
ABE for DFA from LWE Against
Bounded Collusions, Revisited

Hoeteck Wee(B)

NTT Research, Sunnyvale, CA, USA
wee@di.ens.fr

Abstract. We present a new public-key ABE for DFA based on the LWE
assumption, achieving security against collusions of a-priori bounded size.
Our scheme achieves ciphertext size Õ(� + B) for attributes of length �
and collusion size B. Prior LWE-based schemes has either larger ciphertext
size Õ(� · B), or are limited to the secret-key setting. Along the way, we
introduce a new technique for lattice trapdoor sampling, which we believe
would be of independent interest. Finally, we present a simple candidate
public-key ABE for DFA for the unbounded collusion setting.

1 Introduction

Attribute-based encryption (ABE) [19,24] is a generalization of public-key encryp-
tion to support fine-grained access control for encrypted data. Here, ciphertexts
are associated with a description value x and keys with a policy M , and decryp-
tion is possible when M(x) = 1. One important class of policies we would like to
support are those specified using deterministic finite automata (DFA). Such poli-
cies capture many real-world applications involving simple computation on data
of unbounded size, such as network monitoring and logging, pattern matching in
gene sequences, and processing tax returns. Since the seminal work of Waters [26]
introducing ABE for DFA and providing the first instantiation from pairings,
substantial progress has been made in the study of pairing-based ABE for DFA
[2,4,7,8,13], culminating in adaptively secure public-key ABE for DFA against
unbounded collusions based on the k-Lin assumption [14,21].

In this work, we look at ABE for DFA based on the LWE assumption, which
has seen fairly limited progress in spite of the exciting progress we have made in
obtaining expressive ABE for circuits [9,16]. Here, the state of the art is as follows:

– a public-key scheme secure against collusions of a-prior bounded size (that
is, the adversary gets to see a bounded number of secret keys), by combining
the scheme of Agrawal and Singh [5] –henceforth AS17– for collusions of size
one with generic amplification techniques for bounded collusions in [6,15,20];

– a secret-key scheme for DFA (and NFA) secure against unbounded collusions
[3].

Henceforth, we focus on the setting studied in AS17, namely public-key ABE
for DFA secure against bounded collusions (indeed, most of the ABE litera-
ture consider the public-key setting). From a practical stand-point, the bounded
collusion setting already captures a fairly realistic attack scenario. From a
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 288–309, 2021.
https://doi.org/10.1007/978-3-030-90453-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90453-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-90453-1_10

ABE for DFA from LWE Against Bounded Collusions, Revisited 289

ct sk

AS17 [5] (log) B Q extends to FE

AMY19 [3] (log) poly() poly(Q) secret-key, unbounded B

this work (1) B Q

Fig. 1. Summary of LWE-based ABE schemes for DFA, secure against collusions of size
B (cf. Sect. 2.1). In the table, Q is the number of states in the DFA M associated with
sk and � is the length of x associated with ct, and Q, � < λω(1). Hardness refers to the
modulus-to-noise ratio for the LWE assumption, for λω(1)-security and λ−ω(1) decryption
error. We ignore factors polynomial in the security parameter λ, |Σ|, and log �.

theoretical stand-point, it often already requires interesting and insightful tech-
niques. In particular, the core technical novelty in the recent works on ABE for
DFA from k-Lin [13,14,21] –both in the selective and the adaptive settings– lies
in solving the problem in the one-collusion setting; amplification to unbounded
collusions is achieved via the dual system encryption methodology [7,25,27],
which unfortunately, we do not know how to instantiate from LWE.

1.1 Our Contributions

Our main result is a new public-key ABE for DFA based on the LWE assumption,
in the bounded collusion setting:

– Our scheme achieves ciphertext size Õ(� + B) for attributes of length � and
collusion size B and only requires a λω(1) modulus-to-noise ratio, whereas the
AS17 scheme achieves ciphertext size Õ(� ·B) and requires a larger λpoly(log λ)

modulus-to-noise ratio; see Fig. 1 for a comparison.
– As in AS17, our scheme achieves sk-selective security, where all the key queries

are made before the adversary sees the public key or the ciphertext.

