
Efficient Perfectly Secure Computation
with Optimal Resilience

Ittai Abraham1, Gilad Asharov2(B), and Avishay Yanai1

1 VMWare Research, Herzliya, Israel
{iabraham,yanaia}@vmware.com

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Gilad.Asharov@biu.ac.il

Abstract. Secure computation enables n mutually distrustful parties
to compute a function over their private inputs jointly. In 1988 Ben-Or,
Goldwasser, and Wigderson (BGW) demonstrated that any function can
be computed with perfect security in the presence of a malicious adver-
sary corrupting at most t < n/3 parties. After more than 30 years, proto-
cols with perfect malicious security, with round complexity proportional
to the circuit’s depth, still require sharing a total of O(n2) values per
multiplication. In contrast, only O(n) values need to be shared per mul-
tiplication to achieve semi-honest security. Indeed sharing Ω(n) values
for a single multiplication seems to be the natural barrier for polynomial
secret sharing-based multiplication.

In this paper, we close this gap by constructing a new secure com-
putation protocol with perfect, optimal resilience and malicious security
that incurs sharing of only O(n) values per multiplication, thus, match-
ing the semi-honest setting for protocols with round complexity that is
proportional to the circuit depth. Our protocol requires a constant num-
ber of rounds per multiplication. Like BGW, it has an overall round
complexity that is proportional only to the multiplicative depth of the
circuit. Our improvement is obtained by a novel construction for weak
VSS for polynomials of degree-2t, which incurs the same communication
and round complexities as the state-of-the-art constructions for VSS for
polynomials of degree-t.

Our second contribution is a method for reducing the communication
complexity for any depth-1 sub-circuit to be proportional only to the
size of the input and output (rather than the size of the circuit). This
implies protocols with sublinear communication complexity (in the size
of the circuit) for perfectly secure computation for important functions
like matrix multiplication.

Gilad Asharov is sponsored by the Israel Science Foundation (grant No. 2439/20), by
the BIU Center for Research in Applied Cryptography and Cyber Security in conjunc-
tion with the Israel National Cyber Bureau in the Prime Minister’s Office, and by the
European Union’s Horizon 2020 research and innovation programme under the Marie
Sk�lodowska-Curie grant agreement No. 891234.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 66–96, 2021.
https://doi.org/10.1007/978-3-030-90453-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90453-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-90453-1_3

Efficient Perfectly Secure Computation with Optimal Resilience 67

1 Introduction

Secure multiparty computation is a major pillar of modern cryptography. Break-
through results on secure multiparty computation in the late 80’ prove feasibility
with optimal resilience: perfect, statistical and computational security can be
achieved as long as t < n/3 [7], t < n/2 (assuming broadcast) [36] and t < n
[27,40], respectively, where n is the number of computing parties such that at
most t of them are controlled by a malicious adversary.

In this paper we focus on secure computation with perfect security, which is
the strongest possible guarantee: it provides unconditional, everlasting security.
Such protocols come with desirable properties. They often guarantee adaptive
security [12,32] and remain secure under universal composition [11]. A central
foundational result in this context is the Completeness Theorem of Ben-or, Gold-
wasser, and Wigderson [7] from 1988:

Theorem 1.1 (BGW with improvements [3,7,18,25]- informal). Let f be an
n-ary functionality and C its arithmetic circuit representation. Given a syn-
chronous network with pairwise private channels and a broadcast channel, there
exists a protocol for computing f with perfect security in the presence of a static
malicious adversary controlling up to t < n/3 parties, with round complexity
O(depth(C)) and communication complexity of O(n4 · |C|) words in point-to-
point channels and no broadcast in the optimistic case, and additional Ω(n4 · |C|)
words of broadcast in the pessimistic case.1

The communication complexity in the above statement (and throughout the
paper) is measured in words (i.e., field elements), and we assume a word of size
O(log n) bits.

In the past three decades there has been great efforts to improve the commu-
nication complexity of the BGW protocol [3,25]. Theorem 1.1 states the round
and communication complexity of the protocols after these improvements. Most
recently, Goyal, Liu and Song. [28], building upon Beaver [5], and Beerliová and
Hirt [6], achieved O(n|C| + n3) communication words (including all broadcast
costs) at the expense of increasing the round complexity to O(n + depth(C)).

In some natural setting, e.g., secure computation of shallow circuits in high
latency networks, this additive O(n) term in the round complexity might render
the protocol inapplicable. This state of affairs leads to the fundamental ques-
tion of whether the communication complexity of perfectly secure computation
can be improved without sacrificing the round complexity. Moreover, from the-
oretical perspective, the tradeoff between round complexity and communication
complexity is an interesting one.

1 In the optimistic case the adversary does not deviate from the prescribed protocol.
Thus, in the pessimistic case (when it does deviate from the protocol) the adversary
might only make the execution more expensive.

68 I. Abraham et al.

1.1 Our Results

We show an improvement of the communication complexity of perfectly secure
protocols, without incurring any cost in round complexity. Notably, our improve-
ment applies both to the optimistic case and to the pessimistic case:

Theorem 1.2 (Main technical result - informal). Let f be an n-ary function-
ality and C its arithmetic circuit representation. Given a synchronous network
with pairwise private channels and a broadcast channel, there exists a protocol
for computing f with perfect security in the presence of a static malicious adver-
sary controlling up to t < n/3 parties, with round complexity O(depth(C)) and
communication complexity of O(n3 · |C|) words on point-to-point channels and
no broadcast in the optimistic case, and additional O(n3 · |C|) words of broadcast
in the pessimistic case.

Our result strictly improves the state of the art and is formally incomparable
to the result of Goyal et al. [28]. Our protocol will perform better in high-latency
networks (e.g., the internet) on shallow circuits when depth(C) � n. Whereas
the protocol of [28] performs better in low-latency networks (e.g., LAN), or when
depth(C) ≈ Ω(n).

Sub-linear perfect MPC for sub-circuits of depth-1. As our second main result,
we show for the first time that for a non-trivial class of functions, there is in fact a
sub-linear communication perfectly secure MPC (in the circuit size). Specifically,
we design a perfectly secure MPC that supports all functionalities that can be
computed by depth 1 circuits. The communication complexity of our protocol
depends only on the input and output sizes of the function, but not on the circuit
size, i.e., the number of multiplications. We prove the following:

Theorem 1.3. Let n > 3t, and let F be a finite field with |F| > n. For every
arithmetic circuit G : FL → F

M of multiplication depth 1 (i.e., degree-2 poly-
nomial), there exists a perfect t-secure protocol that computes (y1, . . . , yM) =
G(x1, . . . , xL) in O(1) rounds and O((M + L) · n3) words over the point-to-
point channels in the optimistic case, and additional O((M + L) · n3) broadcast
messages in the pessimistic case. Specifically, the communication complexity is
independent of |G|.

The above theorem can also be applied to compute circuits with higher depth,
while paying only communication complexity that is proportional to the number
of wires between the layers, and independent of the number of multiplications
in each layer. Similar techniques were shown in the statistical case [14], but no
protocol is known for perfect security.

Application: Secure Matrix Multiplication. As a leading example of the useful-
ness of our depth 1 circuit protocol, consider matrix multiplication of two T ×T
matrices. This operation has inputs and outputs of size O(T 2), but implement-
ing it requires O(T 3) multiplications (at least when implemented näıvely). The
starting point (Theorem 1.1) is Ω(T 3 · n4) point-to-point in the optimistic case

Efficient Perfectly Secure Computation with Optimal Resilience 69

(and additional Ω(T 3 · n4) words of broadcast in the pessimistic case. Theo-
rem 1.3 improves the communication complexity to O(T 2 · n3) in the point-to-
point channels with no additional broadcast in the optimistic case (and addi-
tional O(T 2 · n3) words on broadcast in the pessimistic case). Our protocol also
achieves O(1) rounds in both the optimistic and pessimistic cases.

Secure matrix multiplication is a key building block for a variety of appeal-
ing applications. For example, anonymous communication [1] and secure col-
laborative learning. The latter involves multiplication of many large matrices
(see [4,13,33–35,39], to name a few). For instance, the deep convolutional neu-
ral network (CNN) ResNet50 [38] requires roughly 2000 matrix multiplications,
which, when computed securely, results in more than 4 billion multiplication
gates. Using our protofocol of matrix multiplication, computing this task reduces
by order of magnitudes, the communication to be proportional to computing only
millions multiplications.

Secure Multiplication: A Natural Barrier of Ω(n) Secret Sharings
We give a very high level overview of our technical controbution, pointing to
the core of our improvements. When viewed from afar, all secret-sharing based
MPC protocols have a very similar flow. The starting point property is that
polynomial secret sharing is additively homomorphic. This allows computing any
linear combination (additional and multiplication by public constants) of secrets
locally and with no interaction. The challenge is with multiplication gates: while
multiplication can also be applied homomorphically (and non-interactively), it
increases the degree of the underlying polynomial that hides the secret. Secure
multiplication uses the fact that polynomial interpolation is just a linear combi-
nation of points on the polynomial, and hence a central part of the computation
can be applied locally.

Given shares of the two inputs, every party shares a new secret which is its
locally computed multiplication of its two shares. Then, all these new shares are
locally combined using the linear combination of the publicly known Lagrange
coefficients. This results in the desired new sharing of the multiplication of the
two inputs.

This elegant framework for secure multiplication embeds a natural commu-
nication complexity barrier: each multiplication requires Ω(n) secret sharing
(each party needs to secret share its local multiplication). In the malicious case,
the secret sharing protocol is Verifiable Secret Sharing (VSS), hence, the total
communication complexity in this framework is at least Ω(n · comm(V SS)).

State of the art MPC for almost all settings matches this natural bar-
rier, obtaining constant round protocols with optimal resilience using O(n ·
comm(V SS)) communication per multiplication complexity, where V SS is the
best secret sharing for that setting.

The only exception we are aware of is the family pf BGW protocols for a
malicious adversary, where all known improvements until now [3,7,25] require
Ω(n2 · comm(V SS)) communication. This is because each party needs to share
n invocations of VSSs of degree-t polynomials in order to prove that the secret

70 I. Abraham et al.

it shared for the product is indeed equal to multiplication of the already shared
multiplicands.

