
Multi-party PSM, Revisited:

Improved Communication and Unbalanced
Communication

Léonard Assouline1 and Tianren Liu2(B)

1 École Normale Supérieure, Paris, France
leonard.assouline@ens.fr

2 University of Washington, Seattle, USA
tianrenl@uw.edu

Abstract. We improve the communication complexity in the Private
Simultaneous Messages (PSM) model, which is a minimal model of non-
interactive information-theoretic multi-party computation. The state-of-
the-art PSM protocols were recently constructed by Beimel, Kushilevitz
and Nissim (EUROCRYPT 2018).

We present new constructions of k-party PSM protocols. The new
protocols match the previous upper bounds when k = 2 or 3 and improve
the upper bounds for larger k. We also construct 2-party PSM protocols
with unbalanced communication complexity. More concretely,

– For infinitely many k (including all k ≤ 20), we construct k-party
PSM protocols for arbitrary functionality f : [N]k → {0, 1}, whose

communication complexity is Ok(N
k−1
2). This improves the former

best known upper bounds of Ok(N
k
2) for k ≥ 6, O(N7/3) for k = 5,

and O(N5/3) for k = 4.
– For all rational 0 < η < 1 whose denominator is ≤ 20, we construct

2-party PSM protocols for arbitrary functionality f : [N] × [N] →
{0, 1}, whose communication complexity is O(Nη) for one party,
O(N1−η) for the other. Previously the only known unbalanced 2-
party PSM has communication complexity O(log(N)), O(N).

1 Introduction

Private Simultaneous Messages (PSM) is a minimal model of secure multi-party
computation. It was introduced by Feige, Kilian and Naor [10], and was gener-
alized to the multi-party setting by Ishai and Kushilevitz [12].

In a PSM protocol for evaluating a k-ary functionality f : [N]k → {0, 1},
there are k parties. They all share a common random string. For all i ∈ [k], the
i-th party holds a private input xi. There is additionally a special party, called
the referee. The referee receives one message from each party and is able to
compute f(x1, . . . , xk), and should learn no other information about x1, . . . , xk.

PSM is studied as an information-theoretic primitive. The key complexity
measure is the communication complexity. The common random string is crucial
for the model as the common random string is the only mean to protect the
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 194–223, 2021.
https://doi.org/10.1007/978-3-030-90453-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90453-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-90453-1_7

Multi-party PSM, Revisited 195

referee
Referee learns f(x1, . . . , x4)

P1

input x1

msg1

P2

input x2

msg2

P4

input x4

msg4

P3

input x3

msg3

common
random
string

Fig. 1. Illustration of a multi-party PSM protocol

privacy against an unbounded adversarial referee, when the k parties cannot
communicate with each other (Fig. 1).

In the PSM model, there are relatively efficient PSM protocols for com-
puting non-deterministic branching programs [10] and modular branching pro-
grams [12]. But for general functionalities, little is known regarding their com-
munication complexity in the PSM model. Assuming every party holds an input
in [N], the best known lower bound of 2-party PSM is 3 log N −O(log log N) [4].
In k-party PSM where each party holds a 1-bit input, Ball et al. showed an
Ω(k2/ log k) lower bound [5]. Though the lower bounds are at most polyno-
mial in the total input length, all known upper bounds are exponential, leav-
ing an exponential gap between upper and lower bounds. For any functionality
f : [N]k → {0, 1}, a “näıve” k-party PSM requires O(Nk−1) communication (the
2-party version was presented in [10]). The first novel upper bound is O(

√
N) for

2-party PSM [6], and it was recently generalized to an Ok(Nk/2) upper bound for
k-party PSM [8]. In the same paper, Beimel, Kushilevitz and Nissim also further
optimize the communication complexity for small k = 3, 4, 5. In particular, they
obtain an O(N) upper bound for 3-party PSM. For k = 4 or 5, they improve
the protocol by letting parties jointly emulate their 3-party PSM. Their results
are summarized in Table 1 (Table 2).

1.1 Our Contributions

In the paper, we present two classes of results: We present new k-party PSM
protocols that improve the communication complexity for infinitely many k.
We introduce the notion of unbalanced 2-party PSM protocols, which allows a
flexible repartition of the communication complexity among the two parties, and
we such protocols.

k -party PSM Protocols. We present a framework for constructing multi-party
PSM. The new framework improves the communication complexity upper bounds
for infinitely many k. To compute any k-ary functionality f : [N]k → {0, 1},

196 L. Assouline and T. Liu

Table 1. The communication complexity of computing general f : [N]k → {0, 1} in
multi-party PSM model

Number of parties BIKK [6] BKN [8] This work

2 O(N1/2) O(N1/2) O(N1/2)

3 O(N) O(N)

4 O(N5/3) O(N3/2)

5 O(N7/3) O(N2)

k ≥ 6 O(poly(k) · Nk/2) 2O(k) · N
k−1
2

for infinitely manyk
including allk≤20

Table 2. The unbalanced communication complexity of general f : [N] × [N] → {0, 1}
in 2-party PSM model

Communication
complexity of one party

Communication complexity
of the other party

FKN [10] O(log N) N

BIKK [6] O(N1/2) O(N1/2)

This work O(Nη) O(N1−η)

– For all k ≤ 20, our framework yields a k-party PSM protocol of communica-
tion complexity O(N

k−1
2).

– For all k such that k + 1 is a prime or a prime power, our framework yields
a k-party PSM protocol of communication complexity Ok(N

k−1
2).

– For all k, we conjecture that our framework will yield a k-party PSM protocol
of communication complexity Ok(N

k−1
2).

2-party Unbalanced PSM Protocols. We also present a framework for construct-
ing 2-party PSM protocols with unbalanced communication complexity. The new
framework allows us to reduce the message length of one party at the cost of
increasing the communication of the other party. We offer an almost smooth
trade-off between the communication complexity of the two parties. To compute
any functionality f : [N] × [N] → {0, 1},

– For every rational η ∈ (0, 1) whose denominator is no more than 20, our
framework yields a 2-party PSM protocol, where one party sends O(Nη) bits
and the other sends O(N1−η) bits.

– For every rational η ∈ (0, 1), we conjecture that our framework will yield
a 2-party PSM protocol, where one party sends Oη(Nη) bits and the other
sends Oη(N1−η) bits.

To some extent, such a trade-off was known in the literature when η = 0. The
first 2-party PSM protocol is of communication complexity O(N) but is strongly
unbalanced: one of the two parties only sends O(log N) bits [10].

Multi-party PSM, Revisited 197

1.2 Proof Overview

This section presents the main ideas behind our new multi-party PSM proto-
cols. We start with a warm-up example of a 3-party PSM, which is originally
constructed by [8]. We present it in a way that matches the framework we will
later introduce. Then we present a new 5-party PSM to demonstrate the power
of our framework. The 5-party PSM example relies on new technique such as
“hard terms cancelling”. It can be easily generalized into a framework for con-
structing k-party PSM protocols for any odd k. But we do not formally present
this framework in the paper.

Instead, in Sect. 3, we develop a modified framework that supports odd as well
as even values of k. The modified framework evenly divides every party’s input
into two halves, this idea was first introduced in [6]. When we formally present
the modified framework in Sect. 3.1, we use a 4-party PSM as an example.

In Sect. 4, we develop another framework for constructing unbalanced 2-party
PSM protocols. Most terminologies and techniques are shared between the frame-
work for k-party and the framework for unbalanced 2-party. Informally, the
unbalanced 2-party PSM framework is the “tensor product” of two copies of the
k-party framework. When we present the new framework in Sect. 4.1, we use as
an example a 2-party PSM with unbalanced communication O(N1/3), O(N2/3).

Background: 3-Party PSM [8]. In this 3-party PSM protocol, three parties hold
x1, x2, x3 ∈ [N] respectively. The protocol takes O(N) communication and allows
the referee to learn f(x1, x2, x3).

Fix a finite field F. Let the i-th party locally computes a unit vector xi ∈ F
N .

That is, all entries in xi are zero except for xi[xi] = 1. Let F be the truth table of
f represented as an N ×N ×N array, we have f(x1, x2, x3) = 〈F,x1 ⊗x2 ⊗x3〉,
where ⊗ denotes the tensor product and 〈·, ·〉 denotes the inner product.

Therefore, it is sufficient to construct a 3-party PSM protocol, where the i-th
party has input xi ∈ F

N (not necessarily being an unit vector) and the referee
learns 〈F,x1 ⊗ x2 ⊗ x3〉 for some public F ∈ F

N×N×N .
We start by letting the i-th party sample random ri ∈ F

N and send the
one-time padded x̄i := xi + ri to the referee. Then the referee can compute
〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉. We call this term a “masked term”, because it is computed
from the masked inputs x̄1, x̄2, x̄3. This masked term can be decomposed as the
sum of several “pure terms”

〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉 = 〈F,x1 ⊗ x2 ⊗ x3〉 +
〈F,x1 ⊗ x2 ⊗ r3〉 + 〈F,x1 ⊗ r2 ⊗ x3〉 + 〈F, r1 ⊗ x2 ⊗ x3〉 +
〈F,x1 ⊗ r2 ⊗ r3〉 + 〈F, r1 ⊗ x2 ⊗ r3〉 + 〈F, r1 ⊗ r2 ⊗ x3〉 +
〈F, r1 ⊗ r2 ⊗ r3〉.

(1)

We classify the pure terms into two categories:

Target Term. The term 〈F,x1 ⊗x2 ⊗x3〉. It is the term that the referee should
learn as a consequence of the 3-party PSM protocol.

198 L. Assouline and T. Liu

Easy Term. All the other terms fall into this category. As the name suggested,
there also exist “hard terms”, which will be introduced in the next example
of 5-party PSM.

The easy terms are called “easy” because each of them can be securely
revealed to the referee using only O(N) communication. More formally, let the
parties additionally sample random r1, . . . , r7 ∈ F from their common random
string such that r1 + · · · + r7 = 0. There exist sub-protocols revealing each of

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, r2 + 〈F,x1 ⊗ r2 ⊗ x3〉, r3 + 〈F, r1 ⊗ x2 ⊗ x3〉,
r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, r5 + 〈F, r1 ⊗ x2 ⊗ r3〉, r6 + 〈F, r1 ⊗ r2 ⊗ x3〉,

r7 + 〈F, r1 ⊗ r2 ⊗ r3〉
(2)

to the referee without leaking any other information, taking at most O(N) com-
munication.

Assume that such sub-protocols exist, we can easily finish the 3-party PSM:
The i-th party sends x̄i := xi + ri, they use the aforementioned sub-protocols
to reveal (2). The correctness follows almost directly from (1).

The only missing piece is to construct sub-protocols for computing the terms
in (2). Let us discuss them individually:

– For the last term r7 + 〈F, r1 ⊗ r2 ⊗ r3〉, any party (e.g. the first party) can
compute it and send it to the referee.

– For the term r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, the first party computes it and sends it
to the referee. Similarly for r5 + 〈F, r1 ⊗ x2 ⊗ r3〉 and r6 + 〈F, r1 ⊗ r2 ⊗ x3〉.