Our construction and its analysis are inspired by the pairing-based ABE for
DFA in [13,14,26,26], and is simpler than prior LWE-based schemes in [3,5] in
that we do not require an ABE for circuits [9,16] as an intermediate building
block. Our construction is very algebraic and entails the use of multiple LWE
secrets in the ABE ciphertext, whereas the prior LWE-based schemes are more
combinatorial. Along the way, we introduce a new technique for lattice trapdoor
sampling, which we believe to be of independent interest. Finally, we present a
simple candidate public-key ABE for DFA for the unbounded collusion setting
(no such heuristic post-quantum candidate was known before, without assuming
post-quantum iO).

ABE for DFA. Our ABE scheme follows the high-level structure of the pairing-
based schemes in [13,26]:

– encryption of x ∈ {0, 1}� picks � + 1 fresh LWE secrets s0, s1, . . . , s� (row
vectors);

– a secret key for a DFA with Q states is associated with Q random row vectors
d̃1, . . . , d̃Q;

290 H. Wee

– during decryption, we compute sid̃�
ui

(approximately), where ui denotes the
state reached upon the first i bits of x, for i = 0, 1, . . . , � (i.e., u0 is the DFA
start state).

In a bit more detail,

– the master public key specifies a pair of matrices A0,A1 as well as d̃�
u0

;
– the ciphertext contains s0d̃�

u0
and ci ≈ (si−1‖ − si)Axi

, i = 1, . . . , �;

– the secret key contains k�
u,σ ← A−1

σ

(d̃�
u

d̃�
v

)
for all state transitions (u, σ) ∈

[Q] × {0, 1} �→ v ∈ [Q], where A−1
σ (·) denotes a Gaussian pre-image;

– in order to compute sid̃�
ui

, it suffices to compute the successive differences
si−1d̃�

ui−1
− sid̃�

ui
as follows1:

ci · k�
ui,xi

≈ (si−1‖ − si)Axi
· A−1

xi

(d̃�
ui−1

d̃�
ui

)
= si−1d̃�

ui−1
− sid̃�

ui

In the proof of security, we will modify the ciphertext distribution in a way
that traces the DFA computation path while keeping the secret key distribution
unchanged. In contrast, prior ABE for DFA based on k-Lin modifies both the
ciphertext and secret key distribution in the security proof (even for collusions
of size one). Our proof strategy requires knowing the DFA while simulating the
challenge ciphertext, and for that reason, we only achieve sk-selective security.

Lattice Trapdoor Sampling. We introduce a new lattice trapdoor notion
and sampling technique for our proof of security. Given a wide LWE matrix A,
the Micciancio-Peikert (MP) trapdoor [22] is a low-norm matrix T such that
A ·T = G, where G is the gadget matrix. Such a matrix T allows us to sample
a random Gaussian preimage A−1(z) for all z, but it also breaks the LWE
assumption with respect to A (in fact, we can use T to recover s given sA+ e).

In this work, we consider a “half trapdoor”, namely a low-norm matrix T1/2

such that

A · T1/2 =
(
0
G

)
, A ∈ Z

2n×m
q ,T1/2 ∈ Z

m×n log q,G ∈ Z
n×n log q
q ,m > 2n log q

That is, let A,A ∈ Z
n×m
q denote the top and bottom halves of A. Then, A ·

T1/2 = 0 and A · T1/2 = G, which means T1/2 is a MP trapdoor for A. We
show that T1/2 satisfies the following properties:

1 To facilitate comparison with Waters’ pairing-based scheme, we note that the terms
corresponding to ci and ku,σ there-in are given by:

(g
si−1
1 , g

si−1z+siwxi
1 , gsi

1), (g−d̃u+zr
2 , gr

2 , g−d̃v+wσr
2)

where g1, g2 are the respective generators the group G1,G2 in a bilinear group e :
G1 × G2 → GT . We can then compute a pairing-product over these terms to derive

e(g1, g2)
si−1d̃ui−1−sid̃ui .

ABE for DFA from LWE Against Bounded Collusions, Revisited 291

– restricted trapdoor sampling: Given Z ∈ Z
n×Q
q ,M ∈ {0, 1}Q×Q, we can effi-

ciently sample (using A,T1/2) a random Gaussian pre-image

A−1

(
D

DM + Z

)
, for random D ← Z

n×Q
q (1)

These Gaussian pre-images appear in the secret keys with D = [d̃�
1 | · · · | d̃�

Q],
M ∈ {0, 1}Q×Q being a DFA transition matrix, and Z = 0.