Weak VSS and the complexity of perfect MPC. The main technical contribution
of this work is a multiplication protocol that meets the natural barrier and
achieves communication complexity of O(n · comm(V SS)). Since comm(V SS) is
O(n2) words in the optimistic case (and no broadcast) and O(n2) over the point-
to-point channels and additional O(n2) words of broadcast in the pessimistic
case, Theorem 1.2 is obtained. The improvement can thus be described as follows:

– Semi-honest BGW requires O(n · comm(SS)) communication per multiplica-
tion.

– Malicious BGW requires O(n2 · comm(V SS)) communication per multiplica-
tion.

– Our malicious protocol requires O(n · comm(V SS)) communication per mul-
tiplication.

Our improved efficiency is obtained by replacing n invocations of degree-t
VSSs with just one invocation of a weak VSS for degree-2t, which we denote by
WSS. By weak VSS, we refer to the setting in which the parties’ shares define
a single secret at the end of the sharing phase, and during the reconstruction
phase, the parties can either recover that secret or ⊥. We show that a single
weak VSS for a degree-2t polynomial (along with a constant number of strong
VSS) is sufficient to prove that the secret shared for the product is equal the
multiplication of its two already shared multiplicands.

Lemma 1.4 (informal). Given n > 3t, there is a protocol for implementing
Weak Verifiable Secret Sharing with optimal resilience, for a polynomial of
degree-2t with communication complexity of O(n2) words on point-to-point chan-
nels in the optimistic case, and additional O(n2) words of broadcast in the pes-
simistic case, and O(1) rounds.

Our new weak verifiable secret sharing of degree-2t has the same asymptotic
complexity as verifiable secret sharing of degree-t. In addition to improving the
efficiency of the core building block in secure computation (i.e. the multiplica-
tion), we believe it also makes it simpler, which is a pedagogical benefit.

Adaptive Security and UC. Protocols that achieve perfect security have sub-
stantial advantage over protocols that are only computationally secure: It was
shown [32] that perfectly secure protocols in the stand-alone setting with a
black-box straight-line simulator are also secure under universal composition
[11]. Moreover, it was shown [12] that perfectly secure protocols in presence of a
static malicious adversary (under the security definition in [22]) enjoy also per-
fect security in the presence of an adaptive malicious adversary, albeit with the
weaker guarantee provided by inefficient simulation. We prove security in the
classic setting of a static adversary and stand-alone computation. This implies
UC security. The additional requirements under the definition of [22] hold in our
protocols, and thus we derive also security in the presence of adaptive adversary
(with inefficient simulation).

Efficient Perfectly Secure Computation with Optimal Resilience 71

The Broadcast Channel Model. We analyze our protocol in the broadcast model
and count messages sent over private channels and over the broadcast channel
separately. In our setting (t < n/3) the broadcast channel can also be simulated
over the point-to-point channels. However, this comes with some additional cost.
There are two alternatives: replace each broadcast use in the protocol requires
O(n2) communication and O(n) rounds [8,16], or O(n4 log n) communication and
expected constant round (even with bounded parallel composition [17,24,31]).

1.2 Related Work

Constant-Round per Multiplication. In this paper we focus on perfect security
in the presence of a malicious adversary, optimal resilience and constant round
per multiplication. Our protocol improves the state of the art in this line of
work. As mentioned in Asharov, Lindell and Rabin [3], an additional verification
protocol is needed for completing the specification of the multiplication step of
BGW. In Theorem 1.1, we ignore the cost associated with those verification steps
and just count the number of verifiable secret sharing needed, which is Ω(n2)
VSSs per multiplication gate. The protocol presented by Asharov, Lindell and
Rabin [3] also requires O(n2) VSSs per multiplication gate. Cramer, Damg̊ard
and Maurer [18] presented a protocol that works in a different way to the BGW
protocol, which also achieves constant round per multiplication. It has worst-case
communication complexity of O(n5) field elements over point-to-point channels
and O(n5) field elements over a broadcast channel. The optimistic cost is O(n4)
field elements over point-to-point channels and O(n3) field elements over the
broadcast channel.

Protocols that are Based on the Player Elimination Technique. There is a large
body of work [6,19,28–30] that improves the communication complexity of
information-theoretic protocols using the player elimination technique. All of
these protocols have a round complexity that is linear in the number of parties.
This is inherent in the player elimination technique since every time cheating
is detected, two players are eliminated and some computations are repeated.
In many cases player elimination would give a more efficient protocol than our
approach. However, there are some cases, specifically for a low-depth circuit
where n is large and over high-latency networks, in which our protocol is more
efficient. Moreover, our protocol can achieve communication complexity which
is sub-linear in the number of multiplication gates, depends on the circuits to
be evaluated. We do not know how to achieve similar results on protocols that
are based on Beaver multiplication triplets [5], such as the protocol of Goyal et
al. [28]. These lines of work are therefore incomparable.

Lower Bounds. Recently, Damg̊ard and Schwartzbach [21] showed that for any
n and all large enough g, there exists a circuit C with g gates such that any
perfectly secure protocol implementing C must communicate Ω(ng) bits. Note
that Theorem 1.3 is sub-linear (in the circuit size) only for particular kind of
circuits in which the circuit is much larger than the size of the inputs or its

72 I. Abraham et al.

outputs. It is easy to find a circuit C with g gates in which our protocol must
communication O(n4g) in the pessimistic case. A lower bound by Damg̊ard et
al. [20] shows that any perfectly-secure protocol that works in the “gate-by-
gate” framework must communicate Ω(n) bits for every multiplication gate. Our
protocol deviates from this framework when computing an entire multiplication
layer as an atomic unit.

1.3 Open Problems

Our protocol improves the communication complexity of constant round mul-
tiplication with optimal malicious resilience from O(n2 · comm(V SS)) to O(n ·
comm(V SS)), matching the number of secret-shares in the semi-honest protocol.
The immediate open problem is exploring the optimal communication complex-
ity of verifiable secret sharing protocol. To the best of our knowledge, we are
not aware of any non-trivial lower bound for perfect VSS (also see survey by C,
Choudhury and Patra [9]). The VSS protocol requires O(n2) words in the opti-
mistic case over the point-to-point channel, and additional O(n2) words over the
broadcast channel in the pessimistic case.

Another possible direction to generalize our work is to mitigate between
the two approaches for perfect security: Design a “hybrid” protocol that com-
putes some sub-circuits using the linear communication complexity approach,
and some sub-circuits using the constant-round per multiplication approach and
achieving the best of both worlds. Another interesting direction is to make sub-
linear communication complexity improvement compatible with the protocols
that are based on multiplication triplets.

2 Technical Overview

In this section we provide a technical overview of our results. We start with an
overview of the BGW protocol in Sect. 2.1 and then overview our protocol in
Sect. 2.2.

2.1 Overview of the BGW Protocol

In the following, we give a high level overview of the BGW protocol while incor-
porating several optimization that were given throughout the years [3,25].

Let f be the function that the parties wish to compute, mapping n inputs to
n outputs. The input of party Pi is xi and its output is yi, where (y1, . . . , yn) =
f(x1, . . . , xn). On a high level, the BGW protocol works by emulating the com-
putation of an arithmetic circuit C that computes f and has three phases. In
the first phase, the input sharing phase, each party secret shares its input with
all other parties. At the end of this stage, the value of each input wire of the
circuit C is secret shared among the parties, such that no subset of t parties
can reconstruct the actual values on the wires. In the second phase, the circuit
emulation phase, the parties emulate a computation of the circuit gate-by-gate,

Efficient Perfectly Secure Computation with Optimal Resilience 73

computing shares on the output wire of each gate using the shares on the input
wires. At the end of this stage, the output wires’ values are secret shared among
all parties. Finally, in the output reconstruction phase, Pi receives all the shares
associated with its output wire and reconstructs its output, yi.

The invariant maintained in the original BGW protocol is that each wire in
the circuit, carrying some value a, is secret-shared among the parties using some
random polynomial A(x) of degree-t with a as its constant term. We follow the
invariant of [3], and in our protocol, the parties hold bivariate sharing and not
univariate sharing. That is, the secret is hidden using a bivariate polynomial
A(x, y) of degree-t in both variables in which the share of each party Pi is
defined as A(x, αi), A(αi, y), where αi is the evaluation point associated with
Pi. Maintaining bivariate sharing instead of univariate sharing removes one of
the building blocks in the original BGW protocol, where parties sub-share their
shares to verify that all the shares lie on a polynomial of degree-t. Obtaining
bivariate sharing essentially comes for free. In particular, when parties share a
value, they use a verifiable secret sharing protocol (VSS, see Sect. 2.2) [15,23,24],
which uses bivariate sharing to verify that all the shares are consistent. However,
in BGW, the parties then disregard this bivariate sharing and project it to
univariate sharing. We just keep the shares in the bivariate form.

The Multiplication Protocol. In the input sharing phase, each party simply shares
its input using the BGW’s VSS protocol. Emulating the computation of addition
gates is easy using linearity of the secret sharing scheme. The goal in the multi-
plication protocol is to obtain bivariate sharing of the value of the output wire
of the multiplication gate using the shares on the input wires. Let a, b be the two
values on the input wires, hidden with polynomials A(x, y), B(x, y), respectively.
The protocol proceeds as follows:

1. Each party Pi holds shares fa
i (x) = A(x, αi) and f b

i (x) = B(x, αi), each are
univariate polynomials of degree-t. Each party Pi shares a bivariate polyno-
mial Ci(x, y) of degree-t such that Ci(0, 0) = fa

i (0) · f b
i (0).

2. Using a verification protocol, each party Pi proves in perfect zero knowledge
that Ci(0, 0) = fa

i (0) · f b
i (0). We elaborate on this step below.

3. Given the shares on all (degree-t) polynomials C1(x, y), . . . , Cn(x, y), the par-
ties compute shares of the polynomial C(x, y) def=

∑n
i=1 λi · Ci(x, y), where

λ1, . . . , λn are the Lagrange coefficients, by simply locally computing a linear
combination of the shares they obtained in the previous step.

