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Abstract. The celebrated result of Yao (Yao, FOCS’82) shows that con-
catenating n ·p(n) copies of a weak one-way function (OWF) f , which can
be inverted with probability 1− 1

p(n)
, suffices to construct a strong OWF g,

showing that weak and strong OWFs are black-box equivalent. This direct
product theorem for hardness amplification of OWFs has been very influ-
ential. However, the construction of Yao is not security-preserving, i.e., the
input to g needs to be much larger than the input to f . Understanding
whether a larger input is inherent is a long-standing open question.

In this work, we explore necessary features of constructions which
achieve short input length by proving the following: for any direct product
construction of a strong OWF g from a weak OWF f , which can be inverted
with probability 1 − 1

p(n)
, the input size of g must grow as Ω(p(n)). By

direct product construction, we refer to any construction with the follow-
ing structure: the construction g executes some arbitrary pre-processing
function (independent of f) on its input, obtaining a vector (y1, · · · , yl),
and outputs f(y1), · · · , f(yl). Note that Yao’s construction is obtained by
setting the pre-processing to be the identity. Our result generalizes to func-
tions g with post-processing, as long as the post-processing function is not
too lossy. Thus, in essence, any weak-to-strong OWF hardness amplifica-
tion must either (1) be very far from security-preserving, (2) use adaptiv-
ity, or (3) must be very far from a direct-product structure (in the sense of
having a very lossy post-processing of the outputs of f).

On a technical level, we use ideas from lower bounds for secret-sharing
to prove the impossibility of derandomizing Yao in a black-box way. Our
results are in line with Goldreich, Impagliazzo, Levin, Venkatesan, and
Zuckerman (FOCS 1990) who derandomize Yao’s construction for reg-
ular weak OWFs by evaluating the OWF along a random walk on an
expander graph—the construction is adaptive, since it alternates steps on
the expander graph with evaluations of the weak OWF.

1 Introduction

In this work, we continue the study of constructions of strong one-way functions
(OWFs) from weak OWFs. The classical weak-to-strong hardness amplification
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technique, due to Yao [40], uses direct product amplification which is not secu-
rity preserving1. Our main result shows that the increase in the input size is
inherent for direct product constructions. Namely, any direct product black-box
construction of a strong OWF from a (1 − 1/p(n))-weak OWF must have input
length at least Ω(p(n)).

Weak and Strong OWFs. An α(n)-secure OWF f : {0, 1}n �→ {0, 1} is
an efficiently computable function such that any probabilistic polynomial-time
adversaries A can invert f with probability at most α(n). When α is a negligible
function, we say that f is a strong OWF; when α(n) = 1−1/p(n) for a polynomial
p, we say that f is a weak OWF. The seminal work of Yao [40] shows that weak
OWFs imply strong OWFs, via a standard direct product hardness amplification:
given a weak OWF f , define g(x1, ..., xl) = f(x1)||...||f(xl). Then, Yao proved
that g is a strong OWF for l > |xi| p(|xi|).

Adaptive vs. Non-adaptive Construction. In this paper we study non-
adaptive weak-to-strong OWF constructions, that is, constructions where the
calls to the weak OWF can be made in parallel. I.e., a strong OWF construction
g that makes calls to a weak OWF f is called non-adaptive if g’s calls to f
only depend on g’s input, but not on the output of f on any of these inputs.
Yao’s construction is a simple, non-adaptive construction where each call to f is
an independent chunk of the input. In general, non-adaptive constructions can
make correlated calls to f though.

g1(x) := f(x)||f(x + 1)
g2(x) := f(f(x))

We say that a construction is adaptive, if the output
of (at least) one call to f is used to determine the
input to another f call. That is, adaptive constructions
cannot compute all calls to f in parallel. For the toy constructions on the right,
g1 is non-adaptive (it does not matter whether g1 computes f(x) or f(x + 1)
first) and g2 is adaptive (g2 must make the inner f call first).

On the (in)efficiency of Yao’s Construction. The construction of Yao is
generic: it turns an arbitrary weak OWF f into a strong OWF g and just depends
on the hardness of f . In addition, g has an appealing simple direct-product
structure. In turn, g is suboptimal w.r.t. its computational complexity:

1. g makes a large number of calls to the underlying weak OWF, and
2. g is not security preserving, in that the input length of g is polynomially

larger than the input length of f .

Many celebrated cryptographic reductions are similarly not security-preserving
and have a high number of calls—the HILL construction of pseudorandom gen-
erator from any OWF being perhaps one of the most well-known examples [14].

1 In a security-preserving construction, the input length of the strong OWF is linear
in that of the weak OWF.
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In beautiful works, a decade ago, Haitner, Reingold, Vadhan and Zheng [13,36]
developed rich tools for computational entropy, and improved the original n8

seed length by HILL to O(n3), where n is the input length of the OWF—since
further improvements seem extremely hard to obtain, it is natural to ask whether
large lower bounds on the input size are inherent.

In a seminal result [19], Impagliazzo and Rudich [19] formalize the notions
of black-box constructions/reductions, and develop methods to establish their
limitations. Informally, a (fully) black-box construction of a primitive C from
a primitive P treats both P and any adversary A against P in a black-box
way. Following this breakthrough result, a long line of work (see [6,8,9,23,24,
26,27,38]) has been devoted to proving limitations on the efficiency of black-box
reductions. Our work continues this successful line of work.

To our knowledge, three previous works study black-box limitations on the
efficiency of Yao’s construction. Lin, Trevisan, and Wee [24] address the first of
the two limitations above: they show that any fully black-box construction of
an ε(n)-secure OWF from a (1 − δ(n))-secure OWF f must make at least q =
Ω((1/δ) · log(1/ε)) calls to f . They also show that fully black-box construction
cannot be perfectly security-preserving: if f has input size n, the input size of the
strong OWF must be at least n+Ω(log 1/ε)−O(log q). The work of [26] showed
that non-adaptive fully black-box construction (i.e., a construction where all the
calls to f are made in parallel) cannot amplify security beyond poly(n) if the
algorithm implementing the reduction has constant depth, and its size is below
2poly(n). Eventually, the work of [27] extended the results of [24] to the weakly
black-box setting with bounded non-uniformity.

1.1 On Security-Preserving Amplification of Weak OWFs

The above result leaves open one of the most intriguing limitations of Yao’s
construction: the fact that it causes a polynomial blowup in the input size.
While [24] shows that some blowup in the input size is available, it leaves a
huge gap: starting with a (1−1/p(n))-secure OWF f with input length n, Yao’s
construction requires an input size n2 ·p(n) to build any strong OWF, while the
result of [24] only shows that to build an extremely strong OWF, say a 2−μ·n-
secure OWF (for some constant μ), one needs input size at least (1+μ)·n−log p.

In a sense, the proof of [24] cannot do much better, because it also applies to
the setting of regular one-way functions (where outputs have the same number
of preimages), and rules out even adaptive fully black-box reductions. However,
in this setting, it is actually known that we can do much better than Yao’s
construction and obtain an almost security-preserving construction, if we start
from a regular weak OWF, and use adaptivity. Indeed, the work of [10] provides
precisely such a construction, using random walks on expander graphs.

This leaves us in between two extremes: on the one hand, Yao’s construction
is non-adaptive (hence optimally parallelizable: if one starts with a paralleliz-
able weak OWF, one ends up with a parallelizable strong OWF), extremely sim-
ple (it has a straightforward direct product structure) and works for arbitrary
OWFs; however, it is not security-preserving. On the other hand, the construc-
tion of Goldreich, Impagliazzo, Levin, Venkatesan, and Zuckerman [10] is almost
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security-preserving, but is considerably more involved, requires adaptive calls,
and works only for regular OWFs. Improving this state of affair is a long-standing
and intriguing open problem.