– For the term r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, both first and second party need to
participate. Since the first party knows F,x1, r3, it can locally compute a
vector g ∈ F

N such that

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉 = r1 + 〈g,x2〉.
Then they can jointly reveal it to the referee using the PSM for inner product
(more details are provided in Sect. B.1). Similarly for r2 + 〈F,x1 ⊗ r2 ⊗ x3〉
and r3 + 〈F, r1 ⊗ x2 ⊗ x3〉.

Example: 5-Party PSM. We will sketch a 5-party PSM protocol for any f :
[N]5 → {0, 1} with communication complexity O(N2).

Let F be a finite field. Following the same observation we made in the 3-party
PSM example, it is sufficient to construct a PSM protocol for any function of
the form (x1, . . . ,x5) 	→ 〈F,x1 ⊗ · · · ⊗ x5〉, where ⊗ denotes the tensor product,
the i-th party having input xi ∈ F

N , F is public and fixed being the truth table
of f .

For each Ω ⊆ {1, 2, 3, 4, 5}, parties sample a dimension-|Ω| tensor RΩ ∈
F

N |Ω|
from the common random string. Define X̄Ω := RΩ +

⊗
i∈Ω xi. For exam-

ple, X̄{2} := R{2} +x2 and X̄{3,4} := R{3,4} +x3 ⊗x4. Since the communication
budget is O(N2), they can perform a PSM sub-protocol so that the referee learns
X̄Ω for all Ω such that |Ω| ≤ 2.

Multi-party PSM, Revisited 199

Learning those tensors allows the referee to compute many terms, including
〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉. This term can be decomposed into the sum of the
following 8 terms:

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉

+ 〈F,x1 ⊗ x2 ⊗ R{3,4} ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3,4} ⊗ R{5}〉
+ 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 + 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ R{5}〉
+ 〈F,R{1,2} ⊗ R{3,4} ⊗ x5〉 + 〈F,R{1,2} ⊗ R{3,4} ⊗ R{5}〉.

(3)

Any term that is formed in the same way as the left-hand side of (3), i.e.
〈F, X̄S1 ⊗ · · · ⊗ X̄St

〉 for some S1 + · · · + St = {1, 2, 3, 4, 5}, is called a masked
term. It can be computed by the referee if |Si| ≤ 2 for all i.

Any term that is formed in the same way as the right-hand side of (3), i.e.
〈F,RS1 ⊗ · · · ⊗ RSt

⊗ xi1 ⊗ · · · ⊗ xiw
〉 for some S1 + · · · + St + {i1, . . . , iw} =

{1, 2, 3, 4, 5}, is called a pure term. As hinted by Eq. (3), every masked term is
equal to the sum of 2t pure terms.

The pure terms fall naturally into three categories. In particular, we introduce
a new category called hard terms.

Target term. The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉 is called the target term.
Easy term. A pure term 〈F,RS1 ⊗ · · ·⊗RSt

⊗xi1 ⊗ · · ·⊗xiw
〉 is easy if w ≤ 3.

Every easy term can be computed using a PSM protocol with communication
complexity O(N2). For example, 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 is an easy term.
The 5th party, based on its view, can compute a tensor G ∈ F

N2
such that

〈F,R{1,2} ⊗x3 ⊗x4 ⊗x5〉 = 〈G,x3 ⊗x4〉. And 〈G,x3 ⊗x4〉 can be computed
using a PSM protocol (Sect. B.1) with communication complexity O(N2).

Hard term. Any pure term that is neither the target term nor an easy term.

Let us ignore the easy terms for now. Then Eq. (3) can be rewritten as

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉 + easy terms.

There is only one hard term left. We would like to cancel out the hard term
by combining a few masked terms. Let us consider the following masked terms:
〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉, 〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 and 〈F, X̄{1,2} ⊗ X̄{3} ⊗
X̄{4} ⊗ X̄{5}〉.

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3} ⊗ x4 ⊗ x5〉 + easy terms,

〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4} ⊗ x5〉 + easy terms,

200 L. Assouline and T. Liu

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3} ⊗ x4 ⊗ x5〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4} ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉
+ easy terms.

By carefully combining these masked tensors, we have

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉 + 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
+ 〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 − 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉

= 2 · 〈F,x1 ⊗ · · · ⊗ x5〉 + easy terms.
(4)

Equation (4) shows us how to construct the desired PSM protocol. All of
the masked tensors on the left-hand side of (4) can be computed by the referee.
The parties perform a PSM sub-protocol so that the referee learns the sum of
these easy terms. (The details are demonstrated in the last example of 3-party
PSM, and are explained in Sect. 3.2.) Then from Eq. (4), the referee learns
2 · 〈F,x1 ⊗ · · · ⊗ x5〉.

As long as F is a finite field in which 2 �= 0, the referee has learned the target
term. The protocol takes a communication cost of O(N2) field elements. �

1.3 Related Works

Besides [6,8], our construction of PSM protocols is also inspired by the progress
in Conditional Disclosure of Secrets (CDS). Until recently, CDS had a similar
exponential gap between known upper and lower bounds. CDS can be viewed as
a variant of PSM where the referee knows all but 1 bit of the input: Consider
the 2-party case and let [N] be the input domain for both parties. The upper
bounds of O(

√
N) is conserved [6,11]. A similar lower bound of Ω(log N) is

known [2,11]. Recently, Liu, Vaikuntanathan and Wee improved the CDS upper
bound for arbitrary function to 2Õ

√
log N [14]. In a slightly different setting, the

amortized CDS upper bound per party is improved to Θ(1) [1,2].
Gay, Kerenidis and Wee constructed 2-party CDS with smooth communi-

cation complexity trade-off between the two party [11]. In particular, for any
η ∈ [0, 1], they constructed a 2-party CDS protocol where one party sends O(Nη)
bits and the other sends O(N1−η) bits.

In [3,9], constructions of ad hoc PSM are presented. In this framework, there
are k parties, but only a subset of them will perform the computation. This
notion, expanded in [7], was shown to imply obfuscation.

2 Preliminaries

Let N := {0, 1, . . .} denote the set of all natural numbers, and let [n] :=
{1, . . . , n}. In this paper, F denotes a field, R denotes a finite commutative
ring. For some prime power p, let Fp denote the unique finite field of order p.
A vector will be denoted by a bold face lowercase letter. For a vector v, let v[i]
denote its i-th entry.

Multi-party PSM, Revisited 201

2.1 Tensor

A tensor refers to the generalization of vectors and matrices which have multiple
indices. Roughly speaking, a tensor is a multi-dimensional array. In the paper,
a tensor will be denoted by a bold face capital letter. A k-dimensional tensor
T ∈ F

n1×n2×...×nk is essentially an array of size n1 × n2 × · · · × nk. The entries
in T are indexed by (i1, . . . , ik) ∈ [n1] × · · · × [nk], and denoted by T[i1, . . . , ik].
A tensor can also be viewed as a representation of a multi-linear function: any
k-linear function f : Fn1 × F

n2 × . . . × F
nk → F can be uniquely determined by

its coefficient tensor F ∈ F
n1×...×nk , such that

f(v1, . . . ,vk) =
∑

i1∈[n1],··· ,ik∈[nk]

F[i1, . . . , ik] · v1[i1] · . . . · vk[ik]. (5)

The inner product of two tensors S,T ∈ F
n1×n2×...×nk is defined as

〈S,T〉 :=
∑

i1∈[n1],··· ,ik∈[nk]

S[i1, . . . , ik] · T[i1, . . . , ik].

Given two tensors S ∈ F
n1×...×nk and T ∈ F

m1×...×m� , we define S⊗T, their
tensor product. It is a tensor in F

n1×...×nk×m1×...×m� such that

(S ⊗ T)[i1, . . . , ik, j1, . . . , j�] = S[i1, . . . , ik] · T[j1, . . . , j�].

Using the notation of inner product and tensor product, Eq. (5) can also be
written as f(v1, . . . ,vk) = 〈F,v1 ⊗ . . . ⊗ vk〉.

2.2 Private Simultaneous Messages

Definition 1 (private simultaneous message). A k-party functionality is a
mapping f : X1 × . . . × Xk → Y, where X1, . . . ,Xk are its input spaces and Y is
its output space.

A private simultaneous message (PSM) protocol for a functionality f consists
of a randomness space W and a tuple of deterministic functions (M1, . . . ,Mk,R)

Mi : Xi × W → {0, 1}cci , for alli ∈ [k],
R : {0, 1}cc1 × . . . {0, 1}cck → {0, 1},

where cci is the communication complexity of the i-th party, cc := cc1 + . . .+ cck

is the total communication complexity.
A perfectly secure PSM protocol for f satisfies the following properties:

(correctness.) For all input tuple (x1, . . . , xk) ∈ X1 × . . .×Xk and randomness
w ∈ W,

R(M1(x1, w), . . . ,Mk(xk, w)) = f(x1, . . . , xk)

(privacy.) There exists a randomized simulator S, such that for any input
(x1, . . . , xk) ∈ X1×. . .×Xk, the joint distribution of M1(x1, w), . . . ,Mk(xk, w)
is the same as the distributions of S(f(x1, . . . , xk)), where the distributions
are taken over w ← W and the coin tosses of S.

202 L. Assouline and T. Liu

2.3 Randomized Encoding

Randomized encoding is a primitive closely relate to PSM. The randomized
encoding of a function f is a randomized function f̂ . The output f̂(x,w), where
w denotes the randomness, contains sufficient information to recover f(x) and
no other information about x.

Definition 2 (randomized encoding). A randomized encoding for a function
f : X → Y consists of a randomized encoding function f̂ : X × W → Ŷ and a
deterministic decoding function R : Ŷ → Y, where W denotes the randomness
space and Ŷ denotes the coding space.

A perfectly secure randomized encoding satisfies the following properties:

(correctness.) For all x ∈ X and randomness w ∈ W,

R(f̂(x,w)) = f(x)

(privacy.) There exists a randomized simulator S, such that for any input x ∈
X , the joint distribution of f̂(x,w) is the same as the distributions of S(f(x)),
where the distributions are taken over w ← W and the coin tosses of S.

Follows directly from the definitions, (M1, . . . ,Mk,R) is a PSM protocol for
f if and only if (f̂ ,R) is a randomized encoding for f , where f̂(x1, . . . , xk, w) :=
(M1(x1, w), . . . ,Mk(xk, w)).

In other words, PSM is a special form of randomized encoding, where the
input is divided into a few portions, and each bit of the encoding only depends
on the randomness and one portion of the input.

3 New Multi-party PSM Protocols

In this section, we present one of our main results: for many k, every function-
ality f : [N]k → {0, 1} admits a PSM protocol of communication complexity
Ok(N

k−1
2).

Theorem 1. Let f : [N]k → {0, 1} be an arbitrary k-party functionality.

– There is a k-party PSM protocol for f with communication and randomness
complexity O(N

k−1
2), if k ≤ 20.

– There is a k-party PSM protocol for f with communication and randomness
complexity Ok(N

k−1
2), if k + 1 is a prime or a prime power.

