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Abstract. Two of the most useful cryptographic primitives that can
be constructed from one-way functions are pseudorandom generators
(PRGs) and universal one-way hash functions (UOWHFs). In order to
implement them in practice, the efficiency of such constructions must
be considered. The three major efficiency measures are: the seed length,
the call complexity to the one-way function, and the adaptivity of these
calls. Still, the optimal efficiency of these constructions is not yet fully
understood: there exist gaps between the known upper bound and the
known lower bound for black-box constructions.

A special class of one-way functions called unknown-regular one-
way functions is much better understood. Haitner, Harnik and Rein-
gold (CRYPTO 2006) presented a PRG construction with semi-linear
seed length and linear number of calls based on a method called ran-
domized iterate. Ames, Gennaro and Venkitasubramaniam (TCC 2012)
then gave a construction of UOWHF with similar parameters and
using similar ideas. On the other hand, Holenstein and Sinha (FOCS
2012) and Barhum and Holenstein (TCC 2013) showed an almost linear
call-complexity lower bound for black-box constructions of PRGs and
UOWHFs from one-way functions. Hence Haitner et al. and Ames et al.
reached tight constructions (in terms of seed length and the number of
calls) of PRGs and UOWHFs from regular one-way functions. These con-
structions, however, are adaptive.

In this work, we present non-adaptive constructions for both primi-
tives which match the optimal call-complexity given by Holenstein and
Sinha and Barhum and Holenstein. Our constructions, besides being sim-
ple and non-adaptive, are robust also for almost-regular one-way func-
tions.
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1 Introduction

A wide class of cryptographic primitives can be constructed from one-way func-
tions, which is the minimal assumption for cryptography. Informally, a function
f is called a one-way function if it is easy to compute, but hard to invert by
polynomial-time algorithms. Two important primitives that can be constructed
from one-way functions are pseudorandom generators (PRGs) [5,22] and univer-
sal one-way hash functions (UOWHFs) [19]. These two primitives are useful for
constructing even more powerful primitives such as encryption, digital signatures
and commitments. Thus, an improvement in the efficiency of constructions for
PRGs and UWOHFs would have an effect on other primitives. Yet, the optimal
efficiency of these two basic primitives is not fully understood.

There are several important efficiency measures to account for when consid-
ering PRGs and UOWHFs. For PRG constructions, one aims to minimize the
seed length and the number of calls to the one-way function f . For UOWHF con-
structions, there is a need to minimize the key length and the number of calls to
f . Besides these two measurements, another important parameter is the adaptiv-
ity of the calls. That is, if the inputs for the one-way function are independent
of the output of previous calls, then the construction can be implemented in
parallel. By contrast, if the calls are adaptive, one must make them sequentially.

Constructions. Much progress was done since the notion of PRGs has been
introduced. The first construction of pseudorandom generators was given by
Blum and Micali [5] based on the assumption that a specific function is hard
to invert. This construction was generalized by Yao [22] to work with any one-
way permutation. Since then, many subsequent works made effort to construct
PRGs based on arbitrary one-way functions. Notably, through introducing the
randomized iterate1 method, Goldreich, Krawczyk and Luby [8] gave a PRG
construction from any unknown-regular one-way function. The notion of regular
one-way function is a refinement of a one-way permutation: A one-way function
f is called regular if for every n and x, x′ with |x| = |x′| = n it holds that
∣
∣f−1(f(x))

∣
∣ =

∣
∣f−1(f(x′))

∣
∣. We say that the function is unknown-regular if the

regularity parameter,
∣
∣f−1(f(x))

∣
∣, may not be a computable function of n. More

recently, the randomized iterate method was further studied by [11,23], who
reached a construction of PRGs from any unknown-regular one-way functions,
while having O(n log n) seed length and making O(n/ log n) calls to the one-way
function. [25] improved the seed length up to ω(n) by using a transformation that
converts any unknown-regular function into a function that is known-regular on
its image.

For arbitrary one-way function, a seminal work by H̊astad, Impagliazzo,
Levin and Luby [15] gave the first PRG construction. Since then, the efficiency
has been improved by many works [10,13,16,21]. Currently, the state-of-the-art
construction of PRGs due to [21] uses O(n3) bits of random seed and O(n3)

1 For a one-way function f and pairwise independent hash functions h1, . . . , hk, the
k-th randomized iteration of f is f ◦ hk ◦ · · · ◦ f ◦ h1 ◦ f .
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adaptive calls to the one-way function, or alternatively seed of size O(n4) with
non-adaptive calls [13,21].2

The constructions of UOWHFs use similar ideas to the constructions of
PRGs. Still, the best PRGs constructions from arbitrary one-way functions are
more efficient than the best known UOWHFs constructions. Rompel [20] gave
the first UOWHF construction from arbitrary one-way functions. The efficiency
was improved by [12], who gave a construction of UOWHF using O(n6) adaptive
calls with a key of size O(n7). Constructing a UOWHF using O(n3) calls to the
one-way function is still an interesting open question.

The efficiency of UOWHF based on an unknown-regular one-way function is
similar to the efficiency of the unknown-regular based PRGs. Interestingly, this
was shown by [2] using the same method of randomized iterate, resulting in a
construction that uses Θ(n) key length and Θ(n) calls. We stress that when the
regularity of f is known (i.e., can be computed efficiently given n), there are
much more efficient constructions for both PRGs and UOWHFs [7,9,19,23].

Lower Bounds. The lower bounds for black-box constructions are relatively far
from the upper bounds. In this line of work, there are two incomparable types
of results. The first type, due to [6] is stated with terms of the stretching and
compression of the PRG and UOWHF, respectively. Specifically, [6] showed that
any black-box PRG construction G : {0, 1}m → {0, 1}m+s from f must use
Ω(s/ log n) calls to f . Similarly, any black box UWOHF construction with input
size m and output size m − s must use Ω(s/ log n) calls. In the second type
of results [17] showed that any black-box PRG construction from f must use
Ω(n/ log n) calls to f , even for 1-bit stretching. [3] showed similar results for
1-bit compressing UWOHF.

As mentioned, there is a substantial gap between the aforementioned lower and
upper bounds. One explanation for that gap is that all of the above lower bounds
hold even when the one-way function f is unknown-regular. For this case, these
bounds are known to be tight with the mentioned above constructions, which are
based on randomized iterations. These constructions, however, are adaptive.

1.1 Our Contribution

In this paper, we give non-adaptive constructions of tight call complexity for
PRGs and UOWHFs from unknown-regular one-way functions. Both of our con-
structions are quite simple and are very similar to each other. Same as previous
results, the security of our constructions holds also if f is only almost-regular
[23], which means that for every |x| = |x′|, the ratio between

∣
∣f−1(f(x))

∣
∣ and

∣
∣f−1(f(x′))

∣
∣ is only bounded by a polynomial in |x| (compared to a ratio of 1,

in the case of regular functions).

2 We ignore low order terms for this introduction.



460 N. Mazor and J. Zhang

The seed (or key) length in our construction for PRGs (or UOWHFs respec-
tively) is O(n2), compared to Õ(n) bits in the previous adaptive constructions.
This seems unavoidable and raises an interesting open question.3

Our Constructions and Results. In this section, we present our construc-
tions. The results here are stated for regular one-way functions but can be natu-
rally expanded to almost-regular functions, as stated in Sects. 3 and 4. The main
crux of the construction is the following observation. For regular f and i.i.d uni-
form random variables X1, X2 over {0, 1}n, given any fixing of f(X1), both the
entropy and min-entropy of the pair X1, f(X2) are exactly n. To see the above,
recall that for regular f with (unknown) regularity parameter r, it holds that
there are exactly r possible values for X1 given f(X1), and exactly 2n/r possible
values for f(X2). Thus, the regularity parameter r “cancels out” when consid-
ering the number of possible values (given f(X1)) of the pair X1, f(X2), which
is r · 2n/r = 2n. In the PRG construction, we exploit this fact by using a uni-
versal family of hash functions H (and the Goldreich-Levin theorem) in order to
extract pseudo-uniform bits. In the UOWHF construction, we use similar ideas
in order to compress the pair X1, f(X2) without creating too many collisions.
For both constructions, we need additional properties from the universal family
H that we ignore for this introduction. See more details in Sects. 3 and 4. We
next present the constructions. The main ideas of the proofs for the following
theorems are described in Sect. 1.2.