1.2 Our Contribution

In this work, we make progress on this problem. Specifically, we show that
any relativizing direct product black-box construction of strong OWF from a
(1 − 1/p(n))-secure OWF cannot be security preserving, in a strong sense: it
requires an input length of at least Ω(p(n)). While this still leaves a gap with
respect to Yao’s construction, which has input length O(n2 · p(n)), this gap van-
ishes asymptotically when p grows. By direct product construction, we mean a
construction g of strong OWF with the following structure: on input x, g(x)
outputs (f(y1), · · · , f(y�)), where f is the weak OWF, and (y1, · · · , y�) are com-
puted from x arbitrarily, but without calling f (we call the mapping from x
to (y1, · · · , y�) the pre-processing). This is a natural generalization of Yao-style
constructions of strong OWFs (we recover Yao’s construction by letting the pre-
processing be the identity function). Furthermore, our result generalizes to the
setting where some post-processing (independent of f) is applied to the out-
puts (f(y1), · · · , f(y�)), whenever this post-processing is not too lossy : we prove
that whenever each output of the post-processing has at most polynomially
many preimages, the same Ω(p(n)) input length bound holds. We summarize
the results in the following informal theorem:

Theorem 1. Let f be a (1 − 1/p(n))-secure OWF (a weak OWF). Let g be any
non-adaptive construction, with not-too-compressing post-processing, of input
length < cp(n), for certain constant c. Then, it is impossible to prove, in a
relativizing fully black-box way, that g is a strong OWF.

Observe that if we could generalize our result to arbitrary (f -independent)
post-processing functions, the above would capture all non-adaptive construc-
tions. Hence, in essence, our result says the following: any (fully black-box)
construction of strong OWF from a weak OWF must either (1) be very far from
security preserving, or (2) use adaptivity, or (3) compute a highly non-injective
function of the outputs of the non-adaptive calls (i.e., be very far from a “direct
product” structure).

1.3 Relation to Correlated-Product and Correlated-Input Security

Usually, parallel concatenation of cryptographic primitives on independent
inputs preserves security. For example, if f and g are one-way functions, then
so is (x1, x2) �→ (f(x1), g(x2)). However, things might potentially change radi-
cally when x1 and x2 are not sampled independently, but are instead correlated,
e.g., sampled jointly from a high min-entropy source. Variants of this problem
have been studied on many occasions in cryptography, and have profound con-
nections to the feasibility of cryptography with weak sources of randomness,
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leakage-resilient cryptography, related-key attacks, or deterministic encryption
(to name a few); see e.g. [39] for discussions on cryptography with correlated
sources. In addition, security for correlated inputs has proven to be a very useful
assumption by itself: one-wayness under correlated product (i.e., one-wayness
of f(x1), · · · , f(xk) for (x1, · · · , xk) sampled from a joint distribution) has been
used to build CCA secure cryptosystems [16,30], and correlated-input secure
hash functions have found numerous applications such as OT extension [22],
trapdoor hash function [7], constrained pseudorandom functions [1], password-
based login [12], and many more.

A general and natural question to ask is: which type of constructions preserve
hardness, when the inputs are jointly sampled from a high min-entropy source,
rather than being sampled independently? This is a fundamental question in
itself, because this setting occurs in real-life use of standard cryptographic con-
struction (when they are misused, when the source of randomness is imperfect,
or when the adversary has access to some leakage on the inputs), but also due
to the many applications outlined above.

It is well-known that not all constructions will preserve security under cor-
related inputs. For example, even though the map x �→ xe mod n is believed
to be one-way when n is a product of two large safe primes (this is the RSA
assumption), the extended euclidean algorithm provides an efficient inverter for
the map x �→ (xe1 , xe2) mod n whenever gcd(e1, e2) = 1 (this example is taken
from [16]). Hence, there are specific functions fi (here, fi : x �→ xei) and specific
correlations of the inputs (here, the equality correlation: the same input x is used
for all functions) such that correlated-product security breaks down. However,
this leaves open the possibility that some specific input correlations preserve
correlated-product security (for example, this is the case when the correlated-
inputs are indistinguishable from random, e.g. when sampled as the output of a
PRG), or that some specific functions maintain correlated-product security for
general correlations.

Our results can be cast in the context of correlated-product security: we
show that even though Yao’s construction of OWF, which is a very natural and
seminal construction, is provably secure (with a black-box proof) when used
with random and independent inputs, it breaks down for any possible corre-
lated source, whenever the entropy of the source is below p(n). This provides
a natural example of a construction, from a weak OWF f , where correlated-
product security cannot be generically shown to hold (in a black-box way) for
arbitrary sources, unless they contain enough entropy such that all of the corre-
lated inputs can have independent entropy. In contrast, [30] shows that when f
is instantiated as a lossy trapdoor function, then f(x1), · · · , f(xk) is one-way for
correlated inputs (x1, · · · , xk), and [16] shows that assuming OWFs, there exists
a correlated-product secure function. Our results provide a partial complemen-
tary perspective to this line of work.

Comparison to [39]. Wichs [39] also studies, among other questions, the one-
wayness of constructions of the form (f(x1), · · · , f(xk)) for inputs (x1, · · · , xk)
sampled from a correlated source. Our results are incomparable: we show that
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for a generic weak OWF f , and for any fixed distribution over the inputs
(x1, · · · , xk) with o(k) bits of entropy, the one-wayness of f(x1), · · · , f(xk) does
not follow from that of f in a black-box way. In contrast, [39] shows that for
an arbitrary function f , there is no black-box reduction (to any standard hard-
ness assumption) of one-wayness of (f(x1), · · · , f(xk)) when the xi can come
from arbitrarily correlated distributions, even with high per-input entropy. That
is, [39] handles a considerably larger class of constructions and reductions to
many possible assumptions, but only rules out a much more stringent security
notion (where one-wayness must hold even when the input distributions are not
fixed a priori and can be correlated arbitrarily).

1.4 Related Works

We already pointed out to numerous related works on bounding the efficiency
of black-box reductions [6,8,9,23,24,26,27,38], including some specifically tar-
geting hardness amplifications of one-way functions, and related works on
correlated-product security. Besides, our black-box separations use some estab-
lished tools (in addition to key new technical insights, which we cover afterwards)
such as the two-oracle technique of [17,32] where one oracle implements the base
primitive and the second oracle breaks all constructions built from this primitive.
We use Borel-Cantelli style technique from [28] to extract a single oracle from
a distribution of random oracles analogously to the seminal work on black-box
separations by Impagliazzo and Rudich [19].

Hardness amplification of functions, via direct products and related construc-
tions, have a rich and dense history, which goes well beyond one-way functions
and is too vast to be covered here. In particular, amplifying the hardness of com-
puting boolean functions (rather than inverting functions) using direct product
constructions is at the heart of rich lines of work on worst-case to average-case
reductions, constructions of non-cryptographic pseudorandom generators, circuit
lower bounds, and many more – see e.g. [2,3,11,15,18,21,25,31,33–35,37] and
references therein.

