS) to generate the line of
points usually sent to the servers by the client.

We will encode DB as a multivariate polynomial. Let v be the number of
formal variables. Let d be the maximal degree of the polynomial. Let q > d be a
prime. We consider multivariate polynomials f(x) ∈ Zq[x1, . . . , xv] of degree at
most d. It is easy to see that there are K =

(
v+d

v

)
unique monomials of degree

at most d,2 so we can use f(x) to encode an element from Z
K
q . This will allow

us to encode at least K(log2(q) − 1) bits of the database by encoding bits into
positions in the binary representation of the field elements in Zq. Note that this
is a locally-decodable encoding: To decode a bit we only need the field element
it sits in. The codewode will be f(Zv

q), i.e., we evaluate f on all points in Z
v
q .

There are N = qv such points. We can encode by placing the K elements DB[i]

2 Consider an array of length v + d. Consider placing a 0 in v positions and a 1
in the remaining d positions. Let the degree of xi be the number of 1’s between
the i’th occurrence of a 0 and the (i + 1)’th occurrence of a 0 (or the end of the
array when i = v). Clearly this gives total degree at most d and there is a one-to-one
correspondence between such assignments and monomials of degree at most d. There
are k =

(
v+d
v

)
ways to place the v entries which are 0.

Random-Index PIR and Applications 47

in K evaluation points f(a) and then use interpolation to compute f(Zv
q). This

gives a linear code
Enc : Z

K
q → Z

N
q .

Let fDB(x) be the polynomial used to encode DB. Below we call a point a encod-
ing entries DB[j] a database point. We assume that each database point encodes
the same number of bits.

We let d = q − 2. This means that the rate is

K

N
=

(
v+q−2

v

)

qv
.

For a constant v we have that
(

v + q − 2
v

)

= Θq(qv) ,

which gives us a constant rate.

Interactive Information-Theoretic Multi-server RPIR. We can use the local
decodability of Reed-Muller to get a multi-server RPIR for c = q − 1 servers
S1, . . . ,Sc as follows.

1. Each server Si forms the polynomial fDB(x).
2. The client picks a uniformly random a ∈ Z

v
q and b ∈ Z

v
q and for λ = 1, . . . , q−1

it lets cλ = a + λb. It queries Si for fDB(ci).3

3. Let y be a formal variable over Zq and consider the univariate polynomial
g(y) = fDB(a + yb). Since f(x) has degree at most d, so does g(y). The client
knows q − 1 points on g(y) as g(i) = fDB(ci). Since d + 1 = q − 1 the client
can use interpolation to learn g(0) = fDB(a).

4. If a happens to be a database point, then let j be uniform among the encoded
entries j and output (j,DB[j]). Otherwise, output ⊥.

Privacy follows from a + ib perfectly hiding a when i �= 0. So a single server
gets no information on a. Therefore, if a hits a database point j, then it hits
a uniformly random database point in the view of the all servers. And each
database point contains the same number of bits, so the position i will be uni-
form. The schemes has constant correctness. Namely, since the rate is constant it
happens with constant probability that a hits a database point. This correctness
can be amplified to any constant by a constant number of parallel repetitions
and taking (j,DB[j]) from the first correct instance. It can be amplified to neg-
ligible probability of error by repeating a linear number of times in the security
parameter. For a batch scheme one can run O(m) instances in parallel to get m
correct instances except with negligible probability.

3 For the reader familiar with Reed-Muller based PIR it looks odd to pick a at random.
However, this leads up to the non-interactive versions, as detailed below.

48 C. Gentry et al.

Achieving Noninteractivity. In the above scheme the client can of course choose
a to be a database point, yielding the well known Reed-Muller based multi-
server PIR. Before showing how to derive a non-interactive version using pseudo-
random secret sharing, we review the notion of pseudo-random secret sharing
[9].

Consider servers S1, . . . ,Sc for c = q − 1. For each i we can pick a seed si for
a pseudo-random generator and give si to all servers except Si. By stretching
the seed this will allow the servers to create any number of instances of pseudo-
random α1, . . . , αc ∈ Zq where αi is known to all servers Sj �= Si and where αi is
indistinguishable from uniform in the view of Si. Below we assume for simplicity
that the elements are truly uniform.

Let gi(y) ∈ Zq[y] be a polynomial of degree 1 such that gi(0) = 1 and
gi(i) = 0. Let gα(y) =

∑c
i=1 αigi(y). Note that gα(0) =

∑c
i=1 αi. This is an

element uniformly random in the view of all servers. We can therefore take this
to be one coordinate in our evaluation point a ∈ Z

v
q . We can repeat v times

in parallel to get all of a. Note also that Si can compute gα(i) =
∑c

j=1 αjgj(i)
as it knows αj for j �= i and gj(i) = 0 for j = i. This gives us the following
non-interactive version.

1. The setup consists of seeds s1, . . . , sc for a PRG where si is given to all servers
but Si.

2. Each server Si forms the polynomial fDB(x).
3. The servers use v parallel instances of PRSS of lines (with t = 1) to implicitly

generate uniformly random a ∈ Z
v and b ∈ Z

v such that for λ = 1, . . . , q − 1
server Sλ knows cλ = a + λb. Then Si sends (ci, fDB(ci)) to C.

4. Let y ∈ Zq and consider the univariate polynomial g(y) = fDB(a + yb). The
client uses interpolation to learn g(0) = fDB(a).

5. If a happens to be a point where fDB encodes a database entries, then let
j be uniform among the encoded entries and output (j,DB[j]). Otherwise,
output ⊥.

Again we can use parallel repetition to amplify correctness.
We now consider the communication complexity of the protocol. We can

make the optimization that only S1 and S2 send c1 and c2, as c3, . . . , cq−1 can
be computed by interpolation: the evaluation points are on a line. This is 2v
elements from Zq. All q − 1 servers have to send fDB(ci), which is an element
from Zq. This is, all in all, less than q + 2v elements from Zq. For constant
v the communication is therefore Θq(q) elements from Zq. We have that K =
Θq(qv) so for constant v and growing K we have that the communication is
ΘK(K1/v log(K)) bits. The database has size K log2(K). The constant rate of
the Reed-Muller code will deteriorate with growing constant v. Therefore the
number of times to iterate the RPIR in parallel to get a given correctness level
will grow with v. The communication for each iteration drops with growing v.
This means that in practice for a fixed K there is a tradeoff to be found for v.

Random-Index PIR and Applications 49

4 Applications to Large-Scale DoS-Resistant
Computation

As described in the introduction, a strong motivation for RPIR is setting up com-
munication channels to random parties who should remain anonymous. Below
we call these target-anonymous communication channels. Imagine a very large
number of parties (perhaps millions), that want to securely perform some com-
putation in the presence of a powerful denial of service (DoS) adversary. While
distributed computation requires sending and receiving messages, in this setting
the parties run the risk of being knocked offline by a targeted DoS attack as soon
as the adversary learns that they play an important role in the computation.

If the adversary is limited to attacking at most some fraction f of the parties,
then one solution is to run a secure MPC protocol among all the parties. If the
MPC protocol is resilient to f fraction of misbehaving participants, the DoS
adversary will not be able to disable sufficiently many participants to thwart
the computation. But this resilience comes at a steep price, as MPC protocols
typically requires communication between all pairs of parties, which is completely
infeasible at the scales that we consider.

Another approach entails assigning special roles to a small number of parties,
and relying on them to carry out the computation. This could be much more
efficient, but security is a challenge: as soon as the adversary discovers what
parties are playing the special roles, it can target those parties and knock them
offline. Hence, realizing these potential efficiency gains requires that the parties
playing special roles remain anonymous up until they speak, and moreover they
can only speak once before their special role is concluded, else the adversary
can identify and target them. The parties playing special roles can be thought
of in terms of a sequence of committees, where parties in committee i speak
simultaneously in the i’th round.

Secure-MPC protocols where parties only need to speak once were described
in several recent works [2,3,7,11]. But using these protocols in the presence of
that powerful DoS adversary requires solving a delicate problem: How can you
send messages to these parties, in order to provide them with the state that they
need to carry out their task? This is where we want to use target-anonymous
channels. We need to continuously establish communication channels to random
parties, while preventing the adversary from learning who are the recipients, so
that it cannot target them for attacks.

Benhamouda et al. (BGG+) proposed in [2] one approach using a “nomina-
tion” process. First, a nominating committee is established using standard tools
(such as VRFs, or by solving moderately hard puzzles). Then, every (honest)
nominator p chooses another random party q, looks up its public key, and broad-
casts a re-randomized version of that key. This lets everyone send messages to q,
without the adversary knowing who the recipient is. As pointed out in the intro-
duction, a side-effect of this nomination technique is that the adversary knows
the identity of the nominee if either the nominator or the nominee is corrupt. So,
if overall only some fraction f of the parties are corrupt, the adversary will know
the identities of around f + (1 − f)f of the committee members. This doubling

50 C. Gentry et al.

is unfortunate; it implies that honest majority among the nominees (which is
crucial for secure computation with guaranteed output delivery), requires that
the overall fraction is bounded by some f < 0.29. In the following, we outline
an approach that does not have this adversarial doubling effect.

4.1 Target Anonymous Communication Channels from RPIR

Rather than let individual parties establish target anonymous channels to future
committee members, our solution leverage past committees to do this job.

That is, past committees will run a secure-MPC protocol to choose a ran-
dom small subset of the public keys, re-randomize them, and then broadcast
the result. Since past committees are ensured (by induction) to have honest
majority, we no longer allow corrupt nominators to choose corrupt nominees.
We are ensured that all future committee members are chosen at random, and
the adversary does not know who they are (unless it happened to corrupt them
independently).

The only issue with this solution, is that the circuit describing the nomina-
tor’s function is large: The input consists of everyone’s keys (which could number
in the millions), hence a naive MPC protocol will be too expensive. This is where
we use RPIR, we let past committees simulate the RPIR client, while the state
of the RPIR server remains completely public (and so can be simulated locally
by each committee member). Specifically, the server state in our protocol con-
sists of the list of public keys belonging to all the parties, as well as some public
randomness (e.g., derived from a beacon). Since the client’s work and communi-
cation is much smaller than the database size, we obtain a secure-MPC protocol
that scales well with the total number of parties.

To simplify the presentation we describe this solution in terms of a noninter-
active RPIR protocol, but of course it can be adapted to handle arbitrary RPIR
protocols. Let Π = (Setup,Client,Server) be a noninteractive RPIR protocol,
where:

– Setup(1κ) → (sk, pk) is the client’s setup function;
– Server(pk,DB, ρ) → m is the server’s processing function (where ρ is ran-

domness); and
– Client(sk,m) → (i,DB[i]) is the client’s output function.

For simplicity, assume that we have a one-time trusted setup, which is used to
run the Setup procedure, makes pk publicly known by anyone, and shares sk
among the members of an initial committee. Let d be the number of rounds
required to run Client together with a re-randomization of the obtained key.
Assume we are given a public source of randomness, and target anonymous
communication channels to d committees, each guaranteed to have an honest
majority, and the first of which has secret shares of the RPIR secret key sk. Then,
we can generate communication channels to an arbitrary additional number of
committees by using our existing committees to run the RPIR protocol (followed
by key randomization).

Random-Index PIR and Applications 51

Server: All committee members locally obtain the randomness ρ (from a pub-
lic source of randomness), and evaluate Server(pk,DB, ρ) → m. Note that,
because the client secret state is secret shared, this message is not enough to
reveal the output to any individual committee member. Note also that, since
this computation was entirely local, no committee member needs to speak
during this computation.

Output: The members of the d committees run Client(sk,m) → (i,DB[i]), fol-
lowed by a re-randomization of the retrieved public key, using techniques from
[2,3,7,11] so that each committee only needs to speak once. Then they pub-
licly reveal the output, thus establishing as many target-anonymous channels
as needed to keep the process going.

This process consumes d committees, but can be used to make any desired
number of key-selections and rerandomizations. In particular we can use it to
establish d more committees that would handle the next selection, in addition to
however many are needed to an external application. We can even let the same
committee handle different steps of different RPIR instances: The last step in
the protocol for the next committee, the second-to-last step in the protocol for
the committee after that, et cetera. To conclude, we state the following informal
theorem.

Theorem 4. (informal) In the model of Benhamouda et al. [2] with a broadcast
channel and mobile adversary, given anonymous PKE (for the target-anonymous
channels) and a nontrivial weak RPIR protocol satisfying Definition 6, there
exists a scalable evolving-committee proactive secret sharing scheme (ECPSS) as
per [2, Def 2.3], tolerating any fraction f < 1/2 of corrupt parties.

We note that the construction from [2] required other components (such as
NIZK), but in our honest-majority setting those can be replaced by information-
theoretic counterparts. We also comment that while the description above used
public randomness, this can be replaced by the client generating the required
randomness via a secure-MPC protocol. Also, we can use the same commit-
tees and the same techniques to get scalable secure-MPC for realizing arbitrary
functions.

Theorem 5. (informal) In the model of Benhamouda et al. [2] with a broadcast
channel and mobile adversary, given anonymous PKE (for the target-anonymous
channels) and a nontrivial weak RPIR protocol satisfying Definition 6, there
exists scalable secure-MPC protocols for realizing any poly-time function, toler-
ating any fraction f < 1/2 of corrupt parties.

5 Batch RPIR

We consider the application to large-scale secure-MPC as a “stress test” for
RPIR efficiency. Not only do we need to run the RPIR client inside a secure-
MPC protocol, but this protocol must use the only-speak-once pattern [11] which
makes things hard, and we need to run very many copies of it to generate enough

52 C. Gentry et al.

target-anonymous channels for it to sustain itself. It is therefore crucial to get
the basic RPIR construction as efficient as can be for this application, which
is what we do in this section. In particular, we consider a batch protocol that
can choose multiple random indexes cheaper than choosing them one at a time,
and also observe that the application can use a weaker security property than
Definition 2, making it possible to do even better.

5.1 Definitions

Definition 2 can be easily adapted to amortized protocols in which the client
gets more than a single entry of the database—say k entries at a time. The
functionality for this case, denoted Fk

RPIR, is almost identical to the one from
Sect. 2.2, except that the random single index i ∈ [n] is replaced with a vector
�i ∈ [n]k. Everything else remains the same.

As we mentioned, it turns out that Definition 2 can sometimes be an overkill
for applications of batch RPIR. In particular our motivating application uses
RPIR to choose a random subset of indexes, where some subsets are “bad”
(since they include too many corrupted parties), but they are very rare. In such
an application, we may not really care about the chosen subset being random.
Rather all we care about is that the odds of hitting a “bad subset” remains
small. We thus weaken the security condition to only say that every collection of
subsets that has negligible probability-mass by the uniform distribution, remains
with a negligible probability-mass also in the RPIR output.

Formalizing this requirement using a game-based approach seems rather awk-
ward, since the distribution of indexes that we care about is the a-posteriori
distribution as seen by a computationally-bounded server. Fortunately it is easy
to formulate it using the real/ideal approach of Definition 2. All we need to do
is change the Fk

RPIR functionality, so that instead of the uniform distribution,
it chooses the indexes from some other distribution D which is “not too differ-
ent” than uniform. Let us first define the statistical property of being not too
different.

Definition 5 ((f, α)-domination). Let D1,D2 be two distributions with X
being the union of their support sets, and let f, α ∈ R

+ be positive numbers.
We say that D1 is (f, α)-dominated by D2 if for any subset S ⊆ X it holds that
D1(S) ≤ f · D2(S) + α.

An ensemble D1 = {D1,k}k is polynomially dominated by another ensemble
D2 = {D2,k}k if each D1,i is (fi, αi)-dominated by D2,i, where {fk}k is polyno-
mially bounded and {αk}k is negligible.

It is clear that if D1 is polynomially dominated by D2, and some collection
S has negligible probability in D2, then it also has negligible probability in D1.

The Parametrized RPIR Functionality FD
RPIR. The functionality is similar to

the standard batch functionality Fk
RPIR, except that it is also parametrized by a

distribution ensemble D = {Dn}n (with Dn being a distribution over [n]k).

Random-Index PIR and Applications 53

When the client is honest and the server input is some DB ∈ {0, 1}n, the
functionality draws an index set �i ← Dn (rather than uniform in [n]k) and
returns to the client (�i,DB[�i]).

Definition 6 (Single-server batch weak RPIR). A two-party protocol Π is
a (semi-honest) single-server batch weak RPIR if it UC realizes the functionality
FD

RPIR with semi-honest server and honest client for some D which is polynomially
dominated by the uniform distribution over [n]κ (with κ the security parameter).
It is nontrivial if the server sends less than n bits.

5.2 Constructions

Ishai, Kushilevitz, Ostrovsky, and Sahai (IKOS) described in [13] several con-
structions for batch PIR from standard PIR protocols. Unfortunately, even if we
wanted to use those constructions to fetch random indexes (rather than specific
ones), the underlying protocol must still be full-blown PIR (rather than RPIR).
Luckily, it turns out that we can use similar approaches with an underlying RPIR
protocol if we are willing to settle for the weaker security from Definition 6, and
we can even get must better parameters than what the IKOS constructions give.

Specifically, below we describe how to modify the IKOS “expander-based”
construction from [13]. The original construction, used to fetch k entries out of
an n-entry database, is parameterized by two more integers m > d ≥ 2. Using
public randomness which is shared by the server and client, the construction
uses m bins and puts every database entry into d random bins. This created a
degree-d bipartite expander, with the n database entries on one side and the m
bins on the other. Then for every k-subset of entries that the client wants to
fetch, it finds a perfect matching in that expander graph, with the k requested
entries on one side and a k-subset of the bins on the other. The client then uses
standard PIR to fetch these items from their bins (and dummy items from the
other bins).

As we mentioned above, even if we wanted to use that construction to fetch
k random items, we would still need to fetch specific items from selected bins,
so the underlying protocol must be a PIR protocol, rather than RPIR. In terms
of parameters, that construction has “rate” of ρ = 1/d ≤ 1/2 (meaning the
total space taken by all the bins is d times larger than the database size), and it
requires m = Ω(k(nk)1/(d−1)), which is optimal for replication-based construc-
tions. We can apply this construction with much better parameters, however, if
we are willing to settle for the weak security notion (but the underlying protocol
must still be PIR rather than RPIR).

Lemma 5. There exists a weak-RPIR scheme as per Definition 6 based on the
IKOS expander-based construction [13], with parameters (k, d,m) such that m =
(1 + O(e−d))k.

Proof (sketch). When running the expander-based scheme above with a much
smaller m, there will necessarily be some k-subsets of indexes that cannot be

54 C. Gentry et al.

retrieved. The RPIR protocol will therefore have the client resample its indexes
until it arrives at a subset that can be retrieved one per bin.

It is easy to see that the fraction of k-subsets that cannot be retrieved with
some parameters d,m, corresponds exactly to the failure probability of inserting
k random elements into a Cuckoo hash table [17] with d hash functions and
table-size m. It is known that for d = 2 it is enough to use m = (2 + ε)k to get
failure probability o(1), and for larger d we get the same guarantee with m =
(1 + O(e−d))k (see e.g., Fountoulakis-Panagiotou-Steger [10]). The probability
mass of each of the achievable subsets is therefore increased only by a 1 + o(1)
factor, which means that any negligible-probability collection of subsets remain
negligible. �

A Practically Appealing Weak Batch-RPIR. While the construction
above has good parameters, the work that the client has to perform is far
from simple, as it needs to resample indexes until some perfect matching can
be found in the construction graph. In our motivating application this would
have to be done via secure MPC, requiring a complex and costly protocol. One
could attempt to simplify this construction by having the client simply choose k
random bins and retrieve a random item from each bin, but analyzing this vari-
ant is very challenging. Instead, we describe and analyze below an even simpler
and more efficient construction.

The Construction. In addition to n (the number of entries) and k (the number
of indexes to fetch), the construction is also parametrized by m (the number of
bins). We assume that both n and k are divisible by m, and note that k/m is
playing a somewhat similar role to d in the expander-based construction. We
deterministically partition the indexes in [n] into m bins of size n/m each, for
example {0, . . . , n

m − 1}, { n
m , . . . , 2n

m − 1}, Then we just fetch k/m random
indexes from each bin using an underlying RPIR protocol. See Fig. 5.

Fig. 5. A simple batch-RPIR protocol.

Note that by replicating each bin k/m times and fetching one item from each
replica, we can view this construction as a very specific instance of the IKOS
construction from [13] with exactly k bins, where instead of putting each item
in d = k/m random bins we put the first n/m items in bins 0, . . . k

m − 1, then
the next n/m items in bins k

m , . . . 2k
m − 1, and so on. Note that we may end

up fetching the same item more than once in this protocol, but this is quite
acceptable for our application for large-scale MPC.

Random-Index PIR and Applications 55

Analysis of the Simple Batch-RPIR Protocol. Clearly, if the underlying
RPIR protocol has work w(κ, n) and communication c(κ, n) on databases of
size n, then this protocol has work k·w(κ, n/m) and communication k·c(κ, n/m).
In particular if the work is w(κ, n) = p(κ) · n then the work in this protocol is
p(κ) · kn/m, which is m times better than the naive solution of just running k
RPIR instances against the entire database.

Theorem 6. The simple batch-RPIR protocol from Fig. 5 is a weak-RPIR pro-
tocol as per Definition 6, provided that the underlying RPIR protocol satisfies
Definition 2 and that m = O(log κ/ log log κ) (and k = poly(κ)).

We show that when drawing k elements at random from a universe of size n
which is split evenly between m bins, the probability drawing exactly k/m ele-
ments from each bin is only exponentially small in m, regardless of n. Since
m = O(log κ/ log log κ), it means a noticeable probability in κ. We state the
following lemma.

Lemma 6.
(
n
k

)
/
(
n/m
k/m

)m
= Θ(1√

k
(C · k/m)m/2) for some constant C.

Proof. We use Stirling’s approximation (cf. [19]) – namely, there are constants
C1 =

√
2π, and C2 = e, such that for all positive t

C1

√
t · (t/e)t < t! < C2

√
t · (t/e)t.

Using these bounds we have:
(

n

k

)

/

(
n/m

k/m

)m

=
n!(k/m)!m(n/m − k/m)!m

k!(n − k)!(n/m)!m

<
C

(1+2m)
2 · nn+ 1

2 · (k/m)k+m
2 · ((n − k)/m)n−k+m

2

C
(2+m)
1 · kk+ 1

2 · (n − k)n−k+ 1
2 · (n/m)n+m

2

=
C

(1+2m)
2 · k(m−1)/2 · (n − k)(m−1)/2

C
(2+m)
1 · n(m−1)/2 · mm/2

<
C2

C2
1 · √

k
·
(

C4
2

C2
1

· k

m

)m/2

<
1

2
√

k
· (

9k/m
)m/2

. (1)

Lemma 6 implies that drawing k/m elements from each of the m bins (rather
than drawing k elements uniformly from the entire universe) increases the prob-
ability of each k-subset by at most a factor of Θ(1√

k
(C · k/m)m/2) for some

C < 9. For k = poly(κ) and m = O(log κ/ log log κ), this factor is polynomial in
the security parameter. Finally, the underlying RPIR protocol satisfying Defini-
tion 2 implies that the server cannot distinguish the output of the protocol from
drawing exactly k/m random elements from each bin. This concludes the proof
of Theorem 6. �

56 C. Gentry et al.

Table 1. Some parameters for batch-RPIR with n = 10000 and security level=128.

f m k

0.2 10 440

0.2 40 640

0.25 10 680

0.25 40 1000

f m k

0.3 10 1080

0.3 40 1560

0.35 10 1850

0.40 10 3500

Setting the Parameters. While the general Theorem 6 only holds for very
small m = O(log κ/ log log κ), in the context of our motivating application we
can choose much large values, linear in κ. The reason is that the probability mass
of the “bad subsets” in this case is exponentially small, not just negligible. As we
show below we can choose the committee-size k as a small multiple of the security
parameter. Hence, we not only get much better resilience than Benhamouda et
al. [2], but also much smaller committees, and the secure-MPC cost can be kept
small by increasing the number of bins m.

In the application from Sect. 4 we have an adversary A that watches an
execution of the batch-RPIR protocols (for choosing k parties from a universe
of size n in m bins). Then A adaptively corrupts up to f · n parties (for some
f < 1/2). For each corrupted party, A learns if that party was chosen or not,
and its goal is to corrupt k/2 (or more) of the parties that were chosen by the
protocol.

To get concrete parameters, we can start by analyzing the naive RPIR pro-
tocol with one bin, and then view Lemma 6 as quantifying the security loss
by going to the more efficient protocol with m bins. By that lemma, the min-
entropy of D (and hence the security level) decreases by roughly m

2 log(9k/m)
bits when switching from one to m bins. Analyzing the naive protocol is rather
straightforward. For example, we can use the Chernoff bound, which says that
for any f � 1/2 we can set k = c · κ for some c = Θ(f(12 − f)2) to get security
level of (say) 2κ. We can then set m = κ/Θ(log c) = k/θ(c log c) and lose only κ
bits, obtaining security κ while selecting only a constant Θ(c log c) parties from
each bin.

It turns out that for our parameter regime the Chernoff bound is rather
loose, and we get much better concrete parameters using an exact calculation.
Specifically, for the one-bin protocol we need to compute the probability that a
random f -subset of [n] contains more than 1/2 of the elements in [k]. The exact
expression for this probability is

k∑

i=k/2

(
fn

i

)(
(1 − f)n

k − i

)

/

(
n

k

)

,

which is easy to compute for specific n, f, k values. Accounting for the “penalty”
from Lemma 6 we therefore get:

Random-Index PIR and Applications 57

Lemma 7. For a specific setting of the parameters f, n, k,m, κ, if the underlying
RPIR protocol satisfies Definition 2 then for any poly-time adversary A it holds
that,

Pr[A corrupts k/2 or more selected parties]

≤
∑k

i=k/2

(
fn
i

)(
(1−f)n

k−i

)

(
n
k

) · 1
2
√

k
·
(

9k

m

)m/2

+ negligible(κ).

�
In Table 1 we list a few example parameters for n = 10000 parties, corrupt

fractions f ∈ [0.2, 0.4], and various k,m values that achieve security level κ =
128.

A Random-Index Oblivious-RAM

In this section we note that a random-index ORAM (RORAM) can be used in
our motivating application instead of RPIR, resulting is a somewhat different
performance profile. We begin by defining RORAM.

A Random-Index ORAM (RORAM) is a two party protocol between a client
and a server similar to Oblivious RAM (ORAM), except that the client does not
choose the indexes to read from memory. Instead, these indexes are chosen at
random (by the protocol), with the client getting (i,Memi) while hiding them
from the server. Similarly to ORAM, we have procedures for Init, Read, and
Write, except that the index to be read is not an input to Read but an output
of it.

Definition 7 (RORAM Syntax). A Random-Index ORAM protocol
(RORAM) consists of the following components:

– Init(1κ,Mem) → (cst;SST): The initialization algorithm takes as input the
security parameter and initial memory Mem ∈ {0, 1}∗ (that could be empty),
and generates an initial secret client state cst and a public server state SST.

– Read(cst,SST) → (i, x,SST′): The client fetches (i,Memi) (presumably for a
random index i ∈ |Mem|), and the server state is updated to SST′.4

– Write(cst, i, x,SST) → SST′: The content of the memory is modified by setting
Mem[i] := x and the server state is updated to SST′.

A RORAM protocol is nontrivial if the communication in each of Read and Write
operations is o(|Mem|).

Desired Properties: The security notion for (computational) ORAM from [18]
intuitively says that the server should not learn anything about which data and
in what order it is being accessed. (We may also require that the server cannot
learn if the operation is read or write.) As for RPIR, here too it is convenient to
define security by means of an ideal functionality.
4 We can assume wlog that the client state does not change throughout the protocol.

58 C. Gentry et al.

RORAM Functionality. The functionality FRORAM takes as input a (possibly
empty) initial Mem ∈ {0, 1}∗ from the client. It stores Mem internally and gives
the size of the memory |Mem| to the server.

Thereafter, on input Read from the client it sets n := |Mem|, chooses at
random an index i ← [n], returns (i,Mem[i]) to the client, and outputs n to the
server. On input Write(i, x) from the client (i in unary) it modifies Mem[i] := x
(extending the memory if needed), and outputs the new |Mem| to the server.

Definition 8 (RORAM). A two-party protocol Π is a Random ORAM if it
realizes the functionality FRORAM above.

A.1 Target Anonymous Channels from RORAM

One can use (batch) RORAM as an almost “drop-in” replacement for (batch)
RPIR to establish target-anonymous channels. Here too we have previous com-
mittees playing the part of the RORAM client, where the server state is publicly
known so every committee member can simulate the server in its head. However,
there are a few differences.

In the RPIR-based solution, the server state only changes when the database
contents change; that is, when public keys are added or removed due to a party
joining or leaving the pool of participants (or parties changing their keys). When
this happens, no additional communication is needed to run the RPIR server,
since all parties can update the server state locally. In contrast, the RORAM
server state is evolving dynamically with each read/write operation, and the
state depends on the client secret. This has several consequences. First, setting
up the server state takes O(n) communication (where n is the number of parties
in the pool of participants), since communication with the client (played by
the committees) is necessary for every write. Second, every party in the pool
of participants must continuously update the server state and keep a local copy
of it, so that it can simulate the server for itself if it gets selected to one of
these committees. Namely, whenever a client-simulating committee broadcasts
an RORAM-client message, every party in the universe must update its local
copy of the RORAM-server state accordingly.

The rest of the construction works just like the RPIR-based solution, with
the committees implementing the RORAM client and any secrets that the client
requires passed from committee to committee using the proactive secret sharing
technique of Benhamouda et al. [2]. The result is summarized by the following
informal theorem:

Theorem 7. In the model of Benhamouda et al. [2] with a broadcast channel
and mobile adversary, given anonymous PKE (for the target-anonymous chan-
nels) and a nontrivial RORAM protocol satisfying Definition 8, there exists a
scalable ECPSS scheme as per [2, Def 2.3], tolerating any fraction f < 1/2 of
corrupt parties.

We remark that there is an interesting trade-off between the RPIR-based and
the RORAM-based solutions: While both tools can provide a scalable solution

Random-Index PIR and Applications 59

(in that the amount of communication in each step is independent of the universe
size n), they differ in how many parties need to perform local computation, and
how much local computation each of them must do.

– When using RPIR, the only parties that need to perform local computations
in each step are the current committee members (so only O(κ) of them).
However, each one of them must play the RPIR server, so it must do at least
Ω(n) operations.

– When using RORAM, every party in the universe must keep up to date
with the evolving server state, so every party must perform some computa-
tion in every step.5 On the other hand, the computational complexity of one
server-step is typically just polylog(n) (depending on the underlying RORAM
protocol).

Hence we have a choice between O(κ) parties performing Ω(n) operations
each for RPIR, or all n parties performing only polylog(n) operations each for
RORAM. It is an interesting open problem to find a solution where both the
number of computing parties and the complexity of operations is sublinear in n
(possibly using some combination of RPIR and RORAM).

B Target Anonymous Channels from Mix-Nets

A different approach to setting up target anonymous communication channels is
using Mix-Nets [5], i.e., by repeatedly shuffling and re-randomizing all the keys.
This solution can be implemented simply by having individual parties self-select
to shuffle and re-randomize all parties’ public keys, then proves in zero knowledge
that they did so correctly. Since the shuffling parties do not need any secret state,
they can self-select using VRFs or by solving moderately-hard puzzles. There is
no need to establish target-anonymous channels with these parties as recipients.

Notice that this setting is slightly different than traditional use of Mix-Nets,
in that the shuffled and re-randomized entities are themselves public keys, with
the corresponding secret keys held by individual parties. This means in particular
that the adversary can always recognize its own keys in the shuffled list; only the
honest parties’ keys are hidden. Therefore, even after all the shuffling is done, we
still require fresh public randomness—unpredictable by the adversary—to select
the rerandomized keys from the shuffled database. (Otherwise a malicious last
shuffler can plant keys belonging to corrupt parties in the positions from which
keys are to be selected.)

This solution uses κ (security parameter) shuffles, so that at least one of the
shufflers will be honest with overwhelming probability. As usual with Mix-Nets,
all we need is one honest shuffler, as biased shuffles do no harm as long as at
least one shuffle along the way is uniform. Also, we assume a synchronous model,

5 Parties can perform these computations lazily, only when they are selected to a
committee, but this does not change the total number of operations that they must
perform.

60 C. Gentry et al.

so if one or more shufflers do not show up to play their roles, we simply skip
their turns.

The major drawback here is communication; each of the κ shufflers needs to
broadcast n public keys, or O(nκ) bits. This gives us a total communication com-
plexity of O(nκ2). On the other hand, this solution is very simple and requires
no evolving secret state to be passed among the parties, making it appealing in
some practical settings where the number of parties is not so large.

The solution can be optimized further, along somewhat similar lines to the
batch-RPIR construction from Sect. 5.2: We divide the database of public keys
into m bins each containing n

m public keys. We then run the Mix-Net solution
above on each bin separately, using independently-chosen set of shufflers for each
bin. Finally we use fresh public randomness to select k/m committee members
from each bin. Note that we can now use only s � κ shuffling steps, maybe as
little as s = Θ(1). Each bin has 2−s probability of having all corrupt shufflers,
hence starting from an f -fraction of corrupt parties the expected fraction of
corrupt committee members per bin is f ′ = 2−s + f(1 − 2−s), and setting m
large enough we can ensure that the actual fraction is very close to f ′ whp.

The total communication complexity of this modified scheme becomes
O(nκs). For comparison, the FHE-based batch RPIR approach (Sect. 3) in com-
bination with YOSO MPC gives total communication complexity of Õ(κ3),
where both the size of a YOSO MPC committee and the number of keys being
selected (for communication channels to the next committee) is O(κ), and the
length of an FHE decryption share is Õ(κ). While the dependence of the com-
munication complexity on n in the Mix-Nets solution may appear crippling, in
practice the term Õ(κ3) may dwarf the number of participants n.

References

1. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). https://doi.org/10.1007/
3-540-44598-6 4

2. Benhamouda, F., et al.: Can a public blockchain keep a secret? In: Pass, R.,
Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 260–290. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-64375-1 10

3. Blum, E., Katz, J., Liu-Zhang, C.-D., Loss, J.: Asynchronous byzantine agreement
with subquadratic communication. In: Pass, R., Pietrzak, K. (eds.) TCC 2020.
LNCS, vol. 12550, pp. 353–380. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-64375-1 13

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, Las Vegas, Nevada, USA, 14–17 October 2001, pp. 136–145. IEEE
Computer Society (2001)

5. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–88 (1981)

6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995

https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/3-540-44598-6_4
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/978-3-030-64375-1_13

Random-Index PIR and Applications 61

7. Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: secure
multiparty computation with dynamic participants. In: Malkin, T., Peikert, C.
(eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 94–123. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-84245-1 4

8. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online
time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp.
44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1 3

9. Cramer, R., Damg̊ard, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing
and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS,
vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30576-7 19

10. Fountoulakis, N., Panagiotou, K., Steger, A.: On the insertion time of cuckoo
hashing. SIAM J. Comput. 42(6), 2156–2181 (2013). https://arxiv.org/abs/1006.
1231

11. Gentry, C., et al.: YOSO: you only speak once. In: Malkin, T., Peikert, C. (eds.)
CRYPTO 2021. LNCS, vol. 12826, pp. 64–93. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-84245-1 3

12. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In:
21st ACM STOC, pp. 25–32. ACM Press, May 1989

13. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their applica-
tions. In: Babai, L. (ed.) 36th ACM STOC, pp. 262–271. ACM Press, June 2004

14. Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE
Computer Society Press, October 1997

15. Kushilevitz, E., Ostrovsky, R.: One-way trapdoor permutations are sufficient for
non-trivial single-server private information retrieval. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 104–121. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-45539-6 9

16. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43. ACM Press, May 1989

17. Pagh, R., Rodler, F.F.: Cuckoo hashing. In: auf der Heide, F.M. (ed.) ESA 2001.
LNCS, vol. 2161, pp. 121–133. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44676-1 10

18. Stefanov, E., et al.: Path ORAM: an extremely simple oblivious RAM protocol.
In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 299–310.
ACM Press, November 2013

19. Stirling’s approximation. https://en.wikipedia.org/wiki/Stirling%27s
approximation. Accessed Oct 2020

https://doi.org/10.1007/978-3-030-84245-1_4
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-540-30576-7_19
https://doi.org/10.1007/978-3-540-30576-7_19
https://arxiv.org/abs/1006.1231
https://arxiv.org/abs/1006.1231
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/978-3-030-84245-1_3
https://doi.org/10.1007/3-540-45539-6_9
https://doi.org/10.1007/3-540-45539-6_9
https://doi.org/10.1007/3-540-44676-1_10
https://doi.org/10.1007/3-540-44676-1_10
https://en.wikipedia.org/wiki/Stirling%27s_approximation
https://en.wikipedia.org/wiki/Stirling%27s_approximation

Forward Secret Encrypted RAM: Lower
Bounds and Applications

Alexander Bienstock1(B), Yevgeniy Dodis1, and Kevin Yeo2,3

1 New York University, New York City, USA
{abienstock,dodis}@cs.nyu.edu

2 Google, Menlo Park, USA
kwlyeo@google.com

3 Columbia University, New York City, USA

Abstract. In this paper, we study forward secret encrypted RAMs (FS
eRAMs) which enable clients to outsource the storage of an n-entry array
to a server. In the case of a catastrophic attack where both client and
server storage are compromised, FS eRAMs guarantee that the adversary
may not recover any array entries that were deleted or overwritten prior
to the attack. A simple folklore FS eRAM construction with O(log n)
overhead has been known for at least two decades. Unfortunately, no
progress has been made since then. We show the lack of progress is fun-
damental by presenting an Ω(log n) lower bound for FS eRAMs proving
that the folklore solution is optimal. To do this, we introduce the sym-
bolic model for proving cryptographic data structures lower bounds that
may be of independent interest.

Given this limitation, we investigate applications where forward
secrecy may be obtained without the additional O(log n) overhead. We
show this is possible for oblivious RAMs, memory checkers, and multicast
encryption by incorporating the ideas of the folklore FS eRAM solution
into carefully chosen constructions of the corresponding primitives.

1 Introduction

In recent years, there is an increasing desire to outsource the storage of data
to remote servers (such as cloud service providers). By outsourcing, organiza-
tions can avoid dealing with problems arising from storing data such as global
availability, replication, handling outages, etc. On the other hand, outsourcing
incurs new problems with respect to privacy. In many settings, the outsourced
data is stored by third-party entities that may not be completely trustworthy.
As a result, there is a need for cryptographic protocols that guarantee the out-
sourced data remains private even when stored by the potentially untrusted
storage servers.

A straightforward attempt to obtain privacy is to encrypt all data before
being sent to the servers. In more detail, the data owner (also referred to as the

The full version [5] is available as entry 2021/244 in the IACR eprint archive.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 62–93, 2021.
https://doi.org/10.1007/978-3-030-90456-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_3&domain=pdf
https://eprint.iacr.org/2021/244
https://eprint.iacr.org
https://doi.org/10.1007/978-3-030-90456-2_3

Forward Secret Encrypted RAM: Lower Bounds and Applications 63

client) will store a private key locally and encrypt all data that will be outsourced
to the servers. The storage servers will never see the outsourced data in plaintext.
Unfortunately, this protocol critically assumes that the client’s storage always
remains secure. In the case of a catastrophic attack where the client storage is
compromised, the adversary may be able to decrypt all prior ciphertexts observed
by the server to obtain the outsourced data in plaintext. Catastrophic attacks
will inevitably leak the current state of outsourced data as the client should be
able to retrieve the current outsourced data for use. However, we can still aim
to provide strong privacy guarantees for prior iterations of outsourced data that
may have been overwritten and/or deleted in the past. This is the core problem
that we will study in our work.

In more precise terminology, we denote this primitive as forward secret
encrypted RAMs or FS eRAMs. The notion of forward secret encrypted RAMs is
not new and has been studied several times in the past two decades under differ-
ent names such as “secure deletion” [3,35,37–39], “how to forget a secret” [14],
“self-destruction” [16] and “revocability” [7] to list some examples. FS eRAMs
consider the setting with a client and server where the client outsources the stor-
age of an array with n entries to the potentially untrusted server that enables
the client to perform read and write operations to any of the n array entries.
Note that deletion is supported by simply writing ⊥ to any array entry. For
security, FS eRAMs guarantee that even after a catastrophic corruption of both
the client and server storage (and with knowledge of the access pattern to server
storage cells from reads and writes), the adversary may only decrypt the array’s
contents at the time of the compromise. Any array entries that have been over-
written prior to the attack may not be recovered.

Fig. 1. Folklore Forward Secret Encrypted RAM construction from [14]. In this case,
we have s = 2, n = 8, and so we have two trees rooted at the secret cells, each with four
leaves corresponding to data cells. The two roots store encryption keys, while every
other interior node stores an encryption of a key which was used to encrypt the contents
of the node’s children. All cells, except for the two roots, reside in public storage. We
depict with red font the execution of the operation write(Sec, Pub, d′

4, 4) by showing
that the keys at the interior nodes on the path of the leaf holding Ek3(d4) are replaced
by new keys which in turn are used to re-encrypt their children (including new data
d′
4). This operation reads and overwrites O(log(n/s)) cells asymptotically and deletes

from Sec any keys that could be used to recover the old data d4.

64 A. Bienstock et al.

All prior FS eRAM constructions may be unified with a single folklore solu-
tion with logarithmic overhead that was, to our knowledge, first presented in [14].
The folklore construction utilizes a binary tree with n leaf nodes that will be
used to store array entries. Each internal node stores a symmetric encryption
key that is used to encrypt the contents of its two children. The leaf nodes store
array entries encrypted by their parent node’s key. Finally, the root’s encryp-
tion key is stored in client memory. To read an array entry, the corresponding
root-to-leaf path is downloaded and decrypted sequentially starting from the
root node. For writing to an array entry, the root-to-leaf path is downloaded
along with the children of all nodes in the path and the leaf node’s contents
are replaced with the new entry. All encryption keys of internal nodes in the
root-to-leaf path are re-generated randomly and all ciphertexts are re-encrypted
using the new keys before being uploaded back to the server. Figure 1 presents
a diagram of the folklore construction. For both operations, the communication
and computation costs are O(log n). If the client has the capability to store O(s)
keys, the efficiency may be reduced to O(log(n/s)) by storing the top O(log s)
levels of the tree in client storage. This folklore construction has been extended
in many interesting ways such as handling dynamic array sizes [38] and more
complex tree structures like B-trees [39].

Even though this folklore solution has been known for more than two decades,
there have been no improvements on the asymptotic efficiency. This leads to
the very important question of “Is the folklore forward secret encrypted RAM
construction optimal?”. Another important question is “If the folklore solution is
optimal, are there important applications or settings where one can incorporate
forward secret encrypted RAMs without incurring the additional logarithmic
overhead?”. In this work, we study both questions and answer affirmatively.

1.1 Our Main Result: Lower Bound

As the main result of our work, we present a lower bound for forward secret
encrypted RAMs showing the folklore construction is optimal. In the past, lower
bounds for cryptographic data structures were mainly proved in either the balls-
and-bins [8,17] or cell probe model [23,24,26,27,33,34,47] that lie on opposite
ends of the spectrum in terms of flexibility. The balls-and-bins models insists
that each server memory location (bins) may store at most one opaque encrypted
array entry (balls). Nothing else may be stored in server memory. Therefore, the
balls-and-bins model does not encompass the folklore FS eRAM construction
that utilizes server memory to store encrypted keys. On the other hand, the cell
probe model allows arbitrary encodings of array entries to be stored in server
memory. Due to this flexibility, proving cell probe lower bounds is viewed as the
holy grail. However, cell probe lower bounds are very difficult to prove and there
are long-standing gaps between lower bounds in the cell probe model and more
restrictive models.

At a high level, the cell probe model only charges data structures for probing
(either reading/writing) a cell. Probing a single cell accounts for one unit cost of
computation. All other resources of the data structure may be used without cost,

Forward Secret Encrypted RAM: Lower Bounds and Applications 65

including computation besides cell probes, randomness generation, etc. However,
this does not apply to adversaries who are typically expected to be PPT. We refer
readers to [47] for a formal definition with respect to data structures and [26]
with respect to cryptographic data structures.

It turns out that when computation is free, we can construct a simple FS
eRAM with only O(1) cell probes. Each of the n entries are encrypted using
authenticated encryption. To retrieve an entry, the data structure retrieves the
ciphertext and tries to decrypt with all keys until succeeding. This is technically
a valid, but practically infeasible, construction in the cell probe model.

To circumvent this problem, one could also require that the data structure is
a PPT algorithm. However, this only rules out natural usages of encryption and
other cryptographic primitives. Data structures may use cryptographic primi-
tives in unnatural manners (like with weaker security parameters) trying to find
an encryption scheme that is breakable by the data structure yet is intractable
for the adversary. Unfortunately, this phenomenon occurs due to the assump-
tions of the adversary’s and data structure’s computational powers (along with
the data structure’s private state) as opposed to studying the hardness of the
FS eRAM problem.

To address this gap, we introduce the symbolic model for proving lower
bounds for cryptographic data structures inspired by prior works [4,29] for other
primitives. The symbolic model enables server cells to only store strings that are
derived from a structured grammar that incorporates natural usage of important
cryptographic primitives (encryption, (dual)PRFs, etc.). The symbolic model
strikes a balance between the balls-and-bins and cell probe model by enabling
more flexible server storage beyond just encrypted array entries (like the balls-
and-bins model) but not arbitrary encodings (like the cell probe model). Impor-
tantly, our symbolic model encompasses the folklore solution. In the symbolic
model, we prove our main result showing that the folklore solution is optimal.

Theorem 1 (Informal). For any client storage s, any forward secret
encrypted RAM in the symbolic model must use Ω(log(n/s)) overhead.

Our Lower Bound Techniques. We provide a simple, non-adaptive adversary
that at each time t selects a random virtual cell to overwrite with new data.
We show that after each of these operations, in expectation, the contents of
logarithmically (in n/s) many public and secret cells that were used by the
protocol become unusable by the protocol. I.e., because the protocol must force
itself to delete some of the secrets which it used to recover the old data, for
any encoding of some other secret in a public or secret cell, if decoding requires
a deleted secret, the encoding is useless. Since we show that we can identify
Ω(log(n/s)) different such cells at each instant, we reach our lower bound.

To show that the contents of logarithmically-many cells become useless at
each t, we abstract the relationship between the contents of the secret cells, the
keys that the protocol uses, and the virtual cells at each instant into a directed
graph G in Definition 9, which we call the key-data graph. More specifically,
the contents in each secret cell, the keys that the protocol uses (and can thus

66 A. Bienstock et al.

recover using the contents of the secret and public cells), and the virtual cells
at some time t are the vertices of G. Each key vertex has an edge to another
vertex if it was used in a (d)PRF computation to generate the target vertex, or
it was used in the generation of a string (e.g., as an encryption key) in one of the
public or secret cells that encodes the target vertex. Additionally, each vertex
corresponding to the contents of a secret cell that is not a key has an edge to
another vertex if it encodes the target vertex.

By correctness, we show that at each instant of the protocol, for every data
item stored in the virtual cells, there exists a collection of paths starting from
vertices corresponding to secret cells and ending at the vertex corresponding to
the data. These paths abstract the notion that together with the contents of
the public cells at that instant, those secret cells (and not any subset of them)
can recover the data. Moreover, these paths satisfy the special property that if
the corresponding data cell is overwritten, all of the vertices along at least one
of these paths must be made indefinitely inaccessible by the protocol for it to
no longer be able to recover the old data. This choice of paths is completely
determined by the protocol and indeed the protocol may make this choice in
an effort to minimize the amount of computation it has to do. By proving a
graph-theoretic lemma about the out-degrees of the nodes on any such chosen
path in the key-data graph (i.e. that they sum to log n/s), we show that in
expectation over the virtual cell which the adversary chooses to overwrite, the
number of cells which can no longer be used to access the secrets they encode
as a consequence of all of the vertices on the path becoming inaccessible is
Ω(log(n/s)) in expectation.

1.2 “Bypassing” the Lower Bound

Equipped with the knowledge that the folklore solution is optimal, we investi-
gate applications where FS eRAMs may be incorporated without the additional
logarithmic overhead. At a high level, we will show that the folklore FS eRAM
construction may be overlaid into constructions that already utilize tree-like
structures. We prove this is true for three such primitives.

Oblivious RAMs. Oblivious RAMs (ORAMs) [1,17,18,32,36,42] are crypto-
graphic primitives in the client-server setting that obfuscate the client’s access
pattern to the underlying array entry even when the server observes physical
accesses to server storage. Note ORAMs do not protect against client corruption.
The best ORAM constructions require O(log n) overhead. A naive composition
with FS eRAMs incurs O(log2 n) overhead. In Sect. 5, we provide a construction
that essentially avoids additional overhead over ORAM:

Theorem 2 (Informal). There exists a construction that is both a forward
secret encrypted RAM and an oblivious RAM with O(log n · f(n)) overhead and
O(1) client storage for any function f(n) = ω(1).

As an additional contribution, we also show that stronger notions of forward
secret obliviousness are expensive in the cell probe model. One natural notion

Forward Secret Encrypted RAM: Lower Bounds and Applications 67

might be to provide forward secrecy for access patterns. After client compromise,
the server may not learn information about the prior accesses to data. We denote
this as strong oblivious forward secret encrypted RAMs. We note a similar lower
bound was presented in [39], but only in the balls-and-bins model. Our result is
slightly stronger since it is proved in the cell probe model.

Theorem 3 (Informal). For any client storage s, any strong oblivious forward
secret encrypted RAM in the cell probe model must use Ω(n − s) overhead.

Memory Checkers. Memory checkers (MCs) [6,11,31], are cryptographic prim-
itives in the client-server setting which provide authenticity of an outsourced
data array for the client. MCs require Ω(log n/ log log n) overhead [15], and the
best known constructions require O(log n) overhead.1 Again, a naive composition
with FS eRAM also provides forward secrecy of the data, but requires O(log2 n)
overhead. In Sect. 6, we provide a construction that avoids the extra overhead:

Theorem 4 (Informal). There exists a forward secret memory checker with
O(log n) overhead and O(1) client storage.

Multicast Encryption. Multicast encryption (ME) is a primitive that allows a
group manager to securely and efficiently distribute secrets to an evolving group
of users. After each group membership change, a new epoch is initiated, and the
group manager sends ciphertexts over a broadcast channel which allow only the
current group members to derive the next group secret.2 ME has been widely
studied in the literature [9,21,22,30,41,45,46]. Indeed, these works can be unified
into a folklore construction based on binary trees which tightly achieves optimal
O(log n) communication and computational complexity per epoch with respect
to the lower bound of [29]. However, this folklore construction has large group
manager secret state and does not protect against corruption of this state. In the
full version [5], we provide a construction that achieves group manager FS, while
reducing its secret state to O(1) size and retaining the optimal efficiency of the
folklore solution, without an extra O(log n) factor of computational overhead:

Theorem 5 (Informal). There exists an ME construction that is forward
secret with respect to group manager corruptions, has O(1) group manager secret
storage, and O(log n) communication and computation per epoch.

1 In both cases, for online MCs that access the remote storage in a deterministic and
non-adaptive manner. Online MCs report any inauthentic retrieval from the server
immediately, as opposed to after a long sequence of retrievals. Recall that the folklore
FS eRAM construction also makes deterministic, non-adaptive accesses.

2 In the full version [5], we briefly compare ME with a harder setting called Continuous
Group Key Agreement.

68 A. Bienstock et al.

2 Lower Bound Model

In this section, we present a general framework for proving computational lower
bounds on cryptographic or privacy-preserving data structures using a symbolic
model, then formalize it for the case of FS eRAM. The symbolic model we
present is inspired by the one used for communication complexity lower bounds
originally by Micciancio and Panjwani in [29] for multicast encryption and also
recently in [4] for concurrent group ratcheting.3

2.1 Framework for Symbolic Private Data Structure Lower Bounds

The first step in proving a lower bound on some private data structure in our
symbolic framework is to decide which primitives are allowed in the construc-
tions. Based on these primitives, one has to define a grammar within the model
which specifies exactly the types of strings that can be created and stored in the
structure to keep the data private. For example, if one of the allowed primitives
is encryption, then the grammar must specify strings that correspond to encryp-
tion keys and encryptions of certain other strings derived from the grammar.
If no other primitives are allowed, for example PRFs, then the constructions
can only use such a key to generate more ciphertexts according to the grammar,
and not other keys through PRF computations, for example. This grammar only
defines the exact form of strings that can be generated by the allowed primitives,
but does not on its own define how these strings can be used to recover the data.

The manner in which constructions can use sets of strings derived from the
grammar to recover other strings, including data, is specified by an entailment
relation. We emphasize that this relation takes as input strings derived from the
grammar, generated by the functionality of the allowed primitives, and outputs
other strings within the grammar, also based on the functionality of the allowed
primitives. For example, if a construction stores a set of strings which include
a ciphertext within the grammar that is generated by an encryption algorithm,
along with the encryption key, the entailment relation specifies that the plain-
text that also falls within the grammar can be recovered via the decryption
algorithm. We note that unlike in traditional models, we only define the syn-
tax and security of the allowed primitives implicitly within the grammar and
entailment relation. Further utilizing the encryption example, if the key for a
ciphertext is not available, then the entailment relation prohibits derivation of
the underlying plaintext (and thus it is secure).

Grammars and corresponding entailment relations can generally be used for
lower bounds on any private data structures. Indeed, we will provide our own in
Sect. 2.2. However, we again stress that for some arbitrary private data structure,
one might use a completely different grammar and entailment relation to show
a lower bound in the symbolic framework. To apply the grammar and entail-
ment relation to a lower bound for a specific private data structure, one has to
provide syntax, correctness, and security definitions in the symbolic model. For

3 The model is also related to that of automated protocol verification (see e.g., [25]).

Forward Secret Encrypted RAM: Lower Bounds and Applications 69

correctness, in general, constructions must derive strings from the grammar to
store in the data structure and later use these strings, along with the entailment
relation, to derive the plaintext data that they store. For security, we use the
implicit security definitions for the allowed primitives within the grammar and
entailment relation to show that an adversary cannot derive certain data using
certain other strings (e.g., encrypted storage). In general, such security defini-
tions may not be as strong as the standard (e.g., indistinguishability based)
definitions for private data structures. However, proving a lower bound based on
a weaker adversarial model only strengthens the result.

2.2 Symbolic Definitions for Allowed Primitives

Our symbolic model allows the FS eRAM cells (secret and public) to store only
certain types of strings generated by the functionality of our allowed primitives
and specified by our grammar, which can only be interpreted and utilized via
our entailment relation. We introduce the allowed primitives, the grammar and
entailment relation in this section. Note again: our grammar and entailment
relation for these primitives can be used for other private data structure lower
bounds in the symbolic framework, but some such lower bounds may also allow
for other primitives (e.g., public key techniques), and use some other grammar,
and/or entailment relation.

Cryptographic Primitives. The primitives which we choose to consider in our
lower bound encompass all of the reasonable primitives which one would use for
FS eRAM, while excluding those that are too powerful and inefficient in practice.
Indeed, a trivial construction exists from Puncturable Encryption (PE) [10,12,
13,19,20,43,44], by simply revoking all overwritten ciphertexts. However, PE is a
strong primitive and is seen as too computationally inefficient for most practical
applications (see e.g., [2]). Therefore, we do not consider PE in our model and
indeed view a corollary of our lower bound as a lower bound on the overhead of
PE schemes from practical primitives.

Thus, we choose to include only those primitives that are natural and use-
ful for FS eRAM, as well as not too powerful as to make the problem trivial.
Since FS eRAM protocols are carried out by a single entity, we only consider
symmetric techniques. Namely, we include symmetric encryption, (dual) pseu-
dorandom functions, and secret sharing. These are all of the primitives (and
more) which the folklore construction and all other constructions in the liter-
ature use [7,14,38]. In fact, only symmetric encryption is used in these prior
constructions. We include (dual) pseudorandom functions, as they have been
shown to achieve speedups for many other primitives. We note that FS eRAMs
are easy to achieve with two non-colluding servers as the array may be secret
shared between the two servers. Therefore, we add secret sharing in the case that
it may be useful even in the single-server setting. We introduce the primitives
here, before defining them formally in our grammar and entailment relation.

An encryption algorithm E takes as input a key K and string C, and outputs
a ciphertext C ′ = EK(C). Informally, EK(C) hides the string C. Symbolically,

70 A. Bienstock et al.

the string C can be recovered from the ciphertext, only by using the key K and
corresponding decryption algorithm: DK(EK(C)) = C.

A PRF is an efficiently computable function F that takes as input a single
key K1 and some string C and outputs a pseudorandom and independent key
K2: F(K1, C) = K2. Symbolically, K2 can only be computed with F on input
K1 and not some other input key K ′

1 �= K1.
We also consider dPRFs which are efficiently computable functions dF that

take as input two keys K1 and K2 and output a pseudorandom and independent
key K3: dF(K1,K2) = K3. Symbolically, K3 can only be computed with dF
on input K1 and K2 and not some other pair of keys (K ′

1,K
′
2) such that either

K ′
1 �= K1 or K ′

2 �= K2. The output key of both PRFs and dPRFs can be used
as encryption keys.

A secret sharing scheme allows one to split a string C into shares S1(C), . . . ,
Sn(C), for some fixed integer n, such that C can only be recovered from cer-
tain subsets of the shares. These subsets are defined using an access struc-
ture Γ ⊆ 2{1,...,n}. For each subset I ∈ Γ , if we are given the set of shares
SI(C) = {Si(c)}i∈I of some string C, then we can efficiently recover C using the
reconstruction function R: R(I, SI(C)) = C. Symbolically, if we only have a set
of shares SI′(C) for some I ′ �∈ Γ , then we cannot recover C.

Grammar and Entailment Relation Definitions. We will allow cells of
the FS eRAM to contain strings which are arbitrary nested combinations of
encryption, PRFs, dPRFs, and secret sharing. We formally allow cell contents
to be described by strings derived from the grammar in the left of Fig. 2.

Fig. 2. Definitions of: 1. (left) the grammar used in our symbolic model to describe the
strings which any FS eRAM protocol can create and store in secret and public cells,
and 2. (right) the entailment relation �, where in the second through fourth rules,
k, k1, k2 are of type K in our grammar.

The variables C and K in the grammar represent strings and keys, D is a
variable that ranges over the arbitrarily large set of plaintext strings which we
allow the user to write into the virtual cells of the FS eRAM, and R ranges over
an arbitrarily large set of truly random keys. We will call strings created from
variable K as keys and those from variable D as data throughout the next two
sections. Observe that the input to PRFs that is not the key can be any string
C derived from the grammar. Some remarks:

Forward Secret Encrypted RAM: Lower Bounds and Applications 71

– We emphasize that the data cells can only hold strings of type D. We mainly
make this restriction for simplicity so that data cannot be used as keys, secret
shares, or ciphertexts in any protocol. Note: the adversary in the security
definition, as will be later seen, chooses the contents of the data cells.

– For convenience, we do not allow ciphertexts or secret shares to be encryption
keys or (d)PRF keys. Our proof may be modified to enable ciphertexts or
secret shares to be keys if desired.

– We assume that all cells are of approximately the same length, and that each
of them can hold any one string derived from the grammar. This means that
the functions E,F,dF,S have outputs of about the same length.

Again, it is important to observe that the strings specified by the above
grammar are purely syntactic and without any meaning. Their only intended
meaning is described by the entailment relation C � c, specifying which strings c
can be recovered given a set of strings C. This entailment relation follows natu-
rally from the standard cryptographic definitions for the primitives we consider
(and inductively from the base case): 1. For PRFs, one can only compute the
function if the key is revealed; 2. For dPRFs, one can only derive an output for
a given input if they have both keys (security holds if only one key is revealed);
3. For encryption, one can only derive the underlying plaintext of a ciphertext
if they have the key; and 4. For secret sharing, one can reconstruct a secret that
has been shared only if they have all shares for a given subset of the access
structure. We formally define the relation in the right part of Fig. 2 and add the
following useful definition.

Definition 1. For any C, we denote the set of strings that can be recovered from
C using � as Rec(C).

2.3 FS eRAM Symbolic Definition

Now we provide the formal definition of FS eRAM in our symbolic model.
Throughout the execution of an FS eRAM protocol Π, it forward secretly stores
a user-chosen ordered n-element array D of virtual cells, which hold strings of
type D in our grammar. We refer to these cells as the data cells and their initial
contents as array D0. We again emphasize that data cells can only hold strings
of type D in our grammar, and thus cannot hold strings arbitrarily derived from
C in our grammar.

At each instant t, Π is given one data cell i ∈ [n] to overwrite with new
data d so that the contents of the data cells at time t, Dt, satisfy: Dt[i] = d and
Dt[j] = Dt−1[j],∀j ∈ [n] \ {i}. Π proceeds using an array of s (� n) secret cells,
Sec, and a (possibly arbitrarily large) array of public cells Pub, which can hold
strings derived from our above grammar.4 We emphasize that in normal protocol
execution, the cells in Pub can always be viewed by an adversary A, while the
cells in Sec cannot be viewed by A until corruption. Π has the following syntax:

4 Every cell of Sec and Pub initially contains the special empty symbol ⊥.

72 A. Bienstock et al.

Definition 2 (Syntax). A Forward Secret Encrypted RAM protocol Π =
(init,write) consists of the following algorithms:

– init(D0 = (d1, . . . , dn)), which takes in the n initial data cell contents D0 and
computes the initial state of the cells Sec and Pub using strings derived from
C in our grammar.

– write(i, d), which takes in a cell index i and new data d and overwrites the
contents of some cells of Sec and Pub using strings derived from C in our
grammar.

– read(i), which takes in a cell index i and using the contents of the cells of
Sec and Pub (and the entailment relation) returns the data di stored there.

We note that Π need not be deterministic either in choosing contents of cells
or in choosing which cells to write to, i.e., Π could have access to an arbitrarily
long, finite random string R at each instant. However, as we will later describe,
the adversary that we consider to reach our lower bound is agnostic to any
randomness that Π uses.

An adversary A specifies the data D0 input to the init algorithm, as well as
for each t > 0, the cell i and data d input to the write algorithm. At each instant
t, we refer to the contents of Sec and Pub as arrays Sect and Pubt, respectively.
For any sequence of data cells chosen by A, ˜Dt = (D0, D1, . . . , Dt), let Pub(˜Dt)
denote the union of all strings written to public cells by Π when D0, D1, . . . , Dt

are specified by calls to init and write, i.e. Pub(˜Dt) = ∪t
i=0Pubi. Similarly, let

Sec(˜Dt) denote the union of all strings written to secret cells by Π as a result
of ˜Dt, i.e., Sec(˜Dt) = ∪t

i=0Seci. Additionally, at any time t, we refer to all of the
previous strings of each cell of Dt as Prev(Dt) = (

⋃t−1
j=0 Dj) \ Dt.5

For correctness, we intuitively require that with Sect and Pubt, Π should be
able to recover and successfully return Dt[i] ← read(i) for all i ∈ [n]. For forward
secrecy, at each instant t, we also want to protect all data that used to be in D,
but was since overwritten, in case of a corruption of Sect by A. We abstract the
above conditions (without explicitly providing read or corruption oracles to A)
using the following definition:

Definition 3 (Correctness and Security). Π is correct and secure if for all
t, and all sequences ˜Dt determined by an adversary A:

– (Correctness): All of the data cells Dt can be recovered by the contents of
the secret and public cells and successfully returned at time t: For every i ∈
[n], di ← read(i), where di = Dt[i] and Dt[i] ∈ Rec(Sect ∪ Pubt).6

5 All set operations specified in the definitions of Pub(˜Dt), Sec(˜Dt), Prev(Dt), and the
remainder of the proof are taken with respect to the sets containing the unique ele-
ments of the corresponding operands, ignoring cells with ⊥. We may in fact directly
refer to these defined arrays as sets in the remainder. While such definitions will not
consider duplicate cells, our lower bound proof will not have to take into account
the number of duplicates.

6 Condition Dt[i] ∈ Rec(Sect ∪ Pubt) forces Π to be a proper symbolic construction.

Forward Secret Encrypted RAM: Lower Bounds and Applications 73

– (Security): The previous contents of all cells in D with respect to time t cannot
be recovered by the contents of the secret cells at time t and all public cells
written to up to time t: ∀d ∈ Prev(Dt), d �∈ Rec(Sect ∪ Pub(˜Dt)).

Again, we note that the security of this definition is not as strong as an
indistinguishability-based definition, as we require explicit recovery of previous
data to break security. However, this only strengthens our lower bound.

We will measure the computational complexity of the protocol Π by amor-
tizing over the number of unique strings derived from our grammar that are
written to the public and secret cells throughout the execution of the protocol.
This measure of course does not track all of the computation of some protocol
Π, which only strengthens our lower bound. For example, we do not count the
computational cost of any of our primitives. Formally, the computational cost
c(˜Dt), incurred by an execution of the protocol when run on input ˜Dt, is defined
as

c(˜Dt) :=
|Pub(˜Dt) ∪ Sec(˜Dt)|

t + 1
.

3 Forward Secret Encrypted RAM Lower Bound

In this section, we prove the following Theorem in several steps.

Theorem 6. There exists a non-adaptive, randomized adversarial sequence of
init and write operations such that for any FS eRAM protocol Π that is correct
and secure with respect to Definition 3, the amortized computational complexity
cost incurred by the protocol when executed against that strategy is in expectation
Ω(log(n/s)).

Before we formalize our lower bound, we start with a simple example which
demonstrates an important observation needed in our proof, and which we will
refer to throughout the proof. Suppose that at time t, we have s = 1, n = 4 and
keys k1, k2, k3 such that k1 ∈ Sect. Further, we have {Ek1(k2),Ek1(k3),Ek2(d1),
Ek2(d2),Ek2(Ek3(d3)),Ek3(d4)} ⊆ Pub(˜Dt), for Dt = {d1, d2, d3, d4}. We can
informally abstract this into a graph depicting the relations between keys and
data shown in Fig. 3.

The graph demonstrates that k1 encodes information about k2 and k3, while
k2 and k3 both encode some information about d3. Additionally, k2 encodes
information about d1 and d2, while k3 encodes information about d4. Now sup-
pose that virtual cell 3 (corresponding to d3) is overwritten by some adversary.
The goal of the protocol is effectively to create a new graph that retains as much
reachability, in the graph theoretic sense, from the secret cells as possible (since
we want to minimize the amount of computation needed to achieve correctness),
while still disabling any ability to recover d3 if any of the keys in the new graph
are obtained by the adversary.

In our example, it is sufficient to remove k1, as then k2 and k3, and thus
d3 cannot be recovered. However, this may be a rather inefficient method, as

74 A. Bienstock et al.

Fig. 3. Key-data graph GΠ(˜Dt−1) at time t−1 as defined by Definition 9 for an execution
of an FS eRAM protocol Π in which s = 1, n = 4, k1 ∈ Sect−1 (denoted by its square
border), {Ek1(k2),Ek1(k3),Ek2(d1),Ek2(d2),Ek2(Ek3(d3)),Ek3(d4)} ⊆ Pub(˜Dt−1), and
Dt−1 = {d1, d2, d3, d4}. Since k1 minimally recovers d3 according to Definition 4, the
collection of paths Pt−1

3 that exist according to Lemma 1 are P3,1 := k1 → k2 → d3,
represented by blue edges, and P3,2 := k1 → k3 → d3, represented by thick red edges.
By Lemma 2, if at time t, d3 is overwritten, all of the vertices on one of these paths
must become indefinitely useless (see Definitions 5, 6). Since k2 can be used to recover
more data (besides d3) than k3 can, the protocol may choose to make the vertices of
P3,2 useless at time t (represented by dashed borders). In this case, all of the strings
in Pub(˜Dt) corresponding to the dashed edges k1 → k2, k1 → k3, k3 → d3, and k3 → d4

become indefinitely useless at time t (see Definition 8), as the protocol can no longer
recover the keys and data that they encapsulate. However, we stress that the choice of
the path P3,1 or P3,2 on which all nodes must become useless at time t is determined
by the protocol.

k2 and k3 also encode information about data d1, d2, d4, and thus the protocol
would have to generate fresh encodings of them for correctness. Unfortunately, we
cannot retain reachability to both k2 and k3: it is necessary to remove either one
of the edges k2 → d3 or k3 → d3 in the graph (which is done by removing k2 or k3,
respectively), since together, they can be used to recover d3 from Ek2(Ek3(d3)),
but the absence of one of them enables secrecy of d3. Furthermore, it is still
necessary to remove k1, as it alone can recover d3 by recovering k2 and k3. In this
case, the protocol may want to remove just k1 and k3, as retaining reachability
to k2 retains reachability to two data cells, without any extra computation (as
opposed to just one if reachability to k3 is retained). However, we emphasize that
the choice of which key to retain reachability to is indeed completely decided by
the protocol, and the adversary does not have any control over this. The key to
our proof is to lower bound the minimal amount of reachability, corresponding
to edges in the graph and ciphertexts stored in public and secret cells in the
protocol, that must be lost after each operation. Note that this is not the exact
formalization, as the proof needs to handle several subtleties and complex cases,
as later detailed in this section.

To do this, we will first abstract a meaningful graph-theoretic notion to deter-
mine the (amortized) minimum number of unique strings that any FS eRAM
protocol, captured by our symbolic model, must write to its public and secret
cells during each operation to preserve forward secrecy and correctness.

Forward Secret Encrypted RAM: Lower Bounds and Applications 75

3.1 Minimality and Usefulness

We first introduce the notion of sets of strings defined by our grammar minimally
recovering other sets of strings. Intuitively, a set C of strings minimally recovers
another set C′ of strings if the strings of C can together recover the strings of C′

(using the contents of the public cells up to time t, too), but the removal of any
string c ∈ C prevents the recovery of at least one string c′ ∈ C′.

Definition 4. A set C of strings minimally recovers set C′ of strings if C′ ⊆
Rec(C ∪ Pub(˜Dt)) and for any c ∈ C, C′ � Rec((C \ {c}) ∪ Pub(˜Dt)).

If C′ contains a single element c′, we may only write “C recovers c′” at certain
points throughout our exposition (instead of C′ or {c′}).

Now, for any execution of an FS eRAM protocol Π, at certain instants some
of the keys that have been used by it may be accessible by the secret cells, while
others may not. We call such keys useful and useless, respectively.

Definition 5. A key k is useful at time t if ∃S ⊆ Sect such that S minimally
recovers k. It is useless otherwise.

The set of useful keys at time t is denoted UsefulKeysΠ(˜Dt). The intuition
behind this definition is that as data cells are overwritten, at least some of
the keys that the protocol used to recover the previous data (if there are any)
for correctness cannot be used anymore, for otherwise, previous data would be
accessible, which would violate security. For example, in Fig. 3, keys k1 and k3
become useless at time t, because they can be used to recover d3. Similarly, we
can define data in terms of usefulness.

Definition 6. Data d is useful at time t if d ∈ Dt. It is useless otherwise.

We also define usefulness for strings derived by our grammar (that are not
keys), based on the keys that are used to create them, and if they are accessible
by the adversary at a given time. We first recall that there are four types of
cryptographic operations we allow to derive strings from our grammar: encryp-
tions, secret sharing, and (d)PRF computations. Based on this, we define how a
string from our grammar can encapsulate a key or data:

Definition 7. We say that a string c encapsulates key or data c′, if c is the
result of arbitrarily nested encryption and secret sharing operations on c′; i.e.,
c = e1(e2(. . . (el(c′) . . .)) for some l ≥ 1, where each ei is either Eki

for some
key ki or Sj for some j ∈ [n].

Definition 8. A string c that encapsulates c′, as in Definition 7 above, is useless
at time t if

– at least one ei corresponds to Eki
for ki �∈ UsefulKeysΠ(˜Dt), or

– c �∈ Sect ∪ Pub(˜Dt).7

Otherwise, it is useful.
7 Note that we do not say c �∈ Rec(Sect ∪ Pub(˜Dt)), since for our lower bound we want

to only count those strings that were actually stored in some secret cell and are
erased at some time. Also, as will be seen later, it must be that for any such string
that we count in our lower bound, it must further be that c �∈ Rec(Sect ∪ Pub(˜Dt)).

76 A. Bienstock et al.

It is important to note that usefulness is dynamic: keys and strings that are
useful at one instant may be useless at another instant. As noted above, every
time a data cell is overwritten, some of the keys that can be used to recover its
old contents must become useless for security and thus all strings that were in
part generated by such keys (via the encryption algorithm, E), as well as some
strings which encapsulated these keys or the data, must become useless too.
For example, in Fig. 3, since keys k1 and k3 become useless at time t, strings
{Ek1(k2),Ek1(k3),Ek2(Ek3(d3)),Ek3(d4)} ⊆ Pub(˜Dt) must too.

Our goal is to show that after every write operation, logarithmically many (in
n/s) strings stored in public and secret cells must become useless. Such strings
may have been generated and stored in their respective cells at any time in the
past, but the protocol incurs a computational cost of at least one per string.

3.2 Key-Data Graph

We will interpret secret cells, keys, and data using graph-theoretic terminology.
For any execution of the protocol Π on a sequence of data cells ˜Dt, we associate
a directed graph GΠ(˜Dt) called the key-data graph at that time. Each vertex in
the graph is either a string in a secret cell at time t, a useful key at time t, or
a data cell at time t, and edges between the vertices abstract the process of key
or data recovery (by use of the entailment relation �).

Definition 9. Let Π be a Forward Secret Encrypted RAM protocol executed
with a sequence of data cells ˜Dt. The Key-Data Graph for the protocol at time
t is a directed graph GΠ(˜Dt) = (V, E), where V = UsefulKeysΠ(˜Dt) ∪ Sect ∪ Dt

and E is the set of all ordered pairs (v1, v2) ∈ V ×V such that at least one of the
following is true:

1. ∃c s.t. v2 = F(v1, c).
2. ∃k ∈ UsefulKeysΠ(˜Dt) s.t. v2 = dF(v1, k) or v2 = dF(k, v1).
3. ∃c ∈ Pub(˜Dt)∪Sect s.t. c = e1(Ev1(e2(v2))) (for arbitrary sequences of encryp-

tion and sharing operations e1, e2).
4. v1 ∈ Sect, v2 ∈ UsefulKeysΠ(˜Dt) ∪ Dt and v1 encapsulates v2.

We note that in Fig. 3, we depict exactly GΠ(˜Dt−1) for the simple example, which
demonstrates that this definition can flexibly handle general schemes

In the following lemma, we show that if a set of vertices C in GΠ(˜Dt) minimally
recovers some other vertex vj , then there is a collection of paths from the vertices
of C to vj in GΠ(˜Dt) such that every vertex on the path (except for the vertices
of C) is minimally recovered by its predecessors on these paths.

Lemma 1. For any FS eRAM protocol Π, for every t ≥ 0, for every sequence of
data cell updates ˜Dt performed by A and for every useful key or data vj ∈ V and
(non-empty) set C ⊆ V, if C minimally recovers vj, then there exists a collection
of paths P from all vi ∈ C to vj (at least one per individual vertex vi) in GΠ(˜Dt)
such that for every v along these paths, except for the vi ∈ C, the set of strings
{v1, . . . , v�} ⊆ UsefulKeysΠ(˜Dt) ∪ Sect that have an edge to v on one of the
paths minimally recover v.

Forward Secret Encrypted RAM: Lower Bounds and Applications 77

Proof. Consider some C and vj satisfying the conditions in the lemma statement.
Let q ≥ 1 be the smallest number of applications of the entailment relation �
required to recover vj from C and Pub(˜Dt). We prove the lemma using induction
over q. I.e., for all q ≥ 1 and every C that can minimally recover vj in q steps,
there is a collection of paths P originating from the vi in C and ending at vj in
GΠ(˜Dt) satisfying the lemma statement.

The statement is true for q = 1 since in this case C = {vj} and so there is
a trivial path from vj to itself. Now, suppose that the statement is true for all
values of q smaller than an integer Q > 1. So, for all q < Q, every set C ⊆ V that
can minimally recover vj in q steps has a collection of paths in GΠ(˜Dt) leading
from every vi ∈ C to vj and for every vertex v along the paths, the vertices
from which it has incoming edges along the paths form a set which minimally
recovers v.

Consider any set C ⊆ V that can minimally recover vj in Q steps. It must
be that there exists some set C′ such that 1. C′ can minimally recover vj in less
than Q steps, and 2. for each c′ ∈ C′, either

(i) there exists some k ∈ C and some string c such that F(k, c) = c′ and k
minimally recovers c′, or

(ii) there exists keys k1, k2 ∈ UsefulKeysΠ(˜Dt) such that 1. k1 ∈ C, 2. k2 ∈ C,
or 3. both k1, k2 ∈ C and dF(k1, k2) = c′, where in cases (a), (b), (c), just
k1, just k2, or {k1, k2} minimally recover c′, respectively, or

(iii) c′ is a key or data and there exists sets C′′ ⊆ Pub(˜Dt) and C′′′ ⊆ Sect ∩ C
(each possibly empty) whose strings encapsulate c′ and Ce ⊆ C, a set of
useful encryption keys used in the generation of these strings, such that
C′′′ ∪ Ce minimally recovers c′,8 or

(iv) c′ ∈ C.

Moreover, for any string c′ ∈ C′ satisfying case (i), it must be c′ ∈
UsefulKeysΠ(˜Dt) because c′ ∈ Rec({k}) ⊆ Rec(Sect ∪ Pub(˜Dt)), since k ∈
UsefulKeysΠ(˜Dt) . For any string satisfying case (ii), it must be that c′ ∈
UsefulKeysΠ(˜Dt) because c′ ∈ Rec({k1, k2}) ⊆ Rec(Sect ∪ Pub(˜Dt)), since
k1, k2 ∈ UsefulKeysΠ(˜Dt). For any key or data c′ ∈ C′ satisfying case (iii),
it must be that c′ ∈ UsefulKeysΠ(˜Dt) ∪ Dt because: If c′ is a key, we have that
c′ ∈ Rec(Ce ∪C′′′ ∪Pub(˜Dt)) ⊆ Rec(Sect ∪Pub(˜Dt)), since Ce ⊆ UsefulKeysΠ(˜Dt)
and C′′′ ⊆ Sect . If c′ is data, we must have that vj ∈ V so c′ = vj ∈ Dt, for
otherwise, since data cells have no outgoing edges, C′ does not minimally recover
vj . Thus, we have shown that C′ ⊆ V.

We also note that we can choose to consider only C′ that contain c′ corre-
sponding to case (iii) that are the keys or data which are encapsulated by C′′

and C′′′ (and not some intermediary strings cbad encapsulating c′ in C′, which
could be in Sect, for example) because vj in the lemma statement is a useful key
or data. Therefore the encapsulated c′ must either be vj itself or some key that

8 This is the case in which c′ is recovered through secret share reconstruction (using
C′′ ∪ C′′′), decryption (using keys of Ce and possibly some that can be recovered
using only Pub(˜Dt), along with C′′ ∪ C′′′), or possibly a combination of both.

78 A. Bienstock et al.

must be used to minimally recover vj . Thus, if C contains enough keys which
were used in the generation of the strings of C′′ ∪ C′′′ that (in addition to the
cells of C′′′) can minimally recover c′ anyway, then we can just directly include
c′ in C′. If C does not contain enough of those keys, then we can just choose
C′ that lessens the number of applications of the entailment relation needed to
recover a sufficient set of those keys, and defer inclusion of c′ until some later
set.

Continuing, by the inductive hypothesis, there are a collection of paths from
the c′ ∈ C′ satisfying the lemma statement, and prepending the paths with:

– in case (i), the edge k → c′,
– in case (ii,a), the edge k1 → c′, in case (ii,b) the edge k2 → c′, in case (ii,c)

the edges k1 → c′ and k2 → c′,
– in case (iii), the edges k → c′, for each k ∈ Ce, and the edges cSec → c′, for

each cSec ∈ C′′′, and
– in case (iv), nothing,

extends these paths appropriately. Indeed, by the case analysis above, for each
c′ ∈ C′ the nodes in C corresponding to its incoming edges on the paths minimally
recover c′. Furthermore, if any nodes c ∈ C do not have any edges to nodes in C′,
then since C′ minimally recovers vj and all of the nodes in C′ can be recovered
by the other nodes of C, C does not minimally recover vj , a contradiction. Thus
we have shown the inductive step holds for all Q > 1. ��

Now we show a quick proposition which establishes that at each time t, any
data di ∈ Dt cannot be solely recovered by the contents of the public cells up to
time t and thus there must exist some non-empty set of strings in the secret cells
that minimally recovers di:

Proposition 1. For any di ∈ Dt, it must be that di �∈ Rec(Pub(˜Dt)) and thus
∃Si ⊆ Sect such that Si �= ∅ and Si minimally recovers di.

Proof. The proof for this is quite basic: if di ∈ Rec(Pub(˜Dt)), then if the adver-
ary’s next operation is write(i, d) for some data d, then at time t + 1, for
example, it is clear that di ∈ Prev(Dt+1) and also that di ∈ Rec(Pub(˜Dt+1)) ⊆
Rec(Sect+1∪Pub(˜Dt+1)), which violates security. Thus, a contradiction is reached.

Now, by correctness, it must be that di ∈ Rec(Sect∪Pubt), so with the above,
it must be that there exists some non-empty Si ⊆ Sect such that Si minimally
recovers di. ��

As a result of this proposition, we have that for each di ∈ Dt at time t,
there exists at least one collection of paths Pt

i from the sj ∈ Si to di satisfying
the conditions of Lemma 1. In the example of Fig. 3, the collection of paths
Pt−1
3 = {P3,1, P2,1}, where P3,1 := k1 → k2 → d3 and P3,2 := k1 → k3 → d3,

represents one such collection of paths that must exist as a result of Lemma 1,
since {k1} minimally recovers d3. Observe, however, that in general, there could
be multiple such path collections (even from the same Si ⊆ Sect) for each di

(for example, if in Fig. 3 we also have Ek1(d3) ∈ Pub(˜Dt+1), then we also have

Forward Secret Encrypted RAM: Lower Bounds and Applications 79

the collection consisting of just k1 → d3); we cannot restrict protocols to just
one collection, even though having more does not seem fruitful. So, for each
i ∈ [n], there may exist ri non-empty secret cell subsets Si,j ⊆ Sect, j ∈ [ri] that
minimally recover di, and r′

i ≥ ri corresponding path collections Pt
i,l, l ∈ [r′

i],
which therefore must exist by Lemma 1.

We also note that by the proof of Lemma 1, every string stored in a secret cell
cSec ∈ Sect that exists on these paths and is not a key or data has no incoming
edges on the paths from other path nodes.

We now show how any FS eRAM protocol Π must handle such collections
of paths at every time t in order to preserve security.

Lemma 2. If at time t, an adversary A executes write(i, d′
i) for d′

i �= Dt−1[i],
then, for every collection of paths Pt−1

i,l , l ∈ [r′
i], from some non-empty Si,j ⊆

Sect−1 that minimally recovers Dt−1[i], all of the vertices (data, keys, and strings
in secret cells) on at least one of the paths P ∗

i ∈ Pt−1
i,l , must become useless for

all times t′ ≥ t.

Proof. Since A queries write(i, d′
i), Π must alter the contents of the secret cells

and the partition of useful and useless keys so that di �∈ Rec(Sect′ ∪Pub(˜Dt′)) for
all t′ ≥ t, where di was the string stored in data cell i at time t − 1 (i.e., what
d′

i replaces at time t).
Now, consider one such collection of paths Pt−1

i,l . If di ∈ Sect−1, i.e., Pt−1
i,l

only consists of the trivial path from di to itself, then, looking ahead to Sect. 3.3,
the adversary will never again write di to D, and thus di becomes useless for all
t′ ≥ t. Otherwise, we will proceed inductively starting from the sink of all of these
paths, di (and ending at a node right after the source of one of them). Let Vi and
Ei be the set of vertices and edges in all of the paths of Pt−1

i,l , respectively. We
know from Lemma 1 that the set R := {v : v ∈ Vi, (v, di) ∈ Ei}, indeed minimally
recovers di. Thus, for security, since we must have that di �∈ Rec(Sect′ ∪Pub(˜Dt′)),
it must be that ∃v∗ ∈ R such that v∗ �∈ Rec(Sect′ ∪ Pub(˜Dt′)) for all t′ ≥ t, i.e.,
v∗ �∈ UsefulKeysΠ(˜Dt′) ∪ Sect′ . So, if v∗ was in UsefulKeysΠ(˜Dt−1) or Sect−1,
it can no longer be useful at each time t′ (it is deleted at time t and can never
be generated again, by definition of the symbolic model). We must then recurse
on v∗, continuing until we reach some source in Pt−1

i,l , i.e., some key or string
c∗ ∈ Sect−1, that must become useless.

Therefore, we conclude that all of the vertices on at least one of the paths
P ∗

i ∈ Pt−1
i,l must become indefinitely useless at time t. ��

It is important to note that the protocol Π has control over which path P ∗
i in

each Pt−1
i,l must have all of its nodes become useless at time t (and there could in

fact be overlap between collections, even for the same i). For example in Fig. 3,
it may be that either of P3,1 or P3,2 have all of their nodes become useless at
time t. We depict in that figure that the path which Π chooses is P3,2.

The rest of the lower bound proof will proceed by considering for each t and
i ∈ [n], an arbitrary collection of paths Pt

i and for each such collection, the
path P ∗

i that minimizes the sum of the number of outgoing edges of type 3 or
4 in Definition 9 from its vertices. We do so to focus on the minimum number

80 A. Bienstock et al.

of strings that are actually stored in public and secret cells, corresponding to
tangible actions that Π took in the past to put them there, that Π must make
useless at each time t. In particular, we remove all edges (such as those for
(d)PRFs) that may not require such storage. We do this by, in Definition 11,
first choosing an arbitrary collection Pt

i for each i ∈ [n] and considering only the
edges on those paths, then restricting these paths to only edges of type 3 or 4,
and finally further restricting to only those edges on path P ∗

i for each i ∈ [n].
First, a helpful definition:

Definition 10. Let G = (V, E) be a directed graph and let P be some path in G.
The out-degree of P in G, denoted outG(P), is the number of edges in E that
start from a node in P . That is,

outG(P) =
∑

v∈P

outG(v).

Definition 11. For any FS eRAM protocol Π, executed with a sequence of data
cell updates ˜Dt, the succinct key-data graph at time t, denoted ĜΠ(˜Dt), is a
modification of GΠ(˜Dt) formed by

– first, choosing for each i ∈ [n] an arbitrary collection of paths Pt
i in GΠ(˜Dt)

specified by Lemma 1 and which must exist by Proposition 1, starting from
the vertices of some arbitrary non-empty Si ∈ Sect that minimally recovers
di and ending at di,

– second, including an edge from GΠ(˜Dt) if and only if it is contained in the
collection of paths Pt

i for some i ∈ [n],
– third, for each i ∈ [n], l ∈ [�i], where �i the number of paths in Pt

i , for any non-
empty sequence of edges (e1, . . . , em) on path Pi,l ∈ Pt

i such that each ej =
(vj−1, vj) for j ∈ [m − 1] is a (d)PRF edge of type 1 or 2, em = (vm−1, vm)
is not a (d)PRF edge, and v0 does not have any incoming (d)PRF edges on
Pi,l, removing all of the edges in the sequence and replacing them with the
single edge e = (v0, vm) for only Pi,l,

– fourth, taking the union of these edges for all i ∈ [n], and finally
– including an edge if and only if it is contained in the path P ∗

i for some i ∈ [n]
such that out(P ∗

i) = minPi,l∈Pt
i
out(Pi,l), where the outdegree of the nodes is

over only the edges from the last step.

One can observe that vertices representing data cells are of course sinks, i.e.,
they have no outgoing edges, in GΠ(˜Dt) and ĜΠ(˜Dt). In addition, at most s secret
cells can be represented in GΠ(˜Dt) and ĜΠ(˜Dt), by definition. Furthermore, if a
data cell di is not itself in Sect at time t, by Proposition 1, it must be that some
non-empty subset Si ⊆ Sect minimally recovers di, and so there must be some
collection of paths Pt

i in GΠ(˜Dt) starting at the secret cells of Si and ending in
edges of type 3 or 4 at di. Thus, there must still be one path in ĜΠ(˜Dt) starting
at some secret cell cSec ∈ Sect and ending at di. We will call such paths ̂P ∗

i .

Forward Secret Encrypted RAM: Lower Bounds and Applications 81

3.3 Adversarial Strategy

We now describe the strategy used by the adversary to prove the lower bound.
The adversary will use a simple non-adaptive randomized strategy. Initially, the
adversary inputs n distinct strings of type D to be stored in the data cells:
D0 = (d1, . . . , dn) to the init algorithm. At each instant t, the adversary will pick
a cell i uniformly at random to write data d that has never before been in Dt′

for 0 ≤ t′ ≤ t, i.e. write(i, d). We will show that in expectation, the number
of strings stored in secret and public cells combined that become useless after
time t is logarithmically-many (in terms of n/s). Before proving Theorem 6, we
provide an instrumental graph-theoretic lemma in proving our lower bound. We
prove this lemma in the full version [5].

Lemma 3. Let G = (V, E) be an arbitrary graph and let S = {u1, . . . , us},
D = {v1, . . . , vn} be any sets of nodes in the graph such that for each vi ∈ D,
∃uj ∈ S such that there is a path Pi from uj to vi and there is no k �= i such
that vk occurs in Pi. Then if i ∈ [n] is chosen uniformly at random:

E[outG(Pi)] ≥ log2(n/s).

Proof (Theorem 6). In the setting of succinct key-data graphs, sets S and D in
Lemma 3 correspond to the secret cells and data cells, respectively, at time t,
i.e., Sect and Pubt. Each path Pi = ̂P ∗

i corresponds to the path starting from
some secret cell uj to the data cell vi that has the minimum number of outgoing
edges over all Pi,l ∈ Pt

i , for some arbitrary Pt
i , which correspond to strings

that must be stored in the public or secret cells of Π. Since no data cells have
outgoing edges, for every i ∈ [n], no data cell vk, k �= i lies on the path ̂P ∗

i .
Thus, Lemma 3 implies that for every t ≥ 1, the data cell vi replaced by A
at time t is such that in expectation, ̂P ∗

i will always have out-degree at least
log2(n/s) in ĜΠ(˜Dt). Since ̂P ∗

i corresponds to the path from a secret cell to di

which minimizes the number of outgoing edges corresponding to strings that
must be stored in the public or secret cells of Π, any other path that Π chooses
whose nodes must become useless after time t (by Lemma 2) must have at least
log2(n/s) such edges in expectation.

Once all of the vertices on some such path become useless, all strings in
public or secret cells that were in part generated by them become useless by
definition. For example, in Fig. 3, since the vertices on P3,2 become useless, each
string Ek1(k2),Ek1(k3),Ek2(Ek3(d3)),Ek3(d4) becomes useless. So, under the
above adversarial strategy, at least log2(n/s) strings stored in public or secret
cells become useless after time t, in expectation. We only mark each string as
useless once because:

– if a key in the set, which minimally recovers the key or data that the string
encapsulates, using that string, is indefinitely inaccessible by the protocol,
the protocol is indefinitely unable to recover the key or data using the string
(and also the string can never be reproduced, by definition of the symbolic
model),

82 A. Bienstock et al.

– otherwise, if the string was stored in a secret cell on the path P ∗
i , then from

Lemma 2, we know that it must become useless indefinitely and therefore
never be stored in a secret cell again.

Therefore, in both cases, there will never be any edge in any future succinct
key-data graph that corresponds to the string. Moreover, since vi is never added
back to a data cell by the adversary, the strings remain useless for all t′ ≥ t.

Therefore, we have shown that throughout the execution of any protocol Π,
at least t

t+1 · log2(n/s) ≥ (1− 1
t) · log2(n/s) = (1−o(1)) · log2(n/s) strings which

were stored in public or secret cells become useless in expectation through time
t, proving Theorem 6. �

4 Stronger Forward Secret Encrypted RAM Definitions

We note that our FS eRAM computational lower bound in Sect. 3 uses a different,
weaker definition in our symbolic model based on recoverability (which only
makes our lower bound stronger). For our upper bounds, we will use the typical
indistinguishability-based security that we define here in the standard model of
computation.

Definition 12 (Forward Secret Encrypted RAM). A Forward Secret
Encrypted RAM (FS eRAM) protocol Π = (init, read,write) consists of the
following algorithms:

– (Sec, Pub) ← init(1λ, s, n), which initializes public cells Pub and s secret cells
Sec, where n is the number of virtual cells and λ is the security parameter.

– (Sec′, Pub′, d) ← read(Sec, Pub, i), which returns data d of virtual cell i ∈ [n].
– (Sec′, Pub′) ← write(Sec, Pub, d, i), which replaces the contents of virtual cell

i ∈ [n] with data d.

Correctness. An FS eRAM scheme is correct if for any sequence of opera-
tions: Pr[(·, ·, d∗) ← read(Sec, Pub, i) : d∗ = d] = 1, for any execution of
read(Sec, Pub, i) in the sequence after an execution of write(Sec, Pub, d, i) and
before a subsequent execution of write(Sec, Pub, d′, i), for some data d′, in the
sequence where the probability is over the random coin tosses of the protocol.

Security. We define security with respect to the following game between a chal-
lenger and an adversary. We emphasize that the adversary has read-access to all
of Pub (which is usually encrypted) on which the FS eRAM operates, as well as
the access pattern to cells of Pub during operations.

The challenger initially chooses b ∈ {0, 1} uniformly at random and runs
(Sec, Pub) ← init(1λ, s, n) (where s � n = poly(λ)). Then, the adversary has
access to (polynomial-many queries of) the following oracles:

– write(d, i), which computes write(Sec, Pub, d, i).
– corrupt(), which simply returns Sec.
– chall(d0, d1, i), which computes write(Sec, Pub, db, i).

Forward Secret Encrypted RAM: Lower Bounds and Applications 83

An adversary is not allowed to call corrupt() after a call to chall(d0, d1, i),
without first using write(d, i) to overwrite the i-th virtual cell with some other
data d, since otherwise they would trivially win. Observe that w.l.o.g. there is
no oracle for read() since the adversary already knows the data in cells which
they filled using write(), and should not know the data in cells filled via chall().
Further observe that the following definition provides forward secrecy, since upon
some legal corrupt() call after some chall(d0, d1, i) call, the adversary A should
not be able to guess the bit b, i.e. whether d0 or d1 was stored in virtual cell i.

Definition 13 (Forward Secret Encrypted RAM Security). A Forward
Secret Encrypted RAM protocol Π is secure if for every adversary A that runs
in time poly(λ): |Pr[A → 1|b = 1] − Pr[A → 1|b = 0]| ≤ negl(λ).

Recall the folklore construction of Fig. 1. It is clear that this construction is
secure with respect to Definition 13 due to standard IND-CPA security of sym-
metric encryption. Once the adversary queries write(d, i) after a chall(d0, d1, i)
query, all of the keys on the path of cell i, including those in Sec, are refreshed,
and encryptions of the children of the path nodes are recomputed. Thus no
information about the challenge bit b can be garnered from a corrupt() query.

5 Oblivious Forward Secret Encrypted RAM

In this section, we consider combining the notion of forward secret encrypted
RAMs with oblivious RAMs (or ORAMs). ORAMs are a well-studied crypto-
graphic primitive (see [1,17,18,32,36,42] and references therein) that provides
security for the patterns of data access. At a high level, ORAMs guarantee that
adversaries may not distinguish between two equal-length operational sequences
even when viewing accesses to encrypted data. We note that ORAMs do not
consider the setting where adversaries corrupt client storage.

Looking forward, we first formally define oblivious forward secret encrypted
RAMs. We present both a strong and a weak notion combining obliviousness
and forward secrecy. First, we present a linear cell probe lower bound for the
strong variant. To obtain sub-linear overhead, we consider the weaker notion and
present an optimal construction with logarithmic overhead. As a result, we show
that one can add a weaker notion of obliviousness to forward secret encrypted
RAMs without asymptotic overhead.

5.1 Definitions

The syntax of ORAMs are identical to the syntax of FS eRAMs presented in
Definition 12 where secret cells Sec are client storage and public cells Pub are
server storage. Therefore, we omit a formal notion of ORAM syntax and refer
readers back to FS eRAM syntax if needed.

We start by defining the most natural notion of oblivious forward secret
encrypted RAMs. When the adversary corrupts client storage and views the cur-
rent memory contents, the adversary should not be able to distinguish between

84 A. Bienstock et al.

any two equal-length operational sequences that result in the current memory
contents. At a high level, this notion provides forward secrecy for both the mem-
ory contents as well as the access patterns performed by the client prior to
corruption. We denote this notion as strong oblivious forward secret encrypted
RAMs.

Definition 14 (Strong Oblivious Forward Secret Encrypted RAM).
Consider any two equal-length sequences of read and write operations O1 and O2

such that the contents of the array after both sequences are executed are identi-
cal. Let V(O) be the adversary’s view when executing sequence O that includes
contents of server (public) cells, all accesses to server cells and corrupted secret
cells after O is executed. For any pair of such sequences O1 and O2 and any
PPT adversary A, a protocol Π is a strong oblivious forward secret encrypted
RAM if |Pr[A(V(O1)) = 1] − Pr[A(V(O2)) = 1]| ≤ negl(λ).

We show in the full version [5] that this strong notion requires linear over-
head in the cell probe model. As a result, we need to consider a weaker security
notion to obtain reasonable (or even sub-linear) overhead. Another natural com-
position of forward secret encrypted RAMs and oblivious RAMs is to trivially
combine the two security notions together. If we consider an adversary that
never corrupts client storage, then the access pattern to data remains secure
(identical to ORAM guarantees). When the adversary corrupts client storage,
all deleted memory contents are not recoverable by the adversary (identical to
forward secret guarantees). In the case of client corruption, no security guaran-
tees are offered about the client’s access patterns prior to corruption. We denote
this security as weak oblivious forward secret encrypted RAMs. As this is the
notion that enables interesting sub-linear constructions, we will also refer to this
notion as simply oblivious forward secret encrypted RAMs. We start by defining
oblivious RAM:

Definition 15 (Oblivious RAM). Consider any two equal-length sequences of
read and write operations O1 and O2. Let V(O) be the adversary’s view when exe-
cuting sequence O that includes contents of server (public) cells and all accesses
to server cells. For any pair of such sequences O1 and O2 and any PPT adversary
A, a protocol Π is an oblivious RAM if |Pr[A(V(O1)) = 1] − Pr[A(V(O2)) =
1]| ≤ negl(λ).

Definition 16 ((Weak) Oblivious Forward Secret Encrypted RAM). A
protocol Π is a (weak) oblivious forward secret encrypted RAM if Π is both a
forward secret encrypted RAM and an oblivious RAM.

5.2 Oblivious Forward Secret Encrypted RAM Construction

We start by presenting a naive composition of oblivious RAM and forward secret
encrypted RAM constructions. Throughout this section, we will measure over-
head with respect to encrypted array entries. For example, O(log n) communica-
tion means O(log n) encrypted array entries. We make the natural assumption

Forward Secret Encrypted RAM: Lower Bounds and Applications 85

that cell size is Ω(log n) bits, and also array entries are O(log n) bits. The idea
is to take any forward secret encrypted RAM and replace each memory access
using an oblivious RAM. While this guarantees both obliviousness and forward
secrecy, the efficiency is not optimal. Note that forward secret encrypted RAMs
use O(log n) memory accesses. Each memory access in an ORAM costs O(log n)
overhead incurring a total O(log2 n) overhead. We note that prior works have
studied this primitive such as [39]. To our knowledge, the best current construc-
tion requires O(log2 n) overhead.9

Our construction utilizes two observations. First, tree-based ORAMs are
quite conducive to incorporate the folklore FS eRAM solution. However, all tree-
based ORAMs [42] require O(log2 n) overhead. On the other hand, hierarchical
ORAMs [1,17,32,36] obtain O(log n) overhead but there is no straightforward
way to incorporate the folklore FS eRAM solution. To obtain our result, we com-
pose tree-based and hierarchical ORAMs to obtain a faster solution. At a high
level, we use tree-based ORAMs and replace the recursive position map with a
hierarchical ORAMs. We describe our new constructions below.

Overview. Our construction will avoid this additional logarithmic overhead
incurred by ORAM over forward secret encrypted RAMs. Without loss of gener-
ality, suppose we are storing n array entries D[0], . . . , D[n− 1] where n is a power
of two. Our construction uses three components: a complete binary tree, a stash
and an oblivious RAM. The binary tree is inspired by prior works for tree-based
ORAMs [42]. The tree will have n leaf nodes and log n levels used to store the
n array entries. Every node in the binary tree has capacity to store up to a con-
stant number of array entries. Each of the n array entries, D[i], will be uniquely
assigned a uniformly random leaf node of the tree denoted by Leaf(i). The tree
maintains the invariant that if any array entry D[i] is stored in the binary tree,
then D[i] will be stored in a node that appears on the unique root-to-leaf path
for leaf Leaf(i). If D[i] is not stored in the tree, then it will be stored (along
with Leaf(i)) in the stash denoted by Stash. Additionally, we need to maintain
a position map, PMAP, that stores the assigned leaf nodes for each array entry,
that is, PMAP[i] = Leaf(i).

Binary Tree. Whenever an array entry D[i] is either read or overwritten, the
root-to-leaf path to Leaf(i) will be accessed along with the stash Stash to obtain
D[i]. Afterwards, Leaf(i) is re-initialized by picking amongst the n leaf nodes uni-
formly at random with PMAP being updated accordingly. Finally, D[i] is stored
in Stash with its updated Leaf(i). To ensure Stash remains small, entries in
Stash are evicted in a greedy manner whenever a root-to-leaf path is accessed. If
there is space in the root node, any item in Stash may be evicted into the root
node (as the root appears on every root-to-leaf node path). Generally, for any
node accessed in a root-to-leaf path, any data entry D[i] whose leaf node Leaf(i)
appears in the sub-tree rooted at the node may be evicted until reaching the
node’s capacity. Prior works proved that the Stash remains small except with

9 To be fair, we note that these works appeared before recent developments leading
to O(log n) overhead ORAMs [1,32].

86 A. Bienstock et al.

negligible probability. Formally, Stash contains at most ω(log n) items except
with probability negligible in n. Additionally, it has been showing that accessing
the tree is oblivious.

To obtain forward secrecy, we embed the folklore FS eRAM ideas into the
binary tree. Each internal node in the binary tree will additionally store a random
encryption key that will be used to encrypt the contents of both children. Each
time a root-to-leaf path is accessed, all children of nodes in the root-to-leaf
path will also be accessed. All encryption keys of nodes in the path will be
re-generated. Furthermore, all nodes will be re-encrypted using their parent’s
new encryption key. The newly re-encrypted nodes will be uploaded back to the
server for storage. This modification guarantees forward secrecy for the data.

Position Map and Stash. Next, we consider the position map PMAP. Note
that PMAP only stores relationships between entries and leaf nodes. In partic-
ular, PMAP does not store any information about the array entry contents. As
a result, we only need to focus on obliviousness for PMAP. We choose to store
PMAP in any oblivious RAM. If we choose the construction in [1], reading or
overwriting any entry PMAP[i] requires only O(log n) overhead as PMAP con-
tains only n entries. Finally, the Stash is handled by encrypting the array entries
D[i] that it contains, along with their corresponding leaves Leaf(i), and storing
the ciphertexts on the server. Making the natural assumption that the cell size is
Ω(log n) bits and can fit memory addresses, we can encode Leaf(i) using O(log n)
bits, and thus additionally storing Leaf(i) does not incur any extra overhead.

Read and Write Algorithms. Altogether, a read or write to the oblivious
forward secure encrypted RAM works as follows. To read/overwrite D[i], the leaf
node Leaf(i) is queried from PMAP using ORAM operations. Next, the root-
to-leaf path to Leaf(i), children of nodes in the root-to-leaf path and Stash are
downloaded and decrypted. D[i] is then retrieved and updated if needed. A new
uniformly random Leaf(i) is generated and written back to PMAP, and D[i] is
placed into Stash with its new Leaf(i). Items are greedily evicted from Stash into
the downloaded root-to-leaf path using their Leaf(i) as guidance. Each node is
padded to the maximum capacity with dummies if needed. All encryption keys of
internal nodes are freshly sampled and all nodes are encrypted using the parent
node’s encryption keys before being uploaded back to the server. The root is
encrypted with a freshly generated client-stored encryption key. Finally, Stash
is padded to the maximum capacity with dummies and re-encrypted using the
new client key before being uploaded to the server.

Theorem 7. For any function f(n) = ω(1), there exists a (weak) oblivious
forward secret encrypted RAM with O(log n·f(n)) overhead, O(n) server storage
and O(1) client storage.

We provide a proof of this Theorem in the full version [5]. Our construction is
essentially optimal except for the multiplicative ω(1) factor as we already proved
that forward secure encrypted RAMs require Ω(log n) overhead. Similarly, it is
known that ORAMs also require Ω(log n) overhead [17,26].

Forward Secret Encrypted RAM: Lower Bounds and Applications 87

6 Forward Secret Memory Checkers

In this section, we combine forward secret encrypted RAMs with memory check-
ers (MCs) to get forward secret memory checkers (FS MCs). Memory checking
is a well-studied cryptographic notion [6,11,15,31] that provides authenticity for
outsourced data storage. Intuitively, MCs use some small local storage to guar-
antee that an adversarial server cannot alter outsourced data entries without the
MC noticing (and outputting that a bug has occurred).

We will first define our combined notion of FS MCs then provide a scheme
which overlays the folklore FS eRAM scheme with a tree-based MC from [6] that
uses ideas from Merkle Trees [28]. As a result, we will achieve O(1) secret stor-
age, O(n) remote storage, and O(log n) overhead, i.e., a scheme which provides
memory checking with no additional asymptotic overhead to the folklore FS
eRAM scheme.10 Our construction is optimal with respect to both our Ω(log n)
lower bound on the overhead of FS eRAM and the best known O(log n) overhead
construction for MCs (and almost optimal with respect to the Ω(log n/ log log n)
MC lower bound of [15]).11

6.1 Forward Secret Memory Checker Definition

For FS MCs, we alter the syntax of FS eRAMs presented in Definition 12 to high-
light the interaction between the FS MC and the potentially malicious remote
server. Before reading the data from a virtual cell i, the FS MC must first receive
the relevant (but possibly maliciously fabricated) public cells from the server.
Additionally, to write to a cell i, the FS MC must first receive the relevant public
cells from the server as above, then send new public cells to the server, which
the FS MC expects to be written in place of the old public cells.

Definition 17 (Forward Secret Memory Checker). A Forward Secret
Memory Checker (FS MC) Π = (init, retrieve, read,write, commit) consists of
the following algorithms:12

– (Sec, Pub) ← init(1λ, n), which initializes public cells Pub and secret cells Sec,
where n is the number of virtual cells and λ is the security parameter.

– S ← index(i), which the server uses to identify S ⊆ {1, . . . , |Pub|}, a sparse
subset of indices of the cells of Pub associated with virtual cell i. We refer to
these cells of Pub as Pubindex(i).

– (Sec′, d) ← read(Sec,C, i), which the FS MC uses to obtain the data d of vir-
tual cell i, where in the case of an honest server, C is expected to be Pubindex(i).
In the case that the FS MC wants to report a loss of integrity, it may output
d ← bug.

10 Although the solution of [38] informally provides the same guarantees with a similar
construction, we provide a complete formal model and construction.

11 For online MCs that access server memory deterministically and non-adaptively.
12 While our definition is not fully general, i.e., does not allow for arbitrary interaction

between the FS MC and server, it suffices for our optimal construction.

88 A. Bienstock et al.

– (Sec′,C′) ← write(Sec,C, d, i), which the FS MC uses to replace the contents
of virtual cell i with data d, where in the case of an honest server, C is
expected to be Pubindex(i). The FS MC will provide the server with new public
cells C′ relevant to virtual cell i with which an honest server will replace cells
Pubindex(i). In the case that the FS MC wants to report a loss of integrity, it
may output C′ ← bug.

Correctness. An FS MC scheme is correct if for any sequence of operations exe-
cuted by the FS MC and an honest server: Pr[(·, d∗) ← read(Sec, Pubindex(i), i) :
d∗ = d] = 1, for any execution of (·, d∗) ← read(Sec, Pubindex(i), i) in the sequence
after an execution of (Sec′,C′) ← write(Sec, Pubindex(i), d, i), and before a sub-
sequent execution of (Sec′,C′) ← write(Sec, Pubindex(i), d′, i), where the proba-
bility is over the random coin tosses of the protocol.

Security. We now provide the security definition of FS MCs. The adversary in
the game will adaptively specify the sequence of operations that the FS MC
performs and have the ability to choose which cells C to provide to the FS MC
challenger for read() and write() operations.

Throughout, the security game will store a dictionary D[·] containing the
correct data items at each index i ∈ [n], corresponding to the most recent
adversarial write or challenge to that index i. For every i ∈ [n], D[i] ← ⊥ ini-
tially. The challenger initially chooses b ∈ {0, 1} uniformly at random, runs
(Sec, Pub) ← init(1λ, n), sends Pub to the adversary A, and deletes it. Then the
adversary has access to (polynomial-many queries of) the following oracles:

– read(C, i): A sends public cells C for data cell i to the challenger who then
computes (Sec′, d) ← read(Sec,C, i). If d /∈ {D[i], bug}, the game outputs win
and ends. Note: d is not sent to A.

– write(C, d, i): A sends public cells C and data d to overwrite virtual cell i
with to the challenger who then computes (Sec′,C′) ← write(Sec,C, d, i). The
challenger then sends C′ back to A, and deletes it. Additionally, if C′ �= bug,
the game sets D[i] ← d.

– chall(C, d0, d1, i): A sends public cells C and data d0, d1 to overwrite data cell
i with to the challenger who then computes (Sec′,C′) ← write(Sec,C, db, i).
The challenger then sends C′ back to A, and deletes it. Additionally, if C′ �=
bug, the game sets D[i] ← db.

– corrupt(): The challenger simply sends the contents of Sec to A.

Finally, A outputs a bit b′ and the game outputs win if and only if b′ = b.
As in the FS eRAM security definition, A is not allowed to call corrupt()

after a call to chall(C, d0, d1, i), without first a call to write(C, d, i) to overwrite
the i-th virtual cell with some other data d, in which the challenger returns
C′ �= bug, since otherwise they would trivially win.

Definition 18 (Forward Secret Memory Checker Security). A For-
ward Secret Memory checker is secure if for every PPT adversary A,
∣

∣Pr[A wins] − 1
2

∣

∣ ≤ negl(λ).

Forward Secret Encrypted RAM: Lower Bounds and Applications 89

6.2 Forward Secret Memory Checker Construction

Fig. 4. Depiction of how our Forward Secret Memory Checker overwrites Sec and
Pubindex(01) after an execution of write(Sec, Pubindex(01), d

′
01, 01). For every internal

node v along the root-to-leaf path of leaf 01, as well as their siblings, the cipher-
text ct ′

v = Ek′
p
(k′

v) is regenerated with the new keys k′
v, k′

p at v and its parent p,

respectively (for siblings of path nodes, k′
v = kv, the current key). For leaves 00 and

01, ct ′
00 = Ek′

0
(d00), ct

′
01 = Ek′

0
(d′

01). For every node u on only the root-to-leaf path

of leaf 01 (not their siblings), the hash function h′
u and corresponding hash value

x′
u = h′

u(ct ′
u.c1 ||h′

u.c1 ||x′
u.c1 ||ct ′

u.c2 ||h′
u.c2 ||x′

u.c2) is regenerated, where one child u.c1 or
u.c2, w.l.o.g., u.c1, is not on the root-to-leaf path, and thus h′

u.c1 = hu.c1 , x′
u.c1 = xu.c1

(their current values). Also, hw and xw are the all-zero string if w is a leaf.

Our FS MC construction is depicted in Fig. 4. We overlay the folklore FS
eRAM solution, which uses IND-CPA secure symmetric encryption for forward
secrecy, with the MC solution of [6], which uses universal one-way hash functions
(UOWHF) for integrity. Both utilize a binary tree with n leaf nodes to store the
data elements in Pub, and store the root in Sec. Note: It is possible to construct
a family of UOWHF given any one-way function [40], but the use of UOWHFs
requires the assumption that the word size of the RAM is � = nε, for any ε > 0.

More specifically, each leaf node i holds ct i = Ekp
(di), where kp is the encryp-

tion key of the parent p of i. Each internal node v holds (hv, ctv = Ekp
(kv), xv =

hv(ctv.c1 ||hv.c1 ||xv.c1 ||ctv.c2 ||hv.c2 ||xv.c2)), where here and in the following, || rep-
resents concatenation, kv, kp are the encryption keys of v and its parent p, respec-
tively, hv, hv.c1 , hv.c2 are the description of the hash functions used at v and
the children v.c1, v.c2 of v, respectively (which can be described in O(�) bits),
ctv.c1 , ctv.c2 are the ciphertexts stored at the children v.c1, v.c2, respectively, and
xv.c1 , xv.c2 are the hashes at the children v.c1, v.c2, respectively. If v.c1, v.c2 are
leaves, hv.c1 , xv.c1 , hv.c2 , xv.c2 are the all-zero string. The root node, stored in
Sec contains (hr, kr, xr = hr(ctr.c1 ||hr.c1 ||xrc1 ||ctr.r.c2 ||hr.c2 ||xr.c2)), where kr is
the root encryption key. The FS MC algorithms are as follows:

– init(1λ, n): Initializes a complete binary tree with n leaves in Pub, with data
⊥ at each node, Sec ← ⊥.

90 A. Bienstock et al.

– index(i): Returns the indices of the cells of the root-to-leaf path nodes of leaf
i, along with all path nodes’ siblings.

– read(Sec,C, i): Given (what the FS MC believes to be) the root-to-leaf path
of leaf i and siblings along the path in C from the server, the FS MC:

• First checks xr = hr(ctr.c1 ||hr.c1 ||xr.c1 ||ctr.c2 ||hr.c2 ||xr.c2).
• Then, for every internal node v along the path to i, the FS MC checks xv =

hv(ctv.c1 ||hv.c1 ||xv.c1 ||ctv.c2 ||hv.c2 ||xv.c2) and decrypts kv ← Dkp
(ctv).

• Finally, at leaf node i, the FS MC decrypts di ← Dkp
(ct i).

If any hash check fails, the FS MC outputs di ← bug, otherwise, it outputs
di. The FS MC does not change Sec.

– write(Sec,C, d′
i, i): Given (what the FS MC believes to be) the root-to-leaf

path of leaf i and siblings along the path in C, the FS MC
• First verifies and decrypts all of the nodes (including siblings) in C as in

read() above; if the test on any node fails, the FS MC outputs C′ ← bug
and does not change Sec. Otherwise,

• For each internal node v on the root-to-leaf path of i, except for the
parent of i, the FS MC regenerates k′

v and ct ′
v.c1 = Ek′

v
(k′

v.c1), ct
′
v.c2 =

Ek′
v
(k′

v.c2), where if v.c1 is not on the root-to-leaf path, k′
v.c1 = kv.c1 (its

current key), and symmetrically if v.c2 is not.
• Then for the parent p of i, the FS MC regenerates k′

p and ct ′
i = Ek′

p
(d′

i)
and for the sibling j of i, ct ′

j = Ek′
p
(dj).

• Next, for each internal node v on the root-to-leaf path of i, the FS MC
regenerates h′

v and x′
v = h′

v(ct ′
v.c1 ||h′

v.c1 ||x′
v.c1 ||ct ′

v.c2 ||h′
v.c2 ||x′

v.c2) where
if v.c1 is not on the root-to-leaf path, h′

v.c1 = hv.c1 , x
′
v.c1 = xv.c1 (its

current values), and symmetrically if v.c2 is not.
C′ is set to store the updated ciphertexts, hash functions, and hash values
at their corresponding nodes, and Sec′ is set to store the regenerated hash
function h′

r, root key k′
r, and hash value x′

r.

Intuitively, the root key and hash stored in Sec ensure that the ciphertexts at
the root’s children will decrypt to the correct keys, while still ensuring privacy.
Then, inductively, the decrypted keys and corresponding hashes at level i ensure
the ciphertexts at level i + 1 decrypt to the correct keys, while still ensuring
privacy. We formalize this in the following theorem, which we prove in the full
version [5].

Theorem 8. There exists a secure Forward Secret Memory Checker with
O(log n) overhead, O(n) public storage and O(1) secret storage.

Remark 1. In practice, a single CRHF can be used in place of a UOWHF family
so that there is no need to regenerate the hash functions at the nodes of the
root-to-leaf path for every write(), nor include them in the hashes at each node.
We use a UOWHF family since it is possible to construct one given any OWF.

Remark 2. For the same level of privacy, but weaker integrity (i.e., integrity only
before any corruption of Sec), one can use only AEAD in place of both symmetric
encryption and a UOWHF/CHRF. In this case also, the word size need not be
polynomial. This is a generalization of a weaker MC construction from [6].

Forward Secret Encrypted RAM: Lower Bounds and Applications 91

References

1. Asharov, G., Komargodski, I., Lin, W.-K., Nayak, K., Peserico, E., Shi, E.:
OptORAMa: optimal oblivious RAM. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 403–432. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45724-2 14

2. Aviram, N., Gellert, K., Jager, T.: Session resumption protocols and efficient for-
ward security for TLS 1.3 0-RTT. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019, Part II. LNCS, vol. 11477, pp. 117–150. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-17656-3 5

3. Bajaj, S., Sion, R.: Ficklebase: looking into the future to erase the past. In: 2013
IEEE 29th International Conference on Data Engineering (ICDE), pp. 86–97. IEEE
(2013)

4. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 198–
228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 8

5. Bienstock, A., Dodis, Y., Yeo, K.: Forward secret encrypted ram: lower bounds and
applications. Cryptology ePrint Archive, Report 2021/244 (2021). https://eprint.
iacr.org/2021/244

6. Blum, M., Evans, W.S., Gemmell, P., Kannan, S., Naor, M.: Checking the correct-
ness of memories. In: 32nd FOCS, pp. 90–99. IEEE Computer Society Press, San
Juan (1991)

7. Boneh, D., Lipton, R.J.: A revocable backup system. In: USENIX Security Sym-
posium, pp. 91–96 (1996)

8. Boyle, E., Naor, M.: Is there an oblivious ram lower bound? In: Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, pp.
357–368 (2016)

9. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM ’99.
Conference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future is
Now (Cat. No.99CH36320), vol. 2, pp. 708–716 (1999)

10. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017. LNCS, vol.
10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54388-7 8

11. Clarke, D.E., Suh, G.E., Gassend, B., Sudan, A., van Dijk, M., Devadas, S.:
Towards constant bandwidth overhead integrity checking of untrusted data. In:
2005 IEEE Symposium on Security and Privacy, pp. 139–153. IEEE Computer
Society Press, Oakland (2005)

12. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Water-
marking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM
STOC, pp. 1115–1127. ACM Press, Cambridge (2016)

13. Derler, D., Jager, T., Slamanig, D., Striecks, C.: Bloom filter encryption and appli-
cations to efficient forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 425–455. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-319-78372-7 14

14. Di Crescenzo, G., Ferguson, N., Impagliazzo, R., Jakobsson, M.: How to forget a
secret. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 500–509.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3 47

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-17656-3_5
https://doi.org/10.1007/978-3-030-64378-2_8
https://eprint.iacr.org/2021/244
https://eprint.iacr.org/2021/244
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-662-54388-7_8
https://doi.org/10.1007/978-3-319-78372-7_14
https://doi.org/10.1007/3-540-49116-3_47

92 A. Bienstock et al.

15. Dwork, C., Naor, M., Rothblum, G.N., Vaikuntanathan, V.: How efficient can
memory checking be? In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 503–
520. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 30

16. Geambasu, R., Kohno, T., Levy, A.A., Levy, H.M.: Vanish: Increasing data privacy
with self-destructing data. In: USENIX Security Symposium, vol. 316 (2009)

17. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM (JACM) 43(3), 431–473 (1996)

18. Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22012-8 46

19. Green, M.D., Miers, I.: Forward secure asynchronous messaging from puncturable
encryption. In: 2015 IEEE Symposium on Security and Privacy, pp. 305–320. IEEE
Computer Society Press, San Jose (2015)

20. Günther, F., Hale, B., Jager, T., Lauer, S.: 0-RTT key exchange with full for-
ward secrecy. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 519–548. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 18

21. Harney, H., Muckenhirn, C.: Rfc2093: group key management protocol (gkmp)
specification (1997)

22. Harney, H., Muckenhirn, C.: Rfc2094: Group key management protocol (gkmp)
architecture (1997)

23. Hubáček, P., Koucký, M., Král, K., Sĺıvová, V.: Stronger lower bounds for online
ORAM. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 264–
284. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7 10

24. Jacob, R., Larsen, K.G., Nielsen, J.B.: Lower bounds for oblivious data structures.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 2439–2447. SIAM (2019)

25. Kobeissi, N., Nicolas, G., Bhargavan, K.: Noise explorer: fully automated modeling
and verification for arbitrary noise protocols. In: 2019 IEEE European Symposium
on Security and Privacy (EuroS P), pp. 356–370 (2019)

26. Larsen, K.G., Nielsen, J.B.: Yes, there is an oblivious RAM lower bound! In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 523–
542. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 18

27. Larsen, K.G., Simkin, M., Yeo, K.: Lower bounds for multi-server oblivious rams.
Theory of Cryptography Conference (to appear) (2020)

28. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

29. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic multi-
cast key distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 10

30. Mittra, S.: Iolus: a framework for scalable secure multicasting. In: Proceedings
of the ACM SIGCOMM ’97 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, SIGCOMM ’97, pp. 277–288.
Association for Computing Machinery, New York (1997). https://doi.org/10.1145/
263105.263179

31. Oprea, A., Reiter, M.K.: Integrity checking in cryptographic file systems with
constant trusted storage. In: Provos, N. (ed.) USENIX Security 2007, pp. 6–10.
USENIX Association, Boston (2007)

https://doi.org/10.1007/978-3-642-00457-5_30
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-642-22012-8_46
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-319-56617-7_18
https://doi.org/10.1007/978-3-030-36033-7_10
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1145/263105.263179
https://doi.org/10.1145/263105.263179

Forward Secret Encrypted RAM: Lower Bounds and Applications 93

32. Patel, S., Persiano, G., Raykova, M., Yeo, K.: Panorama: oblivious ram with log-
arithmic overhead. In: 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 871–882. IEEE (2018)

33. Patel, S., Persiano, G., Yeo, K.: Lower bounds for encrypted multi-maps and
searchable encryption in the leakage cell probe model. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 433–463. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 15

34. Persiano, G., Yeo, K.: Lower bounds for differentially private RAMs. In: Ishai, Y.,
Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 404–434. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17653-2 14

35. Peterson, Z.N., Burns, R.C., Herring, J., Stubblefield, A., Rubin, A.D.: Secure
deletion for a versioning file system. In: FAST, vol. 5 (2005)

36. Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502–519. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14623-7 27

37. Reardon, J., Basin, D., Capkun, S.: Sok: secure data deletion. In: 2013 IEEE Sym-
posium on Security and Privacy, pp. 301–315. IEEE (2013)

38. Reardon, J., Ritzdorf, H., Basin, D., Capkun, S.: Secure data deletion from persis-
tent media. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security, pp. 271–284 (2013)

39. Roche, D.S., Aviv, A., Choi, S.G.: A practical oblivious map data structure with
secure deletion and history independence. In: 2016 IEEE Symposium on Security
and Privacy (SP), pp. 178–197. IEEE (2016)

40. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394. ACM Press, Baltimore (1990)

41. Sherman, A.T., McGrew, D.A.: Key establishment in large dynamic groups using
one-way function trees. IEEE Trans. Softw. Eng. 29(5), 444–458 (2003)

42. Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.:
Path oram: an extremely simple oblivious ram protocol. In: Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, pp.
299–310 (2013)

43. Sun, S.-F., Sakzad, A., Steinfeld, R., Liu, J.K., Gu, D.: Public-key puncturable
encryption: modular and compact constructions. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 309–338. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 11

44. Susilo, W., Duong, D.H., Le, H.Q., Pieprzyk, J.: Puncturable encryption: a generic
construction from delegatable fully key-homomorphic encryption. In: Chen, L., Li,
N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 107–127.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59013-0 6

45. Wallner, D., Harder, E., Agee, R.: Rfc2627: Key management for multicast: issues
and architectures (1999)

46. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
In: Proceedings of the ACM SIGCOMM ’98 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication, SIGCOMM ’98,
pp. 68–79. Association for Computing Machinery, New York (1998). https://doi.
org/10.1145/285237.285260

47. Yao, A.C.C.: Should tables be sorted? J. ACM (JACM) 28(3), 615–628 (1981)

https://doi.org/10.1007/978-3-030-56784-2_15
https://doi.org/10.1007/978-3-030-17653-2_14
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-642-14623-7_27
https://doi.org/10.1007/978-3-030-45374-9_11
https://doi.org/10.1007/978-3-030-59013-0_6
https://doi.org/10.1145/285237.285260
https://doi.org/10.1145/285237.285260

Laconic Private Set Intersection
and Applications

Navid Alamati1(B), Pedro Branco2(B) , Nico Döttling3(B) , Sanjam Garg1,4(B),
Mohammad Hajiabadi5(B), and Sihang Pu3(B)

1 UC Berkeley, Berkeley, USA
sanjamg@berkeley.edu

2 IT, IST - University of Lisbon, Lisbon, Portugal
3 Helmholtz Center for Information Security (CISPA), Saarbrücken, Germany

4 NTT Research, Palo Alto, USA
5 University of Waterloo, Waterloo, Canada

Abstract. Consider a server with a large set S of strings {x1, x2 . . . , xN}
that would like to publish a small hash h of its set S such that any client
with a string y can send the server a short message allowing it to learn
y if y ∈ S and nothing otherwise. In this work, we study this problem of
two-round private set intersection (PSI) with low (asymptotically opti-
mal) communication cost, or what we call laconic private set intersection
(�PSI) and its extensions. This problem is inspired by the recent general
frameworks for laconic cryptography [Cho et al. CRYPTO 2017, Quach
et al. FOCS’18].

We start by showing the first feasibility result for realizing �PSI based
on the CDH assumption, or LWE with polynomial noise-to-modulus
ratio. However, these feasibility results use expensive non-black-box cryp-
tographic techniques leading to significant inefficiency. Next, with the
goal of avoiding these inefficient techniques, we give a construction of
�PSI schemes making only black-box use of cryptographic functions. Our
construction is secure against semi-honest receivers, malicious senders
and reusable in the sense that the receiver’s message can be reused
across any number of executions of the protocol. The scheme is secure
under the φ-hiding, decisional composite residuosity and subgroup deci-
sion assumptions.

Finally, we show natural applications of �PSI to realizing a
semantically-secure encryption scheme that supports detection of
encrypted messages belonging to a set of “illegal” messages (e.g., an ille-
gal video) circulating online. Over the past few years, significant effort
has gone into realizing laconic cryptographic protocols. Nonetheless, our
work provides the first black-box constructions of such protocols for a
natural application setting.

1 Introduction

Laconic cryptography [13,18,20,40] is an emerging paradigm which enables real-
izing cryptographic tasks with asymptotically-optimal communication in just
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 94–125, 2021.
https://doi.org/10.1007/978-3-030-90456-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_4

Laconic Private Set Intersection and Applications 95

two messages. In this setting, the receiver has a potentially large input, and the
size of her protocol message only depends on the security parameter, and not
her input size. The second message, sent by the sender, may grow with the size
of the sender’s input, but should be independent of the receiver’s input size.

The pioneering work of [13] introduced the notion of laconic oblivious transfer
(laconic OT), which allows a receiver with a large input D ∈ {0, 1}n to send a
short hash digest h of her input D. Next, a sender with an input (i ∈ [n],m0,m1),
sends a short message ots to the receiver, enabling the receiver to learn mD[i],
and nothing more. We require (a) the sizes of h and ots be poly(log(n), λ), where
λ is the security parameter; (b) the sender’s computation time be poly(log(n), λ)
and (c) and receiver’s second-phase computation time be poly(log(n), λ).

The notion of laconic OT, and the techniques built around it, have led to
breakthrough results in the last few years, which, among others, include the first
construction of identity-based encryption from CDH [8,16,17,19], and two-round
MPC protocols from minimal assumptions [4,24,25].

Laconism Beyond OT? Motivated by the developments enabled by laconic OT, it
is natural to ask whether we can push the boundary further, realizing laconism
for richer functionalities. Laconic OT by itself does not seem to be sufficient
for this task (at least generically). Specifically, the general laconic OT+garbled
circuit based approach for a function f(·, ·) results in protocols in which the size
of the sender’s protocol message grows with the receiver’s input size.

The work of Quach, Wee and Wichs [40] shows how to realize laconic cryp-
tography for general functionalities using LWE. However, two significant issues
remain. Firstly, it is not clear whether we can achieve laconism from other
assumptions, for functionalities beyond OT. As mentioned above, research in
laconic OT has led to several breakthrough feasibility results, motivating the
need for developing techniques that can be realized using wider assumptions and
for richer functionalities. Secondly, existing constructions of laconic primitives
are non-black-box, leading to inefficient constructions. Addressing the above
shortcomings, our goals are twofold: (1) Feasibility: Can we realize laconic prim-
itives beyond OT from assumptions other than LWE? and (2) Black-boxness:
Can we make the constructions black-box?

Black-Box Techniques. We use the notion “black-box” techniques in the sense
that the construction should not use an explicit circuit-level description of cryp-
tographic primitives. In this sense, we think of constructions which e.g., com-
pute cryptographic primitives inside garbled circuits (as previous laconic OT
constructions) or use general purpose NIZK proofs (which express statements in
terms of NP-complete languages) as “non-black-box” techniques.

Laconic PSI. We make the first progress toward the above two goals with respect
to a non-trivial functionality: Laconic Private Set Intersection (�PSI) and its
family. Private set intersection (PSI) is a cryptographic primitive that allows
two parties to learn the intersection of their input sets and nothing else. Because
of its usefulness and versatility, this cryptographic primitive has been extensively

96 N. Alamati et al.

studied in numerous settings throughout the years (see e.g., [31,35,36,38,39,42]
and references therein).

Laconic PSI allows a receiver to send a short digest of its large data set, which
in turn can be used by a sender to compute a PSI second round message. We
require that the total communication complexity as well as the sender’s running
time to be independent of the receiver’s input size.

1.1 Our Results

As our first result, we give a generic construction of laconic PSI from a prim-
itive called anonymous hash encryption, which in turn can be realized from
CDH/LWE [8,16,17]. Our construction builds on the Merkle-tree garbled cir-
cuit based approach of [8,16,17,22,23,26], showing how to use garbled circuits
to perform binary search on a set of sorted values. Prior to our work there did
not exist any construction of a laconic primitive from CDH beyond OT. We also
obtain an LWE instantiation with polynomial modulus to noise ration, improv-
ing the subexponential ratio of [40].

The above construction is non-black-box caused by the use of garbled circuits.
As our second contribution, we achieve a black-box construction of laconic PSI
from the φ-hiding assumption.

Both constructions above are only semi-honest secure, and can be made mali-
cious (UC) secure by using Non-Interactive Zero Knowledge (NIZK).1 However,
the eventual protocol will be non-black-box. To enhance applicability, we show
how to make our second construction secure against malicious senders, and semi-
honest receivers in the CRS model, by additionally assuming decisional compos-
ite residuosity (DCR) and subgroup decision assumptions. We term this notion
reusable malicious laconic PSI, meaning the receiver’s message may be re-used.2

Applications. We show an application of laconic PSI in realizing a primitive that
we dub self-detecting encryption. A self-detecting encryption acts like a normal
public-key encryption with a key difference that it is possible to detect whether
the underlying message of a given ciphertext belongs to a database of special
(e.g., “illegal”) messages. This can be determined just by knowing the database
values, as opposed to the system’s secret key. Such encryption systems provide a
feature for detecting the presence of illegal contents, without compromising the
privacy of legal messages. There has only been a limited number of proposals
for this task so far, and all of them use heavy tools (e.g., FHE) for this purpose
(see [28] for more details). We formally define this notion, and show how to
realize it using laconic PSI.

In a self-detecting encryption, an authority (e.g., a government entity or a
delegated NGO) publishes a small hash value of a (possibly large) database of
1 Note that in the laconic setting we cannot prove malicious security against a receiver

since it is information-theoretically impossible to extract its input. Thus, since the
NIZK will only be computed by the sender, the protocol will remain laconic.

2 We use the word reusability only in conjunction with malicious security, since in the
semi-honest setting, reusability is satisfied by default.

Laconic Private Set Intersection and Applications 97

special messages such that a user can encrypt a message using the system’s
public key and the hash value. If the message belongs to the database, then
the authority can detect it; else, the message remains hidden to the authority.
We require that the size of the hash and the encryption running time to be
independent of the database size.

We note that attribute-based encryption does not provide a solution to the
above problem, because either the authority should reveal its database to a
master-key generator, or it should be the master-key generator itself – both of
which defeat our security purposes.

Additional New Results: Labeled Laconic PSI and Malicious Laconic OT (LOT).
We extend our laconic PSI techniques to build a reusable labeled laconic PSI.
Labeled PSI [11,34] is a flavor of PSI, where the sender holds a label �i associated
with each set element xi, and the receiver will learn the labels corresponding to
the intersection elements. Labeled PSI has several practical applications (e.g.,
private web service queries [11]).

Moreover, we show how to use our techniques to realize the first construction
of a reusable LOT secure against malicious senders and semi-honest receivers.

DV-NIZK Range Proofs for DJ Ciphertexts. As a building block for our laconic
PSI protocol, we propose a Designated-Verifier Non-Interactive Zero-Knowledge
(DV-NIZK3) scheme for range proof with Damg̊ard Jurik (DJ) ciphertexts, which
may be of independent interest. Our DV-NIZK has statistical simulation sound-
ness and computational zero-knowledge given that the subgroup decision (SD)
assumption holds [5,29].

Such range proofs can also be constructed in the random oracle model (ROM)
via the Fiat-Shamir transform (e.g., [3,9,15,43]), which might yield the best
efficiency. As our LPSI construction is modular, this can be done independently
of the remaining results in the paper. The goal of our DV-NIZK is to provide
an efficient standard model construction which we see as a reasonable middle
ground between feasibility from the weakest assumption (at the cost of unrealistic
efficiency) and practical efficiency (at the cost of relying on strong heuristic
assumptions such as the ROM).

1.2 Previous Work

Laconic PSI can be seen as a particular case of unbalanced PSI. Protocols for
unbalanced PSI were presented in [2,11,12,41]. The protocol of [41] achieves lin-
ear communication complexity on the receiver’s set size in the pre-processing
model. The protocols of [11,12] rely on somewhat homomorphic encryption
(SWHE) and proceed in two rounds. However, the communication complexity
scales with the size of the receiver’s set (and logarithmic with the size of the

3 DV-NIZK only allows the designated prover to prove that it holds a witness for a
certain NP statement to a verifier in just one message.

98 N. Alamati et al.

sender’s set), in contrast with our protocol whose communication complexity
scales with the sender’s set size.

Comparison with [2]. Ateniese et al. in [2] proposed a semi-honest size-hiding
PSI protocol4 inspired by RSA accumulators that achieves communication com-
plexity independent of the receiver’s set size. However, we emphasize that their
scheme does not fit the framework of laconic cryptography since it requires the
sender to know the factorization of a CRS modulus N. Thus, either it requires
pre-processing (giving a designated secret key to the sender), or it requires three
rounds in the CRS model. In contrast, laconic cryptography requires (a) two
rounds and (b) no pre-processing (i.e., neither party receives a secret key cor-
related with the CRS). Both (a) and (b) are crucially used in applications of
laconic cryptography. Specifically, these restrictions prevent use of [2] in settings
with multiple senders, an aspect that has been critical for laconic cryptography
applications. Finally, we remark that the security of [2] relies on random oracles,
whereas we prove security in the standard model and achieve a substantially
stronger security notion without resorting to heavy generic tools.

All of above constructions are just secure against semi-honest adversaries,
except for [11] which achieves security against a malicious receiver.

1.3 Open Problems

The main open question is to realize laconic cryptography for functionalities
richer than PSI. A second question is to build laconic PSI in a black-box way
from assumptions not involving φ-hiding (e.g., pairings alone).

In this work, we build DV-NIZK for proving equality of plaintexts across
different encryption schemes, namely between the DJ [15] and the BGN [5,29]
encryption schemes. This scheme opens the door to new applications since it
allows us to extend the capabilities of GS/GOS proof systems [29,30] to non-
pairing-based primitives with additional properties (in our case to the DJ cryp-
tosystem). We believe that these ideas will have applications beyond range
proofs, e.g., one can think of further uses of structure preserving cryptography,
so we leave this as an open problem for future works.

2 Technical Overview

2.1 Semi-Honest PSI from CDH/LWE

Our protocol uses hash encryption and garbled circuits, building on [8,17,22],
while introducing new techniques. A hash-encryption scheme allows one to
encrypt a message m to the output h of a hash function by specifying an
index/bit (i, b) (denoted HEnc(h,m, (i, b))), so that knowledge of a consistent
pre-image value z allows for decryption (Hash(z) = h and zi = b) while hav-
ing semantic security against inconsistent pre-image values (i.e., against z where
Hash(z) = h but zi = b̄).5

4 Such schemes were also studied in [32,33,37].
5 Enc also takes as input a public parameter pp, which we ignore here.

Laconic Private Set Intersection and Applications 99

In all discussion below we assume the sender’s and receiver’s elements are in
{0, 1}λ and that the output of Hash also has λ bits.

Receiver’s Set Size is 2. We first assume the receiver has only two elements
SR = {id1, id2} and the sender has a single element id. The receiver sends hrroot :=
Hash(id1, id2). Consider a circuit F[id], with id hardwired, which on input (id′, id′′)
outputs id if id ∈ {id′, id′′}; else, ⊥. The sender garbles F[id] to get (˜C0, {lbi,b})6

and sends psi2 := (˜C0, {cti,b}), where cti,b := HEnc(hrroot, lbi,b, (i, b))). The
receiver who has the pre-image z := (id1, id2) can retrieve only the labels lbi,zi

,
and the rest will be hidden. Thus, by garbled circuit security the receiver will
only learn the output of F[id](id1, id2), as desired.

Moving Beyond |SR| = 2. Suppose the receiver has four elements SR =
{id1, id2, id3, id4} in ascending order. The receiver Merkle-hashes all these val-
ues and sends hrroot, the root hash. Let h1 and h2 be the two hash values at level
one (i.e., h1 = Hash(id1, id2)). If the sender knows the value of, say, h1, he may
hash-encrypt {lbi,b} (defined in the previous paragraph) under h1, so that the
receiver can only open the labels that correspond to the bits of z = (id1, id2),
revealing the value of F[id](id1, id2). However, h1 is statistically hidden given
hrroot. Thus, we use the idea of deferred evaluation [8,13,16,17], delegating the
task of hash-encrypting {lbi,b} to the receiver herself, via garbled circuits.

In essence, we want the receiver to be able to compute the hash encryption of
{lbi,b} wrt either h1 or h2 (depending on whether id ≤ id2 or not), but not both;
because obtaining both hash encryptions will allow the receiver to open both
labels lbi,0 and lbi,1 for some indices i (because (id1, id2) �= (id3, id4)), destroying
garbled circuit security. Thus, the sender has to make sure that the receiver
will be able to obtain only either of the above hash encryptions, the one whose
sub-tree contains id. To enable this, we perform binary search.

Performing Binary Search. We handle the above difficulty by performing binary
search using ideas developed in the context of registration-based encryption [22].
The hash of each node is now computed as the hash of the concatenation of its
left child’s hash, right child’s hash, and the largest identity under its left child.
For example, the hash root is hrroot = Hash(h1, h2, id2), where h1 and h2 are the
hash values of the two nodes in the first level, and in turn h1 = Hash(id1, id2, id1).
Now let id be the sender’s element, and change F[id] to be a circuit that on input
(id′, id′′, ∗) outputs id if id ∈ {id′, id′′}, else ⊥. Letting (˜C0, {lbi,b}) be the garbling
of F[id], consider a circuit G[id, {lbi,b}] which on input (h, h′, id′) outputs a hash-
encryption of lbi,b either under h or under h′, depending on whether id ≤ id′

or id > id′. Let (˜C′, {lb′}i,b) be the garbling of G[id, {lbi,b}], let {cti,b} be the
hash encryption of {lb′

i,b} wrt hrroot, and return psi2 := (˜C0, ˜C′, {cti,b}). Using
the pre-image z := (h1, h2, id2) of hrroot, the receiver can retrieve the labels
{lb′

i,z[i]}, allowing to compute G[id, {lbi,b}](h1, h2, id2), which will produce a hash
encryption {ct′i,b} of {lbi,b} under either h1 or h2, depending on whether id ≤ id2,

6
˜C0 stands for the garbled circuit and {lbi,b}i are the corresponding labels of inputs.

100 N. Alamati et al.

or not. For concreteness, suppose id ≤ id2, meaning that {ct′i,b} are formed under
h1, and so the pre-image z′ = (id1, id2, id1) of h1 will lead to {lbi,z′

i
}, which along

with ˜C0 will reveal the value of F[id](id1, id2, id1). Of course, the receiver a priori
does not know whether {ct′i,b} are encryptions under h1 or h2, so the receiver
should try decrypting wrt both, and see which one succeeds.

Are We Done? Unfortunately, when arguing security, a subtle issue emerges.
Suppose a hash-encryption ciphertext reveals its hash value (e.g., the hash is
appended to the ciphertext). Then, the ciphertexts {ct′i,b} will reveal whether
they were encrypted under h1 or h2; equivalently, whether id ≤ id2 or id > id2. We
cannot allow this information to be leaked if id /∈ SR. To fix this issue we assume
the hash-encryption scheme is anonymous, meaning that, roughly, a random
ciphertext leaks no information about the underlying hash value. This property
was defined in [8] for achieving anonymous IBE. The use of anonymous hash
encryption does not resolve the issue completely yet. For concreteness, suppose
id < id1. This means that {ct′i,b} is encrypted under h1, and so by decrypting
{ct′i,b} using z′ = (id1, id2, id1), the receiver will obtain meaningful labels, eval-
uating the garbled circuit ˜C0 to ⊥ (rightly so, because id /∈ SR). On the other
hand, if the receiver tries decrypting {ct′i,b} using z′′ = (id3, id4, id3) which is not
a pre-image of h1, then the resulting labels will be meaningless, evaluating ˜C0

to junk. This leaks which path is the right binary search path, giving informa-
tion about id. To fix this issue, we change the circuit F so that if id /∈ SR, then
decryption along any path will result in a random value. Specifically, sample two
random values r and r′, let F[id, r, r′](id′, id′′, ∗) return r if id /∈ {id′, id′′} and
r′ otherwise. We will also include r in the clear in psi2. Now the receiver can
check decryption along which path (if any) yields r; in which case, the receiver
can determine the intersection identity. To argue security, if we use anonymous
garbled circuits [8], then we can argue if id /∈ SR, then psi2 is pseudorandom to
the receiver. Arguing this formally (especially for the general case) is non-trivial,
requiring a delicate formulation of hybrids.

Receiver’s Security? The receiver’s hash hrroot is computed deterministically
from SR, so it cannot be secure. But this is easy to fix: On the leaf level we
append the identities with random values, and only then will perform the Merkle
hash.

2.2 Reusable Laconic PSI

We now outline our techniques for obtaining laconic PSI in a black-box way, for
both semi-honest and malicious cases.

A Semi-Honestly Secure Protocol. Our starting point is a recent construction of
a one-way function with encryption from the φ-hiding assumption due to Goyal,
Vusirikala and Waters [27], and we remark that similar accumulator-style ideas
were used before to construct PSI [2]. Since the protocol of [27] is “almost” a

Laconic Private Set Intersection and Applications 101

PSI protocol, we will directly describe the underlying semi-honestly secure PSI
based. Assume for a moment that both the receiver’s input SR and the sender’s
input SS are subsets of a polynomially-sized universe U = {1, . . . , �}. We will
later remove this size-restriction on U . We have a common reference string crs
which is composed of an RSA modulus N = PQ, a uniformly random generator
g ∈ Z

∗
N and pairwise distinct primes p1, . . . , p�.

For the sake of simplicity, we will assume in this outline that the sender’s
input set SS is a singleton set {w} ⊆ U . The actual protocol will be obtained by
running the protocol we will now sketch for every element in the sender’s input
set. The protocol commences as follows: The receiver first hashes its input set
into

h = g
r

∏
i∈SR

pi mod N,

where r is chosen a uniformly chosen random from [N] (and thus rmod φ(N) is
statistically close to uniform). The receiver then sends h to the sender.

The sender, whose input is SS = {w}, chooses a uniformly random value
ρ ←$ [N] and a uniformly random seed s for a suitable randomness extractor
Ext, and computes the values f ← gρpw and R ← Ext(s, hρ). It sends s, f and
R to the receiver.

The receiver, upon receiving f and R, will check for all elements i ∈ SR

whether it holds that Ri
?= R, for Ri ← Ext(s, fr·∏j∈SR\{i} pj). If it finds such an

i, it outputs {i} as the intersection of SR and SS. Correctness of this protocol
follows routinely7. by noting that if w ∈ SR then

f
r·∏j∈SR\{w} pj = g

ρ·r·∏j∈SR
pj = hρ.

Also, note that this scheme is laconic, as the size of the messages exchanged by
the parties is independent of the size of the set SR.

Arguing security against a semi-honest sender is also routine, as h is in fact
statistically close to a uniformly random group element in Z

∗
N . Proving secu-

rity against a semi-honest receiver is a bit more involved and proceeds via the
following hybrid modifications. Let SS = {w} be the sender’s input such that
w /∈ SR. In the first hybrid, we will choose the modulus N such that pw divides
φ(N); under the φ-hiding assumption this change will go unnoticed. Now, via a
standard lossiness-argument, we have that f = gρpw loses information about gρ,
i.e., gρ has high min-entropy given f . This means that hρ = g

ρr·∏i∈SR
pi has also

high min-entropy as w /∈ SR and thus pw does not divide r · ∏

i∈SR
pi (w.o.p).

Consequently, as hρ has high min-entropy conditioned on f , in the next hybrid
change we can replace R = Ext(s, hρ) with a uniformly random value, incurring
only a negligible statistical distance via the extraction property of Ext. In the
next hybrid change, we can switch the modulus N back to normal mode, i.e.,
such that pw does not divide φ(N). But now f = gρpw is statistically close to
uniform in Z

∗
N . Thus, in the last hybrid change we can replace f with a uni-

formly random value in Z
∗
N and get that the view of the receiver is independent

of w, as required.
7 We will not further discuss the small correctness-error of this protocol as our final

protocol will not suffer from this defect.

102 N. Alamati et al.

For the case that the sender’s input SS contains more than a single element,
we mount a hybrid argument repeating the above modifications for each element
of SS not in the receiver’s set SR.

Large Universes. The above protocol has the drawback that the size of the
common reference string crs depends linearly on the size of the universe U , which
is highly undesirable. There is a standard way of overcoming this issue: Instead
of explicitly listing all the primes pi in crs, we will describe them implicitly via a
pseudorandom function (PRF).8 For this purpose, we need a PRF which maps
into the set of primes of a certain size. This can e.g. be achieved by using rejection
sampling: we first sample y ← Fk(x|i) (starting with i = 1) and check if y is
a prime number. If it is, we output y; else, we increment i until a prime is hit.
Under standard number-theoretic assumptions, this process finds a prime after
a logarithmic number of steps. One small issue is that, in the above security
proof, we need to replace one of the primes with a prime provided by the φ-
hiding experiment. We resolve this issue by making the PRF programmable in
one point, e.g., by setting Fk,k′(x|i) = F ′

k(x|i)⊕ki for a PRF F ′, k′ = (k1, . . . , kξ)
and a suitable choice of ξ.

A First Attempt at Malicious Sender Security. Our protocol thus far, however,
offers no security against a malicious sender. The main issue is that a corrupted
sender may choose the values f and R arbitrarily, and further, there is no mech-
anism for a simulator against a malicious sender to extract the senders input w.
Of course, this protocol can be made secure against malicious senders by letting
the sender prove via a general purpose NIZK proof that it follows the semi-honest
protocol correctly. This however would necessitate to make non-black-box use of
our semi-honest laconic PSI protocol, contrary to our goal of achieving a fully
black-box protocol.

Re-inspecting the above protocol, we have not made full use of the fact that
the extracted string R is uniformly random. Our first idea to make the sender
extractable is to make better use of R. Instead of sending R in the plain, we will
use R as random coins for a public key encryption (PKE) scheme to encrypt the
sender’s input w. More concretely, we will modify the above protocol as follows.
We include a public key pk of a PKE scheme in the common reference string crs
and, instead of having the sender include R in the plain in its message to the
receiver, it will include a ciphertext ct ← Enc(pk, i;R). We also need to modify
the procedure of the receiver. The receiver will recover Ri as before, but will
now use Ri to re-encrypt the index i, that is, for each i ∈ SR it will compute
cti ← Enc(pk, i;Ri).

First notice that, as a side bonus, this modification makes our laconic PSI
scheme perfectly correct, given that the PKE scheme is perfectly correct, as now
cti uniquely specifies the element i.

In terms of security, we first observe that this modification does not harm
security against a semi-honest receiver given that the PKE scheme is IND-CPA
8 We remark that we use a PRF, not because we want uniform outputs, but to implic-

itly define the set of primes. A similar trick was used in [6].

Laconic Private Set Intersection and Applications 103

secure. In the above sketch of a security proof, we have argued that, if w is
not in the set SR, then R is uniformly random from the view of the receiver.
This means now that ct is a freshly encrypted ciphertext, using fresh random
coins (independent of ρ). Moreover, we can use IND-CPA security of the PKE to
replace ct with an encryption of 0, and then continue as above to argue security
against a semi-honest receiver.

To establish security against a malicious sender, we would like to argue as
follows. The simulator can now generate the public key pk in crs together with
a secret key sk. Given a message (s, f, ct) by a malicious sender, the simulator
can recover the set element w by decrypting the ciphertext ct using sk. At a first
glance this seems to provide us with security against malicious senders. And
indeed, the simulator will recover all elements for which the receiver would have
declared to be in the intersection. There is a grave issue however: The simula-
tor has no means of detecting whether the honest receiver would actually have
succeeded in re-encrypting the index i. In other words, the malicious sender can
make the simulator false positives, such that the simulator declares an element
i to be in the intersection, whereas an honest receiver would not have.

Switch Groups, Extract Everything! We briefly recall some facts about the
Damg̊ard-Jurik cryptosystem [15]. The group Z

∗
Nξ+1 contains a cyclic subgroup

NRN of order φ(N)9. Now let g0 ∈ NRN be a generator of NRN . Then we
can generate the entire group Z

∗
Nξ+1 by g0 and 1 + N , i.e. we can write every

h ∈ Z
∗
Nξ+1 as h = gt

0 · (1 + N)m for some t ∈ Zφ(N) and m ∈ ZNξ . Further-
more, we can efficiently compute discrete logarithms relative to 1 + N , i.e. if
h = (1 + N)m for an m ∈ ZNξ , then we can efficiently compute m from h.
Finally, the decisional composite residue (DCR) assumption in Z

∗
Nξ+1 states

that a random element in NRN is indistinguishable from a random element in
Z

∗
Nξ+1 . It follows that g1 = gt1

0 and g2 = gt2
0 · (1 + N) (for uniformly random

t1, t2 ←$ Zφ(N)) are computationally indistinguishable. Moreover, if h = gt
2 for

a t < Nξ−1, we can efficiently compute t from h using φ(N) as a trapdoor by
first computing

hφ(N) = g
t·φ(N)
2 = g

tφ(N)
0

︸ ︷︷ ︸

=1

·(1 + N)t·φ(N) = (1 + N)t·φ(N) mod N ξ+1,

from which we can efficiently compute t · φ(N) (as t · φ(N) < Nξ) and thus t.
Given this, we will now make the following additional modification to our PSI

protocol. Instead of choosing the element g in the common reference string crs
to be a random generator of Z∗

N , we choose g to be a random generator of NRN ,
where NRN is the subgroup of order φ(N) in Z

∗
Nξ+1 (for a sufficiently large but

9 Note that NRN is not a cyclic group and we only assume this here for simplicity.
Actually, if we choose N as a product of two safe primes, then we could find a cyclic
subgroup JN which is the group of elements with Jacobi symbol 1, and its subgroup
TN composing of Nξ-th powers of JN has order φ(N)/2. Namely, just replace the
group pair (Z∗

Nξ+1 ,NRN) with (JN ,TN) to fix this issue. Please refer to Sect. 3.1 and
Sect. 6 for details.