In this section, we prove a stronger statement. Let F be a finite field, consider
the following auxiliary k-party functionality Auxk

N :

k-party functionality Auxk
N

– The i-th party has input x2i−1,x2i ∈ F

√
N

– The output is 〈F,x1 ⊗· · ·⊗x2k〉, where F is public and fixed

Multi-party PSM, Revisited 203

As shown in the beginning of Sect. 3.1, a PSM protocol for Auxk
N implies a PSM

for f : [N]k → {0, 1} with the same communication complexity. The reduction
consists of having F be the truth table of f .

We will present a framework of constructing k-party PSM for Auxk
N , whose

communication complexity is Ok(N
k−1
2). Roughly speaking, the framework

reduces the problem to a system of linear equations. A solution of the system
implies a PSM protocol with the desired communication complexity. Therefore,
we should rule out the possibility that the induced system has no solution. We
partially achieve such a goal. We solve the induced system for infinitely many k:

– For all k ≤ 20, we checked that the induced system of linear equations is
solvable. For small k we solve the system by hand, and for larger k we verified
it with a computer program.

– For all k such that k+1 is a prime power, we prove that the system is solvable.

Backed by the above observations, we strongly believe the induced system is
solvable for all k.

Conjecture 1. Let f : [N]k → {0, 1} be an arbitrary k-party functionality.
There is a k-party PSM protocol for f with communication and randomness
complexity Ok(N

k−1
2).

Organization. Section 3.1 presents our framework for constructing multi-party
PSM, introduces new notations, and gives a 4-party PSM as a concrete example.
The following Sects. 3.2, 3.3, 3.4 are independent. Section 3.2 provides more tech-
nical detail of the PSM protocols yielded by our framework. Section 3.3 shows
how the framework works for small k, and Sect. 3.4 shows how the framework
works for any integer k such that k + 1 is a prime power.

3.1 A Framework for Multi-party PSM

As mentioned in the beginning of Sect. 3, the functionality f : [N]k → {0, 1} can
be reduced to functionality Auxk

N . The reduction works as follows: Let x1, . . . , xk

be the input, the j-th party has input xj ∈ [N]. We evenly divide xj into
x′
2j−1, x

′
2j ∈ [

√
N]. For each i ∈ [2k], let xi := ex′

i
∈ F

√
N be the x′

i-th standard
unit vector. We reduce f to Auxk

N :

f(x1, . . . , x2k) = 〈F,x1 ⊗ . . . ⊗ x2k〉

where F is the truth-table of f . For the remainder of the section, it is thus
sufficient to construct a PSM protocol for Auxk

N .
For each non-empty Ω ⊆ [2k], our protocol will sample a random dimension-

|Ω| tensor RΩ ∈ R(
√

N)|Ω|
from the common random string1. Define X̄Ω :=

RΩ +
⊗

i∈Ω xi. E.g., X̄{2} := R{2} + x2, X̄{3,4} := R{3,4} + x3 ⊗ x4.

1 A note on the randomness complexity: The final protocol uses RΩ only if |Ω| ≤ k−1.

204 L. Assouline and T. Liu

Within the communication complexity budget O(N
k−1
2), we can let the ref-

eree learn X̄Ω for all Ω such that |Ω| ≤ k − 1 (more details in Sect. 3.2). The
referee does not learn extra information as X̄Ω is one-time padded by RΩ. For
example when k = 4, we can let the referee learn tensors X̄{1}, X̄{2}, . . . , X̄{8},
X̄{1,2}, X̄{1,3}, . . . , X̄{7,8}, X̄{1,2,3}, X̄{1,2,4}, . . . , X̄{6,7,8}. The referee learns
those tensor by having subsets of the parties recursively perform PSM ptocols
with a smaller number of parties, so that the referee learns the required informa-
tion. Learning those tensors allows the referee to compute many terms including
〈F, X̄{1,2,3}⊗X̄{4,5,6}⊗X̄{7,8}〉, which equals to the sum of the following 8 terms,

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ R{7,8}〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ R{7,8}〉.

(6)

Before we continue, let us introduce a few notations to describe the terms
appearing in (6). The term (tensor) on the left hand side of the equation will be
called a masked term (masked tensor). The terms (tensors) on the right hand
side of the equation will be called pure terms (pure tensors).

Definition (masked tensor & masked term). A masked tensor is a tensor
product X̄Ω1 ⊗ . . . ⊗ X̄Ωt

2 such that Ω1, . . . , Ωt are disjoint and their union
equals [2k]. The shape of a masked tensor X̄Ω1 ⊗ . . . ⊗ X̄Ωt

is the multiset
{|Ω1|, . . . , |Ωt|}. The inner product of a masked tensor and F is called a masked
term.

For any multiset P such that sum(P) = 2k, let
∑

X̄(P) denote the sum of
all masked tensors of shape P , let

∑〈F, X̄(P)〉 denote the sum of all masked
terms of shape P . We thus have

∑〈F, X̄(P)〉 = 〈F,
∑

X̄(P)〉.
Definition (pure tensor & pure term). A pure tensor is a tensor product
RΩ1⊗. . .⊗RΩt

⊗xi1⊗. . .⊗xiw
such that {i1, . . . , iw}, Ω1, . . . , Ωt are disjoint and

their union equals [2k]. The shape of a pure tensor RΩ1⊗. . .⊗RΩt
⊗xi1⊗. . .⊗xiw

is the multiset {|Ω1|, . . . , |Ωt|}. The inner product of a pure tensor and F is called
a pure term.

2 We implicitly exchange the order of indices in tensor product. E.g. when k = 2,
the masked tensor X̄{1,4} ⊗ X̄{2,3} is defined by (X̄{1,4} ⊗ X̄{2,3})[j1, j2, j3, j4] =
X̄{1,4}[j1, j4] · X̄{2,3}[j2, j3].

Multi-party PSM, Revisited 205

For any multiset P such that sum(P) ≤ 2k, let
∑

R(P) denote the sum of
all pure tensors of shape P , let

∑〈F,R(P)〉 denote the sum of all pure terms of
shape P . We thus have

∑〈F,R(P)〉 = 〈F,
∑

R(P)〉.
The pure terms (pure tensors) can be grouped into 3 natural categories:

target term (target tensor) 〈F,x1 ⊗ . . . ⊗ x2k〉 is called the target term as
it is desired functionality output. The corresponding tensor x1 ⊗ . . . ⊗ x2k is
called the target tensor.

easy terms (easy tensors) A pure tensor RΩ1 ⊗ . . .⊗RΩt
⊗xi1 ⊗ . . .⊗xiw

is
called an easy tensor if at most k+1 out of the 2k dimensions are contributed
by vector xi’s (i.e., w ≤ k+1). The corresponding term is called an easy term.
Every easy term admits a PSM protocol with communication complexity no
more than O(poly(k) · N

k−1
2) field elements (more details in Sect. 3.2).

hard terms (hard tensors) The rest.

With this terminology, we can give an overview of our PSM protocol. As the
referee can learn X̄Ω for all Ω such that |Ω| ≤ k − 1, the referee can compute
any masked term of shape P if max(P) ≤ k − 1. As suggested by Eq. (6), every
masked term is the linear combination of a few pure terms. Ideally, the referee
only has to combine some computable masked terms, so that all the hard terms
cancel out, resulting a linear combination of the target term and easy terms:

a linear combination of masked terms = target term + some easy terms. (7)

Once we are in this ideal case, the easy terms can be easily removed by stan-
dard techniques, resulting the desired k-party PSM protocol for Auxk

N . (More
details are presented in Sect. 3.2.) Therefore, the task is reduced to a linear alge-
bra problem: is the target term (resp. tensor) spanned by the referee-computable
masked terms (resp. tensors) and easy terms (resp. tensors)?

When solving such linear algebra problem, it is fair to assume that the solu-
tion is symmetric. (Otherwise, assume that a solution that looks like (7) is asym-
metric, it can be symmetrized by applying the symmetric sum on both sides.)

We have defined the (symmetric) sum of terms or tensors of the same shape.
For example when k = 4,

∑
X̄(3, 3, 2) is defined as the sum of all masked tensors

X̄Ω1 ⊗ X̄Ω2 ⊗ X̄Ω3 such that the multiset {|Ω1|, |Ω2|, |Ω3|} equals {3, 3, 2}, i.e.
∑

X̄(3, 3, 2) := X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8} + X̄{1,2,3} ⊗ X̄{4,5,7} ⊗ X̄{6,8}
+ X̄{1,2,3} ⊗ X̄{4,5,8} ⊗ X̄{5,6} + X̄{1,2,3} ⊗ X̄{4,6,7} ⊗ X̄{5,8}
+ . . . + X̄{3,4,5} ⊗ X̄{6,7,8} ⊗ X̄{1,2}.

206 L. Assouline and T. Liu

Let’s revisit Eq. (6),

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
︸ ︷︷ ︸

a masked term of shape {3, 3, 2}
= 〈F,x1 ⊗ · · · ⊗ x8〉

︸ ︷︷ ︸
a pure term of shape {}

+ 〈F,x1 ⊗ · · · ⊗ x6 ⊗ R{7,8}〉
︸ ︷︷ ︸

a pure term of shape {2}
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉 + 〈F,R{1,2,3} ⊗ x4 ⊗ · · · ⊗ x8〉

︸ ︷︷ ︸
pure terms of shape {3}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ R{7,8}〉 + 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
︸ ︷︷ ︸

pure terms of shape {3, 2}
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉

︸ ︷︷ ︸
a pure term of shape {3, 3}

+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ R{7,8}〉
︸ ︷︷ ︸

a pure term of shape {3, 3, 2}

.

By applying a symmetric sum on both sides, we get
∑〈F, X̄(3, 3, 2)〉 = 280 · ∑〈F,R()〉

︸ ︷︷ ︸
the target term

+ 10 · ∑〈F,R(2)〉
︸ ︷︷ ︸
hard pure terms

+ 10 · ∑〈F,R(3)〉 +
∑〈F,R(3, 2)〉 +

∑〈F,R(3, 3)〉 +
∑〈F,R(3, 3, 2)〉

︸ ︷︷ ︸
easy pure terms

.

As another example of the symmetric sum of masked term that the referee can
compute,

∑〈F, X̄(2, 2, 2, 2)〉 = 105 · ∑〈F,R()〉
︸ ︷︷ ︸

target term

+ 15 · ∑〈F,R(2)〉
︸ ︷︷ ︸
hard pure terms

+ 3 · ∑〈F,R(2, 2)〉 +
∑〈F,R(2, 2, 2)〉 +

∑〈F,R(2, 2, 2, 2)〉
︸ ︷︷ ︸

easy pure terms

.

By carefully combining the above two equations, we get

3 ·∑〈F, X̄(3, 3, 2)〉− 2 ·∑〈F, X̄(2, 2, 2, 2)〉 = 630 ·∑〈F,R()〉+easy terms, (8)

which induces a 4-party PSM whose communication complexity is O(N3/2), if
we let F to be any field in which 630 �= 0. (Section 3.2 explains how Eq. (8)
implies a 4-party PSM with desired communication complexity.)

In the general k-party case, for each legit shape P of masked term (i.e., P is
a multiset consisting of positive integers and sum(P) = 2k),

∑〈F, X̄(P)〉 =
∑

Q⊆P

α(Q) · ∑〈F,R(P \ Q)〉, (9)

where P \ Q is the multiset subtraction and

α(Q) :=
(sum(Q))!