1.5 Technical Overview

To prove our black-box separations, we exhibit an oracle relative to which there is
a weak one-way function, yet all strong one-way functions with an appropriate
structure can be inverted efficiently with constant probability. The standard
method to do so is to design oracles relative to which the starting primitive
(here, the weak one-way function) clearly exists and is the only possible source
of hardness. For example, in the seminal work by Impagliazzo and Rudich (IR) on
the separation of key exchange from OWFs [20], IR introduce a random oracle,
which is a strong OWF with high probability, as well as assuming P = NP,
thereby ruling out most other (stronger) cryptographic primitives. In our setting,
we instantiate this intuition by choosing three oracles:

(1) A PSPACE oracle, which destroys all possible sources of hardness,
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(2) a random oracle F, which instantiates the weak OWF, and
(3) an inverter INV, which inverts F on a (roughly) 1−1/p fraction of its inputs,

effectively turning it into a weak OWF. Note that a random oracle F alone
would already be a strong OWF, if we did not weaken it by adding INV.

Fig. 1. (n, m)-non-adaptive
construction. F is the weak
OWF. Length of d can be
arbitrary, |xi| = |yi| = m
and |s| = n.

In this oracle world, we consider non-adaptive
constructions of strong OWFs g from the weak
OWF F. Since we wish to rule out (relativizing) fully
black-box reductions (as defined by Reingold, Tre-
visan and Vadhan [29]), we do not give g access to
INV. In fact, this is inherent in our setting: observe
that given access to INV, it is not too hard to build
a strong OWF (e.g. the strong OWF can perform a
random walk starting from the input x, until it lands
on a hard input y – which can be tested using INV
– and outputs F(y)). In general, whenever one can
efficiently test which inputs are hard, constructing a
security-preserving OWF becomes feasible – and it
is precisely the lack of any such tester that makes it
highly nontrivial to improve over Yao’s seminal con-
struction. Since we rule out fully black-box reduc-
tions, we do not let g access INV and thus, g does
not know where the easy inputs are.

Modeling Non-adaptive Constructions. Non-
adaptive construction can be thought of as a cir-
cuit which first has a pre-processing layer, followed
by a layer of parallel calls to a weak OWFs and
then some post-processing, see Fig. 1. When the
construction omits the post-processing layer, as in
Yao’s construction, this corresponds to a direct
product construction. The input size n of the con-
struction might be different from the input size m of the weak OWF. As a
starting point, we consider what happens when the construction does not use
any post-processing, as is the case in Yao’s construction. When there is no post-
processing, the additional data d in Fig. 1 only reduces the input domain and
does not add any security. Thus, w.l.o.g., we assume that there is no d.

Inverting Direct Product Constructions. Considering the simple case with
no post-processing and no d, the first observation is that g must make more than
p(m) calls to the weak OWF, since otherwise all the calls will be easy to invert
with constant probability. In that case the adversary could simply invert all the
weak OWF calls and then use PSPACE to invert the pre-processing layer, thus
inverting g with constant probability.

Now that g makes at least p(m) calls to the weak OWF, we can make the
main observation of the paper: if we can invert a 1−1/p(m) fraction of the weak
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OWF calls and n is slightly smaller than p(m), then the remaining entropy of
the input s cannot be very high, on the average. This is formalized in Lemma 21.
This is because the number of calls to the weak OWF is at least the same order
of magnitude as the length of the input to the strong OWF. Hence, there is not
enough entropy in the strong OWF input to distribute among all the weak OWF
calls, so most of the calls will end up having very little entropy of their own, i.e.
entropy that is not shared with other calls.

Now the probability that an adversary can indeed invert a 1−1/p(m) fraction
of the weak OWF calls is high, since that is the expected fraction of easy calls.
Since the entropy of the input s is low, given the easy calls, and the adversary
has the PSPACE oracle, the adversary can guess s with high probability. Note
that low entropy alone is not enough to guess s, since inverting pre-processing
might be inefficient, hence we also need PSPACE.

To summarize, we know that there must be many calls to the underlying
weak one-way function—and since we can also show that each of them must
have a non-trivial amount of entropy (i.e., information about the input)—we can
show that we can invert all non-adaptive constructions without post-processing,
unless n is larger than a small constant times p(m), establishing the first lower
bound on the randomness efficiency of non-adaptive constructions. Note that
Yao’s construction consumes n = m2p(m) many bits.

On Strong OWFs with Injectiveish Post-processing. We sketched above
why constructions without post-processing (direct product constructions) can-
not be strongly one-way. It is relatively easy to extend the above argument to
constructions with not too lossy post-processing, i.e., constructions where any
output of the post-processing has at most polynomially many preimages: the
inverter chooses a uniformly random value amongst the (polynomial size) list of
all possible preimages of the post-processing, and applies the previous inversion
attack on the candidate. It then succeeds with probability 1

poly times the success
probability of the previous attack.

1.6 Relation to Threshold Secret Sharing

The pre-processing pre in Fig. 1 is conceptually similar to a threshold secret
sharing scheme, where the participants’ shares correspond to the values xi and
the secret together with the dealer’s randomness corresponds to the strong OWF
input s. On average, we learn the ‘shares’ of all but a 1

p(m) fraction of the
‘participants’. So effectively, we are interested in how long the secret and the
dealer’s randomness together must be in a (1− 1

p(m) +ε)-threshold secret sharing
scheme. The difference is that we allow a negligible failing probability for the
secret sharing scheme and we do not distinguish which part of the input is the
secret and which part of the input is the randomness of dealer in the secret
sharing scheme.

To make the intuition concrete, our result can be formulated as a result on
the threshold achievable by any deterministic threshold secret sharing schemes
with short secret.
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Definition 2 (Deterministic Threshold Secret Sharing Scheme). We say
that function S : {0, 1}n → ({0, 1}m)l (i.e. S outputs l bitstrings of length m) is
(l, t)-deterministic threshold secret sharing scheme if for all adversaries A:

Prπ ←$ permutations of (1,...,l),x ←$ {0,1}n

[
x ←$ A(S(x)π(1), ..., S(x)π(t))

] ≤ negl(n),

where S(x)i denotes the ith share, i.e., the ith length n bitstring of the output
of S. The secret length n should be polynomial in the share length m (hence,
negligible in n is also negligible in m).

Note that any threshold secret sharing scheme can be made deterministic by
considering the randomness as part of the secret – but then the randomness must
be counted towards the secret length. The fact that Definition 2 uses probability
over permutations of the shares only makes the definition cover a larger class of
schemes, in particular, a scheme that is secure for all permutations is also secure
by Definition 2.

Also, notice that Definition 2 relies on a very weak hiding notion: no subset
of size less than t should be able to fully recover the secret (except with negligi-
ble probability). This sets our result apart from most known bounds on secret
sharing, which apply to the indistinguishability setting.

In this language, our result states the following: let m be the share length and
p be any polynomial. Consider any candidate (l, t)-threshold deterministic secret
sharing scheme with t ≥ (1 − 1/p(m)) · l, now the scheme must have secret size
n > p(m)/c, for a certain constant. For traditional (l, t)-threshold secret sharing
schemes, this means that the combined length of the secret and the randomness
used by the scheme must be > p(m)/c, if t ≥ (1−1/p(m)) · l. Naturally, in order
to this result being meaningful, the number of shares l should be bigger than
the polynomial p(m).

The result follows from our main conceptual Lemma 21, which effectively
states that the expected entropy of the remaining shares, when you know (1 −
1/p(m)) fraction of the shares, is small. Hence, the remaining shares can be
guessed with non-negligible probability.

Our result stays the same even if we change Definition 2 to cover only effi-
cient, i.e. probabilistic polynomial time, adversaries A, provided that the scheme
S is such that you can compute the secret in polynomial time, when you know all
the shares. That is, we even rule out computational security if t ≥ (1−1/p(m)) ·l
and n < p(m)/c.