To see why this protocol is correct, observe that since each one of the polynomials
C1(x, y), . . . , Cn(x, y) is a polynomial of degree-t, then the resulting polynomial
C(x, y) is also a polynomial of degree-t. Moreover, define h(y) def= A(0, y) ·B(0, y)
and observe that h(y) is a polynomial of degree-2t satisfying h(0) = A(0, 0) ·
B(0, 0) = ab. It holds that ab = λ1 · h(α1) + . . . + λn · h(αn). Thus,

C(0, 0) def=
n∑

i=1

λi · Ci(0, 0) =
n∑

i=1

λi · fa
i (0) · f b

i (0) =
n∑

i=1

λi · h(αi) = ab ,

74 I. Abraham et al.

as required. Crucially, each Ci(x, y) must hide h(αi) = fa
i (0) ·f b

i (0) as otherwise
the above linear combination would not result with the correct constant term.
This explains the importance of the verification protocol.

BGW’s verification protocol. In the verification protocol, the dealer holds the
univariate polynomials fa

i (x), f b
i (x) and a polynomial Ci(x, y), and each party

Pj holds a share on those polynomials, that is, points fa
i (αj), f b

i (αj) and degree-
t univariate polynomials Ci(x, αj), Ci(αj , y). The parties wish to verify that
Ci(0, 0) = fa

i (0) · f b
i (0).

Towards that end, the dealer defines random degree-t polynomials D1, . . . , Dt

under the constraint that

Ci(x, 0) = fa
i (x) · f b

i (x) −
t∑

�=1

x� · D�(x, 0) . (1)

As shown in [3,7], the dealer can choose the polynomials D1, . . . , Dt in a special
way so as to cancel all the coefficients of degree higher than t of fa

i (x) ·f b
i (x) and

to ensure that Ci(x, y) is of degree t. The dealer verifiably shares the polynomials
D1, . . . , Dt with all parties, and then each party Pk verifies that the shares
it received satisfy Eq. (1). If not, it complaints against the dealer. Note that
at this point, since all polynomials Ci,D1, . . . , Dt are bivariate polynomial of
degree-t, and fa

i (x), f b
i (x) are univariate polynomials of degree-t, it is possible

to reconstruct the shares of any party Pk without the help of the dealer. The
parties can then unequivocally verify the complaint. If a complaint was resolved
to be a true complaint, the dealer is dishonest, we can reconstruct its points and
exclude it from the protocol. If the complaint is false, we can also eliminate the
complaining party.

An honest dealer always distributes polynomials that satisfy Eq. (1). For the
case of a corrupted dealer, the term fa

i (x) · f b
i (x) − ∑t

�=1 x� · D�(x, 0) defines a
univariate polynomial of degree at most 2t for every choice of degree-t bivariate
polynomials D1, . . . , Dt. If this polynomial agrees with the polynomial Ci(x, 0)
for all honest parties, i.e., on 2t + 1 points, then those two polynomials are
identical, and thus it must hold that Ci(0, 0) = fa

i (0) · f b
i (0), as required.

2.2 Our Protocol

Simplifying the Verification Protocol. In the above verification protocol, the
dealer distributes t polynomials D1, . . . , Dt using VSS. We show how to use
a more efficient technique for accomplishing the verification task. Namely, we
introduce a weak secret sharing protocol, for sharing a polynomial D(x, y) of
degree-2t in x and degree-t in y. The dealer then chooses a single random poly-
nomial D(x, y) under the constraint that:

Ci(x, 0) = fa
i (x) · f b

i (x) − D(x, 0) (2)

The dealer distributes D(x, y) and the parties jointly verify that (a) Eq. (2)
holds and (b) that D(0, 0) = 0.

Efficient Perfectly Secure Computation with Optimal Resilience 75

Our weak secret sharing protocol for distributing such D(x, y) has the same
complexity as verifiable secret sharing of a degree-t polynomial, and therefore we
improve by a factor of t = O(n). The secret sharing is weak in the sense that
the parties cannot necessarily reconstruct the secret from the shares without
the help of the dealer during the reconstruction. However, the verifiability part
guarantees that there is a well-defined polynomial that can be reconstructed (or,
if the dealer does not cooperate, then no polynomial would be reconstructed).
Since the role of the polynomial D(x, y) is just in the verification phase and
requires the involvement of the dealer, to begin with, this weak verifiability
suffices. If the dealer does not cooperate during the verification phase, then the
parties can reconstruct its inputs and resume the computation on its behalf.

Our Weak Secret Sharing. Our weak verifiable secret sharing protocol is similar
to the BGW verifiable secret sharing protocol. Introducing modifications to the
protocol enables sharing of a polynomial of a higher degree, but in that case –
satisfies only weak verifiability. We start with an overview of the verifiable secret
sharing protocol and then describe our weak secret sharing protocol.

The Verifiable Secret Sharing Protocol. In a nutshell, the verifiable secret sharing
protocol of BGW (with the simplifications of [23]) works as follows:

1. Sharing: The dealer wishes to distribute shares of a polynomial D(x, y) of
degree t in both variables. The dealer sends to each party Pi the degree-t
univariate polynomials fi(x) = D(x, αi) and gi(y) = D(αi, y).

2. Exchange sub-shares:
Each party Pi sends to party Pj the pair (fi(αj), gi(αj)). Note that if indeed
the dealer sent correct shares, then fi(αj) = D(αj , αi) = gj(αi) and gi(αj) =
D(αi, αj) = fj(αi). If a party does not receive from Pj the shares it expects
to receive, then it broadcasts a complaint. The complaint has the form of
complaint(i, j, fi(αj), gi(αj)), i.e., Pi complaints that it receives from Pj wrong
points, and publishes the two points that it expected to receive, corresponding
to the information it had received from the dealer.

3. Complaint resolution – the dealer: The dealer publicly reveals all the
shares of all parties that broadcast false complaints – i.e., if party Pi com-
plaints with points different than those given in the first round, then the
dealer makes the share (fi(x), gi(y)) public.

4. Vote: The parties vote that whatever they saw is consistent. A party is
happy with its share and broadcasts good if: (a) Its share was not publicly
revealed. (b) The dealer resolved all conflicts the party saw in the exchange
sub-shares phase, i.e., all its complaints were resolved by the dealer by publicly
opening the other parties’ shares. (c) All shares that the dealer broadcasts
are consistent with its shares. (d) There are no parties (j, k) that complain
of each other, and the dealer did not resolve at least one of those complaints.
If 2t+1 parties broadcast good then the parties accept the shares. A party that
its share was publicly revealed updates its share to be the publicly revealed
one.

76 I. Abraham et al.

Note that if more than 2t+1 parties broadcast good then more than t+1 hon-
est parties are happy with their shares. Those shares determine a unique bivariate
polynomial of degree-t. Moreover, any polynomial that is publicly revealed must
be consistent with this bivariate polynomial, as agreeing with the points of t+1
honest parties uniquely determine a polynomial of degree-t.

Weak Secret Sharing. Consider this protocol when the dealer shares a poly-
nomial D(x, y) that is of degree-2t in x and degree-t in y, i.e., D(x, y) =
∑2t

i=0

∑t
j=0 di,jx

iyj for some set of coefficients {di,j}i,j . Here, if t + 1 honest
parties are happy with their shares and broadcast good, their polynomials also
define a unique polynomial D(x, y) of degree-2t in x and degree-t in y. However,
if there is a complaint and the dealer opens some party’s share, since fi(x) is
of degree-2t it is not sufficient that these t + 1 honest parties agree with that
polynomial fi(x), and fi(x) might still be “wrong”. This implies that the hon-
est parties cannot identify whether their shares are compatible with the shares
of the other honest parties (that their shares were publicly revealed), and fur-
ther verification is needed, which seems to trigger more rounds of complaints.
Guaranteeing all honest parties obtain consistent shares is a more challenging
task.

To keep the protocol constant round, we therefore take a different route and
do not require the dealer to publicly open any of the fi(x) polynomials! Still, it
has to publicly open only the gi(y) polynomials, as those are of degree-t. Each
honest party broadcasts good only if the same conditions as in VSS are met.
At the end of this protocol, some honest parties might not hold fi(x) shares
on the polynomial D(x, y). Those parties will not participate in the reconstruc-
tion protocol. In the reconstruction phase, since the corrupted parties might
provide incorrect shares and since some honest parties do not have shares, we
cannot guarantee reconstruction of the polynomial D(x, y) without the help of
the dealer. However, we can guarantee that only the polynomial D(x, y) can be
reconstructed, or no polynomial at all.

Concluding the Multiplication Protocol. Recall that in our protocol, the parties
also have to jointly verify that (a) Eq. 2 holds, and that (b) that D(0, 0) = 0.
We now elaborate on those two steps.

To verify that the polynomial D(x, y) satisfies D(x, 0) = fa
i (x) · f b

i (x) −
Ci(x, 0), each party Pj simply checks that its own shares satisfy this condition,
i.e., whether D(αj , 0) = fa

i (αj) · f b
i (αj) − Ci(αj , 0). Note that if this holds for

2t + 1 parties, then the two polynomials are identical. Each party Pj checks its
own shares, and if the condition does not hold then it broadcasts complaint(j).
With each complaint the dealer has to publicly reveal the shares of Pj . Since all
those polynomials were shared using (weak or strong) verifiable secret sharing,
the parties can easily verify whether the shares that the dealer opens are correct
or not.

To check that D(0, 0) = 0, the parties simply reconstruct the polynomial
D(0, y). This is a polynomial of degree-t and it can be reconstructed (with the
help of the dealer, as D is shared using a weak secret sharing scheme). Moreover,

Efficient Perfectly Secure Computation with Optimal Resilience 77

it does not reveal any information on the polynomials fa
i (x), f b

i (x), Ci(x, 0): In
case of an honest dealer, the adversary already holds t shares on the polynomial
D(0, y) and it always holds that D(0, 0) = 0, since the dealer is honest.

2.3 Extensions

Our zero knowledge verification protocol allows the dealer to prove that its shares
of a, b, c satisfy the relation c = ab. The cost of the protocol is proportional to a
constant number of VSSs. We show an extension of the protocol allowing a dealer
that its shares of (x1, . . . , xL), (y1, . . . , yM) satisfy (y1, . . . , yM) = G(x1, . . . , xL),
where G is any circuit of multiplication depth 1 (i.e., a degree-2 polynomial).
The communication complexity of the protocol is O(L+M) VSSs and not O(|G|)
VSSs (where —G— is the number of multiplication gates in the circuit G). This
allows computing the circuit in a layer-by-layer fashion and not gate-by-gate and
leads to sub-linear communication complexity for circuits where |G| ∈ ω(L+M).

