
Disappearing Cryptography
in the Bounded Storage Model

Jiaxin Guan1,2(B) and Mark Zhandry1,2

1 Princeton University, Princeton, USA
jiaxin@guan.io, mzhandry@princeton.edu

2 NTT Research, Palo Alto, USA

Abstract. In this work, we study disappearing cryptography in the
bounded storage model. Here, a component of the transmission, say a
ciphertext, a digital signature, or even a program, is streamed bit by bit.
The stream is too large for anyone to store in its entirety, meaning the
transmission effectively disappears once the stream stops.

We first propose the notion of online obfuscation, capturing the goal of
disappearing programs in the bounded storage model. We give a negative
result for VBB security in this model, but propose candidate construc-
tions for a weaker security goal, namely VGB security. We then demon-
strate the utility of VGB online obfuscation, showing that it can be used
to generate disappearing ciphertexts and signatures. All of our applica-
tions are not possible in the standard model of cryptography, regardless
of computational assumptions used.

1 Introduction

The bounded storage model [Mau92] leverages bounds on the adversary’s storage
ability to enable secure applications. A typical bounded storage model scheme
will involve transmitting more information than what the adversary can possibly
store. One approach is then to use some small piece of the transmission to
perform, say, a one-time pad or other tasks. Since the adversary cannot record
the entire transmission, they most likely will not be able to recover the small
piece that is used, preventing attacks. Other approaches, say those based on
taking parities [Raz16,GZ19], are also possible. In any case, the honest users’
space requirements are always much less than the adversary’s storage bound;
usually, if the honest parties have space N , the adversary is assumed to have
space up to roughly O(N2).

The bounded storage model has mostly been used to achieve information-
theoretic, unconditional, and everlasting security; in contrast, the usual time-
bounded adversary model generally requires computational assumptions.

This Work: Disappearing Cryptography. A critical feature of the bounded storage
model is that the large transmission cannot be entirely stored by the adversary.
This large transmission is then subsequently used in such a way that whatever

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 365–396, 2021.
https://doi.org/10.1007/978-3-030-90453-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90453-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-90453-1_13

366 J. Guan and M. Zhandry

space-limited information the adversary managed to record about the trans-
mission will become useless. In this way, the large transmission is ephemeral,
effectively disappearing immediately after it is sent.

Most work in the bounded storage model uses this disappearing communica-
tion to achieve information-theoretic security for primitives such as key agree-
ment, commitments, or oblivious transfer, for which computational assumptions
are necessary in the standard model. However, apart from insisting on statistical
security, the security goals are typically the same as standard-model schemes.

The goal of this work, in contrast, is to use such “disappearing” communi-
cation to realize never-before-possible security goals, especially those that are
impossible in the standard model.

Remark 1. The usual bounded storage model as defined in [Mau92] envisions
a trusted third party broadcasting a large stream of uniformly random bits,
which is assumed to be too large to store. All other communication remains
short. In this work, we operate in a slightly different setting where there is no
trusted third party, but the large streams are instead generated by the users
themselves. Additionally, we allow the stream of bits to be structured. However,
we emphasize that we still require all parties to be low space.

1.1 Motivating Examples

Example 1: Deniable Encryption. Deniable encryption [CDNO97] concerns the
following scenario: Alice has the secret key sk for a public key encryption scheme.
At some point, Bob sends a ciphertext ct encrypting message m to Alice. Charlie
observes the ciphertext ct.

Later, Charlie obtains the ability to force that Alice reveals sk (say, through
a warrant), so that he can decrypt ct and learn the message m. Alice wants to
maintain the privacy of the message m in this scenario, so she reveals a fake
decryption key sk′, such that decrypting ct with sk′ will result in a fake message
m′. This version of deniable encryption is called receiver deniable encryption.

Unfortunately, as shown in [BNNO11], such receiver deniable encryption is
impossible for “normal” encryption where the ciphertext is just a single (con-
cise) transmission from Bob to Alice1. Prior works [CDNO97,CPP20] therefore
consider a more general notion of encryption that involves back-and-forth com-
munication between the parties.

In this work, we consider a different solution: what if the ciphertext is so large
that it cannot be recorded by Charlie? Alice also cannot store the ciphertext in its
entirety, but she will be able to decrypt it live using her secret key. Charlie, who
does not know the secret key, will be unable to decrypt during the transmission.
Then we may hope that, even if Alice subsequently reveals the true secret key
sk, that Charlie will not be able to learn the message m since he no longer has

1 The deniable encryption literature often refers to such a scheme as having two-
messages, as they consider the transmission of the public key from Alice to Bob as
the first message.

Disappearing Cryptography in the Bounded Storage Model 367

access to ct. Such a scheme would immediately be deniable: Alice can claim
that ct encrypted any arbitrary message m′, and Charlie would have no way to
verify whether or not she was telling the truth. Relative to the solution in prior
work, such a scheme would then require only one-way communication, but at
the expense of greatly increased communication in order to ensure that Charlie
cannot record all of ct. Such a scheme might make sense in a setting where Bob
is unable to receive incoming communication, or Alice is unable to broadcast.

Example 2: Second-hand Secret Keys. Consider an encrypted broadcast service
where a user may buy a decoder box which decrypts broadcasts. The content dis-
tributor wants to enforce that for each decoder box, only one individual at a time
can decrypt broadcasts. Specifically, the content distributor is concerned about
several users trying to share a single decoder box. During broadcast time, each
user records the encrypted broadcast individually. Then they pass the decoder
box around to the various users, allowing them to decrypt their locally-stored
broadcast one at a time. Of course, once one user decrypts the broadcast, they
can simply send the decrypted contents to the other users. We imagine, however,
that the contents are very large, and it is easier to send the decoder box than to
transmit the large decrypted contents.

Our solution, again, is to imagine the ciphertexts being so long that they
cannot be stored. As such, Alice’s decoder box will be completely useless to Bob
after the broadcast occurs.

Example 3: Non-interactive Security Against Replay Attacks. Consider a sce-
nario where instructions are being broadcast from a command center to a num-
ber of recipients. Suppose that the recipients are low-power embedded devices
with limited capabilities; in particular, they cannot keep long-term state nor
transmit outgoing messages. We are concerned that an attacker may try to issue
malicious instructions to the recipients.

The natural solution is to authenticate the instructions, say by signing them.
However, this still opens up the possibility of a replay attack, where the adver-
sary eavesdrops on some signed instruction, and then later on sends the same
instruction a second time, causing some adverse behavior.

In the classical model with stateless recipients, the only way to prevent replay
attacks is with an interactive protocol, since a stateless recipient cannot distin-
guish the command center’s original message and signature from the adversary’s
replay. In a broadcast scenario, interacting with each recipient may be imprac-
tical. Moreover, interaction requires the recipients themselves to send messages,
which may be infeasible for weak devices.

As before, our idea is to have the signatures be so large that the adversary
cannot record them in their entirety. The recipients can nonetheless validate the
signatures, but an adversary will be unable to ever generate a valid signature,
even after witnessing many authenticated instructions from the command center.
The result is non-interactive security against replay attacks.

368 J. Guan and M. Zhandry

Example 4: Software Subscription. The traditional software model involves the
software company sending the software to users, who then run the software
for themselves. Software-as-a-Service, instead, hosts the software centrally and
allows the users to run remotely. The centralized model allows for subscription-
based software services—where the user can only have access to the program by
making recurring payments—that are impossible with traditional software.

On the other hand, software-as-a-service requires the user to send their inputs
to the software company. While many technologies exist to protect the user data,
this model inherently requires interaction with the users.

We instead imagine the company sends its software to the users, but the
transmissions are so large that the users cannot record the entire program. Nev-
ertheless, the users have the ability to run the program entirely locally during the
transmission, without sending any information to the software company. Then,
once the transmission ends, the user will be unable to further run the program.

Example 5: Overcoming Impossibility Results for Obfuscation. Program obfus-
cation is a form of intellectual property protection whereby a program is trans-
formed so that (1) all implementation details are hidden, but (2) the program can
still be run by the recipient. Virtual Black Box (VBB) obfuscation, as defined
by Barak et al. [BGI+01], is the ideal form of obfuscation: it informally says
that having the obfuscated code is “no better than” having black box access to
the functionality. Unfortunately, Barak et al. show that such VBB obfuscation
is impossible. The counter-example works by essentially running the program on
its own description, something that is not possible just given oracle access. As a
consequence, other weaker notions have been used, including indistinguishabil-
ity obfuscation (iO), differing inputs obfuscation [BGI+01], and virtual grey box
obfuscation (VGBO) [BCKP14]. These notions have proven tremendously use-
ful for cryptographic applications, where special-purpose programs are designed
to be compatible with the weaker obfuscation notions. However, for securing
intellectual property, these weaker notions offer only limited guarantees.

Our model for transmitting programs above may appear to give hope for
circumventing this impossibility. Namely, if the obfuscated program is so large
that it cannot be recorded in its entirety, then maybe it also becomes impossible
to run the program on its own description.

1.2 Our Results

In this work, we explore the setting of disappearing cryptography, giving both
negative and positive results.

Online Obfuscation. First, we propose a concrete notion of online obfuscation,
which is streamed to the recipient. We then explore what kinds of security guar-
antees we can hope for, motivated by Examples 4 and 5 above.

We demonstrate that, under the Learning With Errors (LWE) assumption,
VBB obfuscation is still impossible. The proof closely follows Barak et al.’s proof
for circuits, adapting it for online obfuscation. This rules out Example 5.