A Simple Construction of PRGs From Regular One-Way Functions.
We start with a description of our PRG construction. Let H =
{

h : {0, 1}2n → {0, 1}n+log n
}

be a family of 2-universal hash functions. For a

regular one-way function f : {0, 1}n → {0, 1}n and an integer t ∈ N,4 the gener-
ator Gt : H × {0, 1}n(t+1) → H × {0, 1}t·(n+log n) is given by

Gt

(

h, x1, . . . , xt+1

)

= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1)))

We show that for every polynomial t, the distribution Gt(H,X1, . . . , Xt) is pseu-
dorandom. Note that the input length of Gt is |h| + n · (t + 1) and the output
length is |h| + t · (n + log n). By making t = Θ(n/ log n) calls, we show that Gt

is indeed a pseudorandom generator.

Theorem 1.1. [Main theorem for PRG, informal] Let f : {0, 1}n → {0, 1}n

be an unknown-regular one-way function and let t(n) ≥ n/ log n + 1 be some
polynomial. Then, Gt is a PRG with seed length O(n2+n(t(n)+1)). Furthermore,
Gt makes t(n) non-adaptive calls to f .
3 By [17], Ω(n) calls are necessary for any black-box construction. Since for non-

adaptive constructions the uniformly random calls seem the only reasonable way
to use the one-way function, such construction needs at least Ω(n2) input bits. We
admit it is only a vague explanation.

4 The assumption that f is length-preserving is made for simplicity, and is not crucial
for our constructions.
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A Simple Construction of UOWHFs From Regular One-Way Functions. Now
we introduce the construction of the UOWHFs. It is a well-known fact that in
order to construct UWOHF, it is sufficient to construct a function for which it
is hard to find a collision for a random input. Let f be a one-way function, let t

be a parameter and let H =
{

h : {0, 1}2n → {0, 1}n−log n
}

be a family of hash

functions. We define the function Ct : H×{0, 1}n·t → H×{0, 1}(t−1)·(n−log n)+2n

as

Ct (h, x1, . . . , xt) = (h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt)

The main difference of this construction from the PRG one is that h is now
a shrinking function. In addition, we also output f(x1) and the very last input
of Ct. As before, since the output length of UOWHFs has to be shorter than the
input length, we have to make up for the additional output (f(x1), xt) by taking
t to be Θ(n/ log n).

The OUWHF can now be defined using Ct. Let k = log |H| + n · t and for
a string z ∈ {0, 1}k, let Cz be the function defined by Cz(w) = Ct(w ⊕ z) for
every w ∈ {0, 1}k. Our main theorem for this part is stated as follows.

Theorem 1.2. [Main theorem for UOWHF, informal] Let f : {0, 1}n → {0, 1}n

be an unknown-regular one-way function and let t(n) ≥ n/ log n+2 be some poly-
nomial. Then, {Cz}z∈{0,1}k is a family of universal one-way hash functions with
key length k = O(n2 + n · t(n)) and output length O(n2 + n · t(n)). Furthermore,
for every z ∈ {0, 1}k, Cz makes t non-adaptive calls to f .

1.2 Proof Overview

Here we give a short overview of our proofs. For both constructions, the
proof boils down to showing that each input pair xi, xi+1 induces a weak
version of the desired primitive. For PRG, the main part of the security
proof is showing that given f(x1) and h, it is hard to distinguish between
h(x1, f(x2)) and a uniform string. For UOWHF, we prove the security by show-
ing that given h, x1, x2, it is hard to find a collision h, x′

1, x
′
2 to the function

C(h, x1, x2) = h, f(x1), h(x1, f(x2)). Note that it may be easy to find x′
2 �= x2

with f(x′
2) = f(x2). To solve this, we further demand that f(x′

2) �= f(x2).5

To show that this is enough, we prove that any collision in our UOWHF must
contain a collision in the above form, for at least one input pair. Below we give
short descriptions of the main ideas in more details.

The PRG Construction. We start by sketching the security proof for the PRG.
Let X1 and X2 be uniform random variables over {0, 1}n, and let h be a
hash function, uniformly sampled from a universal family of hash functions
H =

{

h : {0, 1}2n → {0, 1}n+log n
}

. Recall that we want to show that given

5 For this reason we need to output the last input xt in our UOWHF construction.
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h and f(X1), it holds that h(X1, f(X2)) is computationally indistinguishable
from uniform n+log n bits. For simplicity, assume that we are only interested in
proving that the distinguish advantage is at most n−c, for some constant c > 1.

The main observation is that for regular f , given f(X1), the pair X1, f(X2)
has exactly n bits of min-entropy. Thus, by the leftover hash lemma, the
n − O(c log n) first bits of h(X1, f(X2)) are n−c/2 statistically close to uni-
form. To argue that the suffix of h(X1, f(X2)) looks uniform, we show that
g(x1, y) = h, f(x1), h(x1, y)1,...,n−O(c log n) is a one-way function,6 and thus we
can use Goldreich-Levin in order to extract additional O(c log n) pseudorandom
bits from X1, f(X2).

The UOWHF Construction. We now sketch the security proof for the UOWHF.
Let H be a universal family of hash functions

{

h : {0, 1}2n → {0, 1}n−log n
}

. We

show that given random h and uniformly sampled x1 and x2 from {0, 1}n, it is
hard to find (x′

1, x
′
2) �= (x1, x2) such that f(x1) = f(x′

1), f(x2) �= f(x′
2) and yet

h(x1, f(x2)) = h(x′
1, f(x′

2)). For x1, x2 ∈ {0, 1}n and h ∈ H we define

Gh,x1,x2 := {(x′
1, y) : h(x1, f(x2)) = h(x′

1, y) ∧ f(x1) = f(x′
1) ∧ y ∈ Im(f)} .

That is, the set Gh,x1,x2 contains all the pairs (x′
1, f(x′

2)) for which h, x′
1, x

′
2

collides with h, x1, x2. The main observation here is that, since h outputs n−log n
bits, and there are exactly 2n pairs (x′

1, y) such that y ∈ Im(f) and f(x′
1) =

f(x1), the expected size of Gh,x1,x2 is at most 2n/2n−log n = n. Thus, we can use
an algorithm A that finds a collision in the above function in order to invert f :
Given input y, we choose random x1, x2 ∈ {0, 1}n and plant y in Gh,x1,x2 . That
is, we choose a random h conditioned on the event that h(x1, f(x2)) = h(x′

1, y)
for some x′

1 ∈ f−1(f(x1)). Since there are about n such pairs, we can hope that
the planted pair (x′

1, y) will be output by A with good probability.
However, we need to find x′

1 for which the pair (x′
1, y) has a good probability

to be output by A. To do that, we also use A in order to find a pre-image x′
1 of

f(x1), and then show that x′
1 has a good probability to be output again by A.7

For more details, see Sect. 4.

1.3 Additional Related Work

Arbitrary One-Way Functions. In [12], the notion of inaccessible entropy (intro-
duced in [14]) was used in order to construct UOWHF. Similar techniques were
later used in [10] to construct PRG, where the notion of inaccessible entropy was
replaced with next-block pseudoentropy. This construction was later simplified
by [21], who also improved the seed length with the cost of adaptivity. Lately [1]
pointed out that the notions of accessible entropy and next-block pseudoentropy
are deeply related to each other.
6 Actually, we need to show that the function g is hard to invert on outputs sam-

pled from a specific distribution. This is sufficient for applying the Goldreich-Levin
theorem, see Lemma 2.5.