– LWE given T1/2: We also require computational hardness of the form

(A, sA + e) is pseudorandom given T1/2. However, such a statement is false
since (sA+ e) ·T1/2 ≈ 0. Instead, we require that (A, sA+ e) is pseudoran-
dom even if the distinguisher gets adaptive queries to the restricted trapdoor
sampling oracle in (1); we refer to this as T1/2-LWE.

As a sanity check for restricted trapdoor sampling, observe that it is easy to
sample from each of A

−1
(D) and A−1(DM+Z), the latter since T1/2 is a MP-

trapdoor for A. However, what we need is to sample from the “intersection” of
these two distributions. With regards to T1/2-LWE, prior works [10,18] showed
that LWE implies T1/2-LWE for the special case where the oracle queries are
restricted to M = 0; these in turn generalize a classic result in [12] showing
pseudorandomness of (A, sA + e) given A

−1
(D) for random D.

1.2 Technical Overview I: T1/2

In the first part of the technical overview, we address the properties of T1/2.

Restricted Trapdoor Sampling. We show how to sample from the distribu-
tion in (1) given T1/2. Our sampler combines two ideas:
Step 1. First, we describe how to use T1/2 to sample from a related distribution,
namely:

A−1

(
D

MD + Z

)
, for random D ← Z

n×Q
q (2)

where we replaced DM,M ∈ {0, 1}Q×Q with MD ,M ∈ {0, 1}n×n. We begin
by writing (2) as

A−1

(
D

MD + Z

)
≈s

(
A

A − MA

)−1(
D
Z

)
≈s (A − MA)−1(Z)

where the first ≈s holds for all D, and the second ≈s uses the fact that D is
random and a statistical lemma shown in [10,18]. Next, observe that (A−MA) ·
T1/2 = G, which means we can use the MP trapdoor sampling algorithm [22]
with T1/2 as a trapdoor to sample from the distribution (A − MA)−1(Z).

292 H. Wee

Step 2. We rely on the vectorization operator vec(·) for matrices from linear
algebra (see Sect. 2) to relate the distributions in (2) and (1). The vectorization
of a matrix Z, denoted by vec(Z), is the column vector obtained by stacking the
columns of the matrix Z on top off one another. Using a standard vectorization
identity vec(XYZ) = (Z� ⊗ X)vec(Y), we have

vec(DM) = (M� ⊗ In)vec(D)

This basically says that we can sample from the desired distribution in (1) by
sampling from the distribution in (2) with (M� ⊗ In)vec(D) in place of MD .

LWE Implies T1/2-LWE. Next, we sketch a proof of the statement LWE
implies T1/2-LWE, that is, (A, sA + e) is pseudorandom given the restricted
trapdoor sampling oracle in (1). In the reduction, we sample A as

A :=
[
A′ | A′R +

(
0
G

)]

where A′ ← Z
2n×(m−n log q)
q ,R ← {0, 1}(m−n log q)×n log q.

– Note that T1/2 =
(−R

I

)
satisfies A · T1/2 =

(
0
G

)
. This means that we can

use R to compute T1/2 and to implement the restricted trapdoor sampling
oracle in (1).

– By LWE w.r.t. the public matrix A
′
, we have

sA + e ≈s (sA
′
+ e′, (sA

′
+ e′)R + e′′) ≈c (c, cR + e′′), c ← Z

m−n log q
q

This holds even if the distinguisher gets R, which we need to implement the
oracle.

– Now, observe that the oracle in (1) leaks no information about R beyond A
′
R.

By the left-over hash lemma, cR is statistically random given c,A
′
,A

′
R. (A

similar argument first appeared in [1].)

1.3 Technical Overview II: ABE for DFA

We proceed to provide a technical overview of our ABE for DFA. In this work,
it is convenient to specify a DFA using vector-matrix notation. That is, a DFA
M is a tuple (Q,Σ, {Mσ}σ∈Σ,u0, f) where Σ is the alphabet and

Q ∈ N; Mσ ∈ {0, 1}Q×Q,∀σ ∈ Σ; u0, f ∈ {0, 1}1×Q.