Disappearing Cryptography in the Bounded Storage Model 369

This still leaves open the hope that online obfuscation can yield something
interesting that is not possible classically. We next define a useful notion of online
obfuscation, motivated by the goal of classically-impossible tasks. We note that
differing inputs obfuscation is known to be a problematic definition [GGH+13b]
in the standard model. We also observe that indistinguishability obfuscation
appears to offer no advantages in the streaming setting over the classical setting.
We therefore settle on a notion of virtual grey box (VGB) obfuscation for online
obfuscation. We formulate a definition of VGB obfuscation which allows the
recipient to evaluate the program while it is being transmitted, but then loses
access to the program after the transmission completes.

We give two candidate VGB online obfuscators based on very different ideas,
and leave a provable secure scheme as an interesting open question.

Applications of Online Obfuscation. Next we turn to applications, establishing
VGB online obfuscation as a central tool in the study of disappearing cryptog-
raphy, and providing techniques for its use. We show how to use VGB online
obfuscation to realize each of the Examples 1–3.

Specifically, assuming VGB online obfuscation (and other comparatively mild
computational assumptions), we define and construct the following:

– Public key encryption with disappearing ciphertext security in the bounded
storage model. Here, ciphertexts are streamed to the recipient, and message
secrecy holds against adversaries with bounded storage2, even if the adversary
later learns the secret key. This solves Examples 1 and 2.

– We generalize to functional encryption with disappearing ciphertext security,
which combines the disappearing security notion above with the expressive
functionality of functional encryption. This allows, for example, to combine
the advantages of disappearing ciphertext security with traditional functional
encryption security goals of fine-grained access control.

– Digital signatures with disappearing signature security, where signatures are
streamed, and the recipient loses the ability to verify signatures after the
stream is complete. This solves Example 3.

In the following, we expand and explain our results in more detail.

1.3 Defining Obfuscation in the Bounded Storage Model

We first study obfuscation in the bounded storage model. We specifically imagine
that obfuscated programs are too large to store, but can be streamed and run
in low space while receiving the stream.

Negative Result for VBB Obfuscation. We show that virtual black box (VBB)
security remains impossible, even for this model. Recall that VBB secu-
rity requires that anything which can be efficiently learned from the obfus-
cated code can be efficiently learned given just oracle access. We follow the
2 We also require the usual polynomial time constraint on the adversary.

370 J. Guan and M. Zhandry

Barak et al. [BGI+01] impossibility, but take care to show that it still works for
online obfuscation.

The idea is that, the version of Barak et al.’s impossibility that works for
circuit obfuscation already has to contend with the fact that circuits cannot be
evaluated on themselves, since a circuit is almost always larger than its input
size. In order to get an impossibility result for online obfuscation, we show that
their attack works in low storage. The full proof is given in the full version.

One issue that comes up in the naive adaptation of Barak et al.’s attack is
that it requires the obfuscation to be streamed multiple times. We explain how
to make the attack work with just a single stream using Compute-and-Compare
obfuscation [GKW17,WZ17], following ideas from [AP20].

Defining Online Obfuscation. Above, we only considered the standard notions
of security, but for online obfuscation. We now seek to formulate a definition
which captures the goal of having the obfuscated program “disappear” after the
stream is complete. Concretely, we want that, after the stream is complete, it is
impossible to evaluate the program on any “new” inputs.

Our formalization of this is roughly as follows: we imagine the attacker gets
the program stream, and then later learns some additional information. We ask
that any such attacker can be simulated by an oracle algorithm. This algorithm
makes queries to the program, and then receives the same additional information
the original adversary received. Importantly, after the additional information
comes in, the simulator can no longer query the program any more.

Some care is needed with the definition. VBB security, which requires the
simulator to be computationally bounded, is impossible for the reasons dis-
cussed above. Indistinguishability obfuscation (iO) allows for a computationally
unbounded simulator, which avoids the impossibility. While iO is immensely
useful in the standard model, we observe that there is little added utility to
considering iO in the online model. Indeed, an unbounded simulator can query
the entire function on all inputs during the query phase, and thus has no need
to make additional queries after receiving the additional information3.

We therefore give a virtual grey box (VGB) notion of security [BCKP14],
where the simulator is computationally unbounded, but can only make a polyno-
mial number of queries. The computationally unbounded simulator then receives
the additional information, but can make no more queries. Our full definition is
in Sect. 3. We note that it may be possible to also consider a version of differing
inputs obfuscation (diO) in our setting, but there is evidence that diO may be
impossible [GGHW14]. So we therefore stick to VGB obfuscation.

3 The usual way indistinguishability approach to defining iO does not use a simulator,
but is equivalent in the standard model to the simulation definition. In the online
model, the indistinguishability and simulation models may not be equivalent. Nev-
ertheless, the indistinguishability version of iO still appears to offer no advantages
in the online setting, since in this version the adversary knows the programs in the
clear from the very beginning.

Disappearing Cryptography in the Bounded Storage Model 371

1.4 Applications

Before giving our candidate online obfuscation schemes, we discuss applications.

Disappearing Ciphertext Security. We first demonstrate how to use online obfus-
cation to construct public key encryption where ciphertexts effectively disappear
after being transmitted. Concretely, we say that a public key encryption scheme
has disappearing ciphertext security if the contents of a ciphertext remain hidden,
even if the attacker subsequently learns the secret key.

Our first attempt is to use an online obfuscator as a witness encryption
scheme [GGSW13]: the public key pk is set, say, to be the output of a one-way
function f on the secret key sk. To encrypt a message m to pk, generate an online
obfuscation of the program P (sk′) which outputs m if and only if f(sk′) = pk.
Decryption just evaluates the program on the secret key.

For security, the key difficulty is that we cannot switch to a hybrid where the
secret key does not exist, as would be used to prove the standard CPA security
of the scheme using witness encryption. After all, the adversary eventually sees
the secret key, so it must always exist!

Toward a proof, we note that, by the one-wayness of f , an attacker who just
knows pk and sees the ciphertext cannot evaluate the ciphertext program on
any input that will reveal m. Hence, m presumably remains hidden. Moreover,
even if the attacker learns sk after seeing the ciphertext, it should not help the
attacker learn m, since the attacker no longer has access to the program stream.

Security would be trivial with online obfuscation with VBB security. How-
ever, difficulties arise with trying to formalize this intuition with our notion of
VGB security. Suppose we have an adversary A for the encryption scheme. We
would like to use A to reach a contradiction. To do so, we invoke the security of
the online obfuscator to arrive at a simulator S that can only query the cipher-
text program, but does not have access to the program stream. Unfortunately,
this simulator is computationally unbounded, meaning it can invert f to recover
sk at the beginning of the experiment, and then query the program on sk.

Our solution is to replace f with a lossy function [PW08], which is a function
with two modes: an injective mode (where f is injective) and a lossy mode (where
the image of f is small). The security requirement is that the two modes are indis-
tinguishable. Lossy functions can be build under various standard assumptions
such as DDH or LWE.

We start with f being in the injective mode. In the proof, we first switch
the ciphertext program to output m if and only if sk′ = sk; by the injectivity
of f this change does not affect the functionality of the program. Hence, the
simulator cannot detect the change (even though it can invert f and learn sk for
itself), meaning the adversary cannot detect the change either.

In the next step, we switch f to being lossy, which cannot be detected by
a computationally bounded attacker. We next change the ciphertext program
again, this time to never output m. This only affects the program’s behavior on
a single point sk. But notice that for lossy f , sk is statistically hidden from the
attacker, who only knows pk when the ciphertext is streamed. This means the

372 J. Guan and M. Zhandry

simulator, despite being computationally unbounded, will be unable to query on
sk, and thus cannot detect the change. This holds true even though the simulator
later learns sk, since at this point it can no longer query the ciphertext program.
Since indistinguishability holds relative to the simulator, it also holds for the
original attacker. The result is the following, proved in Sect. 4:

Theorem 1 (Informal). Assuming the existence of VGB online obfuscation and
lossy functions, there exists a public key encryption scheme with disappearing
ciphertext security.

Extension to Functional Encryption. We can also extend disappearing cipher-
text security to functional encryption. Functional encryption allows users to
obtain secret keys for functions g, which allow them to learn g(m) from a cipher-
text encrypting m. The usual requirement for functional encryption is that an
attacker, who has secret keys for functions gi such that gi(m0) = gi(m1) for all
i, cannot distinguish encryptions of m0 from encryptions of m1.

In Sect. 6, we consider a disappearing ciphertext security variant, where the
requirement that gi(m0) = gi(m1) only holds for secret keys in possession when
the ciphertext is transmitted. Even if the attacker later obtains a secret key
for a function g such that g(m0) �= g(m1), indistinguishability will still hold.
Analogous to the case of plain public key encryption, this captures the intuition
that the ciphertext disappears, becoming unavailable once the transmission ends.

We show how to combine standard-model functional encryption with online
VGB obfuscation to obtain functional encryption with such disappearing cipher-
text security. The basic idea is as follows. To encrypt a message m, first compute
an encryption c of m under the standard-model functional encryption scheme.
Then compute an online obfuscation of the program which takes as input the
secret key skg for a function g, and decrypts c using skg, the result being g(m).

This construction seems like it should work, but getting the proof to go
through using computationally unbounded simulators is again non-trivial. In
Sect. 6, we show how to modify the sketch above to get security to go through,
yielding the following:

Theorem 3 (Informal). Assuming the existence of VGB online obfuscation,
NIZKs, non-uniform secure PRFs, and standard-model functional encryption,
there exists a functional encryption scheme with disappearing ciphertext security.

Disappearing Signatures. We next turn to constructing disappearing signatures,
signatures that are large streams that can be verified online, but then the signa-
ture disappears after the transmission ends. We formalize this notion by mod-
ifying the usual chosen message security notion to give disappearing signature
security, where the attacker (who does not know the signing key) cannot produce
a signature on any message, even messages that it previously saw signatures for.