104 N. Alamati et al.

constant ξ). Our first observation is that this does not affect the security proof
in the case of a semi-honest receiver, since NRN is still a cyclic group of order
φ(N) and the above argument using the φ-hiding assumption works analogously
in this group.

Assume for a moment we had a mechanism which ensures that the group
element f in the sender’s message is of the form f = ga for an a < Nξ−1. We
can then argue security against a malicious sender as follows: First we make a
hybrid change and choose the element g in the common reference string like g2
above, i.e. we choose g = gt

0(1 + N); under the DCR assumption this change
goes unnoticed. Now, given that f = ga for an a < Nξ−1 and using φ(N) as
a trapdoor, the simulator can efficiently compute a from f as described above.
Since it can also recover the index w from the ciphertext ct as described above,
it can now check if a is of the form a = ρ · pw. If so, it recovers ρ and performs
the same re-encryption test for ct which the real receiver would perform. This
makes the simulation indistinguishable from the real experiment.

2.3 DV-NIZK Range Proofs for DJ Ciphertexts

The final component which is missing to make the above argument succeed is a
mechanism which ensures that the group element f is indeed of the form f = ga

for a small a. For the sake of generality, we will make the following discussion
for general DJ-ciphertexts, that is, ciphertexts of the form c = ht · (1 + N)a

(where h = gz
1 is the public key). If we can show that such a ciphertext encrypts

a small value a, proving that f = ga and c = ht · (1 + N)a for the same a can be
efficiently proven via a standard hash-proof system (HPS) [14].

First, we observe that, to show that c = ht · (1+N)a encrypts a value a < 2k

for some parameter k, it suffices to prove that some ciphertexts c0, . . . , ck−1

encrypt bits b1, . . . , bk−1. Assume for now we had a DV-NIZK protocol Π to
prove that the ciphertexts c0, . . . , ck−1 all just encrypt bits. The prover can
convince the verifier as follows that c encrypts a value a < 2k. First the prover
encrypts bit bi in a ciphertext ci and sets c′ =

∏k−1
i=0 c2

i

i (it is not hard to see that
c′ encrypts a). Now, the prover uses Π to to convince the verifier that c0, . . . , ck−1

indeed encrypt bits. Furthermore, it can use a standard HPS to prove that c and
c′ indeed encrypt the same value. Zero-knowledge follows routinely. To see that
this protocol is sound, observe that if the ci indeed encrypt bits, then c′ must
encrypt a value bounded by 2k.

A DV-NIZK Proof System for Ciphertext Equality Across Different Encryption
Schemes. Alas, we do not know of a black-box DV-NIZK which proves that
DJ ciphertexts encrypt bits. However, for the pairing-based Boneh-Goh-Nissim
(BGN) cryptosystem [5], such a proof system was constructed by Groth, Ostro-
vsky and Sahai [29]. Consequently, if we could prove in a black box way that a
BGN ciphertext encrypts the same value as DJ ciphertext we would be done.

Recall that, in the BGN cryptosystem, public keys are of the form (G,H),
where G and H a generators of subgroups of a composite-order pairing group G.

Laconic Private Set Intersection and Applications 105

BGN ciphertexts are of the form C = GmHr, where m is the encrypted message
and r are random coins.

Our final contribution is a DV-NIZK proof system which allows us to prove
that a DJ ciphertext and a BGN ciphertext encrypt the same value.

To simplify the description of our prove system, assume we have BGN public
keys (G,H1), . . . , (G,H�), i.e. each key sharing the same G but having fresh and
random Hi, and an element H0. Furthermore, assume that we have DJ public
keys h1, . . . , h�, and an element h0. We will assume that both sequences of keys
are in a public setup, together with the elements H0, h0.

Suppose further that we have BGN ciphertexts C1, . . . , C�, where Ci =
GmiHr

i , i.e., all ciphertexts use the same random coins r but encrypt possi-
bly different bits mi.10 As mentioned above, using the NIZK scheme from [29],
we can prove that the ciphertexts Ci = GmiHr

i are indeed well-formed and that
mi ∈ {0, 1}. Moreover, we have C0 = Hr

0 , which can be proven well-formed using
a standard hash proof system (HPS) [14].

Assume further that we are given DJ ciphertexts c1, . . . , c�, where ci = ht
i ·

(1+N)m′
i , i.e., again the ciphertexts share the same random coins t.11 Moreover,

assume that we have a value hr
0 exactly as above. We want to prove that it holds

for all i ∈ [�] that mi = m′
i. Our DV-NIZK proof system for equality of BGN

and DJ ciphertexts now proceeds roughly as follows:

– The verifier starts by sampling a uniformly random binary string σ ←$ {0, 1}�

and computes F = HA
0

∏

Hσi
i ∈ G and f = hα

0

∏

hσi
i ∈ Z∗

Nξ+1 , for uniformly
random values A,α. It sends crs = (F, f) to the prover and keeps σ as the
designated-verifier key.

– The prover is given ciphertexts C1, . . . , C� and c1, . . . , c� with Ci = Gmi

Hr
i

and ci = ht
i(1 + N)mi , and the values C0 = Hr

0 and c0 = ht
0. It computes

K = F rGτ and k = f t(1+N)τ where τ is sampled according to a distribution
which is wide enough to drown the mi, but short enough such that it is
bounded by N . The proof π is consists of (K, k).

– The verifier, given the proof π = (K, k), computes the discrete log y (in base
(1 + N)) of k−1cα

0

∏�
i=1 cσi

i and checks if Gy = K−1CA
0

∏�
i=1 Cσi

i .

For completeness, note that

k−1cα
0

∏

cσi
i =

(

hα
0

∏

hσi
i

)−t

(1 + N)−τ
(

ht
0

)α ∏
(

ht
i(1 + N)mi

)σi

= (1 + N)
∑

σimi−τ ,

from which the verifier can recover y =
∑

σimi − τ . Moreover

L = K−1CA
0

∏

Cσi
i =

(

HA
0

∏

Hσi
i

)−r

G−τ (Hr
0)A

∏

(Hr
i Gmi)σi = G

∑
σimi−τ

and thus Gy = L.
10 Via a standard rerandomization argument we can show that reusing the same random

coins across different keys does not harm CPA security.
11 Same as above.

106 N. Alamati et al.

The zero-knowledge property can be established by noting that the term τ
statistically drowns

∑

i σimi.
To prove reusable statistical soundness (or simulation soundness), we argue

as follows. First note that σ is statistically hidden, given F = HA
0

∏

Hσi
i and f =

hα
0

∏

hσi
i , by the uniform values A,α. We need to show that if there is an index i

for which mi �= m′
i, then the verifier will reject with high probability, irrespective

of the (adversarial) choices of τ, τ ′ (which are not necessarily short)12. It follows
from the above description that the verifier accepts a proof if the condition

∑

σi,jmi − τj mod n =
(

∑

σi,jm
′
i − τ ′

j mod N ξ
)

mod n

is satisfied, where n is the order of the subgroup of G generated by G. In the
main body we will show that, given that n > Nξ, this condition will be violated
with probability ≈ 1/2 if the there exists an index i for which mi �= m′

i. By
repeating the protocol λ times, we achieve negligible soundness error.

2.4 Labeled Laconic PSI and Laconic OT

Our laconic PSI construction can be easily extended into a labeled laconic PSI,
in which the receiver also learns labels associated with set elements in the inter-
section. To achieve this, we simply use an extractor with an output size twice
as large: the first half is used as above to perform the re-encryption step; the
other half is used as an one-time pad to encrypt the corresponding label. It is
easy to see that the receiver can only recover the labels for the elements within
the intersection, since the security proof follows the same blueprint as before.

We also build an LOT using the same ideas as above. The receiver com-

mits to a database D ∈ {0, 1}Γ by computing h = g
r

∏Γ
i=1 ei,Di

0 mod N ξ+1,
where each prime ei,b is the output of a PRF (just as before). The sender com-
putes fj = g

ρjeL,j

0 , Fj = g
ρjeL,j

1 (1 + N)ρjeL,j for each j ∈ {0, 1}, together with
a range proof. Moreover, he encrypts each message as ctj = kj ⊕ mj where
kj ← Ext(sj , h

ρj). Again, security follows the same reasoning as above. Our
LOT protocol is the first one to provide security against a malicious sender
while incurring in communication complexity independent of the size of D.

3 Preliminaries

We use λ to denote the security parameter. By negl(λ), we denote a negligible
function in λ. For an integer n, [n] denotes {1, . . . , n}. If A is an algorithm,
we denote by y ← A(x) the output y after running A on input x. For a S,
x ←$ S denotes sampling x uniformly at random from S. If D is a distribution,
then x ←$ D denotes sampling x according to D, and y ∈ D indicates y is in
the support of D. We say that D is B-bounded if for every x ←$ D, we have

12 We assume that the verifier rejects if it fails to compute the discrete logarithm of
k−1 ∏

dσi
i .

Laconic Private Set Intersection and Applications 107

|x| < B, except with negligible probability. If D0,D1 are two distributions, we
use D0 ≈ε D1 to indicate that D0 and D1 are statistically indistinguishable.
Throughout this work, φ will denote the Euler’s totient function.

In terms of cryptographic primitives we need public-key encryption (PKE),
designated-verifier zero-knowledge (DV-NIZK) proof systems, programmable
pseudorandom functions (PPRF) [36] and strong randomness extractors. The
hardness assumptions used in this work are the φ-hiding, decisional compos-
ite residuosity (DCR), subgroup decision (SD), computational Diffie-Hellman
(CDH) and learning with errors (LWE). Apart from φ-hiding and DCR assump-
tions we described below, other primitives/assumptions are reviewed in the full
version of this paper [1].

3.1 Hardness Assumptions

We start by introducing some notation. Let Primes(κ) denote the set of prime
numbers of bit-length κ. Let

RSA(λ) = {N : N = PQ and P,Q ∈ Primes(λ/2) and gcd(P − 1, Q − 1) = 2}
and

RSAe(λ) = {N : e|φ(N)}
for any e ≤ 2λ.

Definition 1 (Phi-Hiding). The phi-hiding assumption, denoted as φ-hiding,
states that for all ε > 0 and 3 < e < 2λ/4−ε and all PPT adversaries A, we have
that

|Pr [1 ← A(N, e) : N ←$RSA(λ)] − Pr [1 ← A(N, e) : N ←$RSAe(λ)]| ≤ negl(λ).

Let N = PQ where P,Q are safe primes (that is, P = 2p′+1 and Q = 2q′+1 for
primes p′, q′) and consider the multiplicative group Z

∗
Nξ+1 where ξ is a fixed non-

negative integer. Recall thatZ∗
Nξ+1 can be written as the product of two subgroups

HN × NRN where HN = {(1 + N)i : i ∈ [N ξ]} and NRN = {xNξ

: x ∈ Z
∗
Nξ+1}

(the subgroup of N ξ-residues) which has order φ(N). Given (1+N)mmod N ξ+1,
there is a polynomial-time algorithm that allows to recover m [15].

Furthermore, let JN be the group of elements with Jacobi symbol 1, i.e., JN =
{x : (x|N) = 1, x ∈ Z

∗
Nξ+1}. Note that JN can be written as the direct product

of two cyclic groups HN ×TN with order N ξ and φ(N)/2, respectively. Also, the
subset membership problem for (JN ,TN) is still hard if DCR assumption holds
as shown in Sect. 8.2 of [14].

The following lemma is straightforwardly adapted from [27].

Lemma 1 ([27]). Assume that the φ-hiding assumption holds. Let Ext be a
(κ− 1, negl(λ))-strong extractor. For every admissible stateful PPT adversary A
and for all λ, κ such that λ ≥ 5κ, we have that

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b ← A(yb) :

N ←$RSA(λ); s ←$ {0, 1}λ

e ←$Primes(κ); g ← TN

G ← A(N, s, e, g); b ←$ {0, 1}
y0 ← Ext(s, gGe−1

mod N ξ+1); y1 ←$ Y

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

≤ negl(λ)

108 N. Alamati et al.

where an admissible adversary is one that outputs G such that e does not
divide G.

In this work, we also make use of the DCR assumption which we define in the
following. We present the DCR assumption as a subgroup indistinguishability
assumption [7].

Definition 2 (Decisional Composite Residuosity). Let N = RSA(λ) and
let ξ ≥ 0 be a fixed integer. The decisional composite residuosity (DCR) assump-
tion states that for all PPT adversaries A,

|Pr [1 ← A(N,x) : x ←$Z
∗
Nξ+1] − Pr [1 ← A(N,x) : x ←$NRN]| ≤ negl(λ).

Lemma 2 ([14]). N = RSA(λ) and let ξ ≥ 0 be a fixed integer. Assume that
the DCR assumption holds. Then for all PPT adversaries A,

|Pr [1 ← A(N,x) : x ←$ JN] − Pr [1 ← A(N,x) : x ←$TN]| ≤ negl(λ).

Proof (Proof (sketch)).
The proof follows from the following observation: The map x → x2(−1)b

where b ←$ {0, 1} sends the uniform distribution on NRN to the uniform dis-
tribution on TN , and the uniform distribution on HN × NRN to the uniform
distribution on HN × TN .

3.2 Laconic Private Set Intersection

Laconic Private Set Intersection. An �PSI is a two-round protocol that imple-
ments a PSI functionality and has special compactness properties.

Definition 3. A �PSI scheme LPSI = (GenCRS,R1,S,R2) is defined as follows:

– GenCRS(1λ): Takes as input a security parameter 1λ, and outputs a common
reference string crs.

– R1(crs, SR): Takes as input a crs and a set SR. It outputs a first PSI message
psi1 and a state st.

– S(crs, SS , psi1): Takes as input a crs, a set SS and a first PSI message psi1.
It outputs a second PSI message psi2.

– R2(crs, st, psi2): Takes as input a crs, a state st and a second message psi2. It
outputs a set I.

We require the following properties.

– Correctness: The protocol satisfies PSI correctness in the standard sense.
– Efficiency Requirements. There exists a fixed polynomial poly such that

the length of psi1 and the running time of S are at most poly(λ, log |SR|).
For malicious security, we work in the standard UC-framework [10] that

allows us to prove security of protocols under arbitrary composition with other
protocols. Let F be a functionality, π a protocol that implements F and E be a

Laconic Private Set Intersection and Applications 109

environment, an entity that oversees the execution of the protocol in both the real
and the ideal worlds. Let IDEALF,Sim,E be a random variable that represents the
output of E after the execution of F with adversary Sim. Similarly, let REALG

π,A,E
be a random variable that represents the output of E after the execution of π
with adversary A and with access to the functionality G.

Definition 4. A protocol π UC-realizes F in the G-hybrid model if for every
PPT adversary A there is a PPT simulator Sim such that for all PPT envi-
ronments E, the distributions IDEALF,Sim,E and REALG

π,A,E are computationally
indistinguishable.

We present the (reusable) PSI ideal functionality.

Reusable PSI Functionality. The functionality FrPSI is parametrized by a uni-
verse U and works as follows:

– Setup phase. R sends (sid, SR) to FrPSI where SR ⊆ U . It ignores future
messages from R with the same sid.

– Send phase. S sends (sid, i, SS ⊆ U) to FrPSI. FrPSI sends (sid, i, SR ∩ SS) to
R. It ignores future messages from S with the same sid and i ∈ N.

4 Semi-Honest Laconic PSI from CDH/LWE

We show how to realize semi-honest �PSI from CDH/LWE. Our construction is
non-black-box, making use of garbled circuits. This leads to the first feasibility
result based on CDH, and an alternative LWE construction to that of [40].

Our construction makes use of hash encryption schemes in conjunction with
garbled circuits, which we review below.

Definition 5 (Hash Encryption [8,17]). A hash encryption scheme HE =
(HGen, Hash,HEnc,HDec) is defined as follows.

– HGen(1λ, n): Takes as input a security parameter 1λ and an input size n and
outputs a hash key pp.

– Hash(pp, z): Takes as input a hash key pp and z ∈ {0, 1}n, and deterministi-
cally outputs h ∈ {0, 1}λ.

– HEnc(pp, h, {mi,b}i∈[n],b∈{0,1}; {ri,b}): Takes as input a hash key pp, a
hash output h, messages {mi,b} and randomness {ri,b}, and outputs
{cthi,b}i∈[n],b∈{0,1}. We write it shortly as {cthi,b}. Overloading notation, each
ciphertext cthi,b is computed as cthi,b = HEnc(pp, h,mi,b, (i, b); ri,b).

– HDec(z, {cthi,b}): Takes as input a hash input z and {cthi,b} and outputs n
messages (m1, . . . ,mn).

We require correctness meaning that for the variables above, (m1, . . . ,mn) =
(m1,z[1], . . . ,mn,z[n]). We define two notions of security.

110 N. Alamati et al.

– Semantic Security: Given z ∈ {0, 1}n, no adversary can distinguish between
encryptions of messages made to indices (i, z̄i). For any PPT A, sampling
pp ←$ HGen(1λ, n), if (z, {mi,b}, {m′

i,b}) ←$ A(pp) and if mi,z[i] = m′
i,z[i]

for all i ∈ [n], then A cannot distinguish between HEnc(pp, h, {mi,b}) and
HEnc(pp, y, {m′

i,b}), where h := Hash(pp, z).
– Anonymous Semantic Security: For a random {mi,b} with equal rows

(i.e., mi,0 = mi,1), the output of HEnc(pp, h, {mi,b}) is pseudorandom even in
the presence of the hash input. Formally, for any z ∈ {0, 1}n, sampling pp ←$

HGen(1λ, n), h := Hash(pp, z), and sampling {mi,b} uniformly at random with
the same rows, then v := (pp, z,HEnc(pp, h, {mi,b})) is indistinguishable from
another tuple in which we replace the hash-encryption component of v with a
random string.

We have the following results from [8,21].

Lemma 3. Assuming CDH/LWE there exists anonymous hash encryption
schemes, where n = 3λ (i.e., Hash(pp, ·) : {0, 1}3λ �→ {0, 1}λ).13 Moreover, the
hash function Hash satisfies robustness in the following sense: for any input
distribution on z which samples at least 2λ bits of z uniformly at random,
(pp,Hash(pp, z)) and (pp, u) are statistically close, where pp ←$ HGen(1λ, 3λ)
and u ←$ {0, 1}λ.

We also review the notion of garbled circuits and the anonymous property,
as defined in [8].

Definition 6 (Garbled Circuits). A garbling scheme for a class of circuits
{C : {0, 1}n �→ {0, 1}m} consists of (Garb,Eval,Sim) satisfying the following.

– Correctness: for all C ∈ C, m ∈ {0, 1}n, Pr[Eval(C̃, {lbi,m[i]}) = C(m)] = 1,
where (˜C, {lbi,b}) ←$ Garb(1λ,C).

– Simulation Security: For any C ∈ C and m ∈ {0, 1}n: (C̃, {lbi,m[i]})
c≡

Sim(1λ,C(m)), where (˜C, {lbi,b}) ←$ Garb(1λ,C).
– Anonymous Security [8]: For any C ∈ C, choosing y ←$ {0, 1}m, the

output of Sim(1λ, y) is pseudorandom.

Lemma 4 ([8]). Anonymous garbled circuits can be built from one-way func-
tions (OWFs).

Notation on Hash Encryption. Throughout this section we assume
Hash(pp, ·) : {0, 1}n �→ {0, 1}λ, where n = 3λ. We use {lbi,b} to define a sequence
of pairs of labels, where (throughout this section) i ∈ [n] and b ∈ {0, 1}. For
r := {ri,b} we let HEnc(pp, h, {lbi,b}; r) denote the ciphertexts {cthi,b}, where

13 We note that the CDH construction of [8] satisfies a weaker notion of anonymity, in
which only some part of the ciphertext is pseudorandom. But for ease of presentation
we keep the notion as is, and remark that our �PSI construction works also with
respect to that weaker notion.

Laconic Private Set Intersection and Applications 111

Table 1. Circuits F,V and procedure DecPath

Circuit F[id, r, r′](id′, x, x′):

– Hardwired: target identity id and
randomness values r and r′.

– Operation: Return

y :=

{

r id = id′

r′ else

Circuit V[pp, id, {lbi,b}, r](h1, h2, id
′):

– Hardwired: Hash public parameter
pp,
target identity id, labels {lbi,b},
randomness r.

– Operation: Return
ct :=
{

HEnc(pp, h1, {lbi,b}; r) id ≤ id′

HEnc(pp, h2, {lbi,b}; r) else

Procedure DecPath(pth, psi2):

– Input: A leaf-root Path pth and ciphertext ψ2 := (˜C0, . . . , ˜Cd, {cth(d)i,b }).

– Operation: Parse pth := ((id, x, x′
︸ ︷︷ ︸

z0

), (h0, h
′
0, id0

︸ ︷︷ ︸

z1

), . . . , (hd−1, h
′
d−1, idd−1

︸ ︷︷ ︸

zd

), hrroot).

For w ∈ {d, . . . , 1}:

1. Let {lb(w)
i } := HDec(zw, {cth(w)

i,b }).

2. Set {cth(w−1)
i,b } := Eval(˜Cw, {lb(w)

i }).

Let {lb(0)i } := HDec(z0, {cth(0)i,b }). Return Eval(˜C0, {lb(0)i }).

cthi,b = HEnc(pp, h, lbi,b, (i, b); ri,b). We further overload the notation as fol-
lows. We use {lbi} to denote a sequence of 3λ elements. For r := {ri,b} we
let HEnc(pp, h, {lbi}; r) denote a hash encryption where both plaintext rows are
{lbi}; namely, the ciphertexts {cthi,b}, where cthi,b = HEnc(pp, h, {mi,b}; ri,b),
where mi,0 = mi,1 = lbi, for all i.

Tree Terminology. Throughout this section we work with full binary trees. The
depth of a tree is the length of a root-leaf path. We call the leaf level level 0,
the level above it level one, and so on. We order the root-leaf paths from left
to right; namely, the path from the root to the leftmost leaf node is the first
root-leaf path, and the path from the root to the rightmost leaf node is the 2dth
root-leaf path, where d is the depth. Each node has an associated hash value,
computed based on values associated to its children. Thus, when representing a
root-leaf path, we include both children of each branching intermediate node.

Sender’s Set Size is One. We assume without loss of generality that the sender
holds a single element. For the general case where the sender may have multiple
elements, we reuse the first message of the receiver for each element in the
sender’s set. The overall running time of the sender will only scale with its own
set size, and not with the receiver’s set size.

112 N. Alamati et al.

Construction 1 (�PSI Construction). We require the following ingredients
in our �PSI Construction.

1. A hash encryption scheme HE = (HGen,Hash,HEnc,HDec), where
* Hash(pp, ·) : {0, 1}3λ �→ {0, 1}λ.

2. A garbling scheme GS = (Garb,Eval,Sim).
3. Circuits F and V, as well as procedure DecPath, defined in Table 1.

We assume the elements of the receiver and the sender are strings in {0, 1}λ.
We refer to each element as an identity. Build (GenCRS,R1,S,R2) as follows.

GenCRS(1λ): Return crs ←$ HGen(1λ, 3λ).

R1(crs, SR): Assume |SR| = 2d. (With small tweaks the same construction works
if SR is not a power of two.)

– Parse crs := pp. Let n := 2d, and sort SR := {id1, . . . , idn}, where idi < idi+1

for all i. Populate the leaf node values as follows. For each idi ∈ SR, sample
xi, x

′
i ←$ {0, 1}λ, and let h

(0)
i := Hash(pp, idi, xi, x

′
i). Set H[v(0)

i] := h
(0)
i and

ID[v(0)
i] := idi.

1. For w ∈ [d], populate the values for the nodes at level w as follows. Infor-
mally, the hash value for each node is the hash of the concatenation of
its left child, right child, and the largest identity value under its left child.
Formally, noting we have 2d−w nodes on level w, for j ∈ [2d−w], set
h
(w)
j := Hash(pp, (h(w−1)

2j−1 , h
(w−1)
2j , id[j,w])), where id[j,w] denotes the larges

leaf identity under the left child of the current node (i.e., id[j,w] = idf ,
where f := (2j − 1)2w−1.) Set H[v(w)

j] = h
(w)
j and ID[v(w)

j] = id[j,w].
2. Set psi1 := (d, hrroot), where hrroot := h

(d)
1 (i.e., the root hash value). Set

st := (SR, {xi}, {x′
i}, {v

(w)
j }) for all values of i ∈ [n], w ∈ {0, . . . , d} and

j ∈ [2d−w].

S(crs, id, psi1):

– Parse psi1 := (d, hrroot) and crs := pp. Sample r, r′ ←$ {0, 1}λ and let C0 :=
F[id, r, r′] (Table 1). Garble (˜C0, {lb(0)i,b }) ←$ Garb(C0). For 1 ≤ w ≤ d

1. Sample rw at random, and let Cw := V[pp, id, {lb(w−1)
i,b }, rw].

2. Garble (˜Cw, {lb(w)
i,b }) ←$ Garb(Cw).

– Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)i,b }). Return psi2 := (˜C0, . . . ,

˜Cd, {cthi,b}, r).

R2(crs, st, psi2):

– Parse st := (SR, {xi}, {x′
i}, {v

(w)
j }), psi2 := (˜C0, . . . , ˜Cd, {cthi,b}, r) and SR :=

{id1, . . . , idn}. For i ∈ [n] let pthi := ((idi, xi, x
′
i), . . . , hrroot) be the i’th leaf-

root path in the tree, and let

ri := DecPath(pthi,
˜C0, . . . , ˜Cd, {cthi,b}).

If for a unique index i ∈ [n], ri = r, then output idi. Otherwise, output ⊥.

Laconic Private Set Intersection and Applications 113

Theorem 1. Assuming the hash encryption HE is anonymous and robust
(robustness defined in Lemma 3), and that the garbling scheme GS is anony-
mous, the �PSI protocol of Construction 1 is correct and provides statistical
security for the receiver and semi-honest security for the sender. As a result,
such �PSI protocols can be realized from CDH/LWE.

Roadmap for the Proof of Theorem 1. The fact that the protocol provides sta-
tistical security for the receiver follows from the robustness of HE. In particular,
robustness implies that h

(0)
i values statistically hide SR. We can continue this

to argue that all the first-level hash values (i.e., h
(1)
i) also hide SR, and hence,

continuing like this, the root hash value hrroot statistically hides SR.
We now prove that the protocol provides sender security against semi-honest

receivers. Let id be the sender’s input message, and SR := {id1, . . . , idn} be the
receiver’s set, where idi < idi+1. Assuming id /∈ SR we will show that the sender’s
protocol message is pseudorandom in the receiver’s point of view. For simplicity
suppose id < id1; the general case follows via simple changes, which we will
explain later. Let

pth := ((id1, x1, x
′
1

︸ ︷︷ ︸

z0

), (h0, h
′
0, id0

︸ ︷︷ ︸

z1

), . . . , (hd−1, h
′
d−1, idd−1

︸ ︷︷ ︸

zd

), hrroot) (1)

be the leaf-root path from leaf id1 to the root. Note hrroot = Hash(pp, zd),
and hi = Hash(pp, zi) for i ∈ {0, . . . , d − 1}. Noting that hrroot is the receiver’s
protocol message produced based on her random coins st, we define the following
hybrids for the sender’s response message.

Hyb0: The sender’s response message psi2 is formed as in the protocol.

Hyb1: Sample r, r′ ←$ {0, 1}λ. Let (˜C0, {lb(0)i } ←$ Sim(F, r′). For 1 ≤ w ≤ d

1. Sample {cth(w−1)
i,b } ←$ HEnc(pp, hw−1, {lb(w−1)

i }).

2. Let (˜Cw, {lb(w)
i }) ←$ Sim(V, {cth(w−1)

i,b }).

Let {cthi,b} ←$ HEnc(pp, hrroot, {lb(d)i }). Return psi2 := (˜C0, . . . , ˜Cd, {cthi,b}, r).

Lemma 5. Given R’s random coins, Hyb0 and Hyb1 are indistinguishable.

Hyb2: Sample psi2 at random.

Lemma 6. Given R’s random coins, Hyb1 and Hyb2 are indistinguishable.

The above two lemmas establish sender’s security; namely—if id /∈ SR, then
the sender’s message psi2 is pseudorandom for the receiver. We prove Lemma 5,
Lemma 6 and correctness in the full paper [1].

114 N. Alamati et al.

5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts

In this section, we construct a DV-NIZK scheme for ranges of DJ ciphertexts.
The main idea of our construction is the following: the prover proves that a BGN
ciphertext [5] is within a certain range (this can be done via the protocol of [29]).
Then it proves that the DJ and BGN ciphertexts encrypt the same value.

We first recall the required cryptosystems used in this section.

BGN Cryptosystem. Recall that the BGN cryptosystem [5] is defined over a
group G of order n = pq for primes p, q. The public key is composed by
(G, n,G,H) where G is a generator of G and H is an element of order p (let pG
be the subgroup of order p). The public key is composed by (G, n,G,H) and a
ciphertext for a message m ∈ {0, 1} is of the form C = GmHt for t ←$Zn.

Damg̊ard-Jurik Cryptosystem. The Damg̊ard-Jurik (DJ) cryptosystem14 [15] is
defined over Z∗

Nξ+1 where N ←$RSA(λ). The public key is formed by (N, ξ, g, h)
where g ←$TN and h = gx for x ←$ [N]. A ciphertext has the form (c1, c2) where
c1 = gtmod N ξ+1 and c2 = ht(1 + N)mmod N ξ+1 for t ←$ [N] and m ∈ [N ξ].

5.1 Equality of Plaintexts in DJ and BGN Ciphertexts

We now show how to prove that a BGN and a DJ ciphertexts encrypt the same
value. Consider the following language

EQΔ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D0, h0, {Di, c1,i, c2,i}i∈[�] : ∃(r, t, {mi}) s.t.

mi ∈ {0, 1}
D0 = Hr

0 ∈ G

Di = GmHr
i ∈ G

c0 = ht
0 ∈ ZNξ+1

c1 = gt ∈ ZNξ+1

c2,i = ht
i(1 +N)mi ∈ ZNξ+1

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where Δ = (G, n,G,H0, {Hi}i∈[�], N, ξ, g, h0, {hi}i∈[�]), G,H0, {Hi}i∈[�] ∈ G and
g, h0, {hi}i∈[�] ∈ ZNξ+1 .

The DV-NIZK construction for the language above is outlined in Sect. 2. We
defer the full construction and its analysis to [1].

5.2 DV-NIZK for Range Proofs of DJ Ciphertexts with Equal
Discrete Log

Let N ← RSA(λ) and ξ ≥ 0 be a fixed integer. Consider the following language
of ranges:

REDJ Δ =

{

c1 ∈ {Z∗
Nξ+1}2 : ∃t ∈ {�−Nξ/2, . . . , Nξ/2�} s.t.

t ∈ [−B,B]
c1 = gt mod Nξ+1

}

14 Here, we present a slightly different variant of the scheme in [15].

Laconic Private Set Intersection and Applications 115

which is parametrized by Δ = (g,B,N, ξ) where g ∈ TN , B ∈ Z, N and ξ.
In the following, we present a DV-NIZK scheme for the language above. The

main idea is quite simple: The prover outputs BGN ciphertexts Di encrypting
bits mi and DJ ciphertexts (c1,i, c2,i that encrypt the same values as Di (we
can prove this using the scheme from the previous section). Then, the prover
proves that (c1, c2) encrypts the same value as

(

∏�
i=0 c2

i

1,i,
∏�

i=0 c2
i

2,i

)

. Since DJ

is linearly-homomorphic, we conclude that (c1, c2) encrypts m =
∑�

i=0 2imi ≤
2�−1.

Due to space restrictions, the full construction is presented in [1].

6 Reusable Laconic Private Set Intersection

In this section, we present a protocol that implements �PSI in a black-box
fashion. We then prove that the protocol guarantees security against a semi-
honest receiver and against a malicious sender. The input sets are subsets of a
universe U of exponential size.

Protocol. We now present the construction for reusable PSI.

Construction 2 . Let U be a universe which contains the input sets of the
parties. Let κ ∈ Z such that 5κ ≤ λ and ξ ∈ N.

We require the following ingredients in this construction:

1. A PPRF PPRF : K × U → Primes(κ) which outputs a prime number.15

2. A DV-NIZK

NIZKREDJ Δ
= (NIZK.GenCRSREDJ Δ

,NIZK.ProveREDJ Δ
,NIZKVerifyREDJ Δ

)

for the language REDJ Δ which is defined in Sect. 5, for some Δ =
(g0, B,N, ξ).

3. An IND-CPA PKE scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)
4. A (κ − 1, negl(λ))-strong extractor Ext : S × ZNξ+1 → {0, 1}λ.

We assume that the receiver’s set is of size M and the sender’s set is of size
m, where M > m. The protocol is composed by the following algorithms:

GenCRS(1λ) :

– Sample N ←$RSA(λ), that is, N = PQ where P,Q are safe prime numbers.
Choose B such that N ξ−1/2 ≥ B > N2κ.

– Sample a pair of public and secret keys (pk, sk) ← PKE.KeyGen(1λ). Addi-
tionally, sample a PPRF key k ←$ K. Set Δ = (g0, B,N, ξ) where g0 ←$TN .

– Output crs = (N, pk, g0, B, k,Δ).

15 We remark that we use a PPRF, not because we want uniform outputs, but to
implicitly define the set of primes. A similar trick was used in [6].

116 N. Alamati et al.

R1(crs, SR) :

– Parse crs := (N, pk, g0, B, k,Δ), and SR := {idi}i∈[M] ⊆ U
– Compute the prime numbers pi ← PPRF(k, idi), for all i ∈ [M].

– Sample r ←$ [N/4] and compute h = g
r

∏
i∈[M] pi

0 mod N ξ+1.
– Run (crs1, td1) ← NIZK.GenCRSREDJ Δ

(1λ).
– Output st = (r, td1) and psi1 = (h, crs1).

S(crs, SS, psi1) :

– Parse crs := (N, pk, g0, B, k,Δ), psi1 := (h, crs1) and SS := {id′
i}i∈[m] ⊆ U .

– For i ∈ [m] do the following:
• Sample ρi ←$ [N/4]. Compute the prime numbers pi ← PPRF(k, id′

i).
• Sample an extractor seed si ←$ S and compute Ri ← Ext(si, h

ρi

mod N ξ+1)
• Compute fi = gρipi

0 mod N ξ+1 and cti ← PKE.Enc(pk, id′
i;Ri).

• Compute πi ← NIZK.ProveREDJ Δ
(crs1, xi, wi) where xi = fi and wi =

ρipi.
– Output psi2 = {fi, cti, si, πi}i∈[m].

R2(crs, st, psi2) :

– Parse st := (r, td1) and psi2 := {fi, cti, si, πi}i∈[m]. Set I = ∅
– For all j ∈ [m] do the following:

• If 0 ← NIZK.VerifyREDJ Δ
(td1, xj , πj) where xj = fj , abort the protocol.

• If there is a i ∈ [M] such that

ctj = PKE.Enc(pk, idi;R′
i)

where R′
i ← Ext(sj , f

ri
j mod N ξ+1) and ri = r

M
∏

�=1,� �=i

p�, then add the

element idi to I.
– Output I.

Communication Cost. Here, we analyze the communication cost of the protocol
as a function of the input set sizes |SS| = m and |SR| = M and we omit poly-
nomial factors in the security parameter λ. The first message outputted by R1

has size O(1). The second message outputted by S has size O(m). The overall
communication cost is O(m), that is, it is independent of M .

Analysis. We now analyze the correctness and security of the protocol.

Theorem 2. The protocol presented in Construction 2 is correct given that
NIZKREDJ Δ

is complete and PKE is correct.

The proof is presented in the full paper [1].

Laconic Private Set Intersection and Applications 117

Theorem 3. The protocol presented in Construction 2 securely UC-realizes
functionality FrPSI in the GCRS-hybrid model against:

– a semi-honest receiver given that the φ-hiding assumption hold and
NIZKREDJ Δ

is zero-knowledge;
– a malicious sender, given that the DCR assumption holds and NIZKREDJ Δ

is reusable sound.

Proof. We start by proving that the protocol is secure against semi-honest adver-
saries corrupting the receiver.

Lemma 7. The protocol is secure against a semi-honest receiver.

We first show how the simulator SimR works. In the following, let SimNIZK be
the zero-knowledge simulator from Lemma 7 for the NIZKREDJ Δ

scheme.

1. SimR takes the input SR of R and sends it to the ideal functionality FrPSI.
2. CRS generation. To generate the CRS, Sim behaves as the honest algorithm

would do.
3. The simulator creates the semi-honest receiver’s view exactly as in the real

protocol and keeps st = (r, td1) to itself.
4. Upon receiving a message psi1 = (h, crs1) from R and a message I (of size m′,

that is, |I| = m′) from the ideal functionality FrPSI, the simulator does the
following:

– Sample a subset X of size m−m′ from the universe U and sets SS = I∪X .
– For all i ∈ I, SimR computes (fi, cti, si, πi) as in the real protocol.
– For all i ∈ SS \ I, SimR simulates proofs πi ← SimNIZK(td1, x) for x = fi

where fi ←$TN . Then, it encrypts cti ← PKE.Enc(pk, 0;Ri) where Ri ←
{0, 1}λ.

To prove indistinguishability between the real protocol and the simulated
one, we consider the following sequence of hybrids:

Hyb0: The is the real protocol.

Hyb1: This hybrid is identical to the previous one, except that, for i ∈ SS \ I,
SimR simulates the proofs πi ← SimNIZK(td1, x) for xi = fi.

Claim 1. Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

The claim above follows directly from the statistical zero-knowledge of the
scheme NIZKREDJ Δ

.

Hyb2,�: This hybrid is identical to the previous one, except that the simulator
samples fu�

←$TN and computes

Ru�
← Ext

(

s, f
rq−1

u�

∏M
j pj

u� mod N ξ+1

)

where qu�
← PPRF(k, xu�

) for all u� ∈ {i : xi ∈ SS \ I} and pj ← PPRF(k, yj)
for all yj ∈ SR. The hybrid is defined for � = 1, . . . , m − m′.

118 N. Alamati et al.

Claim 2. Hybrids Hyb1 and Hyb2,m−m′ are indistinguishable.

The proof of the claim is deferred to the full paper [1].

Hyb3,�: This hybrid is identical to the previous one except that SimR computes
Ru�

←$ {0, 1}λ for all u� ∈ {i : xi ∈ SS \ I}. The hybrid is defined for � =
1, . . . ,m − m′.

Claim 3. Assume that Ext is a (κ − 1, negl(λ))-strong extractor and that the
φ-hiding assumption holds. Then hybrids Hyb2,m−m′ and Hyb3,m−m′ are indis-
tinguishable.

The proof of the claim is in [1].

Hyb4,�: This hybrid is identical to the previous one except that SimR encrypts
ctu� ← PKE.Enc(pk, 0;Ru�

) for all for all u� ∈ {i : xi ∈ SS \ I}. The hybrid is
defined for � = 1, . . . ,m − m′. Hybrid Hyb4,m−m′ is identical to the simulation.

Claim 4. Assume that PKE is an IND-CPA PKE. Then hybrids Hyb3,m−m′

and Hyb4,m−m′ are indistinguishable.

The claim follows directly from the IND-CPA property of the underlying
PKE. That is, given an adversary A that distinguishes both hybrids, we can
easily build an adversary B against the IND-CPA property of PKE. This adver-
sary B simply chooses as messages m0 = xu�

(where xu�
∈ SS \ I) and m1 = 0.

It outputs whatever A outputs.
We first show how the simulator SimS extracts the sender’s input:

1. CRS generation. SimS generates the crs following the algorithm GenCRS,
except that it sets g0 = g′

0(1 + N) for g′
0 ←$TN . It keeps φ(N) to itself

(which can be computed using the prime numbers P,Q) and the secret key
sk corresponding to pk. It outputs crs = (pk, g0, B, k,Δ)

2. SimS samples h ←$TN and computes (crs1, td1) ← NIZK.GenCRSREDJ Δ
(1λ).

It sends psi1 = (h, crs1) to the malicious sender.
3. Whenever SimS receives a message psi2 = {fi, ct, si, πi}i∈[m] from the sender,

the simulator initially sets SS and does the following for all i ∈ [m]:
– It checks if 1 ← NIZK.VerifyREDJ Δ

(td1, xj , πj) where xj = fj , and aborts
otherwise.

– It computes id′
i ← PKE.Dec(sk, cti) and pi ← PPRF(k, id′

i). Additionally,
it extracts ζi by recovering ζ ′

i from (1 + N)ζ′
i = f

φ(N)
i and computing

ζ = ζ ′/φ(N) over the integers. It computes ρ′
i = ζi/pi over the integers.

If cti = PKE.Enc(pk, id′
i;Ri) where Ri = Ext(si, h

ρ′
imod N ξ+1), then it

adds id′
i to SS.

4. It sends SS to FPSI and halts.

We now show that the simulation is indistinguishable from the real protocol
via the following sequence of hybrids.

Hyb0: This hybrid is the real protocol.

Hyb1: This hybrid is identical to the previous one except that the simulator
computes the first message (sent by the receiver) as h ←$TN .

Laconic Private Set Intersection and Applications 119

Claim 5. Hybrids Hyb0 and Hyb1 are statistically indistinguishable.

Since g0 is a generator of TN , the distributions of gx and h ←$TN are identical.
It follows that the hybrids are indistinguishable.

Hyb2: This hybrid is identical to the previous one, except that g0 = g′
0(1 + N)

for g′
0 ←$TN (instead of choosing g0 ←$TN). Additionally, SimS keeps (φ(N), sk)

while creating crs.

Claim 6. Assume that the DCR assumption holds. Then hybrids Hyb1 and
Hyb2 are indistinguishable.

Hyb3: This hybrid is identical to the previous one except that the simulator,
instead of checking if there is an index i for which

ctj = PKE.Enc(pk, idi;R′
i)

where R′
i = Ext(sj , f

ri
j) and ri = r

M
∏

�=1,� �=i

p� (as in the real protocol), it does

the checks as in the simulation. That is, it computes id′
i ← PKE.Dec(sk, cti) and

pi ← PPRF(k, id′
i). Additionally, it extracts ζi by recovering ζ ′

i from (1+N)ζ′
i =

f
φ(N)
i and computing ζ = ζ ′/φ(N). It computes ρ′

i = ζi/pi over the integers.
Then, it checks if cti = PKE.Enc(pk, id′

i;Ri) where Ri = Ext(si, h
ρ′

i).

Claim 7. Hybrids Hyb2 and Hyb3 are indistinguishable given that PKE is cor-
rect and NIZKREDJ Δ

is simulation sound.

By the simulation soundness of NIZKREDJ Δ
, ζi < Nξ−1/2. Hence, ζ ′

i < Nξ/2
and thus ζ ′

imod N ξ is equal to ζ ′
i as an integer. Computing ζ = ζ ′

i/φ(N) yields
ρipi over Z. Thus ρi = ζi/pi over Z.

Thus, performing the checks in this hybrid has the same outcome as in the
real protocol. ��

Setting the Parameters. The value B is such that N ξ−1/2 ≥ B > N2κ for
5κ ≤ λ. Then, it is enough to set ξ = 3, so that we can find a B that fulfills the
condition.

Achieving Statistical Security Against the Sender. The protocol presented in
Construction 2 achieves computational security against a malicious sender given
that the DCR assumption holds (recall that NIZKREDJ Δ

achieves statistical
reusable soundness).

The only place where we use the DCR assumption in the proof of security
against a malicious sender is when we replace g0 ←$TN by g0 = g′

0(1+N). Hence,
consider the following modification of the protocol presented in Construction 2:
In GenCRS, the element g0 is chosen as g′

0(1+N) for g′
0. This simple modification

of the protocol yields a new one which is statistically secure against a malicious
sender. On the other hand, security against a semi-honest receiver now relies on
the hardness of φ-hiding (as before) and the DCR assumption.

120 N. Alamati et al.

7 Self-Detecting Encryption

In this section we define self-detecting encryption, and show how to build it from
laconic PSI. We first give a semi-honest definition, and will present the malicious
definition in the full paper [1].

Definition 7. A Self-Detecting Encryption (SDE) scheme is tuple of (random-
ized) algorithms SDE = (Prm,Gen,Hash,Enc,Dec,Detect) such that:

– Prm(1λ): Takes as input a security parameter 1λ, and outputs a public param-
eter pp.

– Gen(pp): Takes as input a public parameter pp, and outputs a pair of keys
(pk, sk).

– Hash(pp,DB): Takes as input a public parameter pp and a database DB, and
outputs a hash value h and a private state st. We require |h| ≤ poly(λ), for a
fixed polynomial poly.

– Enc(pk, h,m): Takes as input a public key pk, a hash value h, and a message
m, and outputs a ciphertext ct.

– Dec(sk, ct): Takes as input a secret key sk and a ciphertext ct, and outputs a
message m or ⊥.

– Detect(st, ct): Takes as input a private state st and a ciphertext ct, and outputs
a message m or ⊥.

We require the following properties:

– Correctness. For any message m, letting pp ←$ Prm(1λ) and (pk, sk) ←$

Gen(pp): Pr[Dec(sk,Enc(pk,m)) �= m] ≤ negl(λ).
– Detection. For any pp ∈ Prm, any (pk, sk) ∈ Gen(1λ), any database

of strings DB, and any message m, letting (h, st) ←$ Hash(pp,DB) and
ct ←$ Enc(pk, h,m), if m ∈ DB then Detect(st, ct) = m.

– Efficiency. The size of h and running time of Enc are independent of the
database size. There exists a polynomial poly s.t. for all n := n(λ), any DB ∈
{0, 1}n, letting h ←$ Hash(pp,DB) and pp, pk be as above, then |h| ≤ poly(λ)
and also the running time of Enc(pk, h,m) is upper bounded by poly(|m|, λ).

– Database Hiding. For any two databases (DB0,DB1) of equal size, if
(h0, ∗) ←$ Hash(pp,DB0) and (h1, ∗) ←$ Hash(pp,DB1) then h0 and h1 are
indistinguishable where pp ←$ Gen(1λ).

– Semantic Security. For any database of strings DB and any two messages
(m0,m1): (pk, h,Enc(pk, h,m0))

c≡ (pk, h,Enc(pk, h,m1)), where all the vari-
ables are sampled as above.

– Security Against the Authority. For any two messages (m0,m1), if m0 /∈
DB and m1 /∈ DB then

(

pk, (h, st),Enc(pk, h,m0))
c≡ (pk, (h, st),Enc(pk, h,m1)

)

,

where pp ←$ Prm(1λ), (pk, sk) ←$ Gen(pp), and (h, st) ←$ Hash(pp,DB).

Laconic Private Set Intersection and Applications 121

We now show how to realize self-detecting encryption from semi-honest
laconic PSI. Informally, the SDE hash is the receiver’s first-round laconic PSI
message, and the encryption of a message m consists of a PKE encryption of m
as well as a second-round PSI message based on m.

Construction 3 . Let PKE = (KeyGen′,Enc′,Dec′) be a CPA-secure PKE
scheme16 and LPSI = (GenCRS,R1,S,R2) a laconic PSI.

– Prm(1λ): Sample crs ←$ LPSI.GenCRS(1λ), and let pp := crs.
– Gen(pp): Run PKE.Gen′(1λ) to generate a pair of keys (pk, sk).
– Hash(pp,DB): Let h be the output of the receiver on DB and pp, i.e., h ←$

LPSI.R1(pp,DB). In addition, let st be the private state of the receiver.
– Enc(pk, h,m): Output (ct1, ct2), where ct1 ←$ PKE.Enc′(pk,m) and ct2 ←$

LPSI.S(pp, {m}, h).
– Dec(sk, ct = (ct1, ct2)): Output PKE.Dec′(sk, ct1).
– Detect(st, ct = (ct1, ct2)): Output R2(st, ct2).

Correctness and efficiency follow immediately.

– Statistical database hiding follows from PSI-receiver statistical security.
– Semantic security and security against the authority property of the scheme

follows from the CPA security of PKE scheme Π and the sender’s security.
Observe that if m /∈ DB then both ct1 and ct2 computationally hide the
message even in the presence of the private state st of PSI. Specifically, one
can argue that ct1 computationally hides m because of the CPA security
of PKE scheme Π, and ct2 computationally hides m because of the sender’s
security of laconic PSI. The arguments above can be made formal via a routine
hybrid argument, and we omit the details.

Acknowledgment. Pedro Branco thanks the support from DP-PMI and FCT (Por-
tugal) through the grant PD/BD/135181/2017. This work is supported by Security
and Quantum Information Group of Instituto de Telecomunicações, by the Fundação
para a Ciência e a Tecnologia (FCT) through national funds, by FEDER, COMPETE
2020, and by Regional Operational Program of Lisbon, under UIDB/50008/2020.

Nico Döttling: This work is partially funded by the Helmholtz Association within
the project “Trustworthy Federated Data Analytics” (TFDA) (funding number ZT-I-
OO1 4).

Sanjam Garg is supported in part by DARPA under Agreement No. HR00
112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research
grants by the Sloan Foundation, Visa Inc., and Center for Long-Term Cybersecurity
(CLTC, UC Berkeley). Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.

Mohammad Hajiabadi is supported in part by NSF CNS Award 2055564.

16 We proceed with an independent PKE scheme for the sake of simplicity.

122 N. Alamati et al.

References

1. Alamati, N., Branco, P., Döttling, N., Garg, S., Hajiabadi, M., Pu, S.: Laconic pri-
vate set intersection and applications. Cryptology ePrint Archive, Report 2021/728
(2021). https://ia.cr/2021/728

2. Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding private
set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC
2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19379-8 10

3. Baum, C., Bootle, J., Cerulli, A., del Pino, R., Groth, J., Lyubashevsky, V.: Sub-
linear lattice-based zero-knowledge arguments for arithmetic circuits. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 669–699. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 23

4. Benhamouda, F., Lin, H.: k -round multiparty computation from k -round oblivious
transfer via garbled interactive circuits. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10821, pp. 500–532. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78375-8 17

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure com-
putation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

7. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

8. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy, pp. 315–334. IEEE Computer Society Press, San Francisco
(2018)

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science, pp.
136–145. IEEE Computer Society Press, Las Vegas (2001)

11. Chen, H., Huang, Z., Laine, K., Rindal, P.: Labeled PSI from fully homomorphic
encryption with malicious security. In: Lie, D., Mannan, M., Backes, M., Wang,
X. (eds.) ACM CCS 2018: 25th Conference on Computer and Communications
Security, pp. 1223–1237. ACM Press, Toronto (2018)

12. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic
encryption. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM
CCS 2017: 24th Conference on Computer and Communications Security, pp. 1243–
1255. ACM Press, Dallas (2017)

13. Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.: Laconic
oblivious transfer and its applications. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 2

https://ia.cr/2021/728
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-63715-0_2
https://doi.org/10.1007/978-3-319-63715-0_2

Laconic Private Set Intersection and Applications 123

14. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

15. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44586-2 9

16. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

17. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

18. Döttling, N., Garg, S., Goyal, V., Malavolta, G.: Laconic conditional disclosure
of secrets and applications. In: Zuckerman, D. (ed.) 60th Annual Symposium on
Foundations of Computer Science, pp. 661–685. IEEE Computer Society Press,
Baltimore (2019)

19. Döttling, N., Garg, S., Hajiabadi, M., Masny, D.: New constructions of identity-
based and key-dependent message secure encryption schemes. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 3–31. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-76578-5 1

20. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26954-8 1

21. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor functions
and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS,
vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 2

22. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018. LNCS, vol. 11239, pp. 689–718. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03807-6 25

23. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A., Sekar, S.: Registration-based
encryption from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019.
LNCS, vol. 11443, pp. 63–93. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17259-6 3

24. Garg, S., Srinivasan, A.: Garbled protocols and two-round MPC from bilinear
maps. In: Umans, C. (ed.) 58th Annual Symposium on Foundations of Computer
Science, pp. 588–599. IEEE Computer Society Press, Berkeley (2017)

25. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol.
10821, pp. 468–499. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78375-8 16

26. Goyal, R., Vusirikala, S.: Verifiable registration-based encryption. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 621–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 21

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-76578-5_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-030-17259-6_3
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-319-78375-8_16
https://doi.org/10.1007/978-3-030-56784-2_21

124 N. Alamati et al.

27. Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting PRGs, OWFs
with encryption, and more. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO
2020. LNCS, vol. 12170, pp. 527–558. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-56784-2 18

28. Green, M.: (2019). https://blog.cryptographyengineering.com/2019/12/08/on-
client-side-media-scanning/

29. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 21

30. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

31. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54365-8 8

32. Hubacek, P., Wichs, D.: On the communication complexity of secure function eval-
uation with long output. In: Roughgarden, T. (ed.) ITCS 2015: 6th Conference on
Innovations in Theoretical Computer Science, pp. 163–172. Association for Com-
puting Machinery, Rehovot (2015)

33. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Vad-
han, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 31

34. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

35. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

36. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-
party private set intersection from symmetric-key techniques. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017: 24th Conference on
Computer and Communications Security, pp. 1257–1272. ACM Press, Dallas (2017)

37. Lindell, Y., Nissim, K., Orlandi, C.: Hiding the input-size in secure two-party com-
putation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp.
421–440. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-
0 22

38. Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based PSI via
cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10822, pp. 125–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78372-7 5

39. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on
OT extension. In: Fu, K., Jung, J. (eds.) USENIX Security 2014: 23rd USENIX
Security Symposium, pp. 797–812. USENIX Association, San Diego (2014)

40. Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In:
Thorup, M. (ed.) 59th Annual Symposium on Foundations of Computer Science,
pp. 859–870. IEEE Computer Society Press, Paris (2018)

41. Resende, A.C.D., Aranha, D.F.: Faster unbalanced private set intersection. In:
Meiklejohn, S., Sako, K. (eds.) FC 2018. LNCS, vol. 10957, pp. 203–221. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-58387-6 11

https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-030-56784-2_18
https://blog.cryptographyengineering.com/2019/12/08/on-client-side-media-scanning/
https://blog.cryptographyengineering.com/2019/12/08/on-client-side-media-scanning/
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-662-54365-8_8
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/11535218_15
https://doi.org/10.1007/978-3-642-42045-0_22
https://doi.org/10.1007/978-3-642-42045-0_22
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-662-58387-6_11

Laconic Private Set Intersection and Applications 125

42. Rindal, P., Rosulek, M.: Malicious-secure private set intersection via dual execu-
tion. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS
2017: 24th Conference on Computer and Communications Security, pp. 1229–1242.
ACM Press, Dallas (2017)

43. Thyagarajan, S.A.K., Bhat, A., Malavolta, G., Döttling, N., Kate, A., Schröder,
D.: Verifiable timed signatures made practical. In: ACM CCS 20: 27th Conference
on Computer and Communications Security, pp. 1733–1750. ACM Press (2020)

Amortizing Rate-1 OT and Applications
to PIR and PSI

Melissa Chase1, Sanjam Garg2,3, Mohammad Hajiabadi4, Jialin Li2,
and Peihan Miao5(B)

1 Microsoft Research, Redmond, USA
melissac@microsoft.com

2 University of California, Berkeley, USA
{sanjamg,j.li98}@berkeley.edu
3 NTT Research, Sunnyvale, USA

4 University of Waterloo, Waterloo, Canada
mdhajiabadi@uwaterloo.ca

5 University of Illinois at Chicago, Chicago, USA
peihan@uic.edu

Abstract. Recent new constructions of rate-1 OT [Döttling, Garg,
Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought
this primitive under the spotlight and the techniques have led to new
feasibility results for private-information retrieval, and homomorphic
encryption for branching programs. The receiver communication of this
construction consists of a quadratic (in the sender’s input size) number of
group elements for a single instance of rate-1 OT. Recently [Garg, Haji-
abadi, Ostrovsky, TCC 2020] improved the receiver communication to a
linear number of group elements for a single string-OT. However, most
applications of rate-1 OT require executing it multiple times, resulting
in large communication costs for the receiver.

In this work, we introduce a new technique for amortizing the cost of
multiple rate-1 OTs. Specifically, based on standard pairing assumptions,
we obtain a two-message rate-1 OT protocol for which the amortized cost
per string-OT is asymptotically reduced to only four group elements. Our
results lead to significant communication improvements in PSI and PIR,
special cases of SFE for branching programs.

1. PIR: We obtain a rate-1 PIR scheme with client communication
cost of O(λ·log N) group elements for security parameter λ and database
size N . Notably, after a one-time setup (or one PIR instance), any fol-
lowing PIR instance only requires communication cost O(log N) number
of group elements.

2. PSI with unbalanced inputs: We apply our techniques to private set

S. Garg—supported in part by DARPA under Agreement No. HR00112020026, AFOSR
Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan
Foundation and Visa Inc.
M. Hajiabadi—supported in part by NSF CNS Award 2055358 and a 2020 DPI Science
Team Seed Grant.
P. Miao—supported in part by NSF CNS Award 2055564.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 126–156, 2021.
https://doi.org/10.1007/978-3-030-90456-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_5

Amortizing Rate-1 OT and Applications to PIR and PSI 127

intersection with unbalanced set sizes (where the receiver has a smaller
set) and achieve receiver communication of O((m + λ) log N) group ele-
ments where m, N are the sizes of the receiver and sender sets, respec-
tively. Similarly, after a one-time setup (or one PSI instance), any follow-
ing PSI instance only requires communication cost O(m · log N) number
of group elements. All previous sublinear-communication non-FHE based
PSI protocols for the above unbalanced setting were also based on rate-1
OT, but incurred at least O(λ2m log N) group elements.

1 Introduction

Oblivious transfer (OT) [Rab05] is a foundational primitive in cryptography. In
this work, we are interested in two-message OT protocols between: (i) a receiver
with an input bit b who sends the first message otr of the protocol, and (ii) a
sender with input two (equal length) strings m0,m1 who sends the second mes-
sage ots. Correctness requires that at the end of execution, the receiver should
learn mb, while security requires that the receiver does not learn m1−b and that
the sender does not learn the bit b. Over the years, significant progress has been
made in constructing two-message OT protocols, either from general assump-
tions [EGL82,GMW87], or from specific assumptions but with enhanced securi-
ty/functionality/efficiency, such as OT based on DDH [NP01,AIR01,PVW08],
CDH [DGH+20], factoring related [HK12] and LWE [PVW08].

Rate-1 OT. In this work, we are interested in constructing rate-1 two-message
OT protocols. We say that an OT protocol is rate-1 if the ratio |m0|

|ots| approaches
1, as n grows. As shown by Ishai and Paskin [IP07], rate-1 OT enables powerful
applications such as (i) semi-compact homomorphic encryption for branching
programs (where the ciphertext grows only with the depth but not the size of
the program) as well as (ii) communication-efficient private-information retrieval
(PIR) protocols.

The rate-1 property is crucial in realizing these applications, allowing a sender
to compress a large database for a receiver who is interested only in a small por-
tion of it. To give some intuition, suppose we want to use a rate-1 OT to imple-
ment a 1-out-of-4 OT for a sender with four elements m := (m00,m01,m10,m11).
Thinking about the corresponding binary tree, the receiver on an input uw ∈
{0, 1}2 will send two messages otr and otr′, the first one for choice bit u and
the second one for w. The sender will use otr′ once against (m00,m01) and once
against (m10,m11) to get two outgoing messages ots0 and ots1. The receiver is
only interested in otsu, but the sender does not know which one it is. So, the
sender compresses (ots0, ots1) using otr, allowing the receiver to learn otsu, and
consequently muw.

The above construction employs a self-eating process, where a pair of ots
messages is used as the sender input for the next OT, and so on. Employing a
low rate 1-out-of-2 OT to build 1-out-of-n OT will blow up the communication,
falling short for PIR. To see this, suppose |ots| ≥ 2|m0|, as is the case with
most 1-out-of-2 OT protocols. Then, if n = 2k, as the sender packs up the tree
from bottom-up, in each OT invocation the size of the resulting ots message

128 M. Chase et al.

(which either packs two previous ots messages, or two leaf messages) doubles,
resulting in a final message of size at least O(2ku), where u is the size of each
initial individual message of the sender. While the protocol is a 1-out-of-n OT,
it is not a sublinear PIR, because the size of the sender’s protocol message is
not sublinear in its total input size, nu. Moreover, as we will see later, in some
applications involving branching programs, such as Private Set Intersection (PSI)
with unbalanced set sizes, the sender will need to pack a tree of depth polynomial
in the security parameter (as opposed to logarithmic size as in PIR), so using
low rate 1-out-of-2 OT will result in an exponential size blow-up.

Building Rate-1 OT. Recent work of Döttling, Garg, Ishai, Malavolta, Mour,
and Ostrovsky [DGI+19] provides a framework for constructing rate-1 OT based
on a variety of assumptions such as DDH, QR, and LWE. This in turn led to
PIR protocols with sender messages of only a logarithmic size dependence on
the server size, and, more generally, branching-program protocols with sender
messages whose size only grows with the depth of the program. In addition
to these applications, the underlying techniques have been used in building
collision-intractable hash functions and non-interactive zero-knowledge (NIZK)
proofs [BKM20]. This has made the notion of rate-1 OT fundamental both from
a theory and applications point of view.

How About the Receiver Communication? An overlooked aspect of rate-1
OT is the receiver communication cost. This is an important metric because, as
stated above, the self eating process involve producing many otr messages (pro-
portional to the depth of the tree/program), and hence sending a fresh otr for
each depth results in large first-round messages. Concretely, in the DDH-based
rate-1 OT construction of [DGI+19], for a sender with (m0 ∈ {0, 1}n,m1 ∈
{0, 1}n), the receiver should send a linear (O(n)) number of group elements
for each bit of the sender, resulting in overall O(n2) group elements. This incurs
high receiver communication in the respective applications. Addressing this issue,
Garg, Hajiabadi and Ostrovsky [GHO20] obtained rate-1 OT for which otr con-
sists of only a linear O(n) number of group elements in total, as opposed to
O(n2).

One limitation of [GHO20] is that it only improves the communication effi-
ciency of the base rate-1 OT, but still requires the receiver to send a fresh otr
message for each new OT execution. This constitutes a prohibitive overhead for
the receiver in applications in which the depth of the branching program is large,
and the receiver needs to engage with a sender holding a branching program BP
on many different inputs x1, . . . , xn (e.g., PSI). Addressing this communication
bottleneck is the goal of our paper. We achieve this by introducing and realizing
a new primitive that we call receiver-amortized (or amortized, for short) rate-1
OT.

1.1 Our Results

We put forth a cryptographic primitive that we call amortized rate-1 OT, and
show how to realize it using standard assumptions on bilinear groups. As appli-
cations we obtain significant efficiency improvements, shaving a factor of poly(λ)

Amortizing Rate-1 OT and Applications to PIR and PSI 129

off the receiver communication in various protocols involving secure branching
program computation (e.g., unbalanced PSI).

An amortized rate-1 OT breaks up the computation of a receiver into an
offline and online phase. The offline phase is performed by the receiver once
and for all, prior to receiving any choice bits. Specifically, we have an algorithm
PreP(1λ), run by the receiver, which outputs a private state str for the receiver,
and a reusable parameter prm. Next, we have an algorithm OT1 run by the
receiver on a choice bit b to obtain otr

$←− OT1(str, b). A sender with messages
m := (m0 ∈ {0, 1}n,m1 ∈ {0, 1}n) runs OT2((prm, otr),m) to obtain ots. Finally,
the receiver can recover mb by running OT3(str, ots). One notable aspect is that
the state str used by OT1 and OT3 is the same as the initial state outputted by
PreP—the state is not updated as a result of OT1 executions. This property is
in fact exploited in some of our applications, such as PSI cardinality. Also, the
message prm is reused across all communications, so the receiver may send it
only once. We require the following properties:

1. Sender rate-1 communication: |ots| = n + poly(λ), where poly is a fixed poly-
nomial (e.g., the size of a group element) independent of how large n is.

2. Receiver non-reusable compactness: |otr| = poly′(λ), where poly′(λ) is inde-
pendent of n.

3. Receiver privacy: We require indistinguishability security for the receiver
against adaptive adversaries. If (str, prm) $←− PreP(1λ), an adaptive adver-
sary who is given prm and who sends many pairs of choice bits in an adaptive
fashion cannot determine whether his received otr messages (all made relative
to str) were built using the first choice bits or the second choice bits of his
submitted pairs. Notice that since otr messages are all produced based on
the same private state str, we should give the adversary the ability to submit
many pairs.

4. Sender privacy: Standard indistinguishability security against honest
receivers.1

Assuming an SXDH-hard bilinear map e : G1 × G2 �→ GT on prime-order
groups, we give a construction of amortized rate-1 OT in which prm consists of
O(n2) group elements in G1 and otr consists of 4 group elements in G2. Recall
that the SXDH assumption [BGdMM05] (Symmetric External Diffie-Hellman)
states that both G1 and G2 are DDH hard. Our construction is based on a new
re-randomization trick that allows us to obtain a structured matrix, as required
for rate-1 OT, from a reusable initial matrix and a re-randomizing term involving
four group elements.

The above reusable parameter prm is still quite large, even though it can
be amortized among many OT executions. We show by relying on a stronger
assumption on G1, called 2n-power-DDH, we can make prm consist only of O(n)

1 For applications involving non-oblivious branching programs we need to strengthen
sender privacy, along the lines of [IP07]. For oblivious branching programs, from
which all our applications are obtained, the stated requirement suffices.

130 M. Chase et al.

group elements in G1. We achieve this by relying on a sliding window technique,
introduced in [GHO20], that implicitly builds a Toeplitz matrix in the exponent
using a linear number of group elements. The t-power DDH assumption says the
distribution (g, ga, . . . , gat

) is pseudorandom.

Efficiency Gained. For performing t rate-1 OTs where the size of each message
of the sender is n, our receiver communication consists of O(n2) reusable group
elements in G1 and 4t group elements in G2, relying on SXDH. Assuming power
DDH on G1 the receiver communication becomes O(n) group elements in G1

and 4t group elements in G2. In comparison, the most receiver compact bilinear
SXDH-based rate-1 OT, due to [DGI+19], involves sending O(tn

√
n) both in

G1 and G2. As we will see in Sect. 1.2 in many applications of rate-1 OT, we
have t >>

√
n, allowing us to cut off large multiplicative polynomial factors

from the receiver communication. We compare our receiver communication with
prior rate-1 OT protocols in Table 1. We only include receiver communication,
since the sender communication in all these protocols is the same (rate-1 for each
instance of the OT).

Table 1. Receiver communication complexity for t executions of a rate-1 OT. Here n
denotes the bit size of each message of the sender in the OT executions.

Work Receiver reusable comm Receiver non-reusable comm Receiver total comm Assumption

[DGI+19] N/A O(tn2) G O(tn2) G DDH

[DGI+19] N/A O(tn
√

n) G1 + O(tn
√

n) G2 O(tn
√

n) G1 + O(tn
√

n) G2 Bilinear SXDH

[GHO20] N/A O(tn) G O(tn) G Power-DDH

Ours O(n2) G1 O(t) G2 O(n2) G1 + O(t) G2 Bilinear SXDH

Ours O(n) G1 O(t) G2 O(n) G1 + O(t) G2 Bilinear Power DDH

1.2 Applications

Our results allow us to realize SFE for branching programs with significantly
lower receiver communication. To illustrate our improvements, we first review the
concept of branching programs. A deterministic κ-bit input branching program
BP is a directed acyclic graph, where every leaf node has a label 0 or 1 (reject
or accept), and every non-leaf node v has a label lb(v) ∈ {1, . . . , κ}. The root
node is labeled with 1. Every non-leaf node has two outgoing edges labeled 0
and 1. An input x ∈ {0, 1}κ induces a unique computation path from the root
to a leaf node, where the computation from a node v will branch out to one of
its two children depending on the value of xi, where i = lb(v). We say BP(x) = b
if the underlying computation path ends in a b-labeled leaf node. The size of a
branching program is the number of nodes, and the depth, �, is the length of the
longest path. A branching program is oblivious if κ = � and if all nodes at level
i (where the root is considered level 1) are labeled i.2

2 The standard definition of oblivious branching programs is more general than what
we give here, but we stick to our own definition since it captures our application
needs.

Amortizing Rate-1 OT and Applications to PIR and PSI 131

As an example, consider a client who wants to know whether her input x ∈
{0, 1}λ is in the set D ⊂ {0, 1}λ of a server. This reduces to evaluating an
oblivious branching program PSI on x where PSI is constructed as follows: for
every string a ∈ {ε} ∪ {0, 1} ∪ · · · {0, 1}λ such that a is a prefix of a string in
D, we put a node va in the graph. We designate vε as the root node, and all va

such that a ∈ {0, 1}λ as accept leaf nodes. The label of a node va for |a| < λ
is lb(va) = |a| + 1. For a node va, for |a| < λ, and for b ∈ {0, 1}, if a node vab

exists, we put a b-labeled edge from va to vab; otherwise, we create a new reject
leaf node and put a b-labeled edge from va to this node. The depth of PSI is λ
and its size is O(λ|D|).

Now if a client wants to learn the intersection of her set S = {x1, . . . , xm}
with D, she needs to learn the values of all PSI(xi) for i ∈ [m], leading to m
evaluations of PSI.

Shorter Client Communication for PSI. Ishai and Paskin [IP07] give a con-
struction of SFE for branching programs from rate-1 OT, where, for an oblivious
branching program BP of depth d, the receiver sends d otr messages, each pre-
pared for a sender whose input messages are of size O(dλ). Returning to the PSI
problem for a client with set S = {x1, . . . , xm} and a server with set D, we need
to evaluate the oblivious branching program PSI m times. Recall that the depth
of PSI is λ. Hence, setting t = mλ and n = λ2 in Table 1, our PSI-client commu-
nication consists of O(mλ) non-reusable group elements in G2 (in either SXDH
or power-DDH cases) and O(λ4) reusable group elements in G1 (in the case of
SXDH), and O(λ2) reusable group elements in G1 (in the case of bilinear power
DDH). In contrast, [DGI+19] results in O(mλ4) group elements in both G1 and
G2. Thus, we drop a multiplicative factor of m by relying on the same SXDH
assumption, and a factor of mλ2 by relying on bilinear power DDH. The results
of [GHO20] give O(mλ3) group elements for the receiver using (pairing-free)
power DDH. This is again significantly larger than what we achieve.

In Sect. 7.3 we describe some PSI optimization techniques that further reduce
the client communication, replacing a multiplicative factor of λ with log N , where
N = |D|. These techniques may be of independent interest. We also give more
applications, involving PSI/PIR, in Sect. 7.

SFE for Non-oblivious Branching Programs. Ishai and Paskin [IP07] show
how to realize SFE for non-oblivious branching programs (in which at any
given level the program might branch over several variables, not known to the
receiver) by relying on a stronger sender privacy notion for the underlying rate-1
OT. Informally, the stronger property requires that a sender’s response message
should hide the previous protocol message of the receiver, even for the receiver
herself. In Sect. 8 we show that simple variants of our amortized rate-1 OT satisfy
the stronger sender security requirement, without affecting the efficiency param-
eters. All our applications are obtained based on oblivious branching programs,
however.

We summarize our efficiency parameters for branching programs in Table 2.
See Table 3 for a more detailed comparison.

132 M. Chase et al.

Table 2. Bit-complexity for receiver communication, omitting O(·) notation. We
assume O(λ) is the bit size of a group element (in the case of pairings, for both source
and target group elements). m denotes the number of branching programs executions.
For (oblivious) branching programs (BP), h is the bit size of the output, κ is the bit
size of receiver message and � is the depth of the BP program.

Work Assumption Primitive Recv Reuse Comm Recv Non-Reuse Comm

Ours Bilinear SXDH Oblivious BP λ(h + λ�)2 mλ�

Ours Bilinear Power DDH Oblivious BP λ(h + λ�) mλ�

[GHO20] Power DDH Oblivious BP N/A mλ�(h + λ�)

[DGI+19] Bilinear SXDH Oblivious BP N/A O(mλ�(h + λ�)3/2)

[DGI+19] DDH Oblivious BP N/A O(mλ�(h + λ�)2)

Ours Bilinear SXDH BP λ(h + λ�)2 mκλ�

Ours Bilinear Power DDH BP λ(h + λ�) mκλ�

[GHO20] Power DDH BP N/A mκλ�(h + λ�)

[DGI+19] Bilinear SXDH BP N/A O(mλ�κ(h + λ�)3/2)

[DGI+19] DDH BP N/A O(mλ�κ(h + λ�)2)

1.3 Comparison with Prior Work

The rate-1 OT constructions of [DGI+19] built upon ideas developed in the
context of trapdoor functions (TDFs) [GH18,GGH19], identity-based encryp-
tion [CDG+17,DG17,BLSV18] and homomorphic secret sharing [BGI16]. The
TDF techniques in turn led to notions such as hinting PRGs [KW19], which
found extensive applications, e.g., [LQR+19,KMT19,HKW20,GVW20].

OT Extension. One might wonder about the difference between amortized
rate-1 OT and OT extension [Bea96,IKNP03]. The primary goal of OT exten-
sion is to minimize the number of public-key operations: Performing n := n(λ)
OTs at the cost of doing a fewer, λ, number of OTs and some private key
operations. On the other hand, we are concerned with amortizing receiver com-
munication for rate-1 OT; doing t rate-1 OTs, but in a way that the receiver
total communication is less than the sum of t individual rate-1 OT executions.
OT extension techniques do not provide this feature. Moreover, OT extension
techniques destroy the rate-1 property of the sender. For example, Beaver’s pro-
tocol, which is round preserving, results in sender’s OT protocol messages which
are larger than |m0|+ |m1|, where (m0,m1) is the sender’s initial input pair. We
leave it as open problem whether one can achieve some form of OT extension
and amortized rate-1 OT at the same time.

PSI. Private set intersection (PSI) enables two parties, each holding a private set
of elements, to compute the intersection of the two sets while revealing nothing.
PSI and its variants have found many real-world applications including online
advertising [IKN+20], password breach alert [TPY+19,APP,MIC], mobile pri-
vate contact discovery [KRS+19], privacy-preserving contact tracing [TSS+20,
CCF+20]. In the recent years, there has been tremendous progress made
towards realizing PSI efficiently in various settings, including Diffie-Hellman-
based [HFH99,IKN+20], RSA-based [ADT11], OT-extension-based [KKRT16,

Amortizing Rate-1 OT and Applications to PIR and PSI 133

PRTY19,PRTY20,CM20], FHE-based [CLR17], circuit-based [HEK12,PSSZ15,
PSWW18,PSTY19], Vector-OLE-based [RS21] approaches.

Most of the existing approaches require the communication complexity to
grow with the size of the larger set, the only exception being the FHE-based
protocol [CLR17] (where communication grows linearly in the receiver set and
logistically in the sender set) and RSA-based protocol [ADT11] (where the
receiver has the bigger set and the communication grows linearly in the smaller,
sender set). We consider the dual setting of [ADT11], meaning that in our
case the receiver has the smaller set. In many real-world applications such as
password breach alert [TPY+19,APP,MIC] and mobile private contact discov-
ery [KRS+19], we need to perform unbalanced PSI between a constrained device
(e.g. cellphone) holding a small set and a service provider holding a large set,
thus having communication grow the larger set (especially the sender set) is a
big concern. Our work presents unbalanced PSI with communication complexity
linear in the size of the receiver set and logarithmic in the sender set. Further-
more, our approach is easily adapted to PSI with advanced functionalities such
as PSI-Cardinality, PSI-Sum, PSI-Test, etc., which could only be achieved from
Diffie-Hellman-based or circuit-based approaches. See Sect. 7 for more details.

2 Technical Overview

One tool used in our constructions (and in all recent rate-1 OT constructions)
is a compressed version of n-bit packed ElGamal encryption. We review these
compression features, formalized in [BBD+20], building on [BGI16]. A secret
key is an n-bit tuple of exponents sk := (ρ1, . . . , ρn) and the public key is
pk := (g, gρ1 , . . . , gρn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit mes-
sage Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have two additional

algorithms Shrink and ShrinkDec, where Shrink(ct) shrinks ct ∈ G
n+1 to obtain

Shrink(ct) → (g′,K, b1, . . . , bn) ∈ G × {0, 1}λ+n. We have shrinking correctness:
Pr [ShrinkDec(sk,Shrink(ct)) = (m1, . . . ,mn)] = 1.

Approach of [DGI+19]. Let G be a group of prime order p with a generator g.
We let ei ∈ G

2n denote a vector which has g in its ith position, and the identity
element 1 everywhere else.

The receiver on a choice bit b samples hk
$←− G

2n and for every i ∈ [n]

samples ρi
$←− Zp and sets eki := hkρi · ei+nb, where hkρi denotes entry-wise

exponentiation, and (·) denotes entry-wise group multiplication. She sends otr :=
(hk, {eki}) to the sender.

Let m = (m0,m1) ∈ {0, 1}2n be a vector concatenating the two strings
of the sender. Let g′ := m · hk, and for i ∈ [n] let g′

i := m · eki, where we
overload the (·) notation to define (b1, . . . , b2n) · (g1, . . . , g2n) =

∏
gbi

i . Letting
pk := (g, gρ1 , . . . , gρn), we have (g′, g′

1, . . . , g
′
n) ∈ Enc(pk,mb), where Enc denotes

n-bit packed ElGamal. With this in mind, the sender sends ots = Shrink(ct)
to the receiver, and the receiver, who has sk := (ρ1, . . . , ρn) can recover mb as
ShrinkDec(sk, ots). We have ots ∈ G × {0, 1}λ+n, so the OT is sender rate-1.

134 M. Chase et al.

In the above, each vector eki is a ρi exponentiation of hk but with a bump
on its (n + ib)’s location: namely, we multiply its (n + b)’s location by g.

Our Techniques: SXDH. We now give a new technique based on pairings
that allows us to produce many bumpy vectors eki’s in the target group, using
only 4 group elements and a reusable initial parameter in the source groups. The
receiver samples 2n vectors ri

$←− Z
2
p, and let M contain all these vectors in the

exponent in G1, namely

M := ([r1]1, . . . , [rn]1 | [rn+1]1, . . . , [r2n]1),

where [r]1 := gr . We similarly define [r]2 := hr and [r]T := e(g, h)r .
Also, let

ν1 := ([p1r1 + u]1, [p1r2]1, · · · , [p1rn]1 | [p1rn+1 + u]1, [p1rn+2]1, · · · , [p1r2n]1)

.

..

νn := ([pnr1]1, [pnr2]1, · · · , [pnrn + u]1 | [pnrn+1]1, [pnrn+2]1, · · · , [pnr2n + u]1) ,

The receiver sets prm := (M,ν1, . . . ,νn) and her private state as str :=
(u, p1, . . . , pn).

Receiver’s Non-reusable Messages. To send a short otr message for a choice
bit b, the receiver samples two random vectors (v,w) s.t. 〈v,u〉 = 0 and 〈w,u〉 =
1. The receiver sends otr := ([f]2, [h]2), where (f ,h) = (w,v) if b = 0, and
(f ,h) = (v,w) if b = 1.

Sender’s Protocol Messages. Given prm := (M,ν1, . . . ,νn) and otr :=
([f]2, [h]2), the sender uses the pairing to computes the inner product of f
with all the vectors in the left-hand side of M,ν1, . . . ,νn, and the inner product
of h with all the vectors in the right-hand side of the M,ν1, . . . ,νn. That is,
using the notation above, letting αj := 〈rj ,f〉 if j ∈ [n], and αj := 〈rj ,h〉 if
j ∈ {n + 1, . . . , 2n} the sender will compute

hk := ([α1]T · · · , [αn]T | [αn+1]T · · · , [α2n]T)

EK :=

⎡

⎢
⎣

[p1α1 + 1]T . . . [p1αn]T [p1αn+1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn + 1]T [pnαn+1]T . . . [pnα2n]T

⎤

⎥
⎦ if b = 0

EK :=

⎡

⎢
⎣

[p1α1]T . . . [p1αn]T [p1αn+1 + 1]T . . . [p1α2n]T
...

. . .
...

...
. . .

...
([pnα1]T . . . [pnαn]T [pnαn+1]T . . . [pnα2n + 1]T

⎤

⎥
⎦ if b = 1

The sender has now built (hk, IK) that satisfies the bump structure explained
in the first paragraph. Namely, think of the ith row of EK as eki in that

Amortizing Rate-1 OT and Applications to PIR and PSI 135

paragraph. Moreover, the receiver knows all the underlying exponent values
sk := (p1, . . . , pn). Now the sender can perform the step explained in the first
paragraph to send a rate-1 message ots, and the receiver will be able to use sk
to decrypt it to obtain mb.

Notice that the protocol has rate-1 sender communication, and that otr con-
sist of only 4 group elements in G2.

To argue about receiver privacy, let us, for simplicity, argue that an adversary
A cannot distinguish between a world in which otr always encrypts the bit 0 from
a world in which otr encrypts 1; the proof for the case where the adversary can
submits adaptively-chosen pairs of choice bits will be similar. We should show
that A for a random pair ([f]2, [h]2) of vectors cannot tell which one is orthogonal
to u and which one has inner product one. This should be argued in the presence
of prm, known to A. We will first remove the presence of u from prm, relying
on DDH for G1. Let prm′ be the same as prm but with u removed. By DDH,
(u, prm)

c≡ (u, prm′). If we want to replace prm with prm′ for A, we should be
able to reply to A’s subsequent OT1 queries. The reason this can be done is
because OT1 responses are produced based on only u and the underlying choice
bit, and u is included in both distributions. Thus, we can remove u from the prm
view of A. Once this is done, we will then show that the entire otr view of A can
be simulated by knowing a pair of vectors (v,w) where v is orthogonal to u and
w has inner product one with u. In particular, to sample from OT1(str, b), we
return (k1v +(1− b)w, k2v + bw), where k1 and k2 are random exponents. Next
we show that the distribution of (v,w) is identical to uniformly random vectors.
This can be argued because information about u has been already removed from
prm. Finally, we rely on DDH for G2 to show that by using a random (v,w) in
the above simulation, the entire otr view of A will be pseudorandom, masking
the value of the choice bit b.

Our Techniques: Bilinear Power DDH. We sketch how to adapt our can-
cellation technique to a sliding window setting, developed in [GHO20], to reduce
the size of prm into a linear number of group elements. The receiver samples a
random exponent a and a vector r

$←− Z
2
p and sets

M :=
(
[ar]1, [a2r]1, · · · , [a2nr]1

)

w :=([kar]1, · · · , [kan−1r]1, [kanr + u]1, [kan+1r]1, · · · , [ka2n−1r]1,

[ka2nr + u]1, [ka2n+1r]1, · · · , [ka3n−1r]1),

where k is a random exponent. The receiver sets prm := (M,w).
The receiver samples a non-reusable message otr = ([f]2, [h]2) for a choice

bit b exactly as in the SXDH case—by sampling it based on u and b.
A sender given (prm, otr) builds n vectors ν1, . . . ,νn as follows. For i ∈ [n]

let νi = w[n + 1 − i, 3n − i], where w[i, j] denotes the elements in positions
i all the way up to j. Once the vectors ν1, . . . ,νn are formed, the sender will
proceed exactly like the SXDH case. Correctness will then follow. The proof of

136 M. Chase et al.

receiver privacy follow similarly to the SXDH case, but we should replace DDH
with power DDH in the appropriate places. We omit the details.

3 Preliminaries and Definitions

We use λ for the security parameter. We use
c≡ and

s≡ for computational and sta-
tistical indistinguishability, respectively. We let ≡ denote that two distributions
are identical. For a distribution S we use x

$←− S to mean x is sampled according
to S and use y ∈ S to mean y ∈ sup(S), where sup denotes the support of a dis-

tribution. For a set S we overload the notation to use x
$←− S to indicate that x is

chosen uniformly at random from S. If A(x1, . . . , xn) is a randomized algorithm,
then A(a1, . . . , an), for deterministic inputs a1, . . . , an, denotes the random vari-
able obtained by sampling random coins r uniformly at random and returning
A(a1, . . . , an; r). We use [n] := {1, . . . , n} and [i, i+ s] := {i, i+1, . . . , i+ s}. For
a vector v = (v1, . . . , vn) we define v[i, i + s] := (vi, vi+1, . . . , vi+s).

Definition 1 (Pairings and SXDH hardness). A bilinear map is given by

(e,G1,G2,GT , p, g, h) $←− G(1λ), where p is a prime number and is the order of
G1, G2 and GT , and g and h are random generators of G1 and G2, respectively.
The function e is a non-degenerate map, satisfying e(ga, hb) = e(g, h)ab for all
exponents a and b. The Symmetric External Diffie-Hellman (SXDH) assump-
tion [BGdMM05] says G1 and G2, sampled as above, are DDH-hard.

Computing Inner Product in the Exponent. Given g := (g1, . . . , gk) ∈ G
k
1

and h := (h1, . . . , hk) ∈ G
k
2 we define e(g,h) :=

∏
i∈[k] e(gi, hi).

Inner Product with Integer Vectors. Given b := (b1, . . . , bk) ∈ Z
k
p and

g := (g1, . . . , gk) ∈ G
k
1 , we define b · g :=

∏
i∈[k] g

bi
i .

3.1 Amortized Rate-1 OT: Definition

We define our new notion of amortized rate-1 OT, which allows a receiver to
reuse part of her protocol message across many independent OT executions. In
the definition below, think of n as the maximum size of each input message of a
sender. The receiver will generate a reusable parameter prm, based on n, which
will allow her later to send a short protocol message otr whenever she wants to
perform a new OT. The sender will use (prm, otr) to complete an OT transfer
for any pair of messages (m0 ∈ {0, 1}n1 ,m1 ∈ {0, 1}n1), as long as n1 ≤ n.

Definition 2 (Amortized Rate-1 OT). Let n := n(λ) be a polynomial. An
amortized rate-1 OT OT := (PreP,OT1,OT2,OT3) is defined as follows.

– PreP(1λ, n) → (str, prm): Takes as input a security parameter 1λ and n, denot-
ing the maximum length of each of the sender’s messages, and outputs a pri-
vate state str and a reusable message prm.

Amortizing Rate-1 OT and Applications to PIR and PSI 137

– OT1(str, b) → otr: Takes as input a security parameter 1λ and a choice bit
b ∈ {0, 1}, and outputs a a protocol message otr. We refer to otr as a fresh
receiver’s message, to distinguish it from the reusable message prm.

– OT2((prm, otr), (m0,m1)) → ots: Takes as input a reusable message prm, a
fresh message otr and a pair of messages (m0,m1) ∈ {0, 1}n1 × {0, 1}n1 , for
some n1 ≤ n, and outputs ots.

– OT3(str, ots) → m: Takes as input a private state str and ots and outputs
m ∈ {0, 1}n.

We require

– Correctness: For any polynomial n := n(λ), b ∈ {0, 1}, n1 ≤ n and

(m0,m1) ∈ {0, 1}n1 ×{0, 1}n1 , Pr[OT3(str, ots) = mb] = 1, where (str, prm) $←−
PreP(1λ, n), otr $←− OT1(str, b) and ots

$←− OT2((prm, otr), (m0,m1)).
– Rate-1 sender communication: There exists a fixed polynomial poly such

that for all n and n1 ≤ n, |ots| = n1 + poly(λ), where ots is formed as above.
– Receiver amortized compactness: The length of otr is independent of n.

There exists a fixed polynomial poly′ such that for all polynomials n := n(λ),
|otr| = poly′(λ), where otr is formed as above.

– Receiver privacy: An adaptive sender cannot determine the choice bits of
a receiver. Any PPT adversary A has at most 1/2 + negl(λ) advantage in

the following game. The challenger samples b
$←− {0, 1} and (str, prm) $←−

PreP(1n, λ) and gives prm to A. Then, A adaptively submits queries (s0, s1) ∈
{0, 1}2, and receives OT1(str, sb). A has to guess the value of b.

Sender Privacy? Notice that Definition 2 does not impose any sender security
requirements. The reason for this is that sender security can be generically real-
ized for rate-1 OT using known techniques [BGI+17], as sketched below. Let
poly be the polynomial defined in the rate-1 sender property of Definition 2. The
new sender on a pair of messages (m0,m1) ∈ {0, 1}n ×{0, 1}n samples two seeds
(r0, r1) whose length is sufficiently larger than poly(λ) but independent of n. The

sender sends (ots′1, ots
′
2) to the receiver, where ots′1

$←− OT2((r0, r1), (prm, otr))

and ots′2
$←− OT2((ct0, ct1), (prm, otr)), where ct0 := PRG(Ext(r0)) ⊕ m0 and

ct1 := PRG(Ext(r1)) ⊕ m1, and Ext is a randomness extractor. The protocol is
still sender rate-1. It now provides computational sender privacy against honest
receivers: This is because given ots′1 the value of Ext(r1−b) is statistically close
to uniform, where b is the receiver’s choice bit.

Finally, we mention that we may modify our constructions so that they
achieve sender privacy for free, without using the above generic randomness
extraction method.

4 Amortized Rate-1 OT from SXDH

Our amortized rate-1 OT protocol makes use of a shrinking algorithm, that
allows one to shrink ciphertexts of ElGamal encryption, as long as the under-
lying plaintexts are coming from a small space, say, {0, 1}. An n-bit packed

138 M. Chase et al.

ElGamal encryption has a secret key sk := (x1, . . . , xn) and a public key
pk := (g, gx1 , . . . , gxn). Given pk := (g, g1, . . . , gn) we can encrypt an n-bit
message Enc(m1, . . . ,mn) as ct : (gr, gr+m1

1 , . . . , gr+mn
n). We have a shrinking

procedure for n-bit ElGamal encryption that will shrink a ciphertext into one
group element plus n bits, while allowing for efficient decryption. The procedure
below, presented in [BBD+20], enables perfect decryption correctness, improving
upon the previous procedures [BGI16,DGI+19] that had a decryption error.

Lemma 1 ([BBD+20]). There exists a pair of (expected) PPT algorithms

(Shrink, ShrinkDec) such that if (pk, sk) is as above and ct
$←− Enc(pk,m) is

a packed ElGamal ciphertext encrypting a message m ∈ {0, 1}n,

(1) Shrink(ct) → (g′,K, b1, . . . , bn) ∈ G × {0, 1}λ+n.
(2) Pr [ShrinkDec(sk,Shrink(ct)) = m] = 1.

Our amortized rate-1 OT makes us of the following procedure OrthSam that
given a vector u ∈ Z

2
p and a bit b ∈ {0, 1}, samples two random vectors v and

w such that 〈u,v〉 = 0 and 〈u,w〉 = 1, and it outputs these two vectors in a
shuffled order based on the value of b.

Definition 3. The algorithm OrthSam(u ∈ Z
2
p, b ∈ {0, 1}) works as follows. It

Samples random vectors w,v such that 〈w,u〉 = 1 and 〈v,u〉 = 0, and returns
(f ,h) ∈ Z

4
p, where

(f ,h) =

{
(w,v) b = 0
(v,w) b = 1

4.1 Our Construction

We now present our construction. For notational clarity, we assume the size of
each message of the sender is exactly n, as opposed to an arbitrary value n1 ≤ n.
Adapting the construction to work with respect to varying lengths for the sender
messages will be immediate.

Construction 1 (Amortized rate-1 OT: SXDH). Build OT := (PreP,OT1,
OT2,OT3) as follows.

– PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h) $←− G(1λ). Then
1. For i ∈ [2n], sample ri

$←− Z
2
p. Let

M := [gr1 , gr2 , · · · , grn | grn+1 , grn+2 , · · · , gr2n].

2. Sample u
$←− Z

2
p and for i ∈ [n] sample a random exponent pi

$←− [p]. Let
D := (ν1, . . . ,νn), where

ν1 := [gp1r1+u , gp1r2 , · · · , gp1rn | gp1rn+1+u , gp1rn+2 , · · · , gp1r2n]
... (1)

νn := [gpnr1 , gpnr2 , · · · , gpnrn+u | gpnrn+1 , gpnrn+2 , · · · , gpnr2n+u],

Amortizing Rate-1 OT and Applications to PIR and PSI 139

3. Return private state str := (u, p1, . . . , pn) and reusable message prm :=
(pp,M,ν1, . . . ,νn).

– OT1(str, b ∈ {0, 1}): Parse str and all its inside variables as above. Sample

(f ,h) $←− OrthSam(u, b) (Definition 3). Return return otr := (hf , hh) ∈ G
4
2.

– OT2((prm, otr), (m0,m1) ∈ {0, 1}n × {0, 1}n): Parse
prm := (pp,M,ν1, . . . ,νn), otr := (χ1,χ2) ∈ G

4
2, M := (m1, . . . ,m2n) and

νi := (νi,1, . . . ,νi,2n) for i ∈ [n]. Let

hk :=(e(χ1,m1), . . . e(χ1,mn) | e(χ2,mn+1), . . . e(χ2,m2n))

IK :=

⎡

⎢
⎣

e(χ1,ν1,1) . . . e(χ1,ν1,n) e(χ2,ν1,n+1) . . . e(χ2,ν1,2n)
...

. . .
...

...
. . .

...
e(χ1,νn,1) . . . e(χ1,νn,n) e(χ2,νn,n+1) . . . e(χ2,νn,2n)

⎤

⎥
⎦ .

Let m := (m0,m1) ∈ {0, 1}2n. Let yj ∈ G
2n
T be the jth row of IK. The sender

then sends

ots := Shrink(m · hk,m · y1, . . . ,m · yn) ∈ GT × {0, 1}n+λ.

– OT3(str, ots): Parse str := (u, p1, . . . , pn) and set sk := (p1, . . . , pn). Return
m′ := ShrinkDec(sk, ots).

Correctness. We prove m′ = mb, where, following the notation of Construc-
tion 1, m′ is the string output by OT3, and (m0,m1) are the input strings to
OT2 and b is the choice bit for OT1.

Let f , h and r1, . . . , r2n be as in Construction 1. Let αj := 〈rj ,f〉 if j ∈
[n], and αj := 〈rj ,h〉 if j ∈ {n + 1, . . . , 2n}. Letting hk and IK be as in
Construction 1, we have

hk := [e(g, h)α1 · · · , e(g, h)αn | e(g, h)αn+1 · · · , e(g, h)α2n] ∈ G
2n
T

IK :=

⎡
⎢⎢⎢⎣

e(g, h)p1α1 · e(g, h) . . . e(g, h)p1αn e(g, h)
p1αn+1 . . . e(g, h)p1α2n

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

e(g, h)pnα1 . . . e(g, h)pnαn · e(g, h) e(g, h)
pnαn+1 . . . e(g, h)pnα2n

⎤
⎥⎥⎥⎦ ∈ G

n×2n
T if b = 0

IK :=

⎡
⎢⎢⎢⎣

e(g, h)p1α1 . . . e(g, h)p1αn e(g, h)
p1αn+1 · e(g, h) . . . e(g, h)p1α2n

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

e(g, h)pnα1 . . . e(g, h)pnαn e(g, h)
pnαn+1 . . . e(g, h)pnα2n · e(g, h)

⎤
⎥⎥⎥⎦ ∈ G

n×2n
T if b = 1.

Thus, (m · hk,m · y1, . . . ,m · yn) ∈ Enc(pk, (mb[1], . . . , mb[n])), where m =
(m0,m1), yj is the jth row of IK, pk := (e(g, h), e(g, h)p1 , . . . , e(g, h)pn) and
Enc is the packed ElGamal encryption algorithm as in Lemma1. By Lemma 1,
m′ = mb, as desired.

Rate-1 Sender Communication and Receiver Amortized Compactness.
We have |ots| = n + λ + |g| = n + poly(λ) and |otr| = 4|h|.

140 M. Chase et al.

4.2 Receiver Privacy

In the following we say a vector f is non-orthogonal to u if 〈f ,u〉 = 1. This is
an abuse of terminology (because non-orthogonality refers to any non-zero inner
product), but we stick to it below.

To prove receiver OT security, we should argue that a fresh receiver proto-
col message otr does not reveal the receiver’s underlying choice bit. The main
difficulty is that all otr values depend on the vector u.

The core of our argument is in showing that the vector u remains hidden in
the following sense. Given a sequence of (gf i , ghi), an adversary cannot deter-
mine the order of orthogonality/non-orthogonality in any given pair, with respect
to gu . To this end, we will first remove u from all vectors D := (ν1, . . . ,νn),
given in Eq. 1. Once u is removed from the reusable message prm, we will then
show any receiver’s future fresh message otr may be simulated by the underlying
choice bit b and a pair of vectors (v,w) which are orthogonal/non-orthogonal
to u, in a way that if the joint distribution of (v,w) is pseudorandom, then the
entire simulated view will be pseudorandom as well, masking the choice bits.
We will then show that the distribution of a random (v,w) subject to them
being orthogonal/non-orthogonal to a random u is uniformly random. Taken all
together, receiver security will follow.

Definition 4 (Distribution Dual). For u ∈ Z
2
p the distribution Dual(u)

returns (v,w), where v and w are sampled uniformly subject to 〈v,u〉 = 0 and
〈w,u〉 = 1.

We now describe a way of simulating messages otr, for a given choice bit b,
without knowing u, but by knowing a pair (v,w) sampled according to Dual(u).

Definition 5 (Simulator Sim). The algorithm Sim(v,w, b) samples k, k′ $←−
Zp, and returns (hkv+(1−b)w , hk′v+bw).

Hybrid Hyb1: Real game. Sample (str, prm) $←− PreP(1λ, 1n), a challenge bit

b
$←− {0, 1}, and give prm to the adversary. Parse str := (u, p1, . . . , pn). Reply

to an adversary’s query (s0, s1) ∈ {0, 1}2 with OT1(str, sb). The view of the
adversary for otr messages can be produced just by knowing u, as opposed
to str := (u, p1, . . . , pn). In particular, the values p1, . . . , pn do not participate
in producing the output of OT1(str, sb), and are only used in OT3, which is
immaterial to the adversary’s view.

Hybrid Hyb2: Replace D = (ν1, . . . ,νn), Eq. 1, with uniformly random vectors
of group elements. Thus, information about u will be removed from D, and hence
from prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (v,w) $←− Dual(u),
and reply to any adversary’s query (s0, s1) as Sim(v,w, sb). The whole view is
produced by knowing only (v,w).

Hybrid Hyb4: Same as Hyb3, except we sample (v,w) $←− Z
4
p.

Amortizing Rate-1 OT and Applications to PIR and PSI 141

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1)
with a uniformly random vector sampled from G

4
2. This hybrid perfectly hides

the value of the challenge bit b.
We will now show that any two adjacent hybrids produce computationally

indistinguishable views.

Lemma 2 (Hyb1
c≡ Hyb2). Assuming DDH hardness of G1, (u,D)

c≡ (u,D′),
where u and D are as in Eq. 1, and D′ is a uniformly random matrix of group
elements.

Proof. By DDH hardness of G1, (u,D)
c≡ (u,D′). The views in Hybrid Hyb1

and Hyb2 can be produced just by knowing (u,D) and (u,D′), respectively.
(See the explanation given in Hybrid Hyb1 on why the view can be simulated
just by knowing (u,D).) Thus, Hyb1

c≡ Hyb2.

Lemma 3. Hyb2
s≡ Hyb3.

Proof. Let v and w be as in Hyb3, namely (v,w) $←− Dual(u). We show that
for any choice bit z ∈ {0, 1}, the output of Sim(v,w, z) is statistically close to

(hf , hh), where (f ,h) $←− OrthSam(u, z).
Let S0 be the set of all vectors whose inner product with u is one, and

S1 be the set of all vectors orthogonal to u. The vectors f and h are uni-
formly distributed over Sz and S1−z, respectively. Also, recall that the output

of Sim(v,w, z) is as (hkv+(1−z)w , hk′v+zw), where k, k′ $←− Zp. In what follows,
we show (rv, r′v + w) for random r and r′ is statistically close the uniform
distribution over (S0,S1), and this will complete the proof.

Notice that S1 is a subspace and has dimension one; i.e., any basis of it has
only one vector. Letting v := (v1, v2) assume v1 �= 0 and v2 �= 0. (The probability
that either is zero is negligible, so we may ignore it.) Since v1 �= 0 and v2 �= 0, if

r
$←− Zp, then rv is uniformly random in S1.
Next, note that S0 = w + S1; i.e., for any m′ ∈ S0, there exists m ∈ S1

s.t. m′ = w + m. Since v spans S1, the vector r′v + w for a random r′ $←− Zp

is uniformly distributed over S0. The above was conditioned on v1 �= 0 and
v2 �= 0, which is true with all but negligible probability. Thus, we have statistical
indistinguishability.

Lemma 4 (Hyb3
s≡ Hyb4). Assuming u

$←− Z
2
p, the output of Dual(u) is sta-

tistically close to the uniform distribution over Z
4
p. Thus, the two hybrids are

statistically indistinguishable.

Proof. The only difference between these two hybrids lies in (v,w), sampled as

(v,w) $←− Dual(u) in Hyb3 and as completely random in Hyb4. We show that

the marginal distribution of (v,w) sampled as (v,w) $←− Dual(u) is statistically
close to the uniform distribution over Z4

p, assuming u is uniformly random. This
will complete the proof, because the view in either hybrid can be sampled by

142 M. Chase et al.

knowing (v,w), and by knowing prm, from which we have already removed u,
so prm is information-theoretically independent of u.

Parse u := (a, b) ∈ Z
2
p. First, we know that u = 0 with negligible probability.

In case u �= 0, without loss of generality assume b �= 0, then we have v =
(x,−a

b x) and w = (z,−a
b z + 1

b), where x, z
$←− Zp. Let (t, t′) := (−a

b , 1
b), and

note that (t, t′) is uniform over Z
2
p with t′ �= 0, since u is uniformly random

except that b �= 0. We may then rewrite v = (x, tx) and w = (z, tz + t′), where
x, z, t, t′ are all independent and uniformly random over Zp with the constraint
that t′ �= 0. Thus, (v,w) is statistically close to the uniform distribution over
Z
4
p.

Lemma 5 (Hyb4
c≡ Hyb5). Assuming DDH hardness of G2, Hyb4

c≡ Hyb5.

Proof. In Hyb4 the receiver forms an otr message for an adversary’s query
(s0, s1) ∈ {0, 1}2 as (hkv+(1−sb)w , hk′v+sbw). Since v and w are independent

and uniformly random, and since k, k′ $←− Zp, by DDH (gkv , gk′v) is pseudo-
random, and hence (hkv+(1−bi)w , hk′v+biw) is pseudorandom. The proof is now
complete.

Thus, we have the following theorem.

Theorem 1. Assuming DDH hardness for G1 and G2, the amortized rate-1 OT
protocol of Construction 1 provides receiver privacy.

5 Amortized Rate-1 OT from Bilinear Power DDH

We show how to shorten the reusable parameter using the circulant struc-
ture imposed by power-DDH assumptions, following ideas from [GHO20].
We assume G2 is DDH-hard, and G1 is m-power-DDH hard, meaning that
(g, gα, gα2

, . . . , gαm

) is pseudorandom. We will need to set m = O(n), where
n is the bit length of each of the sender’s messages. Concretely, m = 3n − 1
suffices.

Construction 2 (Amortized rate-1 OT: Bilinear Power DDH). Build
OT := (PreP,OT1,OT2,OT3) as follows.

– PreP(1λ, n): Sample pp := (e,G1,G2,GT , p, g, h) $←− G(1λ). Then
1. Sample M := [gar , ga2r , · · · , ga2nr], where a

$←− Zp and r
$←− Z

2
p.

2. Sample k
$←− Zp and let

w :=[gkar , gka2r , · · · , gkan−1r , gkanr+u , gkan+1r , · · · , gka2n−1r ,

gka2nr+u , gka2n+1r , · · · , gka3n−1r] (2)

3. Return private state str := (u, k, a) and reusable message prm :=
(pp,M,w).

Amortizing Rate-1 OT and Applications to PIR and PSI 143

– OT1(str, b ∈ {0, 1}): Parse str as above. Sample (f ,h) $←− OrthSam(u, b) (Def-
inition 3). Return return otr := (hf , hh) ∈ G

4
2.

– OT2((prm, otr), (m0,m1) ∈ {0, 1}n × {0, 1}n): Parse otr := (χ1,χ2) ∈ G
4
2,

prm := (pp,M,w), M := (m1, . . . ,m2n) and w := (w1, . . . ,w3n−1). For
j ∈ [n] let wj := w[j, j + 2n − 1]; namely, the elements of w in the range
[j, j + 2n − 1]. Parse wj := (wj,1, . . . ,wj,2n). Let

hk :=(e(χ1,m1), . . . e(χ1,mn) | e(χ2,mn+1), . . . e(χ2,m2n))

IK :=

⎡

⎢
⎣

e(χ1,wn,1) . . . e(χ1,wn,n) e(χ2,wn,n+1) . . . e(χ2,wn,2n)
...

. . .
...

...
. . .

...
e(χ1,w1,1) . . . e(χ1,w1,n) e(χ2,w1,n+1) . . . e(χ2,w1,2n)

⎤

⎥
⎦ .

Let m := (m0,m1) ∈ {0, 1}2n. Let yj ∈ G
2n
T be the jth row of IK. The sender

then sends

ots := Shrink(m · hk,m · y1, . . . ,m · yn) ∈ GT × {0, 1}n+λ.

– OT3(str, ots): Parse str := (u, k, a) and set sk := (kan−1, . . . , ka, k). Return
m′ := ShrinkDec(sk, ots).

Correctness. We prove m′ = mb, where, following the notation of Construc-
tion 2, m′ is the string output by OT3, and (m0,m1) are the input strings to
OT2 and b is the choice bit for OT1.

Let f , h, r and wj for j ∈ [n] be as in Construction 2. Let β = 〈r,f〉 and
μ = 〈r,h〉. Letting hk and IK be as in Construction 2, we have

hk := [e(g, h)βa · · · , e(g, h)βan | e(g, h)μan+1 · · · , e(g, h)μa2n

]

IK :=

⎡
⎢⎢⎢⎢⎣

e(g, h)kβan · e(g, h) . . . e(g, h)kβa2n−1
e(g, h)kμa2n

. . . e(g, h)kμa3n−1

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

e(g, h)kβa . . . e(g, h)kβan · e(g, h) e(g, h)kμan+1
. . . e(g, h)kμa2n

⎤
⎥⎥⎥⎥⎦

if bi = 0

IK :=

⎡
⎢⎢⎢⎢⎣

e(g, h)kβan
. . . e(g, h)kβa2n−1

e(g, h)kμa2n · e(g, h) . . . e(g, h)kμa3n−1

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.

e(g, h)kβa . . . e(g, h)kβan
e(g, h)kμan+1

. . . e(g, h)kμa2n · e(g, h)

⎤
⎥⎥⎥⎥⎦

if bi = 1

Thus, (m · hk,m · y1, . . . ,m · yn) ∈ Enc(pk, (mb[1], . . . , mb[n])), where m =
(m0,m1), yj is the jth row of IK, pk := (e(g, h), e(g, h)kan−1

, . . . , e(g, h)k) and
Enc is the packed ElGamal encryption algorithm as in Lemma1. By Lemma 1,
m′ = mb, as desired.

5.1 Receiver Privacy

The proof of security follows the same sequence of hybrids as in Sect. 4.2, so we
only sketch the hybrids and the proofs.

144 M. Chase et al.

Hybrid Hyb1: Real game. Sample (str, prm) $←− PreP(1λ, 1n), a challenge bit

b
$←− {0, 1}, and give prm to the adversary. Parse str := (u, ∗). Reply to an

adversary’s query (s0, s1) ∈ {0, 1}2 with OT1(str, sb). The view of the adversary
for OT1 outputs can be produced just by knowing u.

Hybrid Hyb2: Replace w, Eq. 2, with uniformly random vectors of group ele-
ments. Thus, information about u will be removed from D, and hence from
prm.

Hybrid Hyb3: Same as Hybrid Hyb2, except we sample (v,w) $←− Dual(u) (Def-
inition 4), and reply to any adversary’s query (s0, s1) ∈ {0, 1}2 as Sim(v,w, sb)
(Definition 5). The whole view is produced by knowing only (v,w).

Hybrid Hyb4: Same as Hyb3, except we sample (v,w) $←− Z
4
p.

Hybrid Hyb5: Same as Hyb4, except we reply to any adversary’s query (s0, s1)
with a uniformly random vector sampled from G

4
2. This hybrid perfectly hides

the value of the challenge bit b.
Hyb1

c≡ Hyb2 is established exactly like Lemma 2, except we use the power-
DDH assumption instead of DDH. We have Hyb2

s≡ Hyb3, Hyb3 ≡ Hyb4 and
Hyb4 ≡ Hyb5, and the proofs are exactly the same as those of Lemmas 3, 4 and
5, respectively. Thus, we have the following theorem.

Theorem 2. Assuming (3n − 1)-power DDH hardness for G1, and DDH hard-
ness for G2, the amortized rate-1 OT protocol of Construction 2 provides receiver
privacy.

6 Optimization

In this section, we discuss some techniques to improve the concrete computa-
tional efficiency and lower the communication cost in amortized rate-1 OT. These
optimizations work for both the basic amortized rate-1 OT from bilinear SXDH
and the sliding-window construction from bilinear power DDH. In Sect. 7 when
we describe the applications of amortized rate-1 OT, we will discuss further
optimizations specific to these applications.

6.1 Delayed Pairing

Recall that when the sender computes her response message, she needs to com-
pute the hash-key vector hk, which requires 4n pairing operations. In addition,
she needs to compute the matrix IK, which requires 4n2 pairing operations in
the basic construction and 6n pairing operations in the sliding-window construc-
tion. Since paring operations are orders of magnitude more expensive than the
other group operations, we introduce a technique to minimize it.

On Basic Construction. The high-level idea is that we can leverage the bilin-
ear property to delay the pairing operations. Instead of first performing the

Amortizing Rate-1 OT and Applications to PIR and PSI 145

pairing operations and then computing inner products in the target group, we
can first compute the inner products in G1 and then perform the pairings.

In more detail, in the basic construction, let

M0 := [gr1 , gr2 , · · · , grn],
M1 := [grn+1 , grn+2 , · · · , gr2n].

Let m = (m0,m1) ∈ {0, 1}2n be the sender messages. With receiver message
otr = (χ1,χ2) ∈ G

4
2, the inner product of m · hk can be computed as

e(m0 · M0,χ1) · e(m1 · M1,χ2).

Here m0 · M0 computes inner products for each vector component of M0 and
results in a vector of two group elements in G1, and e(M0 · m0,χ1) takes the
inner product on the exponent of the two vectors. e(m1 ·M1,χ2) is computed in
the same way. The same approach can be applied to compute m ·y1, . . . ,m ·yn.

The computational cost of m·hk in the basic construction includes 4n pairing
operations and 4n multiplications in GT . By using the above technique, this
cost can be reduced to 4 pairing operations, 4n multiplications in G1, and 3
multiplications in GT . The same improvement applies to each inner product
m·y1, . . . ,m·yn. Therefore, the total computational cost of the sender is reduced
to 4n pairing operations, 4n2 multiplications in G1, and 3n multiplications in
GT .

On Sliding-Window Construction. The same technique can be applied on
the sliding-window construction and the improvements on m · hk is the same
as above. The total cost of computing m · y1, . . . ,m · yn in the sliding-window
construction includes 6n pairing operations and (2n2 + 3n) multiplications in
GT . This can be improved to 4n pairing operations, 4n2 multiplications in G1,
and 3n multiplications in GT .

6.2 Increasing Vector Dimension

Reducing Hash Value Size. The hash value m · hk currently contains a
single group element in GT . Since the bit representation of group elements in
GT is much longer than group elements in G1, we can reduce that by sending 4
group elements in G1, namely m0 · M0 and m1 · M1, and then let the receiver
perform the remaining pairing operations. In applications such as PIR and PSI,
the sender message grows with the tree depth and this saving in communication
gets accumulated throughout all the levels of the tree. Another benefit of this
optimization is that it pushes the pairing operations in computing hashes to the
receiver side, which significantly reduces the computational cost in computing
hashes because the sender had to compute hashes in every node of the tree while
the receiver only needs to compute hashes along a single path of the tree.

Next we discuss another technique to further reduce the cost to 3 group
elements in G1.

146 M. Chase et al.

On Basic Construction. At a high-level, we will unify f and h to a single
vector by increasing the vector dimension from 2 to 3. In more detail, the base
hash key M is the same as before except that each ri

$←− Z
3
p is of dimension 3.

The receiver’s reusable message is redefined by

ν1 := [gp1r1+u , gp1r2 , · · · , gp1rn | gp1rn+1+v , gp1rn+2 , · · · , gp1r2n]
...

νn := [gpnr1 , gpnr2 , · · · , gpnrn+u | gpnrn+1 , gpnrn+2 , · · · , gpnr2n+v],

where all pi’s are random exponents and u,v
$←− Z

3
p. For a choice bit b, the

receiver samples a single random vector f s.t. 〈u,f〉 = 1− b and 〈v,f〉 = b, and
sends a single vector χ = hf ∈ G

3
2.

Next the sender computes hk by taking the inner product in the exponent
of M and χ. The matrix IK can be computed by taking the inner product in
the exponent of νj ’s and χ. We can use delayed pairing to compute m · hk by

e(m · M,χ).

Again, we can reduce the hash value size by sending 3 group elements in the
vector m · M and postpone the pairing operations to the receiver side. It also
reduces the receiver’s non-reusable message from 4 group elements in G2 to 3.

To summarize, the receiver’s reusable message is increased from (4n2 + 4n)
to (6n2 + 6n) group elements in G1, but the non-reusable message is reduced
from 4 to 3 group elements in G2. The hash value in the sender’s message is
reduced from 1 group element in GT to 3 group elements in G1.

On Sliding-Window Construction. The same technique can be applied on
the sliding-window construction and the improvements on the communication
is the same as above. In particular, the receiver’s reusable message is increased
from 10n to 15n group elements in G1, but the non-reusable message is reduced
from 4 to 3 group elements in G2. The hash value in the sender’s message is
reduced from 1 group element in GT to 3 group elements in G1.

7 Applications

In this section, we discuss several applications of our amortized rate-1 OT and
focus on the communication improvements over prior work. For certain appli-
cations, we will discuss optimizations that further improve the communication
and/or computational complexity. The communication improvements are sum-
marized in Table 3 at the end of the section.

7.1 Secure Function Evaluation on Branching Programs

The work of Ishai and Paskin [IP07] presents an approach to two-round secure
function evaluation (SFE) on (oblivious) branching program (BP) from rate-
1 OT where the communication complexity only grows with the depth of the

Amortizing Rate-1 OT and Applications to PIR and PSI 147

branching program instead of its size. In particular, consider a sender holding a
private branching program P and a receiver holding a private input x. They can
jointly compute P (x) in two rounds of communication, that is, the receiver first
sends an encryption c of the input x to the sender, and the sender can compute a
succinct ciphertext c′ which allows the receiver to decrypt P (x) without reveal-
ing any further information about P except its depth. The size of c′ depends
polynomially on the size of x and the depth of P , but does not further depend
on the size of P .

In terms of concrete communication complexity, let � be the depth of the
oblivious BP and h be the bit length of the output. The recent work of Garg et
al. [GHO20] achieves receiver’s communication complexity of O(� · (h + λ · �))
group elements and sender’s communication complexity of O(h + λ · �) bits,
where the group elements are from a pairing-free group where the power DDH
assumption holds. This improves upon prior work of Döttling et al. [DGI+19]
based on DDH with receiver’s communication complexity of O(� · (h + λ · �)2)
group elements and sender’s communication complexity of O(h + λ · �) bits.

In this work, we consider the problem in the reusable setting where the
receiver first sends a one-time reusable message to the sender consisting of O(h+
λ · �) group elements in G1. Afterwards, for any oblivious BP with depth � and
output length h and any input x, the receiver’s communication complexity is O(�)
group elements in G2 and the sender’s communication complexity is O(h+λ · �)
bits. Note that the one-time messages can be reused for arbitrary polynomially
many times.

Example: Secure Inference of Decision Trees. As an example, we consider
a server holding a machine learning model of a decision tree, which takes as
input a data point with multiple features. Starting from the root, each node of
the tree is a function on some feature (e.g. testing if x < 10, t = true) that
determines whether to go to the left or right child. The client has a single data
point and would like to perform a secure inference with the server on the decision
tree. The decision tree can be formalized as a branching program and two-round
secure inference can be achieved by two-round SFE described above, where the
communication only grows with the depth of the tree.

7.2 PSI and PIR

In this section, we illustrate several useful applications that can be viewed as
special cases of SFE on oblivious BP, hence they achieve the same improvements
over prior work.

Unbalanced Private Set Intersection (PSI). Consider the PSI problem
between a server holding a private set X = {x1, . . . , xN} and a client holding
a private set Y = {y1, . . . , ym}. They want to jointly compute the set intersec-
tion X ∩ Y without revealing any other information. Without loss of generality

148 M. Chase et al.

we assume all the set elements xi, yj ∈ {0, 1}λ.3 We focus on the case with
unbalanced set sizes, namely N � m, and present a solution for two-round PSI.

To learn the intersection X∩{y} for any y ∈ Y , we can construct an oblivious
BP with depth λ and size λ ·N . To construct the oblivious BP, we can first think
of it as a full binary tree of depth λ where each leaf node indicates whether
the root-to-leaf path is an element in X. However, this branching program has
exponential size. We can prune the full binary tree by replacing each subtree
consisting of only 0’s with a “dummy node” of the same depth. A dummy node
of depth d is connected to two dummy nodes with depth d − 1.

Following this approach, the client only needs to performs m instances of
SFE on the oblivious BP to learn the intersection X ∩ {y} for every y ∈ Y . The
oblivious BP has depth � = λ, size λ · N , and single-bit output.

Private Set Intersection (PIR). Consider a server (sender) holding a large
database D ∈ {0, 1}N and a client (receiver) who wants to retrieve D[i] for
i ∈ [N] without revealing i to the server. As pointed out in [IP07], single-server
two-round PIR can be viewed as two-round SFE on an oblivious BP with depth
� = log N and single-bit output.

PIR-with-Default. Consider a PIR variant where the server holds N binary
strings s1, . . . , sN ∈ {0, 1}t along with N values v1, . . . , vN ∈ {0, 1}k. The server
additionally holds a default value vdflt ∈ {0, 1}k. The client holds a binary string
w ∈ {0, 1}t and wants to learn a value v such that if w = sj for some j ∈ [N], then
v = vj ; otherwise v = vdflt, without revealing any information about w to the
server. This problem is formalized by Lepoint et al. [LPR+20]. Two-round PIR-
with-Default can be viewed as two-round SFE on a k-bit output oblivious BP
with depth t and polynomial size. Hence the receiver and sender communication
follow generically from oblivious BP with many-bit outputs. We mention this
PIR variant because it will be used to construct PSI-Cardinality.

PSI-Cardinality. Consider a PSI variant where a server holding a private set
X = {x1, . . . , xN} and a client holding a private set Y = {y1, . . . , ym} want to
learn the cardinality of the intersection |X ∩Y | instead of the intersection itself.

We can achieve PSI-Cardinality by the client querying PIR-with-Default on
every element in the her set, where in each PIR-with-Default instance, the default
value vi

dflt is sampled at random such that all the default values sum up to 0,
namely

∑m
i=1 vi

dflt = 0. All the non-default values in a single instance are set to
vi
dflt + 1. At the end, the client sums up all the values retrieved from the PIR-

with-Default instances. Similar to PSI, we should prune the full binary tree to
obtain an oblivious BP with depth λ and polynomial size.

7.3 Optimization for PSI and PSI-Cardinality

We design optimizations for unbalanced PSI and PSI-Cardinality so as to achieve
better communication than the above generic approaches.
3 The set elements can be of arbitrary length, but the parties can first apply a collision-

resistant hash function on the elements to make them all have length λ.

Amortizing Rate-1 OT and Applications to PIR and PSI 149

Optimized PSI. Note that the aforementioned oblivious BP for PSI has depth
� = λ. To further improve the communication complexity, we replace small
subtrees by small instances of two-round PSI (e.g. DDH-based PSI [HFH99]),
which we denote by ΠPSI.

In particular, to compute X ∩{y}, the server first hashes his N elements into
N random bins. We know that each bin has at most O(log N) elements. The
client computes the same hash on y to identify the bin b that could possibly
contain an element y. Now the client queries the server with PIR-with-Default
on a string b. The client additionally sends the round-1 message of the two-
round PSI protocol ΠPSI on a single element y. The server then computes a
round-2 message of ΠPSI for each bin with elements in that bin. The server
views his database for PIR-with-Default as all the N indices of the bins along
with the associated values being the round-2 messages of ΠPSI, and generates
the response for PIR-with-Default. Finally, the client first recovers the round-2
message of ΠPSI from PIR-with-Default, and then recovers the output of ΠPSI,
namely X ∩ {y}.

The receiver’s reusable communication is reduced from O(λ2) to O(λ · log N)
group elements in G1. Then for each X ∩ {y} query, her online communication
is reduced from O(λ) to O(log N) group elements in G2. The sender’s commu-
nication is reduced from O(λ2) to O(λ · log N).

Fig. 1. Optimized two-round PSI protocol with a single element on the client side.

150 M. Chase et al.

PSI-Cardinality. We can optimize the PSI-Cardinality protocol by replacing
small subtrees by small instances of two-round PSI-Cardinality (e.g. DDH-based
PSI-Cardinality [IKN+20]), similarly as in the above PSI protocol. However, this
would reveal which elements are in the intersection and which are not.

Nonetheless, we notice that in our reusable rate-1 OT protocol, any OT
response from the sender can be decrypted by the receiver using the same secret
state str, and the receiver cannot distinguish between different responses. There-
fore, the server can randomly shuffle the responses for all the PIR-with-Default
instances so that the client can only learn the cardinality of the intersection.
This achieves the same improvement as in the above PSI protocol.

7.4 Other Variants of PSI and PIR

In this section, we discuss a few more useful variants of PSI and PIR problems.

PIR-by-Keywords. Consider a PIR variant where the server holds N binary
strings s1, . . . , sN ∈ {0, 1}t. The client holds a binary string w ∈ {0, 1}t, who
wants to learn whether w = sj for some j ∈ [N] without revealing any infor-
mation about w to the server. This problem was introduced by Chor et al.
[CGN98]. As pointed out in [IP07], two-round PIR-by-Keywords can be viewed
as two-round SFE on a branching program with depth � = t and single-bit-
output.

PSI-Sum. Consider a server holding a set with weights (X,W) = {(x1, w1), . . . ,
(xN , wN)} and a client holding a set Y = {y1, . . . , ym}. They want to jointly com-
pute the PSI-Cardinality along with the sum of the weights associated with the
elements in the intersection, namely

∑
i:xi∈Y wi. This functionality, introduced

by Ion et al. [IKN+20], is a generalization of PSI-Cardinality.
We can achieve PSI-Sum from PIR-with-Default similarly as in the PSI-

Cardinality protocol except that all the non-default values vj in a single instance
are set to vi

dflt+wj where wj is the corresponding weight. Note that this approach
additionally hides the PSI-Cardinality and only reveals the PSI-Sum.

PSI-Test. Consider a PSI variant where a server holding a private set X =
{x1, . . . , xN} and a client holding a private set Y = {y1, . . . , ym} want to learn
whether the two sets intersect or not, namely whether |X ∩ Y | = ∅.

We can achieve this from PIR-with-Default similarly as in PSI-Cardinality
but all the non-default values in a single instance are all set to vi

dflt + ri for some
random ri. At the end, the client checks if all the values obtained from the PIR-
with-Default instances sum up to 0. The sum equals 0 if and only if |X ∩Y | = ∅
except with negligible probability.

Extended-PIR-with-Default. An extension to PIR-with-Default, also formal-
ized in [LPR+20], enables two parties to learn random shares of the PIR-with-
Default answer multiplied with a weight w supplied from the client. By using
the techniques from [LPR+20], we can achieve the same complexity as PIR-
with-Default with additively homomorphic encryption. In particular, we make

Amortizing Rate-1 OT and Applications to PIR and PSI 151

the following changes to the PIR-with-Default protocol. The client additionally
sends Enc(w) to the server (in the online phase) where Enc is an additively homo-
morphic encryption scheme. The server picks a random value α as his output
of Extended-PIR-with-Default and replaces each value v in a leaf node of the
PIR-with-Default tree by Enc(v · w − α). Finally the client needs to decrypt her
output from PIR-with-Default to recover her output for Extended-PIR-with-
Default. We mention this PIR variant because it will be useful in the following
application.

Private Join and Compute (PJC) for Inner Product. Consider a server
holding a set with weights (X,W) = {(x1, w1), . . . , (xN , wN)} and a client also
holding a set with weights Y = {(y1, v1), . . . , (ym, vm)}. They want to jointly
compute the

∑
i,j:xi=yj

wi · vj . This functionality, introduced by Lepoint et al.
[LPR+20], is a generalization of PSI-Sum.

We can achieve this by the client querying Extended-PIR-with-Default on
every element in her set, where in each Extended-PIR-with-Default instance,
the default values are set to 0 and the two parties learn a secret share of wi ·vj if
X ∩{yj} �= ∅. From this the two parties can sum up their own shares to obtain a
secret sharing of the inner product result. The server only needs to additionally
send the sum of his shares to the client, from which the client can recover the
output. Note that this approach additionally hides the PSI-Cardinality and only
reveals the result of the inner product.

Table 3. Summary of communication complexity in various applications of rate-1 OT.
We compare our work based on bilinear power DDH with the state-of-the-art rate-1
OT based on power DDH [GHO20], and show improvements in terms of the receiver’s
communication while the sender’s communication remain the same. Recall that � is the
depth of the oblivious BP and h is the output length in bits, m is the client’s set size
in PSI, N is the server’s set size in PSI and the size of database in PIR, t is the length
of the keywords in PIR-by-Keywords, k is the output length in PIR-with-Default. In
all the applications, the one-time reusable message sent by the receiver can be reused
for arbitrary polynomially many times.

Application Receiver Comm

[GHO20]

Receiver Comm

Ours (reusable)

Receiver Comm

Ours (online)

Sender Comm

(same)

SFE on oblivious BP O(� · (h + λ · �)) G O(h + λ · �) G1 O(�) G2 O(h + λ · �)

PSI/PSI-Cardinality/

PSI-Sum/PJC/PSI-Test

O(λ3 · m) G O(λ2) G1 O(λ · m) G2 O(λ2 · m)

Optimized PSI/

Optimized PSI-Cardinality

O(λ2 · log N · m) G O(λ · log N) G1 O(log N · m) G2 O(λ · log N · m)

PIR O(λ · log2 N) G O(λ · log N) G1 O(log N) G2 O(λ · log N)

PIR-by-Keywords O(λ · t2) G O(λ · t) G1 O(t) G2 O(λ · t)

(Extended-)PIR-with-Default O(t · (k + λ · t)) G O(k + λ · t) G1 O(t) G2 O(k + λ · t)

152 M. Chase et al.

8 Amortized Rate-1 OT with Strong Sender Privacy

We will now show that variants of our amortized rate-1 OT constructions satisfy
a stronger sender privacy requirement, essential for secure computation on non-
oblivious branching programs, as required in [IP07].

Definition 6 (Strong sender privacy [IP07]). Let OT := (PreP,OT1,
OT2,OT3) be as in Definition 2. We say OT provides strong sender privacy if
there exists a PPT algorithm OTSim such that for any bit b and any pair of
messages (m0,m1), sampling (str, prm) $←− PreP(1λ) and otr

$←− OT1(str, b), the
two distributions OT2((prm, otr), (m0,m1)) and OTSim(prm,mb) are statistically
close.

Our amortized rate-1 OT constructions, as presented in Sects. 4 and 5, do
not provide strong sender privacy, because OT2 is deterministic. Thus, we will
consider a randomized OT2 version of these constructions, obtained by using
random extractors and PRGs, as explained in Sect. 3.1. Under these new OT2

algorithms of our constructions, the following holds: for any choice b and any two
pairs (m0,m1) and (m′

0,m
′
1) such that mb = m′

b, any otr ∈ OT1(str, b), otr′ ∈
OT1(str, b′), the two distributions OT2((prm, otr), (m0,m1)) and OT2((prm, otr′),
(m′

0,m
′
1)) are statistically close. The simulation algorithm OTSim, which is only

given mb, should somehow sample from OT2((prm, otr), (m0,m1)). By what just
mentioned, OTSim may, instead, sample from OT2((prm, otr), (mb,mb)). The
main challenge in doing so is that OTSim is only given (prm,mb), and not
otr, which in turn is sampled based on str, not known to OTSim. Luckily, in
our proofs we showed an oblivious way of sampling from OT1 without know-
ing str := (u, . . .). In particular, assuming OTSim is given (v,w) sampled as

(v,w) $←− Dual(u) (Definition 4), then Sim(v,w, b) (Definition 5) samples an
output statistically close to the output of OT1(str, b) (Lemma 3). We may include
(v,w) in prm without harming security, as argued in the security of the construc-
tions.

Once (v,w) is included as part of prm, the output of OTSim(prm,mb)

is formed as follows: sample otr
$←− Sim(v,w, 0) and return OT2((prm, otr),

(mb,mb)). In terms of efficiency, the size of otr remains the same, and the size
of prm is increased by four group elements in G1.

References

[ADT11] Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) size matters: size-hiding
private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 10

[AIR01] Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: how to sell
digital goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 119–135. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44987-6 8

https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/3-540-44987-6_8
https://doi.org/10.1007/3-540-44987-6_8

Amortizing Rate-1 OT and Applications to PIR and PSI 153

[APP] Password Monitoring - Apple Platform Security. https://support.apple.
com/en-al/guide/security/sec78e79fc3b/web

[BBD+20] Brakerski, Z., Branco, P., Döttling, N., Garg, S., Malavolta, G.: Constant
ciphertext-rate non-committing encryption from standard assumptions.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 58–87.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1 3

[Bea96] Beaver, D.: Correlated pseudorandomness and the complexity of private
computations. In: 28th ACM STOC, Philadelphia, PA, USA, 22–24 May
1996, pp. 479–488. ACM Press (1996)

[BGdMM05] Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-
resistant storage via keyword-searchable encryption. Cryptology ePrint
Archive, Report 2005/417 (2005). https://eprint.iacr.org/2005/417

[BGI16] Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure
computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53018-4 19

[BGI+17] Badrinarayanan, S., Garg, S., Ishai, Y., Sahai, A., Wadia, A.: Two-
message witness indistinguishability and secure computation in the plain
model from new assumptions. In: Takagi, T., Peyrin, T. (eds.) ASI-
ACRYPT 2017. LNCS, vol. 10626, pp. 275–303. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70700-6 10

[BKM20] Brakerski, Z., Koppula, V., Mour, T.: NIZK from LPN and trapdoor hash
via correlation intractability for approximable relations. In: Micciancio,
D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 738–767.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 26

[BLSV18] Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous
IBE, leakage resilience and circular security from new assumptions. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820,
pp. 535–564. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
78381-9 20

[CCF+20] Chan, J., et al.: PACT: privacy-sensitive protocols and mechanisms for
mobile contact tracing. IEEE Data Eng. Bull. 43(2), 15–35 (2020)

[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.:
Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CGN98] Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords.
Cryptology ePrint Archive, Report 1998/003 (1998). https://eprint.iacr.
org/1998/003

[CLR17] Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homo-
morphic encryption. In: ACM CCS 2017, Dallas, TX, USA, 31 October–2
November 2017, pp. 1243–1255. ACM Press (2017)

[CM20] Chase, M., Miao, P.: Private set intersection in the internet setting
from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56877-1 2

[DG17] Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman
assumption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 537–569. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 18

https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://doi.org/10.1007/978-3-030-64375-1_3
https://eprint.iacr.org/2005/417
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-319-70700-6_10
https://doi.org/10.1007/978-3-030-56877-1_26
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-319-63715-0_2
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003
https://doi.org/10.1007/978-3-030-56877-1_2
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63688-7_18

154 M. Chase et al.

[DGH+20] Döttling, N., Garg, S., Hajiabadi, M., Masny, D., Wichs, D.: Two-round
oblivious transfer from CDH or LPN. In: Canteaut, A., Ishai, Y. (eds.)
EUROCRYPT 2020. LNCS, vol. 12106, pp. 768–797. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45724-2 26

[DGI+19] Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.:
Trapdoor hash functions and their applications. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 3–32. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 1

[EGL82] Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing
contracts. In: CRYPTO 1982, Santa Barbara, CA, USA, pp. 205–210.
Plenum Press, New York, USA (1982)

[GGH19] Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor
functions and applications. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11478, pp. 33–63. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17659-4 2

[GH18] Garg, S., Hajiabadi, M.: Trapdoor functions from the computational
Diffie-Hellman assumption. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 362–391. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96881-0 13

[GHO20] Garg, S., Hajiabadi, M., Ostrovsky, R.: Efficient range-Trapdoor func-
tions and applications: rate-1 OT and more. In: Pass, R., Pietrzak, K.
(eds.) TCC 2020. LNCS, vol. 12550, pp. 88–116. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64375-1 4

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game
or A completeness theorem for protocols with honest majority. In: 19th
ACM STOC, New York City, NY, USA, 25–27 May, pp. 218–229. ACM
Press (1987)

[GVW20] Goyal, R., Vusirikala, S., Waters, B.: New constructions of hinting prgs,
owfs with encryption, and more. In: Micciancio, D., Ristenpart, T. (eds.)
CRYPTO 2020. LNCS, vol. 12170, pp. 527–558. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-56784-2 18

[HEK12] Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled cir-
cuits better than custom protocols? In: NDSS 2012, San Diego, CA, USA,
5–8 February 2012. The Internet Society (2012)

[HFH99] Huberman, B.A., Franklin, M.K., Hogg, T.: Enhancing privacy and trust
in electronic communities. In: Proceedings of the 1st ACM Conference on
Electronic Commerce, EC 1999, Denver, CO, USA, 3–5 November 1999,
pp. 78–86. ACM (1999)

[HK12] Halevi, S., Kalai, Y.T.: Smooth projective hashing and two-message
oblivious transfer. J. Cryptol. 25(1), 158–193 (2012)

[HKW20] Hohenberger, S., Koppula, V., Waters, B.: Chosen ciphertext security
from injective trapdoor functions. In: Micciancio, D., Ristenpart, T.
(eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 836–866. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 28

[IKN+20] Ion, M., et al.: On deploying secure computing: Private intersection-sum-
with-cardinality. In: IEEE European Symposium on Security and Privacy,
EuroS&P 2020, Genoa, Italy, 7–11 September 2020, pp. 370–389. IEEE
(2020)

https://doi.org/10.1007/978-3-030-45724-2_26
https://doi.org/10.1007/978-3-030-26954-8_1
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-319-96881-0_13
https://doi.org/10.1007/978-3-030-64375-1_4
https://doi.org/10.1007/978-3-030-56784-2_18
https://doi.org/10.1007/978-3-030-56784-2_28

Amortizing Rate-1 OT and Applications to PIR and PSI 155

[IKNP03] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious trans-
fers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45146-4 9

[IP07] Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 575–594. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7 31

[KKRT16] Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched
oblivious PRF with applications to private set intersection. In: ACM CCS
2016, Vienna, Austria, 24–28 October 2016, pp. 818–829. ACM Press
(2016)

[KMT19] Kitagawa, F., Matsuda, T., Tanaka, K.: CCA security and trapdoor func-
tions via key-dependent-message security. In: Boldyreva, A., Micciancio,
D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 33–64. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26954-8 2

[KRS+19] Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile
private contact discovery at scale. In: USENIX Security (2019)

[KW19] Koppula, V., Waters, B.: Realizing chosen ciphertext security generically
in attribute-based encryption and predicate encryption. In: Boldyreva,
A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 671–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 23

[LPR+20] Lepoint, T., Patel, S., Raykova, M., Seth, K., Trieu, N.: Private join
and compute from PIR with default. Cryptology ePrint Archive, Report
2020/1011 (2020). https://eprint.iacr.org/2020/1011

[LQR+19] Lombardi, A., Quach, W., Rothblum, R.D., Wichs, D., Wu, D.J.: New
constructions of reusable designated-verifier NIZKs. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 670–700.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 22

[MIC] Password Monitor: Safeguarding passwords in Microsoft Edge.
https://www.microsoft.com/en-us/research/blog/password-monitor-
safeguarding-passwords-in-microsoft-edge/

[NP01] Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: 12th
SODA, Washington, DC, USA, 7–9 January 2001, pp. 448–457. ACM-
SIAM (2001)

[PRTY19] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-light: lightweight
private set intersection from sparse OT extension. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 13

[PRTY20] Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, mali-
cious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45724-2 25

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set
intersection using permutation-based hashing. In: USENIX Security 2015,
Washington, DC, USA, 12–14 August 2015, pp. 515–530. USENIX Asso-
ciation (2015)

[PSTY19] Pinkas, B., Schneider, T., Tkachenko, O., Yanai, A.: Efficient circuit-
based psi with linear communication. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 122–153. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17659-4 5

https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-540-70936-7_31
https://doi.org/10.1007/978-3-030-26954-8_2
https://doi.org/10.1007/978-3-030-26951-7_23
https://eprint.iacr.org/2020/1011
https://doi.org/10.1007/978-3-030-26954-8_22
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://doi.org/10.1007/978-3-030-26954-8_13
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-030-17659-4_5

156 M. Chase et al.

[PSWW18] Pinkas, B., Schneider, T., Weinert, C., Wieder, U.: Efficient circuit-based
psi via Cuckoo hashing. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 125–157. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7 5

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient
and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-85174-5 31

[Rab05] Rabin, M.O.: How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187 (2005). https://eprint.iacr.org/2005/
187

[RS21] Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from
vector-OLE. In: International Conference on the Theory and Applications
of Cryptographic Techniques, EUROCRYPT 2021. Advances in Cryptol-
ogy (2021)

[TPY+19] Thomas, K., et al.: Protecting accounts from credential stuffing with
password breach alerting. In: USENIX Security (2019)

[TSS+20] Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione:
lightweight contact tracing with strong privacy. IEEE Data Eng. Bull.
43(2), 95–107 (2020)

https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

Ring-Based Identity Based Encryption –
Asymptotically Shorter MPK

and Tighter Security

Parhat Abla1,2, Feng-Hao Liu3, Han Wang1,2(B), and Zhedong Wang4

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Science, Beijing, China

{parhat,wanghan}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Science, Beijing, China

3 Florida Atlantic University, Boca Raton, FL, USA
liuf@fau.edu

4 School of Cyber Science and Engineering, Shanghai Jiao Tong University,
Shanghai, China

Abstract. This work constructs an identity based encryption from the
ring learning with errors assumption (RLWE), with shorter master pub-
lic keys and tighter security analysis. To achieve this, we develop three
new methods: (1) a new homomorphic equality test method using nice
algebraic structures of the rings, (2) a new family of hash functions with
natural homomorphic evaluation algorithms, and (3) a new insight for
tighter reduction analyses. These methods can be used to improve other
important cryptographic tasks, and thus are of general interests.

Particularly, our homomorphic equality test method can derive a new
method for packing/unpacking GSW-style encodings, showing a new
non-trivial advantage of RLWE over the plain LWE. Moreover, our new
insight for tighter analyses can improve the analyses of all the currently
known partition-based IBE designs, achieving the best of the both from
prior analytical frameworks of Waters (Eurocrypt ’05) and Bellare and
Ristenpart (Eurocrypt ’09).

1 Introduction

Identity-based Encryption (IBE) was introduced by [33] as a generalization of the
traditional public-key encryption (PKE) in which a publicly known string (id)
of a party can serve as its public key pkid. This primitive is particularly useful in
scenarios that require to manage a large amount of public keys, without the need
to access a public-key infrastructure (PKI). Since its first realization [11], there
has been significant research in the past two decades [1,4,9,10,19,20,25,36–40],
constructing various IBE schemes from different assumptions.

There have been two major security notions – selective security and adaptive
security studied in the literature, where the former requires the adversary to
choose the challenge id before seeing the master public key, yet the latter does

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 157–187, 2021.
https://doi.org/10.1007/978-3-030-90456-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_6

158 P. Abla et al.

not have this restriction. Obviously the adaptive security is more desirable by
providing stronger security for more realistic settings, yet realizing such a notion
is quite challenging, especially when one aims at comparable efficiency in the
plain model with the selectively secure designs.

Prior constructions from bilinear groups have achieved this task via the pow-
erful framework of dual-system [36]. However, it is elusive whether the dual-
system framework can be instantiated from other assumptions, especially from
a post-quantum candidate such as lattices. For the post-quantum settings, even
though there are adaptively secure lattice-based IBE, the current instantiations
come at a rather higher cost in the size of mpk, ciphertext, and/or larger security
loss in the reduction. How to improve these aspects is an important step towards
realizing a practical post-quantum IBE.

In this work, we focus on adaptively secure lattice-based IBE with smaller
mpk, comparable ciphertexts, and smaller security loss for the reduction. Below
we discuss challenges for current approaches and then our new ideas.

Challenges in Current Techniques. Among the existing lattice-based IBE
schemes, the most efficient one is the selectively secure scheme by [1], which
only requires 2 public matrices in mpk (or ring vectors using Ring-LWE [27])
and has rather small ciphertexts. To achieve the adaptive security, there have
been several proposals, but they all have various drawbacks as stated below.

There are two ways to achieve the shortest mpk that exactly matches the
selectively secure one as [1], but both suffer from serious issues. The first one sim-
ply applies the generic complexity leveraging argument, yet the security reduc-
tion would lose 2� in advantage (� is the bit length of ID), resulting in a much
larger security parameter required in the underlying assumption. The second
method is a new bootstrapping via a recent technique by [14,18], which trans-
forms any selectively secure IBE into an adaptively secure one without blowing
up the mpk at all. The resulting scheme is however, not considered even close to
practical as each ciphertext consists of � garbled circuits.

More efficient IBE can be achieved via a lattice vanishing technique by [1], yet
the scheme has a larger mpk (i.e., O(λ) basic matrices or ring vectors) and reduc-
tion running time (an additive O(1/ε2) increase), compared with the selectively
secure scheme.1 Later, subsequent work [4,25,38,39] improved this technique
by using homomorphic computation in novel ways [3,21,29] with more delicate
security analyses. Yet these schemes still have several critical shortcomings.
– The best scheme (asymptotically) is the one by [39], which only has ω(log λ)

basic matrices (or ring vectors) in mpk and rather small ciphertexts. However,
the IBE construction requires to use Barrington’s Theorem [5] to compute
an NC1 boolean circuit, which can be done in polynomial time in theory
yet would not be expected to be efficient in practice. In fact, the work [39]
did not (was not able to) present an explicit construction, making it hard to
determine concrete bounds for the parameters for comparison.

– The follow up works [4,25,38,39] removed the O(1/ε2) blowup of [1] in the
reduction running time, but would incur an additional reduction loss of O(ε),

1 λ is the security parameter and ε is the adversary’s advantage in attacking the IBE
scheme.

Ring-Based Identity Based Encryption 159

multiplicatively. Seemingly this tradeoff is inherent, i.e., the reduction either
blows up its running time by O(1/ε2) additively or loses its advantage by an
extra O(ε) multiplicatively, under the current techniques.

1.1 Our Contributions

In this work, we significantly improve existing lattice-based IBE in the parame-
ters and security analysis. The crux relies on new techniques related to homomor-
phic computation in the cyclotomic rings and new analytical insights to achieve
tighter analysis for general partition-based IBE. We believe that these tools can
be applied broadly and thus are of general interests. Below we summarize our
two major contributions, and present our new techniques in Sect. 1.2.

– We construct an adaptively secure IBE based on Ring-LWE, with ω(1) ring
vectors in the master public key. This improves the prior state-of-the-art [39]
by a factor of log λ. Additionally, every component in our construction is
explicit, i.e., without relying the Barrington’s Theorem as required by [39],
and thus we are able to determine concrete bounds for all parameters.

– We identify an analytical insight that improves all (to our knowledge) prior
security reductions of the partition-based designs (e.g., [1,4,25,38,39]). Par-
ticularly, our reduction only blows up the running time by a small fixed poly-
nomial (independent of ε), and does not lose an additional O(ε) in advantage,
breaking the seemingly unavoidable tradeoff as above.

Table 1. Comparison with Prior Lattice IBE Schemes in the Ring Setting.

Scheme # of

ring vectors

in the mpk

Bit length

of id

RLWE Param
1
α

= q
σRLWE

of

ring vectors

in ct/skid

Reduction cost

[1] O(λ) Θ(λ) Õ(n3.5) O
(
1
)

T ′ = T + Õ
(
λ5 · Q/ε2

)
, ε′ = O

(
ε/(λ5Q)

)

[25] O(λ
1
μ)† Θ(λ) O(n0.5+2μ) O

(
1
)

T ′ = O(T), ε′ = O
((

(λε
Q

)μ/λ
)μ+1)

[39] I +[24] ω(log2(λ)) Θ(λ) Õ(n5.5) O
(
1
)

T ′ = O(T), ε′ = O
(
εv+1/Qv)

[39] II ω(log(λ)) Θ(λ) poly(n)∗ O
(
1
)

T ′ = O(T), ε′ = O
(
ε2/λ2Q

)

Ours A ω(log(λ)) Θ(λ) Õ(n
4.5+ 4

κ) O
(
1
)

T ′ = T + min
{

Õ(λ1/κ · Q/ε), O(λ(1+3/κ) · Qκ+3)
}
,

ε′ = O(ε/λ1/κQ)††

Ours B ω(1) Θ(λ) Õ(n
7.5+ 4

κ) O
(
1
)

T ′ = T + min
{

Õ(λ1/κ · Q/ε), O(λ(1+3/κ) · Qκ+3)
}
,

ε′ = O(ε/λ1/κQ)††

Notation: mpk, ct, and skid denote the master public key, ciphertext, and secret key of the IBE. λ, n,
q, σRLWE denote the security parameter, ring dimension, modulus, and gaussian parameter of RLWE.
T , Q, and ε denote the adversary’s running time, number of key queries and advantage in attacking
the IBE scheme, and T ′, ε′ denote the reduction’s time and advantage in breaking RLWE. All the
schemes have basic vector size of bit length O(n log2 q). The size can be optimized to O(n log q) at
the cost of increasing the size of q, which requires smaller RLWE parameter 1/α. All the schemes
set the ring dimension n = Θ(λ). Here we use ω(f(λ)) to denote any function that asymptotically
dominates f(λ), e.g., ω(1) can be log log λ or log log log λ, etc.
∗ poly(n) denotes some fixed but large polynomial. It is hard to determine an explicit bound for
comparison due to the implicit construction of the work.
† μ ∈ N is a constant that can be chosen arbitrary. Since the reduction cost is exponential in μ, this
value typically set very small (e.g., μ = 2 or 3).
‡ v > 1 is the constant that can be set small, depending on the underlying error correcting code.

†† κ ≥ 1 can be any constant that satisfies n
1
κ > 3 + κ, e.g., 2 or 4, depending on how we set

parameters of the underlying error correcting code.

160 P. Abla et al.

In Table 1, we summarize our results and a comparison with prior published
works2 in the asymptotic setting. To compare fairly with some prior schemes
described in the plain-LWE3, we calculate the parameters of their ring variants
and set the basic all vectors with the same bit length. We notice that parameters
about some prior works in our table are different than the table of [39], which
might over calculated some parameters. We also notice that there is a line of
work, studying (almost) tightly secure IBE from lattices, e.g., [13,26]. These
constructions are not partition-based designs, and in general they require to
homomorphically compute a PRF, resulting in at least O(λ) basic ring vectors
in mpk. In the context of “compact” IBE (for mpk), we believe that partitioned-
based IBE are more suitable, so we only include these schemes for comparison.

Our scheme can be instantiated with multiple sets of parameters. We present
two of them – scheme A requires smaller RLWE parameter 1/α, but require longer
mpk, yet scheme B requires a slightly larger 1/α but smaller mpk. Assuming
that the security level of RLWE is roughly the same for any 1/α = poly(n), then
scheme B would have smaller overall size, asymptotically.

Remark. We point out that it is possible to further shrink the mpk size of [39]
I +[24] to ω(log λ) basic ring vectors without applying the Barrington Theorem,
by using an ECC with larger alphabets, e.g., [8], even though this idea was not
explicitly written. This approach is similar to our scheme A, yet our scheme
enjoys a tighter analysis. It is highly non-trivial to further shrink the mpk size
to ω(1) ring vectors (as our scheme B), and this is the main novelty of this work.

A prior draft of this work would require to set n = O(λ1+τ) for a small
constant τ , thus resulting in a larger length per basic ring vector. This work
removes the requirement, showing that the typical setting n = O(λ) is sufficient.
As we mentioned in the note of Table 1, all the basic ring vectors (of all the
listed schemes) have bit length O(n log2 q) = O(λ log2 λ), which can be further
optimized to O(n log q) = O(λ log λ) by using a larger base of the gadget matrix.
Thus, counting the number of ring vectors would be an easier way to compare
efficiency/size of the listed schemes.

1.2 Technical Overview

We present an overview of our new techniques in two parts: (1) new IBE designs,
and (2) tighter reduction analysis.

Part I: IBE Design
We start with a quick recap of some common features of the existing partitioned
based IBE since [1], and then describe our new insights.

2 There is an unpublished work [4] that achieves essentially the same parameters as
scheme II of [39], except [4] has an explicit bound on q = O(n15.5).

3 The plain-LWE schemes usually count how many basic matrices in mpk, where each
matrix is larger than the basic ring vectors of Ring-LWE designs by at least a
multiplicative factor of O(λ).

Ring-Based Identity Based Encryption 161

Recap of Existing IBE Designs. At a high level, the public parameter of
IBE [1] contains matrices A,B1, . . . ,B�, where � is the length of the identity,
i.e., id ∈ {0, 1}�. To derive a public key for an identity id, one just computes
the matrix Fid = [A|∑i∈[�](−1)id[i]Bi]. The encryption algorithm uses the dual-
Regev scheme with respect to the matrix Fid. In the security proof, each public Bi

is switched to A ·Ri +hiG for some small-norm Ri and some random hi. In this
way, we can rewrite Fid = [A|A ·Rid + H(id)G], where Rid =

∑
i∈[�](−1)id[i]Ri,

and H(id) =
∑

i∈[�](−1)id[i]hi. The work [1] showed that suppose the hash func-
tion H isolates – with non-negligible probability, H separates the challenge id∗

with the other query id’s, then the scheme is adaptively secure. Later in subse-
quent works [4,38,39], it was observed that in fact we can view Bi’s as GSW
FHE ciphertexts [3,21], and thus the key derivation process can be viewed as
homomorphic computation of H(id), (id in the clear and the description of H
encrypted). Thus, by allowing the hash function to compute beyond the linear
combination, it is possible to apply a more succinct hash function that can be
encoded by much fewer public matrices.

Moreover, the work [25] showed that the plain LWE-based approach can
be ported to the Ring-LWE setting (in 2-th powers cyclotomic rings), with a
generic parameter saving. Particularly, the matrices can be replaced by ring
vectors a, b1, . . . , b�, and the intuition of homomorphic computation of the hash
function works smoothly in the ring setting. Therefore, working in the ring has
a generic advantage for smaller parameters than the plain LWE.

Challenges. Currently IBE with the shortest mpk (asymptotically) comes from
the work [39], which proposed to use integer multiplication-then-modulo to
design the hash function. Particularly, the hash function can be described by
a, b, ρ ∈ Z such that Ha,b,ρ(id) = a × id + b mod ρ, where id is treated as an
integer and the computation is in Z. The work [39] showed that it suffices to
encode t = ω(log λ) bits of each a, b, ρ for the security analysis, and thus it suf-
fices to use just ring vectors b1, . . . ,b3t to encode the hash function, resulting
in total ω(log λ) matrices or ring vectors in the public parameter. Since integer
multiplication-then-modulo is in NC1 [6], this homomorphic computation can
be done within a polynomial modulus q by the Barrington’s Theorem [23]. How-
ever, this approach does not give an explicit homomorphic computation method
of the hash function, and it is hard to determine an explicit bound of q. This is
one serious limitation of the current technique.

Our New Insights. Our goal is to tackle the challenge as described above,
and additionally, determine new methods to further shrink the size of mpk. To
achieve this, we develop two new techniques: (1) a new homomorphic equality
testing method under the Ring-LWE, and (2) a new family of hash functions
in the ring setting that can be naturally computed homomorphically. By using
these two techniques, we only need �′ = ω(1) ring vectors in the mpk and our
IBE design can be computed explicitly without the Barrington’s Theorem.