The DFA accepts an input x = (x1, . . . , x�) ∈ Σ�, denoted by M(x) = 1, if

fMx�
· · ·Mx2Mx1u

�
0 = 1 (3)

ABE for DFA from LWE Against Bounded Collusions, Revisited 293

ABE for B = 1. We begin with our ABE scheme for collusions of size one:

mpk =
(
d0, {Aσ }σ∈Σ ,Aend,dend

)
, Aσ ← Z

2n×m
q , Aend ← Z

n×m
q (4)

ct =
(

c0
︷ ︸︸ ︷
s0d

�
0 + e0, {

ci
︷ ︸︸ ︷
si−1Axi − siAxi

+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷
s�d

�
end + e�+2 + μ · � q

2
�)

skM =
(
Kend, {Kσ }σ∈Σ

)
,

where D ← Z
n×Q
q s.t. D · u�

0 = d0, Kend ← A−1
end(D − d�

end ⊗ f), Kσ ← A−1
σ

(D
DMσ

)

In the rest of this overview, we assume Σ = {0, 1}, and mostly ignore the error
terms e0, ei for notational simplicity. To see how decryption works, we first let

u�
i := Mxi

· · ·Mx2Mx1u
�
0

That is, u�
i is the characteristic vector for the state reached upon reading

x1, . . . , xi. In addition, let d�
i := D · u�

i denote the corresponding column in
D (denoted by d̃�

ui
in Sect. 1.1). It is straight-forward (though a little tedious)

to verify that

−
≈ s0d

�
0︷︸︸︷

c0 + (
�∑

i=1

≈ si−1d
�
i−1−sid

�
i

︷ ︸︸ ︷
ci · Kxi

· u�
i−1) +

≈ s�(d
�
� −M(x)d�

end)
︷ ︸︸ ︷
c�+1 · Kend · u�

� ≈ −M(x) · s�d�
end(5)

In particular, whenever M(x) = 1, we can recover μ from c�+2. Note that the noise
growth in (5) grows with �, and since we can only bound � by λω(1), we require a
λω(1) modulus-to-noise ratio for decryption correctness. The security proof addi-
tionally uses noise smudging, which also requires a λω(1) modulus-to-noise ratio.

Security. The main tool we have for the proof of security is T1/2-LWE, which
we want to use to replace si−1Axi

in ci with random (while relying the oracle
for restricted trapdoor sampling to simulate the corresponding secret keys). We
cannot do so directly, since each si−1 also appears in ci−1 (c0, in the case i = 1).
To resolve this issue, we start by using (5), which tells us that when M(x) = 0
as is the case for unauthorized keys in the proof of security, we have:

−c0 +
(∑�

i=1
ci · Kxi

· u�
i−1

)
+ c�+1 · Kend · u�

� ≈ 0

This allows us to write c0 as a function of c1, . . . , c�, c�+1 and K0,K1 from skM ,
thereby “eliminating” s0 from c0. (Here, we use the fact that we are in the sk-
selective setting.) At this point, we can replace s0Ax1 in c1 with random, and
thus c1 with random. This in “eliminates” s1 from c1, upon which we can replace
s1Ax2 in c2 and thus c2 with random. This continues until we have replaced c�

with random. At this point, it suffices to argue that

s�Aend, s�d�
end + μ ·
 q

2�,Kend

hides μ, which can be handled using fairly standard techniques.

294 H. Wee

Handling B Collusions. Our basic scheme extends naturally to handle B
collusions by sampling a fresh D per secret key except one important caveat:
the encryptor needs to know d0 = D · u�

0 in order to compute s0d0, and for
the security proof, we need a fresh d0 per secret key. To solve this problem, we
modify the scheme as follows:

– during set-up, we sample and publish d0,j , j ∈ [B] in mpk;
– the encryptor includes { c0,j := s0d0,j }j∈[B] in ct, which increases the cipher-

text size by an additive factor of B · poly(λ) (independent of �);
– when issuing the j’th key, we sample a random D such that D · u�

0 = d0,j .

The security proof is similar to that for B = 1, except we start by using (5) to
rewrite each c0,j in terms of c1, . . . , c�+1.

Candidate ABE for DFA Against Unbounded Collusions. We start with
our ABE for B = 1 in (4) and make the following modifications:

– replace d0 in mpk with a random matrix Ast;
– replace s0d�

0 in ct with s0Ast;
– add kst ← A−1

st (Du�
0) to the secret key, where a fresh random D ← Z

n×Q
q is

chosen for each key.

Correctness follows as before, except we first compute s0d�
0 using s0Ast ·kst. We

believe that our candidate sheds new insights into both avenues and concrete
difficulties for realizing a public-key ABE for DFA against unbounded collusions
from LWE.