We show how to construct disappearing signatures in Sect. 5, using online
obfuscation. An additional building block we need is a prefix puncturable signa-
ture. This is a scheme where, given the signing key sk, it is possible to produce
a “punctured” signing key skx∗ which can sign any message of the form (x,m)

Disappearing Cryptography in the Bounded Storage Model 373

such that x �= x∗, but skx∗ is incapable of signing messages of the form (x∗,m).
Such prefix puncturable signatures can be built from standard tools [BF14].

We construct a signature scheme with disappearing signatures by setting the
signature on a message m to be an online obfuscation of the following program
P . P has sk hardcoded, and on input x outputs a signature on (x,m). To verify,
simply run the streamed program on a random prefix to obtain a signature, and
then verify the obtained signature.

We then prove that an attacker cannot produce a valid signature stream on
any message, even messages for which it already received signature streams. For
simplicity, consider the case where the attacker gets to see a signature on a single
message m. Let x∗ be the prefix that the verifier will use to test the adversary’s
forgery. Note that x∗ is information-theoretically hidden to the adversary at the
time it produces its forgery. We will switch to having the signature program for
m reject the prefix x∗. Since the program no longer needs to sign the prefix x∗,
it can use the punctured key skx∗ to sign instead. The only point where the
program output changes is on x∗. The simulator will be unable to query on x∗

(since it is information-theoretically hidden), meaning the simulator, and hence
the original adversary, cannot detect this change.

Now we rely on the security of the puncturable signature to conclude that
the adversary’s forgery program cannot output a signature on any message of
the form (x∗,m), since the entire view of the attacker is simulated with the
punctured key skx∗ . But such a signature is exactly what the verifier expects
to see; hence the verifier will reject the adversary’s program. The result is the
following theorem:

Theorem 2 (Informal). Assuming the existence of VGB online obfuscation
and one-way functions, there exists a disappearing signature scheme.

1.5 Constructing Online Obfuscation

We finally turn to giving two candidate constructions of online obfuscation. We
unfortunately do not know how to prove the security of either construction,
which we leave as an interesting open problem. However, we discuss why the
constructions are presumably resistant to attacks.

Construction 1: Large Matrix Branching Programs. Our first construction is
based on standard-model obfuscation techniques, starting from [GGH+13a]. As
in [GGH+13a], we first convert an NC1 circuit into a matrix branching pro-
gram using Barrington’s theorem [Bar86]. In [GGH+13a], the program is then
“re-randomized” following Kilian [Kil88] by left and right multiplying the various
branching program components with random matrices, such that the randomiza-
tion cancels out when evaluating the program. We instead first pad the matrices
to be very large, namely so large that honest users can record a single column,
but the adversary cannot write down the entire matrix. We then re-randomize
the large padded matrix.

374 J. Guan and M. Zhandry

We show that, if the matrix components are streamed in the correct order, hon-
est users can evaluate the program in space proportional to N , the height of the
matrices. However, recording even a single matrix from the program requires space
N2, and so for adversaries with space somewhat less than N2, it may be reasonable
to conjecture that the program “disappears” after the stream concludes.

We note that in the standard model, re-randomizing the branching program is
not enough to guarantee security. Indeed, linear algebra attacks on the program
matrices are possible, as well as “mixed-input” attacks where multiple reads of
the same input bit are set to different values. Garg et al. [GGH+13a] and follow-
up works block these attacks by placing the branching program matrices “in the
exponent” of a cryptographic multilinear map.

In our setting, the large matrices presumably prevent linear algebra attacks,
since an adversary with space somewhat less than N2 will be unable to even
record a single matrix from the program. Moreover, we show how to block mixed-
input attacks by choosing the matrix padding to have a special structure, which is
inspired by the classical obfuscation techniques. While we are unable to prove the
security of our multilinear-map-less scheme, we conjecture that it nevertheless
remains secure. The result is a plausible VGB online obfuscator for NC1 circuits.
Details are given in Sect. 7.

Remark 2. The re-randomization of N × N matrices samples random N × N
matrices, and must compute their inverses. Inverting a random N ×N matrix is
impossible with space o(N2), a consequence of [Raz16]. Our basic construction
thus has the sender use O(N2) space, while the receiver requires only O(N)
space. We show, however, how to reduce the space requirements of the sender
to O(N) by generating the re-randomization matrices and their inverses using
PRFs. The resulting low-sender-space obfuscation scheme is secure, provided the
basic construction is a secure (with large sender space) online obfuscation, and
the PRF is secure. Details are given in Sect. 7.2.

Construction 2: Time-Stamping. Our second construction is based on time-
stamping [MST04] in the bounded storage model. Here, a large stream is sent.
Anyone listening can use the stream to compute a time-stamp on any mes-
sage. However, once the stream concludes, it will be impossible to time-stamp
a “new” message. The concrete security notion guarantees a fixed (polynomial-
sized) upper bound on the total number of stamped messages any adversary can
produce.

Our construction uses time-stamping, together with standard-model obfus-
cation. To obfuscate a program P , first generate and send a random stream for
time-stamping. Afterward, compute and send a standard-model obfuscation of
the program P ′, which takes as input x together with a time-stamp, verifies the
time-stamp is valid for x, and then runs P if and only if the stamp is valid.

The intuition for security is that we can invoke the standard-model security
of P ′ to get a simulator S′ which just makes black box queries to P ′. We then
use the security of the time-stamping protocol to conclude that the accepting
queries from the simulator, which are those containing valid time stamps, must

Disappearing Cryptography in the Bounded Storage Model 375

have been “known” when the time-stamping stream was sent. For any inputs
derived from new information sent after the stream concludes, the adversary
will not be able to produce a valid time stamp, and thus P ′ will reject any such
inputs. The result is that S′ should be simulatable just by making queries to
P , and these queries are all made prior to receiving any additional post-stream
information.

Unfortunately, turning the above intuition into a full proof appears challeng-
ing. One issue is that the obfuscation of P ′ serves as a verification oracle for
checking the validity of time stamps. Existing time stamping security notions
offer no guarantees in the presence of a verification oracle, and we do not know
if the existing constructions are secure in this setting.

If we were to assume the time-stamping protocol secure even with verification
queries, there are still potential problems, mostly revolving around formalizing
that the simulator “knows” its input when the time-stamping stream is sent.
Indeed, to prove security we need to convert our simulator S′ into a simulator S
which makes all of its queries by the time the stream concludes, before receiving
any additional information. The above intuition would show that S′ “knew”
these inputs before the stream concludes, but perhaps the inputs (and their
time stamps) were hidden inside of the code of S′ and only revealed later, after
more information is received.

We conjecture that such an S can nevertheless be constructed from S′. The
idea is to have S run S′ until the time-stamping stream concludes. Then S will try
to extract the queries from the state of S′ by simulating many possible executions
of the remaining security experiment for S′ and collecting the queries S′ makes
to P ′. It then uses its assumed time-stamping verification oracle to check which
queries have valid time stamps. Since S′ can only know a polynomial number of
valid time stamps, it seems S should eventually collect all of them. Then it can
make these queries to its own oracle for P , and run S′ one more time using the
answers to P . Unfortunately, formalizing this idea appears tricky, and we leave
it as a direction for future work.

1.6 Related Work, Discussion, and Future Directions

Never-Before-Possible Results. The bounded storage model is most often used
to eliminate computational assumptions. Time-stamping in the bounded stor-
age model [MST04], as discussed above, is perhaps the first application of the
bounded storage model beyond achieving information-theoretic security. We
note, however, that non-interactive time-stamping was recently achieved in the
standard model using appropriate computational assumptions [LSS19].

Our work shows that there is potentially a rich landscape of applications
which leverage the bounded storage model to give results that are impossible in
the standard model. Our particular applications can all be seen as achieving ver-
sions of forward security, where a key revealed does not affect the security of prior
sessions. Forward security has been studied in numerous standard-model con-
texts (e.g. [DvW92]). However, standard-model constructions of forward secure
(non-interactive) encryption such as [CHK03] always involve updating the secret

376 J. Guan and M. Zhandry

keys. Our constructions do not require the secret key to be updated. We note
that Dziembowski [Dzi06] considers a notion of forward-secure storage, which
is very similar to our notion of disappearing ciphertext security for encryption.
A key difference is that their work only considers the secret key case, and it
is unclear how to adapt their constructions to the public key setting. A natu-
ral direction for future work is to explore other potential areas besides forward
security which may be impossible classically but are achievable in the bounded
storage model.

Obfuscation in the Bounded Storage Model. We also initiate the study of obfus-
cation in the bounded storage model. Just as standard-model obfuscation has
proven to be a central tool in the study of standard-model cryptography, our
work demonstrates online obfuscation is analogously a central tool in the study of
disappearing cryptography. Just as standard-model obfuscation schemes started
out as conjectures, with security gradually improved culminating with [JLS20],
we hope that future work will improve the status of our candidates.

Besides achieving never-before-possible applications, one advantage of our
setting is that we may be able to leverage the bounded storage model to achieve
security under milder assumptions than is known for obfuscation in the standard
model. Indeed, online obfuscation could plausibly exist information-theoretically,
and our first construction could plausibly be an instantiation4. This gives hope
that security can actually be proved unconditionally, without requiring the
strong algebraic assumptions needed in the standard model. We leave explor-
ing such information-theoretic security as a fascinating open question.

The Quadratic Gap. All prior information-theoretic results in the bounded stor-
age model achieve at best an adversary storage that is quadratic in the honest
users’ storage. Our first candidate construction of an online obfuscator, being
plausibly information-theoretic, inherits this quadratic gap. While some nega-
tive results are known [DM04], it remains open whether this quadratic “gap” is
necessary. While our constructions are probably impractical due to the reliance
on obfuscation techniques, such a quadratic gap may be meaningful in practice:
for example, if the honest users’ storage is 16 GB, then security would be main-
tained against adversaries with ∼5ZB, which is on the order of the total data
center storage capacity world-wide in 2021 [Mli21]. On the other hand, using
computational assumptions, it is possible to get an improved “gap” for time-
stamping, and our second construction built from time-stamping can similarly
be obtained with an arbitrarily-large polynomial gap.