7 Such a “collision based” argument was also used in [2].
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Regular One-Way Functions. As mentioned above, the construction from regular
one-way functions are more efficient. Beside almost-regular, a few refinements of
regularity were considered in past works. [4] showed a construction for UOWHF
that uses O(ns6(n)) key-length under the assumption that f−1(f(x)) is concen-
trated in an interval of size 2s(n). [24] considered unknown-weakly-regular func-
tions. The last are functions for which the set of inputs with maximal number of
siblings is of fraction at least n−c for some constant c. For such functions, [24]
presented PRG with O(n log n) seed-length and O(n2c+1) calls. [23] considered
known-almost-regular and unknown-weakly-regular functions. For the last, [23]
showed a tight construction of UOWHF based on the randomized iterate method.

1.4 Paper Organisation

Formal definitions are given in Sect. 2. The PRG construction and proof of
Theorem 1.1 are in Sect. 3. The UOWHF construction and proof of Theorem1.2
are in Sect. 4.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a vector
s ∈ {0, 1}n, let si denote its i-th entry, and s1,...,i denote its first i entries. For
s, w ∈ {0, 1}∗ we use s ◦ w to denote their concatenation and for s, w ∈ {0, 1}n,
we use s ⊕ w ∈ {0, 1}n to denote their bit-wise XOR.

The support of a distribution P over a finite set S is defined by Supp(P ) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D let d ← D denote that d was
sampled according to D. Similarly, for a set S, let s ← S denote that s is drawn
uniformly from S. For a function f : {0, 1}n → {0, 1}n, let y ← f({0, 1}n) denote
that y sampled from the following distribution: sample x uniformly from {0, 1}n,
and let y = f(x). Let Im(f) := {f(x) : x ∈ {0, 1}n} be the image of f . The
statistical distance (also known as, variation distance) of two distributions P and
Q over a discrete domain X is defined by SD(P,Q) := maxS⊆X |P (S) − Q(S)| =
1
2

∑

x∈S |P (x) − Q(x)|. The min-entropy of a distribution X, denoted by H∞(X)
is defined by H∞(X) := − log(maxx∈Supp(X) {Pr [X = x]}).

Let poly denote the set of all polynomials, and let PPT stand for probabilistic
polynomial time. A function ν : N → [0, 1] is negligible, denoted ν(n) = neg(n),
if ν(n) < 1/p(n) for every p ∈ poly and large enough n. Lastly, we identify a
matrix M ∈ {0, 1}n×m with a function M : {0, 1}n → {0, 1}m by M(x) := x ·M ,
thinking of x ∈ {0, 1}n as a vector with dimension n.

2.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.
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Definition 2.1 (One-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a one-way function if for every probabilistic poly-
nomial time algorithm A, there is a negligible function ν : N → [0, 1] such that
for every n ∈ N

Pr
x←{0,1}n

[

A(f(x)) ∈ f−1(f(x))
] ≤ ν(n)

For simplicity we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.

In this paper we focus on almost-regular one-way functions, formally defined
below.

Definition 2.2 (Almost-regular function). A function family f = {fn :
{0, 1}n → {0, 1}n} is β-almost-regular for β ≥ 0 if for every n ∈ N and
x ∈ {0, 1}n it holds that

2n

|Im(f) | · n−β ≤ ∣
∣f−1(f(x))

∣
∣ ≤ 2n

|Im(f) | · nβ .

f is almost-regular if there exists β ≥ 0 such that f is β-almost-regular, and
regular if it is 0-almost-regular.

Note that we do not assume that the regularity of f can be computed effi-
ciently. That is, we only assume that f is unknown-(almost)-regular.

Immediately from the definition of a one-way function, we get the following
simple observation.

Claim 2.3. For every one-way function f : {0, 1}n → {0, 1}n there exists a
negligible function ν(n) such that for every input x ∈ {0, 1}n it holds that
∣
∣f−1(f(x))

∣
∣ ≤ 2n · ν(n).

2.3 Pseudorandom Generators

In Sect. 3 we use one-way functions in order to construct PRGs. The later are
formally defined below.

Definition 2.4 (Pseudorandom generator). Let n be a security parameter.
A polynomial-time computable function G : {0, 1}n → {0, 1}m(n) is called a
pseudorandom generator if for every n > 0 it holds that m(n) > n and, for
every probabilistic polynomial time algorithm D, there is a negligible function
ν : N → [0, 1] such that for every n > 0,

∣
∣
∣
∣
∣

Pr
x←{0,1}n

[D(G(x)) = 1] − Pr
x←{0,1}m(n)

[D(x) = 1]

∣
∣
∣
∣
∣
≤ ν(n).

A key ingredient in the construction of PRG from one-way function is the
Goldreich-Levin hardcore predicate. The following lemma follows almost directly
from [9].
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Lemma 2.5. Let n be a security parameter. Let f : {0, 1}n → {0, 1}n be a func-
tion, and D a distribution on {0, 1}n, such that for every PPT A

Pr
x←D

[

A(f(x)) ∈ f−1(f(x))
]

= neg(n).

Then for every PPT P,

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + neg(n)

where GL(x, r) := 〈x, r〉 is the Goldreich-Levin predicate.

Proof. By the proof of Goldreich-Levin [9], for every p ∈ poly there is an oracle-
aided PPT algorithm A such that for every algorithm P and x with

Pr
r←{0,1}n

[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)

it holds that

Pr
[

AP(f(x)) = x
] ≥ 1/p2(n).

Thus, it holds for every p ∈ poly that

Pr
x←D

[

Pr
r←{0,1}n

[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)
]

= neg(n)

which implies that

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + 1/p(n) + neg(n)

for every p ∈ poly.

The next lemma, stated in [22], is useful for showing that a sequence of bits
is pseudorandom. The proof of the lemma is given in Appendix A.

Lemma 2.6 (Distinguishability to prediction). There exists an oracle-
aided PPT algorithm P such that the following holds. Let Q be a distribution
over {0, 1}∗ × {0, 1}n, let D be an algorithm and α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[

PD(x, y1,...,i−1) = yi

] ≥ 1/2 + α/n.
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2.4 Universal One Way Hash Function

Lastly, we formally define UOWHF.

Definition 2.7 (Universal one-way hash function)
Let k be a security parameter. A family of functions

F =
{

fz : {0, 1}n(k) → {0, 1}m(k)
}

z∈{0,1}k
is a family of universal one-way hash

functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k and x ∈ {0, 1}n(k), fz(x) can be evaluated in
time poly(n(k), k).

2. Shrinking: m(k) < n(k).
3. Target Collision Resistance: For every probabilistic polynomial-time adversary

A, the probability that A succeeds in the following game is negligible in k:
(a) Let (x, state) ← A(1k) ∈ {0, 1}n(k) × {0, 1}∗.
(b) Choose z ← {0, 1}k.
(c) Let x′ ← A(state, z) ∈ {0, 1}n(k).
(d) A succeeds if x �= x′ and fz(x) = fz(x′).

A relaxation of the target collision resistance property can be done by requir-
ing the function to be collision resistant only on random inputs.

Definition 2.8 (Collision resistance on random inputs). Let n be a secu-
rity parameter. A function f : {0, 1}n → {0, 1}m(n) is collision resistant on ran-
dom inputs if for every probabilistic polynomial-time adversary A, the probability
that A succeeds in the following game is negligible in n:

1. Choose x ← {0, 1}n.
2. Let x′ ← A(x) ∈ {0, 1}n.
3. A succeeds if x �= x′ and f(x) = f(x′).

The following lemma states that it is enough to construct a function that is
collision resistant on random inputs, in order to get UOWHF.

Lemma 2.9 (From random inputs to targets, folklore). Let n be a secu-
rity parameter. Let F : {0, 1}n → {0, 1}m(n) be a length-decreasing function.
Suppose F is collision-resistant on random inputs.