More precisely, let us change the Definition 2 to a definition that covers an
even larger class of schemes (the difference to Definition 2 is high-lighted in pink)
and subsequently state our result in the secret-sharing terminology.

Definition 3 (Computational Deterministic Threshold Secret Sharing
Scheme). A function S : {0, 1}n → ({0, 1}m)l (i.e. S outputs l bitstrings of
length m) is (l, t)-computational deterministic threshold secret sharing scheme
if for all probabilistic polynomial time adversaries A:

Prπ ←$ permutations of (1,...,l),x ←$ {0,1}n

[
x ←$ A(S(x)π(1), ..., S(x)π(t))

] ≤ negl(n),
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where S(x)i denotes the ith share, i.e., the ith length n bitstring of the output of
S. The secret length n should be polynomial in the share length m. The function
S−1 should be computable in polynomial time.

Theorem 4 (Threshold Secret Sharing View). Fix a large enough m and
a polynomial p. Consider a computational deterministic threshold secret sharing
scheme where

– the dealer has an n bits secret;
– there are l participants, each getting a share of length m;
– the threshold t satisfies t ≥ (1 − 1

p(m) )l.

Then the secret must be long: n > 1
cp(m), where c is some constant.

Blundo, Santis, Vaccaro [5] discuss the minimum amount of randomness
needed by an information theoretically secure secret sharing scheme. They prove
that if the secret length is m and there are l participants, then the dealer needs
to use l · m bits of randomness (to choose both the secret and the participants’
shares). This is the same as the analogous number in Yao’s weak to strong OWF
construction (when number of weak OWF calls is l > mp(m), we use lm input
length) and it is close to the analogous number that we get in this paper (input
length to strong OWF needs to be O(p(m)), i.e. there is m2 gap between our
result and Yao’s).

It is intuitive that some gap should exist between the information theoreti-
cally secure secret sharing scheme and our more relaxed “mostly secure secret
sharing scheme”, where the adversary is allowed to learn part of the secret as
long as they cannot learn the whole input and additionally, the adversary is only
allowed to run in polynomial time. However, the two secret sharing schemes are
not really comparable (because we do not distinguish between randomness and
secret) and a better lower bound, than what we present, might be possible.

2 Preliminaries

Definition 5 (One-Way Functions). Let f : {0, 1}∗ → {0, 1}∗ be a
polynomial-time computable function. f is called a (strong) one-way function
(OWF), if for every probabilistic polynomial-time algorithm A there exists a
negligible function ε : N → [0, 1] such that for every n,

PrA,x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))
] ≤ ε(n).

Further, f is called a weak one-way function, if there exists a polynomial p(n)
such that for every probabilistic polynomial-time algorithm A there exists a N0 ∈
N such that for all n ≥ N0:

PrA,x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))
] ≤ 1 − 1

p(n)
.

In this case we sometimes say that f is a p-weak OWF.
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Definition 6 (Oracle Algorithms). The complexity of an oracle algorithm
(e.g., Turing Machine) is the number of steps it makes, where an oracle query
is counted as one step.

In particular, a probabilistic polynomial-time (PPT) oracle algorithm makes at
most polynomial queries. Since our oracle algorithms have access to a PSPACE
oracles, we usually limit the discussion to the number of oracle calls the algorithm
makes.

We use the following Borel-Cantelli style theorem from [28, Lemma 2.9].

Theorem 7 Let (E1, E2, ...) be a sequence of events such that ∃c∀m ∈ N :
Pr[Em ] ≥ c, where c is a constant strictly between 0 and 1. Then,

Pr

[ ∞∧

k=1

∨

m>k

Em

]

≥ c (1)

2.1 Entropy Toolbox

Throughout this paper, the term entropy refers to Shannon entropy which sat-
isfies a chain rule.

Definition 8 (Shannon Entropy). Let X be a random variable and let
dom(X) be its domain, then

H(X) := −
∑

z∈dom(X)

Pr[X = z ] · log2(Pr[X = z ]),

is the Shannon entropy of X.

Lemma 9 (Chain Rule for Entropy). Let X1, . . . , Xn be random variables.
Then the following holds

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|X1, . . . , Xn−1).

We use also other simple but useful properties of entropy. In particular, Def-
inition 8 implies that entropy is non-negative. Also, the entropy H(X) of a
random variable X is always more or equal to the entropy H(f(X)) of the
random variable f(X) for any deterministic function f—if f is injective, the
entropy is preserved, if f is not injective, it decreases. Finally, for any three ran-
dom variables X,Y,Z, we have that H(X|Y ) ≥ H(X|Y,Z), i.e., conditioning on
additional information maintains or decreases the entropy of a random variable.

3 Main Results

In this section, we introduce different types of constructions of strong OWF from
weak OWF which we study in this paper (Sect. 3.1) and state our main theo-
rems (Sect. 3.2). In particular, we introduce non-adaptive constructions, non-
adaptive constructions without post-processing and non-adaptive constructions
with injectiveish post-processing.
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3.1 Black-Box Constructions and Reductions

Definition 10 (Non-adaptive). A construction g = (pre, post) from a weak
one-way function F is non-adaptive, if it computes its output as post(F(pre(s)))
(see Fig. 1). The number of queries l is induced by pre. (n,m)-NA denotes a
non-adaptive construction with input length n based on a weak OWF F whose
input length is m.

Definition 11 (Non-adaptive, no post-processing construction). We say
that a construction g = (pre, post) is a (n,m)-NANPP, if it is (n,m)-NA and
the post-processing function is the identity function, i.e., post(y1, ..., yl, d) :=
y1||..||yl||d.
Definition 12 (Non-adaptive, injectiveish post-processing constr). We
say that a construction g = (pre, post) is a (n,m)-NAIPP, if it is (n,m)-NA and
the post-processing function is almost injective, that is, every image of post has
at most a polynomial (in n) number of preimages.

Note that the identity function is injective and thus, in particular, is injectiveish.
Therefore, every NANPP is also a NAIPP, but the converse does not hold.
Likewise, both NANPP and NAIPP are NA constructions, but the converse
does not hold. Since we are interested in ruling out negative results, whenever
we rule out NAIPP, we also rule out NANPP.

We formalized the kind of constructions our negative results capture, and
now specify which type of reduction proofs our theorems rule out. Namely, our
results concern BBB-style proofs following the notation of [4] or fully black-box
proofs following the notation of [29]. Since we consider parametrized definitions,
we here state a customized version of fully black-box security which precisely
captures the quantifiers our negative results capture.

Definition 13 (Fully Black-Box Proof). We say that a proof that weak OWF
implies strong OWF is fully black-box if it establishes a relativizing statement
of the following type:

∀poly p,∃ poly-time computable g,∀poly q,∃PPT R∀p-weak OWF F,A :
if Prx ←$ {0,1}n

[
gF(A(1n, gF(x))) = gF(x)

]
> 1

q(n) for inf. many n ∈ N

then Prx ←$ {0,1}n

[
F(RA,F(1n,F(x))) = F(x)

]
> 1 − 1

p (n) for inf. many n ∈ N.

In this case, we also refer to the construction g as fully black-box.