∏
i∈Q i! · ∏

m∈Z+(number of m’s in Q)!
(10)

Multi-party PSM, Revisited 207

is the following combinatoric number: α(Q) is the number of ways to partition
sum(Q) distinct elements into some unordered subsets S1, . . . , St such that Q =
{|S1|, . . . , |St|}. Equations (9), (10) are proved in Appendix A.

3.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped some technique
details in Sect. 3.1. In this section, we will show how to construct a k-party PSM
protocol assuming that the target term is spanned by referee-computable masked
terms and easy pure terms.

By our assumption, there are referee-computable masked terms X̄(1), . . . ,
X̄(t), easy pure terms R(1), . . . ,R(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F

such that

〈F,x1 ⊗ · · · ⊗ x2k〉 =
t∑

j=1

ajX̄(j) +
s∑

j=1

bjR(j). (11)

A k-party PSM for f , together with its correctness and security, is yielded
by the following facts:

– Fact I:
∑s

j=1 bjR(j) and X̄Ω for all 0 < |Ω| ≤ k − 1 form a randomized
encoding of 〈F,x1⊗· · ·⊗x2k〉. That is, they contain the sufficient information
to recover 〈F,x1⊗· · ·⊗x2k〉, and they are garbled with additional randomness
so that no other information can be recovered.

– Fact II: For every Ω ⊆ [2k] such that 0 < |Ω| ≤ k−1, there is a PSM protocol
for X̄Ω with communication complexity poly(k) · N

k−1
2 field elements.

– Fact III: There is a PSM protocol for
∑s

j=1 bjR(j) with communication com-

plexity poly(k) · s · N
k−1
2 field elements.

The k-party PSM for f works as the follows: For each Ω ⊆ [2k] such that
0 < |Ω| ≤ k − 1, use the PSM guaranteed by Fact II to reveal X̄Ω to the referee.
Use the PSM guaranteed by Fact III to reveal

∑s
j=1 bjR(j) to the referee. Then

Fact I allows the referee to compute the output from Eq. (11).

Proof of Fact I. Equation (11) shows that 〈F,x1 ⊗ · · · ⊗ x2k〉 can be com-
puted from the encoding. Moreover, the distribution of the encoding is perfectly
simulatable: The joint distribution of tensors X̄Ω for 0 < |Ω| ≤ k − 1 is uni-
form distribution, as they are independently one-time padded. Then the value
of

∑s
j=1 bjR(j) is uniquely determined by Eq. (11).

Proof of Fact II. Each coordinate of XΩ is defined as

X̄{j1,...,jt}[i1, . . . , it] = R{j1,...,jt}[i1, . . . , it] + xj1 [i1] · . . . · xjt
[it],

which is an arithmetic formula of size O(k). Thus each coordinate has a PSM
protocol with communication complexity poly(k) field elements [13].

208 L. Assouline and T. Liu

Proof of Fact III. Sample random c1, . . . , cs ∈ F from the common random
string such that c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM
protocol for computing bjR(j) + cj for each j. Say this easy pure term R(j) is
〈F,RΩ1 ⊗ . . . ⊗ xi1 ⊗ . . . ⊗ xiw

〉. By our definition of an easy term, w ≤ k + 1.
There exists a special party, such that the other parties hold at most k − 1 of
xi1 , . . . ,xiw

. When w = k + 1, the special party is the one who holds two of
xi1 , . . . ,xiw

(the existence is guaranteed by the pigeonhole principle). W.l.o.g.
assume that the other parties hold xi1 , . . . ,xiw′ such that w′ ≤ k − 1. Then the
special party knows a dimension-w′ tensor G (which is determined by its input
and bj ,RΩ1 ,RΩ2 , . . .) such that

bjR(j) + cj = 〈G,xi1 ⊗ . . . ⊗ xiw′ 〉 + cj ,

which admits a PSM protocol (presented in Sect. B.1) with communication com-
plexity O(poly(k) · Nw′/2) field elements.

3.3 When k is Small

As shown in Sect. 3.1, to construct PSM protocol for Auxk
N with communication

complexity Ok(N
k−1
2), it is sufficient to prove the target term is spanned by

the referee-computable masked terms and easy pure terms. In this section, we
verify the condition holds for all k ≤ 20, which proves the first bullet of Theo-
rem 1. However, we do not have a general construction of such linenar systems
of equations for an arbitrary k.

The case when k = 2 was solved by [6]. Our framework yields the same
protocol from

∑〈F, X̄(1, 1, 1, 1)〉 =
∑〈F,R()〉 + easy terms.

The case when k = 3 was solved by [8]. Our framework yields a similar
protocol from

∑〈F, X̄(2, 2, 2)〉 =
∑〈F,R()〉 + easy terms.

The case when k = 4 is solved in Sect. 3.1.
For k = 5, consider the following two masked terms,

∑〈F, X̄(4, 4, 2)〉 = 1575 · ∑〈F,R()〉 + 35 · ∑〈F,R(2)〉 + easy terms,
∑〈F, X̄(4, 2, 2, 2)〉 = 3150 · ∑〈F,R()〉 + 210 · ∑〈F,R(2)〉 + easy terms.

We have 6·∑〈F, X̄(4, 4, 2)〉−∑〈F, X̄(4, 2, 2, 2)〉 = 6300·∑〈F,R()〉+easy terms,
which induces a 5-party PSM with communication complexity O(N2).

For k = 6, consider the following masked terms
⎡

⎣

∑〈F, X̄(5, 4, 3)〉∑〈F, X̄(4, 4, 4)〉∑〈F, X̄(3, 3, 3, 3)〉

⎤

⎦ =

⎡

⎣
27720 126 56
5775 35
15400 280

⎤

⎦

⎡

⎣

∑〈F,R()〉∑〈F,R(3)〉∑〈F,R(4)〉

⎤

⎦ + easy terms

Multi-party PSM, Revisited 209

Therefore, 100·∑〈F, X̄(5, 4, 3)〉−160·∑〈F, X̄(4, 4, 4)〉−45·∑〈F, X̄(3, 3, 3, 3)〉 =
1155000 · ∑〈F,R()〉 + easy terms, which induces a 6-party PSM with commu-
nication complexity O(N2.5).

For k = 7, consider the following masked terms
⎡

⎣

∑〈F, X̄(4, 4, 4, 2)〉∑〈F, X̄(6, 6, 2)〉∑〈F, X̄(6, 4, 4)〉

⎤

⎦ =

⎡

⎣
525525 5775 1575
42042 462
105105 210

⎤

⎦

⎡

⎣

∑〈F,R()〉∑〈F,R(2)〉∑〈F,R(4)〉

⎤

⎦ + easy terms

Therefore, 14·∑〈F, X̄(4, 4, 4, 2)〉−175·∑〈F, X̄(6, 6, 2)〉−105·∑〈F, X̄(6, 4, 4)〉 =
−11036025 · ∑〈F,R()〉 + easy terms, which induces a 7-party PSM with com-
munication complexity O(N3).

For larger k, we wrote a simple program3 to check if the target term can
be spanned by referee-computable masked terms and easy terms. For simplicity,
our program requires specifying the finite field in advance. Our program verifies
that the framework yields a PSM protocol with c.c. O(N

k−1
2) for every k ≤ 20.

For example when k = 20, our program found:

∑〈F,R()〉 = 2895 · ∑〈F, X̄(19, 19, 2)〉 + 1902 · ∑〈F, X̄(19, 17, 4)〉 + 2843 · ∑〈F, X̄(19, 16, 5)〉 + 1025 · ∑〈F, X̄(19, 16, 3, 2)〉 + 691 ·∑〈F, X̄(19, 15, 6)〉 + 2507 · ∑〈F, X̄(19, 15, 4, 2)〉 + 1923 · ∑〈F, X̄(19, 14, 7)〉 + 1836 · ∑〈F, X̄(19, 14, 5, 2)〉 + 2385 · ∑〈F, X̄(19, 13, 8)〉
+ 2073 · ∑〈F, X̄(19, 13, 6, 2)〉 + 1312 · ∑〈F, X̄(19, 12, 9)〉 + 2963 · ∑〈F, X̄(19, 12, 7, 2)〉 + 568 · ∑〈F, X̄(19, 11, 10)〉 + 975 ·∑〈F, X̄(19, 11, 8, 2)〉+2445 ·∑〈F, X̄(19, 10, 9, 2)〉+2047 ·∑〈F, X̄(19, 9, 8, 4)〉+318 ·∑〈F, X̄(19, 9, 8, 2, 2)〉+2118 ·∑〈F, X̄(19, 9, 6, 6)〉
+ 2189 · ∑〈F, X̄(19, 9, 6, 4, 2)〉 + 1271 · ∑〈F, X̄(19, 9, 6, 2, 2, 2)〉 + 1557 · ∑〈F, X̄(19, 9, 4, 4, 4)〉 + 2482 · ∑〈F, X̄(19, 9, 4, 4, 2, 2)〉
+ 173 · ∑〈F, X̄(19, 9, 4, 2, 2, 2, 2)〉 + 1943 · ∑〈F, X̄(19, 9, 2, 2, 2, 2, 2, 2)〉 + 29 · ∑〈F, X̄(18, 18, 4)〉 + 1247 · ∑〈F, X̄(18, 17, 5)〉 + 1768 ·∑〈F, X̄(18, 17, 3, 2)〉 + 2735 · ∑〈F, X̄(18, 16, 6)〉 + 416 · ∑〈F, X̄(18, 16, 4, 2)〉 + 1009 · ∑〈F, X̄(18, 15, 7)〉 + 130 · ∑〈F, X̄(18, 15, 5, 2)〉
+138 ·∑〈F, X̄(18, 14, 8)〉+52 ·∑〈F, X̄(18, 14, 6, 2)〉+2661 ·∑〈F, X̄(18, 13, 9)〉+26 ·∑〈F, X̄(18, 13, 7, 2)〉+731 ·∑〈F, X̄(18, 12, 10)〉+
16·∑〈F, X̄(18, 12, 8, 2)〉+145·∑〈F, X̄(18, 11, 11)〉+12·∑〈F, X̄(18, 11, 9, 2)〉+818·∑〈F, X̄(18, 10, 8, 4)〉+1728·∑〈F, X̄(18, 10, 8, 2, 2)〉
+ 2676 · ∑〈F, X̄(18, 10, 6, 6)〉 + 1533 · ∑〈F, X̄(18, 10, 6, 4, 2)〉 + 2490 · ∑〈F, X̄(18, 10, 6, 2, 2, 2)〉 + 760 · ∑〈F, X̄(18, 10, 4, 4, 4)〉
+ 747 · ∑〈F, X̄(18, 10, 4, 4, 2, 2)〉 + 2752 · ∑〈F, X̄(18, 10, 4, 2, 2, 2, 2)〉 + 83 · ∑〈F, X̄(18, 10, 2, 2, 2, 2, 2, 2)〉 + easy terms mod 3001

which induces a PSM protocol with c.c. O(N9.5).