Other Computational Models. It is possible to achieve classically-impossible
results using either hardware assumptions (e.g. [GKR08]) or non-classical laws
of physics such as quantum mechanics (e.g. [BB84]). However, as far as we are

4 The basic large-sender-space version would be purely information-theoretic, whereas
the version with low sender space requires only the information-theoretic conjecture
together with the existence of one-way functions.

Disappearing Cryptography in the Bounded Storage Model 377

aware, none of these models besides the bounded storage model allows for send-
ing messages that effectively disappear after the transmission is over.

2 Preliminaries

Different sections of this paper rely on different cryptographic primitives. To
minimize the page-turning effort of our reader, we will introduce the related
notions and definitions separately in each section. Here we will just state the
notations that are used throughout this paper.

We use capital bold letters to denote a matrix M. Lowercase bold letters
denote vectors v. For n ∈ N we let [n] denote the ordered set {1, 2, . . . , n}. For a
bit-string x ∈ {0, 1}n, we let xi denote the i-th bit of x. We use diag(M1, . . . ,Mn)
to denote a matrix with block diagonals M1, . . . ,Mn.

3 Defining Obfuscation in the Bounded Storage Model

In this section we will formally define online obfuscation (oO) and its correspond-
ing security notions, but before we start, we will first introduce an idea called a
stream. It is similar to the publicly-accessible random string as in [Mau92], but
now it is created and sent by one of the parties, and it does not need to be random.

A stream s� is a long sequence of bits sent sequentially from one party to
another. Generally, we require that the length of the stream, denoted as |s�|,
to be greater than the memory bound of the users and adversaries5. This means
that a properly constructed stream can not be stored in its entirety. However,
algorithms or programs can still take a stream as an input, reading the bits
one-by-one. This means that the algorithm or program would operate in an
online manner - as the streaming happens, it actively reads the stream bit by
bit, performs the computation simultaneously, and produces the output in one
pass. Since the outputs of such algorithms or programs could have significantly
smaller sizes than the stream, while s� itself is too large to write down, the
short outputs can be reasonably stored. We denote a variable as a stream by
putting a “�” in the subscript.

Definition 1 (Online Obfuscator). Let λ, n be security parameters. An
online obfuscator oO for a circuit class {Cλ} consists of a pair of uniform PPT
machines (Obf,Eval) that satisfy the following conditions:

– Obf takes as input a circuit C ∈ Cλ, uses up to O(n) memory bits, and
produces a stream s� ← Obf(C).

– Eval takes as input a stream s� and an input x, uses up to O(n) memory
bits, and outputs y ← Eval(s�, x).

– For all C ∈ Cλ, for all inputs x, we have that

Pr [C(x) = y : s� ← Obf(C), y ← Eval(s�, x)] = 1.

5 Notice that generating such a stream could still be done using a low memory bound.

378 J. Guan and M. Zhandry

To define security for an online obfuscator oO = (Obf,Eval), consider the
following two experiments:

1. ExpAdvA,ch,oO(C ∈ Cλ, k):
– The experiment consists of an arbitrary number of rounds. At each round,

one of the following two scenarios happens:
• At an interaction round, the adversary A interacts arbitrarily with

the challenger ch.
• At a stream round, the adversary A receives a fresh stream6 of the

obfuscated circuit s� ← Obf(C). The challenger ch will receive a
special tag notifying it that a streaming has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

2. ExpSimS,ch,oO(C ∈ Cλ, k, q):
– The experiment consists of an arbitrary number of rounds:

• At an interaction round, the simulator S interacts arbitrarily with the
challenger ch.

• At a stream round, the simulator S may send up to q adaptive oracle
queries to the circuit C and receive corresponding responses. The
challenger ch will receive a special tag notifying it that a streaming
has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

The purpose of the interaction round is to allow the challenger to obtain
auxiliary information about the circuit C, such as an accepting input. The key
feature is that this auxiliary information can be obtained after seeing the obfus-
cated stream, at which point the stream effectively disappears and the adversary
can no longer query the program.

We note that in the stream round, we allow the simulator to make adaptive
queries. One could also imagine a stronger variant where the simulator can only
send a single round of non-adaptive queries to the circuit in the stream round.
We focus on the weaker version since it suffices for our applications and our VBB
impossibility already applies in this setting.

6 Notice that a fresh stream is sampled every time, so that no single stream is sent
repeatedly. One could also imagine a stronger version where the same stream is sent
repeatedly, but to achieve that the randomness used must be small. It has also been
shown that for learning parities, even just two-pass learning, where the same stream
is repeated only once more, has a weaker time-space lower bound than the one-pass
one [GRT19] (Ω(n1.5) vs. Ω(n2)). Therefore, applications are far less plausible in
the setting where the same stream is repeated many more times.

Disappearing Cryptography in the Bounded Storage Model 379

Definition 2 (k-time Virtual Grey-Box (VGB) Security). Let λ, n be
security parameters. Let k be a fixed positive integer. For an online obfuscator
oO to satisfy k-time Virtual Grey-Box security under memory bound S(n), we
require that for any challenger ch, and any adversary A that uses up to S(n)
memory bits, there exists a computationally unbounded simulator S s.t. for all
circuits C ∈ Cλ:

|Pr[ExpAdvA,ch,oO(C, k) = 1] − Pr[ExpSimS,ch,oO(C, k, q) = 1]| ≤ negl(λ),

where q = poly(λ)7.

The definitions for Indistinguishability Obfuscation (iO) security and Virtual
Black-Box (VBB) security are obtained analogously by applying minor changes
to the VGB security definition.

Remark 3 (k-time iO Security). We modify Definition 2 to allow q =
superpoly(λ) to obtain the definition for k-time iO Security.

Remark 4 (k-time VBB Security). We modify Definition 2 to restrict S to be a
PPT simulator to obtain the definition for k-time VBB Security. We show in the
full version of the paper that online obfuscators with VBB security do not exist.

Remark 5 (1-time VBB/VGB/iO Security). Under the special case where k = 1,
we obtain the definitions for 1-time VBB/VGB/iO security correspondingly.

Remark 6 (Unbounded VBB/VGB/iO Security). Under the special case where
k = superpoly(λ), we obtain the definitions for unbounded VBB/VGB/iO secu-
rity correspondingly.

4 Public Key Encryption with Disappearing Ciphertext
Security

4.1 Definition

We will start by defining a security notion for public key encryption that we
name Disappearing Ciphertext Security.

Essentially, it captures the security game where the adversary is given the
private key after all of its queries but before it outputs a guess for the bit b. In
traditional models, this definition does not make much sense, as the adversary
can simply store the query responses, and then later use the received private
7 A space S(n) attacker can always run the honest evaluation procedure S(n)/O(n)

times in parallel on different inputs, thereby evaluating the program on S(n)/O(n)
different points. Thus, the number of queries q the simulator makes must be at least
this quantity. One could imagine an alternative definition that sets q to be exactly
this value. We instead opt for a weaker notion where the simulator is allowed to make
an arbitrarily large polynomial number of queries in order to simulate, potentially
much larger than S.

380 J. Guan and M. Zhandry

key to decrypt. However, in the bounded storage model, the adversary cannot
possibly store the ciphertexts, so even if the adversary is handed the private key
afterwards, it cannot possibly use it to decrypt anything.

Put formally, for security parameters λ and n, a public key encryption scheme
in the bounded storage model is a tuple of PPT algorithms Π = (Gen,Enc,Dec)
that each uses up to O(n) memory bits. The syntax is identical to that of a
classical PKE, except that now the ciphertexts are streams ct�. For the security
definition, consider the following experiment:

Disappearing Ciphertext Security Experiment DistDisCt
A,Π (λ, n):

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– Sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– The adversary A submits two messages m0 and m1, and receives ct� ←
Enc(pk,mb), which is a stream.

– The adversary A is given the private key sk.
– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary

succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Using this experiment, we are now able to formally define disappearing
ciphertext security.

Definition 3 (Disappearing Ciphertext Security). Let λ, n be security
parameters. A public key encryption scheme Π = (Gen,Enc,Dec) has disap-
pearing ciphertext security under memory bound S(n) if for all PPT adversaries
A that use at most S(n) memory bits:

Pr
[
DistDisCt

A,Π (λ, n) = 1
]

≤ 1
2

+ negl(λ).

Now we will show how to use online obfuscation to construct a public key
encryption scheme with disappearing ciphertext security. One important tool
that we will take advantage of is lossy functions, which we will introduce in the
following.

4.2 Lossy Function

Lossy functions are a subset of Lossy Trapdoor Functions due to Peikert and
Waters [PW08] that do not require the existence of a trapdoor for the injective
mode. To put formally:

Definition 4 (Lossy Function). Let λ be the security parameter. For �(λ) =
poly(λ) and k(λ) ≤ �(λ) (k is referred to as the “lossiness”), a collection of (�, k)-
lossy functions is given by a tuple of PPT algorithms (S, F) with the following
properties. As short-hands, we have Sinj(·) denote S(·, 1) and Slossy(·) denote
S(·, 0).

Disappearing Cryptography in the Bounded Storage Model 381

– Easy to sample an injective function: Sinj outputs a function index
s, and F (s, ·) computes an injective (deterministic) function fs(·) over the
domain {0, 1}�.

– Easy to sample a lossy function: Slossy outputs a function index s,
and F (s, ·) computes a (deterministic) function fs(·) over the domain {0, 1}�

whose image has size at most 2�−k.
– Hard to distinguish injective mode from lossy mode: Let Xλ be the

distribution of s sampled from Sinj, and let Yλ be the distribution of s sampled
from Slossy, the two distributions should be computationally indistinguishable,
i.e. {Xλ} c≈ {Yλ}.