162 P. Abla et al.

New Technique (1): As we discussed above, the design of IBE is highly related
to homomorphic computation of a hash function. To shrink the size of mpk, it
suffices to construct a more efficient GSW style encoding that can pack/unpack
multiple bit encodings into one encoding. We then observe that this task is
deeply connected to the homomorphic equality test as we elaborate how next.

The most general form of the homomorphic equality test is given an encoding
Encode(α) and some β in the clear, homomorphically compute an encoded bit
Encode(τ) such that τ = 1 if and only if α = β. Denote this family of functions
as {Equalβ(α)} where each function is parameterized by β in the clear. If we
can achieve this task beyond bit compute, i.e., α can be some ring element, then
we can homomorphically extract every single bit of α from Encode(α) by the
equality test, by computing

∑
β∈Z Equalβ(α) where Z is the set of all possible

values that have consistent bit with α for the targeted bit we want to extract.
(We present the detailed procedure in Sect. 3). However, the general task seems
to incur a large blowup in the noise, and thus unclear whether it is feasible.

This work identifies a critical property of cyclotomic rings so that we can
achieve an important subclass of the task. Particularly, let us take R as the
m-th cyclotomic ring where m is a power of two. In this case, we know that
R = Z[x]/(xn + 1) where n = ϕ(m) = m/2. Then, we consider the case where
α appears in the exponent of the monomial x (corresponding to a root of unity
in cyclotomic rings); i.e., given Encode(xα) and β ∈ Z, compute the desired
Encode(τ). To design a homomorphic equality test function in this ring setting,
we first observe a critical fact in the rings. For any monomial v = xi where i �= 0
mod m, we have f(v) :=

∑m−1
i=0 vi = 1−vm

1−v = 0, as the denominator 1 − v is not
equal to 0, and 1 − vm = 1 − xmi = 0 for i �= 0 mod m. On the other hand, if
v = 1, i.e., i = 0 mod m, then f(v) = m. Therefore, the function f naturally

separates the two cases as: f(xi) =
{

0 if i �= 0 mod m
m otherwise.

Using this fact, we can design a simple algorithm for our goal: given b =
Encode(xα) and β, we compute the following three steps: (1) first we set b′ =
Encode(xα−β) by a homomorphic scale multiplication of x−β .

(2) Then we homomorphically compute b′′ = f(b′) = Encode(f(xα−β)).
(3) Finally, we output b∗ by homomorphically multiply b′′ and Encode(m−1).4

Clearly, this procedure outputs Encode(τ) where τ = 1 if α = β mod m and
otherwise 0. Our analysis crucially relies on that multiplying monomials does
not blow up the norm of a matrix, and thus the noise behaves the same as the
bit multiplication case.

By using the above techniques, we can pack/unpack log(m) bit encodings
into one single encoding. This would imply that we can further shrink the size
of mpk required in the work [39] by a factor of O(log m), resulting t = ω(1)
ring vectors for mpk under the Ring-LWE setting. This algebraic structure of
Ring-LWE demonstrates another non-trivial efficiency gain over the plain LWE,
which may be of independent interests.

4 We note that m−1 with respect to Zq exists if we choose m and q to be co-prime.

Ring-Based Identity Based Encryption 163

New Technique (2): By building upon the equality test technique, we further
design a new hash function that can be explicitly computed, homomorphically,
without the Barrington’s Theorem. We start with a nice observation by [4] that
identifies that in fact (almost) pairwise independent hash functions suffice to iso-
late [35]. To design a suitable hash function, we propose to use an error-correcting
code (ECC : {0, 1}� → Z

L
p) with good relative distance. We first consider the hash

function Hα,β(id) = ECC(id)[α] + β. It is not hard to show that this hash func-
tion behaves as an almost pairwise independent hash. The drawback is that the
range might be too small in the application of IBE designs. To amplify the range,
we can use a parallel repetition: H

‖
α ,β (z) =

(
Hα1,β1

(z), . . . , Hαt,βt
(z)

)
. In fact,

using error correcting codes to design a partition function has been explored in
the context of IBE and VRF, e.g., [8,24,39], yet these generic designs are still
not naturally compatible with the ring setting. Our new insight is to design an
embedding method that maps the output H

‖
α ,β ∈ Z

t
p to the ring R of the under-

lying Ring-LWE. In this way, the homomorphic computation method can be
designed based on the above equality test method, and therefore our IBE design
can be explicit, avoiding the route of the Barrington’s Theorem. The actual
design requires to deal with further technical subtleties. We refer the readers to
Sect. 4 for details.

Part II: Tighter Reduction Analysis
Next we present our new insights to achieve a tighter analysis for general
partitioned-based IBE designs. We start with a recap of the existing proof frame-
work.

Recap of the Proof Framework. As we discussed above, the security proof
framework switches the public matrices (or ring vectors) Bi to A ·Ri +hiG, and
then homomorphically computes Fid = [A|A · Rid + H(id)G], for some suitable
hash function H. Intuitively, the security reduction can respond to a key query
id if H(id) �= 0, and then embeds the (Ring) LWE challenge if H(id∗) = 0 for the
challenge id∗. Therefore, if the hash function separates all the query id’s from
the challenge id∗ as we just stated, then the reduction can be used to attack
the underlying (Ring) LWE. On the other hand, if the adversary queries some
id that H(id) = 0, then the reduction simply aborts and outputs a random
guess. By designing an appropriate parameters for H, we can show that with
some noticeable probability, we will have H(id) �= 0 for all id’s queried by the
adversary and H(id∗) = 0. This implies that the security reduction will still have
sufficient advantage in attacking the underlying (Ring) LWE.

Challenges. To analyze the limitation of the current reduction approach, we
delve into some further details. First we denote as the event abort if the adversary
has queried some id such that H(id) = 0 or H(id∗) �= 0, and ¬abort as the
other case. Let γ(I) denote the probability of ¬abort for the query pattern I =
{id1, . . . , idt} for some t ≤ Q, and γ(I) ∈ [γmin, γmax] for every query pattern I.

The work [1,7,37] showed the following statement (simplified): suppose the
adversary has advantage ε in breaking the IBE scheme, then by this partitioning
strategy, the reduction would have advantage roughly εγmin − (γmax − γmin)/2

164 P. Abla et al.

in breaking the (Ring) LWE hard problem. Now (also pointed out by [1]), we
would face a challenge in choosing the range [γmin, γmax] (by setting appropriate
the hash function parameters):

– If we aim to optimize the reduction’s advantage, we can set γmax ≈ 1/Q
and γmin ≈ 1/2Q. However, as εγmin might be smaller than the extra term
(γmax − γmin)/2, we need to apply the technique of Waters [37] that reduces
the gap between γmin and γmax by adding an extra “artificial abort”. However,
this would require to blow up the running time by roughly O(1/ε2).

– The other way to handle this is by Bellare and Ristenpart [7], which is then
used by the follow up works [4,25,38,39]. Particularly, they choose γmax ≈
ε/Q and γmin ≈ ε(1− ε)/Q, so that the gap would be ε2/Q, implying εγmin −
(γmax−γmin)/2 ≥ ε2/2Q. This does not need to blow up the running time, yet
the advantage would suffer from an extra multiplicative loss of ε compared
with the above.

Our New Insights. To break the tradeoff, we first give a new method that can
generally improve both of the above two cases: for the former, the running time
blowup is improved to O(1/ε), and for the latter, the advantage only loses an
extra multiplicative

√
ε. Then we show how to further reduce the running time

blowup for the first case, so that it can be upper bounded by a fixed polynomial
(in n,Q) without relying on the advantage ε. The crux for the first idea relies
on using the framework [30], on which we devise a better advantage bound than
that of εγmin − (γmax − γmin)/2. The second idea uses a critical property of the
design of the hash function. We elaborate the insights below.

First we recall the work [30], which considers two quantities α, β, where
the former is the probability that an adversary does not output ⊥, and the
latter is the conditional probability that the adversary outputs the correct bit,
conditioned on the non-⊥ event. Then the work [30] defined the advantage in a
decisional game ε := α(1 − 2β)2 = αδ2 where δ = |1 − 2β|.

Now we analyze the reduction above under this framework. Consider an
(α, β) adversary with advantage ε = αδ2. If we take the reduction as above,
then the reduction has γmin probability of ¬abort, resulting in non-⊥ probability
α′ = αγmin as the hash is chosen independent of the adversary. By a careful
analysis, the reduction’s conditional success probability would be roughly β′ ≈
(γmin/γmax) ·β. In order to ensure a significant success (conditional) probability
of the reduction, i.e., sufficiently large δ′ = |1 − 2β′|, we aim to set γmin/γmax ≈
1 − δ/4, meaning that δ′ = |1 − 2β′| ≈ |1 − 2(1 − δ/4)β| = | ± δ + δβ/2| ≥ δ/2 ≥√

ε/2. Now the reduction has advantage α′δ′2 ≈ α · γmin · δ2/4 ≈ ε · γmin/4.
Now we can improve the parameters with or without the artificial abort:

– We can improve the running time of the first case compared with the previous
analysis. Particularly, we set γmax ≈ 1/Q and γmin ≈ 1/2Q. The ratio of
γmin/γmax is 0.5, which needs to be increased to (1−δ/4) by the artificial abort
technique of Waters [37]. Yet now, we only need precision O(δ) = O(

√
ε),

which yield O(1/ε) samples, whereas the prior analysis needs precision O(ε),
and thus O(1/ε2) samples.

Ring-Based Identity Based Encryption 165

– We can also improve the reduction’s advantage for the second case. Partic-
ularly, we can set γmax ≈ δ/4Q and γmin ≈ δ(1 − δ/4)/4Q. In this way, the
ratio is (1−δ/4) as needed, and the reduction’s advantage would lose a multi-
plicative factor of O(δ) = O(

√
ε) compared with the above, whereas the prior

analysis would lose O(ε).

Finally, we show how to further improve the reduction’s running time for the
first case, to get rid of the dependency on O(1/ε), which would be large when ε
is small. As a result, our reduction has a smaller overhead in running time, i.e.,
T + poly(λ) for some small polynomial that is independent of ε (recall that T is
adversary’s running time), and maintains the advantage, achieving the best of
the both of the two cases.

To achieve this, we observe that the blowup in running time comes from the
estimation of γ(I) for the technique of Waters’ artificial abort, which roughly
needs O(1/ε) samples for the procedure. To get rid of this dependency, we observe
that the sample space of the our design of hash function H (all possible choices
of the hash function) is roughly bounded by a small fixed polynomial poly(λ).
Therefore, if the adversary has a larger advantage ε, then the reduction would
use O(1/ε) samples to estimate γ(I), whereas if the ε is small, then the reduction
would enumerate all possible choices of the hash function to compute the exact
value of γ(I). Therefore, the running time in the worst case would be upper
bounded by T + poly(λ) as desired.

2 Preliminaries

This section includes the basic preliminaries. Readers who are already familiar
with the concepts can skip the entire section and start to read from Sect. 3.

Notations. We denote Z as the set of the integers and R as the real numbers. For
a positive integer k, let [k] be set of integers {0, 1, ..., k − 1}. We denote [a, b] as
the set [a, b]∩Z for any integers a, b ∈ N satisfying a ≤ b. We use bold uppercase
letters to denote matrices (e.g., A), and bold lowercase letters for column vectors
(e.g., a), and denote the horizontal concatenation of two vectors a, b by [a|b].
For any 1 ≤ p ≤ ∞, the p-norm of a vector a is defined as ‖a‖p = (

∑
i ‖ai‖p)1/p,

and p-norm of a matrix A is defined by ‖A‖p = max‖x‖p=1 ‖Ax‖p, assuming
the dimensions match. We omit the subscript p if p = 2. We denote s1(A) as the
largest singular value of A, then we have s1(A) = ‖A‖. We say ε : N → [0, 1)
be a negligible function, if for any c > 0, we have ε(n) < 1

nc starting from
some integer n0(c) ∈ N. We say an event happens with overwhelmingly, if the
probability of that event not happens is negligible. For any two random variables
X and Y with support Ω, define the statistical distance, denoted Δ(X,Y), as
Δ(X,Y) = 1

2

∑
s∈Ω |Pr[X = s] − Pr[Y = s]|. We say X is statistically close(or

ε-close) to Y , if the statistical distance Δ(X,Y) is negligible(or Δ(X,Y) ≤ ε).

Definition 2.1 (Relative Distance). Let F be some finite field and L ∈ N, D
be some input domain, and ECC : D → F

L be some encoding, where the output

166 P. Abla et al.

vector is indexed by [1, . . . , L]. Define the relative distance of ECC, denoted Υ , as

Υ := min

{
Pr

i
$←−[1,...,L]

[
ECC(a)[i] �= ECC(b)[i]

]∣∣∣a �= b, a, b ∈ D
}

2.1 Identity-Based Encryption (IBE)

Definition 2.2 (IBE [11,33]). An identity-based encryption scheme Π consists
of four algorithms {Setup,KeyGen,Enc,Dec} as follows.
– Setup (1λ): On input the security parameter λ, the algorithm outputs the

master public key mpk and the master secret key msk.
– KeyGen (mpk,msk, id): On input (mpk,msk) and an identity id, the key gen-

eration algorithm outputs a secret key skid corresponding to the identity id.
– Enc (mpk, id, μ): On input the master public key mpk, identity id and the

message μ, the encryption algorithm outputs a ciphertext ct.
– Dec (mpk, skid, ct): On input the master public key mpk, the secret key skid

and the ciphertext ct, the decryption algorithm outputs the message μ′ or ⊥.

Correctness. We say an IBE scheme Π is correct, if for any message μ and any
identity id, the following holds

Pr

⎡
⎣Dec(skid, ct) �= μ

∣∣∣∣
(mpk, msk) ← Setup(1λ)
skid ← KeyGen(mpk, msk, id)
ct ← Enc(mpk, id, μ)

⎤
⎦ < negl(λ).

Security. We use the following experiment to describe the security of IBE against
adaptive adversaries. Formally, for any ppt adversary A, we consider the exper-
iment ExptIBE

A (1λ) between A and the challenger defined below:

Setup: At the beginning of the experiment, the adversary A sends a public
parameter requirement to the challenger. After receiving the public parame-
ter requirement, the challenger runs (mpk,msk) ← Setup(1λ), and sends mpk
to the adversary A.

Phase 1: Proceeding adaptively, the adversary A queries a sequence of identities
(id1, · · · , idm). On the i-th query, the challenger runs KeyGen(msk, idi), and
sends the result skidi

to the A.
Challenge: In this phase, A chooses an identity id∗ /∈ {id1, · · · , idm} and two

length-equal messages μ0, μ1, and forwards them to the challenger. Upon
receiving the id∗, μ0, μ1, the challenger chooses a random bit b ∈ {0, 1} and
runs ct∗ ← Enc(mpk, id∗, μb). Then, the challenger sends ct∗ to A.

Phase 2: A continues to make key queries (idm+1, · · · , idQ) such that idj �= id∗

for any j ∈ [m + 1, Q]. The challenger responds as in Phase 1.
Guess: The adversary A outputs a bit b′ as the guess of b.

We define the notion of asymptotic security: the IBE scheme is secure if for
any ppt adversary A, the probability that A outputs the right bit, i.e., b′ = b
in ExptIBE

A (1λ) is bounded by 1
2 + negl(λ) for some negligible function negl(λ).

In addition to the asymptotic notion, our work also focuses on the concrete
bit-security notion, which is more relevant in practice. In the following section,
we present the framework established by the recent work [30].

Ring-Based Identity Based Encryption 167

2.2 Concrete Bit-Security

The work [30] considers concrete bit-security for security games that capture two
types of general primitives – (1) search primitives where the adversary’s goal is
to output a string that satisfies a certain relation, and (2) decision primitives
where the adversary only needs to output one bit, trying to distinguish two
challenging distributions. Clearly, IBE is a decision primitive as the adversary in
ExptIBE

A (1λ) above tries to guess the challenge bit. To capture its bit-security,
we present the framework of [30] for decision primitives.

Given an adversary A, we say A is a (TA, αA, βA)-adversary if its running
time is at most TA, output probability αA = Pr[A �= ⊥], and conditional success
probability βA = Pr[A wins | A �= ⊥], where the probabilities are over the
randomness of the entire game. For a decision primitive including IBE, define
the advantage of the (TA, αA, βA)-adversary A as AdvA := αA(2βA − 1)2.

Importantly, this formulation allows the adversary to output ⊥, intuitively
meaning “I don’t know” even for decision primitives. As the work [30] showed, in
some cases it is more advantageous if the adversary admits being defeated rather
than guessing at random. In this work, we demonstrate that this is extremely
crucial for partition-based IBE [1,7,37,39], allowing a much better security anal-
ysis over all these prior work. For the rationale of this definitional framework,
we refer the reader to the original paper [30]. Next we present the notion of
bit-security for IBE in the framework of [30] as a general decision primitive.

Definition 2.3 ([30]). We say an IBE scheme is adaptively secure with λ-bit
security, if for all (T, α, β)-adversary A in ExptIBE

A (1λ), we have T
AdvA

≥ 2λ.

Remark 2.4. The term TA can also be generalized to any measure of resources
that is linear under repetition as stated in [30]. In this work, we use the running
time for simplicity. Moreover, we assume that TA is greater than the running
time of the challenger. This is without loss of generality as the security game
ends at the last guessing step of the adversary, whose total running time must
be at least as long as that of experiment (including the challenger’s time).

Next we present a useful lemma for the relation between the statistical distance
between two games and the difference of the corresponding (α, β)’s. Due to space
limit, we put the proof of the lemma below in full version of our paper.

Lemma 2.5. Let SP ,SQ be two indistinguishability games with black-box access
to two probability distribution P and Q, respectively, with Δ(P,Q) ≤ ε. For any
(TA, αP

A, βP
A)-adversary A with αP

A > ε in the game SP , the same A in the game
SQ is a (TA, αQ

A, βQ
A)-adversary, where αQ

A ≥ αP
A −ε and βQ

A ≥ βP
A −ε/(αP

A −ε).

2.3 Lattices and Gaussian Distributions

Lattices. A lattice is a discrete additive subgroup of Rn. Let B = (b1, . . . , bm) ⊂
R

n×m consist of m linearly independent vectors, the n-dimensional lattice Λ gen-
erated by the basis B is Λ = L(B) = {B · c =

∑
i∈[m] ci·bi : c = (c0, . . . , cm−1) ∈

168 P. Abla et al.

Z
m}. We denote B̃ as the Gram-Schmidt orthogonalization of B, and ‖B‖GS as

the length of the longest vector of B̃.
In this paper, we focus on a particular family of integer lattices. Let A ∈

Z
m×n
q for integers m, n, q, where m and q are functions of n. We consider

the following two kinds of full-rank m-dimensional integer lattices defined by
Λ⊥

q (A) = {e ∈ Z
m : A	 · e = 0 mod q} and its shift Λu

q (A) = {e ∈ Z
m :

A	 · e = u mod q}.

Gaussian Distributions. For any real number s > 0 and an n-dimensional
vector c, let ρs,c(x) := exp(−π‖x − c‖2/s2) be the gaussian function with
parameter s and centered at c. The discrete gaussian distribution over a lat-
tice coset Λ+u is defined as DΛ+u ,s(x) = ρs(x)

ρs(Λ+u) . Let ηεs
(Λ) be the smoothing

parameter. For a gaussian over lattices, we have the following tail bound.

Lemma 2.6 ([20,29]). Let Λ ⊂ R
n be a lattice and s > ηεs

(Λ) for some εs ∈
(0, 1/2). For any c ∈ span(Λ), we have Pr

[‖DΛ+c,s‖ ≥ s
√

n
] ≤ 2−n · 1+εs

1−εs
.

Furthermore, if c = 0, the bound holds for any r > 0 with εs = 0.

We say a polynomial a =
∑

i∈[n] aix
i is sampled from gaussian distribution

DΛ+u ,s, if the coefficient vector (a0, ..., an−1) is sampled by DΛ+u ,s. We further
define the gaussian distribution DCoeffs

Λ+u as the distribution of a polynomial a =∑
i∈[n] aix

i sampled from gaussian distribution DΛ+u ,s .We also extend this
notion to the polynomial vector a = (a1, · · · , an) component-wise.

Sub-Gaussian. It is convenient for our analyses to use sub-Gaussian random
variables and their bounds. We defer the details to full version of this paper.

2.4 Rings and Ideal Lattices

Next, we briefly present the concepts and lemmas related to rings and ideal
lattices required in this work. See the work of [27,28] for further details.

Rings. For an m-th cyclotomic polynomial Φ(x) (of degree n = ϕ(m)), define
the polynomial quotient ring R = Z[x]/Φ(x). For an integer q, denote Rq as
the ring R/qR. For the polynomial ring R, we denote [−ρ, ρ]R ⊂ R as the set of
elements in R with coefficients in [−ρ, ρ]∩Z. Any element in R can be considered
as a vector of its coefficients. Namely, an element a =

∑
i∈[n] aix

i ∈ R can be
seen as the vector a = (a0, ..., an−1). We call this map as coefficient embedding
(denoted as Coeffs(·)). Furthermore, we can also represent a ring element a ∈ R
as a matrix in Z

n×n by the following map Rot : R → Z
n×n:

Rot(a) =

⎡
⎢⎢⎢⎣

Coeffs(a)�

Coeffs(xa mod Φ(x))�

...

Coeffs(xn−1a mod Φ(x))�

⎤
⎥⎥⎥⎦ .

Furthermore, we extend this map to ring vectors and matrices by applying
it entry-wise, i.e., for a vector a	 = (a1, . . . , am) ∈ Rm, we define Rot(a) =

Ring-Based Identity Based Encryption 169

[Rot(a1)| . . . |Rot(am)] ∈ Z
n×nm, and the map for matrices can be defined simi-

larly. In the case of power of 2 cyclotomic rings, i.e., Φ(x) = xn + 1 for n being
some power of 2, the above rotation matrix Rot(a) is the anti-cyclic matrix.

Rings in This Work. Throughout this paper, we only work on power of 2
cyclotomic rings for their nice and simple mathematical structures. Thus, we
will only present the related lemmas with respect to this type of rings.

Norms and Singular Value. The norms of ring vectors (or matrices) are
defined by their corresponding coefficient embedding vectors (or matrices).
The singular value of a ring matrix R ∈ Rk×k′

is defined by the singu-
lar value of its corresponding matrix obtained by Rot map, that is s1(R) :=
sup‖u‖=1 ‖Rot(R)u‖.

The following lemma shows that Rq has exponentially many invertible ele-
ments, if the modulo q satisfies certain property.

Lemma 2.7 ([25]). Let q be a prime such that q ≡ 3 mod 8 and n be a power
of 2. Let Rq = Zq[x]/Φ2n(x). Then, all u ∈ Rq satisfying ‖Coeffs(u)‖2 <

√
q are

invertible, i.e., u ∈ R∗
q .

Ring Learning with Errors. The Learning With Errors (LWE) problem was
introduced by Regev [32]. To improve efficiency of LWE-based schemes, the ring
version of LWE, namely RLWE, was introduced [27,34]. For s ∈ Rq and an error
distribution ψ over Rq, the RLWE distribution As,ψ over Rq × Rq is the distri-
bution of the pair (a, b = (a · s) + e), where a is randomly sampled over Rq, and
the error term e is independently sampled according ψ. Here we recall the RLWE
problem as follows.

Definition 2.8 (Decision Ring-LWE Problem). The decision Ring-
LWE problem, denoted R-DLWEn,�,q,ψ is to distinguish between � independent
samples from As,ψ for a random choice of a secret s ← Rq of degree n, and the
same number of uniformly random and independent samples from Rq × Rq.

The bit hardness can be defined following the framework [30] as a
decision primitive, similar to the case of IBE in Definition 2.3. Particu-
larly, the R-DLWEn,�,q,ψ problem can be formulated by a security game
ExptRLWE

B (1n, �, q, ψ) where an adversary B is challenged with either � sam-
ples from As,ψ or the uniform distribution. Define AdvRLWE

B = αB · (2βB − 1)2,
where αB and βB are the probability that B does not abort and the conditional
probability that B outputs the correct bit conditioning on the non-abort event.
Then the bit hardness of R-DLWE is defined as follows.

Definition 2.9 (Bit Hardness of R-DLWE). R-DLWEn,�,q,ψ is λ-bit hard, if
for all (T, α, β)-adversary B in ExptRLWE

B (1n, �, q, ψ), we have T
AdvRLWE

B
≥ 2λ.

Below we present a reduction from some lattice problem to R-DLWE, showing
that the ring (D)LWE problem is as hard as the underlying lattice problem.

170 P. Abla et al.

Lemma 2.10 (Theorem 1 of [25]). Let α be the positive real, m be a power
of 2, � be an integer, Φ(x) = xn + 1 be the mth cyclotomic polynomial where
m = 2n, and R = Z[x]/(Φ(x)). Let q ≡ 3 mod 8 be a prime such that there
is another prime p ≡ 1 mod m satisfying p ≤ q ≤ 2p. Let σRLWE := αq ≥
n3/2�1/4ω(log9/4(n)). Then, there is a ppt quantum reduction from Õ(n/α)-
approximate SIVP(or SVP) to R-DLWEn,�,q,χ with χ = DCoeffs

Zn,σRLWE
.

Trapdoors for Rings. For positive integers b and k > k′ ≥ �log(q)�, let g	
b =

[1|b|b2|...|bk′ |0] ∈ Rk be the gadget matrix. As stated in the work of [29], this
gadget matrix has a public trapdoor Tg with small norm, i.e., ‖Tg‖ ≤ √

b2 + 1.
Next we present several useful sampling algorithms from the work of [25,29].

Lemma 2.11 ([25]). Let n be a power of 2, q be prime larger than 4n such that
q ≡ 3 mod 8, b, ρ be positive integers satisfying ρ < 1

2

√
q/n, and εs ∈ (0, 1) be

a small real regarding the smoothing parameter. Furthermore, define log1(·) :=
log2(·). There are efficient algorithms such that:

– TrapGen(n, k, ρ, q) → (a,Ta) ([29], Lemma 5.3): A randomized algorithm
that, when k ≥ 2 logρ(q), outputs a ring vector a ∈ Rk and a matrix
Ta ∈ Rk×k, where Rot(a) ∈ Z

n×nk is full-rank matrix and Rot(Ta) ∈
Z

nk×nk is a basis for Λ⊥((Rot(a)) such that a is k

2
nk
4 +2

-close to uniform

and ‖Rot(Ta)‖GS < O
(
bρ

√
n logρ(q)

)
.

– SampleLeft(a, b,Ta , u, σ) → e ([16]): A randomized algorithm that, on
input the vectors a, b ∈ Rk, where Rot(a),Rot(b) ∈ Z

n×nk are full-
rank, an element u ∈ Rq, a matrix Ta such that Rot(Ta) ∈ Z

nk×nk is
a basis for Λ⊥((Rot(a)), and a Gaussian parameter σ > ‖Rot(Ta)‖GS ·√

log(2n(1 + 1/εs))/π, outputs a vector e ∈ R2k sampled from a distribution
which is 4(nk)2εs-close to D

Λ⊥
Coeffs(u)

(
Rot([a�|b�]

)
,σ

, i.e., [a	|b] · e = u, and

Coeffs(e) is distributed according to D
Λ⊥

Coeffs(u)

(
Rot([a�|b�]

)
,σ

.

– SampleRight(a,R, u, y, gb,Tgb
, σ) → e where b = aR + y · gb ([1]): A ran-

domized algorithm that, on input the ring vectors a, gb ∈ Rk such that
Rot(a),Rot(g	

b) ∈ Z
n×nk are full-rank, elements y ∈ R∗, u ∈ R, a matrix

R ∈ Rk×k, a matrix Tgb
∈ Rk×k such that Rot(Tgb

) is a basis for the lat-
tice Λ⊥((Rot(gb)), and a Gaussian parameter σ > s1(R) · ‖Rot(Tgb

)‖GS ·
√

log(2n(1 + 1/εs))/π, outputs a vector e ∈ R2k sampled from a distribution
which is 4(nk)2εs-close to D

Λ⊥
Coeffs(u)

(
Rot([a�|b�]

)
,σ

, i.e., [a	|b] · e = u, and

Coeffs(e) is distributed according to D
Λ⊥

Coeffs(u)

(
Rot([a�|b�]

)
,σ

.

– ([29]) Let k ≥ �logb(q)�. There is a publicly known matrix Tgb
such that

Rot(Tgb
) is a basis for the lattice Λ⊥(Rot(g	

b)) and ‖Rot(Tgb
)‖GS ≤ √

b2 + 1.
Furthermore, there exists a deterministic polynomial time algorithm g−1

b

which takes input u ∈ Rk
q , and outputs R = g−1

b (u) such that R ∈
[−b, b]Rk×k , g	

b · R = u	, and s1(R) ≤ nkb. Similarly, there exists a ran-
domized polynomial time algorithm ĝb

−1 which takes input u ∈ Rk
q , and

Ring-Based Identity Based Encryption 171

outputs R ← ĝb
−1(u) such that g	

b · R = u	. Each coefficient in any
entry of R follows a sub-Gaussian centered 0 with parameter O(1), implying
s1(R) ≤ Õ(b

√
nk) with an overwhelming probability.

Remark 2.12. Throughout this paper, we make an appointment that g−1
b (or

ĝb
−1) maps an integer vector u ∈ Z

k
q to a integer matrix R ∈ [−b, b]Zk×k ⊂ Z

k×k.

The following lemma shows a simple upper bound of the norm of g−1(·)’s
output. Due to space limit, we defer the proof in full version of this paper.

Lemma 2.13. For integers k, q, b satisfying the definition of gb, on input a
vector c ∈ Z

k
q , the algorithm g−1

b described in lemma 2.11 outputs the matrix
g−1

b (c) ∈ [−b, b]Rk×k ⊂ Rk×k such that ‖g−1
b (c)‖ ≤ bk.

Homomorphic Computation. In this work, we use the concept of GSW homo-
morphic encoding [3,21]. We defer the concepts to full version of this paper.

3 New Homomorphic Equality Test and Tighter Analysis

In this section, we present our first main technique – a new homomorphic equal-
ity testing method. As discussed in the introduction, our goal can be described
as follows: given Encode(xα) and β ∈ Z, compute Encode(τ) for τ = 1 if α = β
or otherwise τ = 0. Below we present our method and then an optimization
that achieves tighter parameters. Finally, we describe a connection with pack-
ing/unpacking GSW encodings using our new technique.

3.1 Homomorphic Equality Testing

As we mentioned in the preliminary, this work focuses on the cyclotomic rings
of 2’s power, which have simpler mathematical structures. Let R = Z[x]/Φm(x)
be the m-th cyclotomic ring where m = 2k, modulus q be co-prime to m, and
Rq = R/qR. For this setting, we have Φm(x) = xn + 1 where n = ϕ(m) = m/2.

As we discussed in the introduction, we can use the function f(v) :=
∑m−1

i=0 vi

to design an equality tester. Before we formally present the method, we first recall
the following important notion that will be used in the design and analysis of
our IBE scheme.

Particularly, the lattice IBE framework [1,4,25,39] requires to design two
deterministic ways to compute the homomorphic encodings. The required prop-
erty can be formulated in the following notion of δ-expanding evaluation. The
parameter δ measures the quality of the evaluation, playing a key factor in the
noise analysis of the IBE scheme. Therefore, an important goal in this series of
work is to minimize δ from the design and/or analysis.

Definition 3.1 (δ-expanding evaluation [4,39]). Two deterministic algo-
rithm (PubEval,TrapEval) are δ-expanding with respect to function f : X t → Y,
if they are efficient and have following properties:

172 P. Abla et al.

– PubEval(
{
bi ∈ Rk

q

}
i∈[t]

, f): on input a function f and vectors of encodings

{bi}i∈[t], this algorithm outputs a ring vector bf ∈ Rk
q ;

– TrapEval(a ∈ Rk
q ,

{
Ri ∈ Rk×k

}
i∈[t]

, (zi)i∈[t], f): the trapdoor evaluation algo-

rithm outputs a matrix Rf ∈ Rk×k such that for any z	 = (z1, ..., zt) ∈ X t,
a ∈ Rk

q , and trapdoor information
{
Ri ∈ Rk×k

}
i∈[t]

:

PubEval
({

a	 · Ri + zi · g	
b

}
i∈[t]

, f
)

= a	 · Rf + f(z) · g	
b .

Furthermore, we have ‖Rf‖ ≤ δ · maxi∈[t] ‖Ri‖.
This definition can be extended to a family of functions F , where we require the
algorithms to be δ-expanding with respect to all functions f ∈ F .

In the following section, we present our design and analysis for the above
equality test function in the term of δ-expanding homomorphic evaluation.

3.2 Our Construction

We first define the family of equality test functions as follow.
Definition 3.2 (Equality Test Function). Define function Equalβ(·) param-
eterized by β ∈ [m] as follows: on input xα ∈ R, the function outputs 1 if α ≡ β
mod m and 0 otherwise.
We next present the algorithms and then analyze the expansion factor.

Construction 3.3. We present algorithms (PubEval,TrapEval) for Equalβ for
any β ∈ [m] as follows.

PubEval({bα},Equalβ) :
1. Compute the encoding of xα−β by b′ := bαx−β.
2. Compute cm−1 recursively as follows:

cj =

{
gb j = 0
g−1

b (c	
j−1)

	 · b′ + gb j ≥ 1
(1)

3. Output g−1
b (m−1g	

b)	 · cm−1.

TrapEval(a, {Rα}, (xα),Equalβ) :
1. Compute R′ := Rα · x−β.
2. Let cj’s be vectors as defined as in the PubEval Eq. (1) with bα = a·Rα+xα·gb.

Then compute Rm−1 recursively as follows:

Rj :=

{
0 j = 0
R′ · g−1

b (c	
j−1) + xα−β · Rj−1 j ≥ 1 ,

(2)

3. Output Rm−1 · g−1
b (m−1g	

b).

In the following theorem, we summarize the quality of the above algorithms.
Due to space limit, we put the proof in full version of this paper.

Theorem 3.4. The algorithms (PubEval,TrapEval) in Construction 3.3 are
mn(kb)2- expanding with respect to the function family {Equalβ(·)}β∈[m].

Ring-Based Identity Based Encryption 173

3.3 An Optimization with Tighter Analysis

In this section, we present an optimization of the above homomorphic evaluation
processes that achieves a tighter δ-expansion factor.

We notice that in the IBE settings, we need deterministic evaluation algo-
rithms, so a randomized ĝb

−1(·) cannot be applied to optimize parameters as
the case of FHE evaluation, e.g., [3,29]. To tackle this challenge, we consider
using a randomized ĝb

−1 with a public seed, e.g., a PRF key K. In this way, we
can make the ĝb

−1 “deterministic,” as everyone can derive the randomness to
compute ĝb

−1 from the public key K. Here we notice that we do not use PRF
for security, but a way to generate randomness for ĝb

−1. Thus it does not affect
the overall security by publishing the seed of PRF in public.

To formalize the idea above, we define a slight variant of δ-homomorphic
evaluation in the common random string (CRS) model,5 where algorithms
(PubEval,TrapEval) have access to a CRS selected randomly in the beginning.

Definition 3.5 (CRS δ-expanding Evaluation). Algorithms (PubEval,
TrapEval) are in the common random string (CRS) model if the algorithms
have access to crs selected randomly in the beginning. Moreover, they are δ-
expanding in the CRS model if with an overwhelming probability (i.e., 1−negl(λ))
over the choice of crs, the algorithms satisfies the requirement of δ-expanding in
Definition 3.1.

Then we can instantiate evaluation algorithms with a tighter δ expanding
factor in the CRS model as below. Here we present a sketch.

Construction 3.3 in the CRS Model. Replacing the deterministic g−1
b in

Construction 3.3 by a randomized ĝb
−1 under a public PRF key K, we can easily

derive (PubEval,TrapEval) in the CRS model, achieving a better δ parameter.
We summarize this optimization in the following theorem.

Theorem 3.6. There exist (PubEval,TrapEval) that are Õ(mb2k
√

nk)-
expanding in the CRS model for the function family {Equalβ(·)}β∈[m].

We defer the details about the construction and analysis to full version of this
paper.

An Alternative Approach and Comparison. We notice that the homo-
morphic equality test can be done if the input is given in the bit repre-
sentation. Particularly, consider Equal′β(α) where α ∈ [m] is given in the
form (α1, . . . , α
log m�−1) ∈ {0, 1}
log m�−1, then we can express Equal′β(α) :=
∏
log m�−1

i=0 ((1 − αi)(1 − βi) + αi · βi), where βi is the i-th bit of β ∈ [m]. We
can use the method of [3,12,15] for the homomorphic computation, and improve
the expanding factor in the CRS model as the above. Particularly we have:

5 We can define the common reference string model, where crs is selected according to
some sampling algorithm. In this work, the common random string model suffices.

174 P. Abla et al.

Theorem 3.7. There exist algorithms (PubEval,TrapEval) that are
O(nkb log m)- expanding in plain model, and are Õ(b

√
nk log m)-expanding in

the CRS model with respect to the function family {Equal′β(·)}β∈[m].

Compared with Construction 3.3, the bit-wise homomorphic evaluation method
has a better expanding factor, but would require more input ciphertexts. This
would affect our later IBE constructions – our IBE instantiation with Equalβ
would require a smaller RLWE 1/α (i.e., 1/n7.5+O(1)) yet smaller mpk, (i.e., ω(1)
basic vectors), and the instantiation with Equal′β would require a larger RLWE
1/α (i.e., 1/n4.5+O(1)), yet larger mpk, (i.e., ω(log λ) basic vectors). To our cur-
rent knowledge, the asymptotic hardness of RLWE does not differ significantly
for the two 1/α’s [2], so the instantiation of IBE with Equalβ as Construction 3.3
has better overall efficiency, asymptotically.

3.4 Application to Packing/Unpacking Homomorphic Encodings

Our equality test technique can be further used to pack/unpack GSW-type [3,21]
homomorphic encodings. We defer the details in full version of this paper.

Particularly, we can compress log m bit-encodings into one encoding of a ring
element without losing information. This technique can be generically used to
improve FHE [3,21] for boolean computation, ABE [12] for circuits, and the
theoretical state-of-the-arts IBE [39]. As a result , the mpk size in the IBE [39]
can be shrunk by a factor of log m in the ring setting from our technique.

Our technique for the applications demonstrates another non-trivial advan-
tage of RLWE over the plain LWE, which might be of independent interests.

4 New Partition Function and Homomorphic Evaluation

In this section, we describe our second main technique – an explicit design of
the partition function required by our IBE scheme and homomorphic evaluation
algorithms with a small expansion factor. Our design uses the algebraic structure
of cyclotomic rings in a critical way, avoiding the route of Barrington’s Theo-
rem as the prior work [39]. As a result, our explicit partition function yields
significantly better concrete parameters in the overall IBE scheme.

To describe the partition function, we first recall an insight from the work [4],
stating that the IBE design with the trapdoor vanishing technique indeed only
needs (weak) pairwise independent hash functions plus the random isolation
technique of Valiant and Vazirani [35], which can generically replace the prior
notions “admissible hash functions” or “abort-resistant hash functions.” We
state the following lemma from [4] to summarize this insight.

Lemma 4.1 ([4]). Let Q ⊂ {0, 1}n be an arbitrary subset, A,B be integers such
that B ≤ A, |Q| ≤ δB for some δ ∈ (0, 1), and let H : {0, 1}n → Y be an almost
pairwise independent hash function family which has the following properties:

1 ∀ x ∈ {0, 1}n, Pr
h∈H

[h(x) = 0] = 1
A .

Ring-Based Identity Based Encryption 175

2 For any distinct x1 �= x2 ∈ {0, 1}n, Pr
h∈H

[h(x1) = 0|h(x2) = 0] < 1
B .

Then for any element x /∈ Q, we have

Pr
h∈H

[
h(x) = 0 ∧ (

h(x′) �= 0 ∀x′ ∈ Q
)] ∈ (

1 − δ

A
,

1

A
).

Thus, our goal in this section is to (1) design such a hash function family, and
(2) design PubEval and TrapEval algorithms with a small average-case expanding
factor for the hash family. These would suffice for our IBE scheme.

4.1 Our New Hash Function Family

In this section, we first describe a simplified version to illustrate the core idea,
and then show how to transform this simplified version to our final design.

Design Idea. Our design uses an error correcting code ECC : D → Z
L
p with

relative distance Υ as follows. We define a basic hash function h : D → Zp :

hα,β(z) = (ECC(z)[α] − β),

where α ∈ [L + 1] selects the position of ECC(z) and β ∈ Zp represents a shift.
Here we use {1, . . . , L} to index the position of the error correcting code, and
assume ECC(z)[0] = 0 for any z ∈ D. This indexing will be convenient for
describing our further constructions.

A hash family is naturally defined as H = {hα,β : α ∈ [L + 1] \ {0}, β ∈ Zp}.
It is easy to show that (1) Prα,β [hα,β(z) = 0] = 1/p for any z ∈ D and (2) for
any distinct z1 �= z2 ∈ D, we have Prα,β

[
hα,β(z1) = 0|hα,β(z2) = 0

] ≤ 1 − Υ .
Intuitively, for z1 �= z2, there is Υ fraction of the positions in their error correcting
codes that give different values, meaning with this probability over the choice of
α, ECC(z1)[α] �= ECC(z2)[α]. This would imply hα,β(z1) �= hα,β(z2), which can
be used to derive the probability bound we want.

The basic hash family as is does not yet fulfill what we need for the IBE
analysis, as usually the parameter Q (corresponding to the number of adversary’s
key queries) is larger than the parameter p we can set. To tackle this issue, we use
the technique of parallel repetition in the following way. Let t ∈ Z be parameter,
and α ∈ ([L + 1] \ {0})t,β ∈ Z

t
p be parameters. We define h

‖,t
α ,β : D → Z

t
p as

h
‖,t
α ,β (z) =

(
hα1,β1

(z), . . . , hαt,βt
(z)

)
.

We can then show that (1) Prα ,β

[
h

‖,t
α ,β (z) = 0

]
= 1/pt and (2) for any distinct

z1 �= z2 ∈ D, we have Prα ,β

[
h

‖,t
α ,β (z1) = 0|h‖,t

α ,β (z2) = 0
]

≤ (1 − Υ)t.

Thus, by choosing an appropriate parameter t, the family Ht = {h
‖,t
α ,β : α ∈

([L+1] \ {0})t,β ∈ Z
t
p} and Lemma 4.1 can be used to analyze our IBE security.

176 P. Abla et al.

Remark 4.2. As we discussed in the introduction, using error correcting codes
to design a partition function has been explored previously in the context of IBE
and VRF. e.g., [8,24,39]. Our new insight is to integrate the ECC into the
cyclotomic rings so that it can be easily computed homomorphically. More details
follow.

Our Final Construction – Hash in the Ring. However, to design a Ring-
based IBE, using the above hash family (as is) still faces two major challenges: (1)
the family Ht with output domain Z

t
p is not naturally compatible with the ring,

and thus not convenient for our ring-based IBE design. (2) The second challenge
is quite subtle – the IBE analysis [1,39] requires to compute (homomorphically)
Ht′

for a flexible t′ ∈ [t], yet in an oblivious way in t′, i.e., the evaluation only
depends on t but does not know t′. The purpose is to derive a more fine-grained
security analysis for the IBE scheme. Therefore, the hash family must at least
capture ∪t′∈[t]Ht′

, and support this type of oblivious evaluation.
To tackle these issues, we propose a modified ring-based hash family HR,t

that captures all Ht′
for t′ ≤ t and matches the output domain with the ring R

of the RLWE. At a high level, HR,t embeds Ht′
with output Z

t′
p for all t′ ∈ [t]

into some subset of the ring R, which is naturally compatible with our Ring IBE
design. Next we present our final design, starting with some important notations.

Important Notations. Let R be the m-th cyclotomic ring and n = m/2; p, t
be integers such that tp ≤ n; ECC : D → Z

L
p with relative distance Υ be an error

correcting code whose codeword is indexed by {1, . . . , L} and ECC(z)[0] = 0 for
every z ∈ D. Then, we present our design of the hash function as follow.

Definition 4.3. For any (α,β) ∈ [L + 1]t ×Z
t
p, we define hash function HR,t

α ,β :
D → R as HR,t

α,β (z) :=
∑

i∈[t]

(
xip+ECC(z)[αi] − xip+βi

)
.

According to the property ECC(z)[0] = 0, in the above hash we extend the range
of α to [L + 1]t without affecting the result. Under this design, we define the
following classes of hash functions:

Definition 4.4. For any t′ ∈ [t], define the class HR,t,t′
as follows.

HR,t,t′
=

{
HR,t

α ,β : α′ ∈ ([L + 1] \ {0})t′
, β′ ∈ Z

t′
p , α� = (α

′�,0�), β� = (β
′�,0�)

}
,

where 0	 = (0, 0, . . . , 0) ∈ Z
t−t′
p , i.e., padding 0’s to match the dimension t.

Furthermore, define HR,t = ∪t′∈[t]HR,t,t′
.

Intuitively, for a fixed t′, if the index (α,β) is chosen randomly from the set
([L+1]\{0})t×Z

t
p, then the function HR,t behaves like h‖,t′

as we elaborate next.

Observe that we can view HR,t
α ,β as a hash that embeds the vector h

‖,t′

α ,β ∈ Z
t′
p

into the ring R. From our setting that ECC(z)[0] = 0, the padded 0’s will result
in cancelled terms in HR,t, i.e., xip+ECC(z)[0] − xip = 0 for every i ∈ [t′ + 1, t].
Moreover, we notice that different coordinates in the output vector of h‖,t′

will
not interfere – the i-th coordinate of the vector, namely hαi,βi

(z), corresponds

Ring-Based Identity Based Encryption 177

to the ring element xip+ECC(z)[αi] − xip+βi . As both ECC(z)[αi] and βi take
values between 0 and p − 1, our design guarantees that (xip+ECC(z)[αi] − xip+βi)
would not interfere with (xjp+ECC(z)[αi] − xjp+βi) for i �= j. Formally we prove
the following lemma.

Lemma 4.5. For any code ECC : D → Z
L
p with relative distance Υ , ring R with

dimension n such that tp ≤ n, Then for any t′ ≤ t, the hash function family
HR,t,t′

as in Definition 4.4 has following properties:

1 For any element z1 ∈ D, Pr
H∈HR,t,t′

[
H(z1) = 0

]
= (1/p)t′

.

2 For any distinct elements z1 �= z2 ∈ D, we have

Pr
H∈HR,t,t′

[
H(z1) = 0|H(z2) = 0

]
< (1 − Υ)t′

.

We defer the proof of this lemma in full version of this paper.

Two Further Important Properties. It is important to point out two further
important properties that will be used in our IBE analysis.

– (Obliviousness) The computation of the hash HR,t
α ,β is oblivious to the choice

of (α,β). That is to say, for any t′ ≤ t and any choice of (α,β) ∈ ([L + 1] \
{0})t × Z

t
p

the way to compute HR,t
α ,β remains the same. This is extremely important for

our IBE design and proof of security.
– (Invertibility) We notice that if HR,t(z) �= 0, then it is also invertible in the

ring Rq for any prime q ≡ 3 mod 8 and q ≥ 2t. This is because ‖HR,t(z)‖2 ≤√
2t ≤ √

q. By Lemma 2.7, any element with norm less than
√

q is invertible
in Rq for this type of prime q.

4.2 Homomorphic Evaluation of the Partitioning Function

To homomorphically evaluate the hash function, we first identify the high
level goal: given input encodings {Encode(xαi)}i∈[t], Encode

(∑
i∈[t] x

ip+βi

)

and a hash input z ∈ D in the clear, our task is to output an encoding
Encode

(
HR,t

α ,β (z)
)
.

To achieve this, we first observe that we can re-write the hash function as

HR,t
α ,β (z) = −

∑
i∈[t]

xip+β i +
∑
i∈[t]

∑
j∈[L+1]

(
j

?
= αi

)
xip+ECC(z)[j],

where
(
j

?= αi

)
outputs 1 if the equality holds and otherwise 0. Recall that we

index the codeword by [1, L] and we set ECC(z)[0] = 0 for any z ∈ D.
As the input z and iterators i, j are in the clear, the only non-trivial homo-

morphic computation is the equality test
(
j

?= αi

)
. The reader at this point

178 P. Abla et al.

might already observe that this is what we achieved in the prior Construc-
tion 3.3, if we further have L + 1 ≤ m (as our equality test function natu-
rally only supports comparison of parameters in [m]). However, our application
would require longer codewords, i.e., L = mη > m + 1 for some η > 1, so this
direct approach would not work. To solve this issue, we consider input encodings
{Encode(αi,i′)}i∈[t],i′∈[η] where (αi,0, . . . ,αi,(η−1)) is considered as the m-ary

representation of αi ∈ [L + 1] \ {0}. To test whether j
?= αi for j ∈ [L + 1] \ {0},

we can first compute the m-ary representation of j as (j0, . . . , jη−1) and then
check whether ji′ = αi,i′ for every i′ ∈ [η].

Using this insight, we present the procedure formally. To work under the
syntax of (PubEval,TrapEval), we define the hash function in the following form
where the computation is in the clear:

Definition 4.6 (Hash Function for Homomorphic Evaluation). Let R be
some cyclotomic ring with degree n being a power of 2, q be an integer, Rq =
R/qR and ECC be an error correcting code mapping D → Z

L
p, satisfying the

constraint tp ≤ n and further L + 1 ≤ mη. Suppose the function Equalβ(xα)
parametered by β outputs 1 ∈ Zq if the input xα satisfying α = β and 0 ∈ Zq

otherwise. Define function Fz({αi,i′}i∈[t],i′∈[η], β̃) parameterized by z ∈ D as: on
input {αi,i′}i∈[t],i′∈[η] ∈ [m]t×η, β̃ ∈ Rq, the function computes as follows.

– For each j ∈ [L + 1], denote j’s m-ary representation as (j[0], . . . , j[η − 1]).
– For each i ∈ [t], j ∈ [L + 1], compute bi,j =

∏
i′∈[η] Equalj[i′](x

αi,i′).
– Output −β̃ +

∑
i∈[t],j∈[L+1] bi,j · xip+ECC(z)[j].

Under the above notation, we present the homomorphic evaluation procedures.

Construction 4.7. Given (PubEval,TrapEval) for {Equalβ(·)}β∈[m] (either in
the plain or CRS model; ref. Sections 3.2 and 3.3) as subroutine, we construct
(PubEval,TrapEval) for {Fz}z∈D (in the plain or CRS model, respectively) as:

PubEval
({

{bαi,i′ }i∈[t],i′∈[η], bβ̃

}
, Fz

)
:

1 For i ∈ [t], j ∈ [L + 1], i′ ∈ [η], (homomorphically) compute

bi,j,i′ =

{
PubEval(bαi,0 ,Equalj[0]) i′ = 0,

PubEval(bαi,i′ ,Equalj[i′]) · g−1
b

(
bi,j,(i′−1)

)
i′ ≥ 1.

Then, let bi,j := bi,j,(η−1)

2 Output bH := −bβ̃ +
∑

i∈[t],j∈[L+1] bi,j · xip+ECC(z)[j]

TrapEval
(
a,

{{
Rαii′

}
i∈[t],i′∈[η]

⊂ Rk×k
q ,Rβ̃ ∈ Rk×k

q

}
, (xα , β̃), Fz

)
:

1 For i ∈ [t], j ∈ [L + 1], i′ ∈ [η], (homomorphically) compute

R′
i,j,i′ := TrapEval

(
a, {Rαi,i′ }, (xαi,i′),Equalj[i′]

)
.

Ring-Based Identity Based Encryption 179

2 For i′ ∈ [η], let bi,j,i′ be the vector evaluated in PubEval algorithm with bαi,i′ =
a · Rαii′ + xαi,i′ · gb, and recursively compute

Ri,j,i′ =

{
R′

i,j,0 i′ = 0,

R′
i,j,i′ · g−1

b (bi,j,i′−1) + Equalj[i′](x
αi,i′) · Ri,j,i′−1 i′ ≥ 1.

Then let Ri,j := Ri,j,(η−1).
3 Output RH := −Rβ̃ +

∑
i∈[t],j∈[L+1] Ri,j.

We can easily calculate the expansion factor for the above (PubEval,TrapEval)
for the family {Fz}z∈D, assuming we have (PubEval,TrapEval) that is δ-
expanding for the family {Equalj}j∈[m], either in the plain or CRS model. We
present the detailed analysis in full version of this paper.

Moreover, we notice that for the case η = 1, i.e., L + 1 ≤ m, we do not
need to do the m-ary decomposition, and thus can obtain a better expanding
factor by avoiding several layers of homomorphic multiplications. By combining
Theorems 3.4 and 3.6 with the above construction, we can obtain the following
corollary, showing the existence of the algorithms (PubEval,TrapEval) respect to
the function family {Fz}z∈D in both plain and CRS models.

Corollary 4.8. Consider parameters tp ≤ n and L + 1 ≤ mη and others as
stated in Definition 4.6. Then there exist an algorithm pair (PubEval,TrapEval)
with following two properties:

1. If η = 1, the algorithms are (L + 1)tmn(kb)2-expanding in the plain model,
and Õ(tLmkb2

√
nk)-expanding in the CRS model for the family {Fz}z∈D.

2. If η > 1, the algorithms are (L + 1)tmn2(kb)3η-expanding in the plain model,
and Õ(tLmnk2b3η)-expanding in the CRS model for the family {Fz}z∈D.

Alternatively, if we use the bit-wise equality test computation (i.e., Equal′β())
as the underlying building block, then by Theorems 3.7 with the above construc-
tion, we can obtain the following corollary.

Corollary 4.9. Consider parameters tp ≤ n and others as stated in Defi-
nition 4.6. There exist an algorithm pair (PubEval,TrapEval) that are (L +
1)tnkb log m-expanding in the plain model, and Õ(tLb

√
nk log m)-expanding in

the CRS model for the family {Fz}z∈D.

5 IBE Design and Analysis

Now we present the design and improvement of analysis of IBE.

5.1 Construction

Our IBE construction uses the building block – algorithms (PubEval,TrapEval)
for the function class {Fz}z∈D as Construction 4.7. We note that the function
class requires an error correcting code ECC : {0, 1}� → Z

L
p where L + 1 ≤ mη.

Next we present the construction.

180 P. Abla et al.

Construction 5.1. For identity space ID = {0, 1}� and message space M =
{0, 1}n, we define IBE scheme Π = (Setup,KeyGen,Enc,Dec) as follows:

Setup(1λ) : On input security parameter 1λ, the Setup algorithm does:
1. Sample (a,Ta) ← TrapGen(n, k, ρ, q), where a ∈ Rk

q .

2. Choose ηt + 1 random ring vectors, i.e., bi,j
$←− Rk

q for i ∈ [t], j ∈ [η],

bβ
$←− Rk

q , and a random ring element u
$←− Rq.

3. Sample a PRF key K as the CRS for the homomorphic evaluation.
4. Output the master keys as: mpk = (a, (bi,j)i∈[t],j∈[η], bβ , u,K),msk = Ta .

KeyGen(mpk,msk, id): On input the master keys mpk,msk and an identity id ∈
ID, the KeyGen algorithm does the following:
1. Define Fid as the function as in Definition 4.6 with index id.
2. Compute bid = PubEval

({bi,j}i∈[t],j∈[η], bβ , Fid

)
.

3. Sample r ∈ R2k
q by SampleLeft(a, bid,T a , u, σ1), satisfying r	 ·

[
a
bid

]

= u.

4. Output skid = r as a secret key of id.
Enc(mpk, id,m): On input mpk, id and message m ∈ M, the algorithm does:

1. Set μ = m0 + m1x + · · · + mn−1x
n−1 ∈ Rq.

2. Compute bid = PubEval({bi,j}i∈[t],j∈[η], bβ , Fid).

3. Sample s
$←− Rq, and sample e1,e2 ← (DCoeffs

Zn,σ2
)k and e3 ← DCoeffs

Zn,σRLWE
.

4. Compute c0 = u · s + e3 + � q
2� · μ, and c1 =

[
a
bid

]

· s +
[

e1

e2

]

.

5. Output the ciphertext ct = (c0, c1) ∈ Rq × R2k
q .

Dec(mpk, skid, ct) On input the master public key mpk, the secret key skid = r
and ciphertext ct = (c0, c1), the decryption algorithm does the following:
1. Output m′ = � 2

q ·Coeffs(c0 −r	 ·c1)� mod 2, where the rounding function
�·� is applied coefficient-wise.

Correctness. Correctness of our IBE scheme is captured by the following The-
orem. We defer the proof of it in full version of our paper.

Theorem 5.2. For any positive number ω, and ring modulus q ≥ 5(σRLWE · ω +
σ1σ2

√
2nk ·ω), the IBE scheme Π presented in construction 5.1 is correct except

with probability 2−2nk+2 + 4e−πω2
.

5.2 Security

In this section, we analyze security of our IBE construction. Below we first present
a theorem for a reduction from RLWE to IBE with concrete parameters.

We first define and recall several notations. Let ECC : {0, 1}� → Z
L
p with

relative distance Υ be the underlying error correcting code of the function family
{Fid}id∈ID. We denote c = 1/(1−Υ). For our instantiations, we have the relations
L + 1 ≤ mη and p > c > p/w for some small w ∈ R, which can be set between
[2, λ] depending on the selection of the code. We denote εs as a small positive

Ring-Based Identity Based Encryption 181

real regarding the smoothing parameter involved in SampleLeft and SampleRight
algorithms. Asymptotically, we would set εs = negl(λ), and concretely εs =
2−3λ, ensuring that the parameter ε defined below satisfies ε = negl(λ) or ε ≤
1

22λ . Intuitively, this means the statistical distance incurred in the sampling
algorithms (in the scheme and proof of security) would be negligible or bounded
by ε ≤ 1

22λ . Then we have the following theorem.

Theorem 5.3. Given any (T, α, β)-adversary A making Q′ key queries against
ExptIBE

A (1λ), there exists a (T ′, α′, β′)-adversary B against ExptRLWE
B (1n, k +

1, q, ψ), such that T ′ ≤ T + min{O
(

Q′pwt′−1

(2β−1)2

)
, (Lp)t′}, α′ ≥ (5−2β)α

36Q′pwt′−1 − 1
2ε,

and |β′− 1
2 | ≥ 1

2

(
11−6β

8 β − (5−2β

36Q′pwt′−1ε
− 1)−1

)
− 1

4 , where ε = k

2
nk
4

+(Q′(nk)2+

1)8εs, t′ = �logc(3Q′)�.
As discussed in the introduction, our analysis improves the running time of the
artificial abort technique of Waters [37]. We present the proof below.

Proof. Let A be a (T, α, β)-adversary who makes Q′ key queries against the
IBE game of ExptIBE

A (1λ), and our goal is to construct a RLWE adversary B
that satisfies the parameters as the theorem statement. Before presenting the
concrete construction of B, we first define several hybrids, from which the design
idea of B naturally reveals.

Hybrid 0: In this hybrid, A plays the original security experiment ExptIBE
A (1λ).

Hybrid 1: In this hybrid, A plays a slightly modified security experiment
ExptIBE

A (1λ)′ where the challenger has an additional ability to send a ⊥ mes-
sage to A at any step, and then A would immediately abort upon receiving
this message. The particular modified experiment is defined as follows:

– The setup phase is identical to ExptIBE
A (1λ) except that the challenger

chooses a random partitioning function H
$←− HR,t,t′

as Definition 4.4,
where t′ = �logc(3Q′)�. Particularly, the challenger would sample random
vectors α′ ∈ [L+1]t

′
,β′ ∈ Z

t′
p , denotes α = (α′,0) ∈ [L+1]t,β = (β

′
,0) ∈

Z
t
p, and finally sets and keeps the hash function:

H(id) = Fid(α, β) = HR,t
α ,β (id) =

∑
i∈[t]

(xip+ECC(id)[α i] − xip+β i).

– The challenger responds to identity queries and issues the challenge
ciphertext exactly as in ExptIBE

A (1λ). Let id1, · · · , idQ′ be the identities
where the attacker queries and let id∗ be the challenge identity, which is
not in {id1, · · · , idQ′}.

– In the final phase, adversary A might output a bit b′ as its guess or might
have aborted at some prior step. If the adversary does not abort, then
the challenger does the abort check and artificial abort as follow:
1. Abort check: the challenger checks if:

H(id) �= 0 for all id ∈ Q′, and H(id∗) = 0.

If the condition does not hold, challenger sends ⊥ to A, and A will
abort the game upon receiving ⊥.

182 P. Abla et al.

2. Artificial abort: the challenger samples a bit Γ ∈ {0, 1} such that
Pr[Γ = 1] = 1 − γ̃(id∗, id1, · · · , idQ′) where γ̃(·) is defined as follows:

• Define γ to be the probability as follow:

γ = Pr
H∈HR,t,t′

[
H(idi) �= 0 for all i ≤ Q′, and H(id∗) = 0

]
. (3)

• If O
(

log(2β−1)·log(γ∗)
(2β−1)2γ∗

)
< (Lp)t′

, then the challenger samples

O
(

log(2β−1)·log(γ∗)
(2β−1)2γ∗

)
pairs of (α′,β′) and computes the hash val-

ues of HR,t
α,β (∗) for the identities (id1, · · · , idQ′ , id∗) to compute

an estimate γ′ of γ, where γ∗ = 2
9Q′pwt′−1 . Otherwise, challenger

computes the exact value of γ by enumerating all choices of α, β’s
of the hash function for (id1, · · · , idQ′ , id∗). Notice that there are
(Lp)t′

choices of (α,β). Set γ′ = γ.
• If γ∗ ≤ γ′, challenger sets γ̃(id∗, id1, · · · , idQ′) = γ∗/γ′, otherwise

sets γ̃(id∗, id1, · · · , idQ′) = 1.
If Γ = 1 the challenger sends ⊥ to A, and then A aborts the game.
In this case we say that the challenger aborted the game due to an
artificial abort.

Hybrid 2: In this hybrid, A plays ExptIBE
A (1λ)′ the same as Hybrid 1 except for

changing the way of generating the public vectors {bi,j}i∈[t],j∈[η], bβ . Here,
the challenger chooses αi ∈ [L + 1] for i ∈ [t] as Hybrid 1, and addi-
tionally Ri,j ,Rβ ← [−ρ, ρ]k×k

R for i ∈ [t], j ∈ [η]. For each i ∈ [t], the
challenger further decomposes αi ∈ [L + 1] into the m-ary representation
(αi,0, . . . ,αi,(η−1)). Then define the public matrices as follows:

b�
i,j = a� · Ri,j + xα i,j · g�

b and b�
β = a� · Rβ +

∑
i∈[t]

xip+β i · g�
b .

Hybrid 3: In this hybrid, A plays ExptIBE
A (1λ)′ the same as Hybrid 2 except that

we change the way to generate the public vector a and to respond the secret
key queries. Formally, the challenger samples a

$←− Rk
q uniformly at random

instead of running TrapGen algorithm. On the other hand, to respond a secret
key query for id, the challenger first computes

Rid = TrapEval(a, {Ri,j}i∈[t],j∈[η],Rβ , (α, β), Fid).

By the homomorphic property, we know that b	
id =

PubEval
({bi,j}i∈[t],j∈[η], bβ , Fid

)
= a	 · Rid + Fid(α,β) · g	

b . Then the chal-
lenger runs

r ← SampleRight(a,Rid, u, Fid(α,β), gb,Tgb
, σ)

satisfying [a	|b	
id] · r = u mod q. Finally, the challenger outputs the secret

key skid = r ∈ R2k
q .

Ring-Based Identity Based Encryption 183

Hybrid 4: In this hybrid, A plays ExptIBE
A (1λ)′ the same as Hybrid 3 except for

the way that challenge ciphertext (c∗
0, c

∗
1) is generated. The challenger first

chooses s
$←− Rq, x ← (DCoeffs

Zn,σRLWE
)k and sets v = a · s + x ∈ Rk

q . Then, the
challenger samples e3 ← DCoeffs

Zn,σRLWE
, and sets the challenge ciphertext as

c∗
0 = u · s + e3 + �q

2
�μ and c∗

1 = ReRand
(
[Ik|Rid∗]	,v, σRLWE, σ3

)
,

where Ik is the identity matrix in Rk×k and σ3 = σ2
2σRLWE

. The syntax of the
re-randomization algorithm is defined in full version of this paper.

Hybrid 5: In this hybrid, A plays ExptIBE
A (1λ)′ the same as Hybrid 4 except

for the way that the challenge ciphertext is generated. Here, the challenger
first chooses random c0 from Rq and random v′ from Rk

q , and samples x ←
(DCoeffs

Zn,σRLWE
)k. Then challenger sets the challenge ciphertext as

c∗
0 = c0 + �q

2
�μ and c∗

1 = ReRand
(
[Ik|Rid∗]	,v, σRLWE, σ3

)
,

where v = v′ +x, and σ3 is defined as in Hybrid 4. As c0 is uniformly random
and independent of c∗

1, it serves as a one-time pad that perfectly hides μ.
Thus the advantage of the adversary in this hybrid is exactly 0.

Next we are going to analyze the adversary’s advantage in each hybrid. Sim-
ilar as the previous analysis, we denote (Ti, αi, βi) as A’s running time, non-
abort probability, and successfully conditional guessing probability in Hybrid i
for 0 ≤ i ≤ 5. We note that (T0, α0, β0) = (T, α, β) by the condition of the
theorem, and β5 = 1/2 as the message is hidden by an one-time pad in Hybrid 5.
Particularly, we derive the following lemmas. Due to space limit, we defer the
proofs of Lemma 5.4, 5.5, 5.6 in full version of our paper.

Lemma 5.4. T1 = T0 + min
{

O
(

log(2β−1)·log(γ∗)
(2β−1)2γ∗

)
, (Lp)t′

}
, α1 ≥ αγ∗ · (1 −

2β−1
4), and β1 ≥ (

1 − 3
8 (2β − 1)

) · β, where γ∗ = 2
9Q′pwt′−1 .

Lemma 5.5. T1 = T4, α4 ≥ α1 − ε and β4 ≥ β1 − ε/(α1 − ε).

Lemma 5.6. There exists a (T ′, α′, β′)-adversary B against ExptRLWE
B (1n, k +

1, q, ψ) such that T ′ ≤ T4+O
(

log(2β−1)·log(γ∗)
(2β−1)2γ∗

)
, α′ ≥ α4/2 and β′ ≥ β4/2+1/4,

where γ∗ = 2
9Q′pwt′−1 .

Combining Lemma 5.4, 5.5 and Lemma 5.6, it’s easy to verify that
T ′ ≤ T + min{O(log(2β−1)·log(γ∗)

(2β−1)2γ∗), (Lp)t′}, α′ ≥ 1
2 (αγ∗ · (1 − 2β−1

4) − ε) ≥
(5−2β)α

36Q′pwt′−1 − 1
2ε and β′ ≥ 1

2 ((1 − 6β−3
8)β − (γ∗α(1 − 2β−1

4)/ε − 1)−1) + 1
4 ≥

1
2

(
11−6β

8 β − (5−2β

36Q′pwt′−1ε
− 1)−1

)
+ 1

4 , and thus we have that |β′ − 1/2| ≥
1
2

(
11−6β

8 β − (5−2β

36Q′pwt′−1ε
− 1)−1

)
− 1

4 . This completes the proof. ��

184 P. Abla et al.

5.3 Asymptotic and Concrete Parameters

We also describe how to set both asymptotic and concrete parameters for our
IBE scheme in the full version of this paper. Due to space limit, we summarize
the results as follows:

Corollary 5.7 (Asymptotic Parameterization). Assume RLWE is hard for
parameters n = Θ(λ), 1/α := σRLWE/q = 1/poly(λ). Then Construction 5.1
is an adaptively secure IBE. The reductions cost (T ′, ε′) satisfies T ′ = T +
min {O (pt log(pt) · log(1/ε)/ε) , (Lp)t}, ε′ ≥ O

(
ε/λ

1
κ Q

)
, where T and ε are the

running time and advantage of an IBE adversary, who makes Q key queries.

Corollary 5.8 (Concrete Parameterization). Assume the RLWE is
max{λ +

⌈�logc(3Q)� · 1
κ log n

⌉
+ 10,

⌈�logc(3Q)� · κ+4
κ log n + log(1ε)

⌉
+ 10}-bit

hard for parameters n, q, σRLWE, where c = 1/(1−Υ) = κ
√

n/(κ+3), and ε is the
advantage of an IBE adversary. Then Construction 5.1 is an adaptively secure
IBE, and can achieve λ-bit security.

Acknowledgement. We would like to thank the anonymous reviewers of TCC 2021
for their insightful advices. Feng-Hao Liu and Zhedong Wang are supported by an
NSF Award CNS-1657040 and an NSF Career Award CNS-1942400. Part of this work
was done while Zhedong Wang was a postdoc at Florida Atlantic University. Parhat
Abla and Han Wang are supported by the National Natural Science Foundation of
China under Grant Number NSFC61772516 and the National Key R&D Program of
China under Grant Number 2020YFA0712303, and Shandong Provincial Key Research
and Development Program under Grant Number 2019JZZY020127. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the sponsors.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptology. 9(3), 169–203 (2015). https://bitbucket.org/malb/
lwe-estimator/src/master/

3. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

4. Apon, D., Fan, X., Liu, F.-H.: Vector encoding over lattices and its applications.
Cryptology ePrint Archive, Report 2017/455 (2017). http://eprint.iacr.org/2017/
455

5. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

6. Beame, P.W., Cook, S.A., Hoover, H.J.: Log depth circuits for division and related
problems. SIAM J. Comput. 15(4), 994–1003 (1986)

https://doi.org/10.1007/978-3-642-13190-5_28
https://bitbucket.org/malb/lwe-estimator/src/master/
https://bitbucket.org/malb/lwe-estimator/src/master/
https://doi.org/10.1007/978-3-662-44371-2_17
http://eprint.iacr.org/2017/455
http://eprint.iacr.org/2017/455

Ring-Based Identity Based Encryption 185

7. Bellare, M., Ristenpart, T.: Simulation without the artificial abort: simplified proof
and improved concrete security for waters IBE scheme. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 407–424. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 24

8. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

11. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

12. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

13. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 14

14. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE,
leakage resilience and circular security from new assumptions. In: Nielsen, J.B.,
Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 20

15. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, pp. 1–12. ACM (January 2014)

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

17. Cheon, J.H., Takagi, T. (eds.): ASIACRYPT 2016. LNCS, vol. 10032. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6

18. Döttling, N., Garg, S.: From selective IBE to Full IBE and selective HIBE. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 13

19. Gentry, C.: Practical identity-based encryption without random oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006). https://doi.org/10.1007/11761679 27

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.), 40th ACM STOC,
pp. 197–206. ACM Press (May 2008)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-642-01001-9_24
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-319-78381-9_20
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-53890-6
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/11761679_27
https://doi.org/10.1007/978-3-642-40041-4_5

186 P. Abla et al.

22. Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13190-5

23. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

24. Katsumata, S.: On the untapped potential of encoding predicates by arithmetic
circuits and their applications. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017.
LNCS, vol. 10626, pp. 95–125. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70700-6 4

25. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53890-6 23

26. Lai, Q., Liu, F.-H., Wang, Z.: Almost tight security in lattices with polynomial
moduli – PRF, IBE, all-but-many LTF, and more. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 652–681. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 22

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

28. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

29. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

30. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 3–28.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 1

31. Nielsen, J.B., Rijmen, V. (eds.): EUROCRYPT 2018. LNCS, vol. 10820. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-78381-9

32. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.), 37th ACM STOC, pp. 84–93. ACM Press
(May 2005)

33. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryp-
tion based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol.
5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10366-7 36

35. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. In: 17th
ACM STOC, pp. 458–463. ACM Press (May 1985)

36. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

37. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/978-3-642-13190-5
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-319-70700-6_4
https://doi.org/10.1007/978-3-319-70700-6_4
https://doi.org/10.1007/978-3-662-53890-6_23
https://doi.org/10.1007/978-3-030-45374-9_22
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-319-78381-9_1
https://doi.org/10.1007/978-3-319-78381-9
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-10366-7_36
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/11426639_7

Ring-Based Identity Based Encryption 187

38. Yamada, S.: Adaptively secure identity-based encryption from lattices with asymp-
totically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49896-5 2

39. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 161–193. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 6

40. Zhang, J., Chen, Yu., Zhang, Z.: Programmable hash functions from lattices:
short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 11

https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-662-49896-5_2
https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1007/978-3-662-53015-3_11

Cryptographic Shallots: A Formal
Treatment of Repliable Onion Encryption

Megumi Ando1(B) and Anna Lysyanskaya2

1 MITRE, Bedford, MA 01730, USA
megumi ando@alumni.brown.edu

2 Brown University, Providence, RI 02912, USA

Abstract. Onion routing is a popular, efficient, and scalable method
for enabling anonymous communications. To send a message m to Bob
via onion routing, Alice picks several intermediaries, wraps m in multiple
layers of encryption—a layer per intermediary—and sends the resulting
onion to the first intermediary. Each intermediary peels off a layer of
encryption and learns the identity of the next entity on the path and
what to send along; finally Bob learns that he is the recipient and recov-
ers the message m.

Despite its wide use in the real world, the foundations of onion
routing have not been thoroughly studied. In particular, although two-
way communication is needed in most instances, such as anonymous
Web browsing or anonymous access to a resource, until now no defini-
tions or provably secure constructions have been given for two-way onion
routing. Moreover, the security definitions that existed even for one-way
onion routing were found to have significant flaws.

In this paper, we (1) propose an ideal functionality for a repliable
onion encryption scheme; (2) give a game-based definition for repliable
onion encryption and show that it is sufficient to realize our ideal func-
tionality; and finally (3), our main result is a construction of repliable
onion encryption that satisfies our definitions.

1 Introduction

Suppose Alice wants to send a message to Bob, anonymously, over a point-to-
point network such as the Internet. What cryptographic techniques exist to make
this possible? One popular approach is onion routing: Alice sends her message
through intermediaries, who mix it with other traffic and forward it on to Bob.
To make this approach secure from an adversary eavesdropping on the network,
she needs to wrap her message in several layers of encryption, one for each
intermediary, giving rise to the term onion routing.

As originally proposed by Chaum [10], onion routing meant that Alice
just uses regular encryption to derive each subsequent layer of her onion
before sending it on to the first intermediary. I.e., if the intermediaries
are Carol (public key pkC), David (public key pkD), and Evelyn (public
key pkE), then to send message m to Bob (public key pkB), Alice forms
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 188–221, 2021.
https://doi.org/10.1007/978-3-030-90456-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_7

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 189

her onion by first encrypting m under pkB, then encrypting the result-
ing destination-ciphertext pair (Bob, cB) under pkE , and so forth: O =
EncpkC ((David,EncpkD ((Evelyn,EncpkE ((Bob,EncpkB (m))))))). If we use this
approach using regular public-key encryption, then the “peeled” onion O′ that
Carol will forward to David is going to be a shorter (in bit length) ciphertext
than O, because ciphertexts are longer than the messages they encrypt. So even
if Carol serves as an intermediary for many onions, an eavesdropping adversary
can link O and O′ by their lengths, unless Carol happens to also be the first
intermediary for another onion.

To ensure that all onions are the same length, no matter which layer an inter-
mediary is responsible for, Camenisch and Lysyanskaya [5] introduced onion
encryption, a tailor-made public-key encryption scheme where the adversary
can’t tell how far an intermediary, e.g. Carol, is from an onion’s destination,
even for adversarial Carol. They gave an ideal functionality [6] for uni-directional
onion encryption and a cryptographic scheme that, they argued, UC-realized it.
However, their work did not altogether solve the problem of anonymous commu-
nication via onion routing. As Kuhn et al. [21] point out, there were significant
definitional issues. Also, as, for example, Ando et al. [2,3] show, onion routing
by itself does not guarantee anonymity, as a sufficient number of onions need to
be present before any mixing occurs.

Those issues aside, however, Camenisch and Lysyanskaya (CL) left open the
problem of “repliable” onions. In other words, once Bob receives Alice’s message
and wants to respond, what does he do? This is not just an esoteric issue. If
one wants to do basic online tasks anonymously—e.g., browse the Web incog-
nito or anonymously fill out a feedback form—a two-way channel between the
anonymous original sender (here, Alice) and their interlocutor (here, Bob) needs
to be established. Although CL outlined an initial idea for how to reply to an
onion, they don’t provide any definitions or proofs. Babel [18], Mixminion [14],
Minx [16], and Sphinx [15] all provide mechanisms for the recipient to reply to
the sender but don’t provide any formal definitions or proofs either. This left a
gap between proposed ideas for a repliable onion encryption scheme and rigorous
examinations of these ideas. For instance, Kuhn et al. [21] pointed out a fatal
security flaw in the current state-of-the-art, Sphinx. They also pointed out some
definitional issues in the CL paper and proposed fixes for some of these issues
but left open the problem of formalizing repliable onion encryption.

The Challenge. Let us see why repliable onion encryption is not like other types of
encryption. Traditionally, to be able to prove that an encryption scheme satisfies
a definition of security along the lines of CCA2 security, we direct honest parties
(for example, an intermediary Iris) to check whether a ciphertext (or, for our
purposes, an onion) she has received is authentic or has been “mauled;” Iris
can then refuse to decrypt a “mauled” ciphertext (correspondingly, process a
“mauled” onion). Most constructions of CCA2-secure encryption schemes work
along these lines; that way, in the proof of security, the decryption oracle does
not need to worry about decrypting ciphertexts that do not pass such a validity
check, making it possible to prove security. This approach was made more explicit

190 M. Ando and A. Lysyanskaya

by Cramer and Shoup [12,13] who defined encryption with tags, where tags
defined the scope of a ciphertext, and a ciphertext would never be decrypted
unless it was accompanied by the correct tag.

The CL construction of onion encryption also works this way; it uses CCA2-
secure encryption with tags to make it possible for each intermediary to check
the integrity of an onion it received. So when constructing an onion, the sender
had to construct each layer so that it would pass the integrity check, and in doing
so, the sender needed to know what each layer was going to look like. This was
not a problem for onion security in the forward direction since the sender knew
all the puzzle pieces—the message m and the path (e.g. Carol, David, Evelyn) to
the recipient Bob—so the sender could compute each layer and derive the correct
tag that would allow the integrity check to pass. But in the reverse direction, the
recipient Bob needs to form a reply onion without knowing part of the puzzle
pieces. He should not know what any subsequent onion layers will look like: if he
did, then an adversarial Bob, together with an adversarial intermediary and the
network adversary, will be able to trace the reply onion as it gets back to Alice.
So he cannot derive the correct tag for every layer. The sender Alice cannot do
so either since she does not know in advance what Bob’s reply message is going
to be. So it is not clear how a CCA2-style definition can be satisfied at all.

At the same time, it is important to make sure that reply onions are indis-
tinguishable (even to intermediaries who process them) from forward onions. As
pointed out in prior work [14], this is crucial because “replies may be very rare
relative to forward messages, and thus much easier to trace.” Thus, making sure
that they are hidden among the more voluminous forward traffic is desirable.

Our First Contribution: A Definition of Secure Repliable Onion Encryption. We
define security by describing an ideal functionality FROES in the simplified UC
model [7]; from now on we refer to it as the SUC model. We chose the SUC
model so that our functionality and proof did not have to explicitly worry about
network issues and other subtleties of the full-blown UC model [6].

As should be expected of secure onion routing, FROES represents onions orig-
inating at honest senders or formed as replies to honest senders, using bit strings
that are computed independently on the contents of messages, their destinations,
whether the onion is traveling in the forward direction or is a reply, and identities
and number of intermediaries that follow or precede an honest intermediary. To
process an onion, an honest party P sends it to the functionality FROES, which
then informs P what its role is—an intermediary, the recipient, or the original
sender of this onion. If P is an intermediary, the functionality sends it a string
that represents the next layer of the same onion (also formed independently of
the input). If P is the recipient, P learns the contents of the message m and
whether the onion can be replied to, and can direct the functionality to create
a reply onion containing a reply message r. Finally, if P is the sender of the
original onion, then he learns r, the reply; he also learns to which one of his
previous outgoing onions this one is the response. We describe FROES in Sect. 3.

It is important to note that our functionality FROES is defined in such a way
that it allows for a scheme in which checking that an onion has been “mauled”

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 191

is not entirely the job of each intermediary. More precisely, we think of the onion
as consisting of two pieces. The first piece is the header H that, in FROES, is a
pointer to a data structure that contains the onion’s information. The second
piece is the payload, the content C that can be thought of as a pointer to a
data structure inside FROES that contains the message m. The content C does
not undergo an integrity check until it gets to its destination. This is how we
overcome the challenge (above) of having a definition that enables replies.

Our Second Contribution: A Game-Style Definition of Secure Repliable Onion
Encryption. Although UC-style definitions of security are a good way to capture
the security properties of a novel cryptographic object such as secure repliable
onion encryption, they can be difficult to work with. The SUC model makes the
job easier, but it is still cumbersome to prove that a construction SUC-realizes
an ideal functionality, especially one as involved as FROES. So to make it easier,
we provide a game-style definition, called “repliable-onion security” in Sect. 4.

This definition boils down to a game between an adversary and a challenger.
The challenger generates the key pairs for two participants under attack: a
sender S and an honest intermediary I. Similar to CCA2-security for public-
key encryption, the challenger also responds (before and after the creation of a
challenge onion) to the adversary’s queries to S and I; i.e. the adversary may
send onions to the parties under attack and learn how these onions are peeled.
The adversary then requests that a challenge repliable onion be formed by S;
the adversary picks the recipient R for this onion, as well as the message m to be
routed to R, and the identities and public keys of all the intermediaries on the
path from S to R (other than S and I) and the return path from the recipient
to the sender. The honest intermediary I must appear somewhere on this path:
either (a) I is on the forward path from S to R, or (b) I is the recipient, or
(c) I is on the return path from R to S. The challenger then tosses a coin, and
depending on the outcome, forms the challenge onion in one of two ways; the
adversary’s job to win the game is to correctly guess the outcome of the coin
toss. If the coin comes up heads, the challenger forms the onion correctly, using
the routing path provided by the adversary. If it comes up tails, then the chal-
lenger makes a “switch:” he forms two unrelated onions, one from S to I, and
the other from I back to S; the details depend on whether this is case (a), (b),
or (c). He then patches up the oracles for S and I so as to be able to pretend
that the challenge onion was formed correctly. For details, see Sect. 4.

In Sect. 5, we show that our game-based definition is sufficient to SUC-realize
FROES and that its non-adaptive variant is necessary: any repliable onion encryp-
tion scheme SUC-realizing FROES will satisfy it.

Here is how we overcome the definitional challenge of having a CCA2-style
definition while enabling replies. When forming a repliable onion, the sender S
will generate not just the onion to send on to the first intermediary, but, as a
byproduct of forming that onion, will generate all the onion layers—to be precise,
the header Hi and the content Ci of the ith onion layer for every i—on the path
from himself to the recipient R. However, in the return direction, S is unable to
know in advance the content of the onion (otherwise the recipient cannot send a

192 M. Ando and A. Lysyanskaya

return message); but the sender can still form just the header parts {Hi} of those
onion layers. So it is the headers that must satisfy CCA2-style non-malleability,
while the content accompanying the header can be “mauled” on its way to its
destination, be it the recipient R, or, in the case of a reply onion, the original
sender S. However, upon arrival to its destination, any “mauled” content should
be peeled to ⊥.

Our Main Contribution: Realizing Secure Repliable Onion Encryption. We
resolve the problem that CL left open fifteen years ago of constructing prov-
ably secure repliable onion encryption. Namely, we give a scheme, which we
call shallot encryption, for repliable onion encryption. Our scheme is based on
a CCA2-secure cryptosystem with tags, a strong PRP (in other words, a block
cipher), and a collision-resistant hash function.

In a nutshell, here is how our construction works. As we explained above, we
split up the onion into two pieces, the header H and the content C. H contains
(in layered encryption form) the routing information and symmetric keys that
are needed to process C. C contains the message and, in case this is a forward
onion, instructions for forming the reply onion; this part is wrapped in layers of
symmetric encryption. This way, the original sender Alice can form the headers
for all the layers of the reply onion even though she does not know the contents of
the reply in advance; Bob’s contribution to the reply onion is just the content C.
Each intermediary is responsible for peeling a layer off of H, learning its key k,
and applying a strong PRP keyed by k to the contents C. The adaptive security
properties guarantee that H cannot be “mauled,” but checking the integrity of
C is postponed until the onion gets to its destination—recipient Bob or original
sender Alice—who check it using a MAC key. This is also why our scheme is
called shallot encryption: the layered structure of the resulting onion resembles
a shallot! (Shallots are a sub-family of onions.) See Sect. 6 for details.

Related Work. Onion routing and mixes were introduced by David Chaum in
1981 [10]. Since then, tremendous interest from applied security researchers
resulted in numerous implementations [11,14,22,23].

Tor [14,17] is the most widely used tool for anonymizing Internet com-
munications; according to statistics shared by the Tor Project (https://www.
torproject.org/), an estimated two million users use Tor daily. Tor’s approach is
not, strictly speaking, onion encryption as defined here because no public keys
are used for encryption; also, its live connection design is vulnerable to traffic
analysis [19,24,25].

Despite its practical relevance and widely used implementations, the theo-
retical foundations of onion routing are somewhat shaky. None of the imple-
mentation papers cited above provided definitions or proofs of security. In 2005,
Camenisch and Lysyanskaya (CL) provided the first formal definition of secure
onion encryption [5]; this was done in Canetti’s UC framework [6]. They also
gave a game-based definition (onion-security) that they claimed was equivalent
to one in the UC model and the first provably secure onion encryption scheme.
CL mentioned the possibility of having a reply option (as did Chaum), but their
formal treatment did not extend to it.

https://www.torproject.org/
https://www.torproject.org/

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 193

In a recent paper, Kuhn et al. [21] found a mistake in CL’s game-based
definition. In a nutshell, CL’s onion-security game proceeded as follows: An
adversary attacking an honest participant P is given P ’s public key and specifies
the input to the algorithm for forming an onion. This input includes the identities
and public keys of all the intermediaries and the final recipient and the contents
of the message m; P is somewhere on the routing path. The challenger either
responds with a correctly formed onion or with an onion whose routing path is
cut off at P , i.e., for the latter type, P is the recipient of a random unrelated
message m′. Kuhn et al. pointed out that, although this property indeed hides
where the onion is headed after P , it does not hide where the onion has been
before it got to P . Thus, CL’s proof that their onion-security definition was
sufficient to UC-realize Fonion had a missing step, which Kuhn et al. found.
Kuhn et al. also showed how to use this unfortunate theoretical mistake to attack
Sphinx [15]. In addition to pointing out this flaw, Kuhn et al. proposed a new
game-based definition that implied the realizability of CL’s ideal functionality
Fonion. However, they do not tackle repliable onions.

2 Repliable Onion Encryption: Syntax and Correctness

Here, we give the formal input/output (I/O) specification for a repliable onion
encryption scheme. In contrast to the CL I/O specification for uni-directional
onion encryption scheme [5], a repliable onion encryption scheme contains an
additional algorithm, FormReply, for forming return onions. This algorithm
allows the recipient of a message contained in a repliable onion to respond to
the anonymous sender of the message without needing to know who the sender
is.

In this paper, an onion O is a pair, consisting of the (encrypted) content C
and the header H, i.e., O = (H,C). The maximum length of a path of an onion,
be it the forward path or the return path, is N ; we assume that N is one of the
public parameters pp. The algorithm for forming onions, FormOnion, also takes
as one of its parameters, the label �. This is so that when the sender receives a
reply message m′ along with the label �, the sender can identify to which message
m′ is responding.

Definition 1 (Repliable onion encryption scheme I/O). The set Σ =
(G,FormOnion,ProcOnion,FormReply) of algorithms satisfies the I/O specifica-
tion of a repliable onion encryption scheme for the label space L(1λ), the message
space M(1λ), and a set P of router names if:

– G is a probabilistic polynomial-time (p.p.t.) key generation algorithm. On
input the security parameter 1λ (written in unary), the public parame-
ters pp, and the party name P , the algorithm G returns a key pair, i.e.,
(pk(P), sk(P)) ← G(1λ, pp, P).

– FormOnion is a p.p.t. algorithm for forming onions. On input
i. a label � ∈ L(1λ) from the label space,
ii. a message m ∈ M(1λ) from the message space,

194 M. Ando and A. Lysyanskaya

iii. a forward path P→ = (P1, . . . , Pd) (d stands for destination),
iv. the public keys pk(P→) associated with the parties in P→,
v. a return path P← = (Pd+1, . . . , Ps) (s stands for sender), and
vi. the public keys pk(P←) associated with the parties in P←,
the algorithm FormOnion returns a sequence O→ = (O1, . . . , Od) of
onions for the forward path, a sequence H← = (Hd+1, . . . , Hs) of
headers for the return path, and a key κ, i.e., (O→,H←, κ) ←
FormOnion(�,m, P→, pk(P→), P←, pk(P←)). Note: the key κ contains some
state information that the sender of the onion might need for future refer-
ence; a scheme can still satisfy our definition if κ = ⊥.

– ProcOnion is a deterministic polynomial-time (d.p.t.) algorithm for pro-
cessing onions. On input an onion O, a router name P , and the secret
key sk(P) belonging to P , the algorithm ProcOnion returns (role, output), i.e.,
(role, output) ← ProcOnion(O,P, sk(P)). When role = I (for “intermediary”),
output is the pair (O′, P ′) consisting of the peeled onion O′ and the next desti-
nation P ′ of O′. When role = R (for “recipient”), output is the message m for
recipient P . When role = S (for “sender”), output is the pair (�,m) consisting
of the label � and the reply message m for sender P .

– FormReply is a d.p.t. algorithm for replying to an onion. On input a reply
message m ∈ M(1λ), an onion O, a router name P , and the secret key sk(P)
belonging to P , the algorithm FormReply returns the onion O′ and the
next destination P ′ of O′, i.e., (O′, P ′) ← FormReply(m,O,P, sk(P)). Note:
FormReply may output (⊥,⊥) if P is not the correct recipient of O.

2.1 Onion Evolutions, Forward Paths, Return Paths and Layerings

Here, we define what it means for a repliable onion encryption scheme to be
correct. Before we do this, we first define what onion evolutions, paths, and
layerings are; the analogous notions for the unrepliable onion encryption scheme
were introduced by Camenisch and Lysyanskaya [5].

Let Σ = (G,FormOnion,ProcOnion,FormReply) be a repliable onion encryp-
tion scheme for the label space L(1λ), the message space M(1λ), and the set
P of router names. Let H ⊆ P be parties with honestly formed keys. For any
P �∈ H, let sk(P) = ⊥ (i.e., secret keys that were not formed honestly are not
well-defined for the purposes of this experiment).

Let O1 = (H1, C1) be an onion received by party P1 ∈ H, not necessarily
formed using FormOnion.

We define a sequence of onion-location pairs recursively as follows: Let d be
the first onion layer of (H1, C1) that when peeled, produces either “R” or “S” (if
it exists, otherwise d = ∞). For all i ∈ [d−1], let (rolei+1, ((Hi+1, Ci+1), Pi+1)) =
ProcOnion((Hi, Ci), Pi, sk(Pi)). Let s = d if peeling (Hd, Cd) produces “S.”
Otherwise, let m ∈ M(1λ) be a reply message from the message space,
and let ((Hd+1, Cd+1), Pd+1) = FormReply(m, (Hd, Cd), Pd, sk(Pd)). Let s be
the first onion layer of (Hd+1, Cd+1) that when peeled, produces either “R”
or “S” (if it exists, otherwise s = ∞). For all i ∈ {d + 1, . . . , s − 1}, let
(rolei+1, ((Hi+1, Ci+1), Pi+1)) = ProcOnion((Hi, Ci), Pi, sk(Pi)).

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 195

We call the sequence E(H1, C1, P1,m) = ((H1, C1, P1), . . . , (Hs, Cs, Ps)) of
onion-location pairs the “evolution of the onion (H1, C1) starting at party P1

given m as the reply message.” The sequence P→(H1, C1, P1,m) = (P1, . . . , Pd)
is its forward path; the sequence P←(H1, C1, P1,m) = (Pd+1, . . . , Ps) is its return
path; and the sequence L(H1, C1, P1,m) = (H1, C1, . . . , Hd, Cd,Hd+1, . . . , Hs) is
its layering.

Definition 2 (Correctness). Let G, FormOnion, ProcOnion, and FormReply
form a repliable onion encryption scheme for the label space L(1λ), the message
space M(1λ), and the set P of router names.

Let N be the upper bound on the path length (in public parameters pp). Let
P = (P1, . . . , Ps), |P | = s ≤ 2N be any list (not containing ⊥) of router names
in P. Let d ∈ [s] be any index in [s] such that d ≤ N and s − d + 1 ≤ N .
Let � ∈ L(1λ) be any label in L(1λ). Let m,m′ ∈ M(1λ) be any two messages
in M(1λ).

For every party Pi in P , let (pk(Pi), sk(Pi)) ← G(1λ, pp, Pi) be Pi’s key
pair. Let P→ = (P1, . . . , Pd), and let pk(P→) be a shorthand for the public keys
associated with the parties in P→. Let P← = (Pd+1, . . . , Ps), and let pk(P←) be
a shorthand for the public keys associated with the parties in P←.

Let ((H1, C1), . . . , (Hd, Cd),Hd+1, . . . , Hs, κ) be the output of FormOnion on
input the label �, the message m, the forward path P→ = (P1, . . . , Pd), the
public keys pk(P→) associated with the parties in P→, the return path P← =
(Pd+1, . . . , Ps), and the public keys pk(P←) associated with the parties in P←.

The scheme Σ is correct if with overwhelming probability in the security
parameter λ,

i. Correct forward path.
– P→(H1, C1, P1,m

′) = (P1, . . . , Pd).
– For every i ∈ [d] and content C such that |C| = |Ci|, P→(Hi, C, Pi,m

′) =
(Pi, . . . , Pd).

ii. Correct return path.
– P←(H1, C1, P1,m

′) = (Pd+1, . . . , Ps).
– For every i ∈ {d + 1, . . . , s}, reply message m′′, and content C such that

|C| = |Ci|, P→(Hi, C, Pi,m
′′) = (Pd+1, . . . , Ps).

iii. Correct layering. L(H1, C1, P1,m
′) = (H1, C1, . . . , Hd, Cd,Hd+1, . . . ,

Hs),
iv. Correct message. ProcOnion((Hd, Cd), Pd, sk(Pd)) = (R,m),
v. Correct reply message. ProcOnion((Hs, Cs), Ps, sk(Ps)) = (S, (�,m′))

where (Hs, Cs) are the header and content of the last onion in the evolu-
tion E(H1, C1, P1,m

′).

Note that we define onion evolution, (forward and return) paths, and layering
so that we can articulate what it means for an onion encryption scheme to be
correct. We define correctness to mean that how an onion peels (the evolution,
paths, and layerings) exactly reflects the reverse process of how the onion was
built up. Thus, for our definition to make sense, both ProcOnion and FormReply
must be deterministic algorithms.

196 M. Ando and A. Lysyanskaya

3 FROES: Onion Routing in the SUC Framework

Here, we provide a formal definition of security for a repliable onion encryption
scheme. We chose to define security in the simplified universal composability
(SUC) model [7] as opposed to the universal composability (UC) model [6] as
this choice greatly simplifies how communication is modeled. Additionally, since
SUC-realizability implies UC-realizability [7], we do not lose generality by sim-
plifying the model in this manner. In the SUC model, the environment Z can
communicate directly with each party P by writing inputs into P ’s input tape
and by reading P ’s output tape. The parties communicate with each other and
also with the ideal functionality through an additional party, the router R.

3.1 Ideal Functionality FROES

In this section, honest parties are capitalized, e.g., P , Pi; and corrupt parties are
generally written in lowercase, e.g., p, pi. An onion formed by an honest party
is honestly formed and is capitalized, e.g., O, Oi; whereas, an onion formed by a
corrupt party is generally written in lowercase, e.g., o, oi. Recall that an onion
O is a pair, consisting of the content C and the header H, i.e., O = (H,C).

How should we define the ideal functionality of a repliable onion encryption
scheme? Honestly formed onions in an onion routing protocol should mix at hon-
est nodes. This property is what enables anonymity from the standard adversary
who can observe the network traffic on all communication links. Ideally, onions
should mix (i) even if the distances from their respective origins or the distances
to their respective destinations differ, and (ii) regardless of whether they are for-
ward or return onions. Here, we define the ideal functionality so that a scheme
that realizes it necessarily satisfies properties (i) and (ii) above.

Intuitively, onions mix iff onion layers are (computationally) unrelated to
each other. Let O′ be the onion we get from peeling the onion O. If the values of
O and O′ are correlated with each other, then O cannot mix with other onions.
Conversely, if the values O and O′ are unrelated to each other, then O can mix
with other onions. However, the adversary necessarily knows how some onions
layers are linked together. If the corrupt party p peels onion o, getting peeled
onion o′, then p knows that o and o′ are linked.

Thus, we settle on our idea for an ideal functionality FROES (ROES, for “repli-
able onion encryption scheme”) as follows: Let a segment of a routing path be a
subpath of the path consisting of a sequence of corrupt parties possibly ending
with a single honest party. Note that if there are two consecutive honest parties,
(Alice, Bob) on the routing path, then (Bob) is a segment of the path. Each
routing path can be uniquely broken up into a sequence (s1, . . . , su) of non-
overlapping segments, such that each segment si contains exactly one honest
participant, except for the last segment that may end in an adversarial recipient.
For i �= j, onion layers corresponding to segment si should be computationally
unrelated to the layers corresponding to segment sj .

Thus, the ideal functionality FROES forms the onion layers for each segment
of a routing path separately and independently from each other. FROES internally

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 197

keeps tracks of how these layers are linked using two data structures, OnionDict
and PathDict. If FROES forms an onion layer O for Alice (the last party of a
segment) that should peel to an onion layer O′ for Bob (the first party of the
next segment), then it keeps track of this link in OnionDict; the output (O′,Bob)
is stored under the label (Alice, O). FROES initially forms and stores the onion
links only for the forward path and stores the return path in PathDict; onion links
for the return path are generated later on when they are needed. To produce
the onion layers for a segment, FROES runs the algorithm SampleOnion, which it
gets from the ideal adversary A.

Sometimes, the environment Z instructs an ideal party to process an onion O
(or form a reply to an onion O), not stored in either OnionDict or PathDict. If
the header of O is not honestly formed, then FROES processes it according to the
algorithm ProcOnion (or FormReply) supplied by A. Otherwise, if O is the result
of “mauling” just the content of an honestly formed onion X that peels to X ′,
then FROES returns the onion O′ with the same header as X ′. To do this, it runs
the algorithm CompleteOnion, also provided by A.

Suppose honest sender Sandy sent an onion to adversarial recipient Robert.
Robert responds; eventually an honest intermediary Iris will receive an onion O
which contains Robert’s response to Sandy. When FROES is called by Iris with
onion O, it will be tipped off to the fact that O = (H,C) is a return onion
from Robert to Sandy because the header H will be stored in PathDict. At this
point, FROES knows what path the onion will have to follow from now on and
will be able to create the correct onion layers using SampleOnion and store them
in OnionDict. Once the return onion makes its way to Sandy, Sandy will ask
FROES to process it; at this point, FROES will need to know the return message
r that Robert sent to Sandy. The algorithm RecoverReply serves that purpose:
from Robert’s onion O (received by Iris) it recovers his response r.

So, at setup, the algorithms ProcOnion, FormReply, SampleOnion
CompleteOnion, and RecoverReply are provided to FROES by A.

Figure 1 gives a summary of the ideal functionality FROES for repliable onion
encryption. Below, we provide a formal, detailed description of FROES.

Setting Up. The ideal functionality FROES handles requests from the environ-
ment on behalf of the ideal honest parties. During setup, FROES gets the following
from the ideal adversary A. For each algorithm in items (iii)-(vi) below, we first
describe the input of the algorithm in normal font and then, in italics, provide
a brief preview of how the algorithm will be used. FROES only runs for a poly-
nomial number of steps which is specified in the public parameters pp and can
time out on running these algorithms from the ideal adversary.

i. The set P of participants.
ii. The set Bad of corrupt parties in P (see Remark 4).
iii. The repliable onion encryption scheme’s G, ProcOnion, and FormReply algo-

rithms. G is used for generating the honest parties’ keys. ProcOnion is used
for processing onions formed by corrupt parties. FormReply is used for reply-
ing to onions formed by corrupt parties.

iv. The p.p.t. algorithm SampleOnion(1λ, pp, p→, p←,m) that takes as input the
security parameter 1λ, the public parameters pp, the forward path p→, the

198 M. Ando and A. Lysyanskaya

IdealSetup

1: Get from ideal adversary A:
P, Bad, G, ProcOnion,
FormReply, SampleOnion,
CompleteOnion, RecoverReply.

2: Initialize dictionaries OnionDict
and PathDict.

IdealFormOnion(→, P ←)

1: Break forward path into
segments.

2: Run SampleOnion on segments
to generate onion layers.

3: Store onion layers in OnionDict.
4: Store label and (rest of) return

path in PathDict.

IdealProcOnion((H, C), P)

1: If (P, H) is “familiar,” i.e., stored in one of our
dictionaries

- If (P, H, C) in OnionDict, return next stored
onion layer.

- Else if exists (P, H, (X = C)) in OnionDict,
return output of CompleteOnion and stored
next party (if stored next party exists), or “⊥”
(if next party doesn’t exist).

- Else if () in PathDict, return output of
IdealFormOnion on message recovered using
RecoverReply and label and path stored in
PathDict.

2: Else if (P, H) is not familiar, return output of
ProcOnion((H, C), P, sk(P)).

IdealFormReply(m, (H, C), P)

1: If (P, H, C) in PathDict, return output of
IdealFormOnion on m and label and path stored in
PathDict.

2: Else, return output of
FormReply(m, (H, C), P, sk(P)).

Fig. 1. Summary of ideal functionality FROES.

(possibly empty) return path p←, and the (possibly empty) message m. The
routing path (p→, p←) = (p1, . . . , pi, Pi+1) is always a sequence (p1, . . . , pi)
of adversarial parties, possibly ending in an honest party Pi+1. FROES fails
if SampleOnion ever samples a repeating header or key.

SampleOnion is used to compute an onion to send to p1 which will be
“peelable” all the way to an onion for Pi+1. If the return path p← is non-
empty and ends in an honest party Pi+1, SampleOnion produces an onion o
for the first party p1 in p→ and a header H for the last party Pi+1 in p←.
Else if the return path p← is empty, and the forward path p→ ends in an
honest party Pi+1, SampleOnion produces an onion o for the first party p1 in
p→ and an onion O for the last party Pi+1 in p→. Else if the return path p←

is empty, and the forward path p→ ends in a corrupt party pi, SampleOnion
produces an onion o for the first party p1 in p→.

v. The p.p.t. algorithm CompleteOnion(1λ, pp,H ′, C) that takes as input 1λ,
pp, the the party P , the header H ′, and the content C, and outputs an
onion O = (H ′, C ′). FROES fails if CompleteOnion ever produces a repeating
onion. CompleteOnion produces an onion (H ′, C ′) that resembles the result
of peeling an onion with content C.

vi. The d.p.t. algorithm RecoverReply(1λ, pp, O, P) that takes as input 1λ, pp,
the onion O, and the party P , and outputs a label � and a reply message m.
This algorithm is used for recovering the label � and reply message m from
the return onion O that carries the response from a corrupt recipient to an
honest sender.

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 199

Let sid denote the session id specific the parameters that the setup, above,
creates. F sid

ROES denotes the session of FROES with this sid. F sid
ROES generates a

public key pair (pk(P), sk(P)) for each honest party P ∈ P\Bad using the key
generation algorithm G and sends the public keys to their respective party. (If
working within the global PKI framework, each party then relays his/her key
to the global bulletin board functionality [9].) F sid

ROES also creates the following
(initially empty) dictionaries:

– The onion dictionary OnionDict supports:
• A method put((P,H,C), (role, output)) that stores under the label
(P,H,C): the role “role” and the output “output.” Should participant P
later direct F sid

ROES to process onion O = (H,C), it will receive the values
(role, output) stored in OnionDict corresponding to (P,H,C).
• A method lookup(P,H,C) that looks up the entry (role, output) corre-
sponding to the label (P,H,C). This method will be used when P directs
F sid

ROES to process onion O = (H,C).
– The return path dictionary PathDict supports:

• A method put((P,H,C), (P←, �)) that stores under the label (P,H,C):
the return path P← and the label �. This method is used to store the
return path P← for the onion corresponding to label �.
• A method lookup(P,H,C) that looks up entry (P←, �) corresp. to the
label (P,H,C). Should P later direct F sid

ROES to either reply to the onion
(H,C) or to process an onion with header H, the stored return path P←

and label � will be used to form the rest of the return onion layers.

These data structures are stored internally at and accessible only by F sid
ROES.

Forming an Onion. After setup, the environment Z can instruct an honest
party P to form an onion using the session id sid, the label �, the message m,
the forward path P→, and the return path P←. To form the onion, P forwards
the instruction from Z to F sid

ROES (via the router R).
The goal of the ideal functionality F sid

ROES is to create and maintain state
information for handling an onion O (the response to the “form onion” request).
O should be “peelable” by the parties in the forward path P→, internally associ-
ated with the return path P←, and for the purpose of realizing this functionality
by an onion encryption scheme, each layer of the onion should look “believ-
able” as onions produced from running FormOnion, ProcOnion, or FormReply.
Importantly, O and its onion layers should reveal no information to A:

– Each onion routed to an honest party Pi is formed initially with just (Pi) as
the routing path and, therefore, reveals only that it is for Pi. When forming
the onion, no message is part of the input; this ensures that the onion is
information-theoretically independent of any message m.

– For every party pi or Pi in the forward path, let next(i) denote the index of
the next honest party Pnext(i) following pi. For example, if the forward path
is (P1, p2, p3, P4, P5, p6, p7), then next(2) = 4.

Conceptually, each onion routed to an adversarial party pi is formed by
“wrapping” an onion layer for each corrupt party in (pi, . . . , pnext(i)−1) (or

200 M. Ando and A. Lysyanskaya

(pi+1, . . . , p|P →|) if no honest party after pi exists) around an onion formed
for an honest party Pnext(i) (or a message if no honest party after pi exists).
This reveals at most the sequence (pi, . . . , pnext(i)−1, Pnext(i)) (or the sequence
(pi, . . . , p|P →|) and the message m if no honest party after pi exists). How
this wrapping occurs depends on the internals of the SampleOnion algorithm
provided by the ideal adversary.

To ensure these, FROES partitions the forward path P→ into segments:
Let Pf (f , for first) be the first honest party in the forward path. The first

couple of segments are (p1, . . . , pf−1, Pf), (pf+1, . . . , pnext(f)−1, Pnext(f)), etc.
For each segment (pi, . . . , pj−1, Pj), the ideal functionality F sid

ROES sam-
ples onions (hi, ci) and (Hj , Cj) using the algorithm SampleOnion, i.e.,
((hi, ci), (Hj , Cj)) ← SampleOnion(1λ, pp, (pi, . . . , pj−1, Pj), (),⊥). As we
explained when introducing the SampleOnion input/output structure, (hi, ci)
is the onion that is intended for the participant pi ∈ Bad; once the adversarial
participants take turns peeling it, the innermost layer (Hj , Cj) can be processed
by the honest participant Pj .

If the recipient Pd is honest, this process will create all the onions
in the forward direction. Suppose that the recipient pd is corrupt. Let Pe

(e, for end) be the last honest party in the forward path P→, and let
Pnext(d) denote the first honest party in the return path P←. F sid

ROES also
runs SampleOnion(1λ, pp, (pe+1, . . . , pd), (pd+1, . . . , pnext(d)−1, Pnext(d)),m); as we
explained when introducing the SampleOnion input/output structure, this pro-
duces an onion oe+1 and a header Hnext(d).

For every honest intermediary party Pi in the forward path, F sid
ROES stores

under the label (Pi,Hi, Ci) in the onion dictionary OnionDict the role “I,” the
(i+1)st onion layer (Hi+1, Ci+1), and destination Pi+1. The (d+1)st onion layer
doesn’t exist for the innermost layer (Hd, Cd) for an honest recipient Pd. In this
case, F sid

ROES stores just the role “R” and the message m.
If the recipient Pd is honest, F sid

ROES stores the entry ((Pd,Hd, Cd), (P←, �)) in
the dictionary PathDict. Otherwise if the recipient pd is corrupt, F sid

ROES stores the
entry ((Pnext(d),Hnext(d), ∗), (p←, �)) in PathDict where p← = (pnext(d)+1, . . . , Ps).
“∗” is the unique symbol that means “any content.”

Example. The recipient P7 is honest. The forward path is P→ =
(P1, p2, p3, P4, P5, p6, P7), and the return path is P← = (p8, p9, P10, p11, P12).
In this case, the first segment is (P1), and the second segment is (p2, p3, P4) and
so on; and

(⊥, (H1, C1)) ←SampleOnion(1λ, pp, (P1), (),⊥)

((h2, c2), (H4, C4)) ←SampleOnion(1λ, pp, (p2, p3, P4), (),⊥)

(⊥, (H5, C5)) ←SampleOnion(1λ, pp, (P5), (),⊥)

((h6, c6), (H7, C7)) ←SampleOnion(1λ, pp, (p6, P7), (),⊥).

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 201

F sid
ROES stores in OnionDict and PathDict:

OnionDict.put((P1,H1, C1), (I, ((h2, c2), p2)))
OnionDict.put((P4,H4, C4), (I, ((H5, C5), P5)))
OnionDict.put((P5,H5, C5), (I, ((h6, c6), p6)))
OnionDict.put((P7,H7, C7), (R,m)),
PathDict.put((P7,H7, C7), ((p8, p9, P10, p11, P12), �)).

After updating OnionDict and PathDict, F sid
ROES returns the first onion O1 =

(H1, C1) to party P (via the router R). Upon receiving O1 from F , P outputs
the session id sid and O1.

Processing an Onion. After setup, the environment Z can instruct an honest
party P to process an onion O = (H,C) for the session id sid. To process the
onion, party P forwards the instruction to the ideal functionality F sid

ROES (via the
router R).

Case 1: There is an entry (role, output) under the label (P,H,C) in OnionDict.
In this case, F sid

ROES responds to P (via the router R) with (role, output).
Case 2: There is no entry under the label (P,H,C) in OnionDict, but there

exists X �= C such that there is an entry (I, ((H ′,X ′), P ′)) under the label
(P,H,X) in OnionDict. This means that, P has received an onion with a
properly formed header, but an improperly formed content. This is where we
use the algorithm CompleteOnion to direct FROES how to peel this “mauled”
onion. Recall that CompleteOnion was provided by the adversary at setup.
F sid

ROES uses it to sample an onion (H ′, C ′) ← CompleteOnion(1λ, pp,H ′, C).
FROES then stores the new entry (I, ((H ′, C ′), P ′)) under the label (P,H,C)
in OnionDict, and responds to P with (I, ((H ′, C ′), P ′)).

Case 3: There is no entry under the label (P,H,C) in OnionDict, but there
exists X �= C such that there is an entry (R,m) under the label (P,H,X) in
OnionDict. This means that P is the intended recipient of the onion (H,X) but
instead just received the properly formed header H with “mauled” content
C. In this case, F sid

ROES responds to P with (R,⊥).
Case 4: There is no entry under the label (P,H,C) in OnionDict, but there

exists X �= C such that there is an entry (S, (�,m)) under the label (P,H,X)
in OnionDict. This means that P was the original sender of an onion, and
header H is the correct header for his reply onion; but the content C got
“mauled” in transit: the correct reply onion was supposed to have content X
(according to in OnionDict). F sid

ROES responds to P with (S,⊥).
Case 5: There is no entry starting with (P,H) in OnionDict, but there is an

entry (P←, �) under the label (P,H, ∗) in PathDict. This means that P is the
first honest intermediary on the return path of an onion whose recipient was
adversarial. FROES needs to compute the reply message m′ that the adversarial
recipient meant to send back to the honest sender. This is the purpose of the
RecoverReply algorithm that the adversary provides to FROES at setup. Let
m′ be the message obtained by running RecoverReply(1λ, pp, O, P).

202 M. Ando and A. Lysyanskaya

Next, FROES computes the layers of the reply onion. If P← is not empty,
F sid

ROES runs its “form onion” code (Sect. 3.1) with (�,m′) as the “message,”
P← as the forward path, and the empty list “()” as the return path. (The
code is run with auxiliary information for correctly labeling the last party
in P← as the sender.) F sid

ROES responds to P with (I, ((H ′, C ′), P ′)), where
(H ′, C ′) is the returned onion, and P ′ is the first party in P←.

Otherwise if P← is empty, then P is the recipient of the return onion, so
F sid

ROES responds to P with (S, (�,m′)).
Case 6: F sid

ROES doesn’t know how to peel O (i.e., there is no entry starting with
(P,H) in OnionDict and no entry under (P,H, ∗) in PathDict). In this case,
O does not have an honestly formed header; so, F sid

ROES responds to P with
(role, output) = ProcOnion(1λ, pp, O, P, sk(P)) (recall that ProcOnion is an
algorithm supplied by the ideal adversary at setup).

The cases above cover all the possibilities. Upon receiving the response
(role, output) from F sid

ROES, P outputs the session id sid and (role, output).

Forming a Reply. After setup, the environment Z can instruct an honest
party P to form a reply using the session id sid, the reply message m, and an
onion O = (H,C). To form the return onion, P forwards the instruction to the
ideal functionality F sid

ROES (via the router R).

Case 1: There is an entry (P←, �) under the label (P,H,C) in PathDict. Then
F sid

ROES runs its “form onion” code (see Sect. 3.1) with (�,m) as the “message,”
P← as the forward path, and the empty list “()” as the return path. (The
code is run with auxiliary information for correctly labeling the last party in
P← as the sender.) F sid

ROES responds to P (via the router R) with the returned
onion O′ and the first party P ′ in P←.

Case 2: No entry exists for (P,H,C) in PathDict. Then P is replying to an
onion formed by an adversarial party, so F sid

ROES replies to P with (O′, P ′) =
FormReply(1λ, pp,m,O, P, sk(P)). Upon receiving the response (O′, P ′) from
F sid

ROES, P outputs the session id sid and (O′, P ′).

3.2 SUC-realizability of FROES

Recall what it means for a cryptographic scheme to SUC-realize FROES [7].

Ideal Protocol. In the ideal onion routing protocol, the environment Z interacts
with the participants by writing instructions into the participants’ input tapes
and reading their output tapes. Each input is an instruction to form an onion,
process an onion, or form a return onion. When an honest party P receives
an instruction from Z, it forwards the instruction to FROES via the router R.
Upon receiving a response from FROES (via R), P outputs the response. Corrupt
parties are controlled by the adversary A and behave according to A. F sid

ROES does
not interact with A after the setup phase. At the end of the protocol execution,
Z outputs a bit b. Let IDEALFROES,A,Z(1λ, pp) denote Z’s output after executing
the ideal protocol for security parameter 1λ and public parameters pp.

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 203

Real Protocol. Let Σ be a repliable onion encryption scheme. The real onion
routing protocol for Σ is the same as the ideal one (described above), except
that the honest parties simply run Σ’s algorithms to form and process onions.
Let REALΣ,A,Z(1λ, pp) denote Z’s output after executing the real protocol.

Definition 3 (SUC-realizability of FROES). The repliable onion encryp-
tion scheme Σ SUC-realizes the ideal functionality FROES if for every p.p.t.
real-model adversary A, there exists a p.p.t. ideal-model adversary S s.t. for
every polynomial-time environment Z, there exists a negligible function ν(λ) s.t.
∣
∣Pr

[

IDEALFROES,S,Z(1λ, pp) = 1
] − Pr

[

REALΣ,A,Z(1λ, pp) = 1
]∣
∣ ≤ ν(λ).

Remark 4. The set Bad of corrupted participants is selected non-adaptively, at
setup time. Adaptive security is notoriously challenging to realize in the standard
model for public-key encryption: As Canetti et al. [8] demonstrated, adaptively
secure encryption requires non-committing encryption. A single-layer onion is
already a public-key ciphertext, so any reasonable formulation of an onion rout-
ing ideal functionality would imply public-key encryption and, thus, would also
require non-committing encryption. Non-committing encryption in the standard
model requires that public keys can only be used once for a single ciphertext
and, thus, is impossible in the standard PKI model. It is possible to realize it
in the random-oracle (RO) model, and so in the RO model, adaptively secure
onion routing may be possible. We leave this for future work, however.

Remark 5. In describing the ideal functionality, we made an implicit assumption
that for every instruction to form an onion, the keys match the parties on the
routing path. However, generally speaking, the environment Z can instruct an
honest party to form an onion using the wrong keys for some of the parties on
the routing path. Using the dictionary OnionDict, it is easy to extend our ideal
functionality to cover this case: the ideal functionality would store in OnionDict,
every onion layer for an honest party, starting from the outermost layer, until
it reaches a layer with a mismatched key. To keep the exposition clean, we will
continue to assume that router names are valid, and keys are as published.

Remark 6. As originally noted by Camenisch and Lysyanskaya [5], the environ-
ment is allowed to repeat the same input (e.g., a “process onion” request) in
the UC framework (likewise, in the SUC framework). Thus, replay attacks are
not only allowed in our model but inherent in the SUC framework. The reason
that replay attacks are a concern is that they allow the adversary to observe
what happens in the network as a result of repeatedly sending an onion over
and over again—which intermediaries are involved, etc.—and that potentially
allows the adversary to trace this onion. Our functionality does not protect from
this attack (and neither did the CL functionality), but a higher-level protocol
can address this by directing parties to ignore repeat “process onion” and “form
reply” requests. Other avenues to address this (which can be added to our func-
tionality, but we chose not to so as not to complicate it further) may include
letting onions time out, so the time frame for repeating them could be limited.

204 M. Ando and A. Lysyanskaya

Remark 7. The way that an ideal adversarial participant interacts with FROES

to form an onion is by creating an onion in any way it wants and sending it over
the network (which, in the SUC model, is controlled by the environment that
writes to the participants’ input tapes and reads their output tapes) to an ideal
honest participant, who then calls FROES to process it. When an ideal honest
party is a recipient of such an onion and replies to it with response r, this falls
under case (2) of the IdealFormReply interface of FROES. The resulting onion is
returned to the ideal honest party who then puts it on its output tape, to be read
by the environment, who, depending on the algorithm FormReply, immediately
learns r without having to route the onion through the network. Thus, FROES

itself does not need any additional interfaces to interact with an ideal adversarial
participant.

4 Repliable-Onion Security: A Game-Based Definition

In the previous section, we gave a detailed description of an ideal functional-
ity FROES of repliable onion encryption in the SUC model. However, given the
complexity of the description, proving that an onion encryption scheme realizes
FROES seems onerous. To address this, we provide an alternative, game-based
definition of security that implies realizability of FROES. We call this definition,
repliable-onion security.

Informally, our repliable-onion security requires that the following three prop-
erties hold: (a) No adversary can tell (with a non-negligible advantage over ran-
dom guessing) whether an honest transmitter of an honestly formed onion is
the sender of the onion or an intermediary on the forward path. (b) Given an
honestly formed onion O received by the recipient, no adversary can tell (with
non-negligible advantage) whether the recipient is replying to O or sending an
onion unrelated to O. (c) No adversary can tell (with non-negligible advantage)
whether an honest transmitter of an honestly formed onion is the sender of the
onion or an intermediary on the return path.

We formalize each of these three security properties by defining three corre-
sponding security games. In each game, the adversary is given oracles for pro-
cessing onions on behalf of the honest parties under attack. The adversary also
selects additional inputs of each game, such as the identities of intermediaries,
the message conveyed by the onion, etc.

In Fig. 2, we give the high-level description of the game ROSecurityGame and
its three variants: (a), (b), and (c). The variants differ only in steps 4 and 5.

Formal Description of ROSecurityGame Variant (a). We now expand
on what we described in Fig. 2 and provide a formal, detailed description of
ROSecurityGame for the first variant, (a).

ROSecurityGame(1λ, Σ,CompleteOnion,A) is parametrized by the
security parameter 1λ, the repliable onion encryption scheme Σ =
(G,FormOnion,ProcOnion,FormReply), the p.p.t. algorithm CompleteOnion,
and the adversary A.

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 205

1: A picks honest parties’ router names I and S. I is the honest intermediary router under
attack, while S is the honest sender under attack.

2: C sets keys for honest parties I and S.
3: A gets access to oracles—O.POI, O.FRI, O.POS, and O.FRS— for processing onions and

replying to them on behalf of I and S.
4: A provides input for the challenge onion: a label , a message m, a forward path

P → = (P1, . . . , Pd), a return path P ← = (Pd+1, . . . , Ps), and keys associated with the
routing path (P →, P ←). If the return path is non-empty, it ends with S so that Ps = S.
I appears somewhere on the routing path so that Pj is the first appearance of I on the
path. The location of Pj determines which variant of the security game the adversary is
playing:
(a) Pj is an intermediary on the forward path (i.e., j < d),
(b) Pj is the recipient (i.e., j = d) or
(c) Pj is on the return path (i.e., j > d).

5: C flips a coin b ←$ {0, 1}. If b = 0, C forms the onion O as specified by A. If b = 1, C
forms the onion O with a “switch” at I and modifies (“rigs”) the oracles accordingly.
(a) To peel the challenge onion O on behalf of forward-path intermediary I, O.POI will

form (in answer to a query from A) a new onion using the remainder of the routing
path. To peel an onion O = O with the same header as the challenge onion, O.POI

uses the algorithm CompleteOnion.
(b) To form a reply to the challenge onion O on behalf of I, O.FRI will form a new

onion using the return path as the forward path (and the empty return path).
(c) To peel the challenge onion O on behalf of the return-path intermediary I, O.POI

will form a new onion using the remainder of the return path as the forward path
(and the empty return path).

6: A once again gets oracle access to O.POI, O.FRI, O.POS, and O.FRS.
7: A guesses b and wins if b = b.

Fig. 2. Summary of the repliable onion security game, ROSecurityGame. The parame-
ters of the game are the security parameter λ, the repliable onion encryption scheme
Σ, the p.p.t. algorithm CompleteOnion and the adversary A.

1. The adversary A picks two router names I, S ∈ P (“I” for intermediary and
“S” for sender) and sends them to the challenger C.

2. The challenger C generates key pairs (pk(I), sk(I)) and (pk(S), sk(S)) for
I and S using the key generation algorithm G and sends the public keys
(pk(I), pk(S)) to A.

3. A is given oracle access to (i) O.POI(·), (ii) O.FRI(·, ·), (iii) O.POS(·), and
(iv) O.FRS(·, ·) where

i–ii. O.POI(·) and O.FRI(·, ·) are, respectively, the oracle for answering “pro-
cess onion” requests made to honest party I and the oracle for answering
“form reply” requests made to I.

iii–iv. O.POS(·) and O.FRS(·, ·) are, respectively, the oracle for answering “pro-
cess onion” requests made to honest party S and the oracle for answering
“form reply” requests made to S.

Since ProcOnion and FormReply are deterministic algorithms, WLOG, the
oracles don’t respond to repeating queries.

4. A chooses a label � ∈ L(1λ) and a message m ∈ M(1λ). A also chooses
names of participants on a forward path P→ = (P1, . . . , Pd), and a return
path P← = (Pd+1, . . . , Ps) such that (i) if P← is non-empty, then Ps = S, and

206 M. Ando and A. Lysyanskaya

(ii) I appears somewhere on P→ before the recipient. For each Pi �∈ {S, I},
A also chooses its public key pk(Pi). A sends to C the parameters for the
challenge onion: �, m, P→, the public keys pk(P→) of the parties in P→, P←

and the public keys pk(P←) of the parties in P←.
5. C samples a bit b ←$ {0, 1}.

If b = 0, C runs FormOnion on the parameters specified by A, i.e.,
((O0

1, . . . , O
0
d),H←, κ) ← FormOnion(�,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest party Pj on the
forward path P→, where Pj is the first appearance of I on the forward path.
C runs FormOnion twice. First, C runs it on input a random label x ←$ L(1λ),
a random message y ←$ M(1λ), the “truncated” forward path p→ =
(P1, . . . , Pj), and the empty return path “(),” i.e., ((O1

1, . . . , O
1
j), (), κ) ←

FormOnion(x, y, p→, pk(p→), (), ()). C then runs FormOnion on a random label
x′ ←$ L(1λ), the message m (that had been chosen by A in step 4), the remain-
der q→ = (Pj+1, . . . , Pd) of the forward path, and the return path P←, i.e.,
((O1

j+1, . . . , O
1
d),H←, κ′) ← FormOnion(x′,m, q→, pk(q→), P←, pk(P←)),

We modify the oracles as follows. Let O1
j = (H1

j , C1
j) and O1

j+1 =
(H1

j+1, C
1
j+1), and let H1

s be the last header in H←. O.POI does the following
to “process” an onion O = (H,C):
i. If O = O1

j and ProcOnion(O,Pj , sk(Pj)) = (R, y), then return
(I, (O1

j+1, Pj+1)).
ii. If O = O1

j and ProcOnion(O,Pj , sk(Pj)) �= (R, y), then fail.
iii. If O �= O1

j but H = H1
j and ProcOnion(O,Pj , sk(Pj)) = (R,⊥), then

return (I, ((H1
j+1,CompleteOnion(H1

j+1, C)), Pj+1)).
iv. If O �= O1

j but H = H1
j and ProcOnion(O,Pj , sk(Pj)) �= (R,⊥), then fail.

O.POS does the following to “process” an onion O:
v. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) = (R,m′) for some
message m′ �= ⊥, then return (S, (�,m′)).

vi. If the header of O is H1
s and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then

return (S,⊥).
vii. If the header of O is H1

s and ProcOnion(O,Ps, sk(Ps)) �= (R,m′) for any
message m′, then fail.

All other queries are processed as before.
C sends to A, the first onion Ob

1 in the output of FormOnion.
6. A submits a polynomially-bounded number of (adaptively chosen) queries to

oracles O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·).
7. Finally, A guesses a bit b′ and wins if b′ = b.

Brief Formal Descriptions of ROSecurityGame Variants (b) and (c).
Variant (b) differs from variant (a) in steps 4 and 5. In step 4, Pj is the recipient
as opposed to an intermediary on the forward path. In step 5, the challenger
still samples a random bit b ←$ {0, 1} and, if b = 0, forms the challenge onion as
specified by the adversary. If b = 1, the challenger runs FormOnion on input a

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 207

random label, a random message, the forward path (provided by the adversary),
and the empty path. The oracle for forming a reply on behalf of I is modified so
that the oracle replies with the output of FormOnion on input a random label,
a random message, the return path (provided by the adversary), and the empty
path “().” For the full description, see AppendixA.

Variant (c) also differs from variant (a) in steps 4 and 5. In step 4, Pj is
an intermediary on the return path (Pd+1, . . . , Ps), i.e., j > d, as opposed to an
intermediary on the forward path (P1, . . . , Pd). In step 5, the challenger still sam-
ples a random bit b ←$ {0, 1} and, if b = 0, forms the challenge onion as specified
by the adversary. If b = 1, the challenger runs FormOnion on input a random
label, a message (provided by the adversary), the forward path (P1, . . . , Pd), and
the subpath (Pd+1, . . . , Pj). The oracle for processing an onion on behalf of I
is modified so that the oracle replies with the output of FormOnion on input a
random label, a random message, the rest of the return path (Pj+1, . . . , Ps), and
the empty path “().” For the full description, see AppendixA.

Definition 8 (Repliable-onion security). A repliable onion encryp-
tion scheme Σ is repliable-onion secure if there exist a p.p.t. algorithm
CompleteOnion and a negligible function ν : N
→ R such that every p.p.t.
adversary A wins the security game ROSecurityGame(1λ, Σ,CompleteOnion,
A) with negligible advantage, i.e.,

∣
∣Pr[A wins ROSecurityGame(1λ, Σ,

CompleteOnion,A)] − 1
2

∣
∣ ≤ ν(λ).

Remark on Definition 8. An onion formed by running a secure onion encryp-
tion scheme and received (resp. transmitted) by an honest party P does not
reveal how many layers are remaining (resp. came before) since the adversary
cannot distinguish between the onion and another onion formed using the same
parameters except with the path truncating at the recipient (resp. sender) P .

5 Repliable-Onion Security ⇒ SUC-Realizability of FROES

Theorem 9. If the onion encryption scheme Σ is correct (Definition 2) and
repliable-onion secure (Definition 8), then it SUC-realizes the ideal functionality
FROES (Definition 3).

To do this, we must show that for any static setting (fixed adversary A,
set Bad of corrupted parties, and public key infrastructure), there exists a sim-
ulator S such that for all Z, there exists a negligible function ν : N
→ R such
that

∣
∣Pr

[

IDEALFROES,S,Z(1λ, pp) = 1
] − Pr

[

REALΣ,A,Z(1λ, pp) = 1
]∣
∣ ≤ ν(λ).

We first provide a description of the simulator S:
Recall that during setup, the ideal adversary (i.e., S) sends to the ideal func-

tionality, (i) the set P of participants, (ii) the set Bad ⊆ P of corrupted parties,
(iii) the onion encryption scheme’s algorithms: G, ProcOnion, and FormReply,
(iv) the algorithm SampleOnion, (v) the algorithm CompleteOnion, and (vi) the
algorithm RecoverReply. (See Sect. 3.1 for the syntax of these algorithms.) In
order for our construction to be secure, the simulator S must provide items

208 M. Ando and A. Lysyanskaya

(i)-(vi) to FROES such that when the ideal honest parties respond to the environ-
ment, one input at a time, the running history of outputs looks like one produced
from running the real protocol using the onion encryption scheme.

To complete the description of S, we must provide internal descriptions of
how the last three items above – SampleOnion, CompleteOnion, and RecoverReply
– work. Since we are in the static setting, we will assume, WLOG, that these
algorithms “know” who is honest, who is corrupt, and all relevant keys. See Fig. 3
for a summary of the simulator.

Send to FROES:

P, Bad, G, ProcOnion, FormReply,
SampleOnion, CompleteOnion,
RecoverReply.

CompleteOnion(H , C)

Let CO be an algorithm such that no
adversary can win ROSecurityGame
with non-negligible probability. Such
an algorithm must exist since Σ is
repliable-onion secure.
CompleteOnion = CO.

SampleOnion(p→, p←, m)

SampleOnion just runs FormOnion on the segments p→
and p← using a random label and, depending on
whether the first segment contains the corrupt
recipient, either the correct message m (if it does) or a
random one (if it doesn’t).

RecoverReply(O, P)

Return the message from running
ProcOnion(O, P, sk(P)).

Fig. 3. Summary of simulator S

Description of Simulator S. We now expand on the summary in Fig. 3.

Sampling an Onion. Let F sid
ROES denote the ideal functionality corresponding to

the static setting. When the ideal functionality F sid
ROES receives a request from the

honest party P to form an onion using the label �, the message m, the forward
path P→, and the return path P←, F sid

ROES partitions the routing path (P→, P←)
into non-overlapping “segments” where each segment is a sequence of adversarial
parties that must end in a single honest party, unless it ends in the adversarial
recipient. (See Sect. 3.1 for a more formal description of these segments.) F sid

ROES

runs the algorithm SampleOnion independently on each segment of the rout-
ing path. Additionally, if the forward path ends in a corrupt party, F sid

ROES runs
SampleOnion on the last segment of the forward path and the first segment of
the return path. Using SampleOnion in this way produces onions with the prop-
erty that onions belonging to different segments are information-theoretically
unrelated to each other.

The algorithm SampleOnion takes as input the security parameter 1λ, the
public parameters pp, the forward path p→, and the return path p←.

Case 0: The routing path (p→, p←) is not a sequence of adversarial parties,
possibly ending in an honest party. In this case, the input is invalid, and
SampleOnion returns an error.

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 209

Case 1: The return path p← is non-empty and ends in an honest
party Pj . In this case, SampleOnion first samples a random label
x ←$ L(1λ) and then runs FormOnion on the label x, the message m
(from the “form onion” request), the forward path p→ = (p1, . . . , pi),
the public keys pk(p→) associated with the parties in p→, the return
path p← = (pi+1, . . . , Pj), and the public keys pk(p←) associated with
the parties in p←. Finally, SampleOnion outputs the first onion o1
and the last header Hj in the output ((o1, . . . , oi), (hi+1, . . . , Hj), κ) ←
FormOnion(1λ, pp, x,m, p→, pk(p→), p←, pk(p←)).

Case 2: The return path p← is empty, and the forward path p→ ends in an
honest party Pi. In this case, SampleOnion first samples a random label
x ←$ L(1λ) and a random message y ←$ M(1λ) and then runs FormOnion
on the label x, the message y, the forward path p→ = (p1, . . . , Pi), the public
keys pk(p→) associated with the parties in p→, the empty return path “(),”
and the empty sequence “()” of public keys. Finally, SampleOnion outputs
the first onion o1 and the last onion Oi in the output ((o1, . . . , Oi), (), κ) ←
FormOnion(1λ, pp, x, y, p→, pk(p→), (), ()).

Case 3: The return path p← is empty, and the forward path p→ ends in a corrupt
party pi. In this case, SampleOnion first samples a random label x ←$ L(1λ)
and then runs FormOnion on the label x, the message m (from the “form
onion” request), the forward path p→ = (p1, . . . , pi), the public keys pk(p→)
associated with the parties in p→, the empty return path “(),” and the empty
sequence “()” of public keys. Finally, SampleOnion outputs the first onion o1 in
the output ((o1, . . . , oi), h←, κ) ← FormOnion(1λ, pp, x,m, p→, pk(p→), (), ()).

Completing an Onion. The environment Z can modify just the content of an hon-
estly formed onion O = (H,X), leaving the header H intact. When Z instructs
an honest party P to process this kind of onion O = (H,C), the ideal function-
ality F sid

ROES runs the algorithm CompleteOnion to produce an onion (H ′, C ′) that
(i) looks like the output of ProcOnion on (H,C) and (ii) has the same header H ′

that F sid
ROES assigned to the peeled onion (H ′,X ′) of (H,X).

Since the onion encryption scheme Σ is repliable-onion secure (Definition 8),
by definition, there exist an algorithm CO and a negligible function ν such that no
adversary can win ROSecurityGame(1λ, Σ,CO,A) with probability greater than
ν(λ). We shall use this algorithm as the simulator’s CompleteOnion algorithm,
i.e., CompleteOnion = CO.

Recovering a Reply Message. The environment Z can instruct an honest party
P to process a return onion O formed by a corrupt recipient pd in response to
an onion from an honest sender; P can be an intermediary party on the return
path or the original sender. In such a situation, the ideal functionality F sid

ROES

runs the algorithm RecoverReply to recover the reply message from O.
The algorithm RecoverReply(1λ, pp, O, P) simply runs ProcOnion(O,P, sk(P))

and returns the message in the output (if it exists). If no message is returned,
then RecoverReply outputs an error.

210 M. Ando and A. Lysyanskaya

Proof Sketch of Theorem 9. We now show that the view that any environment
Z obtains by running the real protocol is indistinguishable from its view when
the honest participants run the ideal protocol FROES with our simulator S.

Proof Idea: An onion encryption scheme SUC-realizes FROES if the environment
cannot distinguish whether an honest onion’s evolution (the sequence of onion
layers) comes from a single call to FormOnion (the real setting), or if it is pro-
duced by FROES. Recall that, to form an honest onion’s evolution, FROES calls
SampleOnion (which, for our simulator, is the same algorithm as FormOnion)
multiple times, each call corresponding to a segment of the onion’s routing path.

Our game-based definition of repliable-onion security has a very similar
requirement: the adversary cannot distinguish whether the evolution of an hon-
estly formed onion comes from a single FormOnion call or from two computation-
ally unrelated FormOnion calls. More precisely, if the game picks b = 0, then no
switch occurs, and the onion layers are formed “honestly,” i.e., via a single call
to FormOnion. If the game picks b = 1, then the onion layers are formed using a
“switch:” the path is broken up into two segments, and for each segment of the
path, the onion layers are formed using separate calls to FormOnion.

At the heart of our proof is a hybrid argument that shows that onion layers
formed using i calls to FormOnion (so they have i− 1 such “switches”) are indis-
tinguishable from those formed by i + 1 such calls. Thus, we show that onion
layers of the real protocol (produced by a single call to FormOnion) are indistin-
guishable from those in the ideal world (produced by FROES that calls FormOnion
separately for each segment of the routing path). Therefore, we conclude that
if an onion encryption scheme is repliable-onion secure, then it SUC-realizes
FROES. See the full version of this paper for the formal proof [1].

Is repliable-onion security necessary to SUC-realize FROES? Let us now
address the converse of the theorem. Given an onion encryption scheme Σ that
SUC-realizes FROES, does it follow that it is correct and repliable-onion secure?

In order to prove that it does, we would have to give a reduction B that acts
as the environment towards honest participants I and S; B’s goal is to determine
whether I and S are running Σ or, instead, using FROES with some simulator S.
B would obtain I’s and S’s public keys from the setup step of the system, and
would pass them on to A. Whenever A issues ProcOnion queries for I and S, B
acts as the environment that sends these onions to I and S.

Next comes the challenge step, and this is where this proof would run into
difficulty. In our repliable-onion security game, it is at this point that A spec-
ifies the names and public keys of the rest of the participants in the system.
But our functionality assumed that this setup was done ahead of time; model-
ing it this way made the functionality more manageable and interacted well
with the SUC model. However, we can show that a modified, non-adaptive
version of repliable-onion security is, in fact, necessary to SUC-realize FROES.
Let NAROSecurityGame(1λ, Σ,CompleteOnion,A) be the ROSecurityGame secu-
rity game modified as follows: instead of waiting until the challenge step to
specify the names and public keys on the routing path of the challenge onion, A
specifies them at the very beginning. Other than that, we define non-adaptive
repliable-onion security completely analogously to repliable-onion security:

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 211

Definition 10 (Non-adaptive repliable-onion security). A repliable
onion encryption scheme Σ is non-adaptive repliable-onion secure if there
exist a p.p.t. algorithm CompleteOnion and a negligible function ν :
N
→ R such that every p.p.t. adversary A wins the security game
NAROSecurityGame(1λ, Σ,CompleteOnion,A) with negligible advantage, i.e.,
∣
∣Pr

[A wins NAROSecurityGame(1λ, Σ,CompleteOnion,A)
] − 1

2

∣
∣ ≤ ν(λ).

Theorem 11 is the closest we can show to the converse of Theorem 9:

Theorem 11. If an onion encryption scheme Σ SUC-realizes the ideal function-
ality FROES (Definition 3) then it is non-adaptive repliable-onion secure (Defini-
tion 10).

Proof. The proof is by a hybrid argument. Let Experiment0(1λ,A) be the adver-
sary’s view in the non-adaptive repliable-onion security game when b = 0. Let I
and S denote the names of the honest parties chosen by A.

Let Hybridreal0(1λ,A) be the same as Experiment0 except in organization.
Here, we split up the NAROSecurityGame challenger into components: one com-
ponent is responsible for executing Σ on behalf of participant S (i.e., generate
S’s keys, process and where possible, reply to onions routed to S, and form the
challenge onion on behalf of S), another is responsible for executing Σ on behalf
of I (i.e. i.e., generate I’s keys and deal with onions routed to I), and the third
component, B carries out everything else, including interacting with A. When
organized this way, it is easy to see that B and A jointly act as the environment
(from the SUC model) for the real-world execution of Σ by the honest partici-
pants S and I. The environment here directs only one of the participants (S) to
ever form an onion: just the one challenge onion. The output of Hybridreal0(1λ,A)
is the adversary’s view.

Let Hybridideal0(1λ,A) be the same as Hybridreal0(1λ,A) except that the real
execution of Σ is replaced with executing FROES. Hybridreal0 and Hybridideal0 are
indistinguishable by the hypothesis. By construction of FROES, the layers of the
sole onion that’s ever created in Hybridideal0(1λ,A) are computed by splitting
the routing path into two segments: one ends in I and the other one in S.

Let us consider another game Hybridideal1(1λ,A). This game is identical to
Hybridideal0(1λ,A) except in how it is internally organized. Here, acting as the
environment responsible for supplying inputs to S, B will cause two onions to
be formed. In case (a), both onions are formed by S: one with I as the recipient,
and the second onion is formed using the rest of the routing path; in case (b), S
sends a non-repliable onion to I who then replies to S by forming a fresh onion;
in case (c), I forms an onion using the first segment of the path, and then a fresh
onion with S as the recipient. The parts that are visible to A are just the onions
themselves, and therefore Hybridideal1(1λ,A) is identical to Hybridideal0(1λ,A).

Next, define Hybridreal1(1λ,A): here, the environment (B acting jointly with
A) interacts with S and I exactly as in Hybridideal1(1λ,A), but S and I are run-
ning Σ instead of FROES with S. By the hypothesis, Hybridreal1(1λ,A) is indis-
tinguishable from Hybridideal1(1λ,A). It is easy to see that Hybridreal1(1λ,A) and
Hybridideal1(1λ,A) are identical when I appears only once in the routing path.

212 M. Ando and A. Lysyanskaya

When I appears more than once in the routing path, the views are indistinguish-
able due to the realizability of FROES.

Finally, let Experiment1(1λ,A) be the adversary’s view in the non-adaptive
repliable-onion security game when b = 1. Hybridreal1(1λ,A) and Experiment1 are
identical by construction. Therefore, we have shown that Experiment1(1λ,A) ≈
Experiment1(1λ,A), and therefore, Σ is non-adaptive repliable-onion secure.

6 Shallot Encryption

In this section, we provide our construction of a repliable onion encryption
scheme dubbed “Shallot Encryption Scheme.” Inspired by the Camenisch and
Lysyanskaya (CL) approach [5], our construction forms each onion layer for
a party P by encrypting the previous layer under a key k which, in turn, is
encrypted under the public key of P and a tag t. Our construction differs from the
CL construction in that the tag t is not a function of the layer’s content. Instead,
authentication of the message happens separately, using a message authentica-
tion code. The resulting object is more like a shallot than an onion; it consists
of two separate layered encryption objects: the header and the content (which
may contain a “bud,” i.e., another layered encryption object, namely the header
for the return onion). We still call these objects “onions” to be consistent with
prior work, but the scheme overall merits the name “shallot encryption.”

Let λ denote the security parameter. Let F(·)(·, ·) be a pseudorandom function
family such that, whenever seed ∈ {0, 1}k, Fseed takes as input two k-bit strings
and outputs a k-bit string. Such a function can be constructed from a regular
one-input PRF in a straightforward fashion.

Let {fk(·)}k∈{0,1}∗ and {gk(·)}k∈{0,1}∗ be block ciphers, i.e., pseudorandom
permutations (PRPs). We use the same key to key both block ciphers: one
({fk(·)}k∈{0,1}∗) with a “short” blocklength L1(λ) is used for forming head-
ers, and the other ({gk(·)}k∈{0,1}∗) with a “long” blocklength L2(λ) is used
for forming contents. This is standard and can be constructed from regular
block ciphers. Following the notational convention introduced by Camenisch and
Lysyanskaya [5], let {X}k denote fk(X) if |X| = L1(λ), or gk(X) if |X| = L2(λ),
and let }X{k correspondingly denote f−1

k (X) or g−1
k (X).

Let E = (GenE ,Enc,Dec) be a CCA2-secure encryption scheme with tags [12],
let MAC = (GenMAC,Tag,Ver) be a message authentication code (MAC), and let
h be a collision-resistant hash function.

Setting Up: Each party Pi forms a public key pair (pk(Pi), sk(Pi)) using
the public key encryption scheme’s key generation algorithm GenE , i.e.,
(pk(Pi), sk(Pi)) ← GenE(1λ, pp, Pi).

Forming a Repliable Onion. Each onion consists of (1) the header (i.e.,
the encrypted routing path and associated keys) and (2) the content (i.e., the
encrypted message).

Forming the Header: In our example, let Alice (denoted Ps) be the sender,
and let Bob (denoted Pd, d for destination) be the recipient. To form a repli-
able onion, Alice receives as input a label �, a message m, a forward path to

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 213

Bob: P→ = P1, . . . , Pd−1, Pd, |P→| = d ≤ N , and a return path to herself:
P← = Pd+1, . . . , Ps−1, Ps, |P←| = s − d + 1 ≤ N . All other participants Pi are
intermediaries.

Let “seed” be a seed stored in sk(Ps). Alice computes (i) an encryption key
ki = Fseed(�, i) for every party Pi on the routing path (P→, P←), (ii) an authenti-
cation key Kd for Bob using GenMAC(1λ) with Fseed(d, �) sourcing the randomness
for running the key generation algorithm, and (iii) an authentication key Ks for
herself using GenMAC(1λ) with Fseed(s, �) sourcing the randomness for running
the key generation algorithm.

Remark: We can avoid using a PRF in exchange for requiring state; an alternative
to using a PRF is to store keys computed from true randomness locally.

The goal of FormOnion is to produce an onion O1 for the first party P1 on
the routing path such that P1 processing O1 produces the onion O2 for the next
destination P2 on the routing path, and so on.

Suppose for the time being that both the forward path and the return path
are of the maximum length N , i.e., d = s − d + 1 = N .

Let O be an onion that we want party P to “peel.” The header of O is a
sequence H = (E,B1, . . . , BN−1). E is an encryption under P ’s public key and
the tag t = h(B1, . . . , BN−1) of the following pieces of information that P needs
to correctly process the onion: (i) P ’s role, i.e., is P an intermediary, or the
onion’s recipient, or the original sender of the onion whose reply P just received;
(ii) in case P is an intermediary or recipient, the encryption key k necessary for
making sense of the rest of the onion; (iii) in case P is the original sender, the
label � necessary for making sense of the rest of the onion; and (iv) in case P is
the recipient, the authentication key K.

If P is an intermediary, it will next process (B1, . . . , BN−1) by inverting
each of them, in turn, using the block cipher’s key k, to obtain the values
}B1{k, . . . , }BN−1{k. The value }B1{k reveals the destination P ′ and the cipher-
text E′ of the peeled onion. For each 1 < j < N , the value }Bj{k is block
(B′)j−1 of the peeled onion, so the header of the peeled onion will begin with
(E′, (B′)1, . . . , (B′)N−2). The final block (B′)N−1 of the header is formed by
computing the inverse of the PRP keyed by k of the all-zero string of length
L1(λ), i.e., (B′)N−1 =}0 . . . 0{k.

Therefore, sender Alice needs to form her onion so that each intermedi-
ary applying the procedure described above will peel it correctly. Using the
keys k1, . . . , kd and Kd, Alice first forms the header Hd = (Ed, B

1
d, . . . , BN−1

d)
for the last onion Od on the forward path (the one to be processed by Bob):
For every i ∈ {1, . . . , N − 1}, let Bi

d = } . . . }0 . . . 0{ki
. . . {kd−1 . The tag td

for integrity protection is the hash of these blocks concatenated together, i.e.,
td = h(B1

d, . . . , BN−1
d). The ciphertext Ed is the encryption of (R, kd,Kd) under

the public key pk(Pd) and the tag td, i.e., Ed ← Enc(pk(Pd), td, (R, kd,Kd)). The
headers of the remaining onions in the evolution are formed recursively. Let

214 M. Ando and A. Lysyanskaya

B1
d−1 = {Pd, Ed}kd−1 ,

Bi
d−1 = {Bi−1

d }kd−1 , ∀i ∈ {2, . . . , N − 1},

td−1 = h(B1
d−1, . . . , B

N−1
d−1),

Ed−1 ← Enc(pk(Pd−1), td−1, (I, kd−1));

and so on. (WLOG, we assume that (Pd, Ed) “fits” into a block; i.e., |Pd, Ed| ≤
L1(λ). A block cipher with the correct blocklength can be built from a standard
one [4,20].)

Forming the Encrypted Content: Alice then forms the encrypted content for Bob.
First, if the return path P← is non-empty, Alice forms the header Hd+1 for the
return onion using the same procedure that she used to form the header H1

for the forward onion, but using the return path P← instead of the forward
path P→ and encrypting (S, �) instead of (R, ks,Ks). That is, the ciphertext Es

of the “innermost” header Hs is the encryption Enc(pk(Ps), ts, (S, �)) rather than
Enc(pk(Ps), ts, (R, ks,Ks)). If the return path is empty, then Hd+1, ks and Ks

are the empty string.
When Bob processes the onion, Alice wants him to receive (i) the message

m, (ii) the header Hd+1 for the return onion, (iii) the keys ks and Ks for forming
a reply to the anonymous sender (Alice), and (iv) the first party Pd+1 on the
return path. So, Alice sets the “meta-message” M to be the concatenation of
m, Hd+1, ks, Ks, and Pd+1: M = (m,Hd+1, ks,Ks, Pd+1).

Alice wants Bob to be able to verify that M is the meta-message, so she
also computes the tag σd = Tag(Kd,M). (WLOG, (M,σd) “fits” exactly into a
block; i.e., |M | ≤ L2(λ).)

The encrypted content Ci for each onion Oi on the forward path is given by:
Ci = {. . . {M,σd}kd

. . . }ki
. See Fig. 4 for a pictorial description of the how the

repliable onion is formed.
We now explain what happens when d �= N , or s − d + 1 �= N : If either d or

s − d + 1 exceed the upper bound N , then FormOnion returns an error. If d is
strictly less than N , the header is still “padded” to N − 1 blocks by sampling
N encryption keys as before. Likewise if s − d + 1 < N , the header is padded
to N − 1 blocks in similar fashion. (Note that the size of each repliable onion is
twice the size of a CL non-repliable onion [5] with maximum path length N .)

Processing a Repliable Onion. Let Carol be an intermediary node on the
forward path from Alice to Bob. When Carol receives the onion Oi = (Hi, Ci)
consisting of the header Hi = (Ei, B

1
i , . . . BN−1

i) and the content Ci, she pro-
cesses it as follows:

Carol first computes the tag ti = h(B1
i , . . . BN−1

i) for integrity protec-
tion and then attempts to decrypt the ciphertext Ei of the header using her
secret key sk(Pi) and the tag ti to obtain her role and key(s), i.e., (I, ki) =
Dec(sk(Pi), ti, Ei). Carol succeeds in decrypting Ei only if the header has not
been tampered with. In this case, she gets her role “I” and the key ki and pro-
ceeds with processing the header and content:

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 215

Step (a). form headers H6, H5, H4 for the return path:

}0 . . . 0{k5}}0 . . . 0{k4{k5Enc(pk(P6), (t6 = h(B6,1, B6,2)), (S))

H6 = (E6 , B6,1 , B6,2)

{P6, E6}k5Enc(pk(P5), (t5 = h(B5,1, B5,2)), (I, k5))

H5 = (E5 , B5,1 , B5,2)

{·}k5

{P5, E5}k4Enc(pk(P4), (t4 = h(B4,1, B4,2)), (I, k4))

H4 = (E4 , B4,1 , B4,2)

{·}k4

Step (b). form headers H3, H2, H1 for the forward path:

}0 . . . 0{k2}}0 . . . 0{k1{k2Enc(pk(P3), t3, (R, k3, K3))

H3 = (E3 , B3,1 , B3,2)

{P3, E3}k2Enc(pk(P2), t2, (I, k2))

H2 = (E2 , B2,1 , B2,2)

{·}k2

{P2, E2}k2Enc(pk(P1), t1, (I, k1))

H1= (E1 , B1,1 , B1,2)

{·}k1
Step (c). form content C1:

M = (m, (k6, K6), P4, H4)

C1= {{{M,Tag(K3, M)}k3}k2}k1

Fig. 4. Steps for forming the first shallot onion O1 = (H1, C1) when the forward path is
P → = (P1, P2, P3), and the return path is P ← = (P4, P5, P6): (a) steps for forming the
headers H6, H5, H4 for the return path, (b) steps for forming the headers H3, H2, H1

for the forward path, and (c) steps for forming the content C1.

Carol first decrypts the first block B1
i of the current header to retrieve the

next destination Pi+1 and ciphertext Ei+1 of the processed header (header of the
next onion), i.e., (Pi+1, Ei+1) = }B1

i {ki
. To obtain the first N − 2 blocks of the

processed header, Carol decrypts the last N−2 blocks of H: Bj
i+1 = }Bj+1

i {ki
for

all j ∈ [N −2]. To obtain the last block of the processed header, Carol “decrypts”
the all-zero string “0 . . . 0:” BN−1

i+1 = }0 . . . 0{ki
. To process the content, Carol

simply decrypts the current content Ci: Ci+1 = }Ci{ki
.