2.4 Organization

The rest of the paper is organized as follows. In Sect. 3 we provide preliminaries
and definitions. In Sect. 4 we cover our weak verifiable secret sharing, strong
verifiable secret sharing and some extensions. Our multiplication protocol (with
a dealer) is provided in Sect. 5 and its generalization to arbitrary gates with
multiplicative gate 1 is given in Sect. 6. In the full version of the paper we
provide the missing proofs, as well as an overview of how the dealer is removed
and how to compute a general function, following the BGW approach.

3 Preliminaries

Notations. We denote {1, . . . , n} by [n]. We denote the number of parties by n
and a bound on the number of corrupted parties by t. Two random variables
X and Y are identically distributed, denoted as X ≡ Y , if for every z it holds
that Pr[X = z] = Pr[Y = z]. Two parametrized distributions D1 = {D1(a)}a

and D2 = {D2(a)}a are said to be identically distributed, if for every a the two
random variables (a,D1(a)), (a,D2(a)) are identically distributed.

3.1 Definitions of Perfect Security in the Presence of Malicious
Adversaries

We follow the standard, standalone simulation-based security of multiparty com-
putation in the perfect settings [2,10,26]. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party functionality and let π be an n-party protocol over ideal (i.e., authen-
ticated and private) point-to-point channels and a broadcast channel. Let the
adversary, A, be an arbitrary machine with auxiliary input z, and let I ⊂ [n]
be the set of corrupted parties controlled by A. We define the real and ideal
executions:

78 I. Abraham et al.

– The real execution: In the real model, the parties run the protocol π where
the adversary A controls the parties in I. The adversary cannot modify mes-
sages sent over the point-to-point channel. The adversary is assumed to be
rushing, meaning that in every round it can see the messages sent by the
honest parties before it determines the message sent by the corrupted par-
ties. We denote by REALπ,A(z),I(�x) the random variable consisting of the view
of the adversary A in the execution (consisting of all the initial inputs of the
corrupted parties, their randomness and all messages they received), together
with the output of all honest parties.

– The ideal execution: The ideal model consists of all honest parties, a
trusted party and an ideal adversary SIM, controlling the same set of cor-
rupted parties I. The honest parties send their inputs to the trusted party.
The ideal adversary SIM receives the auxiliary input z and sees the inputs of
the corrupted parties. SIM can substitute any xi with any x′

i of its choice (for
the corrupted parties) under the condition that |x′

i| = |xi|. Once the trusted
party receives (possibly modified) inputs (x′

1, . . . , x
′
n) from all parties, it com-

putes (y1, . . . , yn) = f(x′
1, . . . , x

′
n) and sends yi to Pi. The output of the ideal

execution, denoted as IDEALf,SIM(z),I(�x) is the output of all honest parties
and the output of the ideal adversary SIM.

Definition 3.1. Let f and π be as above. We say that π is t-secure for f if
for every adversary A in the real world there exists an adversary SIM with
comparable complexity to A in the ideal model, such that for every I ⊂ [n] of
cardinality at most t it holds that

{
IDEALf,SIM(z),I(�x)

}
z,�x

≡ {
REALπ,A(z),I(�x)

}
z,�x

where �x is chosen from ({0, 1}∗)n such that |x1| = . . . = |xn|.

Corruption-aware Functionalities. The functionalities that we consider are
corruption-aware, namely, the functionality receives the set I of corrupted par-
ties. We refer the reader to [2, Section 6.2] for further discussion and the necessity
of this when proving security.

Reactive Functionalities, Composition and Fybrid-world. We also consider more
general functionalities where the computation takes place in stages, where the
trusted party can communicate with the ideal adversary (and sometimes also
with the honest parties) in several stages, to obtain new inputs and send outputs
in phases. See [26, Section 7.7.1.3].

The sequential modular composition theorem is an important tool for ana-
lyzing the security of a protocol in a modular way. Assume that πf is a pro-
tocol that securely computes a function f that uses a subprotocol πg, which in
return securely computes some functionality g. Instead of showing directly that
πf securely computes f , one can consider a protocol πg

f that does not use the
subprotocol πg but instead uses a trusted party that ideally computes g (this
is called a protocol for f in the g-hybrid model). Then, by showing that (1)

Efficient Perfectly Secure Computation with Optimal Resilience 79

πg securely implements g, and; (2) πg
f securely implements f , we obtain that

the protocol πf securely implements f in the plain model. See [10] for further
discussion.

Remark 3.2 (Input assumption). We sometimes present functionalities in
which we assume that the inputs satisfy some guarantee, for instance, that all
points of the honest parties lie on the same degree-t polynomial. We remark that
if the input assumption does not hold, then no security guarantees are obtained.
This can be formalized as follows: In case that the condition does not hold (and
the functionality can easily verify that), then it gives all the honest parties’ inputs
to the adversary and let the adversary singlehandedly determine all of the outputs
of the honest parties. Clearly, any protocol can then be simulated. Note, however,
that we always invoke the sub-protocols when the input assumptions are satisfied.

3.2 Robust Secret Sharing

Let F be a finite field of order greater than n, let α1, . . . , αn be any distinct non-
zero elements from F and denote �α = (α1, . . . , αn). For a polynomial q, denote
Eval�α(q) = (q(α1), . . . , q(αn)). The Shamir’s t + 1 out of n sharing scheme [37]
consists of two procedure Share and Reconstruct as follows:

– Share(s). The algorithm is given s ∈ F, then it chooses t independent uni-
formly random elements from F, denoted q1, . . . , qt, and defines the polyno-
mial q(x) = s +

∑t
i=1 qtx

t. Finally, it outputs Eval�α(q) = (q(α1), . . . , q(αn)).
Define si = q(αi) as the share of party Pi.

– Reconstruct(�s). For a set J ⊆ [n] of cardinality at least t + 1, let �s = {si}i∈J .
Then, the algorithm reconstructs the secret s.

Correctness requires that every secret can be reconstructed from the shares for
every subset of shares of cardinality t + 1, and secrecy requires that every set
of less than t shares is distributed uniformly in F. We refer to [2] for a formal
definition.

Reed Solomon Code. Recall that a linear [n, k, d]-code over a field F is a code of
length n, dimension k and distance d. That is, each codeword is a sequence of
n field elements, there are in total |F|k different codewords, and the Hamming
distance of any two codewords is at least d. Any possible corrupted codeword ĉ
can be corrected to the closest codeword c as long as d(c, ĉ) < (d − 1)/2, where
d(x, y) denote the Hamming distance between the words x, y ∈ F

n.
In Reed Solomon code, let m = (m0, . . . ,mt) be the message to be encoded,

where each mi ∈ F. The encoding of the message is essentially the evaluation of
the degree-t polynomial pm(x) = m0 + m1x + . . . + mtx

t on some distinct non-
zero field elements α1, . . . , αn. That is, Encode(m) = (p(α1), . . . , p(αn)). The
distance of this code is n − t. This is because any two distinct polynomials of
degree-t can agree at most t points. We have the following fact:

80 I. Abraham et al.

Fact 3.3. The Reed-Solomon code is a linear [n, t + 1, n − t] code over F.
In addition, there exists an efficient decoding algorithm that corrects up to
(n − t − 1)/2 errors. That is, for every m ∈ F

t+1 and every x ∈ F
n such that

d(x,C(m)) ≤ (n − t − 1)/2, the decoding algorithm returns m.

For the case of t < n/3 we get that is is possible to efficiently correct up to
(3t+1− t− 1)/2 = t errors. Putting it differently, when sharing of a polynomial
of degree-t, if during the reconstruction t errors were introduced by corrupted
parties, it is still possible to recover the correct value.

3.3 Bivariate Polynomial

We call a bivariate polynomial of degree q in x and degree t in y as (q, t)-bivariate
polynomial. If q = t then we simply call the polynomial as degree-t bivariate
polynomial. Such a polynomial can be written as follows:

S(x, y) =
q∑

i=0

t∑

j=0

ai,jx
iyj .

Looking ahead, in our protocol we will consider degree-t bivariate polynomials
and degree (2t, t)-bivariate polynomials. The proof of the following claim is given
in the full version of this paper:

Claim 3.4 (Interpolation). Let t be a nonnegative integer, and let α1, . . . , αt+1

distinct elements in F, and let f1(x), . . . , ft+1(x) be t+1 univariate polynomials
of degree at most q. Then, there exists a unique (q, t) bivariate polynomial S(x, y)
such that for every k = 1, . . . , t + 1: S(x, αk) = fk(x).

Symmetrically, one can interpolate the polynomial S(x, y) from a set of q +1
polynomials gi(y). The proof is similar to Claim 3.4.

Claim 3.5 (Interpolation). Let t be a nonnegative integer, and let α1, . . . , αq+1

distinct elements in F, and let g1(y), . . . , gq+1(y) be q +1 univariate polynomials
of degree at most t each. Then, there exists a unique (q, t) bivariate polynomial
S(x, y) such that for every k = 1, . . . , t + 1 it holds that S(αk, y) = gk(y).

Hiding. The following is the “hiding” claim, showing that if a dealer wishes
to share some polynomial h(x) of degree-q, it can choose a random (q, t)-
polynomial S(x, y) that satisfies S(x, 0) = h(x) and give each party Pi the
shares S(x, αi), S(αi, y). The adversary cannot learn any information about h
besides {h(αi)}i∈I , when it corrupts the set I ⊂ [n]. We prove the following two
claims in the full version of this paper:

Claim 3.6 (Hiding). Let h(x) be an arbitrary univariate polynomial of degree q,
and let α1, . . . , αk with k ≤ t be arbitrary distinct non-zero points in F. Consider
the following distribution Dist(h):

– Choose a random (q, t)-bivariate polynomial S(x, y) under the constraint that
S(x, 0) = h(x).

Efficient Perfectly Secure Computation with Optimal Resilience 81

– Output {(i, S(x, αi), S(αi, y))}i∈[k].

Then, for every two arbitrary degree-q polynomials h1(x), h2(x) for which
h1(αi) = h2(αi) for every i ∈ [k] it holds that Dist(h1) ≡ Dist(h2).

Claim 3.7 (Hiding II). Same as Claim 3.6, except that it holds that h1(0) =
h1(0) = β for some publicly known β ∈ F. The output of the distribution is
{(i, S(x, αi), S(αi, y))}i∈[k] ∪ {S(0, y)}.