4.3 Construction

Here we present our construction of a PKE scheme with disappearing ciphertext
security, using online obfuscation and lossy function as building blocks.

Construction 1. Let λ, n be the security parameters. Let LF = (S, F) be a
collection of (�, k)-lossy functions, and oO = (Obf,Eval) an online obfuscator
with 1-time VGB security under S(n) memory bound. The construction Π =
(Gen,Enc,Dec) works as follows:

– Gen(1λ, 1n): Sample an injective function index fs from Sinj, and a uniform
sk ← {0, 1}�. Compute y = F (s, sk) = fs(sk), and set pk = (s, y). Output
(pk, sk).

– Enc(pk,m): Construct the program Pfs,y,m as follows:

Pfs,y,m(x) =

{
m if fs(x) = y

⊥ otherwise
.

Obfuscate the above program to obtain a stream ct� ← Obf(Pfs,y,m). The
ciphertext is simply the stream ct�.

– Dec(sk, ct�): Simply evaluate the streamed obfuscation using sk as input. An
honest execution yields Eval(ct�, sk) = Pfs,y,m(sk) = m as desired.

4.4 Proof of Security

Now we show that if LF is a collection of (�, k)-lossy functions with a lossiness
k = poly(λ), and oO is an online obfuscator with 1-time VGB security under
S(n) memory bound, then the above construction has disappearing ciphertext
security under S(n) memory bound.

We organize our proof into a sequence of hybrids. In the very first hybrid, the
adversary plays the disappearing ciphertext security game DistDisCt

A,Π (λ, n) where
b is fixed to be 0. Then we gradually modify the hybrids to reach the case where
b = 1. We show that all pairs of adjacent hybrids are indistinguishable from each
other, and therefore by a hybrid argument the adversary cannot distinguish
between b = 0 and b = 1. This then directly shows disappearing ciphertext
security.

382 J. Guan and M. Zhandry

Sequence of Hybrids

– H0: The adversary plays the original disappearing ciphertext security game
DistDisCt

A,Π (λ, n) where b = 0, i.e. it always receives Enc(pk,m0).
– H1: The same as H0, except that in Enc(pk,mb), we replace Pfs,y,mb

with
P ′
sk,mb

such that

P ′
sk,mb

(x) =

{
mb if x = sk

⊥ otherwise
.

So now instead of checking the secret key by checking its image in the injective
function, the program now directly checks for sk.

– H2: The same as H1, except that instead of sampling fs from Sinj, we now
use fs′ sampled from Slossy.

– H3: The same as H2, except that now we set b = 1 instead of 0.
– H4: Switch back to using injective fs instead of the lossy fs′ .
– H5: Switch back to using the original program Pfs,y,mb

instead of P ′
sk,mb

.

Theorem 1. If LF is a collection of (�, k)-lossy functions with lossiness k =
poly(λ), and oO is an online obfuscation with 1-time VGB security under S(n)
memory bound, then Construction 1 has disappearing ciphertext security under
S(n) memory bound.

For the proofs of the hybrid arguments and the Theorem, please refer to the
full version of the paper.

5 Disappearing Signature Scheme

5.1 Definition

In this section, we define a public-key signature scheme in the bounded storage
model which we call Disappearing Signatures. The idea is that we make the sig-
natures be streams such that one can only verify them on the fly, and cannot
possibly store them. The security game requirement is also different. Tradition-
ally, for an adversary to win the signature forgery game, the adversary would
need to produce a signature on a fresh new message. However, in the disappear-
ing signature scheme, the adversary can win even by producing a signature on a
message that it has previously queried. The catch here is that even though the
message might have been queried by the adversary before, the adversary has no
way to store the valid signature on the message due to its sheer size.

Put formally, for security parameters λ and n, a disappearing signature
scheme consists of a tuple of PPT algorithms Π = (Gen,Sign,Ver) that each
uses up to O(n) memory bits. The syntax is identical to that of a classical public
key signature scheme, except that now the signatures are streams σ�. In addition
to the standard model signature security (where the adversary has unbounded
space), we also require disappearing signature security that utilizes the following
experiment:

Disappearing Cryptography in the Bounded Storage Model 383

Signature Forgery Experiment SigForgeA,Π(λ, n):

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– The adversary A is given the public key pk.
– For q = poly(λ) rounds, the adversary A submits a message m, and receives

σ� ← Sign(sk,m), which is a stream.
– The adversary A outputs m′ and streams a signature σ′

�. The output of the
experiment is Ver(pk,m′, σ′

�).

Notice that traditionally, we would require m′ to be distinct from the mes-
sages m’s queried before, but here we have no such requirement. With this
experiment in mind, we now define the additional security requirement for a
disappearing signature scheme.

Definition 5 (Disappearing Signature Security). Let λ, n be security
parameters. A disappearing signature scheme Π = (Gen,Sign,Ver) has disap-
pearing signature security under memory bound S(n), if for all PPT adversaries
A that use up to S(n) memory bits,

Pr
[
SigForgeA,Π(λ, n) = 1

] ≤ negl(λ).

To construct such a disappearing signature scheme, one tool that we will use
alongside online obfuscation is a prefix puncturable signature.

5.2 Prefix Puncturable Signature

A prefix puncturable signature is similar to a regular public key signature scheme
that works for messages of the form (x,m), where x is called the prefix. Addi-
tionally, it has a puncturing procedure Punc that takes as input the secret key sk
and a prefix x∗, and outputs a punctured secret key skx∗ . skx∗ allows one to sign
any message of the form (x,m) with x �= x∗. The security requirement is that,
given skx∗ , one cannot produce a signature on any message of the form (x∗,m).

To put formally, in addition to the usual correctness and security require-
ments of a signature scheme, we also have a correctness requirement and a secu-
rity requirement for the punctured key.

Definition 6 (Correctness of the Punctured Key). Let λ be the security
parameter. We require that for all m ∈ {0, 1}∗ and x, x∗ ∈ {0, 1}λ s.t. x �= x∗:

Pr

⎡
⎢⎢⎣σ = σ′ :

(pk, sk) ← Gen(1λ)
σ ← Sign(sk, (x,m))
skx∗ ← Punc(sk, x∗)

σ′ ← Sign(skx∗ , (x,m))

⎤
⎥⎥⎦ = 1.

Definition 7 (Security of the Punctured Key). Let λ be the security
parameter. We require that for all x∗ ∈ {0, 1}λ and m ∈ {0, 1}∗, for all PPT
adversaries A, we have

Pr

⎡
⎣Ver(pk, (x∗,m), σ) = 1 :

(pk, sk) ← Gen(1λ)
skx∗ ← Punc(sk, x∗)

σ ← A(skx∗ , pk, (x∗,m))

⎤
⎦ ≤ negl(λ).

384 J. Guan and M. Zhandry

Bellare and Fuchsbauer [BF14] have shown that a puncturable signature
can be built from any one-way function using certificates, though their basic
construction does not satisfy the strong correctness we require: their punctured
key yields valid signatures, but not necessarily identical signatures. Nevertheless,
it is straightforward to modify the ideas to yield a scheme with the desired
correctness. Our modified scheme for prefix puncturable signature can be found
in the full version of the paper.

5.3 Construction

We now present our construction of the disappearing signature scheme.

Construction 2. Let λ, n be the security parameters. Let PPS = (Gen,Sign,
Ver,Punc) be a prefix puncturable signature scheme, and oO = (Obf,Eval) be
an online obfuscator with 1-time VGB security under S(n) memory bound. The
construction Π = (Gen,Sign,Ver) works as follows:

– Gen(1λ, 1n): Run (pk, sk) ← PPS.Gen(1λ), and output (pk, sk).
– Sign(sk,m): Construct the program P as follows:

Psk,m(x) = PPS.Sign(sk, (x,m)).

Obfuscate the above program to obtain a stream σ� ← Obf(P). The signa-
ture is simply the stream σ�.

– Ver(pk,m, σ�): Sample a random prefix x∗ ∈ {0, 1}λ, and evaluate the
streamed obfuscated program using x∗ as input. This yields

σ∗ = Eval(σ�, x∗) = PPS.Sign(sk, (x∗,m)).

Then, output PPS.Ver(pk, (x∗,m), σ∗) as the result.

The correctness of the construction comes directly from the correctness of
the underlying prefix puncturable signature scheme.

Theorem 2. If PPS is a correct and secure prefix puncturable signature scheme,
and oO is an online obfuscator with 1-time VGB security under S(n) memory
bound, then Construction 2 is secure under S(n) memory bound.

The proof of this theorem uses some similar techniques as that of Theorem 1
and can be found in the full version of the paper.

6 Functional Encryption

6.1 Definition

The concept of Functional Encryption (FE) is first raised by Sahai and
Waters [SW05] and later formalized by Boneh, Sahai, Waters [BSW11] and
O’Neill [O’N10]. Here we review the syntax and security definition of functional
encryption and how they would translate to the bounded storage model.

Disappearing Cryptography in the Bounded Storage Model 385

Syntax of Functional Encryption. Let λ be the security parameter. Let {Cλ}
be a class of circuits with input space Xλ and output space Yλ. A functional
encryption scheme for the circuit class {Cλ} is a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) defined as follows:

– Setup(1λ) → (pk,msk) takes as input the security parameter λ, and outputs
the public key pk and the master secret key msk.

– KeyGen(msk, C) → skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

– Enc(pk,m) → ct takes as input the public key pk and a message m ∈ Xλ, and
outputs the ciphertext ct.

– Dec(skC , ct) → y takes as input a function key skC and a ciphertext ct, and
outputs a value y ∈ Yλ.