3.4 When k + 1 is a Prime Power

As shown in Sect. 3.1, to construct PSM protocol for Auxk
N with communication

complexity Ok(N
k−1
2), it is sufficient to prove the target term is spanned by the

referee-computable masked terms and easy pure terms. In this section, we prove
that the condition holds for all k such that k + 1 is a prime power, which proves
the second bullet of Theorem 1.

When k + 1 is a prime p or a prime power pe, we obtain a simple k-party
PSM, by doing computations in the finite field Fp.

3 The source code can be downloaded from https://github.com/tianren/psm.

https://github.com/tianren/psm

210 L. Assouline and T. Liu

Proof. Consider the symmetric sum of all masked terms of shape {k−1, 1, . . . , 1}
∑〈F, X̄(k − 1, 1, . . . , 1

︸ ︷︷ ︸
k+1 1’s

)〉

=
k+1∑

i=0

α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉

+
k+1∑

i=0

α(1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(k − 1, 1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉

= α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

) · ∑〈F,R()〉

+
k−2∑

i=1

α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉 + easy terms.

(12)

(Recall that a pure term of shape P is easy iff sum(P) ≥ k − 1.)
W.l.o.g. assume k > 2. By definition, α(k − 1, 1, . . . , 1

︸ ︷︷ ︸
t 1’s

) =
(
k−1+t
k−1

)
. Lemma 2

shows that α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

) =
(

2k
k−1

) ≡ 1 mod p, while α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) =

(
2k−i
k−1

)
is a multiple of p for all 1 ≤ i ≤ k − 2. Therefore,

∑〈F, X̄(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

)〉 =
∑〈F,R()〉 + easy terms mod p,

which induces a k-party PSM protocol with c.c. Ok(N
k−1
2). �

Lemma 1. For any prime p and positive integer e,
(
pe

t

)
is a multiple of p for

all 0 < t < pe.

Proof. (
pe

t

)

=
pe

t
·
(

pe − 1
t − 1

)

.

�

Lemma 2. For any prime p and positive integer e, binomial coefficient

(
pe+t
pe−2

)

is a multiple of p for all 0 ≤ t ≤ pe − 3, while binomial coefficient
(
2pe−2
pe−2

) ≡ 1
mod p.

Proof. For every 0 ≤ t ≤ pe − 3,

(
pe + t

pe − 2

)

=
t∑

j=0

(
t

j

)(
pe

pe − 2 − j

)

︸ ︷︷ ︸
multiple of p

Multi-party PSM, Revisited 211

is a multiple of p. While

(
2pe − 2
pe − 2

)

=
pe−3∑

j=0

(
pe − 2

j

) (
pe

pe − 2 − j

)

︸ ︷︷ ︸
multiple of p

+
(

pe − 2
pe − 2

)(
pe

0

)

≡ 1 mod p.

�

4 Unbalanced 2-Party PSM Protocols

The two parties in 2-party PSM are conventionally called Alice and Bob. Let
x ∈ [N] denote Alice’s and y ∈ [N] denote Bob’s input. In this section, we show
that every functionality f : [N] × [N] → {0, 1} admits a 2-party PSM protocol,
where Alice sends O(Nη) bits and Bob sends O(N1−η) bits.

Theorem 2. For any functionality f : [N] × [N] → {0, 1}, and any η = d/k
such that d, k are integers and 0 < d < k ≤ 20, there is a 2-party PSM protocol
for f with unbalanced communication complexity O(Nη), O(N1−η).

In this section, we prove a stronger statement. Let F be a finite field, consider
the following auxiliary 2-party functionality Aux2k,N :

2-party functionality Aux2k,N

– Alice has input x1, . . . ,xk ∈ F
k√

N

– Bob has input y1, . . . ,yk ∈ F
k√

N

– The output is 〈F,x1 ⊗ . . . ⊗ xk ⊗ y1 ⊗ . . . ⊗ yk〉, where F is
public and fixed

A PSM protocol for Aux2k,N implies a PSM for f : [N] × [N] → {0, 1} with the
same communication complexity of each party. The reduction consists of having
F be the truth table of f .

We present a framework for the construction of 2-party PSM protocols for
Aux2k,N , where Alice sends Oη(Nη) bits and Bob sends Oη(N1−η) bits, for all η ∈
{ 1

k , . . . , k−1
k }. Similar to the framework in Sect. 3, the framework in this section

also reduces the problem to a system of linear equations. A solution of the system
implies a 2-party PSM protocol with the desired communication complexity.
By verifying with a computer, we find that our framework works well for all η
whose denominator is no larger than 20. Backed by those observations, we believe
that our framework allows for a smooth trade-off between the communication
complexity of Alice and Bob:

Conjecture 2. For any functionality f : [N]×[N] → {0, 1}, and any 0 < η < 1,
there is a 2-party PSM protocol for f with unbalanced communication complexity
Oη(Nη), Oη(N1−η).

212 L. Assouline and T. Liu

Organization. Section 4.1 presents our framework for constructing multi-party
PSM, introduces new notations, and gives as a concrete example a 2-party PSM
with communication O(N1/3), O(N2/3). The following Sects. 4.2, 4.3 are inde-
pendent. Section 4.2 provides more technical detail of the PSM protocols yielded
by our framework. Section 4.3 shows how the framework works for small k.

4.1 A Framework for 2-Party PSM

Consider a rational η = d
k ∈ (0, 1). Let F be a finite commutative ring that we

will fix later. All the operations are within ring F unless otherwise specified.
As mentioned in the beginning of Sect. 4, there is an non-interactive reduc-

tion from the functionality f : [N] × [N] → {0, 1} to functionality Aux2k,N .
The reduction works as follows: Let x, y ∈ [N] be the input of Alice and Bob
respectively. Evenly divide x into x1, . . . , xk ∈ [k

√
N], similarly divide y into

y1, . . . , yk ∈ [k
√

N]. For each j ∈ [k], let xj := exj
∈ F

√
N be the xj-th standard

unit vector. Similarly let yi := eyi
∈ F

k√
N for every i ∈ [k]. The functionality f

can be reduced to Aux2k,N by doing:

f(x1, . . . , xk, y1, . . . , yk) = 〈F,x1 ⊗ . . . ⊗ xk ⊗ y1 ⊗ . . . ⊗ yk〉.

where F is the truth-table of f . For the remainder of the section, it is thus
sufficient to construct a PSM protocol for Aux2k,N .

For every Ω ⊆ [k], our protocol will sample random RΩ ,SΩ ∈ F
(

k√
N)|Ω|

from
the common random string. Let X̄Ω := RΩ+

⊗
i∈Ω xi and ȲΩ := SΩ+

⊗
i∈Ω yi.

As the communication complexity of Alice is Oη(N
d
k), she can send X̄Ω to

the referee for every Ω that |Ω| ≤ d. So far no information is leaked as X̄Ω is
one-time padded by RΩ . Similarly, Bob can send ȲΩ for every Ω that |Ω| ≤ k−d.

There are many meaningful terms that the referee can compute once he
receives (X̄Ω)|Ω|≤d and (ȲΩ)|Ω|≤k−d. For example, when η = d/k = 1/3, the
referee can compute:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ S{3}〉
+ . . . (28 other terms)
+ 〈F,R{1} ⊗ R{2} ⊗ R{3} ⊗ S{1,2} ⊗ S{3}〉.

(13)

Before we continue, we have to introduce a few notations. We will define
shape, masked tensor, pure tensor, easy & hard tensor, etc., in the same way as
in Sect. 3.1.

Definition (masked tensor & masked term). An Alice-side masked tensor
is a tensor product X̄Ω1 ⊗ . . . ⊗ X̄Ωt

such that Ω1, . . . , Ωt are disjoint and their

Multi-party PSM, Revisited 213

union equals [k]. The shape of an Alice-side masked tensor X̄Ω1 ⊗. . .⊗X̄Ωt
is the

multiset {|Ω1|, . . . , |Ωt|}. Bob-side masked tensors are defined symmetrically.
The tensor product of an Alice-side masked tensor and a Bob-side masked

tensor is called a masked tensor. The inner product of F and a masked tensor is
called a masked term.

An Alice-side masked tensor of shape P is referee-computable if max(P) ≤ d.
A Bob-side masked tensor of shape Q is referee-computable if max(Q) ≤ k−d. An
masked tensor (and its corresponding masked term) is called referee-computable
if it’s the tensor product of a referee-computable Alice-side masked tensor and
a referee-computable Bob-side masked tensor.

Definition (pure tensor & pure term). An Alice-side pure tensor is a tensor
product RΩ1 ⊗ . . . ⊗RΩt

⊗xi1 ⊗ . . . ⊗xiw
such that {i1, . . . , iw}, Ω1, . . . , Ωt are

disjoint and their union equals [k]. The shape of an Alice-side masked tensor
RΩ1 ⊗ . . . ⊗RΩt

⊗xi1 ⊗ . . . ⊗xiw
is the multiset {|Ω1|, . . . , |Ωt|}. Bob-side pure

tensors are defined symmetrically.
The tensor product of an Alice-side pure tensor and a Bob-side pure tensor

is called a pure tensor. The inner product of a pure tensor and F is called a pure
term.

For any legit shape, let
∑

R(P) denote the sum of all Alice-side pure tensor
whose shape is P . Similarly, define Bob-side pure tensor sum

∑
S(P).

Let’s go back to the example when η = 1/3: examine the pure terms on
the right side of Eq. (13), and check which of them has a 2-party PSM with
communication complexity O(N

1
3), O(N

2
3).

– The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 is the desired functionality.
– The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 has a PSM protocol with com-

munication complexity O(N
1
3). Because Alice knows a vector g (which is

determined by F, Alice’s input and randomness (RΩ)Ω , (SΩ)Ω) such that
〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 = 〈g,y3〉.

– The term 〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 admits a PSM protocol with
unbalanced communication complexity O(N

1
3), O(N

2
3). Because Bob knows

a dimension-2 tensor G such that 〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 =
〈x2 ⊗ x3,G〉. (This PSM is presented in Sect. B.2.)

The discussion above hints at the right classification of pure tensors.

target tensor. The only Alice-side target tensor is x1 ⊗ · · · ⊗ xk. The only
Bob-side target tensor is y1 ⊗ · · · ⊗ yk. The only target tensor is x1 ⊗ · · · ⊗
xk ⊗ y1 ⊗ · · · ⊗ yk.

easy tensor. An Alice-side pure tensor of shape P is called easy if sum(P) ≥ d.
A Bob-side pure tensor of shape Q is called easy if sum(Q) ≥ k − d. A pure
tensor R ⊗ S is called easy if either R or S is easy.

hard tensor. The rest.

214 L. Assouline and T. Liu

The inner product of F and a target/easy/hard tensor is called a tar-
get/easy/hard term.

Then, Eq. (13) can be rewritten by grouping and ignoring the easy terms:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉 + easy terms
.

By a symmetric sum, we get

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(2, 1)〉

= 3 · 〈F,
∑

R() ⊗ ∑
S()〉

︸ ︷︷ ︸
target

+〈F,
∑

R() ⊗ ∑
S(1)〉 + easy terms.