4 Weak Verifiable Secret Sharing and Extensions

In this section we show how to adapt the verifiable secret sharing protocol of [7]
to allow weak secret sharing of a polynomial degree-t. We start with a description
of the verifiable secret sharing protocol and highlight the main differences for
getting a weak verifiable secret sharing protocol (sometimes we may omit the
‘verifiable’ and write only ‘weak secret sharing’). We formally define the weak
verifiable secret sharing in Sect. 4.2 and then strong VSS in Sect. 4.4. In our
formalization of weak secret sharing, not all parties are happy with their shares.
The set of parties that are happy with their shares is known to all parties,
and is part of the output of all parties. Their shares also uniquely define the
polynomial. Only parties that are happy with their shares will take part in the
reconstruction. Thus, the output of WSS is a set K of all parties that are happy
with their shares, where parties in k ∈ K also output their shares (i.e., a pair
fk(x), gk(y)), where parties i �∈ K just hold gi(y).

We remind that in BGW, after the parties verify the shares and obtain
fi(x), gi(y), they just project the bivariate shares to univariate shares by out-
putting fi(0). As mentioned, we will maintain bivariate sharing and the output
(fi(x), gi(y)) in the strong VSS variant of the protocol.

4.1 Verifying Shares of a (q, t)-Bivariate Polynomial

Protocol 4.1: Weak/Strong Verifiable Secret Sharing of a Polynomial

– Input: The dealer holds a bivariate polynomial S(x, y).
– Common input: The description of a field F and n non-zero distinct ele-

ments α1, . . . , αn ∈ F.
– The protocol:

1. Sharing – the dealer:
(a) Send to each party Pi the shares (fi(x), gi(y)) defined as fi(x) def=

S(x, αi), gi(y) def= S(αi, y).
2. Initial checks – each party Pi:

(a) If (1) fi(x) has degree greater than q; or (2) gi(y) has degree greater
than t; or (3) fi(αi) �= gi(αi) then broadcast complaint(i) and proceed
to step 5.

(b) Let R = {k | Pk broadcast complaint(k)}.

82 I. Abraham et al.

3. Exchange subshares – each party Pi for i �∈ R:
(a) Send (fi(αj), gi(αj)) to Pj for each j �∈ R.
(b) Let (uj , vj) be the values received from Pj , for j �∈ R. If no value was

received, then use (⊥,⊥). If uj �= gi(αj) or vj �= fi(αj) then broadcast
complaint(i, j, fi(αj), gi(αj)).

(c) If no party broadcasts complaint(i, j, ·, ·) and R = ∅, then2

VSS: Output (fi(x), gi(y)) and halt.
WSS: Output (fi(x), gi(y), [n]) and halt.

4. Resolve complaints – the dealer:
(a) If Pi that broadcasted complaint(i) in Step 2a, or broadcasted

complaint(i, j, u, v) with u �= S(αj , αi) or v �= S(αi, αj) then
VSS: Broadcast reveal(i, S(x, αi), S(αi, y)).
WSS: Broadcast reveal(i, S(αi, y)).

5. Evaluate complaint resolutions – each party Pi:
(a) Add to R all indices k for which the dealer broadcasted reveal(k, . . .).

If i ∈ R, then replace gi(y) with the one provided in the broadcasted
in reveal(i, ·, ·).

VSS: If i ∈ R, then rewrite also fi(x).
If i ∈ R then proceed to Step 6.

(b) Verify that the dealer replied to each complaint(k) message from
Step 2a with reveal(k, . . .). If not, proceed to Step 6.

(c) Upon viewing complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broad-
cast by Pk and Pj , respectively, with u1 �= v2 or v1 �= u2, mark (j, k)
as a joint complaint. If the dealer did not broadcast reveal(k, ·) or
reveal(j, ·), then go to Step 6.

(d) For every j ∈ R verify that fi(αj) = gj(αi),
VSS: and that gi(αj) = fj(αi).

If the verification does not hold for some j ∈ R, then go to Step 6.
(e) Broadcast the message good.

6. Output: Let K be the set of of all parties that broadcast good and are
not in R. If |K| < 2t + 1, then output ⊥. Otherwise,

VSS: Output (fi(x), gi(y)).
WSS: Each party Pk for k ∈ K outputs (fi(x), gi(y),K). All other
parties output (gi(y),K).

It is easy to see that in the optimistic case, when there are no cheats, the
protocol ends at Step 3c and incurs a communication overhead of O(n2) point-to-
point messages and no broadcast. In the pessimistic (worst) case, however, there
may be O(n) and O(n2) complaints (broadcasts) in Steps 2a and 3b, respectively.
Then, in step 4, there are O(n) messages of total size O(n2) that are broadcasted

2 We use two rounds of silence as an optimistic early stopping agreement on no com-
plaints. We then combine this with a standard termination protocol that uses either
the fast decision or the broadcast decision. It is easy to see that there will be no
conflict between the two.

Efficient Perfectly Secure Computation with Optimal Resilience 83

by the dealer (i.e. in order to reveal the polynomials of at most t parties who
placed their complaint). Finally, there are O(n) broadcast of the message good
if the secret sharing is successfully verified. Overall, the pessimistic case incurs a
communication overhead of O(n2) point-to-point messages and O(n2) broadcast
messages.

4.2 Weak Verifiable Secret Sharing

In weak verifiable secret sharing, the dealer wishes to distribute shares to all
parties, and then allow reconstruction only if it takes part in the reconstruction.
The result of the reconstruction can be either a unique, well-defined polynomial
which was determined in the sharing phase, or ⊥.

Functionality 4.2: FWSS – Weak Verifiable Secret Sharing Functional-
ity
The functionality receives a set of indices I ⊂ [n] and works as follows:

– If the dealer is honest (1 �∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1.
2. Send to the ideal adversary the shares {S(x, αi), S(αi, y)}i∈I .
3. Receive back from the adversary the set I ′ ⊆ I and define K = ([n]\I)∪I ′.

– If the dealer is corrupted (1 ∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1.
2. Receive a set K ⊆ [n] of cardinality at least 2t + 1.
3. Verify that S(x, y) is of degree (q, t). If verification fails, overwrite K = ⊥.

– Output: Send K to all parties. Moreover, for every k ∈ K, send
S(x, αk), S(αk, y) to Pk. For every j �∈ K, send Pj the polynomial S(αk, y).

Theorem 4.3. Let t < n/3. Then, Protocol 4.1: when using the WSS branch is
t-secure for the fWSS functionality (Functionality 4.2) in the presence of a static
malicious adversary. The protocol incurs O(n2) point-to-point messages in the
optimistic case and additional O(n2) broadcast messages in the pessimistic case.

Proof. Let A be an adversary in the real world. We have two cases, depending on
whether the dealer is corrupted or not. We note that the protocol is deterministic,
as well as the functionality.

Case 1: The Dealer is Honest. In this case in the ideal execution, the honest
parties always hold shares of a polynomial S(x, y) that is of degree (q, t). We
describe the simulator SIM.

84 I. Abraham et al.

The simulator SIM.

1. SIM invokes the adversary A on the auxiliary input z.
2. SIM receives from the trusted party the polynomials of the corrupted par-
ties, that is, fi(x), gi(y), and the simulates the protocol execution for A:

(a) Sharing: Simulate sending the shares fi(x), gi(y) to each Pi, i ∈ I,
as coming from the dealer P1.
(b) Initial checks: Initialize R = ∅. An honest party never broadcasts
complaint(i). If the adversary broadcast complaint(i), then add i to R.
(c) Exchange subshares: send to the adversary A the shares
gi(αj), fi(αj) from each honest party Pj, for each corrupted party i ∈ I\R.
Receive from the adversary A the points (ui,j , vi,j) that are supposed to
be sent from Pi to Pj, for i ∈ I \ R and j �∈ I.
(d) Broadcast complaints: The simulator checks the points (ui,j , vi,j)
that the adversary sent in the previous step. If ui,j �= fi(αj) or vi,j �=
gi(αj) then SIM simulates a broadcast of complaint(j, i, gi(αj), fi(αj))
as coming from party Pj.
Moreover, receive complaint(i, j, u, v) broadcast messages from the adver-
sary.
If the adversary does not broadcast any reveal message and no complaint
message was broadcasted by any party, then send I to the trusted party,
and halt.
(e) Resolve complaints – the dealer: The dealer never reveals the
shares of honest parties. For every complaint(i, j, u, v) message received
from the adversary, check that u = fi(αj) and v = gi(αj).
If not, then broadcast reveal(i, gi(y)) as coming from the dealer, and add
i ∈ R. Moreover, if there was a complaint(i) in the initial checks step,
then broadcast reveal(i, gi(y)).
(f) Evaluate complaint resolutions: Simulate all honest parties broad-
cast good. Let I ′ be the set of corrupted parties that broadcast good.

3. The simulator sends I ′ \ R to the trusted party.

It is easy to see by inspection of the protocol, and by inspection of the
simulation, and since the two are deterministic, that the view of the adversary
in the real and ideal execution is equal. Our next goal is to show that the output
of the honest parties is the same in the real and ideal executions.

In the optimistic case, where no reveal(i) messages are broadcasted by the
dealer, and there are no complaint messages by any party, then in the real exe-
cution the output of all honest parties is [n] and likewise, in the simulation the
simulator sends I to the trusted party, which then sends [n] to all parties.
We now consider the case where there are complaints and there is a vote. An
honest party Pj broadcasts good if all the following conditions are met:

1. The polynomial fj(x) has degree at most 2t, gj(y) has degree at most t and
fj(αj) = gj(αj). An honest party Pj therefore never broadcasts complaint(j).

2. While resolving complaints, the dealer never broadcasts reveal(j).
3. Each complaint(k) message is replied by the dealer with reveal(k, ·) message.

Efficient Perfectly Secure Computation with Optimal Resilience 85

4. All reveal(i, gi(y)) messages broadcasted by the dealer satisfy fj(αi) = gi(αj).
5. The dealer resolves all joint complaints.

It is easy to see that all those conditions are met in the case of an honest
dealer. In particular: (1) is true by the assumption on the inputs; (2) An honest
party never broadcasts complaint with the values it received from the dealer; As a
result, according to our input assumption, the dealer never broadcasts reveal(j);
(3) True by inspection of the code of the dealer; (4) When the dealer broadcasts
a polynomial it always agrees with fj(x) initially given to Pj ; (5) By the dealer’s
code specifications, it resolves all joint complaints.