Then {Fy : {0, 1}n → {0, 1}m}y∈{0,1}n , for Fy(x) := F (y ⊕ x), is a family of
target collision-resistant hash functions.

2.5 2-Universal Hash Families

2-universal families are an important ingredient in our constructions. In this
section, we formally define this notion, together with some useful properties of
such families.
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Definition 2.10 (2-universal family). A family of function F =
{

f : {0, 1}n → {0, 1}�
}

is 2-universal if for every x �= x′ ∈ {0, 1}n it holds that

Prf←F [f(x) = f(x′)] = 2−�.
A universal a family is explicit if given a description of a function f ∈ F

and x ∈ {0, 1}n, f(x) can be computed in polynomial time (in n, �). Such family
is constructible if it is explicit and there is a PPT algorithm that given x, x′ ∈
{0, 1}n outputs a uniform f ∈ F , such that f(x) = f(x′).

An important property of 2-universal families is that they can be used to
construct a strong extractor. This is stated in the leftover hash lemma:

Lemma 2.11 (Leftover hash lemma [18]). Let n ∈ N, ε ∈ [0, 1], and let X be
a random variable over {0, 1}n. Let H =

{

h : {0, 1}n → {0, 1}�
}

be a 2-universal
hash family with � ≤ H∞(X) − 2 log 1/ε. Then,

SD((H,H(X)), (H,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}� and H being the uniform dis-
tribution over H.

The family of all binary matrices of size n × �,
{

m : m ∈ {0, 1}n×�
}

, is a
constructible 2-universal family. This family has an additional property that is
useful in the proof. This property is defined below.

Definition 2.12 (Approximately flat family). A family of functions H =
{

h : {0, 1}2n → {0, 1}�
}

is approximately-flat if for every set Y ⊆ {0, 1}n,

x1, x2 ∈ {0, 1}n and y1 ∈ Y it holds that,

Pr
h←H

[∃y2 ∈ Y s.t. h(x1, y1) = h(x2, y2)] ≥ 2−10 · min
{|Y| · 2−�, 1

}

.

The proof of the next lemma is in Appendix A.

Lemma 2.13. For every �, n ∈ N such that � ≤ n, the family
{

m : m ∈ {0, 1}n×�
}

is approximately-flat.

2.6 Useful Inequalities

The following well-known inequalities will be useful later on.

Lemma 2.14 (Jensen Inequality). Let X be a distribution over R and let
f : R → R be a convex function. It holds that

f(E [X]) ≤ E [f(X)]

Lemma 2.15 (Cauchy–Schwarz inequality). Let n ∈ N and a1, . . . , an ∈ R

be numbers. Then,

(
∑

i∈[n]

ai)2 ≤ n ·
∑

i∈[n]

a2
i
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Lastly, the following lemma will be useful in the security proof of the
UOWHF. Let A be an algorithm such that for every x, the output of A(x) is in
some small set Sx. Then the lemma roughly states the event of two executions
of A returning the same value is not too rare.

Lemma 2.16. Let Ω ⊆ {0, 1}n and X be some set, let X be a distribution over
X , and let S : X → P (Ω) be a function that maps elements in X to subsets of Ω.
Let A be an algorithm, such that for every x ∈ X , A(x) ∈ S(x) ∪ {⊥}. Assume
that for every u ∈ Ω, it holds that 0 < Prx←X [u ∈ S(x)] ≤ �/ |Ω|, and that
Prx←X [A(x) ∈ S(x)] ≥ p. Then

∑

u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)] ≥ p2/�.

.

Proof. Using Cauchy–Schwarz inequality, it holds that:
∑

u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)]

=
∑

u∈Ω

Pr
x←X

[A(x) = u]2 / Pr
x←X

[u ∈ S(x)]

≥
∑

u∈Ω

Pr
x←X

[A(x) = u]2 · |Ω| /�

≥
(

∑

u∈Ω

Pr
x←X

[A(x) = u]

)2

/�

≥ p2/�.

3 The PRG Construction

In this section we prove the security of our PRG construction. We start with a
description of the construction. Let f : {0, 1}n → {0, 1}n be an almost-regular
one-way function, let t be a parameter and let H =

{

m : m ∈ {0, 1}2n×(n+log n)
}

be the 2-universal family induced by the set of matrices of size 2n× (n+log n).8

The generator G : H × {0, 1}n(t+1) → H × {0, 1}t·(n+log n) is given by

G
(

h, x1, . . . , xt+1

)

= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1))) .

The main theorem of this part is as follows.

8 By taking H =
{

hm : m ∈ {0, 1}2n×(log2 n+log n) , h ∈ G
}

where

G =
{

g : {0, 1}2n → {0, 1}n−log2 n
}

is arbitrary 2-universal family, and

hm(z) := h(z) ◦ m(z), the seed of length can be reduced up to O(n · t).
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Theorem 3.1. [Main theorem for PRG] Let f : {0, 1}n → {0, 1}n be an almost-
regular one-way function and let t(n) ≥ n/ log n+1 be some polynomial. Then G
is a PRG with seed length O(n2 +n(t+1)). Furthermore, G uses t non-adaptive
calls to f .

Note that the stretch of G is t · log n−n, which is tight with [6] for large values of
t. We now prove Theorem 3.1. Our main lemma states that given h and f(x1),
the hash h(x1, f(x2)) looks uniform for a computationally bounded algorithm.

Lemma 3.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function.
For any PPT algorithm D, it holds that
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

is a negligible function of n.

We prove Lemma 3.2 below, but first we use it in order to give the proof of
Theorem 3.1, which is straight-forward.

Proof (Proof of Theorem 3.1). Let f and t be as in Theorem 3.1. By construction
G makes t calls to f . Additionally, t(n + log n) > n(t + 1) when t ≥ n/ log n + 1.
We are left to show that the output of G is indistinguishable from uniform.
The proof is by a hybrid argument. Let H be a uniform random variable over
H, and X1, . . . , Xt+1 be i.i.d. uniform random variables over {0, 1}n. Assume
toward a contradiction that there is a PPT algorithm D̂ that can distinguish
G(H,X1, . . . , Xt+1) from uniform. Then we show that the following algorithm
D contradicts Lemma 3.2.

Algorithm 3.3 (The distinguisher D)
Input: h ∈ H, y ∈ {0, 1}n

, z ∈ {0, 1}n+log n.
Operation:

1. Sample � ← [t].
2. Sample x1, . . . x�−1 ← ({0, 1}n)�−1 and u ← {0, 1}(t−�)n log n.
3. Compute w := h, h(x1, f(x2)), . . . , h(x�−2, f(x�−1)), h(x�−1, y), z, u.
4. Execute D̂(w) and output its output.

For each � ∈ [t + 1], let the distribution Hyb� be defined as

Hyb� :=
(

H,H(X1, f(X2)), . . . , H(X�−1, f(X�)), U(t+1−�)n·log n

)
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where U(t+1−�)n·log n is the uniform distribution over {0, 1}(t+1−�)n·log n. That is,
Hyb� is equal to G(H,X1, . . . , Xt+1) on the first �−1 blocks, and uniform on the
rest. Observe that for every fixing of � in the algorithm, the distribution of w for
input h ← H, y ← f(Un), z ← {0, 1}n+log n is exactly as the distribution Hyb�.
Similarly, the distribution of w for input h ← H, y ← f(Un) and z = h(X ′, Y ′)
for X ′ ← f−1(y) and Y ′ ← f({0, 1}n) is exactly as the distribution Hyb�+1.
Thus, it holds that,
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
1/t ·

t∑

�=1

(

Pr
w←Hyb�

[

D̂(w) = 1
]

− Pr
w←Hyb�+1

[

D̂(w) = 1
] )

∣
∣
∣
∣
∣

= 1/t ·
∣
∣
∣
∣

Pr
w←Hyb1

[

D̂(w) = 1
]

− Pr
w←Hybt+1

[

D̂(w) = 1
]
∣
∣
∣
∣

= 1/t ·
∣
∣
∣
∣
∣

Pr
w←{0,1}log|H|+(n+log n)·t

[

D̂(w) = 1
]

− Pr
w←G(H,X1,...,Xt+1)

[

D̂(w) = 1
]
∣
∣
∣
∣
∣
.