Note that typically, in the definition of fully black-box, the pink parts are
omitted. That is, the polynomial p is considered as part of the definition of F and
the polynomial q is considered as part of the definition of A (i.e. the adversary’s
success probability). We allow the construction g to depend on the polynomial
p and the reduction R to depend on q, since we seek to cover a larger and
meaningful class of proofs. In particular, Yao’s original proof building strong
OWFs from weak OWFs is fully black-box in the sense of Definition 13, but
would not be covered if the construction were now allowed to depend on p or if
the reduction were not allowed to depend on q.
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3.2 Theorems

We now state our main theorems, all of which rely on the two-oracle technique.
Namely, we construct a distribution over oracles (O1,O2) such that O1 will be a
weak one-way function and O2 will help to invert the strong one-way function.
Since we rule out black-box reductions rather than provide an oracle separation,
only the reduction has access to the oracle O2 while the construction does not
(cf. Section 1.5). Note that in Corollary 16, we extract a single oracle from the
oracle distribution, using the Borel-Cantelli style argument Theorem 7. However,
we prefer to state our theorem in terms of oracle distributions since this more
closely matches the technical core arguments of our separation results.

Theorem 14 (NANPP Impossibility). ∃ constant c such that ∀poly p,
∀(n,m)-NANPP g with input length n ≤ 1

cp(m), ∃ poly-query A, ∃poly q(n) =
nc, c ∈ N+, ∀PPT R, ∃ distribution D over pairs of oracles (O1,O2):

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is an indicator variable that is 1 iff at least one of the following

is true:

1. Weak OWF breaks:
Prx ←$ {0,1}m,R

[
RAO1,O2 ,O1,O2(1m,O1(x)) ∈ O−1

1 (O1(x))
]

≥ 1 − 1
p(m) .

2. Strong OWF is secure-ish:
Prs ←$ {0,1}n,A

[AO1,O2(1n, gO1(s)) ∈ (gO1)−1(gO1(s))
] ≤ 1

q(n) .

We emphasize that in the definition of the bad event, the oracles are fixed
and the randomness is taken only over the sampling of x as well as the internal
randomness of A and R, respectively.

Theorem 15 (NAIPP Impossibility). ∃ constant c∀poly p, ∀(n,m)-NAIPP
g with input length n ≤ 1

cp(m), ∃ poly-query A, ∃poly q(n) = nc, c ∈ N+,
∀PPT R, ∃ distribution D over pairs of oracles (O1,O2):

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is the same indicator variable as in Theorem 14.

We use the same oracle distribution for Theorem 15 and Theorem 14, see
Sect. 4. Theorem 15 implies Theorem 14, so it would suffice to prove Theorem 15.
However, we found the presentation to be easier to follow when presenting the
proof of the weaker Theorem 14 first (Sect. 5.2) and then discussing the general-
ization to the proof of Theorem 15 (Sect. 6). For both theorems, we prove that
relative to O1,O2, oracle O1 is a weak OWF. Before proving the theorems for
oracle distributions, we now use the strengthened Borel-Cantelli lemma by Mah-
moody, Mohammed, Nematihaji, Pass and Shelat [28] to extract a single oracle
from the distribution where the bad event happens with constant probability, as
opposed to less than 1/m2 required by standard Borel-Cantelli.
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Corollary 16 (Main). There is no fully black-box (n,m)-NAIPP construction
of a OWF from a p(m)-weak OWF with n ≤ 1

cp(m), where c is some constant.

Proof. Recall that a black-box proof means the following:

∀poly p,∃ poly-time computable g,∀poly q,∃PPT R∀p-weak OWF F,A :
(A inverts g) ⇒ (RA inverts F) Formally:

(
Prx ←$ {0,1}n

[
gF(A(1n, gF(x))) = gF(x)

]
> 1

q(n) for inf. many n ∈ N

)

⇒
(
Prx ←$ {0,1}n

[
F(RA,F(1n,F(x))) = F(x)

]
> 1 − 1

p (n) for inf. many n ∈ N

)

In order to rule out a black-box proof, we thus define an oracle O1 (and an oracle
O2 helping the adversary) such that the following holds:

∀poly p,∀ poly-time gO1 ,∃poly q,∀PPT RO1,O2 ∃AO1,O2 ,∃O1,O2 :
A breaks gO

1 , but R does not p-invert O1. Formally:
Prx ←$ {0,1}n

[
gO1(AO1,O2(1n, gO1(x))) = gO1(x)

]
> 1

q(n) for inf. many n ∈ N.

Prx ←$ {0,1}n

[O1(RA,O1,O2(1n,O1(x))) = O1(x)
]

< 1 − 1
p (n)

for all but finitely many n ∈ N.

In order to rule out a fully black-box reduction, we would only need to show that
statement with the pink universal quantifier being replaced by existential quan-
tifier. However, proving the statement for all polynomials p is stronger without
making the proof more complicated. Now, let us fix a polynomial p, a candidate
NAIPP g, a polynomial q (s.t. it satisfies Theorem 15) and a candidate reduction
R and show the existence of an adversary and a p-weak OWF F.

By Theorem 15, there is an oracle distribution over pairs (O1,O2), and an
adversary A such that the probability of the bad event BadR,A,g

m is constant
in m. We show that there exists a fixed oracle pair (O1,O2) for which the bad
event BadR,A,g

m in Theorem 15 happens only for finitely many m. From that it
follows that there is a fixed oracle pair for which AO1,O2 breaks the candidate
strong OWF gO1 infinitely many often, but the reduction RAO1,O2 inverts the
weak OWF O1 well enough at most on finitely many m. Thus, it suffices to show
via Theorem 7, that Theorem 15 implies that there is an oracle relative to which
BadR,A,g

m happens only for finitely many m.
By Theorem 15, we have

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1.

Hence, the constant probability version of Borel-Cantelli (Theorem 7) yields

Pr(O1,O2) ←$ D

[ ∞∧

m=1

∨

m>k

BadR,A,g
m

]

= constant < 1,

which means that, with constant probability, there is a k for which no m > k
satisfies BadR,A,g

m . Taking such an oracle pair (O1,O2) concludes the proof of
Corollary 16. ��
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4 Oracle Distributions

In this section, we define the oracle (distribution)s we rely on. Firstly, a PSPACE
creates a world where no one-way functions exist. Then, we add an oracle (dis-
tribution) F in order to create a world where weak one-way functions exist, and
finally, we add an oracle (distribution) O2 which breaks NANPP and NAIPP
constructions. The adversary will have access to O2, PSPACE and F while the
candidate strong OWF construction only has access to PSPACE and F, but not
to O2. We recall from Sect. 1.5 that it is necessary to not give the construc-
tion access to the information which parts of F are easy and which parts are
hard, and not giving the construction access to O2 is related to this necessary
restriction, since the adversary (modeled by O2) uses the information of which
parts are easy. On a technical-conceptual level, it is meaningful to not give the
construction access to the adversary (modeled by O2), since the adversary is
inefficient, while the construction is efficient (in this (oracle) world where all
algorithms have access to PSPACE and F). We consider an inefficient adversary
since we rule out black-box reduction which work for any black-box adversary
that breaks the strong OWF, including inefficient ones.

As mentioned before, we denote our adversary by O2. We encode the pair
of oracles PSPACE and F into a single oracle O1 so that we are aligned with
the terminology of a two-oracle separation result (and this is also convenient
notation in the proof).

Definition 17 (Oracle Distributions). Let p be any fixed polynomial. The
oracle distribution Dp over oracles O1 and O2 samples permutations Πm of the
elements in {0, 1}m for every m ∈ N and a random subset EASYm

in of {0, 1}m

s.t. |EASYm
in | = (1 − 1/p(m))2m�. We define

O1 := (PSPACE,F) and O2 := INV,

where F and INV behave as follows:

F(x)

m ← |x|
y ← Πm(x)

return y

INV(y)

m ← |y|
if y ∈ EASYm

out

return F−1(y)

else return ⊥
Here, we use EASYm

out := Πm(EASYm
in ).