Similarly, we have decomposed another referee-computable term

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(1, 1, 1)〉

= 〈F,
∑

R() ⊗ ∑
S()〉

︸ ︷︷ ︸
target

+〈F,
∑

R() ⊗ ∑
S(1)〉 + easy terms.

Combine them to cancel out the hard terms:

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(2, 1)〉 − 〈F,

∑
X̄(1, 1, 1) ⊗ ∑

Ȳ(1, 1, 1)〉
= 2 · 〈F,

∑
R() ⊗ ∑

S()〉 + easy terms.

Thus, by setting F to be any finite field where 2 �= 0, the above equation
induces a 2-party PSM protocol with unbalanced communication complexity
O(N

1
3), O(N

2
3).

In general, a masked term 〈F,
∑

X̄(P) ⊗ ∑
Ȳ(Q)〉 can be decomposed into

pure terms by

∑
X̄(P) =

∑

P ′⊆P

α(P ′)
∑

X̄(P \ P ′),

∑
Ȳ(Q) =

∑

Q′⊆Q

α(Q′)
∑

Ȳ(Q \ Q′),

〈F,
∑

X̄(P) ⊗ ∑
Ȳ(Q)〉 =

∑

P ′⊆P
Q′⊆Q

α(P ′)α(Q′)
〈
F,

∑
X̄(P \ P ′) ⊗ ∑

Ȳ(Q \ Q′)
〉
.

with the combinatoric number α defined as in Sect. 3.1. The first two equations
are essentially the same as Eq. (9) and they imply the third equation.

To construct a PSM protocol of the desired unbalanced communication
complexity, it is sufficient to show the target term is spanned by the referee-
computable masked terms and the easy terms. Namely,

the target term = a linear combination of referee-computable masked terms +
a linear combination of easy terms. (14)

Multi-party PSM, Revisited 215

The details of how this sufficient condition implies a PSM with desired commu-
nication complexity is presented in Sect. 4.2.

This sufficient condition of form (14) is unfortunately too combinatorically
hard to use in practice, especially since we are going to use a program to search
for the proof for different values of η. There are too many distinct masked terms
and pure terms – their number is equal to the number of pairs of legit shapes
(P,Q).

Fortunately, we come up with a simpler sufficient condition. A PSM proto-
col of the desired unbalanced communication complexity exists if both of the
following hold:

– The Alice-side target tensor is spanned by referee-computable Alice-side
masked tensors and Alice-side easy tensors;

– The Bob-side target tensor is spanned by referee-computable Bob-side masked
tensors and Bob-side easy tensors.

The proof is quite straight-forward: Assume the new sufficient condition,

a linear combination of referee-computable Alice-side masked tensors
=

∑
R() + Alice-side easy tensors,

a linear combination of referee-computable Bob-side masked tensors
=

∑
S() + Bob-side easy tensors.

The tensor product of the above two equations is

a linear combination of referee-computable masked tensors
=

∑
R() ⊗ ∑

S() + a linear combination of easy tensors.

Multiplying both sides of the above equation with F yields the desired sufficient
condition of form (14). �

4.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped the technique
details on how the condition (14) implies a 2-party PSM of the desired commu-
nication complexity. In this section, we will show how to construct such a 2-party
PSM protocol assuming that the target term is spanned by referee-computable
masked terms and easy pure terms.

By the condition (14), there are referee-computable masked terms Z̄(1), . . . ,
Z̄(t), easy pure terms T(1), . . . ,T(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F such
that

〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 =
t∑

j=1

ajZ̄(j) +
s∑

j=1

bjT(j). (15)

A 2-party PSM for f , together with its correctness and security, is yielded
by the following facts:

216 L. Assouline and T. Liu

– Fact I:
∑s

j=1 bjT(j) together with X̄Ω for all 0 < |Ω| ≤ d and ȲΩ for all
0 < |Ω| ≤ k − d form a randomized encoding of the functionality output.

– Fact II: There is a PSM protocol for
∑s

j=1 bjT(j), in which Alice sends k·s·N d
k

field elements, Bob sends k · s · N1− d
k field elements.

The 2-party PSM for f works as the follows: For each Ω ⊆ [k] such that 0 <
|Ω| ≤ d, Alice sends X̄Ω to the referee. Symmetrically, for Ω ⊆ [k] such that
0 < |Ω| ≤ k − d, Bob sends ȲΩ to the referee. Use the PSM guaranteed by
Fact II to reveal

∑s
j=1 bjT(j) to the referee. Then Fact I allows the referee to

compute the output from Eq. (15).

Proof of Fact I. (Similar to the proof of Fact I in Sect. 3.2.) Equation (15) shows
that 〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 can be computed from the encoding.
Moreover, the distribution of the encoding is perfectly simulatable: The joint
distribution of tensors X̄Ω for 0 < |Ω| ≤ d and ȲΩ for 0 < |Ω| ≤ k−d is uniform,
as they are independently one-time padded. Then the value of

∑s
j=1 bjT(j) is

uniquely determined by Eq. (15).

Proof of Fact II. Sample random c1, . . . , cs ∈ F from the common random string
such that c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM protocol for
computing bjT(j) + cj for each j.

Because T(j) is an easy term, we have T(j) = 〈F,R(j) ⊗ S(j)〉, where R(j) is
an Alice-side pure tensor, S(j) is a Bob-side pure tensor, and either R(j) is an
Alice-side easy tensor, S(j) is a Bob-side easy tensor. W.l.o.g., assume R(j) is an
Alice-side easy tensor.

Say this Alice-side easy pure term R(j) is RΩ1 ⊗ . . .⊗xi1 ⊗ . . .⊗xiw
. By the

definition of an Alice-side easy term, w ≤ k−d. Then Bob knows a dimension-w
tensor G (which is determined by S(j), bj ,RΩ1 ,RΩ2 , . . .) such that

bjT(j) + cj = 〈G,xi1 ⊗ . . . ⊗ xiw
〉 + cj ,

which admits a PSM protocol (presented in Sect. B.2) in which Alice sends O(w ·
N1/k) field elements, Bob sends Nw/k field elements.

4.3 When η Has a Small Denominator

Section 4.1 proves a sufficient condition that implies 2-party PSM protocols with
the desired unbalanced communication complexity. In this section, we will verify
that the sufficient condition holds for all rational η ∈ (0, 1) whose denominator
is no larger than 20. Theorem 2 follows as a consequence.

For η = 1/3, the 2-party PSM protocol in Sect. 4.1 is also induced by
∑

X̄(1, 1, 1) =
∑

R() + Alice-side easy tensors,
∑

Ȳ(2, 1) − ∑
Ȳ(1, 1, 1) = 2 · ∑

S() + Bob-side easy tensors.

Multi-party PSM, Revisited 217

For η = 1/4, a 2-party PSM protocol with c.c. O(N1/4), O(N3/4) is induced
by

∑
X̄(1, 1, 1, 1) =

∑
R() + Alice-side easy tensors,

∑
Ȳ(1, 1, 1, 1) + 2 · ∑

Ȳ(3, 1)
+

∑
Ȳ(2, 2) − ∑

Ȳ(2, 1, 1) = 6 · ∑S() + Bob-side easy tensors.

For η = 1/5, a 2-party PSM protocol with desired c.c. is induced by
∑

X̄(1, 1, 1, 1, 1) =
∑

R() + Alice-side easy tensors,

6 · ∑
Ȳ(4, 1) + 2 · ∑Ȳ(3, 2)

− 2 · ∑
Ȳ(3, 1, 1) − ∑

Ȳ(2, 2, 1)
+

∑
Ȳ(2, 1, 1, 1) − ∑

Ȳ(1, 1, 1, 1, 1) = 24 · ∑S() + Bob-side easy tensors.

For η = 2/5, a 2-party PSM protocol with desired c.c. is induced by

2 · ∑
X̄(2, 2, 1) − ∑

X̄(2, 1, 1, 1) = 20 · ∑R() + Alice-side easy tensors,

3 · ∑
Ȳ(3, 2) +

∑
Ȳ(3, 1, 1)

− ∑
Ȳ(2, 2, 1) − ∑

Ȳ(1, 1, 1, 1, 1) = 24 · ∑S() + Bob-side easy tensors.

For larger denominators, we wrote a computer program (See footnote 2) to
assist us in the proof. For example, for η = 7/20, a 2-party PSM with desired
c.c. is induced by

ΣR() = Alice-side easy tensors+18 ·ΣX̄(7, 7, 6)+10 ·ΣX̄(7, 7, 5, 1)+14 ·ΣX̄(7, 7, 4, 2)+14 ·ΣX̄(7, 7, 4, 1, 1)+17 ·ΣX̄(7, 7, 3, 3)+20 ·
ΣX̄(7, 7, 3, 2, 1)+20·ΣX̄(7, 7, 3, 1, 1, 1)+10·ΣX̄(7, 7, 2, 2, 2)+10·ΣX̄(7, 7, 2, 2, 1, 1)+10·ΣX̄(7, 7, 2, 1, 1, 1, 1)+10·ΣX̄(7, 7, 1, 1, 1, 1, 1, 1)+
6 · ΣX̄(7, 6, 6, 1) + 19 · ΣX̄(7, 6, 5, 2) + 19 · ΣX̄(7, 6, 5, 1, 1) + 21 · ΣX̄(7, 6, 4, 3) + 22 · ΣX̄(7, 6, 4, 2, 1) + 22 · ΣX̄(7, 6, 4, 1, 1, 1) + 7 ·
ΣX̄(7, 6, 3, 3, 1)+15·ΣX̄(7, 6, 3, 2, 2)+15·ΣX̄(7, 6, 3, 2, 1, 1)+15·ΣX̄(7, 6, 3, 1, 1, 1, 1)+19·ΣX̄(7, 6, 2, 2, 2, 1)+19·ΣX̄(7, 6, 2, 2, 1, 1, 1)+
19 · ΣX̄(7, 6, 2, 1, 1, 1, 1, 1) + 19 · ΣX̄(7, 6, 1, 1, 1, 1, 1, 1, 1) mod 23