We require correctness and security of a functional encryption scheme.

Definition 8 (Correctness). A functional encryption scheme Π = (Setup,
KeyGen,Enc,Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

⎡
⎢⎢⎣y = C(m) :

(pk,msk) ← Setup(1λ)
skC ← KeyGen(msk, C)

ct ← Enc(pk,m)
y ← Dec(skC , ct)

⎤
⎥⎥⎦ ≥ 1 − negl(λ).

For the security definition, consider the following experiment:
Functional Encryption Security Experiment DistFEA,Π(λ):

– Run Setup(1λ) to obtain keys (pk,msk) and sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ},

and receives skC ← KeyGen(msk, C).
– The adversary A submits the challenge query consisting of 2 messages m0

and m1 s.t. C(m0) = C(m1) for any circuit C that has been queried before,
and receives Enc(pk,mb).

– For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ}
s.t. C(m0) = C(m1), and receives skC ← KeyGen(msk, C).

– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary
succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Definition 9 (Adaptive Security). A functional encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be secure if for all PPT adversaries A:

Pr
[
DistFEA,Π(λ) = 1

]
≤ 1

2
+ negl(λ).

386 J. Guan and M. Zhandry

Now we discuss how these definitions would need to be modified for defining
functional encryption in the bounded storage model. As we have seen in the
PKE with disappearing ciphertext security construction, the core idea here is
similar: we now produce ciphertexts that are streams.

Concretely, for security parameters λ and n, a functional encryption scheme
in the bounded storage model consists of a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) that each uses up to O(n) memory bits. The rest of
the syntax is identical to that of the classical FE scheme, except that now the
ciphertexts ct� are streams. The correctness requirement remains unchanged
apart from the syntax change, but the security definition would need to be sup-
plemented with a memory bound for the adversary and a slightly different secu-
rity experiment DistFE-BSMA,Π . DistFE-BSMA,Π is identical (apart from syntax changes)
to DistFEA,Π except that for function key queries submitted after the challenge
query, we no longer require that C(m0) = C(m1).

Definition 10 (Adaptive Security in the Bounded Storage Model). A
functional encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be secure
under memory bound S(n) if for all PPT adversaries A that use at most S(n)
memory bits:

Pr
[
DistFE-BSMA,Π (λ, n) = 1

]
≤ 1

2
+ negl(λ).

With these definitions in mind, we now present how one can construct a
secure functional encryption scheme in the bounded storage model using online
obfuscation. The construction will also be based on three classical cryptographic
primitives: a Non-Interactive Zero Knowledge (NIZK) proof system, a secure
classical functional encryption scheme, and a Pseudo-Random Function (PRF).

6.2 Construction

Construction 3. Let λ, n be the security parameters. Let NIZK = (P,V) be a
non-interactive zero knowledge proof system, FE = (Setup,KeyGen,Enc,Dec) a
functional encryption scheme, PRF : {0, 1}w×{0, 1}∗ → {0, 1}w a pseudorandom
function for w = poly(λ), and oO = (Obf,Eval) an online obfuscator with 1-
time VGB security under memory bound S(n). We construct the functional
encryption scheme Π = (Setup,KeyGen,Enc,Dec) as follows:

– Setup(1λ, 1n): Sample (pk,msk) ← FE.Setup(1λ). Sample the common refer-
ence string crs for the NIZK system. Output (pk, crs) as the overall public
key. Output msk as the master secret key.

– KeyGen(msk, C): Sample random x, y ∈ {0, 1}w. Consider the following func-
tion:

FC,x,y(m, k) =

{
C(m) if k = ⊥ or PRF(k, (C, y)) �= x

⊥ otherwise
.

Disappearing Cryptography in the Bounded Storage Model 387

Compute skF ← FE.KeyGen(msk, FC,x,y). Also, produce a NIZK proof π that
skF is correctly generated, i.e. the tuple (pk, C, x, y, skF) is in the language

Lpk,C,x,y,skF :=
{

(pk, C, x, y, skF)
∣∣∣∣

(pk,msk) ← FE.Setup(1λ)
skF ← FE.KeyGen(msk, FC,x,y)

}
.

Output the function key as skC = (C, x, y, skF , π).
– Enc((pk, crs),m): Compute c ← FE.Enc(pk, (m,⊥)). Then consider the follow-

ing program that takes as input a function key skC = (C, x, y, skF , π):

Pc,pk,crs(skC) =

{
FE.Dec(skF , c) if NIZK.V(crs, (pk, C, x, y, skF), π) = 1
⊥ otherwise

.

Obfuscate the above program to obtain a stream ct� ← Obf(P). The cipher-
text is simply the stream ct�.

– Dec(skC , ct�) : Simply output Eval(ct�, skC).

It should be easy to verify that an honest execution yields

Pc,pk,crs(C, x, y, skF , π) = FE.Dec(skF , c) = FC,x,y(m,⊥) = C(m)

as desired.

Theorem 3. If NIZK is zero-knowledge and statistically sound, PRF is a secure
pseudorandom function against non-uniform attackers, FE is a secure functional
encryption scheme, and the online obfuscator oO has 1-time VGB security under
S(n) memory bound, then Construction 3 is secure under S(n) memory bound.

The proof of this theorem uses some similar techniques as that of Theorem 1
and can be found in the full version of the paper.

7 Candidate Construction 1

Here, we give a candidate online obfuscation scheme, for NC1 circuits. This
suffices for our applications, provided the underlying building blocks can be
computed in NC1. Note that we might heuristically be able to bootstrap our
scheme to all circuits using FHE, but such bootstrapping (e.g. [GGH+13a]) is
not known to provably apply to VGB obfuscation. In Sect. 8, we give a very
different construction that directly yields VGB obfuscation.

7.1 Matrix Branching Programs

A matrix branching program BP of length h, width w, and input length �
consists of an input selection function inp : [h] → [�], 2h matrices {Mi,b ∈
{0, 1}w×w}i∈[h];b∈{0,1}, a left bookend that is a row matrix s ∈ {0, 1}1×w, and a
right bookend that is a column matrix t ∈ {0, 1}w×1. BP is evaluated on input
x ∈ {0, 1}� by computing BP(x) = s

(∏
i∈[h] Mi,xinp(i)

)
t.

We say that a family of matrix branching programs are input-oblivious if
all programs in the family share the same parameters h, w, �, and the input
selection function inp.

388 J. Guan and M. Zhandry

Lemma 1 (Barrington’s Theorem [Bar86]). For a circuit C of depth d where
each gate takes at most 2 inputs, we can construct a corresponding matrix branch-
ing program BP with width 5 and h = 4d.

7.2 The Basic Framework

Here we present the basic framework of an online obfuscator based on matrix
branching programs. Our framework will be parameterized by a randomized
procedure Convert, which takes as input a log-depth circuit C and width w, and
produces a branching program of length h = poly(λ) and width w. w will be
chosen so that the honest parties only need O(w) space to evaluate the program
as it is streamed, while security is maintained even if the adversary has up to
γw2 space, for some small constant γ.

Since the branching program BP will be too large for a space bounded obfus-
cator to write down, we will need to provide a local, space-efficient way to com-
pute each entry of the branching program, given the circuit C and the random
coins of Convert.

Note that Barrington’s theorem implies, for log-depth circuits, that h =
poly(λ) and that w can be taken as small as 5. Convert can be thought of as
some procedure to expand the width to match the desired space requirements,
and also enforce other security properties, as discussed in Sect. 7.3, where we
discuss our particular instantiation of the framework.

Our basic framework actually consists of three schemes. As we will demon-
strate, the three schemes have equivalent security, under the assumed existence
of a pseudorandom function. The first scheme is much simpler, highlights the
main idea of our construction, and allows us to more easily explore security. The
downside of the first scheme is that the obfuscator requires significant space,
namely more than the adversary. We therefore present two additional schemes
with equivalent security, where the final scheme allows the obfuscator to run in
space O(w), while having equivalent security to the original scheme.

Construction with Kilian Randomization. We start with the first and
simpler scheme, denoted OKil, that uses randomization due to Kilian [Kil88] to
construct a matrix branching program BP′ as follows.

Sample random invertible matrices Ri ∈ {0, 1}w×w for i = 0, 1, . . . , h. Com-
pute M′

i,b = R−1
i−1Mi,bRi for i ∈ [h] and b ∈ {0, 1}. Additionally, compute new

bookends s′ = s · R0, and t′ = R−1
h · t. The new randomized matrix branching

program is now BP′ = (inp, {M′
i,b}i∈[h];b∈{0,1}, s′, t′). Notice that when we com-

pute BP′(x), these random matrices will cancel each other out and hence the
output of the program should be unchanged.

Now to turn BP′ into an online obfuscator, all we need to do is to properly
stream the branching program. Here we specify the order that the matrices will
be streamed:

s′,M′
1,0,M

′
1,1,M

′
2,0,M

′
2,1, . . . ,M

′
h,0,M

′
h,1, t

′.

Disappearing Cryptography in the Bounded Storage Model 389

When streaming a matrix M, we require that the matrix M is streamed
column by column, i.e. we start by sending the first column of M, followed by
the second column, then the third, so on and so forth.

Now let’s take a look at how to evaluate the obfuscated program, i.e. the
matrix branching program sent over the stream. Notice that we would need to
do this using only space linear to w.

To evaluate the program, we will keep a row matrix v ∈ {0, 1}1×w as our
partial result. When the streaming begins, we will set v = s′ received over the
stream.