Remark. Throughout this paper we treat (1−1/p(m))2m as an integer, omitting
the ceil function since the difference is negligible and does not affect our proofs.
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5 Proof of Theorem 14

We split the proof of Theorem 14 into two parts. We first show that the proba-
bility of Case 1 (weak OWF breaks) of the bad event introduced in Theorem 14
is smaller than any constant (Sect. 5.1), and then we show that the probability
of Case 2 (strong OWF is secure-ish) of the bad event introduced in Theorem 14
is a small constant (Sect. 5.2). Recall that both probabilities are (only) over the
sampling of the oracles O1 and O2.

5.1 RA is Not a Successful Weak OWF Inverter

In this section, we show that the probability (over the oracle distributions) that
F is not a 2cp(m)-weak OWF is small.

Theorem 18 (F is Weak OWF). For all constants c, for all polynomials p,
for all poly-query AF,PSPACE,INV, for all adversaries R making polynomially many
(in m) queries to the oracles F,PSPACE, INV,AF,PSPACE,INV,

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − 1
2cp(m)

]
≤ 1/c

where SuccInvF,PSPACE,INV
A,R is defined as

Prx ←$ {0,1}m,R
[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

When we define p(m) := 1
2cp(m), the above is equivalent to

Pr(O1,O2) ←$ D
[
Case 1 of BadR,A,g

m

]
≤ 1/c,

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is defined as in

Theorem 14.

We prove Theorem 18 in Appendix B.

5.2 A is a Successful Strong OWF Inverter

We prove that an adversary with access to the oracles F, INV and PSPACE (cf.
Sect. 4), can break all short input NANPP constructions which have access to F
and PSPACE only.

Theorem 19 (Inverting OWF Candidate). ∀ poly p, ∀(n,m)-NANPP g
with input length n ≤ 1

4p(m), ∃ poly-query AF,INV,PSPACE, ∃constant c > 0 s. t.

Pr(F,INV) ←$ Dp

[
Prs, coins of A

[AF,INV,PSPACE inverts g(s)
] ≤ c

]
= constant < 1

This implies that

Pr(O1,O2) ←$ D
[
Case 2 of BadR,A,g

m

]
= constant < 1

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is defined as in

Theorem 14.
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For the proof of Theorem 19, let p(m) be a fixed polynomial. We start by
showing that Theorem 19 holds for constructions which make few queries. More
precisely, we show that no matter what the input length to g is, g must make
at least l > cp(m) calls to F, otherwise all the F calls are easy with constant
probability, which makes inverting g trivial.

Proposition 20 (Easy inversion if few F-Calls). Consider a NANPP g =
(pre, post) (where we recall that post(y1, .., yl, d) = y1||..||yl||d). For all constants
c, if pre(s) = (x1, .., xl, d) induces at most l ≤ cp(m) (parallel) calls to F, then
all yi := F(xi) are in EASYm

out with constant probability, more precisely

PrF ←$ Dp [Prs [∀yi ∈ g(s) : yi ∈ EASYm
out ] > constant > 0] > constant > 0 (2)

In particular, with constant probability over the choice of the oracle F, g can be
inverted with non-negligible (constant) probability by a poly-query adversary.

Proof. Suppose there are l ≤ cp(m) parallel calls to F. Denote by y1, ..., yl the
outputs of the parallel calls to F. Now, when considering the randomness of
choosing EASYm

in , we have

PrF ←$ Dp,s [y1, ..., yl ∈ EASYm
out ]

≥
∑

s

2−|s|

︸ ︷︷ ︸
=1

PrF ←$ Dp [y1 ∈ EASYm
out | s ] · ... · PrF ←$ Dp [yl ∈ EASYm

out | s ]

=
(

1 − 1
p(m)

)l

≥
(

1 − 1
p(m)

)cp(m)

≥
(

1
4

)c

∀p(m) > 2.

where the first inequality is an equality iff yi �= yj∀i �= j and the second inequal-
ity follows since (1 − 1

x )x converges monotonously to 1
e and is greater than 1

4

whenever x ≥ 2. Now since
(
1
4

)c is constant, we can use a simple averaging
argument (see Appendix A, Lemma 23) to prove (2).

In the case where all y1, ..., yl are all easy, A can invert y1, ..., yl using INV
oracle. Note that there is only a single pre-image xi per yi and thus, given the
list x1, ..., xl, A can use the PSPACE oracle to find an s such that pre(s) = x1,
..., xl. ��

Due to Proposition 20, for the remainder of this section, we can focus on
constructions where pre makes more than c · p(m) calls. Also in the case where
g makes many queries, we can always invert the easy fraction of (y1, .., yl). How-
ever, if many queries are made, then (with high probability) some yi will also
be hard. Of course, if pre-processing pre(s) = (x1, .., xl) distributes the entropy
well, then knowing some of the xi might suffice to restrict the set of suitable
candidate values s to a polynomial-sized set, and once a polynomial-sized set of
candidates is obtained, a random candidate s is a suitable pre-image with high
enough probability. How well does this strategy work when considering arbitrary
pre-processing pre?
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To analyze this strategy, we study the entropy of the hard values xi given
(1 − 1

p(m) )l many easy values xi (note that in expectation, (1 − 1
p(m) )l many

values are easy) and seek to prove that their entropy is low. Towards that goal,
we fix a permutation π and look at the entropy of the 1

p(m) l many first xi under
that permutation:

h(π) := H(Xπ(1), . . . , Xπ( l
p(m) )|Xπ( l

p(m)+1), . . . , Xπ(l)),

where Xi is the random variable defined as follows: sample a uniformly random
s from {0, 1}n, compute pre(s) and take the ith output (i.e. the input to the ith
F-call in g).

First, in Lemma 21 (Small Entropy Expectation), we show that the expec-
tation of entropy h(π) is small in our case. This is our main conceptual lemma.

Lemma 21 (Small Entropy Expectation). Suppose p(m) divides l. Then,

Eπ∈Π(l) [h(π)] ≤ n

p(m)
,

which is equivalent to

Eπ∈Π(l)

[
H(Xπ(1), . . . , Xπ( l

p(m) )|Xπ( l
p(m)+1), . . . , Xπ(l))

]
≤ n

p(m)
. (3)

Proof. Let’s consider a permutation π of the weak OWF inputs xπ(1), ..., xπ(l).
Let’s divide the inputs xi into p(m) equal-sized blocks as follows:
⎛

⎝xπ(1), ..., xπ(l/p(m)), xπ(l/p(m)+1), ..., xπ(2l/p(m))︸ ︷︷ ︸
one block

, xπ(2l/p(m)+1), ..., xπ(l)

⎞

⎠ .

Each pink index starts a new block. Let’s denote the set of the pink indices by
J := {1, l/p(m) + 1, 2l/p(m) + 1, ..., (p(m) − 1)l/p(m) + 1}. Now consider the
following sum

∑

j∈J

Eπ∈Π(l)

⎡

⎢
⎢
⎣H

⎛

⎜
⎜
⎝Xπ(j), . . . , Xπ(j+ l

p(m)−1)
︸ ︷︷ ︸

one block

|Xπ(j+ l
p(m) ), . . . , Xπ(l)

︸ ︷︷ ︸
all Xi after the block

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ (4)

= Eπ∈Π(l)

⎡

⎣
∑

j∈J

H
(
Xπ(j), . . . , Xπ(j+ l

p(m)−1)|Xπ(j+ l
p(m) ), . . . , Xπ(l)

)
⎤

⎦ (5)

= Eπ∈Π(l)

[
H
(
Xπ(1), . . . , Xπ(l)

)]
(6)

≤ Eπ∈Π(l) [H (S)] (7)
= n (8)
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where (5) holds by linearity of expectation and (6) holds by Lemma 9 (Chain
Rule for Entropy). The inequality (7) is equality iff the pre-processing is injective
(entropy of a random variable cannot increase when it is passed through a deter-
ministic function). The equality (8) follows from the fact that H(S) = |s| = n.