(1)

Where the last equality holds since Hybt+1 ≡ G(H,X1, . . . , Xt+1) and Hyb1
is the uniform distribution. We conclude by Lemma 3.2 that the advantage
probability of D̂ is negligible.

3.1 Proving Lemma 3.2

In the rest of this section we prove Lemma 3.2. Fix β ≥ 0, any β-almost-regular
one-way function f : {0, 1}n → {0, 1}n and n ∈ N. Recall that we want to show
that h(x1, f(x2)) looks uniform to computationally bounded algorithms, given h
and f(x1). By the leftover hash lemma, every prefix p(x1, x2) of the above hash
h(x1, f(x2)) is somewhat close to uniform. In order to show that the suffix looks
uniform as well, we prove that the concatenation of h, f(x1) and p(x1, x2) is a
one-way function, and then use Goldreich-Levin. The next claim states that the
described function is indeed one-way on part of its domain.

Claim 3.4. For every i ∈ [n+log n], let gi : H×{0, 1}n×{0, 1}n → H×{0, 1}n×
{0, 1}i−1 be the following function

gi(h, x1, y) := (h, f(x1), h(x1, y)1,...,i−1) .

Then it holds that for every PPT A and every function i = i(n)

Pr
h←H,x1,x2←{0,1}n

z=(h,x1,f(x2))

[

A(gi(z)) ∈ g−1
i (gi(z))

]

= neg(n). (2)
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Proof. Assume toward contradiction that the claim does not hold. That is, there
exists PPT algorithm A, a function i(n) and a constant d ∈ N such that

Pr
h←H,x1,x2←{0,1}n

z=(h,x1,f(x2))

[

A(gi(z)) ∈ g−1
i (gi(z))

] ≥ n−d (3)

for infinitely many n ∈ N. Fix such n and consider the following algorithm Â. In
the following we show Â can be used to invert f .

Algorithm 3.5 (The inverter Â)
Input: h ∈ H, y ∈ {0, 1}n, z ∈ {0, 1}n−(4d+2β) log n.
Operation:

1. For every w ∈ {0, 1}(4d+2β+1) log n and j ∈ [n + log n]:
(a) Let (h, x, y′) be the output of A(h, y, (z ◦ w)1,...,j−1).
(b) If f(x) = y, output x.

That is, Â tries to invert y using A and only a prefix of h(x1, f(x2)). It does
so by iterating over all the possible values of the missing input bits

h(f−1(y), f(x2))n−(4d+2β) log n+1,...,n+log n

and every possible index j ∈ [n + log n]. Clearly Â runs in a polynomial time.
Let x1 be some preimage of y and let x2 be some element in {0, 1}n. Note that
when the guess w is equal to h(x1, f(x2))n−(4d+2β) log n+1,...,n+log n, and when the
index j is equal to i, the value of h, y, (z ◦ w)1,...,j−1 computed by the algorithm
is equal to the output of gi(h, x1, f(x2)). Thus, by definition it is clear that the
success probability of Â is better than A’s. Formally, we get that,

Pr
h←H,x1,x2←{0,1}n

[

Â(h, f(x1), h(x1, f(x2))1,...,n−(4d+2β) log n) ∈ f−1(f(x1))
]

≥ Pr
x1,x2←{0,1}n

[

A(gi(h, x1, f(x2))) ∈ g−1
i (gi(h, x1, f(x2)))

]

≥ n−d. (4)

Next, we show that Â can guess the value of h(x1, f(x2))1,...,n−(4d+2β) log n.
Indeed, recall that by the β-almost-regularity of f , given any fixing of f(x1),
the min-entropy of x1, f(x2) is at least n − 2β log n. Thus, by the left-over
hash lemma, h(x1, f(x2))1,...,n−(4d+2β) log n is n−d/2 close to uniform given h
and f(x1). Let k = n − (4d + 2β) log n. Combining the above with Eq. (4),
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Pr
h←H,x1←{0,1}n,u←{0,1}k

[

Â(h, f(x1), u) ∈ f−1(f(x1))
]

= E
y←f({0,1}n)

⎡

⎢
⎣ Pr

h←H,x1←f−1(y),

u←{0,1}k

[

Â(h, y, u) ∈ f−1(f(x1))
]

⎤

⎥
⎦

≥ E
y

⎡

⎢
⎣ Pr

h←H,x1←f−1(y),
x2←{0,1}n

[

Â(h, y, h(x1, f(x2))1,...,k) ∈ f−1(f(x1))
]

− n−d/2

⎤

⎥
⎦

= Pr
h←H,x1,x2←{0,1}n

[

Â(h, f(x1), h(x1, f(x2))1,...,k) ∈ f−1(f(x1))
]

− n−d/2

≥ n−d/2. (5)

Finally, let Inv be the algorithm that given f(x1) samples h ← H and u ←
{0, 1}n−(4d+2β) log n, and executes Â. By Eq. (5) Inv inverts f(x1) successfully
with probability at least n−d/2 for uniformly sampled x1 ∈ {0, 1}n, for infinitely
many n ∈ N, which is a contradiction.

We are now ready to prove Lemma 3.2. The proof is straight-forward from
Claim 3.4 together with Lemma 2.5 and Lemma 2.6.

Proof (Proof of Lemma 3.2.). Assume toward a contradiction that Lemma 3.2
does not hold. That is, there exists PPT algorithm D and a constant c ∈ N such
that
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

≥ n−c (6)

for infinitely many n ∈ N. We assume without loss of generality that for infinitely
many n ∈ N it holds that

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}2n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1]

≥ n−c (7)

as otherwise we can flip the output of D. By Lemma 2.6 there is a oracle-aided
PPT algorithm P such that for infinitely many n ∈ N and i = i(n) it holds that

Pr
x1,x2←{0,1}2n,

h←H

[

PD(h, f(x1), h(x1, f(x2))1,...,i−1) = h(x1, f(x2))i

] ≥ 1/2 + n−c−4.



Simple Constructions from (Almost) Regular One-Way Functions 473

Recall that, by definition, h, f(x1), h(x1, f(x2))1,...,i−1 = gi(x1, f(x2)). Addi-
tionally, by our choice of the family H, h(x1, f(x2)))i is the GL predicate of the
function gi(x1, f(x2)).9 Thus, the above contradicts Claim 3.4 and Lemma 2.5.

4 The UOWHF Construction

In this section we prove the security of our UOWHF construction. We start
with a full description of the construction. Let f : {0, 1}n → {0, 1}n be
an almost-regular one-way function, let t be a parameter and let H =
{

m : m ∈ {0, 1}2n×(n−log n)
}

be the 2-universal family induced by the set of

matrices of size 2n × (n − log n).10

The function C : H × {0, 1}n·t → H × {0, 1}(t−1)·(n−log n)+2n is given by

C
(

h, x1, . . . , xt

)

= h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt.

Let k = log |H|+n · t. For a string z ∈ {0, 1}k, let Cz(w) := C(w ⊕ z). Our main
theorem for this part is stated as follows.

Theorem 4.1 [Main theorem for UOWHF] Let f = f : {0, 1}n → {0, 1}n be an
almost-regular one-way function and let t(n) ≥ n/ log n + 2 be some polynomial.
Then Fk = {Cz}z∈{0,1}k is a family of universal one-way hash functions with
key length k = O(n2 + n · t(n)) and output length O(n2 + n · t(n)). Furthermore,
for every z ∈ {0, 1}k, Cz uses t non-adaptive calls to f .