Let David be an intermediary party on the return path. When David receives
the onion Oj , he processes it exactly in the same way that Carol processed the
onion Oi in the forward direction. (Critically, David does not know that he is

216 M. Ando and A. Lysyanskaya

on the return path as opposed to the forward path.) See Fig. 5 for a pictorial
description of the how the onion is processed.

Case (a). processing party Pi is an intermediary:

Oi = ((Ei , Bi,1 , Bi,2), Ci)

(I, ki)

(Pi+1, Ei+1)

0 . . . 0

Bi+1,1 Bi+1,2 Ci+1

Oi+1 = (Hi+1, Ci+i)

Decsk(Pi),h(Bi,1,Bi,2)(·)
}·{ki

}·{ki
}·{ki

}·{ki

Case (b). Pi is the original sender:

Oi = ((Ei , Bi,1 , Bi,2), Ci)

(S,)

m

Decsk(Pi),h(Bi,1,Bi,2)(·)
Decrypt using .

Case (c). Pi is the recipient:

Oi = ((Ei , Bi,1 , Bi,2), Ci)

(R, ki, Ki)

m, (ks, Ks), Pi+1, Hi+1)

To reply: let m , σ = TagKs
(m) .

Ci+1

Decsk(Pi),h(Bi,1,Bi,2)(·)
}·{ki

{·}ks

Fig. 5. Steps for processing a shallot onion Oi = ((Hi, Bi,1, Bi,2), Ci) when N = 3 and
when (a) the processing party Pi is an intermediary, (b) Pi is the original sender, and
(c) Pi is the recipient. For (c), steps for forming the reply onion Oi+1 = (Hi+1, Ci+1)
for the next destination Pi+1.

Replying to the Anonymous Sender. When Bob receives the onion Od =
(Hd, Cd), he processes it in the same way that the intermediary party Carol
does, by running ProcOnion: Bob first decrypts the ciphertext Ed of the header

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 217

to retrieve his role “R” and the keys kd and Kd. If Od hasn’t been tampered
with, Bob retrieves the meta-message M = (m,Hd+1, ks,Ks, Pd+1) and the tag
σd that Alice embedded into the onion by decrypting the content Cd using the
key kd: ((m,Hd+1, ks,Ks, Pd+1), σd) = }Cd{kd

. Bob can verify that the message
is untampered by running the MAC’s verification algorithm Ver(Kd,M, σd).

To respond to the anonymous sender (Alice) with the message m′,
Bob creates a new encrypted content using the keys ks and Ks: Cd+1 =
{m′,Tag(Ks,m

′)}ks
. Bob sends the reply onion Od+1 = (Hd+1, Cd+1) to the

next destination Pd+1.

Reading the Reply. When Alice receives the onion Os, she retrieves the reply
from Bob by first processing the onion, by running ProcOnion:

Alice first decrypts the ciphertext Es of the header to retrieve her role “S”
and the label �. She reconstructs the each encryption key ki = Fseed(�, i) and the
authentication key Ks using the pseudo-randomness Fseed(s, �). (Alternatively,
if she stored the keys locally, she looks up the keys associated with label � in
a local data structure). If Os hasn’t been tampered with, Alice retrieves the
reply m′ that Bob embedded into the onion by decrypting the content Cs using
the keys (kd+1, . . . , ks): (m′, σs) =}{. . . {Cs}ks−1 . . . }kd+1{ks

. Alice can verify
that the message is untampered by running Ver(Ks,m

′, σs).

7 Shallot Encryption Scheme Is Secure

Theorem 12. Shallot Encryption Scheme (in Sect. 6) SUC-realizes the ideal
functionality FROES (Definition 3).

By Theorem 9, it suffices to prove that Shallot Encryption Scheme is correct
and repliable-onion secure under the assumption that (i) {fk}k∈{0,1}∗ is a PRP,
(ii) E is a CCA2-secure encryption scheme with tags, (iii) MAC is a message
authentication code, and (iv) h is a collision-resistant hash function.

Proof Idea: In cases (a) and (c) (in these cases, Pj is an intermediary, not the
recipient), we can prove that A’s view when b = 0 is indistinguishable from A’s
view when b = 1 using a hybrid argument. The gist of the argument is as follows:
First, Pj ’s encryption key kj is protected by CCA2-secure encryption, so it can
be swapped out for the all-zero key “0 . . . 0.” Next, blocks (N − j −1) to (N −1)
of the onion for Pj+1 look random as they are all “decryptions” under kj , so they
can be swapped out for truly random blocks. Next, blocks 1 to (N − j − 1) and
the content of the onion for Pj look random as they are encryptions under kj ,
so they can be swapped out for truly random blocks. At this point, the keys for
forming Oj+1 can be independent of the keys for forming Oj , and these onions
may be formed via separate FormOnion calls; see Fig. 6.

218 M. Ando and A. Lysyanskaya

Experiment0—game with b = 0, same as Hybrid1

Hybrid1—make Oj+1, then O1

Hybrid2—same as Hybrid1 except swap for random label
Hybrid3—same as Hybrid2 except swap kj for fake key “0 . . . 0”
Hybrid4—same as Hybrid3 except swap (BN−j−1

j+1 , . . . , BN−1
j+1) for truly random blocks

Hybrid5—same as Hybrid4 except swap (B1
j , . . . , BN−j−1

j) and Cj for truly random blocks
Hybrid6—same as Hybrid5 except swap onion for intermediary Pj for onion for recipient Pj

Hybrid7—same as Hybrid6 except swap truly random blocks and content in Oj for
pseudo-random blocks (B1

j , . . . , BN−j−1
j , Cj)

Hybrid8—same as Hybrid7 except swap truly random blocks in Hj+1 for pseudo-random
blocks (BN−j−1

j+1 , . . . , BN−1
j+1)

Hybrid9—same as Hybrid8 except swap key “0 . . . 0” for real key kj

Experiment1—game with b = 1, same as Hybrid9

Fig. 6. Road map of proof of Theorem 12

For case (b) (Pj is the recipient), we can use a simpler hybrid argument since
only the content of a forward onion can be computationally related to the keys
for the return path. Thus, we can swap out just the content for a truly random
string. See the full paper for the full proof [1].

Acknowledgements. We thank the reviewers of this paper for their helpful com-
ments. This work was funded in part by Facebook faculty research awards.

A Security Game for Variants (b) and (c)

Variant (b). Below, we provide a description of steps 4 and 5 of the repliable-
onion security game, ROSecurityGame, in Sect. 4 for case (b).

4. A chooses a label � ∈ L(1λ) and a message m ∈ M(1λ). A also chooses a
forward path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps)
such that (i) if P← is non-empty, then it ends with S, (ii) I appears in the
routing path, and (iii) the first time it appears in the path is at the recipient
Pd. A sends to C the parameters for the challenge onion: �, m, P→, the public
keys pk(P→) of the parties in P→, P←, and the public keys pk(P←) of the
parties in P←.

5. C samples a bit b ←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d),H←, κ) ← FormOnion(�,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest recipient Pd.
C runs FormOnion on input a random label x ←$ L(1λ), a random mes-
sage y ←$ M(1λ), the forward path P→, and the empty return path “()”,
i.e., ((O1

1, . . . , O
1
d), (), κ) ← FormOnion(x, y, P→, pk(P→), (), ()).

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 219

We modify the oracles as follows. O.FRI does the following to “form
a reply” using message m′ and onion O = O1

d: O.FRI runs FormOnion on
a random label x′, a random message y′, the return path P← as the for-
ward path, and the empty return path “()”, i.e., ((Om′

j+1, . . . , O
m′
s), (), κm′

) ←
FormOnion(x′, y′, P←, pk(P←), (), ()), stores the pair (Om′

s ,m′) (such that the
pair is accessible by O.POS), and returns (Om′

j+1, Pj+1). O.POS does the fol-
lowing to “process” an onion O:
i. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =

(R,m′), then return (S, (�,m′)).
ii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) �=

(R,m′), then fail.
iii. If O �= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored

pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return
(S,⊥).

iv. If O �= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored
pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) �= (R,⊥), then fail.

All other queries are processed as before.

Variant (c). Below, we provide a description of steps 4 and 5 of the repliable-
onion security game, ROSecurityGame, in Sect. 4 for case (c).

4. A chooses a label � ∈ L(1λ) and a message m ∈ M(1λ). A also chooses a
forward path P→ = (P1, . . . , Pd) and a return path P← = (Pd+1, . . . , Ps) such
that (i) if P← is non-empty, then it ends with S, (ii) I doesn’t appear on the
P→, and (iii) I appears somewhere on P←. A sends to C the parameters for
the challenge onion: �, m, P→, the public keys pk(P→) of the parties in P→,
P←, and the public keys pk(P←) of the parties in P←.

5. C samples a bit b ←$ {0, 1}.
If b = 0, C runs FormOnion on the parameters specified by A, i.e.,

((O0
1, . . . , O

0
d),H←, κ) ← FormOnion(�,m, P→, pk(P→), P←, pk(P←)).

In this case, the oracles—O.POI(·), O.FRI(·, ·), O.POS(·), and O.FRS(·, ·)—
remain unmodified.

Otherwise, if b = 1, C performs the “switch” at honest party Pj on
the return path P←, where Pj is the first appearance of I on the routing
path. C runs FormOnion on input a random label x ←$ L(1λ), the message m
(that had been chosen by A in step 4), the forward path P→, and the “trun-
cated” return path p← = (Pd+1, . . . , Pj), i.e., (O→, (H1

d+1, . . . , H
1
j), κ) ←

FormOnion(x,m,P→, pk(P→), p←, pk(p←)).
We modify the oracles as follows. O.POI does the following to “process”

an onion O:
i. If O = (H1

j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) =
(R,m′) for some message m′ (possibly equal to “⊥”), then runs FormOnion
on a random label x′, a random message y′, the remainder the return path
q← = (Pj+1, . . . , Ps) as the forward path, and the empty return path “()”,
i.e., ((Om′

j+1, . . . , O
m′
s), (), κm′

) ← FormOnion(x′, y′, q←, pk(q←), (), ()),
stores the pair (Om′

s ,m′) (such that the pair is accessible by O.POS),
and returns (Om′

j+1, Pj+1).

220 M. Ando and A. Lysyanskaya

ii. If O = (H1
j , C) for some content C and ProcOnion(O,Pj , sk(Pj)) �=

(R,m′) for some message m′, then fails.
O.POS does the following to “process” an onion O:
iii. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) =

(R,m′), then return (S, (�,m′)).
iv. If O = O′ for some stored pair (O′,m′) and ProcOnion(O,Ps, sk(Ps)) �=

(R,m′), then fail.
v. If O �= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored

pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) = (R,⊥), then return
(S,⊥).

vi. If O �= O′ for any stored pair (O′,m′) but O = (H ′, C) for some stored
pair ((H ′, C ′),m′) and ProcOnion(O,Ps, sk(Ps)) �= (R,⊥), then fail.

All other queries are processed as before.

References

1. Ando, M., Lysyanskaya, A.: Cryptographic shallots: a formal treatment of repliable
onion encryption. Cryptology ePrint Archive, Report 2020/215 (2020). https://
eprint.iacr.org/2020/215

2. Ando, M., Lysyanskaya, A., Upfal, E.: Practical and provably secure onion routing.
In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) ICALP 2018,
volume 107 of LIPIcs, pp. 144:1–144:14. Schloss Dagstuhl (July 2018)

3. Ando, M., Lysyanskaya, A., Upfal, E.: On the complexity of anonymous commu-
nication through public networks. In: 2nd Conference on Information-Theoretic
Cryptography, ITC 2021. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

4. Boneh, D., Shoup, V.: A graduate course in applied cryptography. Draft 0.2 (2015)
5. Camenisch, J., Lysyanskaya, A.: A formal treatment of Onion routing. In: Shoup,

V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 169–187. Springer, Heidelberg
(2005). https://doi.org/10.1007/11535218 11

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October
2001)

7. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 1

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: 28th ACM STOC, pp. 639–648. ACM Press (May 1996)

9. Canetti, R., Shahaf, D., Vald, M.: Universally composable authentication and key-
exchange with global PKI. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 265–296. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49387-8 11

10. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

11. Cottrell, L.: Mixmaster and remailer attacks (1995)
12. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure

against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

https://eprint.iacr.org/2020/215
https://eprint.iacr.org/2020/215
https://doi.org/10.1007/11535218_11
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-49387-8_11
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717

Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption 221

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type III anony-
mous remailer protocol. In: 2003 IEEE Symposium on Security and Privacy, pp.
2–15. IEEE Computer Society Press (May 2003)

15. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
2009 IEEE Symposium on Security and Privacy, pp. 269–282. IEEE Computer
Society Press (May 2009)

16. Danezis, G., Laurie, B.: Minx: a simple and efficient anonymous packet format. In:
Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, pp.
59–65 (2004)

17. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, San Diego, CA,
USA, 9–13 August 2004, pp. 303–320 (2004)

18. Gulcu, C., Tsudik, G.: Mixing e-mail with Babel. In: Proceedings of Internet Soci-
ety Symposium on Network and Distributed Systems Security, pp. 2–16. IEEE
(1996)

19. Johnson, A., Wacek, C., Jansen, R., Sherr, M., Syverson, P.F.: Users get routed:
traffic correlation on tor by realistic adversaries. In: Sadeghi, A.-R., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013, pp. 337–348. ACM Press (November 2013)

20. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC (2014)

21. Kuhn, C., Beck, M., Strufe, T.: Breaking and (partially) fixing provably secure
onion routing. In: 2020 IEEE Symposium on Security and Privacy, pp. 168–185.
IEEE Computer Society Press (May 2020)

22. Möller, U., Cottrell, L.: Mixmaster protocol–v2. unfinished draft (January 2000)
23. Parekh, S.: Prospects for remailers. First Monday 1(2) (1996)
24. Sun, Y., Edmundson, A., Feamster, N., Chiang, M., Mittal, P.: Counter-RAPTOR:

safeguarding tor against active routing attacks. In: 2017 IEEE Symposium on
Security and Privacy, pp. 977–992. IEEE Computer Society Press (May 2017)

25. Wails, R., Sun, Y., Johnson, A., Chiang, M., Mittal, P.: Tempest: temporal dynam-
ics in anonymity systems. PoPETs 2018(3), 22–42 (2018)

https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4

Grafting Key Trees: Efficient Key
Management for Overlapping Groups

Joël Alwen1, Benedikt Auerbach2(B) , Mirza Ahad Baig2 , Miguel Cueto
Noval2, Karen Klein3, Guillermo Pascual-Perez2 , Krzysztof Pietrzak2,

and Michael Walter4

1 AWS Wickr, New York, USA
alwenjo@amazon.com

2 IST Austria, Klosterneuburg, Austria
{bauerbac,mbaig,mcuetono,gpascual,pietrzak}@ist.ac.at

3 ETH Zurich, Zurich, Switzerland
karen.h.klein@protonmail.com

4 Zama, Paris, France
michael.walter@zama.ai

Abstract. Key trees are often the best solution in terms of transmis-
sion cost and storage requirements for managing keys in a setting where a
group needs to share a secret key, while being able to efficiently rotate the
key material of users (in order to recover from a potential compromise,
or to add or remove users). Applications include multicast encryption
protocols like LKH (Logical Key Hierarchies) or group messaging like
the current IETF proposal TreeKEM.

A key tree is a (typically balanced) binary tree, where each node is
identified with a key: leaf nodes hold users’ secret keys while the root is
the shared group key. For a group of size N , each user just holds log(N)
keys (the keys on the path from its leaf to the root) and its entire key
material can be rotated by broadcasting 2 log(N) ciphertexts (encrypt-
ing each fresh key on the path under the keys of its parents).

In this work we consider the natural setting where we have many
groups with partially overlapping sets of users, and ask if we can find
solutions where the cost of rotating a key is better than in the trivial one
where we have a separate key tree for each group.

We show that in an asymptotic setting (where the number m of groups
is fixed while the number N of users grows) there exist more general key

B. Auerbach, M.A. Baig and K. Pietrzak—received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (682815 - TOCNeT); Karen Klein was supported in part by ERC
CoG grant 724307 and conducted part of this work at IST Austria, funded by the ERC
under the European Union’s Horizon 2020 research and innovation programme (682815
- TOCNeT); Guillermo Pascual-Perez was funded by the European Union’s Horizon
2020 research and innovation programme under the Marie Sk�lodowska-Curie Grant
Agreement No. 665385; Michael Walter conducted part of this work at IST Austria,
funded by the ERC under the European Union’s Horizon 2020 research and innovation
programme (682815 - TOCNeT).

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 222–253, 2021.
https://doi.org/10.1007/978-3-030-90456-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_8&domain=pdf
http://orcid.org/0000-0002-7553-6606
http://orcid.org/0000-0003-3650-7893
http://orcid.org/0000-0001-8630-415X
http://orcid.org/0000-0003-3186-2482
https://doi.org/10.1007/978-3-030-90456-2_8

Grafting Key Trees: Efficient Key Management for Overlapping Groups 223

graphs whose cost converges to the cost of a single group, thus saving a
factor linear in the number of groups over the trivial solution.

As our asymptotic “solution” converges very slowly and performs
poorly on concrete examples, we propose an algorithm that uses a natu-
ral heuristic to compute a key graph for any given group structure. Our
algorithm combines two greedy algorithms, and is thus very efficient: it
first converts the group structure into a “lattice graph”, which is then
turned into a key graph by repeatedly applying the algorithm for con-
structing a Huffman code.

To better understand how far our proposal is from an optimal solu-
tion, we prove lower bounds on the update cost of continuous group-
key agreement and multicast encryption in a symbolic model admitting
(asymmetric) encryption, pseudorandom generators, and secret sharing
as building blocks.

1 Introduction

Key Trees. In various group communication settings, including multicast encryp-
tion [7,15,16] or group messaging protocols [4,8], the most efficient constructions
use a binary tree structure to manage keys. The general idea is to consider a
balanced binary tree with edges directed from leaves to the root. One then iden-
tifies each node v with a key kv (of a symmetric encryption scheme for multicast
encryption and a public-key encryption scheme for group messaging). Each edge
(u, v) corresponds to a ciphertext Encku

(kv) and each leaf node v with a user
uv. A user uv will know the (secret) key kv, and from the ciphertexts can then
retrieve all the keys on the path from its leaf to the root ε. The root key kε is
thus known to all users, and can be used for secure communication to or among
the group members.

What makes this tree structure so appealing is the fact that in a group of
size N , the key material of a user u can be completely rotated by replacing only
the keys on the path from u to ε, which in a balanced tree has length at most
d = �log(N)�. Moreover, as the nodes in a tree all have indegree two, one only
needs to compute two fresh ciphertexts for each new key (in practice just one as
the new keys can be derived via a hash-chain).

These aspects are important as the number of keys a user requires basically
defines the communication and computational efficiency of a key rotation, which
is the main operation performed to add or remove users, or for a user to update
their keys in order to recover from a potential compromise.

Groups. In this work we consider an extension of this setting to multiple groups.
We are given a base set [N] = {1, . . . , N} of users with a set system S =
{S1, . . . , Sk} (each Si ⊆ [N]), and we ask for a key managing structure such
that for any set Si ∈ S, the users in Si share a group key. This is a natural and
well motivated setting; consider for example a university, where one might want
to have a shared key for all students attending particular lectures.

A trivial solution to this problem is to simply use a different key-tree for
every group Si, in this work we explore more efficient solutions.

224 J. Alwen et al.

Key-Graphs Beyond Trees. For a set system S as above, instead of using disjoint
trees, any directed acyclic graph (DAG) G = (V, E) with the following properties
is sufficient to maintain group keys:

1. Every user i ∈ [N] corresponds to a source vi (a node of indegree 0).
2. Every group Si ∈ S corresponds to a sink vSi

(a node of outdegree 0).
3. For every Si ∈ S and j ∈ [N], there is a directed path from vj to vSi

if and
only if j ∈ Si.

4. The indegree of any node is at most 2.

The first three properties ensure that any user j ∈ [N] can learn the keys asso-
ciated with the nodes of groups they are in. The last property is not really
necessary, but it is without loss of generality in the sense that any graph can be
turned into a graph with at most as large update cost (as we show in Sect. 3),
and where every node other than the leaves has indegree at most 2. We call this
a key-derivation graph for S.

Update Cost. If we rotate the keys of a user i we need to replace all keys that
can be reached from vi, which we denote by D(vi), and encrypt each new key
under the keys of its co-path. We thus define the update cost of a user i ∈ [N]
as

∑
v∈D(vi)

(indeg(v) − 1), which with item 4 above roughly simplifies to the
number of vi’s descendants |D(vi)|. The update cost Upd(G) of a DAG G is the
sum over the update cost of all its leaves, which is proportional to the average
update cost of users.

Towards constructing more efficient key-derivation schemes when we have
multiple overlapping groups, we thus address the problem of determining how
small the update cost of a key-derivation for a given set system S = {S1, . . . , Sk}
over [N] can be, and how to find graphs which achieve, or at least come close
to, this minimum.

Our Contributions. We look at this problem from two perspectives. To get an
insight on how much can be saved compared to the trivial solution, we first adapt
a qualitative, asymptotic perspective, where we assume a fixed set system, but
the number of users N goes to infinity while the relative size of the sets and
intersections remains the same. We prove a lower bound on the update cost in
this setting and give an algorithm computing graphs matching this bound.

As this solution turns out to be far from optimal for certain concrete set
systems, we then also look at a quantitative non-asymptotic setting, where we
consider concrete bounds and care about things like additive constants. We pro-
pose an algorithm that seems better equipped to handle such systems and prove
upper and lower bounds on the update costs of graphs generated by it. Finally,
we prove lower bounds on the update cost of any continuous group-key agree-
ment scheme and multicast encryption scheme in a symbolic model.

1.1 The Asymptotic Setting

Given a set system S = (S1, . . . , Sk) over some base set [n], we let S(N) denote
the system with base set [N] we get by considering each element in S with

Grafting Key Trees: Efficient Key Management for Overlapping Groups 225

multiplicity N/n. E.g. if S = ({1, 2}, {2, 3}) then S(6) = ({1, 2, 4, 5},
{2, 3, 5, 6}).1 Thus, as the number of users N grows the relative sizes of the
groups and their intersections remain fixed.

Let si := |Si|/n denote the relative size of Si and s =
∑m

i=1 si be the average
number of groups users are in. We assume wlog. That each user is in at least one
group, implying s ≥ 1. Let Opt(S) denote the update cost of the best key-graph
for a set system S and Triv(S) the update cost of the Trivial algorithm (which
makes a key-tree for every Si ∈ S). We will show that (the hidden constants in
the big-Oh notation all depend on k, the number of groups).

Opt(S(N)) = N log(N) + Θ(N) (1)
Triv(S(N)) = s · N log(N) − Θ(N) (2)

thus
Triv(S(N))
Opt(S(N))

= s − o(1) (3)

As s is the average number of groups users are in, this shows that

asymptotically (for a fixed set system S but with increasing number N of
users) the update cost of an optimal key-derivation graph depends only on
N (but not on S). In this regime, the gain we get by using more cleverly
chosen key-derivation graphs (as opposed to using a key-tree for every
group) can be up to linear in s, the number of groups an average user is
in, but not, say, the number of groups |S|.

While we do not know how to efficiently find the best key graph for a given set
system S, in Sect. 4 we define a family Gao(S(N)) which is asymptotically opti-
mal, i.e., matches Eq. 1. Intuitively, it first partitions the universe of users [N]
into the sets of users that are members of exactly the same groups. More pre-
cisely, for I ⊆ [k] let PI be the set of users that are members of the groups
specified by I. Then, the asymptotically optimal algorithm builds a balanced
binary tree for every PI , and in a second step connects the roots of these trees
to the appropriate group keys by another layer of binary trees. For an illustration
of the trivial and asymptotically optimal algorithms see Fig. 1.

1.2 The Non-asymptotic Setting

Asymptotics can Kick in Slowly. The asymptotic setting gives a good idea about
the efficiency we can expect once the number of users N is large compared to the
number k = |S| of groups. Nevertheless, it should be noted that this asymptotic
effect can kick in only slowly: assume the artificial example where for some small
base set [n] we have a set system S = {S1, . . . , Sk} with k = 2n −1 groups where
for every non-empty subset of users we have a group. Then each user is in 2n−1

groups and thus needs at least that many keys, and so the Θ(1) term in the
asymptotic update cost log(N) + Θ(1) of a single user is also at least 2n−1. For
1 S(N) is only well defined if N/n is an integer, we ignore this technicality as we will

be interested in the case N → ∞.

226 J. Alwen et al.

S1

S2 S3

Group system S = (S1, S2, S3) Trivial solution

S1

S2 S3

Asymptotically optimal solution

S1 S2 S3

Algorithm 1

S1

S2 S3

Fig. 1. Key graphs for group systems. Top left; Venn diagram of the considered group
system. Top right; trivial key graph using one balanced binary tree per group. Bottom
left; Asymptotically optimal key graph using one balanced binary tree per partition PI .
Bottom right; asymptotically optimal key graph obtained using Algorithm 1. In the
depictions of key trees the horizontal thick lines indicates the users’ personal keys.

the log(N) term to dominate we need log(N) � 2n−1, or N � 22
n−1

, so the
number of users needs to grow doubly exponential in the base set [n].

Moving on to the non-asymptotic setting, consider a group system S for a
fixed set of users [N]. The discussion above indicates that for S the asymptotic
update cost per user of log(N) could be very far off the truth unless N becomes
fairly large compared to the number of groups. This leaves the possibility that
for concrete group systems where N is not huge relative to S, already the trivial
key-graph performs fairly well in practice. This, however, turns out to not be
the case.

First, let us observe that the gap in update cost can never be larger than
log(N), for any S over [N]

Triv(S) ≤ log(N) · Opt(S) (4)

To see this we observe that the update cost for every user i ∈ [N] is at most a
factor log(N) larger in the trivial solution: a user i that is in si = |{S ∈ S : i ∈
S}| groups has an update cost of at least si in any key graph, in particular in
Opt(S), and at most

∑
S∈S,i∈S log(|S|) ≤ si · log(N) in the trivial key graph.

Grafting Key Trees: Efficient Key Management for Overlapping Groups 227

In Sect. 4.2 we will show that this is not merely a theoretical gap by giving
an example of a natural system S for which the update costs of both the trivial
and the asymptotically optimal algorithms match the gap of log(N).

A Greedy Algorithm Based on Huffman Codes. The discussion above indicates
that for set systems mapping groups that we might encounter in practice, one
should not simply use an asymptotically optimal solution, but aim for a solution
that is optimal, or at least close to optimal, for all instances.

Algorithm 1 that we propose in Sect. 5 is an algorithm for computing a key-
graph given a set system S. In a first step, the algorithm computes a “Boolean-
lattice graph” for S, and in a second iteratively runs the algorithm to compute
Huffman Codes to compute the key graph. As the algorithm is basically a com-
position of greedy algorithms, it is very efficient. We leave it as an open question
whether it really is optimal, and if not, whether there’s an efficient (polynomial
time) algorithm to compute Opt(S) and find the corresponding key graph for a
given S in general.2

We present Algorithm 1 in Sect. 5 and discuss its connection to Boolean lat-
tices. Then, we derive concrete lower and upper bounds on its update cost, that
can serve as a good estimate on how much it saves compared to the trivial algo-
rithm and the asymptotically optimal algorithm of Sect. 1.1. We further show
that Algorithm 1 and a class of algorithms generalizing the approach taken are
optimal in the asymptotic setting. While the same is true for the algorithm dis-
cussed in Sect. 1.1, Algorithm 1 seems better suited for practical applications as
key-derivation graphs constructed by it reflect the hierarchical structure inherent
to such systems. An example of a key graph generated by it is in Fig. 1.

Our analysis concerns static group systems, but in the full version of this
work [3] we show how known techniques that allow adding and removing users
from groups in the settings of continuous group-key agreement and multicast
encryption for a single group, can be adapted to key-derivation graphs generated
by the greedy algorithm.

Lower Bounds. To get a feeling for how close to optimal our approach is, we prove
a lower bound on the average update cost for arbitrary schemes for continuous
group-key agreement (in Sect. 6) and multicast encryption (in the full version
of this work [3]) that are based only on simple primitives such as encryption,
pseudorandom generators, and secret sharing in a symbolic security model. This
closely follows ideas from Micciancio and Panjwani [14], who considered such
a symbolic model to analyze the worst-case update cost of multicast encryp-
tion schemes. We improve on their results by considering the setting of multiple
potentially overlapping groups and proving a lower bound on the average com-
munication complexity.

Our bound essentially shows that on average the cost of a user in any CGKA
scheme or multicast encryption scheme for group system S1, . . . , Sk constructed
from the considered primitives satisfies

2 The question whether a polynomial time algorithm for computing Opt(S) exists can
be naturally asked in various ways. We discuss it in more detail in Sect. 7.

228 J. Alwen et al.

Upd(G) ≥ 1
N

·
∑

∅�=I⊆[k]

|PI | · log(|PI |) ,

where PI ⊆ [N] is the set of users exactly in the groups specified by index
set I ⊆ [k]. We consider it an interesting open question to either improve on this
bound or to construct an algorithm matching it.

1.3 Related Work

In the setting of a single group, key graphs have been used to construct
secure multicast encryption, e.g. [7,15,16], and continuous group-key agreement
(CGKA), e.g. [4,8]. In the setting of multiple groups, the approach to use binary
trees for every set of users that are members of exactly the same groups similarly
to the asymptotically optimal algorithm, has been suggested in [13,17]. However,
the trees are then combined in a way that induces an overhead that is linear in
the number of trees.

In [9], Cremers et al. consider the post-compromise security guarantees of
CGKA protocols for multiple groups. They show that in certain update scenar-
ios, protocols based on pairwise channels have better healing properties than
protocols based on key trees, as updates in a single group also benefit all sub-
groups of it. We stress that these issues do not arise in our approach, as updates
in our setting are global and thus affect all groups the updating user is a member
of.

The symbolic security model was first introduced by Dolev and Yao [10]
and used by Micciancio and Panjwani [14] to prove worst case bounds on the
update cost of multicast encryption schemes for a single group. In the context
of CGKA schemes it was recently used by Bienstock et al. [6], who analyze the
communication cost of concurrent updates in CGKA schemes for a single group.

2 Preliminaries

2.1 Notation

Throughout the paper log denotes the logarithm with respect to base 2.

Graph Notation. Let G = (V, E) be a directed acyclic graph (DAG). To node v ∈
V we associate the sets A(v) = {v′ ∈ V | ∃ path from v′ to v} of ancestors of v,
and D(v) = {v′ ∈ V | ∃ path from v to v′} of descendants of v. Here, we allow
paths of length 0 and hence v ∈ A(v) and v ∈ D(v). Let G′ = (V ′,G′) be a
subgraph of G and v ∈ V ′. We denote the set of parents of v by P(v). The set of
co-parents CP(v,G′) ⊆ V of v with respect to G′ in G is the set of vertices that
are parents of v in G but not in G′.

Probability Distributions. Let X be a random variable with outcomes x1, . . . , x�

with probability p1, . . . , p�. Then we denote by E[X] its expectation and by
H(X) = −

∑�
i=1 pi log(pi) its Shannon entropy.

Grafting Key Trees: Efficient Key Management for Overlapping Groups 229

2.2 Huffman Codes

Given a collection v1, · · · , v� of disconnected leaves of weight w1, . . . , w� ∈ N a
Huffman Tree is constructed as follows. From the set {v1, . . . , v�} two nodes vi1 ,
vi2 with the smallest weights are picked. Then a node v and edges (vi1 , v), (vi2 , v)
are added to the graph. v’s weight is set to wi1 + wi2 and the set of nodes to be
considered updated to {v1, . . . , v�} ∪ {v}\{vi1 , vi2}. This step is repeated until
all leaves are collected under a single root.

Since all nodes have indegree 2 the Huffman tree defines a prefix-free binary
code for (v1, . . . , v�). We will make use of the following property of Huffman
Codes.

Lemma 1 (Optimality of Huffman Codes [11]). Consider a Huffman
tree T over leaves v1, . . . , v� of weight w1, . . . , w� ∈ N. Let w =

∑�
i=1 wi and

let UT denote the probability distribution that picks leaf vi with probability wi/w
proportional to its weight. Then, if len(UT) denotes the random variable mea-
suring the length of the path from a leaf picked according to UT to the root, we
have that the average length of such paths is bounded by

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1 .

3 Key-Derivation Graphs for Multiple Groups

In this section we discuss key-derivation graphs for systems consisting of multiple
groups. In Sect. 3.1 we briefly recall two applications of such graphs; continuous
group-key agreement and multicast encryption. In Sect. 3.2 we formally define
key-derivation graphs, discuss how key material in a graph is refreshed, and
define its update cost.

3.1 Continuous Group-Key Agreement and Multicast Encryption

Continuous Group-Key Agreement. Continuous group-key agreement (CGKA)
schemes [1] are an important building block in the construction of secure asyn-
chronous group messaging schemes. As the name indicates, the goal of a CGKA
scheme is to establish a common key that is to be used to secure the communi-
cation between members of a group. As groups can typically be long-lived, users
need to also be able to frequently update the key material known to them, to on
one hand, recover from a potential compromise and, on the other hand, ensure
forward-secrecy of messages sent in the past.

In this work we are interested in the more general setting in which users n ∈
[N] want to agree on keys for a system of groups S1, . . . , Sk ⊆ 2[N]. After
the groups have been established in a setup phase user n can use the proce-
dure Upd(n) to produce an update message that rotates the key material known
to them, thus eliminating any keys that may have leaked during a compromise.
This update message is broadcast to the other users using the untrusted delivery
server. Given their own secret keys, users are then able to retrieve the refreshed

230 J. Alwen et al.

keys that should be known to them. A natural goal to aim for is to minimize the
communication cost incurred by such update messages.

Naturally, one would like to additionally support dynamic operations, i.e.,
allow users to add and remove other users from groups in the system. While in
this work we focus on the update costs of schemes for a system of static groups,
in the full version of this work [3] we show that the known techniques of blanking
and unmerged leaves used in the MLS protocol [4] can be adapted to schemes
obtained from our approach.

Efficient CGKA protocols [4,8] (in the single group setting) establish a key-
derivation graph in the setup phase that, in turn, allows user to update at a cost
that is logarithmic in the number of group members.3 In Sect. 3.2 we formally
define key-derivation graphs and discuss how the updating process works.

Multicast Encryption. The goal of a multicast encryption scheme [7,15,16] is
to establish a key for a group of users to enable them to decrypt ciphertexts
broadcast to the group. Every user holds a personal long-term key, but opposed
to CGKA there also exists a central authority that has access to all secret key
material. After a setup phase, the central authority is able to add and remove
users from the group by refreshing key material and broadcasting messages to the
group. The central goal in the construction of multicast schemes is to minimize
the communication complexity incurred by such operations. Typically, multicast
encryption schemes also rely on key-derivation graphs.

As in the case of CGKA, we are interested in the more general setting of a
system of potentially overlapping groups of users.

3.2 Key-Derivation Graphs

We now discuss key-derivation graphs. In our exposition we will focus on graphs
for continuous group-key agreement. At the end of the section we discuss the
differences to graphs for multicast encryption.

Consider a set of parties [N] and a collection S ⊆ 2[N] of subgroups of
[N]. A key-derivation graph (kdg) for [N] and S organizes key pairs in a way
that allows the members of a particular subgroup to agree on a key, and fur-
ther enables parties to refresh the key material known to them. Every node v
in the graph is associated to a key pair (pkv, skv) of a public-key encryption
scheme (KGen,Enc,Dec), and edges (v, v′) indicate that parties with access to
skv also posses skv′ . The personal keys of users correspond to sources and every
group is represented by a node that holds the corresponding secret group key.
We formalize the structural requirements on the graph in the multi-group setting
as follows.

3 In order to ensure authenticity of update messages and to prevent the server from
sending users inconsistent update messages these protocols employ additional tech-
niques. We leave the question how to adapt these to key-derivation graphs for mul-
tiple groups to future work (See Sect. 7).

Grafting Key Trees: Efficient Key Management for Overlapping Groups 231

Definition 1. Let N ∈ N, S ⊆ 2[N], and G = (V, E) a DAG. We say that G is
a key-derivation graph for universe of elements [N] and groups S if

1. For every n ∈ [N] there exists a source vn ∈ V and for every S ∈ S there
exists a node vS ∈ V. We further require that vn �= v′

n for n �= n′.
2. For n ∈ [N] and S ∈ S we have vS ∈ D(vn) exactly if n ∈ S.

In the definition above node vn correspond to user n’s personal key, and nodes vS

to group keys. The second property encodes correctness and security, intuitively
saying that n is able to derive the group key of S exactly if n ∈ S.

Updates. Let G be a key-derivation graph for [N] and S. If party n wants to
perform an update she has to refresh all key-material corresponding the sub-
graph D(vn) known to her and communicate the change to the other parties.
To this end she picks a spanning tree Tn = (V ′, E ′) of D(vn), as well as a ran-
dom seed Δvn

. Then starting from the source vn, if v′ is the ith child of node
v she defines the seed of v′ as Δv′ = H(Δv, i), where H is a hash function. Δv′

is then used to derive a new key-pair (pkv′ , skv′) ← KGen(Δv′) for v′. Finally,
for every v ∈ V ′ and every co-parent v′ ∈ CP(v, Tn), n computes the cipher-
text cv,v′ = Enc(pkv′ ,Δv). The set of all ciphertexts together with the set of new
public keys forms the update message. Finally, n deletes all seeds Δv.

We now show that the construction preserves correctness, i.e., users n′ �= n
are able to deduce all new secret keys in D(vn′) from the update message and
thus in particular the group keys of all groups they are a member of. To this
end, let v ∈ D(vn) ∩ D(vn′). Then there exists a path (vn′ = v1, . . . , v� = v) in
D(vn′). Let i be maximal with vi /∈ D(vn) (Note that such i must exist as vn′ is a
source). By maximality of i the node vi must be a coparent of vi+1 with respect
to D(vn). Thus, the update message contains an encryption of Δvi+1 to pkvi

.
As skvi

was not replaced by the update and is known to n′ the user can recover
Δvi+1 and in turn skvi+1 . Now, n′ can recover the remaining Δvi+2 , . . . ,Δv�

and
the corresponding secret keys as the seeds were either derived by hashing or, in
the case that vj+1 is a coparent of vj with respect to D(vn), encrypted to the
new key pkvj

, the secret key of which was already recovered by n′.

Update Cost. Using the size of ciphertexts as a unit, the update cost of n is given
by Upd(n) =

∑
v∈Tn

|CP(v, Tn)| =
∑

v∈Tn
(|P(v)| − 1). Note that this quantity

is independent of the particular choice of spanning tree Tn. In this work we
are interested in minimizing the average update cost, assuming that every user
updates with the same probability. We define the total update cost Upd(G) =∑

n∈[N] Upd(n) of G. Note that Upd(G)/N is the average update cost of a user,
and we can thus focus on trying to minimize Upd(G), which will allow for easier
exposition. The following lemma shows that we can restrict our view to graphs
in which every non-source has indegree 2. Note, that for graphs G with this
property we have |CP(v, Tn)| = 1 for every n, Tn, and v ∈ Tn that is not a source
and thus in this case we can compute the update cost as

Upd(G) =
∑

n∈[N]

(|Tn| − 1) =
∑

n∈[N]

(|D(n)| − 1) =
∑

n∈[N]

|D(n)| − N . (5)

232 J. Alwen et al.

Lemma 2. Let n ∈ N, S ⊆ 2[N], and G a key-derivation graph for [N] and S.
Then there exists a key-derivation graph G′ for [N] and S satisfying Upd(G′) ≤
Upd(G) such that for every non-source v ∈ V ′ we have indeg(v) = 2.

Due to space constraints we defer the proof to the full version of this work [3].

Key-Derivation Graphs for Multicast Encryption. Opposed to kdgs for CGKA
key-derivation graphs for multicast encryption rely on symmetric encryption. Let
(E,D) be a symmetric encryption scheme. Every node v in a kdg G for [N] and
S is associated to a key kv, and an edge (v, v′) indicates that a party with access
to kv knows kv′ . We require structural requirements on G that are analogous to
Definition 1. Updates with respect to leaf vn, which for multicast encryption are
computed by the central authority, and their update cost, are defined analogous
to the setting of CGKA as well.

While the main goal of multicast encryption is not to recover from compro-
mise of keys by updating, but instead to allow the central authority to dynam-
ically change the structure of the groups S1, . . . , Sk, the notion of an update
with respect to a leaf vn still turns out to be useful. Assume that the central
authority performed an update for vn starting with seed Δ. We can distinguish
two cases. If Δ is not known to the owner n of leaf vn then n lost access to
all keys corresponding to D(vn). Thus, by updating, the central authority can
remove a party from all groups they are a member of. Assume on the other hand
that the leaf was previously unpopulated and that Δ can be derived from n’s
long term key. Then n gained access to all group keys that can be reached from
vn. In the full version of this work [3] we discuss how updates can be used as the
basic building block of implementing more fine grained operations, i.e., adding
or removing a user from particular group Si. The efficiency of these operations
is significantly determined by the update cost as defined in this section.

3.3 Security

The main focus of this work is to investigate the communication complexity of
key-derivation graphs for group systems. We do not give formal security proofs in
this work. The structural requirements on kdgs and definition of update proce-
dures are chosen with the goal of the resulting CGKA to achieve post-compromise
forward-secrecy (PCFS) [2] roughly corresponding to post-compromise security
(PCS) and forward-secrecy (FS) simultaneously. In the following paragraphs we
provide an intuition on the security properties of kdgs. For ease of exposition we
will discuss PCS and FS separately instead of PCFS.

Note that CGKA schemes constructed from kdgs employ further mechanisms
to ensure authenticity and prevent a malicious sever to send users inconsistent
update messages. We consider the construction of such mechanisms as well as a
formal security analysis of kdgs to be important open questions for future work.

Preserving the Graph Invariant. We first discuss how updates preserve the invari-
ant, that users n know exactly the secret keys corresponding to D(vn), which by

Grafting Key Trees: Efficient Key Management for Overlapping Groups 233

Condition 2 of Definition 1 implies that n will never be able to derive a group
key for some group they are not a member of. Note that if n is the updating
user then they will only replace keys in D(vn). If n receives an update message,
on the other hand, then they will only be able to recover a key skv if either the
corresponding seed Δv was encrypted to a key known to n or if Δv was derived
by hashing from a seed Δv′ recoverable by n. By iteratively applying this argu-
ment to Δv′ we obtain that there must exist some Δv′′ that was encrypted to a
key known to n such that v′′ has a path to v. Thus, it must hold that v ∈ D(vn).
(Note that the one-wayness of the used hash function ensures that seeds derived
by hashing can only be recovered from each other in the correct direction.)

Post-Compromise Security. The goal of PCS is to allow users whose secret state
has been exposed to recover from this exposure by performing an update. Using
the example of a single compromised user we now discuss how kdgs for group
systems achieve this property. Assume that an adversary knows exactly the
secret state of user n, i.e., all keys skv for v ∈ D(vn), and that n then performs
an update. Then the adversary is not able to deduce any of the replaced keys:
Note that the initial random seed Δvn

is not encrypted to any key and thus
cannot be leaked to the adversary. Thus, all other seeds Δv can only be derived
by the adversary if Δv itself, or a seed from which Δv was derived by iterated
hashing was encrypted to a key known to the adversary. However, the adversary
only knows the keys corresponding to D(vn) before the update, and those keys
were replaced by freshly sampled ones before computing the ciphertexts. Thus,
seeds are encrypted to either “old” keys not known to the adversary or new keys,
and so after the update all keys are secure again.

Forward Secrecy. Forward secrecy requires that compromising a user’s secret
state does not allow the adversary to recover previous group keys. In key-
derivation graphs old keys get deleted over time providing a limited form of
forward-secrecy. Concretely, if a user n is corrupted all group keys before their
last update remain secure. This holds, since seeds that were generated before
this point in time and can be used to recover group keys were encrypted to keys
no longer in n’s memory. Note however, that group keys generated in between
n’s last update and the time of n’s corruption might leak to the adversary. For
example, a seed from which such keys can be derived might have been encrypted
to the key skvn

, which remained unchanged until the corruption.

Improved Forward Secrecy Using Supergroups. CGKA constructions relying on
kdgs like TreeKEM [5] rely on an additional mechanism to improve their forward-
secrecy guarantees. Instead of directly using group keys skvS

to communicate
within the group these keys are used to derive a so called application secret K
that serves as the symmetric key for group communication. Whenever an update
occurs, the new application secret of S is computed as H2(skvS

,K) the output
of a hash function on input of the new group key and the previous application
secret. Then, the old application secret is deleted from memory. The effect of this
is that when a user’s state leaks (including the current application secret Kt), no

234 J. Alwen et al.

old application secret Ki can be recomputed from old update messages, unless
Ki−1 was already known to the adversary by former corruptions. In short, users
gain the advantage of forward secrecy not only by issuing but also by processing
updates of other users in S.

In the setting of a group system S we can further improve on this: Consider
some group S ∈ S and let S1, . . . , S� be the maximal (with respect to inclusion)
groups in S that contain S. We denote the application secrets for S and the Si

by KS and KSi
respectively. Now, whenever a member of any of the Si issues an

update the application secret of S is updated to KS ← H2(skvS
,KS1 , . . . ,KS�

).4

Note that for every i since S ⊆ Si all members of S do indeed have access to KSi

and thus are able to compute KS , and that an update by users in S implies that
all Si are updated as well. The effect of this modification is that even updates
by users outside of S—more precisely in any of the sets Si\S—imply forward
secrecy of users in S. Note that this is in particular helpful in the case where
|S| � |Si| and updates in the large group occur much more frequently than in
the small group, for example in the case of two members of a large group having
a private conversation.

3.4 The Trivial Algorithm

To construct a key-derivation graph for a single group S the parties n ∈ S are
typically arranged as the leaves of a balanced binary tree T . The tree’s root
serves as the group key. In this case the length of paths from leaf to root is at
most �log(|S|)� and in turn Upd(T) ≤ |S| · �log(|S|)�. On the other hand, T
defines a prefix-free binary code for the set S. Thus, by Shannon’s source coding
theorem the average length of paths from leaf to root is at least log(|S|) which
implies Upd(T) ≥ |S| · log(|S|).

An Algorithm for Multiple Groups. A trivial approach to construct a key deriva-
tion graph for parties [N] and group system S = {S1, . . . , Sk} is to simply apply
the method described above to all Si in parallel. That is, for i ∈ [k] construct a
balanced binary tree Ti with |Si| leaves such that for n ∈ [N] the node vn is a
leaf of exactly the trees Ti with n ∈ Si. Let G denote the resulting graph. The
conditions of Definition 1 clearly hold and we can bound the total update cost
of G by ∑

i∈[k]

|Si| · log(|Si|) ≤ Upd(G) ≤
∑

i∈[k]

|Si| · �log(|Si|)� .

Further, the update cost of a single user n ∈ [N] is bounded by Upd(n) ≤∑
i:n∈Si

�log(|Si|)�.

4 Key-Derivation Graphs in the Asymptotic Setting

In this section we investigate the update cost of key-derivation graphs for mul-
tiple groups in an asymptotic setting. More precisely, for a system consisting of
4 Regarding PCFS it might even be advantageous to include KS′ for all S′ ⊇ S.

Grafting Key Trees: Efficient Key Management for Overlapping Groups 235

a fixed number of groups, we consider the setting in which the number of users
tends to infinity while the relative size of the groups stays constant. In Sect. 4.1
we first compute the asymptotically optimal update cost of key-derivation graphs
and then show that the trivial algorithm does not achieve it. We then present
an algorithm achieving the optimal update cost. In Sect. 4.2 we show that both
approaches can perform badly for concrete group systems.

4.1 Key-Derivation Graphs in the Asymptotic Setting

We investigate the update cost of key derivation graphs in an asymptotic setting.
That is, we consider N parties that form a subgroup system S = {S1, . . . , Sk}
and fix values pI ∈ [0, 1] for I ⊆ [k] that indicate the fraction of users that are
members of exactly the groups specified by I.

More precisely, let k ∈ N≥2 be fixed and let {pI}I⊆[k] be such that
∑

I⊆[k] pI = 1. For N ∈ N let S(N) = {S1(N), . . . , Sk(N)} ⊆ 2[N] be a
subgroup system that satisfies |PI(N)| = N · pI for all I, where PI(N) =⋂

i∈I Si(N)\
⋃

j∈[k]\I Sj(N) is the set of users exactly in the groups specified
by I.5 Throughout this section we assume that p∅ = 0, i.e., every user is in at
least one group, and that at least two groups are non-empty. We are interested
in the update cost of key-derivation graphs for S(N) when N tends to infinity.

Lower Bound in the Asymptotic Setting. We first compute a lower bound on
the update cost of kdgs in the asymptotic setting. The bound follows from the
following combinatorial result on concrete graphs, that will also turn out to be
useful for our symbolic lower bound of Sect. 6. Recall that for graphs G′ ⊆ G and
a vertex v the set CP(v,G′) is the set of co-parents of v with respect to G′ in G.
Due to space constraints, we defer its proof to the full version of this work [3].

Lemma 3. Let M ∈ N be fixed, S1, . . . , Sk ⊆ [M], and let G = (V, E) be a DAG
such that there exist pairwise disjoint sets of sources Vn, n ∈ [M], and nodes vSi

,
i ∈ {1, . . . , k} such that

n ∈ Si ⇒ ∃vn ∈ Vn such that there is a path from vn to vSi
.

Further let Tn be a spanning forest of D(Vn) =
⋃

vn∈Vn
D(vn). Then

M · E
[∑

v∈Tn

|CP(v, Tn)|
]

≥
∑

∅�=I⊆[k]

|PI | · log(|PI |) ,

where the expectation is to be understood with respect to the uniform distribution
on [N].

Note that Lemma 3 in the case |Vn| = 1 for all n can be seen as a lower
bound on the total update cost of key-derivation graphs as defined in Sect. 3
since M · E[

∑
v∈Tn

|CP(v, Tn)|] =
∑

v∈Tn
|CP(v, Tn)|.

5 S(N) is only well defined if N · pI is an integer for all I, we ignore this technicality
as we are interested in the case N → ∞.

236 J. Alwen et al.

Turning to the asymptotic setting we have
∑

I⊆[k]

N · pI · log(N · pI) = N ·
∑

I⊆[k]

pI log(N) + N ·
∑

I⊆[k]

pI log(pI)

= N log(N) + N ·
∑

I⊆[k]

log(pI) = N log(N) + Θ(N) ,

where we used that
∑

I pI = 1. As we will show below, there exist key-derivation
graphs matching this bound. We conclude that the optimal update cost in the
asymptotic setting only depends on the overall number of users but not the
particular set system:

Opt(S(N)) = N log(N) + Θ(N) .

Note, however, that the term Θ(N) hides a constant (with respect to N), that
can be exponential in k.

Asymptotic Update Cost of the Trivial Algorithm. The trivial algorithm con-
structs a separate balanced binary tree for every group Si(N). For i ∈ [k] let si

be such that N · si = |Si(N)| and further let s =
∑k

i=1 si be the average number
of groups a user are member of. Then, we can bound the update cost Triv(S(N))
of the trivial algorithm in the asymptotic setting as follows, showing that is does
not match the optimal cost.

Claim. For I ⊆ [k] let pI ∈ [0, 1] be such that
∑

I⊆[k] pI = 1 and p∅ = 0. Let
S(N) be the corresponding group system and si, s as defined above. Then

Triv(S(N)) = s · N log(N) + Θ(N) .

Due to space constraints we defer the proof of this claim to the full version of
this work [3].

An Asymptotically Optimal Graph. We will sketch how to construct an asymp-
totically optimal key graph Gao(N) for a given set system S over [n]. In a first
step, for every I with PI(N) �= ∅, the algorithm constructs a balanced binary
tree with root vI using as leafs the elements of PI(N). Then, in a second step, for
every group Si(N) it builds a balanced binary tree with root vSi

using as leafs
the nodes {vI | I : i ∈ I}. An illustration of the algorithm’s working principle is
in Fig. 1. Correctness of the construction follows by inspection.

To bound the update cost Upd(Goa(N)) we split it in two parts; the first
accounts for the contribution of the nodes generated during the first step, the
second for the contribution of the second step. As

∑
I pI = 1, the first part

Grafting Key Trees: Efficient Key Management for Overlapping Groups 237

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Cost: 7 7 5 5 3 27

Trivial solution

1 2 3 4 5 Σ

S1 S2 S3 S4 S5

Optimal solution

4 4 3 2 1 14

Fig. 2. Illustration of Triv(S↑
N) (left) and Opt(S↑

N) for N = 5. For each user, the
update cost (i.e., the indegree 2 nodes reachable) is indicated.

contributes at most
∑

I⊆[k] pI ·N · log(N ·pI) ≤ N · log N , while the contribution
of the second part for every single user is constant as {vI} is independent of N ,
implying that with respect to the total update cost it is Θ(N). Thus, overall we
get Upd(Goa(N)) ≤ N · log N + Θ(N), matching the optimal update cost.

4.2 Update Cost for Concrete Group Systems

Now consider a concrete group system S = {S1, . . . , Sk} for a fixed set of
users [N]. As already discussed in Sect. 1.2, it is possible that the number k of
groups can be as large as 2N − 1. Thus, for concrete group systems the asymp-
totic update cost per user of log(N) (that contains hidden constants dependent
on k) derived in Sect. 4.1 could be very far off the truth unless N becomes fairly
large compared to the number of groups. This leaves the possibility that in the
case where N is not huge relative to k, already the trivial key-graph performs
fairly well in practice. In this section we show that this is not the case by giving
an example where not only the trivial key-graph (which has a balanced tree for
every set), but also our asymptotically optimal Goa, perform poorly.

Recall that by Eq. 4 the update costs of the trivial and optimal solutions
always satisfy Triv(S) ≤ log(N) ·Opt(S). The above argument seems very loose,
but we show an example where we indeed have a gap of ≈ log(N) − 1 and thus
almost match this seemingly loose log(N) bound. Define the “hierarchical” set
system S↑

N over [N] as

S↑
N := {S1, . . . , SN} where Si = {i, i + 1, . . . , N} .

Note that while S↑
N is defined for all N , it is not asymptotic in the sense dis-

cussed in Sect. 4.1, as the number of groups grows with the number of users N .
Further, for this group system the key derivation graphs output by the trivial
and asymptotically optimal algorithms coincide, as for every PI with PI �= ∅
we have |PI | = 1. As the optimal solution for S is just a path, as illustrated
in Fig. 2, we obtain update costs of Triv(S↑

N) =
∑N

i=1 i log(i) ≈ N2

2 log(N) and
Opt(S↑

N) =
∑N

i=1 i = N(N+1)
2 ≈ N2

2 .

238 J. Alwen et al.

Thus Triv(S↑
N)/Opt(S↑

N) ≈ log(N) matching the (4) bound. An interesting
observation is the fact that an optimal solution can have much larger depth
than the trivial one: for S↑

N the depth of the optimal solution is N , while in
the trivial solution it is just log(N). The discussion above indicates that neither
the trivial nor the asymptotically optimal algorithm are well-equipped to handle
certain group systems. In the following section we propose an algorithm that is
not only asymptotically optimal, but also generates key-derivation graphs better
reflecting the hierarchical nature of group systems, and, in particular, recovers
the optimal solution for the example above.

5 A Greedy Algorithm Based on Huffman Codes

In this section we propose an algorithm to compute key-derivation graphs for
group systems. Its formal description is in Sect. 5.1. In Sect. 5.2 we compute
bounds on its total update cost and compare it to the trivial algorithm and the
asymptotically optimal algorithm of Sect. 4.1. Finally, in Sect. 5.3 we show that
the algorithm, as well as a class generalizing it, are asymptotically optimal.

5.1 Algorithm Description

We now describe Algorithm 1 that, on input parties [N] and a set of groups S ⊆
2[N], constructs a key-derivation graph. Its formal description is in Fig. 3.

Conceptually, the algorithm proceeds in two phases. The first phase (lines 1
to 11) determines the macro structure of the key-derivation graph. For reasons
explained below we will refer to the graph generated in this phase as the lattice
graph. In the second phase (lines 12 to 20), sources for the individual users are
added at the correct position in the lattice graph, which afterwards is binarized
to reduce the update size.

More precisely, at the beginning of the first phase the algorithm initializes
a graph G = (V, E) consisting of isolated nodes vS′ with S′ ∈ S that, looking
ahead, will represent the group keys. Every node vS′ is associated to a set S(vS′)
that is initialized to group S′. The algorithm then determines nodes v1, v2 such
that the intersection of their associated sets is maximal and adds a node v3 as
well as the edges (v3, v1), (v3, v2) to the graph. The associated set of v3 is set to
S(v1) ∩ S(v2) and the associated sets of v1 and v2 are updated to S(v1)\S(v3)
and S(v2)\S(v3) respectively. This step is repeated until the associated sets of
all nodes are pairwise disjoint.

Let Glat = (Vlat, Elat) denote the resulting lattice graph. In the second phase,
for every node v ∈ Vlat for all n ∈ S(v), a source vn representing user n together
with edge (vn, v′) is added to the graph. Finally, for every node v with indeg(v) ≥
3, a Huffman tree from the parents to the node is built. Here, the weight of a
source is 1, and the weight of non-sources is given as the number of sources below
it.

Grafting Key Trees: Efficient Key Management for Overlapping Groups 239

Input: (N, S)

1 : G = (V, E) ← (∅, ∅)

2 : for S′ ∈ S
3 : V ← V ∪ {vS′}
4 : S(vS′) ← S′

5 : while the sets associated to V are not disjoint

6 : v1, v2 ← arg max
v1,v2∈V

(|S(v1) ∩ S(v2)|)

7 : add the node v3

8 : S(v3) ← S(v1) ∩ S(v2)

9 : S(v1) ← S(v1) \ S(v3)

10 : S(v2) ← S(v2) \ S(v3)

11 : add the edges (v3, v1), (v3, v2)

12 : for v ∈ V
13 : for n ∈ S(v)

14 : add the node vn

15 : add the edge (vn, v)

16 : S(v) ← S(v) \ {n}
17 : compute the weight of each node as the number of sources below it

18 : for every node with indegree > 1

19 : build a Huffman tree from the parents to the node

20 : return G

Fig. 3. Algorithm 1

Properties of the Lattice Graph. We now derive several properties of the lattice
graph, which will be used to prove correctness and compute bounds on the total
update cost of the generated key-derivation graph. Thus, let Glat = (Vlat, Elat)
be the lattice graph generated on input of [N] and set of k groups S =
{S1, . . . , Sk} ⊆ 2[N]. For index set I ′ ⊆ [k] we denoted by

PI′ :=
⋂

i∈I′
Si\

⋃

j∈[k]\I′
Sj ,

the set of parties that are members of exactly the groups specified by I. Further,
for v ∈ Vlat we define

I(v) := {i ∈ [k] | exists path from v to vSi
} ,

the index set of group nodes that can be reached from v. Finally, for a col-
lection V ′ ⊆ V of nodes we generalize the notation for associated sets to
S(V ′) := ∪v∈V′S(v). We obtain the following.

240 J. Alwen et al.

Lemma 4. Let N, k ∈ N, S = {S1, . . . , Sk} ⊆ 2[N], and let Glat = (Vlat, Elat) be
the lattice graph generated on input ([N],S). Then the following holds.

1. Let v, v′ ∈ Vlat be such that I(v) = I(v′). Then v = v′.
2. I(v) �= ∅ for all v ∈ Vlat.
3. For every v ∈ Vlat and every i ∈ I(v) there is exactly one path from v to vSi

.
4. Consider the ancestor graph A(v) for v ∈ Vlat. Then

⋃

v′∈A(v)

S(v′) ⊆
⋂

i∈I(v)

Si .

If |I(v)| = 1 then the equation holds with equality, i.e.,
⋃

v′∈A(vS) S(v′) = S
for all S ∈ S.

5. Consider some v ∈ Vlat. Then we have S(v) = PI(v) .

Due to space constraints, we defer the proof to the full version of this work [3].
We briefly discuss how Lemma 4 allows us to interpret the lattice graph as a
subgraph of the Boolean lattice with respect to the power set of [k], i.e., the
graph GB = (VB , EB) with VB = {vI | I ⊆ [k]} and edges EB = {(vI , vI′) |
I, I ′ ⊆ [k] : I ′ ⊆ I)}. Indeed, Properties 1. and 2. allow us to map every v ∈ Vlat

to a unique index set I ⊆ [k]. Since the existence of an edge (v, v′) ∈ Elat implies
that I(v) ⊇ I(v′) all edges adhere to the structure of GB . Summing up, the
map G → GB ; v �→ vI(v) is an injective graph homomorphism. This allows us to
identify nodes of the lattice graph with nodes of GB and sometimes write vI′ for
a unique node v ∈ Vlat with I(v) = I ′ ∈ P([k]). By Property 5. the associated set
of v is PI , the set of users exactly in the groups specified by I. Figure 4 depicts
an example execution of Algorithm 1.

Correctness. We show that key-derivation graph G output by Algorithm 1 satis-
fies the correctness properties of Definition 1. Note that the first property holds
by construction.

To see that the second property holds as well, consider the lattice graph. By
Lemma 4, Property 4. for every group S′ ∈ S the associated sets of the ancestors
of vS′ form a partition of S′. In the second phase of the algorithm a source
vn is added for every user and connected to corresponding node in the lattice
graph. Thus, after this step the set of users with a path to vS′ is exactly S′.
As this property remains unaffected by the binarization step of line 19 the final
key-derivation graph is indeed correct.

5.2 Total Update Cost

In this section we analyze the total update cost Upd(G) =
∑

n∈[N] Upd(n) of key-
derivation graphs G generated by Algorithm 1. To this end, we will split Upd(G)
into the contribution made by the constituting Huffman trees T . Tree T has a
single root and all non-sources in T have indegree 2. Let L(T) denote the set
of leaves of T . As argued in Lemma 2, the update cost of a leaf u with respect
to T corresponds to the length len(u) of its path to the root. Note, however,

Grafting Key Trees: Efficient Key Management for Overlapping Groups 241

S1

S2 S3

Group system S = (S1, S2, S3) Lattice graph Glat

v{1} v{2} v{3}

v{1,2} v{1,3}

v{1,2,3}

Key-derivation graph G

vS1

vS2 vS3

Resulting group trees

vS1

vS2 vS3

Fig. 4. Working principle of the algorithm. Top left; Venn diagram of the considered
group system. Top right; resulting lattice graph after the first phase. Node vI has asso-
ciated set S(vI) = PI , the set of users in exactly the groups indicated by I. Nodes and
edges of the Boolean lattice that are not part of Glat are depicted in gray. Bottom left;
final key derivation graph. Bottom right; resulting trees corresponding to groups S1,
S2, S3. Note that components of the same color are shared among different trees.

that leaves of T may represent more than one user in the key-derivation graph.
Indeed, by construction of the algorithm, the weight wu of u counts the number
of leaves in G below u. Thus, the contribution of Huffman tree T towards the
total update cost of G is given by Upd(T) =

∑
u∈L(T) wulen(u). If UT is the

probability distribution that picks u ∈ L(T) with probability proportional to its
weight wu, we can express the update cost of T in terms of the expected length
from leaves to the root as

Upd(T) = E[len(UT)] ·
∑

u∈L(T)

wu . (6)

We first consider Algorithm 1 for the simplest case of two subgroups and compare
it to the trivial algorithm.

Example 1. Let N ∈ N and let S consist of two subgroups S1, S2 of sizes N1 and
N2 respectively. Further assume that |S1 ∩ S2| = K. Consider the key derivation
graphs generated by the trivial algorithm and Algorithm 1, which in both cases
decompose into several Huffman trees. The trivial algorithm essentially generates
two trees T ′

1 and T ′
2 , the first containing all members of S1, the other all members

242 J. Alwen et al.

K

S1

N1

T ′
1

K

S2

N2

T ′
2

S1

N1

T1

K

T1,2

S2

N2

T2

Fig. 5. Key-derivation graphs of the trivial algorithm (left) and Algorithm 1 (right)
for two subgroups. Users that are members of both subgroups are marked in thick.

of S2. Algorithm 1 first collects the K parties that are members of both groups
in a tree T1,2. The remaining (N1 − K) members of S1 and the root of T1,2 are
collected in a tree T1, the remaining (N2 − K) members of S2 and the root of
T1,2 in a tree T2 (See Fig. 5).

By Eq. 6 we have

Upd(Gtriv) = Upd(T ′
1) + Upd(T ′

2) = N1 E[len(UT ′
1
)] + N2 E[len(UT ′

2
)]

and

Upd(Ga1) = Upd(T1) + Upd(T2) + Upd(T1,2)
= N1 E[len(UT1)] + N2 E[len(UT2)] + K E[len(UT1,2)] .

By optimality of Huffman codes (Lemma 1) we have that

H(UT) ≤ E[len(UT)] ≤ H(UT) + 1

for T ∈ {T ′
1 , T ′

2 , T1, T2, T1,2}, where H(UT) is the Shannon entropy of UT . For T ′
1 ,

T ′
2 , and T1,2 the leaves are distributed uniformly and we have H(T ′

1) = log(N1),
H(T ′

2) = log(N2), H(T1,2) = log(K). Let i ∈ {1, 2} and consider Ti. Then
the first Ni − K leaves have probability 1/Ni and the last leaf K/Ni. Thus
H(UTi

) = (Ni − K)/Ni log(Ni) + K/Ni log(Ni/K) = log(Ni) − K/Ni log(K).
Summing up we obtain

Upd(Gtriv) − Upd(Ga1)
≥N1 log(N1) + N2 log N2 − N1(log(N1) − K/N1 log(K) + 1)

− N2(log(N2) − K/N2 log(K) + 1) − K(log(K) + 1)
=K(log(K) − 1) − (N1 + N2) .

Note that for K ≥ 2 the first term is non-negative (For K = 1 it is easy to see
that Algorithm 1 performs better than the trivial algorithm).

Before turning to arbitrary group systems, we derive a generalized statement
on the update cost Upd(T) contributed by Huffman trees as defined above. Its
proof is in the full version of this work [3].

Grafting Key Trees: Efficient Key Management for Overlapping Groups 243

Lemma 5. Let T be a Huffman tree over leaves v1, . . . , v� of weight w1, . . . , w� ∈
N. Let w =

∑�
i=1 wi. Then T ’s update cost is bounded by

w log(w) −
�∑

i=1

wi log(wi) ≤ Upd(T) ≤ w(log(w) + 1) −
�∑

i=1

wi log(wi) .

Regarding general systems of subgroups we obtain the following result. Due to
space constraints, we defer the proof to the full version of this work [3].

Theorem 1. Let N ∈ N, S1, . . . , Sk ⊆ [N], and G the key-derivation graph
output by Algorithm 1. Let Glat = (Vlat, Elat) be the corresponding lattice graph.
Then

k∑

i=1

|Si| · log(|Si|) −
∑

v∈Vlat : |I(v)|≥2

∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣ · log

(∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣
)

≤ Upd(G) ≤
k∑

i=1

|Si| · (log(|Si|) + 1) (7)

−
∑

v∈Vlat : |I(v)|≥2

∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣ ·

(
log

(∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣
)

− 1
)
, (8)

where A(v) denotes the set of ancestors of v in Glat, I(v) denotes the set {i ∈
[k] : ∃ path from v to vSi

}, and for I ′ ⊆ [N] the set PI′ :=
⋂

i∈I′ Si\
⋃

j∈[k]\I′ Sj

indicates the users exactly in the subgroups corresponding to I ′.

The bounds of Theorem 1 depend on the structure of the lattice graph gener-
ated by the algorithm. Using Properties 4. and 5. of Lemma 4 to bound |S(A(v′))|
it is possible to obtain a weaker bound on Upd(G) that only depends on [N] and
S.

We conclude the section by comparing the update cost of Algorithm 1 to that
of the trivial algorithm and the asymptotically optimal algorithm of Sect. 4.1.

Comparison to the Trivial Algorithm. Note that the terms
∑k

i=1 |Si| · log(|Si|)
and

∑k
i=1 |Si| · (log(|Si|)+1) in Theorem 1 match the bounds on the update cost

of the trivial algorithm derived in Sect. 3.4. Thus the second term of
∑

v∈Vlat : |I(v)|≥2

∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣ ·

(
log

(∣
∣
∣

⋃

v′∈A(v)

PI(v′)

∣
∣
∣
)

− 1
)

provides a good estimate on how much Algorithm 1 saves compared to the trivial
one. For the group system depicted in Fig. 4, for example, this would amount
to |S1 ∩ S2| · log(|S1 ∩ S2|) + |S1 ∩ S3\S2| · log(|S1 ∩ S3\S2|) + |S1 ∩ S2\S3| ·
log(|S1 ∩ S2 ∩ S3|). Due to the “rounding error” of +1 in

∑k
i=1 |Si|·(log(|Si|)+1),

Theorem 1 unfortunately does not allow us to conclude that the update cost of
Algorithm 1 always improves on the one of the trivial algorithm. In the full ver-
sion of this work [3], we provide an alternative analysis of Upd(G) that directly

244 J. Alwen et al.

compares the two algorithms and gives conditions that imply Algorithm 1 out-
performing the trivial one.

Comparison to the Asymptotically Optimal Algorithm of Sect. 4.1. The algorithm
of Sect. 4.1 in a first step constructs a binary tree for every non-empty parti-
tion PI′ and then, in a second step, builds a binary tree for every group using
the roots of the “partition trees” as leafs. We can interpret this as an algorithm
that, similarly to Algorithm 1, in the first phase chooses a lattice graph Glat,
concretely the graph that connects every node vI′ directly with edges to all cor-
responding group nodes {v{i} | i ∈ I ′}, and in the second phase builds Huffman
trees for every lattice node.6

Thus, by Lemma 5, we can lower bound the update cost of key graphs Gasopt

generated by it by Upd(Gasopt) ≥
∑k

i=1

(
|Si|·log(|Si|)−

∑
I′⊆[N]:i∈I′∧|I′|≥2 |PI′ |·

log(|PI′ |)
)

+
∑

I′⊆[N]:|I′|≥2 |PI′ | · log(|PI′ |), which, taking into account that every
I ′ with |I ′| = � corresponds to exactly � groups, simplifies to

Upd(Gasopt) ≥
k∑

i=1

|Si| · log(|Si|) −
∑

I′⊆[N]:|I′|≥2

(|I ′| − 1) |PI′ | · log(|PI′ |) . (9)

For a comparison to Algorithm 1, consider a key derivation graph Ga1 output
by it. We now compute a lower bound on Upd(Gasopt) − Upd(Ga1). Let G′

lat be
the lattice graph of Ga1 and vI′ ∈ G′

lat such that |I ′| ≥ 2. Every non-sink in G′
lat

has outdegree 2 and vI′ is connected to all v{i} with i ∈ I ′ by exactly one path.
Thus, the subgraph of G′

lat induced by these paths is a binary tree with root vI′

and |I ′| leafs, and thus consists of exactly 2 |I ′| − 1 nodes, |I ′| of which have an
index set of size 1. This implies that there exists |I ′| − 1 many nodes vI′′ in G′

lat

with |I ′′| ≥ 2 such that vI′ ∈ A(vI′′).
Using f as shorthand for the function f : N �→ N log(N) and pI′ = |PI′ |,

we now can distribute the expressions |PI′ | · log(|PI′ |) of Eq. 9 on the negative
summands of Eq. 8 and obtain

Upd(Gasopt)−Upd(Ga1) ≥
∑

v∈V′
lat : |I(v)|≥2

(f
(∑

v′∈A(v)

pI(v′)
)
−

∑

v′∈A(v)

f(pI(v′))−1) .

Since f grows super-linearly, the terms f(
∑

v′∈A(v) pI(v′)) −
∑

v′∈A(v) f(pI(v′))
are non-negative, and can even be of order N as for example f(2N/2) −
2f(N/2) = N . While, again due to the terms −1, we are unfortunately not
able to conclude that Algorithm 1 is always more efficient, this shows that it
still can save substantially in terms of update cost, in particular if the pI′ are
large.

6 Formally, the algorithm as described in Sect. 4.1 collects all users that are only in
group Si in a tree before computing the tree for Si, while in the lattice-graph variant
these users are directly included in the tree for Si. Note, however, that the latter
approach can only improve the total update cost.

Grafting Key Trees: Efficient Key Management for Overlapping Groups 245

In this section we were considering the total update cost of key-derivation
graphs generated by Algorithm 1, which relates to the average update cost of
parties. As we have shown, this metric will typically improve compared to the
trivial algorithm. However, it might still be possible, that the update cost of
particular, fixed users increases. In the full version of this work [3] we show that
while this may indeed happen, the increase is essentially bounded by a small
constant.

5.3 Asymptotic Optimality of Boolean-Lattice Based Graphs

As discussed in Sect. 5.1, we can interpret our algorithm as follows. On input
([N],S = {S1, . . . , Sk}), in the first phase the algorithm picks a subgraph of the
Boolean lattice GB = (VB , EB) with respect to the power set of [k], where

VB = {vI | I ⊆ [k]} and EB = {(vI , vI′) | I, I ′ ⊆ [k] : I ′ ⊆ I)} .

We refer to this subgraph as the lattice graph. In the second phase, for I ⊆ [k],
a source for every party in PI , i.e., the set of parties belonging exactly to the
groups specified by I, is added and connected to node vI . Each node in the
graph is assigned a weight; sources have weight 1 and the weight of all other
nodes is the sum of the weights of their parents. Finally, for every vI a Huffman
tree to its parents according to the weight distribution is built, resulting in the
key-derivation graph.

In this section we consider key-derivation graphs for general choices of the
lattice graph, i.e., key derivation graphs G obtained by executing the second
phase of the algorithm as described above with respect to a lattice-graph Glat =
(Vlat, Elat) ⊆ GB .7 We say G is the key-derivation graph associated to Glat, [N]
and S. The following theorem shows that the update cost of every lattice-based
key derivation graphs, and in particular graphs generated by Algorithm 1, is
optimal in the asymptotic setting of Sect. 4. Due to space constraints, we defer
its proof to the full version of this work [3].

Theorem 2. Let k ∈ N be fixed, and for I ⊆ [k] let pI ∈ [0, 1] be such that∑
I⊆[k] pI = 1 and p∅ = 0. For N ∈ N let S(N) be the subgroup system associated

to the pI .
Let Glat = (Vlat, Elat) be a subgraph of the Boolean-lattice graph with respect

to [k] satisfying that vI ∈ Vlat for all I with pI > 0, and let G(N) be the key-
derivation graph associated to Glat and S(N). Then

Upd(G(N)) N→∞−−−−→
∑

I⊆[k]

|N · pI | · log(|N · pI |) + Θ(N) = N log(N) + Θ(N) .

7 Naturally, one would require that the resulting key-derivation graph satisfies cor-
rectness. However, this is not necessary for our analysis of its update cost.

246 J. Alwen et al.

6 Lower Bound on the Update Cost of CGKA

In this section we prove a lower bound on the average update cost of continuous
group-key agreement schemes for multiple groups. As an intermediate step we
will further prove a bound on the update cost of key-derivation graphs. To this
aim, we follow the approach of Micciancio and Panjwani [14], who analyzed the
worst-case communication complexity of multicast key distribution in a symbolic
security model, where cryptographic primitives are considered as abstract data
types. We will first recall their security model, adapt it to CGKA, and then prove
how to extend their results to our setting. In the full version of this work [3],
using a similar approach, we prove a lower bound for multicast encryption.

6.1 Symbolic Model

We first define a symbolic model in the style of Dolev and Yao [10] for CGKA
schemes. It follows the approach of Micciancio and Panjwani [14], but as it
admits the uses of public-key encryption also includes elements of the model of
Bienstock et al. [6], who analyze the communication cost of concurrent updates
in CGKA schemes.

Building Blocks. We restrict the analysis to schemes that are constructed from
the following three primitives. Note that our construction is a special case of the
constructions analyzed in this section.

– Public-key Encryption: Let (KGen,Enc,Dec) denote a public-key encryption
scheme, where

• KGen on input of secret key sk returns the corresponding public key pk.
• Enc takes as input a public key pk and a message m, and outputs a
ciphertext c ← Enc(pk,m).
• Dec takes as input a secret key sk and a ciphertext c, and outputs a mes-
sage m = Dec(sk, c). We assume perfect correctness: Dec(sk,Enc(pk,m)) =
m for all sk, pk = KGen(sk), and messages m.

– Pseudorandom generator: The algorithm G takes as input a secret key sk and
expands it to a sequence of keys G0(sk), . . . ,G�(sk).

– Secret sharing: Let S,R denote the sharing and recovering procedures of a
secret sharing scheme: For some access structure Γ ⊆ 2[h], the algorithm S
takes as input a message m and outputs a set of shares S1(m), . . . ,Sh(m) such
that for any I ∈ Γ it holds R(I, {Si(m)}i∈I) = m, but for any I �⊆ Γ the
message m cannot be recovered from {Si(m)}i∈I .

We consider the following data types that can be derived from other objects
according to the following rules.

Data type Grammar rules

Message m ← sk, pk,Enc(pk,m), S1(m), . . . , Sh(m)
Public key pk ← KGen(sk)
Secret key sk ← R,G0(sk), . . . ,G�(sk)

Grafting Key Trees: Efficient Key Management for Overlapping Groups 247

To describe the information that can be recovered from a set of messages M ,
the entailment relation is defined by the following rules:

m ∈ M ⇒ M � m
M � sk ⇒ M � G0(sk), . . . ,Gl(sk)

M � Enc(pk,m), sk : pk = KGen(sk) ⇒ M � m
∃I ∈ Γ : ∀i ∈ I : M � Si(m) ⇒ M � m

By restricting to these relations we essentially assume secure encryption and
secret sharing schemes. Examples and further comments (in the setting of mul-
ticast encryption) can be found in [14, Sect. 3.2]. The set of messages which can
be recovered from M using relation � is denoted by Rec(M).

Continuous Group-Key Agreement. We now define continuous group-key agree-
ment protocols in the symbolic model. We consider the case of CGKA for a static
system of users [N] and groups S1, . . . , Sk ⊆ [N]. Note that a lower bound for
schemes in this setting in particular also excludes schemes which allow dynamic
operations, i.e., adding and removing users from groups.

A CGKA scheme for [N] and S1, . . . , Sk specifies two procedures:

– Initially, Setup assigns each user n ∈ [N] a personal set SK0
n of secret keys.

Furthermore, Setup generates a set msgs(0) of so-called rekey messages to
establish for every group Sj a group secret key sk0Sj

. We require that the
initial sets of personal keys consist of uniformly random keys, and that for all
n′ �= n and sk ∈ SK0

n we have sk /∈ Rec(SK0
n′ ,msgs(0)).

– In round t, the algorithm Update takes as input a user identity n ∈ [N], estab-
lishes new sets SKt

n′ for all users n′, and outputs some rekey messages msgs(t)
to establish for every group Sj an epoch t group key skt

Sj
. We do not require

the new sets and group keys to be distinct from the ones of round t − 1. We
denote the set of new uniformly random keys that were generated during the
update procedure by the updating party by Ft

n.

Note that the only party generating new keys during update t is the updating
party n. For ease of notation we define Ft

n′ = ∅ for all n′ �= n, and set F0
n′ = ∅

for all n′.
For correctness, we require that, (a) at all times members of a group are

able to derive the current group key from their set of personal keys and the sent
messages, and (b) if some user updated in round t, then all users are able to
derive their new set of personal keys from their old one, the sent messages, and
in the case of the updating party the new keys generated during the update. The
latter condition accounts for the fact that changes to a user’s set of personal keys
need to be communicated to them.

More precisely, for (a) we require that for any subgroup structure and any
sequence of updating users (n1, . . . , nt), for all j ∈ [k] each member n of subgroup
Sj can recover skt

Sj
:

skt
Sj

∈ Rec
(
SKt

n ∪
⋃

ι∈[t]0

msgs(ι)
)

.

248 J. Alwen et al.

For (b) we require that for any subgroup structure and any sequence of
updating users (n1, . . . , nt), we have for all n that

SKt
n ⊆ Rec

(
SKt−1

n ∪ Ft
n ∪

⋃

ι∈[t]0

msgs(ι)
)

.

For security, we assume the minimal requirement of post-compromise secu-
rity (PCS), which essentially says that users can recover from compromise, which
leaks their state and the keys generated during the time period of being com-
promised, by updating. Note that a lower bound in this setting in particular
excludes protocols achieving stronger security notions desired in practice, like
post compromise forward security [2].

More precisely, we formalize PCS as the condition that no group key can be
recovered from members outside the group, and/or members’ personal keys and
the keys generated by them before their last update. To this end, for round t
and user n ∈ [N], let tup(t, n) denote the round in which n performed their last
update, where we set tup(t, n) = 0 if no such update occurred. I.e., we require
that for any group system, any update pattern, in every round t we have that

skt
Sj

/∈ Rec
(⋃

n∈[N]\Sj ,

t′∈[t]0

(SKt′
n∪Ft′

n)∪
⋃

n∈Sj

⋃

t′∈[tup(t,n)−1]0

(SKt′
n∪Ft′

n)∪
⋃

t′∈[t]0

msgs(t′)
)

.

Note that in the definition above, excluding all sets of personal secret keys since
a user’s last update is necessary even in the case that another user’s update
might have replaced them before round t, as otherwise SKt

n and in turn skt
Sj

could trivially be recovered by the two correctness conditions.
Our goal is to derive a lower bound on the communication complexity of

CGKA schemes achieving PCS, i.e., the number of messages |∪t′∈[t]0msgs(t′)|
sent by the protocol.

Key Graphs. The execution of any CGKA scheme can be reflected by a graph
structure representing recoverability of the keys involved (cf. [14]). To define this
graph, we first need to recall the definition of useful keys and messages.

A secret key sk is called useless at time t if it can be recovered from old key
material, i.e., if

sk ∈ Rec
(⋃

n∈[N]

⋃

t′∈[tup(t,n)−1]0

(SKt′
n ∪ Ft′

n) ∪
⋃

t′∈[t]0

msgs(t′)
)

,

otherwise sk is called useful. As we will show below, if a CGKA scheme satisfies
correctness and post-compromise security, then for all t ∈ N, n ∈ [N], j ∈ [k] it
must hold that at least one of the user’s personal keys skt

n ∈ SKt
n as well as all

group keys skt
Sj

are useful at time t.
To decide whether a message is useful, one has to consider the information it

contains, where messages can be arbitrarily nested applications of encryption Enc

Grafting Key Trees: Efficient Key Management for Overlapping Groups 249

and secret sharing S. Thus, a message m is said to encapsulate a (pseudo)random
key sk if m = e1(e2(. . . (ej(sk)) . . .)) where ei = Encpki

or ei = Shi
(for some

public key pki and hi ∈ [h]). A message is then called useful if it encapsulates a
useful key.

Definition 2 (Key graph [14]). The key graph KGt = (Vt, Et) for a CGKA
scheme at time t is defined as follows. Vt consists of all the keys that are useful
at time t, and E ⊆ V × V consists of all ordered pairs (sk1, sk2) such that one of
the following is true:

1. There exists j ∈ [l] auch that sk2 = Gj(sk1).
2. There exists a message m ∈

⋃
j∈[t]0

msgs(j) with m = e1(Enc(pk1, e2(sk2)))
with pk1 = KGen(sk1). Here e1 and e2 are some sequences of encryption and
secret sharing, and we require that e2 does not contain any encryption under
a public key that has a matching secret key that is useful at time t.

Edges of the second type are called communication edges.

One can show that for any node sk in KG there is at most one edge of the
first type incident to sk (the proof is analogous to [14, Proposition 1]). Note
that edges of the first type do not incur any communication cost, while edges
of the second type require at least one message. Thus, in the following we will
be interested in the number of communication edges. To this aim, we prove the
following properties of key graphs. In particular, we show that even if a CGKA
scheme does not rely on the use of a fixed key-derivation graph as discussed
in Sect. 3, after every update the key graph must still have the properties of
Definition 1.

We will rely on the following Lemma that can be proved analogously to [14,
Lemma 1].

Lemma 6. Consider a secure and correct CGKA scheme for N ∈ N,
S1, . . . , Sk ⊆ [N]. Then, for any t ∈ N and sequence of updates (n1, . . . , nt), the
corresponding key graph KGt satisfies the following. For every set of keys SK,
and key sk2 that is useful at time t, such that sk2 ∈ Rec

(
SK ∪

⋃
t′∈[t]0

msgs(t′)
)
,

there exists a useful sk1 ∈ SK such that there is a path from sk1 to sk2 in KGt

that only consists of keys sk with sk ∈ Rec
(
SK ∪

⋃
t′∈[t]0

msgs(t′)
)
.

Note that the converse of Lemma 6 is not true, since, for example, a message
Enc(pk1,S1(sk2)) with useful keys sk1, sk2 and pk1 = KGen(sk1) incurs an edge
(sk1, sk2) while sk2 can only be recovered from sk1 if {1} ∈ Γ .

6.2 Lower Bound on the Average Update Cost

The communication complexity of a CGKA scheme after t updates is given by∣
∣
∣
⋃

t′∈[t]0
msgs(t′)

∣
∣
∣. To measure the efficiency of the scheme we will consider the

amortized communication complexity

ComA :=
∣
∣
∣

⋃

t′∈[t]0

msgs(t′)
∣
∣
∣/t .

250 J. Alwen et al.

We now are ready to compute a bound on the expectation of ComA in the sce-
nario where, in every round, the updating party is chosen uniformly at random.
In the full version of this work [3] we prove an analogous bound for multicast
encryption that improves on [14, Theorem 1] in two aspects. It generalizes the
bound to the setting of several, potentially overlapping groups, and further gives
a bound on the average communication complexity of updates, as opposed to a
worst case bound.

Theorem 3. Consider a CGKA scheme CGKA for N ∈ N, S1, . . . , Sk ⊆ [N]
that is secure in the symbolic model. Then the expected amortized average com-
munication cost after t updates is bounded from below by

E[ComA] ≥ (1 − 1/t) · 1
N

∑

∅�=I⊆[k]

|PI | · log(|PI |) .

and the asymptotic (in the number of update operations) update cost of the pro-
tocol is at least 1

N

∑
∅�=I⊆[k] |PI | · log(|PI |).

Due to space constraints, we defer the proof to the full version of this work [3].

7 Open Problems

We conclude by discussing some open problems.

7.1 Optimal Key-Derivation Graphs

Unfortunately we are not able to tell how far from optimal the solutions gener-
ated by Algorithm 1 are for concrete group systems. We consider it an interesting
open question to resolve this issue.

General kdgs. We first discuss this problem in its general form. I.e., given a
system S = {S1, . . . , Sk} of subgroups of the set [N] of users compute the key-
derivation graph for S (as defined in Definition 1) that has minimal update cost.
The question of whether a polynomial time algorithm for solving this problem
exists can be naturally asked in various ways. E.g., when polynomial means
polynomial in the number of users N (think of N being given in unary), or
polynomial in a reasonable description of the set system S, say, when we are given
the sizes of all non-empty intersections of sets in S. Here N can be exponential
in the input length, so a potential solution would need to have a very succinct
description. Algorithm 1 (which we do not know whether is optimal) can be
turned into one of the latter kind by using an implicit representation during the
Huffman coding step.

We are thankful to one reviewer of this work, who pointed out an interest-
ing connection of key-derivation graphs for a group system S = {S1, . . . , Sk}

Grafting Key Trees: Efficient Key Management for Overlapping Groups 251

to the disjunctive complexity of S, which, given variables x1, . . . , xN ∈ {0, 1},
corresponds to the size of the smallest circuit of fanin-2 OR-gates computing

∨

i∈S1

xi, . . . ,
∨

i∈Sk

xi . (10)

Note that circuits computing (10) correspond exactly to key-derivation graphs
for S. So the two problems differ only by the used metric; while disjunctive
complexity counts the number of non-sources in the graph, the update cost of a
kdg weighs each of these nodes by the number of sources below it. As there exist
upper and lower bound on the disjunctive complexity of group systems (see e.g.
[12]), we consider it an interesting open questions whether these can be used to
establish bounds on the update cost of kdgs. We want to point out, however,
that this metric might be not fine-grained enough to capture certain properties
of kdgs: E.g., for N ∈ N the systems S1 = {[N]} and S2 = {[1], [2], . . . , [N]}
both have disjunctive complexity N −1, but their total update costs as kdgs are
of order N · log(N) and N2 respectively.

Lattice Based kdgs. If we restrict our view to algorithms using Boolean-lattice
based graphs as defined in Sect. 5.3, and are willing to make simplifying assump-
tions, the question of optimality translates to an optimization problem on graphs:
we are going to (a) consider only lattice graphs Glat where all nodes v are con-
nected with their descendants v′ ∈ D(v) by an unique path, and (b) assume in
our analysis of the update cost that the algorithms second step (i.e., the gen-
eration of Huffman trees) is instead implemented with an idealized code, that
has average codeword length matching the entropy of the leaf distribution. This
essentially corresponds to ignoring the terms of +1 in Lemma1.

Recall that for groups system {S1, . . . , Sk} the nodes vI ∈ Vlat of a lattice
graph correspond to index sets I ⊆ [k]. It is easy to see that the correctness of
Glat together with condition (a), are equivalent to requiring that the only sinks
in the graph are the singleton sets {i}, and that for every vI ∈ Vlat

I = I1 ·∪ . . . ·∪ I� (11)

holds, where vI1 , . . . , vI�
are the children of vI and disjointness enforces unique

paths.
The total update cost of a graph satisfying this property can be computed

as follows. To every node vI we associate the weight wI =
∣
∣
∣
⋂

i∈I Si\
⋃

j∈[k]\I Sj

∣
∣
∣

corresponding to the number of users exactly in the groups specified by I. Fur-
ther, we inductively define the total weight tI of vI as

tI =

{
wI if vI is source
wI +

∑
I′ : vI′ ∈P(vI)

tI′ else
,

where P(vI) denotes the set of parents of vI . By assumptions (a) and (b), and
Lemma 5, the update cost contributed by node vI thus corresponds to

Upd(vI) = tI log(tI) −
∑

I′ : vI′ ∈P(vI)

tI′ log(tI′) , (12)

252 J. Alwen et al.

and we end up with the following optimization problem on lattice graphs.

Problem 1. Let k ∈ N. Given weights {wI}I⊆[k] with wI ∈ N among the sub-
graphs of the Boolean lattice with respect to the power set of [k] that satisfy
Condition 11 find the subgraph Glat of minimal total update cost

Upd(Glat) =
∑

I⊆[k]

Upd(vI) .

We consider it an interesting open question whether Algorithm 1 solves this
problem and, if not, to find an efficient algorithm that does.

7.2 Security

In this work we focused on the communication complexity of key-derivation
graphs and only gave an intuition on their security. Security proofs for secure
group messaging are typically quite complex, and protocols rely on additional
mechanisms (e.g. confirmation tag, transcript hash, and parent hash) ensuring
that users of the system can not be tricked into inconsistent views of the graph.
We consider it an important open question, to adapt these mechanisms to kdgs
for several groups and give a formal security proof for the resulting CGKA
protocols.

7.3 Efficiency of Dynamic Operations

In the full version of this work [3] we show that the techniques of blanking
and unmerged leaves can be adapted to key-derivation graphs, in order to allow
dynamic changes to the group membership. As is the case for singular groups,
blanking and unmerged leaves decrease the efficiency of updates of a user n, since
they destroy the binary structure of the graph, resulting in potentially more than
a single ciphertext per node in D(vn) having to be generated. However, the graph
gradually recovers from this, assuming that parties with update trees overlapping
D(vn) update. It is an interesting open question how the decrease in efficiency
compares to that of the trivial algorithm.

References

1. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

2. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551,
pp. 261–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-
2 10

https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10

Grafting Key Trees: Efficient Key Management for Overlapping Groups 253

3. Alwen, J., et al.: Grafting key trees: efficient key management for overlapping
groups. Cryptology ePrint Archive, Report 2021/1158 (2021). https://ia.cr/2021/
1158

4. Barnes, R., Beurdouche, B., Millican, J., Omara, E., Cohn-Gordon, K., Robert,
R.: The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-
protocol-11, Internet Engineering Task Force (December 2020). Work in Progress.
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11

5. Bhargavan, K., Barnes, R., Rescorla, E.: TreeKEM: Asynchronous Decentralized
Key Management for Large Dynamic Groups (May 2018)

6. Bienstock, A., Dodis, Y., Rösler, P.: On the price of concurrency in group ratcheting
protocols. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 198–
228. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2 8

7. Canetti, R., Garay, J.A., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast
security: a taxonomy and some efficient constructions. In: IEEE INFOCOM 1999,
New York, NY, USA, 21–25 March 1999, pp. 708–716 (1999)

8. Cohn-Gordon, K., Cremers, C., Garratt, L., Millican, J., Milner, K.: On ends-to-
ends encryption: asynchronous group messaging with strong security guarantees.
In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 1802–
1819. ACM Press (October 2018)

9. Cremers, C., Hale, B., Kohbrok, K.: Efficient post-compromise security beyond
one group. Cryptology ePrint Archive, Report 2019/477 (2019). https://eprint.
iacr.org/2019/477

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theor.
29(2), 198–208 (1983)

11. Huffman, D.A.: A method for the construction of minimum-redundancy codes.
Proc. IRE 40(9), 1098–1101 (1952)

12. Jukna, S.: Boolean Function Complexity. Advances and Frontiers, vol. 27. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-24508-4

13. Mapoka, T.T., Shepherd, S., Abd-Alhameed, R., Anoh, K.O.: Novel rekeying
approach for secure multiple multicast groups over wireless mobile networks. In:
2014 International Wireless Communications and Mobile Computing Conference
(IWCMC), pp. 839–844. IEEE (2014)

14. Micciancio, D., Panjwani, S.: Optimal communication complexity of generic multi-
cast key distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 10

15. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: issues
and architectures. Internet Draft (September 1998). http://www.ietf.org/ID.html

16. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Trans. Netw. 8(1), 16–30 (2000)

17. Zhong, H., Luo, W., Cui, J.: Multiple multicast group key management for the
internet of people. Concurrency Comput. Pract. Exp. 29(3), e3817 (2017). e3817
CPE-15-0502.R1. https://doi.org/10.1002/cpe.3817

https://ia.cr/2021/1158
https://ia.cr/2021/1158
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-11
https://doi.org/10.1007/978-3-030-64378-2_8
https://eprint.iacr.org/2019/477
https://eprint.iacr.org/2019/477
https://doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1007/978-3-540-24676-3_10
https://doi.org/10.1007/978-3-540-24676-3_10
http://www.ietf.org/ID.html
https://doi.org/10.1002/cpe.3817

Updatable Public Key Encryption in the
Standard Model

Yevgeniy Dodis1, Harish Karthikeyan1(B), and Daniel Wichs2

1 New York University, New York City, USA
{dodis,karthik}@cs.nyu.edu

2 Northeastern University and NTT Research, Boston, USA
wichs@ccs.neu.edu

Abstract. Forward security (FS) ensures that corrupting the current
secret key in the system preserves the privacy or integrity of the prior
usages of the system. Achieving forward security is especially hard in
the setting of public-key encryption (PKE), where time is divided into
periods, and in each period the receiver derives the next-period secret
key from their current secret key, while the public key stays constant.
Indeed, all current constructions of FS-PKE are built from hierarchical
identity-based encryption (HIBE) and are rather complicated.

Motivated by applications to secure messaging, recent works of Jost
et al. (Eurocrypt’19) and Alwen et al. (CRYPTO’20) consider a natural
relaxation of FS-PKE, which they term updatable PKE (UPKE). In this
setting, the transition to the next period can be initiated by any sender,
who can compute a special update ciphertext. This ciphertext directly pro-
duces the next-period public key and can be processed by the receiver
to compute the next-period secret key. If done honestly, future (regular)
ciphertexts produced with the new public key can be decrypted with the
new secret key, but past such ciphertexts cannot be decrypted with the
new secret key. Moreover, this is true even if all other previous-period
updates were initiated by untrusted senders.

Both papers also constructed a very simple UPKE scheme based on
the CDH assumption in the random oracle model. However, they left
open the question of building such schemes in the standard model, or
based on other (e.g., post-quantum) assumptions, without using the
heavy HIBE techniques. In this work, we construct two efficient UPKE
schemes in the standard model, based on the DDH and LWE assump-
tions, respectively. Somewhat interestingly, our constructions gain their
efficiency (compared to prior FS-PKE schemes from the same assump-
tions) by using tools from the area of circular-secure and leakage resilient
public-key encryption schemes (rather than HIBE).

Y. Dodis—Partially supported by gifts from VMware Labs and Google, and NSF grants
1619158, 1319051, 1314568.
D. Wichs—Partially supported by NSF grants CNS-1413964, CNS-1750795 and the
Alfred P. Sloan Research Fellowship.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 254–285, 2021.
https://doi.org/10.1007/978-3-030-90456-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_9

Updatable Public Key Encryption in the Standard Model 255

1 Introduction

For privacy applications, Forward Security (FS) refers to the ability to update
sensitive information in a way that: (1) the system continues to be functional
in the future; (2) compromise of the current secret state of the system does
not affect the privacy of past secrets. For example, the famous authenticated
Diffie-Hellman key agreement protocol,—where the party use long-term signing
keys to authenticate the ephemeral public values ga and gb used to produce
the shared key k = gab,—is forward-secure under the Decisional Diffie-Helman
(DDH) assumption, even if the attacker later learns the long-term signing keys,
as long as the no-longer-needed ephemeral secrets a and b were erased before
this compromise.

In the symmetric-key world, forward security is also easy using a pseudoran-
dom generator (PRG) G, provided the sender and the receiver can stay synchro-
nized [12]. Given the current state s, the sender can produce (r, s′) ← G(s) to
get the one-time symmetric key r, and the next state s′, so that compromising
s′ does not affect the security of the one-time key r. One way to think about this
is that PRGs allow one to produce an initial state s0 that defines a “one-way
chain” of pseudorandom states s0 → s1 → s2 → . . ., which can only be traversed
in the forward direction.

Forward-Secure PKE. Coming back to the public-key world, achieving FS for
(non-interactive) Public-Key Encryption (PKE) turned out to be noticeably
more complicated. The initial paper of Canetti et al. [24],—which up to this
day is still essentially the state-of-the-art in the area,—defined FS-PKE as fol-
lows. The key generation outputs initial keys (pk0, sk0), which implicitly defined
two synchronized chains pk0 → pk1 → pk2 → . . . and sk0 → sk1 → sk2 → . . .
which can be independently produced by multiple senders and a single receiver.
The chains should be consistent in the sense that messages encrypted under pki

should be decryptable by ski, and the secret-key chain should have the “one-
wayness” property we want: exposing ski should not compromise the privacy of
messages encrypted under prior public keys pkj , for j < i.1

Canetti et al. [24] also showed how to build FS-PKE from any Hierarchi-
cal Identity-Based Encryption (HIBE) [34,35] scheme. As a result, as more
HIBE schemes got built [14,15,22,25,30,31], we also get more FS-PKE schemes,
even including purely theoretical schemes from very basic assumptions, like
DDH/CDH, factoring, and super-low-noise LPN [22,30,31]. However, most of
these schemes are quite complicated and inefficient (or rely on pairings/strong
assumptions ??), at least compared to many simple PKE schemes that are avail-
able today. Unfortunately, closing the efficiency/complexity gap between FS-
PKE and PKE remains open until this day.

Updatable PKE. As a step towards closing this gap, and motivated by inde-
pendently interesting applications in the area of secure messaging schemes, two
1 For efficiency reasons, [24] also insisted that pki = (pk0, i), meaning one can quickly

go from pk0 to pki, but this point will not be important for our discussion.

256 Y. Dodis et al.

recent works of Jost et al. [38] and Alwen et al. [5] defined a relaxed notion of
forward-secure PKE, called updatable PKE (UPKE). In this setting, any sender
can initiate a “key update” by sending a special update ciphertext.2 This cipher-
text updates the receiver’s public key and also, once processed by the receiver,
will update their secret key. A malicious sender cannot harm security by send-
ing a malicious key update generated with bad randomness. However, an hon-
est sender is assured that, once the receiver processes an honestly generated
key update, all ciphertexts produced in the past will remain secure even if the
receiver’s secret key is compromised in the future.

Note that in the setting of updatable PKE, we implicitly assume that there
is an ordered sequence of update ciphertexts which will be decrypted by the
receiver and that each sender can see this sequence and figure out the current
public key at any time. For example, this holds if all the ciphertexts are sent by
the same sender [38] (similar to the symmetric-key setting), or the ciphertexts
could be sent by multiple senders, but there is some outside mechanism that will
anyway serialize all these ciphertexts [5].

In the extreme cases, such as a secure group messaging application of [38],
every sender S will initiate a key update after each ciphertext that it sends
to the receiver R.3 In particular, since S “trusts itself”, S can be sure that
the information in this ciphertext will be secure forever, the moment that R
decrypts it (and moves its secret key forward), even if R gets corrupted later
on. And this is true even if other senders S′ that sent messages in the past were
more careless, and might not have properly generated/erased the randomness
of their updates, which were used to determine the public key under which S
encrypted its message. In this sense, UPKE with key updates following every
encryption provides a natural public-key analog of stream ciphers extensively
used in symmetric-key cryptography, despite having multiple senders who do
not necessarily trust each other’s randomness. To put it differently, the security
of each sender only depends on the quality/secrecy of its own randomness, while
the correctness relies on the serialization of update ciphertexts sent by all the
senders.

UPKE Syntax and Prior Constructions. A bit more precisely,4 in addition to
standard key generation, encryption, and decryption algorithms, the UPKE
2 Of course, FS is trivial to achieve if the receiver can initiate the key update. Indeed,

this type of key update is also happening in the secure messaging applications of [5,
38], trivially achieving FS when the receiver “speaks” and updates its key. However,
we could also be in the scenario where the receiver is non-communicating for a long
period of time, while many messages are being sent to and processed by the receiver.
For example, the receiver could be part of a large secure messaging group [5] who
only reads messages, but almost never posts messages. UPKE is precisely useful in
this scenario.

3 For the sake of generality, we will not necessarily insist on updating the public key
after each ciphertext, but such extreme use is certainly an option for getting higher
security.

4 We use slightly different syntax than [5,38], but all our schemes are easily converted
to meet the syntax of [5,38].

Updatable Public Key Encryption in the Standard Model 257

schemes have two special algorithms Upd-Pk and Upd-Sk. Any sender can run
Upd-Pk on the current public-key pki−1 to produce update ciphertext upi and a
new public key pki. In turn, the receiver will run Upd-Sk on the current secret
key ski−1 and update ciphertext upi, to produce the new secret-key ski.

In terms of forward security, we require that exposure of any key ski should
not compromise the privacy of messages encrypted under prior public keys pkj ,
for j < i, provided at least one “good” update happened from period j to i. Hereby
“good update” we mean that the randomness used by the sender to generate this
update was not compromised by the attacker. Indeed, in the secure messaging
applications of [5,38], all senders were assumed to be honest, although some of
their local randomnesses could be compromised by the attacker. Following [5],
our definition will actually be slightly stronger in that we will allow malicious
randomness for the “bad updates”. See Sect. 3.

To validate the usefulness of this relaxation, the works of [5,38] also gave
an extremely fast and simple construction, which is orders of magnitude faster
than HIBE-based FS-PKE schemes and is based on the CDH assumption in
the random oracle model (ROM). The encryption scheme is just the standard
hashed ElGamal encryption scheme: given public key h = gs, encryption of m
computes (gr,Hash(hr) ⊕ m), while decryption of (c, w) outputs w ⊕ Hash(cs).
To update the public/secret key, the sender chooses a random exponent δ, and
simply encrypts it using the standard encryption algorithm. The new public key
is h′ = hgδ, and new secret key is s′ = s + δ. We notice, however, the random
oracle model is critically used to break the circularity between encrypting the
value δ, and later leaking the value s′ = s + δ which depends on the secret key.

Our Main Contribution. In this work we build two efficient UPKE schemes
in the standard model. Our first scheme is based on the DDH assumption and
is approximately “security parameter less efficient” compared to the Hashed
ElGamal UPKE scheme described above. Our second construction is also quite
efficient and is based on the Learning-With-Errors (LWE) assumption. In partic-
ular, it gives the first efficient UPKE based on an assumption that is believed to
be post-quantum secure. This was not known even in the random oracle model.

A rough summary of efficiency, security, usability, and assumptions trade-off
for our schemes when compared to previous PKE, UPKE, and FS-PKE schemes
is given in Table 1. It is clear from the table that our efficiency falls between that
of PKE and FS-PKE (much closer to the former), we achieve the same (resp.
much stronger) forward security as FS-PKE (resp. PKE), but we do require a
stronger synchronization assumption than FS-PKE.

1.1 Our Technique: Using Circular Security and Leakage-Resilience

Looking at the random-oracle-based UPKE scheme of [5,38], we observe that
the attacker learns the value s′ = s+ δ, but also an encryption of δ. Namely, the
attacker simultaneously gets: (a) encryption of (some function of the) secret-key,
and (b) some leakage s′ on the secret-key s. Of course, in that particular scheme,
the leakage in (b) was trivial, since δ was completely random and therefore s′

258 Y. Dodis et al.

Table 1. Comparison of different primitives. (κ is security parameter.)

Factors PKE UPKE [5,38]

RO Model

UPKE (this work)

Standard Model

FS-PKE

Efficiency Very Efficient ≈ PKE ≈ PKE · κ Inefficient compared to PKE a

(from HIBE)

Assumptions DDH/CDH,

Factoring, LWE

CDH DDH, LWE DDH/CDH,

Factoring, LWE

Forward Security? No Yes Yes Yes

Synchronization None Strong

(Updates)

Strong

(Updates)

Weak

(Time Periods)
aHere we compared to PKE based on the same assumption (DDH, LWE, etc.) to make this an “apple-to-

apple” comparison. However, there are HIBEs [14,15] which are relatively efficient, but rely on pairings

and use relatively strong assumptions.

is completely independent of s, while (so-called) key-dependent-message (KDM)
security [13] in (a) was easily handled by the random oracle.

Nevertheless, we will find the abstractions in (a)+(b) useful when going to
the standard model. In particular, we will follow the same template, but rely
on circular-secure encryption schemes in the standard model under DDH/LWE
(e.g., [8,17]) where the key s and/or the updates δ must consist of “small” values
in some larger group Zp and hence the leakage s′ = s + δ in part (b) will no
longer be trivial.5 Luckily, these schemes are also leakage resilient and hence this
non-trivial leakage does not hurt security.

Indeed, modulo several important technicalities,6 both of our standard model
constructions will effectively build UPKE from a regular PKE, which satisfies
the following three properties simultaneously:

1. Circular-secure and leakage-resilient (CS+LR): Given encryption of the secret
key s and any bounded-entropy leakage on s, the scheme is still semantically
secure. See Sect. 4 for the precise definition.

2. Key-Homomorphic: Given a public key and a ciphertext pair that corresponds
to some secret key s, together with some offset δ, we can convert them into a
public key and a ciphertext pair that corresponds to the secret key s′ = s+ δ
while preserving the encrypted message.

3. Message-Homomorphic: Given a ciphertext encrypting some value s, and off-
set s′, we can convert it into a ciphertext encrypting s′ − s.

Note that, for correctness, the scheme may restrict the secret key or the
encrypted messages to be “small” values in a larger group over which the homo-
morphism holds.

We can now build UPKE as follows. We start with the circular-secure and
leakage-resilient scheme and implement the updating mechanism by simply
5 This is true for the DDH-based scheme of [17] since circular security requires encrypt-

ing in the exponent and decryption involves solving discrete log; therefore the
encrypted values must be small. This is also true for the LWE-based scheme where
the secret key must be small for correctness.

6 Which is why we present the schemes separately, and the abstraction we give below
is mainly for the intuition.

Updatable Public Key Encryption in the Standard Model 259

encrypting a random (small) offset δ and updating the public key appropriately
using the key-homomorphic property. The receiver decrypts δ and updates their
secret key s to s′ = s + δ. Note that the original key s should still have entropy
when conditioned on the updated key s′, so that we can use the leakage resilience
of our scheme.

Reduction Idea. To get the intuition for our security proof, we first present the
simplest special case where the challenge ciphertext for UPKE is requested in
the very first time period, and there is a single honest update after the challenge,
followed by the reveal of the resulting secret key s′ to the attacker. As we will
see, in this case, we will not even need to use the key-homomorphic property, but
it is easy to see how key-homomorphic property will be needed for the general
case. In our reduction, we will now need to utilize our UPKE attacker A for this
simplest case, to build our CS+LR-attacker A′.

A′ will start with the challenge public key pk and will forward it to A.
A will select two message m0 and m1 and give them to A′.
A′ will use these messages as its own challenge and will choose a probabilistic

leakage function s′ = s + δ for a random (unknown!) offset δ, where s is the
original secret key of the CS+LR scheme.

Upon receiving this challenge ciphertext c∗ and the value s′ from its chal-
lenger, A′ can simply forward c∗ to A, and also declare s′ as the final value of
the secret key after the update.

However, A′ also needs to properly simulate the update ciphertext e which
was supposed to encrypt the (unknown) value δ.

This is where A′ will use the encryption e′ of the secret key s, and the message-
homomorphic property of the encryption scheme, to produce an encryption e of
δ = s′ − s.

This completes the special case of the reduction. For the general case, where
several (untrusted) updates could happen before the challenge is issued, we will
also need to use the key-homomorphic property: both for

(a) converting the challenge ciphertext c∗ in period 1 into the ciphertext
encrypting the same message during the challenge period; as well as for

(b) converting the original encryption e′ of s in period 1 into correctly dis-
tributed encryption e of δ during the exposure period.
While the high-level idea above will work for both of our DDH/LWE instantia-
tions, in both cases we need to overcome certain challenges due to the need to
correctly simulate various distributions in the above-sketched reduction.

Instantiating from DDH. We show that the BHHO cryptosystem [17] con-
structed from the DDH assumption satisfies the properties we need. In that
cryptosystem the secret key is s ∈ Z�

p. Circular security holds when each com-
ponent of the secret key is encrypted in the exponent, and decryption recovers
the secret key by taking the discrete log. For this reason, the BHHO scheme
needs to use a “short” s ∈ {0, 1}� ⊆ Z�

p. In our setting, we will set the initial
key to a uniformly random s0 ∈ {0, 1}�. Each update will choose some random
offset δi ∈ {0, 1}� and will encrypt the value δi in the exponent; the updated

260 Y. Dodis et al.

key will be si+1 = si + δi where the addition is performed over Zp. This scheme
was shown to be circular secure [17] and leakage-resilient [46]; we show that the
two security properties also hold simultaneously. It is also easy to see that the
scheme is key and message homomorphic. When we use this scheme as a UPKE,
we rely on the fact that when δ, s ∈ {0, 1}� are both chosen randomly then
giving the sum δ + s (with addition over Zp) only reduces the entropy of s by
� · log(4/3) ≤ �/2 bits.

Instantiating from LWE. We show that the dual-Regev cryptosystem [33,48]
constructed from the LWE assumption also satisfies the properties we need. The
proof of circular security and leakage resilience are analogous to those of BHHO.
One subtle issue that, while the dual-Regev scheme is key-homomorphic, when
we update the key, we no longer get the correct ciphertext distribution – in
particular, the “error term” distribution is perturbed. To fix this, we need to
resort to the ‘noise flooding/smudging” technique, where we add some super-
polynomial noise to the ciphertext to hide small polynomial differences in the
error term.

Follow Up Work. Following this work, the work of [28] defined an extension
of UPKE called fast-forwardable UPKE (FF-UPKE). FF-UPKE addresses the
problem that the UPKE receiver might be offline or otherwise miss many update
ciphertexts, resulting in a situation where its current secret key ski is consider-
ably behind the current public key pkj : i � j. Of course, such “stale” receiver
can still get to the current key skj , by downloading Δ = (j − i) key update
messages, and performing Δ sequential secret key updates to “catch up”. The
goal of FF-UPKE is to achieve such “catching up” much faster: say, but only
downloading a sub-linear (and, ideally, logarithmic) in Δ number of update
ciphertexts (and, similarly, doing the sub-linear amount of work). [28] also
built a generic FF-UPKE from any UPKE which they call update-homomorphic.
Interestingly, minor modifications of our UPKE constructions turn out to be
update-homomorphic. In contrast, the ROM-based UPKE [38] does not appear
to be update-homomorphic and does not suffice for building FF-UPKE. Thus, as
an unexpected application, the homomorphic properties of our construction,—
which were needed to argue security of our scheme, but were not needed for the
functionality,—turned out to be useful in a setting where random oracle does
not appear to help.

1.2 Additional Theoretical Contributions

In the full version of our paper, we also consider two natural strengthenings
of the basic chosen-plaintext attack (CPA) security of UPKE. First, we define
the chosen-ciphertext attack (CCA) variant, where the attacker also has oracle
access to the decryption oracle. Second, we consider extending the capability of
untrusted senders in the CPA/CCA security game to produce arbitrary tuple
of update ciphertext e and the corresponding new public key pk′, rather than

Updatable Public Key Encryption in the Standard Model 261

limiting their ability to selecting bad randomness r, and then honestly using r
to produce the tuple (e, pk′).

As initial feasibility results, for both variants, we show a generic way—using
appropriate [27] notion of non-interactive zero-knowledge (NIZK) proofs—to
extend the basic CPA notion of UPKE to meet the corresponding stronger
requirement. Using the existing feasibility of such NIZK proofs from DDH/LWE,
we get these stronger forms of UPKE can be met, under the corresponding
assumption, in the standard model. Unlike our CPA constructions described
above, here we do not give an efficient instantiation of the resulting schemes
from DDH/LWE, leaving those to future work.

1.3 Related Work

Hierarchical Identity-Based Encryption (HIBE). As mentioned, Canetti et al.
[24] also showed how to build FS-PKE (and therefore also UPKE) from any
Hierarchical Identity-Based Encryption (HIBE) [14,15,22,25,30,31,34,35].

By plugging in prior constructions of HIBE from DDH/CDH [22,30,31], we
would get an alternate construction of UPKE from DDH/CDH in the standard
model. However, this construction is mainly of theoretical interest and is hugely
impractical. In particular, it relies on complex garbled circuits that perform
public-key operations. In more detail, if κ is the security parameter, the con-
struction relies on a chain of O(κ) garbled circuits, each of which outputs O(κ)
special ciphertexts (encrypted labels for next level garbled circuit), where each
ciphertext consists of at least O(κ) group elements; the fact that this is all com-
puted inside a garbled circuit then adds at least another O(κ) overhead on top.
Lastly, going from HIBE to FS-PKE/UPKE adds another O(κ) overhead, for
a total complexity of at least O(κ5). So the complexity is at least O(κ3) worse
than our scheme, even without getting into huge concrete overheads.

By plugging in prior constructions of HIBE from LWE [2,25], we would get an
alternate construction of UPKE from LWE in the standard model. The resulting
schemes could potentially be piratically efficient. However, our construction is
still significantly simpler and more efficient for several reasons: (1) We do not
rely on lattice trapdoors or GPV style pre-image sampling [33], which makes our
scheme both conceptually simpler and practically more efficient. (2) Our secret
key is a single lattice vector rather than an entire lattice basis. This makes our
secret keys roughly an O(κ) factor shorter. (3) We avoid the additional O(κ)
factor overhead in the transformation from HIBE to FS-PKE/UPKE.

Forward-Secure Signatures. Forward-Secure Signatures [6] are similar to FS-
PKE, in that compromising the current signing key should not enable forgery of
messages for previous periods. In particular, the tree-based FS-signature scheme
of Bellare and Miner [11] was the inspiration for the HIBE-based FS-PKE of
[24]. The above work was later extended by Malkin et al. [43]. Forward-secure
signatures were also studied in the random oracle setting [1,36,41].

262 Y. Dodis et al.

Other Key Evolving Encryption Schemes. The works of Jaeger and Stepanovs
[37] and Poettering and Rössler [47] proposed two related notions of key-
updatable PKE scheme, which provide an even stronger form of key-evolution
than FS-PKE. In these schemes, key updates can be labeled by arbitrary, pos-
sibly adversarially chosen, strings. Unsurprisingly, the schemes in these works
were also built from HIBE.

Circular and KDM Secure Encryption Schemes. Circular secure schemes allow
the attacker to see encryptions of the secret key of the scheme. A natural exten-
sion of this notion studies a cycle of (ski, pki) pairs for i = 1, . . . , n where we
encrypt ski under pki mod n+1. This was defined as key-dependent message secu-
rity (KDM) by Black et al. [13] and as circular security by Camenisch and
Lysyanskaya [23]. The first cryptosystem in the standard model with a proof of
KDM-security under a standard assumption was given by Boneh et al. [17]. Sub-
sequently, constructions from the learning with errors (LWE) [8] and quadratic
residuosity [20] assumptions were proposed. Construction for identity-based
KDM-secure encryption [4] was also proposed. While the construction of Boneh
et al. [17] was for affine functions, subsequent “KDM amplifications” transforms
extended the class of functions significantly [7,10,21,44].

Leakage-Resilient Encryption Schemes. Most of the security models do not cap-
ture possible side-channel attacks. These attacks are designed to exploit unin-
tended leakage that often stems from the physical environment. Akavia et al.
[3] proposed a realistic framework that aimed to capture information about the
leakage. Subsequent work by Naor and Segev [46] analyzed the resilience of pub-
lic key cryptosystems to leakage. An important result was that they showed
the (even slightly optimized version of the) BHHO scheme [17] was resilient to
|sk|(1 − o(1)) bits of leakage. Subsequent work [26] showed the leakage resilience
of both the BHHO scheme and the dual Regev encryption scheme [33,48] in the
auxiliary input model. Brakerski et al. [22] studied both the leakage resilience and
circular security of anonymous IBE. We point to the survey of leakage resilient
cryptography by Kalai and Reyzin [39] for additional work in this domain.

Different “Updatable” Encryption. With an unfortunate naming collision, there
has been a different kind of “updatable encryption schemes” considered in the
literature [16,18,19,32,40,42]. These are symmetric-key encryption schemes that
aim to accomplish key rotation in the cloud, specifically moving the ciphertexts
under the old key to the new key. In particular, these schemes produce multiple
encryptions of the same message under different keys and aim to produce update
tokens that allow the update of old ciphertexts, without leaking the message
content. In contrast, updatable schemes in this paper are public-key, encrypt
different messages, and aim to achieve forward security. Thus, the notions are
very different despite the partial naming collision.

Updatable Public Key Encryption in the Standard Model 263

2 Preliminaries

Notation. For a distribution X, we use x ←$ X to denote that x is a random
sample drawn from the distribution X. For a set S we use x ←$ S to denote that
x is chosen uniformly at random from the set S. We denote by Ud the uniform
distribution over {0, 1}d.

Information-Theoretic Notions. The prediction probability is

Pred(X) := max
x

P [X = x].

We can also denote

Pred(X|y) := max
x

P [X = x|Y = y] .

We define the conditional versions as

Pred(X|Y) := Ey←Y

[
Pred(X|y)

]
.

The (average-case) conditional min-entropy is H∞(X|Y) = − log(Pred(X|Y)).
The statistical distance of X and Y is SD(X,Y) = 1

2

∑
x |P [X = x] − P [Y = y]|.

Theorem 1 (Leftover Hash Lemma). Fix ε > 0. Let X be a random vari-
able on {0, 1}n with conditional min-entropy H∞(X|E) ≥ k. Let H = {Hn}n∈N

where Hn = {hs}s∈{0,1}d for all n, be a universal hash family with output length
m ≤ k − 2 log(1/ε). Then, (hUd

(X), Ud, E) ≈ε (Um, Ud, E)

Lemma 1 (Smudging Lemma [9]). Let B1 = B1(κ) and B2 = B2(κ) be
positive integers and let e1 ∈ [−B1, B1] be a fixed integer. Let e2 ←$ [−B2, B2]
be chosen uniformly at random. Then the distribution of e2 is statistically indis-
tinguishable from e1 + e2 as long as B1/B2 = negl(κ).

Definition 1 (The Decisional Diffie Hellman Assumption (DDH)). Let
G be a probabilistic polynomial-time “group generator” that, given as a parameter
1κ where κ is the security parameter, outputs the description of a group G that
has prime order p = p(κ). The decisional Diffie Hellman (DDH) assumption for
G says that the following two ensembles are computationally indistinguishable:

{(g1, g2, gr
1, g

r
2) : gi ← G, r ← Zp} ≈c {(g1, g2, gr1

1 , gr2
2) : gi ← G, ri ← Zp}

A lemma of Naor and Reingold [45] generalizes the above assumption for m > 2
generators.

Lemma 2 ([45]). Under the DDH assumption on G,

{(g1, . . . , gm, gr
1 , . . . , gr

m) : gi ← G, r ← Zp} ≈c {(g1, . . . , gm, gr1
1 , . . . , grm

m) : gi ← G, ri ← Zp}

Definition 2 (Learning with Errors Assumption (LWE)). Consider inte-
gers n, m, q and a probability distribution χ on Zq, typically taken to be a normal
distribution that has been discretized. Then, the LWE assumption states that the
following two ensembles are computationally indistinguishable:

{A, AT x + e : A ←$ Zn×m
q , x ←$ Zn

q , e ←$ χm} ≈c {A, v : A ←$ Zn×m
q , v ←$ Zm

q }

264 Y. Dodis et al.

3 Updatable Public Key Encryption (UPKE)

Jost et al. [38] introduced the notion of an Updatable Public Key Encryption
(UPKE). This definition was later modified by the work of Alwen et al. [5]. Below,
we present our variant of the UPKE.

Definition 3. An updatable public key encryption (UPKE) scheme is a set
of five polynomial-time algorithms UPKE = (U-PKEG,U-Enc,U-Dec,Upd-Pk,
Upd-Sk) with the following syntax:

– Key generation: U-PKEG takes as parameter 1κ where κ is the security
parameter and outputs a fresh secret key sk0 and a fresh initial public key
pk0.

– Encryption: U-Enc receives a public key pk and a message m to produce a
ciphertext c.

– Decryption: U-Dec receives a secret key sk and a ciphertext c to produce
message m.

– Update Public Key: Upd-Pk receives a public key pk to produce an update
ciphertext up and a new public key pk′.

– Update Secret Key: Upd-Sk receives an update ciphertext up and secret key
sk to produce a new secret key sk′.

Correctness. Let (sk0, pk0) be the output of U-PKEG. For any sequence
of randomness {ri}q

i=1, define the sequence of public keys and secret
keys {(pki, ski)}q

i=1 as follows: (upi, pki) ← Upd-Pk(pki−1; ri), ski ←
Upd-Sk(ski−1, upi). Then, UPKE is correct if for any message m and for any
j ∈ [q],

P
[
U-Dec(skj ,U-Enc(pkj ,m)) = m

]
= 1 .

3.1 IND-CR-CPA Security of UPKE

In this section, we define the security game. We will called this the
IND-CR-CPA Security which is meant to capture INDistinguishibility under
Chosen Randomness Chosen Plaintext Attack. Largely similar to the CPA secu-
rity game, this also additionally allows the adversary to choose the randomness
used to update the keys which is modeled by the following oracle access:

– Oupd(·): A provides its choice of randomness ri. The Challenger increments
the time to i + 1. It then performs the following actions:

(upi+1, pki+1) ← Upd-Pk(pki; ri); ski+1 ← Upd-Sk(ski, upi+1) .

For any adversary A with running time t we consider the IND-CR-CPA security
game:

– Sample (sk0, pk0) ← U-PKEG(1κ), b ←$ {0, 1}.
– (m∗

0,m
∗
1, state) ←$ AOupd(·)(pk0)

– Compute c∗ ←$ U-Enc(pkq′ ,m∗
b) where q′ is the current time period.

Updatable Public Key Encryption in the Standard Model 265

– state ←$ AOupd(·)(c∗, state)
– Choose uniformly random r∗ and then compute

(up∗, pk∗) ← Upd-Pk(pkq; r
∗); sk∗ ← Upd-Sk(skq, up

∗) .

where q is the current time period.
– b′ ←$ A(pk∗, sk∗, up∗, state).
– A wins the game if b = b′. The advantage of A in winning the above game is

denoted by AdvUPKE
crcpa (A) = |P [b = b′] − 1

2 |.
Definition 4. An updatable public-key encryption scheme UPKE is IND-
CR-CPA-secure if for all PPT attackers A, its advantage AdvUPKE

crcpa (A) is
negligible.

Remark 1 (Comparison of the Security Models.). The work of Jost et al. [38]
defined a notion which had an update procedure not specific to any public key.
This was designed to support multiple instances, i.e. multiple key pairs, and
where the offset generated by the public update could be applied to many public
keys. While we consider the simpler setting of only one instance, which is also
reflected in our syntax, we believe that our constructions trivially satisfy the
stronger security model proposed by [38]. Our model also allows for q �= q′, i.e.,
for the adversary to issue a challenge in one time period and corrupt in another
time period. However, without loss of generality, we give the attacker the final
secret key sk∗ immediately following the honest post-challenge key update (at
period q′), as this gives the most amount of information to the attacker.

Our definition is a generalization of the model proposed by Alwen et al. [5]:
their notion forced an update of the keys after every encryption query, while
ours separates the two processes for more flexibility.

4 Key-Dependent-Message-Secure Encryption Scheme

Let us recall the definition of a public-key encryption scheme.

Definition 5. An encryption scheme is a set of three polynomial-time algo-
rithms E = (Gen,Enc,Dec) with the following syntax:

– Key generation: Gen receives 1κ where κ is the security parameter and
outputs a fresh secret sk and outputs a fresh public key pk.

– Encryption: Enc receives a public key pk and a message m to produce a
ciphertext c.

– Decryption: Dec receives a secret key sk and a ciphertext c to produce mes-
sage m.

Correctness. The correctness of an encryption scheme is such that (pk, sk) ←
Gen(1κ), ∀m ∈ M,

P [Dec(sk,Enc(pk,m)) = m] = 1

266 Y. Dodis et al.

CS+LR Security. For any PPT adversary A we consider the following security
game:

– Sample (sk, pk) ←$ Gen(1κ), b ←$ {0, 1}.
– L, f,m0,m1 ←$ A(pk) where L is the leakage function chosen by A, m0,m1

are the challenge messages, and f is the function of the secret key that A
wants to receive as encryption. L defines the leakage resilience and f defines
the KDM security.

– Compute C ←$ Enc(pk,mb), C ′ ←$ Enc(pk, f(sk))7.
– b′ ←$ A(c0, c1, L(sk)).
– A wins the game if b = b′. The advantage of A in winning the above game is

denoted by AdvE
KDM(A) = |P [b = b′] − 1

2 |.
Definition 6. A public-key encryption scheme E is λ-CS+LR-secure if for all
PPT attackers A, and leakage functions L such that H∞(sk|L(sk)) ≥ |sk|−λ, its
advantage AdvE

cs+lr(A) is negligible.

5 DDH Based Construction

This section presents construction from the DDH Assumption. We begin by
presenting a slightly modified version of the PKE Scheme proposed by Boneh et
al. [17] in Sect. 5.1. This scheme was shown to be independently circular secure
and leakage resilient. We also show that the scheme is CS+LR secure in Sect. 5.2.
We then present our construction of a UPKE scheme (Sect. 5.3), extended from
the PKE scheme. We finally prove that the UPKE scheme is IND-CPA secure
in Sect. 5.4.

5.1 The BHHO Cryptosystem

In this section, we present a modified version of the original BHHO Cryptosystem.
This is presented as Construction 1.

Correctness. Let m ∈ G. Enc(pk,m) = (f1 = gr
1, . . . , f� = gr

� , c = hr · m).
Now, Dec(sk, f1, . . . , f�, c) outputs: c · (

∏�
i=1 fsi

i)−1 = hr · m(
∏�

i=1 fsi
i)−1 =

(
∏�

i=1 gsi
i)r · m · (

∏�
i=1(g

r
i)si)−1 = m.

5.2 CS+LR Security of BHHO Cryptosystem

In this section, we provide proof of the combined circular security and leakage
resilience of the BHHO Cryptosystem. Formally, we will prove the following
theorem:

Theorem 2. Under the DDH Assumption, Construction 1 is λ-CS+LR secure
for leakage λ = � − 2 log p − ω(log κ).

7 In our security proofs, the function f will be applied to each bit of the secret key.

Updatable Public Key Encryption in the Standard Model 267

Protocol BHHO Cryptosystem

Gen(1κ)

Sample s = (s1, . . . , s�) ←$ {0, 1} and
g1, . . . , g� ←$ G.
Compute h =

∏�
i=1 gsi

i .
return sk = s ∈ Z�

p, pk = (g1, . . . , g�, h) ∈ G�+1 .

Enc(pk, m ∈ G)

Parse pk = (g1, . . . , g�, h)
Sample r ←$ Zp

for i = 1, . . . , � do
Compute fi = gr

i

return C = (f1, . . . , f�, c = hr · m) ∈ G�+1

Dec(sk, C)

Parse C = (f1, . . . , f�, c = hr · m) and sk = s =
(s1, . . . , s�) ∈ Z�

p

Compute m′ = c ·
(∏�

i=1 fsi
i

)−1

return m′

Construction 1. A modified version of the BHHO Cryptosystem where the bits of
the secret key are not encoded as group elements. Let κ be the the security parameter.
Let G be a probabilistic polynomial-time “group generator” that takes as input 1κ

and outputs the description of a group G with prime order p = p(κ) and g is a fixed
generator of G.

However, before we can prove the theorem, we will prove that there exists an
algorithm Enc′(pk, i) such that (pk,Enc(pk, gsi), s) ≈c (pk,Enc′(pk, i), s). Con-
sider the following definition of Enc′:

Enc′(pk, i) = (f1 = gr
1, . . . , fi−1 = gr

i−1, fi = gr
i /g, fi+1 = gr

i+1, . . . , f� = gr
� , hr)

We will first show that this ciphertext decrypts correctly to gsi .

Dec(s, f1, . . . , f�, c = hr) = hr ·
(

�∏
i=1

f
si
i

)−1

= hr

(
�∏

i=1

gi
si

)−r

gsi = hrh−rgsi = gsi

Lemma 3. Under the DDH Assumption, (pk,Enc(pk, gsi), s) ≈c (pk,
Enc′(pk, i), s) where (pk, s) ←$ Gen(1κ)

Proof. We will prove the lemma through a sequence of hybrids, outlined in
Table 2.

Hybrid D0. This is when Enc is used to encrypt gsi . It corresponds to the distri-
bution:

(pk, gr
1, . . . , g

r
� , hr · gsi , s : r ←$ Zp)

Hybrid D1. This is same as Hybrid D0 where we replace hr by the steps of the
decryption algorithm. It corresponds to the distribution

⎛

⎝pk, f1 = gr
1, . . . , f� = gr

� ,

�∏

j=1

f
sj

j · gsi , s : r ←$ Zp

⎞

⎠

268 Y. Dodis et al.

Table 2. Proof outline for Lemma 3

Hybrid Hybrid Definition Security

D0 Enc is used to encrypt gsi Identical

D1 D0 except hr · gsi replaced with
∏�

j=1 f
sj

j · gsi

DDH

D2 D1 except each fj ←$ G
Identical

D3 D2 except fi is replaced by fi/g where fi ←$ G
DDH

D4 D3 except fj = gr
j where r ←$ Zp

Identical

D5 Enc′ is used to encrypt gsi

The distributions D0 and D1 are identical for the same value of r ←$ Zp.
Therefore, there is no distinguishing advantage for any adversary A.

Hybrid D2. In this case, we sample each fi ←$ G. This corresponds to the distri-
bution: ⎛

⎝pk, f1, . . . , f�,
�∏

j=1

f
sj

j · gsi , s : f1, . . . , f� ←$ G

⎞

⎠

Claim. If DDH (as defined in Lemma 2) is hard for G, then for every PPT A,
the advantage in distinguishing Hybrids D1 and D2 is negligible.

Proof. We will use an adversary A capable of distinguishing between the two
distributions to create an adversary B that can win against the DDH Game. After
receiving input from the challenger (g1, . . . , g�, f1, . . . , f�), B generates (pk, sk =
s) and returns to A: (f1, . . . , f�,

∏�
j=1 f

sj

j ·gsi , s). It is easy to see that B perfectly
simulates one of the hybrids based on the input it receives. This concludes the
proof that A has negligible advantage in distinguishing the two hybrids. �
Hybrid D3. The same distribution as Hybrid 2, except that fi is replaced by
fi/g.

⎛

⎝pk, f1, . . . , fi−1, fi/g, fi+1, . . . , f�,

�∏

j=1

f
sj

j · gsi , s : f1, . . . , f� ←$ G

⎞

⎠

We know that for fixed g, fi/g is indistinguishable from fi where fi ←$ G. There-
fore, the distributions are identical and A has no advantage in distinguishing
the two distributions.

Hybrid D4. This is corresponding to the distribution where fj = gr
j where

r ←$ Zp.
⎛

⎝pk, gr
1, . . . , g

r
i−1, g

r
i /g, gr

i+1, . . . , g
r
� ,

�∏

j=1

f
sj

j · gsi , s : r ←$ Zp

⎞

⎠

Updatable Public Key Encryption in the Standard Model 269

Table 3. Proof outline for Theorem 2

Hybrid Hybrid Definition Security

D0 The Original CS+LR Security Game, Enc is used Corollary 1

D1 D0 except Enc′ is used

Identical

D2 D1 except hr · mb replaced with
∏�

j=1 f
sj

j · mb

DDH

D3 D2 except each fi is replaced by fi ←$ G

Leftover Hash Lemma

D4 D3 except
∏�

j=1 f
sj

j · mb replaced by U ←$ G

Claim. If DDH (as defined in Lemma 2) is hard for G, then for every PPT A,
the advantage in distinguishing Hybrids D3 and D4 is negligible.

The proof of this claim is similar to the proof of the earlier claim.

Hybrid 5. This is corresponding to the distribution (Enc′(pk, i), s), fi = gr
i /g

where r ←$ Zp.

(pk, f1 = gr
1, . . . , fi−1 = gr

i−1, fi = gr
i /g, fi+1 = gr

i+1, . . . , f� = gr
� , hr, s : r ←$ Zp)

It is clear that the input distribution in Hybrids D4 and D5 are identical for the
same r and A has no advantage in distinguishing the two distributions. This is
because:

∏�
j=1 f

sj

j · gsi =
∏

j �=i g
rsj

j · grsi
i /gsi · gsi = (

∏�
j=1 g

sj

j)r = hr. �
Therefore, we have shown that (Enc(pk, gsi), s) ≈c (Enc′(pk, i), s).
Further, note that each si is independently chosen. Additionally, each

encryption/fake-encryption chooses its own independent randomness r. There-
fore, we can independently replace each Enc(pk, gsi) with Enc′(pk, i), and the
resulting encryption of secret key is computationally indistinguishable from the
one computed by Enc′. This proof can be shown by a sequence of hybrids, replac-
ing one encryption at a time. Therefore, as a corollary we get that:

Corollary 1. Under the DDH Assumption,

(pk,Enc(pk, gs1), . . . ,Enc(pk, gs�), s) ≈c (pk,Enc′(pk, 1), . . . ,Enc(pk, �), s)

With this corollary, we can prove the original theorem:

Theorem 2. Under the DDH Assumption, Construction 1 is λ-CS+LR secure
for leakage λ = � − 2 log p − ω(log κ).

Proof. We will prove the same through a sequence of hybrids, summarized in
Table 3. Note that each of our hybrid distribution contains pk and L(sk = s) in
its definition. We drop these terms from the definition for simplicity and merely
focus on the two ciphertexts which undergo the bulk of the changes.

270 Y. Dodis et al.

Hybrid D0. The original CS+LR Game. In this hybrid, A receives the following
distribution:

(
C = (f1 = gr

1 , . . . , f� = gr
� , hr · mb), C

′ = (Enc(pk, gs1), . . . ,Enc(pk, gs�)) : r ←$ Zp
)

Hybrid D1. The CS+LR Game but with C ′ consisting of the “fake
encryption” algorithm. This corresponds to the distribution:
(
C = (f1 = gr

1, . . . , f� = gr
� , hr · mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, �)) : r ←$ Zp

)

In Corollary 1 we showed that the two distribution were indistinguishable even
when conditioned on the secret key s. However, in the definition of D0,D1,
we only provide partial leakage L(s), and hence A has negligible advantage in
distinguishing the two distributions.

Hybrid D2. It is similar to hybrid D1, but with hr ·mb replaced by
∏�

j=1 f
sj

j ·mb.
This is the following distribution:

⎛

⎝C =

⎛

⎝f1 = gr
1, . . . , f� = gr

� ,

�∏

j=1

f
sj

j · mb

⎞

⎠ , C ′ : r ←$ Zp

⎞

⎠

For the same r, the distributions from Hybrids D2 and D3 are identical. There-
fore, A has no advantage in distinguishing the two hybrids.

Hybrid D3. Similar to hybrid D2, except each fi ←$ G. This is the following
distribution:

⎛

⎝C =

⎛

⎝f1, . . . , f�,

�∏

j=1

f
sj

j · mb

⎞

⎠ , C ′ : f1, . . . , f� ←$ G

⎞

⎠

Claim. If DDH is hard for G, then for every PPT A, the advantage in distin-
guishing hybrids D2 and D3 is negligible.

Proof. We will use an adversary A capable of distinguishing hybrids D2 and D3

to create B that can win against the DDH Game. B receives from the DDH Chal-
lenger: (g1, . . . , g�, f1, . . . , f�). It chooses s ←$ {0, 1}� and sets pk = (g1, . . . , g�, h)
where h =

∏�
i=1 gsi

i and sets sk = s. It then sends to A: (pk, L(sk = s), C =
(f1, . . . , f�,

∏�
j=1 f

sj

j · mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, �))). It is easy to see
that B perfectly simulates the distributions of hybrids D2 and D3 based on the
input it receives. It merely forwards A’s guess as its own. This concludes the
proof that A has a negligible advantage in distinguishing hybrids D2 and D3. �

Hybrid D4. Replace
∏�

j=1 f
sj

j with a random value U ←$ G. This gives the dis-
tribution:
(
C = (f1, . . . , f�, U · mb), C ′ = (Enc′(pk, 1), . . . ,Enc′(pk, �)) : U, f1, . . . , f� ←$ G

)

Updatable Public Key Encryption in the Standard Model 271

Claim. Hybrids D3 and D4 are statistically indistinguishable .

Proof. We can represent fi ←$ G as gri for random ri ←$ Zp. Therefore, the term
∏�

j=1 f
sj

j = g〈r ,s〉 where r = (r1, . . . , r�). Now, note that distinguishing hybrids
D3 and D4 is at least as hard as distinguishing the following two ensembles:

(r1, . . . , r�, 〈r, s〉, C ′ : r1, . . . , r� ←$ Zp); (r1, . . . , r�, u, C ′ : u, r1, . . . , r� ←$ Zp)

If one could distinguish the second pair of distributions, then they can efficiently
calculate the value of gri and g〈r ,s〉, thereby distinguishing the original pair of
distributions.

We will now complete the proof by showing that the second pair of distribu-
tions are statistically indistinguishable. To this end, we will use LHL, as defined
in Theorem 1. We have that

H∞(s|C ′, L(s), pk) = H∞(s|L(s), pk) ≥ H∞(s|L(s)) − log p ≥ � − λ − log p.

This is because C ′ is independent of the sk conditioned on pk, the value pk’s
component of h comes from a domain of size p, and L was a leakage function
that satisfied H∞(s|L(s)) = � − λ. Now, consider, the hash function family
H consisting of hr (s) = 〈r, s〉 mod p. The output length is m = log p. This
is a universal hash family. To apply LHL we need, m = k − 2 log(1/ε). Here
k = � − λ − log p. Therefore, log p = � − λ − log p − 2 log(1/ε). Or if λ ≤
�−2 log p−2 log(1/ε), for some negligible ε then the latter two distributions are
statistically indistinguishable. �
It follows from the above claim that A has a negligible advantage in distinguish-
ing hybrids D3 and D4. Further, in Hybrid 4, the message is masked by a random
value and therefore A has no advantage in Hybrid D4.

Combining the different hybrid arguments together, we get that any PPT
algorithm A has a negligible advantage in the CS+LR security game. �

5.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption
based on the BHHO Cryptosystem. This is presented in Construction 2.

Correctness. Informally, correctness requires that any message m encrypted by
an updated public key decrypts with the help of the corresponding updated
secret key to the same message m, always.

– Let (sk, pk) ← U-PKEG(1κ). Here, sk = s = (s1, . . . , s�) ←$ {0, 1}�, and sk =
(g1, . . . , g�,

∏�
j=1 gsi

i).
– Let r be the randomness used for the Upd-Sk procedure. Let δ = (δ1, . . . , δ�)

be the first � bits of r. We have (pk′, up) ← Upd-Pk(pk). Here, pk′ =
(g1, . . . , g�, h·∏�

j=1 gδi
i). up = (gr1

1 , . . . , gr1
� , hr1 ·gδ1), . . . , (gr�

1 , . . . , gr�

� , hr� ·gδ�).

272 Y. Dodis et al.

Protocol DDH-Based UPKE

U-PKEG(1κ)

Sample s = (s1, . . . , s�) ←$ {0, 1} and
g1, . . . , g� ←$ G.
Compute h =

∏�
i=1 gsi

i .
return sk = s ∈ Z�

p, pk = (g1, . . . , g�, h) ∈ G�+1 .

U-Enc(pk, m ∈ G)

Parse pk = (g1, . . . , g�, h)
Sample r ←$ Zp

for i = 1, . . . , � do
Compute fi = gr

i

return C = (f1, . . . , f�, c = hr · m) ∈ G�+1

U-Dec(sk, C)

Parse C = (f1, . . . , f�, c = hr · m) and sk = s =
(s1, . . . , s�) ∈ Z�

p

Compute m′ = c ·
(∏�

i=1 fsi
i

)−1

return m′

Upd-Pk(pk)

Parse pk = (g1, . . . , g�, h)
Sample δ = (δ1, . . . , δm) ←$ {0, 1}�

Compute h′ = h ·
(∏�

i=1 gδi
i

)

Encrypt δ bit-by-bit, i.e., up =(
U-Enc(pk, gδ1), . . . ,U-Enc(pk, gδ�)

)
.

return (up, pk′ = (g1, . . . , g�, h
′))

Upd-Sk(sk, up)

Parse up = (c1, . . . , c�)
for i = 1, . . . , � do

Compute ui = U-Dec(sk, ci)
if ui = 1 then

Set δi = 0
else

Set δi = 1
Compute s′ = s + δ where δ = (δ1, . . . , δ�) and addi-
tion is element-by-element over Zp.
return sk′ = (s′)

Construction 2. DDH Based Construction. Let κ be the the security parameter. Let
G be a probabilistic polynomial-time “group generator” that takes as input 1κ and
outputs the description of a group G with prime order p = p(κ) and g is a fixed
generator of G. Set � = �5 log p�.

– We will look at Upd-Sk now. It is easy to verify that Upd-Sk correctly decrypts
each ciphertext in up to corresponding gδi . This is either 1 when δi = 0 or
non-identity if δ = 1. It then updates s′ = s + δ. Interestingly, while s was
initialized to be a bit string, each element grows slowly over Zp.

– Consider U-Enc(pk′,m). The resulting ciphertext is (gu
1 , . . . , gu

� , h′u · m) for
u ←$ Zp.

– Consider U-Dec(sk′, gu
1 , . . . , gu

� , h′u · m)). The decryption algorithm returns:

h′u · m · (
�∏

j=1

(gu
j)s′

j)−1 = (h ·
�∏

j=1

g
δj

j)u · m · (
�∏

j=1

(gu
j)s′

j)−1

= (
�∏

j=1

g
sj

j ·
�∏

j=1

g
δj

j)u · m · (
�∏

j=1

(gu
j)sj+δj)−1 = m

– The same can be extended to additional updates. The key point to note is
that the algorithms do not need s to be a bit string and therefore can, and
indeed will grow.

5.4 Security of the UPKE Construction

Theorem 3. Under the DDH Assumption, Construction 2 is IND-CR-
CPA secure UPKE.

Updatable Public Key Encryption in the Standard Model 273

Proof. We proved in Theorem 2 that Construction 1 is CS+LR secure with
λ = � − 2 log p − ω(log κ), under the DDH Assumption. We will use this as the
starting point and use an adversary A against the IND-CPA game of the UPKE
construction to construct an adversary B against the CS+LR Security game of
the PKE Scheme.

– The reduction B receives from the challenger the public key pk0 corresponding
to some secret key s0.

– It has a time period counter t initialized to 0
– B provides pk0 to the adversary A.
– B responds as follows to the oracle queries to Oupd(·) as follows:

For each input invocation, it increments the counter t to i and records the δi

it receives as input.
– B then receives the challenge messages m∗

0,m
∗
1.

– B then provides the randomized leakage function L(sk; δ∗) = s0 + δ∗ where
the addition is element-by-element over Zp. Looking ahead, δ∗ will correspond
to the randomness for the fresh update before the secret key is provided to
the A. It also sets m∗

0,m
∗
1 as its challenge messages.

– B sends to its challenger the leakage function L,m∗
0,m

∗
1. It also specifies the

function f to be the encryption of each bit of the secret key in the exponent.
– In response, B receives C which is an encryption of m∗

b under pk0, C’ which
is a encryption of s0, bit-by-bit in the exponent, under pk0, and a leakage z
on s0 defined by z = s0 + δ∗ for unknown δ∗ ←$ {0, 1}�. More formally,

C = U-Enc(pk0,m
∗
b);C

′ = (U-Enc(pk0, g
s1), . . . ,U-Enc(pk0, g

s�))

– At this point, let the time period be q′. Now, A expects c∗ = U-Enc(pkq′ ,m∗
b).

So B does the following to compute c∗:
• B has C = (U-Enc(pk0,m∗

b)) or C = (f1, . . . , f�, c = hr · m∗
b).

• It computes Δ′ =
∑q′

i=1 δi. Δ = (Δ′
1, . . . , Δ

′
�)

• To convert it into a public key corresponding to sq′ = s0 +Δ′, we do the
following:

c∗ =

⎛

⎝f1, . . . , f�, c ·
�∏

j=1

f
Δ′

j

j

⎞

⎠

• This is where we employ the key homomorphism property.
– B sends to A the value of c∗.
– B continues to respond to Oupd(·) queries as before. When A finally stops, let

q be the time period. Now, B does the following:
• To compute s∗:

∗ It sets Δ =
∑q

i=1 δi. Again, the operation is element-by-element addi-
tion over Zp.
Let Δ = (Δ1, . . . , Δ�).

∗ With the knowledge of z and Δ, B sets s∗ = sq+1 = z + Δ. Recall
that z = s0 + δ∗ for random δ∗. In other words, B implicitly sets
δq+1 = δ∗, corresponding to the final secure update.

274 Y. Dodis et al.

• To compute pk∗: With the knowledge of s∗ it is also easy to generate
the corresponding public key pk∗ by merely computing the value of h∗ =
∏�

i=1 g
s∗

i
i where s∗ = (s∗

1, . . . , s
∗
�). Therefore, pk∗ = (g1, . . . , g�, h

∗)
• To compute up∗:

∗ Recall that up∗ =
(
U-Enc(pkq, g

δ1), . . .U-Enc(pkq, g
δ�

)
where δ∗ =

(δ1, . . . , δ�)).
∗ B has C ′ = (U-Enc(pk0, gs1), . . . ,U-Enc(pk0, gs�)) where s0 =

(s1, . . . , s�))
∗ Note that for all i = 1, . . . , �, by definition, δi = zi − si ∈ Zp.
∗ Let cti = Enc(pk0, gsi) = (f1, . . . , f�, c = hr · gsi)
∗ For i = 1, . . . �, then we transform each cti into ct′

i where

ct′
i =

⎛

⎜
⎝f ′

1 = f−1
1 , . . . , f ′

� = f−1
� , c′ =

⎛

⎝c · g−zi ·
�∏

j=1

f
−Δj

j

⎞

⎠

−1
⎞

⎟
⎠

Now, up∗ = (ct′
1, . . . , ct′

�)
– Send (pk∗, sk∗, up∗) to A.
– B forwards A’s guess as its own.

Analysis of Reduction. We first show that the leakage function defined here has
sufficiently small entropy loss.

Claim. H∞(s0|z) = � − λ where λ = �(1 − log2(4/3))

Proof. First note that the components of z = (z1, . . . , z�) and s0 = (s1, . . . , s�)
are independent of each other so H∞(s0|z) =

∑
i H∞(si|zi). Now, the distribu-

tion of zi is given by

P [zi = 0] = P [zi = 2] = 1/4,P [zi = 1] = 1/2

Further,

P [si = 0|zi = 0] = 1,P [si = 0|zi = 2] = 0,P [si = 0|zi = 1] =
1
2

Therefore, H∞(si|zi) = − log2(1 · P [zi = 0] + 1 · P [zi = 2] + 1
2P [zi = 1]) =

− log(3/4) and H∞(s0|z) = � · log2(4/3). �
We now show that the distribution of ciphertext is correct. We will show it is
correct for any i. We have ci = (f1, . . . , f�, c = hr · gsi). First, we first transform
it into a cipher text of z − s0, under pk0. This is message homomorphism. We
then transform this ciphertext, under pk0 to a ciphertext encrypting the same
message under pkq. This is the property of key homomorphism.

– Multiplying c with g−zi gives us a valid encryption of gsi−zi . However, we
have that zi − si = di where δ∗ = (d1, . . . , d�).

Updatable Public Key Encryption in the Standard Model 275

– To obtain the encryption of gzi−si we merely take the inverse of all elements,
and then multiply the last element by gzi . Therefore,

c′
i = (f ′

1 = gr′
1 = f−1

1 , . . . , f ′
� = gr′

� = f−1
� , c′ = c−1 · gzi = hr′ · g−si · gzi)

with r′ = −r.
– Now, note that skq = sk0 + Δ = (s1 + Δ1, . . . , s� + Δ�). The public key is

therefore pkq = (g1, . . . , g�, hq) where hq = h·∏�
j=1 g

Δj

j . In order to transform
a ciphertext c′

i = (f ′
1, . . . , f

′
�, c

′) under pk0 to a ciphertext under pkq we modify
the last component, c′ as c′ · ∏�

j=1 f
′Δj

j = (c · g−zi · ∏�
j=1 f

Δj

j)−1.

Under this reduction, it is easy to see that B perfectly simulates the
IND-CR-CPA game for A. The advantage of A against the IND-CR-CPA is the
same as the advantage of B. �

Choice of Parameters. We have from Theorem 2 that λ ≤ � − 2 log p − ω(log κ).
We have also shown that our reduction needs �−λ = � · log2(4/3). Therefore, we
have that � ≥ 2

log2(4/3) log p + ω(log κ). Or, � = �5 log p�.

6 Constructions Based on LWE

This section presents construction from the LWE Assumption. We begin by
presenting a slightly modified version of the dual-Regev PKE Scheme [33,48] in
Sect. 6.1. We show that the scheme is CS+LR secure in Sect. 6.2. We then present
our construction of a UPKE scheme (Sect. 6.3), extended from the PKE scheme.
We finally prove that the UPKE scheme is IND-CR-CPA secure in Sect. 6.4.

6.1 The Dual Regev or GPV Cryptosystem

The construction is presented as Construction 3.

Correctness. We show that the decryption algorithm is correct with overwhelm-
ing probability (over the choice of the randomness of Gen,Enc). The decryption
algorithm computes:

〈r, t〉 = 〈r,AT x + e〉 = 〈r,AT x〉 + 〈r,e〉 = 〈x,u〉 + 〈r,e〉

pad − 〈r, t〉 = 〈x,u〉 + e′ + b

⌊
p

2

⌋
− 〈r, t〉 = b

⌊
p

2

⌋
+ (e′ − 〈e, r〉)

Now, note that e′ − 〈e, r〉 is small in comparison to p. Therefore, the computed
value is closer to �p/2� when b = 0 and the opposite when b = 1.

276 Y. Dodis et al.

Protocol Dual Regev or GPV Cryptosystem

Gen(1κ)

Sample A ←$ Zn×m
p

Sample r ←$ {0, 1}m

Compute u = Ar
return (pk = (A, u), sk = (r))

Enc(pk, b ∈ {0, 1})

Parse pk = (A, u)
Sample x ←$ Zn

p , e ←$ χm, e′ ← χ′

Compute t = AT x + e
Compute pad = 〈x, u〉 + e′ + b�p/2	
return c = (t, pad)

Dec(sk, c)

Parse c = (t, pad) and sk = r
Compute b′ = (pad − 〈r, t〉) ∈ Zp

return 0 if m′ is closer to 0 than to �p/2	 and 1
otherwise.