Therefore, in the real execution all honest parties broadcast good, and some
additional parties I ′ ⊆ I that the adversary controls might also broadcast good.
Then, all honest parties exclude from this set the parties in R, and output it.
Since the view of the adversary is equal in the ideal execution, the same parties in
the simulated ideal execution broadcast good. Let I ′ ⊆ I be the set of corrupted
parties that broadcast good. The simulator sends I ′ \ R to the trusted party,
which then defines K to be ([n] \ I) ∪ (I ′ \ R), i.e., all honest parties and all
corrupted parties that broadcast good, excluding those that are in R. Thus, the
outputs of the honest parties in the real and ideal are identical.

Case 2: The Dealer is Corrupted. The proof of this case is deferred to the full
version of this paper.

��

4.3 Evaluation with the Help of the Dealer

We show how the parties can recover the secret polynomial using the help of
the dealer. Towards that end, we show how the parties can evaluate polynomial
gβ(y) for every β ∈ E, where E is a set of elements in F. By taking E to be of
cardinality q + 1, it is possible to completely recover S (see Claim 3.5). When
we are only interested in the constant term of S, we take E = {0} to obtain
g(y) = S(0, y) and then output g(0). The polynomial can be recovered with the
help of the dealer. Looking ahead, in Protocol 5.2: in the optimistic case we
will use just E = {0}. In the pessimistic case, E will contain another indices of
parties that raised a complaint against the dealer.

Functionality 4.4: FWEval: Evaluation of a polynomial in Weak VSS
The functionality receives a set of indices I ⊆ [n] and works as follows:

1. The functionality receives the sets (K,E) from all honest parties, where E
is a set of elements in F. Moreover, for every k ∈ ([n] \ I) ∩ K it receives
the polynomial fk(x) from Pk. The dealer holds a polynomial S′ of degree
(q, t). When the dealer is honest, it is guaranteed that the indices of all honest
parties are included in K.

86 I. Abraham et al.

2. The functionality reconstructs the unique (q, t) bivariate polynomial S that
agrees with the shares of the honest parties. When the dealer is honest it
always holds that S′ = S. Note that if the shares do not define a unique
polynomial, then no security is guaranteed3.

3. If the dealer is honest (1 �∈ I) then send S(x, αi), S(αi, y) for every i ∈ I
together with the set E to the ideal adversary. Moreover, send the set of
polynomials {S(β, y)}β∈E to all parties (and the ideal adversary).

4. If the dealer is corrupted (1 ∈ I) then:
(a) Send the polynomial S(x, y) to the ideal adversary together with

(K, {S(β, y)}β∈E).
(b) Receive either ok or ⊥ from the ideal adversary.
(c) If ok, then send {S(β, y)}β∈E to all parties, and otherwise, send ⊥ to all

parties.

Protocol 4.5: Evaluation of a polynomial in Weak VSS

– Input: All parties hold a set K ⊆ [n] and a set E of elements in F. Each
party Pk with k ∈ K holds fk(x). The dealer holds also a polynomial S(x, y).

– Input guarantees: When the dealer is honest, the indices of all honest
parties are included in K.

– The protocol:
1. The dealer broadcasts {S(β, y)}β∈E .
2. Each party Pk with k ∈ K checks that the broadcasted polynomials are

of degree at most t, and that S(β, αk) = fk(β) for every β ∈ E. If so, it
broadcast good.

3. Output: If 2t + 1 parties in K broadcast good, then output the message
broadcasted by the dealer. Otherwise, output ⊥.

We prove the following theorem in the full version of this paper:

Theorem 4.6. Let t < n/3. Protocol 4.5: is t-secure for the FWEval functionality
(Functionality 4.4:) in the presence of a static malicious adversary. The protocol
incurs O(n · |E|) broadcast field elements.

Remark 4.7. (On the optimistic case of Protocol 4.5:). In the optimistic case,
we can implement Protocol 4.5: without any broadcast messages and with O(n2)
field elements over the point-to-point channels. Specifically, in the optimistic case
of the entire protocol (Protocol 5.2:) we have that K = [n] and E = {0}. Each
party Pk can send on the point-to-point channel to every other party Pj the
message fk(0). Then, each party Pj uses the Reed Solomon decoding procedure
to obtain the unique degree-t polynomial gβ(y) satisfying g0(α) = γk, where γk is
the point received from party Pk. Since there are 2t+1 honest parties in K, and
since S(0, y) is guaranteed to be a polynomial of degree-t, reconstruction works.
3 In that case, we simply give the adversary all inputs of all honest parties which makes

any protocol vacuously secure as anything can be easily simulated, see Remark 3.2.

Efficient Perfectly Secure Computation with Optimal Resilience 87

4.4 Strong Verifiable Secret Sharing

We provide the functionality for strong verifiable secret sharing, and prove its
security. The main difference from [2] is that the output is the two univari-
ate polynomials and not the projection to univariate sharing, and we therefore
provide a proof for completeness in the full version of this paper.

Functionality 4.8: Strong Verifiable Secret Sharing

– Input: Receive S(x, y) from the dealer P1.
– Output: If S(x, y) is of degree-t in both variables, then send

(S(x, αi), S(αi, y)) to each party Pi. Otherwise, send ⊥.

Theorem 4.9. Let t < n/3. Then, Protocol 4.1: when using the VSS branch
and with q = t is t-secure for the fVSS functionality (Functionality 4.8:) in the
presence of a static malicious adversary. The protocol incurs O(n2) field elements
in the point-to-point channels in the optimistic case and additional O(n2) field
elements on the broadcast channel in the pessimistic case.

Evaluation. Once a polynomial was shared using strong VSS, we use Function-
ality 4.4: to evaluate points on the polynomial with the help of the dealer. Note
that in this case we have that q = t. Moreover, the parties use K = [n]. Note
that K might now not be the same group of parties that broadcast good when
the polynomial was shared, yet, since all honest parties hold shares (fj(x), gj(y))
it is safe to use K = [n]. Thus, to evaluate points E on a polynomial that was
shared with VSS can be implemented using O(n|E|) field messages broadcasted,
as in Theorem 4.6.

4.5 Extending Univariate Sharing to Bivariate Sharing
with a Dealer

Sometimes each party Pi holds a share h(αi) of some univariate degree-t polyno-
mial h(x). The following functionality allows a dealer, who holds h, to distribute
shares of a bivariate polynomial S(x, y) satisfying S(x, 0) = h(x). The protocol
is very simple, demonstrating the advantage for working with bivariate sharing.
This is the functionality F̃extend from [3]:

Functionality 4.10: FExtend: Extending Univariate Sharing to Bivariate
Sharing
The functionality receives the set of corrupted parties I ⊂ [n] and works as
follows:

– Input: The functionality receives the shares of the honest parties {uj}j �∈I .
Let h(x) be the unique degree-t polynomial determined by the points (αj , uj)
for every j �∈ I. If no such polynomial exists then no security is guaranteed.

88 I. Abraham et al.

– If the dealer is corrupted then send h(x) to the ideal adversary.
– Receive S(x, y) from the dealer. Check that S(x, y) is of degree-t and that

S(x, 0) = h(x).
– If both conditions hold, then send to S(x, αi), S(αi, y) to Pi for every i. Oth-

erwise, send ⊥ to everyone.

Protocol 4.11: Implementing FExtend in the FV SS-hybrid model

– Input: Each party holds uj . The dealer holds S(x, y) and h(x).
– The protocol:

1. The dealer uses FV SS to distribute S(x, y).
2. Each party Pi receives (fi(x), gi(y)) def= (S(x, αi), S(αi, y)). If instead ⊥

was received, then output ⊥ and halt.
3. Each party Pi verifies that gi(0) = uj . If not, it broadcast complaint(i).
4. Output: If there are more than t complaints, then output ⊥. Otherwise,

output (fi(x), gi(y)).

The communication cost of the protocol is the same as Protocol 4.1: for VSS.
Note that in the optimistic case there are no complaints, and thus there are no
additional broadcast messages. We provide a proof of the following theorem in
the full version paper.

Theorem 4.12. Let t < n/3. Then, Protocol 4.11: is t-secure for the FExtend

functionality (Functionality 4.10:) for in the presence of a static malicious adver-
sary, in the FV SS-hybrid model. The protocol incurs O(n2) point-to-point mes-
sages in the optimistic case and additional O(n2) broadcast messages in the
pessimistic case.

5 Multiplication with a Constant Number of VSSs
and WSSs

We now turn to the multiplication protocol. The multiplication protocol is
reduced to multiplication with a dealer, i.e., when one dealer holds two uni-
variate polynomials fa(x), f b(x), each party holds a share on those polynomials,
and the dealer wishes to distribute a polynomial C(x, y) of degree-t in both vari-
ables in which C(0, 0) = fa(0) · f b(0). We refer the reader to the full version of
this paper to see how this functionality suffices to compute any multiplication
gate (i.e., when there is no dealer). In Sect. 5.1 we show the functionality of this
building block, in Sect. 5.2 we show the protocol that realizes it.

Efficient Perfectly Secure Computation with Optimal Resilience 89

5.1 Functionality – Multiplication with a Dealer

Functionality 5.1: Functionality F mult
V SS for sharing a product of shares

F mult
V SS receives a set of indices I ⊆ [n] and works as follows:

1. Receive a pair of points (uj , vj) ∈ F
2 from Pj .

2. Compute the unique degree-t univariate polynomials fa(x) and fb(x) satisfying fa(αj) =
uj and fb(αj) = vj for every j �∈ I. (if no such polynomials fa or fb exist, then no security
is guaranteed).

3. If the dealer P1 is honest (1 /∈ I), then:
(a) choose a random degree-t bivariate polynomial C(x, y) under the constraint that

C(0, 0) = fa(0) · fb(0).
(b) Output for honest: send C(x, y) to P1, and C(x, αj), C(αj , y) to Pj for every j /∈ I.
(c) Output for adversary: send fa(αi), f

b(αi), C(x, αi), C(αi, y) to the (ideal) adversary,
for every i ∈ I.

4. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send fa(x), fb(x) to the (ideal) adversary.
(b) Receive a bivariate polynomial C as input from the (ideal) adversary.
(c) If either deg(C) > t or C(0, 0) �= fa(0) · fb(0), then reset C(x, y) = fa(0) · fb(0); that

is, C(x, y) is a constant polynomial that equals fa(0) · fb(0) everywhere.
(d) Output for honest: send C(x, αj), C(αj , y) to Pj , for every j /∈ I. (There is no more

output for the adversary in this case.)