In the rest of this section we prove Theorem 4.1. Note that by Lemma 2.9 in
order to prove Theorem 4.1, it is enough to show that it is hard to find a collision
of C for a random input. The main lemma of this part is the following one, which
essentially states that no efficient algorithm can find a collision in a simpler
function, Ĉ(h, x1, x2) = h, f(x1), h(x1, f(x2)). Note that Ĉ is not UOWHF, as it
is not shrinking, and, as we are only interested in collisions (h, x′

1, x
′
2) in which

f(x2) �= f(x′
2).

Lemma 4.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function.
For every PPT algorithm A, it holds that,

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[f(x1) = f(x′
1) ∧ f(x2) �= f(x′

2) ∧ h(x1, f(x2)) = h(x′
1, f(x′

2))]

is a negligible function of n.

9 Note that if i ≤ n − ω(log n) there is no need in GL. Indeed, by the leftover hash
lemma, the first bits of h are statistically close to uniform.

10 Any approximately-flat, constructible, and 2-universal hash family will suffice. Such
a family with a smaller size, if exists, can be used in order to reduce the key length
up to O(n · t).
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We prove Lemma 4.2 below, but first let us prove the security of C using Lemma
4.2. The proof is by reduction, stated in the next claim. Informally, we show that
an algorithm that breaks the security of C can be used in order to find a collision
in the function Ĉ defined above.

Claim 4.3. There exists an oracle-aided PPT algorithm A such that the follow-
ing holds. Let f be a one-way function, t ∈ poly and C be the function described
above. Let n ∈ N, α ∈ [0, 1] and let ColFinder be an algorithm such that

Pr
w←H×({0,1}n)t,w′←ColFinder(w)

[w′ �= w ∧ C(w) = C(w′)] = α.

Then,

Pr
h←H,x1,x2←{0,1}n,

(x′
1,x′

2)←AColFinder(h,x1,x2)

[
f(x1)=f(x′

1)

∧f(x2) 
=f(x′
2)∧h(x1,f(x2))=h(x′

1,f(x′
2))

]

≥ (α − ν(n))/t,

where ν is a negligible function, depending only on f and t.

The proof of Theorem 4.1 is now immediate.

Proof (Proof of Theorem 4.1.). Let f, t and Cz be as in Theorem 4.1. It is clear
that Cz is efficiently computable for every z ∈ {0, 1}k, and that C is shrinking
since log |H| + n · t > log |H| + (t − 1) · (n − log n) + 2n for t ≥ n/ log n + 2.

Next, we show that it is collision-resistant for random input. Assume toward
contradiction that there exists a PPT ColFinder and p ∈ poly such that

Pr
w←H×({0,1}n)t,
w′←ColFinder(w)

[w′ �= w ∧ C(w) = C(w′)] ≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.3, for infinitely many n ∈ N it holds
that

Pr
h←H,x1,x2←{0,1}n,

(x′
1,x′

2)←AColFinder(h,x1,x2)

[
f(x1)=f(x′

1)∧
f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))

]

≥ 1/(2t · p(n)).

Note that by the choice of t, 1/(2t · p(n)) is not negligible, and that since both
A and ColFinder are efficient, AColFinder(·) can be efficiently implemented. Thus,
the above contradicts Lemma 4.2.

4.1 Proving Claim 4.3

We next prove Claim 4.3. The next simple claim will be useful in the proof,
as it states that given (h, x1, . . . , xt), with high probability there is no collision
(h, x′

1, . . . , x
′
t) of C in which for some j ∈ [t] it holds that xj �= x′

j while f(xj) =
f(x′

j) and f(xj+1) = f(x′
j+1).
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Claim 4.4. For every one-way function f and polynomial t, there exists a neg-
ligible function ν such that the following holds. For every x1, . . . , xt ∈ {0, 1}n,

Pr
h←H

[∀j∈[t−1], ∀x′
j∈f−1(f(xj))\{xj} it holds that

h(x′
j ,f(xj+1)) 
=h(xj ,f(xj+1))

]

≥ 1 − ν(n).

Proof. Fix x1, . . . , xt ∈ {0, 1}n, j ∈ [t − 1] and x′
j ∈ f−1(f(xj)) \ {xj}. Since H

is 2-universal, it holds that

Pr
h←H

[

h(x′
j , f(xj+1)) = h(xj , f(xj+1))

]

= n/2n.

By the union bound,

Pr
h←H

[∃j∈[t−1],x′
j∈f−1(f(xj))\{xj} s.t.

h(x′
j ,f(xj+1))=h(xj ,f(xj+1))

]

≤
∑

j∈[t−1]

∑

x′
j∈f−1(f(xj))\{xj}

Pr
h←H

[

h(x′
j , f(xj+1)) = h(xj , f(xj+1))

]

≤ t(n) · |f−1(f(xj))| · n/2n.

Since f is a one-way function, by Claim 2.3 it holds that |f−1(f(xk))| ≤ 2n ·
neg(n), and thus the claim follows.

Proof (Proof of Claim 4.3.). Let f , t n, α and ColFinder as in Claim 4.3. Let A
be the following algorithm.

Algorithm 4.5 (The reduction A)
Input: h ∈ H, x1, x2 ∈ {0, 1}.
Oracle: ColFinder.
Operation:

1. Sample i ← [t − 1], z1, . . . , zi−1, zi+2, . . . , zt ← {0, 1}n and set
zi = x1, zi+1 = x2.

2. Apply ColFinder(h, z1, . . . , zt) to get (h′, z′
1, . . . , z

′
t).

3. Output z′
i, z

′
i+1.

We next show that with all but negligible probability over the choice of
w = (h, x1, . . . , xt), the following must hold. For every w′ = (h′, x′

1, . . . , x
′
t) with

w �= w′ and C(w) = C(w′), there exists some i ∈ [t − 1] such that f(xi) = f(x′
i)

and f(xi+1) �= f(x′
i+1). The lemma then follows easily.

Indeed, fix such w and w′. First note that since C(w) = C(w′), it holds that
h = h′. Let j be the first index for which xj �= x′

j , and observe that by the
definition of C, j ∈ [t − 1]. We split into cases:

– If f(xj) �= f(x′
j), then j > 1 (since C(w) = C(w′) implies that f(x1) = f(x′

1))
and for i = j − 1 it holds that f(xi) = f(x′

i) and f(xi+1) �= f(x′
i+1).
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– For the other case, assume that f(xj) = f(x′
j). By Claim 4.4, with proba-

bility all but negligible over the choice of w, it holds that, h(xj , f(xj+1)) �=
h(x′

j , f(xj+1)), and thus it must hold that f(xj+1) �= f(x′
j+1). We get that

for i = j, it holds that f(xi) = f(x′
i) and f(xi+1) �= f(x′

i+1).

Since i is chosen uniformly in Theorem 4.5, and since the distribution of
h, z1, . . . , zt in Theorem 4.5 is uniform for every i ∈ [t− 1] and uniformly chosen
input h, x1, x2, we conclude that the success probability of AColFinder is at least
(α − neg(n))/t.

4.2 Proving Lemma 4.2

We now prove Lemma 4.2. For the rest of this section, fix β ≥ 0, and a β-almost-
regular one-way function f . In order to prove the lemma, we show how to invert
the one-way function f using an algorithm that contradicts the lemma. Formally,

Claim 4.6. There exists PPT oracle-aided algorithm Inv such that the following
holds. Let n ∈ N, α ∈ [0, 1] and let A be an algorithm such that

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[f(x1)=f(x′
1)∧f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))] = α.

Then,

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ α2 · n−2β−2 · 2−12.

The proof of Lemma 4.2 is immediate from Claim 4.6, as
Prx←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

must be negligible.

Proof (Proof of Lemma 4.2.). Assume toward contradiction that there exists a
PPT algorithm A and p ∈ poly such that

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[
f(x1)=f(x′

1)∧
f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))

]

≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.6 it holds that

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ 1/p(n)2 · n−2β−2 · 2−10

for infinitely many n ∈ N, which is a contradiction to f being a one-way function.