Now, from (4), we have that n is greater or equal to

∑

j∈J

Eπ∈Π(l)

[

H

(

Xπ(j), ..,X
π

(
j+

l
p(m)−1

)|X
π

(
j+

l
p(m)

), ..,Xl

)]

(9)

≥
∑

j∈J

Eπ∈Π(l)

[
H
(
Xπ(j), ..,Xπ(j+ l

p(m)−1)|Xπ(i), i = 1, .., j − 1, j + l
p(m) , .., l

)]

(10)

=
∑

j∈J

Eπ′∈Π(l)

[
H
(
Xπ′(1), ..,Xπ′( l

p(m) )|Xπ′( l
p(m)+1), ..,Xπ′(l)

)]
(11)

= p(m)Eπ′∈Π(l)

[
H
(
Xπ′(1), ..,Xπ′( l

p(m) )|Xπ′( l
p(m)+1), ..,Xπ′(l)

)]
(12)

where (10) follows from the general property of entropy: ∀A,B,C : H(A|B) ≥
H(A|B,C), i.e. conditioning the entropy on more random variables can only
decrease the entropy. In this case, we condition additionally on all Xi for i <
π(j) and not only on those for i ≥ π(j + l

p(m) ). At (11) we change to a more
convenient indexing where we choose permutation π′(1) = π(j),...,π′( l

p(m) ) =
π(j + l

p(m) − 1). Now, consider any of the summands, i.e. the expectation for
some fixed j. Now for that j, π′ still goes through all possible permutations (like
π did in (10)). At (12) we notice that the summands do not depend on j and
recall that |J | = p(m). Dividing by p(m) proves the Lemma 21. ��

With Lemma 21 as a tool, we can now prove Theorem 19. Note that, interest-
ingly, the result of Theorem 19, does not depend on the number of calls to F in
the strong OWF construction g. That is, if the input length of the construction
g is too short, then no number of calls to F can make it a strong OWF.

A(y1||...||yl||d)

for i ∈ 1, ..., l

xi ← INV(yi)

s ←$ pre−1(x1, ..., xl, d)

return s

Proof of Theorem 19. Let g be a (n,m)-NANPP g with input length n ≤ 1
4p(m)

and let l be the number of queries to F which g makes. The adversary A
(described on the right) now tries to invert all y1,..,yl using INV and put ⊥ when
inversion fails. A then computes a random pre-image of the pre-processing that
matches the known xis and d which is possible in polynomial-time when using the
PSPACE oracle. We now argue that a random pre-image of the pre-processing,
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that matches the known xis and d, is an actual preimage of y1||...||yl||d under g
with constant probability.

W.l.o.g., we assume that |d| = 0. This is because the data d is known to
the adversary, so it cannot add entropy. From now on, we assume that there is
no d. Further and also w.l.o.g., we assume that p(m) divides l for all m,n (if
there was some remainder, we could add constant dummy F-calls until there is
no remainder. Such F-calls would not make g weaker nor stronger, so our result
would still hold.) Note that if l ≤ p(m), then with constant probability all xi

are easy and INV inverts all of them (cf. Theorem 20). In that case A can use
PSPACE oracle to find a correct preimage s with probability 1. Hence, we can
assume that l > p(m).

First, in Lemma 21 (Small Entropy Expectation) establishes that the expec-
tation of entropy h(π) is small. Namely, since Theorem 19 assumes that p(m) >
4n, we have

Eπ ←$ Π(l) [h(π)] ≤ n

p(m)
<

1
4
.

Since the expectation of the entropy over π is small, an averaging argument
(cf. Lemma 24 (Small Entropy w.h.p.) in Appendix A) yields that for at least
half of the permutations, the entropy is small, i.e.,

Prπ∈Π(l)

[
h(π) <

2n

p(m)

]
≥ 1

2
. (13)

We call a π such that h(π) < 2n
p(m) good. If π is good, then the remaining

entropy of the input is small and thus, some inputs are very likely (cf. Lemma
25 (Predictable Inputs) in Appendix A) and thus likely chosen by adversary A
which chooses a random pre-image amongst the possible candidates.

With this high level intuition of the proof in mind, we can now lower-bound
the probability of A’s success.

PrF,s [A inverts g(s)]

≥ PrF
[
∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]

· Prs

[
A inverts g(s)

∣
∣
∣∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]

≥ 1
2

Prs

[
A inverts g(s)

∣
∣
∣ ∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]
(14)
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≥ 1
2

Prs

⎡

⎢
⎢
⎣H

(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)
︸ ︷︷ ︸

=:C

⎤

⎥
⎥
⎦ · (15)

Prs

[

Prs′

[∀k ∈
π(1),...,π(l/p(m)),
Xk = pre(s′)k

∣
∣
∣
∣
∣

∀j ∈
π(l/p(m)+1),...,π(l),
Xj = pre(s)j

]

>
1
4

|C
]

· (16)

Prs

[

A inverts g(s)

∣
∣
∣
∣
∣
Prs′

[∀k ∈
π(1),...,π(l/p(m)),
Xk = pre(s′)k

∣
∣
∣
∣
∣

∀j ∈
π(l/p(m)+1),...,π(l),
Xj = pre(s)j

]

>
1
4

∧ C

]

(17)

≥ 1
2

· 1
2

· 3
4

· 1
4

= constant (18)

where (14) follows from the fact that whether xi is easy or not follows bino-
mial distribution with (1 − 1

p(m) )l many easy values in expectation. Inequality
(15) uses chain rule of probability. The fractions at (18) follow from the lem-
mas, namely, the probability on line (15) is less than 1/2 by Lemma 21 (Small
Entropy Expectation) and probability on line (16) is less than 3/4 by Lemma 25
(Predictable Inputs). The last fraction follows from the definition of adversary
A and the probability statement at (17). Namely, if adversary guesses a random
s which is consistent with the known xi, and we condition the probability on
such s being correct 1/4 of the time, adversary must be right 1/4 of the time.

Now that we know that

PrF,s [A inverts g(s)] ≥ const > 0,

we can use a simple averaging argument (see Appendix A, Lemma 23) to show
that PrF [Prs [A inverts g(s)] > const > 0] ≥ const > 0 which proves Theo-
rem 19. ��
Theorem 14 follows from the Theorems 19 and 18 by union bound, namely

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= Pr

[
Case 1 of BadR,A,g

m or Case 2 of BadR,A,g
m

]

≤ 1/c + constant from Theorem 19 < 1

Note that since the constant c in Theorem 18 can be made arbitrarily large, in
particular, it can be chosen s.t. 1/c + constant from Theorem 19 is < 1.