Construction 3. The Dual Regev or GPV Cryptosystem. Let n, m, p be integer param-
eters of the scheme. We will assume that LWE holds where p is super-polynomial
and χ is polynomially bounded. Then, we set χ′ to be uniformly random over (say)
[−p/8, p/8].

6.2 CS+LR Security of the Dual-Regev Cryptosystem

In this section, we provide proof of the combined circular security and leakage
resilience of the dual-Regev Cryptosystem. Formally, we will prove the following
theorem:

Theorem 4. Under the LWE Assumption, Construction 3 is λ-CS+LR secure
with leakage λ = m − (n + 1) log p − ω(log κ).

Before we can prove the above theorem, we show the existence of an encryp-
tion algorithm Enc′ such that

(Enc′(pk, i), sk) ≈c (Enc(pk, ri), sk).

Consider: Enc′(pk, i) := (t′, pad′) where:

– Let x ←$ Zn
p ,e ←$ χm and d = (d1 = 0, . . . , di−1 = 0, di = −�p/2�, di+1 =

0, . . . , dm = 0). Then, t′ = AT x + e + d.
– pad′ = 〈x,u〉 + e′ where e′ is chosen from a distribution χ′ such that e′ + B

is statistically indistinguishable from e′ where B ∈ Zp.

Lemma 4. Under the LWE Assumption, (pk,Enc′(pk, i), sk) ≈c (pk,
Enc(pk, ri), sk). where (pk, sk) ←$ Gen(1κ)

Proof Sketch. We will prove through a sequence of hybrids, summarized in
Table 4. The complete proof of this Lemma can be found in the full version
of the paper [29].

Further, note that r is independently chosen, bit by bit. In addition, each
Enc, Enc′ has independently chosen randomness. Therefore, as a corollary we get
that:

Updatable Public Key Encryption in the Standard Model 277

Table 4. Proof outline for Lemma 4

Hybrid Hybrid Definition Security

D0 Enc is used to encrypt ri Lemma 1

D1 D0 except 〈x , u 〉 replaced with 〈r , t〉
LWE

D2 D1 except t = A T x + e replaced with t ←$ Zn
p

Identical

D3 D2 except t replaced with t + d where d = (0, . . . , 0, di = −�p/2�, 0, . . . , 0)

LWE

D4 D3 except t = A T x + e where x ←$ Zn
p , e ←$ χm

Lemma 1

D5 Enc′ is used to encrypt ri

Corollary 2. Under the LWE Assumption,

(pk,Enc(pk, r1), . . . ,Enc(pk, rm), sk) ≈c (pk,Enc′(pk, 1), . . . ,Enc′(pk,m), sk)

We can now prove the original theorem:

Theorem 4. Under the LWE Assumption, Construction 3 is λ-CS+LR secure
with leakage λ = m − (n + 1) log p − ω(log κ).

Proof Sketch. We prove this similar to the proof of Theorem 2. This is done
through a sequence of hybrids, summarized in Table 5. The complete proof of
this Theorem can be found in the full version of the paper [29].

Table 5. Proof outline for Theorem 4

Hybrid Hybrid Definition Security

D0 The Original CS+LR Security Game, Enc is used Corollary 2

D1 D0 except Enc′ is used

Identical

D2 D1 except 〈x, u〉 replaced with 〈r, t〉
LWE

D3 D2 except t = AT x + e replaced with t ←$ Zn
p .

Leftover Hash Lemma

D4 D3 except 〈r, t〉 replaced with U ← Zp

6.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption
based on the dual-Regev cryptosystem. This is presented in Construction 4.

278 Y. Dodis et al.

Protocol LWE-Based UPKE

U-PKEG(1κ)

Sample A ←$ Zn×m
p

Sample r ←$ {0, 1}m

Compute u = Ar
return (pk = (A, u), sk = (r))

U-Enc(pk, b ∈ {0, 1})

Parse pk = (A, u)
Sample x ←$ Zn

p , e ←$ χm, e′ ← χ′

Compute t = AT x + e, pad = 〈x, u〉 + e′ + b�p/2	
return c = (t, pad)

U-Dec(sk, c)

Parse c = (t, pad) and sk = r
Compute b′ = (pad − 〈r, t〉) ∈ Zp

return 0 if m′ is closer to 0 than to �p/2	 and 1
otherwise.

Upd-Pk(pk)

Parse pk = (A, u)
Sample δ = (δ1, . . . , δm) ←$ {0, 1}m

Compute u′ = u + Aδ
Encrypt δ bit-by-bit, i.e., up =
(U-Enc(pk, δ1), . . . ,U-Enc(pk, δm)).
return (up, pk′ = (A, u′))

Upd-Sk(sk, up)

Parse up = (c1, . . . , cm)
for i = 1, . . . , m do

δi = U-Dec(sk, ci)
Compute r′ = r + δ where δ = (δ1, . . . , δm)
return sk′ = (r′)

Construction 4. LWE Based Construction. Let n, m, p be integer parameters of the
scheme. We will assume that LWE holds where p is super-polynomial and χ is poly-
nomially bounded. Then, we set χ′ to be uniformly random over (say) [−p/8, p/8].

Further, we have that m ≥ (n+1)
log2(4/3)

log p + ω(log κ).

Correctness. The property of correctness of UPKE requires that a bit b encrypted
by an updated public key decrypts to the same bit b when the corresponding
updated secret key is used.

– (pk = (A,u = Ar), sk = r) ← U-PKEG(1κ)
– We have the update bit δ ←$ {0, 1}m. We have the updated public key pk′ =

(A,u′) where u′ = u + Aδ. We also have sk′ = r′ = r + δ
– Let us look at U-Enc(pk′, b). It produces ciphertext (t, pad) where t = AT x+e,

pad = 〈x,u′〉 + e′ + b�p/2�.
– Now, let us look at U-Dec(r′, (t, pad)). It computes

pad − 〈r′, t〉 = 〈x,u′〉 + e′ + b�p/2� − 〈r + δ,AT x + e〉
= 〈x,Ar + Aδ〉 + e′ + b�p/2� − 〈r + δ,AT x + e〉
= 〈x,A(r + δ)〉 − 〈r + δ,AT ,x〉 + e′ − 〈e, r〉 + b�p/2�
= e′ − 〈e, r〉 + b�p/2�

– Now, note that e′−〈e, r〉 is small in comparison to p. Therefore, the computed
value is closer to �p/2� when b = 0 and the opposite when b = 1.

6.4 Security of the UPKE Construction

Theorem 5. Under the LWE Assumption, Construction 4 is
IND-CR-CPA secure UPKE.

Updatable Public Key Encryption in the Standard Model 279

Proof. The proof is very similar to the proof of Theorem 3. We proved in The-
orem 4 that the PKE scheme was CS+LR secure with λ ≤ m − (n + 1) log p −
ω(log κ), under the LWE assumption. We will use this to construct B against
the CS+LR game by using A against the IND-CPA Game.

– The reduction B receives from the challenger the public key pk0 corresponding
to some secret key s0.

– It has a time period counter t initialized to 0
– B provides pk0 to the adversary A.
– B responds as follows to the oracle queries to Oupd(·) as follows:

For each input invocation, it increments the counter t to i and records the δi

it receives as input.
– B then receives the challenge messages m∗

0,m
∗
1.

– B then provides the randomized leakage function L(sk; δ∗) = s0 + δ∗ where
the addition is element-by-element over Zp. Looking ahead, δ∗ will correspond
to the randomness for the fresh update before the secret key is provided to
the A. It also sets m∗

0,m
∗
1 as its challenge messages.

– B sends to its challenger the leakage function L,m∗
0,m

∗
1. It also specifies the

function f to be the encryption of each bit of the secret key.
– In response, B receives C which is an encryption of m∗

b under pk0, C’ which
is a encryption of s0, bit-by-bit, under pk0, and a leakage z on r0 defined by
z = r0 + δ∗ for unknown δ∗ ←$ {0, 1}m. More formally,

C = U-Enc(pk0,m
∗
b);C

′ = (U-Enc(pk0, r1), . . . ,U-Enc(pk0, rm))

– At this point, let the time period be q′. Now, A expects c∗ = U-Enc(pkq′ ,m∗
b).

So B does the following to compute c∗:
• B has C = U-Enc(pk0,m∗

b) or C =
(
t = AT x + e, pad =

〈x,u〉 + e′ + m∗
b�p/2�).

• It computes Δ′ =
∑q′

i=1 δi.
• It computes pad∗ = pad + 〈Δ′, t〉 and sets t∗ = t.
• Now, c∗ = (t∗, pad∗)

– B sends to A the value of c∗.
– B continues to respond to Oupd(·) queries as before. When A finally stops, let

q be the time period. Now, B does the following:
• To compute sk∗ = r∗:

∗ Set Δ =
∑q

i=1 δi.
∗ With the knowledge of z,Δ, B sets r∗ = rq+1 = z + Δ.

• To compute pk∗: With the knowledge of A, r∗, B computes u∗ = Ar∗. It
sets pk∗ = (A,u∗).

• To compute up∗: B has bit-by-bit encryption of r0. It needs to compute
the bit-by-bit encryption of δ∗ = z − r0. For simplicity, assume that z is
a trit, i.e., taking value 0, 1, 2. Let r0 = (r1, . . . , rm), δ∗ = (d1, . . . , dm)
and z = (z1, . . . , zm). Recall that ri, di ∈ {0, 1} while zi ∈ {0, 1, 2}.
We will first look at how to transform U-Enc(pk0, ri) to U-Enc(pk0, di).

∗ If zi = 2, then we have that ri = di = 1. Therefore, U-Enc(pk0, ri) =
U-Enc(pk0, di) and we do not need to do anything.

280 Y. Dodis et al.

∗ Similarly if zi = 0, then we have that ri = di = 0. Once again,
U-Enc(pk0, ri) = U-Enc(pk0, di) and we do not need to do anything.

∗ If zi = 1, then we merely need U-Enc(pk0, ri) to be modified to
U-Enc(pk0, 1 − ri). To achieve this we merely add �p/2� to the sec-
ond term in the ciphertext.

To convert U-Enc(pk0, di) to U-Enc(pkq, di) we do the following:
∗ Note that U-Enc(pk0, di) = (t0, pad0) where t0 = AT x+e and pad0 =

〈x,u0〉 + e′ + b�p/2�. Further, uq = u0 + AΔ
∗ Let tq = t0, then padq = pad0 + 〈Δ, t0〉. with the choice

– Send (pk∗, sk∗, up∗) to A.
– B forwards A’s guess as its own.

Analysis of the Reduction. We first show that the leakage function has sufficiently
small entropy loss.

Claim. H∞(r0|z) = m − λ, where λ = m(1 − log2(4/3))

The above is identical to Claim 5.4 in the proof of Theorem 3.
We then need to show that the distribution of ciphertext is correct. Specif-

ically, the distribution of the update ciphertext. We have t0 = tq. We will
show that padq is correctly distributed. By definition we have that: padq =
〈x,uq〉 + e′ + b�p/2�. Here, we compute padq as follows:

padq = pad0 + 〈Δ, t0〉 = 〈x,u0〉 + e′ + b�p/2� + 〈Δ, t0〉
= 〈x,u0〉 + e′ + b�p/2� + 〈Δ,AT x + e〉
= 〈x,u0〉 + 〈AΔ,x〉 + e′ + 〈Δ,e〉 + b�p/2�
= 〈x,uq〉 + e′ + 〈Δ,e〉 + b�p/2�

We can now use the definition of distribution e′ and Lemma 1 to show that the
computed distribution is statistically indistinguishable from the actual distribu-
tion.

Under this reduction, it is easy to see that B perfectly simulates the IND-
CPA game for A. The advantage of A against the IND-CPA is the same as the
advantage of B. �

Choice of Parameters. From Theorem 4, we have that m − λ ≥ (n + 1) log p +
ω(log κ). Further, we have from the above claim that m − λ = m log2(4/3).
Putting the two together, we get m ≥ n+1

log2(4/3) log p + ω(log κ).

7 Towards Stronger Security

In this section, we begin by presenting the CCA extension of the CPA security
game presented in Sect. 3. We later extend the CPA and CCA security to a
stronger definition. Due to space constraints, we invite the readers to refer to
the full version of this paper [29] for constructions that satisfy these definitions
and proofs of security.

Updatable Public Key Encryption in the Standard Model 281

IND-CR-CCA Security of UPKE. In Sect. 3, we defined a CPA based security for
an updatable public-key encryption. However, a natural extension is to consider
CCA based security of the UPKE. We will call this IND-CR-CCA which is the
abbreviation of INDistinguishability under Chosen Randomness Chosen Cipher-
text Attack. In this setting, the adversary is given access to also the decryption
oracle where the adversary can ask for decryption of a ciphertext under the cur-
rent secret key on a ciphertext of its choice or creation. To model this access, we
define two oracles:

– Oupd(·): The challenger on receiving the randomness ri from the adversary
does the following:

(upi, pki) ← Upd-Pk(pki−1; ri); ski ← Upd-Sk(ski−1, upi) .

– D(·): The challenger on receiving ciphertext c as input, returns U-Dec(ski, c)
where i is the current epoch and ski is the secret key of the current epoch.

IND-CR-CCA Security. For any adversary A with running time t and we con-
sider the
IND-CR-CCA security game:

– Sample (sk0, pk0) ← U-PKEG(1κ), b ←$ {0, 1}.
– (m∗

0,m
∗
1, state) ←$ AOupd(·),Odec(·)(pk0)

– Compute c∗ ←$ U-Enc(pkq′ ,m∗
b) where q′ is the current time period.

– Compute state ←$ AOupd(·),Odec(·)(c∗, state).
• Here A is not allowed to query its Odec(·) oracle on the challenge cipher-

text c∗ until A makes at least one (arbitrary) query to its Oupd(·) oracle.
– Choose uniformly random r∗ and then compute

(up∗, pk∗) ← Upd-Pk(pkq; r
∗); sk∗ ← Upd-Sk(skq, up

∗) .

where q is the current time period.
– b′ ←$ A(pk∗, sk∗, up∗, state). Note that the adversary is not given access to

the decryption query as with knowledge of sk∗, it can perform the decryption
on its own.

– A wins the game if b = b′. The advantage of A in winning the above game is
denoted by AdvUPKE

crcca (A) = |P [b = b′] − 1
2 |.

Definition 7. An updatable public-key encryption scheme UPKE is
IND-CR-CCA -secure if for all PPT attackers A, its advantage AdvUPKE

crcca (A)
is negligible.

Stronger CPA, CCA Security. In the definition of both the IND-CR-CPA and
the IND-CR-CCA security, we allowed the adversary to provide bad randomness
and the challenger honestly updated the public key based on this bad random-
ness. However, one can consider a stronger attack where the attacker could pro-
vide an arbitrary update ciphertext up and the new public key pk′. In other words,

282 Y. Dodis et al.

the adversary chooses the full output (up, pk′) of the public key update algorithm
Upd-Pk, rather than its input r. The challenger will then check—using a spe-
cial new algorithm (see below) Verify-Upd(pk, up, pk′)—that the supplied values
are “consistent”. If so, it will update the secret key using sk ← Upd-Sk(sk, up),
as before. Otherwise, it will ignore this query of the attacker. With this intuition
in mind, we formalize the changes in the syntax and security of UPKE.

Syntactic Changes. We introduce a new algorithm Verify-Upd(pk, up, pk′) where
pk is the old public key, up is the update ciphertext and pk′ is the updated public
key. This algorithm outputs 1 iff pk′ is consistently produced by up and pk.

Security Game Changes. We also change the definition of Oupd(·). The new
definition is as follows:

– Oupd(·, ·): This takes as input two values up and pk′. It then runs τ ←
Verify-Upd(pk, up, pk′). If τ = 1, it runs sk′ ← Upd-Sk(sk, up), else it returns
⊥.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

3. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

4. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 20

5. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp. 248–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56784-2 9

6. Anderson, R.: Invited lecture. In: Fourth Annual Conference on Computer and
Communications Security. ACM (1997)

7. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. J. Cryptol. 27(3), 429–451 (2014)

8. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-642-03356-8_35

Updatable Public Key Encryption in the Standard Model 283

9. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

10. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 22

11. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

12. Bellare, M., Yee, B.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1–18. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36563-X 1

13. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

14. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

15. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with
constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

16. Boneh, D., Eskandarian, S., Kim, S., Shih, M.: Improving speed and security in
updatable encryption schemes, 2020. To appear in Asiacrypt 2020

17. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption
from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol.
5157, pp. 108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85174-5 7

18. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key Homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

19. Boyd, C., Davies, G.T., Gjøsteen, K., Jiang, Y.: Fast and secure updatable encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12170, pp.
464–493. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2 16

20. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

21. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 13

22. Brakerski, Z., Lombardi, A., Segev, G., Vaikuntanathan, V.: Anonymous IBE, leak-
age resilience and circular security from new assumptions. In: Nielsen, J.B., Rijmen,
V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 535–564. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-78381-9 20

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-36563-X_1
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-030-56784-2_16
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-19571-6_13
https://doi.org/10.1007/978-3-319-78381-9_20

284 Y. Dodis et al.

23. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

24. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

25. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

26. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-11799-2 22

27. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient Public-Key Cryp-
tography in the Presence of Key Leakage. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 35

28. Dodis, Y., Jost, D., Karthikeyan, H.: Forward-secure encryption with fast forward-
ing. Manuscript (2021)

29. Dodis, Y., Karthikeyan, H., Wichs, D.: Updatable public key encryption in the
standard model (2021). https://cs.nyu.edu/∼dodis/ps/upke.pdf

30. Döttling, N., Garg, S.: From selective IBE to full IBE and selective HIBE. In: Kalai,
Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 372–408. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-70500-2 13

31. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman Assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

32. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authen-
ticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63697-9 4

33. Gentry, C., Peikert, C.., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

34. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

35. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 31

36. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

37. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state com-
promise: the safety of messaging. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO
2018. LNCS, vol. 10991, pp. 33–62. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96884-1 2

38. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019.
LNCS, vol. 11476, pp. 159–188. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17653-2 6

https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-11799-2_22
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://cs.nyu.edu/~dodis/ps/upke.pdf
https://doi.org/10.1007/978-3-319-70500-2_13
https://doi.org/10.1007/978-3-319-63688-7_18
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/978-3-319-63697-9_4
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-46035-7_31
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6

Updatable Public Key Encryption in the Standard Model 285

39. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. Cryptology
ePrint Archive, Report 2019/302 (2019). https://eprint.iacr.org/2019/302

40. Klooß, M., Lehmann, A., Rupp, A.: (R)CCA secure updatable encryption with
integrity protection. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part I,
volume 11476 of LNCS, pp. 68–99. Springer, Heidelberg (2019)

41. Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato,
S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 18

42. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 685–
716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7 22

43. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

44. Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key
encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 28

45. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. In: 38th FOCS, pp. 458–467. IEEE Computer Society Press, October
1997

46. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

47. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 3–32.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 1

48. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography.
In: Gabow, H.N., Fagin, R., (eds.) 37th ACM STOC, pp. 84–93. ACM Press, May
2005

https://eprint.iacr.org/2019/302
https://doi.org/10.1007/3-540-36413-7_18
https://doi.org/10.1007/978-3-319-78372-7_22
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-20465-4_28
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-319-96884-1_1

Towards Tight Adaptive Security
of Non-interactive Key Exchange

Julia Hesse1, Dennis Hofheinz2, Lisa Kohl3, and Roman Langrehr2(B)

1 IBM Research Europe - Zurich, Rüschlikon, Switzerland
jhs@zurich.ibm.com

2 ETH Zurich, Zürich, Switzerland
{hofheinz,roman.langrehr}@inf.ethz.ch

3 Cryptology Group, CWI Amsterdam, Amsterdam, The Netherlands
lisa.kohl@cwi.nl

Abstract. We investigate the quality of security reductions for non-
interactive key exchange (NIKE) schemes. Unlike for many other cryp-
tographic building blocks (like public-key encryption, signatures, or zero-
knowledge proofs), all known NIKE security reductions to date are non-
tight, i.e., lose a factor of at least the number of users in the system.
In that sense, NIKE forms a particularly elusive target for tight security
reductions.

The main technical obstacle in achieving tightly secure NIKE schemes
are adaptive corruptions. Hence, in this work, we explore security notions
and schemes that lie between selective security and fully adaptive secu-
rity. Concretely:

We exhibit a tradeoff between key size and reduction loss.
We show that a tighter reduction can be bought by larger public and
secret NIKE keys. Concretely, we present a simple NIKE scheme with
a reduction loss of O(N2 log(ν)/ν2), and public and secret keys of O(ν)
group elements, where N denotes the overall number of users in the sys-
tem, and ν is a freely adjustable scheme parameter.

Our scheme achieves full adaptive security even against multiple “test
queries” (i.e., adversarial challenges), but requires keys of size O(N) to
achieve (almost) tight security under the matrix Diffie-Hellman assump-
tion. Still, already this simple scheme circumvents existing lower bounds.

We show that this tradeoff is inherent. We contrast the secu-
rity of our simple scheme with a lower bound for all NIKE schemes in
which shared keys can be expressed as an “inner product in the expo-
nent”. This result covers the original Diffie-Hellman NIKE scheme, as
well as a large class of its variants, and in particular our simple scheme.
Our lower bound gives a tradeoff between the “dimension” of any such
scheme (which directly corresponds to key sizes in existing schemes), and
the reduction quality. For ν = O(N), this shows our simple scheme and
reduction optimal (up to a logarithmic factor).

We exhibit a tradeoff between security and key size for
tight reductions. We show that it is possible to circumvent the inher-
ent tradeoff above by relaxing the desired security notion. Concretely, we

D. Hofheinz and R. Langrehr—Supported in part by ERC CoG grant 724307.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 286–316, 2021.
https://doi.org/10.1007/978-3-030-90456-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_10

Towards Tight Adaptive Security of NIKE 287

consider the natural notion of semi-adaptive security, where the adver-
sary has to commit to a single test query after seeing all public keys. As a
feasibility result, we bring forward the first scheme that enjoys compact
public keys and tight semi-adaptive security under the conjunction of
the matrix Diffie-Hellman and learning with errors assumptions.

We believe that our results shed a new light on the role of adaptivity
in NIKE security, and also illustrate the special role of NIKE when it
comes to tight security reductions.

Keywords: Tight reductions · Non-interactive key exchange ·
Pairings · Learning with errors

1 Introduction

Non-interactive Key Exchange (NIKE). A non-interactive key exchange
(NIKE) scheme assigns any two users Pi, Pj in a system a common shared key
Ki,j . This assignment should happen without any communication, and be based
only on a setup like a public-key infrastructure. A well-known example of a NIKE
is the original Diffie-Hellman key exchange scheme [14], in which any party has
a public key gxi with associated secret key xi, and the shared key for parties
with public keys gxi , gxj is computed as Ki,j = gxixj . For security, we would
like that Ki,j remains hidden to an outsider, i.e., without knowing any of the
two involved secret keys.

NIKE schemes have been studied as an explicit cryptographic building block
by Cash, Kiltz, and Shoup [9], followed by a more in-depth study of NIKE secu-
rity notions and corresponding schemes by Freire, Hofheinz, Kiltz, and Paterson
[19]. There are a variety of different NIKE schemes from various computational
assumptions (e.g., [5,9,14,19,24,25,35]), and a number of NIKE applications
including wireless networks [8], deniable authentication [15], and interactive key
exchange [6].1

NIKE and Tight Security. One interesting particularity of NIKE schemes
is the fact that it seems difficult to tightly reduce their security to a standard
computational assumption. All known security reductions for NIKE schemes
(against adaptive corruptions and to non-interactive assumptions in the standard
model) lose a factor of at least N , the overall number of users in the system.2

In fact, two works by Bader, Jager, Li, and Schäge [2] and Hesse, Hofheinz, and
Kohl [25] give lower bounds (of O(N2), resp. O(N)) on the reduction loss of
large classes of NIKE schemes and reductions.

1 In this work, we focus on the public-key setting, i.e., we assume a public-key infras-
tructure. We note, however, that NIKE has also been considered in the identity-based
setting [17,33,38].

2 This means that we can currently only map NIKE adversaries with success proba-
bility ε and runtime t to adversaries on a suitable computational assumption with
runtime t′ ≈ t but success probability no more than ε′ ≈ ε/N .

288 J. Hesse et al.

This is quite remarkable, since for most other cryptographic building blocks
(such as public-key encryption and digital signatures [26], zero-knowledge proofs
[23], or interactive key exchange [1]), tight security proofs are known even in a
multi-user setting. But apart from being a theoretical curiosity, this also means
that currently, NIKE keysizes should be chosen rather conservatively, in order
to account for a potential security loss in scenarios with a large number of users.

Meta-Reductions, and What Makes Tight NIKE Security Particu-
larly Hard to Achieve. The mentioned works [2,25] already give an indica-
tion of what the main technical obstacle to a tight NIKE reduction is. Namely,
they employ a meta-reduction [4] that turns any reduction that is “too suc-
cessful” (i.e., suffers only from a low reduction loss) into a stand-alone problem
solver. We give more details on this technique in our technical overview below.
This meta-reduction technique has been applied also to other settings (like digi-
tal signatures [10], key encapsulation [2], and hierarchical identity-based encryp-
tion [30]), but it always hinges on one crucial requirement on the investigated
scheme and reduction.

To explain this crucial requirement, assume for concreteness a given NIKE
security reduction Λ that is “too successful”. A meta-reduction requires that Λ
is of a special form, namely that Λ essentially simulates the whole NIKE security
experiment (including corruptions) for any NIKE adversary that is given in a
black-box way. Furthermore, in this simulation, Λ must be “committed” early on
to the secret state of this simulation, and in particular to all NIKE shared keys,
even if these shared keys are not revealed during the simulation. The reason
for this “committed” requirement will become clearer below, but intuitively it
enables a “rewinding attack” on the reduction Λ itself.3

Now NIKE and other cryptographic primitives differ in this technical require-
ment for the applicability of meta-reductions. Namely, for primitives like public-
key encryption (PKE), it is relatively easy to construct a reduction that is not
committed to its secret state in the above sense. To see why this is the case,
observe that in a PKE setting, different user secret keys or ciphertexts are not
correlated: corrupting one user (or decrypting one ciphertext) gives no infor-
mation about other users’ secret keys (or the decryption of other ciphertexts).
Hence, a reduction that answers corruption or decryption queries does not com-
mit itself to, e.g., decryption of a challenge ciphertext in any way.

On the other hand, corrupting one party Pi in a NIKE scheme immediately
reveals all shared keys Ki,j that Pi has with other (yet-uncorrupted) parties
Pj . This also determines the secret keys of such Pj to the extent that the Ki,j

computed with these not-yet-revealed keys are fixed. Hence, corrupting parties
will gradually determine the secret state of a simulation in a NIKE reduction
(i.e., the functionality of secret keys of yet-uncorrupted parties). This prob-
lem does not appear in, say, PKE or signature schemes, and circumventing this

3 In a nutshell, the meta-reduction extracts enough shared keys from Λ to take the
role of a successful adversary in a rewound Λ-instance. If Λ is “too successful”, this
causes Λ to solve the underlying computational problem with these extracted keys.
Hence, Λ solves the underlying problem essentially by interacting with itself.

Towards Tight Adaptive Security of NIKE 289

“committing” property in NIKE schemes currently seems to be out of reach of
known techniques.

This Work: Beyond Linear Security Loss. Motivated by this difficulty,
in this work we examine this “committing” property closer for a general class
of group-based NIKE schemes and slightly relaxed security notions. Specifically,
for N again denoting the overall number of parties in the system we ask:

For which security notions can we obtain NIKE schemes with a security
reduction to a standard assumption with a sublinear loss of o(N)?

We obtain positive and negative results:

– We start off with a simple and intuitive “inner-product-based” NIKE scheme
NIKEip that enjoys full adaptive security and offers an interesting tradeoff
between security loss and key sizes. Specifically, NIKEip is parameterized by
ν > 0, has public and secret keys that comprise O(ν) group elements, and
a reduction loss of O(N2 log(ν)/ν2) to the matrix Diffie-Hellman assump-
tion [18] (a relaxation of the decision linear assumption) in pairing-friendly
groups. In particular, it is possible to set ν = N to obtain a scheme with an
(almost) tight reduction to a standard computational assumption, but which
also suffers from large keys.
While the scheme itself is not very efficient for large ν, it shows a conceptually
simple way to conduct a “non-committing” reduction. Essentially, our reduc-
tion does not have the problematic “committing” property discussed above
because each secret key contains enough entropy to be not quite determined
by up to ν corruptions of arbitrary other users. This means that previous
lower bounds [2,25] do not apply to this scheme.
We also note that our NIKEip is the first to obtain tight security against mul-
tiple (i.e., up to ν) “test queries”, i.e., adversarial challenges. This essentially
means that the scheme guarantees the security of not only a single, but many
shared keys even after a number of adaptive corruptions. While this property
is implied with polynomial loss by security with respect to a single test query,
previous reductions (including the previously “most tightly” secure scheme
from [25]) did not consider multiple test queries.
One can view our result also as a feasibility result about the possibility of
tight bounded security (much like the notion of bounded chosen-ciphertext
security for PKE schemes [12]) for NIKE schemes.

– Next, we demonstrate that this tradeoff between reduction loss and key sizes
is to some extent inherent when trying to achieve adaptive NIKE security.
Concretely, we show that a large class of group-based NIKE schemes (that
includes the original Diffie-Hellman scheme, as well as variations such as the
scheme from [25] and our NIKEip) must become “committed enough” after ν
corruptions whenever keys are of size o(ν) group elements.
Our result manifests the tradeoff between key sizes and reduction loss of
NIKEip, and in fact for a large and natural class of NIKE schemes. We stress
that the previous lower NIKE bounds [2,25] do not offer similar tradeoffs,
since they did not consider key sizes at all.

290 J. Hesse et al.

– Finally, motivated by the previous tradeoff, we investigate ways to achieve
tight security with (asymptotically) compact keys by relaxing the desired
security notion. We find a different tradeoff, and now trade security for tight-
ness. Namely, we construct a NIKE NIKEsa with keys whose size do not
depend on N , and with an (almost) tight security reduction that however
only achieves semi-adaptive security. By “semi-adaptive security”, we mean
that an adversary is restricted not in the type or number of corruptions, but
in the timing and number of test queries (i.e., challenges). Concretely, an
adversary may not ask any test query after a certain, a-priori bounded num-
ber of ν corruptions (or queries for shared keys between honest parties) have
been made. Semi-adaptive security interpolates between a mild form of selec-
tive security (in which an adversary has to commit in advance to the parties
whose shared keys it wants to be challenged on) and full adaptive security.
Our semi-adaptively secure NIKEsa uses NIKEip above as a conceptually simple
building block, and additionally relies on FHE techniques. Its security can
be reduced (with logarithmic loss) to the conjunction of the matrix Diffie-
Hellman problem and the learning with errors (LWE) problem [36].
We believe that this result shows that even if we cannot achieve full adaptive
security with compact keys and tightly, we are not limited to merely selective
security. Due to lack of space, we present this contribution in full detail only
in the full version of this work.

1.1 Technical Overview

Setting. Formally, a NIKE is a tuple of algorithms (Setup, KeyGen, SharedKey),
where Setup generates public parameters, KeyGen on input of the public param-
eters returns a key pair (pk, sk), and SharedKey on input of the public parame-
ters, a public key pki and a secret key skj returns a shared key Ki,j . Correctness
requires that for all honestly generated key pairs we have Ki,j = Kj,i.

Security Model. The simplest NIKE security notion to achieve is selective
security, where the adversary commits to the key pair of users to be challenged
(i.e. for which the adversary either receives the real shared key or a random
key) before seeing any public key. To model realistic attack scenarios, what we
would like to capture in the security notion is fully adaptive security (also called
CKS-heavy security [19] after the inventors Cash, Kiltz and Shoup of the notion
[9]). Here, the adversary can arbitrarily query oracles Oextr, OrevH and Otest. Oextr

models the adversary’s ability to corrupt a user and reveals the corresponding
secret key and OrevH models the ability of the adversary to observe shared keys in
the system and reveals the shared keys between two users. Finally, the purpose of
Otest is to model that an adversary should still not be able to distinguish the (non-
revealed) shared keys between any pair of uncorrupted users from random. More
precisely, Otest given a tuple of users either returns the real shared key between
the users or a random key (depending on an initially flipped bit). Giving the
adversary the power to ask corruption queries adaptively poses a challenge for
the security reduction. Consider for example the Diffie-Hellman key exchange.

Towards Tight Adaptive Security of NIKE 291

There, public key/ secret key tuples are of the form (gx, x) and a shared key
is computed as (gxi)xj = (gxj)xi . Thus, the reduction either knows x – and
therefore cannot make use of an adversary distinguishing shared keys involving
x from random – or does not know x, and can therefore not answer with the
secret key if the adversary decides to corrupt the user.

From Selective to Adaptive Security with Loss Ω(N2). This can be solved by
partitioning proofs, reducing the adaptive security to selective security. More
precisely, the reduction guesses the “test query” of the adversary (i.e., the parties
involved in the query that the adversary tries to distinguish from random) ahead
of time and embeds the underlying challenge only in the two corresponding
public keys. The problem of this approach is the security loss: With N overall
users in the system, this strategy will only be successful with probability 1/N2.
This means that the security guarantee decreases when the number of users
in the system grows, which one has to account for by choosing larger concrete
parameters (e.g. group sizes). Further, an upper bound on the number of users
might not be known at the time of setup. In this paper we therefore aim for
directly proving adaptive security.

Relaxing the Security Notion: Semi-Adaptive Security. We introduce the notion
of ν-semi-adaptive, which lies in between selective and adaptive security: Here,
the adversary has to ask all test queries within the first ν-corruptions (but can
ask arbitrary extract and reveal queries later), where any user involved in a
extract, reveal or test-query counts as one corruption. In the special case of 2-
semi-adaptive security the adversary has to commit to a single test query after
seeing all public keys.

Security with Dishonest Key Registration (DKR). The security experiments
described so far do not give the adversary the opportunity to register keys dis-
honestly, i.e., publish arbitrary public keys that are not necessarily in the image
of KeyGen. This can of course occur in realistic scenarios and is ultimately the
security notion to aim for. In this paper we restrict ourselves to security with
honest key registration as described above, since the difficulty of constructing
NIKEs with tight security occurs when going from selective to adaptive security,
rather than going from HKR to DKR security. In fact, using standard methods
one can tightly transform an HKR-secure NIKE into a DKR-secure one, basically
by adding a simulation-sound proof of knowledge of the secret key to the public
key (see e.g. [9,25]).

Related Work. We give a comparison of our result with previous work in
Tables 1 and 2. In order to explain the challenges when constructing tightly
secure NIKE, in the following we give a brief explanation of previous techniques
used to give upper and lower bounds on tightly secure NIKE.

We first recall the commitment problem that occurs when proving security
of the Diffie-Hellman NIKE. Namely, the reduction either knows a secret key
or does not know a secret key, since each group element has a unique discrete
logarithm. Building on the ideas put forward by Coron [11], Bader, Jager, Li,
and Schäge [2] presented a lower bound on the tightness of NIKE schemes for

292 J. Hesse et al.

Table 1. Comparison of existing NIKE schemes. |pk| denotes the size of the public keys,
measured in numbers of group elements and exponents. HKR and DKR denote fully
adaptive security [19] with honest and dishonest key registrations (where 1-HKR/1-
DKR refers to the corresponding notion in the single-test-query setting). N denotes
the number of parties the adversary interacts with, 2 ≤ ν ≤ N is arbitrary and poly
is a polynomial independent of ν and N . Further, note that losses of the constructions
from [9] and [19] stem from applying a generic transformation to level the security
guarantees of compared schemes. DDH and CDH correspond to the decisional and
computational Diffie-Hellman assumption, ROM stands for random oracle model and
“Fact.” for Factoring. DBDH stands for decisional bilinear Diffie-Hellman, DLIN for
Decision Linear and LWE for Learning With Errors. Finally, note that in all cases
DLIN can be replaced by the 2-Matrix Decision Diffie-Hellman assumption (MDDH).
More generally, we can build on the k-MDDH assumption at the cost of increasing the
public key size and security loss by a factor of k.

|pk| Sec. model O(Sec. loss) Assumption Pairing

Diffie–Hellman [14] 1 × G HKR N2 DDH -

HPS-based [25] 3 × G 1-HKR N DDH -

CKS08 [9] 2 × G DKR N2 CDH (ROM) -

FHKP13 [19] 1 × Zn DKR N2 Fact. (ROM) -

FHKP13 [19] 2 × G + 1 × Zp DKR N2 DBDH asymm.

HPS-based [25] 12 × G 1-DKR N DLIN symm.

ν-dim NIKEip (Sect. 3) (ν + 2) × G HKR (N/ν)2 log ν DLIN symm.

N-dim NIKEip (Sect. 3) (N + 2) × G HKR log N DLIN symm.

ν-dim NIKEsa (fullv.) ν · poly ν-semi-ad. log N DLIN, LWE symm.

2-dim NIKEsa (fullv.) poly semi-ad. log N DLIN, LWE symm.

which public keys are fully committing to their secret keys and therefore their
shared keys. Generally, the idea of a meta-reduction is to turn a “too successful”
reduction into a stand-alone problem solver for the underlying (non-interactive)
cryptographic assumption. The meta-reduction of Bader, Jager, Li, and Schäge
[2] systematically rewinds the reduction Λ to run with all N2 possible pairs of
challenge users, arguing that in any run the reduction either has to abort or
indeed return the unique secret key. Now, if the reduction does not abort with

Table 2. Lower bounds on the security loss of NIKE. Here, the public keys of NIKEip
are of size O(ν). Our lower bound only applies to the HPS-based NIKE [25] when
instantiated with the decisional Diffie-Hellman-based hash proof system [13]. We note
that (in settings where it applies) the lower bound of [25] gives better constants than
ours. We highlight the best known lower bound for each construction in green.

Diffie-Hellman KE HPS-based KE [25] NIKEip (Sect. 3)

BJLS [2] Ω(N2) - -

HHK [25] Ω(N) Ω(N) -

This work (Sect. 4) Ω(N) Ω(N) Ω(N/ν)

Towards Tight Adaptive Security of NIKE 293

probability larger than 1/N2 (i.e., the reduction does not abort on at least 2
out of the

(
N
2

)
possible runs), it follows that one can extract all secret keys

from the reduction, and thereby perfectly simulate an external “perfect” adver-
sary. (Note that for this to be true it is crucial that the reduction is limited to
giving out unique secret keys, and therefore the shared keys are also unique.)
Altogether, this shows that whenever the reduction is successful with probability
larger than 1/N2, it could have solved the underlying problem itself. Since this
is a contradiction to the hardness of the underlying assumption, it shows that
the security loss of Ω(N2) for Diffie-Hellman (and, more generally, NIKEs with
“committing” public keys) is inherent.

Bypassing the Commitment Problem with Semi-Functional Public Keys. Hesse
et al. [25] showed how to bypass the lower bound by allowing to switch to non-
committing public keys. Essentially, their scheme allows to introduce “semi-
functional” public keys which are computationally indistinguishable from public
keys produced by KeyGen. This allows a reduction to escape the fully committed
setting by introducing semi-functional public keys that do not necessarily fix the
shared key with other (semi-functional or normal) public keys in the system.
Their construction still suffers from a security loss of Ω(N), since their semi-
functional public keys do not have secret keys and can thus be recognized upon
corruption. Since a reduction needs to plant at least one such public key in
order to escape full shared key commitment, a security loss of N is inherent.
This lower bound on the security loss was formally shown in [25] for all schemes
where normal public keys are committing and can be efficiently recognized given
a corresponding secret key.

Considering Weaker NIKE Security Notions. By allowing an arbitrary number
of adaptive test queries but no corruptions, as was done e.g. in [9], tight secu-
rity turns out easy to achieve. In fact, even the standard Diffie-Hellman key
exchange can be shown (almost) tightly secure with respect to this notion, by
simply embedding the underlying challenge into all public keys. Tight security
(with a loss of factor O(log N)) then follows by the re-randomizability of the
decisional Diffie-Hellman assumption. However, going from test-query-only to
adaptive security with corruption introduces a security loss of Ω(N2). Since we
are not aware of a tighter reduction for the scheme of [9] in the setting of adap-
tive security with corruptions, we do not consider their scheme tight in the sense
of our paper.

Hesse et al. [25] consider a restriction of the above described security notion
where the adversary is only allowed a single test query (but at any point of time).
Since the generic reduction from the single-test-query setting to the multi-test-
query introduces an overhead of Ω(N2), in this paper we focus on the multi-
test-query setting.

Technical Idea 1: Overcoming Binding Public Keys
Our Construction. In this work we overcome the limitation of [25] with
a NIKE scheme NIKEip where both normal and semi-functional public keys
have corresponding secret keys. Our construction is based on symmetric pairing

294 J. Hesse et al.

groups. Let g be a group generator of the source group. We write [x] for gx and
for a matrix M = (m)i,j we write [M] for ([m])i,j . The public parameters of our
NIKE are

pp := ([D], [MD]),

where D is a uniformly random (ν +2)×2 matrix and M is a uniformly random
symmetric (ν+2)×(ν+2) matrix. The parameter ν ∈ N≥2 will become important
in the security proof. An normal key pair is now generated as follows: We sample
a uniformly random 2-dimensional vector w and set

pk := [Dw] and sk := [MDw].

The shared key between two users is the inner product of one user’s public
key and the other user’s secret key, computed with the pairing. To see that
correctness holds, let (pk1 = [Dw1], sk1 = [MDw1]) and (pk2 = [Dw2], sk1 =
[MDw2]) be two honestly generated key pairs. Then

SharedKey(pp, pk1, sk2) = e([w�
1 D

�], [MDw2]) = [w�
1 D

�MDw2]T

= [w�
2 D

�M�Dw1]T
(∗)
= [w�

2 D
�MDw1]T

= e([w�
2 D�], [MDw1]) = SharedKey(pp, pk2, sk1).

The equality (∗) uses the symmetry of M.
One can interpret the public parameters by setting (d1|d2) := D as two

exemplary key pairs

pp := ((pk1 = [d1], sk1 = [Md1]), (pk2 = [d2], sk2 = [Md2])).

The user-generated keys are then random linear combinations of these exemplary
key pairs. It is necessary to have at least two exemplary keys, because if the
honest user keys would be linear combinations of just one exemplary key, one
could use the pairing to check efficiently if a public key is in the subspace spanned
by the exemplary public key. This would make it impossible for our reduction
to use public keys that are not in the linear span of the exemplary public keys.

Semi-functional Public Keys with Secret Keys. To argue security, we
have to introduce semi-functional public and secret keys. A semi-functional pub-
lic key is [u] where u is chosen uniformly at random from the full space (instead
of only the linear span of D’s column vectors). Accordingly, the corresponding
semi-functional secret key is [Mu].

The semi-functional key pairs are indistinguishable from the normal key pairs
by the matrix decisional Diffie-Hellman (MDDH) assumption. It states that
vectors (represented in a group) from a 2-dimensional subspace (i.e. our nor-
mal keys) are indistinguishable from uniformly random vectors (i.e. our semi-
functional keys). The MDDH assumption is implied by the well-known 2-linear
assumption [18]. Due to the random self-reducibility of the MDDH assumptions,
this implication holds even for arbitrary many vectors with security loss only
O(log ν).

Towards Tight Adaptive Security of NIKE 295

The semi-functional keys have the desired “less committing” property.
Indeed, note that with publishing the public parameters the reduction is not
completely committed to the matrix M, since MD contains only little infor-
mation about M. Now for each semi-functional public key u the corresponding
semi-functional secret key Mu leaks some new information about M and after
ν secret keys have been used, the reduction is completely committed to M. If we
would apply a suitable basis change transformation to M (such that the column
vectors of D, and the used semi-functional secret keys become unit vectors),
each semi-functional secret key corresponds to a row (due to the symmetry also
a column) of M and each shared key corresponds to one entry of the matrix, as
depicted by Fig. 1.

Fig. 1. The symmetric matrix M in the basis where the column vectors of D and the
semi-functional public keys of the involved users are the standard basis vectors. The
normal secret keys (and shared keys where at least one user has a normal public key)
live in the gray area. The pp can be seen as two key pairs and normal public and secret
keys are linear combinations of these public and secret keys.

Since in our scheme there are secret keys for the semi-functional public keys, it
circumvents the main bottleneck of the approach of [25]: Our reduction turns all
public keys into semi-functional ones, and does not have to rely on any guessing
argument. In contrast to [25], our semi-functional keys are committing with
respect to normal keys. But, since we turn all keys to semi-functional, it is
completely sufficient that semi-functional keys are not committing with respect
to other semi-functional public keys. This approach is summarized in Table 3.

Limiting the Number of Involved Users. When ν semi-functional secret
keys have been leaked, (i.e., they have been leaked through an Oextr query or
used to answer an OrevH or Oextr query,) the reduction is completely committed
to M. In this situation we can still argue, that each test query leaked one entry
of the matrix M that was not revealed in any other query and therefore looks
uniformly random to the adversary. However, any further leakage of another
semi-functional secret key could potentially leak one of the test-query entries.
Thus we have to limit the adversary to involve at most ν users in the security
game, where a user counts as involved, when he appeared in at least one Oextr,

296 J. Hesse et al.

Table 3. Effect of all combinations of normal and semi-functional public keys on the
shared key Ki,j in the HPS-based NIKE [25] and our NIKEip .

pkj normal pkj semi-functional

pki normal
committed not committed

committed committed

pki semi-functional

not committed does not exist

committed
Up to ν users involved: not committed

Beyond: committed

OrevH, or Otest query. (Users that have only been registered, i.e., only their public
key was revealed, do not count as involved.)

We call the security notion that works like the adaptive security, but where
the adversary is allowed to involve at most ν users, ν-bounded security. Even
though this security notion is not very realistic, it is a helpful tool because
it captures the level of adaptivity that NIKEip can achieve and it implies full
adaptive security with security loss only O((N/ν)2). Thus, in total NIKEip can
be proven adaptively secure with loss O((N/ν)2 log ν). This gives us a tradeoff
between key size and tightness. The smaller we select the parameter ν, the
smaller the size of the matrix M. This gives us smaller keys, but the semi-
functional keys will become committing earlier in the security game, leading to
a larger security loss.

A curiosity of NIKEip is that the roles of the public key and secret key are
completely symmetric. That is, when all users swap their public and secret key,
NIKEip is still secure (and in the security proof we simply have to replace M by
M−1).

Our scheme bypasses the lower bound of [25], because their lower bound
requires, informally speaking, that whenever two key pairs look like valid to the
adversary, the shared key between them is already determined by the public
keys. This is not the case here: Two secret keys could differ by an entry of M
that is unknown to adversary (thus both look like corresponding secret keys for
the same public key), but, with a suitable public key of another valid key pair,
this entry of M does not cancel out in the secret key computation and thus the
two secret keys yield different shared keys.

Technical Idea 2: Lower Bound for Large Class of NIKEs
Inner-Product NIKE and a New Argument for Committing Reduc-
tions. To extend the existing results on lower bounds, we need to further
broaden the class of NIKE schemes that the meta-reduction technique works
for. The goal is to allow potential reductions to introduce keys that are less
“committing” than in the previous bounds described above. Towards this goal,
we observe that all DH-like NIKE schemes in the literature, including our
NIKEip described above, have the following joint property: public and secret keys

Towards Tight Adaptive Security of NIKE 297

can be represented as Z
d
q-vectors x,y, and shared keys are computed as (an

invertible function of) the inner product 〈x,y′〉. We call such NIKE schemes
d-dimensional ip-NIKE. The Diffie-Hellman key exchange, for example, allows
for key pair (gx, x) to be written as tuple (x, x) of the same one-dimensional
vector x ∈ Zq. Shared keys between vector tuples (xi, xi), (xj , xj) are computed
as (gxi)xj = g〈xi,xj〉 = g〈xj ,xi〉 = (gxj)xi . Intuitively, using only one-dimensional
vectors as in DH-KE means that public keys commit already to all shared keys.
Vectors of higher dimensions, though, allow a reduction to encode more infor-
mation, and eventually escape a setting where all shared keys are fixed. We
can now formalize this intuition by exploiting linearity of the inner product.
Namely, for a d-dimensional inner-product NIKE, a meta-reduction can create
a fully committed setting in case vector dimensions are smaller than the num-
ber of users. For this, assume unique4 public key vectors x1, . . . ,xm of m ≈ N
corrupted users and public key vectors x,x′ for yet uncorrupted pk, pk′. Let fur-
ther y1, . . . ,ym,y,y′ denote corresponding secret key vectors. We stress that the
meta-reduction is not able to compute any of these values, and we only use them
to argue that the reduction is committed. If d is smaller than m, x lies in the
span of the m other vectors with noticeable probability, yielding

∑m
i=1 βixi = x

for a Z
m
q -vector β. This already determines the (exponent of the) shared key

〈x,y′〉 between x and x′ as a linear combination of the (exponents of) shared
keys between each x1, . . . ,xn and x′. To see this, we write

〈x,y′〉 = 〈
m∑

i=1

βixi,y′〉 =
m∑

i=1

βi〈xi,y′〉 =
m∑

i=1

βi〈yi,x′〉,

where the latter equality follows from the correctness of the NIKE. Since the
reduction already committed to the m shared key exponents 〈yi,x′〉i∈[m] through
corruptions of pk1, . . . , pkm, we can conclude that the secret key between pk and
pk′ is fixed through its exponent 〈x,y′〉. We refer the reader to the “uniqueness
lemma” (Lemma 5) for full details.

A meta-reduction can exploit this committed setting by rewinding the reduc-
tion, a technique that was already used to prove the previous lower bounds [2,25].
And indeed, we can show that any tight reduction must have key dimensions
close to N , in order to avoid the linear dependencies described above that would
result in commitment of all shared keys in the span. We now describe our meta-
reduction and resulting lower bound in detail.

Our new lower bound. We are now ready to explain our lower bound. The
general strategy of a meta-reduction is to first describe an inefficient “hypotheti-
cal” adversary A with success probability εA, and then show that the hypotheti-
cal adversary can be efficiently simulated by rewinding the reduction except when
some event “bad” occurs. Since the reduction has to work with the hypothetical
adversary, this means that – except with probability Pr[bad] – the reduction

4 For our results we require uniqueness of a corresponding public key vector given the
public key, which holds for all DH-based schemes from the literature including our
first NIKE.

298 J. Hesse et al.

must also work with the simulated adversary, i.e., without external help. Since
by assumption the reduction on its own cannot have more than negligible advan-
tage in solving the underlying problem, this essentially shows that the success
probability of the reduction can be upper bounded by Pr[bad] · εA + negl for
a negligible function negl, i.e. lose a factor of 1/Pr[bad]. For arguing that the
simulated adversary perfectly simulates the hypothetical adversary we crucially
rely on the uniqueness lemma, which ensures that all shared keys are fixed after
the reduction gave out sufficiently many secret keys.

2-step-Adaptive Security. For proving our lower bound we introduce the 2-step-
adaptive security notion, where an adversary after receiving the public keys can
first ask the secret keys for an arbitrary large set D, and then has to commit to a
challenge tuple of public keys (outside D). The adversary wins if after receiving
the remaining secret keys (except the ones involved in the challenge tuple), it
returns the shared key between the challenge parties. It is straightforward to
see that adaptive security implies this weaker security notion, and therefore any
lower bound on 2-step-adaptive security readily carries over to adaptive security.

The Hypothetical Adversary. The idea of the hypothetical adversary is to enforce
uniqueness of the challenge shared key by choosing the set D in a suitable way.
By the uniqueness lemma this can be achieved by choosing D such that the
corresponding public key vectors span all public keys. (Note that if a NIKE is a
d-dimensional inner-product NIKE, there always exist such a set of size at most
d.) Once the shared key between the challenge key pairs is fixed, the adversary
can simply brute-force any tuple of secret keys corresponding to the challenge
public keys that are consistent with all secret keys in D, and use these to compute
the shared key. Since the shared key is unique, the hypothetical adversary will
always be successful.5

Simulating the Hypothetical Adversary. The problem in simulating the hypothet-
ical adversary is that the following cannot be done efficiently:

(1) Extract the public key vectors to find a spanning subset D, and
(2) Obtain the secret keys by brute-force to compute the challenge shared key.

The strategy of the meta-reduction to is therefore to:

(1) Guess a set D (and hope it is spanning), and
(2) Obtain secret keys by rewinding the reduction to compute the challenge

shared key.

It turns out productive to choose |D| ≈ N/2. The reason for this is as follows:
On the one hand, for maximizing the probability that D is spanning, D should
be chosen as large as possible. On the other hand, for extracting the secret keys
from the reduction it is crucial that the reduction can be rewound while already

5 To capture adversaries with arbitrary success probability εA, the hypothetical adver-
sary can simply flip a biased coin and only output the shared key with probability
εA.

Towards Tight Adaptive Security of NIKE 299

being committed to the secret keys in D (since otherwise, the reduction could
give out secret keys that are not consistent with the secret keys in D). In order to
argue that the reduction either has to return valid secret keys for each i ∈ [N]\D
or abort with high probability, we have to choose [N]\D large (essentially, the
success probability will scale with 1 − 1/(N − |D|)).
Success Probability of the Simulated Adversary. Finally, the meta-reduction can
compute the shared key with the help of this extracted secret keys. By the
uniqueness lemma we obtain that this shared key is unique if both strategies of
the meta-reduction are successful, i.e. if (1) D is indeed spanning, and (2) the
reduction returns valid and consistent secret keys for both public keys involved
in the challenge.6 We can show that the event bad that either of these is not
satisfied only occurs with probability in the order of d/N . This results in the
following informal theorem:

Theorem (Lower Bound): Any simple reduction from a non-interactive com-
plexity assumption to the adaptive-security of a d-dimensional inner-product
NIKE has to lose a factor in the order of Ω(N/d).

Our lower bound thus yields that NIKEip, which is a ν-dimensional ip-NIKE (see
Definition 5 for the formal definition), with secret keys of size O(ν) has an inher-
ent security loss of at least Ω(N/ν). We contrast that with the security loss of
our security proof for the core NIKE, which is O((N/ν)2 log ν). Thus, for ν = N
the security reduction that we give in Sect. 3 is essentially optimal. We give a
comparison of our lower bound with others in Table 2.

Technical Idea 3: Extension to “Semi-adaptive” Security
Motivation: Controlling Entropy Leakage. The lower bound just pre-
sented appears to limit what we can prove about our first NIKE scheme NIKEip.
Specifically, it appears that we require a large setting of ν (i.e., large keys) for
(almost) a tight security reduction. Taking a step back, the intuitive reason why
we cannot obtain a better reduction is the following: every secret key revealed
through a corruption query leaks entropy about the hidden matrix M. This is
intended, since in fact this fresh entropy is used to statistically blind shared keys.
However, since the entropy contained in M is limited, this argument guarantees
fresh entropy only for a bounded number of corruptions. After O(ν) corrup-
tions, M is fully determined, and any additional corruptions (or shared key or
test queries) will result in (jointly) non-uniform shared keys. In particular, the
security argument breaks down completely if more than O(ν) corruptions are
made, even if those are made after all shared key or test queries.

Our goal: ν-semi-Adaptive Security. We now set out to mitigate this lim-
itation, and better control the entropy released through secret keys. We will

6 Even though only one secret key is necessary to compute the shared key, we can only
be sure that the reduction is committed to the shared key when given both secret
keys, since the reduction could switch to a semi-functional public key (without valid
secret key).

300 J. Hesse et al.

unfortunately not be able to achieve full adaptive security with small keys.
Instead, our goal will be a NIKE scheme with small keys, but in which more
than O(ν) corruptions are possible only after all test queries have been made.
To be more concrete: we will achieve what we call ν-semi-adaptive security,
which denotes security against the following type of attacks. An adversary may
request up to ν corruptions, shared key, or test queries (in any combination).
After that, any number of corruption or shared key queries, but no test queries
are allowed. This notion is hence weaker than adaptive security, but also does
allow for some degree of (“early”) adaptivity. Like our basic scheme NIKEip, our
ν-semi-adaptively secure scheme NIKEsa will have keys of size O(ν) group ele-
ments, and its security reduction will be (almost) tight, i.e., only lose a factor of
O(log ν).

As discussed above, our result can also be seen as a tradeoff between security
and key size: the larger its keys are, the closer to (full) adaptive security the
achieved security notion is. We reach full adaptive security only with large keys
(of size O(N) group elements), but smaller keys still yield a less adaptively but
(almost) tightly secure scheme.

Building Block: Non-Interactive Tag Exchange. We now explain the
main technical ideas of our semi-adaptively secure NIKEsa. In a nutshell, we use
NIKEip as a tag generator, or as what we call a “non-interactive tag exchange”
(NITE) scheme. A NITE is defined like a NIKE, except that (a) we call shared
keys “tags” now, and (b) we require “ν-programmability” instead of indistin-
guishability for security. ν-programmability requires that there is a dedicated
“programming algorithm” that allows to semi-adaptively program tags in the
following way: given up to ν pairs of parties (Pi,1, Pi,2) and corresponding “tar-
get tags” Ti, output corresponding secret keys that yield Ti as tag between Pi,1

and Pi,2. This programming succeeds even after all public keys are fixed, and in
an adaptive way (such that the Ti can be fixed one at a time, depending on all
public keys and earlier Ti). For security, we require that this programming is not
detectable, even given all secret keys (programmed or not). We can interpret
NIKEip as a NITE: shared keys are interpreted as tags, and programming works
by adjusting A adaptively so that the desired tag values are computed.7 Note
that this process works only for programming up to O(ν) tag values, since the
entropy in A is limited. On the other hand, the notion of programmability also
captures the security that NIKEip achieves when eventually all secret keys are
revealed.

Leveraging NITE Programmability. The security of a NITE scheme
requires programmable tags, but does not require “unopened” tags to remain
hidden in any way (e.g., in the sense of NIKE indistinguishability). Hence, we
cannot immediately use a NITE scheme as NIKE. Instead, our NIKEsa uses a
NITE scheme to generate common (but not necessarily secret) shared tags for

7 This is a slight oversimplification. In fact, programming requires to also make public
keys semi-functional, as in the security proof of NIKEip sketched above. Our formal
programmability definition will allow for such adjustments during programming.

Towards Tight Adaptive Security of NIKE 301

any two parties, who will then employ a “tag-based NIKE” (TNIKE) as a sec-
ond stage to compute the actual NIKE shared keys. Analogously to tag-based
encryption [28], a TNIKE is simply a NIKE in which shared key computation
takes a tag as additional input. For correctness of NIKEsa in the usual sense, this
tag should of course be the same for both parties.

Before describing a concrete TNIKE scheme, we describe its crucial abstract
property: our TNIKE scheme has “punctured” secret keys, i.e., secret keys that
allow to compute shared keys for all but one tag value. This puncturing point
(i.e., the tag upon which shared key computation fails) is uniformly random, but
not obvious from the corresponding public key. Similar puncturing techniques
have been used as a technical tool to achieve adaptive security in various contexts
before (e.g., [7,16,27,32,34,37,39]). In our security proof, we will program the
tags output by the NITE scheme such that all tags that refer to NIKE test queries
will be programmed to be exactly the puncturing points of the corresponding secret
keys.8 This programming is not detectable thanks to the NITE’s security, and
leads to a situation in which all test queries are randomized.

Our Concrete Construction. Armed with this intuition, we now give more
details on our actual TNIKE construction. To illustrate the main ideas, we only
describe a slightly simplified version of our construction for minimal ν, i.e., such
that it achieves only a small degree of semi-adaptivity. The construction is based
on the learning with errors (LWE) problem, and assumes public parameters
pp := A $←Z

n×m
p . A public key contains

pk := (SA + E,V = AU + τG),

where S is a random matrix, E and U are a “noise” matrices with small entries,
G is the fixed “gadget matrix” of [31], and τ is the (uniformly random) tag at
which the corresponding secret key will be punctured. Note that V is actually
an encryption of τ under the fully homomorphic encryption (FHE) scheme of
Gentry, Sahai, and Waters [21].9 The corresponding secret key is of the form

sk := (S,U, τ).

To compute the shared key between two users, assume a public key pk as above,
a secret key sk′ = (S′,U′, τ ′) from another user, and a tag T . We first homo-
morphically and deterministically compute an FHE encryption V� = AU� +bG
from V, where b ∈ {0, 1} with b = 1 iff τ = T . (Note that this really denotes the
punctured point τ encrypted in V, not the one from sk′. Hence, b is hidden at
this point.) The corresponding shared key K is a rounded version of S′V�, i.e.,

K = round(S′V�).

8 This is again an oversimplification: for a particular choice of tag, one involved party
Pi will not be able to compute the TNIKE shared key, while the other party Pj will
be able to compute a shared key that depends on entropy in Pj ’s secret key.

9 In this overview, we neglect the fact that τ should be a small scalar. Our full scheme
will actually encrypt τ bitwise.

302 J. Hesse et al.

The other involved party, using pk′ = (S′A + E′,V′) and sk = (S,U, τ),
computes the same shared key differently: it uses U to obtain the encryption
random coins U� with V� = AU� + bG (for b as above) and computes

K ′ = round((S′A + E′)U�) = round(S′AU� + E′U�)
(∗)
= round(S′AU�),

where (∗) holds with high probability for a suitable rounding function, since E′

and U have small entries. Indeed, K = K ′ whenever T �= τ (so that b = 0 and
V� = AU�). But for T = τ , the rounded value

S′V� = S′U� + S′G

in K contains the term S′G, which extracts randomness from S′ (that, using a
proper setup of A, does not appear in pk′). Hence, the tag T = τ is special, in
that K is randomized by entropy from S′ only for this T . Note that the value
K ′ does not contain this extra term, and so in fact does not satisfy K ′ = K
for T = τ . Of course, since in “normal operation”, tags are independently and
uniformly random values, T = τ happens only with negligible probability, and
this affects correctness of the scheme only negligibly.

Before going further, we note that this overview over our TNIKE scheme
neglects a few things: we did not discuss suitable dimensions, the rounding func-
tion, or a suitable encoding of large tags τ . Besides, we did not discuss a gener-
alization to larger values of ν (which require programming more values τi into
each key). Finally, we did not discuss how both parties coordinate on their role
in the computation of K (i.e., on whose V is used as a basis of computation).
All of those questions have simple, albeit sometimes tedious technical answers,
and we will discuss all of these issues inside.

The Security of Our Construction. We now briefly sketch the proof of
1-semi-adaptive security of NIKEsa, which is composed of our NITE and TNIKE
schemes. So assume a 1-semi-adaptive adversary A that obtains all public keys,
and then may ask a single test query. After this, and without loss of generality,
A obtains all secret keys of parties not involved in that test query. We need
to show that A’s success in distinguishing between real and random answers is
negligible, and, for a tight reduction, does not scale in the number of users. To
do so, consider the following short sequence of game hops:

Game 0 is the original 1-semi-adaptive NIKE security game with a test query
that is answered with the real shared key.

Game 1 changes how the tags for the test query are computed: here, the tag
for the test query is adaptively programmed to be the puncturing point τ of
the corresponding user. Note that the corresponding shared key can still be
computed for A in the same way that K is computed above. By programma-
bility of the NITE scheme, and using the security of the used FHE scheme,
this change goes unnoticed by A.10

10 We note that to obtain tight security at this point, we will temporarily switch the
used FHE scheme into a lossy mode of encryption [3,22].

Towards Tight Adaptive Security of NIKE 303

Game 2 replaces the result of the test query with an independently chosen
random shared key. This change is statistical, and can be justified with the
observations above about hidden entropy in S′.

We give full details of the proof (and additional discussion) in the full version of
this paper.

2 Preliminaries

We use x
$← S to denote the process of sampling an element x from a set S

uniformly at random. For a probability distribution D, we write x ← D to denote
that the random variable x is distributed according to D. If A is a (probability)
algorithm then we write x

$←A(b) to denote the random variable x outputted
by A on input b. We use Symn(Zq) (for n ∈ N, q prime) to denote the set of
symmetric n × n over Zq. Initially, all partial maps (denoted by f : A ��� B)
are totally undefined in our games. We write x[i] for the i-th bit of the binary
representation of x. We write (a,) := (x, y) and (, b) := (x, y) to define a := x
and b := y, respectively. T (A) denotes the running time of A.

2.1 Pairing Group Assumptions

Throughout this paper, SymGGen denotes a probabilistic polynomial-time (PPT)
algorithm that on input 1λ returns a description PG := (G,GT , q, g, e) of a
symmetric pairing group, where G and GT are cyclic groups of order q for a λ-bit
prime q. The group element g is a generator of G. The function e : G×G → GT

is an efficient computable (non-degenerated) bilinear map (i.e., a pairing). Define
gT := e(g, g), which is a generator in GT .

We use the implicit representation of group elements as in [18]. For s ∈
{ε, T} and a ∈ Zq define [a]s = ags ∈ Gs as the implicit representation of a
in Gs. Similarly, for a matrix A = (aij) ∈ Z

n×m
q we define [A]s as the implicit

representation of A in Gs. Note that it is efficient to compute [AB]s given
([A]s,B) or (A, [B]s) with matching dimensions. Furthermore, e([A], [B]) :=
[AB]T can be efficiently computed given [A] and [B] with the pairing e.

Many assumptions in paring groups can be expressed as matrix decisional
Diffie-Hellman (MDDH) assumption [18]. For a definition of the (Q-fold) MDDH
assumption, see [18] or the full version of this paper.

We use the Q-fold uniform matrix distribution, because the uniform distribu-
tion allows us to give a tight reduction to the standard 1-fold version, as shown
by the following Lemma. Gay et al. already provided a tight reduction [20], but
their proof is flawed11 as pointed out by [29]. The proof can be found in the full
version.

11 They correctly prove that U�,k-MDDH is tightly equivalent to Uk-MDDH, but the
proof can not show that Q-fold U�,k-MDDH is tightly equivalent to Q-fold Uk-MDDH.

304 J. Hesse et al.

Lemma 1 (Random self-reducibility of U�,k-MDDH). For every
 > k and
every PPT adversary A there exists an adversary B with

Advmddh,Q
A,U�,k,SymGGen,s(λ) ≤

⌈
log

(

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ) +
3

q − 1

)
,

where PG ← SymGGen(1λ) and T (B) ≈ T (A) + Q · poly(λ), where poly is a
polynomial independent of A.

2.2 Non-Interactive Key Exchange

Definition 1 (NIKE). A NIKE scheme with identity space IDS and key space
K consists of three polynomial-time algorithms (Setup, KeyGen, SharedKey),
where

– Setup is a randomized algorithm that takes the unary encoded security param-
eter 1λ and samples public parameters pp

– KeyGen is a randomized algorithm that takes the parameters pp and an identity
id ∈ IDS and samples a key pair (pk, sk)

– SharedKey is a deterministic algorithm that takes the parameters pp, an iden-
tity id1 with its corresponding public key pk1 and another identity id2 with its
corresponding secret key sk2 and outputs a shared key K

Definition 2 (Correctness). We say that a NIKE (Setup, KeyGen,
SharedKey) for identity space IDS is statistically correct, if the correctness
error

sup
id1,id2∈IDS

Pr[SharedKey(pp, id1, pk1, id2, sk2) �= SharedKey(pp, id2, pk2, id1, sk1) |

pp ← Setup(1λ), (pk1, sk1) ← KeyGen(pp, id1), (pk2, sk2) ← KeyGen(pp, id2)]

is negligible in λ. A NIKE is perfectly correct if its correctness error is zero.

The standard security notion for a NIKE is adaptive security. It is a real-
or-random notion that allows the adversary to register users, corrupt users,
reveal shared keys and get challenged adaptively and arbitrary often. One could
strengthen this security notion by giving the adversary an additional oracle that
allows him to learn the shared keys of a user and a self-generated public key
(dishonest key registration). This security notion can be achieved tightly with
little overhead using the generic transformation of [25].

Our first construction in Sect. 3 achieves a weaker security notion, that we
call ν-bounded security, for any ν ∈ N≥2 with keys that grow linearly in ν.
ν-bounded security is defined as adaptive security, but the adversary may only
use up to ν users for corruption, revealing shared keys, and challenges. It can
still register arbitrary many users and choose adaptively the subset of ν users
for the other queries. While this security notion is arguably too weak for most
realistic scenarios, it is useful because it implies adaptive security with security
loss only O((N/ν)2).

Towards Tight Adaptive Security of NIKE 305

In the full version we show how to strengthen our result to achieve
ν-semi-adaptive security. This notion is defined like ν-bounded security, except
that the adversary can still make Oextr, OrevH (and OregH) queries after exceed-
ing the limit of ν involved users. Clearly, ν-semi-adaptive security tightly implies
ν-bounded security, but is a more realistic security notion.

Definition 3 (Adaptive, ν-bounded, and ν-semi-adaptive security).
We say that a NIKE NIKE = (Setup, KeyGen, SharedKey) is ν-bounded,
ν-semi-adaptively, or adaptively secure (for ν ≥ 2), if for all PPT adversaries
A

AdvAxxx
NIKE (λ) := 2Pr[ExpxxxA,NIKE(λ) ⇒ 1] − 1

is negligible for xxx = ν-bounded, xxx = ν-semi-adaptive or xxx = adaptive,
respectively. The games ExpxxxA,NIKE(λ) are defined in Fig. 2.

The following argument shows that ν-bounded security implies adaptive secu-
rity via a non-tight reduction. The reduction forwards the registration queries
of up to ν users to the ν-bounded experiment and generates all other keys itself.
Then the reduction can randomize the shared keys in the test queries between
two users when both of their registrations have been forwarded. Via a hybrid
argument, the reduction can randomize all test queries step by step. We defer
the formal proof to the full version.

Lemma 2. For every NIKE NIKE and every PPT adversary A against the adap-
tive security of NIKE, there exists a PPT adversary B against the ν-bounded
security for any ν ∈ {2, . . . , N} with

AdvadaptiveA,NIKE (λ) ≤ 1
2

⌈
N

ν/2� + 1
⌉2 (

Advν-bounded
B,NIKE (λ) + (Nrev + Ntest)εNIKE(λ)

)

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A, where
N is the maximum number of users that A registers, Nrev and Ntest are the
maximum number of A’s OrevH and Otest queries, respectively, and εNIKE(λ) is
the correctness error of NIKE.

For our lower bound on tightness of adaptive NIKE security reductions, we
define a relatively weak notion called 2-step-adaptive security. The experiment
is depicted in Fig. 3. It allows the adversary to see n − 2 secret keys in two
loads, and commit to one challenge pair of public keys after seeing the first load.
Finally, 2-step-adaptive is the only notion in this paper which is computational,
meaning that the adversary has to provide the shared key of the challenge pair
in order to win the experiment. To ease presentation of our lower bound proof,
the adversary is split into three stateful algorithms A1,A2,A3.

306 J. Hesse et al.

Fig. 2. Experiment for adaptive security, ν-semi-adaptive security , and

ν-bounded security of a NIKE scheme NIKE with identity space IDS and shared key

space K. PK denotes the public key space and SK denotes the secret key space. The
partial maps pks and sks are initially totally undefined. The set Qinv keeps track of all
users involved in the game, that is, users that have been used in at least one Oextr,
OrevH or Otest query (users that have been only registered but not used since then
are not counted as involved users). In the ν-bounded experiment the adversary may
involve at most ν users. In the ν-semi-adaptive experiment the adversary may not ask
Otest queries any more after more than ν users have been involved.

Definition 4 (2-step-adaptive security). A NIKE NIKE = (Setup, KeyGen,
SharedKey) is 2-step-adaptively secure, if for all PPT adversaries (A1,A2,A3)

Adv2-step-adaptiveNIKE (A1,A2,A3) := Pr[Exp2-step-adaptiveA=(A1,A2,A3),N,NIKE(λ) → 1]

is negligible. The experiment is defined in Fig. 3.

Towards Tight Adaptive Security of NIKE 307

Fig. 3. Experiment for 2-step-adaptive security of a NIKE scheme NIKE with shared
key space K, for any N ∈ N. If i� ∈ D or j� ∈ D, the experiment aborts.

It is straightforward to verify that 2-step-adaptive security is implied by
adaptive security. The relations between the security notions considered in this
paper are shown in Fig. 4.

3 An Inner-Product-Based NIKE Scheme

We present our NIKE NIKEip in Fig. 5 that tightly achieves ν-bounded security
for arbitrary ν ≥ 2. However, this comes at the price of public and secret key
size O(ν). Together with Lemma 2, this gives an adaptively secure NIKE with
a trade-off between key size and security loss. The security can be based on any
MDDH assumption in symmetric pairing groups. Correctness follows from

Fig. 4. Relations between NIKE security notions for ν ∈ {2, . . . , N − 2} used in this
paper. Dashed arrows mean “tightly implies” and solid arrows mean “implies with
specified loss”.

308 J. Hesse et al.

SharedKey(pp, idi, pki, idj , skj) = e([(Dwi)�], [MDwj]) = [w�
i D�MDwj]T =

[w�
j D�MDwi]T = e([(Dwj)�], [MDwi]) = SharedKey(pp, idj , pkj , idi, ski).

Fig. 5. Our inner-product-based NIKEip using symmetric pairing groups.

Fig. 6. Hybrids for the security proof of the NIKE from Fig. 5. The partial maps pks
and sks are initially totally undefined.

Towards Tight Adaptive Security of NIKE 309

Theorem 1 (Security). For every PPT adversary A against ν-bounded secu-
rity of NIKEip, there exists a PPT adversary B solving Uk-MDDH

Advν-bounded
A,NIKEip (λ) ≤

⌈
log

(
1 +

ν

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ) +
1

q − 1

)
+

1
q − 1

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

The proof uses a hybrid argument with hybrids G0 and G1 given in Fig. 6.

Lemma 3 (G0 � G1). For every PPT adversary A there exists an PPT adver-
sary B such that

∣
∣Pr[GA

0 (λ) ⇒ 1] − Pr[GA
1 (λ) ⇒ 1]

∣
∣ ≤

⌈
log

(
1 +

ν

k

)⌉
k

(
Advmddh

B,Uk,SymGGen,s(λ)

+
1

q − 1

)

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

Proof. The real game G0 uses normal keys (i.e. the public key is a chosen from the
linear span of D’s column vectors). In the game G1 all keys are semi-functional
(i.e. the public key is a chosen uniformly at random). Given an N -fold Uk-MDDH
challenge [D], ([ui])1≤i≤N one can simulate the games G0 and G1 efficiently when
A in known over Zq. If the vectors ui are sampled from the linear span of D
this yields the game G0 and if the vectors ui are sampled uniformly random,
this yields the game G1. By reducing the N -fold Uk-MDDH assumption to the
Uk − MDDH assumption with Lemma 1, the statement follows. ��
Lemma 4 (G1). For every PPT adversary A there exists an PPT adversary B
such that

|Pr[GA
1 (λ) ⇒ 1]| ≤ 1

2
+

1
q − 1

and T (B) ≈ T (A) + N poly(λ) for a polynomial poly independent of A.

Proof. Without loss of generality, assume the adversary involves exactly ν users.
Let us assume, that the column vectors of D and the public keys of all involved
users (users with id ∈ Qinv at the end of the game) are linearly independent.
Since all the public keys are uniformly random vectors in G1, this happens with
probability at least 1−1/(q−1). Initially, the symmetric bilinear form B(v,w) :=
v�Mw is uniformly random to the adversary. Now suppose the adversary makes
a Otest query with two users id�

1 and id�
2. Let [u�

1] and [u�
2] be the public keys of id�

1

and id�
2, respectively and let [u1], . . . , [uν−2] be the public keys of all other users.

We show the shared key between the tested users, [B(u�
1,u

�
2)]T , is statistically

independent of all the other information the adversary learns about B during
the game.

310 J. Hesse et al.

Assume all OrevH queries and other Otest queries involve at least one involved
user different to {id�

1, id
�
2}, because if the adversary makes a OrevH query with id�

1

and id�
2 the adversary has lost trivially and a duplicated Otest query would only

return ⊥. Thus these queries can not reveal any information about B that is not
revealed by M(D|u1| · · · |uν−2). The public parameters only reveal MD and any
Oextr query only reveals Mui for an i ∈ {1, . . . , ν − 2}. In total the adversary
learns from all queries except the analyzed Otest query only M(D|u1| · · · |uν−2).
Since the column vectors of D together with {u1, . . . ,uν−2,u�

1,u
�
2} are assumed

to be a linear independent set, B(u�
1,u

�
2) = (u�

1)
�Mu�

2 is uniformly random
given M(D|u1| · · · |uν−2). We can apply the above argument to each of the
adversaries Otest queries. Consequently, the adversaries advantage in G1 is 0
under the stated assumptions. ��
Proof (of Therorem 1.) Combining Lemmata 3 and 4 proves Theorem 1. ��
Corollary 1. The NIKE NIKEip is adaptively secure with a security loss of
O((N/ν)2 log ν) under the decision linear (DLIN) assumption.

Proof. The DLIN assumption implies the Uk-MDDH for k ≥ 2 [18], so we can
set k = 2. The NIKE then achieves ν-bounded security with loss O(log ν) by
Theorem 1. With Lemma 2 we can achieve adaptive security by increasing the
security loss by a factor of O((N/ν)2). ��

4 Lower Bound

In this section, we show that for all NIKEs that follow a special structure, there
is an in some sense inherent trade-off between key sizes and quality of the reduc-
tion. Compared to previous lower bounds on NIKE reductions [2,25], we do not
make the generic assumption that pairs of public keys already determine the
corresponding shared key. Instead, we leave room for a reduction to adaptively
determine secret keys upon corruptions, as long as they follow the inner product
structure we require. We use the notions of Non-Interactive Complexity Assump-
tion (NICA, [2], Def. 4 and 5) and Simple Reductions [2], Def. 6 and 7, where
the latter is adapted to the reduction breaking our 2-step-adaptive security in a
straightforward way.

We now formalize the notion of inner-product NIKE. The intuition behind
this definition is as follows. Basically, we require an (inefficient) algorithms
Extract that can be used to extract the key vectors (x,y) from a valid pair
of public and secret keys, such that (x,y) can be used to compute the shared
key as an inner product. As we will see in the next section, this inner-product
structure will enforce uniqueness of the shared keys, as soon as sufficiently many
secret keys are fixed. The verification algorithm is necessary to ensure that the
reduction can only give out public and secret keys that satisfy some structural
requirements (e.g. be of the right form and dimension). The public extraction
algorithm PExtract together with the binding requirement is necessary to ensure
that the public keys are committing to the vector x, even before the secret keys

Towards Tight Adaptive Security of NIKE 311

are given out. Finally, we therefore require the function f to be invertible, since
it will be crucial that there is a one-to-one correspondence between the inner
product and the shared key algorithm (note though that the inverse does not
have to be efficiently computable).

Definition 5 (Inner-product NIKE). Let p ∈ N a prime. We say a NIKE
NIKE = (Setup, KeyGen, SharedKey) is a d-dimensional inner-product NIKE (ip-
NIKE) over Zp, if there exists:

– a PPT algorithm Ver taking as input public parameters pp, and a key pair
(pk, sk) and returning a bit b ∈ {0, 1},

– an (inefficient) deterministic extractor Extract that takes as input public
parameters pp, and a key pair (pk, sk) and returns a tuple (x,y) ∈ Z

d
p × Z

d
p,

– an (inefficient) deterministic extractor PExtract taking as input pp and pk
and returning a vector x ∈ Z

d
p,

– and a function f taking as input public parameters pp and an element z ∈ Zp

and returning a element in the image of NIKE.SharedKey.

such that the following properties hold.

(i) Verifiable keys. For all (pk, sk) in the image of NIKE.KeyGen(pp) it holds
Ver(pp, pk, sk) = 1.

(ii) Ip-computable shared keys. For all public parameters pp, and all key pairs
(pk, sk), (pk′, sk′) with Ver(pp, pk, sk) = Ver(pp, pk′, sk′) = 1, for (x,y) ←
Extract(pp, pk, sk) and (x′,y′) ← Extract(pp, pk′, sk′) it holds

SharedKey(pp, pk, sk′) = f(pp, 〈x,y′〉).

(iii) Binding public keys. For all (pk, sk) with Ver(pk, sk) = 1 for x ←
PEx-tract(pp, pk) and (x̃, ỹ) ← Extract(pp, pk, sk) it holds x = x̃.

(iv) Invertibility of f . The induced function fpp = f(pp, ·) is injective with
inverse f−1

pp .

We call a key pair (pk, sk) with Ver(pp, pk, sk) = 1 valid. By the ip-dimension
of an inner-product NIKE NIKE, we denote the minimal dimension d, such that
NIKE satisfies the definition of d-dimensional inner-product NIKE.

4.1 Lower Bound for Inner-product NIKEs

In order to show our lower bound, we first prove that after giving out sufficiently
many public key/secret key pairs for a NIKE that satisfies the inner-product
form, the reduction is committed to all shared keys. More precisely, let {pki}i∈I

such that the corresponding vectors xi ← PExtract(pp, pki) span the whole
space Z

d
p.

12 We further fix secret keys for pki for all i ∈ I such that (pki, ski)
are all valid and consistent with each other, meaning that for all i, j, we have

12 For simplicity of this explanation we assume for now that such a set of keys exists,
but stress that our results do not rely on it.

312 J. Hesse et al.

SharedKey(pp, pki, skj) = SharedKey(pp, pkj , ski). We will show that such a set
of keys fix not only the shared keys between the public keys within {pki}i∈I , but
the shared keys between all possible valid public keys in the system. Therefore,
if d is significantly smaller than N , then with high probability, any large enough
random subset of key pairs will span the whole space of public keys and thereby
already fix all shared keys (computed as inner products) in the system. This
will be crucial in our meta reduction, where we use uniqueness of shared keys in
order to efficiently simulate a hypothetical perfect adversary, thereby essentially
showing that the reduction either has to abort with large probability or would
be able to solve the underlying problem itself.

Lemma 5 (Unique shared keys for ip-NIKEs). Let d, p, λ ∈ N and NIKE =
(Setup, KeyGen, SharedKey, Ver, Extract, PExtract) a d-dimensional ip-NIKE
over Zp. Let I ⊂ [N]. Let pp ∈ {0, 1}� and let {(pki, ski)}i∈I , (pk, sk), (pk′, sk′)
be such that:

(a) All key pairs are valid: Ver(pp, pki, ski) = 1 for all i ∈ I and
Ver(pp, (pk, sk)) = Ver(pp, pk′, sk′) = 1.

(b) The key pairs in I are pairwise consistent:
SharedKey(pp, pki, skj) = SharedKey(pp, pkj , ski) for all i, j ∈ I with i �= j.

(c) The key pairs (pk, sk) and (pk′, sk′) are consistent with the key pairs
in I: SharedKey(pp, pk, ski) = SharedKey(pp, pki, sk) and SharedKey(pp,
pk′, ski) = SharedKey(pp, pki, sk

′) for all i ∈ I.
(d) The public keys pk, pk′ are “in the span” of {pki}i∈I : for xi ←

PExtract(pp, pki) and x ← PExtract(pp, pk), x′ ← PExtract(pp, pk′) it
holds that x,x′ are in the span of {xi}i∈I .

Then it holds that SharedKey(pp, pk, sk′) = SharedKey(pp, pk′, sk). In other
words, the shared key between the users holding pk′ and pk is consistent.

Proof. Let (xi,yi) ← Extract(pp, pki, ski), (x,y) ← Extract(pp, pk, sk), and
x′ ← PExtract(pp, pk′). Note that x can be extracted from pk independently of
the corresponding secret key due to the “binding public keys” property Defini-
tion 5 (iii). We can rely on the latter property since key pairs are valid because
of condition (a). Again because of (a), shared keys are ip-computable, and we
have

SharedKey(pp, pk, sk′) = SharedKey(pp, pk′, sk)
Def. 5 (ii)⇐⇒ fpp(〈x,y′〉) = fpp(〈x′,y〉)

fpp invertible⇐⇒ 〈x,y′〉 = 〈x′,y〉,
and thus it suffices to show equality of these inner products. Due to validity of
all involved key pairs and condition (b), for all i, j ∈ I with i �= j, it holds:

〈xi,yj〉 Def. 5 (ii)
= f−1

pp (SharedKey(pp, pki, skj))
Cond. (b)

= f−1
pp (SharedKey(pp, pkj , ski))

Def. 5 (ii)
= 〈xj ,yi〉.

(1)

Towards Tight Adaptive Security of NIKE 313

Analogously, by to validity of all involved key pairs and condition (c) for all
i ∈ I, we have:

〈xi,y〉=〈x,yi〉 and 〈xi,y′〉=〈x′,yi〉. (2)

By condition (d) from the lemma statement, we can find β, γ ∈ Z
|I|
p with

∑|I|
j=1 βjxj = x and

∑|I|
i=1 γixi = x′. First, note that for all i ∈ I we have

〈xi,

|I|∑

j=1

βjyj〉=
|I|∑

j=1

βj〈xi,yj〉 Eq. 1
=

|I|∑

j=1

βj〈xj ,yi〉 = 〈x,yi〉 Eq. 2
= 〈xi,y〉. (3)

With this, it follows that

〈x,y′〉Cond. (d)
= 〈

|I|∑

j=1

βjxj ,y′〉 =
|I|∑

j=1

βj〈xj ,y′〉 Eq. 2
=

|I|∑

j=1

βj〈x′,yj〉 = 〈x′,
|I|∑

j=1

βjyj〉.

Finally, we have

〈x′,
|I|∑

j=1

βjyj〉 =
|I|∑

i=1

γi〈xi,

|I|∑

j=1

βjyj〉 Eq. 3
=

|I|∑

i=1

γi〈xi,y〉 = 〈x′,y〉,

which concludes the proof. ��
Note that this in particular implies that the shared key is independent of the

choice of secret keys sk, sk′ satisfying conditions (a) and (c).
Relying on the fact that after giving out sufficiently many secret keys, all

shared keys are uniquely determined, we are able to prove a trade-off between
the tightness of the reduction and the dimension of an inner-product NIKE. We
formalize this in the following theorem, which we prove in the full version, and
give an interpretation of our result below.

Theorem 2. Let N = (G,U, V) be a non-interactive complexity assumption, let
N, d ∈ N with 4d+6 < N , and let p ∈ N a prime. Let NIKE be a perfectly correct
2-step-adaptively-secure d-dimensional ip-NIKE over Zp with shared key space
K, public key space PK and secret key space SK. Then, for any simple (εΛ, εA)-
reduction from breaking the NICA N to breaking the N -user 2-step-adaptive
security of NIKE, there exists a PPT adversary B on the NICA N , such that

εΛ ≤ 4d + 6
N

· εA + AdvnicaN ,B.

Interpretation. Theorem 2 says that if any reduction is successfully breaking
the underlying NICA N with probability noticeably larger than (4d+6)/N , the
reduction can be turned into a standalone N solver, without help of an external
adversary. More precisely, assuming N is hard we obtain

314 J. Hesse et al.

εΛ ≤ 4d + 6
N

· εA + negl

for a negligible function negl. This implies a security loss of at least N/(4d + 6).
We can thus conclude that any inner-product NIKE that satisfies

2-step-adaptive security has to either have a significant loss, or ip-dimension
proportional to the number of users N . In particular, this gives strong evidence
that a fully-adaptive NIKEs with tight security only exist for an a priori fixed
number of users, but not for a dynamic setting where users continuously join or
leave. Altogether, using the relations between security notions depicted in Fig. 4,
we obtain the following informal corollary:

Corollary 2. Any simple reduction from a non-interactive complexity assump-
tion N to the X-security of a d-dimensional ip-NIKE has to lose a factor in
the order of Y , where N is the number of public keys, N is assumed to be hard
and (X,Y) ∈ {(2-step-adaptive, Ω(N/d)), (adaptive,Ω(N/d)), (ν-semi-adaptive,
Ω(ν2/(N · d))}.

References

1. Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp.
629–658. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-
6 26

2. Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 273–304. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 10

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

4. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring.
In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054117

5. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

6. Boyd, C., Mao, W., Paterson, K.G.: Key agreement using statically keyed authen-
ticators. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol.
3089, pp. 248–262. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1 18

7. Boyen, X., Mei, Q.: BrentWaters. Direct chosen ciphertext security from identity-
based techniques. In: Atluri, V., Meadows, C., Juels, J. (eds.) ACM CCS
2005. ACM Press, November 2005, pp. 320–329. https://doi.org/10.1145/1102120.
1102162

https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-662-49896-5_10
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/BFb0054117
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-540-24852-1_18
https://doi.org/10.1007/978-3-540-24852-1_18
https://doi.org/10.1145/1102120.1102162
https://doi.org/10.1145/1102120.1102162

Towards Tight Adaptive Security of NIKE 315

8. Capar, C., Goeckel, D., Paterson, K.G., Quaglia, E.A., Towsley, D., Zafer, M.:
Signal-flow-based analysis of wireless security protocols. Inf. Comput. 226, 37–56
(2013). https://doi.org/10.1016/j.ic.2013.03.004

9. Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 8

10. Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44598-6 14

11. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 18

12. Cramer, R., et al.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.)
ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76900-2 31

13. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

14. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

15. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability
of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 10

16. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

17. Dupont, R., Enge, A.: Provably secure non-interactive key distribution based on
pairings. Discrete Appl. Math. 154(2), 270–276 (2006)

18. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40084-1 8

19. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
7 17

20. Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 1–27. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-
3 1

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

22. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: Servedio, R.A., Rubinfeld, R. (eds.) 47th ACM
STOC, pp. 469–477. ACM Press, June 2015. https://doi.org/10.1145/2746539.
2746576

23. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 24

https://doi.org/10.1016/j.ic.2013.03.004
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/3-540-44598-6_14
https://doi.org/10.1007/3-540-46035-7_18
https://doi.org/10.1007/978-3-540-76900-2_31
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-540-78967-3_24

316 J. Hesse et al.

24. Guo, S., Kamath, P., Rosen, A., Sotiraki, K.: Limits on the efficiency of (ring)
LWE based non-interactive key exchange. In: Kiayias, A., Kohlweiss, M., Wallden,
P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 374–395. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45374-9 13

25. Hesse, J., Hofheinz, D., Kohl, L.: On tightly secure non-interactive key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 65–94.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 3

26. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

27. Hofheinz, D., Kiltz, E., Shoup, V.: Practical Chosen Ciphertext Secure Encryp-
tion from Factoring. J. Cryptol. 26(1), 102–118 (2011). https://doi.org/10.1007/
s00145-011-9115-0

28. Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S.,
Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg
(2006). https://doi.org/10.1007/11681878 30

29. Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. J.
Cryptol. 33(4), 1787–1821 (2020). https://doi.org/10.1007/s00145-020-09356-x

30. Lewko, A., Waters, B.: Why Proving HIBE systems secure is difficult. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 58–76. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 4

31. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

32. Naor, M., Reingold, M., Rosen, A.: Pseudo-random functions and factoring
(extended abstract). In: 32nd ACM STOC. ACM Press, pp. 11–20, May 2000.
https://doi.org/10.1145/335305.335307

33. Paterson, K.G., Srinivasan, S.: Building Key-private public-key encryption
schemes. In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp.
276–292. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02620-
1 20

34. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
ACM STOC. Ladner, R.E., Dwork, C. (eds.) ACM Press, May 2008, pp. 187–196.
https://doi.org/10.1145/1374376.1374406

35. Pointcheval, D., Sanders, O.: Forward secure non-interactive key exchange. In:
Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 21–39. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10879-7 2

36. Regev, O.: Quantum computation and lattice problems. In: 43rd FOCS. IEEE
Computer Society Press, Nov. 2002, pp. 520–529. https://doi.org/10.1109/SFCS.
2002.1181976

37. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Shmoys, D.B., (eds.) 46th ACM STOC, pp. 475–484. ACM
Press (2014). https://doi.org/10.1145/2591796.2591825

38. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: SCIS
2000. Okinawa, Japan, January 2000

39. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

https://doi.org/10.1007/978-3-030-45374-9_13
https://doi.org/10.1007/978-3-319-96881-0_3
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/s00145-011-9115-0
https://doi.org/10.1007/s00145-011-9115-0
https://doi.org/10.1007/11681878_30
https://doi.org/10.1007/s00145-020-09356-x
https://doi.org/10.1007/978-3-642-55220-5_4
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1145/335305.335307
https://doi.org/10.1007/978-3-642-02620-1_20
https://doi.org/10.1007/978-3-642-02620-1_20
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1007/978-3-319-10879-7_2
https://doi.org/10.1109/SFCS.2002.1181976
https://doi.org/10.1109/SFCS.2002.1181976
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1007/978-3-642-03356-8_36

On the Impossibility of Purely Algebraic
Signatures

Nico Döttling1 , Dominik Hartmann2(B) , Dennis Hofheinz3, Eike Kiltz2 ,
Sven Schäge4 , and Bogdan Ursu3

1 CISPA Saarbrücken, Saarbrücken, Germany
2 Ruhr-University Bochum, Bochum, Germany

{dominik.hartmann,eike.kiltz}@rub.de
3 Department of Computer Science, ETH Zurich, Zurich, Switzerland

{hofheinz,bogdan.ursu}@inf.ethz.ch
4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. The existence of one-way functions implies secure digital sig-
natures, but not public-key encryption (at least in a black-box setting).
Somewhat surprisingly, though, efficient public-key encryption schemes
appear to be much easier to construct from concrete algebraic assump-
tions (such as the factoring of Diffie-Hellman-like assumptions) than effi-
cient digital signature schemes. In this work, we provide one reason for
this apparent difficulty to construct efficient signature schemes.

Specifically, we prove that a wide range of algebraic signature schemes
(in which verification essentially checks a number of linear equations over
a group) fall to conceptually surprisingly simple linear algebra attacks.
In fact, we prove that in an algebraic signature scheme, sufficiently many
signatures can be linearly combined to a signature of a fresh message. We
present attacks both in known-order and hidden-order groups (although
in hidden-order settings, we have to restrict our definition of algebraic
signatures a little). More explicitly, we show:

– the insecurity of all algebraic signature schemes in Maurer’s generic
group model (in pairing-free groups), as long as these schemes do not
rely on other cryptographic assumptions, such as hash functions.

– the insecurity of a natural class of signatures in hidden-order groups,
where verification consists of linear equations over group elements.

We believe that this highlights the crucial role of public verifiability in
digital signature schemes. Namely, while public-key encryption schemes
do not require any publicly verifiable structure on ciphertexts, it is
exactly this structure on signatures that invites attacks like ours and
makes it hard to construct efficient signatures.

1 Introduction

Digital Signatures and Public-Key Encryption. Digital signatures and public-
key encryption (PKE) schemes are two of the most fundamental cryptographic
primitives. Both of them are crucial to securing communication, and are used

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 317–349, 2021.
https://doi.org/10.1007/978-3-030-90456-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_11&domain=pdf
http://orcid.org/0000-0002-5914-7635
http://orcid.org/0000-0002-0379-7903
http://orcid.org/0000-0003-1178-048X
http://orcid.org/0000-0002-8698-4244
https://doi.org/10.1007/978-3-030-90456-2_11

318 N. Döttling et al.

in countless applications. From a theoretical perspective, these primitives are
comparable, but somewhat different in strength: it is known that existentially,
digital signatures are equivalent to one-way functions [41,45]. (That is, secure
digital signatures can be constructed from one-way functions and vice versa.)
However, PKE schemes appear to be strictly stronger (in a black-box sense) than
one-way functions [31]. In this sense, it is easier to construct digital signatures
than PKE schemes.

On the other hand, current efficient constructions of signatures and PKE
schemes from stronger (in particular group-based) assumptions paint a different
picture. For instance, efficient PKE schemes are known from the factoring [29]
and DDH [16,34] assumptions. But efficient signature schemes from the factor-
ing or DDH assumptions appear to require random oracles [5,33,47], stronger
assumptions [17], or tradeoffs in efficiency [30]. Hence, it seems that efficient
signatures are somewhat harder to construct than PKE schemes. This leads to
the obvious question that motivates this work:

What makes efficient (standard-model) digital signature schemes harder to
construct than PKE schemes?

We note that while lower bounds for digital signature schemes exist, they
are either limited to very special types of signature schemes (like structure-
preserving signatures [1,2,25,26] in the pairing setting), or to bounds on the
efficiency of constructions from symmetric primitives [4,23]. To the best of our
knowledge, e.g., the (space or time) complexity of group-based signature schemes
(without pairings) is not well-understood.

The Role of Public Verifiability. Of course, signature and PKE schemes have a
very different syntax (and different goals). However, one unique property of dig-
ital signatures is that of public verifiability. Specifically, even an adversary can
verify the validity of a signature, while it can in general not verify the consistency
of a PKE ciphertext (i.e., that it was generated with the encryption procedure).
In a security reduction, this difference allows a wider range of techniques to
modify ciphertexts in a security reduction than signatures. In fact, a popular
technique for PKE security reductions starts by making the ciphertext inconsis-
tent [16,18,34]. Similar techniques for signatures exist [24], but currently require
a very specific algebraic setup in order to be compatible with public verifiability.

In a nutshell, public verifiability enforces a certain publicly verifiable struc-
ture on signatures that does not need to be present in PKE ciphertexts. For
many known signature schemes (e.g., [8,17,21,30,47,52]), verifying this struc-
ture amounts to checking whether different group elements or exponents stored
in the signature fulfill one or more polynomial equations (whose coefficients are
derived from public key, message, and signature). The simpler these equations,
the more efficient the signature scheme becomes.

Our Results. In this paper, we use the above observations as a motivation to
look at a very simple class of signature schemes we call “algebraic”. An algebraic
signature scheme is one in which public keys and signatures consist of group

On the Impossibility of Purely Algebraic Signatures 319

elements (and possibly some additional auxiliary information), and verification
consists in checking whether these group elements satisfy some linear relations
(whose coefficients are influenced by the auxiliary information). This class of
signatures is simple and natural, and would seem a promising starting point for
constructing efficient signature schemes. We provide impossibility results in two
settings:

– In pairing-free groups of known order, we show that all algebraic signature
schemes in Maurer’s generic group model are insecure, as long as these signa-
ture schemes do not rely on other cryptographic assumptions, such as random
oracles.

– In hidden-order groups, we establish the insecurity of a natural subclass of
algebraic signatures (essentially those without auxiliary information). As a
further extension, we show that BLS signatures are insecure when the BLS
hash function is instantiated with a specific type of programmable hash
function, such as Waters’ programmable hash function used in his signature
scheme [52].

In both settings, we show that in algebraic signature schemes, it is always possible
to linearly combine sufficiently many existing signatures (for distinct messages)
to another signature for a fresh message. (The specific methods to do that depend
on the setting, however.)

As a simple special case, assume a signature scheme for which valid signatures
(σ1, . . . , σk) satisfy a single equation of the form

σ1P1 + . . . + σkPk = P0

over an additive group (G,+), where the Pi = Pi(vk,m) ∈ G are publicly com-
putable from verification key and message, and the σi are exponents from the
signature.

Now if the Pi are also (publicly) computed in a linear fashion from a few base
elements X1, . . . , Xn ∈ G in the verification key, each signature gives a linear
equation

σ′
1X1 + . . . + σ′

nXn = 0

(with known σ′
i) for the Xi. After seeing sufficiently many valid signatures, the

σ′
i (and hence the σi) for a fresh random message m∗ can be derived by linear

algebra. Hence, such a signature scheme is insecure.

Extensions. We extend this idea also to more equations, groups of unknown
order (in which linear algebra has to be replaced with computations over the
integers), and to randomized signatures. Our results cover typical settings of
groups with known order (as used, e.g., with Diffie-Hellman-like assumptions),
and with unknown order (as used, e.g., for factoring- and RSA-based construc-
tions).

320 N. Döttling et al.

On the Efficiency of Our Attacks. The basic attack outlined above is efficient
in the sense that only linear algebra operations over matrices of exponents are
made. When generalizing to unknown-order settings, these operations become
linear algebra operations over the integers (which are more expensive, but remain
polynomially efficient).

However, we will also generalize these ideas to schemes in which signatures
contain arbitrary “tags” t (i.e., non-algebraic bitstrings that may influence the
selection of the Pi = Pi(vk,m, t)). Such tags can model, e.g., random coins chosen
during signing. In general, it is not immediately clear how to adapt the above
attack idea to such “tagged” signatures, since the attack only yields forgery
coefficients σi, but no suitable t.

In this general setting, we give an attack that is “pseudo-efficient” in the
generic group model. More specifically, our attack uses only a polynomial num-
ber of group operations, but brute-forces a suitable t (and thus becomes com-
putationally infeasible for larger t). This attack shows that even for “tagged”
signatures with such a t, security cannot come from hardness assumptions in
the group alone. We stress that this generalized attack brute-forces only t, and
becomes efficient also in terms of running time for logarithmically-short t. In
fact, for empty t, it coincides with the basic attack described above.

What Do Our Results Say About Existing Paradigms for Signature Schemes?
Our characterization also helps to understand what differentiates somewhat less
efficient schemes like (implicitly [30] or explicitly [39]) tree-based schemes: in
tree-based schemes, the polynomial equations checked have very diverse coeffi-
cients (in the sense that every message uses a unique set of coefficients). Our
results do not apply in such settings, since we may end up with more variables
than linear equations for these variables.

A Note on Generic Group Models. Since our first result employs generic groups,
it is worthwhile to comment on our choice of Maurer’s generic group model.
Generic group models (GGMs) formalize the idea that algorithms, both schemes
and adversaries, can only make algebraic use of a group, in other words only
use the group as a black box. This is typically formalized by giving such algo-
rithms access to the group via a group oracle, which takes as input Zp elements
and returns handles to group elements. The group oracle also performs group
operations by taking handles of group elements and returning the handle of the
resulting group element.

This idea can be implemented in different nuances. In Shoup’s generic group
model [51], the handles are chosen by a random injective function from Zp into
a set of sufficiently long bit-strings, i.e. each group element is represented by a
unique but otherwise uniformly random handle. In this model, the group oracle
can be immediately used to implement a random oracle [55] . As a consequence,
in Shoup’s generic group model, Schnorr’s signature scheme [47] (using random-
oracle-like features of the generic group as in [14]) is provably secure. But this
means that in this model there do in fact exist fully succinct signature schemes,
yet via a non-standard use of the group.

On the Impossibility of Purely Algebraic Signatures 321

In Maurer’s generic group model [37], the group oracle is stateful and han-
dles are computed lazily via a counter. Consequently, the handles do not carry
additional entropy and the group oracle cannot be used to implement a random
oracle. Furthermore, it seems to be difficult to even define a consistent hash func-
tion on group elements, as the labels depend on the order in which the group
elements were queried.

More Applications. But while conceptually proving what cannot work to con-
struct efficient signature schemes, we also showcase our techniques for a known
signature scheme. Namely, we show that the pairing-based Boneh-Lynn-Shacham
signature scheme [11], whose security is proved in the random oracle model, can-
not be implemented with a suitable algebraic hash function (such as Waters’
programmable hash function used in his signature scheme [52]).

1.1 Related Work

Impossibility results in idealized and restricted models have a rich history, dat-
ing back to the seminal work of Impagliazzo and Rudich [32] who established
impossibility of constructing key-agreement from one-way functions in a black-
box way. In this vein, Boneh et al. [12] showed that Identity-Based Encryption
(IBE) [10,15,50] cannot be constructed from trapdoor permutations in a black-
box way. Papakonstantinou et al. [42] generalized this result to show that IBE
cannot be constructed by making only black-box use of a cryptographic group
without pairings1. The techniques of [42] set the blueprint for a line of follow-up
works, including this work, in arguing that public information (such as the master
public key for an IBE scheme) imposes a system of linear constraints, and every
time an adversary is provided a user secret key, one of two events must occur. (1)
Either the dimension of this system decreases in the adversary’s view or (2) the
adversary could have generated this user key by himself from information which
was already available to him. In this way, it can be argued that the size of public
parameters dictate a (polynomial) upper bound for how many key-queries such
an IBE can be secure. Roughly, by exhausting this bound an adversary can force
event (2) to happen after a polynomial number of key queries, thereby break-
ing security of the IBE scheme. The impossibility result of [42] is provided in
Shoup’s generic group model. Pass and Shelat [43] showed that achieving VBB
obfuscation is impossible to achieve by only making black-box use of constant
degree graded encoding. In their work, the ideal graded encoding scheme is mod-
eled akin to Shoup’s generic group model, in that handles to group elements are
(unique) uniformly random bit strings. On a technical level, [43] shows that ideal
multilinear maps in any such construction are useless, in that they can be com-
piled out while still obtaining an approximately correct VBB obfuscator (which
were shown to be impossible [6]). The core idea is, in the same vein as in [42],

1 Identity-based Encryption was later shown to be possible from the Computational
Diffie-Hellman (CDH) assumption in cryptographic groups by making non-black-box
use of the underlying group [19].

322 N. Döttling et al.

to learn as system of linearly independent polynomials via black-box access to
the ideal multilinear maps. This in turn allows emulation of zero-test queries in
the obfuscated program without access to the ideal multilinear maps. This result
was generalized by Mahmoody, Mohammed and Nematihaji [36] to the setting
of ideal non-commutative rings. Zhandry and Zhang [54] adapted the compila-
tion technique of [43] to order revealing encryption, showing that this primitive
cannot be constructed in Shoup’s generic group model. While Shoup’s model
is in some sense closer to the plain model than Maurer’s model by providing
explicit representations of group elements, this aspect leads to many numerous
technical obstacles. A recent line of work has focused on studying limitations of
construction techniques for pivotal cryptographic primitives in Maurer’s model.
Rotem, Segev and Shahaf [46] showed that any generic construction (in Mau-
rer’s model) of a delay function in a group of known order is insecure, giving
evidence that the use of hidden order groups in known constructions [7,44,53]
might indeed be necessary. Schul-Ganz and Segev [49] provided a tight version
of the impossibility result of [42] in Maurer’s model, in showing that any IBE
scheme whose public parameters contain n group elements will support at most n
identity secret keys. We remark using a simple technique known as Naor’s trick,
any IBE scheme can be transformed into a signature scheme. Consequently, on
the surface our results also imply the results of [49]. However, [49] consider IBE
schemes allowing arbitrary (yet generic) decryption algorithms, whereas in this
work we consider signature schemes with algebraic verification, i.e. signature
schemes where verification can be expressed as a (generic) equation system. In
this sense, our results do not immediately imply the results of [49], and further
study in this direction is necessary.

1.2 Technical Outline

We will now provide a high level overview of our generic attacks. As purely
combinatorial techniques suffice to achieve signatures of size logarithmic in the
size of the message space [35,39,41], we will first suitably restrict the class of
signature schemes under consideration.

Algebraic Signature Schemes. We will consider signature schemes which only
make algebraic use of a cryptographic group. By algebraic, we mean that the
group is only accessed via the standard group operations, but not by making use
of representations of group elements. Essentially our notion of algebraic signature
schemes is characterized by the property that verification checks a set of linear
equations in the group. Specifically, assume in the following that we are working
over a cyclic group G with generator P isomorphic to Zp. To simplify notation,
we will write group operations additively. We say a signature scheme over an
additive group G is algebraic, if it meets the following structural requirements.

– Signing keys sk are arbitrary bit-strings, whereas verification keys consist of
a vector of n group elements X = (X1, . . . , Xn)ᵀ and a bit-string s.

– The signing algorithm produces signatures σ which consist of a vector of k
group elements Y = (Y1, . . . , Yk)ᵀ and a bit string t.

On the Impossibility of Purely Algebraic Signatures 323

– The verification algorithm Verify(vk,m, σ) is described by two efficiently com-
putable functions A and B , where A(s,m, t) returns a Z

�×n
p matrix and

B(s,m, t) returns a Z
�×k
p matrix, respectively. The signature σ is accepted

if the group-equations

A(s,m, t) · X = B(s,m, t) · Y

hold over the additive group (G,+).

We call this type of signature scheme algebraic, as the verification algorithm only
makes algebraic use of the group, i.e. no bit-representations of group elements
are used. Note further that this definition does not impose any restrictions on the
signing algorithm, i.e. the signing algorithm may compute arbitrary functions
of the signing key and the message. While at first glance this notion might
seem overly restrictive, we will argue below that any signature scheme which
only makes algebraic use of a group must be of this form. This notion does not
include pairing-based constructions in the generic group model, since only linear
verification equations are considered. Therefore constructions like [8,9] are not
covered by our results.

Learning Linear Functions. We will now turn to showing that any algebraic
signature scheme can be efficiently attacked in the generic group model, where
we measure the adversary’s efficiency only in terms of its group oracle queries.
Our starting point is a basic fact about the learnability of linear functions.
Consider an experiment where a challenger chooses some function F , and then
plays the following game with an adversary A. The challenger chooses an input
xi from some distribution X and for each xi, A can either decide to see F (xi)
or provide a guess for F (xi), where in the latter case if the adversary guesses
correctly it wins. Clearly, for general functions F this experiment is hopeless for
the adversary, as F could, e.g., be a pseudorandom function with large output
domain.

On the other hand, things are different if F is a linear function. Say F : V → U
is a linear function between two vector spaces V and U over some field F, where
V is (say) of dimension n. Now, every time A is given a new input xi ∈ V, then
one out of two things must happen.

1. It holds that xi is in the span of x1, . . . ,xi−1. In this case, it follows from
the linearity of F that F (xi) is uniquely specified by the input-output pairs
(x1, F (x1)), . . . , (xi−1, F (xi−1)). Thus, in this case A can win the experiment
with probability 1, simply by solving a linear equation system for F (xi).

2. It holds that xi is not in the span of x1, . . . ,xi−1. In this case, A will learn
new information about F .

Noting that the dimension of V is n, it follows that case 2 can happen at most
n times. Consequently, after at most n rounds the adversary will win the exper-
iment with probability 1.

324 N. Döttling et al.

Learning Affine Relations. The discussion in the previous paragraph does not
immediately translate into an attack against algebraic signatures, as the signing
algorithm is not necessarily a linear function. However, we will now modify the
above argument such that it yields an efficient attack against algebraic signatures
over prime order groups.

First note that for an algebraic signature scheme, knowing the discrete loga-
rithms x = (x1, . . . , xn)ᵀ of the group elements X = (X1, . . . , Xn)ᵀ is sufficient
to forge signatures: Due to correctness of the signature scheme, we know that
for any message m there exists a valid signature σ = (Y, t), i.e., it holds that

A(s,m, t) · X = B(s,m, t) · Y.

Consequently, it also holds

A(s,m, t) · x = B(s,m, t) · y.

in Zp. But this means that, given the discrete logarithms x of X, we can find a
signature for any message m by exhaustively searching over all possible values of
t and testing for each t whether the equation system B(s,m, t) ·y = A(s,m, t) ·x
has a solution y. If for a given t such a y exists, (t,Y = yP) is a valid signature
of the message m.

Towards developing the actual attack, we will now discuss a twist of the
above idea. Assume the adversary already knows (m1, σ1), . . . , (mi−1, σi−1),
where σj = (Yj , tj).

Then we can define a set Ti−1 ⊆ Z
n
p of candidate vectors x which could be the

discrete logarithms of X. A vector x is in Ti−1, if for all indices j ∈ {1, . . . , i−1}
it holds that A(s,mj , tj)·x = B(s,mj , tj)·Yj . In other words, Ti−1 consists of all
vectors x such that for j ∈ {1, . . . , i−1} the (mj , σj) are valid message-signature
pairs under the verification key x.

Note that while membership in the set Ti−1 can be decided using a poly-
nomial number of group queries, we cannot efficiently compute the set Ti−1

given the message-signature pairs (m1, σ1), . . . , (mi−1, σi−1). However observe
that Ti−1 is an affine subspace of Z

n
p , as it is the solution-space of a non-

homogenous linear equation system.
Ignoring the issue that we cannot efficiently compute Ti−1 for the moment,

we can now mount a similar learning argument as above. For an additional
message-signature pair (mi, σi), define Ti analogous to Ti−1 taking the addi-
tional message-signature pair into account. So for every new message mi, one
out of two cases may happen:

1. By learning the signature σi of mi the space Ti does not shrink, i.e., it holds
that Ti = Ti−1.

2. By learning the signature σi the space T does shrink, i.e., Ti � Ti−1.

Note that if the first case happens, an adversary A which knows Ti−1 might
have just as well computed σi on its own. Again ignoring the issue that this can’t
be implemented with a polynomial number of group operations, the adversary

On the Impossibility of Purely Algebraic Signatures 325

could exhaustively search over all σ = (Y, t) and pick one for which Ti = Ti−1. In
the second case however, since both Ti and Ti−1 are affine spaces, the dimension
of Ti must be strictly smaller than the dimension of Ti−1. Since the space T0 =
Z

n
p has dimension n, case 2 can happen at most n times.

Impossibility of Algebraic Signatures Against Generic Adversaries. We will now
address the issue that in the above sketch computing the affine spaces Ti cannot
be achieved with a polynomial number of group operations. Upon closer inspec-
tion, the above argument only hinges on the fact that the dimension of Ti−1 is
decreasing. Since Ti is an affine space, it can be expressed as the sum of any
point in Ti and a linear space Wi. By standard linear algebra, it holds that Wi

is the intersection of the kernels of the A(s,mj , tj). Clearly, Wi has the same
dimension as Ti, i.e., whenever the dimension of Ti decreases, the dimension if
Wi decreases as well.

However, instead of looking at Ti or Wi we will look at the dual space of Ti,
that is the set of all homogeneous linear equations satisfied by all elements in
Ti.

Specifically, for a verification key vk = (X, s), a message m and a signature
σ = (Y, t) we define the space

K(m, t) = LKer(B(s,m, t)) · A(s,m, t),

where LKer(B(s,m, t)) is the left-kernel of B(s,m, t).
Notice that for every v ∈ K(m, t) we can write vᵀ = wᵀA(s,m, t) for a

wᵀ ∈ LKer(B(s,m, t)) and it holds that

vᵀ · X = wᵀ · A(s,m, t)X = wᵀ · B(s,m, t)Y = 0,

as wᵀ ∈ LKer(B(s,m, t)). In the main body we show that K(m, t) precisely
characterizes the linear constraints imposed on the unknown vector x by s,m
and t, that is if it holds for all vᵀ ∈ K(m, t) that vᵀ · X = 0 then there exists
a Y such that A(s,m, t)X = B(s,m, t)Y. We further define Li to be the set of
linear constraints imposed by all (m1, σ1), . . . , (mi, σi), that is

Li =
i⊕

j=1

K(mj , tj),

where ⊕ denotes the sum of vector spaces2. Note that K(mi, ti) and hence the
Li can be efficiently computed from the bit-strings s and (m1, t1), . . . , (mi, ti).
While the space Ti of candidates for x potentially shrinks when we add a new
message-signature pair, the space Li of linear relations that must be satisfied
by all the x grows. As before, we will distinguish two cases concerning a new
message-signature pair (mi, σi).

2 The sum of vector spaces is the set of all vectors in the ambient space which can be
linearly combined from vectors in these spaces.

326 N. Döttling et al.

1. In the first case it holds that Li = Li−1, in other words it holds that K(mi, ti) ⊆
Li−1

2. In the second case it holds that Li−1 �⊆ Li, i.e. K(mi, ti) contains new linear
relations about X.

We can routinely argue as before via a simple dimension argument that case 2 can
happen at most n times. On the other hand, if case 1 happens for some (mi, ti),
we can now efficiently forge a signature as follows. If K(mi, ti) ⊆ Li−1, then by
the above discussion there exists a Y such that A(s,mi, ti)X = B(s,mi, ti)Y.
But the critical observation now is that this is a linear equation system for
which we can find a solution Y ∈ Gk (which is guaranteed to exist by the above
discussion) by e.g. computing a weak left-inverse3 H of B(s,m, t) and setting

Y = H · A(s,mi, ti)X.

Since H can be efficiently computed from B(s,m, t), we can obtain Y from X
by applying a polynomial number of computable Zp operations to X.

Consequently, the final attack can be described as follows, defining the spaces
Li as above. Initialize L0 = {0} and repeat for pairwise distinct messages
m1, . . . ,mn+1. For message mi, check if there exists ti such that K(mi, ti) ⊆ Li−1.
If so, compute Yi as above, set σi = (Yi, ti) and output the forge (mi, σi).
Otherwise, query a signature σi = (Yi, ti) from the signing oracle, set Li ←
Li−1 ⊕ K(mi, ti) and continue.

Notice that while this attack needs to brute-force over all choices of the ti,
it only makes a polynomial number of queries to the group oracle. In fact we
will show the slightly stronger statement that even if the adversary only receives
a fixed number of random message/signature pairs, the above attack will work
with overwhelming probability.

Algebraic Signatures in Groups of Unknown Order. For the above attack, we’ve
constructed an adversary which makes a polynomial number of queries to the
group oracle, but is otherwise unbounded. We will now consider a more restricted
class of algebraic signatures over groups of unknown order and provide a fully
efficient attack against this class of signatures by using a tweak on the above
ideas. In this setting, we will not model the group as a generic group but rather
provide efficient attacks against a simplified variant of algebraic signatures in
any group of unknown order. Inspecting the above attack, the only inefficient
part of the attack is the exhaustive search over the signature component t. In
our notion of simplified algebraic signatures we will therefore require that the
signature consists only of the group elements Y.

Furthermore, in the unknown group order setting, we will model the publicly
computable matrices A(vk,m) and B(vk,m) used by the verification algorithm
as integer matrices. For a technical reason, in our notion of simplified signatures
we will also require that the matrix B only depends on vk, but not on m.
3 A weak left-inverse of a matrix B is a matrix H for which it holds that BHB = B . For

any matrix B the weak left-inverse H can be efficiently computed e.g. via gaussian
elimination.

On the Impossibility of Purely Algebraic Signatures 327

Clearly, if the group order is not known, we cannot immediately extend the
above argument, as we have used linear algebra over fields to compute the spaces
of linear relations Li. Now assume that for a verification key vk the adversary
is given message-signature pairs (m1,Y1), . . . , (mQs

,YQs
), i.e. from the view of

the adversary the following linear relations hold over the group:

A(vk,m1) · X = B(vk) · Y1

...
A(vk,mQs

) · X = B(vk) · YQs
.

Noting that the A(vk,mi) are integer matrices in Z
�×n, then if the number of

signatures Qs issued to the adversary is greater than � ·n, we will observe integer
linear relations between the A(vk,mi), i.e. there exist α1, . . . , αQs

∈ Z such that

Qs∑

i=1

αiA(vk,mi) = 0.

Assuming that αQs
�= 0, we can express αQs

A(vk,mQs
) as

αQs
A(vk,mQs

) = −
Qs−1∑

i=1

αiA(vk,mi).

Note that if αQs
= 1, we can in fact forge a signature of the message mQs

given
the message-signatures pairs (m1,Y1), . . . , (mQs−1,YQs−1) as follows. Comput-
ing

Y∗
Qs

= −
Qs−1∑

i=1

αiYi,

it holds that

B(vk)Y∗
Qs

= −
Qs−1∑

i=1

αiB(vk)Yi = −
Qs−1∑

i=1

αiA(vk,mi)X

= αQs
A(vk,mQs

)X = A(vk,mQs
)X.

Our main effort in Sect. 4 is devoted to showing for a sufficiently large but poly-
bounded Qs there indeed do exist α1, . . . , αQs

∈ Z with αQs
= 1 such that

Qs∑

i=1

αiA(vk,mi) = 0.

A particular challenge of establishing this is that the existence of a signature for
mQs

only guarantees such a linear relation modulo N (where N is the unknown
group order). But to implement our attacks we need such a linear relation over
Z. We will further show that such a linear relation can be efficiently found using
integer linear algebra techniques.

328 N. Döttling et al.

2 Preliminaries

2.1 Notation

We denote the security parameter by λ and assume that all algorithms implicitly
take 1λ as an additional input. For n ∈ N, we define the set [n] := {1, . . . , n}.
For a finite set S, s $← S denotes sampling s uniformly at random from S.
Similarly, we write s $← A(x) for the output of a probabilistic algorithm A on
input x and fresh random coins, and s ← A(x) for deterministic algorithms.
A probabilistic algorithm is PPT or efficient, if its runtime is polynomial in the
security parameter and its inputs. For a cyclic group G of order N with generator
P , we write G = (G, N, P). We write all groups in additive notation and assume
that the bit length of N is in O(λ). Specifically, the multiplication of a matrix of
exponents and a group element vector is defined in the natural way, i.e. for M =
(mi,j) ∈ Z

n×k
N and x = (X1, . . . , Xk)ᵀ ∈ Gk, we define M · x := (X ′

1, . . . , X
′
n)ᵀ

with X ′
i =

∑k
j=1 mi,jXj for i ∈ [n].

We will also use symmetric pairing groups, which we denote as G =
(G,GT , N, P, e), where e : G×G → GT and both G,GT are of order N , with G

being generated by P .
We denote column vectors as lowercase bold x ∈ Z

n. For a matrix M ∈
Z

n×k, we denote by m∗i the ith column of M and mᵀ
j∗ the jth row of M . The

free module generated by the columns of a matrix M ∈ Z
n×k is defined as

ColumnSpace(M) := {a ∈ Z
n : there exists c ∈ Z

k with a =
∑k

j=1 cjm∗j}.
Alternatively, we can also see ColumnSpace as an integer lattice in Z

n.
Let K be a field and V be a K-vector space. For a vector subspace U of V,

we write U ⊆ V. For a (finite) set of vector subspaces Ui ⊆ V for i ∈ I, we
denote the direct sum as U =

⊕
i∈I Ui, i.e. the smallest vector subspace U ⊆ V

s.t. Ui ⊆ U for i ∈ I. Vectors of group elements are bold, upper case letters and
vectors of group exponents are bold, lower case letters. All vectors are column
vectors unless stated otherwise.

For a matrix A, we write its left-kernel as LKer(A) := {x | xᵀ · A = 0},
which is a vector subspace of A’s domain. The product of a vector space V with
a matrix A is defined in the natural way as V · A := {xᵀ · A | x ∈ V}.

We will need the following lemma about the extended gcd (greatest common
divisor) algorithm in Sect. 4.

Lemma 1. Consider any two integers a, b ∈ Z. If a divides b, then the extended
gcd algorithm outputs a as the greatest common divisor, along with the Bezout
coefficients (1, 0). Similarly, If b divides a, then the algorithm outputs b as the
greatest common divisor, along with the Bezout coefficients (0, 1). Recall that
the Bezout coefficients are any integers α, β that satisfy the identity αa + βb =
gcd(a, b).

2.2 Generic Group Model

In the generic group model, the group structure is hidden from an adversary. We
use the definition of Maurer [38], since, in contrast to the model of Shoup [51],

On the Impossibility of Purely Algebraic Signatures 329

it doesn’t allow for hash functions on group elements, since this would already
result in short signatures, e.g. [47].

Specifically, the group is encapsulated in a black box, which has registers
for group elements and only exposes them through labels to the outside. These
labels are simply running register numbers and (unlike in Shoup’s model) are
not unique to a group element. (That is, several labels can reference the same
group element.) A generic adversary can only interact with the group via a group
operation oracle Ogrp and an equality test oracle Oeq. The group operation oracle
takes two labels as input, internally computes the group operation on the group
elements corresponding to the labels, writes the new group element to a new
register and outputs the label of the new register. The equality test oracle takes
two labels and outputs 1 iff the group elements corresponding to the labels are
equal. For simplicity, we also add a multiplication oracle Omul, which takes a
label and an integer and returns a label to the group element multiplied by the
integer, and assume that the GGM always outputs the same label for the same
group element since this specific label can always be found by a generic adversary
with polynomially many queries to the equality check oracle.

An adversary is called generic, if it works with only access to the generic
group model. As the GGM is an information theoretic model, the running time
of a generic adversary is typically measured by the number of its queries to
the group oracles. It is called pseudo-efficient, if it makes polynomially many
queries in the security parameter to its group oracles, yet its overall running
time is (potentially) unbounded. If furthermore the overall running time is also
polynomially bounded, then we call it efficient.

We will present a pseudo-efficient generic adversary in Sect. 3 and an efficient,
standard model adversary in Sect. 4. Note that although a pseudo-efficient adver-
sary in the generic group model doesn’t immediately present an adversary on the
schemes covered by our impossibility result, it is sufficient to rule out black-box
constructions from generic groups alone. In other words, the result tells us that
in order to make a signature scheme secure, we need another source of complex-
ity, which we “factor out” through letting our adversary be unbounded outside
of the generic group.

2.3 Signatures

We recall the standard definitions of syntax and security for digital signatures.

Definition 2 (Digital Signatures). A digital signature scheme SIG =
{KeyGen,Sign,Verify} consists of the following algorithms.

– The key generation algorithm KeyGen is probabilistic and on input of the
security parameter 1λ outputs a verification key and secret key (vk, sk). We
assume that vk implicitly defines the (finite) message space M, which is
superpolynomial in λ.

– The signing algorithm Sign takes a message m ∈ M and a secret key sk as
input and returns a signature σ.

330 N. Döttling et al.

– The deterministic verification algorithm Verify takes a verification key, a mes-
sage m ∈ M and a signature σ as input and returns 1 for accept and 0 for
reject.

We require that for all (vk, sk) $← KeyGen(1λ) and every message m ∈ M we
have

Pr[Verify(vk,m,Sign(sk,m)) = 1] = 1.

Definition 3 (UF-CMA Security). We define the advantage of an adversary
A against UF-CMA security (unforgeability against chosen message attack) of a
signature scheme SIG as

AdvUF-CMA
A,SIG (λ) = Pr

[
Verify(vk,m∗, σ∗) = 1
∧ m∗ �∈ {m1, . . . ,mq}

∣∣∣∣
(vk, sk) $← KeyGen(1λ)

(m∗, σ∗) $← ASign(sk,·)(vk)

]
,

where m1, . . . mq is the set of all messages queried to the signing oracle
Sign(sk, ·).
We can similarly define the notion UF-q-CMA, which is parametrized by the
number q of signature queries the adversary is allowed to make, for some q < |M|.

A weaker form of security is captured by unforgeability against random mes-
sage attacks (UF-q-RMA security), where the adversary receives a set of q random
messages and signatures.

Definition 4 (UF-q-RMA Security). Let q < |M|. We define the advantage
of an adversary A against UF-q-RMA security (unforgeability against random
message attack) of a signature scheme SIG as

AdvUF-q-RMA
A,SIG (λ) = Pr

⎡
⎢⎢⎣
Verify(vk, m∗, σ∗) = 1

∧ m∗ �∈ {m1, . . . , mq}

∣∣∣∣∣∣∣∣

(vk, sk) $← KeyGen(1λ)

∀i ∈ [q] : mi
$← M \ {m1, . . . , mi−1}

∀i ∈ [q] : σi
$← Sign(sk, mi)

(m∗, σ∗) $← A(vk, (mi, σi)i∈[q])

⎤
⎥⎥⎦ .

Note that in UF-q-RMA security the messages are uniformly random without rep-
etition, i.e., all messages are distinct. Moreover, we decided to make the param-
eter q explicit since it simplifies the exposition of our impossibility results. (In
an alternative definition more closely related to UF-CMA security, the adver-
sary would first specify the number of signatures q it would like to see. All our
negative results also hold in this notion.)

3 Signature Schemes over Groups of Prime Order

In this section, we will show our impossibility result for signatures in the generic
group model for prime order groups.

On the Impossibility of Purely Algebraic Signatures 331

3.1 Algebraic Signatures

We now introduce our abstraction of algebraic signatures over a generic group G.
Intuitively, these signatures are limited by the fact that one doesn’t have access
to the representation of group elements. Specifically, in Mauer’s GGM, one can’t
even define a consistent (hash) function on group elements not provided by the
GGM itself, as the label of each group element depends on the order in which
they are received and are therefore not consistent. This makes it hard to map
group elements to group exponents consistently. Hence, in algebraic signatures
all exponents in the verification have to be independent of the group elements
of the signature and the verification key.

Definition 5. An algebraic signature scheme SIG over G = (G, p, P) of prime
order p with parameters n, k, �, κ ∈ N polynomial in the security parameter λ is
a digital signature scheme with the following structural properties.

– There exists efficiently computable functions A : {0, 1}∗×M×{0, 1}κ → Z
�×n
p

and B : {0, 1}∗ × M × {0, 1}κ → Z
�×k
p . If s,m and t are clear, we write

A = A(s,m, t) and B = B(s,m, t).
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X = (X1, . . . , Xn)ᵀ, s) ∈ Gn × {0, 1}∗.

– Sign(sk,m) outputs a signature

σ = (Y = (Y1, . . . , Yk)ᵀ, t) ∈ Gk × {0, 1}κ.

– Verify(vk,m, σ) returns 1 iff

A(s,m, t) · X = B(s,m, t) · Y.

Recall that group (G,+) is written in additive form. Hence Verify checks whether
� group equations are fulfilled simultaneously.

3.2 Preparation

If B as in Definition 5 would be invertible for some m∗, t∗, then finding such a pair
suffices to break the signature scheme. So we only consider signature schemes
where this is not the case and use a different approach. As outlined in the
introduction, our adversary will try to learn linear relations on the verification
key elements and find a message for which a signature exists that verifies for
all possible verification keys satisfying the linear relations already known. These
relations form an affine space, but computing it requires group oracle queries.
Since the number of group oracle queries an adversary is allowed to make is
limited, we will not look at the relations directly but at the dual space, as it can
be computed without group oracle access. Specifically, we will look for vectors
z ∈ Z

n
p s.t. zᵀ ·x = 0. These can be found with the help of the following Lemma 6.

332 N. Döttling et al.

Lemma 6. Let A ∈ Z
�×n
p ,B ∈ Z

�×k
p and x ∈ Z

n
p for some prime p. Then the

following statements are equivalent:

∃y ∈ Z
k
p : A · x = B · y (1)

∀z ∈ LKer(B) : zᵀ · A · x = 0 (2)
∀v ∈ LKer(B) · A : vᵀ · x = 0. (3)

Notice that each signature will satisfy Eq. (1) and since A and B are Zp

matrices, the v in Eq. (3) can be computed without the group oracle. The specific
usage of Lemma 6 will be described in Sect. 3.3.

Proof. We show the statement by proving circular implications in the order
(1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2): clear.
(2) ⇒ (3): Let v ∈ LKer(B) · A. Then there is a z ∈ LKer(B), s.t. vᵀ = zᵀ · A.

Then we have vᵀ · x = zᵀ · A · x (2)
= 0. Since v was chosen arbitrarily, this holds

for all v ∈ LKer(B) · A and (3) follows.
(3) ⇒ (1): We prove ¬(1) ⇒ ¬(3). If B spans Z

�
p, the step is trivial. So assume

that B doesn’t span Z
�
p. Define an � × �-matrix H s.t. H maps the columns of

B to 0 and all vectors linearly independent of B to themselves. Such a matrix
exists due to the basis extension theorem and is a non-zero matrix as long as
B doesn’t have full rank �. Since we assume ¬(1), A · x is not in the span of B
and H · A · x �= 0 unless A · x = 0 (which would contradict ¬(1)). However all
rows of H are in the left kernel of B . H is non-zero, so there is at least one such
non-zero row vector w and w · A · x �= 0 but w ∈ LKerB , which shows ¬(3).

3.3 Impossibility of Secure Algebraic Signatures

Theorem 7 (Impossibility of Algebraic Signatures with UF-q-RMA
Security). Let SIG be an algebraic signature scheme with parameters n, k, �, κ ∈
N over group G of prime order p. Then there exists a generic group adversary
A with

AdvUF-n-RMA
A,SIG (λ) ≥ 1

n + 1
Specifically, A makes Qmul = �(n + k) group multiplication queries to Omul,
Qgrp = �(n + k − 2) group operation queries to Ogrp, and additional
2κ · poly(n, k, �, log(p)) computation steps.

Note that adversary A is potentially pseudo-efficient as it makes polynomially
many queries to its group oracles but its overall running time is exponential in κ.

We now provide an intuition for the proof. The central ingredient is Lemma 6,
which is used in two ways during the proof. First, each signature is a valid solu-
tion to the verification equation system, so Eq. (3) holds and LKer(B(s,m, t)) ·A
is exactly the space of linear relations on the verification key imposed by the sig-
nature. A and B output matrices over Zp, hence this space can be computed with-
out GGM queries. On the other hand, if the adversary finds a message/bitstring

On the Impossibility of Purely Algebraic Signatures 333

pair (m∗, t∗) for which A and B satisfy Eq. (3), it knows that a solution to the
verification equation exists for (m∗, t∗). Since Zp is a field, the solution can be
found with standard linear algebra techniques.

We will show that for a random message m∗, the probability that there
exists a t∗ s.t. (m∗, t∗) satisfies Eq. (3) is non-negligible. Intuitively, if we sample
n + 1 random messages and get signatures for n of them, we either learn the
complete space of linear relations on the verification key or at least one of the
messages doesn’t introduce a new linear relation. In either case, at least one of
the n + 1 messages satisfies Eq. (3) and the adversary can forge a signature for
that message.

Proof. We describe a generic attacker A with the properties stated above. First,
A receives a verification key vk = (X, s) and q := n message/signature pairs
(mi, σi)i∈[n], where mi

$← M\{m1, . . . ,mi−1} and σi := (Yi, ti) $← Sign(vk,mi).
Next, A computes

L :=
n⊕

j=1

LKer(B(s,mj , tj)) · A(s,mj , tj)

where
⊕

is the sum of the vector subspaces and B(s,mj , tj) and A(s,mj , tj)
are the defining matrices from Defintion 5. Note that L is a vector subspace of
Z

n
p . Then A chooses a random message m∗ $← M \ {m1, . . . ,mn} and for every

t ∈ {0, 1}κ, A computes

K(m∗, t) := LKer(B(s,m∗, t)) · A(s,m∗, t),

where s is the bit string from vk. A checks whether K(m∗, t) ⊆ L, i.e. if K(m∗, t)
is a vector subspace of L. If A finds a pair (m∗, t∗) for which this condition holds,
it continues. Otherwise, A aborts.

For the pair (m∗, t∗), A sets up the linear equation system

A(s,m∗, t∗) · X = B(s,m∗, t∗) · Y∗

and tries to solve it for Y∗. If it finds a solution, it outputs its forgery σ∗ :=
(Y∗, t∗) on message m∗ and aborts otherwise.

We proceed to the analysis of A.

Running time. First, note that A can check whether the condition K(m, t) ⊆ L
on the vector spaces holds without making any GGM queries and A can com-
pute L without verifying the received signatures. Therefore A does not require
any GGM queries before trying to solve the linear equation system, which takes
at most �(n + k) group multiplication queries and �(n + k − 2) group operation
queries, which yields the stated number of queries. Since A chooses a random
message m∗ and searches over all strings t ∈ {0, 1}κ to find a fitting t∗ and com-
putes the vector space K(m∗, t∗) for each potential t∗, its additional computation
is bounded by 2κ·poly((n, k, �, log(p)), where the polynomial term consists mostly
of subspace computations and membership tests. Therefore A is pseudo-efficient,
unless κ ∈ O(log(λ)).

334 N. Döttling et al.

Correctness. To show correctness, we fix a verification key vk = (X, s) in the
execution of A.

For the moment, assume that A samples the distinct random messages
m1, . . . ,mn+1 and chooses the i-th message as its forgery and queries the remain-
ing n to the signing oracle. Define

Li :=
⊕

j∈[n+1]\{i}
K(mj , tj)

where tj is some bitstring used in the signatures returned by the challenger for
message mj .

Then there exists at least one i ∈ [n + 1] s.t. K(mi, ti) ⊂ Li for some ti.
Assume for contradiction, that no such i exists, i.e. K(mi, ti) �⊂ Li for all i ∈

[n+1] and ti ∈ {0, 1}κ. But then the dimension of L′
i =

⊕
k∈[n+1]\{i,j} K(mk, tk)

is smaller than the dimension of Li for all i ∈ [n + 1], j ∈ [n + 1] \ {i}, since
K(mj , tj) increases the dimension of Lj and therefore is not included in any of
the other K(mi, ti) and especially not in K(mi, ti). With the same argument,
removing each K(mj , tj) reduces the dimension of Li by at least one. However
since the dimension of Li is at most n − 1 (as otherwise Li = Z

n
p and then

K(mi, ti) ⊆ Li), removing n messages would reduce its dimension to −1, which
is a contradiction.

So by choosing a random message from a set of n + 1 messages, the adver-
sary chooses a message m∗ which satisfies Eq. (3) together with some t∗ with
probability at least 1

n+1 . But since all messages are random, this is the same as
saying that the probability of the last message, i.e. mn+1 being this message is
at least 1

n+1 and this also holds if the first n messages are randomly chosen by
the challenger and only the last message is chosen by the attacker.

Therefore A finds a pair (m∗, t∗) such that A(s,m∗, t∗) and B(s,m∗, t∗) sat-
isfy Eq. 3 from Lemma 6 for the verification key vector X with probability at
least 1

n+1 . This implies that the verification equation system has a solution and
it can be found using standard linear algebra techniques since Zp is a field. Since
a signature is valid, iff it satisfies the verification equation this solution is exactly
a valid signature and A wins the UF-n-RMA game.

4 Signature Schemes over Groups of Unknown Order

In this section, we describe a linear attack concerning a specific form of signatures
over groups of unknown order. This attack has implications in particular on
factoring- and RSA-based signatures. We start first by defining a particular
type of signatures that we can attack. We call this type of signatures simplified
algebraic signatures.

4.1 Simplified Algebraic Signatures

Unlike in the previous case where the group order was known, here the signatures
rely on the algebraic structure of a group of (potentially) unknown order, such
as in RSA signatures.

On the Impossibility of Purely Algebraic Signatures 335

Compared to our formalization of algebraic signatures from Definition 5, the
verification key of simplified algebraic signatures does not contain the s element
anymore. This change is without loss of generality: namely, since the results in
this section can be formulated in the standard model (without generic groups),
linear coefficients can depend on the full representation of group elements in the
verification key. Any additional information (that was previously contained in
s) can now be encoded with group elements in vk.

Furthermore, signatures in simplified algebraic signature schemes do not con-
tain the string t anymore. This is in fact a restriction, and it is caused by the
fact that our attacks from this section need to be efficient. Hence, we cannot
afford to run a brute-force search over a suitable t during an attack here (unlike
in the attack from Sect. 3). Moreover, observe that the matrix B is not allowed
to depend on the message m, which is another difference when compared to
Definition 5, a restriction which stems from the limitations of our attack.

Definition 8. Let λ denote the security parameter and G = (G, N, P) be a group
of order N ∈ N (that may or may not be known, with N having O(λ) bits). A
simplified algebraic signature scheme SIG over G with parameters n, k, � ∈ N

(polynomial in λ) is a digital signature scheme with the following structural
properties.

– There exist efficiently computable functions A : {0, 1}∗ × M → Z
�×n
N and

B : {0, 1}∗ → Z
�×k
N . If m is clear, we write A := A(vk,m) and B := B(vk)

respectively.
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X = (X1, . . . , Xn)�) ∈ Gn.

– Sign(sk,m) outputs a signature

σ = (Y = (Y1, . . . , Yk)�) ∈ Gk.

– Verify(vk,m, σ) returns 1 iff

A(vk,m) · X = B(vk) · Y.

4.2 Hermite Normal Form

We present one of the main technical tools we are going to use in this section
and which allows us to utilize linear algebra over the ring of integers.

Definition 9 (Hermite Normal Form [3,40]). An n×m matrix H over Z is
in Hermite Normal Form (HNF) if H = 0 or H �= 0 and there exists an integer
r with 1 ≤ r ≤ min(n,m), such that:

– the first r columns are non-zero, i.e., h∗j �= 0 for all j ∈ [r].
– there is a sequence of integers 1 ≤ n1 < n2 < . . . < nr ≤ n, such that:

336 N. Döttling et al.

• hi,j = 0 for j ∈ [m], i < nj. Also, hi,j = 0 for j > r and any i ∈ [n].
• hnj ,j > 0, for all 1 ≤ j ≤ r. Moreover, all entries of H on rows nj for j ∈ [r]

are non-negative and hnj ,j is strictly greater than all other elements on the
nth

j row, namely: 0 ≤ hnj ,k < hnj ,j for all j ∈ [r], k ∈ [j − 1].

Note that r from Definition 9 coincides with the column-rank of H . Matrix
H will therefore be in HNF if it has the following shape, where 0 denotes the
all-zero matrix in Z

n,m−r and ∗ stands for any element of Z:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
...

...
0 0

hn1,1 0
...

∗ ...
∗ 0 0

∗ hn2,2

... 0

∗ ∗ . . . 0

∗ ∗ . . . hnr,r

∗ ∗ . . .
...

∗ ∗ . . . ∗

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The top-most non-zero element hnj ,j , j ∈ [r] on each column is called a pivot.
The second condition in Definition 9 tells us that all elements on a row with a
pivot are non-negative and must be strictly smaller than the pivot. No condition
is enforced on elements that are on a row without a pivot, meaning they might
be negative.

Note that we use this (more-general) definition (see for example [3]) because
we need to accommodate matrices which are not-necessarily square, and for
which the column-rank is not necessarily maximal.

Lemma 10 (Existence and uniqueness of HNF [48]). For any matrix M ∈
Z

n×m, there exists a unique matrix HNF(M) ∈ Z
n×m in Hermite Normal Form

such that:

ColumnSpace(HNF(M)) = ColumnSpace(M).

Lemma 11 (A polynomial-time algorithm for HNF [22]). For any n×m
matrix M , computing its Hermite Normal Form can be realized in polynomial
time.

The following lemma is well-known:

Lemma 12. Let A ∈ Z
n×m,H = HNF(A) and c ∈ Z

n. If c ∈ ColumnSpace(H)
then we can find in polynomial time (in the bitlength of its input) integer vectors
β and α such that c = H · β and c = A · α.

On the Impossibility of Purely Algebraic Signatures 337

4.3 An Inefficient AddColumn Procedure for Matrices in HNF

In this section we describe a straightforward inefficient algorithm which on input
matrix H in Hermite Normal Form and column vector d, will compute the HNF
of [H | d]. While inefficient, this algorithm will simplify our proof by allowing
us to analyze the impact of successively adding columns to a matrix H on its
HNF. Since the HNF is unique, the reasoning we come to using the inefficient
algorithm will extend to the efficient one, since we are only concerned with what
happens to the HNF, and not its intermediate results.

The AddColumn Algorithm

Input: n × m matrix H = [B | 0] in Hermite Normal Form and column vector
d. Assume without loss of generality that H = B .

Output: HNF([H | d]).

The algorithm iterates over the non-zero columns of H as follows.

1. Initialization: The algorithm initializes E (0) = B and c(0) = d. At step
i, matrix E (i) is initialized as E (i) ← E (i − 1) and vector c(i) ← c(i −
1). Additionally, at step i, vector c(i) has its first i − 1 elements set to 0.
Values r(i), n1(i), . . . , nr(i) correspond to the r, n1 . . . nr values of E (i) from
Definition 9. Since these indices may change, they depend on the iteration
number i. If c(i)i is 0, then we skip iteration i and move on to step i + 1.
Otherwise, if c(i)i �= 0, we let s be the smallest index such that ns(i − 1) ≥ i.
We write:

E (i) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
... 0
0 0

en1(i),1(i) 0

en1(i)+1,1(i)
. . .

... ens(i),s(i)
... F (i)

en,1(i) en,s(i)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the right lower corner of E (i) is matrix F (i) ∈ Z
(n−ns(i))×(m−s), which

does not change during iteration i. All entries e(i)k,j with k < nj(i) are 0,
for all j ∈ [r] and k ∈ [nj(i) − 1]. We also have e(i)k,j = 0, for all k ∈ [n] and
j > r(i).

2. Column Index Selection: Recall that s is the smallest index such that
ns(i − 1) ≥ i. What this means is that the sth column is the first column
of E (i) that can be modified using element c(i)i. Now, we distinguish the
following cases:
(a) Column Insertion Step: If ns(i − 1) > i, we insert vector c(i) before

the sth column of E (i). Namely, c(i) becomes the sth column of E (i) and
matrix E (i) increases its column dimension by 1. We then set c(i) to the

338 N. Döttling et al.

all-zero vector and after the modular reduction phase (which we will soon
describe as well), we will output E (i) as the HNF of [H |d].

(b) GCD step: Otherwise, we have ns(i−1) = i. We then know that e(i)i,s �=
0, since e(i)i,s is the top-most non-zero element on the sth column (the
pivot). We compute g ← gcd(e(i)i,s, c(i)i) = αe(i)i,s+βc(i)i, where α, β ∈
Z are the Bezout coefficients computed by the extended greatest common
divisor algorithm. We aim to replace ei,s(i) with g = gcd(e(i)i,s, c(i)i),
while preserving the column space of E (i):

– The sth column of E (i) is modified as e(i)∗s ← αe(i)∗s + βc(i). Note
that the first (i − 1) entries of c(i) are 0, which means that e(i)i,s

remains the top-most non-zero element on the sth column (the pivot),
as required by the HNF condition (Definition 9).

– Vector c(i) ← c(i)−(c(i)i/g) ·e(i)∗s. This replaces the ith component
of c(i) with 0.

3. Modular Reduction Phase: Finally, the algorithm has to ensure that 0 ≤
e(i)nj ,k < e(i)nj ,j for all k ∈ [m], j ∈ [r]. This is done by reducing the large
entries modulo the pivots (the top-most non-zero elements on each column).
To preserve the column space, the algorithm uses the following procedure:

for j = 1 to m do
for k = j + 1 to r do

if e(i)nk(i),j ≥ e(i)nk(i),k then

e(i)∗j ← e(i)∗j − � e(i)nk(i),j

e(i)nk(i),k
�e(i)∗k

else if e(i)nk(i),j < 0 then

e(i)∗j ← e(i)∗j + � e(i)nk(i),j

e(i)nk(i),k
�e(i)∗k

end if
end for

end for
At this stage E (i) is in HNF and c(i) has its first i entries equal to 0. The
algorithm is now ready to move on to the next i, making the same compu-
tations for E (i + 1). Note that all operations of AddColumn are expressed as
operations on the columns of the matrix E (i). This means that E (i) has the
same column space as E (i − 1).

4. Output: If the algorithm made no column insertions, then the output is
[E (n)‖0], where here 0 ∈ Z

n×1. If at some point the algorithm made a column
insertion, the output will be E (n).

Remark on the running time of AddColumn. The algorithm described above
is (potentially) inefficient because the intermediate values computed by the algo-
rithm are not shown to be bounded. A polynomial time algorithm for computing
HNF([H | b]) can be found in [22,40].

Lemma 13 (Decreasing pivots). Consider n,m ∈ N
∗. Let H ∈ Z

n×m be
a matrix in HNF and of column-rank r. Consider a column vector b and let
H ′ := AddColumn(H ,b) = HNF([H | b]). Let r, n1, . . . , nr be the column-rank

On the Impossibility of Purely Algebraic Signatures 339

and pivot indices of H , and r′, n′
1, . . . , n

′
r the values corresponding to H ′ (as in

Definition 9).
Then we must have one of the following cases:

1. r′ > r, i.e. the column rank of H ′ is strictly greater than the one of H .
2. r′ = r and then the positions of the pivots remain the same (nj = n′

j, for
all j ∈ [r]). Moreover, all pivot entries of H ′ are smaller than or equal to
the corresponding pivot elements of H , i.e. h′

nj ,j ≤ hnj ,j, for all j ∈ [n].
Furthermore, at least a pivot entry of H ′ is smaller by at least a factor of 2
than the corresponding pivot of H , i.e. h′

nj ,j ≤ hnj ,j/2, for some j ∈ [r].
3. b ∈ ColumnSpace(H).

Proof. We consider the following statements:

– r′ < r cannot hold. Let E (i) and c(i) be the intermediary values computed
by AddColumn. We show first that r′ < r cannot hold. Observe that the
algorithm may insert one column (and only one) during its execution, which
introduces a new pivot element. Apart from that, each pivot element in H ′

is computed as the greatest common divisor of a non-zero pivot element in
E (i) and a non-zero element of c(i). Moreover, the modular reduction phase
does not modify the value of the pivots. Therefore, pivots in H cannot be set
to 0 and thus r ≤ r′.

– Case 1 does not hold implies pivot positions are the same. If r = r′,
this implies that the algorithm never inserts the vector c(i) as a column of
E (i). As explained in the previous paragraph, pivots in H ′ are computed as
the greatest common divisor of a non-zero pivot and E (i) and a non-zero
element of c(i). Additionally, since pivots in E (i) cannot become 0 and no
column insertion is made, the pivot positions also remain unchanged.

– Case 1 does not hold implies smaller pivots. By contradiction, assume
for now that the pivot entries h′

nj ,j are not smaller or equal than hnj ,j , for
all j ∈ [r]. Since we are in the case of no column insertions, observe that
e(j)ni,i can only change its value in iteration ni of AddColumn. This means
that h′

ni,i
is equal to the value e(i)ni,i has at the end of iteration ni. Then,

since hni,i �= 0, e(i)ni,i = gcd(hni,i, c(i)ni
), therefore e(i)ni,i divides hni,i.

Thus, we have e(i)ni,i ≤ hni,i, which implies h′
ni,i

≤ hni,i.
– Case 1 does not hold and equal pivots imply Case 3. Now assume

by contradiction that h′
nj ,j = hnj ,j , for all j ∈ [r]. This means that e(i)nj ,j

remain the same throughout the execution of the AddColumn algorithm. From
the description of AddColumn, we have that e(i)nj ,j = gcd(e(i−1)nj ,j , c(i)nj

).
We use Lemma 1 and notice that, if the pivot elements e(i)nj ,j never change,
then neither can the non-zero elements which are not pivots. That is because
they already satisfy 0 ≤ enk,j < enk,k, for all k ∈ [r], j ∈ [k − 1] at the start
of the algorithm, so the modular reduction phase cannot further reduce these
elements.
Recall that we defined s(i) as the smallest index such that ns(i−1) ≥ i. Since
by hypothesis, case 1 does not hold, this implies that ns(i− 1) = i. But then,
it must hold that, at the beginning of iteration i, e(i)ns(i),s(i) was already

340 N. Döttling et al.

equal to gcd(e(i)ns(i),s(i), c(i)ns(i)). Therefore, c(i)ns(i) is already divisible by
e(i)ns(i),s(i) at the beginning of iteration i. Since this holds for all iterations
i ∈ [n], this implies that b can be expressed as a linear combination of the
columns of H , therefore b ∈ ColumnSpace(H).

– Case 1 and Case 3 do not hold imply Case 2. Let’s now assume that b /∈
ColumnSpace(H). From the argument above, we know that for some iteration
i ∈ [n] and index s(i) ∈ [r], at least one pivot element e(i)ns(i),s(i) < e(i −
1)ns(i),s(i). But e(i)ns(i),s(i) = gcd(e(i − 1)ns(i),s(i), c(i)i), so e(i)ns(i),s(i) must
be smaller by at least a factor of 2 than e(i−1)ns(i),s(i). Since e(i)ns(i),s(i) is not
changed in iterations (i + 1) . . . n, this implies that h′

ns(i),s(i)
≤ hns(i),s(i)/2.

This concludes the proof of Lemma 13.

4.4 Impossibility of Simplified Algebraic Signatures

Theorem 14 (Impossibility of Simplified Algebraic Signatures with
UF-QS-CMA Security). Let SIG be a simplified algebraic signature scheme
with parameters λ, n, k, � ∈ N over group G of (possibly) unknown order N and
message space superpolynomial in λ. Then there exists a PPT adversary A with

AdvUF-QS -CMA
A,SIG (λ) = 1

The adversary makes at most QS = (n�)2 · |τmax| signature queries, where
|τmax| is the bitlength of the largest entry in the matrices A(vk,m) for the mes-
sages that will be queried (we will argue that |τmax| = poly(n log(N) + |m|)).
In addition, |M| does not have to be superpolynomial, it suffices to require
|M| ≥ QS + 1.

Letting Tlinear denote an upper bound on the run-time of all invocations of the
polynomial-time HNF algorithm and Tmax be an upper-bound on the polynomial
running time of functions A, our attack runs in O(QS · (Tmax + Tlinear)) =
O

(
(n�)2 · |τmax| · (Tmax + Tlinear)

)
.

Proof. We describe our PPT adversary A. Recall that A(vk,m) is efficiently
computable, this means that there exists a value τmax whose bitlength is greater
or equal than all the entries of the matrices A(vk,m) that will be queried. Since
the input length of the functions computing A(vk,m) is n log(N)+ |m|, we have
that the bitlength |τmax| is polynomially small with |τmax| = poly(n log(N) +
|m|).