The rest of this part is dedicated for proving Claim 4.6. Let n, α and A be as in
Claim 4.6. In the following we assume that A outputs a valid pair (x′

1, x
′
2) with

(f(x1) = f(x′
1) ∧ f(x2) �= f(x′

2) ∧ h(x1, f(x2)) = h(x′
1, f(x′

2))) or (⊥,⊥). For
x1, x2 and h, we define,

Gh,x1,x2 :=
{

(x′
1, y) ∈ f−1(f(x1)) × Im(f) : h(x1, f(x2)) = h(x′

1, y)
}

.
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For ease of notation, we say that x ∈ Gh,x1,x2 if there exists y ∈ Im(f) such
that (x, y) ∈ Gh,x1,x2 . Let Inv be the following algorithm. Note that Inv can be
implemented efficiently, by the constructibility of H.

Algorithm 4.7 (The inverter Inv)
Input: y ∈ Im(f) .
Oracle: A.
Operation:

1. Sample x1, x2 ← {0, 1}n and h ← H.
2. Apply A(h, x1, x2) to get (x′

1, x
′
2). If A outputs (⊥,⊥), output ⊥.

3. Sample h′ ← H such that h′(x1, f(x2)) = h′(x′
1, y).

4. Apply A(h′, x1, x2) to get (x′′
1 , x). Output x.

That is, in order to invert its input y, Inv samples x1, x2 and h. It then uses A
in order to find x′

1 with f(x′
1) = f(x1). Lastly, it samples h′ with h′(x1, f(x2)) =

h′(x′
1, y) and uses A in order to find a collision to h′, x1, x2. By the choice of h′,

a possible collision is (h′, x′
1, f

−1(y)). We observe that if A finds such a collision,
Inv successfully inverted y.

For x1, x2 ∈ {0, 1}n, x′
1 ∈ f−1(f(x)) and y ∈ Im(f) , let

pA(x1, x2, x
′
1, y)

:= Pr
h′←H

[

A(h′, x1, x2) ∈ {x′
1} × f−1(y) | h′(x1, f(x2)) = h′(x′

1, y)
]

= Pr
h′←H

[

A(h′, x1, x2) ∈ {x′
1} × f−1(y) | (x′

1, y) ∈ Gh′,x1,x2

]

and define pA(x1, x2,⊥, y) = 0. By the above observation, it holds that

Pr
x←{0,1}n

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
h←H,x1,x2←{0,1}n

y←f({0,1}n)
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)] (8)

and thus it is enough to bound the latter. We bound it using the following two
claims. The first shows that it is enough to bound the probability that A outputs
(x′

1, ·). The second claim bounds the last probability.

Claim 4.8. For every x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)) the following holds.

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

≥ Pr
h′←H

[A(h′, x1, x2) = (x′, ·) | x′ ∈ Gh′,x1,x2 ] · n−β−1 · 2−10.

Proof. Fix x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)), and for every h ∈ H, let
A(h) := A(h, x1, x2) and Gh := Gh,x1,x2 . Then, by the definition of pA, it holds
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that

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

= E
y←f({0,1}n)

[

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | (x′, y) ∈ Gh′
]
]

= E
y←f({0,1}n)

[

Prh′←H
[

(x′, y) ∈ Gh′ ∧ A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′ ]

]

= E
y←f({0,1}n)

[

Prh′←H
[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′ ]

]

= E
y←f({0,1}n)

[

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
] · Prh′←H [x′ ∈ Gh′ ]

Prh′←H [(x′, y) ∈ Gh′ ]

]

Since by our assumption on A, for every (x′, y) with Pr
[

A(h) ∈ {x′} × f−1(y)
]

>
0 it holds that (x′, y) �= (x1, f(x2)), we get that for every such pair
Prh′←H [(x′, y) ∈ Gh′ ] = n/2n. Continue,

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

=
∑

y∈Im(f)

Pr
x←{0,1}n

[f(x) = y] · Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

≥
∑

y∈Im(f)

1
|Im(f) | · nβ

· Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

=
1

|Im(f) | · nβ
· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

·
∑

y∈Im(f)

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

=
2n

|Im(f) | · nβ+1
· Pr

h′←H
[x′ ∈ Gh′ ] · Pr

h′←H
[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

where the inequality holds since f is β-almost-regular. Recall that the family H
is approximately-flat. That is,

Pr
h′←H

[∃y ∈ Im(f) s.t. h′(x1, f(x2)) = h′(x′, y)]

≥ 2−10 · min
{

|Im(f) | · 2−(n−log n), 1
}

.
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Thus,

2n

|Im(f) | · nβ+1
· Pr

h′←H
[x′ ∈ Gh′ ] · Pr

h′←H
[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

≥ 2n

|Im(f) | · nβ+1
· 2−10 · min

{

|Im(f) | · 2−(n−log n), 1
}

· Pr
h′←H

[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

≥ n−β−1 · 2−10 · Pr
h′←H

[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

and the claim holds.

The next claim uses Lemma 2.16 in order to show that in a random execution
of Inv, A has a good probability to output the same element x′

1 in Items 2 and 4.

Claim 4.9. For every x1, x2 ∈ {0, 1} the following holds. Let αx1,x2 :=
Prh←H [A(h, x1, x2) �= ⊥]. Then,

∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ]

≥ α2
x1,x2

· n−β−1/4.

Proof. Fix x1, x2 ∈ {0, 1}n, and let αx1,x2 be as in Claim 4.9. Let α1 :=
Prh←H [A(h, x1, x2) = (x1, ·)] and let α2 := Prh←H [A(h, x1, x2) /∈ {(x1, ·),⊥}].
Notice that αx1,x2 = α1 + α2.

Define Ã(h) to be the algorithm that outputs the first coordinate of A’s
output (A(h, x1, x2)1) if it is different from x1, or ⊥ otherwise. Let Gh :=
Gh,x1,x2 . Note that by the assumption on A, Ã always outputs elements in

S(h) = {x ∈ Gh,x1,x2 : x �= x1}. We get that α2 := Prh←H
[

Ã(h) �= ⊥
]

. Let

Ω = f−1(f(x1)) \ {x1}. It holds that,
∑

x′
1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′

1, ·)]

· Pr
h′←H

[
A(h′, x1, x2) = (x′

1, ·) | x′
1 ∈ Gh′,x1,x2

]

=
∑

x′
1∈Ω

Pr
h←H

[
A(h, x1, x2) = (x′

1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x′

1, ·) | x′
1 ∈ Gh′,x1,x2

]

+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·) | x1 ∈ Gh′,x1,x2

]

=
∑

x′
1∈Ω

Pr
h←H

[
Ã(h) = x′

1

]
· Pr

h′←H

[
Ã(h) = x′

1 | x′
1 ∈ Gh′,x1,x2

]

+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·)]

=
∑

x′
1∈Ω

Pr
h←H

[
Ã(h) = x′

1

]
· Pr

h′←H

[
Ã(h) = x′

1 | x′
1 ∈ S(h′)

]
+ α2

1,
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where the second equality holds by definition of Ã and since x1 is always a
member in Gh,x1,x2 . We next show that

∑

x′
1∈Ω

Pr
h←H

[

Ã(h) = x′
1

]

· Pr
h′←H

[

Ã(h) = x′
1 | x′

1 ∈ S(h′)
]

≥ α2
2 · n−β−1. (9)

Indeed, assume that Ω is not empty, as otherwise the above holds trivially. We
observe that for every x ∈ Ω,

0 < Pr
h′←H

[x ∈ S(h′)] ≤ |Im(f) | · n/2n ≤ nβ+1/
∣
∣f−1(f(x))

∣
∣ ≤ nβ+1/ |Ω| . (10)

Thus we can use Lemma 2.16, with X = H in order to get Eq. (9).
Combining the above, we conclude that

∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ]

≥ α2
2 · n−β−1 + α2

1.