1.4 Prior Works

We provide a brief overview of prior LWE-based scheme, along with a folklore
construction based on general circuits. We will refer to constructions secure
against collusions of size 1 as a one-key scheme, and we use Qmax to denote an
upper bound on the number of DFA states.

A Folklore Construction via General Circuits. We can get bounded-
collusion ABE for DFA by using bounded-collusion ciphertext-policy ABE for
circuits; the latter can be constructed based on any semantically secure public-
key encryption scheme –and thus LWE with poly(λ) hardness– via garbled
circuits [15,23]. Concretely, we encode the DFA M as a bit string of length
O(Q log Q) and the DFA input x ∈ {0, 1}� as a circuit of size O(� · Q) that on
input M , outputs M(x). The main draw-back is that the ciphertext size grows
with Qmax, which we want to avoid.

The Agrawal-Singh AS17 Scheme. The AS17 scheme is a one-key sk-
selective functional encryption (FE) scheme for DFA based on LWE. The con-
struction uses the GKPVZ compact one-key FE cFE for circuits, a symmetric-
key encryption scheme SE, and a PRF PRF (the AS17 scheme uses a pairwise-
independent hashing instead of a PRF). We sketch a simplified variant of the
AS17 scheme in the ABE setting:

ABE for DFA from LWE Against Bounded Collusions, Revisited 295

– Encryption of x ∈ {0, 1}� picks � PRF keys K1, . . . ,K�. During decryption,
the decryptor computes PRF(Ki, ui) for i = 1, . . . , �, where ui denotes the
state reached upon the first i bits of x.

– In order to go from PRF(Ki, ui) to PRF(Ki+1, ui+1), the decryptor would
need to compute

SE.EncPRF(Ki,ui)(PRF(Ki+1, ui+1))

To compute the quantity above, the decryptor first computes cFE.Enc
(xi, ui,Ki,Ki+1). The ABE secret key then contains cFE secret keys
that decrypts the cFE-ciphertext to SE.EncPRF(Ki,ui)(PRF(Ki+1, ui+1)). This
requires generating cFE secret keys for circuits of depth O(log Q), and hence
a noise-to-modulus ratio λO(log Qmax) = λpoly(log λ).2

– One question remains: how does the decryptor compute cFE.Enc(xi, ui,Ki,
Ki+1)? Note that the encryptor cannot compute this quantity because it
does not know ui. The naive solution would be for the encryptor to publish
in the ciphertext:

{
SE.EncPRF(Ki,u)(cFE.Enc(xi, u,Ki,Ki+1)) : u ∈ [Qmax]

}

However, this would mean that the final ABE ciphertext size grows with
Qmax instead of log Qmax. Instead, AS17 shows how to compress the above
quantity, using the fact that the cFE ciphertext is “decomposable”.

An open problem is whether our techniques extend to functional encryption for
DFA, as achieved in AS17.

The Agrawal-Maitra-Yamada AMY19 Scheme. The AMY19 scheme is
a private-key ABE for NFA based on LWE; the scheme achieves ct, sk-selective
security against unbounded ciphertext queries and against unbounded collusions.
The AMY19 scheme uses two special ABE schemes:

(i) a public-key ABE for the relation M(x) ∧ (|x| ?≤ |M |);
(ii) a secret-key ABE for the relation M(x) ∧ (|x| ?

> |M |).
These two ABE schemes are constructed using the BGGHNSVV ABE for circuits
[9] and using the fact that an NFA M for inputs of length � can be simulated
using a circuit of size O(� · |M |) and depth poly(log �, log |M |). The final ABE
scheme for NFA contains BGGHNSVV ciphertexts into both the ciphertexts and
the secret keys, and since the BGGHNSVV scheme is sk-selective, the AMY19
scheme is ct, sk-selective.

Prior k-Lin Based Schemes. As mentioned in the first step of our security
proof, we essentially embed the DFA computation into the challenge ciphertext.
In contrast, prior k-Lin based schemes embed the DFA computation into the
secret key, which in turn requires using a computational assumption over the
secret key space.
2 It seems plausible (with some considerable changes to the scheme and the proof) that

we can replace cFE for depth O(log Q) circuits with an ABE for branching programs
of size poly(Q). The latter can realized from LWE with a polynomial modulus-to-
noise ratio [16,17].