5.2 The Protocol

As mentioned in the introduction, in our protocol the dealer distributes C(x, y)
using verifiable secret sharing, and then also distributes a random (2t, t)-
polynomial D(x, y) under the constraint that D(x, 0) = fa(x) · f b(x) − C(x, 0)
and that D(0, 0) = 0 by reconstructing the univariate polynomial D(0, y).

To verify that D(x, y) indeed satisfies this constraint, each party Pi verifies
that D(αi, 0) = fa(αi) · f b(αi) − C(αi, 0) using the shares it received from P1.
If the verification fails, it broadcasts a complaint and all parties reconstruct the
share of Pi. Since all polynomials are shared, it is possible to see whether the
complaint is justified. Moreover, if for all honest parties the verification holds,
then it must be that the two degree-2t polynomials, D(x, 0) and fa(x) · f b(x) −
C(x, 0) are equal, as they agree on 2t + 1 points.

Protocol 5.2: Computing Fmult
V SS in the (FV SS , FWSS , FExtend, FWEval) -

hybrid model

– Input:
1. The dealer P1 holds two degree-t polynomials fa(x), f b(x).
2. Each party Pi holds two points (ui, vi) = (fa(αi), f b(αi)).

– Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
– The protocol:

1. Sharing phase:
(a) P1 chooses a degree-t bivariate polynomial C(x, y) under the con-

straint that C(0, 0) = fa(0) · f b(0).

90 I. Abraham et al.

(b) P1 chooses a random degree (2t, t)-bivariate polynomial D(x, y) under
the constraint that D(x, 0) = fa(x) · f b(x) − C(x, 0).

(c) Invoke FV SS to share C(x, y), and let (fc
i (x), gc

i (y)) be the output of
Pi.

(d) Invoke FWSS to share D(x, y). Let K ⊆ [n] be the output of FWSS ,
such that each Pk for k ∈ K also receives (fd

k (x), gd
k(y)), and each

party Pj for j �∈ K receives gd
j (y).

(e) If ⊥ was received in any of the above, then proceed to Step 5b.
2. Verifying that D(x, 0) = fa(x) · fb(x) − C(x, 0):

(a) Each party Pi verifies that gd
i (0) = ui · vi − gc

i (0). If no, broadcast
complaint(i).

(b) If no party broadcasts a complaint, then proceed to Step 4.
3. Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E =
{αi}i∈R.

(b) P1 chooses two random degree-t bivariate polynomials, A,B under
the constraint that A(x, 0) = fa(x) and B(x, 0) = f b(x). The parties
run the FExtend functionality twice, where each party Pi inputs ui and
the dealer inputs A(x, y) in the first execution, and each party Pi

inputs vi and the dealer inputs B(x, y) in the second execution.
(c) The parties call to FWEval where each party Pi inputs (fa

i (x),
ga

i (y), E, [n]). Let (fa
j (x), ga

j (y)) be the result for every j ∈ R. Like-
wise, reconstruct (f b

j (x), gb
j(y)), (fc

j (x), gc
j(y)). If FWEval returned ⊥

in any one of the invocations, then proceed to Step 5b.
(d) The parties call to FWEval where all parties input K,E and each party

Pk for k ∈ K inputs also (fd
k (x), gd

k(y)). The output of FWEval is gd
i (y)

for every i ∈ R. If FWEval returned ⊥, then proceed to Step 5b.
(e) For every j �∈ K, all parties verify that gd

j (0) = ga
j (0) · gb

j(0) − gc
j(0).

If not, then proceed to Step 5b.
4. Verifying that D(0, 0) = 0:

(a) The parties call to FWEval where all parties input K, {0} and each
party Pk for k ∈ K inputs also (fd

k (x), gd
k(y)). The output of FWEval

is gd
0(y) = D(0, y) to all parties. If FWEval returned ⊥, then proceed

to Step 5b.
(b) Verify that gd

0(0) = 0. If not, proceed to Step 5b.
5. Finalization:

(a) Accept: If the dealer was not rejected, then each party Pi outputs
(fc

i (x), gc
i (y)).

(b) Reject: If the dealer is rejected, then each party Pi sends to Pj its
points ui, vi. The parties reconstruct the polynomials fa(x), f b(x)
using Reed-Solomon decoding, and define their output shares fc

i (x) =
gc

i (y) = fa(0) · f b(0).

Efficient Perfectly Secure Computation with Optimal Resilience 91

The communication cost of the entire sharing phase (Step 1) is equal to the
cost of a VSS/WSS, since it calls to FV SS for C and FWSS for D. Thus, it
completes with communication overhead of O(n2) over the point-to-point chan-
nels in the optimistic case and additional overhead of O(n2) over the broadcast
channel in the pessimistic case.

In Step 2, the optimistic case we have no complaints, no evaluation is
required, therefore, there is no communication cost. On the other hand, the
size of E may be O(n) in the worst case, which leads to O(n · |E|) = O(n2)
broadcasted field elements.

Finally, in Step 4 there is a reconstruction of D(0, y). In the optimistic case,
this can be done using O(n2) words over the point-to-point channels and no
broadcast (see Remark 4.5:). In the pessimistic case, this requires a broadcast
of O(n) field elements.

Overall, the optimistic case incurs a communication overhead of O(n2) over
the point-to-point channels, and the pessimistic case incurs an additional com-
munication overhead of O(n2) over the broadcast channel.

Theorem 5.3. Let t < n/3. Then, Protocol 5.2: is t-secure for the Fmult
V SS func-

tionality in the presence of a static malicious adversary, in the (FV SS , FWSS ,
FExtend, FWEval)-hybrid model. The optimistic case incurs O(n2) point-to-point
field elements, and the pessimistic case incurs additional O(n2) broadcast mes-
sages of field elements.

The proof is provided in the full version of this paper.
By combining Theorems 4.9, 4.3, 4.12 and 4.6 with Theorem 5.3 we obtain

the following Corollary:

Corollary 5.4. Let t < n/3. Then, there exists a protocol that is t-secure for
the Fmult

V SS functionality in the presence of a static malicious adversary in the
plain model.

6 Extension: Arbitrary Gates with Multiplicative
Depth-1

We show how to extend the protocol in Sect. 5 to allow the dealer distributing
any shares b1, . . . , bL given input shares a1, . . . , aM such that (b1, . . . , bL) =
G(a1, . . . , aM) where G is some circuit of multiplicative depth 1. Section 5 is a
special case where G(a1, a2) = a1 · a2.

92 I. Abraham et al.

Functionality 6.1: Functionality F G
V SS for sharing a result of an eval-

uation of G

FG
V SS receives a set of indices I ⊆ [n] and works as follows, where P1 is the

dealer:

1. Receive a sequence of points uj,1, . . . , uj,M ∈ F
M from Pj .

2. Compute the unique degree-t univariate polynomials fa1(x), . . . , faM (x) sat-
isfying fam(αj) = uj,m for every j �∈ I and m ∈ [M] (if no such polynomials
fam(x) exist, then no security is guaranteed).

3. Let (a1, . . . , am) def= (fa1(0), . . . , fam(0)). Evaluate (b1, . . . , bL) =
G(a1, . . . , am).

4. If the dealer P1 is honest (1 �∈ I) then:
(a) For every
 ∈ [L], choose a random degree-t bivariate polynomial C� under

the constraint that C�(0, 0) = b�.
(b) Output for honest: send C� to P1 and (C�(x, αj), C�(αj , y)) to Pj for every

j �∈ I and
 ∈ [L].
(c) Output for adversary: send to the (ideal) adversary: (1)

fa1(αi), . . . , fam(αi) for every i ∈ I; (2) (C�(x, αi), C�(αi, y)) for every
i ∈ I.

5. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send fa(x), f b(x) to the (ideal) adversary.
(b) Receive bivariate polynomials C1, . . . , CL as input from the (ideal) adver-

sary.
(c) If either deg(C�) > t or C�(0, 0) �= b� for some
 ∈ [L], then reset

C�(x, y) = b� for every
 ∈ [L].
(d) Output for honest: send C�(x, αj), C�(αj , y) to Pj , for every j /∈ I and

 ∈ [L]. (There is no more output for the adversary in this case.)

The protocol is similar to Protocol 5.2:. Given such a circuit G with L
outputs, we let G1, . . . , GL be the circuits that define each outputs. That is,
for (b1, . . . , bL) = G(a1, . . . , am) we let b� = G�(a1, . . . , am) for every
 ∈ [L].
In the protocol, the dealer distributes polynomials C1(x, y), . . . , CL(x, y) using
VSS that are supposed to hide b1, . . . , bL. Then, it defines L bivariate poly-
nomials of degree(2t, t), D1, . . . , DL such that for every
 ∈ [L] it holds that
D�(x, 0) = G(fa1(x), . . . , fam(x)) − C�(x, 0). The dealer distributes them using
FWSS . The parties then check from the shares they received that each one of
the polynomials C1, . . . , CL is correct, and that D�(0, 0) for every
 ∈ [L]. When
a party Pi complains the parties open the shares of Pi and publicly verify the
complaint.

Efficient Perfectly Secure Computation with Optimal Resilience 93

Protocol 6.2: Computing FG
V SS in the (FV SS , FWSS , FExtend, FWEval)-

hybrid model

– Input:
1. The dealer P1 holds M degree-t polynomials {fam(x)}m∈[M].
2. Each party Pi holds a point ui,m for every m ∈ [M] (where ui,m =

fam(αi)).
– Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
– The protocol:

1. Sharing phase:
(a) P1 computes (b1, . . . , bL) = G(fa1(0), . . . , faM (0)).
(b) For every
 ∈ [L], P1 chooses a random degree-t bivariate polynomials,

C�(x, y) such that C�(0, 0) = b�.
(c) For every
 ∈ [L], P1 chooses a random degree (2t, t)-

bivariate polynomial D�(x, y) under the constraint that D�(x, 0) =
G�(fa1(x), . . . , faM (x)) − C�(x, 0).

(d) For every
 ∈ [L], invoke FV SS to share C�(x, y) and let
(f b�

i (x), gb�
i (y)) be the resulting share of Pi.

(e) For every
 ∈ [L], invoke FWSS to share D�(x, y). Let K� ⊆ [n]
be the output of FWSS , such that each Pj for k ∈ K� also receives
(fd�

k (x), gd�

k (y)), and each party Pj for j �∈ K� receives gd�
j (y).