The claim follows since either α1 or α2 is at least αx1,x2/2.

We are now ready to prove Claim 4.6.

Proof (Proof of Claim 4.6). For fixed x1 and x2 let αx1,x2 be as in Claim 4.9.
We start by showing that

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
x1,x2←{0,1}n

[

α2
x1,x2

] · n−2β−2 · 2−12. (11)

Indeed, by Eq. (8),

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
h←H,x1,x2←{0,1}n

y←f({0,1}n)
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

= E
x1,x2←{0,1}n

⎡

⎢
⎣ E

h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

⎤

⎥
⎦ ,

and thus it is enough to show that for every fixed x1, x2 ∈ {0, 1}n,

E
h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)] ≥ α2

x1,x2
· n−2β−2 · 2−12.
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Indeed, recall that by definition, pA(x1, x2,⊥, y) = 0. Therefore,

E
h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

=
∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)] · E

y←f({0,1}n)
[pA(x1, x2, x

′
1, y)]

≥
∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ] · n−β−1 · 2−10

≥ α2
x1,x2

· n−2β−2 · 2−12.

Where the equality holds by the assumption that A always outputs a valid
collision, or ⊥. The first inequality holds by Claim 4.8 and the second by
Claim 4.9.

We are now left to bound Ex1,x2←{0,1}n

[

α2
x1,x2

] ·n−2β−2 ·2−12. Observe that
by definition Ex1,x2←{0,1}n [αx1,x2 ] = α, and thus by the Jensen inequality, it
holds that Ex1,x2←{0,1}n

[

α2
x1,x2

] ≥ α2, which concludes the proof.

Acknowledgement. We are thankful to Iftach Haitner and Salil Vadhan for very
useful discussions. We also thank the anonymous reviewers for their comments.

A Missing Proofs

A.1 Pseudorandom Generator

Lemma A.1 (Lemma 2.6, restated). There exists a PPT algorithm P such
that the following holds. Let Q be a distribution over {0, 1}∗ ×{0, 1}n, and let D
be an algorithm and α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[

PD(x, y1,...,i−1) = yi

] ≥ 1/2 + α/n.

Proof (Proof of Claim 2.6.). Let Q,D and α be as in Claim 2.6. We start by
showing that D can be used in order to distinguish yi from uniform bit given
x, y1,...,i−1 for some index i ∈ [n]. Later we use this fact in order to predict yi.
Indeed, it holds that

α ≤ Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1]

≤
n∑

i=1

( Pr
(x,y)←Q,z←{0,1}n

[D(x, y1,...,i−1, zi,...,n) = 1]

− Pr
(x,y)←Q,z←{0,1}n

[D(x, y1,...,i, zi+1,...,n) = 1]),
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and thus there exists i ∈ [n] such that

ε := Pr
(x,y)←Q,
b←{0,1}

z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1] − Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1]

≥ α/n, (12)

as we wanted to show. We now describe the predictor P. Consider the following
algortihm.

Algorithm A.2 (The predictor P).
Input: x ∈ {0, 1}∗

, y1,...,i−1 ∈ {0, 1}i−1.
Oracle: A distinguisher D.
Operation:

1. Sample b ← {0, 1}, z ← {0, 1}n−i and execute D(x, y1,...,i−1, b, z).
2. If D output 1, output 1 − b. Otherwise, output b.

We next show that the probability that P outputs yi is at least 1/2 + α/n.
Let p := Pr(x,y)←Q,z←{0,1}n−i [D(x, y1,...,i−1, yi, z) = 1]. It holds that

p + ε = Pr
(x,y)←Q,b←{0,1}

z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1]

= 1/2 · ( Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1]

+ Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1])

= 1/2 · (p + Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1])).

Thus, Pr(x,y)←Q,z←{0,1}n−i [D(x, y1,...,i−1, 1 − yi, z) = 1] = p + 2ε. Continue, the
probability that P outputs yi is given by

Pr
b←{0,1}n

[b = yi] · (1 − p) + Pr
b←{0,1}n

[b = 1 − yi]

· Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1]

= 1/2 · (1 − p) + 1/2 · (p + 2ε)
= 1/2 + ε

≥ 1/2 + α/n

as needed.
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A.2 Universal Hash Families

Lemma A.3 (Lemma 2.13, restated). For every �, n ∈ N such that � ≤ n,
the family

{

m : m ∈ {0, 1}n×�
}

is approximately-flat.

Proof (Proof of Lemma 2.13). Fix Y, x1, x2 and y1 as in Definition 2.12. We want
to show that

Pr
M←{0,1}2n×�

[∃y2 ∈ Y s.t. M(x1, y1) = M(x2, y2)] ≥ 2−10 · min
{|Y| · 2−�, 1

}

.

We first assume that x1 �= x2, as otherwise the lemma holds trivially. Next, we
observe that M can be written as MX ∈ {0, 1}n×� and MY ∈ {0, 1}n×�, such
that for every vectors x, y ∈ {0, 1}n it holds that

M(x, y) = (x · MX ) ⊕ (y · MY). (13)

We want to bound the probability that there exists y2 ∈ Y such that
M(x1, y1) = M(x2, y2), or equivalently,

(x1 ⊕ x2) · MX = (y2 ⊕ y1) · MY . (14)

Since x1 �= x2, it holds that (x1 ⊕ x2) · MX is a uniform element in {0, 1}�.
Thus, we are interested in lower bounding the probability

Pr
MY←{0,1}n×�,z′←{0,1}�

[∃y2 ∈ Y s.t. z′ = (y2 ⊕ y1) · MY ]

= Pr
MY←{0,1}n×�,z←{0,1}�

[∃y2 ∈ Y s.t. z = y2 · MY ]

where the equality holds since z := z′ ⊕ y1 · MY is a uniform element in {0, 1}�

which is independent from MY . In the following we show that with probability
at least 1/2 over the choice of MY , the size of the set Y · MY = {y · MY : y ∈ Y}
is at least min

{|Y|/2, 2�/32
}

, from which the lemma follows.
To see the above, first notice that for every vector v ∈ {0, 1}n with v �= 0, it

holds that PrMY [v · MY = 0] = 2−�, and thus,

E
MY

[|{y1 �= y2 ∈ Y : y1 · MY = y2 · MY}|]
= E

MY
[|{y1 �= y2 ∈ Y : (y1 ⊕ y2) · MY = 0}|]

≤ |Y|2 · 2−�.

By Markov inequality, we get that with probability at least 1/2 over the choice
of MY , it holds that

|{y1 �= y2 ∈ Y : y1 · MY = y2 · MY}| ≤ 2 |Y|2 · 2−�. (15)

In the following we show that for every matrix MY for which Eq. (15) holds, it
holds that Y · MY ≥ min

{|Y|/2, 2�/32
}

.



484 N. Mazor and J. Zhang

Indeed, consider a graph G, in which the set of vertices is Y, and the set
of edges E is the set {y1 �= y2 ∈ Y : y1 · MY = y2 · MY}. By assumption, |E| ≤
2 |Y|2 · 2−�. Furthermore, it is not hard to see that G is composed of disjoint
cliques, and that the number of connected components in G is exactly the size
of Y · MY . To bound the number of connected components of G, we first assume
that G has no more than |Y|/2 isolated vertices, as otherwise the bound trivially
follows. We start with removing the isolated vertices from G, to get a graph with
at least |Y|/2 vertices and at most 2 |Y|2 · 2−� edges. Let k be the number of
connected components in the graph, and let c1, . . . , ck be the number of vertices
in each component. Since ci > 1 for every i, the number of edges in the i-th
component is larger than c2i /4. By Cauchy–Schwarz inequality,

(|Y| /2)2 ≤ (
∑

i∈[k]

ci)2 ≤ k ·
∑

i∈[k]

c2i ≤ 4k |E| ≤ 8k |Y|2 · 2−�,

which implies that k ≥ 2�/32, and the lemma follows.
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