296 H. Wee

1.5 Discussion

ABE for DFA and More. In this work, we present new constructions and
techniques for LWE-based ABE for DFA, achieving some improvements over
prior works of AS17 and AMY19 along the way. Our techniques are largely
complementary to those in AS17 and AMY19, and we believe there is much more
to be gained by combining the techniques and insights from all three works. We
conclude with two open problems:

– Find an attack on our candidate ABE against unbounded collusions. Or, use
the candidate as a starting point to design a simple secret-key ABE for DFA
against unbounded collusions based on the LWE assumption, possibly by
leveraging additional insights from AMY19.

– It seems quite plausible that we can combine our techniques with ideas from
[21] to obtain a simple one-collusion ABE for Turing machines M running
in time T and space S, where |ct| = poly(�) · T · S · 2S and |sk| = O(|M |).
A more interesting problem is to design a simple and algebraic one-collusion
ABE for Turing machines running in time T where |ct| = poly(�, T) and
|sk| = poly(|M |), as achieved in AS17.

LWE-based ABE with Multiple LWE Secrets. More broadly, we see this
work as also taking a first step towards exploring the use of multiple LWE
secrets in LWE-based ABE as well as bringing design ideas from more complex
pairing-based schemes to the LWE setting. While the use of multiple LWE secrets
is implicit also in AS17 and AMY19 (where the ciphertext contains multiple
ciphertexts from some existing LWE-based scheme), our construction makes the
connection more explicit.

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface
upper case for matrices (e.g. R). For integral vectors and matrices (i.e., those
over Z), we use the notation |r|, |R| to denote the maximum absolute value over
all the entries. We use v ← D to denote a random sample from a distribution
D, as well as v ← S to denote a uniformly random sample from a set S. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Matrix Operations. The vectorization of a matrix Z, denoted by vec(Z), is
the column vector obtained by stacking the columns of the matrix Z on top off

one another. For instance, for the 2 × 2 matrix Z =
(

a b
c d

)
, we have

vec(Z) =

⎛

⎜
⎜
⎝

a
c
b
d

⎞

⎟
⎟
⎠

ABE for DFA from LWE Against Bounded Collusions, Revisited 297

We use vec−1(·) to denote the inverse operator so that vec−1(vec(Z) = Z. For
all matrices X,Y,Z of the appropriate dimensions, we have vec(XYZ) = (Z� ⊗
X)vec(Y).

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z
�×m,

B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

DFA. We use M = (Q,Σ, {Mσ}σ∈Σ,u0, f) to describe deterministic finite
automata (DFA for short), where u0, f ∈ {0, 1}Q,Mσ ∈ {0, 1}Q×Q, and both u0

and every column of Mσ contains exactly one 1. For any x = (x1, . . . , x�) ∈ Σ�,
we have:

M(x) = fMx�
· · ·Mx1u

�
0

2.1 Attribute-Based Encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists
of four algorithms:

Setup(1λ, C) → (mpk,msk). The setup algorithm gets as input the security param-
eter 1λ and class description C. It outputs the master public key mpk and the
master secret key msk.

Enc(mpk, x, μ) → ctx. The encryption algorithm gets as input mpk, an input x
and a message μ ∈ {0, 1}. It outputs a ciphertext ctx. Note that x is public
given ctx.

KeyGen(mpk,msk,M) → skM . The key generation algorithm gets as input mpk,
msk and M ∈ C. It outputs a secret key skM . Note that M is public given
skM .

Dec(mpk, skM , ctx) → m. The decryption algorithm gets as input skM and ctx
such that M(x) = 1 along with mpk. It outputs a message μ.

Correctness. For all inputs x and M with M(x) = 1 and all μ ∈ {0, 1}, we
require

Pr

⎡

⎣Dec(mpk, skM , ctx) = μ :
(mpk,msk) ← Setup(1λ, C)
skM ← KeyGen(mpk,msk,M)
ctx ← Enc(mpk, x, μ)

⎤

⎦ = 1 − negl(λ).

298 H. Wee

Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

β = β′ :

(mpk,msk) ← Setup(1λ, C)
AKeyGen(mpk,msk,·)(1λ)
(x∗, μ0, μ1) ← A(mpk)
β ← {0, 1}; ctx∗ ← Enc(mpk, x∗, μβ)
β′ ← A(ctx∗)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries M that A sent to KeyGen(mpk,msk, ·) satisfy
M(x∗) = 0. An ABE scheme is sk-selectively secure if for all PPT adversaries
A, the advantage AdvabeA (λ) is a negligible function in λ. Note that A only gets
oracle access to KeyGen at the beginning of the experiment before it sees mpk.
(The security experiment starts with (mpk,msk) ← Setup to generate the first
two inputs to the KeyGen oracle.)