1. Setup Phase. The challenger runs KeyGen, generating sk and vk = X and
sends vk to A.

2. Discovery Phase. Let ai∗(vk,m)� denote the ith row of A(vk,m) and
bj∗(vk)� be the jth row of B(vk). The adversary initializes matrix H (0)
to be the empty matrix. At iteration i, the adversary picks a uniformly
random message mi

$← M \ {m1, . . . ,mi−1}. It then computes the col-
umn vector c(i) = [a1∗(vk,mi)�| . . . |a�∗(vk,mi)�]� ∈ Z

n� and builds

On the Impossibility of Purely Algebraic Signatures 341

matrix D(i) = [H (i − 1)|c(i)] ∈ Z
n�×i. Let H (i) = HNF(D(i)), where

HNF(D(i)) denotes the (column-style) HNF of matrix D(i). The adversary
checks whether H (i) = [H (i − 1)|0], if that is the case, it means that
c(i) ∈ ColumnSpace(H (i − 1)) (i.e. c(i) is in the linear span of the columns
of H (i − 1)). Let h(i − 1)∗j denote the jth column of H (i − 1). Using linear
algebra over Z (see for example [48]), the adversary can efficiently compute a
linear combination of the columns of H (i − 1). More specifically, it can find
a vector β ∈ Z

i such that c(i) =
∑

j βjh(i − 1)∗j through a matrix-vector
multiplication (whose complexity can be bounded by Tlinear). From Lemma
12, this allows us to also recover a vector α ∈ Z

i such that c(i) =
∑

j αjc(j),
where c(i) was defined as c(i) = [a1∗(vk,mi)�| . . . |a�∗(vk,mi)�]� ∈ Z

n�.
3. Signing Queries: Consider j ∈ [i − 1], then for all αj �= 0, the adversary

makes a signing query on mj and receives signature Ymj
= (Ymj ,1 . . . Ymj ,k).

4. Forgery Phase: Consider the following matrix of group elements:

W =

⎛

⎜⎝
Y�

m1
...

Y�
mi−1

⎞

⎟⎠ ∈ G(i−1)×k

At this stage, the adversary can compute a forged signature for message
m∗ = mi as (Y∗)� = α�W and it outputs the forgery Y∗.

Correctness of the attack. Let’s assume for now that the adversary has
output a forgery. Since c(i) =

∑
j αjc(j), where c(j) was defined as c(i) =

[a1∗(vk,mi)�| . . . |a�∗(vk,mi)�]�, we have the following intermediary result:

i−1∑

j=1

(
αj · A(vk,mj)

)
= A(vk,m∗). (4)

The forgery is an accepting signature, because:

B(vk)Y∗ =B(vk)W�α

=
(
B(vk)Ym1 . . . B(vk)Ymi−1

) · α

(∗)
=

(
A(vk,m1)X . . . A(vk,mi−1)X

) · α

=
i−1∑

j=1

(
αj · A(vk,mj)X

)
=

(i−1∑

j=1

αj · A(vk,mj)
)
X

=A(vk,m∗)X.

Equality (*) holds because signatures Ymj
are correct for all j ∈ [i − 1]. We

have shown that A(vk,m)X = B(vk)Y∗, which implies that the forgery is a
valid signature. The last equation uses Eq. 4.

Running Time. The adversary can only compute a forgery if for some iteration
i, it holds that c(i) ∈ ColumnSpace(H (i − 1)). We show that this must occur
after a polynomial number of iterations. From Lemma 13, we have that at least
one of the following cases must hold:

342 N. Döttling et al.

1. The column rank of H (i) is strictly larger than the rank of H (i − 1).
2. The rank is unchanged, so are the positions of the pivots, but at least one

pivot of H (i) decreases by at least a factor of 2. Furthermore, all other pivots
are smaller than or equal to the previous ones, i.e. h(i)nj ,j ≤ h(i − 1)nj ,j , for
all j ∈ [n].

3. Or c(i) ∈ ColumnSpace(H (i − 1)).

Note that even though Lemma 13 is proven by reasoning about the inefficient
algorithm AddColumn, since the HNF is unique, the proof also applies to poly-
time HNF algorithms (Lemma 11). Therefore, at each iteration, we have the
following possibilities:

1. The rank of H (i) increases. This can only happen at most n� times.
2. Column-rank and pivot positions are unchanged, but at least one pivot

decreases by a factor of 2, while no other pivot increases. Since the HNF
is applied on matrices A(vk,m) with each entry bounded by τmax, this can
happen at most |τmax| · n� times (we can have at most n� pivots). The pivots
become smaller by one bit, until they become 1, and do not decrease further.

3. It holds that c(i) ∈ ColumnSpace(H (i − 1)), and we can forge a signature.

Therefore, this means that after at most (n�)2 · |τmax| iterations, we will end
up in the third case, when H (i) = [H (i − 1)|0] and we can compute a forgery.
Since computing the HNF is a polynomial-time algorithm and the number of
iterations is polynomial, this means that the adversary also runs in polynomial
time.

Theorem 15 (Impossibility of Simplified Algebraic Signatures with
UF-q-RMA Security). Let SIG be a simplified algebraic signature scheme with
parameters n, k, � ∈ N over group G of (possibly) unknown order N , and let QS

be defined as in Theorem 14. There exists a PPT adversary A with

AdvUF-QS -RMA
A,SIG (λ) =

1
QS + 1

The proof of Theorem 15 can be found in the full version of this paper [20].

Remark 16. We can also consider a slight generalization of Definition 8 to
account for the additional element t from Definition 5. Specifically, we could
allow verification to check equations of the form:

A(vk,m, t) · X = B(vk) · Y.

The value t ∈ {0, 1}κ is then part of the signature. Note that unlike in
Definition 5, matrices B are not allowed to depend on t here. Our attack
can be generalized to this setting and remains in polynomial-time, as long as
κ = O(log(λ)).

On the Impossibility of Purely Algebraic Signatures 343

5 Extension: BLS Signatures Instantiated with Algebraic
Hash Functions Are Insecure

It is well-known that Waters’ hash function [13,52] (which is prominently used
in his signature scheme from [52] to imitate useful features of a random oracle)
cannot be used to securely implement the random oracle in the Boneh-Lynn-
Shacham signature scheme [11]. Intuitively, the reason for this is that Waters’
hash function has certain algebraic properties that, e.g., make it easy to find
distinct preimages A,B,C,D with H(A)+H(B)−H(C) = H(D) (where addition
and subtraction take place in the target domain of H, a cyclic group). These
algebraic relations directly translate to simple algebraic relations among BLS
signatures, which can be exploited as in Sect. 3.3.

In this section, we generalize this observation and show that BLS signa-
tures [11] cannot be securely implemented with any “algebraic” standard-model
hash function (such as a programmable hash function [28]).

Definition 17 (Algebraic hash function). An algebraic hash function over
a group G and with message space M consists of two PPT algorithms:

– A key generation algorithm HGen that outputs an evaluation key hk. We
assume that hk specifies a vector X = (X1, . . . , Xn)ᵀ ∈ Gn of group elements.

– An evaluation algorithm Eval that, on input hk and m ∈ M, outputs a hash
value

Hhk (m) = A(hk ,m)ᵀ · X ∈ G

for a public and efficiently computable function A with output in Z
n.

In a nutshell, algebraic hash functions construct their output through generic
group operations from a sequence X of public group elements (defined in the
hashing key hk). Popular constructions of programmable hash functions (e.g.,
[27,28,52] are algebraic hash functions.

In this section, we want to show that the attack in Theorem 14 can be
adjusted to also work against another type of signatures, which we refer to as
plain algebraic signatures in pairing groups. This class of signatures generalizes
the BLS signature when the BLS hash function is modelled as an algebraic
hash function. What is different from Definition 8, is that Definition 18 supports
verification equations which apply a pairing operation on certain elements of the
verification key along with other parts of the verification key. In particular, this
means that the signature can consist of group elements whose implicit exponents
correspond to quadratic relations in the implicit exponents of the group elements
in the verification key.

Definition 18 (Plain Algebraic Signatures in Pairing Groups). Let λ
denote the security parameter and G = (G,GT , N, P, e) be a symmetric pairing
group of order N ∈ N (that may or may not be known, with N having O(λ) bits).
Consider also (HGen,Eval) to be an algebraic hash function. A plain algebraic
signature scheme SIG over G with parameters k, γ ∈ N (polynomial in λ) is a
digital signature scheme with the following structural properties.

344 N. Döttling et al.

– There exist efficiently computable functions A : {0, 1}∗ × M → Z
γ×1
N and

B : {0, 1}∗ → Z
1×k
N . If m is clear, we write A := A(hk ,m) and B := B(vk)

respectively.
– KeyGen(1λ) outputs a keypair (vk, sk) with sk ∈ {0, 1}∗ and

vk = (X,Xhk) = (X, (Xhk
1 , . . . , Xhk

γ)�) ∈ G × Gγ ,

where hk := Xhk is the hash key of the algebraic hash function, generated
using the HGen algorithm.

– Sign(sk,m) outputs a signature σ, with:

σ = (Y = (Y1, . . . , Yk)�) ∈ Gk.

– Verify(vk,m, σ) returns 1 iff

e(Hhk (m),X) = e(A(hk ,m)ᵀ · Xhk ,X) = e(P,B(vk) · Y).

The result in Theorem 14 extends to the signatures in Definition 18:

Theorem 19 (Impossibility of Plain Algebraic Signatures in Pairing
Groups, with UF-CMA Security). Let SIG be a plain algebraic signature
scheme in pairing groups with parameters λ, k, γ ∈ N over a symmetric pairing
group (G,GT , e) of (possibly) unknown order N and message space superpolyno-
mial in λ. Then there exists a PPT adversary A with

AdvUF-CMA
A,SIG (λ) = 1

The adversary makes at most QS = γ2 · |τmax| signature queries, where |τmax|
is the bitlength of the largest entry in the matrices A(hk ,m) for the messages
that will be queried (we have |τmax| = poly(γ log(N) + |m|)). In addition, |M|
does not have to be superpolynomial, it suffices to require |M| ≥ QS + 1.

Letting Tlinear denote an upper bound on the run-time of all invocations of the
polynomial-time HNF algorithm and Tmax be an upper-bound on the polynomial
running time of functions A, our attack runs in O(QS · (Tmax + Tlinear)) =
O

(
γ2 · |τmax| · (Tmax + Tlinear)

)
.

Proof Sketch. As in the proof of Theorem 14, the adversary iteratively obtains sig-
natures for many messages m1 . . . mi and constructs an HNF matrix describing
the column space generated by column vectors A(hk ,m1)� . . . A(hk ,mi)�. Since
A(hk ,m) is a row vector, the goal is to find a message m∗ with A(hk ,m∗)� ∈
ColumnSpace(A(hk ,m1)�| . . . |A(hk ,mi)�) and to retrieve an integer vector α ∈
Z

i, such that A(hk ,m∗) =
∑i

j=1 αjA(hk ,mi). The forgery signature Y∗ is then
computed as Y∗ =

∑i
j=1 αjYj . Let us check that this indeed satisfies correct-

ness:

e
(
A(hk ,m∗)� · Xhk ,X

)
= e

(i∑

j=1

αjA(hk ,mi)� · Xhk ,X
)

=

Correctness of Yj=
i∑

j=1

αje(P,B(vk) · Yj) = e(P,B(vk) · Y∗)

On the Impossibility of Purely Algebraic Signatures 345

Arguing that the algorithm succeeds in forging after QS iterations is identical
to the reasoning in Theorem 14.

BLS signatures. In the following, we will prove a result about the BLS signa-
ture scheme [11]. We will not formally define BLS signatures, since it will only
be important which signatures are considered valid by BLS. In the BLS scheme,
public keys are of the form vk := X = x · P ∈ G for a group G of order p
generated by P , and uniformly random x ∈ Zp. We also assume a hash function
H, whose parameters may be added to vk if the function is parameterized. Valid
signatures for a message m are of the form

σ = x · H(m).

BLS signatures consist of only one group element Y , and verification is performed
by a pairing operation:

e(H(m),X) = e(P, Y).

Boneh, Lynn, and Shacham [11] prove that if the used hash function H is
modeled as a random oracle, then their scheme is UF-CMA secure under the
computational Diffie-Hellman assumption in G. In contrast, we prove that if H
is algebraic (in the sense of Definition 17), then the scheme is insecure:

Theorem 20. When implemented with an algebraic hash function H, the BLS
scheme described above is UF-q-RMA-insecure for a polynomial q = q(γ) in the
number of public group elements of H.

To show Theorem 20, observe that BLS (when implemented with an algebraic
hash function), is a plain signature in the sense of Definition 18. Hence, Theorem
20 follows from Theorem 19. Furthermore, if the order p of the used group G is
prime, then tracing the steps of our attack actually shows that q(γ) ≤ γ + 1.

Remark 21 (Waters Signatures). Note that Waters signatures [52] make use of
programmable hash functions and symmetric pairing groups, and are known to
be secure in the standard model. The attack in Theorem 19 does not extend to
Waters signatures, because their verification equation pairs H(m) with parts of
the signature, which is not allowed in Definition 18.

Remark 22 (Further generalization of plain and simplified algebraic signatures).
We could also consider a definition of signature that captures the verification
equations in both Definition 8 and Definition 18. By adjusting our attacks to
concatenate the A(hk ,m) vectors from Definition 18 to the c(i) vectors of the
attack in Theorem 14, one can obtain an attack against this slightly generalized
signature class.

Acknowledgements. We thank Mark Zhandry and the anonymous reviewers for
their helpful comments. Nico Döttling was supported by the Helmholtz Association
within the project “Trustworthy Federated Data Analytics” (TFDA) (funding number
ZT-I-OO1 4). Dennis Hofheinz and Bogdan Ursu were supported in part by ERC grant
724307. Dominik Hartmann was supported by the Deutsche Forschungsgemeinschaft

346 N. Döttling et al.

(DFG, German Research Foundation) under German’s Excellence Strategy - EXC 2092
CASA - 390781972, and the German Federal Ministry of Education and Research
(BMBF) iBlockchain project. Eike Kiltz was supported by the BMBF iBlockchain
project, the EU H2020 PROMETHEUS project 780701, DFG SPP 1736 Big Data,
and by the Deutsche Forschungsgemeinschaft (DFG, German research Foundation) as
part of the Excellence Strategy of the German Federal and State Governments – EXC
2092 CASA - 390781972. Sven Schäge was supported by the German Federal Ministry
of Education and Research (BMBF), Project DigiSeal (16KIS0695) and Huawei Tech-
nologies Düsseldorf, Project vHSM. Part of this work was done while Sven Schäge was
at Ruhr-University Bochum.

References

1. Abe, M., Ambrona, M., Ohkubo, M., Tibouchi, M.: Lower bounds on structure-
preserving signatures for bilateral messages. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 3–22. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-98113-0 1

2. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

3. W.A. Adkins, S.H. Weintraub, J.H. Ewing, F.W. Gehring, and P.R. Halmos. Alge-
bra: An Approach Via Module Theory. Graduate Texts in Mathematics. Springer,
New York (1992). https://doi.org/10.1007/978-1-4612-0923-2

4. Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmet-
ric primitives. In: 48th Annual Symposium on Foundations of Computer Science,
pp. 680–688, Providence, RI, USA, 20–23 October, IEEE Computer Society Press
(2007)

5. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.), ACM CCS 93: 1st Conference on Computer and Communications Secu-
rity, pp. 62–73, Fairfax, Virginia, USA, 3–5 November 1993, ACM Press (1993)

6. Bitansky, N., Paneth, O.: On the impossibility of approximate obfuscation and
applications to resettable cryptography. In: Boneh, D., Roughgarden, T., Feigen-
baum, J. (eds.), 45th Annual ACM Symposium on Theory of Computing, pp.
241–250, Palo Alto, CA, USA, 1–4 June 2013, ACM Press (2013)

7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

8. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

9. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-28628-8 3

10. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

https://doi.org/10.1007/978-3-319-98113-0_1
https://doi.org/10.1007/978-3-319-98113-0_1
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-1-4612-0923-2
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/3-540-44647-8_13

On the Impossibility of Purely Algebraic Signatures 347

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-45682-1 30

12. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th Annual Symposium on Foundations of Computer Science, pp. 283–292,
Philadelphia, PA, USA, 25–28 October 2008, IEEE Computer Society Press (2008)

13. Chaum, D., Evertse, J.-H., van de Graaf, J.: An improved protocol for demon-
strating possession of discrete logarithms and some generalizations. In: Chaum,
D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 127–141. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5 13

14. Chen, Y., Lombardi, A., Ma, F., Quach, W.: Does fiat-shamir require a cryp-
tographic hash function? Cryptology ePrint Archive, Report 2020/915 (2020).
https://eprint.iacr.org/2020/915

15. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 32

16. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

17. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption.
In: Motiwalla, J., Tsudik, G. (eds.), ACM CCS 99: 6th Conference on Computer
and Communications Security, pp. 46–51. Singapore, 1–4 November 1999. ACM
Press (1999)

18. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

19. Döttling, N., Garg, S.: Identity-based encryption from the Diffie-Hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 537–
569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

20. Döttling, N., Hartmann, D., Hofheinz, D., Kiltz, E., Schäge, S., Ursu, B.: On the
Impossibility of Purely Algebraic Signatures. Cryptology ePrint Archive, Report
2021/738 (2021). https://ia.cr/2021/738

21. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

22. Frumkin, M.A.: Polynomial time algorithms in the theory of linear Diophantine
equations. In: Karpiński, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 386–392. Springer,
Heidelberg (1977). https://doi.org/10.1007/3-540-08442-8 106

23. Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic
cryptographic constructions. SIAM J. Comput. 35(1), 217–246 (2005)

24. Gerbush, M., Lewko, A., O’Neill, A., Waters, B.: Dual form signatures: an approach
for proving security from static assumptions. In: Wang, X., Sako, K. (eds.) ASI-
ACRYPT 2012. LNCS, vol. 7658, pp. 25–42. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34961-4 4

25. Ghadafi, E.: further lower bounds for structure-preserving signatures in asymmetric
bilinear groups. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2019. LNCS, vol. 11627, pp. 409–428. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-23696-0 21

https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-39118-5_13
https://eprint.iacr.org/2020/915
https://doi.org/10.1007/3-540-45325-3_32
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-319-63688-7_18
https://ia.cr/2021/738
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/3-540-08442-8_106
https://doi.org/10.1007/978-3-642-34961-4_4
https://doi.org/10.1007/978-3-642-34961-4_4
https://doi.org/10.1007/978-3-030-23696-0_21
https://doi.org/10.1007/978-3-030-23696-0_21

348 N. Döttling et al.

26. Ghadafi, E.: Partially structure-preserving signatures: Lower bounds, constructions
and more. IACR ePrint Archive, report 2020/477 (2020). http://eprint.iacr.org/
2020/477

27. Hofheinz, D., Jager, T., Kiltz, E.: Short signatures from weaker assumptions. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 647–666.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 35

28. Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 21–38. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 2

29. Hofheinz, D., Kiltz, E., Shoup, V.: Practical chosen ciphertext secure encryption
from factoring. J. Cryptology 26(1), 102–118 (2013)

30. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 38

31. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st Annual ACM Symposium on Theory of Computing, pp. 44–61,
Seattle, WA, USA, 15–17 May 1989, ACM Press (1989)

32. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 8–26.
Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2 2

33. Katz, J., Wang, N.: Efficiency improvements for signature schemes with tight secu-
rity reductions. In: Jajodia, S., Atluri, V., Jaeger, T. (eds.), ACM CCS 2003: 10th
Conference on Computer and Communications Security, pp. 155–164, Washington,
DC, USA, 27–30 October 2003, ACM Press (2003)

34. Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 26

35. Lamport, L.: Constructing digital signatures from a one way function. Technical
report, October 1979

36. Mahmoody, M., Mohammed, A., Nematihaji, S.: On the impossibility of virtual
black-box obfuscation in idealized models. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 18–48. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49096-9 2

37. Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and
computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS,
vol. 839, pp. 271–281. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
48658-5 26

38. Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.)
Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg
(2005). https://doi.org/10.1007/11586821 1

39. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer,
Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2 32

40. Micciancio, D., Warinschi, B.: A linear space algorithm for computing the hermite
normal form. In: Proceedings of the 2001 International Symposium on Symbolic
and Algebraic Computation, ISSAC 2001, pp. 231–236, New York, Association for
Computing Machinery (2001)

41. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st Annual ACM Symposium on Theory of Computing, pp. 33–
43, Seattle, WA, USA, 15–17 May 1989, ACM Press (1989)

http://eprint.iacr.org/2020/477
http://eprint.iacr.org/2020/477
https://doi.org/10.1007/978-3-642-25385-0_35
https://doi.org/10.1007/978-3-540-85174-5_2
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/0-387-34799-2_2
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-662-49096-9_2
https://doi.org/10.1007/978-3-662-49096-9_2
https://doi.org/10.1007/3-540-48658-5_26
https://doi.org/10.1007/3-540-48658-5_26
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/3-540-48184-2_32

On the Impossibility of Purely Algebraic Signatures 349

42. Papakonstantinou, P.A., Rackoff, C., Vahlis, Y.: How powerful are the DDH hard
groups? Electron. Colloquium Comput. Complex. 19, 167 (2012)

43. Pass, R., Shelat, A.: Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9562, pp. 3–17. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49096-9 1

44. Pietrzak, K.: Simple verifiable delay functions. In: Blum, A. (ed), ITCS 2019: 10th
Innovations in Theoretical Computer Science Conference, vol. 124, pp. 60:1–60:15,
San Diego, CA, USA, 10–12 January 2019, LIPIcs (2019)

45. Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In:
22nd Annual ACM Symposium on Theory of Computing, pp. 387–394, Baltimore,
MD, USA, 14–16 May 1990, ACM Press (1990)

46. Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require hidden-
order groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol.
12107, pp. 155–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
45727-3 6

47. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

48. Schrijver, A.: Theory of Linear and Integer Programming. Wiley Series in Discrete
Mathematics & Optimization. Wiley, Hoboken (1998)

49. Schul-Ganz, G., Segev, G.: Generic-group identity-based encryption: A tight impos-
sibility result. Information-Theoretic Cryptography (2021)

50. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

51. Shoup, V.: Lower Bounds for Discrete Logarithms and Related Problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

52. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

53. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

54. Zhandry, M., Zhang, C.: Impossibility of order-revealing encryption in idealized
models. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11240, pp.
129–158. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03810-6 5

55. Zhandry, M., Zhang, C.: The relationship between idealized models under com-
putationally bounded adversaries. Cryptology ePrint Archive, Report 2021/240
(2021). https://eprint.iacr.org/2021/240

https://doi.org/10.1007/978-3-662-49096-9_1
https://doi.org/10.1007/978-3-662-49096-9_1
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/11426639_7
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1007/978-3-030-03810-6_5
https://eprint.iacr.org/2021/240

Policy-Compliant Signatures

Christian Badertscher1 , Christian Matt2 , and Hendrik Waldner3(B)

1 IOHK, Zurich, Switzerland
christian.badertscher@iohk.io
2 Concordium, Zurich, Switzerland

cm@concordium.com
3 University of Edinburgh, Edinburgh, Scotland

hendrik.waldner@ed.ac.uk

Abstract. We introduce policy-compliant signatures (PCS). A PCS
scheme can be used in a setting where a central authority determines
a global policy and distributes public and secret keys associated with
sets of attributes to the users in the system. If two users, Alice and Bob,
have attribute sets that jointly satisfy the global policy, Alice can use her
secret key and Bob’s public key to sign a message. Unforgeability ensures
that a valid signature can only be produced if Alice’s secret key is known
and if the policy is satisfied. Privacy guarantees that the public keys and
produced signatures reveal nothing about the users’ attributes beyond
whether they satisfy the policy or not. PCS extends the functionality
provided by existing primitives such as attribute-based signatures and
policy-based signatures, which do not consider a designated receiver and
thus cannot include the receiver’s attributes in the policies. We describe
practical applications of PCS which include controlling transactions in
financial systems with strong privacy guarantees (avoiding additional
trusted entities that check compliance), as well as being a tool for trust
negotiations.

We introduce an indistinguishability-based privacy notion for PCS
and present a generic and modular scheme based on standard building
blocks such as signatures, non-interactive zero-knowledge proofs, and a
(predicate-only) predicate encryption scheme. We show that it can be
instantiated to obtain an efficient scheme that is provably secure under
standard pairing-assumptions for a wide range of policies.

We further model PCS in UC by describing the goal of PCS as an
enhanced ideal signature functionality which gives rise to a simulation-
based privacy notion for PCS. We show that our generic scheme achieves
this composable security notion under the additional assumption that
the underlying predicate encryption scheme satisfies a stronger, fully
adaptive, simulation-based attribute-hiding notion.

1 Introduction

Digital signatures provide authenticity to messages in the sense that everyone
can verify that a signed message was indeed signed by a specific sender, and

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 350–381, 2021.
https://doi.org/10.1007/978-3-030-90456-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_12&domain=pdf
http://orcid.org/0000-0002-1353-1922
http://orcid.org/0000-0001-5900-336X
http://orcid.org/0000-0002-9083-5794
https://doi.org/10.1007/978-3-030-90456-2_12

Policy-Compliant Signatures 351

not modified afterwards. Attribute-based signatures [26] and policy-based sig-
natures [4] extend this concept by introducing policies that the sender needs to
satisfy to generate a valid signature. We take this one step further and introduce
policy-compliant signatures (PCS) with policies that take into account attributes
of both, the sender and the receiver. This is useful in settings where messages
have a designated receiver. A prevalent example of such a setting are blockchain
applications, in which a sender signs a transaction sending funds to a given
receiver. If such a system is used within a corporation and PCS are used for
generating these signatures, the company can set a policy, restricting who can
send funds to whom.

In more detail, a PCS scheme allows a central authority to generate a master
public key and a master secret key for a given policy. The authority can then
use the master secret key to generate public/private key pairs associated with
a set of attributes. The signer Alice then uses her private signing key and the
receiver Bob’s public key to create a signature for a message. The signature can
be publicly verified using all public keys. It is only valid if Alice’s and Bob’s
attributes together satisfy the global policy.

Security Requirements. Unforgeability of ordinary signature schemes ensures
that valid signatures cannot be produced without knowledge of the secret key,
and that signed messages cannot be modified without invalidating the signature.
The unforgeability notion of PCS additionally requires that even with access to
the secret key, it should not be possible for a malicious sender to craft a valid
signature if the policy is not satisfied by the sender and the receiver.

In addition to unforgeability, PCS provide privacy for the sender’s and
receiver’s attributes. Our privacy notion captures three different attack scenarios:
First, outsiders only seeing the public keys and signatures between two parties
should not learn anything about the attributes of these parties beyond the fact
whether they satisfy the policy. Secondly, a (possibly malicious) sender should
not learn anything about the receiver’s attributes except whether their attributes
satisfy the policy. And finally, a (possibly malicious) receiver should not learn
anything about the sender’s attributes except whether their attributes satisfy
the policy.

The Core Challenge to Obtain PCS. Consider the following attempt to obtain
the functionality of a PCS scheme: A central authority is in charge of checking
compliance of every single transaction by ensuring that whenever a sender S
with attributes x sends a message to a receiver R with attributes x∗, the policy
specified by F (x, x∗) is satisfied. While conceptually simple, it does not satisfy
our needs: One goal of PCS is to avoid a central authority assisting in the
signature generation and verification because this results in a central point of
failure in the execution of the system. Stated differently, the authority shall only
be used to issue the credentials but the (non-interactive) signature generation
and verification must be possible only with the public values associated to the
receiver and the secret values of the sender.

352 C. Badertscher et al.

In a second attempt, we let the authority issue ordinary signature key pairs
(pk, sk) and a certificate of the respective attributes Cx to each participant in the
system. To send a message m, a sender S signs the message m and proves, using
a non-interactive zero-knowledge proof, that the attributes associated with the
certificates of the sender and the receiver satisfy the policy F (x, x∗). This second
attempt looks more appealing, but it has the drawback that the sender must be
aware of the recipient’s attributes since otherwise no proof can be generated
about the compliance with attributes not owned by the sender—especially if
the certificate Cx∗ is supposed to (computationally) hide the attributes of the
receiver.1

We see that the main challenge to obtain PCS is to ensure that only valid
signatures can be generated by a sender without a trusted authority assisting in
the signature generation while the attributes of any entity in the system are hid-
den at any time, even from the sender. At first sight, this appears contradictory
as it excludes any solution where the sender “proves” a joint statement includ-
ing a receiver, using only public information about the receiver, which hides the
receiver’s attributes. The key idea to overcome this issue is to employ a specific
form of predicate encryption that allows every participant to only learn a single
bit of information upon generating a signature. This single leaked bit is F (x, x∗)
and the process does not leak anything beyond this evaluation. We additionally
show that this specific form of predicate encryption is in fact necessary to obtain
PCS.

1.1 Applications of PCS

Applications to Financial Payment Systems. PCS can be used in all settings
in which messages are sent to designated receivers and a global policy about
the senders and receivers needs to be publicly verifiable. This naturally occurs
in financial transactions, such as paying online services when purchasing, for
example, digital content (such as movies) or services (such as online games or
lotteries) that are region-dependent or age restricted. Typically, such services
require additional authentication upon payment such as identity card informa-
tion through scanning or manual input. PCS signatures can merge the act of
authentication with the basic task of signing a transaction. A policy can be
expressed as a list of requirements for say n categories of services Si. For age
and/or country restrictions, a policy might be given by (Age ≥ 18∧S1)∨(Age ≥
16∧Country = CH∧S2)∨ Assume Alice obtained a key-pair from a creden-
tial management entity that is tied to her country of residence (akin to obtaining
an ID card), and each service of Bob is assigned the correct category (identified
also by a PCS public key for credential Si). Then the payment system needs no
additional check of the policy if the transactions are signed using a PCS scheme.

1 For the same reason, attempts to derive PCS in a black-box way from existing policy-
based primitives fail (cf. Section 1.3) because they would require to implement a
policy only based on the public key of the receiver, which does not allow to efficiently
obtain their attributes.

Policy-Compliant Signatures 353

If a transaction is successful, (an honest) Bob can be sure that the client had
access to appropriate private credentials. Thanks to the public verifiability, the
transaction can be validated by an external auditor and by the attribute hiding
property of PCS the exact combination of client attributes and service is not
leaked (to the auditor) by the signature system.

Furthermore, in blockchain systems such as Bitcoin [28], a transaction trans-
ferring funds from a sender Alice to a receiver Bob contains a signature from
Alice on the transaction details. Before adding such a transaction to a new block,
the miners verify the validity of the transaction including the signature. When
the used signature scheme is replaced by a PCS scheme, such transactions are
only valid if the global policy allows Alice to send funds to Bob. This can be
useful if the blockchain is used in a corporate environment where the money
flow needs to be restricted in certain ways, e.g., defined by a legal system.
Imagining a toy example, one could define a new company-wide digital token
T with address format addr = (pkpcs, . . .). A transaction transferring tokens T
from addrA to addrB can only be valid if a (publicly verifiable) PCS signature
confirms this transaction. By issuing credentials to employees and to facilities
(such as canteens) within the company, and defining the policy to steer token
flow (e.g., employees are allowed to exchange tokens or consume the tokens at
company facilities), such tokens can be bound to a specific purpose at the sole
cost of having to verify PCS signatures and address formats. The security of
PCS makes it impossible for any sender to violate the company policy, both by
accident or malice. This renders other compliance checks for this policy obso-
lete, such as techniques that are only triggered after suspicious transactions are
observed and that often result in a complete revocation of a user’s privacy [9,15].
The attribute-hiding property of PCS further ensures that no information about
the attributes of the transacting entities beyond that they satisfy the policy is
revealed by the signatures and addresses (in the above toy example, we would
not reveal whether it is a transaction between employees or between an employee
and a facility). Thanks to this, the pseudonymity of the used blockchain system
is preserved.

Applications to Trust Negotiations. Another application of PCS are trust-
negotiation systems [19,25]. Assume Alice and Bob work for an intelligence
agency and need to exchange secret information. Further assume these agen-
cies have a policy on who is allowed to exchange information with whom, e.g.,
based on the divisions and ranks of the involved parties as in role-based access
control systems. In [25], the example assumes Alice has top-level clearance and
before sending a message M , she must make sure that Bob also has top-level
clearance. In the language of [25], what PCS brings to this setting is a sim-
ple implementation of the following two-party protocol: The common input are
the access-control policy F (defined on the space of party credentials), and the
agency’s public parameters ppagency (equivalent to a company-wide public-key
infrastructure). Alice’s private inputs are her message M and her credentials
credA, and Bob’s private input is his credentials credB . The output outA of
Alice and outB of Bob are defined to be

354 C. Badertscher et al.

outA =

{
1, if F (credA, credB)
0, otherwise

outB =

{
M, if F (credA, credB)
⊥, otherwise

.

Assuming the agency has set up the public-key infrastructure, the above
functionality is realized as follows: Alice encrypts the message M with Bob’s
(encryption) public key and signs the corresponding ciphertext with a PCS
scheme (using her secret signing key, and Bob’s signature public key). If the
resulting signature is valid, then Alice sends the packet to Bob and otherwise
does not send the message. If the policy is satisfied, then Bob learns the message.
Otherwise, Bob learns nothing. The PCS scheme itself does not leak anything
beyond the fulfillment of the policy.

1.2 Our Contributions and Organization of this Paper

PCS Notion. As a conceptual contribution, we introduce the notion of PCS (see
Section 3). In addition to the syntactical requirements, we define unforgeability
(in Section 3.2). This includes policy enforcement, i.e., unforgeability ensures
that a signature that verifies with respect to the public verification key of the
sender A and the receiver B can only be produced when possessing the secret
signing key of A and if the attributes of A and B satisfy the policy.

Furthermore, we define an indistinguishability-based attribute hiding notion
(in Section 3.3). This notion intuitively guarantees that an adversary cannot
distinguish public keys and signatures generated for different sets of attributes,
as long as the policy does not separate them.

Generic Construction and Concrete Instantiation. We first provide an effi-
cient generic construction of PCS from standard tools using digital signatures,
(predicate-only) predicate encryption, and NIZK in Sect. 4. We show that rely-
ing on predicate-only PE is a tight fit for our goal in the sense that any PCS
scheme gives rise to a related PE scheme. This settles an important feasibility
question regarding constructions and efficiency for PCS in general.

Our generic construction is not only theoretically interesting, it also admits
efficient instantiations (w.r.t. the indistinguishability-based attribute-hiding
notion) based on standard pairing assumptions coupled with Groth-Sahai proofs
for the rich class of predicates expressible by inner-products [22]. The policies
that are realizable on top of the inner-product functionality range from CNF
formulas and exact threshold clauses (with conjunctive or disjunctive clauses) to
hidden-vector-encryption which in turn opens up the field for PCS to efficiently
implement subset predicates, comparison predicates and their conjunctions as
defined in [8].

Composable PCS and SIM-Based Notion. Finally, we cast PCS as an ideal,
enhanced signature functionality in the spirit of [2,11] to model the ideal com-
posable guarantees of PCS. We then derive a simpler simulation-based attribute
hiding notion (in Section 5.1) and prove that an unforgeable and sim-based secure
PCS scheme realizes the ideal signature functionality. By definition of the ideal

Policy-Compliant Signatures 355

system, the sim-based notion guarantees that everything an attacker can learn
from the public keys and signatures can be efficiently produced by a simulator
given only the public information and the information for which signatures the
policy is satisfied. This allows to capture precisely which information is leaked
by a PCS scheme. We show that our generic construction achieves this notion
if the underlying PE scheme satisfies a related (fully adaptive) simulation-based
notion, which is stronger than what has been considered in the literature so far,
notably in [17].

1.3 Related Work

We provide an overview of cryptographic primitives which have been introduced
in the context of attribute-based and policy-dependent constructions to shed
light on the role and necessity of PCS in this space.

Attribute-Based Signatures and Policy-Based Signatures. Attribute-based signa-
tures (ABS) [26] have similar goals to PCS: In an ABS scheme, an authority can
generate secret signing keys associated to a set of attributes. The signer can
then sign messages for some policy and the resulting signature is only valid if
the signer’s attributes satisfy the policy. Policy-based signatures [4] generalize
this concept by allowing the policies to depend not only the sender’s attributes
but also on the signed messages. A clear distinction from PCS is that they do
not allow the policies to depend on the receiver’s attributes. Thus, the notions
and security guarantees are very different.

Another difference between PCS and ABS is that an ABS scheme allows the
sender to choose the policy for each message at the time of signing, whereas
the policy in PCS schemes is fixed by the authority during the setup. This gives
ABS more flexibility. Note, however, that allowing the sender to choose the policy
in PCS schemes would be detrimental to our privacy guarantees: We want to
protect the receiver’s attributes even from malicious senders. Allowing the sender
to choose many different policies and then verify the resulting signatures would
allow a malicious sender to find the precise attributes of all receivers.

Finally, ABS provide an additional security guarantee that PCS do not offer,
namely unlinkability of signatures. That is, given two signatures, one cannot
determine whether they have been produced by the same signer; one only learns
that somebody satisfying the policies signed. In a PCS scheme, this is not
required since it is not needed for the applications we have in mind. For example,
when used in a blockchain system providing pseudonymity, the signatures are
anyway linked to the pseudonyms of the senders and receivers of transactions.
Trying to hide the signer would thus not be useful in this context.

Designated Verifier Signatures. Designated verifier signatures have been intro-
duced by Jakobsson et al. [21]. As in our setting, they consider signatures pro-
duced for a designated receiver. They require that only this receiver can verify
the signatures. Furthermore, the receiver should not be able to convince others of
the validity of such signatures. This is in contrast to PCS, which can be verified
publicly. The setting and security requirements are thus very different.

356 C. Badertscher et al.

Matchmaking Encryption. The high-level goals of PCS and matchmaking
encryption (ME) introduced by Ateniese et al. [1] seem similar, but turn out
to be quite distinctive due to the respective applications in mind. ME captures a
non-interactive variant of a secret-handshake (with payload), that is, in addition
to the functionality that PCS supports. In ME, the sender has the freedom to
define the receiver’s policy and the receiver can in addition to its private key
(for the attributes), receive an additional policy decryption key that captures
a policy on the sender’s attributes under which the receiver is able to decrypt
the ciphertext. These two receiver private keys can conceptually be merged into
one single attribute-policy decryption key, which results in a seemingly simpler
notion that is realizable from standard FE (capturing the policy as a specific
function). This notion is dubbed arranged ME (A-ME).

In a nutshell, our unforgeability requirements are stronger and require that
even if sender and receiver collude, they should not be able to produce a valid
(publicly verifiable) signature (authenticity of ME is a guarantee for an honest
receiver not to be fooled by a ciphertext of a sender that does not possess the
required attributes). Second, the ME authenticity game does not provide an
oracle to the adversary for computations on the private key, therefore disallowing
all attacks that are based on malleable ciphertexts, which is problematic for our
needs. This aspect also influences the obtained privacy guarantees. In the ME
security game, the adversary only obtains a single value (the ciphertext) that
is a function of the sender’s secret key. For ME, this makes a lot of sense as
it is used to replace a handshake with a single payload message. We, however,
need a signing oracle and hence obtain strictly stronger privacy. For the sake
of self-containment, we sketch an (A-)ME scheme which does not provide the
attribute hiding property of PCS in the full version.

Finally, constructions of PCS for simple policies like CNF, conjunctions of
equalities or comparisons, are in the standard model and have practical instantia-
tions. In contrast, even for simple equality policies where the FE and randomized
FE are not needed as building blocks, the constructions of [1] are in the random
oracle model.

Access Control Encryption. The notion of access control encryption (ACE) [3,16]
is a cryptographic primitive that allows to control the information flow within a
system. ACE is not suitable to achieve the task we need. First, the system relies
crucially on a third-party called the sanitizer which is a role that does not fit
into our setting. Secondly, ACE only protects the information flow within the
system (when running through a sanitizer), whereas in our system, corrupted
parties might meet offline trying to generate a valid joint signature, which must
be part of the attack model.

Predicate Encryption and Attribute-Based Encryption. Predicate encryption and
attribute-based encryption allow decryption of ciphertexts only for users with
secret keys matching a certain policy. While PCS are signatures and not encryp-
tion schemes, they are still related because of the required privacy notion. In

Policy-Compliant Signatures 357

particular, our indistinguishability-based and simulation-based attribute hid-
ing properties are closely related to the respective notions for these encryption
schemes.

The notion of predicate encryption has first been considered in [8,22]. In the
work of Boneh and Waters [8], the authors construct a scheme that allows for
comparison, subset and arbitrary conjunctive queries. In the succeeding work of
Katz et al. [22], the authors present a scheme for the inner product functionality
and the authors also observe that the inner product functionality is sufficient for
polynomial predicate evaluations as well as DNF and CNF formulas. We mention
more regarding the common policies of these schemes below. Since the results of
Boneh and Waters [8] and Katz et al. [22], more works for the same functionality
class have been proposed [29,30], as well as for the stronger notion of partially-
hiding predicate encryption [17,31]. Partially-hiding predicate encryption is a
generalization of predicate encryption in which the ciphertext is extended with
public attributes. The function associated with the functional key is then first
applied on the public information and the result is then used together with
hidden attribute of the ciphertext.

2 Preliminaries

We denote the security parameter with λ ∈ N and use 1λ as its unary rep-
resentation. We call a randomized algorithm A probabilistic polynomial time
(PPT) if there exists a polynomial p(·) such that for every input x the running
time of A(x) is bounded by p(|x|). A function negl : N → R

+ is called negligi-
ble if for every positive polynomial p(λ), there exists λ0 ∈ N such that for all
λ > λ0 : negl(λ) < 1/p(λ). If clear from the context, we sometimes omit λ for
improved readability. The set {1, . . . , n} is denoted as [n] for n ∈ N. For the
equality check of two elements, we use “=”. The assign operator is denoted with
“ :=”, whereas randomized assignment is denoted with a ← A, with a random-
ized algorithm A and where the randomness is not explicit. If the randomness
is explicit, we write a := A(x; r) where x is the input and r is the randomness.
For algorithms A and B, we write AB(·)(x) to denote that A gets x as an input
and has oracle access to B, that is, the response for an oracle query q is B(q).

Further preliminaries on digital signature schemes, non-interactive zero-
knowledge proofs and predicate encryption can be found in the full version.

3 Policy-Compliant Signatures

In this section, we introduce the notion of policy-compliant signature (PCS)
schemes together with the notion of unforgeability and indistinguishability-based
attribute hiding. We start by describing the syntax of PCS schemes, which con-
sists of four algorithms, responsible for the setup of the parameters, the key
generation and the signature generation and verification.

358 C. Badertscher et al.

Definition 3.1 (Policy-Compliant Signatures). Let {Xλ}λ∈N be a family
of attribute sets and denote by Xλ the powerset of Xλ. Further let F = {Fλ}λ∈N

be a family of sets Fλ of predicates F : Xλ × Xλ → {0, 1}. Then a policy-
compliant signature (PCS) scheme for the functionality class Fλ is a tuple of
four PPT algorithms PCS = (Setup,KeyGen,Sign,Verify):

Setup(1λ, F): On input a unary representation of the security parameter λ and
a policy F ∈ Fλ, output a master public and secret key pair (mpk,msk).

KeyGen(msk, x): On input the master secret key msk and a set of attributes x ∈
Xλ, output a public and secret key pair (pk, sk).

Sign(mpk, skS , pkR,m): On input the master public key mpk, a sender secret key
skS, a receiver public key pkR and a message m, output either a signature σ
or ⊥.

Verify(mpk, pkS , pkR,m, σ): On input the master public key mpk, a sender public
key pkS, a receiver public key pkR, a message m and a signature σ, output
either 0 or 1.

A Policy-Compliant Signature scheme is called correct, if for all messages m,
policies F ∈ Fλ, and sets of attributes x1, x2 ∈ Xλ, for all pairs (mpk,msk)
in the support of Setup(1λ, F), all key pairs (pkS , skS) and (pkR, skR) in the
corresponding support of KeyGen(msk, x1) and KeyGen(msk, x2), respectively,

Pr [Verify(mpk, pkS , pkR,m,Sign(mpk, skS , pkR,m)) = F (x1, x2)]
≥ 1 − negl(λ),

where the probability is over the random coins of Sign and Verify.

3.1 Adversarial Capabilities in the Security Games

Before diving into the security properties, we briefly explain the adversarial
capabilities. The adversary can (using the oracle QKeyGen or QKeyGenLR) obtain
public keys for chosen attributes, which models honest parties in the system of
which the public key is known; (using the oracle QCor) obtain the secret key
corresponding to a given public key, which models the adversary corrupting a
party; and (using the oracle QSign) obtain signatures relative to chosen public
keys, which models the adversary seeing signatures from honest parties.

More formally, in a context where a master secret key msk is defined (as will
be the case in our security experiments), we capture the above by defining the
following stateful oracles that maintain the initially empty sets QK, QC, and
QS.

Key-Generation Oracle QKeyGen(·): On the ith input of an attribute
set xi, generate (pki, ski) ← KeyGen(msk, xi), add (i, pki, ski, xi) to QK, and
return pki.

Left-or-Right Key-Generation Oracle QKeyGenLR(·, ·): On the ith input of
a pair of attribute sets xi,0 and xi,1, generate (pki, ski) ← KeyGen(msk, xi,β),
add (i, pki, ski, xi,0, xi,1) to QK, and return pki. In this case, the bit β is
defined by the security game.

Policy-Compliant Signatures 359

Corruption Oracle QCor(·): On input an index i, if QK contains an entry
(i, ·, ski, ·) ∈ QK or (i, ·, ski, ·, ·) ∈ QK for some ski, then add that entry from
QK to QC and return ski. Otherwise, return ⊥.

Signing Oracle QSign(·, ·, ·): On input a (sender) index i, a (receiver) public
key pk′, and a message m, if QK contains an entry (i, pki, ski, ·) ∈ QK or
(i, pki, ski, ·, ·) ∈ QK for some pki and ski, then return σ ← PCS.Sign(mpk, ski,
pk′,m) and add (i, pki, pk

′,m, σ) to QS. Otherwise, return ⊥.

3.2 Existential Unforgeability

The unforgeability notion captures that an adversary A is not able to create a
valid signature for a public key that belongs to an uncorrupted party. Addition-
ally, the adversary should also not be able to create a valid signature for a pair
of public keys that do not fulfill the policy. More precisely, any signature for a
new message m∗ that successfully verifies, with respect to arbitrary sender and
receiver public keys, constitutes a forgery unless the adversary has obtained the
private key corresponding to the public key associated to the sender’s attribute
set x, and the receiver public key is associated to attribute set x∗ obtained via the
key generation oracle, and F (x, x∗) = 1. An interesting special case is regarding
collisions of public keys. Here a forgery is valid unless the adversary has cor-
rupted all indexes i corresponding to that public key.2 Note that as a further
special case that the adversary cannot create a valid signature w.r.t. public keys
that have not been output by the key generation authority (formally, the condi-
tion on the last line in Fig. 1 is trivially true). Looking ahead, this game-based
notion in fact captures all unforgeability properties we motivated for PCS: we
show in Sect. 5 that Definition 3.2 implies ideal unforgeability properties when
modeling PCS as an enhanced signature functionality.

We capture these requirements using an existential unforgeability game:

Definition 3.2 (Existential Unforgeability of a PCS Scheme). Let
PCS = (Setup,KeyGen,Sign,Verify) be a PCS scheme as defined in Definition
3.1. We define the experiment EUF-CMAPCS in Fig. 1 and define the advantage
of an adversary A = (A1,A2) by

AdvEUF-CMA
PCS,A (λ) = Pr[EUF-CMAPCS(1λ,A) = 1].

A PCS scheme PCS is called existential unforgeable under adaptive chosen
message attacks or existential unforgeable for short if for any polynomial-
time adversary A = (A1,A2), there exists a negligible function negl such that:
AdvEUF-CMA

PCS,A (λ) ≤ negl(λ).

2 This is vital to our use case of PCS: as long as a given user is not corrupted, no one
is able to produce valid signatures that could be considered valid signatures of that
party.

360 C. Badertscher et al.

Fig. 1. Unforgeability game of PCS.

3.3 Indistinguishability-Based Attribute Hiding

We formalize the notion of attribute hiding as a security game. In this security
game, the adversary has access to a left-or-right key-generation oracle that it can
query multiple times using pairs of attribute sets (x0, x1) to obtain the key for
xβ , where β is a random bit sampled in the beginning of the game. The goal of
the adversary is to guess the bit β. To achieve this, it additionally has access to
a corruption oracle with with it can obtain the secret keys corresponding to pre-
viously obtained public keys. This is only allowed for public keys that previously
have been generated for the same attribute set, i.e. x0 = x1. Furthermore, the
adversary is also allowed to query a signing oracle to obtain signatures generated
for sender and receiver key pairs of its choice.

To prevent the adversary from trivially distinguishing between the generated
public keys, we need to exclude two kinds of trivial attacks: first, if xβ is seen as
the receiver attributes, then distinguishing is trivial if the adversary possesses
a secret key for the attribute set x such that F (x, xβ)
= F (x, x1−β). Second,
if a signing query is asked for a pair of challenge keys such that F (xβ , x′

β)
=
F (x1−β , x′

1−β), where xβ and x1−β are the attribute sets potentially associated
with the sender key and x′

β and x′
1−β are the attribute sets potentially associated

with the receiver key, then distinguishing is trivial. Any other interaction is
deemed valid.

Definition 3.3 (IND-Based Attribute Hiding). Let PCS = (Setup,
KeyGen,Sign,Verify) be a PCS scheme as defined in Definition 3.1. For β ∈
{0, 1}, we define the experiment AHPCS

β in Fig. 2, where all oracles are defined
as in Section 3.1. The advantage of an adversary A = (A1,A2) is defined by

AdvAH
PCS,A(λ) = |Pr[AHPCS

0 (1λ,A) = 1] − Pr[AHPCS
1 (1λ,A) = 1]|.

We call an adversary valid if all of the following hold with probability 1 over the
randomness of the adversary and all involved algorithms:

– for every (i, ·, ·, xi,0, xi,1) ∈ QC and for all (·, ·, ·, xj,0, xj,1) ∈ QK, we have
xi,0 = xi,1 =: xi and F (xi, xj,0) = F (xi, xj,1),

Policy-Compliant Signatures 361

– and for all (i, ·, pkj , ·, ·) ∈ QS, and (i, ·, ·, xi,0, xi,1), (·, pkj , ·, xj,0, xj,1) ∈ QK,
we have F (xi,0, xj,0) = F (xi,1, xj,1).

A PCS scheme PCS is called attribute hiding if for any valid polynomial-
time adversary A = (A1,A2), there exists a negligible function negl such that:
AdvAH

PCS,A(λ) ≤ negl(λ).

Fig. 2. The Attribute-Hiding game for PCS.

4 Construction of a Policy-Compliant Signature Scheme

We present in Sect. 4.1 our policy-compliant signature scheme, show that it is
correct in Sect. 4.2, proof its security in Sects. 4.3 and 4.4, and show in Sect.
4.5 how the scheme, which is quite generic, can be instantiated from standard
assumptions.

4.1 The Scheme

The high-level idea of the scheme is to let PCS signatures generated by the
signer contain proofs that part of the target’s public key can be decrypted. Recall
that the challenge of our notion is to publish a single public-key that hides all
attributes, but where all a priori legitimate parties can figure out the bit of infor-
mation whether they jointly satisfy the policy. For this step, we use a predicate-
only predicate encryption scheme for the specific functionality class induced by
the policy. To allow for the evaluation of the global policy on the inputs of the
sender and the receiver using a predicate encryption scheme, we define a deter-
ministic encoding function SubPol(F, x) = (SubPol1(F, x),SubPol2(F, x)) that
takes as input the global policy F and a set of attributes x and outputs a sub-
policy encoding fx (output of SubPol1) and the attribute encoding x (output of
SubPol2) for the associated PE scheme. Functionally, we have

SubPol(F, x) = (SubPol1(F, x),SubPol2(F, x)),
s.t. ∀x, x′ ∈ X : F (x, x′) = SubPol1(F, x)(SubPol2(F, x′)︸ ︷︷ ︸

=fx (x′)

). (1)

362 C. Badertscher et al.

We note that the usage of PE is not a coincidence here as there is an interesting
theoretical connection between PCS and PE which we give in the full version. To
turn the scheme into a secure PCS scheme, we still need to protect the integrity
which entails the binding of public-keys and the proof-of-decryption, as well as
binding public keys to the authority. Here, we make use of two types of signa-
tures, namely existentially unforgeable signatures as well as strongly unforgeable
signatures. Finally, a NIZK proof is used to establish the core relation of Fig. 4
to prove the above binding and correct decryption.

The full scheme is given in Fig. 3. Later in Sects. 4.3 and 4.4 we prove
the concrete security of the scheme. The implied succinct asymptotic security
statement can be stated as follows:

Theorem 4.1 (Security of our PCS Construction (Asymptotic ver-
sion)). The PCS scheme PCS in Fig. 3 (w.r.t. policies F ∈ F) is unforgeable and
attribute hiding, if the signature schemes DSpriv and DSP are unforgeable, the sig-
nature scheme DSpub is strongly unforgeable, PE is an attribute-hiding (predicate-
only) predicate encryption scheme (for the induced predicates from Eq. (1)), and
NIZK is a secure non-interactive zero-knowledge proof of knowledge system for
the relation RZK of Fig. 4.

4.2 Correctness

The correctness of the construction described in Fig. 3 follows from the cor-
rectness of the predicate encryption scheme, the signature schemes, and the
non-interactive zero-knowledge proof. Note that for the sake of exposition, we
assume perfect correctness. However, even if any of the underlying building
blocks has negligible correctness failure, this propagates through our scheme
and would make it violate correctness only with negligible probability. Consider
any two attribute sets x, y with F (x, y) = 1 (the other case for F (x, y) = 0 is
straightforward) and let (mpk,msk) ← Setup(1λ), (pkx, skx) ← KeyGen(msk, x),
(pky, sky) ← KeyGen(msk, y) and σ ← Sign(mpk, pky := (vky, cty, σy

pub), skx :=
(vkx, skDS

x , skfx
, σx

priv),m) for an arbitrary message m. We have σ
= ⊥ because
the check during the signature generation whether PE.Dec(skfx

, cty) = 1 will
be satisfied for F (x, y) = 1 due to the correctness of the scheme PE and the
requirement in Eq. (1). Furthermore, the signature on the sender’s public key
verifies by the correctness of the signature scheme DSpub during the signing
process. In the signature verification step, the calls to Verify for the signatures
schemes DSpub,DSpriv and DSP always return 1 by the correctness of the signa-
ture schemes DSpub,DSpriv and DSP. Furthermore, NIZK.Verify always returns 1
by the correctness of NIZK. This proves the correctness of the PCS scheme.

4.3 Existential Unforgeability

After showing the correctness of our construction, we prove its unforgeability.

Policy-Compliant Signatures 363

Fig. 3. The Policy-Compliant Signature Scheme. It uses a NIZK proof system NIZK, a
predicate encryption scheme PE, and three digital signature schemes DSpub,DSpriv and
DSP.

364 C. Badertscher et al.

Fig. 4. Relation used for the PCS scheme in Fig. 3.

Theorem 4.2. Let DSpub = (DSpub.Setup,DSpub.Sign,DSpub.Verify) be a SUF-
CMA secure signature scheme and let DSpriv = (DSpriv.Setup,DSpriv.
Sign,DSpriv.Verify) and DSP = (DSP.Setup,DSP.Sign,DSP.Verify) be a EUF-CMA
secure signature scheme and let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify)
be an extractable proof system, then the construction PCS = (Setup,KeyGen,
Enc,Dec), defined in Fig. 3, is existentially unforgeable. Namely, for any PPT
adversary A, there exist PPT adversaries B,B′,B′′ and B′′′, such that

AdvEUF-CMA
PCS,A (λ) ≤ AdvSUF-CMA

DSpub,B (λ) + 2q · AdvEUF-CMA
DSP,B′ (λ)

+ AdvEUF-CMA
DSpriv,B′′ (λ) + AdvExt

NIZK,B′′′(λ),

where q denotes the number of queries to QKeyGen.

Proof (Sketch). To prove the unforgeability of our PCS scheme, we introduce
several bad events and bound their respective probabilitises by the unforgeability
of the different signature schemes as well as the extractability of the NIZK proof
system.

The first event that we need to bound is the event that an adversary generates
a valid key toegether with a valid signature, without querying the key generation
oracle. This event cannot occur due to the strong unforgeability of the signature
scheme DSpub. We need strong unforgeability here to prevent an adversary from
turning an existing key into a new key by generating a different, valid, signature
for this key. The second event that we need to bound is the event that the
adversary is able to generate a valid signature using an existing key for which it
does not know the corresponding secret key. This event can directly be bounded
by the existential unforgeability of the signature scheme DSP. The third, and
last, event that we need to bound is the event in which the adversary creates
a valid signature for two keys that do not fulfill the policy. The occurrence of
this event can be bound by the extractability of the NIZK proof system and
the unforgeability of the signature scheme DSpriv and DSP. In more detail, if an
adversay is able to create a valid signature for a key pair, where the corresponding
attributes do not fulfill the policy, then it has either (1) generated a NIZK proof
for an incorrect statement, which is a contradiction to the extractability of the
NIZK proof system; (2) has generated a valid witness for the NIZK proof by
forging a signature of the DSpriv signature scheme. This event is a contradiction
to the existential unforgeability of the DSpriv signature scheme. The third, and

Policy-Compliant Signatures 365

Fig. 5. Overview of the games to prove the indistinguishability of attribute-hiding of
the policy-compliant signature scheme described in Fig. 3.

last, possiblity of the adversary to produce a forgery would be to if it obtained
two public keys which allowed for a “mix and match” attack, which however
is exlcuded by bounding the collision probability of the keys. The proof then
follows by showing that if none of these bad events occur, then no PCS forgery
exists.

The formal proof of this theorem can be found in the full version. �

4.4 Indistinguishability-Based Attribute Hiding

We next prove that our PCS scheme is attribute hiding.

Theorem 4.3. Let PE = (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a predi-
cate encryption scheme, let NIZK = (NIZK.Setup,NIZK.Prove,NIZK.Verify) be
a NIZK proof system and let DSpub = (DSpub.Setup,DSpub.Sign,DSpub.Verify)
be a strongly unforgeable signature scheme, then the construction PCS =
(Setup,KeyGen,Enc,Dec), defined in Fig. 3, is attribute hiding. Namely, for any
valid PPT adversary A, there exist PPT adversaries B,B′ and B′′, such that:

AdvAH
PCS,A(λ) ≤ 2 · AdvZKNIZK,B(λ) + AdvAH

PE,B′(λ) + AdvSUF-CMA
DSpub,B′′ (λ).

Proof. To prove this statement, we use a hybrid argument with the games defined
in Fig. 5. Note that G0 corresponds to the game AHPCS

0 (1λ,A) and G3 to the
game AHPCS

1 (1λ,A). This results in:

AdvAH
PCS,A(1λ) = |Pr[AHPCS

0 (1λ,A) = 1] − Pr[AHPCS
1 (1λ,A) = 1]|

= |Pr[G0(λ,A) = 1] − Pr[G3(λ,A) = 1]|.

366 C. Badertscher et al.

We describe the different games in more detail:

Game G1: In this game, we change from an honestly generated CRS and honestly
generated proofs to a simulated CRS and simulated proofs. The transition
from G0 to G1 is justified by the zero-knowledge property of NIZK. Namely,
we can exhibit a PPT adversary B0 such that:

|Pr[G0(λ,A) = 1] − Pr[G1(λ,A) = 1]| ≤ AdvZKNIZK,B0
(λ).

Game G2: In this game, we change the attributes used for the generation of
the challenge public keys pki from xi,0 to xi,1 for all i. The transition from
G1 to G2 is justified by the attribute-hiding property of PE and the strong
unforgeability of DSpub. Intuitively, we rely on the strong unforgeability of the
signature scheme DSpub to prevent an adversary from learning any information
about the challenge keys by obtaining a signature for a maliciously generated
key. Namely, we can exhibit PPT adversaries B1 and B2 such that:

|Pr[G1(λ,A) = 1] − Pr[G2(λ,A) = 1]| ≤ AdvAH
PE,B1

(λ) + AdvSUF-CMA
DSpub,B2

(λ).

Game G3: This game is the AHPCS
1 (1λ,A) game. In this game, we change back

from a simulated CRS and simulated proofs π to an honestly generated CRS
and honestly generated proofs π. As the transition from G0 to G1, this tran-
sition is justified by the zero-knowledge property of NIZK. Namely, we can
exhibit a PPT adversary B3 such that:

|Pr[G2(λ,A) = 1] − Pr[G3(λ,A) = 1]| ≤ AdvZKNIZK,B3
(λ).

Putting everything together, we obtain the theorem. �
We present the proofs for the different transitions in the full version.

4.5 Efficient Instantiations Based on Inner-Product PE

In this section, we show that our generic PCS scheme can be instantiated effi-
ciently for certain policies such as the ones mentioned in the introduction. Since
the most efficient predicate-only PE schemes are known for the inner-product
functionality class in the standard model, we focus on this instantiation and
briefly recall the associated realizable policies established in [8,22]. The two
functionality classes we recall are:

Inner-Product Functionality. The functionality class is defined as F IP
N,k = {F IP

N,k :
Z

k
N × Z

k
N → {0, 1}} by the equation

F IP
N,k(x,y) =

{
1 if 〈x,y〉 = 0 mod N,

0 if 〈x,y〉
= 0 mod N.

Policy-Compliant Signatures 367

Hidden-Vector Functionality. Define Σ∗ = Σ ∪ {∗} with Σ = {0, 1}. The func-
tionality class is defined as FHV

k = {FHV
k : Σk

∗ × Σk → {0, 1}} by the equation

FHV
k (x,y) =

{
1 if ∀i ∈ [k] (xi = yi or xi = ∗),
0 otherwise.

In the following, we call a predicate encryption scheme that implements the IP
functionality inner-product encryption (IPE) and refer to a predicate encryp-
tion scheme that implements the HV functionality as hidden-vector encryption
(HVE). Note that the predicates in the associated PE schemes correspond to the
functions F IP

N,k(x, ·) and FHV
k (x, ·) parameterized by the vector x corresponding

to the first argument of the above functions, respectively. As shown in [22], HVE
with dimension � can be realized generically based on IPE of dimension 2�.

Instantiating the Generic Scheme. The elements of our generic construction
are digital signatures, predicate encryption, and NIZK. For inner-product predi-
cates there exist efficient PE schemes for the assumed indistinguishability-based
security [29,30] (and also for a certain type of simulation-based security [17]). For
the signature scheme used by the authority to generate σpub and the signature
scheme used by the client, we can use BLS signatures [6] (or BB signatures [5]
to avoid switching to an idealized model). For the signature scheme used by
the authority to generate σpriv, we however have to pay attention, as it is used
as part of the witness in a NIZK computation. The only source of practical
inefficiency comes from the additional usage of the NIZK proof for the rela-
tion RZK(x,w) ↔ DSpriv.Verify(vkpriv, (vkS , skfx

), σpriv) ∧ Dec(skfx
, ctR) = 1, as

it combines a generic signature verification with a proof of decryption of the
PE scheme. Note that there are two signature schemes involved: the signature
scheme with which the authority produces σpriv is the crucial one in this section.
For the “inner signature” (the one used by a party to sign the final message)
it will only be convenient to assume that vkS is encoded as a group element
of some cyclic group (which is the case for the variants discussed above). Note
that the NIZK relation does not involve signatures of the inner scheme, just the
representation of the public key as part of the statement.

To avoid the potential source of inefficiency from the NIZK we can use predi-
cate encryption and signature schemes that align well with the use of the Groth-
Sahai framework [18,20] to verify the relation RZK. We achieve such a combina-
tion by using the (pairing-based) structure-preserving signature (SPS) scheme
from Kiltz et al. [23] in combination with the (pairing-based) inner-product PE
scheme from Okamoto et al. [29] that yields pairing product equations to verify
relation RZK.

In a nutshell, pairing groups are represented as a tuple (G1,G2,GT , q,
g1, g2, e) where G1,G2,GT are cyclic groups of prime order q, g1 and g2 are
generators of G1 and G2, respectively. Finally, e : G1 ×G2 �→ GT is an efficiently
computable non-degenerate bilinear map and gT := e(g1, g2) is a generator of the
target group. Groth-Sahai proofs implement a NIZK for a collection of product

368 C. Badertscher et al.

pairing equations of the form

s∏
i=1

e(xi, Ai) ·
s′∏

i=1

e(Bi, yi) ·
s′∏

i=1

s∏
j=1

e(xi, yi)γi,j = tT

where Ai ∈ G1, Bi ∈ G2, tT ∈ GT and γi,j ∈ Zq are constants (and part of
the statement to be proven), and xi ∈ G1 as well as yi ∈ G2 are the private
witness variables (and s, s′ are integers). A priori, GS proofs for product pairing
equations are only witness-indistinguishable unless certain additional constraints
are met [20]. But even if those conditions are not met, efficient transformations
can turn GS NIWI into full NIZK proofs (with extractability for group elements)
with low overhead as shown in [13] by creating an OR-Proof system (allowing a
simulator to always find a witness) and using the controlled malleability of the
GS proof systems. We refer to [14, Theorem 3.2 and Appendix B] for the full
details. As mentioned above, we instantiate the paring-based primitives from [29]
(encryption) and [23] (signature):

– In the PE scheme of [29], ciphertexts are represented as pairs ct = (c1, c2),
where c2 ∈ GT is the blinded plaintext m and has the form c2 = m · gζ (for a
random ζ chosen during encryption) and c1 is an N -vector c1 = (A1, . . . AN)
with Ai ∈ G1 (for an integer parameter N of the scheme). The decryption
key for functionality fx is represented by an N -vector skfx

= (k1, . . . , kN)
with ki ∈ G2. The decryption operation is m′ ← c2/

∏N
i=1 e(Ai, ki). Note

that to turn the scheme into a predicate-only PE scheme, we can fix m = IGT

and do not need the extra blinding of the ciphertext (fixing ζ := 1) and
hence the decryption operation satisfies the equation c2 = gT = e(g1, g2) =∏N

i=1 e(Ai, ki).
– In the SPS scheme of [23], a signature string is a tuple σ = (s1, s2, s3, s4) with

s4 ∈ G2, and si ∈ G
1×(k+1)
1 , i ∈ {1, 2, 3} for an integer parameter k. The pub-

lic key of this system consists of four matrices Mi, where M1,M2 ∈ G
k+1×k
2 ,

M3 ∈ G
n+1×k
2 , and M4 ∈ G

k+1×k
2 (where n is the parameter specifying

the message length). Verifying a signature σ with respect to this public key
amounts to the following collection of 2k+1 pairing product equations, where
a message x ∈ G

n
1 is encoded as m := (g1, x1, . . . , xn): For each j ∈ [k] we

check that

k+1∏
i=1

e((s1)i, (M4)j,i)

=
k+1∏
i=1

e((m)i, (M3)j,i) ·
k+1∏
i=1

e((s2)i, (M1)j,i) ·
k+1∏
i=1

e((s3)i, (M2)j,i)

holds, as well as e((s2)j , s4) = e((s3)j , g2) is satisfied for each j ∈ [k + 1].

Therefore, the relation in Fig. 4 can be expressed as proving a satisfying
assignment of the above pairing product equations, where the (private) decryp-
tion key and the private signature are the private witness variables of the above

Policy-Compliant Signatures 369

equations, whereas the ciphertext and public keys can be treated as the constants
(and hence part of the statement).

Instantiating Logical Formulas. By applying the techniques of [22] in our
setting, we can implement various policies expressed as logical formulas. While
all previous techniques are applicable to our setting, we only dive into simple
reductions for completeness, as the core principle is the same for any technique
mapping a logical formula to inner-products or hidden-vector functionalities.

IPE and Threshold Clauses. Assume a finite list of variables Pi, i = 1 . . . q,
where each variable can take on values pi from a finite set P. Assume a policy
F is expressed as a combination of sender and receiver properties. We assume
that the policy is expressed as a list of requirements, each requirement being
a clause, and where one requires that exactly d out of k of the requirements
(clauses) must be satisfied (e.g., d = 1 as in our introductory example).

That is, we have a set of clauses {Ki}i∈[k], each with ni sender properties
and mi receiver properties of the form

Ki = (P (s)
idx(i,1) = pi,1 ∧ · · · ∧ P

(s)
idx(i,ni)

= pi,ni
∧ P

(r)
idx(i,ni+1)

= pi,ni+1 ∧ · · · ∧ P
(r)
idx(i,ni+mi)

= pi,ni+mi
),

which we call a conjunctive clause. Here, P
(s)
idx(i,j) resp. P

(r)
idx(i,j) denote variables

Ph indexed via an indexing function h = idx(i, j) (which is induced by such a
finite policy). Note that the variables constrain the sender (superscript (s)) and
the receiver (superscript (r)).

Our goal is to map the policy F to the functionality class F IP
k+1. In par-

ticular, we must show how the authority performs the mapping (fx ,x) ←
SubPol(F, (x1, . . . , xn)) in the scheme of Fig. 3, where x1, . . . , xn is the assign-
ment of attributes to each Pi of a user Alice (note that we omit treating null
values for simplicity). The authority performs the following computation:

1. The authority precomputes which clauses Alice cannot satisfy anymore, and
which ones she potentially can satisfy with a matching receiver. The authority
defines for all i ∈ [k]:

Xi :=

⎧⎨
⎩1 if

ni∧
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise.

The first part of the output of the subpolicy algorithm SubPol is fx(·) :=
F IP

N,k+1((X1, . . . , Xk, 1), ·), where we assume N > k.
2. The authority precomputes which clauses Alice cannot satisfy if she is the

receiver, and which ones she potentially can satisfy with a matching sender.

370 C. Badertscher et al.

The authority defines:

Yi :=

⎧⎨
⎩1 if

mi∧
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise,

for all i ∈ [k]. The second part of the output of the subpolicy algorithm
SubPol is x := (Y1, . . . , Yk,−d).

We observe that if a sender obtains a secret key generated based on the vector
(X1, . . . , Xk, 1) and signs (as shown in Fig. 3) a message for a receiver public
key that contains the ciphertext generated based on vector (Y1, . . . , Yk,−d) as
shown above, we have

〈(X1, . . . , Xk, 1), (Y1, . . . , Yk,−d)〉 = 0
⇐⇒〈(X1, . . . , Xk), (Y1, . . . Yk)〉 = d

because N > k (which is assumed to avoid wraparound complications). Since
each of the products Xi · Yi signals the joint fulfillment of the original clause
Ki (thanks to the precomputation step), this means that exactly d clauses are
jointly satisfied, which corresponds to the policy F .

We note that if the policy F has disjunctive clauses instead, that is for each
i ∈ [k]

Ki = (P (s)
idx(i,1) = pi,1 ∨ · · · ∨ P

(s)
idx(i,ni)

= pi,ni
∨ P

(r)
idx(i,ni+1)

= pi,ni+1 ∨ · · · ∨ P
(r)
idx(i,ni+mi)

= pi,ni+mi
),

(where for d = k we obtain CNF formulas) an analogous reasoning yields that
the reduction to inner products for dimension 2k +1 can be achieved by having
the authority follow the above steps but define for all i ∈ [k], X2i−1 := 1 and

X2i :=

⎧⎨
⎩1 if

ni∨
j=1

(xidx(i,j) = pi,j) = 1,

0 otherwise,

as well as for all i ∈ [k]

Y2i−1 :=

⎧⎪⎪⎨
⎪⎪⎩
1 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise,

Y2i :=

⎧⎪⎪⎨
⎪⎪⎩
0 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j),

1 otherwise.

Policy-Compliant Signatures 371

The authority finally computes fx(·) := F IP
N,2k+1((X1, . . . , X2k, 1), ·) and x :=

(Y1, . . . , Y2k,−d) (and generates the associated keys and ciphertext as prescribed
in Fig. 3). The above is seen to represent the policy F by observing that each
clause i is represented by two variables such that the sum X2i−1 ·Y2i−1+X2i ·Y2i

equals 0 if no party satisfies the clause, and 1 in any other case.

HVE and CNF Formulas. HVE opens up the space for many policies and is
itself realizable from the inner product functionality [8,22]. For example, for
CNF formulas, i.e., as above with d = k, where k is the number of disjunctive
clauses, the reduction to HVE for dimension k is straightforward: The authority
defines

Xi =

⎧⎨
⎩∗ if

ni∨
j=1

(xidx(i,j) = pi,j) = 1,

1 otherwise.

and

Yi =

⎧⎨
⎩1 if

mi∨
j=1

(xidx(i,ni+j) = pi,ni+j) = 1,

0 otherwise.

The the authority computes fx(·) := FHV
k ((X1, . . . , Xk), ·) and x := (Y1, . . . , Yk)

and generates the associated keys and ciphertext as prescribed in Fig. 3.
This accurately represents the CNF policy F : A sender can only decrypt

the ciphertext in the public key of a receiver if for each clause i, either the
sender already satisfies that clause and thus the resulting vector has the wildcard
symbol ∗ at this position, or the receiver has a satisfying assignment and hence
its vector must be equal to 1 at this position to match the sender’s value.

5 Universal Composability and SIM-Based PCS

Simulation-based security has the advantage that, instead of arguing and exclud-
ing trivial attacks, we follow the real/ideal world paradigm, where in the ideal-
world, the leakage to the simulator and the unforgeability properties are captured
in an explicit fashion.

The ideal PCS Functionality. In this section, we cast policy compliant signature
as an enhanced signature functionality following [2,11] that incorporates all of
our declared goals for this primitive. We give the description in Section 5. The
difference to a standard signature functionality are at a high-level the following:

– There is a distinct trusted party, denoted M that is responsible for the setup.
M is responsible to generate the signing keys for parties with respect to the
attributes they possess. Note that at this level of abstraction, we do not
discuss how the authority decides to assign an attribute to a party. This will
be managed by the higher-level protocols. The attributes of honest parties
do not leak to the adversary, which captures that the obtained public key

372 C. Badertscher et al.

does not leak any attributes. However, the adversary learns by definition of
the signature algorithm, whether the corrupted parties are allowed to send
messages to the new honest parties.

– On signing operations, only valid signatures are recorded. That is, if party
Pi with attributes xPi

signs a message m for party Pj with attributes xPj
,

then the record (m,σ, vM , vPi
, vPj

, 1) is only stored if F (xPi
, xPj

) = 1, where
vM denotes the public parameters and vPi

, vPj
are the unique public keys

associated with parties Pi and Pj , respectively.
– On verification queries of the form (verify, sid,m, σ, v′

M , v′
A, v′

B), the func-
tionality ensures aside of completeness and unforgeability w.r.t. honest sign-
ers also that no valid signature can be generated for any combination of
v′

A, v′
B unless the public keys are associated to attributes x′

A and x′
B such

that F (x′
A, x′

B) = 0.
– On top of unforgeability, privacy guarantees that the adversary learns at most

the policy evaluation F (xi, xj) (associated with the respective keys) for every
signing query. For corrupted parties, the adversary learns their attributes
x̃ (since it learns all inputs and outputs by that party upon corruption by
default) as well as all evaluations F (x̃, xj).

Functionality FuncM,F
PolSig

The functionality interacts with an arbitrary party set P := {P1, . . . , Pn} and
adversary S. The functionality is parameterized by a distinct identity M �∈ P of
the credential manager and the class of supported policies F .
Initialize F ← ⊥, xPi , vPi ← ⊥ for all Pi ∈ P \ {M} and vM ← ⊥. The function-
ality maintains the initialized party set I := {Pi ∈ P | vPi �= ⊥} (and we omit the
explicit inclusion of parties for simplicity).
Policy Initialization. Upon input (policy-gen, sid, F) from party M do the
following: if vM �= ⊥ or F �∈ F , ignore the request; otherwise, provide
(policy-gen, sid, F) to S. Upon receiving (policy-gen, sid, v) from S, output
(policy-gen, sid, v) to M and set vM ← v.
Key Generation. Upon input (key-gen, sid, P, x) from party M , where P ∈
P \ I, do the following: ignore the request if vM = ⊥; otherwise define xPi ← x
and compute:

1. Provide the leakage information {(P̂ , Pi) �→ F (xP̂ , xPi) | for all corrupted P̂ ∈
I}} to S.

2. Provide (key-gen, sid, Pi) to S. Upon receiving (verification-key,
sid, Pi, v) from S, verify that for all P ∈ I vP �= v, and if this is the case, set
vPi ← v and output (verification-key, sid, x, v) to Pi. If v is not unique,
ignore the input from S.

Signing. On input (sign, sid, m, v) from party P ∈ I:

– If v = vPj for some Pj ∈ I and F (xP , xPj) = 1 then provide
(sign, sid, m, P, v, 1) to S. Upon receiving (signature, sid, m, P, v, σ) from

Policy-Compliant Signatures 373

S, verify that no entry (m, σ, vM , vP , vPj , 0) is stored. If it is, then output an
error message to P and halt. Else, output (signature, sid, m, v, σ) to P , and
store the entry (m, σ, vM , vP , vPj , 1).

– In any other case, provide (sign, sid, m, P, v, 0) to S and when receiving
(signature, sid, m, s) from S, output (signature, sid, m, v, s) to P . (This
case guarantees that such messages are not considered as signed.)

Verification. Upon input (verify, sid, m, σ, v′
M , v′

A, v′
B) from any

party P , hand (verify, sid, m, σ, v′
M , v′

A, v′
B) to S. Upon receiving

(verified, sid, m, v′
M , v′

A, v′
B , φ) from S do:

1. If v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and the entry

(m, σ, vM , vPi , vPj , 1) is recorded, then set f = 1. (Condition 1 guarantees
completeness: If the verification keys are the registered ones and σ is a legiti-
mately generated signature for m, then the verification succeeds.)

2. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and Pi is not

corrupted and no entry (m, σ, vM , vPi , vPj , 1) for any σ′ is recorded, then set
f = 0 and record the entry (m, σ, vM , vPi , vPj , 0). (Condition 2 guarantees
unforgeability: For any combination of generated public keys, the signer is not
corrupted, and never signed m, then the verification fails.)

3. Else, if v′
M = vM , v′

A = vPi , v′
B = vPj for some Pi, Pj ∈ I and no entry

(m, σ, vM , vPi , vPj , 1) for any σ′ is recorded, then set f = 0 if F (xPi , xPj) = 0,
and otherwise set f ← φ. Record the entry (m, σ, vM , vPi , vPj , f). (Condition
3 guarantees policy compliance of dishonest signers: For any combination of
generated public keys, even if everyone is corrupted the verification must fail
if the policy is not satisfied.)

4. Else, if v′
M = vM but we have that ∀Pi ∈ I : v′

A �= vPi or ∀Pi ∈ I : v′
B �=

vPi , then set f ← 0 and record the entry (m, σ, vM , v′
A, vB′ , 0). (Condition 4

ensures that no valid signatures can exist w.r.t. public keys not issued by the
credential manager.)

5. Else, if there is an entry (m, σ, v′, f ′) stored, then let f = f ′ . (Condition 5
guarantees consistency: All verification requests with identical parameters will
result in the same answer.)

6. Else, let f = φ and record the entry (m, σ, v′
M , v′

A, v′
B , φ). (If no condition

applies, then let the adversary decide.)
7. Finally, output (verified, sid, m, f) to P .

Corruption Mode. The party M is not corruptible. For all other parties Pi,
the functionality supports the standard corruption mode [12], that is, upon input
(corrupt, Pi) on the backdoor tape, send all previous inputs to S and hand
over the control of Pi’s input and output tapes to S and providing the adversary
all capabilities that an honest party has. Additionally, whenever a party Pi gets
corrupted, provide the leakage information {(Pi, Pj) �→ F (xPi , xPj) | Pj ∈ I}.

Blueprint Usage of the Scheme in UC. As with signatures [2,11], a PCS scheme
PCS = (Setup,KeyGen,Sign,Verify) can be mapped in a straightforward way to
a UC protocol tailored to realize the low-level functionality FuncM,F

PolSig (low level

374 C. Badertscher et al.

in the sense that it exports the interface without much abstraction). The main
difference to an ordinary signature scheme is the presence of a trusted party
assisting in the key generation step. That is, we have a trusted (credential)
manager M incorruptible by definition3, where we assume secure point-to-point
channels between M and each Pi. The protocol πPCS

M can be specified as follows:

– Party M :
• On input (policy-gen, sid, F), run Setup(1λ, F) and generate the output

(policy-gen, sid,mpk). Store msk internally.
• On input (key-gen, sid, P, x), run KeyGen(msk, x) and send the message

(x, (pk, sk)) to party P over a secure channel.
– Party Pi:

• Upon receiving (for the first time) the message (x, (pk, sk)) from M on
the secure channel, store it internally and output (verification-key,
sid, x, pk). If the party has initialized its public key already, messages
from M are ignored.

• On input (sign, sid,m, v), if this party has already a secret key sk, then
execute σ ← Sign(v, sk,m) and return (signature, sid,m, v, σ).

• On input (verify, sid,m, σ, v′
M , v′

A, v′
B), return the output

(verified, sid,m,Verify(v′
M , v′

A, v′
B ,m, σ)).

With this composable understanding in mind, we now set out to establish a
concise and simpler SIM-based PCS notion in the spirit of [7,24,27] that implies
the UC realization of the ideal PCS functionality, which we show formally in The-
orem 5.2. Looking ahead, the proof of Theorem 5.2 reveals that all the ideal
unforgeability properties (Conditions 2, 3, and 4) of FuncM,F

PolSig follow from the
game-based unforgeability notion defined in Definition 3.2, which is thereby val-
idated to capture what we intended to model.

5.1 Simulation-Based Attribute Hiding

Our starting point is the already established game-based notion, where the adver-
sary gets access to a variety of oracles, as defined in Sect. 3.1. Following [7,24,27],
we consider a simulator S = (SSetup,SKG,SCor,SSgn), where SSetup simulates
Setup and SKG, SCor, and SSgn simulate the oracles QKeyGen, QCor, and QSign,
respectively. These simulator algorithms have a shared state and in addition to
the inputs to the oracles, get a leakage set L. The set L is initially empty and
gets augmented during the experiment analogous to how the simulator in the
UC functionality obtains information.

Definition 5.1 (SIM-Based AH). Let PCS = (Setup,KeyGen,Sign,Verify)
be a PCS scheme as defined in Definition 3.1. We define the experiments
RealPCS(1λ,A) and IdealPCS(1λ,A,S) for a PPT adversary A and a PPT sim-
ulator S = (SSetup,SKG,SCor,SSgn) in Fig. 6. In the real world, the adversary
3 Formally, the property of such trusted third parties to be incorruptible is modeled

by instructing its protocol machine to ignore the corruption request on the backdoor
tape.

Policy-Compliant Signatures 375

has access to oracles as defined in Sect. 3.1. The simulator algorithms have a
shared state s, which is modelled as giving them s as input, and allowing all of
them to update the state s. In the ideal experiment, the initially empty sets IQK
and IQC are maintained. Furthermore, all but SSetup get as an additional input
the leakage set L, which is initially empty. The sets are updated according to the
following rules:

– When A queries the key generation oracle using xj, the following gets added
to L (before SKG is invoked):

{(i, j) �→ F (xi, xj) | (i, pki, xi) ∈ IQC}.
After the simulator SKG has been invoked, (j, pkj , xj) is added to QK, where
pkj is the output of SKG.

– When A makes a corruption query i with (i, pki, xi) ∈ QK, then the following
gets added to L (before SCor is invoked):(

xi, {(i, j) �→ F (xi, xj) | (j, pkj , xj) ∈ IQK}).
Additionally, (i, pki, xi) ∈ IQK is also added to IQC.

– When A makes a signing query (i, pkR,m), the following gets added to L:
{(i, j) �→ F (xi, xj) | (i, pki, xi), (j, pkR, xj) ∈ IQK}.

This models that adversaries learn whether a pair of keys satisfy the policy by
observing a signature for these keys.

The advantage of a PPT adversary A in the experiment is defined as:

AdvSimPCS,A,S(λ) = |Pr[RealPCS(1λ,A) = 1] − Pr[IdealPCS(1λ,A,S) = 1]|.
A PCS scheme PCS is simulation attribute hiding, if for any PPT adversary

A there exists a PPT simulator S, such that AdvSimPCS,A,S(λ) ≤ negl(λ), where
negl(·) is a negligible function.

We conclude with the following theorem:

Theorem 5.2. Protocol πPCS
M securely realizes FuncM,F

PolSig if PCS is existentially
unforgeable (Definition 3.2) and simulation-based attribute hiding (Definition
5.1).

Proof. We prove the theorem in two main steps. First we assume a hybrid world
with a functionality like FuncM,F

PolSig but which does not protect the privacy of
any party’s attributes, but only enforces the ideal unforgeability guarantees. We
show that there is a UC simulator Suc that can simulate the real-world perfectly
unless the environment (together with the dummy adversary) provoke an event
that implies a forgery of the PCS scheme as captured by game EUF-CMAPCS

in Fig. 1. The second step of the proof is to switch to the true ideal world
with FuncM,F

PolSig. We re-design the previous simulator to obtain S ′
uc that uses

376 C. Badertscher et al.

Fig. 6. Real and ideal experiments for the simulation-based attribute hiding defini-
tion for the scheme PCS. Both experiments interact with an adversary A. The ideal
experiment additionally interacts with a simulator S = (SSetup, SKG, SCor, SSgn). The
simulator gets the initially empty leakage set L, which grows during the experiment as
described in Definition 5.1.

the assumed simulator Spcs = (SSetup,SKG,SCor,SSgn) required by Definition
5.1. Any environment that notices this switch to S ′

uc can be used to distinguish
RealPCS and IdealPCS.

In more detail, we have the following hybrid worlds:

Hybrid H0: This is the real-world process with protocol πPCS
M .

Hybrid H1: Here we assume an “ideal functionality” Funchyb that acts like
FuncM,F

PolSig but with the following difference:

· On input (key-gen, sid, P, x), behave as FuncM,F
PolSig does but additionally

output x to the adversary.
Designing a simulator for this world follows the pattern of the signature sim-
ulator of [11] with additional setup, that is. We define the simulator Suc:

- On input (policy-gen, sid, F) from Funchyb, execute Setup(1λ, F) and
then return to the functionality (policy-gen, sid,mpk). Store msk for
future use.

- On input (key-gen, sid, Pi) alongside the leakage set {(P̂ , Pi) �→ F (xP̂ ,

xPi
) | for all corrupted P̂ ∈ I}}, and the additional leakage informa-

tion x specific to Funchyb, the simulator executes KeyGen(msk, x), stores
the obtained key-pair (pk, sk) as (Pi, pk, sk) for future use. Provide
(verification-key, sid, Pi, pk) to the functionality.

- On input (sign, sid,m, P, v, b) from Funchyb, obtain the record (P, pk, sk)
and execute σ ← Sign(v, sk,m) (give up activation if this party has not yet
obtained its key). Return to the functionality (signature, sid,m, P, v, σ).

- On input (verify, sid,m, σ, v′
M , v′

A, v′
B) from Funchyb, let φ ←

Verify(v′
M , v′

A, v′
B ,m, σ) and return (verified, sid,m, v′

M , v′
A, v′

B , φ) to
the functionality.

Policy-Compliant Signatures 377

- On a corruption request for party Pi, Suc corrupts Pi in the ideal function-
ality (and formally also obtains leakage set {(Pi, Pj) �→ F (xPi

, xPj
) |Pj ∈

I} that is not needed here since the simulator has full knowledge of
attributes), checks for a previously stored record (Pi, pk, sk) and if such
a record exists returns sk. (And from now onward, the simulator acts as
relay between environment and functionality.)

Hybrid H2: This hybrid is the ideal functionality (i.e., the ideal protocol for)
FuncM,F

PolSig together with simulator S ′
uc. We define S ′

uc by stating what the
difference is compared to Suc. This will be handy when arguing about the
indistinguishability of this and the previous hybrid.

- On input (policy-gen, sid, F) from FuncM,F
PolSig, simulator S ′

uc executes
(mpk, s) ← SSetup(1λ, F) (instead of Setup) and stores s for future use
(instead of msk). Initialize the leakage set L ← ∅. The interaction with
the functionality is just like Suc.

- On input (key-gen, sid, Pi) alongside the leakage set L = {(P̂ , Pi) �→
F (xP̂ , xPi

) | for all corrupted P̂ ∈ I}}—but without the additional leakage
x from above–from FuncM,F

PolSig, S ′
uc computes L ← L ∪ L and executes

SKG(s,L) to obtain pk and an updated state s. The simulator stores the
tuple (Pi, pk,⊥) (no secret key is stored). The remaining interaction with
the functionality is identical to Suc.

- On input (sign, sid,m, P, v, b) from FuncM,F
PolSig, the simulator updates the

leakage set L only if there is an entry (P ′, v, ·) by adding the tuple
(P, P ′, b). Next, retrieve a previously stored record (P, pk,⊥) and gen-
erate the signature σ ← SSgn(s,L, P, v,m) (which also updates the state
s). The interaction between the simulator and the functionality is the
same as in Suc.

- On input (verify, sid,m, σ, v′
M , v′

A, v′
B) from FuncM,F

PolSig, the simulator
behaves identically to Suc.

- On a corruption request for party Pi, S ′
uc corrupts Pi in FuncM,F

PolSig, and
includes the additional leakage information L = {xPi

} ∪ {(Pi, Pj) �→
F (xPi

, xPj
) |Pj ∈ I} by computing L ← L ∪ L. Next, it retrieves the

record (Pi, pk, ·) and if such a record exists returns sk ← SCor(s,L, Pi)
(which also updates s) and returns sk. (And from now, the simulator acts
as relay between environment and functionality.)

In the full version, we state and prove two claims that show the indistinguishabil-
ity of hybrid H0 and H1 and the indistinguishability of H1 and H2. Combining
both claims yields that for any UC environment (and without loss of generality
in the dummy adversary model, see [10]) the (real) protocol execution of πPCS

M is
indistinguishable from the ideal protocol execution with functionality FuncM,F

PolSig

and ideal adversary (i.e., simulator) S ′
uc. The theorem follows. �

5.2 On the SIM-Based Security of our Generic Scheme

If we assume that the underlying predicate-only predicate encryption scheme of
our construction in Fig. 3 satisfies the strong simulation-based PE security notion

378 C. Badertscher et al.

as defined in the full version, then the generic scheme achieves the simulation-
based and therefore the composable notion of PCS. We note that the requirement
in the simulation-based PE security is the adaptive (and thus stronger) version
of what is proven so far in the literature, such as in [17,29]. We leave it as an
interesting open problem to realize PE schemes that fulfill the stronger (adap-
tive) simulation-based security notion based on reasonable assumptions. We note
that such schemes require idealized models such as proofs in the bilinear generic
group model [24] or the random oracle model.

Theorem 5.3. Let PE = (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) be a simu-
lation secure predicate encryption scheme, let further NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) be a NIZK proof system and let DSpub =
(DSpub.Setup,DSpub.Sign,DSpub.Verify) be a strong unforgeable signature scheme,
then there exists a simulator S such that the construction PCS = (Setup,KeyGen,
Enc,Dec), defined in Fig. 3, is simulation private. Namely, for any PPT adver-
sary A there exist PPT adversaries B,B′ and B′′, such that:

AdvSimPCS,A,S(λ) ≤ AdvZKNIZK,B(λ) + AdvSimPE,B′,S′(λ) + AdvSUF-CMA
DSpub,B′′ (λ).

Proof. The simulator S for the proof of this theorem is described in the full
version. Informally, the simulator S uses the simulators of the predicate encryp-
tion scheme to generate the keys. For answering signature queries, the simulator
S additionally receives the policy evaluation of the associated attributes of the
keys that are used for the signature query. Since S knows if the statement is part
of the language of the NIZK system, it can use the NIZK simulator to generate
a valid proof for the statement relying on the zero-knowledge property of the
NIZK system.

As in the proof of Theorem 4.3, we assume that the adversary A only queries
the signing oracle using public keys that previously have been output by one
of the key oracles or has been a reply to the challenge query. The argument
here is the same as in the proof of Theorem 4.3, which results in the summand
AdvSUF-CMA

DSpub,B′′ (λ) of the bound in the theorem.
To show that the ideal world with the simulator S is indistinguishable from

the real world, we use a hybrid argument where the hybrids are formally defined
in the full version. Note that H0 corresponds to the real world RealPCS(1λ,A)
and H2 to the ideal world IdealPCS(1λ,A,S). This results in:

AdvSimPCS,A,S(λ) = |Pr[H0(λ,A) = 1] − Pr[H2(λ,A) = 1]|.

We describe the different games in more detail:

Hybrid H1: In this hybrid, we change from an honestly generated CRS and
honestly generated proofs to a simulated CRS and simulated proofs. The
transition from H0 to H1 is justified by the zero-knowledge property of NIZK.
Namely, we can exhibit a PPT adversary B0 such that:

|Pr[H0(λ,A) = 1] − Pr[H1(λ,A) = 1]| ≤ AdvZKNIZK,B0
(λ).

Policy-Compliant Signatures 379

Hybrid H2: This hybrid is the IdealPCS(1λ,A) world. In this hybrid, we change
from honestly generated keys to simulated keys. The transition from H1 to
H2 is justified by the simulation policy hiding property of PE. Namely, we can
exhibit a PPT adversary B1 such that:

|Pr[H1(λ,A) = 1] − Pr[H2(λ,A) = 1]| ≤ AdvSimPE,B1,S′(λ).

Putting everything together, we obtain the theorem. �
We present the proofs for the different transitions in the full version.

References

1. Ateniese, G., Francati, D., Nuñez, D., Venturi, D.: Match me if you can: match-
making encryption and its applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019. LNCS, vol. 11693, pp. 701–731. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-26951-7_24

2. Backes, M., Hofheinz, D.: How to break and repair a universally composable sig-
nature functionality. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225,
pp. 61–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30144-
8_6

3. Badertscher, C., Matt, C., Maurer, U.: Strengthening access control encryption. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 502–532.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_18

4. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0_30

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_30

7. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6_16

8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted
data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_29

9. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6_7

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (October
2001). https://doi.org/10.1109/SFCS.2001.959888

11. Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003). https://eprint.iacr.org/2003/
239

https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-540-30144-8_6
https://doi.org/10.1007/978-3-540-30144-8_6
https://doi.org/10.1007/978-3-319-70694-8_18
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239

380 C. Badertscher et al.

12. Canetti, R.: Universally composable security. J. ACM 67(5) (September 2020).
https://doi.org/10.1145/3402457

13. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_18

14. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. Cryptology ePrint Archive, Report 2012/012 (2012). https://
eprint.iacr.org/2012/012

15. Damgård, I., Ganesh, C., Khoshakhlagh, H., Orlandi, C., Siniscalchi, L.: Balanc-
ing privacy and accountability in blockchain identity management. In: Paterson,
K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 552–576. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-75539-3_23

16. Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing infor-
mation flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5_21

17. Datta, P., Okamoto, T., Takashima, K.: Adaptively simulation-secure attribute-
hiding predicate encryption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018.
LNCS, vol. 11273, pp. 640–672. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03329-3_22

18. Escala, A., Groth, J.: Fine-tuning groth-sahai proofs. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0_36

19. Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials,
hidden policies, and policy cycles. In: NDSS 2006. The Internet Society (February
2006)

20. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

21. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–
154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_13

22. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3_9

23. Kiltz, E., Pan, J., Wee, H.: Structure-preserving signatures from standard assump-
tions, revisited. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 275–295. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7_14

24. Kim, S., Lewi, K., Mandal, A., Montgomery, H., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. In: Catalano, D., De Prisco, R. (eds.)
SCN 2018. LNCS, vol. 11035, pp. 544–562. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-98113-0_29

25. Li, N., Du, W., Boneh, D.: Oblivious signature-based envelope. In: Borowsky, E.,
Rajsbaum, S. (eds.) 22nd ACM PODC. pp. 182–189. ACM (July 2003). https://
doi.org/10.1145/872035.872061

26. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias,
A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19074-2_24

https://doi.org/10.1145/3402457
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://eprint.iacr.org/2012/012
https://eprint.iacr.org/2012/012
https://doi.org/10.1007/978-3-030-75539-3_23
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-030-03329-3_22
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-662-48000-7_14
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1007/978-3-319-98113-0_29
https://doi.org/10.1145/872035.872061
https://doi.org/10.1145/872035.872061
https://doi.org/10.1007/978-3-642-19074-2_24

Policy-Compliant Signatures 381

27. Matt, C., Maurer, U.: A definitional framework for functional encryption. In: Four-
net, C., Hicks, M. (eds.) CSF 2015 Computer Security Foundations Symposium,
pp. 217–231. IEEE Computer Society Press (2015). https://doi.org/10.1109/CSF.
2015.22

28. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. manuscript (2009).
http://www.bitcoin.org/bitcoin.pdf

29. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner prod-
uct encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4_35

30. Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-
based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol.
7658, pp. 349–366. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34961-4_22

31. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In:
Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8

https://doi.org/10.1109/CSF.2015.22
https://doi.org/10.1109/CSF.2015.22
http://www.bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-642-34961-4_22
https://doi.org/10.1007/978-3-319-70500-2_8

Simple and Efficient Batch Verification
Techniques for Verifiable Delay Functions

Lior Rotem(B)

School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel

lior.rotem@cs.huji.ac.il

Abstract. We study the problem of batch verification for verifiable delay
functions (VDFs), focusing on proofs of correct exponentiation (PoCE),
which underlie recent VDF constructions. We show how to compile any
PoCE into a batch PoCE, offering significant savings in both communi-
cation and verification time. Concretely, given any PoCE with commu-
nication complexity c, verification time t and soundness error δ, and any
pseudorandom function with key length kprf and evaluation time tprf , we
construct:

– A batch PoCE for verifying n instances with communication com-
plexity m · c + kprf , verification time m · t + n · m · O(top + tprf) and
soundness error δ + 2−m, where λ is the security parameter, m is
an adjustable parameter that can take any integer value, and top is
the time required to evaluate the group operation in the underly-
ing group. This should be contrasted with the näıve approach, in
which the communication complexity and verification time are n · c
and n · t, respectively. The soundness of this compiler relies only on
the soundness of the underlying PoCE and the existence of one-way
functions.

– An improved batch PoCE based on the low order assumption. For
verifying n instances, the batch PoCE requires communication com-
plexity c+ kprf and verification time t+n · (tprf +log(s) ·O(top)), and
has soundness error δ + 1/s. The parameter s can take any integer
value, as long as it is hard to find group elements of order less than
s in the underlying group. We discuss instantiations in which s can
be exponentially large in the security parameter λ.

If the underlying PoCE is constant round and public coin (as is the case
for existing protocols), then so are all of our batch PoCEs, implying that
they can be made non-interactive using the Fiat-Shamir transform.

Additionally, for RSA groups with moduli which are the products of
two safe primes, we show how to efficiently verify that certain elements
are not of order 2. This protocol, together with the second compiler above
and any (single-instance) PoCE in these groups, yields an efficient batch
PoCE in safe RSA groups. To complete the picture, we also show how to

L. Rotem—supported by the Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities and by the European Union’s Horizon 2020 Framework Program
(H2020) via an ERC Grant (Grant No. 714253).

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 382–414, 2021.
https://doi.org/10.1007/978-3-030-90456-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_13

Batch Verification for Verifiable Delay Functions 383

extend Pietrzak’s protocol (which is statistically sound in the group QR+
N

when N is the product of two safe primes) to obtain a statistically-sound
PoCE in safe RSA groups.

1 Introduction

Verifiable delay functions (VDFs), recently formalized by Boneh et al. [BBB+18],
have proven to be extremely useful in a wide array of exciting applications. These
include, among others, verifiable randomness beacons (e.g., [LW15] and also
[GS98,BCG15,BGZ16,PW18,HYL20,GLO+21]), resource-efficient blockchains
[CP19], computational time-stamping (e.g., [CE12,LSS20] and the references
therein) and time-based proofs of replication (e.g., [Ler14,ABB+16,Pro17,
BDG17,Fis19]). Roughly speaking, a VDF is a function f : X → Y which is
defined with respect to a delay parameter T and offers the following sequen-
tiality guarantee: It should not be possible to compute f on a randomly-chosen
input in time less than T , even with preprocessing and polynomially-many par-
allel processors. However, the function should be computable in time polynomial
in T . Moreover, the function should be efficiently verifiable: For an input x ∈ X ,
it should be possible to produce alongside the output y ∈ Y, a short proof π
asserting that indeed y = f(x). Verifying the proof should be much quicker than
computing the function anew.

Proofs of Correct Exponentiation. The main VDF candidates currently
known are based on the “repeated squaring” function in groups of unknown
order, such as RSA groups or class groups of imaginary quadratic fields. This
function – first introduced for delay purposes by Rivest, Shamir and Wagner
[RSW96] – is defined by x �→ x2T

, where T is the delay parameter and the expo-
nentiation is with respect to the group operation. The recent and elegant works
of Wesolowski [Wes19], of Pietrzak [Pie19] have augmented the repeated squar-
ing function with non-interactive proofs, yielding full-fledged candidate VDF
constructions (see also the survey of Boneh et al. [BBF18] covering these con-
structions). Both of these proofs are based on applying the Fiat-Shamir heuris-
tic [FS86] to succinct proofs of correct exponentiation. These are protocols in
which a (possibly malicious) prover tries to convince a verifier that y = xe, for
a joint input consisting of two group elements x and y and an arbitrary (and
potentially very large) exponent e.1 The succinctness of these protocols mani-
fests itself both in their communication complexity, and in the verifier’s running
time, which is much lesser than the time it would take the verifier to compute
xe on her own. Very recently, in an independent and concurrent work, Block
et al. [BHR+21] showed how to generalize Pietrzak’s protocol to obtain a proof
of correct exponentiation that is information-theoretically secure in any group
of unknown order.

1 Often, these protocols offer only computational soundness guarantee. Nevertheless,
we use the name proofs (rather than arguments) throughout, for more concise pre-
sentation and for consistency with previous works (e.g., [BBF19]).

384 L. Rotem

Verifying Multiple VDF Outputs. In many of the applications of VDFs, one
might be (and in some cases even likely to be) interested in verifying not only one
but many VDF outputs at once. Examples for such scenarios include (but are not
restricted to) verifying that a storage service maintains multiple replicas of the
same file via a VDF-based proof of replication; verifying the shared randomness
produced by a VDF-based randomness beacon during the last several epochs;
and verifying the time-stamps of multiple files stamped using a VDF-based time-
stamping scheme. Unfortunately, verifying multiple VDF outputs näıvely, by
verifying the proof for each of them separately and independently, comes at a
premium: If one wishes to verify n individual VDF proofs, each of which is �
bits long and takes time t to verify, then verifying all of them using the aforesaid
näıve approach results in a total proof size (and hence communication overhead)
of n · � and verification time of n · t.

Existing Approaches. The related and fundamental problem of verifying many
exponentiations in cryptographic groups, traces back to the seminal work of
Bellare, Garay and Rabin [BGR98], which presented elegant batch verification
algorithms. However, their work, motivated by the task of batch verification of
signatures, did not consider the setting of an external prover and the efficiency
considerations attached to it (i.e., succinctness). Moreover, their more efficient
approach and its analysis rely on cyclic groups of prime order, which seem some-
what unlikely to accommodate VDF constructions [RSS20] (see Sect. 1.2). In
the context of VDF verification, Wesolowski2 recently presented a “batch ver-
sion” of his proof of correct exponentiation. Alas, the soundness of this batch
proof is proven under the adaptive root assumption, which is a new and rather
strong assumption in groups of unknown order. In particular this assumption
is stronger than the low order assumption which underlies Pietrzak’s protocol
[BBF18,Pie19],3 and making this assumption is of course undesirable when start-
ing from the information-theoretically sound protocol of Block et al. [BHR+21].
This state of affairs urges the search for succinct and efficient batch proofs of
correct exponentiation which rely on weaker assumptions than the adaptive root
assumption.

1.1 Our Contributions

We present simple and efficient batch verification techniques for proofs of cor-
rect exponentiation, extending the basic techniques of Bellare, Garay and Rabin

2 In the updated longer version of his work [Wes20].
3 For example, in cyclic groups of prime (and publicly known) order, the low order

assumption holds information-theoretically, whereas the adaptive root assumption
does not hold. Moreover, even in groups which are believed to be of unknown order,
the adaptive root assumption seems to be a stronger one: For instance, for a mod-
ulus N which is the product of two safe primes, the low order assumption holds
information-theoretically in the group of quadratic residues modulo N . This is in
contrast to the adaptive root assumption which is at least as strong as assuming the
hardness of factoring N . See Sect. 2 for details.

Batch Verification for Verifiable Delay Functions 385

to the external-prover setting and to composite-order groups. In conjunction
with current VDF candidates based on proofs of correct exponentiation for
the repeated squaring function [RSW96,Wes19,Pie19,BHR+21], our techniques
immediately give rise to VDFs with batch verification. Our compilers rely on
weaker assumptions than currently-known batching techniques for verifiable
delay functions, paving the way to a variety of new instantiations.

Batch Proofs of Correct Exponentiation. We define the notion of a batch
proof of correct exponentiation. This is a protocol in which a prover and a verifier
share as input n pairs (x1, y1), . . . , (xn, yn) of group elements and an exponent
e ∈ N, and the prover attempts to convince the verifier that xe

i = yi for each
i ∈ [n].4 Loosely speaking, we say that a batch proof of correct exponentiation
has soundness error δ if in case xe

i �= yi for some i ∈ [n], no efficient (malicious)
prover can convince a verifier to accept with probability greater than δ+negl(λ),
where λ ∈ N is the security parameter (see Sect. 3 for the formal definition).

A General Compiler. As our first main contribution, we show how to compile
any proof of correct exponentiation into a batch proof of correct exponentiation,
offering significant savings in both communication and verification time, relative
to the näıve transformation. The soundness of this compiler essentially relies on
an information-theoretic argument, which is then derandomized using a pseu-
dorandom function. This makes it a generic compiler which can be applied in
any group, as long as the underlying proof of correct exponentiation is sound
in this group, hence also making it compatible with the new proof of correct
exponentiation of Block et al. [BHR+21].

Theorem 1.1 (informal). Let G be a group and assume the existence of a one-
way function and of a proof of correct exponentiation in G with communication
complexity c = c(λ, e), verification time t = t(λ, e) and soundness error δ = δ(λ),
where λ ∈ N is the security parameter and e ∈ N is the exponent. Then, for
any n,m ∈ N, there exists a batch proof of correct exponentiation for n pairs
of elements in the group G, with communication complexity cbatch = c · m + λ,
verification time tbatch = m·t+n·m·poly(λ) and soundness error δbatch = δ+2−m.

An Improved Compiler Based on the Low Order Assumption. Our
second main contribution is an improved compiler, whose soundness is based
on the low order assumption in groups of unknown order, recently introduced
by Boneh et al. [BBF18]. Roughly speaking, for an integer �, the �-low order
assumption asserts that one cannot efficiently come up with a group element
z �= 1 and an exponent ω < � such that zω = 1. This compiler enjoys significant
improvements over our general compiler: The communication complexity is now
completely independent of the desired soundness guarantee (i.e., one can reduce
the soundness error without increasing communication), and the running time
of the verifier is also improved. Concretely, we prove the following theorem.
4 Note that our definition of batch proofs of correct exponentiation deals with scenarios

in which all instances should be verified with respect to the same exponent. We
discuss this point further in Sect. 3, and leave it as an interesting open question to
construct batch proofs for different exponents.

386 L. Rotem

Theorem 1.2 (informal). Let G be a group and assume the existence of a one-
way function and of a proof of correct exponentiation in G with communication
complexity c = c(λ, e), verification time t = t(λ, e) and soundness error δ = δ(λ),
where λ ∈ N is the security parameter and e ∈ N is the exponent. Assume that
the �-low order assumption holds in G for an integer � = �(λ). Then, for any
n ∈ N and s ≤ �, there exists a batch proof of correct exponentiation for n
pairs of elements in the group G, with communication complexity cbatch = c + λ,
verification time tbatch = t + O(n · log(s) · poly(λ)), and soundness error δbatch =
δ + 1/s.

In Sect. 6, we also discuss why the low order assumption is necessary for our
compiler to yield the soundness guarantees of Theorem1.2.

Instantiating the Compiler. The compiler from Theorem 1.2 relies on the
same techniques as those underlying Wesolowski’s [Wes20] batch proof (which,
as mentioned above, can be traced back to Bellare, Garay and Rabin [BGR98]).
However, our compiler is modular and our analysis of its soundness is based
solely on the low order assumption (compared to Wesolowski’s reliance on the
adaptive root assumption). This means that our compiler can be applied to
both the protocols of Wesolowski and of Pietrzak, without making any further
assumptions beyond those required by their single-instance protocols (and one-
way functions for derandomization purposes). Concretely, there are currently
three main candidates for families of groups in which the low order assumption
is plausible:5

– The groups QRN and QR+
N . The low order assumption holds information-

theoretically in the group QRN of quadratic residues modulo N when N is
the product of two safe primes (as well as in the isomorphic group QR+

N of
signed quadratic residues modulo N , in which group membership is efficiently
recognizable). It may also rely on the assumption that the low order problem
is computationally hard in these groups for other choices of N . The reader is
referred to Sect. 2 for further details regarding these groups.

– RSA groups. The low order assumption cannot hold in the RSA group Z
∗
N

since −1 ∈ ZN is always of order two in this group. Boneh et al. [BBF18]
suggested to work over the quotient group Z

∗
N/{±1} instead. We consider

two additional possibilities. One is to settle on a slightly weaker soundness
guarantee: If the verifier accepts, it must be the case that xe

i ∈ {yi,−yi}
for every i ∈ [n]. Observe, that this requirement indeed seems compatible
with many of the applications of VDFs mentioned above.6 When N is the
product of two safe primes, we show (following Seres and Burcsi [SB20]) that
this weaker notion of soundness for our compiler is actually implied by the

5 For a more in-depth discussion see Sect. 6 and the work of Boneh et al. [BBF18].
6 For example, when it comes to proofs of replication, if a file is retrievable given an

encoding y which is the output of a VDF, then it is also retrievable given −y. As an
additional example, in the context of verifiable randomness beacons, this weakened
soundness guarantee gives a malicious prover the ability to convince the verifier that
the shared randomness is −y, when in fact it should be y, but no more than that.

Batch Verification for Verifiable Delay Functions 387

hardness of factoring N . The second option is to compose our compiler with
an additional protocol, specifically tailored in order to prove that yi �= −xe

i

for each i. We discuss this approach below.
– Class groups of imaginary quadratic fields. The security of the low order

assumption in these groups is still unclear [BBF18,BKS+20], but at least
for now, there are possible parameters for which the low order assumption
remains unbroken in these groups.

Strong Soundness in RSA Groups via Proofs of Order. As discussed
above, when our compiler from Theorem1.2 is used within RSA groups, we can
obtain only a weaker form of soundness. The issue is that a malicious prover can
still convince the verifier that xe

i = yi for every i, even though there exists an
index j for which yj/xe

j = −1. To remedy this situation we present a protocol
that allows the prover to convince the verifier that order(yi/xe

i) �= 2 for every i,
and hence in particular yi/xe

i �= −1 for every i. The protocol builds on the work
of Di Crescenzo et al. [CKK+17], but extends it in a non-trivial manner to save in
communication (or proof size, when Fiat-Shamir is applied). It enjoys efficient
verification and information-theoretic soundness when the modulus N of the
RSA group is the product of two safe primes, and it can be made succinct (i.e.,
with communication complexity is independent of the number n of pairs of group
elements) using a pseudorandom function. Hence, in such groups, executing this
protocol in parallel to our compiler from Theorem1.2 yields a full-fledged sound
compiler in RSA groups, without compromising on weaker soundness notions or
making strong assumptions. In Theorem1.3 below, by “safe RSA groups” we
mean RSA groups whose modulus is the product of two λ-bit safe primes.

Theorem 1.3 (informal). Assume the existence of a one-way function and
of a proof of correct exponentiation in safe RSA groups with communication
complexity c = c(λ, e), verification time t = t(λ, e) and soundness error δ = δ(λ),
where λ ∈ N is the security parameter and e ∈ N is the exponent. Then, for any
n,m ∈ N and s < 2λ−1, there exists a batch proof of correct exponentiation
for n pairs of elements in safe RSA groups, with communication complexity
cbatch = c + O(λ), verification time tbatch = t + O(n · m · log(s) · poly(λ)), and
soundness error δbatch = δ + 1/s + 2−m.

A Statistically-Sound Proof of Correct Exponentiation in RSA
Groups. To complete the picture, we present a proof of correct exponentia-
tion in standard (safe) RSA groups.7 The protocol is obtained by extending
Pietrzak’s protocol [Pie19] with techniques similar to those used to prove Theo-
rem 1.3. The protocol actually achieves statistical soundness in safe RSA groups,
with very little overhead in terms of communication and verification time when
compared to Pietrzak’s protocol.

Theorem 1.4 (informal). There exists a statistically-sound proof of correct
exponentiation in safe RSA groups, whose communication complexity and veri-
fication time essentially match those of Pietrzak’s protocol.
7 This is in contrast to the quotient group Z

∗
N \{±1} or the subgroups QRN and QR+

N

of Z∗
N .

388 L. Rotem

Though the statistically-sound proof of correct exponentiation of Block et al.
[BHR+21] can also be instantiated in safe RSA groups, their protocol incurs a
factor λ overhead in communication complexity when compared to Pietrzak’s
protocol. In contrast, our protocol only incurs an overhead of factor 2 in com-
munication complexity.

Interpreting Our Results. We make two clarifications in order to help the
reader interpret the above results. Firstly, we emphasize that the parameters m
(from Theorems 1.1 and 1.3) and s (from Theorems 1.2 and 1.3) do not scale
with the number n of pairs (xi, yi) to be verified, and can be fine-tuned at will
to achieve the desired tradeoff between the soundness error of the batch protocol
on the one hand, and the communication complexity and verifier’s running time
on the other hand. Secondly, we stress that in all of the above theorems, the
polynomials referred to by poly are fixed polynomials that depend only on λ,
and do not scale with neither n nor the exponent e. These two points have
several important implications:

– The communication overhead incurred by our compilers is completely inde-
pendent of n.

– The verification time depends linearly on n, but in all of our compilers, we
manage to “decouple” the terms which depend on n from the terms which
depend on the original verification time t in the underlying proof of correct
exponentiation protocol (and hence we also decouple n from the exponent e).
This should be contrasted with the näıve solution discussed above, in which
the verification time is t · n. Moreover, observe that some linear dependency
on n seems unavoidable, since merely reading the verifier’s input takes time
at least n.

– One can set m to be super-logarithmic in the security parameter λ (e.g.,
by setting m(λ) = log(λ) · log∗(λ)) in Theorems 1.1 and 1.3, and s to be
super-polynomial in Theorems 1.2 and 1.3, to obtain protocols with negligible
soundness error, with only slightly greater communication complexities and
verification times than those of the underlying proof of correct exponentiation.

Applying the Fiat-Shamir Heuristic. All of our compilers add only a sin-
gle public coin message from the verifier to the prover. Consequently, if the
Fiat-Shamir heuristic [FS86] can be applied in the random oracle model to the
underlying proof of correct exponentiation, then it can be applied to resulted
batch proof as well (as long as m and s are set such that the soundness error
is negligible). In particular, the Fiat-Shamir heuristic may be applied to the
compiled versions (via our compilers) of the protocols of Wesolowski [Wes19], of
Pietrzak [Pie19], and of Block et al. [BHR+21] to obtain non-interactive batch
proofs of correct exponentiation. See Sect. 5 and the related work of Lombardi
and Vaikuntanathan [LV20] for a more exhaustive discussion on the matter.

Communication in the Interactive Setting. As illustrated below, we use
pseudorandom functions in order to shrink the length of the public coin message
from the verifier to the prover. This is necessary only in the interactive setting,

Batch Verification for Verifiable Delay Functions 389

since when the Fiat-Shamir heuristic is applied this message is computed locally
by the prover (and hence does not affect the proof’s length). Indeed, verification
of VDFs is typically considered to be non-interactive, but we nevertheless believe
that exploring interactive verification of VDFs is interesting and well-justified
by applications in which verification is done by a single verifier in an online
manner, such as VDF-based proofs of storage. Using an interactive protocol in
such settings eliminates the need to rely on the Fiat-Shamir transform.

1.2 Additional Related Work and Open Problems

Batch Verification for Group Exponentiation. The line of works that
seems most related to ours was initiated by the seminal work of Bellare, Garay
and Rabin [BGR98] (following up on the works of Fiat [Fia89], Naccache et al.
[NMV+94] and of Yen and Laih [YL95]8) and considers the following problem:
Let G be a cyclic group and let g be a generator of the group. The task, given n
exponents x1, . . . , xn and n group elements h1, . . . , hn, is to verify that gxi = hi

for each i ∈ [n]. Bellare et al. presented several approaches for solving this prob-
lem, exhibiting different savings in terms of computational costs vis-à-vis the
näıve solution of raising g to the power of each xi.

Our compilers are inspired by two elegant techniques of Bellare et al. – the
“random subsets” technique and the “random exponents” technique – but there
are some key differences between their work and ours. Firstly, we embed these
techniques within the framework of succinct proofs of correct exponentiation
(which we extend to the batch setting). This setting presents its own set of unique
technical challenges, the main one being reducing the communication overhead
(or proof size, in the non-interactive setting). This challenge does not arise in
the setting considered in their work (and in follow-up works), which is motivated
by batch verification of signatures. Secondly, the random exponents technique
as proposed by Bellare et al. and its analysis explicitly and inherently assumes
that the group at hand is of prime order. Such groups do not seem to enable
VDF constructions, as Rotem, Segev and Shahaf [RSS20] recently showed how
break the sequentiality of any such construction in the generic-group model. We
extend the approach underlying the random exponents technique to composite-
order groups.

In a concurrent and independent work, Block et al. [BHR+21] also extended
the random subsets technique of Bellare et al. that we use to derive Theorem 1.1,
in the context of hidden-order groups (though they did not explicitly observe
the connection between the work of Bellare et al. and theirs). Their motivation
was to extend Pietrzak’s protocol [Pie19] to obtain an information-theoretically
sound protocol, while ours is proof batching, but the application of the random
subsets technique is quite similar in both cases.

Di Crescenzo et al. [CKK+17] considered the related problem of batch dele-
gation of exponentiation in RSA groups, while extending the random exponents
technique of Bellare, Garay and Rabin. Our treatment of RSA groups is also
8 See also [CHP07] and the many references therein.

390 L. Rotem

inspired by the techniques of Di Crescenzo et al. but their protocol includes a
communication overhead which is linear in the number n of exponentiations to
be delegated (and verified) – which in our setting, is exactly what we are trying
to avoid. We manage to get rid of this dependency altogether.

A long line of follow-up works succeeded the work of Bellare et al. suggest-
ing various improvements to their techniques in various settings (see for exam-
ple [BP00,CL06,CY07,CHP07,CL15] and the references therein). An interest-
ing open question is whether some of these techniques can be used in order to
improve our results.

Other VDF Candidates. This work focuses on VDF candidates which are
based on the repeated squaring function in groups of unknown order. Other can-
didates have also been proposed over the last couple of years. Some of which are
based on different assumptions, such as candidates based on super-singular iso-
genies [FMP+19,Sha19], and the VeeDo VDF candidate in prime fields [Sta20];
while other constructions (e.g., [EFK+20,DGM+20]) achieve various desired
properties. An interesting possible direction for future research is to enable batch
verification to these candidate VDFs as well, either relying on our techniques or
presenting new ones tailored specifically for these candidates.

Necessity of One-Way Functions in the Interactive Setting. Informally
put, our protocols use some function f to derandomize a long public coin message
from the verifier to the prover. In our proposed instantiations, f is implemented
using a cryptographic pseudorandom generator or pseudorandom function (both
are known to exist assuming one-way functions [GGM86,Nao91,HIL+99]), and
we show that the soundness of this approach is “as good” as the soundness
before the derandomization. However, in all of our protocols, we only need the
output of f on a uniformly-random input to satisfy some specific statistical
property. Hence, an interesting open question is whether our reliance on one-way
functions is necessary, or can f be instantiated without them while still offering
comparable security guarantees. One possibility is to use a Nissan-Wigderson
type pseudorandom generator [NW94,IW97], relying on worst-case assumptions.
Another is to use ε-biaset sets (see for example [NN93,AGH+92,Ta-17] and the
references therein), though this approach seems to inherently yield a slightly
worse communication to soundness tradeoff.

1.3 Technical Overview

In this section we provide a high-level overview of the techniques used throughout
the paper. In this overview, we ignore various technical subtleties that arise in
the full proofs.

The Basic Random Subset Compiler. We start by describing the basic idea
which underlines the generic compiler guaranteed by Theorem1.1. Let Π be any
(single-instance) proof of correct exponentiation, and let (x1, y1), . . . , (xn, yn)
and e ∈ N be the n pairs of group elements and the exponent that are shared by
the prover and the verifier as input. Recall that the prover wishes to convince the

Batch Verification for Verifiable Delay Functions 391

verifier that yi = xe
i for each i ∈ [n]. The basic technical observation underlying

the compiler is that if for some index i ∈ [n] it holds that yi �= xe
i , then with

probability at least 1/2 over the choice of a uniformly random subset S of [n], it

holds that
∏

j∈S yj �=
(∏

j∈S xj

)e

. This observation then naturally lends itself to
obtain a batch proof of correct exponentiation: First, the verifier simply chooses
such a subset S uniformly at random and sends it to the prover. Then, the verifier
and the prover execute Π on shared input (x′ =

∏
j∈S xj , y

′ =
∏

j∈S yj , e); that
is, the prover uses Π to convince the verifier that indeed y′ = (x′)e. By the above
observation, if Π has soundness error δ, then the compiled batch protocol has
soundness error at most δ + 1/2. The reader is referred to Sect. 4 for a formal
description of the compiler and its analysis.

Amplifying Soundness and Reducing Communication. The above com-
piler suffers from two main drawbacks: The soundness error of the resulted batch
protocol is at least 1/2, and its communication complexity is necessarily linear
in the number n of pairs of group elements, since a uniformly chosen subset
of [n] has n bits of entropy. Fortunately, this situation is easy to remedy by
introducing two simple modifications to the protocol. First, instead of choosing
just one subset S of [n], the verifier chooses m such subsets S1, . . . ,Sm for some
integer m which parameterizes the compiler. Then, the verifier and the prover
run m parallel executions of the underlying protocol Π, where in the ith execu-
tion, they run on shared input (x′

i =
∏

j∈Si
xj , y

′
i =

∏
j∈Si

yj , e). Suppose that
yj �= xe

j for some j ∈ [n]. Using the observation from the previous paragraph,
it is straightforward that if S1, . . . ,Sm are chosen independently and uniformly
at random from all subsets of [n], then the probability that y′

i = (x′
i)

e for each
i ∈ [m] is at most 2−m. Hence, if Π has soundness error δ, then the compiled
batch protocol has soundness error at most δ + 2−m (regardless of whether the
soundness of the underlying protocol Π is amplified via parallel repetition).

In order to attend to the large communication complexity of the compiled
protocol (now the verifier has to send k · n bits to the prover), we derandomize
the choice of the sets S1, . . . ,Sm. Instead of sampling these sets explicitly and
sending their description to the prover, the verifier now samples and sends a short
key k to a pseudorandom function PRF. This key can now succinctly represent
S1, . . . ,Sm; for example by letting j ∈ Si if and only if PRFk(i, j) = 1, for
every i ∈ [m] and j ∈ [n]. Roughly speaking, the security of the pseudorandom
function guarantees that if yj �= xe

j for some j ∈ [n], then the probability that
y′

i = (x′
i)

e for each i ∈ [m] is at most 2−m + negl(λ), where λ is the security
parameter. See Sect. 5 for a formal description and analysis of the strengthened
protocol.

The Random Exponents Compiler. We now describe the idea behind our
improved compiler based on the low order assumption (Theorem1.2). The obser-
vation is that the basic Random Subset Compiler as described above can be
viewed in a more general manner: The verifier chooses α1, . . . , αn ← {0, 1},
and then the two parties invoke the underlying protocol Π on joint input
x′ =

∏
i∈[n] x

αi
i , y′ =

∏
i∈[n] y

αi
i and e. The idea is to now let the verifier choose

392 L. Rotem

α1, . . . , αn from a large domain; concretely, from the set [s] for some appropri-
ately chosen parameter s ∈ N. As before, after the verifier chooses α1, . . . , αn and
sends them over to the prover, the two parties invoke the underlying protocol Π
on shared input (x′, y′, e) for asserting that y′ = (x′)e. It should be noted that
as in the Random Subset Compiler, the choice of α1, . . . , αn can be derandom-
ized using a pseudorandom function in order to save in communication, without
significantly affecting the soundness of the compiler.

The proof of soundness of the compiled protocol now has to rely on the s-low
order assumption, which roughly speaking, says that it should be hard to find
a group element x and a positive integer ω < s such that xω = 1. We wish to
argue that if the s-low order assumption holds in the group at hand and yj �= xe

j

for some j ∈ [n], then enlarging the domain from which α1, . . . , αn are drawn
(up to and including [s]) proportionally reduces the probability that y′ = (x′)e.
This is done by a reduction, which we now informally describe, to the s-low
order assumption. For the formal statement and reduction, we refer the reader
to Sect. 6.

Let (x1, y1), . . . , (xn, yn) be n pairs of elements in a group G such that at
least one index i satisfies yi �= xe

i , and let i∗ be the first such index. Con-
sider the following algorithm A for finding a low order element in G. A first
samples n + 1 integers α1, . . . , αi∗−1, αi∗+1, . . . , αn, β, β′ uniformly at random

from [s]. Then, it checks that
(
xβ

i∗ · ∏
i∈[n]\{i∗} xαi

i

)e

= yβ
i∗ · ∏

i∈[n]\{i∗} yαi
i ,

that
(
xβ′

i∗ · ∏
i∈[n]\{i∗} xαi

i

)e

= yβ′
i∗ · ∏

i∈[n]\{i∗} yαi
i , and that β �= β′. If any of

these conditions does not hold, it aborts. Otherwise, if all of these conditions
check out, A outputs the group element z = yi∗/xe

i∗ together with the exponent
ω = |β − β′|. It is easy to verify that if both of the equalities checked by A
hold, then this implies that zω = 1, while the inequality checked by A implies
that indeed ω �= 0. Now assume towards contradiction that the probability that
y′ = (x′)e is at least 1/s + ε for some ε > 0. Then, a careful analysis shows
that the probability that A does not abort is at least ε2. Informally, this implies
that if the s-low order assumption holds in G and the underlying protocol Π
has soundness error δ, then the compiled batch protocol has soundness error at
most δ + 1/s + negl(λ).

Strong Soundness in Safe RSA Groups. Recall that, as mentioned in
Sect. 1.1, the s-low order assumption cannot hold in the group Z

∗
N for any s ≥ 2,

since N −1 is always an element of order 2 in the group. Therefore, the Random
Exponents Compiler obtains a weaker form of soundness when applied in Z

∗
N ,

guaranteeing only that yi = ±xe
i . To counter this problem, we present a pro-

tocol for proving that order(yi/xe
i) �= 2 for every i. Our basic approach follows

a technique by Di Crescenzo et al. [CKK+17] for proving that order(y/xe) �= 2
for x, y ∈ Z

∗
N and an odd exponent e. In their protocol, the prover computes

w = x(e+1)/2 and sends it to the verifier, who then accepts if and only if w2 = x·y.
The idea is that if N is the product of two safe primes and order(y/xe) = 2, then
x · y must be a quadratic non-residue modulo N . This is true since, as we prove,
all group elements of order 2 in Z

∗
N , including y/xe, are quadratic non-residues

Batch Verification for Verifiable Delay Functions 393

modulo N . Now observe that x · y = (y/xe) · xe+1. Since e is odd, xe+1 is a
quadratic residue modulo N , and we conclude that x · y is a quadratic non-
residue modulo N . This means that w2, which is of course a quadratic residue
modulo N , cannot be equal to x · y and the verifier will inevitably reject.

Generalizing this approach to arbitrary exponents is fairly straightforward,
by having the prover compute w as x�(e+1)/2� and then having the verifier check
that w2 = x1+(e+1 mod 2) · y. The more acute issue is that when moving to the
batch setting, the näıve way for verifying that order(yi/xe

i) �= 2 for every i ∈ [n]
is by running the above protocol n times in parallel, which results in communi-
cation complexity which is linear in n. To avoid this overhead, we combine the
ideas of Di Crescenzo et al. with techniques from our Random Subset Compiler.
Concretely, in our final protocol, the verifier chooses a key k to a pseudoran-
dom function, to succinctly represent m random subsets S1, . . . ,Sm of [n], and
sends k to the prover. The prover then computes wj :=

∏
i∈Sj

x
�(e+1)/2�
i for

every j ∈ [m] and sends w1, . . . , wm to the verifier. Finally, the verifier computes
tj :=

∏
i∈Sj

x
1+(e+1 mod 2)
i ·yi for every j ∈ [m] and accepts if and only if tj = w2

j

for all j-s. A careful analysis shows that if order(yi/xe
i) = 2 for some i ∈ [n] and

the subsets S1, . . . ,Sm uniformly and independently at random, then each tj is a
quadratic non-residue with probability at least 1/2. This implies that the verifier
will accept with probability at most 2−m + negl(λ). We refer the reader to the
full version for a detailed description of our protocol and a formal analysis of its
soundness.

A Statistically-Sound Protocol in Safe RSA Groups. Our statistically-
sound proof of correct exponentiation in RSA groups is obtained by extending the
protocol of Pietrzak [Pie19] using techniques similar to those detailed above. We
start by recalling Pietrzak’s protocol. Suppose that the prover wishes to convince
the verifier that y = x2T

for a group G, elements x, y ∈ G and an integer T , and
assume for ease of presentation that T = 2t for some t ∈ N. In the beginning
of the protocol, the prover computes z = x2T/2

and sends z to the verifier. Now
the prover wishes to prove to the verifier that indeed z = x2T/2

and y = z2
T/2

,
since if y �= x2T

then it must be that z �= x2T/2
or y �= z2

T/2
. One possibility

is to recurse on both claims, until the exponent is small enough for the verifier
to verify the claims herself. However, in this manner the number of sub-claims
will blowup very quickly, resulting in a lengthy proof and in a long verification
time. So instead, Pietrzak’s idea is to merge both claims using (implicitly) the
random exponents technique of Bellare, Garay and Rabin [BGR98]. The verifier
samples a random integer r ← [2λ] and sends it to the prover, and then the two
parties recurse on the (single) instance (x′ = xr · z, y′ = zr · y, T ′ = T/2). That
is, the prover now needs to convince the verifier of the claim y′ = (x′)T ′

, where
T ′ is half the size of T . Suppose now that all elements in the group are of order

394 L. Rotem

at least 2λ.9 In this case, if y �= x2T

then there is at most one value of r ∈ [2λ]
for which y′ = (x′)T ′

and hence Pr
[
y′ = (x′)T ′

]
≤ 2−λ over the choice of r. This

recursion continues for log T = t rounds until T = 1, in which case the verifier
can simply check the relation y = x2 herself using a single squaring in the group.

In order to extend this protocol to the group Z
∗
N for a modulus N that is

the product of two safe primes, we use similar techniques to those used above
for extending the Random Exponents Compiler. Concretely, consider a round in
Piertzak’s protocol in which the prover wants to prove that y = x2T

. In addition
to z = x2T/2

, the prover now also computes w = x2T/2−1+1 and sends it to the
verifier. The verifier then checks that x2 ·z = w2, and if that is not the case then
the verifier rejects immediately. This additional verification is made in each of
the log T rounds of the protocol, and if the verifier does not reject in any of the
rounds and the check for T = 1 goes through, then the verifier accepts.

To analyze the soundness of our protocol, suppose that all group elements
(other than the identity) are either of order 2 or have order at least 2λ; this is
the case for Z

∗
N where N is the product of two large enough safe primes. Let

x and y be group elements such that y �= x2T

, and assume that z and w are
the group elements which the prover sends to the verifier. If x2 · z �= w2, then
the verifier will surely reject and we are done, so for the rest of the analysis we
assume that x2 · z = w2. Consider two cases:

– If z = x2T/2
, then for any r ∈ [2λ] it holds that (xr · z)2

T/2
= zr · x2T �= zr · y.

In other words, Pr
[
y′ = (x′)T ′

]
= 0, where x′ = xr · z, y′ = zr · y, T ′ = T/2

and the probability is taken over r ← [2λ].
– If z �= x2T/2

, then we prove that there is at most one value r ∈ [2λ] for
which (xr · z)2

T/2
= zr · y. Assume towards contradiction otherwise; that is,

that there are two distinct integers r, r′ ∈ [2λ] for which this equality holds.
Rearranging, this means that (x2T/2

/z)d = 1 for d = r − r′. Since x2T/2 �= z

and d < 2λ, we obtain that the order of x2T/2
/z is greater than 1 and lesser

than 2λ, and hence this order must be 2. On the one hand, this means that
x2T/2

/z is a quadratic non-residue modulo N (recall that all elements of order
2 in a safe RSA group are quadratic non-residues), and hence z is a quadratic
non-residue modulo N . But on the other hand, our assumption that x2·z = w2

implies that z is a quadratic residue modulo N , arriving at a contradiction.

Over all, we obtain that in each round whose input (x, y, T) satisfies y �= x2T

, the
probability that the input (x′, y′, T ′) to the next round will satisfy y′ = (x′)T ′

is at most 2−λ over the choice of r ← [2λ]. The soundness of our protocol then
follows by taking a union bound over all rounds. We refer the reader to the full
version for a detailed description of our protocol and a formal analysis of its
soundness.

9 Recall that Boneh et al. [BBF18] proved computational soundness by extending this
analysis to the case where there are elements of order less than 2λ, but these are
hard to find. We focus here on statistical soundness, as this is what we will obtain
in safe RSA groups.

Batch Verification for Verifiable Delay Functions 395

1.4 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation, mathematical background and standard cryptographic prim-
itives that are used throughout the paper. In Sect. 3 we formally define proofs of
correct exponentiation and their batch variant. In Sect. 4 we present a simplified
version of our Random Subsets Compiler for general groups; and then in Sect. 5
we present the necessary amendments required in order to obtain the full-fledged
compiler. In Sect. 6 we present our improved compiler and analyze its security
based on the low order assumption.

Due to space limitations some of our contributions appear in the full version
of this paper. In particular, in the full version we give tighter security analyses
for our more efficient compiler in the specific cases of QR+

N and RSA groups. In
addition, we show how to obtain strong soundness for this compiler in safe RSA
groups, and present our new proof of correct exponentiation in such groups.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that
are used in this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
For a set X , we denote by 2X the power set of X ; i.e., the set which contains
all subsets of X (including the empty set and X itself). For a distribution X we
denote by x ← X the process of sampling a value x from the distribution X.
Similarly, for a set X we denote by x ← X the process of sampling a value x
from the uniform distribution over X . A function ν : N → R

+ is negligible if for
any polynomial p(·) there exists an integer N such that for all n > N it holds
that ν(n) ≤ 1/p(n).

Pseudorandom Functions. We use the following standard notion of a pseu-
dorandom function. Let PRF = (PRF.Gen,PRF.Eval) be a function family over
domain {Xλ}λ∈N with range {Yλ}λ∈N and key space {Kλ}λ∈N, such that:

– PRF.Gen is a probabilistic polynomial-time algorithm, which takes as input
the security parameter λ ∈ N and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm, which takes as input
a key K ∈ Kλ and a domain element x ∈ Xλ and outputs a value y ∈ Yλ.

For ease of notation, for a key K ∈ Kλ, we denote by PRFK(·) the function
PRF.Eval(K, ·). We also assume without loss of generality that for every λ ∈ N,
it holds that Kλ = {0, 1}λ and that PRF.Gen(1λ) simply samples K from {0, 1}λ

uniformly at random. Using these conventions, the following definition captures
the standard notion of a pseudorandom function family.

Definition 2.1. A function family PRF = (PRF.Gen,PRF.Eval) is pseudoran-
dom if for every probabilistic polynomial-time algorithm D, there exists a negli-
gible function ν(·) such that

AdvPRF,D(λ) def=
∣
∣
∣
∣ Pr
K←{0,1}λ

[
D(1λ)PRFK(·) = 1

]
− Pr

f←Fλ

[
D(1λ)f(·) = 1

]∣∣
∣
∣ ≤ ν(λ),

396 L. Rotem

for all sufficiently large λ ∈ N, where Fλ is the set of all functions mapping Xλ

into Yλ.

RSA Groups and the Factoring Assumption. We will use to following for-
malization in order to reason about ensembles of RSA moduli and the hardness
of finding their factorizations. Let ModGen be a probabilistic polynomial-time
algorithm, which takes as input the security parameter λ ∈ N, and outputs a
bi-prime modulus N = p · q and possibly additional parameters pp.

Definition 2.2. The factoring assumption holds with respect to modulus gener-
ation algorithm ModGen if for every probabilistic polynomial time algorithm A,
there exists a negligible function ν(·) such that

Pr
[

p′ · q′ = N
p′, q′ ∈ {2, . . . , N − 1}

∣
∣
∣
∣
(N, pp) ← ModGen(1λ)
(p′, q′) ← A(N, pp)

]

≤ ν(λ),

for all sufficiently large λ ∈ N.

The following simple lemma (see for example [Bon99]) states that it is easy
to find a factorization of an RSA modulus N given a non-trivial square root of
unity in the RSA group Z

∗
N .

Lemma 2.3. There exist a deterministic algorithm A, such that for every pair
(p, q) of primes and every group element x ∈ Z

∗
N for which x2 = 1 and x �∈

{1,−1}, where N = p · q, it holds that A(N,x) outputs p and q. Moreover, A
runs in time polynomial in log(N).

Using Safe Primes. We will sometimes focus on the case in which the RSA
modulus N is the product of two safe primes. That is, N = p′ · q′, such that
p′ and q′ are primes and there exist primes p and q for which p′ = 2p + 1 and
q′ = 2q + 1. In this case, the order of the RSA group Z

∗
N is ϕ(N) = 4 · p · q,

where ϕ(·) is Euler’s totient function.

The Group QR+
N . Another group of interest in this work is the group QRN

of quadratic residues modulo N , where N is an RSA modulus generated by the
modulus generation algorithm ModGen. This is the group defined by

QRN
def=

{
x2 mod N : x ∈ Z

∗
N

}
.

The order of the group QRN is ϕ(N)/4. If N is the product of two safe primes
p′ = 2p + 1 and q′ = 2q + 1, this means the order of QRN is p · q.

We will also consider the group QR+
N of signed quadratic residues modulo

N , defined by
QR+

N
def= {|x| : x ∈ QRN} ,

where the absolute value operator | · | is with respect to the representation of Z∗
N

elements as elements in {−(N−1)/2, . . . , (N−1)/2}. This is because membership

Batch Verification for Verifiable Delay Functions 397

in QR+
N can be decided in polynomial time10 and we will implicitly use this fact

when reasoning about these groups. The map | · | acts as an isomorphism from
QRN to QR+

N , and hence QR+
N is also of order ϕ(N)/4. For a more in-depth

discussion on the use of QR+
N instead of QRN see [FS00,HK09,Pie19].

Working Over General Groups. Some of the results in this paper are more
general, and do not assume working over a specific group. In these cases, the
algorithm ModGen will be replaced by a group generation algorithm GGen. This
is a probabilistic polynomial-time algorithm which takes in as input the security
parameter and outputs a description of a group G, and possibly additional public
parameters pp. All groups in this paper are assumed to be abelian and we will
not note this explicitly hereinafter. We will also implicitly assume that for all
groups considered in this paper, their group operation is implementable in time
polynomial in the security parameter λ.

The Low Order Assumption. We will rely on the following formalization of
the low order assumption, put forth by Boneh et al. [BBF18] as a prerequesite
for instantiating Pietrzak’s protocol [Pie19] in general groups. For a group G,
let 1G denote the identity element of the group.

Definition 2.4. Let GGen be a group generation algorithm, and let d = d(λ) be
an integer function of the security parameter λ ∈ N. We say that the d-low order
assumption holds with respect to GGen if for every probabilistic polynomial-time
algorithm A, there exists a negligible function ν(·) such that

AdvLowOrd
GGen,d,A(λ) def= Pr

[
LowOrdGGend,A (λ) = 1

]
≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment LowOrdGGend,A (λ) is defined
as follows:

1. G ← GGen(1λ).
2. (x, ω) ← A(G).
3. Output 1 if x �= 1G; ω < d; and xω = 1G. Otherwise, output 0.

Pietrzak observed (although not in this terminology) that the d-low order
assumption holds information-theoretically in the group QR+

N , whenever N is
the product of two safe primes p′ = 2p + 1 and q′ = 2q + 1, and d ≤ min{p, q}.

In cases where G is naturally embedded in some ring R and −1G ∈ G (that is,
the additive inverse of the multiplicative identity is an element of the group),11

we can consider a weakening of Definition 2.4, requiring that the adversary is
unable to come up with a low order element other than ±1G.

10 This is the case since, as observed by Fischlin and Schnorr [FS00], QR+
N = J

+
N ,

where JN is the group of elements with Jacobi symbol +1 and J
+
N

def
= JN/±1. Hence,

deciding whether an integer x is in QR+
N amounts to checking that x ≥ 0 and that

its Jacobi symbol is +1.
11 This is indeed the case for RSA groups, which are embedded in the ring ZN .

398 L. Rotem

Definition 2.5. Let GGen be a group generation algorithm, and let d = d(λ) be
an integer function of the security parameter λ ∈ N. We say that the weak d-low
order assumption holds with respect to GGen if for every probabilistic polynomial-
time algorithm A, there exists a negligible function ν(·) such that

AdvWeakLO
GGen,d,A(λ) def= Pr

[
WeakLOGGen

d,A (λ) = 1
]

≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment WeakLOGGen
d,A (λ) is defined

as follows:

1. G ← GGen(1λ).
2. (x, ω) ← A(G).
3. Output 1 if x �∈ {1G,−1G}; ω < d; and xω = 1G. Otherwise, output 0.

Seres and Burcsi [SB20] recently proved (as a special case) that in RSA
groups with a modulus N which is the product of two safe primes p′ = 2p + 1
and q′ = 2q+1, the weak d-low order assumption for d ≤ min{p, q} is equivalent
to factoring N .

3 Succinct Proofs of Correct Exponentiation

In this section we review the notion of succinct proofs of correct exponentiation.
First, in Sect. 3.1, we define proofs of correct exponentiation for a single instance
and then, in Sect. 3.2, we extend the definition to account for the task of batch
verification.

3.1 The Basic Definition

Loosely speaking, a proof of correct exponentiation is a protocol executed by
two parties, a prover and a verifier, with a common input (x, y, e), where x and
y are elements in some group G and e is an integer. The goal of the prover is to
convince the verifier that y = xe. Of course, the verifier can just compute xe and
compare the result to y on her own, but we will be interested in protocols in which
the verifier works much less than that. Concretely, we are typically interested
in protocols in which the verifier runs in time 	 poly(log(e), λ), which is the
time it will take the verifier to compute xe on her own, assuming that the group
operation is implementable in time polynomial in the security parameter λ ∈ N.

More formally, a proof of correct exponentiation (PoCE) is a triplet π =
(GGen,P,V) of probabilistic polynomial-time algorithms, where GGen is a group
generation algorithm (recall Sect. 2), P is the prover and V is the verifier. We
denote by 〈P(aux),V〉 (input) the random variable corresponding to the output
of V when the joint input to P and to V is input and P additionally receives the
private auxiliary information aux. In case P receives no auxiliary information,
we write 〈P,V〉 (input). The properties which should be satisfied by a PoCE are
defined in the following definition.

Batch Verification for Verifiable Delay Functions 399

Definition 3.1. Let δ = δ(λ) be a function of the security parameter λ ∈ N, and
let t = t(λ, e) and c = c(λ, e) be functions of λ ∈ N and of the exponent e ∈ N.
A triplet π = (GGen,P,V) of probabilistic polynomial-time algorithms is said to
be a (δ, c, t)-proof of correct exponentiation (PoCE) if the following conditions
hold:

1. Completeness: For every λ ∈ N, for every (G, pp) in the support of
GGen(1λ) and for every input (x, y, e) ∈ G

2 × N such that xe = y, it holds
that

Pr [〈P,V〉 (G, pp, x, y, e) = 1] = 1,

where the probability is over the randomness of P and of V.
2. δ-Soundness: For every pair P∗ = (P∗

1,P
∗
2) of probabilistic polynomial-time

algorithms, there exists a negligible function ν(·) that

AdvPoCEπ,P∗
def= Pr

[〈P∗
2(st),V〉 (G, pp, x, y, e) = 1

xe �= y

∣
∣
∣
∣
(G, pp) ← GGen(1λ)
(x, y, e, st) ← P∗

1(G, pp)

]

≤ δ(λ) + ν(λ),

for all sufficiently large λ ∈ N.
3. Succinctness: For every λ ∈ N, for every (G, pp) in the support of GGen(1λ)

and for every input (x, y, e) ∈ G
2 × N, it holds that: The total length of all

messages exchanged between P and V in a random execution of the protocol
on joint input (G, pp, x, y, e) is at most c(λ, e) with probability 1, where the
probability is over the randomness of P and of V.

4. Efficient verification: For every λ ∈ N, for every (G, pp) in the support of
GGen(1λ) and for every input (x, y, e) ∈ G

2 × N, it holds that: The running
time of V in a random execution of the protocol on joint input (G, pp, x, y, e) is
at most t(λ, e) with probability 1, where the probability is over the randomness
of P and of V.

3.2 Batch Proofs of Correct Exponentiation

We now turn to define batch proofs of correct exponentiation. In such proofs,
the joint input is composed of 2n group elements x1, . . . , xn, y1, . . . , yn and an
exponent e, for some n ∈ N. The prover now wishes to convince the verifier
that xe

i = yi for each of the i ∈ [n]. The definition is a natural extension of
Definition 3.1, except that now the communication complexity and the running
time of the verifier may both scale with the integer n. It might also make sense
to consider the case where the soundness error δ is also a function of n, but
this will not be the case in our protocols, and hence we do not account for this
case in our definition. The formal definition below uses the same notation as did
Definition 3.1.

Definition 3.2. Let δ = δ(λ) be a function of the security parameter λ ∈ N, and
let t = t(λ, e, n) and c = c(λ, e, n) be function of λ, of the exponent e ∈ N and of
n ∈ N. A triplet π = (GGen,P,V) of probabilistic polynomial-time algorithms is
said to be a (δ, c, t)-batch proof of correct exponentiation (BPoCE) if the following
conditions hold:

400 L. Rotem

1. Completeness: For every integers λ, n ∈ N, every (G, pp) in the support of
GGen(1λ) and every input (x = (x1, . . . , xn), y = (y1, . . . , yn), e) ∈ G

n×G
n×N

such that xe
i = yi for every i ∈ [n], it holds that

Pr [〈P,V〉 (G, pp, x, y, e) = 1] = 1,

where the probability is over the randomness of P and of V.
2. δ-Soundness: For every pair P∗ = (P∗

1,P
∗
2) of probabilistic polynomial-time

algorithms, there exists a negligible function ν(·) such that

AdvBPoCEπ,P∗
def= Pr

[〈P∗
2(st),V〉 (G, pp, x, y, e) = 1

∃i ∈ [n], xe
i �= yi

∣
∣
∣
∣
(G, pp) ← GGen(1λ)
(n, x, y, e, st) ← P∗

1(G, pp)

]

≤ δ(λ) + ν(λ),

for all sufficiently large λ ∈ N, where x = (x1, . . . , xn) and y = (y1, . . . , yn).
3. Succinctness: For every λ, n ∈ N, for every (G, pp) in the support of

GGen(1λ) and for every input (x, y, e) ∈ G
n × G

n × N, it holds that: The
total length of all messages exchanged between P and V in a random exe-
cution of the protocol on joint input (G, pp, x, y, e) is at most c(λ, e, n) with
probability 1, where the probability is over the randomness of P and of V.

4. Efficient verification: For every λ, n ∈ N, for every (G, pp) in the sup-
port of GGen(1λ) and for every input (x, y, e) ∈ G

n × G
n × N, it holds that:

The running time of V in a random execution of the protocol on joint input
(G, pp, x, y, e) is at most t(λ, e, n) with probability 1, where the probability is
over the randomness of P and of V.

On Using a Single Exponent. The above definition considers the setting of a
single exponent for all n pairs of group elements; that is, the joint input includes
a single exponent e ∈ N for which the prover contends that xe

i = yi for all i ∈ [n].
Note that this setting is indeed in line with the motivation described in Sect. 1 of
batch verification of many VDF outputs based on the repeated squaring function.
This is the case, since in this scenario the exponent e is determined by the
delay parameter T . In the examples mentioned in Sect. 1, a scenario in which all
outputs were computed with respect to the same delay parameter is reasonable.
It might still be of interest, both theoretically and for specific applications (see
for example [BBF19]), to construct batch proofs of correct exponentiation with
different exponents, and we leave it is as an interesting open question.

4 Warm-Up: The Random Subset Compiler

In this section we present a simplified version of our general compiler, which
we call “The Random Subset Compiler” following Bellare, Garay and Rabin
[BGR98]. This simplified version is based on a technique introduced by Bellare
et al. for related, yet distinct, purposes (recall Sect. 1.2). In our context of proofs
of correct exponentiation, this technique introduces quite a large communication

Batch Verification for Verifiable Delay Functions 401

overhead and a considerable amount of additional soundness error. Nevertheless,
we start off with this simplified version as it already captures the main ideas
behind the full-fledged compiler. Then, in Sect. 5 we show how to simultaneously
amplify the soundness guarantees of our compiler and considerably reducing the
communication overhead.

Let δ = δ(λ) be a function of the security parameter λ ∈ N, and let c = c(λ, e)
and t = t(λ, e) be functions of λ and of the exponent e ∈ N. Our compiler uses
as a building block any (δ, c, t)-PoCE (recall Definition 3.1) π = (GGen,P,V)
and produces a protocol Batch1(π) = (GGen,PBatch,VBatch), which is a (δ′, c′, t′)-
BPoCE for δ′ = δ + 1/2 and for related functions c′ = c′(λ, e, n) and t′ =
t′(λ, e, n).

The Protocol Batch1(π)
Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors �x =
(x1, . . . , xn) and �y = (y1, . . . , yn) of group elements, and an exponent e ∈ N.

1. VBatch samples I ← 2[n] and sends I to PBatch.
2. Both VBatch and PBatch compute xprod =

∏
i∈I xi and yprod =

∏
i∈I yi.

3. VBatch and PBatch execute the protocol π on joint input (G, pp, xprod, yprod, e),
where VBatch plays the role of V and PBatch plays the role of P. Let b ∈ {0, 1}
be the output of V in this execution.

4. VBatch outputs b.

Theorem 4.1 below establishes the completeness, soundness, succinctness and
verifier efficiency of Batch1(π). It uses the following notation: We let top(λ) denote
a bound on the time required to apply the binary group operation on two group
elements, in a group G generated by GGen(1λ).

Theorem 4.1. Assume that π is a (δ, c, t)-PoCE. Then, Batch1(π) is a
(δ′, c′, t′)-BPoCE, where for every λ, e, n ∈ N:

– δ′(λ) = δ(λ) + 1/2.
– c′(λ, n, e) = c(λ, e) + n.
– t′(λ, n, e) = t(λ, e) + O(n · top(λ)).

We start by presenting our main technical lemma, which we will use in the
proof of Theorem4.1 as well as in subsequent sections.

Lemma 4.2. Let G be a group. For every integers n, e ∈ N and vectors x, y ∈ G
n

the following holds: If there exists an index i ∈ [n] such that xe
i �= yi, then

Pr
I←2[n]

[(
∏

i∈I
xi

)e

�=
∏

i∈I
yi

]

≥ 1
2
.

Proof of Lemma 4.2. For a subset I ⊆ [n], we say that I is biased if
(∏

i∈I xi

)e

�= ∏
i∈I yi, and otherwise we say that I is balanced. Denote by SBalanced and by

SBiased the set of all balanced subsets of [n] and the set of all biased subsets of
[n], respectively.

402 L. Rotem

Suppose that there exists an index i ∈ [n] such that xe
i �= yi, and let i∗ be

an arbitrary such index (e.g., the minimal index for which the inequality holds).
We wish to show that |SBalanced| ≤ |SBiased|, as this will conclude the proof of the
lemma. To this end, consider a partition P of 2[n] to 2n−1 pairs as follows:

P = {(I, I ∪ {i∗}) : i∗ �∈ I} .