ΣS() = Bob-side easy tensors+13·ΣȲ(13, 7)+20·ΣȲ(13, 6, 1)+2·ΣȲ(13, 5, 2)+22·ΣȲ(13, 5, 1, 1)+1·ΣȲ(13, 4, 3)+17·ΣȲ(13, 4, 2, 1)+
3 · ΣȲ(13, 4, 1, 1, 1) + 19 · ΣȲ(13, 3, 3, 1) + 21 · ΣȲ(13, 3, 2, 2) + 1 · ΣȲ(13, 3, 2, 1, 1) + 11 · ΣȲ(13, 3, 1, 1, 1, 1) + 12 · ΣȲ(13, 2, 2, 2, 1) +
17 · ΣȲ(13, 2, 2, 1, 1, 1) + 3 · ΣȲ(13, 2, 1, 1, 1, 1, 1) + 10 · ΣȲ(13, 1, 1, 1, 1, 1, 1, 1) + 11 · ΣȲ(12, 8) + 17 · ΣȲ(12, 7, 1) + 1 · ΣȲ(12, 6, 2) +
11 ·ΣȲ(12, 6, 1, 1)+17 ·ΣȲ(11, 9)+14 ·ΣȲ(11, 8, 1)+6 ·ΣȲ(11, 7, 2)+20 ·ΣȲ(11, 7, 1, 1)+7 ·ΣȲ(11, 6, 3)+4 ·ΣȲ(11, 6, 2, 1)+21 ·
ΣȲ(11, 6, 1, 1, 1) + 2 · ΣȲ(10, 10) + 4 · ΣȲ(10, 9, 1) + 15 · ΣȲ(10, 8, 2) + 4 · ΣȲ(10, 8, 1, 1) + 1 · ΣȲ(10, 7, 3) + 17 · ΣȲ(10, 7, 2, 1) + 3 ·
ΣȲ(10, 7, 1, 1, 1)+21·ΣȲ(10, 6, 4)+8·ΣȲ(10, 6, 3, 1)+4·ΣȲ(10, 6, 2, 2)+21·ΣȲ(10, 6, 2, 1, 1)+1·ΣȲ(10, 6, 1, 1, 1, 1)+20·ΣȲ(9, 9, 2)+
13 ·ΣȲ(9, 9, 1, 1)+4 ·ΣȲ(9, 8, 3)+22 ·ΣȲ(9, 8, 2, 1)+12 ·ΣȲ(9, 8, 1, 1, 1)+14 ·ΣȲ(9, 7, 4)+13 ·ΣȲ(9, 7, 3, 1)+18 ·ΣȲ(9, 7, 2, 2)+14 ·
ΣȲ(9, 7, 2, 1, 1)+16·ΣȲ(9, 7, 1, 1, 1, 1)+11·ΣȲ(9, 6, 5)+13·ΣȲ(9, 6, 4, 1)+12·ΣȲ(9, 6, 3, 2)+17·ΣȲ(9, 6, 3, 1, 1)+20·ΣȲ(9, 6, 2, 2, 1)+
13 · ΣȲ(9, 6, 2, 1, 1, 1) + 5 · ΣȲ(9, 6, 1, 1, 1, 1, 1) + 19 · ΣȲ(8, 8, 4) + 16 · ΣȲ(8, 8, 3, 1) + 8 · ΣȲ(8, 8, 2, 2) + 19 · ΣȲ(8, 8, 2, 1, 1) + 2 ·
ΣȲ(8, 8, 1, 1, 1, 1)+17·ΣȲ(8, 7, 5)+18·ΣȲ(8, 7, 4, 1)+6·ΣȲ(8, 7, 3, 2)+20·ΣȲ(8, 7, 3, 1, 1)+10·ΣȲ(8, 7, 2, 2, 1)+18·ΣȲ(8, 7, 2, 1, 1, 1)+
14·ΣȲ(8, 7, 1, 1, 1, 1, 1)+18·ΣȲ(8, 6, 6)+6·ΣȲ(8, 6, 5, 1)+13·ΣȲ(8, 6, 4, 2)+5·ΣȲ(8, 6, 4, 1, 1)+1·ΣȲ(8, 6, 3, 3)+17·ΣȲ(8, 6, 3, 2, 1)+
3·ΣȲ(8, 6, 3, 1, 1, 1)+20·ΣȲ(8, 6, 2, 2, 2)+13·ΣȲ(8, 6, 2, 2, 1, 1)+5·ΣȲ(8, 6, 2, 1, 1, 1, 1)+9·ΣȲ(8, 6, 1, 1, 1, 1, 1, 1)+5·ΣȲ(7, 7, 6)+1·
ΣȲ(7, 7, 5, 1)+6·ΣȲ(7, 7, 4, 2)+20·ΣȲ(7, 7, 4, 1, 1)+4·ΣȲ(7, 7, 3, 3)+22·ΣȲ(7, 7, 3, 2, 1)+12·ΣȲ(7, 7, 3, 1, 1, 1)+11·ΣȲ(7, 7, 2, 2, 2)+
6 ·ΣȲ(7, 7, 2, 2, 1, 1)+20 ·ΣȲ(7, 7, 2, 1, 1, 1, 1)+13 ·ΣȲ(7, 7, 1, 1, 1, 1, 1, 1)+15 ·ΣȲ(7, 6, 6, 1)+13 ·ΣȲ(7, 6, 5, 2)+5 ·ΣȲ(7, 6, 5, 1, 1)+
18 ·ΣȲ(7, 6, 4, 3)+7 ·ΣȲ(7, 6, 4, 2, 1)+8 ·ΣȲ(7, 6, 4, 1, 1, 1)+20 ·ΣȲ(7, 6, 3, 3, 1)+10 ·ΣȲ(7, 6, 3, 2, 2)+18 ·ΣȲ(7, 6, 3, 2, 1, 1)+14 ·
ΣȲ(7, 6, 3, 1, 1, 1, 1)+9 ·ΣȲ(7, 6, 2, 2, 2, 1)+7 ·ΣȲ(7, 6, 2, 2, 1, 1, 1)+8 ·ΣȲ(7, 6, 2, 1, 1, 1, 1, 1)+19 ·ΣȲ(7, 6, 1, 1, 1, 1, 1, 1, 1) mod 23

We checked every rational η = d/k such that k ≤ 20, and verified that our
framework does in fact yield a 2-party PSM protocol with unbalanced commu-
nication complexity O(Nη), O(N1−η).

218 L. Assouline and T. Liu

5 Open Problems

This paper presents two frameworks: a framework of constructing k-party PSM
protocols for general f : [N]k → {0, 1} with c.c. Ok(N

k−1
2), and a framework of

constructing 2-party PSM protocols for general f : [N]× [N] → {0, 1} where one
party sends Oη(Nη) bits and the other party sends Oη(N1−η) bits. An immediate
open problem is to prove our frameworks work for all integer k and all rational η.
Currently, we can only prove it works for some k and η.

For simplicity, our analysis only considers the symmetric sum of terms. The
symmetric sum incurs a blow-up exponential on k. Thus the communication
complexity of our k-party PSM protocols is exp(k) · N

k−1
2 . While [8] achieves

communication complexity poly(k) · N
k
2 . Our protocols are less efficient in the

domain where log N < k. A possible approach of getting rid of the exponential
dependency in k is to break the symmetry. The potential of such an approach is
evidenced by the 5-party PSM protocol in Sect. 1.2, which is asymmetric.

There is no clear reason why our framework will not yields more efficient
PSM protocols. Can our multi-party framework yield PSM protocols with com-
munication complexity Ok(N

k
2 −1), when k is sufficiently large? Can our 2-party

framework might yield PSM protocol with communication Oη(Nη) for some
rational η < 1

2? Our technique transfers such questions into some linear sys-
tems. Each question has an affirmative answer (for a given k or η) if and only
if the corresponding linear system is solvable. We have modified our program
to generate and solve these linear systems, but all the system we have tried are
unsolvable. The failure suggests that our new upper bounds might be tight, or
are tight for a natural class of PSM protocols.

The question of the communication complexity trade-off for multi-party PSM
remains widely open. In our k-party PSM protocol, every party sends Ok(N

k−1
2)

bits. A variant of [10] provides a k-party PSM protocol where the i-th party
sends Õk(N i−1) bits, whose geometric average is Õk(N

k−1
2). Should a future

work achieves the smooth trade-off between the two, there is little doubt that it
will bring us a deep insight into PSM.

Finally, this work belongs to a not-fully-successful attempt at constructing
PSM with sub-exponential communication complexity, which is probably the
moonshot open problem in the PSM literature.

Acknowledgements. We would like to thank Hoeteck Wee, Vinod Vaikuntanathan
amd Michel Abdalla for helpful discussions. TL was supported by NSF grants CNS-
1528178, CNS-1929901, CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI
research Award, and a Simons Foundation Collaboration Grant on Algorithmic Fair-
ness. Part of this work was performed while TL was in MIT, during which he was
supported in part by NSF Grants CNS-1350619, CNS-1414119 and CNS-1718161, an
MIT-IBM grant and a DARPA Young Faculty Award. LA was supported by a doctoral
grant from the French Ministère de l’Enseignement Supérieur et de la Recherche.

Multi-party PSM, Revisited 219

A Proof of Eq. (9) and (10)

Proof (Proof of Eq. (9)). By definition:

∑〈F, X̄(P)〉 =
∑

(∗)
〈F, X̄S1 ⊗ . . . ⊗ X̄St

〉

where (∗) denotes “for all unordered E = {S1, . . . , St} being a partition of [2k]
such that {|S1|, . . . , |St|} = P”. Thus,

∑〈F, X̄(P)〉 =
∑

(∗)

〈
F,

⊗

i∈[t]

(RSi
+

⊗

j∈Si

xj)
〉

=
∑

(∗)

∑

G⊆E

〈
F,

⊗

S∈G

RS ⊗
⊗

j /∈⋃

S∈G

S

xj

〉

=
∑

Q⊆P

∑

G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

β(P,G) ·
〈
F,

⊗

i∈[t]

RSi
⊗

⊗

j /∈⋃

i∈[t]
Si

xj

〉
,

where β(P,G) accounts for the redundancy: define β(P,G) as the number of
unordered partitions E of [2k] such that G ⊆ E and P is the shape of E. It is
equivalent to count the number of F := E \ G. That is, β(P,G) also equals the
number of unordered partitions F of [2k] \ ⋃

S∈G

S such that Q is the shape of F .

Thus by definition, β(P,G) = α(Q). The proof is concluded by

∑〈F, X̄(P)〉 =
∑

Q⊆P

∑

G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

α(Q) ·
〈
F,

⊗

i∈[t]

RSi
⊗

⊗

j /∈⋃

i∈[t]
Si

xj

〉

=
∑

Q⊆P

α(Q) · ∑〈F,R(P \ Q)〉.

�

Proof (Proof of Eq. (10)). Let n = sum(Q). By definition, α(Q) is the number of
unsorted partitions E = {S1, . . . , St} of [n] such that the multiset {|S1|, . . . , |St|}
(i.e. the shape of E) equals Q.

To compute α(Q), we count the number of ways to arranging 1, . . . , n into a
sequence.

– First, pick an unsorted partitions E of [n] s.t. the shape of E equals Q. The
number of choices is α(Q).

– Then, sort the sets in the partion E = {S1, . . . , St}. Sort them by their sizes,
i.e. |S1| ≤ |S2| ≤ · · · ≤ |St|. For any m, if several sets are of the size m, their
order has to be specified, the number of such choices is (number of m’s in Q)!.

– Finally, arrange the elements in each Si into a sub-sequence, the number of
possible sequences is |Si|!. Concatenate these sub-sequences in order.

220 L. Assouline and T. Liu

α(Q) ·
∏

m∈Z+

(number of m′s in Q)! ·
∏

i∈Q

i! = n! �

B Auxiliary PSM Protocols for 〈x1 ⊗ . . . ⊗ xk,Y〉 + s

B.1 The Multi-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine
by our multi-party PSM in Sect. 3.

The functionality is 〈x1 ⊗ . . . ⊗ xk,Y〉 + s. It is a (k + 1)-party functionality
where the i-th party has as input xi ∈ F

N for i ∈ [k], and the (k + 1)-th party
has as inputs Y ∈ F

N×···×N
k times and s ∈ F. We will present a PSM protocol for this

functionality with a communication complexity of O(poly(k)·Nk) field elements.
This protocol is implicitly used in [8].