6 Constructions with Post-processing

In this section, we prove Theorem 15. Towards this goal, we use the oracles
F, INV and PSPACE (cf. Sect. 4), and show that there are no short input NAIPP
constructions under the oracles.
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Theorem 22 (No Strong OWFs with Injectiveish Post-Processing). ∀
poly p, ∀(n,m)-NAIPP g with input length n ≤ 1

4p(m), ∃poly q(n) = nc, c ∈
N+, ∃ poly-query AF,INV,PSPACE such that

Pr(F,INV) ←$ Dp

[
Prs, coins of A

[AF,INV,PSPACE inverts g(s)
] ≤ q(n)

]
= constant < 1

and thus Pr(O1,O2) ←$ D
[
Case 2 of BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is defined as in Theorem 15.

Theorems 18 and 22 together imply Theorem 15 by union bound analogously
to the NANPP case. It thus remains to prove Theorem 22.

A(z)

y1, ..., yl, d ← post−1(z)

for i ∈ 1, ..., l

xi ← INV(yi)

s ←$ pre−1(x1, ..., xl, d)

return s

Proof. Let g be (n,m)-NAIPP which makes l queries to F and let A be the
adversary on the right which samples a uniformly random pre-image of z under
post, then inverts the easy queries and returns a seed s which is consistent with
the pre-image of the easy values. Firstly observe that A runs in polynomial-time
since it can use the PSPACE oracle for inverting post. Moreover, it makes only
a polynomial number of queries since l is a polynomial.

As the post-processing of g is almost injective, y1, ..., yl, d ←$ post−1(z)
returns the values y1, ..., yl, d which the one-wayness experiment used to com-
pute z with probability 1

poly(n) . This probability is independent of F. If y1, ..., yl, d

are indeed the correct values, then adversary A also finds a pre-image s with
constant probability by the same arguments as in Theorem 19. Thus, the over-
all success of A is 1

poly(n) · constant which is inverse polynomial as required by
Theorem 22. ��
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A Additional Lemmas and Proofs

Lemma 23 (Averaging Argument). Let An and Bn be probability distribu-
tions that depend on natural number n (e.g. uniform distribution over {0, 1}n).
For convenience, we write A := An, B := Bn. Let E(·, ·) be any event.

If Pra ←$ A,b ←$ B [E(a, b)] ≥ c, where c > 0 constant, then there exist constants
d, d′ > 0 s.t. Pra ←$ A [Prb ←$ B [E(a, b)] ≥ d ] ≥ d′.

The proof is standard, we defer it to the full version.
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Lemma 24 (Small Entropy w.h.p.). If Eπ∈Π(l) [h(π)] ≤ n
p(m) then

Prπ∈Π(l)

[
h(π) <

2n

p

]
≥ 1/2,

where h(π) = H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
.

The proof is a direct application of Markov bound, we defer it to the full
version.

Lemma 25 (Predictable Inputs). If

H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)

then

Prs′
[
Prs[Xk=pre(s)k∀k∈π(1),...,π( l

p(m) ) |Xj=pre(s′)j∀j∈π( l
p(m)+1),...,π(l) ]> 1

4

] ≥ 3
4

Proof. Since 4n < p(m), we get that

H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)
<

1
2

(19)

Let Sh,e ⊆ {0, 1}m be defined as

Sh,e = {s′ : Prs [Ph = ph(s′) |Pe = pe(s′) ] <
1
4
},

where we define Prs [Ph = ph(s′) |Pe = pe(s′) ] below. Using (19) and the defi-
nition of conditional Shannon entropy, we get that

1

2
> H

⎛
⎜⎜⎜⎝Xπ(1), . . . , Xπ

(
l

p(m)

)
︸ ︷︷ ︸

=:Ph

∣∣∣∣∣∣∣∣∣
X

π
(

l
p(m)+1

), . . . , Xπ(l)

︸ ︷︷ ︸
=:Pe

⎞
⎟⎟⎟⎠

=
∑

s′∈{0,1}m

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

=
∑

s′∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

+
∑

s′ �∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

≥
⎛
⎝ ∑

s′∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

]
⎞
⎠ ·

∣∣∣∣log
1

4

∣∣∣∣

+

⎛
⎝ ∑

s′ �∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

]
⎞
⎠ · |log 1|

≥ Prs′

[
Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]
<

1

4

]
· 2 + 0
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where log is the base-2 logarithm and

pe(s′) := pre(s′)π( l
p(m)+1), ..., pre(s

′)π(l)

and
ph(s′) := pre(s′)π(1), . . . , pre(s′)π( l

p(m) ).

Now

1
2

≥ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]
· 2

⇔ 1
4

≥ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]

⇒ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] ≥ 1

4

]

= 1 − Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]

> 1 − 1
4

=
3
4

which proves the statement. ��

B Proof of Theorem 18 (F is a weak OWF)

In order to prove Theorem 18, we need to show that F is weak OWF with inver-
sion probability 1 − 1/2cp(m) with all but small constant probability. Namely,
we need to show that for all polynomials p, for all poly-query AF,PSPACE,INV,
for all adversaries R making polynomially many (in m) queries to the oracles
F,PSPACE, INV,AF,PSPACE,INV,

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − 1
2cp(m)

]
≤ 1/c, (20)

where SuccInvF,PSPACE,INV
A,R is defined as

Prx ←$ {0,1}m,R
[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

Proof. Fix p, R and A. Since A and R both make polynomially many queries to
the same oracles, R can simply simulate A. Thus, w.l.o.g., we can assume that
R only makes queries to F, PSPACE and INV. Additionally, we consider R to be
a computationally unbounded algorithm so that w.l.o.g., we can assume that it
does not make queries to the PSPACE oracle.

Let q be a polynomial such that adversary R makes exactly q(m) queries
to the oracle F and an arbitrary number of queries to INV. Since we let the
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adversary R make an arbitrary number of queries to INV, that is, the adversary
can be assumed to know the EASYm

in and EASYm
out and how F maps EASYm

in to
EASYm

out completely. This only makes the adversary stronger. Importantly, using
INV does not give the adversary any information on F on the hard values (only
the fact that the values are hard).

Denote the preimages to F queries by x1, ..., xq(m) and the adversary’s guess
for the pre-image of its input y by xq(m)+1.

PrF,INV ←$ Dp,x ←$ {0,1}m,R
[R(F(x)) ∈ F−1(F(x))

]

= Pr
[R(F(x)) ∈ F−1(F(x))

∣
∣x ∈ EASYm

in

] · Pr[x ∈ EASYm
in ]

+ Pr
[R(F(x)) ∈ F−1(F(x))

∣
∣x �∈ EASYm

in

] · Pr[x �∈ EASYm
in ]

≤ 1 ·
(

1 − 1
p(m)

)
+ Pr

[R(F(x)) ∈ F−1(F(x))
∣
∣x �∈ EASYm

in

] · 1
p(m)

≤ 1 − 1
p(m)

+
1

p(m)

q(m)+1∑

i=1

Pr
[
F(xi) = F(x)

∣
∣
∣
∣
F(x1), ...,F(xi−1) �= F(x),
x �∈ EASYm

in

]

≤ 1 − 1
p(m)

+
1

p(m)

q(m)+1∑

i=1

1
1

p(m)2
m − i

≤ 1 − 1
2p(m)

when m is large enough.

Next, we apply an averaging argument. Consider the random variable

SuccInvF,PSPACE,INV
A,R

which maps F,PSPACE, INV ←$ Dp to the probability that

RF,PSPACE,INV,AF,PSPACE,INV

inverts F over the randomness of R, A and sampling x. Then, by the previous
analysis, the expected value μ of SuccInvF,PSPACE,INV

A,R is at most 1−ε for ε := 1
2p(m) .

Using Markov inequality on 1 − SuccInvF,PSPACE,INV
A,R , we obtain that

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − cε
]

≤ 1
c
.

for any c. ��
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