For i ∈ [h], we will compute b = xinp(i) and listen to the stream of M′
i,b. Let

the columns of M′
i,b be c1, c2, . . . , cw. Since M′

i,b is streamed column by column,
we will receive on the stream c1, c2, . . . , cw. As the columns are being streamed,
we will compute an updated partial result v′ = (v1, v2, . . . , vw) on the fly. As we
receive cj for j ∈ [w], we would compute vj = v · cj . After all the columns of
M′

i,b have been streamed and that v′ has been fully computed, we set v = v′.
In the end after we receive t′, we output BP′(x) = v · t′.
Notice that throughout the evaluation process, we use at most 2w memory

bits, which is linear to w.
However, one issue with this construction is that running the obfuscator

requires computing products of matrices of size w × w, and this inherently
requires O(w2) space. In the full version of the paper, we show two additional
schemes that eventually help us carry out the randomization process using only
O(w) space. The security of these schemes are equivalent to the security of the
construction above, assuming the existence of pseudorandom functions. There-
fore, it suffices to analyze the security of the construction above. Next, we will
explain how to instantiate Convert in a way that presumably gives security.

7.3 Instantiating Convert

Now we will discuss how we specifically instantiate Convert, constructing the
branching program BP for a circuit C that we plug into our framework.

To motivate our construction, we recall that Barrington’s theorem [Bar86]
plus Kilian randomization [Kil88] already provides some very mild security: given
the matrices corresponding to an evaluation on any chosen input x (which selects
one matrix from each matrix pair), the set of matrices information-theoretically
hides the entire program, save for the output of the program on x.

This one-time security, however, is clearly not sufficient for full security. For
starters, the adversary can perform mixed-input attacks, where it selects a single
matrix from each pair, but for multiple reads of the same input, it chooses
different matrices. This allows the attacker to treat the branching program as a
read-once branching program. It may be that, by evaluating on such inputs, the
adversary learns useful information about the program.

Another problem is linear-algebraic attacks. The rank of each matrix is pre-
served under Kilian randomization. Assuming all matrices are full-rank (which
is true of Barrington’s construction), the eigenvalues of Mi,0 ·M−1

i,1 are preserved
under Kilian randomization.

390 J. Guan and M. Zhandry

In branching program obfuscation starting from [GGH+13a], multi-linear
maps are used to block these attacks. In our setting, we will instead use the
storage bounds on the attacker. First, we observe that Raz [Raz16] essentially
shows that linear-algebraic attacks are impossible if the attacker cannot even
record the matrices being streamed. While we do not know how to apply Raz’s
result to analyze our scheme, we conjecture that for appropriately chosen matri-
ces, it will be impossible to do linear-algebraic attacks.

The next main problem is to enforce input consistency to prevent mixed-
input attacks. To accomplish this, we will do the following. We will first run
Barrington’s theorem to get a branching program consisting of 5 × 5 matrices.
We will then construct an “input consistency check” branching program, and
glue the two programs together.

As a starting point, we will construct a read-once matrix branching program
BP1 (one that reads each input bit exactly once) that outputs 0 on an all-zero
or all-one input string, and outputs 1 on all other inputs. Looking forward, we
will insert this program into the various reads of a single input bit: any honest
evaluation will cause the branching program to output 0, whereas an evaluation
that mixes different reads of this bit will cause the program to output 1.

Matrix Branching Program BP1:

– The width, the length, and the input length of the branching program
are all L.

– inp is the identity function, i.e. Mi,b reads xi as input.
– For i ∈ [L], Mi,0 = IL where IL is the L × L identity matrix. Mi,1 is the

L × L permutation matrix representing shifting by 1. Specifically,

Mi,1 =
(

0(L−1)×1 IL−1

1 01×(L−1)

)
.

– The left bookend is s =
(
1 0 0 · · · 0

)
and the right bookend is t =(

0 1 1 · · · 1
)T .

We now briefly justify why BP1 works as desired. Let 0 ≤ w(x) ≤ L be the
Hamming weight of the input x. Notice that when evaluating BP1(x), the number
of Mi,1 matrices chosen is exactly w(x), and the rest of the chosen matrices are
all Mi,0, the identity matrix. Therefore, the product of all the M matrices is
equivalent to a permutation matrix representing shifting by w(x). When this
product is left-multiplied by s =

(
1 0 0 · · · 0

)
, we get a resulting row matrix s′

that is equivalent to s right-shifted by w(x). Notice that s′ has a single 1 at
position (w(x) mod L) + 1. When multiplying s′ by the right bookend t , the
result will always be 1, unless (w(x) mod L)+1 = 1. The only w(x) values that
satisfy (w(x) mod L) + 1 = 1 are w(x) = 0 and w(x) = L, which correspond to
x = 0L and x = 1L respectively. Hence BP1 gives us the desired functionality.

Disappearing Cryptography in the Bounded Storage Model 391

Next up, we will expand BP1 to a read-once matrix branching program BP2

with the following functionality: for a set S of input bits, BP2 outputs 0 if and
only if all the input bits within S are identical (the input bits outside of S can
be arbitrary). This is accomplished by simply setting the matrices for the inputs
in S to be from BP1, while the matrices for all other inputs are just identity
matrices.

Next, we describe a simple method of taking the “AND” of two matrix
branching programs with the same length, input length and input function.
Given matrix branching programs BPA = (inp, {MA

i,b}i∈[h];b∈{0,1}, sA, tA) and
BPB = (inp, {MB

i,b}i∈[h];b∈{0,1}, sB , tB) with length h and input length �, we
construct a new brancing program BPC such that BPC = BPA(x) · BPB(x) for
all inputs x:

Constructing BPC = AND(BPA,BPB):

– The length, the input length, and the input function of BPC are also h,
� and inp, respectively. The width of BPC is wC = wA · wB , where wA

and wB are the widths of BPA and BPB , respectively.
– For all i ∈ [h] and b ∈ {0, 1}, compute MC

i,b = MA
i,b ⊗ MB

i,b where ⊗
denotes the matrix tensor product (Kronecker product). Notice that the
widths of MA

i,b,M
B
i,b, and MC

i,b are wA, wB , and wAwB as desired.
– The left bookend is sC = sA ⊗sB , and the right bookend is tC = tA ⊗tB .

Using the mixed-product property of matrix tensor products, it should be
easy to verify that BPC(x) = BPA(x) · BPB(x) as desired.

Next, let BP∗ be a random read-once matrix branching program with input
length L and width m = poly(λ). We can sample such a branching program by
uniformly sampling each of its matrices and bookends.8

We will assume that the program computed by BP∗ gives a pseudo-
random function. This is, unfortunately not strictly possible: write x =
(x1, x2) for two contiguous chunks of input bits x1, x2. Then the matrix(
BP∗(x1, x2)

)
x1∈X1,x2∈X2

for any sets X1,X2 will have rank at most m. By
setting X1,X2 to be larger than m, one can distinguish this matrix consisting of
outputs of BP∗ from a uniformly random one. The good news is that this attack
requires a large amount of space, namely m2. If the attacker’s space is limited
to be somewhat less than m2, this plausibly leads to a pseudorandom function.
We leave justifying this conjecture as an interesting open question.

Now consider the branching program BP3 = AND(BP2,BP∗). Notice that
BP3 has width nm and is equal to 0 on inputs x where ∀i, j ∈ S, xi = xj , and is
equal to BP∗(x) on all other x.

8 When this is later put through the basic framework, we would need to generate these
random matrices using a PRF. This allows us to reconstruct it at a later point.

392 J. Guan and M. Zhandry

With these tools in hand, we are now ready to show how to enforce input
consistency on an existing matrix branching program.

Given a matrix branching program BP = (inp, {Mi,b}i∈[h];b∈{0,1}, s, t) with
length h, width w and input length �, we construct the branching program BP′

as follow:

Input Consistent Branching Program BP′:

– BP′ has the same length h, input length �, and input function inp as BP.
The width is now w + mh where m = poly(λ).

– For all j ∈ [�], let Sj be the set of all reads of xj , i.e. Sj = {i|i ∈
[h], inp(i) = j}. Construct the branching program BP

(j)
2 using the BP2

construction with input length h and S = Sj . Overwrite the input func-
tion of BP(j)

2 with inp so that it now takes x ∈ {0, 1}� as input. Notice
that BP(j)

2 (x) = 0 if and only if all reads of the j-th bit of x are identical.
Sample a fresh random matrix branching program BP(j)

∗ with length
h, width m, input length � and input function inp. Compute BP

(j)
3 =

AND(BP(j)
2 ,BP(j)

∗). Denote the matrices in BP
(j)
3 as {M(j)

i,b }i∈[h];b∈{0,1},
and the bookends as s(j), t(j).

– For all i ∈ [h], and b ∈ {0, 1}, construct the matrix M′
i,b by adding all

the M(j)
i,b ’s to the diagonal as M′

i,b = diag(Mi,b,M
(1)
i,b , . . . ,M(�)

i,b). Notice
that the width of M′

i,b is w +
∑

j∈[�] m|Sj | = w + mh.
– The left bookend is now s′ =

(
s s(1) s(2) · · · s(�)) and the right bookend

is now t′ =
(
tT

(
t(1)

)T (
t(2)

)T · · · (
t(�)

)T
)T

.

Notice that we have

BP′(x) = BP(x) +
∑
j∈[�]

BP
(j)
3 (x) = BP(x) +

∑
j∈[�]

BP
(j)
2 (x)BP(j)

∗ (x).

If all reads of the input x are consistent, then we have BP
(j)
2 (x) = 0 for all

j, and the program outputs the original output BP′(x) = BP(x).
If the reads of the input x are not consistent, then BP

(j)
2 (x) = 1 for some

j, and consequently BP(j)
∗ (x) will be added to the program output. By our con-

jecture that BP(j)
∗ (x) acts as a PRF to space-bounded attackers, we thus add

a pseudorandom value to BP(x), hiding its value. Thus, we presumably force
input consistency. BP′ will be the output of Convert, which we then plug into
our framework.