(f) If ⊥ was received in any of the above FV SS or FWSS invocations, then
proceed to Step 5b.

2. Verifying that D�(x, 0) = G�((fa1(x), . . . , faM (x))) − C�(x, 0)
for all � ∈ [L]:4

(a) For every
 ∈ [L], each party Pi verifies that gd�
i (0) =

G�(ui,1, . . . , ui,M) − gc�
i (0). If not, broadcast complaint(i)

(b) If no party broadcast a complaint, proceed to Step 4.
3. Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E =
{αi}i∈R.

(b) For every m ∈ [M], the dealer chooses a random bivariate polynomial
of degree-t polynomial Am such that Am(x, 0) = fam(x). The parties
run FExtend where each party Pi inputs ui,m and P1 inputs Am. Let
(fam

i (x), gam
i (y)) be the output share of Pi.

(c) For every m ∈ [M], the parties call to FWEval where each party
Pi inputs (fam

i (x), gam
i (y), E, [n]) and the dealer inputs Am. Let

(fam
j (x), gam

j (y)) be the result for every j ∈ R. Likewise, reconstruct
(f b�

j (x), gb�
j (y)) for every
 ∈ [L]. If FWEval returned ⊥ in any of those

invocations, then proceed to Step 5b.

4 We abuse notation and write G�((f
a1(x), . . . , faM (x))) to denote a univariate poly-

nomial in the variable x. Specifically, we take all polynomials fa1(x), . . . , faM (x)
and perform the same arithmetic operations as in G� on those input polynomials to
receive a univariate polynomial in x.

94 I. Abraham et al.

(d) For every
 ∈ [L], the parties call to FWEval where all parties input
K�, E and each party Pk for k ∈ K� inputs also (fd�

k (x), gd�

k (y)). The
output of FWEval is gd�

j (y) for every j ∈ R. If FWEval returned ⊥, then
proceed to Step 5b.

(e) For every j ∈ R,
 ∈ [L], all parties verify that gd�
j (0) =

G(ga1
j (0), . . . , gaM

j (0)) − gc�
j (0). If not, then proceed to Step 5b.

4. Verifying that D�(0, 0) = 0 for all � ∈ [L]:
(a) For every
 ∈ [L], the parties call to FWEval where all parties input

K�, {0} and each party Pj for j ∈ K� inputs also (fd�
j (x), gd�

j (y)). The
output of FWEval is gd�

0 (y) = D�(0, y) to all parties. If FWEval returned
⊥, then proceed to Step 5b.

(b) Verify that gd�
0 (0) = 0. If not, proceed to Step 5b.

5. Finalization:
(a) Accept: If the dealer was not rejected, then each party Pi outputs

(fc�
i (x), gc�

i (y)) for every
 ∈ [L].
(b) Reject: If the dealer is rejected, then each party Pi sends to

Pj its points ui,m for every m ∈ [M]. The parties reconstruct
the polynomials fam(x) using Reed-Solomon decoding, and output
G(fa1(0), . . . , faM (0)).

Theorem 6.3. Let t < n/3. Then, Protocol 6.2: is t-secure for the FG
V SS func-

tionality in the presence of a static malicious adversary, in the (FV SS , FWSS ,
FExtend, FWEval)-hybrid model. The communication complexity of the protocol is
just O(L) VSSs in the optimistic case. In the pessimistic case, it corresponds to
O(L + M) VSSs.

The proof is provided in the full version of this paper.

Acknowledgments. Gilad Asharov would like to thank Ilan Komargodski and Ariel
Nof for helpful discussions.

References

1. Abraham, I., Pinkas, B., Yanai, A.: Blinder: MPC based scalable and robust anony-
mous committed broadcast (2020)

2. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

3. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t¡n/3.
In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011–31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, 14–18, August 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6841, pp. 240–258. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-22792-9 14

4. Barak, A., Escudero, D., Dalskov, A.P.K., Keller, M.: Secure evaluation of quan-
tized neural networks. IACR Cryptol. ePrint Arch. 2019, 131 (2019)

https://doi.org/10.1007/978-3-642-22792-9_14

Efficient Perfectly Secure Computation with Optimal Resilience 95

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO, pp. 420–432 (1991)

6. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-Secure MPC with Linear Communi-
cation Complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 13

7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
Simon, J. (ed.) STOC, pp. 1–10. ACM (1988)

8. Berman, P., Garay, J.A., Perry, K.J.: Bit optimal distributed consensus, In: Baeza-
Yates, R., Manber, U. (eds) Computer Science. Springer, Boston (1992). https://
doi.org/10.1007/978-1-4615-3422-8 27

9. Anirudh, C., Choudhury, A., Patra, A.: A survey on perfectly-secure verifiable
secret-sharing. IACR Cryptol. ePrint Arch. 2021, 445 (2021). https://eprint.iacr.
org/2021/445

10. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

12. Canetti, R., Damg̊ard, I., Dziembowski, S., Ishai, Y., Malkin, T.: Adaptive versus
non-adaptive security of multi-party protocols. J. Cryptol. 17(3), 153–207 (2004)

13. Chen, H., Kim, M., Razenshteyn, I.P., Rotaru, D., Song, Y., Wagh, S.: Mali-
ciously secure matrix multiplication with applications to private deep learning.
IACR Cryptol. ePrint Arch. 2020, 451 (2020)

14. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries.
In: CRYPTO, pp. 34–64 (2018)

15. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS, pp.
383–395. IEEE Computer Society (1985)

16. Coan, B.A., Welch, J.L.: Modular construction of a byzantine agreement protocol
with optimal message bit complexity. Inf. Comput. 97(1), 61–85 (1992)

17. Cohen, R., Coretti, S., Garay, J.A., Zikas, V.: Probabilistic termination and com-
posability of cryptographic protocols. J. Cryptol. 32(3), 690–741 (2019)

18. Cramer, R., Damg̊ard, I., Maurer, U.M.: General secure multi-party computation
from any linear secret-sharing scheme. In: EUROCRYPT, pp. 316–334 (2000)

19. Damg̊ard, I., Nielsen, J.B.: Scalable and Unconditionally Secure Multiparty Com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

20. Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the Communication
Required for Unconditionally Secure Multiplication. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 16

21. Damg̊ard, I., Schwartzbach, N.I.: Communication lower bounds for perfect mali-
ciously secure MPC. IACR Cryptol. ePrint Arch. 2020, 251 (2020). https://eprint.
iacr.org/2020/251

22. Dodis, Y., Micali, S.: Parallel Reducibility for Information-Theoretically Secure
Computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 74–92.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 5

23. Feldman, P.: Optimal algorithms for byzantine agreement (1988)
24. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-

tine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

https://doi.org/10.1007/978-3-540-78524-8_13
https://doi.org/10.1007/978-1-4615-3422-8_27
https://doi.org/10.1007/978-1-4615-3422-8_27
https://eprint.iacr.org/2021/445
https://eprint.iacr.org/2021/445
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-662-53008-5_16
https://eprint.iacr.org/2020/251
https://eprint.iacr.org/2020/251
https://doi.org/10.1007/3-540-44598-6_5

96 I. Abraham et al.

25. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: Coan, B.A., Afek,
Y. (eds.) PODC, pp. 101–111. ACM (1998)

26. Goldreich, O.: The Foundations of Cryptography. Basic Applications, vol. 2. Cam-
bridge University Press, Cambridge (2004)

27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) STOC,
pp. 218–229. ACM (1987)

28. Goyal, V., Liu, Y., Song, Y.: Communication-Efficient Unconditional MPC with
Guaranteed Output Delivery. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO
2019. LNCS, vol. 11693, pp. 85–114. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-26951-7 4

29. Hirt, M., Maurer, U., Przydatek, B.: Efficient Secure Multi-party Computation.
In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 12

30. Hirt, M., Nielsen, J.B.: Robust Multiparty Computation with Linear Communica-
tion Complexity. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 463–482.
Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 28

31. Katz, J., Koo, C.: On expected constant-round protocols for byzantine agreement.
J. Comput. Syst. Sci. 75(2), 91–112 (2009)

32. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)

33. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via
minionn transformations. In: ACM CCS, pp. 619–631 (2017)

34. Mohassel, P., Rindal, P.: Aby3: a mixed protocol framework for machine learning.
In: CCS, pp. 35–52 (2018)

35. Mohassel, P., Zhang, Y.: Secureml: a system for scalable privacy-preserving
machine learning. In: SP, pp. 19–38 (2017)

36. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Johnson, D.S. (ed.) Proceedings of the
21st Annual ACM Symposium on Theory of Computing, 14–17, May 1989, Seattle,
Washigton, USA, pp. 73–85. ACM (1989)

37. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176

38. Verma, A., Qassim, H., Feinzimer, D.: Residual squeeze CNDS deep learning CNN
model for very large scale places image recognition. In: UEMCON, pp. 463–469
(2017)

39. Wagh, S., Gupta, D., Chandran, N.: Securenn: 3-party secure computation for
neural network training. Proc. Priv. Enhancing Technol. 2019(3), 26–49 (2019)

40. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167. IEEE Computer Society (1986)

https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/978-3-030-26951-7_4
https://doi.org/10.1007/3-540-44448-3_12
https://doi.org/10.1007/11818175_28
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

	Efficient Perfectly Secure Computation with Optimal Resilience
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Open Problems

	2 Technical Overview
	2.1 Overview of the BGW Protocol
	2.2 Our Protocol
	2.3 Extensions
	2.4 Organization

	3 Preliminaries
	3.1 Definitions of Perfect Security in the Presence of Malicious Adversaries
	3.2 Robust Secret Sharing
	3.3 Bivariate Polynomial

	4 Weak Verifiable Secret Sharing and Extensions
	4.1 Verifying Shares of a (q,t)-Bivariate Polynomial
	4.2 Weak Verifiable Secret Sharing
	4.3 Evaluation with the Help of the Dealer
	4.4 Strong Verifiable Secret Sharing
	4.5 Extending Univariate Sharing to Bivariate Sharing with a Dealer

	5 Multiplication with a Constant Number of VSSs and WSSs
	5.1 Functionality – Multiplication with a Dealer
	5.2 The Protocol

	6 Extension: Arbitrary Gates with Multiplicative Depth-1
	References