In each pair (I, I ∪ {i∗}) in P, at most one subset of I and I ∪ {i∗} can be
balanced. This is the case since if I ∈ SBalanced, then it must be that I ∪ {i∗} ∈
SBiased since

∏

i∈I∪{i∗}
xe

i = (x∗
i)

e ·
∏

i∈I
xe

i

= (x∗
i)

e ·
∏

i∈I
yi (1)

�= yi∗ ·
∏

i∈I
yi

=
∏

i∈f(I)

yi, (2)

where Eq. (1) holds because I is balanced, and (2) holds due to the assumption
that xe

i∗ �= yi∗ . Since at most one subset in each pair of the 2n−1 pairs in P is
balanced, it holds that |SBalanced| ≤ |SBiased| concluding the proof. �

We are now ready to prove Theorem 4.1, establishing the completeness,
soundness, verifier efficiency and succinctness of our protocol πBatch.

Proof of Theorem 4.1. Completeness follows immediately from the complete-
ness of π and the fact that if xe

i = yi for every i ∈ [n], then it also holds that(∏
i∈I xi

)e =
∏

i∈I yi for any choice of I ∈ 2[n].
We now turn to prove that Batch1(π) satisfies δ′-soundness for δ′ = δ + 1/2.

Let P∗
Batch = (P∗

Batch,1,P
∗
Batch,2) be a malicious prover attempting to break the

soundness of Batch1(π). Consider the following pair P∗ = (P∗
1,P

∗
2) attempting to

break the soundness of π. On input (G, pp) generated by GGen(1λ), the algorithm
P∗
1 is defined as follows:

1. Invoke (n, x, y, e, st) ← P∗
Batch,1(G, pp), where x = (x1, . . . , xn) and y =

(y1, . . . , yn).
2. Sample I ← 2[n].
3. Compute xprod =

∏
i∈I xi and yprod =

∏
i∈I yi.

4. Set st′ = (st, x, y, I).
5. Output (xprod, yprod, e, st

′).

Then, the algorithm P∗
2, running on private input st′ and interacting with the

verifier V on joint input (G, pp, xprod, yprod, e), is defined as follows:

1. Parse st′ as (st, x, y, I).

Batch Verification for Verifiable Delay Functions 403

2. Invoke P∗
Batch,2 on input st and simulate to P∗

Batch,2 an execution of Batch1(π)
on joint input (G, pp, x, y, e):
(a) Send I to P∗

Batch,2 as the first message of the verifier in Batch1(π).
(b) Let V play the role of VBatch in all subsequent rounds, by relaying all

messages from P∗
Batch,2 to V and vice versa.

We now turn to bound AdvPoCEπ,P∗ . To that end, we define the following events:

– Let NotEqual denote the event in which for some i ∈ [n], it holds that xe
i �= yi,

where n, x, y and e are outputted by P∗
Batch,1 in Step 1 of P∗

1, x = (x1, . . . , xn)
and y = (y1, . . . , yn).

– Let BiasedSet be the event in which
(

∏

i∈I
xi

)e

�=
∏

i∈I
yi,

where n, x, y and e are as before and I is the random subset sampled by P∗
1

in Step 2.
– Let PWin be the event in which P∗ wins; that is, V outputs 1 and BiasedSet

holds.
– Let PBatchWin be the event in which P∗

Batch wins in the simulation of
Batch1(π) by P∗: The simulated VBatch outputs 1 and NotEqual holds.

Equipped with this notation, it holds that

AdvPoCEπ,P∗ = Pr [PWin]

≥ Pr [PWin|PBatchWin ∧ BiasedSet] · Pr [PBatchWin ∧ BiasedSet]
= Pr [PBatchWin ∧ BiasedSet] , (3)

where Eq. (3) holds since conditioned on PBatchWin, it holds that VBatch (in the
simulation of Batch1(π)) outputs 1. This implies that V outputs 1, and hence
that Pr [PWin|PBatchWin ∧ BiasedSet] = 1. By total probability,

Pr [PBatchWin ∧ BiasedSet]
= Pr [PBatchWin] − Pr

[
PBatchWin ∧ BiasedSet

]

= AdvBPoCEBatch1(π),P∗
Batch

− Pr
[
PBatchWin ∧ BiasedSet

]
(4)

≥ AdvBPoCEBatch1(π),P∗
Batch

− Pr
[
NotEqual ∧ BiasedSet

]
(5)

≥ AdvBPoCEBatch1(π),P∗
Batch

− Pr
[
BiasedSet

∣
∣NotEqual

]
, (6)

where Eq. (4) holds since P∗ perfectly simulates Batch1(π) to P∗
Batch; and Eq.

(5) is true since PBatchWin is contained in NotEqual, and hence PBatchWin ∧
BiasedSet is contained in NotEqual ∧ BiasedSet.
We are left with bounding Pr

[
BiasedSet

∣
∣NotEqual

]
. Indeed, Lemma 4.2 immedi-

ately implies that

404 L. Rotem

Pr
[
BiasedSet

∣
∣NotEqual

] ≤ 1
2
. (7)

Taking Eq. (3), (6) and (7) together and rearranging, we get that

AdvBPoCEBatch1(π),P∗
Batch

≤ AdvPoCEπ,P∗ +
1
2
,

which implies – since π satisfies δ-soundness – that there exists a negligible
function ν(·) such that

AdvBPoCEBatch1(π),P∗
Batch

≤ δ(λ, e) +
1
2

+ ν(λ),

for all sufficiently large λ ∈ N.
We have proved that Batch1(π) satisfies δ′-soundness for δ′ = δ + 1/2. To

conclude the proof, we are left with bounding the verifier’s running time t′ and
the communication complexity c′ of Batch1(π). As for the running time of VBatch:
The verifier samples a random subset I, computes

∏
i∈I xi and

∏
i∈I yi and

participates in a single execution of π. Since the products computed by VBatch

include at most n group elements each, it follows that her running time is t′ =
O(n · top(λ)) + t. The communication in Batch1(π) includes the subset I, which
can be encoded using n bits, and all messages exchanged in a single execution
of π. Therefore, the total communication is c′ = c + n. This concludes the proof
of Theorem 4.1. �

5 Amplifying Soundness and Reducing Commu-
nication

In this section, we address the two main drawbacks of the compiler from Sect. 4;
namely, its large soundness error, and the fact that the communication complex-
ity is linearly dependent on the number n of pairs (xi, yi). In order to do so, we
introduce an improved compiler, which differs from the one found in Sect. 4 in
two respects. First, the verifier now chooses m random subsets I1, . . . , Im ⊆ [n]
for some integer m which is a parameter of the protocol, and the parties invoke
m parallel executions of the underlying protocol π on the m inputs which are
induced by these subsets. Note that sending the representation of m random sub-
sets of [n] requires that the verifier sends additional m · n bits to the prover. To
avoid this communication overhead, we let the verifier succinctly represent these
m subsets via a single key to pseudorandom function, thus reducing the additive
communication overhead to just λ bits, where λ ∈ N is the security parameter.
As we will show, this essentially does not harm the soundness guaranteed by the
protocol.

We now turn to formally present our compiler. Let δ = δ(λ) a be a function
of the security parameter λ ∈ N, and let c = c(λ, e) and t = t(λ, e) be functions
of λ and of the exponent e ∈ N. Our compiler is parameterized by an integer
m ∈ N, and uses the following building blocks:

Batch Verification for Verifiable Delay Functions 405

– A (δ, c, t)-PoCE π = (GGen,P,V) (recall Definition 3.1).
– A pseudorandom function family PRF, such that for every λ ∈ N and for

every key K ∈ {0, 1}λ, the function PRFK maps inputs in {0, 1}�log(m·n)� to
outputs in {0, 1}. For ease of notation, for integers j ∈ [m] and i ∈ [n], we will
write PRFK(j‖i), with the intention (but without noting it explicitly) that
the input to the function is a bit string representing the integers j and i.

The compiler produces a protocol Batchm
2 (π) = (GGen,PBatch,VBatch), which is a

(δ′, c′, t′)-BPoCE for δ′ = δ + 2−m and for related functions c′ = c′(λ, e, n) and
t′ = t′(λ, e, n).

The Protocol Batchm
2 (π)

Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors �x =
(x1, . . . , xn) and �y = (y1, . . . , yn) of G elements, and an exponent e ∈ N.

1. VBatch samples K ← {0, 1}λ and sends K to PBatch.
2. For j = 1, . . . , m:

(a) Both VBatch and PBatch compute Ij = {i ∈ [n] : PRFK(j‖i) = 1}.
(b) Both VBatch and PBatch compute uj =

∏
i∈Ij

xi and wj =
∏

i∈Ij
yi.

3. VBatch and PBatch execute in parallel m executions of the protocol π, where in
the j-th execution, the joint input is (pp, uj , wj , e). In each execution, VBatch

plays the role of V and PBatch plays the role of P. For each j ∈ [m], let
bj ∈ {0, 1} be the output of V in the j-th execution.

4. VBatch outputs b :=
∧m

j=1 bj .

Theorem 5.1 establishes the completeness, soundness, succinctness and ver-
ifier efficiency of Batchm

2 (π). Recall that we denote by top = top(λ) the time
required to apply the binary group operation on two group elements, in a group
G generated by GGen(1λ). We also denote by tprf = tprf(λ,m, n) the time required
to compute PRFK(z) for K ∈ {0, 1}λ and z ∈ {0, 1}�log(m·n)�.

Theorem 5.1. Assume that PRF is a pseudorandom function and that π is a
(δ, c, t)-PoCE. Then, Batchm

2 (π) is a (δ′, c′, t′)-BPoCE, where:

– δ′(λ) = δ(λ) + 2−m.
– c′(λ, n, e) = m · c(λ, e) + λ.
– t′(λ, n, e) = m · t(λ, e) + λ + O (m · n · (top + tprf)).

Before proving Theorem5.1, a couple of remarks are in order.

Applying the Fiat-Shamir Heuristic. If the Fiat-Shamir heuristic [FS86]
can be applied to π in the random oracle model, then it can also be applied
to Batchm

2 (π) as well, as long as m = ω(log(λ)) (and hence 2−m is a negligible
function of the security parameter λ ∈ N). This is the case since our compiler only
adds a single public coin message from the verifier to the prover. In particular,
the Fiat-Shamir heuristic may be applied whenever π is a constant-round public-
coin protocol with negligible soundness error, which is indeed the case for the
protocol of Wesolowski [Wes19]. It should be noted that even though the protocol
of Pietrzak [Pie19] is not constant-round, the Fiat-Shamir heuristic may still be

406 L. Rotem

applied to it in the random oracle model, and so it can also be applied to the
compiled version thereof using our compiler.

Replacing PRF with a Pseudorandom Generator. Our use of PRF enables
us to handle cases in which n is not a-priori bounded and can be chosen by the
malicious prover (this is in line with Definition 3.2). However, in many cases it
makes sense to consider values of n which are a-priori bounded. In such cases,
we can replace our use of the pseudorandom function with a pseudorandom
generator PRG mapping seeds of length λ to outputs of length m · n.12 Instead
of sampling a key K, the verifier will now sample a seed s ← {0, 1}λ to PRG and
send it over to the prover. Then, both the prover and the verifier can compute
y = PRG(s) and parse y as the natural encoding of m subsets I1, . . . , Im of [n]
(i.e., for each j ∈ [m], the vector (y(j−1)·n+1, . . . , yj·n) is the characteristic vector
of Ij). In practice, PRG can be efficiently implemented via a cryptographic hash
function (e.g., SHA).

Proof of Theorem 5.1. We start by analyzing the communication complexity
and the verifier’s running time. Per the running time of the verifier: It samples a
random key K ← {0, 1}λ, taking time λ; makes m · n invocation of PRF, taking
time m ·n · tprf ; computes 2m products of at most n group elements each, taking
time O(m · n · top); and participates in m executions of π, which takes time
m · t. It follows that her running time is t′ = t + λ + O(m · n · (top + tprf)). The
communication in Batchm

2 (π) includes the key K and all messages exchanged in
m executions of π, resulting in a total communication complexity of c′ = m·c+λ.
The δ′-soundness of Batchm

2 (π) follows immediately from the following lemma
and the pseudorandomness of PRF.

Lemma 5.2. For every pair P∗
Batch = (P∗

Batch,1,P
∗
Batch,2) of probabilistic polyno-

mial time algorithms, there exist a probabilistic polynomial-time algorithm D and
a negligible function ν(·) such that

AdvBPoCEBatchm
2 (π),P∗

Batch
≤ δ + 2−m + AdvPRF,D(λ) + ν(λ)

for all sufficiently large λ ∈ N.

Due to space limitations, the proof of Lemma 5.2 can be found in the full
version of the paper.

6 An Improved Compiler from the Low Order
Assumption

In this section we present an improved compiler, which enjoys significant commu-
nication improvements over our general compiler from Sect. 5. Concretely, the
communication complexity of the resulted protocol is completely independent

12 We implicitly assume here that m and n are both polynomially-bounded functions
of the security parameter.

Batch Verification for Verifiable Delay Functions 407

of the additional soundness error (the verification time, though also improved,
still depends on it).13 The cost is that this compiler, unlike the previous one,
relies on an algebraically-structured computational assumption – the low order
assumption (recall Definition 2.4). However, this caveat does not seem overly
restrictive when to compiler is applied to either the protocol of Pietrzak or to
that of Wesolowski [Pie19,Wes19], both of which rely either on this assumption
or stronger ones. Our compiler is inspired by an approach presented by Bellare,
Garay and Rabin [BGR98] (which also implicitly underlies the batch proof of
Wesolowski [Wes20]), while introducing some new ideas for the setting of succinct
BPoCE (see Sects. 1.2 and 1.3 for details).

6.1 The Compiler

We now present the compiler. Let GGen be a group generation algorithm (recall
Sect. 2). Let δ = δ(λ) a be a function of the security parameter λ ∈ N, and let
c = c(λ, e) and t = t(λ, e) be functions of λ and of the exponent e ∈ N. Our
compiler is parameterized by an integer s, and uses the following building blocks:

– A (δ, c, t)-PoCE π = (GGen,P,V).
– A pseudorandom function family PRF, such that for every λ ∈ N and for

every key K ∈ {0, 1}λ, the function PRFK maps inputs in {0, 1}�log(n)� to
outputs in [s].14 For ease of notation, for an integer i ∈ [n], we will write
PRFK(i), with the intention (but without noting it explicitly) that the input
to the function is a bit string representing the integer i.

The compiler produces a protocol Batchs
3(π) = (GGen,P′,V′), which is a

(δ′, c′, t′)-BPoCE for related functions δ′ = δ′(λ), c′ = c′(λ, e, n) and t′ =
t′(λ, e, n).

The Protocol Batchs
3(π)

Joint input: Public parameters (G, pp) generated by GGen(1λ), vectors �x =
(x1, . . . , xn) and �y = (y1, . . . , yn) of group elements, and an exponent e ∈ N.

1. V′ samples K ← {0, 1}λ and sends K to P′.
2. For i = 1, . . . , n: Both V′ and P′ compute αi := PRFK(i).
3. Both V′ and P′ compute x =

∏
i∈[n] x

αi
i and y =

∏
i∈[n] y

αi
i .

4. V′ and P′ execute the protocol π on joint input (G, pp, x, y, e), where V′ plays
the role of V and P′ plays the role of P. Let b ∈ {0, 1} be the output of V in
this execution.

5. V′ outputs b.

13 Recall that in the compiler from Sect. 5, in order to obtain an additive soundness
loss of 2−m, the communication had to grow linearly with m.

14 Given any efficient algorithm Samp for sampling from the uniform distribution over
[s] using r = r(s) random coins, PRF can be implemented by invoking a PRF
mapping {0, 1}�log(n)� into {0, 1}r and then applying Samp using the output of the
PRF as random coins.

408 L. Rotem

Similarly to our discussion in Sect. 5, if the Fiat-Shamir heuristic [FS86] can
be applied to π in the random oracle, then it can also be applied to Batchs

3(π).
Moreover, if the number n of pairs (xi, yi) is a-priori bounded, then the use of
PRF can be replaced by a pseudorandom generator in a similar manner to what
was done in Sect. 5.

Theorem 6.1 establishes the completeness, soundness, succinctness and veri-
fier efficiency of Batchs

3(π), in cases where the low order assumption holds with
respect to GGen. Recall that we denote by top = top(λ) the time required to
apply the binary group operation on two group elements in G that is generated
by GGen(1λ). We also denote by tprf = tprf(λ, s, n) the time required to compute
PRFK(z) for K ∈ {0, 1}λ and z ∈ {0, 1}�log(n)�.

Theorem 6.1. Assume that PRF is a pseudorandom function, that π is a
(δ, c, t)-PoCE, and that the s-low order assumption holds with respect to GGen.
Then, Batchs

3(π) is a (δ′, c′, t′)-BPoCE, where:

– δ′(λ) = δ(λ) + 1/s.
– c′(λ, n, e) = c(λ, e) + λ.
– t′(λ, n, e) = t(λ, e) + λ + n · tprf + O(n · log(s) · top).

Instantiating the Compiler. Basing the compiler on the general low order
assumption gives rise to several possible instantiations. In particular:

– The groups QRN and QR+
N . The low order assumption holds uncon-

ditionally in the group QRN of quadratic residues modulo N when N
is the product of two safe primes, as well as in the (isomorphic) group
QR+

N of signed quadratic residues modulo N (recall Sect. 2). Concretely, if
N = (2p + 1) · (2q + 1) for prime p and q, then QRN and QR+

N contain
no elements of order less than min{p, q}. In the context of VDFs, this was
observed by Pietrzak [Pie19] and by Boneh et al. [BBF18]. However, it is also
plausible that the assumption holds computationally in the groups QRN and
QR+

N when the factors of N are not safe primes.
– RSA groups. It is tempting to instantiate our compiler within the RSA

group Z
∗
N as perhaps the best-understood group of unknown order. Alas, the

low order assumption cannot hold in Z
∗
N since −1 ∈ ZN is always of order

two in this group. One possible ramification, suggested by Boneh et al. is to
work over the quotient group Z

∗
N/{±1}. Another possibility is to settle on

a slightly weaker soundness guarantee for BPoCEs, which allows a malicious
prover to convince the verifier that yi = xe

i for every i, even though for some
indices yi = −xe

i . This weakened soundness guarantee is defined in the full
version and can be shown to follow from the weak low order assumption
(Definition 2.5), using essentially the same proof as the proof of Theorem6.1.
Moreover, Seres and Burcsi [SB20] have shown that when N is the product of
two safe primes, breaking the weak low order assumption in Z

∗
N is equivalent

to factoring the modulus N .15 A third option is to compose our compiler
15 Their proof can also be used, essentially unchanged, to show that (the strong variant

of) the low order assumption in Z
∗
N {±1} is equivalent to factoring N .

Batch Verification for Verifiable Delay Functions 409

with an additional protocol, specifically dedicated to proving that yi �= −xe
i

for each i. We present and analyze such a protocol in the paper’s full version.
– Class groups of imaginary quadratic fields. These groups were sug-

gested in the context of VDFs by Wesolowski [Wes19] as candidate groups
of unknown order. The security of the low order assumption in these groups
is still unclear [BBF18,BKS+20]; but at least until proven otherwise, it is
possible that our compiler can be instantiated in a sub-family of these groups
as well. See the recent work of Belabas et al. [BKS+20] for further details on
the possible choice of parameters for such groups.

On the Tightness of the Reduction. In Sect. 6.2 we prove the soundness
of our compiler based on the low order assumption. This general reduction,
however, suffers from a cubic security loss: Given a prover which breaks the
soundness of the resulting BPoCE with advantage δ + 1/s + ε, we construct an
adversary breaking the low order assumption with advantage O(ε3). Coming up
with a tight reduction to the general low order assumption seems to be beyond
current techniques. Hence, instead, in the full version of the paper, we give
specific proofs for the soundness of our compiler in the groups QR+

N and Z
∗
N . In

the former, our proof is information-theoretic, while in the latter, it relies on a
tight reduction to the factoring assumption.

Necessity of the Low Order Assumption. We note that our reliance on the
s-low-order assumption in Theorem6.1 is necessary. To see why that is, suppose
that we work in a group G in which the assumption does not hold; that is,
given the group description it is easy to find a group element z and an integer
ω < s such that zω = 1G. In this case, the attacker can output an instance
((xi, yi)i∈[n], e) such that n and e are arbitrary integers, x1, . . . , xn are arbitrary
group elements, yi = xe

i for every i ∈ {2, . . . , n} and y1 = z · xe
1. The verifier V′

will incorrectly accept whenever the group elements x and y computed by P′ and
V′ in Step refStep:CombinedInstance of the protocol satisfy y = xe. This occurs
when the exponents α1, . . . , αn satisfy (

∏n
i=1 xαi

i)e =
∏n

i=1 yαi
i . By the choices

made by the attacker, this equality holds whenever zα1 = 1G, which happens
with probability at least 1/s.

Proof of Theorem 6.1. We first analyze the communication complexity and
the running time of the verifier, and then in Sect. 6.2, we base the soundness of
Batchs

3(π) on the low order assumption. As for the running time of verifier: It
samples a random key K ← {0, 1}λ, taking time λ; makes n invocation of PRF,
taking time n·tprf ; raises n elements to exponents which are bounded by s, which
takes time O(n · log(s) · top); computes the product of n group elements, taking
time (n−1) · top); and participates in a single execution of π, which takes time t.
It follows that her running time is t′ = t+λ+n · tprf +O(n ·(log(s)+1) · top). The
communication in Batchs

3(π) includes the key K and all messages exchanged in
a single execution of π, resulting in a total communication of c′ = c + λ.

410 L. Rotem

6.2 Soundness Analysis Based on the Low Order Assump-
tion

The proof of soundness for Batchs
3(π) follows the same outline as did the cor-

responding proof in Sect. 5, and is by reduction to the δ-soundness of π, to the
pseudorandomness of PRF and to the low order assumption with respect to GGen.
Since the reduction and its analysis are extremely similar to those presented in
Sect. 5, we forgo presenting them explicitly here, and instead concentrate on the
main differences.

Concretely, the only major difference between the soundness analysis of
Batchs

3(π) and the analysis of Batchm
2 (π) in Sect. 5, is that instead of relying

on Lemma 4.2 in order to lower bound the probability that xe �= y (where x
and y are computed from x, y as defined in Step refStep:CombinedInstance of
Batchs

3(π)), we rely on Lemma 6.2 and Corollary 6.3 found below. Loosely, relying
on the low order assumption with respect to GGen, Lemma 6.2 and its corollary
assert that if there is some i ∈ [n] for which xe

i �= yi, then with probability at
most 1/s + negl(λ) over the choice of α1, . . . , αn ← [s], it holds that xe = y.16

Lemma 6.2. Let G be a group. For every integers n, e ∈ N, any integer s, any
number ε ∈ (0, 1) and any vectors x, y ∈ G

n the following holds: If there exists
an index i ∈ [n] such that xe

i �= yi and

Pr
α1,...,αn←[s]

⎡

⎣

⎛

⎝
∏

i∈[n]

xαi
i

⎞

⎠

e

=
∏

i∈[n]

yαi
i

⎤

⎦ >
1
s

+ ε,

then there exists an algorithm A which receives as input x, y and e, runs in time
poly(λ, n, log(e)), and with probability at least ε2 outputs (u, ω) ∈ G × N such
that u �= 1G, 1 < ω < s and uω = 1G.

Corollary 6.3 below follows from Lemma 6.2 and from the definition of the
low order assumption (Definition 2.4).

Corollary 6.3. Let GGen be a group generation algorithm and let s = s(λ) be
a function of the security parameter λ. If the s-low order assumption holds with
respect to GGen, then for any probabilistic polynomial-time algorithm P∗

0, there
exists a negligible function ν(·) such that

Pr

⎡

⎣
∃i ∈ [n], xe

i �= yi(∏
i∈[n] x

αi
i

)e

=
∏

i∈[n] y
αi
i

∣
∣
∣
∣
∣
∣

(G, pp) ← GGen(1λ)
(n, x, y, e) ← P∗

0(G, pp)
α1, . . . , αn ← [s]

⎤

⎦ ≤ 1
s

+ ν(λ),

for all sufficiently large λ ∈ N.

16 Observe that in Batchs
3(π), the exponents α1, . . . , αn are not chosen uniformly at

random from [s], but using the pseudorandom function PRF. This is handled in
exactly the same manner in which it was handled in the previous section. The reader
is referred to the full version for further details.

Batch Verification for Verifiable Delay Functions 411

Due to space limitations, the proofs of Lemma 6.2 and Corollary 6.3 can be
found in the paper’s full version.

References

[ABB+16] Armknecht, F., Barman, L., Bohli, J.-M., Karame, G.O.: Mirror: enabling
proofs of data replication and retrievability in the cloud. In: Proceedings
of the 25th USENIX Conference on Security Symposium, SEC 2016, pp.
1051–1068 (2016)

[AGH+92] Alon, N., Goldreich, O., H̊astad, J., Peralta, R.: Simple constructions of
almost k-wise independent random variables. Random Struct. Algorithms
3(3), 289–304 (1992)

[BBB+18] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991,
pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96884-1 25

[BBF18] Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions.
Cryptology ePrint Archive, Report 2018/712 (2018)

[BBF19] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In: Boldyreva, A., Miccian-
cio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26948-7 20

[BCG15] Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness
source. Cryptology ePrint Archive, Report 2015/1015 (2015)

[BDG17] Benet, J., Dalrymple, D., Greco, N.: Proof of replication (2017). https://
filecoin.io/proof-of-replication.pdf. Accessed 16 Sep 2021

[BGR98] Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular
exponentiation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT
1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054130

[BGZ16] Bentov, I., Gabizon, A., Zuckerman, D.: Bitcoin beacon. arXiv:605.04559
(2016)

[BHR+21] Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and
space-efficient arguments from groups of unknown order. In: Malkin, T.,
Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp. 123–152. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 5

[BKS+20] Belabas, K., Kleinjung, T., Sanso, A., Wesolowski, B.: A note on the low
order assumption in class group of an imaginary quadratic number fields.
Cryptology ePrint Archive, Report 2020/1310 (2020)

[Bon99] Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Not. AMS
46(2), 203–213 (1999)

[BP00] Boyd, C., Pavlovski, C.: Attacking and repairing batch verification
schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
58–71. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-
3 5

[CE12] Clark, J., Essex, A.: CommitCoin: carbon dating commitments with Bit-
coin. In: Financial Cryptography and Data Security, FC 2012, pp. 390–398
(2012)

https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1007/978-3-030-26948-7_20
https://filecoin.io/proof-of-replication.pdf
https://filecoin.io/proof-of-replication.pdf
https://doi.org/10.1007/BFb0054130
https://doi.org/10.1007/BFb0054130
http://arxiv.org/abs/605.04559
https://doi.org/10.1007/978-3-030-84259-8_5
https://doi.org/10.1007/3-540-44448-3_5
https://doi.org/10.1007/3-540-44448-3_5

412 L. Rotem

[CHP07] Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch verification of short
signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
246–263. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72540-4 14

[CKK+17] Crescenzo, G.D., Khodjaeva, M., Kahrobaei, D., Shpilrain, V.: Computing
multiple exponentiations in discrete log and RSA groups: from batch veri-
fication to batch delegation. In: IEEE Conference on Communications and
Network Security (CNS), pp. 531–539 (2017)

[CL06] Cheon, J.H., Lee, D.H.: Use of sparse and/or complex exponents in batch
verification of exponentiations. IEEE Trans. Comput. 55(12), 1536–1542
(2006)

[CL15] Cheon, J.H., Lee, M.-K.: Improved batch verification of signatures using
generalized sparse exponents. Comput. Stand. Interfaces 40, 42–52 (2015)

[CP19] Cohen, B., Pietrzak, K.: The Chia network blockchain (2019). https://
www.chia.net/assets/ChiaGreenPaper.pdf. Accessed 16 Sep 2021

[CY07] Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures.
In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp.
442–457. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71677-8 29

[DGM+20] Döttling, N., Garg, S., Malavolta, G., Vasudevan, P.N.: Tight verifiable
delay functions. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol.
12238, pp. 65–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-57990-6 4

[EFK+20] Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable
delay functions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 125–154. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 5

[Fia89] Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol.
435, pp. 175–185. Springer, New York (1990). https://doi.org/10.1007/0-
387-34805-0 17

[Fis19] Fisch, B.: Tight proofs of space and replication. In: Ishai, Y., Rijmen, V.
(eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 324–348. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17656-3 12

[FMP+19] De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions
from supersingular isogenies and pairings. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 248–277. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34578-5 10

[FS86] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 12

[FS00] Fischlin, R., Schnorr, C.: Stronger security proofs for RSA and Rabin bits.
J. Cryptol. 13(2), 221–244 (2000)

[GGM86] Goldreich, O., Goldwasser, S., Micali, S.: How to construct random func-
tions. J. ACM 33(4), 792–807 (1986)

[GLO+21] Galindo, D., Liu, J., Ordean, M., Wong, J.-M.: Fully distributed verifiable
random functions and their application to decentralised random beacons.
In: IEEE European Symposium on Security and Privacy (2021, to appear)

[GS98] Goldschlag, D.M., Stubblebine, S.G.: Publicly verifiable lotteries: appli-
cations of delaying functions. In: Financial Cryptography, FC 1998, pp.
214–226 (1998)

https://doi.org/10.1007/978-3-540-72540-4_14
https://doi.org/10.1007/978-3-540-72540-4_14
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.chia.net/assets/ChiaGreenPaper.pdf
https://doi.org/10.1007/978-3-540-71677-8_29
https://doi.org/10.1007/978-3-540-71677-8_29
https://doi.org/10.1007/978-3-030-57990-6_4
https://doi.org/10.1007/978-3-030-57990-6_4
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/978-3-030-45727-3_5
https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1007/978-3-030-17656-3_12
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

Batch Verification for Verifiable Delay Functions 413

[HIL+99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[HK09] Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and
applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
637–653. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03356-8 37

[HYL20] Han, R., Yu, R., Lin, H.: RANDCHAIN: decentralised randomness bea-
con from sequential proof-of-work. In: IEEE International Conference on
Blockchain, pp. 442–449 (2020)

[IW97] Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pp. 220–229 (1997)

[Ler14] Lerner, S.D.: Proof of unique blockchain storage (2014). https://
bitslog.com/2014/11/03/proof-of-local-blockchain-storage/. Accessed 16
Sep 2021

[LSS20] Landerreche, E., Stevens, M., Schaffnerevan, C.: Non-interactive crypto-
graphic timestamping based on verifiable delay functions. In: Financial
Cryptography and Data Security, FC 2020, pp. 541–558 (2020)

[LV20] Lombardi, A., Vaikuntanathan, V.: Fiat-Shamir for repeated squaring with
applications to PPAD-hardness and VDFs. In: Micciancio, D., Ristenpart,
T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 632–651. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-56877-1 22

[LW15] Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx.
Cryptology ePrint Archive, Report 2015/366 (2015)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[NMV+94] Naccache, D., et al.: Can D.S.A. be improved?—Complexity trade-offs with
the digital signature standard. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995). https://doi.org/
10.1007/BFb0053426

[NN93] Naor, M., Naor, J.: Small-bias probability spaces: efficient constructions
and applications. SIAM J. Comput. 22(4), 838–856 (1993)

[NW94] Nisan, N., Wigderson, A.: Hardness vs randomness. J. Comput. Syst. Sci.
49(2), 149–167 (1994)

[Pie19] Pietrzak, K.: Simple verifiable delay functions. In: Proceedings of the 10th
Conference on Innovations in Theoretical Computer Science, pp. 60:1–
60:15 (2019)

[Pro17] Protocol Labs: Filecoin: a decentralized storage network (2017). https://
filecoin.io/filecoin.pdf. Accessed 16 Sep 2021

[PW18] Pierrot, C., Wesolowski, B.: Malleability of the blockchain’s entropy. Cryp-
togr. Commun. 10(1), 211–233 (2018)

[RSS20] Rotem, L., Segev, G., Shahaf, I.: Generic-group delay functions require
hidden-order groups. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020.
LNCS, vol. 12107, pp. 155–180. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-45727-3 6

[RSW96] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-
release crypto (1996)

[SB20] Seres, I.A., Burcsi, P.: A note on low order assumptions in RSA groups.
Cryptology ePrint Archive, Report 2020/402 (2020)

https://doi.org/10.1007/978-3-642-03356-8_37
https://doi.org/10.1007/978-3-642-03356-8_37
https://bitslog.com/2014/11/03/proof-of-local-blockchain-storage/
https://bitslog.com/2014/11/03/proof-of-local-blockchain-storage/
https://doi.org/10.1007/978-3-030-56877-1_22
https://doi.org/10.1007/BFb0053426
https://doi.org/10.1007/BFb0053426
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://doi.org/10.1007/978-3-030-45727-3_6
https://doi.org/10.1007/978-3-030-45727-3_6

414 L. Rotem

[Sha19] Shani, B.: A note on isogeny-based hybrid verifiable delay functions. Cryp-
tology ePrint Archive, Report 2019/205 (2019)

[Sta20] StarkWare: Presenting: VeeDo (2020). https://medium.com/starkware/
presenting-veedo-e4bbff77c7ae. Accessed 16 Sep 2021

[Ta-17] Ta-Shma, A.: Explicit, almost optimal, epsilon-balanced codes. In: Pro-
ceedings of the 49rd Annual ACM Symposium on Theory of Computing,
pp. 238–251 (2017)

[Wes19] Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen,
V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 13

[Wes20] Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33, 2113–
2147 (2020)

[YL95] Yen, S.-M., Laih, C.-S.: Improved digital signature suitable for batch ver-
ification. IEEE Trans. Comput. 44(7), 957–959 (1995)

https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://medium.com/starkware/presenting-veedo-e4bbff77c7ae
https://doi.org/10.1007/978-3-030-17659-4_13

Non-malleable Vector Commitments
via Local Equivocability

Lior Rotem(B) and Gil Segev

School of Computer Science and Engineering, Hebrew University of Jerusalem,
91904 Jerusalem, Israel

{lior.rotem,segev}@cs.huji.ac.il

Abstract. Vector commitments (VCs), enabling to commit to a vector
and locally reveal any of its entries, play a key role in a variety of both
classic and recently-evolving applications. However, security notions for
VCs have so far focused on passive attacks, and non-malleability notions
considering active attacks have not been explored. Moreover, existing
frameworks that may enable to capture the non-malleability of VCs seem
either too weak (non-malleable non-interactive commitments that do not
account for the security implications of local openings) or too strong
(non-malleable zero-knowledge sets that support both membership and
non-membership proofs).

We put forward a rigorous framework capturing the non-malleability
of VCs, striking a careful balance between the existing weaker and
stronger frameworks: We strengthen the framework of non-malleable non-
interactive commitments by considering attackers that may be exposed
to local openings, and we relax the framework of non-malleable zero-
knowledge sets by focusing on membership proofs. In addition, we
strengthen both frameworks by supporting (inherently-private) updates
to entries of committed vectors, and discuss the benefits of non-malleable
VCs in the context of both UTXO-based and account-based stateless
blockchains, and in the context of simultaneous multi-round auctions
(that have been adopted by the US Federal Communications Commis-
sion as the standard auction format for selling spectrum ranges).

Within our framework we present a direct approach for construct-
ing non-malleable VCs whose efficiency essentially matches that of the
existing standard VCs. Specifically, we show that any VC can be trans-
formed into a non-malleable one, relying on a new primitive that we
put forth. Our new primitive, locally-equivocable commitments with all-
but-one binding, is evidently both conceptually and technically simpler
compared to multi-trapdoor mercurial trapdoor commitments (the main
building block underlying existing non-malleable zero-knowledge sets),
and admits more efficient instantiations based on the same number-
theoretic assumptions.

L. Rotem and G. Segev—Supported by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253).
L. Rotem—Supported by the Adams Fellowship Program of the Israel Academy of
Sciences and Humanities.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 415–446, 2021.
https://doi.org/10.1007/978-3-030-90456-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_14&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_14

416 L. Rotem and G. Segev

1 Introduction

Vector commitments (VCs) [LY10,CF13] enable to non-interactively commit to
a vector (x1, . . . , xq) while offering the useful property of local opening: The
committer can reveal any individual entry xi without the overhead of revealing
the entire vector. At the same time, VCs are also required to be position binding:
The committer should not be able to reveal any entry of an even maliciously-
committed vector to more than a single value.

The main measure of efficiency for VCs, which makes them extremely useful
for a variety of applications but highly non-trivial to construct, is their succinct-
ness: Both the size of the commitment and the size of the local openings should
be sublinear in the number q of elements in the committed vector. Whereas
the classic notion of a Merkle tree [Mer87] can be seen as a VC in which the
size of the commitment is independent of q and the size of local openings scales
logarithmically with q, Libert and Yung [LY10] and Catalano and Fiore [CF13]
presented constructions in which both sizes are independent of q.

Starting already with Merkle’s early work, VCs consistently play a key
role in a wide range of applications as a communication-efficient method for
authenticating rather large amounts of data by allowing users to retrieve
small parts of the data alongside short proofs of authenticity. Such appli-
cations include, for example, verifiable databases and authenticated data
structures (e.g., [NN98,MND+04,BGV11,SvDJ+12,KSS+16,CFG+20]), zero-
knowledge sets (e.g., [MRK03,LY10,CRF+11,CHL+13]), cryptographic accu-
mulators [BdM93] (which have many applications on their own right – see
for example [BP97,GR97,CL02,DKN+04,Ngu05,ABC+12,MGG+13,FVY14]
and the references therein), stateless blockchains (e.g., [STS99,Tod16,But17,
BBF19,TAB+20]), and succinct arguments (e.g., [Kil92,Mic94,BBF19,LM19,
OWW+20]).

Non-malleable Commitments. Another long line of research regarding
commitment schemes, initiated by the seminal work of Dolev, Dwork and
Naor [DDN00], deals with the construction of non-malleable commitments.
Roughly speaking, a commitment scheme is non-malleable if an adversary
which receives a commitment to some value x, cannot produce a commit-
ment to some “non-trivially related” value x′. Non-malleable commitments have
established themselves as instrumental in a host of cryptographic tasks, espe-
cially those requiring to protect against man-in-the-middle attacks. Numer-
ous constructions of non-malleable commitments have been suggested over
the years, satisfying various flavors of security notions and achieving differ-
ent efficiency tradeoffs, based on wide range of cryptographic assumptions
(e.g., [CIO98,DDN00,FF00,CKO+01,Bar01,CF01,PR05,PR08,PPV08,LPV08,
LP09,PW10,Wee10,LP11,GLO+12,GPR16,COS+17,Khu17] and the many ref-
erences therein).

This Work: Non-malleable Vector Commitments. The fundamental
importance of VCs and of non-malleable commitments motivates the study of
non-malleable VCs with the premise of significantly strengthening the security

Non-malleable Vector Commitments 417

and improving the efficiency of the wide range of applications in which they play
a key role. For example, non-malleable VCs would directly give rise to verifiable
databases, authenticated data structures and cryptographic accumulators offer-
ing non-malleability guarantees. As additional, less direct examples, in Sect. 1.2
we discuss the benefits of using non-malleable VCs as building blocks in the
contexts of stateless blockchains and simultaneous multi-round auctions.

However, the notion of non-malleable VCs has not yet been explored, and
the existing framework and constructions of standard non-malleable commit-
ments do not take into account the significant security implications of local
openings. A closely-related notion, which has been thoroughly explored, is that
of non-malleable zero-knowledge sets (ZKS), introduced in the beautiful work of
Gennaro and Micali [GM06] (extending the notion of standard ZKS [MRK03]).
Non-malleable ZKS can be seen as a substantial strengthening of non-malleable
VCs, supporting non-membership proofs in addition to membership proofs. The
work of Gennaro and Micali initiated an exciting line of research leading to
constructions of non-malleable ZKS based on gradually weaker assumptions
and with increasingly better parameters (see [LY10,CF13] and the references
therein). However, these constructions rely on the useful yet intricate notion
of multi-trapdoor mercurial trapdoor commitments [GM06], specifically tailored
to support non-membership proofs (see also [CHL+13,CDV06] for basic back-
ground on mercurial commitments). As prominent applications of VCs generally
do not require non-membership proofs (as we exemplify in Sect. 1.2), this raises
the following question:

Can non-malleable VCs be constructed within a simplified framework
both conceptually (e.g., simpler and more intuitive notions)

and technically (e.g., direct and more efficient constructions)?

1.1 Our Contributions

Notion of Non-malleability for VCs. We put forward a strong notion of non-
malleability for vector commitment schemes. Our framework strikes a careful bal-
ance between the weaker notion of non-malleable non-interactive commitments
[CIO98,CKO+01] and the considerably stronger notion of non-malleable zero-
knowledge sets [GM06]. Concretely, we generalize the notion of non-malleable
non-interactive commitments by incorporating the adversarial adaptivity and
additional information resulting from local openings. That is, the key difference
from the notion of non-malleable non-interactive commitments is that we aim
at achieving non-malleability against adversaries which may have already been
exposed to several local openings. Looking ahead, this key difference is the rea-
son that simple attempts of combining VCs and non-malleable commitments do
not seem to suffice for realizing our notion (as we demonstrate in Sect. 3.2).

Warm-Up: Merkle Trees are Non-malleable in the Random-Oracle
Model. As a first step within our framework, we examine the non-malleability
of existing vector commitments schemes and observe that they are easily mal-
leable (some of them by design in order to support public updates). Then, as a

418 L. Rotem and G. Segev

warm-up towards our main result, we show that a Merkle tree does satisfy our
requirements when its underlying hash function is modeled as a random oracle
[BR93] (and we show that this does not generally hold in the standard model):

Theorem 1.1 (informal). Let H be a hash function and let treeVC be the
Merkle tree vector commitment scheme that obtained via H. Then, treeVC is
a non-malleable vector commitment scheme when H is modeled as a random
oracle.

Theorem 1.1 demonstrates the feasibility of realizing our notion of non-
malleable vector commitments via a direct construction whose proof is not explic-
itly based on multi-trapdoor mercurial trapdoor commitments. However, the
non-malleability of this construction heavily relies on the random-oracle model
and, more importantly, the construction has local openings whose size scales
logarithmically with the number q of elements in the committed vector.

Main Result: Efficient Non-malleable VCs Via Locally Equivocabil-
ity. We present a direct approach for constructing non-malleable VCs whose
efficiency essentially matches that of the existing standard VCs. Inspired by con-
structions of non-malleable zero-knowledge sets [GM06,LY10,CF13] (and, more
generally, of non-malleable cryptographic primitives [DDN00]), we show that any
vector commitment scheme can be transformed into a non-malleable one, relying
on a new primitive that we put forth. Our new primitive, locally-equivocable com-
mitments with all-but-one binding, is evidently both conceptually and technically
simpler when compared to multi-trapdoor mercurial trapdoor commitments, as
we discuss below. We prove the following theorem:

Theorem 1.2 (informal). Any vector commitment scheme can be transformed
into a non-malleable one using: (1) a locally-equivocable commitment scheme
with all-but-one binding, (2) a one-time strongly-unforgeable signature scheme,
and (3) a universal one-way hash family.

We note that our notions of non-malleability and our construction extend to
accumulators [BdM93], which can be viewed as VCs for vectors whose length
is not necessarily bounded ahead of time. Specifically, in our construction, the
underlying VC can be replaced with an accumulator, and the underlying locally-
equivocable commitment scheme can be replaced with one that supports an
a-priori unbounded number of commitments (this is already the case with our
number-theoretic constructions).

Intuitive, Simple & Efficient: Locally-Equivocable Commitments with
All-But-One Binding. Our new notion of commitments is obtained by aug-
menting the standard notion of tag-based commitments with the following two
requirements:

– Local equivocability: A committer can generate several equivocal commit-
ments with respect to a single common-reference string.

Non-malleable Vector Commitments 419

– All-but-one binding: Equivocal commitments generated with respect to a
predetermined tag τ should be binding with respect to any other tag even
when given the trapdoor associated with τ .

This new notion is evidently both conceptually and technically simpler than
the notion of multi-trapdoor mercurial trapdoor commitments. From the con-
ceptual perspective, it has a short and intuitive description. This is evident not
only from the above informal description, but also from the fact that in addition
to the standard setup, commitment and decommitment procedures, our notion
consists of only 3 additional procedures, whereas the notion of a multi-trapdoor
mercurial trapdoor commitment consists of 7 additional procedures (already in
its non-vector variant) together with a non-trivial number of correctness and
security requirements.

From the technical perspective, on the one hand we observe that our new
notion strengthens Fischlin’s notion of identity-based trapdoor commitments
[Fis01, Ch. 2.6]; whereas on the other hand we nevertheless show that Fischlin’s
highly-efficient number-theoretic constructions satisfy our strengthened notion
[Fis01, Ch. 3.3]. Specifically, this yields constructions based on the discrete log-
arithm assumption and on the RSA assumption, in which commitments consist
of a single group element. This should be contrasted with the known construc-
tions of multi-trapdoor mercurial trapdoor commitments based on the same
assumptions in which commitments consist of two group elements. The differ-
ence between producing one or two group elements might not be significant on
its own, but both in our construction and in those based on multi-trapdoor mer-
curial trapdoor commitments the underlying commitment scheme is used for
producing q commitments (where q is the number of elements in the committed
vector), and this translates into a more significant difference between producing
q and 2q group elements.

In addition to these highly-efficient number-theoretic constructions, we
also present a construction based on the existence of any standard com-
mitment scheme (and thus based on the existence of any one-way function
[Nao91,HIL+99]). However, this construction is mainly of theoretical significance
as it supports only an a-priori bounded of number q of equivocal commitments,
and the length of its common-reference string is linear in this bound. Such guaran-
tees still suffice for our non-malleable vector commitment, but lead to somewhat
impractical efficiency guarantees.

Extension: Non-malleable Dynamic VCs. Catalano and Fiore [CF13] con-
structed VCs in which individual entries of the committed vector can be updated
publicly (i.e., without knowledge of the committer’s private state). Such public
updates, however, are inherently incompatible with the motivation underlying
the notion of non-malleability, and indeed with our definition of non-malleable
VCs. In light of this inherent limitation, we show that our framework and con-
struction can nevertheless support updates in a private manner, requiring knowl-
edge of the private state generated by the committer in order to update entries
of the underlying vector.

420 L. Rotem and G. Segev

We extend our definition of non-malleable VCs to support dynamic VCs
as well, essentially requiring that non-malleability is maintained even when
the adversary receives a vector commitment which has undergone adversarially-
chosen updates. We then revisit our construction from Theorem 1.2 and show
that if the underlying VC supports private updates,1 then so does our resulting
non-malleable VC (which is indeed non-malleable with respect to our extended
definition).

Theorem 1.3 (informal). Any privately-updatable vector commitment scheme
can be transformed into a non-malleable privately-updatable one using: (1) a
locally-equivocable commitment scheme with all-but-one binding, (2) a strongly-
unforgeable signature scheme, and (3) a universal one-way hash family.

1.2 Applications

The notion of non-malleable commitments is over three decades old [DDN00],
and has found a variety of applications. Since our notion of non-malleable VCs
strengthens this notion in the non-interactive setting, it can be applied in any
case in which non-interactive non-malleable commitments can be used, while
offering significant efficiency improvement via local openings. Specifically, VCs
play a key role in a wide range of applications both as an intermediate building
block and as a direct communication-efficient method for authenticating large
amounts of data (allowing users to retrieve small parts of the data alongside
short proofs of their authenticity). Here, we focus our attention on discussing
the benefits of non-malleable VCs in the contexts of stateless blockchains and
simultaneous multi-round auctions.

Stateless Blockchains. VCs are used as a direct communication-efficient
method for authenticating large amounts of data in stateless blockchains both
in the UTXO model (e.g., Bitcoin [Nak08]) and in the account model (e.g.,
Ethereum [But14]).2 In both models, transactions and smart-contracts consist
of local opening of VCs, where the VCs represent a compressed version of a
current state, and are stored by validating parties. Their local openings are ver-
ified either as unspent transactions in the UTXO model, or as account balances
and various other user-specific properties in the account model (see for example,
[BBF19,GRW+20,BBB+18,TAB+20], for extensive discussions and additional
related work – which is far beyond the context of our work).

In such scenarios, the basic security properties of VCs are generally insuffi-
cient in order to guarantee cross-transaction independence (also known as trans-
action non-malleability [BCG+14]). Specifically, in such highly interactive sce-
narios, attackers may indeed observe both VCs and local openings, then manipu-
late the VCs to represent a malleated state (e.g., either in an implicitly-malicious

1 Note that a VC which supports public updates trivially supports private updates.
2 In fact, in some cases, accumulators are used instead of vector commitments. As

noted about, our notions of non-malleability and our construction apply also to
accumulators.

Non-malleable Vector Commitments 421

manner by issuing honest yet tailored transactions that lead to specific state
updates, or in an explicitly-malicious manner by potentially controlling to some
extent some of the verifying parties), and then produce local openings with
respect to the malleated VCs – as captured by our notion for non-malleable
VCs. Thus, relying on non-malleable VCs in the context of stateless blockchains
can significantly reduce both storage and communication while guaranteeing
cross-transaction independence.

Simultaneous Multi-round Auctions. One of the most classic and direct
applications of (non-malleable) commitments is that of sealed-bid auctions
[DDN00], and in this context our notion of non-malleable VCs seems particu-
larly suitable for Simultaneous Multi-Round Auctions (SMRA) [Bic17, Ch. 6].
Such auctions provide a widespread multi-round format for selling multiple items.
SMRAs were designed for the US Federal Communications Commission in the
early 1990s, and since then they have become the standard auction format for
selling spectrum worldwide.

SMRAs proceed in rounds, where in each round some or all bidders bid for
multiple items, and each item may either be sold or not sold in each round
depending of the specific rules of the auction and the submitted bids. After each
round is closed the auctioneer discloses which items were won, who wins each of
these items, and at what price. Depending on the specific rules of the auction,
there are differences in the level of information revealed about other bidders’
bids. In some cases all bids are publicly revealed after each round, whereas in
other cases only prices of the currently winning bids are publicly revealed.

From the perspective of using vector commitments, submitting each bidder’s
bids for all available items in each round using a VC, and then publicly revealing
local openings for the required (e.g., winning) bids according to the rules of the
auction, can lead to significant communication savings (at least in the case of
spectrum ranges, the number of ranges may be rather large – although not as
large as in the context of using VCs for stateless blockchains). However, this
enables a malicious bidder to malleate vector commitments (i.e., bids) provided
in earlier rounds or even in the same round after having seen some of their local
openings, and to generate a vector commitment (i.e., a bid) to related values
together with corresponding local openings at a later stage – as captured by
our notion of non-malleable VCs. Thus, relying on non-malleable VCs in the
context of SMRAs can significantly reduce communication while guaranteeing
cross-round and cross-bid independence.

1.3 Overview of Our Approach

In this section we provide a high-level overview of our notion of non-malleability
and of our main construction of a non-malleable vector commitment scheme
(Theorem 1.2). For brevity, the main ideas underlying our additional results are
described within the corresponding sections.

The starting point of our work is the notion of a vector commitment scheme
VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify) [CF13] with the following syn-

422 L. Rotem and G. Segev

tax: The algorithms VC.Setup and VC.Commit are invoked in order to produce a
common-reference string crs, and in order to produce a commitment vcom for a
vector (x1, . . . , xq), respectively. In turn, the algorithms VC.Open and VC.Verify
are then invoked in order to produce a local opening πi for each entry i ∈ [q] of
the committed vector, and in order to verify it, respectively. In terms of security,
a vector commitment scheme should provide position binding, essentially asking
that no efficient algorithm can generate a commitment vcom together with two
valid openings for the same entry i ∈ [q] corresponding to different values xi

and x′
i. The main measure of efficiency for vector commitments, which makes

them non-trivial to construct, is their succinctness. This is captured by asking
for upper bounds on the sizes of the resulting commitments and local openings
(e.g., asking that both sizes are nearly independent of the length q of the com-
mitted vector). We refer the reader to Sect. 2.2 for the formal description of the
position binding and succinctness requirements.

Our Notion of Non-malleability. Based on the standard notion of non-
malleability for non-interactive commitment schemes [CIO98,CKO+01], any
non-malleable vector commitment scheme should at least satisfy the following
informal property: An efficient adversary which receives a commitment vcom
to a vector �x = (x1, . . . , xq), should not be able to produce (and then open) a
vector commitment v̂com to some vector �̂x = (x̂1, . . . , x̂q) which is “non-trivially
related” to �x. However, this property does not capture the adversarial adaptivity
and additional information resulting from local openings. Therefore, our notion
of non-malleability for vector commitments asks that the above property holds
even when the adversary can request local openings for some of the entries of �x

before deciding on v̂com, and then open only some of the entries �̂x after obtaining
local opening for all other entries of �x.

This is formalized by considering a “real” security experiment involving an
adversary and an “ideal” security experiment involving a simulator. At a high
level, in the real experiment, the adversary is provided with a commitment vcom
to a vector �x = (x1, . . . , xq), and is allowed to request local openings (πi)i∈I for
any subset I ⊆ [q] of the entries of �x for producing a commitment v̂com. Then,
the adversary is provided with local openings for all other entries of �x, and out-
puts local openings (π̂j)j∈J for a subset J ⊆ [q] of the entries of a malleated
vector (x̂1, . . . , x̂q) (although, note that v̂com is not required to actually corre-
spond to any such malleated vector). In the ideal experiment, the simulator is
provided only with a description of the distribution D from which �x is sampled
(i.e., without the commitment vcom) and the values (xi)i∈I (i.e., without the
local openings (πi)i∈I), and outputs malleated values (x̂j)j∈J .

The outputs of both experiments consist of the values (xi)i∈[q] and (x̂j)j∈[q],
where in the real experiment we replace with ⊥ each value x̂j for which either
j /∈ J or π̂j does not properly verify, and in the ideal experiment we replace
with ⊥ each value x̂j for which j /∈ J . Our notion of non-malleability then asks
that for any efficient adversary there exists an efficient simulator such that the
outputs of the two experiments are computationally indistinguishable. We refer
the reader to Sect. 3 for our formal definition, and for an in-depth discussion

Non-malleable Vector Commitments 423

of its various technical aspects (including, the underlying distribution D, the
relation between the sets I and J , and more).

Our Main Construction. Given any vector commitment scheme VC we trans-
form it into a non-malleable one as follows. In order to commit to a vector
(x1, . . . , xq) we first sample a signing key sk and a corresponding verification key
vk for a one-time strongly-unforgeable signature scheme. Then, for each i ∈ [q]
we generate a commitment ci to the value xi using a locally-equivocable com-
mitment scheme LE with all-but-one binding (our newly-introduced primitive
augmenting the standard notion of tag-based commitments with two additional
requirements). Each of these q commitments is generated with respect to the tag
τ = h(vk) for a universal one-way hash function h. Then, we commit to the vec-
tor (c1, . . . , cq) using the underlying vector commitment scheme VC, and output
the resulting vector commitment vcom, the verification key vk and a signature
σ on vcom using the signing key sk.

In turn, for every i ∈ [q], a local opening of the value xi consists of the
commitment ci and its corresponding decommitment di, and of a local opening
πi of the commitment ci with respect to the vector commitment vcom. The
verification algorithm first verifies the one-time signature σ, and then verifies
the decommitment di and the local opening πi. We refer the reader to Sect. 5 for
a formal description of our construction.

Note that from a foundational perspective, the required building blocks can
all be based on the existence of any vector commitment scheme. Specifically, any
vector commitment scheme implies the existence of a one-way function, which
in turns implies the existence of a locally-equivocable commitment scheme with
all-but-one binding, a one-time strongly unforgeable signature scheme and a
universal one-way hash family. In addition, from a more practical perspective,
the above building blocks can all be realized based on a variety of number-
theoretic assumptions leading to practical implementations (see the full version
of the paper for practical number-theoretic constructions of locally-equivocable
commitments with all-but-one binding, and for a construction based on one-way
functions).

Focusing on the main measures of efficiency for vector commitments, namely
the lengths of resulting commitments and local openings, and the verification
time of the local openings, we observe the following:

– A commitment produced by our scheme consists of a commitment produced
by the underlying vector commitment scheme, and of a verification key and a
signature which can be instantiated with any practical strongly-unforgeable
signature scheme3. Thus, the length of commitments produced by our scheme
is essentially dominated by that of the underlying vector commitment scheme,
which can be as short as a single group element.

– A local opening produced by our scheme consists of a local opening produced
by the underlying vector commitment scheme together with a commitment

3 See, for example, [BSW06,BS07] and the many references therein for a variety of
practical strongly-unforgeable signature schemes both in the random-oracle model
and in the standard model.

424 L. Rotem and G. Segev

and a decommitment produced by the underlying locally-equivocable com-
mitment scheme with all-but-one binding. Relying on existing constructions
of vector commitment schemes and on our number-theoretic constructions of
locally-equivocable commitment schemes with all-but-one binding (which can
be found in the full version), leads to local openings that are essentially as
short as three group elements.

– The verification of a local opening produced by our scheme consists of a ver-
ification of a local opening produced by the underlying vector commitment
scheme, a decommitment of the underlying locally-equivocable commitment
scheme with all-but-one binding, and a signature verification. Once again,
relying on our number-theoretic constructions of locally-equivocable commit-
ment schemes with all-but-one binding and on practical signature schemes,
this is dominated by the verification time of the underlying vector commit-
ment scheme.

Proving the Security of Our Main Construction. Recall that for proving
the security of our construction, we have to show that for any efficient adversary
there exists an efficient simulator for which the outputs of the above-mentioned
real and ideal experiments are computationally indistinguishable. Given the
informal flavor of the current exposition, we refer the reader to the full version
of the paper for an overview of the simulator’s description and of the indistin-
guishably of the two experiments (in addition, of course, to the formal proof
of security). For avoiding additional notation and various additional technical
details, here we focus only on the adversary’s behavior in the real experiment.

Consider an adversary A that is provided in the real experiment with a
commitment vcom to a vector �x = (x1, . . . , xq). Recall that, in our construction,
the commitment vcom is of the form vcom = vcom0‖vk‖σ, where vcom0 is a
commitment produced using the underlying vector commitment scheme VC to
the vector of commitments (c1, . . . , cq) produced using the locally-equivocable
scheme LE to (x1, . . . , xq) with respect to the tag h(vk) (for a universal one-way
hash function h included in the common-reference string), vk is a verification key
for a one-time strongly-unforgeable signature scheme, and σ is a signature on
vcom0 produced using the corresponding signing key. The adversary A requests
local openings (πi)i∈I for some subset I ⊆ [q] of the entries of �x, and produces
a commitment v̂com = v̂com0‖̂vk‖σ̂. Then, the adversary is provided with local
openings for all other entries of �x, and outputs local openings (π̂j)j∈J for a subset
J ⊆ [q]. Our proof considers the following three cases (the first and second cases
are straightforward, and the third case is the main technical argument):

– Case 1: ̂vk = vk. This case reduces to the one-time strong unforgeability
of the signature scheme, unless v̂com0 = vcom0 or the signature σ does not
verify properly (and in these cases our simulator guarantees that the outputs
of the real and ideal experiments are identical).

– Case 2: ̂vk �= vk but h(̂vk) = h(vk). This case reduces to the universal
one-wayness of h.

Non-malleable Vector Commitments 425

– Case 3: h(̂vk) �= h(vk). In this case we rely on the position binding of the
underlying vector commitment scheme VC, and on the equivocability4 and all-
but-one binding of the locally-equivocable scheme LE . Our main observation
is that essentially any advantage that may be obtained in the real experiment
must follow from the adversary’s ability to choose the values (x̂j)j∈J to which
it opens the commitment v̂com after issuing v̂com. That is, any such advantage
must follow from the adversary’s ability to produce a commitment v̂com and
then to provide local openings to more than a single tuple of values (x̂j)j∈J .
These local openings are obtained by relying on the fact that generating
c1, . . . , cq using the equivocation algorithms of LE is indistinguishable from
the real experiment and does not bind them to a single tuple of values with
respect to the tag τ = h(vk). Thus, we can rewind the adversary to obtain
corresponding local openings with respect to the tag τ̂ = h(̂vk). But, if A
can open, say, the j-th location of v̂com in two different ways, we show that
this contradicts either the position binding of VC or the all-but-one binding
of LE .

1.4 Open Problems

Our framework and constructions lead to various open problems, and here we
discuss two such problems focusing on further extending our approach both in
the context of vector commitments and in the more general context of non-
interactive non-malleable commitments.

Non-malleable Subvector Commitments. The recent works of Lai and
Malavolta [LM19] and of Boneh, Bünz and Fisch [BBF19] introduced the notion
of VCs with subvector openings. These are VCs which allow the committer to
open k entries of the committed vector simultaneously, with a proof whose length
is sublinear in k. Our construction, being quite modular, does not seem to sup-
port such concise openings, and an interesting open problem is to construct non-
malleable VCs that do support subvector openings. A possible starting point may
be the recent work Gorbunov et al. [GRW+20], presenting the notion of commit-
ments with aggregatable proofs. Constructing commitments which satisfy both
this notion and our notion of local equivocability with all-but-one binding would
seem to enable the construction of non-malleable subvector commitments, using
our underlying approach for constructing non-malleable VCs.

Implications to Non-malleable Commitments. Finally, note that any non-
malleable vector commitment scheme is also a non-interactive non-malleable
commitment scheme (when the vector is of length 1). In that respect, our work
presents a general and unified framework for constructing non-interactive non-
malleable commitments, capturing both the generic construction of Di Cresc-
cenzo, Ishai and Ostrovsky from any one-way function [CIO98] and the efficient
number-theoretic constructions of Di Cresccenzo, Katz, Ostrovsky and Smith

4 In our formal proof, we actually rely on the equivocability guarantee earlier in order
to enable the simulator to invoke the adversary in the ideal experiment.

426 L. Rotem and G. Segev

[CKO+01]. As such, it may enable to construct efficient non-interactive non-
malleable commitments based on new assumptions (e.g., isogenies or lattice-
based assumptions) by constructing equivocable tag-based commitments with
all-but-one binding based on such assumptions.

1.5 Paper Organization

The remainder of this paper is organized as follows. First, in Sect. 2 we present
the basic notation and standard cryptographic primitives that are used through-
out the paper. In Sect. 3 we present our framework for non-malleable VCs, show
that existing VCs do not satisfy our requirements, and demonstrate that simple
attempts of combining VCs and non-malleable commitments do not suffice for
realizing our notion. In Sect. 4 we introduce our notion of a locally-equivocable
commitment scheme with all-but-one binding, and in Sect. 5 we present our con-
struction of a non-malleable VC.

Due to space limitations some of our contributions appear in the full version
of this paper. In particular, in the full version we give a formal proof of security
for our construction of a non-malleable VC. We also show that a Merkle tree is a
non-malleable VC in the random-oracle model, and present our constructions of
locally-equivocable commitment schemes with all-but-one binding. Finally, we
show that our framework and construction extend to the dynamic setting.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that
are used in this work. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.
For a distribution X we denote by x ← X the process of sampling a value x from
the distribution X. Similarly, for a set X we denote by x ← X the process of
sampling a value x from the uniform distribution over X . A function ν : N → R

+

is negligible if for any polynomial p(·) there exists an integer N such that for all
n > N it holds that ν(n) ≤ 1/p(n).

2.1 Equivocable Commitment Schemes

We rely on the standard notion of a (non-interactive) equivocable commitment
scheme which can be realized based on the existence of any one-way func-
tion [Nao91,CIO98]. An equivocable commitment scheme over a domain X =
{Xλ}λ∈N is a 5-tuple EQ = (EQ.Setup,EQ.Commit,EQ.Decommit,EQ.Equiv1,
EQ.Equiv2) of polynomial-time algorithms defined as follows:

– The algorithm EQ.Setup is a probabilistic algorithm that receives as input
the security parameter λ ∈ N and outputs a common-reference string crs.

– The algorithm EQ.Commit is a probabilistic algorithm that receives as input
the security parameter λ ∈ N, a common-reference string crs, an element
x ∈ Xλ, and outputs a commitment c and a decommitment d.

Non-malleable Vector Commitments 427

– The algorithm EQ.Decommit is a deterministic algorithm that receives as
input the security parameter λ ∈ N, a common-reference string crs, a com-
mitment c and a decommitment d, and outputs an element x ∈ Xλ or the
rejection symbol ⊥.

– The algorithm EQ.Equiv1 is a probabilistic algorithm that receives as input
the security parameter λ ∈ N, and outputs a common-reference string ĉrs, a
commitment ĉ and a state st.

– The algorithm EQ.Equiv2 is a deterministic algorithm that receives as input
the security parameter λ ∈ N, a state st and an element x ∈ Xλ, and outputs
a decommitment ̂d.

Correctness. We rely on the standard notion of correctness for commitment
schemes. That is, for any security parameter λ ∈ N and for any x ∈ Xλ it should
hold that

Pr
[

EQ.Decommit(1λ, crs, c, d) = x
]

= 1,

where crs ← EQ.Setup(1λ) and (c, d) ← EQ.Commit(1λ, crs, x), and the probabil-
ity is taken over the internal randomness of all algorithms.

Equivocability. We rely on the following notion of equivocability [CIO98,
CKO+01]:

Definition 2.1. A commitment scheme EQ = (EQ.Setup,EQ.Commit,
EQ.De-commit,EQ.Equiv1,EQ.Equiv2) over a domain X = {Xλ}λ∈N is equivo-
cable if the following requirements hold:

– Equivocation correctness: For any λ ∈ N and x ∈ Xλ it holds that

Pr
[

EQ.Decommit(1λ, ĉrs, ĉ, ̂d) = x
]

= 1,

where (ĉrs, ĉ, st) ← EQ.Equiv1(1λ) and ̂d := EQ.Equiv2(1λ, st, x), and the prob-
ability is taken over the internal randomness of all algorithms.

– Equivocation indistinguishability: For any probabilistic polynomial-time
algorithm A there exists a negligible function ν(·) such that

AdvEquiv
EQ,A(λ) def=

∣

∣

∣Pr
[

Equiv
(0)
EQ,A(λ)

]

− Pr
[

Equiv
(1)
EQ,A(λ)

]∣

∣

∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} the experiment
Equiv

(b)
EQ,A(λ) is defined as follows:

1. (x, stA) ← A(1λ).
2. crs0 ← EQ.Setup(1λ).
3. (c0, d0) ← EQ.Commit(1λ, crs, x).
4. (crs1, c1, st1) ← EQ.Equiv1(1λ).
5. d1 = EQ.Equiv2(1λ, st1, x).
6. b′ ← A(stA, crsb, cb, db).
7. Output b′.

428 L. Rotem and G. Segev

Binding. We rely on the standard notion of computational binding for commit-
ment schemes.

Definition 2.2. A commitment scheme EQ = (EQ.Setup,EQ.Commit,
EQ.De-commit,EQ.Equiv1,EQ.Equiv2) over a domain X = {Xλ}λ∈N is binding if
for any probabilistic polynomial-time algorithm A there exists a negligible func-
tion ν(·) such that

AdvBind
EQA

def= Pr [BindEQ,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment PosBindEQ,A(λ) is defined
as follows:

1. crs ← EQ.Setup(1λ)
2. (c, (d, x), (d′, x′)) ← A(1λ, crs).
3. Output 1 if the following conditions hold:

– x 	= x′ and x, x′ ∈ Xλ.
– EQ.Decommit(1λ, crs, c, d) = x.
– EQ.Decommit(1λ, crs, c, d′) = x′.

Otherwise, output 0.

2.2 Vector Commitment Schemes

We follow the notion of a vector commitment scheme as formalized by Libert and
Yung [LY10] and Catalano and Fiore [CF13]. As discussed in Sect. 1.1, here we
consider the static setting (i.e., vector commitment schemes without updates).
In the full version of the paper, we extend our approach to the dynamic setting.

Definition 2.3. A vector commitment scheme over a domain X = {Xλ}λ∈N

is a quadruple VC = (VC.Setup,VC.Commit,VC.Open,VC.Verify) of algorithms
defined as follows:

– The algorithm VC.Setup is a probabilistic algorithm that receives as input the
security parameter λ ∈ N and a polynomial q = q(λ) and outputs common-
reference string crs.

– The algorithm VC.Commit is a probabilistic algorithm that receives as input
the security parameter λ ∈ N, a common-reference string crs and a vector
(x1, . . . , xq) ∈ (Xλ)q, and outputs a commitment vcom and a state st.

– The algorithm VC.Open is a probabilistic algorithm that receives as input the
security parameter λ ∈ N, a common-reference string crs, a commitment vcom,
a state st and an index i ∈ [q], and outputs a proof π.

– The algorithm VC.Verify is a deterministic algorithm that receives as input
the security parameter λ ∈ N, a common-reference string crs, a commitment
vcom, an index i ∈ [q], an element x ∈ Xλ and a proof π, and outputs a bit
b ∈ {0, 1}.

Non-malleable Vector Commitments 429

Correctness. A vector commitment scheme VC = (VC.Setup,VC.Commit,
VC.Open,VC.Verify) over a domain X = {Xλ}λ∈N is correct if for any λ ∈ N,
for any polynomial q = q(λ), for any vector (x1, . . . , xq) ∈ (Xλ)q, and for any
index i ∈ [q], it holds that

Pr
[

VC.Verify
(

1λ, crs, vcom, i, xi, π
)

= 1
]

= 1,

where crs ← VC.Setup(1λ), (vcom, st) ← VC.Commit(1λ, crs, (x1, . . . , xq)) and
π ← VC.Open(1λ, crs, vcom, st, i); and the probability is taken over the random-
ness of all algorithms.

Security. Catalano and Fiore introduced the following notion of position binding
for capturing the security of vector commitment schemes.

Definition 2.4. A vector commitment scheme VC = (VC.Setup,VC.Commit,
VC.Open,VC.Verify) over a domain X = {Xλ}λ∈N is position binding if for any
polynomial q = q(λ) and for any probabilistic polynomial-time algorithm A there
exists a negligible function ν(·) such that

AdvPosBind
VC,q,A

def= Pr [PosBindVC,q,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment PosBindVC,q,A(λ) is defined
as follows:

1. crs ← VC.Setup(1λ, q)
2. (vcom, i, xi, x

′
i, π, π′) ← A(1λ, q, crs).

3. Output 1 if the following conditions hold:
– xi 	= x′

i.
– VC.Verify

(

1λ, crs, vcom, i, xi, π
)

= 1.
– VC.Verify

(

1λ, crs, vcom, i, x′
i, π

′) = 1.
Otherwise, output 0.

Succinctness. The main measure of efficiency for vector commitments, which
makes them non-trivial to construct, is their succinctness. This may be cap-
tured by asking for upper bounds �Commit(λ, q) and �Open(λ, q) on the size of the
commitment and the size of the local openings, respectively, as follows.

Definition 2.5. A vector commitment scheme VC = (VC.Setup,VC.Commit,
VC.Open,VC.Verify) over a domain X = {Xλ}λ∈N is (�Commit, �Open)-succinct if
for any λ ∈ N, for any polynomial q = q(λ), for any common-reference string
crs produced by VC.Setup(1λ, q), for any vector (x1, . . . , xq) ∈ (Xλ)q, and for any
commitment and state (vcom, st) produced by VC.Commit(1λ, crs, (x1, . . . , xq)) the
following two requirements are satisfied:

– The bit-length of vcom is at most �Commit(λ, q).
– For any index i ∈ [q] and for any proof π produced by VC.Open(1λ,

crs, vcom, st, i), the bit-length of π is at most �Open(λ, q).

430 L. Rotem and G. Segev

2.3 One-Time Strongly-Unforgeable Signature Schemes

We rely on the standard notion of a one-time strongly-unforgeable signature
scheme, which is known to exist based on the existence of any one-way function
[Lam79,NY89,Rom90] (and thus, in particular, based on any of the number-
theoretic assumptions that we consider in this paper). A signature scheme is a
tuple SIG = (Sig.Gen,Sig.Sign,Sig.Verify) of algorithms defined as follows:

– The algorithm Sig.Gen is a probabilistic algorithm that receives as input the
security parameter λ ∈ N and outputs a pair (sk, vk) of a signing key and a
verification key.

– The algorithm Sig.Sign is a (possibly) probabilistic algorithm that receives as
input a signing key sk and a message m and outputs a signature σ.

– The algorithm Sig.Verify is a deterministic algorithm that receives as input
a verification key vk, a message m and a signature σ, and outputs a bit
b ∈ {0, 1}.

In terms of correctness, the standard requirement for signature schemes asks
that

Pr [Sig.Verifyvk(m,Sig.Signsk(m)) = 1] = 1

for every λ ∈ N and for every message m, where (sk, vk) ← Sig.Gen(1λ), where
the probability is taken over the internal randomness of all algorithms. In terms
of security, we rely on the following standard notion of one-time strong unforge-
ability.

Definition 2.6. A signature scheme SIG = (Sig.Gen,Sig.Sign,Sig.Verify) is
one-time strongly unforgeable if for every probabilistic polynomial-time algorithm
A there exists a negligible function ν(·) such that

AdvForge
SIG,A(λ) def= Pr

[

ForgeSIG,A(λ) = 1
]

≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ForgeSIG,A(λ) is defined as
follows:

1. (sk, vk) ← Sig.Gen(1λ).
2. (m, stA) ← A(1λ, vk).
3. (m∗, σ∗) ← A(stA, σ), where σ ← Sig.Signsk(m).
4. If Sig.Verifyvk(m∗, σ∗) and (m∗, σ∗) 	= (m,σ) then output 1 and otherwise

output 0.

2.4 Universal One-Way Hash Functions

We rely on the standard notion of universal one-way hash functions, which is
known to exist based on the existence of any one-way function [NY89,Rom90]
(and thus, in particular, based on any of the number-theoretic assumptions that
we consider in this paper). A hash family from domain X = {Xλ}λ∈N to range
Y = {Yλ}λ∈N is a collection H = {H}λ∈N where each Hλ consists of functions

Non-malleable Vector Commitments 431

h : Xλ → Yλ. For simplifying our notation we let h ← Hλ denote the process
of sampling a function h from Hλ without explicitly describing a sampling algo-
rithm, where h denotes both the description of the sampled function and its
evaluation algorithm.

Definition 2.7. A hash family H from domain X = {Xλ}λ∈N to range Y =
{Yλ}λ∈N is a universal one-way hash family if for every probabilistic polynomial-
time algorithm A there exists a negligible function ν(·) such that

AdvUOWHF
H,A (λ) def= Pr [UOWHFH,A(λ) = 1] ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment UOWHFH,A(λ) is defined
as follows:

1. (x, st) ← A(1λ).
2. h ← Hλ.
3. x′ ← A(st, h).
4. If x 	= x′ and h(x) = h(x′) then output 1, and otherwise output 0.

3 Non-malleable Vector Commitments

In this section we begin by presenting our notion of non-malleability for vector
commitment schemes. Then, in Sect. 3.1 we show that existing vector commit-
ment schemes do not satisfy it (some of them by design in order to support
public updates). As mentioned in Sect. 1.1, the key difference from the standard
notion of non-malleable non-interactive commitments is that we aim at achiev-
ing non-malleability even with respect to adversaries which have already been
exposed to several local openings. This key difference is the reason that simple
attempts of combining VCs and non-malleable commitments, that we discuss in
Sect. 3.2, do not suffice for realizing our new notion.

Loosely speaking, a vector commitment scheme is non-malleable if an efficient
adversary which receives a vector commitment vcom to a vector �x = (x1, . . . , xq),
cannot produce (and open) a vector commitment v̂com to some vector �̂x =
(x̂1, . . . , x̂q) which is “non-trivially related” to �x. This property should hold even
when the adversary can request local openings for some of the entries of �x before
deciding on v̂com; and open only some of the entries �̂x. Definition 3.1 below uses
the term “valid distribution” which is formally clarified following the definition.
As discussed in Sect. 1.1, we start by considering the static setting of vector
commitments without updates. In the full version, we extend our approach to
the dynamic setting.

Definition 3.1. A vector commitment VC = (VC.Setup,VC.Commit,VC.Open,
VC.Verify) over a domain X = {Xλ}λ∈N is non-malleable if for any polynomially-
bounded integer q = q(λ) and for any probabilistic polynomial-time algorithm A
there exist a probabilistic polynomial-time algorithm S such that the following
holds:

432 L. Rotem and G. Segev

For any probabilistic polynomial-time algorithm R and for any valid distribution
D = {Dλ}λ∈N over {(Xλ)q}λ∈N

, there exists a negligible function ν(·) such that

AdvNM
VC,q,A,S,R,D(λ)
def= |Pr [R (RealVC,q,A,D(λ)) = 1] − Pr [R (IdealVC,q,S,D(λ)) = 1]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiments RealVC,q,A,D(λ) and
IdealVC,q,S,D(λ) are defined as follows:

The Experiment RealVC,q,A,D(λ):
1. crs ← VC.Setup(1λ, q).
2. (x1, . . . , xq) ← Dλ.
3. (vcom, st) ← VC.Commit(1λ, crs, (x1, . . . , xq)).
4. (I, stA) ← A(1λ, crs, vcom) where I ⊆ [q].
5. πi ← VC.Open(1λ, crs, vcom, st, i) for each i ∈ [q].
6.

(

v̂com,J , stA
)

← A
(

stA, (xi)i∈I , (πi)i∈I
)

, where J ⊆ [q].
7. ((x̂j)j∈J , (π̂j)j∈J) ← A

(

stA, (xi)i∈I , (πi)i∈I
)

, where I = [q] \ I.
8. If v̂com = vcom or if VC.Verify

(

1λ, crs, v̂com, j, x̂j , π̂j

)

= 0 for some
j ∈ J , then output ((x1, . . . , xq), (⊥)q, I).
Otherwise, output ((x1, . . . , xq), (x̂1, . . . , x̂q), I), where x̂j = ⊥ for each
j ∈ [q] \ J .

The Experiment IdealVC,q,S,D(λ):

1. (x1, . . . , xq) ← Dλ.
2. (I, stS) ← S(1λ,D).
3. (J , (x̂j)j∈J) ← S(stS , (xi)i∈I).
4. Output ((x1, . . . , xq), (x̂1, . . . , x̂q), I) where x̂i = ⊥ for every i ∈ [q] \ J .

Succinctness. Recall that the main measure of efficiency for vector commit-
ments, which makes them non-trivial to construct, is their succinctness: Both
the size of the commitment and the size of the local openings should be sublin-
ear in the number q of elements in the committed vector. That is, the standard
notion of vector commitments does not require any hiding guarantees [CF13],
and thus can be trivially satisfied if succinctness is not required (in this case a
vector commitment scheme can simply output the vector itself). When addition-
ally requiring a vector commitment scheme to hide all entries of the committed
vector for which local openings were not provided, the task becomes non-trivial
even when succinctness is not required (since this introduces a selective decom-
mitment problem whenever an attacker can request local openings after having
seen the commitment).

Our notion of non-malleability implies, in particular, such a hiding guaran-
tee, and is therefore non-trivial to realize even when succinctness is not required.
Nevertheless, as discussed in Sect. 1.1, the non-malleable vector commitments
resulting from our transformation are essentially as succinct as the existing stan-
dard vector commitments that do not require any hiding guarantees.

Valid Distributions. Definition 3.1 considers valid distributions, and here we
formally define this notion. On the face of it, one can hope to consider all dis-

Non-malleable Vector Commitments 433

tributions that are samplable in polynomial time. However, exactly as in case
of non-malleable zero-knowledge sets [GM06], our notion of non-malleable vec-
tor commitments faces a “selective decommitment” problem (since it considers
attackers which may be exposed to several adaptively-chosen local openings).
One approach to overcome this difficulty, which is the approach that we follow
in this work, is to restrict our attention to considering the natural subclass of all
efficiently samplable distributions that was considered by Gennaro and Micali
[GM06]). This subclass consists of all distributions that are not only efficiently
samplable, but also all of their marginal distributions are efficiently samplable.

That is, we say that a distribution D = {Dλ}λ∈N over {(Xλ)q}λ∈N
is valid if

the following holds: For every λ ∈ N, for every �x = (x1, . . . , xq(λ)) in the support
of Dλ, and for every subset I = (i1, . . . , i|I|) ⊆ [q(λ)], it is possible to efficiently
sample a vector �y from the conditional distribution Dλ|(∀i ∈ I : yi = xi). We
denote the process of sampling the entries of �y in I = [q] \ I by (yj)j∈I ←
D|(I, (xi)i∈I). Note that this requirement is fairly reasonable, and in particular,
it is satisfied by any product distribution D over (Xλ)q.

An alternative approach, as pointed out by Gennaro and Micali, is to rely
on an underlying commitment scheme that provides a certain form of security
against selective decommitment attacks. In their context, it seems that the under-
lying commitment scheme would have to be at least both mercurial and provide
security against selective decommitment attacks (realizing this alternative app-
roach for non-malleable zero-knowledge sets still remains an interesting open
problem). Similarly, in our context it would have to be at least locally equiv-
ocable with all-but-one binding (as we define in Sect. 4) and provide security
against selective decommitment attacks. We leave the exploration of this alter-
native approach as an avenue for further research.

J Cannot be Chosen Later. Note that we allow the adversary A in the
experiment RealVC,q,A,R,D(λ) to choose the subset J at the latest stage possible.
This is true because had we let A choose J in Step 7 of the experiment, then
A could have encoded information about (xj)j∈I within their choice of J . For
example, assume that we let the adversary choose J in Step 7 of RealVC,q,A,R,D(λ)
(after observing (xj)j∈I), and consider an adversary which chooses J to be of
size 1 if the parity of the bit-description of xj1‖ · · · ‖xj|I| is 1, and chooses J to
be of size 0 if this parity is 0, where I = {j1, . . . , j|I|}. Of course, this cannot be
simulated, since the simulator never gets access to xj1 , . . . , xj|I| .

Invalid Openings. Whenever the adversary A provides an invalid opening for
any index in J , then the output of the real experiment is set to be of the form
((x1, . . . , xq), (⊥)q, I). We argue that this choice is indeed a necessary one. To see
why that is the case, consider the following alternative (and faulty) approach:
For all j ∈ J for which A provides invalid openings set x̂j = ⊥, but for all
indices for which A provides valid openings, keep the x̂j ’s in the output of the
experiment as is (that is, as outputted by A in Step 7). The problem with this
approach is that it effectively gives A the power to choose J in Step 7 of the
experiment, for example by outputting J = [q] in Step 6 and then providing
valid openings for a different set J ′

� [q] in Step 7. As explained above, such a

434 L. Rotem and G. Segev

definition cannot be satisfied, as it allows A to encode information about (xj)j∈I
via the set of validly-opened positions.

Letting J Intersect I. At first glance, it might seem uncanny that we let
the adversary choose the set J such that it includes locations for which the
adversary has seen openings before producing v̂com (i.e., it intersects I). On
the face of it, this allows for trivial attacks, since the adversary can trivially
commit, via v̂com, to values that are related to (xi)i∈I . However, Definition 3.1
“discounts” such trivial attacks from the adversary’s advantage, by allowing the
simulator to access values (xi)i∈I as well.

Choosing I Adaptively. We note that Definition 3.1 can be strengthened,
by allowing the adversary in RealVC,q,A,R,D(λ) to choose the set I in an adaptive
manner. That is, to choose the indices included in I one by one, each index being
chosen after A has observed the values xi (and the associated proof πi) for each
previous chosen index i. Our construction in Sect. 5 remains secure under this
strengthened definition, and its proof of security readily extends to it.

Reusability. One might consider a strengthening of Definition 3.1, by providing
the adversary with many vector commitments vcom1, . . . , vcomk (and to local
openings of their choice) to vectors �v1, . . . , �vk, and requiring that they cannot
produce (and later open) a vector commitment v̂com to a vector �v which is non-
trivially related to �v1, . . . , �vk. Such a strengthening is in line with the notion of
a reusable non-malleable non-interactive commitment scheme [DG03] and more
generally, with the notion of concurrent non-malleable commitments [DDN00].
We believe that our framework and constructions can be generalized to support
such a definition, and we leave this task to future work.

3.1 Existing Schemes Do Not Satisfy Our Notion

Merkle Trees in the Standard Model. Consider the Merkle tree construction
of vector commitments with respect to a hash function h : {0, 1}2λ → {0, 1}λ.
That is, a commitment vcom to a vector �x ∈ {0, 1}λ×q is the root of the binary
hash tree whose left leaves (i.e., leaves which are left children) are the values
of �x; the right leaves are assigned some predetermined arbitrary values; and
the value of each node is obtained by applying h to the concatenation of its
children.5 In the full version we present a formal description of this construction,
and show that if h is modeled as a random oracle, then this construction is
indeed non-malleable per Definition 3.1. Alas, if h is instantiated via a standard-
model collision resistant hash function, this is not necessarily the case. Loosely
speaking, this is because the function h itself may be malleable.

As a concrete and simple example, consider the case in which h(z) =
z1‖h′(z2‖ · · · ‖z2λ), where z = z1‖ · · · ‖z2λ ∈ {0, 1}2λ and h′ : {0, 1}2λ−1 →
{0, 1}λ−1 is a collision-resistant hash function. It is not hard to verify that h is
also collision resistant; but still, the vector commitment it induces is malleable.

5 We embed the entries of �x only as left leaves as to avoid trivial attacks. Doing so,
the opening of say, the i-th entry does not trivially reveal any other entries.

Non-malleable Vector Commitments 435

In fact, this vector commitment is not even completely hiding: Consider the fol-
lowing attacker which first request to see an opening of the first entry x1 of �x
(by outputting I = {1} in Step 4 of the real experiment of Definition 3.1). This
opening includes the value assigned to the sibling of the parent of x1 (which is
the parent of x2); denote this value by y = y1‖ · · · ‖yλ ∈ {0, 1}λ. Then y1 is equal
to the first bit of x2. This means that the adversary can commit from scratch
to some vector (x̂1, . . . , x̂q) such that the first bit of x̂2 is also y1 (and the other
entries are chosen arbitrarily), satisfying a non-trivial relation with �x. This is
just one simple example, and many more examples exist for the malleability of
standard-model instantiation of Merkle trees.

Algebraic Constructions. More recent algebraic constructions of vector com-
mitments turn out to be malleable as well. To start, consider the constructions
of Catalano and Fiore [CF13], based on either the discrete logarithm assump-
tion or the RSA assumption. In both of these construction, a user commits to
a vector �x of integers, by computing vcom =

∏

i∈[q] g
xi
i , where g1, . . . , gq are

publicly-known group elements. It is not hard to see, that an attacker receiving
vcom can produce a commitment v̂com to any affinely-related vector a ·�x+�z, by
computing vcoma ·

∏

i∈[q] g
zi
i .

Lai and Malavolta [LM19] recently generalized the constructions of Catalano
and Fiore to Euclidean rings (they also presented an additional construction
in bilinear groups, which falls into the same template as the constructions of
Catalano and Fiore, and hence the same attack applies to it). Concretely, they
consider a module over a ring R, consisting of an Abelian group (G,×) and a
binary operation ◦ : R × G → G. A vector commitment to a vector �x ∈ X q

is then computed by the inner product
〈

�x, �S
〉

= (x1 ◦ S1) × · · · × (xq ◦ Sq),

where X ⊆ R is a subset satisfying some natural property and �S is a vector of
publicly-known group elements. Unsurprisingly, the afore-described attack easily
generalizes to this construction as well. For any a ∈ R and z ∈ Rq, an attacker
which receies a commitment vcom to a vector �x ∈ X q can compute a commitment
to any affinely-related vector a · �x + �z, where (+, ·) are the two ring operations,
by computing (a ◦ vcom)×

〈

�z, �S
〉

. Note that this attack works as long as a ·�x+�z

lies in X .

3.2 Simple Attempts that Fail

For obtaining an initial understanding of the challenges in constructing non-
malleable vector commitments, consider the following two constructions which
are based on rather simple and direct combinations of vector commitments and
non-malleable commitments, and fail to satisfy Definition 3.1. In what follows,
nmCOM is a standard non-malleable commitments scheme and VC is a (poten-
tially malleable) vector commitment scheme.

Applying nmCOM and then VC. As a first attempt, consider what happens
when in order to commit to some vector �x, one first applies nmCOM locally
to each entry of �x to obtain q commitments c1, . . . , cq; and then uses VC to

436 L. Rotem and G. Segev

commit to these commitments. The problem with this approach is that VC might
be malleable. For example, if VC appends a random bit to the end of each
commitment, then an adversary which receives a commitment vcom to a vector
�x produced using the approach described above, can easily produce a different
commitment v̂com to the same �x by flipping the last bit of vcom. It might be
also the case that VC is malleable in the following sense: Given a commitment
vcom to a vector �x produced using VC, it is easy to “replace” some of the entries
of the vector underlying vcom, resulting in a commitment to a related vector �x′
which identifies with �x on some of its locations. If this is the case, then such an
attack is also possible for the combined vector commitment scheme which first
applies nmCOM locally.6

Applying VC and then nmCOM. Consider a construction which, in order
to commit to a vector �x, first applies VC to produce a commitment vcom0 and
commits to vcom0 using nmCOM to produce a commitment vcom. Alas, this
approach also does not meet Definition 3.1. The main issue is unique to the
setting of non-malleable vector commitments: Per Definition 3.1, an adversary
can request to see openings of individual entries of �x before outputting their
own commitment v̂com. These openings must include in particular the interme-
diate commitment vcom0. Hence, if VC is malleable, then the adversary, having
observed vcom0 can come up with a different commitment v̂com0 with respect to
VC for some related vector �x′. Then, the adversary can simply commit to v̂com0

using nmCOM to produce the desired commitment v̂com.

4 Locally-Equivocable Commitments with All-
But-One Binding

In this section we introduce the notion of a locally-equivocable commitment
scheme with all-but-one binding, which serves as one of the main building-blocks
underlying our construction of a non-malleable vector commitment scheme. Our
notion is obtained by augmenting the standard notion of a non-interactive tag-
based commitment scheme with two additional requirements, namely local equiv-
ocability and all-but-one binding.

In addition, we present both a somewhat theoretical realization of the our
new notion based on the existence of any one-way function, and two efficient
number-theoretic realizations: A construction based on the discrete logarithm
assumption, and a construction based on the RSA assumption. In both cases,
the common-reference string consists of 2–3 group elements (in addition to

6 Another issue which may arise, is that nmCOM might not be concurrent
non-malleable (see, for example, [DDN00,PR05,PR08,LPV08] and the references
therein). In this case, an adversary which observes some of the local commitments
and openings produced via nmCOM may be able to come up with nmCOM com-
mitments to related values. This issue, however, can be relatively easily resolved by
using a commitment scheme which offers non-malleability even against adversaries
which observe at most q commitments and openings.

Non-malleable Vector Commitments 437

the description of the group), and a commitment consists of a single group
element. As discussed in Sect. 1.1, these number-theoretic constructions were
described by Fischlin in his Ph.D. thesis [Fis01] (and also used by Crescenzo,
Katz, Ostrovsky and Smith [CKO+01] in their number-theoretic constructions
of non-malleable non-interactive commitment schemes7). Although our notion of
a locally-equivocable commitment scheme with all-but-one binding strengthens
Fischlin’s notion of identity-based trapdoor commitments (as we discuss below),
we nevertheless show that these constructions satisfy our notion. Our construc-
tions are provided in the full version.

Formally, a locally-equivocable commitment scheme with all-but-one bind-
ing over a domain X = {Xλ}λ∈N and a tag space T = {Tλ}λ∈N is a 6-tuple
LE = (LE.Setup, LE.Commit, LE.Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) of
polynomial-time algorithms defined as follows:

– The algorithm LE.Setup is a probabilistic algorithm that receives as input the
security parameter λ ∈ N and a polynomially-bounded integer q = q(λ), and
outputs a common-reference string crs.

– The algorithm LE.Commit is a probabilistic algorithm that receives as input
the security parameter λ ∈ N, a common-reference string crs, an element
x ∈ Xλ, an index i ∈ [q] and a tag τ ∈ Tλ, and outputs a commitment c and
a decommitment d.8

– The algorithm LE.Decommit is a deterministic algorithm that receives as input
the security parameter λ ∈ N, a common-reference string crs, a commitment
c, a decommitment d, an index i ∈ [q] and a tag τ ∈ Tλ, and outputs an
element x ∈ Xλ or the rejection symbol ⊥.

– The algorithm LE.AltSetup is a probabilistic algorithm that receives as input
the security parameter λ ∈ N and a polynomially-bounded integer q = q(λ),
and outputs a state st0.

– The algorithm LE.Equiv1 is a probabilistic algorithm that receives as input the
security parameter λ ∈ N a state st0, a polynomially-bounded integer q = q(λ)
and a tag τ ∈ Tλ, and outputs a common-reference string ĉrs, commitments
ĉ1, . . . , ĉq and a state st1.

– The algorithm LE.Equiv2 is a deterministic algorithm that receives as input
the security parameter λ ∈ N, an element x ∈ Xλ, an index i ∈ [q], a state st1
and a tag τ ∈ Tλ, and outputs a decommitment ̂d.

A commitment scheme as described above should satisfy the standard correct-
ness requirement of commitment schemes. That is, for any security parameter
λ ∈ N, for any tag τ ∈ Tλ, for any polynomially-bounded q = q(λ), for any i ∈ [q]
and for any x ∈ Xλ it holds that

Pr
[

LE.Decommit(1λ, crs, c, d, i, τ) = x
]

= 1,

7 Although Crescenzo et al. did not explicitly frame their construction as relying on an
underlying equivocable commitment scheme, we follow a somewhat more fine-grained
abstraction via our local equivocability and all-but-one binding properties.

8 We note that the commitment and decommitment algorithms LE.Commit and LE.
Decommit receive the index i ∈ [q] as input for technical reasons that come up in
our generic construction based on one-way functions.

438 L. Rotem and G. Segev

where crs ← LE.Setup(1λ, q) and (c, d) ← LE.Commit(1λ, crs, x, i, τ), and the
probability is taken over the internal randomness of all algorithms.

The following two definitions formally capture our local equivocability and
all-but-one binding requirements.

Definition 4.1 (Local equivocability). A commitment scheme LE =
(LE.Setup, LE.Commit, LE.Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over a
domain X = {Xλ}λ∈N and a tag space T = {Tλ}λ∈N is locally equivocable
if the following requirements hold:

– Equivocation correctness: For any λ ∈ N, for any τ ∈ Tλ, for any
polynomially-bounded q = q(λ), for any i ∈ [q] and for any x ∈ Xλ it holds
that

Pr
[

LE.Decommit(1λ, ĉrs, ĉi, ̂d, i, τ) = x
]

= 1,

where (ĉrs, ĉ1, . . . , ĉq, st1) ← LE.Equiv1(1λ, LE.AltSetup(1λ), q, τ) and ̂d =
LE.Equiv2(1λ, x, i, st1), and the probability is taken over the internal random-
ness of all algorithms.

– Equivocation indistinguishability: For any probabilistic polynomial-time
algorithm A, there exists a negligible function ν(·) such that for any polyno-
mially bounded q = q(λ) it holds that

AdvLocalEquiv
LE,q,A (λ)
def= |Pr [IndParamLE,q,A,0(λ)] − Pr [IndParamLE,q,A,1(λ)]| ≤ ν(λ)

for all sufficiently large λ ∈ N, where for any bit b ∈ {0, 1} the experiment
IndParamLE,q,A,b(λ) is defined as follows:
1. (τ, x1, . . . , xq, stA) ← A(1λ).
2. crs0 ← LE.Setup(1λ, q).
3. (c0,i, d0,i) ← LE.Commit(1λ, crs, xi, i, τ) for each i ∈ [q].
4. st0 ← LE.AltSetup(1λ, q).
5. (crs1, c1,1, . . . , c1,q, st1) ← LE.Equiv1(1λ, st0, q, τ).
6. d1,i = LE.Equiv2(1λ, xi, i, st1) for each i ∈ [q].
7. b′ ← A(stA, crsb, (cb,i)i∈[q], (db,i)i∈[q]).
8. Output b′.

Intuitively, the all-but-one binding property requires that an adversary which
generates equivocable public parameters (via the LE.Equiv1 algorithm) using a
tag τ of their choice, cannot break the binding property with respect to these
parameters and a different tag τ ′ 	= τ .

Definition 4.2 (All-but-one binding). A commitment scheme LE =
(LE.Setup, LE.Commit, LE.Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over a
domain X = {Xλ}λ∈N and a tag space T = {Tλ}λ∈N is all-but-one binding if for
any probabilistic polynomial-time algorithm A there exists a negligible function
ν(·) such that for polynomially-bounded q = q(λ) it holds that

AdvABOBind
LE,q,A (λ) def= Pr

[

ABOBindLE
q,A(λ) = 1

]

≤ ν(λ)

Non-malleable Vector Commitments 439

for all sufficiently large λ ∈ N, where the experiment ABOBindLE
q,A(λ) is defined

as follows:

1. (τ, stA) ← A(1λ), where τ ∈ Tλ.
2. st0 ← LE.AltSetup(1λ, q).
3. ρ ← {0, 1}r, where r = r(λ) is the number of random coins used by LE.Equiv1

on security parameter λ ∈ N.
4. (ĉrs, ĉ1, . . . , ĉq, st1) = LE.Equiv1(1λ, st0, q, τ ; ρ).
5. (c, d, d′, i, τ ′) ← A(stA, st0, ρ).
6. x = LE.Decommit(1λ, ĉrs, c, d, i, τ ′) and x′ = LE.Decommit(1λ, ĉrs, c, d′, i, τ ′).
7. Output 1 if τ ′ 	= τ , x 	= ⊥, x′ 	= ⊥ and x 	= x′. Otherwise, output 0.

Comparing Our Notion to Identity-Based and Simulation-Sound
Trapdoor Commitments. Having formally defined our notion of a locally-
equivocable commitment scheme with all-but-one binding, we can now compare
it to Fischlin’s notion of an identity-based trapdoor commitment scheme [Fis01,
Ch. 2.6]. Both notions are obtained by augmenting the standard notion of a
non-interactive tag-based commitment scheme with equivocability and all-but-
one binding requirements. Our requirements, however, are more strict compared
to those of Fischlin, both in terms of equivocability and in terms of all-but-one
binding.

First, in terms of equivocability, Fischlin asks for an equivocation algorithm
that produces an equivocable common-reference string and a single equivoca-
ble commitment which should be indistinguishable from an honestly-generated
common-reference string and an honestly-generated commitment. However, for
our construction of a non-malleable vector commitment scheme, producing a
single equivocable commitment seems insufficient. Thus, we ask for an equiv-
ocation algorithm that produces an equivocable common-reference string and
q equivocable commitments (where q = q(λ) is any predetermined polynomial)
which should be indistinguishable from an honestly-generated common-reference
string and an honestly-generated vector of q independent commitments. We note
that such a requirement does not necessarily follow from the case q = 1 due to
potential dependencies between the equivocable common-reference string and
the single equivocable commitment that may be efficiently identifiable when pro-
ducing more than a single equivocable commitment (this is evident in our generic
construction based any non-interactive equivocable commitment scheme, where
the common-reference string grows with q).

Second, in terms of all-but-one binding, Fischlin asks that when generating
an equivocable common-reference string with respect to a predetermined tag τ ,
commitments with respect to all other tags should still be binding even when
given the trapdoor associated with τ . For our construction we strengthen this
requirements, and ask that commitments with respect to all other tags should
still be binding even when given the trapdoor associated with τ and the internal
randomness of the equivocation algorithm.

An additional related notion is that of a simulation-sound trapdoor commit-
ment scheme, put forth by Garay, MacKenzie, and Yang [GMY03], which can
be seen as augmenting standard trapdoor commitments [Rey01, Ch. A.5] with

440 L. Rotem and G. Segev

tags. Garay et al. also considered an enhanced binding property, requiring that
binding with respect to a tag τ should be preserved, even if the attacker can
obtain a single “fake” opening (using the trapdoor) for any commitment with
respect to τ , as well as an unbounded number of openings for any commitment
with respect to any other tag τ ′ 	= τ . This notion seems to be incomparable to
our notion of locally-equivocable commitments with all-but-one binding. First,
the trapdoor in simulation-sound trapdoor commitments is a global trapdoor
generated by the honest parameters generation algorithm. There are no alterna-
tive procedures to generate equivocable parameters and commitments, and the
trapdoor is not tied to any particular tag. This means that knowledge of the trap-
door allows one to open any (honestly generated) commitment to any value they
desires. Second, whereas in our enhanced binding property the attacker receives
the trapdoor associated with a tag τ of their choice, the attacker in the notion
of Garay et al. does not receive the trapdoor, but only openings computed using
it (this is unavoidable, since knowledge of the trapdoor in their notion allows
the attacker to break binding with respect to all tags).

5 Our Construction of a Non-malleable Vector
Commitment Scheme

Our construction relies on the following building blocks:

– A vector commitment scheme VC = (VC.Setup,VC.Commit,VC.Open,VC.
Verify) over a domain X = {Xλ}λ∈N (see Sect. 2.2).9

– A locally-equivocable commitment scheme with all-but-one binding LE =
(LE.Setup, LE.Commit, LE.Decommit, LE.AltSetup, LE.Equiv1, LE.Equiv2) over
the domain X = {Xλ}λ∈N and a tag space T = {Tλ}λ∈N (see Sect. 4) with
tags of length t = t(λ) bits.

– A one-time strongly-unforgeable signature scheme SIG = (Sig.Gen,
Sig.Sign,Sig.Verify) (see Sect. 2.3). Let v = v(λ) denote the bit-length of the
verification keys that are produced by Sig.Gen(1λ).

– A universal one-way hash family H = {Hλ}λ∈N (see Sect. 2.4), where each
Hλ consists of functions mapping v(λ)-bit strings to t(λ)-bit strings for every
security parameter λ ∈ N.

As discussed in Sect. 1.3, from a foundational perspective, the above building
blocks can all be based on the existence of any vector commitment scheme.
Additional, from a more practical perspective, the above building blocks can
all be realized based on a variety of number-theoretic assumptions leading to
practical implementations.

Given the above building blocks, our construction of a non-malleable
vector commitment scheme, denoted nmVC = (nmVC.Setup, nmVC.Commit,
nmVC.Open, nmVC.Verify), is defined as follows:
9 We emphasize that the security of our construction does not rely on VC providing

any flavor of hiding or succinctness, and this is discussed below in the overview of
our proof.

Non-malleable Vector Commitments 441

A non-malleable vector commitment scheme nmVC
nmVC.Setup(1λ , q):

1. Sample crsLE ← LE.Setup(1λ, q), crsVC ← VC.Setup(1λ, q) and h ← Hλ.
2. Output crs = crsLE‖crsVC‖h.

nmVC.Commit(1λ , crs, (x1, . . . , xq)):

1. Parse crs as crsLE‖crsVC‖h.
2. Sample (sk, vk) ← Sig.Gen(1λ) and compute τ = h(vk).
3. For each i ∈ [q] compute (ci, di) ← LE.Commit(1λ, crsLE, xi, i, τ).
4. Compute (vcom0, st0) ← VC.Commit(1λ, crsVC, (c1, . . . , cq)) and σ ←

Sig.Signsk(vcom0).
5. Output (vcom, st), where vcom = vcom0‖vk‖σ and st =

st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.

nmVC.Open(1λ , crs, vcom, st, i):

1. Parse crs as crsLE‖crsVC‖h, vcom as vcom0‖vk‖σ and st as
st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq.

2. Compute π0 ← VC.Open(1λ, crsVC, vcom0, st0, i).
3. Output π = ci‖di‖π0.

nmVC.Verify(1λ , crs, vcom, i, x, π):

1. Parse crs as crsLE‖crsVC‖h, vcom as vcom0‖vk‖σ and st as π as ci‖di‖π0.
2. Compute τ := h(vk).
3. Output 1 if all of the following conditions hold:

– Sig.Verifyvk(vcom0, σ) = 1.
– VC.Verify(1λ, crsVC, vcom0, i, ci, π0) = 1.
– LE.Decommit(1λ, crsLE, ci, di, i, τ) = x.

Otherwise, output 0.

Finally, we note that for simplifying our construction and its proof, the
length of the secret state st = st0‖c1‖ · · · ‖cq‖d1‖ · · · ‖dq produced by the com-
mitment algorithm nmVC.Commit in the above description depends linearly on
q but this can be easily avoided whenever the committed vector (x1, . . . , xq)
is additionally provided. Specifically, given x1, . . . , xq, the entire sequence of
values c1, . . . , cq, d1, . . . , dq can be replaced with a single key K for a pseudo-
random function PRF that will allow the algorithm nmVC.Open to recompute
any of these values when needed. Specifically, instead of computing (ci, di) ←
LE.Commit(1λ, crsLE, xi, i, τ) by feeding the algorithm LE.Commit with a fresh
random string ri ← {0, 1}∗, we can instead feed it with a pseudorandom string
ri = PRFK(crsLE, xi, i, τ) which is reproducible via knowledge of K and xi.

Security. The following theorem captures the security of our construction, show-
ing that it satisfies our notion of non-malleability for vector commitment schemes
(recall Definition 3.1) based on the security of its underlying building blocks:

442 L. Rotem and G. Segev

(1) a vector commitment scheme VC, (2) a locally-equivocable commitment
scheme with all-but-one binding LE , (3) a one-time strongly-unforgeable sig-
nature scheme SIG, and (4) a universal one-way hash family H.

Theorem 5.1. For every probabilistic polynomial-time algorithm A and poly-
nomial q = q(λ), there exists a probabilistic polynomial-time algorithm SA such
that the following holds: For any probabilistic polynomial-time algorithm R, there
are probabilistic polynomial-time algorithms B1,B2,B3,B4 and B5 such that

AdvNM
nmVC,q,A,SA,R,D(λ) ≤ AdvLocalEq

LE,q,B1
(λ) + AdvForge

SIG,B2
(λ) + AdvUOWHF

H,B3
(λ)

+2 ·
(

AdvABOBind
LE,q,B4

(λ) + AdvPosBind
VC,q,B5

(λ)
)

for every λ ∈ N.

Due to space limitations, the formal proof of Theorem 5.1 is provided in the
full version.

References

[ABC+12] Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters,
B.: Computing on authenticated data. In: Proceedings of the 9th Theory
of Cryptography Conference, pp. 169–191 (2012)

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: Proceed-
ings of the 42nd Annual IEEE Symposium on Foundations of Computer
Science, pp. 106–115 (2001)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: Pro-
ceedings of the IEEE Symposium on Security and Privacy, pp. 315–334
(2018)

[BBF19] Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with
applications to IOPs and stateless blockchains. In: Advances in Cryptology
- CRYPTO 2019, pp. 561–586 (2019)

[BCG+14] Ben-Sasson, E., et al.: Zerocash: decentralized anonymous payments from
bitcoin. In: Proceedings of the IEEE Symposium on Security and Privacy,
pp. 459–474 (2014)

[BdM93] Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alter-
native to digital signatures. In: Advances in Cryptology - EUROCRYPT
1993, pp. 274–285 (1993)

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation
over large datasets. In: Advances in Cryptology - CRYPTO 2011, pp. 111–
131 (2011)

[Bic17] Bichler, M.: Market Design: A Linear Programming Approach to Auctions
and Matching. Cambridge University Press, Cambridge (2017)

[BP97] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signa-
ture schemes without trees. In: Advances in Cryptology - EUROCRYPT
1997, pp. 480–494 (1997)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, pp. 62–73 (1993)

Non-malleable Vector Commitments 443

[BS07] Bellare, M., Shoup, S.: Two-tier signatures, strongly unforgeable signatures,
and fiat-Shamir without random oracles. In: Proceedings of the 10th Inter-
national Conference on Theory and Practice of Public-Key Cryptography,
pp. 201–216 (2007)

[BSW06] Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based
on computational Diffie-Hellman. In: Proceedings of the 9th International
Conference on Theory and Practice of Public-Key Cryptography, pp. 229–
240 (2006)

[But14] Buterin, V.: Ethereum: a next-generation smart contract and decentralized
application platform. Available at https://ethereum.org/en/whitepaper/
(2014)

[But17] Buterin, V.: The stateless client concept (2017). Available at https://
ethresear.ch/t/the-stateless-client-concept/172

[CDV06] Catalano, D., Dodis, Y., Visconti, I.: Mercurial commitments: minimal
assumptions and efficient constructions. In: Proceedings of the 3rd Theory
of Cryptography Conference, pp. 120–144 (2006)

[CF01] Canetti, R., Fischlin, M.: Universally composable commitments. In:
Advances in Cryptology - CRPYTO 2001, pp. 19–40 (2001)

[CF13] Catalano, D., Fiore, D.: Vector commitments and their applications. In:
Proceedings of the 16th International Conference on Practice and Theory
in Public-Key Cryptography, pp. 55–72 (2013)

[CFG+20] Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incre-
mentally aggregatable vector commitments and applications to verifiable
decentralized storage. In: Advances in Cryptology - ASIACRYPT 2020, pp.
3–35 (2020)

[CHL+13] Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial
commitments with applications to zero-knowledge sets. J. Cryptol. 26(2),
251–279 (2013)

[CIO98] Crescenzo, G.D., Ishai, Y., Ostrovsky, R.: Non-interactive and non-
malleable commitment. In: Proceedings of the 30th Annual ACM Sym-
posium on the Theory of Computing, pp. 141–150 (1998)

[CKO+01] Crescenzo, G.D., Katz, J., Ostrovsky, R., Smith, A.D.: Efficient and
non-interactive non-malleable commitment. In Advances in Cryptology -
EUROCRYPT 2001, pp. 40–59 (2001)

[CL02] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to
efficient revocation of anonymous credentials. In: Advances in Cryptology
- CRYPTO 2002, pp. 61–76 (2002)

[COS+17] Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concur-
rent non-malleable commitments from one-way functions. In: Advances in
Cryptology - CRYPTO 2017, pp. 127–157 (2017)

[CRF+11] Catalano, D., Raimondo, M.D., Fiore, D., Messina, M.: Zero-knowledge
sets with short proofs. IEEE Trans. Inf. Theory 57(4), 2488–2502 (2011)

[DDN00] Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Com-
put. 30(2), 391–437 (2000)

[DG03] Damgard, I., Groth, J.: Non-interactive and reusable non-malleable com-
mitment schemes. In: Proceedings of the 35th Annual ACM Symposium
on the Theory of Computing, pp. 426–437 (2003)

[DKN+04] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification
in ad hoc groups. In: Advances in Cryptology - EUROCRYPT 2004, pp.
609–626 (2004)

https://ethereum.org/en/whitepaper/
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172

444 L. Rotem and G. Segev

[FF00] Fischlin, M., Fischlin, R.: Efficient non-malleable commitment schemes. In:
Advances in Cryptology - CRYPTO 2000, pp. 413–431 (2000)

[Fis01] Fischlin, M.: Trapdoor commitment schemes and their applications. PhD
Thesis, University of Frankfurt (available at https://www.math.uni-
frankfurt.de/∼dmst/research/phdtheses/mfischlin.dissertation.2001.html)
(2001)

[FVY14] Fromknecht, C., Velicanu, D., Yakoubov, S.: A decentralized public key
infrastructure with identity retention. Cryptology ePrint Archive, Report
2014/803 (2014)

[GLO+12] Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-
malleable commitments: a black-box approach. In: Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, pp. 51–60
(2012)

[GM06] Gennaro, R., Micali, S.: Independent zero-knowledge sets. In: Proceedings
of the 33th International Colloquium on Automata, Languages and Pro-
gramming, pp. 34–45 (2006)

[GMY03] Garay, J.A., MacKenzie, P., Yang, K.: Strengthening zero-knowledge pro-
tocols using signatures. In: Advances in Cryptology - EUROCRYPT 2003,
pp. 177–194 (2003)

[GPR16] Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commit-
ments. In: Proceedings of the 48th annual ACM Symposium on Theory
of Computing, pp. 1128–1141 (2016)

[GR97] Gennaro, R., Rohatgi, P.: How to sign digital streams. In: Advances in
Cryptology - CRYPTO 1997, pp. 180–197 (1997)

[GRW+20] Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: aggregating
proofs for multiple vector commitments. In: Proceedings of the 27th ACM
Conference on Computer and Communications Security, pp. 2007–2023
(2020)

[HIL+99] H̊astad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM J. Comput. 28(4), 1364–1396
(1999)

[Khu17] Khurana, D.: Round optimal concurrent non-malleability from polynomial
hardness. In: Proceedings of the 15th Theory of Cryptography Conference,
pp. 139–171 (2017)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
pp. 723–732 (1992)

[KSS+16] Krupp, J., Schröder, D., Simkin, M., Fiore, D., Ateniese, G., Nürnberger,
S.: Nearly optimal verifiable data streaming. In: Proceedings of the 19th
International Conference on Practice and Theory in Public-Key Cryptog-
raphy, pp. 417–445 (2016)

[Lam79] Lamport, L.: Constructing digital signatures from a one way function. Tech-
nical Report SRI-CSL-98, SRI International Computer Science Laboratory
(1979)

[LM19] Lai, R.W.F., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: Advances in Cryptology - CRYPTO 2019, pp. 530–
560 (2019)

[LP09] Lin, H., Pass, R.: Non-malleability amplification. In: Proceedings of the
41st annual ACM Symposium on Theory of Computing, pp. 189–198 (2009)

https://www.math.uni-frankfurt.de/~dmst/research/phdtheses/mfischlin.dissertation.2001.html
https://www.math.uni-frankfurt.de/~dmst/research/phdtheses/mfischlin.dissertation.2001.html

Non-malleable Vector Commitments 445

[LP11] Lin, H., Pass, R.: Constant-round non-malleable commitments from any
one-way function. In: Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing, pp. 705–714 (2011)

[LPV08] Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable com-
mitments from any one-way function. In: Proceedings of the 5th Theory of
Cryptography Conference, pp. 571–588 (2008)

[LY10] Libert, B., Yung, M.: Concise mercurial vector commitments and inde-
pendent zero-knowledge sets with short proofs. In: Proceedings of the 7th
Theory of Cryptography Conference, pp. 499–517 (2010)

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: Advances in Cryptology - CRYPTO 1987, pp. 369–378 (1987)

[MGG+13] Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous dis-
tributed e-cash from bitcoin. In: IEEE Symposium on Security and Privacy,
pp. 397–411 (2013)

[Mic94] Micali, S.: CS proofs. In: Proceedings of the 35th Annual IEEE Symposium
on the Foundations of Computer Science, pp. 436–453 (1994)

[MND+04] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine,
S.G.: A general model for authenticated data structures. Algorithmica
39(1), 21–24 (2004)

[MRK03] Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proceedings of
the 44th Annual IEEE Symposium on Foundations of Computer Science,
pp. 80–91 (2003)

[Nak08] Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Available at
https://bitcoin.org/bitcoin.pdf (2008)

[Nao91] Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–
158 (1991)

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In: Top-
ics in Cryptology - CT-RSA 2005, pp. 275–292 (2005)

[NN98] Naor, M., Nissim, K.: Certificate revocation and certificate update. In: Pro-
ceedings of the 7th USENIX Security Symposium, pp. 217–228 (1998)

[NY89] Naor, M., Yung, M.: Universal one-way hash functions and their crypto-
graphic applications. In: Proceedings of the 21st Annual ACM Symposium
on Theory of Computing, pp. 33–43 (1989)

[OWW+20] Ozdemir, A., Wahby, R., Whitehat, B., Boneh, D.: Scaling verifiable
computation using efficient set accumulators. In: Proceedings of the 29th
USENIX Security Symposium, pp. 2075–2092 (2020)

[PPV08] Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions
and applications. In: Advances in Cryptology - CRYPTO 2008, pp. 57–74
(2008)

[PR05] Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: Proceed-
ings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, pp. 563–572 (2005)

[PR08] Pass, R., Rosen, A.: New and improved constructions of nonmalleable cryp-
tographic protocols. SIAM J. Comput. 38(2), 702–752 (2008)

[PW10] Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Advances in Cryptology - EURO-
CRYPT 2010, pp. 638–655 (2010)

[Rey01] Reyzin, L.: Zero-knowledge with public keys. PhD Thesis, Massachusetts
Institute of Technology (available at https://www.cs.bu.edu/∼reyzin/phd-
thesis.html) (2001)

https://bitcoin.org/bitcoin.pdf
https://www.cs.bu.edu/~reyzin/phd-thesis.html
https://www.cs.bu.edu/~reyzin/phd-thesis.html

446 L. Rotem and G. Segev

[Rom90] Rompel, J.: One-way functions are necessary and sufficient for secure sig-
natures. In: Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pp. 387–394 (1990)

[STS99] Sander, T., Ta-Shma, A.: Auditable, anonymous electronic cash. In:
Advances in Cryptology - CRYPTO 1999, pp. 555–572 (1999)

[SvDJ+12] Stefanov, E., van Dijk, M., Jules, A., Opera, A.: Iris: a scalable cloud file
system with efficient integrity checks. In: Proceedings of the 28th Annual
Computer Security Applications Conference, pp. 229–238 (2012)

[TAB+20] Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich,
D.: Aggregatable subvector commitments for stateless cryptocurrencies. In:
Proceedings of the 12th International Conference on Security and Cryptog-
raphy for Networks, pp. 45–64 (2020)

[Tod16] Todd, P.: Making UTXO set growth irrelevant with low-latency delayed
TXO commitments (2016). Available at https://petertodd.org/2016/
delayed-txo-commitments

[Wee10] Wee, H.: Black-box, round-efficient secure computation via non-
malleability amplification. In: Proceedings of the 51st Annual IEEE Sym-
posium on Foundations of Computer Science, pp. 531–540 (2010)

https://petertodd.org/2016/delayed-txo-commitments
https://petertodd.org/2016/delayed-txo-commitments

Non-malleable Time-Lock Puzzles
and Applications

Cody Freitag1, Ilan Komargodski2,3, Rafael Pass1, and Naomi Sirkin1(B)

1 Cornell Tech, New York City, USA
{cfreitag,rafael,nephraim}@cs.cornell.edu

2 Hebrew University, Jerusalem, Israel
ilank@cs.huji.ac.il

3 NTT Research, Palo Alto, USA

Abstract. Time-lock puzzles are a mechanism for sending messages “to
the future”, by allowing a sender to quickly generate a puzzle with an
underlying message that remains hidden until a receiver spends a mod-
erately large amount of time solving it. We introduce and construct a
variant of a time-lock puzzle which is non-malleable, which roughly guar-
antees that it is impossible to “maul” a puzzle into one for a related
message without solving it.

Using non-malleable time-lock puzzles, we achieve the following appli-
cations:

– The first fair non-interactive multi-party protocols for coin flipping
and auctions in the plain model without setup.

– Practically efficient fair multi-party protocols for coin flipping and
auctions proven secure in the (auxiliary-input) random oracle model.

As a key step towards proving the security of our protocols, we intro-
duce the notion of functional non-malleability, which protects against
tampering attacks that affect a specific function of the related messages.
To support an unbounded number of participants in our protocols, our
time-lock puzzles satisfy functional non-malleability in the fully concur-
rent setting. We additionally show that standard (non-functional) non-
malleability is impossible to achieve in the concurrent setting (even in
the random oracle model).

1 Introduction

Time-lock puzzles (TLPs), introduced by Rivest, Shamir, and Wagner [45], are
a cryptographic mechanism for committing to a message, where a sender can
(quickly) generate a puzzle with a solution that remains hidden until the receiver
spends a moderately large amount of time solving it (even in the presence of
parallel processors). Rivest et al. [45] gave a very efficient construction of TLPs
where security relies on the repeated squaring assumption. This assumption pos-
tulates, roughly, that it is impossible to significantly speed up repeated modular
exponentiations in a group of unknown order, even when using many parallel
processors. This construction and assumption have proven extremely useful in
various (and sometimes unexpected) applications [9,15,19,33,36,44,50], some of
which have already been implemented and deployed in existing systems.
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 447–479, 2021.
https://doi.org/10.1007/978-3-030-90456-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_15&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_15

448 C. Freitag et al.

Non-malleability. In a Man-In-the-Middle (MIM) attack, an eavesdropper
tries to actively maul intermediate messages to compromise the integrity of the
underlying values. To address such attacks, Dolev, Dwork and Naor [18] intro-
duced the general concept of non-malleability in the context of cryptographic
commitments. Roughly speaking, non-malleable commitments are an extension
of plain cryptographic commitments (that guarantee binding and hiding) with
the additional property that no adversary can maul a commitment for a given
value into a commitment to a “related” value. As this is a fundamental concept
with many applications, there has been a tremendous amount of research on this
topic [1,11,12,22–24,27,29–33,35,39–41,43,49].

Non-malleable TLPs and Applications. To date, non-malleability has not
been considered in the context of TLPs (or other timed primitives).1 Indeed,
the construction of TLPs of [45] is malleable.2 This fact actually has negative
consequences in various settings where TLPs could be useful. For instance, con-
sider a scenario where n parties perform an auction by posting bids on a public
bulletin board. To implement this fairly, a natural approach is to use a commit-
and-reveal style protocol, where each party commits to its bid on the board, and
once all bids are posted each party publishes its opening. Clearly, one has to use
non-malleable commitments to guarantee that bids are independent (otherwise,
a malicious party can potentially bid for the maximal other bid plus 1). However,
non-malleability is not enough since there is a fairness issue: a malicious party
may refuse to open after seeing all other bids and so other parties will never
know what the unopened bid was.

Using non-malleable TLPs to “commit” to the bids solves this problem.
Indeed, the puzzle of a party who refuses to reveal its bid can be recovered
after some moderately large amount of time by all honest parties. This style of
protocol can also be used for fair multi-party collective coin flipping where n
parties wish to agree on a common unbiased coin. There, each party encodes
a random bit via a TLP and all parties will eventually agree on the parity of
those bits.3 This gives a highly desirable collective coin flipping protocol with
an important property that we refer to as optimistic efficiency : when all parties
are honest and publish their “openings” immediately after seeing all puzzles, the
protocol terminates and all parties agree on an unbiased bit. As we will see, no
other known protocol for this (highly important) task has this property. Even

1 The concurrent works of [3,4,28] consider similar notions of non-malleability for
time-lock puzzles. See Sect. 1.3 for a detailed comparison.

2 The puzzle of [45] for a message s and difficulty T is a tuple (g, N, T, s⊕g2T

mod N),
where N is an RSA group modulus and g is a random element from ZN . The puzzle
is trivially malleable since the message is one-time padded.

3 In the context of coin flipping, if a malicious party aborts prematurely, this can
bias the output [13] causing the fairness issue mentioned above. Boneh and Naor [9]
used timed primitives and interaction to circumvent the issue in the two-party case,
but we care about the multi-party case and prefer to avoid interaction as much as
possible.

Non-malleable Time-Lock Puzzles and Applications 449

ignoring optimistic efficiency, such a protocol yields a fully non-interactive coin
flipping protocol where each participant solves all published puzzles.

1.1 Our Results

To present our results, we start with a high level definition of a non-malleable
TLP. Recall that for some secret s and difficulty t, a time-lock puzzle enables
sampling a puzzle z which can be solved in time t to recover s, but guarantees
that s remains hidden to any adversary running in time less than t.

For non-malleability, we require that any man-in-the-middle (MIM) attacker
A that receives a puzzle z “on the left” cannot output a different puzzle z̃ “on
the right” to a related value. Formally, we consider the (inefficient) distribu-
tion mimA(t, s) that samples a puzzle z to s, gets z̃ ← A(z), and outputs the
value s̃ computed by solving z̃. However, if z = z̃, then s̃ = ⊥ (since simply
forwarding the commitment does not count as a valid mauling attack). Then,
non-malleability requires that for any solution s and MIM attacker with depth
much less than t (so it cannot break hiding), the distribution for a value s given
by mimA(t, s) is indistinguishable from the distribution mimA(t, 0) for an unre-
lated value, 0. We emphasize that indistinguishability should hold even against
arbitrary polynomial time or even unbounded distinguishers that, in particular,
can solve the TLP. We also consider the natural extension to the bounded con-
current setting [42], where the MIM attacker A receives nleft concurrent puzzles
on the left and attempts to generate nright puzzles on the right to related values.
In this setting, the distinguisher receives the solutions to all nright puzzles. We
refer to this as (nleft, nright)-concurrency.

We next give our main results. First, we present our results on non-malleable
time-lock puzzles, and we discuss the various notions of non-malleability that
we consider in this setting. Next, we show how to additionally satisfy a strong
public verifiability property using a specific time-lock puzzle based on repeated
squaring. Finally, we discuss the applications of our constructions for fair multi-
party protocols.

Non-malleable Time-Lock Puzzles. We give two different constructions of
non-malleable TLPs. We emphasize that, as explained above, this primitive is not
only natural on its own right, but also has important applications to the design
of secure protocols for various basic tasks. Our first construction is practically
efficient, relies on the existence of any given TLP [6,45], and is proven secure in
the (auxiliary-input) random oracle model [47].

Theorem 1.1 (Informal; See Theorem 4.2 and Corollary 4.3). For every
nleft, nright, L ∈ poly(λ), assuming that there is a TLP (supporting 1-bit mes-
sages) that is secure for attackers of size 23nright·L · poly(λ), there exists an
(nleft, nright)-concurrent non-malleable TLP supporting messages of length L. The
scheme is proven secure in the auxiliary-input random oracle model.

450 C. Freitag et al.

In terms of security, our reduction is depth preserving : if the given TLP is
secure against attackers of depth T (λ)/α(λ), where α(·) is a fixed polynomial
independent of T denoting the advantage of an attacker, then the resulting non-
malleable TLP is secure against attackers of depth T (λ)/α′(λ) for a related fixed
polynomial α′(·). In particular, the dependence on T in hardness is preserved.
Additionally, note that if nright · L ∈ O(log λ), then the underlying TLP only
needs to be polynomially secure.

Instantiating the TLP with the construction of [45], our scheme is extremely
efficient: encoding a message requires a single invocation of a random oracle and
few (modular) exponentiations. Additionally, our construction is very simple to
describe: to generate a puzzle for a solution s with randomness r, we sample a
puzzle for (s, r) using randomness which itself depends (via the random oracle)
on s and r.4 Nevertheless, the proof of security turns out to be somewhat tricky
and non-trivial; see Sect. 2 for details.

We prove that our scheme is non-malleable against all polynomial-size attack-
ers that cannot solve the puzzles (and this is inherent as the latter ones can easily
maul any puzzle). We even allow the attacker’s description to depend arbitrar-
ily on the random oracle. We formalize this notion by showing that our TLP
is non-malleable in the auxiliary-input random oracle model, a model that was
introduced by Unruh [47] (see also [14]) in order to capture preprocessing attacks,
where a non-uniform attacker obtains an advice string that depends arbitrarily
on the random oracle. Thus, in a sense, our construction does not require any
form of attacker-independent setup.

Our second construction is proven secure in the plain model (without any
form of setup) and is based on the non-malleable code for bounded polynomial
depth tampering functions due to [15]. This construction relies on a variety
of assumptions (including keyless hash functions and non-interactive witness
indistinguishable proofs) and is less practically efficient. While the main technical
ideas for the construction and proof are given in [15], the threat model they
consider is weaker than what we require for non-malleable TLPs; for example,
they only consider plain (non-concurrent) non-malleability and do not require
security against re-randomization attacks (mauling a code word for m into a
different code word for m). We show how to extend their construction to our
setting, and prove the following theorem.

Theorem 1.2 (Informal). Assume a time-lock puzzle, a keyless multi-collision
resistant hash function, a non-interactive witness indistinguishable proof for NP,
and injective one-way functions, all sub-exponentially secure. Then, there exists
a bounded concurrent non-malleable time-lock puzzle secure against polynomial
size adversaries.

4 We note that our construction is conceptually similar to the Fujisaki-Okamoto (FO)
transformation [21] used to generically transform any CPA-secure public-key encryp-
tion scheme into a CCA-secure one using a random oracle. However, since our setting
and required guarantees are different, the actual proof turns out to be much more
delicate and challenging.

Non-malleable Time-Lock Puzzles and Applications 451

We emphasize that both of our constructions only achieve bounded concur-
rency, where the number of instances the attacker participates in is a priori
bounded (and the scheme may depend on this bound). We show that the stronger
notion of full concurrency, which does not place such limitations and is achiev-
able in all other standard settings of non-malleability, is actually impossible to
achieve for TLPs. Therefore, our result is best possible in this sense.

Theorem 1.3 (Informal). There is no fully concurrent non-malleable TLP
(even in the random oracle model).

In a nutshell, the impossibility from Theorem 1.3 is proven by the following
generic MIM attack. Given a puzzle z, if the number of “sessions” the attacker
can participate in is at least as large as |z|, they can essentially generate |z|
puzzles encoding the bits of z. Since the distinguisher of the MIM game (which
is now given those bits) can run in arbitrary polynomial time, it can simply
solve the original puzzle and recover the original solution in full. We emphasize
that this attack only requires a polynomial-time distinguisher. This attack is
circumvented in the bounded concurrency setting (Theorem 1.1) by setting the
length of the puzzle to be longer than the concurrency bound. Specifically, to
support n concurrent puzzles on the right, we can set the message length to L ·n,
which is what results in exponential security loss 2L·n as discussed above.

Functional Non-malleability. We note that the attack on fully concurrent
non-malleable time-lock puzzles crucially relies on the fact that the distinguisher
in the MIM game can solve the underlying puzzles. However, it is easy to see
that if the distinguisher is restricted to bounded depth, this attack fails. One
could define a weaker notion of non-malleability where the MIM distinguisher is
depth-bounded, but this results in a weaker security guarantee. In particular, we
show in the full version of the paper that there exists a natural TLP construction
that satisfies this (weaker) definition yet has a valid mauling attack.5

In light of this observation, we introduce a new definition of non-malleability
that generalizes the standard definition considered in Theorem 1.1. We call the
notion functional non-malleability and, as the name suggests, the security notion
is parameterized by a class of functions F . Denote by L the bit-length of the
messages we want to support and by n the number of sessions that the MIM
attacker participates in on the right. We think of f ∈ F as some bounded depth
function of the form f : ({0, 1}L)n → {0, 1}m, which is the target function of
the input messages that the MIM adversary is trying to bias. Specifically, the
distinguisher of the MIM game now receives the output of the function f when
applied to the values underlying the puzzles given by the MIM adversary. When
F includes all identity functions (which are bounded depth and have output
length m = n · L), functional non-malleability implies the standard definition of
concurrent non-malleability (as the distinguisher just gets all the messages from
the n mauled puzzles).
5 As we discuss in the Sect. 1.3, concurrent works allow the distinguisher to be bounded

depth.

452 C. Freitag et al.

Naturally, it makes sense to ask what guarantees can we get if we a priori
restrict f , say in its output length, without limiting the number of sessions n.
This turns out to particularly useful when the application at hand only requires
non-malleability against a specific form of tampering functions (this indeed will
be the case for us below). Concretely, let Fm be the class of all functions whose
output length is at most m bits and which can be computed in depth polynomial
in the security parameter λ and in log(n · L) (using the notation given above).
Then, we have the following result.

Theorem 1.4 (Informal; See Theorem 4.2). Assuming that there exists a
TLP, then for every m ∈ poly(λ) there exists a fully concurrent functional non-
malleable TLP for the class of functions Fm. The scheme is proven secure in
the auxiliary-input random oracle model assuming the given TLP is secure for
all attackers of size at most 23m · poly(λ).

The above construction is depth preserving in the same way as the con-
struction from Theorem 1.1. Further, note that as long as m ∈ O(log λ), we
only require standard polynomial hardness from the given TLP. We remark that
Theorem 1.4 will turn out to be instrumental for our applications we discuss
below. We also believe that the abstraction of functional non-malleability is
important on its own right and view it as an independent contribution. We also
show how to achieve fully concurrent functional non-malleability for our plain
model construction.

Publicly Verifiable Time-Lock Puzzles. In addition to non-malleability, we
construct TLPs that also have a public verifiability property: after a party solves
the puzzle, they can publish the underlying solution together with a proof which
can be later used by anyone to quickly verify the correctness of the solution. We
emphasize that this must hold even if the solver determines that the puzzle has
no valid solution. We believe this primitive is of independent interest.

We build our non-malleable, publicly verifiable TLP assuming a very weak
form of (partially) trusted setup. The setup of our TLP consists of a set of many
public parameters where we only assume that at least one of them was generated
honestly. We call this model the All-But-One-string (ABO-string) model.6 We
design this to fit into our multi-party protocol application (see Theorem 1.7
below) in such a way where the parties themselves will generate this setup in the
puzzle generation phase. Indeed, as we discuss below, publicly verifiable TLPs
in the ABO-string model will imply coin flipping without setup.

Theorem 1.5 (Informal). Assuming the repeated squaring assumption, there
exists a publicly verifiable non-malleable TLP in the ABO-string model. The
construction is proven secure in the auxiliary-input random oracle model.

6 Our ABO-string model is a variant of the multi-string model of Groth and Ostro-
vsky [25], where it is assumed that a majority of the public parameters are honestly
generated.

Non-malleable Time-Lock Puzzles and Applications 453

Our construction is depth preserving and has security which depends on the
message length. In particular, the security of the resulting TLP is the same as
in the constructions in Theorem 1.1 and Theorem 1.4, depending on the type of
non-malleability desired for the resulting TLP.

To construct our publicly verifiable TLP, we use a strong trapdoor VDF which
is why our construction is not generic from any time-lock puzzle. Somewhat
surprisingly, we need to leverage specific properties of the trapdoor VDF of
Pietrzak’s [44] using the group of signed quadratic residues QR+

N where N is a
product of safe primes.7 For an overview of our construction, see Sect. 2.2.

Fair Multi-Party Auctions and Coin Flipping. As we mentioned above,
an appealing application of non-malleable TLPs is for tasks such as fair multi-
party auctions or coin flipping. Our protocols (for both tasks) are extremely
efficient and consist of just two phases: first each party “commits” to their
bid/randomness using some puzzle, and then after all puzzles are made public,
each party publishes its solution. If some party refuses to open their puzzle, a
force-opening phase is performed. Alternatively, we can instantiate our protocols
in the fully non-interactive setting where all parties solve every other puzzle.

In what follows, we focus on the task of fair multi-party coin flipping, which is
a core building block in recent proof-of-stake blockchain designs; see below. The
application to auctions follows in a similar manner. It is convenient to consider
our protocol in a setting where there is a public bulletin board. Any party can
publish a puzzle to the bulletin board during the commit phase and then publish
its solution after some pre-specified amount of time has elapsed.

Relying only our concurrent, functional non-malleable (not necessarily pub-
licly verifiable) TLP constructions, all of our protocols (both non-interactive and
two-phase) satisfy fairness, informally defined as follows:

• Fairness: No malicious adversary (controlling all but one party) can bias the
output of the protocol, even by aborting early. Namely, as long as there is at
least one honest participating party, the output will be a (nearly) uniformly
random value.

Our two-phase “commit-and-reveal” style protocols have the additional efficiency
guarantee:

• Optimistic Efficiency: If all participating parties are honest, then the pro-
tocol terminates within two message rounds (without the need to wait the
pre-specified amount of time for the second phase), and all parties can effi-
ciently verify the output of the protocol.

Using our construction of a publicly verifiable non-malleable TLP, we satisfy the
following public verifiability property:

7 For this, we assume that sampling uniformly random safe primes can be done effi-
ciently; this is a pretty common assumption, see [48] for more details.

454 C. Freitag et al.

• Public Verifiability: In the case that any participating party is dishonest
and does not publish their solution, any party can break the puzzle in a mod-
erate amount of time and provide a publicly verifiable proof of the solution.
We even require that an honest party can prove that a published puzzle has
no valid solution.

We focus on two main results from the above discussion, although we get
a variety of different protocols depending on what TLP we start with and how
we instantiate the protocol. First, we construct fully non-interactive protocols
in the plain model without any setup.

Theorem 1.6 (Informal; see Theorem 5.3). Assume a time-lock puzzle, a
keyless multi-collision resistant hash function, a non-interactive witness indis-
tinguishable proof for NP, and injective one-way functions, all sub-exponentially
secure. Then, there exist fully non-interactive, fair multi-party coin flipping and
auction protocols. The protocols support an unbounded number of participants
and require no setup.

Next, we achieve efficient, publicly verifiable two-phase protocols in the aux-
iliary input random oracle model.

Theorem 1.7 (Informal; See Theorem 5.1). Assuming the repeated squar-
ing assumption, there exist two-phase fair multi-party coin flipping and auction
protocols that satisfy optimistic efficiency and public verifiability. The protocols
support an unbounded number of participants and require no trusted setup. Secu-
rity is proven in the auxiliary-input random oracle.

The differences between the protocols achieved in these two theorems is that
the first is non-interactive and has no setup, while the second is two rounds and
is in the random oracle model, yet leverages this to achieve public verifiability
and better concrete efficiency. We emphasize that both of the protocols support
polynomial-length outputs, relying on sub-exponential security of the underlying
time-lock puzzle.

We also emphasize that our protocols support an a priori unbounded number
of participants. This may seems strange in light of our impossibility from Theo-
rem 1.3. We bypass this lower bound (as mentioned above) by observing that for
most natural applications (including coin flipping and auctions), the notion of
functional non-malleability from Theorem 1.4 suffices. The key insight is that we
only need indistinguishability with respect to specific depth-bounded functions
with a priori bounded output lengths (e.g., parity for coin flipping, or taking the
maximum for auctions). Since the output length in both cases is known, we can
actually support full concurrency which translates into having an unbounded
number of participants.

For auctions, we note that our protocols are the first multi-party protocols
under any assumption that satisfy fairness against malicious adversaries and
requires no adversary-independent setup—using the timed commitments of [9]
works only in the two-party setting and additionally relies on trusted setup,
and using the homomorphic time-lock puzzles of [36] does not satisfy fairness in

Non-malleable Time-Lock Puzzles and Applications 455

the presence of malicious adversaries. For coin flipping, our two-round protocol
is the first multi-party protocol that is fair against malicious adversaries while
satisfying optimistic efficiency. Next, we provide a more in depth comparison of
our non-interactive coin flipping protocol with existing solutions.

Simulation-Based Fairness. As mentioned above, we show that our proto-
cols are fair in the sense that no malicious adversary can bias the output of the
protocol. This suffices for applications which only use the output of the protocol.
To capture applications that additionally depend on the protocol transcript, we
show that our protocol satisfies simulation security with full fairness in the pro-
grammable random oracle model. This guarantees that the protocol execution
in the presence of a malicious adversary (even one aborting early) can be simu-
lated to a uniformly random output in an ideal model where every honest party
receives the output (regardless of whether any malicious party aborts early).

Non-interactive Coin Flipping. We emphasize that our non-interactive coin
flipping protocol of Theorem 1.6 is the first such protocol without any form of
setup in the plain model. Specifically, we mean that there is no common random
string or any assumed common function. Still, our practically efficient protocol of
Theorem 1.7 as a non-interactive protocol still enjoys some benefits over existing
schemes.

In the non-interactive setting, Boneh et al. [7] proposed a VDF-based pro-
tocol. Specifically, each party publishes a random string ri and then the agreed
upon coin is defined by running a VDF on the seed H(r1‖ . . . ‖rn), where H is
a random oracle. As the VDF must be evaluated to obtain the output, this type
of protocol does not satisfy optimistic efficiency. Nevertheless, the VDF-based
protocol has the advantage that only a single slow computation needs to be
computed, whereas our non-interactive protocol requires n such computations
for n participants (which can be done in parallel). Malavolta and Thyagara-
jan [36] address this inefficiency in the context of time-lock puzzles (which do
allow for the option of optimistic efficiency) by constructing homomorphic time-
lock puzzles, where many separate puzzles can be combined into a single puzzle
to be solved. However, their TLP scheme is malleable and so cannot be directly
used to obtain a fair protocol against malicious adversaries.8 In the two-phase
setting, however, our publicly verifiable protocol has the property that only a
single honest party needs to solve each puzzle, and this computation can easily
be delegated to an external server.

The VDF-based scheme of [7] can be based on repeated squaring in a group
of unknown order based on the publicly verifiable proofs of [44,50]. In this set-
ting, the protocols can either be instantiated using RSA groups that require
attacker-independent trusted setup, or based on class groups that rely only on

8 It is possible to make this protocol maliciously secure using concurrent non-malleable
zero-knowledge proofs [2,32,34,38], proving that each party acted honestly, but this
(1) makes the construction significantly less efficient, and (2) requires either trusted
setup and additional hardness assumptions, or additional rounds of interaction.

456 C. Freitag et al.

a common random string. As we do in this work, the common random string
can be implemented in the ABO-string model using a random oracle (which the
attacker may depend on arbitrarily). Therefore, when restricting our attention
to protocols without attacker-independent setup, the previous VDF-based pro-
tocols are based on less standard assumptions on class groups, whereas we give
a protocol that can be instantiated from more standard assumptions on RSA
groups with better concrete efficiency.

Privacy. Let us remark that the protocols that we described guarantee fairness
but not privacy. The latter, however, can be obtained in specific applications by
composing our protocols with existing privacy-preserving tools such as Anon-
ize [26].

1.2 Related Work

Timed Commitments. Boneh and Naor [9] introduced timed commitments,
which can be viewed as a publicly verifiable and interactive TLP. They addi-
tionally require that the puzzle (which is an interactive commitment) convinces
the receiver that if they brute-force the solution, they will succeed. Because of
this additional property, their commitment scheme is interactive and relies on a
less standard assumption called the generalized Blum-Blum-Shub assumption.
Their scheme is additionally malleable.

Fair Coin Flipping in Blockchains. Generating unbiased bits is one of the
largest bottlenecks in modern proof-of-stake crypto-currency designs [5,16,17].
Recall that in a proof-of-stake blockchains, the idea is, very roughly speaking,
to enforce “one vote per unit of stake”. This is usually implemented by choosing
random small committees at every epoch and letting that committee decide on
the next block. The main question is how to obtain “pure” randomness so that
the chosen committee is really “random”.

One option is to use the hash of an old-enough block as the randomness.
Unfortunately, it is known that the hash of a block is not completely unbiased:
an attacker can essentially fully control about logarithmically many of its bits.
In existing systems, this is mitigated by “blowing up” parameters to compensate
for the (small yet meaningful) advantage the attacker has, making those systems
much less efficient. Using a mechanism that generates unbiased bits, we could
make proof-of-stake crypto-currencies much more efficient.

1.3 Concurrent Work

Several related papers [3,4,28] have been developed concurrently and indepen-
dently to this work.9 The works of Baum et al. [3,4] formalize and construct
9 We emphasize that only Sect. 1.3, Appendix A, and the separation regarding the

different notions of non-malleability (given in the full version) were added based on
these works. All other definitions and results that appear are completely independent
of these works.

Non-malleable Time-Lock Puzzles and Applications 457

various (publicly verifiable) time-based primitives, including TLPs, under the
Universal Composability (UC) framework [10]. Katz et al. [28] (among other
results, less related to ours) introduce and construct non-malleable non-
interactive timed commitments. While the notions that are introduced and stud-
ied are related, the results are all incomparable as each paper has a somewhat
different motivation which leads to different definitions and results.

Comparison with [28]. Let us start by comparing definitions. Katz et al. con-
sider a CCA-style definition adapted to the depth-bounded setting. In the clas-
sical setting of unbounded polynomial-time attackers, CCA security definitions
are usually stronger than “only” non-malleability, but this is not generally true
in the depth-bounded setting.

In more detail, they consider a depth-bounded version of CCA security, where
the attacker (who is also the distinguisher) is bounded to run in time less than the
hardness of the timed primitive. We, on the other hand, allow the distinguisher of
the MIM game to be unbounded (while only the attacker is bounded). We believe
this is an important distinction and we provide more insights into the differences
between the bounded and unbounded distinguisher settings in the full version.
Specifically, we show that non-malleability with a depth-bounded distinguisher
is (essentially) equivalent to our definition of functional non-malleability with
output length 1. We also give a construction separating the definitions of non-
malleability with an unbounded vs. depth-bounded distinguisher, showing that
non-malleability in the bounded distinguisher setting gives a strictly weaker
security guarantee.

Regarding the primitives constructed, recall that timed commitments [9]
(ignoring non-malleability for now) allow one to commit to a message m in
such a way that the commitment hides m up to some time T , yet the verifier
can be sure that it can be force opened to some value after roughly T time. In
contrast, plain TLPs are not necessarily guaranteed to contain valid messages.
In this context, our notion of publicly-verifiable TLPs is in between these two
notions: we treat puzzles without a solution as invalid (say encoding ⊥) but we
additionally provide a way to publicly verify that this is the case after it has been
solved. Nevertheless, we note that the construction of Katz et al. does not imply
a TLP since their commitment procedure takes T time (while TLP generation
should take time essentially independent of T).

Additionally, their constructions achieve non-malleability through the use
of NIZKs following the Naor-Yung [37] paradigm for CCA-secure encryption.
Known (even interactive) zero-knowledge proofs for correctness of time-lock puz-
zles are quite expensive (see, e.g., Boneh-Naor [9] which requires parallel repe-
tition). Using generic NIZKs (even in the random oracle model) would be even
worse.

Regarding assumptions, their construction is proven secure in the algebraic
group model [20] and relies on trusted setup, while ours is proven secure in
the (auxiliary-input) random oracle model and hence requires no trusted setup
independent of the adversary. Both constructions rely on repeated squaring as

458 C. Freitag et al.

the source of depth-hardness, and theirs additionally makes use of NIZKs (which
require setup).

Comparison with [3,4]. Baum et al. consider a UC-style definition, which is
generally stronger than non-malleability. In this setting, the environment takes
the place of the distinguisher in the MIM game. Their definition is closer to
ours as the environment may run for an arbitrary polynomial number of rounds
and thus does not restrict the depth of the distinguisher. In terms of modeling,
the construction of a UC-secure TLP in [4] relies on a programmable random
oracle, whereas our construction relies on a non-programmable (auxiliary-input)
random oracle. In fact, they prove that their notion of UC security cannot be
achieved in the non-programmable random oracle model.

In a follow-up work [3], they show that their time-lock puzzle construction
satisfies a notion of public verifiability. However, they achieve public verifiability
only for honestly generated puzzles, that is, one can prove that a puzzle has a
solution s, but cannot prove that a puzzle has no solution. In our terminology,
we refer to this as one-sided public verifiability In contrast, our construction
achieves full verifiability. This property is crucial for our efficient coin flipping
protocol since it allows only one honest party to (attempt to) solve any invalid
puzzle. With only one-sided public verifiability, every participant would need to
solve all invalid puzzles, and the output of the coin-flip can only be efficiently
verified (in time less than T) in the case that all puzzles are honestly generated.

1.4 Paper Organization

In Sect. 2, we give an overview of our techniques. Next, we give preliminaries in
Sect. 3. In Sect. 4, we give our construction of functional non-malleable time-lock
puzzles in the random oracle model. In Sect. 5, we give our construction of fair
multi-party coin flipping. In Appendix A we discuss the various notions of non-
malleability for TLPs introduced in this and related works. Additional results
are provided in the full version, including our non-malleable TLP construction in
the plain model, an impossibility result for unbounded concurrency, our publicly
verifiable TLP construction, our simulation-secure coin flipping protocol, and a
separation between unbounded and depth-bounded non-malleability.

2 Technical Overview

In Sect. 2.1, we give an overview of our non-malleable time-lock puzzle construc-
tion (in the random oracle model) and its proof of security. Then in Sect. 2.2, we
overview our construction of publicly verifiable (and non-malleable) time-lock
puzzles from repeated squaring. Finally in Sect. 2.3, we discuss how our non-
malleable time-lock puzzle constructions can be used for fair multi-party coin
flipping with various desirable properties.

Non-malleable Time-Lock Puzzles and Applications 459

We start by recalling the definition of TLPs, as necessary to give an overview
of our techniques. A TLP consists of two algorithms (Gen,Sol). Gen is a proba-
bilistic procedure that takes as input an embedded solution s and a time param-
eter t, and outputs a puzzle z. Sol is a deterministic procedure that on input a
puzzle z for time bound t, outputs a solution in depth (or parallel time) roughly
t. We note that TLPs can be thought of as a fine-grained analogue to commit-
ments where “hardness” of the puzzle means that the puzzles are hiding against
distinguishers of depth less than t. On the other hand, hiding can be broken in
depth t (using Sol). Additionally, we require that Sol always finds the correct
underlying solution s for a puzzle z. This corresponds to perfect binding in the
language of commitments.

2.1 Non-malleability for Time-Lock Puzzles

In this section, we overview our non-malleable time-lock puzzle construction in
the random oracle model (for the plain model construction, we refer the reader
to the overview in [15], as the main ideas are the same). Our construction relies
on any time-lock puzzle TLP and a common random oracle O. We now describe
our non-malleable TLP, which we denote nmTLP. In order to generate a puzzle
for a solution s that can be broken in time t, nmTLP.Gen uses randomness r and
feeds s‖r into the random oracle to get a string rtlp. It then uses TLP.Gen to
create a puzzle with difficulty t for s‖r using randomness rtlp. That is,

nmTLP.Gen(t, s; r) := TLP.Gen(t, s‖r;O(s‖r)).

Note that in order to solve the puzzle output by nmTLP.Gen, it suffices to just
solve the puzzle generated using TLP.Gen, which takes time t. In other words,
nmTLP.Sol(t, z) simply computes s‖r = TLP.Sol(t, z) and outputs s. In fact, the
solver can even check to make sure that the solutions s is valid by checking that
s = TLP.Gen(t, s; r).

We note that our construction is conceptually similar to the Fujisaki-
Okamoto (FO) transformation [21] for transforming CPA-secure encryption to
CCA-secure encryption using a random oracle. However, as we will see below,
our proof is substantially different. In particular, the FO transformation achieves
unbounded CCA security, which we show is impossible in our setting!

Hardness. To show the hardness of nmTLP relative to a random oracle, we
rely on the hardness of TLP in the plain model, against attackers of depth much
less than t. At a high level, we show that breaking the hardness of nmTLP
requires either guessing the randomness r used to generate the randomness rtlp =
O(s||r) for the underlying puzzle, or directly breaking the hardness of TLP, both
of which are infeasible for bounded attackers. To formalize this, we consider
any depth-bounded distinguisher DO, who receives as input a nmTLP puzzle z
corresponding to solution s0 or s1 and distinguishes the two cases with non-
negligible probability. By construction, z actually corresponds to a TLP puzzle

460 C. Freitag et al.

for s0||r0 or s1||r1, so we would like to use D to construct a distinguisher against
the hardness of TLP.

We first note that if D never makes a query to O containing the randomness
rb underlying z, then we can simulate O by lazily sampling it in the plain model,
and hence use D as a distinguisher for the hardness of TLP. If D does make a
query containing rb, then with overwhelming probability it must have received
a puzzle corresponding to sb||rb (since in this case, r1−b is independent of D
and its input z). Moreover, all of its queries up until that point have uniformly
random answers independent of z, so we can simulate them as well, up until
receiving this query. Therefore, in both cases, we can carry out this attack in
the plain model and rely on the hardness of TLP.

Non-malleability. To show non-malleability of nmTLP, we want to argue that
any depth-bounded man-in-the-middle (MIM) attacker A cannot maul a puzzle
z for s (received on the left) to a puzzle z̃ (output on the right) for a related value
s̃ �= s. At a high level, whenever A changes the underlying value s to s̃, then
the output of the random oracle on s̃ is now uniformly random and independent
of z. Indeed, we show that for any fixed puzzle z̃ and a value s̃, a randomly
generated puzzle for s̃ will not be equal to z̃ with high probability (otherwise
we show how to break the hardness of TLP). So, intuitively, the only way to
generate a valid puzzle z̃ for s̃ is to “know” the underlying value s̃, but hardness
intuitively implies that no depth-bounded adversary can “know” s.

We formalize this intuition by a hybrid argument to show that the MIM
distribution s̃ ← mimA(t, s) is indistinguishable from mimA(t, 0). At a high level,
we first replace the inefficient distribution mimA(t, s) by a low-depth circuit B.
At this point, we want to use the hiding property to indistinguishably swap the
puzzle to 0, so the hybrid is now unrelated to s. We describe the key ideas for
these hybrids below.

For the first hybrid, the key insight is that we can compute mimA(t, s) in low
depth using an algorithm B by simply looking at the oracle queries made by A.
In this sense, we are relying on the extractability property of random oracles to
say that A must know any valid value s̃ it generates a puzzle for. Specifically,
let z̃ be the output of A. For every query (si‖ri) that A makes to O, B outputs
si if z̃ = nmTLP(t, si‖ri;O(si‖ri)). If there are no such queries, B outputs ⊥.
B requires depth comparable to the depth of A since all of these checks can be
done in parallel. Furthermore, the output of B is indistinguishable from the true
output given the above observation that A cannot output a valid puzzle for a
value it doesn’t query.