First, we consider the special case when k = 1. That is, there are only two
parties. Say we call them Alice and Bob. Alice has x ∈ F

N , Bob has y ∈ F
N , s ∈

F. The functionality output is 〈x,y〉 + s. The PSM protocol works as follows:

– Random a,b ∈ F
N , c ∈ F are sampled from the common random string,

which is known by both Alice and Bob.
– Alice sends x̄ := x + a, z := c − 〈b,x〉 to the referee.
– Bob sends ȳ := y + b, w := s − c − 〈a,y〉 − 〈a,b〉 to the referee.
– The referee outputs 〈x̄, ȳ〉 + z + w.

For the case k ≥ 2, the first k parties need to jointly emulate Alice. The
protocol works as follows:

– Random A,B,C ∈ F
N×···×N are sampled from the common random string.

Define c ∈ F as the sum of entries in C.
– The (k + 1)-th party sends Ȳ := Y + B, z := s − c − 〈A,Y〉 − 〈A,B〉 to the

referee.
– The first k parties jointly reveal X̄ := x1 ⊗ . . . ⊗ xk + A, w := c − 〈B,x1 ⊗

. . . ⊗ xk〉 to the referee.
Since every coordinate of X̄ can be computed by an arithmetic formula of
size O(k), each of these coordinates can be computed by the referee by
using a PSM protocol with communication complexity of O(poly(k)) field
elements [13]. The referee learns X̄ after receiving O(poly(k) · Nk) field ele-
ments.
The term w := c − 〈B,x1 ⊗ . . . ⊗ xk〉 equals the sum of all entries in W :=
C − B ◦p.w. (x1 ⊗ . . . ⊗ xk), where ◦p.w. denotes the point-wise product. In
other words, we defines W ∈ F

N×···×N as

W[i1, . . . , ik] = C[i1, . . . , ik] − B[i1, . . . , ik]x1[i1] . . .xk[ik].

Due to the randomness of C, we know W is a randomized encoding of w.
Thus, it is equivalent for the first k parties to jointly reveal W to the referee.

Multi-party PSM, Revisited 221

Since every coordinate of W can be computed by an arithmetic formula
of size O(k), each of them can be revealed by using the Ishai-Kushilevitz
PSM protocol [13], which has a communication complexity of O(poly(k)) field
elements. The referee learns w after receiving O(poly(k) · Nk) field elements.

– The referee outputs 〈X̄, Ȳ〉 + z + w.

The correctness of the protocol can be verified in the following equation:

〈X̄, Ȳ〉 + z + w

= 〈x1 ⊗ . . . ⊗ xk + A,Y + B〉 + s − c − 〈A,Y〉 − 〈A,B〉 +
c − 〈B,x1 ⊗ . . . ⊗ xk〉

= 〈x1 ⊗ . . . ⊗ xk,Y〉 + s.

The privacy is guaranteed by the following simulator:

– Simulate X̄, Ȳ,W as uniform random, since they are one-time-padded by
A,B,C.

– Given X̄, Ȳ,W and the function output, w, z are uniquely determined since
w =

∑
(W) and 〈X̄, Ȳ〉 + z + w = output.

– Simulate the transcripts of the inner Ishai-Kushilevitz PSM protocols using
its own simulator, which takes X̄,W as input.

B.2 The 2-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine
by our unbalanced 2-party PSM in Sect. 4.

The functionality is 〈x1 ⊗ . . .⊗xk,Y〉+ s. It is a 2-party functionality where
the first party, namely Alice, has as inputs x1, . . . ,xk ∈ F

N and the second
party, namely Bob, has as inputs Y ∈ F

N×···×N
k times and s ∈ F. We will present a

PSM protocol for this functionality with unbalanced communication complexity,
where Alice sends O(kN) field elements and Bob sends (N + 1)k field elements.

As the first step, we consider a harder problem instead. Bob’s input is
replaced by a multi-affine function f : F

N × · · · × F
N → F. Corresponding,

the functionality is replaced by f(x1, . . . ,xk). Every multi-affine function f can
be uniquely represented by its coefficient tensor F ∈ F

(N+1)×···×(N+1) such that
for any z1, . . . , zk ∈ F

N ,

f(z1, . . . , zk) = 〈z1‖1 ⊗ · · · ⊗ zk‖1,F〉.
Here zi‖1 denotes the concatenation of zi and 1, which is a dimension-(N + 1)
vector. Notice that, if we let the “first” N × · · · × N subtensor of F equal Y, let
its “last” entry F[N + 1, . . . , N + 1] = s, and let all other entries in F be 0, we
have

f(x1, . . . ,xk) = 〈x1‖1 ⊗ · · · ⊗ xk‖1,F〉 = 〈x1 ⊗ . . . ⊗ xk,Y〉 + s.

The protocol works as follows:

222 L. Assouline and T. Liu

– Random r1, . . . , rk ∈ F
N and a random multi-affine function g are sampled

from the common random string.
– Alice sends x̄i = xi + ri to the referee, for all i ∈ [k].
– Bob computes the multi-affine function g, such that

g(z1, . . . , zk) := f(z1 − r1, . . . , zk − rk).

Bob sends ḡ = g + h to the referee.
– Alice additionally sends s = h(x̄1, . . . , x̄k) to the referee.
– The referee outputs ḡ(x̄1, . . . , x̄k) − s.

The correctness follows directly from the following equation:

ḡ(x̄1, . . . , x̄k) − s = g(x̄1, . . . , x̄k) + h(x̄1, . . . , x̄k) − h(x̄1, . . . , x̄k)
= g(x̄1, . . . , x̄k)
= f(x1 − r1 + r1, . . . ,xk − rk + rk)
= f(x1, . . . ,xk).

The privacy is guaranteed by the following simulator:

– Simulate x̄1, . . . , x̄k, ḡ as uniform random, since they are one-time padded by
r1, . . . , rk, h.

– Given x̄1, . . . , x̄k, ḡ and the function output, simulate s by computing s from
the equation ḡ(x̄1, . . . , x̄k) − s = output.

References

1. Applebaum, B., Arkis, B.: On the power of amortization in secret sharing: d-
uniform secret sharing and CDS with constant information rate. In: Beimel, A.,
Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 317–344. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 12

2. Applebaum, B., Arkis, B., Raykov, P., Vasudevan, P.N.: Conditional disclosure of
secrets: amplification, closure, amortization, lower-bounds, and separations. Elec-
tronic Colloquium on Computational Complexity (ECCC) 24, 38 (2017). https://
eccc.weizmann.ac.il/report/2017/038

3. Applebaum, B., Beimel, A., Farràs, O., Nir, O., Peter, N.: Secret-sharing schemes
for general and uniform access structures. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part III. LNCS, vol. 11478, pp. 441–471. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17659-4 15

4. Applebaum, B., Holenstein, T., Mishra, M., Shayevitz, O.: The communication
complexity of private simultaneous messages, revisited. J. Cryptol. 33(3), 917–953
(2020)

5. Ball, M., Holmgren, J., Ishai, Y., Liu, T., Malkin, T.: On the complexity of decom-
posable randomized encodings, or: how friendly can a garbling-friendly PRF be?
In: Vidick, T. (ed.) 11th Innovations in Theoretical Computer Science Conference,
ITCS 2020, Seattle, Washington, USA, 12–14 January 2020. LIPIcs, vol. 151, pp.
86:1–86:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.ITCS.2020.86

https://doi.org/10.1007/978-3-030-03807-6_12
https://eccc.weizmann.ac.il/report/2017/038
https://eccc.weizmann.ac.il/report/2017/038
https://doi.org/10.1007/978-3-030-17659-4_15
https://doi.org/10.4230/LIPIcs.ITCS.2020.86
https://doi.org/10.4230/LIPIcs.ITCS.2020.86

Multi-party PSM, Revisited 223

6. Beimel, A., Ishai, Y., Kumaresan, R., Kushilevitz, E.: On the cryptographic com-
plexity of the worst functions. In: TCC, pp. 317–342 (2014)

7. Beimel, A., Ishai, Y., Kushilevitz, E.: Ad hoc PSM protocols: secure computation
without coordination. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part III. LNCS, vol. 10212, pp. 580–608. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56617-7 20

8. Beimel, A., Kushilevitz, E., Nissim, P.: The complexity of multiparty PSM proto-
cols and related models. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part II. LNCS, vol. 10821, pp. 287–318. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-78375-8 10

9. Ciampi, M., Goyal, V., Ostrovsky, R.: Threshold garbled circuits and ad hoc secure
computation. Cryptology ePrint Archive, Report 2021/308 (2021). https://eprint.
iacr.org/2021/308

10. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Leighton, F.T., Goodrich, M.T. (eds.) Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, 23–25 May 1994,
Montréal, Québec, Canada, pp. 554–563. ACM (1994). https://doi.org/10.1145/
195058.195408. http://doi.acm.org/10.1145/195058.195408

11. Gay, R., Kerenidis, I., Wee, H.: Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 485–502. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 24

12. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS
1997, Ramat-Gan, Israel, 17–19 June 1997, Proceedings, pp. 174–184. IEEE Com-
puter Society (1997). https://doi.org/10.1109/ISTCS.1997.595170

13. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with
applications to round-efficient secure computation. In: 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12–14 November 2000, Redondo
Beach, California, USA, pp. 294–304. IEEE Computer Society (2000). https://doi.
org/10.1109/SFCS.2000.892118

14. Liu, T., Vaikuntanathan, V., Wee, H.: Conditional disclosure of secrets via non-
linear reconstruction. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I.
LNCS, vol. 10401, pp. 758–790. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 25

https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-56617-7_20
https://doi.org/10.1007/978-3-319-78375-8_10
https://doi.org/10.1007/978-3-319-78375-8_10
https://eprint.iacr.org/2021/308
https://eprint.iacr.org/2021/308
https://doi.org/10.1145/195058.195408
https://doi.org/10.1145/195058.195408
http://doi.acm.org/10.1145/195058.195408
https://doi.org/10.1007/978-3-662-48000-7_24
https://doi.org/10.1109/ISTCS.1997.595170
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1109/SFCS.2000.892118
https://doi.org/10.1007/978-3-319-63688-7_25
https://doi.org/10.1007/978-3-319-63688-7_25

	Multi-party PSM, Revisited:
	1 Introduction
	1.1 Our Contributions
	1.2 Proof Overview
	1.3 Related Works

	2 Preliminaries
	2.1 Tensor
	2.2 Private Simultaneous Messages
	2.3 Randomized Encoding

	3 New Multi-party PSM Protocols
	3.1 A Framework for Multi-party PSM
	3.2 The Induced PSM Protocol
	3.3 When k is Small
	3.4 When k+1 is a Prime Power

	4 Unbalanced 2-Party PSM Protocols
	4.1 A Framework for 2-Party PSM
	4.2 The Induced PSM Protocol
	4.3 When Has a Small Denominator

	5 Open Problems
	A Proof of Eq. (9) and (10)
	B Auxiliary PSM Protocols for "426830A x1 …xk, Y "526930B + s
	B.1 The Multi-party Variant
	B.2 The 2-party Variant

	References