Disappearing Cryptography in the Bounded Storage Model 393

8 Candidate Construction 2

Now we present the second candidate construction from digital time-stamping
and standard-model obfuscation. The concept of a digital time-stamp was first
introduced by Haber and Stornetta [HS91], and since then we have seen various
instantiations of digital time-stamping systems. One construction of particular
interest is by Moran, Shaltiel and Ta-Shma [MST04], where they construct a
non-interactive time-stamping scheme in the bounded storage model using a
randomness beacon. A slightly modified definition that uses a stream instead of
a randomness beacon will be what we base our candidate construction on.

Definition 11 (Non-Interactive Digital Time-stamp in the Bounded
Storage Model). Let λ, n be the security parameters. A non-interactive digital
time-stamp scheme in the bounded storage model with stamp length � = O(n)
consists of a tuple of PPT algorithms Π = (Stream,Stamp,Ver) that each uses
up to O(n) memory bits:

– Stream(1λ, 1n) → (s�, k) takes as input security parameters λ, n and outputs
a stream s� and a short sketch k of the stream.

– Stamp(s�, x) → σ takes as input the stream s� and an input x ∈ {0, 1}∗,
and outputs a stamp σ ∈ {0, 1}�.

– Ver(k, x, σ) → 0/1 takes as input the sketch k, an input x ∈ {0, 1}∗ and a
stamp σ and outputs a single bit 0 or 1.

We require correctness and security of the digital time-stamp scheme.

Definition 12 (Correctness). We require that for all x ∈ {0, 1}∗, we have

Pr
[
Ver(k, x, σ) = 1 : (s�, k) ← Stream(1λ, 1n), σ ← Stamp(s�, x)

]
= 1.

For security, we ideally want that an adversary cannot produce a valid time-
stamp on an input x that the adversary did not run Stamp on. Instead, [MST04]
notice that an adversary with S(n) memory bits can store at most S(n)/� time-
stamps, and therefore define security as upper bounding the number of time-
stamps an adversary can produce. While not the same as the ideal goal, it at
least implies the adversary cannot produce arbitrary time-stamped messages.

Definition 13 (Security). We require that for all adversary A that uses up to
S(n) memory bits, we have

Pr

⎡
⎢⎢⎣∀(x, σ) ∈ M,Ver(k, x, σ) = 1

∣∣∣∣∣∣∣∣

(s�, k) ← Stream(1λ)
M ← AStamp(·)(s�)

|M | > S(n)
�∀(x1, σ1), (x2, σ2) ∈ M,x1 �= x2

⎤
⎥⎥⎦ ≤ negl(λ).

Now we show how we can use such a digital time-stamping scheme to con-
struct an online obfuscator.

394 J. Guan and M. Zhandry

Construction 4. Let λ, n be the security parameters. Let TSP be a digital
time-stamping scheme in the bounded storage model. Let VGB = (Obf,Eval) be
a classical VGB obfuscator for all circuits. We construct our online obfuscator
for the circuit class {Cλ} as follows:

– Obf(C): Run TSP.Stream(1λ, 1n) to stream s� and obtain the sketch k. Con-
sider the following program PC,k:

PC,k(x, σ) =

{
C(x) if TSP.Ver(k, x, σ) = 1
⊥ otherwise

.

Let P ← VGB.Obf(PC,k) be the standard-model VGB obfuscation of PC,k.
The obfuscated program is simply the stream s� followed by P.

– Eval((s�,P), x): To evaluate the obfuscated program, first compute σ ←
TSP.Stamp(s�, x) when s� is being streamed. Then the output is simply
VGB.Eval(P, (x, σ)).

Correctness is straightforward. One detail is that, using the basic time-stamping
protocol of [MST04], the sketch k, and thus PC,k will be of size O(n) bits. Thus,
we need to use an obfuscator such that VGB.Obf only expands the input circuit
by a constant factor. While no such constructions are currently known, there
are also no known impossibilities. Alternatively, one can use branching-program
based obfuscation directly from multilinear maps, for example [GGH+13a] and
follow-ups. [BCKP14] even gives evidence that these constructions may be VGB
secure. The difficulty is that the constructions blow up the input program by a
polynomial factor, and therefore cannot be written down. However, as they have
the form of a branching program, they can be streamed much the same way
as we stream Candidate Construction 1. Finally, another option is to use the
computational time-stamping protocol from [MST04], which shrinks the size of
the sketch and the proof, at the cost of relying on computational assumptions.
We therefore conjecture that some instantiation of VGB.Obf will lead to a secure
online VGB obfuscator that can also be streamed in low space. We leave proving
or disproving this conjecture as an open question.

References

[AP20] Ananth, P., La Placa, R.L.: Secure software leasing. In: Canteaut, A.,
Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 501–
530. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-
6 17

[Bar86] Barrington, D.A.M.: Bounded-width polynomial-size branching programs
recognize exactly those languages in NC1. In: 18th ACM STOC, pp. 1–5.
ACM Press, May 1986

[BB84] Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribu-
tion and coin tossing. In: Proceedings of IEEE International Conference
on Computers, Systems, and Signal Processing (1984)

https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17

Disappearing Cryptography in the Bounded Storage Model 395

[BCKP14] Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey
box obfuscation for general circuits. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8617, pp. 108–125. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44381-1 7

[BF14] Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H.
(ed.) PKC 2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54631-0 30

[BGI+01] Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidel-
berg (2001). https://doi.org/10.1007/3-540-44647-8 1

[BNNO11] Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper
bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25385-0 7

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-
6 16

[CDNO97] Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052229

[CHK03] Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryp-
tion scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 16

[CPP20] Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryp-
tion. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol.
12170, pp. 807–835. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-56784-2 27

[DM04] Dziembowski, S., Maurer, U.: On generating the initial key in the
bounded-storage model. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24676-3 8

[DvW92] Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authen-
ticated key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

[Dzi06] Dziembowski, S.: On forward-secure storage. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 251–270. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 15

[GGH+13a] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press,
October 2013

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 27

[GGHW14] Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of
differing-inputs obfuscation and extractable witness encryption with aux-
iliary input. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 518–535. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44371-2 29

https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-25385-0_7
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/BFb0052229
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-030-56784-2_27
https://doi.org/10.1007/978-3-540-24676-3_8
https://doi.org/10.1007/11818175_15
https://doi.org/10.1007/978-3-642-40084-1_27
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-662-44371-2_29

396 J. Guan and M. Zhandry

[GGSW13] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its
applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th
ACM STOC, pp. 467–476. ACM Press, June 2013

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 3

[GKW17] Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C.
(ed.) 58th FOCS, pp. 612–621. IEEE Computer Society Press, October
2017

[GRT19] Garg, S., Raz, R., Tal, A.: Time-space lower bounds for two-pass learn-
ing. In: 34th Computational Complexity Conference (CCC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2019)

[GZ19] Guan, J., Zhandary, M.: Simple schemes in the bounded storage model.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478,
pp. 500–524. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17659-4 17

[HS91] Haber, S., Stornetta, W.S.: How to time-stamp a digital document. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537,
pp. 437–455. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3 32

[JLS20] Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-
founded assumptions. Cryptology ePrint Archive, Report 2020/1003
(2020). https://eprint.iacr.org/2020/1003

[Kil88] Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM
STOC, pp. 20–31. ACM Press, May 1988

[LSS19] Landerreche, E., Stevens, M., Schaffner, C.: Non-interactive cryptographic
timestamping based on verifiable delay functions. Cryptology ePrint
Archive, Report 2019/197 (2019). https://eprint.iacr.org/2019/197

[Mau92] Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure ran-
domized cipher. J. Cryptol. 5(1), 53–66 (1992)

[Mli21] Mlitz, K.: Data center storage capacity worldwide from 2016 to 2021, by
segment (2021). https://www.statista.com/statistics/638593/worldwide-
data-center-storage-capacity-cloud-vs-traditional/

[MST04] Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the
bounded storage model. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol.
3152, pp. 460–476. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-28628-8 28

[O’N10] O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint
Archive, Report 2010/556 (2010). https://eprint.iacr.org/2010/556

[PW08] Peikert, C., Waters, B.: Lossy trapdoor functions and their applications.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 187–196. ACM
Press, May 2008

[Raz16] Raz, R.: Fast learning requires good memory: a time-space lower bound
for parity learning. In: Dinur, I. (ed.) 57th FOCS, pp. 266–275. IEEE
Computer Society Press, October 2016

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[WZ17] Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs
under LWE. In: Umans, C. (ed.) 58th FOCS, pp. 600–611. IEEE Com-
puter Society Press, October 2017

https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/3-540-38424-3_32
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2019/197
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://www.statista.com/statistics/638593/worldwide-data-center-storage-capacity-cloud-vs-traditional/
https://doi.org/10.1007/978-3-540-28628-8_28
https://doi.org/10.1007/978-3-540-28628-8_28
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/11426639_27

	Disappearing Cryptography in the Bounded Storage Model
	1 Introduction
	1.1 Motivating Examples
	1.2 Our Results
	1.3 Defining Obfuscation in the Bounded Storage Model
	1.4 Applications
	1.5 Constructing Online Obfuscation
	1.6 Related Work, Discussion, and Future Directions

	2 Preliminaries
	3 Defining Obfuscation in the Bounded Storage Model
	4 Public Key Encryption with Disappearing Ciphertext Security
	4.1 Definition
	4.2 Lossy Function
	4.3 Construction
	4.4 Proof of Security

	5 Disappearing Signature Scheme
	5.1 Definition
	5.2 Prefix Puncturable Signature
	5.3 Construction

	6 Functional Encryption
	6.1 Definition
	6.2 Construction

	7 Candidate Construction 1
	7.1 Matrix Branching Programs
	7.2 The Basic Framework
	7.3 Instantiating Convert

	8 Candidate Construction 2
	References