For the next hybrid, we would like to indistinguishably replace the underlying
puzzle for s with a puzzle for 0, which would suffice to show non-malleability.
Because B is low-depth, it seems that we should be able to use the hiding property
of nmTLP to say that the output of B does not depend on the underlying value
s. Specifically, we want to conclude that if the output of B (who outputs many
bits) is statistically far when the underlying value is s versus 0, then there exists
a distinguisher (who outputs a single bit) that can distinguish puzzles for s

Non-malleable Time-Lock Puzzles and Applications 461

and 0. Towards this claim, we show how to “flatten” any (possibly unbounded)
distinguisher D who distinguishes between the output of B in the case where
the underlying value is s versus 0. Specifically, we encode the truth table of D
as a low-depth distinguishing circuit of size roughly 2|s| to make this reduction
go through. As a result, we need to rely on a sub-exponentially security of the
underlying TLP when |s| = λ. Namely, the underlying TLP cannot be broken
by sub-exponential sized circuits with depth much less than t. However, when
|s| ∈ O(log λ), we only need to rely on polynomial security of the underlying
TLP.

Impossibility of Fully Concurrent Non-malleability. Ideally, we would
like to achieve fully concurrent non-malleability, meaning that any MIM attacker
that receives any polynomial n number of puzzles on the left cannot maul them
to n puzzles for related values. However, we show that this is impossible to
achieve.

Consider an arbitrary TLP for a polynomial time bound t. We construct a
MIM attacker A that receives only a single puzzle z on the left with solution s
where the length of z is L. Then, A can split z into L bits and output a puzzle
on the right for each bit of the puzzle z. Then, the values underlying the puzzles
output by A when viewed together yield z, which is related to the value s! More
formally, there exists a polynomial time distinguisher that solves the puzzle z in
polynomial time t and can distinguish A’s output in the case when it receives a
puzzle for s or an unrelated value, say 0.

This implies that for any n which is greater than the size of a puzzle, the
TLP cannot be non-malleable against MIM attackers who output at most n
puzzles on the right. At a high level, the impossibility follows from the fact that
hardness does not hold against arbitrary polynomial-time distinguishers (which
usually is the case for hiding of standard commitments).

Despite this impossibility, we show that we actually can achieve concurrent
non-malleability against a specific class of distinguishers in the non-malleability
game. We refer to this notion as concurrent functional non-malleability.

Achieving Concurrent Functional Non-malleability. In many applica-
tions, we only need a form of non-malleability to hold with respect to certain
classes of functions. For example, in our application to coin flipping, we only need
that a puzzle z with solution s cannot be mauled to a set of puzzles z̃1, . . . , z̃n

with underlying values s̃1, . . . , s̃n such that
⊕

i∈[n] s̃i “depends on” s. With this
in mind, we define a concurrent functional non-malleability with respect to a
class of functions F . We say that a TLP satisfies functional non-malleability for
a class F if the output of f(mimA(t, s)) is indistinguishable from f(mimA(t, 0))
for any f ∈ F , which also naturally generalizes to the concurrent setting. We
note that functional non-malleability for a class F actually implies standard non-
malleability whenever the class F contains the identity function, so functional
non-malleability generalizes the standard notion of non-malleability.

462 C. Freitag et al.

Going back to the proof of standard (non-concurrent) non-malleability for
our construction nmTLP, we observe that the security we need for the underly-
ing time-lock puzzle we use depends on 2|s| where |s| is the size of the puzzle
solutions. Specifically, given any distinguisher in the non-malleability that had
input of size |s|, we were able to construct a distinguisher for hardness of size
2|s|. In fact, this exact same proof works in the context of concurrent functional
non-malleability for functions f that have low depth and bounded output length
m. We require f to be low depth so the reduction constitutes a valid attack
against hardness, and then we only require security proportional to 2m!

We briefly discuss how our nmTLP construction works for concurrent func-
tional non-malleability for the class Fm of function with low depth and output
length m. Specifically, for every m, we define a scheme nmTLPm assuming that
TLP is secure against attackers of size roughly 2m. Because TLP requires security
against 2m size attackers, our construction nmTLPm also only achieves security
against 2m size attackers. As such, our nmTLP.Gen algorithm needs to use at
least Ω(m + λ) bits of randomness (otherwise an attacker could cycle through
all choices of randomness to break security). Recall that nmTLPm.Gen with ran-
domness r outputs a puzzle using TLP.Gen with solution s‖r. As a result, if we
want to support solutions of size |s| in nmTLPm, we need our underlying TLP
to support solutions of size O(|s| + m + λ). By correctness, this implies that our
schemes outputs puzzles of size roughly O(|s| + m + λ).

Bounded Concurrent Non-malleability. Our construction of time-lock puz-
zles for concurrent functional non-malleability can also be seen as a construction
for bounded concurrent (plain) non-malleability. Specifically, consider the case
where the MIM attacker outputs at most n puzzles on the right. We can think of
this as functional non-malleability where the low depth function is simply iden-
tity on n · |s| bits. From the above discussion, this implies a protocol assuming
a TLP with security against size 2n·|s| attackers, with puzzles of size roughly
O(n · |s| + λ).

Security in the Auxiliary-Input Random Oracle Model. Finally, we note
that the most of our constructions and formal proofs are in the auxiliary-input
random oracle model (AI-ROM) introduced by Unruh [47]. In this model, the non-
uniform attacker is allowed to depend arbitrarily on the random oracle, so there
is no attacker-independent non-uniform advice. At a high level, we use the result
from [47] to conclude that the view of any bounded-size MIM attacker A with ora-
cle access to O (where A may depend arbitrarily on O) is indistinguishable the
view of A with access to a “lazily sampled” oracle P that is fixed at a set of points
F (which depend on A). Formally, in the non-malleability analysis, we switch to an
intermediate hybrid where the MIM attacker has access to a partially fixed, lazily
sampled oracle P. Then, because the MIM attacker A must maul honestly gener-
ated puzzles that have high entropy, we show that it is necessary for A to query

Non-malleable Time-Lock Puzzles and Applications 463

the oracle P outside the fixed set of points F . From this, we carefully show that a
similar analysis follows as discussed above for the ROM.

2.2 Publicly Verifiable Time-Lock Puzzles

We observe that the non-malleable time-lock puzzle construction nmTLP we
described above has a very natural—yet incomplete—public verifiability prop-
erty. Solving a puzzle yields both the solution s and the randomness r use to
generate that puzzle. As such, anyone who solves a valid puzzle can send the
opening r to another party, and convince them that s is the unique valid solution
to the puzzle. However, we emphasize that this only works for valid puzzles and
solutions.

Consider the following problematic scenario for our nmTLP construction.
Suppose a party “commits” to a value via a puzzle z and refuses to open the
commitment. As we said before, if z is a valid puzzle, any party can solve the
puzzle, get the solution s and an opening r that proves that s is the unique solu-
tion. What if the puzzle corresponds to no solution? We refer to this scenario by
saying that the puzzle corresponds to the solution ⊥. In this case (by definition),
there is no solution s and opening r for any such that z = Gen(t, s; r). Anyone
who solve the invalid puzzle—which requires a lot of computational power—will
be able to conclude that the puzzle is malformed, but they will not be able to
convince anyone else that this is the case. Ideally, we would have a time-lock
puzzle where Sol additionally outputs a publicly verifiable proof π that the solu-
tion it computes is correct, even if the solution may be ⊥! We refer to such a
time-lock puzzle as a publicly verifiable time-lock puzzle. We next discuss the
definition and our construction of publicly verifiable time-lock puzzles.

Defining Public Verifiability. More formally, a publicly verifiable time-lock
puzzle consists of algorithms (Gen,Sol,Verify). As with normal time-lock puzzles,
Gen(t, s) outputs a puzzle z. The algorithm Sol(t, z) outputs the solution s as
well as a proof π that it computed s correctly. Finally Verify(t, z, (s, π)) checks
that s is indeed the correct solution for the puzzle z (corresponding to Sol(t, z)),
using the proof π. In addition to (Gen,Sol) being a valid time-lock puzzle, we
require that Sol and Verify constitute a sound non-interactive argument. In fact,
we require a very strong notion of soundness. We need it to be the case that
even for maliciously chosen puzzles that have no solution, the time-lock puzzle
is still sound—even against the adversary that generated the malformed puzzle.
In other words, we require that no attacker can compute a puzzle z, a value
s′, and a proof π′ such that Verify(t, z, (s′, π′)) accepts yet s′ is not the value s
computed by Sol(t, z), which may be ⊥.

Ideally, we would want a publicly verifiable time-lock puzzle that requires no
setup. We instead consider a weak form of setup which we refer to as the All-
But-One-string (ABO-string) model. In this model, Sol and Verify additionally
take as input a string mcrs = (crs1, . . . , crsn) ∈ ({0, 1}λ)n, and we require that
soundness holds as long as one of the values of crsi is sampled uniformly (without

464 C. Freitag et al.

necessarily knowing which one); this is why we refer to it as the all-but-one string
model. We note that in multi-party protocols, the ABO-string model is realistic
as each participant i ∈ [n] can post a value for crsi. Then, we require soundness
to hold as long as one participant is honest, which is a reasonable assumption in
this multi-party setting.

Constructing Publicly Verifiable Time-Lock Puzzles. Our construction of
a publicly verifiable time-lock puzzle follows the blueprint of Rivest, Shamir, and
Wagner [45] for constructing time-lock puzzles from repeated squaring. Namely,
we use the output of a sequential function (repeated squaring in a suitable group)
essentially as one-time pad to mask the value underlying the time-lock puzzle. As
in [45], we require that the sequential function has a trapdoor so that puzzles can
be generated efficiently. Unlike [45], we additionally require that the sequential
function is publicly verifiable to enable publicly verifiability for the time-lock
puzzle. Finally, we apply the non-malleability transformation described above
to achieve full public verifiability. In what follows, we describe each of these
steps in more detail.

For the underlying sequential function, we use what we call a strong trapdoor
verifiable delay function (VDF). A VDF (introduced by Boneh et al. [7]) is
a publicly verifiable sequential function that can be computed in time t but
not much faster, even with lots of parallelism. A trapdoor VDF (formalized by
Wesolowski [50]) additionally has a trapdoor for quick evaluation. We require
a trapdoor VDF in the ABO-string model that satisfies additional properties
required by our application. While the properties we define—and achieve—are
heavily tailored towards our application, we believe some of the techniques may
be of independent interest. More specifically, a strong trapdoor VDF comes
with a Sample algorithm to generate inputs for an evaluation algorithm Eval.
We emphasize that, even in the ABO-string model, Sample is independent of
any form of setup. Previous definitions of VDFs require the proof to be sound
with probability over an honestly sampled input. In contrast, we require that
the proof is sound for any maliciously chosen input that is in the support of
the Sample algorithm. We note that this property is satisfied by a variant of
Pietrzak’s VDF [44] based on repeated squaring. At a high level, this is because
Pietrzak’s VDF is sound (at least in the random oracle model) for any group of
unknown order where no adversary can find a group of low order (see e.g.[8] for
further discussion), so by using any RSA group with no low order elements (as
in [44]), the proof is sound even if the group is maliciously chosen (yet still a valid
RSA group), which gives the strong property we need. We note that the proof of
soundness for our strong trapdoor VDF in the ABO-string and auxiliary-input
random oracle model follows by a similar argument to that of [44] in the (plain)
random oracle model after applying Unruh’s result [47].

Next, we construct what we refer to as a one-sided publicly verifiable time-
lock puzzle in the ABO-string model by using the strong trapdoor VDF in
the RSW-style construction described above. By one-sided, we mean that com-
pleteness and soundness hold only for puzzles in the support of Gen (again, we

Non-malleable Time-Lock Puzzles and Applications 465

emphasize that this is in contrast to a randomly sampled puzzle). Then, our full
construction applies our non-malleability transformation to a one-sided publicly
verifiable time-lock puzzle. We already argued that the non-malleability trans-
formation provides a form of public verifiability for puzzles z in the support of
Gen. Namely, anyone can prove to another party that a valid puzzle z has a solu-
tion s, but the proof may not be sound when trying to prove that a puzzle has no
solution. However, we next show that if the underlying puzzle satisfies one-sided
public verifiability, then the resulting (non-malleable) publicly verifiable TLP is
sound for any z ∈ {0, 1}∗ (possibly not in the support of Gen).

Proof of Full Public Verifiability. Let (Gen,Sol,Verify) be the TLP result-
ing from applying our non-malleability transformation to a one-sided PV TLP
(Gentlp,Soltlp,Verifytlp). Consider any puzzle z ∈ {0, 1}∗. If z is in the support of
Gen, we want to ensure that no one can prove that s′ = ⊥ is a valid solution. At
the same time, if z is not in the support of Gen, we want to ensure that no one
can prove that s′ �= ⊥ is a valid solution.

When we run Sol(t, z), we first run Soltlp(t, z) and get a solution stlp = ŝ‖r̂
with a proof πtlp. If r̂ is a valid opening for the proposed solution ŝ, then Sol can
simply output the solution s = ŝ and the proof π = r̂. If r̂ is not a valid opening
for ŝ, Sol must output ⊥ and a proof π that this is the case. We set π = (stlp, πtlp),
which intuitively gives anyone else a way to “shortcut” the computation of Soltlp.

Now suppose that an adversary tries to falsely convince you that a puzzle z
with no solution has a solution s′ �= ⊥ using a proof π′ = r′. To do so, it must
be the case that r′ is a valid opening for s′ with respect to Gen. But if that were
the case, then z would have a solution, in contradiction.

On the other hand, suppose that an adversary tries to falsely convince you
that a puzzle z with solution s has no solution, i.e. s′ = ⊥, using a proof π′ =
(s′

tlp, π
′
tlp). Since z has a solution, it means that z is in the support of Gentlp. By

one-sided public verifiability, this means that π′
tlp is a valid proof that s′

tlp = ŝ‖r̂
is the correct solution to z with respect to Gentlp. So if r̂ is not a valid opening
for ŝ with respect to Gen, we know the adversary must be lying. In other words,
the only way the adversary can cheat is by cheating in the underlying one-sided
PV TLP on a puzzle z in the support of Gentlp.

Discussion of Our Non-malleable PV TLP. We note that the publicly
verifiable time-lock puzzle we described above can be made to satisfy the same
non-malleability guarantees as we discuss in Sect. 2.1 (as we construct it using
the same transformation but with a specific underlying time-lock puzzle). Thus,
assuming the repeated squaring assumption, we get a publicly verifiable time-
lock puzzle that satisfies concurrent function non-malleability for any class of low
depth functions Fm with output length m. Our construction is in the ABO-string
model, and we prove security in the auxiliary-input random oracle model (which
is needed for soundness of the strong trapdoor VDF in the ABO-string model in
addition to the non-malleability transformation). This model is reasonable for
our practical applications to multi-party protocols, as we will see below. Due to

466 C. Freitag et al.

the fact that this is a non-black box construction, we note that it does not apply
to our non-malleable TLP construction in the plain model.

We also note that our explicit repeated squaring assumption states that
repeated squaring in RSA groups for n-bit integers cannot be sped up even
by adversaries of size roughly 2m. The repeated squaring assumption is closely
related to the assumption on factoring (which has recently been formalized in
different generic models by the works of [28,46]). The current best known algo-
rithms for factoring run in time at least 2n1/3

. In the case where m ∈ O(log λ),
for example, we only require that polynomial-size attackers cannot speed up
repeated squaring, which is a relatively mild assumption. In the case where m is
larger, say m = λ, then we need to choose n to be at least λ3 (based on known
algorithms for factoring). This gives an example of the various trade-offs we get
for the security and efficiency of our construction depending on the class of low
depth functions Fm that we want non-malleability for.

2.3 Fair Multi-party Protocols

We will focus on coin flipping for concreteness, and note that for auctions the
ideas are similar. We give a protocol in auxiliary-input random oracle model, and
one in the plain model, depending on which non-malleable TLP construction we
use to instantiate it (which result in different guarantees). Here, we describe our
random oracle protocol, which captures the main ideas and various properties
we can achieve.

At a high level, the coin flipping protocol is very simple. Each party chooses
a random bit and publishes a time-lock puzzle that encodes the chosen bit.
After all puzzles are published, each party opens their puzzle by revealing the
bit that they used as well as the randomness used to generate the puzzle. Any
puzzle that is not opened can be “solved” after a moderately large amount of
time t. Once all puzzles have been opened, the agreed upon bit (i.e., the output
of the protocol) is the XOR of all revealed bits. The above protocol template
is appealing because it naturally satisfies optimistic efficiency: if all parties are
honest and open their puzzles, the protocol terminates immediately. When using
time-lock puzzles which are both non-malleable (as discussed in Sect. 2.1) and
publicly verifiable (as discussed in Sect. 2.2), we achieve the following highly
desirable properties:

• Fairness: No malicious party can bias the output of the protocol.
This crucially relies on non-malleability for the underlying time-lock puzzle.
For a protocol with n participants, we need the time-lock puzzle to satisfy
n-concurrent non-malleability. This guarantees that as long as one party is
honest, the output of the protocol will be (at least statistically close to) a
uniformly random bit.

• Unbounded participants: Anyone can participate in the protocol.
This property might come as a surprise since we show fully concurrent non-
malleability is impossible to achieve. However, we emphasize that our time-
lock puzzle achieves fully concurrent functional non-malleability for the XOR

Non-malleable Time-Lock Puzzles and Applications 467

function. This allows us to deal with any a priori unbounded number of par-
ticipants, which is important in many decentralized and distributed settings.

• Public verifiability: Only one party needs to solve each unopened puzzle,
and can provide a publicly verifiable proof that it solved it correctly.
This follows immediately by the public verifiability property we achieve for
the underlying time-lock puzzle. Without this property, any unopened puz-
zles may need to be solved by every party that want to know the output
of the protocol, which is prohibitively expensive. However, public verifiabil-
ity instead opens up the application to any party, not even involved in the
protocol. Furthermore, this work can even be delegated to an external server
since trust is guaranteed by the attached proof.

We note that our non-malleable and publicly verifiable time-lock puzzle is
defined in the All-But-One-string (ABO-string) model, which is required for
public verifiability. To implement this model, we have each participant i publish
a fresh random string crsi ← {0, 1}λ in addition to its puzzle zi. Then, whenever
some party tries to solve (or verify) a puzzle, it puts all of the random strings
together as a multi-common random string mcrs = (crs1, . . . , crsn) from all n
participants, and uses this for the publicly verifiable proof. As long as a single
party is honest and publishes a random string crsi independent of all other
participants, then the publicly verifiable proof system will be sound.

Simulation-Based Fairness. Finally, we discuss how fairness in the above
protocol can be strengthened to a simulation-style definition. Consider running
our protocol to get a value s, where s is the XOR of bits underlying the adver-
sary’s and honest players’ time-lock puzzles. In our simulation-secure protocol,
we will set the output to O(s) where O is a programmable random oracle. This
enables a simulator running in polynomial time to solve the adversary’s puzzles
and program O(s) to the desired output value. It then suffices to show that the
adversary A does not detect this change in the oracle, meaning that A does
not query s before publishing its time-lock puzzles. We observe that if A does
indeed query s, it implies an adversary against the game-based fairness of our
protocol, that runs A to get s and outputs a TLP to s along with A’s puzzles,
thus biasing the output to s ⊕ s = 0. We note that this shows that game-based
fairness for a standard commit-and-reveal style protocol (with TLPs instead of
commitments) can be generically transformed into a simulation-secure protocol
by feeding the output into a programmable random oracle.

3 Preliminaries

We first define time-lock puzzles without any additional properties.

Definition 3.1. Let B : N → N. A B-hard time-lock puzzle (TLP) is a tuple
(Gen,Sol) with the following syntax:

468 C. Freitag et al.

• z ← Gen(1λ, t, s): A PPT algorithm that on input a security parameter λ ∈ N,
a difficulty parameter t ∈ N, and a solution s ∈ {0, 1}λ, outputs a puzzle
z ∈ {0, 1}∗.

• s = Sol(1λ, t, z): A deterministic algorithm that on input a security parameter
λ ∈ N, a difficulty parameter t ∈ N, and a puzzle z ∈ {0, 1}∗, outputs a
solution s ∈ ({0, 1}λ ∪{⊥}).

We require (Gen,Sol) to satisfy the following properties.

• Correctness: For every λ, t ∈ N, solution s ∈ {0, 1}λ, and z ∈
Supp

(

Gen(1λ, t, s)
)

, it holds that Sol(1λ, t, z) = s.
• Efficiency: There exist a polynomial p such that for all λ, t ∈ N, Sol(1λ, t, ·)

is computable in time t · p(λ, log t).
• B-Hardness: There exists a positive polynomial function α such that for all

functions T and non-uniform distinguishers A = {Aλ}λ∈N
satisfying α(λ) ≤

T (λ) ∈ B(λ) ·poly(λ), size(Aλ) ∈ B(λ) ·poly(λ), and depth(Aλ) ≤ T (λ)/α(λ)
for all λ ∈ N, there exists a negligible function negl such that for all λ ∈ N,
and s, s′ ∈ {0, 1}λ,

∣
∣
∣Pr

[

Aλ(Gen(1λ, T (λ), ∫)) = 1
]

− Pr
[

Aλ(Gen(1λ, T (λ), ∫ ′)) = 1
]∣
∣
∣ ≤ negl(λ),

where the probabilities are over the randomness of Gen and Aλ.

When B(λ) ∈ poly(λ), we say that the TLP is polynomially-hard.

In the above definition, we assume for simplicity that the solutions s are λ-
bits long. We can naturally generalize this to consider the case where solutions
have some specified length L(λ). We emphasize that the notion of B-hardness
above suffices to capture both polynomial security and sub-exponential security,
as it captures hardness against adversaries of size B(λ), up to polynomial factors.

Non-malleable Time-Lock Puzzles. To formalize non-malleability in the
context of time-lock puzzles, we introduce a Man-In-the-Middle (MIM) adver-
sary. Because time-lock puzzles are designed to be broken in some depth t, we
restrict our MIM adversary to have at most depth t/α(λ) for a function α denot-
ing the advantage of the adversary. Furthermore, we allow for concurrent MIM
adversaries that possibly interact with many senders and receivers at the same
time.

Definition 3.2 (MIM Adversaries). Let nL, nR, Bnm, α, T : N → N. An (nL,
nR, Bnm, α, T)-Man-In-the-Middle (MIM) adversary is a non-uniform algorithm
A = {Aλ}λ∈N

satisfying depth(Aλ) ≤ T (λ)/α(λ) and size(Aλ) ∈ Bnm(λ)·poly(λ)
for all λ ∈ N that receives nL(λ) puzzles on the left and outputs nR(λ) puzzles
on the right.

We next define the MIM distribution, which corresponds to the values under-
lying the puzzles output by the MIM adversary. To capture adversaries that
simply forward one of the puzzles on the left to a receiver on the right, we set
the value for any forwarded puzzle to be ⊥.

Non-malleable Time-Lock Puzzles and Applications 469

Definition 3.3 (MIM Distribution]).Let nL, nR, Bnm, α, T : N → N. Let A =
{Aλ}λ∈N

be an (nL, nR, Bnm, α, T)-MIM adversary. For any λ ∈ N and �s =
(s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ), we define the distribution

(s̃1, . . . , s̃nR(λ)) ← mimA(1λ, T (λ), �s)

as follows. Aλ receives puzzles zi ← Gen(1λ, T (λ), si) for all i ∈ [nL(λ)] and
outputs puzzles (z̃1, . . . , z̃nR(λ)). Then for each i ∈ [nR(λ)], we define

s̃i =

{

⊥ if there exists a j ∈ [nL(λ]) such that z̃i = zj ,

Sol(1λ, T (λ), z̃i) otherwise.

Intuitively, a time-lock puzzle is non-malleable if the MIM distribution of a
bounded depth attacker does not depend on the solutions underlying the puzzles
it receives on the left. We formalize this definition below.

Definition 3.4 (Concurrent Non-malleable). Let nL, nR, Bnm : N → N. A
time-lock puzzle is (nL, nR)-concurrent non-malleable against adversaries of size
Bnm if there exists a positive polynomial α such that for every function T with
α(λ) ≤ T (λ) ∈ Bnm(λ)·poly(λ) for all λ ∈ N, and every (nL, nR, Bnm, α, T)-MIM
adversary A = {Aλ}λ∈N

, the following holds.
For any distinguisher D, there exists a negligible function negl such that for

all λ ∈ N and �s = (s1, . . . , snL(λ)) ∈ ({0, 1}λ)nL(λ),
∣

∣

∣Pr
[

D(mimA(1λ,T(λ),�s)) = 1
]

− Pr
[

D(mimA(1λ,T(λ), (0λ)nL(λ))) = 1
]∣

∣

∣

≤ negl(λ).

When Bnm(λ) = 1, we say the TLP is (nL, nR)-concurrent non-malleable. When
this only holds against non-uniform PPT distinguishers D, we say that the time-
lock puzzle is computationally (nL, nR)-concurrent non-malleable.

Relation to Non-malleable Commitments. When defining non-malleability
for TLPs, a natural attempt is to view TLPs as commitments, and give a def-
inition analogous to non-malleable commitments. This is usually formalized as
either non-malleability with respect to commitment, or non-malleability with
respect to extraction. The former notion requires that no man-in-the-middle
adversary can maul a commitment z to s into a commitment z̃ whose unique
underlying value is related to s, whereas the latter notion requires that E(z̃) is
unrelated to s, where E is a given extractor. When E has the guarantee that it
outputs the committed value on valid commitments and ⊥ on invalid ones, these
notions are equivalent. However, when considering extractors that may output
arbitrary values when given invalid commitments, these notions are incompara-
ble in general. In the context of time-lock puzzles, we observe that Sol is the
natural extractor for Gen, and moreover that non-malleability should capture
adversaries that maul a puzzle into one that solves to a related value. Therefore,

470 C. Freitag et al.

our definition above is analogous to non-malleability with respect to extraction,
where Sol is the extractor.

Next, we consider standard variants for the definition of non-malleable above.

Definition 3.5. We say the a TLP satisfies the following non-malleability prop-
erties when Definition 3.4 holds against (nL, nR, Bnm, α, T)-MIM adversaries for
the following settings of nL and nR:

– fully concurrent non-malleable if the definition holds against any nL, nR ∈
poly(λ),

– one-many non-malleable if the definition holds for any nR(λ) ∈ poly(λ) and
nL = 1,

– n-concurrent non-malleable if the definition holds for nL = nR = n,
– one-n non-malleable for nL(λ) = 1 and nR = n,
– and simply non-malleable (not concurrent) for nL(λ) = nR(λ) = 1.

4 Non-malleable Time-Lock Puzzles

We start by defining the notion of functional non-malleability for time-lock puz-
zles. Then, we give the transformation from any time-lock puzzle to one that
satisfies concurrent functional non-malleability for depth bounded functions, in
the auxiliary input random oracle model, and discuss how this result implies a
time-lock puzzle satisfying bounded concurrent (standard) non-malleability.

Functional Non-malleability. In the following definition, we focus on the case
of unbounded concurrency, but note that can be defined for restricted cases as
in Definition 3.5.

Definition 4.1 (Concurrent Functional Non-malleable). Let Bnm, L :
N → N, and (Gen,Sol) be a time-lock puzzle for messages of length L(λ). Let
F be a class of functions of the form f : ({0, 1}L(λ))∗ → {0, 1}∗. We say that
(Gen,Sol) is concurrent functional non-malleable for F against Bnm-size adver-
saries if for any function f ∈ F and polynomial n, there exists a polynomial α
such that for every function T with α(λ) ≤ T (λ) ∈ Bnm(λ)·poly(λ) for all λ ∈ N,
every (n, n,Bnm, α, T)-MIM adversary A = {Aλ}λ∈N

, the following holds.
For any distinguisher D, there exists a negligible function negl such that for

all λ ∈ N and �s = (s1, . . . , sn(λ)) ∈ ({0, 1}L(λ))n(λ),
∣

∣

∣Pr
[

�̃s ← mimA(1λ,T(λ),�s) : D(f(�̃s)) = 1
]

−Pr
[

�̃s ← mimA(1λ,T(λ), (0L(λ))n(λ)) : D(f(�̃s)) = 1
]∣

∣

∣ ≤ negl(λ).

When Bnm(λ) = 1, we say the TLP is concurrent functional non-malleable for
F . When the above only holds against non-uniform PPT distinguishers D, we
say the TLP is computationally functional non-malleable for F .

We note that functional non-malleability for a class F that contains the
identity function id implies standard non-malleability as D(id(�̃s)) = D(�̃s).

Non-malleable Time-Lock Puzzles and Applications 471

4.1 Non-malleable Time-Lock Puzzle Construction

In this section, we give our construction of a fully concurrent functional non-
malleable time-lock puzzle for functions with bounded depth and output length.
We rely on the following building blocks and parameters.

– A function m denoting the output length for our function non-malleability.
We require m(λ) ∈ poly(λ). Throughout this section, where λ is clear from
context, we let m = m(λ).

– A Btlp-hard time-lock puzzle TLP = (Gentlp,Soltlp) for Btlp(λ) = 23m. We
let λtlp = λtlp(λ) ∈ poly(λ,m) be the bits of randomness needed for TLP on
security parameter λ, for solutions of length 2m + 2λ.

– A class of functions Fm of the form f : ({0, 1}λ)∗ → {0, 1}m(λ). We assume
that there exists a polynomial d such that for every polynomial n, every
function f ∈ Fm can be computed in depth d(λ, log n(λ)) and polynomial
size on inputs of length at most λ · n(λ).

– A random oracle O ∈ RF
λtlp

2λ+2m, where O on input (s, r) ∈ {0, 1}λ+(2m+λ)

outputs a random value r′ ∈ {0, 1}λtlp .

Our construction nmTLPm = (Gen,Sol) in the random oracle model:

– z = GenO(1λ, t, s; r):
1. Get r′ = O(s, r).
2. Output z = Gentlp(1λ, t, (s||r); r′).

– s = SolO(1λ, t, z):
1. Compute s′ = Soltlp(1λ, t, z) and parse s′ = s||r.
2. If z = GenO(1λ, t, s; r), output s.
3. If not, output ⊥.

Theorem 4.2 (Fully Concurrent Functional Non-Malleable TLPs). Let
m(λ) ∈ poly(λ), Bhard(λ) = 2m(λ), and Btlp(λ) = 23m(λ). Assuming TLP is a
Btlp-hard time-lock puzzle, then nmTLPm is a Bhard-hard fully concurrent func-
tional non-malleable time-lock puzzle in the AI-ROM for the class of functions
Fm.

We observe the following corollaries to the above theorem:

– If m(λ) ∈ O(log(λ)) then we can simply assume a polynomially-hard TLP.
– For any m(λ) ∈ poly(λ), our theorem follows by assuming a sub-exponentially

secure TLP. Specifically, it suffices that there exists a constant γ ∈ (0, 1) such
that Btlp(λ) = 2λγ

, and we can instantiate this with λtlp = (λ + 3m(λ))1/γ

bits of randomness.

We also observe that the above theorem can be used to get n-bounded con-
currency for any polynomial n, simply by setting the output length m of the
functions in Fm to λ·n(λ). Specifically, let fid be the identity function with input
and output length λ ·n(λ). Since fid ∈ Fλ·n(λ), a fully concurrent functional non-
malleable TLP for Fλ·n(λ) implies an n-concurrent non-malleable TLP, which
gives the following corollary.

472 C. Freitag et al.

Corollary 4.3 (n-Concurrent Non-Malleable TLPs). Let n(λ) ∈
poly(λ), Bhard(λ) = 2λ·n(λ), and Btlp(λ) = 23λ·n(λ). Assuming TLP is a Btlp-hard
time-lock puzzle, then nmTLPλ·n(λ) is a Bhard-hard n-concurrent non-malleable
time-lock puzzle in the AI-ROM.

The proof of Theorem 4.2 is deferred to the full version.

5 Applications to Multi-party Coin Flipping
and Auctions

In this section, we discuss our fair multi-party protocols. We focus on the case
of multi-party coin flipping and address auctions in Remark 1 below. We note
that this section focuses on game-based fairness, and the extension to simulation
security is given in the full version.

Our multi-party coin flipping protocol is based generically on any time-lock
puzzle. Fairness follows when the time-lock puzzle satisfies concurrent functional
non-malleability for the XOR function f⊕. Specifically, in order to produce L
bits of randomness, we need concurrent functional non-malleability for the func-
tion f⊕ : ({0, 1}L)∗ → {0, 1}L that on input (r1, . . . , rn) outputs

⊕

ri �=⊥ ri. Our
protocol satisfies various additional properties, depending on the time-lock puz-
zle:

– Given a publicly verifiable time-lock puzzle, the resulting protocol is publicly
verifiable. In this setting, our protocol can either be made interactive, or
non-interactive.

– If the time-lock puzzle is not publicly verifiable, the resulting protocol is
non-interactive, and does not achieve public verifiability.

In what follows, we present our results in the public verifiability setting, and
discuss differences with the non-publicly verifiable setting when relevant.

We describe our protocol in a public bulletin board model, where any party
may “publish” a message that all other parties will see within some fixed time.
Our protocol consists four phases: a commit phase, open phase, force open phase,
and output phase. The commit and open phases consist of a single synchronous
round of communication where all participating parties publish a message on
the bulletin board. The force open phase can be computed by any party, and
only needs to be computed by a single (honest) party if the underlying time-lock
puzzle is publicly verifiable. Once all puzzles have been opened (or force opened),
any party can run the output phase to get the output of the protocol. In the non-
interactive version of the protocol, the open phase is omitted and every party
runs the force open phase themselves, and uses the resulting values to compute
the output of the protocol locally. When we refer to an honest participant,
we mean a party that runs the protocol as specified, independent of all other
participants.

For any L : N → N, let (Gen,Sol,Verify) be a publicly verifiable time-lock
puzzle (in the ABO string model) with message length L(λ) that satisfies con-
current functional non-malleability for the function f⊕ (which has output length

Non-malleable Time-Lock Puzzles and Applications 473

L(λ)). We additionally let α(λ) be the advantage of any attacker guaranteed by
the functional non-malleability of the time-lock puzzle. The protocol takes as
common input a security parameter λ and a polynomial time bound t = T (λ)
that satisfies the following requirements. First, we require that the commit phase
takes time less than T (λ)/α(λ) such that functional non-malleability (and hence
hardness) are preserved during the protocol. At the same time, the commit phase
needs to be long enough so that all participants can generate and publish their
puzzles.

– Commit phase: Each participant i samples si ← {0, 1}L(λ) and ri, crsi ←
{0, 1}λ, computes zi = Gen(1λ, t, si; ri), and publishes zi and crsi. Let mcrs =
(crs1, . . . , crsn). Any puzzle that is a copy of a previously posted puzzle is
ignored.

– Open phase: Each participant i that published in the commit phase pub-
lishes the solution si and with an opening ri.

– Force open phase: For each puzzle zj , if either (a) there is no published
solution sj and opening rj or (b) if zj �= Gen(1λ, t, sj ; rj), compute and publish
(sj , πj) ← Sol(1λ,mcrs, t, zj) (where sj might be ⊥).

– Output phase: If for every puzzle zj and solution sj , either (a) there is a
published opening rj such that zj = Gen(1λ, t, sj ; rj) or (b) a published proof
πj such that Verify(1λ,mcrs, t, zj , (sj , πj)) = 1, then output s =

⊕

sj �=⊥ sj .

We note that the protocol above does not assume an a priori bound on the
number of participants. Furthermore, there is no external setup needed by the
protocol. All participants, however, do publish a random string crsi ← {0, 1}λ

that can be used to implement the ABO-string model for (Gen,Sol,Verify).

Theorem 5.1. Let L(λ) ∈ poly(λ). Assume the existence of a publicly verifiable
time-lock puzzle for L(λ) bit messages in the ABO-string model that satisfies
concurrent function non-malleability for f⊕ with L(λ) bit output. Then, there
exists a multi-party coin flipping protocol that outputs L(λ) bits and satisfies
optimistic efficiency, fairness, and public verifiability. The protocol supports an
unbounded number of participants and requires no adversary-independent trusted
setup.

We obtain the following result by using our publicly verifiable non-malleable
TLP construction (given in the full version) with the above theorem.

Corollary 5.2. Let B,L : N → N where B(λ) = 23L(λ). Assuming the B-
repeated squaring assumption for RSWGen, there exists a multi-party coin flip-
ping protocol that outputs L(λ) bits and satisfies optimistic efficiency, fairness,
and public verifiability. The protocol supports an unbounded number of partici-
pants and requires no adversary-independent trusted setup. Security is proven in
the auxiliary-input random oracle model.

Finally, we note that if we instead start with our non-malleable time-lock
puzzle in the plain model (which is not publicly verifiable) the non-interactive

474 C. Freitag et al.

variant of our protocol gives non-interactive coin flipping in the plain model. In
particular, we obtain the following theorem based on our plain model construc-
tion (given in the full version).

Theorem 5.3. Let L : N → N and S(λ) = 2λ+L(λ). Assume a time-lock puzzle,
a keyless multi-collision resistant hash function, a non-interactive witness indis-
tinguishable proof for NP, and injective one-way functions, all sub-exponentially
secure, where in particular the time-lock puzzle is secure against polynomial-depth
adversaries of size S. Then, there exist fully non-interactive fair multi-party coin
flipping protocol that outputs L(λ) bits, where fairness holds against non-uniform
polynomial time distinguishers. The protocol supports an unbounded number of
participants and requires no setup.

We note that if we only consider protocols that output L(λ) ∈ O(log λ) bits,
then fairness against polynomial time distinguishers implies statistical fairness.
This is because if there is an unbounded distinguisher for O(log λ) bits, we can
construct a polynomial time distinguisher that simply hard codes the truth table
of the unbounded distinguisher.

We remark how we can adapt our protocol to deal with auctions.

Remark 1 (Multi-Party Auctions). For our application to auctions, we con-
sider a standard second-price, sealed-bid auction, in which the auctioned item
is assigned to the highest bidder who pays the second highest bid for the item.
We assume some form of authenticated channels so we can know the bidders’
identities in order to distribute the auctioned items. We leave these as external
implementation details for the protocol. The main protocol proceeds as follows.

In the commit phase, each participant computes a time-lock puzzle to their
bid. The open and force open phases are identical to the case of coin flipping.
Then in the output phase, we need to determine the identity of the highest
bidder and the value of the second highest bid.

The function that computes the output consists of finding the top two values
in a set. This can be computed in low depth (doing a tree of comparisons in
parallel) and has output length log n + log M where n is the number of par-
ticipants and M is a bound on the largest valid bid. Thus, using our publicly
verifiable time-lock puzzle that satisfies concurrent functional non-malleability
for this function, the resulting protocol is secure assuming n · M · poly(λ) secu-
rity for the repeated squaring assumption. Assuming n and M are polynomially
bounded, we only need polynomial security assumptions.

The proof of Theorem 5.1 is deferred to the full version.

Acknowledgements. This work was supported in part by NSF Award SATC-
1704788, NSF Award RI-1703846, NSF Award DGE-1650441, AFOSR Award FA9550-
18-1-0267, DARPA Award HR00110C0086, and a JP Morgan Faculty Award. Ilan
Komargodski is supported in part by an Alon Young Faculty Fellowship and by an
ISF grant (No. 1774/20). This research is based upon work supported in part by the
Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research

Non-malleable Time-Lock Puzzles and Applications 475

Projects Activity (IARPA), via 2019-19-020700006. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of ODNI, IARPA, or the
U.S. Government. The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any copyright annotation therein.

A Discussion of Non-malleable Definitions

We briefly discuss the different notions of non-malleability studied in this work.
Specifically, we compare standard non-malleability (Definition 3.4), non- mal-
leability against depth-bounded distinguishers, and functional non-malleability
(Definition 4.1). In Sect. 1.3, we also discuss the definitions considered in the
concurrent works of [3,4,28].

Common to all of our definitions, there is a depth-bounded man-in-the-middle
(MIM) attacker, which we call A, that on input a puzzle z with solution s tries
to output a different puzzle z̃ to a related value s̃. Here, A is depth-bounded
relative to the difficulty of the puzzle, so it should not be able to solve the
puzzle. The definitions vary in what it means for s̃ to be “related” to s. For
our standard notion of non-malleability, we require that no unbounded distin-
guisher D on input s̃ can tell if it came from the experiment starting with s or
the all-zero string. In the definition of non-malleability against depth-bounded
distinguishers, D is restricted to be depth-bounded in the same way as A. In
the case of functional non-malleability, the (unbounded) distinguisher D receives
instead as input f(s̃) where f is a low-depth function. We parameterize func-
tional non-malleability by an output length m. When m = |s|, this captures plain
non-malleability by considering f to be the identity function. When m = 1, this
captures depth-bounded distinguisher non-malleability as f essentially plays the
role of the depth-bounded distinguisher D. In Theorem 4.2, we show how to con-
struct a time-lock puzzle satisfying functional non-malleability for any output
length m assuming a time-lock puzzle that is 2m · poly(λ) secure.

When considering concurrent non-malleability, the MIM attacker A receives
possibly multiple puzzles z1, . . . , znL

that have solutions s1, . . . , snL
as input and

tries to output multiple puzzles z̃1, . . . , z̃nR
(different from its inputs) correspond-

ing to s̃1, . . . , s̃nR
. In the most general form, we can consider some distinguisher

D that receives as input f(s̃1, . . . , s̃nR
) and tries to tell if it came from the exper-

iment starting with s1, . . . , snL
or with nL all-zero strings. We show in the full

version that if the MIM attacker can encode a time-lock puzzle into the value
f(s̃1, . . . , s̃nR

) (where f may be the identity), then the construction cannot be
secure against an unbounded distinguisher. In particular, if the function’s output
length m is greater than the output length of the time-lock puzzle, the scheme
may not be secure. On the other hand, our construction of Theorem 4.2 works
for functional non-malleability even in the fully concurrent setting, as the out-
put length of f is bounded. So, as long as the output length of the function f is
sufficiently small, we can support unbounded concurrency.

Finally, our separation in the full version gives a construction that satis-
fies plain (non-concurrent) non-malleability against depth-bounded distinguishers

476 C. Freitag et al.

yet does not satisfy non-malleability against unbounded distinguishers.We remark
that in the setting where the message length for the puzzle is 1 bit, these notions
are equivalent by simply considering the depth-bounded distinguisher that out-
puts the bit it gets as input. Moreover, it can be shown that they are equivalent
as long as the message length is in O(log λ). Therefore, this separation necessarily
relies on the fact that the message length for the puzzle is in ω(log λ).

FNM for
all functions

FNM for F FNM for F1

NM Depth-bounded NM

m · n ≤

\

n = 1

Fig. 1. Relationship between notions of non-malleability. An arrow from A to B indi-
cates that any construction satisfying A also satisfies B. Here, m is the message length,
n is the concurrency, and F� is class of depth-bounded functions with �-bit output.

We summarize the various relationships between the definitions in Fig. 1.

References

1. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: 43rd Symposium on Foundations of Computer
Science FOCS, pp. 345–355 (2002)

2. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge.
In: 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 345–354 (2006)

3. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: Craft: composable
randomness and almost fairness from time. Cryptology ePrint Archive, Report
2020/784 (2020). https://eprint.iacr.org/2020/784

4. Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: a founda-
tion of time-lock puzzles in UC. In: Canteaut, A., Standaert, F.-X. (eds.) EURO-
CRYPT 2021. LNCS, vol. 12698, pp. 429–459. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-77883-5 15

5. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR
Cryptol. ePrint Arch. 2016, 919 (2016)

6. Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters,
B.: Time-lock puzzles from randomized encodings. In: ITCS (2016)

7. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–
788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 25

https://eprint.iacr.org/2020/784
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-319-96884-1_25

Non-malleable Time-Lock Puzzles and Applications 477

8. Boneh, D., Bünz, B., Fisch, B.: A survey of two verifiable delay functions. IACR
Cryptol. ePrint Arch. 2018, 712 (2018)

9. Boneh, D., Naor, M.: Timed commitments. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 236–254. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 15

10. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

11. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable
commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 10

12. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-
malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.)
CRYPTO 2017. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63715-0 5

13. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, STOC, pp. 364–369 (1986)

14. Coretti, S., Dodis, Y., Guo, S., Steinberger, J.: Random oracles and non-uniformity.
In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp.
227–258. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9 9

15. Dachman-Soled, D., Komargodski, I., Pass, R.: Non-malleable codes for bounded
parallel-time tampering. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS,
vol. 12827, pp. 535–565. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84252-9 18

16. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

17. David, B., Gaži, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure,
semi-synchronous proof-of-stake blockchain. In: Nielsen, J.B., Rijmen, V. (eds.)
EUROCRYPT 2018. LNCS, vol. 10821, pp. 66–98. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78375-8 3

18. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract).
In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing,
STOC, pp. 542–552 (1991)

19. Ephraim, N., Freitag, C., Komargodski, I., Pass, R.: Continuous verifiable delay
functions. IACR Cryptol. ePrint Arch. 2019, 619 (2019)

20. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 2

21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. J. Cryptol. 26(1), 80–101 (2013)

22. Goyal, V.: Constant round non-malleable protocols using one way functions. In:
Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC, pp. 695–704 (2011)

23. Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commit-
ments: a black-box approach. In: 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pp. 51–60 (2012)

https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-662-53015-3_10
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-63715-0_5
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-030-84252-9_18
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-96881-0_2

478 C. Freitag et al.

24. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In:
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC, pp. 1128–1141 (2016)

25. Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. J. Cryptol.
27(3), 506–543 (2014)

26. Hohenberger, S., Myers, S., Pass, R., Shelat, A.: An overview of ANONIZE: a
large-scale anonymous survey system. IEEE Secur. Priv. 13(2), 22–29 (2015)

27. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum
supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol.
11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26954-8 18

28. Katz, J., Loss, J., Xu, J.: On the security of time-lock puzzles and timed commit-
ments. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 390–413.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2 14

29. Khurana, D.: Round optimal concurrent non-malleability from polynomial hard-
ness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10678, pp. 139–171.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3 5

30. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In:
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS, pp.
564–575 (2017)

31. Lin, H., Pass, R.: Non-malleability amplification. In: Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC, pp. 189–198 (2009)

32. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way
function. In: Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC, pp. 705–714 (2011)

33. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-
malleable commitments from time-lock puzzles. In: 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 576–587. IEEE Computer Society
(2017)

34. Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-
malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 429–446. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 23

35. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commit-
ments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol.
4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 31

36. Malavolta, G., Thyagarajan, S.A.K.: Homomorphic time-lock puzzles and applica-
tions. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692,
pp. 620–649. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-
7 22

37. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC, pp. 427–437. ACM (1990)

38. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for
concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010.
LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11799-2 32

39. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and appli-
cations. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 4

https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-26954-8_18
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1007/978-3-319-70503-3_5
https://doi.org/10.1007/978-3-642-14623-7_23
https://doi.org/10.1007/978-3-642-14623-7_23
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-540-78524-8_31
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-030-26948-7_22
https://doi.org/10.1007/978-3-642-11799-2_32
https://doi.org/10.1007/978-3-642-11799-2_32
https://doi.org/10.1007/978-3-540-85174-5_4

Non-malleable Time-Lock Puzzles and Applications 479

40. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 563–572
(2005)

41. Pass, R., Rosen, A.: New and improved constructions of non-malleable crypto-
graphic protocols. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, STOC, pp. 533–542 (2005)

42. Pass, R., Rosen, A.: Concurrent nonmalleable commitments. SIAM J. Comput.
37(6), 1891–1925 (2008)

43. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-
exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13190-5 32

44. Pietrzak, K.: Simple verifiable delay functions. In: 10th Innovations in Theoretical
Computer Science Conference, ITCS, pp. 60:1–60:15 (2019)

45. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto,: technical report. Massachusetts Institute of Technology, Cambridge, MA,
USA (1996)

46. Rotem, L., Segev, G.: Generically speeding-up repeated squaring is equivalent to
factoring: sharp thresholds for all generic-ring delay functions. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 481–509. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-56877-1 17

47. Unruh, D.: Random oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO
2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74143-5 12

48. Von Zur Gathen, J., Shparlinski, I.E.: Generating safe primes. J. Math. Cryptol.
7(4), 333–365 (2013)

49. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-
fication. In: FOCS (2010)

50. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019. LNCS, vol. 11478, pp. 379–407. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 13

https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-642-13190-5_32
https://doi.org/10.1007/978-3-030-56877-1_17
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-540-74143-5_12
https://doi.org/10.1007/978-3-030-17659-4_13

Vector and Functional Commitments
from Lattices

Chris Peikert1,2(B), Zachary Pepin1, and Chad Sharp1

1 University of Michigan, Ann Arbor, USA
cpeikert@umich.edu

2 Algorand, Inc., Boston, USA

Abstract. Vector commitment (VC) schemes allow one to commit con-
cisely to an ordered sequence of values, so that the values at desired
positions can later be proved concisely. In addition, a VC can be state-
lessly updatable, meaning that commitments and proofs can be updated
to reflect changes to individual entries, using knowledge of just those
changes (and not the entire vector). VCs have found important appli-
cations in verifiable outsourced databases, cryptographic accumulators,
and cryptocurrencies. However, to date there have been relatively few
post-quantum constructions, i.e., ones that are plausibly secure against
quantum attacks.

More generally, functional commitment (FC) schemes allow one to
concisely and verifiably reveal various functions of committed data, such
as linear functions (i.e., inner products, including evaluations of a com-
mitted polynomial). Under falsifiable assumptions, all known functional
commitments schemes have been limited to “linearizable” functions, and
there are no known post-quantum FC schemes beyond ordinary VCs.

In this work we give post-quantum constructions of vector and func-
tional commitments based on the standard Short Integer Solution lattice
problem (appropriately parameterized):

– First, we present new statelessly updatable VCs with significantly
shorter proofs than (and efficiency otherwise similar to) the only
prior post-quantum, statelessly updatable construction (Papaman-
thou et al., EUROCRYPT 13). Our constructions use private-key
setup, in which an authority generates public parameters and then
goes offline.

– Second, we construct functional commitments for arbitrary
(bounded) Boolean circuits and branching programs. Under falsifi-
able assumptions, this is the first post-quantum FC scheme beyond
ordinary VCs, and the first FC scheme of any kind that goes beyond
linearizable functions. Our construction works in a new model involv-
ing an authority that generates the public parameters and remains
online to provide public, reusable “opening keys” for desired func-
tions of committed messages.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13044, pp. 480–511, 2021.
https://doi.org/10.1007/978-3-030-90456-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90456-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-90456-2_16

Vector and Functional Commitments from Lattices 481

1 Introduction

Commitment schemes are an essential cryptographic primitive. They provide the
cryptographic equivalent of a “locked box,” allowing one to publicly lock some
desired value away and to later reveal it. By analogy, two central desiderata
of such schemes are as follows. First, it should be binding : once a (possibly
adversarially generated) commitment is published, there should be no way to
open it to two different values. Second, it may also be hiding : no one should be
able to see inside the box. That is, the commitment reveals essentially nothing
about the underlying value.

First constructed and formalized in work by Libert and Yung [LY10] and by
Catalano and Fiore [CF13], vector commitment (VC) schemes generalize com-
mitments to ordered sequences of values. More specifically, one can commit to a
d-dimensional vector m and later open the commitment at any desired indices,
i.e., prove that the ith entry of m is mi. Here the notion of binding is replaced
with position binding : it should be infeasible to open a commitment at a posi-
tion i as two different message entries mi �= m′

i. For hiding, we may require
that the commitment and openings reveal nothing about the unopened message
entries. (However, many applications of VCs turn out not to need hiding.) In
order to rule out trivial implementations, commitments and proofs are required
to be concise, meaning that they should be smaller than the entire message
vector, i.e., sublinear in d (and the smaller the better).

Additionally, VCs often need to be updatable, meaning it is possible to update
commitments and proofs to reflect changes in the underlying vector entries, faster
than the trivial solution of just computing new commitments and proofs from
scratch. Updatability can even be stateless (also known as distributed) [CPSZ18],
meaning that updates require only the position at which the message vector
changed, and the old and new entries (or even just their difference).

Libert, Ramanna, and Yung [LRY16] generalized the concept of VCs to
the notion of functional commitments (FCs), with a focus on linear func-
tions. For some particular class of functions F , FCs allow one to commit to
a vector m and then, for any desired functions f ∈ F , open the function-
value pairs (f, y = f(m)). (Traditional VCs can be seen as FCs for the class
F = {fi(m) = mi}i∈[d] of “coordinate projection” functions.) A special case of
linear FCs, defined earlier by Kate, Zaverucha, and Goldberg [KZG10] considers
committing to a polynomial and then opening its evaluations at desired points.

Applications. Vector commitments have found numerous cryptographic applica-
tions. Catalano and Fiore [CF13] demonstrated their usefulness for publicly verifi-
able databases with efficient updates and, more broadly, verifiable outsourcing of
storage [BGV11], updatable zero-knowledge sets and databases [MRK03,Lis05],
cryptographic accumulators [BdM93], and pseudonymous credentials [KZG10].
More recently, Chepurnoy et al. [CPSZ18] used statelessly updatable VCs to con-
struct an architecture for cryptocurrencies with stateless transaction validation.

Beyond VCs, functional commitments for polynomials [KZG10] and, more
generally, linear functions [LRY16] have additionally found applications in ver-

482 C. Peikert et al.

ifiable secret sharing [CGMA85], content extraction signatures [SBZ01], proof-
carrying data systems, and zero-knowledge SNARKs [BFS20,BDFG20].

Constructions. Merkle trees [Mer87] provide the first instantiation of VCs, with
O(1) commitment size and O(log d) proof size (both as functions solely of the
dimension d), but they are not statelessly updatable. Libert and Yung [LY10]
gave a construction that can serve as a statelessly updatable VC (and more),
based on a “q-type” pairing assumption where q is the vector dimension, with
O(1)-sized commitments and openings. Catalano and Fiore [CF13] gave two
constructions of statelessly updatable VCs, based respectively on the Compu-
tational Diffie-Hellman (CDH) assumption over pairing-friendly groups and the
RSA assumption, where each commitment and opening is a single group element.
Chepurnoy et al. [CPSZ18] gave a construction based on the q-Strong Bilinear
Diffie-Hellman assumption, which has smaller public parameters than the afore-
mentioned CDH-based scheme (linear in d rather than quadratic) but slightly
slower proof updates, and improved time complexity for proof updates versus
the aforementioned RSA-based scheme (O(log d log log d) versus O(d)).

The work of [KZG10] gave a polynomial commitment scheme where commit-
ments and proofs are each a single group element, and which is secure under the
q-Strong Diffie-Hellman assumption. More generally, the work of [LRY16] gave
an FC scheme for linear functions fw(m) = 〈w,m〉, based on a subgroup deci-
sion assumption on pairing-friendly composite-order groups, in which commit-
ments and proofs are each a single group element. Recently, the work of [LP20]
gave a functional commitment scheme for what the authors called the class
of “semi-sparse” polynomials. This class is an example of a linearizable func-
tion class, i.e., every function f in the class can be (efficiently) decomposed
as f(m) = Lf (P (m)) for some polynomial-time “preprocessing” function P
(which depends only on the class, and not the specific function f) and a linear
function Lf (which may depend on f). For any linearizable class, an FC can
be generically implemented via a linear FC (though perhaps not as efficiently
as with a specialized construction), simply by having the committer commit
to P (m).

For non-linearizable function classes, we are not aware of any FC construc-
tion, apart from a straightforward generic construction mentioned in [LRY16]:
it combines any succinct commitment scheme with any succinct noninteractive
argument of knowledge for NP (such as PCP-based ones [Kil92,Mic94] or more
specialized ones like Bulletproofs [BBB+18]), for proving functions of the com-
mitted data. However, the latter component cannot be based on a falsifiable
assumption via a black-box security reduction [GW11]; indeed, existing con-
structions like the ones cited above tend to rely on strong heuristics like the
random oracle model. In summary, we do not have any FC for a non-linearizable
function class based on a falsifiable assumption.

There has also been quite limited work on post-quantum vector commitment
schemes, i.e., ones which are plausibly secure against quantum attacks. Merkle
trees instantiated with a post-quantum hash function may be used, though they
suffer from relatively inefficient and necessarily stateful updates. Papamanthou

Vector and Functional Commitments from Lattices 483

et al. [PSTY13] gave a Merkle-tree-like construction based on the Short Integer
Solution (SIS) lattice problem, which straightforwardly yields a statelessly updat-
able VC scheme. At present, we are unaware of any post-quantum FC schemes
beyond the aforementioned VC schemes and generic FC construction (requiring
non-falsifiable assumptions); in particular, even constructing a post-quantum
linear FC from a falsifiable assumption is an open problem.

1.1 Our Contributions

We present two main sets of results. First, in Sect. 3 we give new constructions
of vector commitments based on the (post-quantum) SIS lattice problem. The
first of these is a “base” VC construction that is statelessly updatable; it is
most appropriate for only moderately large d, due to the public parameters’
quadratic dependence on d. Then, for larger dimensions dh, we give a specialized
tree transformation of our SIS-based VC that preserves stateless updates (unlike
generic Merkle trees). This transformation uses a main idea from [PSTY13], but
our construction’s proofs are significantly more concise, by a d factor, because
the transformation is based on a VC rather than a hash function. For a detailed
comparison with the prior work on VCs see Figs. 1 and 2 and the associated
discussion in Sect. 1.2, and for an overview of the constructions see Sect. 1.3.

Our second main contribution, given in Sect. 4, is a functional commitment
scheme for arbitrary (bounded) Boolean circuits and branching programs, also
based on SIS (appropriately parameterized). Under falsifiable assumptions, this
is the first functional commitment scheme that goes beyond linearizable func-
tions, and is also the first post-quantum construction of functional commitments
beyond vector commitments, e.g., for linear functions. Indeed, we specialize our
general construction to linear functions over large finite fields, resulting in a
relatively simple and potentially practical scheme.

Our functional commitment construction works in a model, which we intro-
duce in this work, involving a trusted authority that sets up the public parame-
ters and remains online to provide “opening keys” okf for any desired functions f
of committed messages. We stress that, unlike superficially similar models (e.g.,
for identity- or attribute-based encryption), these opening keys are not tied to
any particular party and do not need to be transmitted via a secret channel; they
can be announced publicly and used by all committers any number of times. See
Sect. 1.3 for an overview of the construction.

As an additional contribution, in the full version we give a formal definition
and analysis of a generic tree transformation on VCs, which converts a VC for d-
dimensional vectors into one for dh-dimensional vectors for any desired positive
integer h. The transformation is like a Merkle tree of height h and arity d, using
the underlying VC rather than a hash function to commit to each node’s children.
The key advantage is that to open an entry, one only needs to open each step
of the entry’s root-to-leaf path, but no “sibling” information is required. This
immediately saves about a factor of d in the proof size, thus allowing for the use of
a larger arity d and hence smaller height h, which reduces proof size even further.
This main idea has previously been used in other contexts like signatures [DN94]

484 C. Peikert et al.

and zero-knowledge databases [CRFM08], and even VCs [Kus18] (where it is
called a “Verkle tree”), though without a formal analysis or treatment of updates.

1.2 Comparisons to Related Work

For the purposes of comparison, we divide existing VC schemes into “primitive”
and “tree-based” schemes. Primitive schemes operate directly on the input vec-
tor and are typically based on some concrete cryptographic assumption (RSA,
CDH, SIS, etc.). A tree-based scheme transforms another (usually primitive) VC
scheme, and treats its input vector as a tuple of subvectors, somehow recursively
committing to each subvector and then committing to the tuple of results using
the underlying scheme. Tree-based VCs are most suitable for vectors of large
dimension, and generally sacrifice proof and/or commitment size for smaller
public parameters.

Primitive Schemes. Here and in Fig. 1 we briefly compare our base SIS vector
commitment scheme to other primitive VCs from the literature [CF13,CPSZ18].
The primary advantage of our scheme is that it is plausibly secure against quan-
tum attacks, whereas the others are broken by them. However, this comes at the
cost of commitment and proof sizes that are logarithmic, rather than constant,
in the vector dimension d. Our scheme, along with the others in question, has
stateless updates but requires private-coin setup, in contrast to the only other
known post-quantum VC schemes (discussed below).

Scheme |vp| |cp| |c| |π| Setup Stateless PQ

[CF13] (RSA) d d 1 1 Private
[CF13] (CDH) d d2 1 1 Private

[CPSZ18] d d 1 1 Private
Construction 1 d d2 log d log d Private

Fig. 1. A comparison of “primitive” VC schemes. Object sizes are expressed asymptot-
ically as functions of the vector dimension d, with logarithmic factors elided from the
sizes of verifier parameters vp and committer parameters cp (but not commitments c
or proofs π). PQ indicates that the scheme is plausibly secure against quantum attacks.

Tree-Based Schemes. Here and in Fig. 2 we compare tree-based schemes that
commit to vectors of (typically large) dimension D, using a tree of some chosen
arity d and height h = logd D. It is important to bear in mind that asymptotically
different values of d and h are optimal for different schemes, so the object sizes
as functions of these parameters cannot be compared directly across schemes.

Selecting optimal parameters for Merkle trees is straightforward: simply min-
imize the asymptotic proof size dh = d logd D, yielding optimal values d = O(1)
and h = O(log d). For the remaining schemes, choosing larger d (and thereby

Vector and Functional Commitments from Lattices 485

smaller h = logd D) reduces the commitment and proof sizes, at the cost of larger
public parameters. Therefore, one should maximize d subject to some reasonable
constraint on the sizes of the public parameters. For large dimensions D, a plau-
sible choice is d = Dε for some small constant ε > 0, yielding h = 1/ε = O(1);
we use this setting for the following comparisons.

Like the scheme described in [PSTY13], our specialized tree transformation
(Construction 2) has stateless updates. However, ours has smaller proofs at the
cost of larger public parameters, both by a factor of d. This seems like an advan-
tageous tradeoff in most applications, since many proofs (about many commit-
ments) are given for a single set of public parameters.

In comparison with Merkle trees, the primary benefit of our specialized tree
transform is that it has stateless updates. However, its proof sizes are slightly
larger than those of Merkle trees (O(log2 D) rather than O(log D)), and its
commitment sizes are logarithmic rather than constant.

The generic tree transformation for VCs (in the full version) instantiated with
our SIS-based scheme (Construction 1) has constant-factor improvements, by h
or h2, in commitment size and proof size compared to our specialized scheme
and that of [PSTY13], with an additional factor-of-d improvement in proof size
over [PSTY13]. Unlike those other works, however, it requires stateful updates.

Though not post-quantum, instantiating the generic tree transformation with
the CDH-based scheme of [CF13] (which has constant-sized commitments and
proofs) demonstrates more clearly the structural advantage it has over Merkle
trees. Since sibling information is not necessary, the proof size depends only on
h = O(1). However, this comes at the cost of private setup and larger public
parameters.

Scheme |vp| |cp| |c| |π| Setup Stateless PQ

Merkle tree 1 1 1 hd Public
[PSTY13] h2d h2d h log d h3d log2 d Public

Construction 2 h2d h2d2 h log d h3 log2 d Private
Generic tree with 1 (SIS) d d2 log d h log d Private

Generic tree with [CF13] (CDH) d d2 1 h Private

Fig. 2. A comparison of “tree-based” VC schemes. Object sizes are expressed as func-
tions of the tree arity d and height h (handling a vector dimension D = dh), with
logarithmic factors elided from the sizes of the verifier parameters vp and committer
parameters cp (but not the commitments c or proofs π). PQ indicates that the scheme
is plausibly secure against quantum attacks (for Merkle trees, when using a PQ hash
function).

Other Related Work. The work of [BGJS16] considered a variant of functional
commitment (potentially with a bounded number of function queries), which
does not require succinctness but also does not need any trusted setup, and
showed that it is implied by verifiable functional encryption (and thereby from
assumptions on pairing-friendly groups).

486 C. Peikert et al.

The work of [HW15] considers a primitive called “somewhat statistically
binding” (SSB) hash, which is a strengthening of vector commitments: the com-
mitment and openings of individual entries are concise, and additionally, the
commitment is statistically binding at one (hidden) location. However, the con-
struction relies on Merkle trees plus (comparatively heavy) fully homomorphic
encryption, so it has no better efficiency than ordinary Merkle trees, nor is it
statelessly updatable.

1.3 Technical Overview

In this section we give a brief overview of the key ideas underlying our construc-
tions; we assume some basic familiarity with the abstract functionality of “trap-
doors” for lattices [GPV08] and “third-generation” fully homomorphic encryp-
tion/commitments [GSW13,GVW15].

SIS-Based Vector Commitments. Our base VC scheme is conceptually
inspired by the ones proposed in [CF13]. To convey the key ideas, we describe a
technically simpler, unoptimized version of our scheme for vectors whose entries
belong to M = {0, 1}� for some desired �. To generate the public parameters, we
first choose a uniformly random matrix U = [U0 | · · · | Ud−1] ∈ Z

n×�d
q , where

each Ui ∈ Z
n×�
q . Then we generate d (statistically close to) uniformly random

matrices Ai ∈ Z
n×m
q along with respective trapdoors Ti. We use each trap-

door Ti to sample a “short” (discrete Gaussian-distributed) Ri ∈ Z
m×�(d−1)

such that AiRi = U−i, where U−i ∈ Z
n×�(d−1)
q is U with its ith block Ui

removed. The public parameters are U and all the Ai and Ri matrices.
The commitment to a vector m ∈ {0, 1}�d is simply c = Um ∈ Z

n
q .1 To

open the commitment at position i as mi ∈ {0, 1}�, output the proof pi =
Rim−i ∈ Z

m (which is short), where m−i ∈ {0, 1}�(d−1) is m with its ith �-bit
block removed. The verifier simply checks that pi is sufficiently short and that
c = Aipi + Uimi, which holds since

Aipi + Uimi = AiRim−i + Uimi = U−im−i + Uimi = Um = c.

Breaking position binding of this scheme means producing a tuple
(c∗, i,mi,m′

i,p,p′) such that for commitment c∗ and position i, proofs p,p′

respectively verify for distinct mi �= m′
i, i.e., p,p′ are sufficiently short and

c∗ = Aip + Uimi = Aip′ + Uim′
i.

From this, we have that x := [pi−p′
i

mi−m′
i
] �= 0 is an SIS solution to the (statistically

close to) uniformly random matrix [Ai | Ui]. Our security reduction shows how
to embed an external SIS instance as this matrix, and generate all the rest of
the public parameters to have the proper joint distribution (even though the
reduction does not have a trapdoor for Ai).
1 In this overview we aim only for position binding, and dispense with hiding.

Vector and Functional Commitments from Lattices 487

In our actual construction, we use the “trapdoor puncturing” technique
of [PW08,ABB10,MP12] to reduce the size of the public parameters, allowing
us to generate each Ai from a single uniformly random matrix A ∈ Z

n×m
q . The

(stateless) updatability of this scheme follows from the linearity of commitments
and openings.

Specialized Tree Transformation. In the full version, we construct a generic tree
transformation for VC schemes for vectors of high dimension dh, which uses
any VC for dimension d as a black box. (Its practical efficiency was analyzed
in [Kus18], but without a formal security analysis or treatment of updates.) The
main idea is very similar to that of Merkle trees [Mer87], but with the public
hash function replaced by a vector commitment scheme. In particular, it can
be instantiated with our SIS-based VC scheme, where commitments in Z

n
q are

treated as messages by representing them as bit vectors. More formally, we can
use the nonlinear “bit decomposition” transformation G−1 : Zn

q → Z
w, where

w ≈ n log q and we take � = w in the above construction, to bring commit-
ments back into the message space (and this can be inverted by multiplying by
the “gadget” matrix G ∈ Z

n×w
q). However, this nonlinearity makes the commit-

ment function of the transformed scheme non-linear, and thus breaks stateless
updatability.

To preserve linearity and thereby stateless updatability, we give a specialized
tree transformation of our SIS-based VC scheme, which takes inspiration from
the Merkle-tree-like construction of [PSTY13]. For simplicity, we briefly outline
this transformation for small parameters d = h = 2 (though a significantly
larger d yields better efficiency).

The public parameters are identical to those of the base scheme (for d = 2),
and using them we additionally define a matrix

U(2) := U(I2 ⊗ G−1(U)) = [U0G−1(U) | U1G−1(U)] ∈ Z
n×�d2

q .

To commit to a vector m = (m00,m01,m10,m11) ∈ {0, 1}�dh

= {0, 1}4�, we
compute c = G−1(U(2))m; observe that this is a linear function of m, which
ultimately allows for stateless updates. Also notice that

Gc = U(2)m = U(I2 ⊗ G−1(U))m

is a commitment (under the base scheme) to m′ := (I2 ⊗ G−1(U))m ∈ Z
�d,

which is relatively short. Additionally, m′ itself can be seen essentially as a pair
of commitments, as

m′ = (I2 ⊗ G−1(U))m

=

⎡
⎢⎢⎣
G−1(U)

[
m00

m01

]

G−1(U)
[
m10

m11

]

⎤
⎥⎥⎦ =:

[
c0

c1

]
,

488 C. Peikert et al.

because Gci ∈ Z
n
q is a commitment (under the base scheme) to (mi0,mi1). So,

to prove a particular entry of the message m, say m01, we simply provide c0

and a proof that it is the 0th entry of m′ (viewing Gc as a commitment to m′),
along with a proof that m01 is the 1st entry committed to by Gc0. Breaking
position binding of this scheme requires breaking position binding of the base
scheme somewhere along this path.

We stress that the above proof structure is more concise than for Merkle trees
and [PSTY13], because the proofs need not contain any “sibling” information.
Essentially, our construction opens a vector commitment at each level, just as
in the generic VC transformation, but in a manner that preserves linearity and
hence stateless updates. This also allows for the use of a larger tree arity d, which
reduces the tree height and thereby the number of elements in proofs. However,
preserving statelessness in this way does come at a cost: in the general version
of the transformation, the norm of m′ can grow linearly with its dimension �dh,
so the SIS parameters of the underlying VC scheme must be increased to accom-
modate these larger messages. This introduces a poly-logarithmic dependence
on dh in the sizes of commitments and proofs. The SIS-based Merkle-like con-
struction of [PSTY13] (when used as a VC) has exactly the same dependence,
so our commitment sizes match, and our proof sizes are strictly better by a d
factor. (See Fig. 2.)

Functional Commitments for Arbitrary Functions. In Sect. 4 we give an
SIS-based construction of functional commitments for arbitrary Boolean func-
tions of bounded size S, via an online authority that provides opening keys for
desired functions. The construction relies heavily upon the fully homomorphic
commitment scheme that was implicit in the homomorphic encryption scheme
of Gentry, Sahai, and Waters [GSW13], and was made explicit by Gorbunov,
Vaikuntanathan, and Wichs [GVW15]. We remark that while the latter work
gives a commitment scheme in which one can commit to data and then later
open any bounded function of it, this falls short of a true functional commitment
scheme because the commitment is not succinct—its size is a substantial factor
larger than the data itself. In our construction, the sizes of both the commitments
and proofs depend only on the complexity of the supported functions, and not
directly on the message size. More specifically, they grow poly-logarithmically in
the size and polynomially in the depth of the functions; see Sect. 4.3 for details.

In our construction, the commitment function is essentially identical to the
first stage (homomorphic evaluation) of the correlation-intractable hash func-
tions of [CCH+19,PS19]. However, in those works’ main application (noninter-
active zero knowledge proofs), the resulting output is never “opened.” In func-
tional commitments, the result needs to be opened in several different ways, once
for each function that is proved about the committed message.

We also mention that using just tagged-trapdoor techniques, which predate
the above-referenced fully homomorphic schemes but provide only linear homo-
morphism, we specialize our functional commitment scheme to arbitrary linear
functions over large finite fields. The resulting scheme is asymptotically quite

Vector and Functional Commitments from Lattices 489

efficient, especially when adapted to use rings, and potentially practical. In this
overview we just focus on the general scheme for arbitrary functions, and refer
to Sect. 4.3 for the linear specialization.

Public Parameters and Commitment. The public parameters in our scheme are
a uniformly random matrix C ∈ Z

n×Sw
q (where again, w ≈ n log q is the width

of the gadget matrix G ∈ Z
n×w
q) and a (statistically close to) uniform matrix

A ∈ Z
n×m
q , which is generated with a trapdoor T that serves as the authority’s

secret key. Using standard tagged-trapdoor techniques, for each size-S function f
we implicitly define a public matrix Af ∈ Z

n×m
q that is efficiently computable

from A and f ; the authority’s trapdoor T allows it to sample short preimages
with respect to any of these Af .

It is helpful to interpret the public parameter C as a homomorphic com-
mitment to some as-yet-unspecified function(s) f , with respect to some cor-
responding public key. To commit to a message m, one simply computes
Cm = Eval(Um,C), i.e., the homomorphic evaluation of the universal function
Um(f) := U(f,m) = f(m) on the committed function f . Therefore, we can think
of Cm as a homomorphic commitment to f(m)—but we again stress that f is
still unspecified.2 We stress that it is vital that the homomorphic evaluation can
indeed be done using just C and m, and not the unspecified public key relative
to which C is viewed as a commitment.

Opening. In order to prove for a commitment Cm that f(m) = y for some
desired f , one first needs an appropriate opening key from the authority. Such
a key is simply some randomness that opens C as a homomorphic commit-
ment to the desired function f , with respect to public key Af . That is, the
authority uses its trapdoor T to sample a “short” integer matrix such that
C = FHComAf

(f ;Rf). We point out that each opening key essentially equivo-
cates C as committing to a different value—but this does not violate security
in any way, because these openings are with respect to different Af . (Indeed,
it is important that the authority publishes at most one opening key for each
function, which can be ensured by standard techniques.)

With an opening key Rf in hand, one proves that f(m) = y by “trac-
ing” the evolution of the randomness through the homomorphic computation
of Cm from C. More specifically, a key feature of the homomorphic commit-
ment scheme is that, given the function Um and the “short” randomness Rf

underlying the commitment C = FHComAf
(f ;Rf), one can efficiently compute

“relatively short” randomness Rf,m underlying Cm, i.e., for which

Cm := Eval(Um,C) = FHComAf
(y = f(m);Rf,m).

To prove that f(m) = y, one just computes and reveals this Rf,m. The verifier
checks that it is sufficiently short and that Cm = FHComAf

(y;Rf,m).

2 As an optimization, for Boolean functions f the matrix Cm can be further com-
pressed to just a single vector cm ∈ Z

n
q ; we omit the details in this overview.

490 C. Peikert et al.

For security, we prove that under the SIS assumption (appropriately param-
eterized), it is infeasible for an adversary to break function binding, i.e., to out-
put a tuple (C∗, f∗, y, y′,R,R′) such that y �= y′ and yet the verifier accepts
on both (C∗, f∗, y,R) and (C∗, f∗, y′,R′). We prove this for a selective function
attack, where the adversary must announce the targeted function f∗ before seeing
the public parameters, but may produce the rest of its output (C∗, y, y′,R,R′)
after getting arbitrary opening keys for functions f of its choice, even including
f = f∗. It is well known that security against such selective attacks can be
boosted to security against fully adaptive attacks using complexity leveraging,
i.e., the reduction is loose by a factor of the size of the function class. In addition,
there are lattice-trapdoor techniques for obtaining adaptive security in related
settings (e.g., [CHKP10,Yam16]), which seem compatible with our construction
techniques.

1.4 Open Problems and Future Work

Our work raises several interesting questions for further research. First, recall
that all of our constructions require private-coin setup (i.e., a trusted authority
that uses private randomness to generate the public parameters). An important
question is whether there are lattice-based or other post-quantum vector com-
mitments with public setup and having similar or better properties, including
for updates. (Recall that post-quantum Merkle trees can have public setup, but
require stateful updates.)

Recall that our functional commitment scheme requires an online authority
to generate opening keys for the desired functions, using some secret trapdoor.3

A very interesting question is whether functional commitments for some large
non-linear function class can be obtained using an offline authority, which only
generates and publishes some setup parameters, based on a falsifiable assump-
tion.4 Even more ambitiously, can such a scheme be constructed with just pub-
lic-coin setup?

Finally, the literature contains several variants of vector commitments. For
example, subvector commitments [LM19,CFG+20] allow one to open a commit-
ted vector at any subset of positions, via a proof that is smaller than proofs
for all the positions individually. Subvector commitments can even be aggregat-
able [TAB+20], meaning that openings for two different subsets can be aggre-
gated, producing an opening for their union. So far, subvector commitments
have been constructed only from assumptions on pairing-friendly groups. It is
a very interesting question whether any kind of subvector commitments (with
or without aggregation) can be constructed from lattices or other post-quantum
assumptions.

3 However, if the class has only polynomially many functions, then the authority can
publish all the opening keys and then go offline (disappear).

4 Recall that the naive construction proposed in [LRY16], which combines a succinct
commitment scheme with a succinct noninteractive argument for NP, cannot have a
black-box security proof from a falsifiable assumption [GW11].

Vector and Functional Commitments from Lattices 491

2 Preliminaries

For any non-negative integer i, denote [i] = {0, . . . , i − 1} (where [0] = ∅).
For a real vector v, let ‖v‖ := (

∑
i v2

i)1/2 denote its Euclidean norm and
‖v‖1 =

∑
i|vi| denote its �1 norm. For a real matrix V, let ‖V‖ := maxj‖vj‖

denote the maximum Euclidean norm of its column vectors vj , and let s1(V) :=
maxu �=0‖Vu‖/‖u‖ denote its maximum singular value (also known as its spectral
norm). Observe that for any matrix V and vector u, we have ‖Vu‖ ≤ ‖V‖ ·‖u‖1

by the triangle inequality.

2.1 Vector Commitments

Definition 1 (Vector commitment). A vector commitment scheme with
message space M, commitment space C, and proof space P (which may be func-
tions of the setup parameters) is a set of algorithms with the following interfaces:

– Setup(1λ, 1d) outputs (public) committer parameters cp and verifier parame-
ters vp.

– Commit(cp,m ∈ Md) outputs a commitment c ∈ C and some committer
state st.

– Open(cp, st, i ∈ [d]) outputs a proof pi for the ith entry of the committed
message associated to st.

– Verify(vp, c ∈ C, i ∈ [d],m ∈ M, p ∈ P) either accepts or rejects.

These algorithms should satisfy the following correctness condition: for any
d = poly(λ), m ∈ Md, and i ∈ [d], and for (cp, vp) ← Setup(1λ, 1d),
(c, st) ← Commit(cp,m), and pi ← Open(cp, st, i), Verify(vp, c, i,mi, pi) accepts
with probability 1 − negl(λ) (over all the randomness of the experiment).

Additionally, the scheme is updatable if it has a set of algorithms with the fol-
lowing interfaces:

– PrepareUpdates(cp, st, j ∈ [d],m′
j ∈ M) outputs a commitment update δc,

a proof update δp, and a state update δs for changing the jth entry of the
committed message vector to m′

j.
– UpdateC(vp, c ∈ C, δc) deterministically outputs an updated commitment c′.5
– UpdateP(vp, i ∈ [d], pi ∈ P, δp) deterministically outputs an updated proof p′

i.
– UpdateS(cp, st, δs) deterministically outputs an updated committer state st′.

Additionally, the scheme is statelessly updatable if PrepareUpdates can be imple-
mented via:

– PrepareUpdatesno-st(cp, j ∈ [d],mj ∈ M,m′
j ∈ M), which has the same out-

puts as PrepareUpdates, and differs only in its inputs: it does not get the com-
mitter state st, and instead receives only the old and new jth entries mj ,m

′
j

of the message vector m. Then PrepareUpdates can be written generically in
terms of PrepareUpdatesno-st (assuming that m is part of st, which is without
loss of generality).

5 The determinism is without loss of generality, because PrepareUpdates can include
any needed random coins in δc; the same also applies for UpdateP, δp and UpdateS, δs.

492 C. Peikert et al.

Moreover, the scheme is differentially updatable if PrepareUpdatesno-st (and
hence PrepareUpdates) can be implemented via:

– PrepareUpdatesdiff(cp, j ∈ [d], δ), which has the same outputs as
PrepareUpdatesno-st, and differs only in its inputs: rather than receiving mj

and m′
j separately, it receives only the “difference” δ = m′

j − mj, where −
denotes some abstract operation on M (whose output may be more compact
than its two inputs). Then PrepareUpdatesno-st can be written generically in
terms of PrepareUpdatesdiff.

These algorithms should satisfy the following correctness condition: for any d =
poly(λ), any (cp, vp) ← Setup(1λ, 1d), any m,m′ ∈ Md that differ in at most
the jth coordinate, and any i ∈ [d], the outputs of the following two experiments
are statistically indistinguishable; if they are identically distributed, we say that
the updatability is perfect:

1. Let (c, st) ← Commit(cp,m), pi ← Open(cp, st, i), (δc, δp, δs) ←
PrepareUpdates(cp, st, j,m′

j),
6 c′ ← UpdateC(vp, c, δc), p′

i ← UpdateP(vp,
i, pi, δp), st′ ← UpdateS(cp, st, δs). Output (st′, c′, p′

i).
2. Let (c′, st′) ← Commit(cp,m′), p′

i ← Open(cp, st′, i). Output (st′, c′, p′
i).

In words, the results of updating a commitment and proof to a new entry of the
message vector should be essentially the same as generating a “fresh” commit-
ment and proof on the updated message vector. (The state information is included
in the results for compositionality, so that the same goes for polynomially many
updates.)

Remark 1. We note that our vector commitment interface differs slightly from
the one introduced in [CF13]. First, we split our public parameters into separate
committer and verifier parameters, to highlight the different values needed by
each role. Second, we break out PrepareUpdates from the algorithms that do the
actual updating, to delineate what work can be performed by the committer
rather than the verifier. However, any VC implementing our interface can triv-
ially be converted to the interface from [CF13], simply by merging the public
parameters, and merging the code in PrepareUpdates that generates δc and δp

into UpdateC and UpdateP, respectively.

Position Binding. We now recall the main security property of vector commit-
ments, known as position binding. Essentially, it should be infeasible to output
a (possibly malformed) commitment along with two valid openings for different
message entries at a particular position.

6 For statelessly updatable schemes, this step can be replaced by
PrepareUpdatesno-st(cp, j, mj , m

′
j), and for differentially updatable ones, it can

be replaced by PrepareUpdatesdiff(cp, j, δ = m′
j − mj).

Vector and Functional Commitments from Lattices 493

Definition 2. A vector commitment scheme VCS is position binding if, for
every d = d(λ) = poly(λ) and every probabilistic polynomial-time adversary A,

Adv
pba
VCS(A) := Pr[m �= m

′
and Verify(vp, c

∗
, i, m, p) = Verify(vp, c

∗
, i, m

′
, p

′
) = accept] = negl(λ),

where the probability is over the choice of (cp, vp) ← Setup(1λ, 1d),
(c∗, i,m, p,m′, p′) ← A(1λ, 1d, cp, vp).

Position binding alone is a sufficient security property for many applications
of vector commitments, and can be obtained entirely with deterministic algo-
rithms, excepting Setup; indeed, our own constructions achieve this. Of course,
a deterministic Commit algorithm cannot hide the message vector, at least not
in the sense of indistinguishability.

2.2 Short Integer Solution and (Tagged) Trapdoors

We recall the Short Integer Solution (SIS), and its hardness based on worst-case
lattice problems.

Definition 3. The (homogeneous) SISn,q,m,β problem is: given a uniformly ran-
dom matrix A ∈ Z

n×m
q , find a non-zero integral vector z ∈ Z

m such that Az = 0
(mod ∗)q and ‖z‖ ≤ β. The normal form of the problem is to find a non-zero
integral vector z = (x ∈ Z

m, e ∈ Z
n) such that Ax = e (mod ∗)q and ‖z‖ ≤ β.

When q ≥ β · Õ(
√

n) and m is polynomial in n and log q, solving SISn,q,m,β

(in either its homogeneous or normal form) is at least as hard as approximating
certain worst-case lattice problems on n-dimensional lattices to within a β·Õ(

√
n)

factor [MR04,GPV08].

Gadget and Trapdoors. Our constructions use standard techniques for SIS-based
trapdoors and preimage sampling as developed in [GPV08,MP12]. These rely
on a publicly known “gadget” matrix G ∈ Z

n×w
q for some w. The prototypical

example is G = In ⊗ (1, 2, . . . , 2�log2 q�−1) where w = n�log2 q�, but any other
suitable G supporting an efficient preimage-sampling algorithm can work just
as well in our applications (possibly after adjusting parameters); see [MP12] for
the precise requirements.

The basic gadget-based inversion operation is a deterministic function
denoted G−1 : Zn

q → Z
w, which for some small g = gG satisfies G · G−1(u) = u

and ‖G−1(u)‖ ≤ g for all u ∈ Z
n
q .7 (For example, gG = 1 for the prototypical

gadget G defined above.) We extend the definition of G−1 to matrices simply
by applying it column-wise.

The more advanced inversion operation is the (randomized) preimage-
sampling algorithm, whose properties are described below in Theorem 1. For this
purpose the gadget matrix G comes with a small factor ω = ωG that appears in

7 We stress that G−1 is a function, not a matrix, and it does not necessarily satisfy
G−1(G · z) = z for z ∈ Z

w.

494 C. Peikert et al.

the bounds associated with the sampling algorithm. (E.g., for the prototypical G
given above, we can take ω to be any ω(

√
log n) function.)

Preimage sampling works for “tagged” trapdoors, which rely on an efficiently
computable invertible-differences encoding from elements of some particular
set F to Z

n×n
q . In such an encoding, for any distinct f, f ′ ∈ F , the difference

Hf ′ − Hf between their respective encodings Hf ′ ,Hf is invertible. A standard
construction (see, e.g., [PW08,ABB10,MP12]) for prime q uses any (efficiently
computable) injective map from F into the finite field Fqn , which is viewed as
an n-dimensional vector space over Fq with some arbitrary basis. Then relative
to that basis, multiplication by any fixed (nonzero and hence invertible) field
element f ∈ Fqn basis corresponds, via an additive homomorphism, to mul-
tiplication by an (invertible) matrix Hf ∈ Z

n×n
q ; this correspondence therefore

yields an invertible-differences encoding. (This can be extended to arbitrary non-
prime q in a natural way; see, e.g., [MP12].)

The following theorem summarizes the trapdoor functionality that our con-
structions will use; our presentation abstracts away the precise distributions
sampled by the various algorithms. Typically SampleD samples from a discrete
Gaussian distribution (as in [GPV08]), but the theorem holds equally well (but
with somewhat looser bounds) for other distributions over the integers, like uni-
form over a sufficiently wide interval; see [LW15].

Theorem 1 ([GPV08,MP12]). There are probabilistic polynomial-time algo-
rithms TrapGen, SampleD, SamplePre and a “gadget” matrix G ∈ Z

n×w
q having

the following properties, where m = m̄ + w:

1. TrapGen(Ā ∈ Z
n×m̄
q ,H∗ ∈ Z

n×n
q) outputs some (A ∈ Z

n×m
q ,T ∈ Z

m̄×m) such
that s1(T) ≤ sT = O(

√
m) and

A = ĀT + [0 | H∗G] ∈ Z
n×m
q .

2. For any m̄ ≥ 2n log q and any H∗ ∈ Z
n×n
q , and for uniformly random Ā ←

Z
n×m̄
q and (A,T) ← TrapGen(Ā,H∗), the distribution of A ∈ Z

n×m
q is within

negl(n) statistical distance of uniform.
3. For any H∗,H ∈ Z

n×n
q such that H∗ − H is invertible, any (A,T) ←

TrapGen(Ā,H∗) for any Ā ∈ Z
n×m̄
q , any s ≥ sT · ω, any positive integer k,

and letting A′ = A − [0 | HG]:
(a) For R ← SampleD(1m×k, s) the distribution of U = A′R ∈ Z

n×k
q is

within k · negl(n) statistical distance of uniform.
(b) For any U ∈ Z

n×k
q , SamplePre(T,A′,U, s) outputs some R ∈ Z

m×k such
that ‖R‖ ≤ s

√
m, s1(R) = O(s

√
m + k), and the distribution of R is

within k · negl(n) statistical distance of DA′,U,s, the conditional distribu-
tion of R ← SampleD(1m×k, s) conditioned on the event A′R = U.

In particular, the output distributions of the following two experiments are
within k · negl(n) statistical distance:
– choose R ← SampleD(1m×k, s) and output (R,U = A′R ∈ Z

n×k
q).

– choose uniformly random U ← Z
n×k
q and R ← SamplePre(T,A′,U, s),

and output (R,U).

Vector and Functional Commitments from Lattices 495

We stress that the distribution DA′,U,s from Item 3b does not involve T, so
SamplePre’s output essentially reveals nothing about its T argument. More pre-
cisely, in probability experiments we can replace calls to SamplePre(T,A′,U, s),
which use T, with (not necessarily efficient) samplings from DA′,U,s, which do
not use T.

3 Vector Commitments

In this section we construct a vector commitment scheme based on the SIS
problem (for suitable parameters). By convention, in this section we let n be the
security parameter.

3.1 Construction

We let messages be vectors over M = I� for some desired � and interval I ⊂ Z

of contiguous integers of maximum magnitude MI = maxi∈I |i|, e.g., I = {0, 1}
and MI = 1.

The construction uses a suitable gadget matrix G ∈ Z
n×w
q and an injective,

efficiently computable invertible-differences encoding that maps any i ∈ [d+1] to
a matrix Hi ∈ Z

n×n
q , so that Hi′ −Hi is invertible for any distinct i, i′ ∈ [d + 1];

see Sect. 2.2 for instantiations. (In fact, because we will later need to take q � d,
if q is prime then we can simply take Hi = iI to be a scaled identity matrix.)

Construction 1 (SIS-based vector commitment). For suitable parameters
m̄, s, γ (which are functions of the security parameter n), define the following
differentially updatable vector commitment scheme.

– Setup(1n, 1d): choose uniformly random Ā ← Z
n×m̄
q and let (A,T) ←

TrapGen(Ā,Hd). In all that follows, let m = m̄ + w and for any i ∈ [d]
let

Ai = A − [0 | HiG] ∈ Z
n×m
q . (1)

Choose uniformly random U = [U0 | · · · | Ud−1] ← Z
n×�d
q , where each

Uj ∈ Z
n×�
q .

For each i ∈ [d] let Ri,i = 0 ∈ Z
m×�, and for each j ∈ [d] \ {i}, let Ri,j ←

SamplePre(T,Ai,Uj , s). Observe that i �= d and hence Hd − Hi ∈ Z
n×n
q is

invertible, as needed by SamplePre (see Item 3 of Theorem 1). In particular,

Ri,j ∈ Z
m×� is “short” and AiRi,j = Uj . (2)

Output the committer parameters cp = (U,R = (Ri,j)i,j∈[d] ∈ Z
md×�d) and

the verifier parameters vp = (A,U).
– Commit(cp,m ∈ Md = I�d): output commitment c = Um =

∑
j∈[d] Ujmj ∈

Z
n
q and state st = m.

– Open(cp, st = m, i ∈ [d]): output pi = Ri,�m =
∑

j∈[d] Ri,jmj ∈ Z
m.

– Verify(vp, c ∈ Z
n
q , i ∈ [d],mi ∈ M,pi ∈ Z

m): accept if ‖pi‖ ≤ γ and c =
Aipi + Uimi; otherwise, reject.

496 C. Peikert et al.

In addition, define the following update algorithms.

– PrepareUpdatesdiff(cp, j ∈ [d], δ ∈ Z
�): output commitment update8 δc = c̃ =

Ujδ ∈ Z
n
q , proof update9 δp = (ri)i∈[d] where ri = Ri,jδ ∈ Z

m, and state
update δs = (j, δ).

– UpdateC(vp, c ∈ Z
n
q , δc = c̃ ∈ Z

n
q): output c′ = c + c̃ ∈ Z

n
q .

– UpdateP(vp, i,pi ∈ Z
m, δp = (ri)i∈[d]): output p′

i = pi + ri ∈ Z
m.

– UpdateS(cp, st = m, δs = (j, δ)): output st′ = m′, which is m with its jth
M-entry mj replaced by m′

j = mj + δ.

Parameters and Sizes. An appropriate choice of the parameters m̄, s, γ is as
follows:

– let m̄ = �2n log q� so that Item 2 of Theorem 1 applies;
– let s = sT ·ω where ω and sT = O(

√
m) are as in Sect. 2.2, so that s1(T) ≤ sT

and SamplePre can sample with parameter s, by Items 1 and 3 (respectively)
of Theorem 1;

– let γ = O(sMI

√
(m + �d)�d) = O(sMI(m + �d)) be sufficiently large so that

the norm of a proof pi = Ri,�m is bounded by γ. (This is because s1(Ri,�) =
O(s

√
m + �d) by Item 3b of Theorem 1, and ‖m‖ ≤ MI

√
�d because m ∈

I�d.)10

Letting the modulus q be sufficiently large relative to β (Equation (3)), as
needed for the hardness of the relevant SIS problem, we obtain the following
asymptotic object sizes.

– Commitments are in Z
n
q and hence have size O(n log q) bits.

– Proofs are vectors in Z
m of Euclidean norm bounded by γ < q, and hence

can have size O(n log q) bits.
– Committer parameters are dominated by the d2 − d short matrices Ri,j ∈
Z

m×�, and hence have size Õ(n�d2) bits. This can be reduced by a factor of n
using a ring-based construction and Ring-SIS.

– Verifier parameters are dominated by the d matrices Uj ∈ Z
n×m
q , and hence

have size O(n2d log q) bits. This also can be reduced by a factor of n using
rings. Separately, the verifier parameters can be reduced to just the size of
A ∈ Z

n×m
q , which is O(n2 log2 q) bits (or O(n log2 q) bits using rings), by

including the appropriate authenticated Ui in each proof.

8 Alternatively, depending on how much space it requires to represent δ compared to
an element of Z

n
q , it may be preferable to output δc = (j, δ) as the commitment

update, and have UpdateC compute Ujδ.
9 Alternatively, if UpdateP has access to all the Ri,j (via the committer parameters),

then we can output a smaller proof update δp = δ, and UpdateP can compute
ri = Ri,jδ itself.

10 A smaller γ can be used if we have a tighter bound on ‖m‖, e.g., if we know from
the surrounding application that m is sparse.

Vector and Functional Commitments from Lattices 497

Combinable Commitments and Proofs. The scheme also has the following com-
binability properties.11 Suppose we have several commitments cj = Umj to
respective message vectors mj ∈ Z

�d for j = 1, . . . , t. Gathering these into the
columns of matrices C ∈ Z

n×t
q and M ∈ Z

�d×t (respectively), we have C = UM.
Then for any integer vector e ∈ Z

t representing a linear combination of the
message vectors, c := Ce = U(Me) ∈ Z

n
q is the commitment to the combined

message m := Me ∈ Z
�d.

Proofs are similarly combinable, for any fixed position. Let pj
i ∈ Z

m denote
the opening of cj at position i, and collect these into the columns of a matrix
Pi ∈ Z

m×t. Then Pi = Ri,�M, and hence pi := Pie = Ri,�m is the proof for
position i of the combined message m = Me. Note that the entries of m may
be larger than those of the mj—their magnitudes depend on the norm of e—so
the norm bound γ used in Verify and related parameters need to be adjusted
accordingly.

In the full version we discuss variants of this scheme, including a more efficient
one based on Ring-SIS.

3.2 Correctness

Lemma 1. For the parameters given above, Construction 1 is a correct, perfectly
updatable vector commitment scheme (according to Definition 1).

Proof. We first show that openings are accepted by the verifier. Let (cp, vp) ←
Setup(1n, 1d) and let m ∈ Md, c = Commit(cp,m) = Um and pi =
Open(cp,m, i) = Ri,�m for some i ∈ [d]. Then

Aipi = Ai

∑
j∈[d]

Ri,jmj =
∑
j∈[d]

(AiRi,j)mj =
∑

j∈[d]\{i}
Ujmj ,

since by definition of Setup we have that AiRi,j = Uj for i �= j (Equation (2))
and Ri,i = 0. Finally, we have

∑
j∈[d]\{i}

Ujmj = Um − Uimi = c − Uimi,

as required. Moreover, by our choice of γ above we have that ‖pi‖ = ‖Ri,∗m‖ ≤
γ. Therefore, Verify(vp, c, i,mi,pi) accepts.

Due to space limitations, we defer the proof of perfect differential updatability
to the full version. ��

3.3 Security

Theorem 2. Construction 1 is position binding if SISn,q,m̄+�,β is hard for

β := 2
√

γ2s2
T + M2

I · � = O(γ · sT) = O(MI · m(m + �d)) · ω. (3)

11 We use the term combinability rather than aggregatability because the latter is often
used for the ability to combine proofs for several different locations, which we do not
see how to do for our construction.

498 C. Peikert et al.

More specifically, for any adversary A against the position binding of the scheme,
there is an SISn,q,m̄+�,β adversary B for which

AdvSIS(B) ≥ 1
d
Advpba(A) − negl(n),

and whose running time is essentially that of A, plus a small polynomial in n.

Proof. Let A be any adversary that attacks the position binding (Definition
2) of Construction 1. That is, for some d = poly(n), and letting (cp, vp) ←
Setup(1n, 1d), A(1n, 1d, cp, vp) attempts to output some (c, i,m,m′,p,p′) with
distinct m,m′ ∈ I�d and where Verify(vp, c, i,m,p), Verify(vp, c, i,m′,p′) both
accept.

We use A to construct an SIS adversary B which, on input [Ā | Ū] ∈
Z

n×(m̄+�)
q , seeks to output a nonzero vector x ∈ Z

m̄+� such that [Ā | Ū]x = 0
and ‖x‖ ≤ β. It operates as follows:

1. Choose uniformly random i∗ ∈ [d] as a guess of the position where A will
attempt to break binding.

2. Let (A,T) ← TrapGen(Ā,Hi∗) and note that s1(T) ≤ sT and Ai∗ = A− [0 |
Hi∗G] = ĀT ∈ Z

n×m
q , by Item 1 of Theorem 1.

3. Define Ui∗ = Ū.
4. For each j �= i∗ let Ri∗,j ← SampleD(1m×�, s) and set Uj = Ai∗Ri∗,j ∈ Z

n×�
q .

5. For each i �= i∗ and j �= i, let Ri,j ← SamplePre(T,Ai,Uj , s).
6. For each i ∈ [d] let Ri,i = 0.
7. Let cp = (U = (Uj)j∈[d] ∈ Z

n×�d
q ,R = (Ri,j)i,j∈[d] ∈ Z

md×�d) and vp =
(A,U).

8. Let (c, i,m,m′,p,p′) ← A(1n, 1d, cp, vp).

9. If i �= i∗, abort. Otherwise, output x =
[
T(p − p′)
m − m′

]
∈ Z

m̄+�.

By inspection, it is clear that B runs in the same time as A, plus a small poly-
nomial.

First, we show that if A successfully breaks binding at position i = i∗, then
B outputs an SIS solution for [Ā | Ū]. In this case, we have m �= m′ and both
Verify(vp, c, i∗,m,p) and Verify(vp, c, i∗,m′,p′) accept, so c = Ai∗p + Ui∗m =
Ai∗p′ + Ui∗m′ and ‖p‖, ‖p′‖ ≤ γ. Recalling from above that Ai∗ = ĀT, we
therefore have

[Ā | Ū]x = [Ā | Ū]
[
T(p − p′)
m − m′

]

= ĀT(p − p′) + Ū(m − m′)
= Ai∗(p − p′) + Ui∗(m − m′)
= (Ai∗p + Ui∗m) − (Ai∗p′ + Ui∗m′)
= c − c = 0.

Vector and Functional Commitments from Lattices 499

Moreover, x �= 0 because m �= m′, and by the triangle inequality and the above
bound s1(T) ≤ sT we have

‖x‖ =
√

‖T(p − p′)‖2 + ‖m − m′‖2 ≤
√

(2γ · sT)2 + (2MI · �)2 = β.

Therefore, x is an SIS solution for [Ā | Ū].
It remains to analyze the probability that A breaks position binding at posi-

tion i = i∗ in the above experiment run by B. To do this we consider the following
hybrid experiments.

– H0 corresponds exactly to the “real” attack experiment with Setup, with
some convenient presentational changes to aid comparison with the other
experiments.
1. Sample i∗ ← [d] uniformly at random.
2. Sample Ā ∈ Z

n×m̄
q uniformly at random and (A,T) ← TrapGen(Ā,Hd).

3. Sample Ui∗ ∈ Z
n×�
q uniformly at random.

4. For each j �= i∗, choose uniform Uj ← Z
n×�
q and let Ri∗,j ←

SamplePre(T,Ai∗ ,Uj , s).
5. For each i �= i∗ and j �= i, let Ri,j ← SamplePre(T,Ai,Uj , s).
6. Set Ri,i = 0 for all i ∈ [d].
7. Set cp = (U,R = (Ri,j)i,j∈[d]) and vp = (A,U = (Uj)j∈[d]).
8. Let (c, i,m,m′,p,p′) ← A(1n, 1d, cp, vp).

Note that H0 is identical to the position-binding attack experiment against
the scheme, as the choice of i∗ only affects the order in which the Ri,j and Uj

are selected. This does not affect the distribution of (cp, vp), and indeed, i∗

is independent of the input to A. Hence, the probability of the event GOOD
that A breaks position binding at index i = i∗ is d−1 · Advpba(A).

– H1 is identical to H0 except that we replace Step 4 with the following:
4. For each j �= i∗, sample Ri∗,j ← SampleD(1m×�, s) and let Uj =

Ai∗Ri∗,j ∈ Z
n×�
q .

By Item 3 of Theorem 1, each independent (Ri∗,j ,Uj) pair generated in H0

is within � · negl(n) statistical distance of the corresponding pair generated
in H1. Because � = poly(n), the probability of the event GOOD in H1 is
within negl(n) of its probability in H0.

– H2 is identical to H1 except we replace Step 5 with the following:
5. For i �= i∗ and j �= i, (inefficiently) sample Ri,j ← DAi,Uj ,s.

Note that T is unused in H2, because the experiment instead samples ineffi-
ciently (e.g., using brute force); this is acceptable because we will only make
statistical comparisons between H2 and its adjacent experiments. For each i,
we have i �= d and hence Hd − Hi ∈ Z

n×n
q is invertible. So by Item 3b of

Theorem 1, each of the independent Ri,j (for i �= i∗ and j �= i) sampled from
SamplePre(T,Ai,Uj , s) in H1 is within � · negl(n) statistical distance of the
corresponding Ri,j sampled from DAi,Uj ,s in H2. Hence, the probability of
the event GOOD in H2 is within negl(n) of its probability in H1.

– H3 is identical to H2 except that we replace Step 2 with the following:
2. Sample Ā ∈ Z

n×m̄
q uniformly at random and let (A,T) ←

TrapGen(Ā,Hi∗).

500 C. Peikert et al.

By Item 2 of Theorem 1, for uniformly random Ā we have that the A obtained
from TrapGen(Ā,H) is within negl(n) statistical distance from uniform, for
any tag H. Hence, the A generated in H2 is within negl(n) statistical distance
from the A generated in H3. Note that this is not necessarily true for the
Ts generated in each experiment, however T is entirely unused (following its
creation) in both experiments. Hence, the probability of the event GOOD
in H3 is within negl(n) of its probability in H2.

– H4 is identical to H3 except that we replace Step 5 with the following:
5. For each i �= i∗ and j �= i, sample Ri,j ← SamplePre(T,Ai,Uj , s).

For all i �= i∗ we have that Hi∗ − Hi ∈ Z
n×n
q is invertible. So by Item 3b

of Theorem 1, each (independently chosen) Ri that is generated in this way
is within negl(n) statistical distance of the corresponding one in H3. By the
same reasoning given above for H2 versus H1, the probability of the event
GOOD in H4 is within negl(n) of its probability in H3.
Finally, notice that H4 is identical to the experiment that B simulates to A,
because the Ā and Ui∗ = Ū from the SIS instance are uniformly random and
independent.

Combining all of the above completes the proof of the theorem. ��

3.4 Specialized Tree Transformation

In the vector commitment scheme from Construction 1, the sizes of the committer
and verifier parameters are respectively quadratic and linear in the message
dimension d, which makes the construction unsuitable as-is for large dimensions.
In the full version, we give a formal treatment of a generic d-ary tree construction
that transforms a VC scheme for dimension d into one for dimension dh for any
desired positive integer h, with no increase in the sizes of the parameters or
commitments. Only the proof and proof-update sizes increase, growing linearly
in h but independently of d. However, this transformation fails to preserve the
combinability of commitments and proofs, as well as the stateless updatability
property of the base scheme, which is important for distributed VCs [CPSZ18].

Here we give a specialized tree-like transformation of our SIS-based VC
scheme. In contrast with the generic transform, ours preserves combinability and
(differential) stateless updates, essentially because commitments are linear in the
committed messages, but at the price of somewhat larger objects and a stronger
SIS assumption. The transformation is based on the main idea from [PSTY13],
which was used in the context of an SIS-based Merkle-tree-like construction
(which can be used as a VC). In that context, a proof must include all of the
“sibling” information for each step in a root-to-leaf path, so the proof size ends
up being proportional to hd log2(dh). (The log2(dh) factor comes from the length
of the proofs along the path as well as the sizes of the integers within them.)
Here we show that the main idea from [PSTY13] also applies to our SIS-based
VC scheme, but with the advantage that proofs need not contain any sibling
information, so the proof size grows only as h log2(dh) = h3 log2 d.

Vector and Functional Commitments from Lattices 501

In summary, our construction is quantitatively a strict improvement over
the VC obtained from [PSTY13], for any choice of arity d and tree height h
(but at the price of private setup). Its efficiency profile also recommends using
a moderately large d and correspondingly smaller h, which can ultimately yield
the same asymptotic proof size as for the generic tree transformation for VCs,
while preserving combinability and (differential) stateless updates (but at the
price of private setup and a stronger SIS assumption).

Construction 2 (SIS-based tree vector commitment). Let G ∈ Z
n×w
q

be a suitable gadget matrix with associated magnitude bound gG for the G−1

operation; see Sect. 2.2 for details. (This gadget need not be the same as the one
used in Construction 1.)

Let message vectors be over M = I
w

for some desired range I =
{−MI , . . . , MI} ⊂ Z. Let h be any positive integer, and adopt the algo-
rithms defined in Construction 1 for dimension-d vectors over M = Iw, where
I = {−MI , . . . , MI} for MI = MI · gG · w · dh.12 Define the following algorithms:

– Setuph(1n, 1dh

): output (cp = (U = [U0 | · · · | Ud−1],), vp) ← Setup(1n, 1d).
In all that follows, let S(1) = Iwd ∈ Z

wd×wd and U(1) = U ∈ Z
n×wd
q , and for

1 < k ≤ h let

S(k) = Id ⊗ G−1(U(k−1)) ∈ Z
wd×wdk

U(k) = US(k) ∈ Z
n×wdk

q .

Note that U(k) = [U(k)
0 | · · · | U(k)

dk−1
] can be viewed as a block matrix where

each U(k)
j ∈ Z

n×w
q and j ∈ [dk]. Moreover, each such block can be computed

independently given just U and j, without needing to compute the entire
matrix.13

– For 1 ≤ k ≤ h, Commitk(cp,m ∈ Mdk

= I
wdk

) does:
• let c = G−1(U(k))m ∈ Iw = M,14

• output (c, st = m).

– Open1 = Open. For 1 < k ≤ h, Openk(cp, st = m ∈ Mdk

, ı ∈ [dk]) does:
• write ı = idk−1 + ı′ where i ∈ [d] and ı′ ∈ [dk−1],

• parse m = (m0, . . . ,md−1) where each mi ∈ Mdk−1

,
• let pi ← Open(cp,S(k)m ∈ Iwd = Md, i),

12 The factor MI · w · dh in MI may be replaced by an upper bound on ‖m‖1 for only
those message vectors m that may be used in an application, e.g., sparse vectors.

13 Specifically, U
(k)
j = UjG

−1(U
(k−1)

j′) where j = jdk−1 + j′ for

j ∈ [dk], j ∈ [d], and j′ ∈ [dk−1]. Unrolling this fully, U
(k)
j =

Ujk−1G
−1(Uji−2G

−1(· · ·G−1(Uj1G
−1(Uj0)) · · ·)) where jk−1 · · · j1j0 is the

base-d representation of j.
14 Note that Gc = US(k)m ∈ Z

n
q is the commitment output of Commit(cp,S(k)m), but

we cannot necessarily compute c from that output.

502 C. Peikert et al.

• let (ci,) ← Commitk−1(cp,mi),15

• let p′
ı′ ← Openk−1(cp,mi, ı

′),
• output pı = (pi, ci, p

′
ı′).

– Verify1(vp, c ∈ Iw = M, ı ∈ [d],mı ∈ M, pı) = Verify(vp,Gc, ı,mı, pı).
For 1 < k ≤ h, Verifyk(vp, c ∈ Iw = M, ı ∈ [dk],mı ∈ M, pı) does:

• define i, ı′ in terms of ı as in Openk and parse pı = (pi, ci, p
′
ı′),

• if Verify(vp,Gc, i, ci,pi) rejects, then reject,
• if Verifyk−1(vp, ci, ı

′,mı, p
′
ı′) rejects, then reject; else, accept.

Update algorithms follow rather straightforwardly from the linearity of the
commitment, and are given in the full version.

Object Sizes. Instantiating the underlying scheme with parameters discussed
above and choosing sufficiently large q relative to β (where β is as in Eq. (3)),
so that log q = O(h log d + log n) = O(h log d) under the (very mild) assumption
that the vector dimension dh = nΩ(1) is at least polynomial in n, we obtain the
following asymptotic object sizes.

– A commitment is a vector in M = Iw, with each entry bounded by MI =
MI · gG · w · dh. Since w = O(n log q) = O(nh log d), a commitment requires
O(wh log d) = O(nh2 log2 d) bits to represent.

– A proof consists of h − 1 vectors in M and h proofs from the underlying
scheme; the latter are vectors in Z

m of Euclidean norm bounded by γ. Since
m = O(n log q) = O(nh log d) and log γ = O(h log d), a full proof requires
O(nh3 log2 d) bits to represent.

– The committer parameters cp are dominated by the d2 − d short matrices
Ri,j ∈ Z

m×w from the underlying scheme, and hence have size Õ(n2h2d2).
This can be reduced by a factor of n using a ring-based construction

– The verifier parameters vp are dominated by the d matrices Uj ∈ Z
n×w
q , and

hence have size O(n2h2d log2 d) bits. This also can be reduced by a factor of n
using a ring-based construction.

In the full version, we prove that for any positive integer h, Construction 2
is correct, perfectly updatable, and position binding.

4 Functional Commitments (with Authority)

In this section we define functional commitments with authority, which enable
concise commitments and proofs of arbitrary functions (from a particular family)
of committed messages. We introduce a new model in which a trusted author-
ity both performs the system setup, and remains online to give out opening
keys okf that enable committers to open desired functions f of committed mes-
sages. We stress that, unlike with identity/attribute-based encryption, where
each key extracted by the authority must be transmitted confidentially to its
15 Alternatively, the computation of all the dh−1 intermediate commitments ci could

be done at commitment time, and stored in st.

Vector and Functional Commitments from Lattices 503

intended recipient and kept secret, with functional commitments all opening
keys can be made public and used by any party. For example, any party can
query the authority for any supported function f , and the authority can post
the opening key okf on a public bulletin board for all to see and use.

Of course, if the supported function family has only polynomially many
functions, then the authority can immediately post all the associated open-
ing keys and then go offline forever. However, many families of interest have
super-polynomially (or even exponentially) many functions, so in these cases
the authority needs to remain online to answer new queries. It is a very interest-
ing question whether our construction can be modified to remove the need for
an online authority.

4.1 Definitions

Here we formally define functional commitments with authority, and the security
notions we consider for them.

Definition 4. A functional commitment scheme with authority for a function
class F , and having message space M, commitment space C, and proof space P
(all of which may depend on the security parameter), is a tuple of algorithms
with the following interfaces:

– Setup(1λ) outputs committer parameters cp, verifier parameters vp, and an
extraction key ek.

– Extract(ek, f ∈ F) outputs an opening key okf for the function f .
– Commit(cp,m ∈ M) outputs a commitment c ∈ C and some auxiliary

data aux.
– Open(cp, aux, okf) outputs a proof pf,m ∈ P for the value of f(m), where m

is the committed message associated to aux.
– Verify(vp, c ∈ C, f ∈ F , y, pf,m) either accepts or rejects.

The scheme should satisfy the following correctness property: for any m ∈ M
and f ∈ F , and for (cp, vp, ek) ← Setup(1λ), okf ← Extract(ek, f), (c, aux) ←
Commit(cp,m), and pf,m ← Open(cp, aux, okf), Verify(vp, c, f, y = f(m), pf,m)
should accept with 1 − negl(λ) probability (over all the randomness of the exper-
iment).

Definition 5. For a functional commitment scheme with authority FCS, the
selective-function attack game with an adversary is defined as follows:

1. The adversary is given the security parameter 1λ and outputs a function f∗ ∈
F to the challenger.

2. The challenger lets (cp, vp, ek) ← Setup(1λ) and gives cp, vp to the adversary.
3. The adversary is given adaptive oracle (query) access to Extract(ek, ·).16
16 Note that we allow the adversary to query the oracle on any f ∈ F , even f =

f∗. This is because having an opening key for f∗ does not inherently allow for
breaking function binding for f∗—as opposed to, say, identity-based encryption,
where a decryption key for the target identity trivially allows decryption of the
challenge ciphertext.

504 C. Peikert et al.

4. Finally, the adversary outputs a commitment c∗ and two value-proof pairs
(y, p) and (y′, p′). It wins the game if y �= y′ and both Verify(vp, c∗, f∗, y, p)
and Verify(vp, c∗, f∗, y′, p′) accept.

The advantage of an adversary A in the above game, denoted Advsfa
FCS(A), is

the probability that it wins the game (as a function of the security parameter).
We say that FCS has the selective function binding property if Advsfa

FCS(A) =
negl(λ) for every probabilistic polynomial-time adversary A.

Remark 2. One can strengthen Definition 5 by changing the attack game so
that the adversary does not specify the target function f∗ until Item 4 (rather
than in Item 1, before seeing the public parameters and the queried opening
keys); we call the resulting security notion adaptive, or full, functional binding.
Generically, any scheme with selective security also has adaptive security, up to a
loose reduction whose advantage is smaller by a factor of the size of the function
family. (This follows by the standard technique of complexity leveraging—i.e.,
initially “guessing” the function f∗ that the adversary will eventually choose,
and succeeding when this guess turns out to be correct.)

4.2 Homomorphic Commitments

A main tool used in our functional commitment scheme is a homomor-
phic commitment implicit in the FHE scheme of Gentry, Sahai, and Waters
(GSW) [GSW13], and made explicit in the works of Gorbunov, Vaikuntanathan,
and Wichs (GVW) [GVW15] and Peikert and Shiehian [PS19], which we recall in
this section. For better parameters and efficiency when working with certain func-
tion families (e.g., linear functions), we generalize the scheme somewhat using
standard “tagged trapdoor” and homomorphic techniques developed in works
such as [PW08,AFV11,MP12,Xag13]. The following theorem abstracts what we
need from these works and others like [BV14,AP14]; see the cited works and the
full version for further details on the implementations of the claimed algorithms.

Theorem 3 (Homomorphic commitment). Let U denote one of the follow-
ing families Ulinear, Ucircuit, UBP of “size-T” functions from XS to XL, for a
certain domain X, input size S, and output length L:

– for X = Z
n×n
q , T = S, and L = 1, the family Ulinear of functions UM

with M = (M1, . . . ,MS) ∈ XS, defined as UM(F) :=
∑S

i=1 FiMi for F =
(F1, . . . ,FS) ∈ XS;

– for X = {0, 1}, the set Ucircuit of size-T , depth-D Boolean circuits
U : {0, 1}S → {0, 1}L;

– for X = {0, 1}, the set UBP of size-T (for a given width) branching programs
U : {0, 1}S → {0, 1}L.

There exist deterministic polynomial-time algorithms Encode, Eval having the
following properties. Each input in square brackets is optional, and when pro-
vided, the additional output (also in square brackets) is also produced. The algo-
rithm’s main output is the same whether or not the optional input is provided.

Vector and Functional Commitments from Lattices 505

1. Eval(U ∈ U ,C ∈ Z
n×Sw
q [,Rx ∈ Z

m×Sw]) outputs a commitment matrix CU ∈
Z

n×Lw
q [and an integral matrix RU,x ∈ Z

m×Lw].
If C = ARx + Encode(x) for some A ∈ Z

n×m
q and x ∈ XS, then CU =

ARU,x + Encode(U(x)), and:
(a) for U = Ulinear, ‖RU,x‖ ≤ ‖Rx‖ · Sw;
(b) for U = Ucircuit, ‖RU,x‖ ≤ ‖Rx‖ · (w + 1)D;
(c) for U = UBP, ‖RU,x‖ ≤ ‖Rx‖ · wO(1) · T .

2. There is an efficient deterministic polynomial-time algorithm that, given any
invertible Y ∈ Z

n×n
q and any u ∈ Z

n
q , outputs a binary e = G−1(Y−1u) ∈

{0, 1}w such that Encode(Y) · e = Y(Ge) = u.
3. There is an efficient deterministic polynomial-time algorithm that, given any

M ∈ Z
n×L
q , outputs a binary e ∈ {0, 1}Lw such that Encode(y) ·e = My ∈ Z

n
q

for every y ∈ {0, 1}L.

4.3 Functional Commitment Construction

Here we give a functional commitment (with authority) for various families F of
functions from a given message space M to XL, for some domain X and output
length L (typically, X = Z

n×n
q or X = {0, 1}).

Let F ′ = F ∪{d} where d �∈ F is some distinguished “dummy” function, and
define the family of functions

U := {Um : F ′ → XL}m∈M
Um(f) := f(m);

we emphasize that this switches the roles of the message m and function f ,
letting the message define a function Um that takes f as input data.

The construction requires homomorphic evaluation of any Um ∈ U (for known
m ∈ M) on a commitment to a function f under the GSW/GVW scheme; let S
denote the size of f under a suitable representation for this purpose. Naturally,
the choice of function family F influences the scheme’s efficiency and parameters
(norm bound γ, modulus q, etc.); we describe some example instantiations of
interest following the construction.

The construction also uses an injective, efficiently computable invertible-
differences encoding that maps any f ∈ F ′ to a matrix Hf ∈ Z

n×n
q , so that

Hf − Hf ′ is invertible for any distinct f, f ′ ∈ F ′. (See Sect. 2.2 for instantia-
tions.) For simplicity we assume that the family F ′ is small enough to support
such an encoding. Alternatively, we can map each f to a tuple (Hf,1, . . . ,Hf,t) for
sufficiently large t so that Hf,i−Hf ′,i is invertible for some i (and modify the con-
struction below in the natural way), or we can first apply a collision-resistant (or
even just universal one-way) hash function to f and use an invertible-differences
encoding on the hash values.17

17 No homomorphic properties (only invertible differences) are needed for this encoding
of the functions, so hashing is acceptable.

506 C. Peikert et al.

Construction 3 (SIS-based functional commitment). Let function fam-
ilies F ,F ′ = F ∪ {d} (which may depend on the security parameter n) and
U = {Um(·)} be as described above. For suitable parameters m̄, s, γ, we define
the following functional commitment scheme (with authority) for the family F .

– Setup(1n): choose uniform Ā ← Z
n×m̄
q and let (A ∈ Z

n×m
q ,T ∈ Z

m̄×m) ←
TrapGen(Ā,Hd), where d ∈ F ′ is the special “dummy” function. In all that
follows, for any f ∈ F let

Af = A − [0 | HfG] ∈ Z
n×m
q . (4)

Choose uniformly random C ← Z
n×Sw
q . Output the committer parame-

ters cp = C, the verifier parameters vp = A, and the extraction key
ek = (C,A,T).

– Extract(ek = (C,A,T), f ∈ F): output Rf ← SamplePre(T,Af ,C −
Encode(f), s) as the opening key. Observe that f �= d and hence Hd − Hf ∈
Z

n×n
q is invertible, as needed by SamplePre (see Item 3 of Theorem 1). In

particular, Rf ∈ Z
m×Sw is “short” and

C = AfRf + Encode(f), (5)

i.e., Rf is randomness that opens C as a commitment to f with respect to Af .
Note: for security, it is essential that repeated calls to Extract on the same
input (ek, f) produce the same output Rf . This can be ensured by the stan-
dard techniques of memoization (e.g., using a public bulletin board of all prior
queries and answers), or by applying a pseudorandom function to (ek, f) to
generate randomness for the call to SamplePre, so that Rf is a deterministic
function of the input.

– Commit(cp = C,m ∈ M): output Cm = Eval(Um,C) ∈ Z
n×Lw
q and aux = m.

[For Boolean functions the commitment can be compressed significantly; see
Sect. 4.3 below.]

– Open(cp = C, aux = m ∈ M, okf = Rf): compute (Cm,Rm,f) =
Eval(Um,C,Rf) and output Rm,f ∈ Z

m×Lw.
[For Boolean functions the proof can be compressed significantly; see Sect. 4.3
below.]

– Verify(vp = A,C∗, f ∈ F ,y ∈ XL,R∗): accept if ‖R∗‖ ≤ γ and C∗ =
AfR∗ + Encode(y), i.e., if R∗ is sufficiently short randomness that opens C∗

as a commitment to y with respect to Af . Otherwise, reject.

Combinability. Similarly to our SIS-based vector commitments from Sect. 3,
the functional commitment scheme has the following combinability property:
given commitments Cm,Cm′ and respective proofs Rm,f ,Rm′,f that f(m) =
y, f(m′) = y′ for some function f , we can take the same arbitrary small linear
combination of each pair to get a combined commitment and a proof (under a
suitably relaxed norm bound) that f(m)+f(m′) = y+y′. For linear functions f
this is equivalent to f(m + m′) = y + y′, but we caution that in general it may
not correspond to the application of f on any legal message.

Vector and Functional Commitments from Lattices 507

Parameters. Here we give a convenient choice of parameters that works for all
of our instantiations:

– let m̄ = �2n log q� so that the output A of TrapGen is statistically close to
uniform;

– let s = sT ·ω where ω and sT = O(
√

m) are as in Sect. 2.2, so that s1(T) ≤ sT

and SamplePre can sample with parameter s, by Items 1 and 3 (respectively)
of Theorem 1;

– let γ be defined based on the particular function family F , as in the following
instantiations.

Instantiation: Linear Functions over Finite Fields. Let F = Fpn for some
prime p that divides q, let M = F

S for some S = S(λ), and let F ′ be the family
of all F-linear functions from F

S to F. We can represent any such function as
a vector f = (f1, . . . , fS) ∈ F

S of field elements, and can define Um (f) :=∑S
i=1 fimi ∈ F for each m ∈ F

S . By simulating F using the matrix ring R =
Z

n×n
q (simply by reducing modulo p), Theorem 3 with family Ulinear yields a

suitable homomorphic commitment. For this instantiation, following Item 1a of
Theorem 3 we set

γ = γlinear := s
√

m · Sw.

Let the “dummy” function d ∈ F ′ be the trivial function that always outputs
zero, leaving the family F = F ′ \{d} of all nontrivial linear functions as the one
supported by the scheme (note that the trivial function is not needed, since its
output is fixed).

Remark 3. The restriction to linear functions over finite fields, rather than more
general matrix rings Zn×n

p where p divides q, is mostly for convenience of presen-
tation in the SIS-based security proof (see the full version). Using more sophisti-
cated techniques and exploiting the fact that every column of the trapdoor T is
well hidden information theoretically (conditioned on the adversary’s view), it is
plausible that the proof could be adapted to work for the full matrix ring Z

n×n
p

(though we do not do so here, to keep the proof simpler).

Instantiation: Boolean Functions of Bounded Complexity. Let F ′ be
the family of all functions from some set M to {0, 1}L that are computable by
Boolean circuits of some depth D′ = D′(λ) and size S = S(λ) = poly(λ), under
a suitable representation as binary strings. There is a (uniformly generated)
universal Boolean circuit U of size T = T (S) = poly(S) and depth D = O(D′)
for which U(f,m) = f(m) for all f ∈ F ′,m ∈ M. Defining the size-T , depth-D
circuits Um(·) = U(·,m), Theorem 3 with the family Ucircuit = {Um(·)} yields a
suitable homomorphic commitment. For this instantiation, following Item 1b of
Theorem 3 we set

γ = γcircuit := s
√

m · (w + 1)D.

We proceed analogously for the family F ′ of functions from M to {0, 1}L

computable by size-S branching programs of some fixed width, using a (uni-
formly generated) universal branching program U(f,m) of some size T = T (S) =

508 C. Peikert et al.

poly(S), and invoking Theorem 3 with the family UBP = {Um(·) = U(·,m)}
yields a suitable homomorphic commitment. For this instantiation, following
Item 1c of Theorem 3 we set

γ = γBP := s
√

m · wO(1) · T .

In both instantiations we let the “dummy” function d ∈ F ′ be the trivial
function that always outputs zero, leaving the family F = F ′\{d} of all nontrivial
size-S circuits (or branching programs) as the one supported by the scheme.
(There is no need to suport the trivial function, since its output is fixed.)

Compressing Commitments and Proofs. Finally, for functions with outputs in
{0, 1}L for some L ≤ n, we can reduce the sizes of the commitments and proofs by
a factor of Lw.18 Define M ∈ Z

n×L
q to be the identity matrix I ∈ Z

L×L
q padded

with n − L all-zero rows, and let e ∈ {0, 1}Lw be as in Item 3 of Theorem
3. Then any commitment Cm ∈ Z

n×Lw
q can be replaced by the single column

vector cm = Cm · e ∈ Z
n
q , and any proof Rm,f ∈ Z

m×Lw can be replaced
by rm,f = Rm,f · e ∈ Z

m. We then redefine Verify(A, c∗, f,y ∈ {0, 1}L, r∗) to
accept if ‖r∗‖ ≤ γ′ := γ‖e‖1 ≤ γLw and c∗ = Afr∗ + (y

0). This works because
‖rm,f‖ ≤ ‖Rm,f‖ · ‖e‖1, and Encode(y) · e = My = (y

0). We note that the
above-described combinability property is also preserved.

Lemma 2. For the instantiations and parameters given above, Construction 3
is a correct functional commitment scheme with authority.

Proof. Let m ∈ M and f ∈ F be arbitrary, and let:

– (cp = C, vp = A, ek = (C,A,T)) ← Setup(1n),
– okf = Rf ← Extract(ek, f) = SamplePre(T,Af ,C − Encode(f), s)

(note that f �= d and s is large enough, so SamplePre works on these argu-
ments), and

– (Cm,Rm,f) = Open(C,m,Rf) = Eval(Um,C,Rf)
(note that Cm = Commit(C,m) = Eval(Um,C) by definition of Eval).

We show that Verify(A,Cm, f, y = f(m),Rm,f) accepts. By definition of
Extract and Item 3 of Theorem 1, we have ‖Rf‖ ≤ s

√
m and

C = AfRf + Encode(f),

so by the correctness of Um(·) = U(·,m) and of Eval(Um,C,Rf) (Theorem 3)
we have

Cm = AfRm,f + Encode(Um(f)) = AfRm,f + Encode(y),

as required. In addition, ‖Rm,f‖ ≤ γ because ‖Rm,f‖/‖Rf‖ is bounded as given
in Item 1 of Theorem 3, so Verify accepts.
18 For L > n, we can simply treat the function as the concatenation of multiples

functions, and extract keys and generate proofs for each of them individually.

Vector and Functional Commitments from Lattices 509

Finally, for the compressed variant with commitment cm := Cme and proof
rm,f := Rm,f · e, we have

cm = Afrm,f + Encode(y) · e = Afrm,f +
(
y
0

)

and has norm ‖r‖ ≤ ‖Rm,f‖ · ‖e‖1 ≤ γ‖e‖1 = γ′, so Verify accepts. ��
Theorem 4. For the instantiations and parameters given above, Construction
3 satisfies selective function binding (Definition 5) if normal-form SISn,q,m̄,β is
hard for sufficiently large β = O(γw

√
m) [or for the compressed variant, β =

O(γ′√m) where γ′ = γ‖e‖1 for the special short vector e used for compression].
More specifically, for any adversary A against the selective function binding

of the scheme that makes at most Q = Q(n) queries to its Extract oracle, there
is a normal-form SISn,q,m̄,β adversary B for which

AdvSIS(B) ≥ Advsfa(A) − (Q + 1) · negl(n),

and whose running time is that of A plus a small polynomial in n.

Due to space constraints, the proof of Theorem 4 is deferred to the full version.
(It has many similarities with the proof of Theorem 2.)

Acknowledgments. We thank the anonymous TCC reviewers for many helpful com-
ments and suggestions. This material is based upon work supported by DARPA under
Agreement No. HR00112020025. Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the United States Government or DARPA.

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard
model. In: EUROCRYPT, pp. 553–572 (2010)

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption
for inner product predicates from learning with errors. In: ASIACRYPT
(2011)

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: CRYPTO, pp. 297–314 (2014)

[BBB+18] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.:
Bulletproofs: short proofs for confidential transactions and more. In: IEEE
Symposium on Security and Privacy, pp. 315–334 (2018)

[BDFG20] Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo infinite: Recursive zk-
SNARKs from any additive polynomial commitment scheme. Cryptology
ePrint Archive, Report 2020/1536 (2020). https://eprint.iacr.org/2020/
1536

[BdM93] Benaloh, J.C., de Mare, M.: One-way accumulators: a decentralized alter-
native to digital sinatures (extended abstract). In: EUROCRYPT, vol. 765,
pp. 274–285 (1993)

https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2020/1536

510 C. Peikert et al.

[BFS20] Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK
compilers. In: EUROCRYPT, pp. 677–706 (2020)

[BGJS16] Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional
encryption. In: ASIACRYPT, pp. 557–587 (2016)

[BGV11] Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation
over large datasets. In: CRYPTO, pp. 111–131 (2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: ITCS, pp. 1–12 (2014)

[CCH+19] Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: STOC, pp.
1082–1090 (2019)

[CF13] Catalano, D., Fiore, D.: Vector commitments and their applications. In:
PKC, pp. 55–72 (2013)

[CFG+20] Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., Nizzardo, L.: Incre-
mentally aggregatable vector commitments and applications to verifiable
decentralized storage. In: ASIACRYPT, pp. 3–35 (2020)

[CGMA85] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing
and achieving simultaneity in the presence of faults (extended abstract). In:
FOCS, pp. 383–395 (1985)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012). Preliminary
version in Eurocrypt 2010

[CPSZ18] Chepurnoy, A., Papamanthou, C., Srinivasan, S., Zhang, Y.: EDRAX: a
cryptocurrency with stateless transaction validation. Cryptology ePrint
Archive, Report 2018/968 (2018). https://eprint.iacr.org/2018/968

[CRFM08] Catalano, D., Raimondo, M.D., Fiore, D., Messina, M.: Zero-knowledge
sets with short proofs. IEEE Trans. Inf. Theory 57(4), 2488–2502 (2011).
Preliminary version in EUROCRYPT 2008

[DN94] Dwork, C., Naor, M.: An Efficient Existentially Unforgeable Signature
Scheme and its Applications. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 234–246. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 23

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: CRYPTO, pp. 75–92 (2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic
signatures from standard lattices. In: STOC, pp. 469–477 (2015)

[GW11] Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from
all falsifiable assumptions. In: STOC, pp. 99–108 (2011)

[HW15] Hubácek, P., Wichs, D.: On the communication complexity of secure func-
tion evaluation with long output. In: ITCS, pp. 163–172 (2015)

[Kil92] Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In:
STOC, pp. 723–732 (1992)

[Kus18] Kuszmaul, J.: Verkle trees (2018). Unpublished manuscript, available
at https://math.mit.edu/research/highschool/primes/materials/2018/
Kuszmaul.pdf

[KZG10] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to
polynomials and their applications. In: ASIACRYPT, pp. 177–194 (2010)

[Lis05] Liskov, M.D.: Updatable zero-knowledge databases. In: ASIACRYPT, pp.
174–198 (2005)

https://eprint.iacr.org/2018/968
https://doi.org/10.1007/3-540-48658-5_23
https://doi.org/10.1007/3-540-48658-5_23
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf

Vector and Functional Commitments from Lattices 511

[LM19] Lai, R.W.F., Malavolta, G.: Subvector commitments with application to
succinct arguments. In: CRYPTO, pp. 530–560 (2019)

[LP20] Lipmaa, H., Pavlyk, K.: Succinct functional commitment for a large class
of arithmetic circuits. In: ASIACRYPT, pp. 686–716 (2020)

[LRY16] Libert, B., Ramanna, S.C., Yung, M.: Functional commitment schemes:
from polynomial commitments to pairing-based accumulators from simple
assumptions. In: ICALP, pp. 30:1–30:14 (2016)

[LW15] Lyubashevsky, V., Wichs, D.: Simple lattice trapdoor sampling from a
broad class of distributions. In: PKC, pp. 716–730 (2015)

[LY10] Libert, B., Yung, M.: Concise mercurial vector commitments and indepen-
dent zero-knowledge sets with short proofs. In: TCC, pp. 499–517 (2010)

[Mer87] Merkle, R.C.: A digital signature based on a conventional encryption func-
tion. In: CRYPTO, pp. 369–378 (1987)

[Mic94] Micali, S.: CS proofs. In: FOCS, pp. 436–453 (1994)
[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,

smaller. In: EUROCRYPT, pp. 700–718 (2012)
[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based on

Gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007). Preliminary
version in FOCS 2004

[MRK03] Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: FOCS, pp.
80–91 (2003)

[PS19] Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain)
learning with errors. In: CRYPTO, pp. 89–114 (2019)

[PSTY13] Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated
data structures. In: EUROCRYPT, pp. 353–370 (2013)

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
SIAM J. Comput. 40(6), 1803–1844 (2011). Preliminary version in STOC
2008

[SBZ01] Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: ICISC,
pp. 285–304 (2001)

[TAB+20] Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich,
D.: Aggregatable subvector commitments for stateless cryptocurrencies. In:
SCN, Lecture Notes in Computer Science, pp. 45–64 (2020)

[Xag13] Xagawa, K.: Improved (hierarchical) inner-product encryption from lat-
tices. In: PKC, pp. 235–252 (2013)

[Yam16] Yamada, S.: Adaptively secure identity-based encryption from lattices with
asymptotically shorter public parameters. In: EUROCRYPT, pp. 32–62
(2016)

Author Index

Abe, Masayuki I-435
Abla, Parhat III-157
Abraham, Ittai II-66
Agarwal, Amit I-654
Agrawal, Shweta II-224
Alamati, Navid III-94
Alwen, Joël III-222
Ambrona, Miguel I-435
Ananth, Prabhanjan I-299
Ando, Megumi III-188
Applebaum, Benny I-717
Asharov, Gilad II-66
Assouline, Léonard II-194
Auerbach, Benedikt III-222

Badertscher, Christian I-499, II-626, III-350
Baig, Mirza Ahad III-222
Bartusek, James I-1, I-654
Benhamouda, Fabrice II-129
Bienstock, Alexander III-62
Bitansky, Nir I-62, I-273
Bogdanov, Andrej I-435
Boyle, Elette II-129
Brakerski, Zvika I-273
Branco, Pedro III-94
Brian, Gianluca II-333
Broadbent, Anne I-90
Broadnax, Brandon I-750
Brzuska, Chris II-429

Canetti, Ran III-1
Carstens, Tore Vincent I-240
Chakraborty, Suvradip II-397
Chardouvelis, Orestis I-121, I-149
Chase, Melissa III-126
Chiesa, Alessandro I-401
Chopard, Annick II-35
Choudhuri, Arka Rai II-518
Ciampi, Michele II-518
Couteau, Geoffroy I-466, II-429
Cueto Noval, Miguel III-222

Dachman-Soled, Dana II-658
Damgård, Ivan I-591
Deligios, Giovanni I-623
Devadas, Lalita II-256
Dinur, Itai II-310
Dodis, Yevgeniy III-62, III-254
Döttling, Nico I-149, III-94, III-317
Dziembowski, Stefan II-397

Ebrahimi, Ehsan I-240
Escudero, Daniel I-591
Etesami, Omid II-718

Faonio, Antonio II-333
Feng, Hanwen II-689
Freitag, Cody III-447

Gałązka, Małgorzata II-397
Gao, Ji II-718
Garg, Sanjam III-94, III-126
Gentry, Craig III-32
Gilboa, Niv II-129
Goel, Aarushi I-717, II-97
Gong, Huijing II-658
González, Alonso I-529
Goyal, Rishab II-224
Goyal, Vipul I-654, II-162, II-518
Guan, Jiaxin II-365
Guo, Siyao I-177

Hajiabadi, Mohammad III-94, III-126
Halevi, Shai II-129, III-32
Hartmann, Dominik III-317
Hasson, Ben II-310
Hesse, Julia II-626, III-286
Hirt, Martin I-623, I-686, II-35
Hofheinz, Dennis III-286, III-317

Ishai, Yuval II-129

Jaeger, Joseph I-209
Jain, Abhishek II-97, II-518

514 Author Index

Jeffery, Stacey I-90
Jost, Daniel I-499

Kalai, Yael Tauman I-330
Kaleoglu, Fatih I-299
Kamath, Chethan II-486, II-550
Karanko, Pihla II-429
Karchmer, Ari III-1
Karthikeyan, Harish III-254
Katsumata, Shuichi I-466
Kellner, Michael I-62
Khurana, Dakshita I-654
Kiltz, Eike III-317
Kippen, Hunter II-658
Kitagawa, Fuyuki I-31
Kiyoshima, Susumu I-369
Klein, Karen II-486, II-550, III-222
Klooß, Michael I-558
Kohl, Lisa III-286
Komargodski, Ilan III-447

Langrehr, Roman III-286
Lanzenberger, David II-605
Lee, Jonathan II-1
Li, Jialin III-126
Li, Qian I-177
Liu, Feng-Hao III-157
Liu, Qipeng I-177
Liu, Tianren II-194
Liu-Zhang, Chen-Da I-623, I-686, II-35
Lizurej, Tomasz II-397
Lord, Sébastien I-90
Lysyanskaya, Anna III-188

Magri, Bernardo III-32
Mahloujifar, Saeed II-718
Mahmoody, Mohammad II-718
Malavolta, Giulio I-121, I-149, I-654
Masserova, Elisaweta II-162
Matt, Christian III-350
Maurer, Ueli I-499, I-686, II-605
Mazor, Noam II-457
Mechler, Jeremias I-750
Miao, Peihan III-126
Müller-Quade, Jörn I-750

Nielsen, Jesper Buus III-32
Nishimaki, Ryo I-31
Nof, Ariel II-129

Ohkubo, Miyako I-435
Ostrovsky, Rafail II-518

Parno, Bryan II-162
Pascual-Perez, Guillermo III-222
Pass, Rafael III-447
Peikert, Chris III-480
Pepin, Zachary III-480
Pietrzak, Krzysztof II-397, II-486, II-550,

III-222
Podder, Supartha I-90
Prabhakaran, Manoj II-97
Pu, Sihang III-94

Quach, Willy II-256

Raghunath, Rajeev II-97
Ravi, Divya I-591
Rohrbach, Felix II-429
Rosen, Alon I-435
Rotem, Lior III-382, III-415

Sadeghi, Elahe I-466
Schäge, Sven III-317
Segev, Gil III-415
Shahverdi, Aria II-658
Sharp, Chad III-480
Shmueli, Omri I-62
Sirkin, Naomi III-447
Song, Fang I-209
Song, Yifan II-162
Sundaram, Aarthi I-90

Tabia, Gelo Noel I-240
Tang, Qiang II-689
Tessaro, Stefano I-209
Tomida, Junichi II-224

Unruh, Dominique I-240
Ursu, Bogdan I-466, III-317

Vadhan, Salil II-582
Vaikuntanathan, Vinod I-330, II-256
Venturi, Daniele II-333

Waldner, Hendrik III-350
Walter, Michael II-550, III-222
Wang, Han III-157
Wang, Tianhao II-582

Author Index 515

Wang, Zhedong III-157
Wee, Hoeteck II-256, II-288
Wichs, Daniel II-256, III-254

Yakoubov, Sophia III-32
Yamakawa, Takashi I-31
Yanai, Avishay II-66
Yeo, Kevin III-62

Yeo, Michelle II-397
Yogev, Eylon I-401

Zacharakis, Alexandros I-529
Zhandry, Mark II-365
Zhang, Jiapeng I-177, II-457
Zhang, Rachel Yun I-330
Zikas, Vassilis II-626

	Preface
	Organization
	Contents – Part III
	Covert Learning: How to Learn with an Untrusted Intermediary
	1 Introduction
	1.1 Our Contributions
	1.2 Real World Applications
	1.3 Related Work

	2 Covert Learning
	2.1 Preliminaries
	2.2 Definition of Covert Learning
	2.3 A Warm-Up: Covert Learning of Noisy Parity Functions
	2.4 Covert Learning of Low-Degree Fourier Coefficients
	2.5 Covert Learning of Polynomial Size Decision Trees

	3 Covert Verifiable Learning
	3.1 Definition of Covert Verifiable Learning
	3.2 Making CLF Verifiable
	3.3 Making CLDT Verifiable
	3.4 Verifiability Without Secret Examples

	References

	Random-Index PIR and Applications
	1 Introduction
	1.1 Random-Index PIR (RPIR)
	1.2 Applications
	1.3 Batch RPIR
	1.4 Multi-server RPIR
	1.5 Organization

	2 Random-Index Private Information Retrieval
	2.1 Background: Private Information Retrieval
	2.2 Defining RPIR
	2.3 Defining Multi-server RPIR
	2.4 RPIR is equivalent to PIR

	3 RPIR Protocols
	3.1 Noninteractive RPIR
	3.2 Multi-server RPIR Protocols

	4 Applications to Large-Scale DoS-Resistant Computation
	4.1 Target Anonymous Communication Channels from RPIR

	5 Batch RPIR
	5.1 Definitions
	5.2 Constructions

	A Random-Index Oblivious-RAM
	A.1 Target Anonymous Channels from RORAM

	B Target Anonymous Channels from Mix-Nets
	References

	Forward Secret Encrypted RAM: Lower Bounds and Applications
	1 Introduction
	1.1 Our Main Result: Lower Bound
	1.2 ``Bypassing'' the Lower Bound

	2 Lower Bound Model
	2.1 Framework for Symbolic Private Data Structure Lower Bounds
	2.2 Symbolic Definitions for Allowed Primitives
	2.3 FS eRAM Symbolic Definition

	3 Forward Secret Encrypted RAM Lower Bound
	3.1 Minimality and Usefulness
	3.2 Key-Data Graph
	3.3 Adversarial Strategy

	4 Stronger Forward Secret Encrypted RAM Definitions
	5 Oblivious Forward Secret Encrypted RAM
	5.1 Definitions
	5.2 Oblivious Forward Secret Encrypted RAM Construction

	6 Forward Secret Memory Checkers
	6.1 Forward Secret Memory Checker Definition
	6.2 Forward Secret Memory Checker Construction

	References

	Laconic Private Set Intersection and Applications
	1 Introduction
	1.1 Our Results
	1.2 Previous Work
	1.3 Open Problems

	2 Technical Overview
	2.1 Semi-Honest PSI from CDH/LWE
	2.2 Reusable Laconic PSI
	2.3 DV-NIZK Range Proofs for DJ Ciphertexts
	2.4 Labeled Laconic PSI and Laconic OT

	3 Preliminaries
	3.1 Hardness Assumptions
	3.2 Laconic Private Set Intersection

	4 Semi-Honest Laconic PSI from CDH/LWE
	5 Reusable DV-NIZK Range Proofs for DJ Ciphertexts
	5.1 Equality of Plaintexts in DJ and BGN Ciphertexts
	5.2 DV-NIZK for Range Proofs of DJ Ciphertexts with Equal Discrete Log

	6 Reusable Laconic Private Set Intersection
	7 Self-Detecting Encryption
	References

	Amortizing Rate-1 OT and Applications to PIR and PSI
	1 Introduction
	1.1 Our Results
	1.2 Applications
	1.3 Comparison with Prior Work

	2 Technical Overview
	3 Preliminaries and Definitions
	3.1 Amortized Rate-1 OT: Definition

	4 Amortized Rate-1 OT from SXDH
	4.1 Our Construction
	4.2 Receiver Privacy

	5 Amortized Rate-1 OT from Bilinear Power DDH
	5.1 Receiver Privacy

	6 Optimization
	6.1 Delayed Pairing
	6.2 Increasing Vector Dimension

	7 Applications
	7.1 Secure Function Evaluation on Branching Programs
	7.2 PSI and PIR
	7.3 Optimization for PSI and PSI-Cardinality
	7.4 Other Variants of PSI and PIR

	8 Amortized Rate-1 OT with Strong Sender Privacy
	References

	Ring-Based Identity Based Encryption – Asymptotically Shorter MPK and Tighter Security
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Identity-Based Encryption (IBE)
	2.2 Concrete Bit-Security
	2.3 Lattices and Gaussian Distributions
	2.4 Rings and Ideal Lattices

	3 New Homomorphic Equality Test and Tighter Analysis
	3.1 Homomorphic Equality Testing
	3.2 Our Construction
	3.3 An Optimization with Tighter Analysis
	3.4 Application to Packing/Unpacking Homomorphic Encodings

	4 New Partition Function and Homomorphic Evaluation
	4.1 Our New Hash Function Family
	4.2 Homomorphic Evaluation of the Partitioning Function

	5 IBE Design and Analysis
	5.1 Construction
	5.2 Security
	5.3 Asymptotic and Concrete Parameters

	References

	Cryptographic Shallots: A Formal Treatment of Repliable Onion Encryption
	1 Introduction
	2 Repliable Onion Encryption: Syntax and Correctness
	2.1 Onion Evolutions, Forward Paths, Return Paths and Layerings

	3 FROES: Onion Routing in the SUC Framework
	3.1 Ideal Functionality FROES
	3.2 SUC-realizability of FROES

	4 Repliable-Onion Security: A Game-Based Definition
	5 Repliable-Onion Security SUC-Realizability of FROES
	6 Shallot Encryption
	7 Shallot Encryption Scheme Is Secure
	A Security Game for Variants (b) and (c)
	References

	Grafting Key Trees: Efficient Key Management for Overlapping Groups
	1 Introduction
	1.1 The Asymptotic Setting
	1.2 The Non-asymptotic Setting
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Huffman Codes

	3 Key-Derivation Graphs for Multiple Groups
	3.1 Continuous Group-Key Agreement and Multicast Encryption
	3.2 Key-Derivation Graphs
	3.3 Security
	3.4 The Trivial Algorithm

	4 Key-Derivation Graphs in the Asymptotic Setting
	4.1 Key-Derivation Graphs in the Asymptotic Setting
	4.2 Update Cost for Concrete Group Systems

	5 A Greedy Algorithm Based on Huffman Codes
	5.1 Algorithm Description
	5.2 Total Update Cost
	5.3 Asymptotic Optimality of Boolean-Lattice Based Graphs

	6 Lower Bound on the Update Cost of CGKA
	6.1 Symbolic Model
	6.2 Lower Bound on the Average Update Cost

	7 Open Problems
	7.1 Optimal Key-Derivation Graphs
	7.2 Security
	7.3 Efficiency of Dynamic Operations

	References

	Updatable Public Key Encryption in the Standard Model
	1 Introduction
	1.1 Our Technique: Using Circular Security and Leakage-Resilience
	1.2 Additional Theoretical Contributions
	1.3 Related Work

	2 Preliminaries
	3 Updatable Public Key Encryption (UPKE)
	3.1 IND-CR-CPA Security of UPKE

	4 Key-Dependent-Message-Secure Encryption Scheme
	5 DDH Based Construction
	5.1 The BHHO Cryptosystem
	5.2 CS+LR Security of BHHO Cryptosystem
	5.3 UPKE Construction
	5.4 Security of the UPKE Construction

	6 Constructions Based on LWE
	6.1 The Dual Regev or GPV Cryptosystem
	6.2 CS+LR Security of the Dual-Regev Cryptosystem
	6.3 UPKE Construction
	6.4 Security of the UPKE Construction

	7 Towards Stronger Security
	References

	Towards Tight Adaptive Security of Non-interactive Key Exchange
	1 Introduction
	1.1 Technical Overview

	2 Preliminaries
	2.1 Pairing Group Assumptions
	2.2 Non-Interactive Key Exchange

	3 An Inner-Product-Based NIKE Scheme
	4 Lower Bound
	4.1 Lower Bound for Inner-product NIKEs

	References

	On the Impossibility of Purely Algebraic Signatures
	1 Introduction
	1.1 Related Work
	1.2 Technical Outline

	2 Preliminaries
	2.1 Notation
	2.2 Generic Group Model
	2.3 Signatures

	3 Signature Schemes over Groups of Prime Order
	3.1 Algebraic Signatures
	3.2 Preparation
	3.3 Impossibility of Secure Algebraic Signatures

	4 Signature Schemes over Groups of Unknown Order
	4.1 Simplified Algebraic Signatures
	4.2 Hermite Normal Form
	4.3 An Inefficient AddColumn Procedure for Matrices in HNF
	4.4 Impossibility of Simplified Algebraic Signatures

	5 Extension: BLS Signatures Instantiated with Algebraic Hash Functions Are Insecure
	References

	Policy-Compliant Signatures
	1 Introduction
	1.1 Applications of PCS
	1.2 Our Contributions and Organization of this Paper
	1.3 Related Work

	2 Preliminaries
	3 Policy-Compliant Signatures
	3.1 Adversarial Capabilities in the Security Games
	3.2 Existential Unforgeability
	3.3 Indistinguishability-Based Attribute Hiding

	4 Construction of a Policy-Compliant Signature Scheme
	4.1 The Scheme
	4.2 Correctness
	4.3 Existential Unforgeability
	4.4 Indistinguishability-Based Attribute Hiding
	4.5 Efficient Instantiations Based on Inner-Product PE

	5 Universal Composability and SIM-Based PCS
	5.1 Simulation-Based Attribute Hiding
	5.2 On the SIM-Based Security of our Generic Scheme

	References

	Simple and Efficient Batch Verification Techniques for Verifiable Delay Functions
	1 Introduction
	1.1 Our Contributions
	1.2 Additional Related Work and Open Problems
	1.3 Technical Overview
	1.4 Paper Organization

	2 Preliminaries
	3 Succinct Proofs of Correct Exponentiation
	3.1 The Basic Definition
	3.2 Batch Proofs of Correct Exponentiation

	4 Warm-Up: The Random Subset Compiler
	5 Amplifying Soundness and Reducing Communication
	6 An Improved Compiler from the Low Order Assumption
	6.1 The Compiler
	6.2 Soundness Analysis Based on the Low Order Assumption

	References

	Non-malleable Vector Commitments via Local Equivocability
	1 Introduction
	1.1 Our Contributions
	1.2 Applications
	1.3 Overview of Our Approach
	1.4 Open Problems
	1.5 Paper Organization

	2 Preliminaries
	2.1 Equivocable Commitment Schemes
	2.2 Vector Commitment Schemes
	2.3 One-Time Strongly-Unforgeable Signature Schemes
	2.4 Universal One-Way Hash Functions

	3 Non-malleable Vector Commitments
	3.1 Existing Schemes Do Not Satisfy Our Notion
	3.2 Simple Attempts that Fail

	4 Locally-Equivocable Commitments with All-But-One Binding
	5 Our Construction of a Non-malleable Vector Commitment Scheme
	References

	Non-malleable Time-Lock Puzzles and Applications
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Concurrent Work
	1.4 Paper Organization

	2 Technical Overview
	2.1 Non-malleability for Time-Lock Puzzles
	2.2 Publicly Verifiable Time-Lock Puzzles
	2.3 Fair Multi-party Protocols

	3 Preliminaries
	4 Non-malleable Time-Lock Puzzles
	4.1 Non-malleable Time-Lock Puzzle Construction

	5 Applications to Multi-party Coin Flipping and Auctions
	A Discussion of Non-malleable Definitions
	References

	Vector and Functional Commitments from Lattices
	1 Introduction
	1.1 Our Contributions
	1.2 Comparisons to Related Work
	1.3 Technical Overview
	1.4 Open Problems and Future Work

	2 Preliminaries
	2.1 Vector Commitments
	2.2 Short Integer Solution and (Tagged) Trapdoors

	3 Vector Commitments
	3.1 Construction
	3.2 Correctness
	3.3 Security
	3.4 Specialized Tree Transformation

	4 Functional Commitments (with Authority)
	4.1 Definitions
	4.2 Homomorphic Commitments
	4.3 Functional Commitment Construction

	References

	Author Index