Bounded-Collusion Setting. We say that an ABE scheme is B-bounded
secure if Setup gets an additional input 1B , and the adversary is only allowed
to make at most B queries to KeyGen. For simplicity, we focus on tag-based
B-bounded security (sometimes referred to as stateful key generation in the
literature) where:

– KeyGen takes an additional tag j ∈ [B] and correctness holds for all j ∈ [B];
– In the security game, the queries made to KeyGen must correspond to distinct

tags.

It is easy to see that we can construct a tag-based B-bounded scheme from any 1-
bounded scheme by running B independent copies of the 1-bounded scheme; this
incurs a factor B blow-up in |mpk|, |ct| while |sk| remains the same. Furthermore,
we can construct a B-bounded scheme from a tag-based O(B)-bounded scheme
[6,15,20], with an additional O(λ2(log B)2) multiplicative blow-up in |mpk|, |ct|.
We sketch a construction from [20] for removing tags with a bigger blow-up:
take a tag-based O(B2)-bounded scheme and generate secret keys for a random
tag. Now, if the adversary gets at most B keys, then by a birthday bound, the
advantage of the adversary is bounded by 1/4, and then we can apply hardness
amplification to reduce the advantage to negligible.

2.2 Lattices Background

Learning with Errors. Given n,m, q, χ ∈ N, the LWEn,m,q,χ assumption states
that

(A, sA + e) ≈c (A, c)

where
A ← Z

n×m
q , s ← Z

n
q , e ← DZm,χ, c ← Z

m
q

ABE for DFA from LWE Against Bounded Collusions, Revisited 299

Trapdoor and Preimage Sampling. Given any z ∈ Z
n
q , s > 0, we use A−1(z, s) to

denote the distribution of a vector y sampled from DZm,s conditioned on Ay = z
(mod q). We sometimes suppress s when the context is clear.

There is a p.p.t. algorithm TrapGen(1n, 1m, q) that, given the modulus q ≥
2, dimensions n, m such that m ≥ 2n log q, outputs A ≈s U(Zn×m

q) with a
trapdoor τ . Moreover, there is a p.p.t. algorithm that for s ≥ 2

√
n log q, given

(A, τ) ← TrapGen(1n, 1m, q), z ∈ Z
n
q , outputs a sample from A−1(z, s).

3 Trapdoor Sampling with T1/2 and a Computational
Lemma

We describe our new computational lemma, which we coin the “T1/2-LWE
assumption” and which says that LWE holds in the presence of some oracle
OA(·). Then, we show that the T1/2-LWE assumption follows from the LWE
assumption.

3.1 LWE Implies T1/2-LWE

Theorem 1 (T1/2-LWE assumption). Fix parameters n,m, q. Under the
LWEn,m−n log q,χ assumption, we have that

(A, sA + e) ≈c (A, c)

where
A ← Z

2n×m
q , s ← Z

n
q , e ← DZm,χ̂, c ← Z

m
q , χ̂ = χ · nω(1)

and where the distinguisher gets unbounded, adaptive queries to an oracle OA(·)
that on input M ∈ Z

Q×Q
q ,Z ∈ Z

n×Q
q , outputs a sample from

�
A−1

(
(

D
DM + Z

)
, s

) | D ← Z
n×Q
q

�

where s2 ≥ O(m) + ω(log mQ + log n).

Proof. We sample A as

A :=
[
A′ | A′R +

(
0
G

)]

where A′ ← Z
2n×(m−n log q)
q ,R ← {0,±1}(m−n log q)×n log q.3 Setting T1/2 :=(−R

I

)
, we have A ·T1/2 =

(
0
G

)
. We show in the next section that using A,T1/2,

we can efficiently simulate the oracle OA. We can then complete the current
proof in two steps:
3 Following [22, Section 5.2], we choose each entry of R to be 0 with probability 1/2,

and ±1 each with probability 1/4. This yields |R| = 1 and s1(R) = O(
√

m) w.h.p.
Moreover, (A,AR) ≈s uniform.

300 H. Wee

– By the LWE assumption, we have:

(A′, sA′ + e′) ≈c (A′, c′)

where c′ ← Z
m−n log q
q , e′ ← DZm−n log q,χ. This means that

sA+e ≈s (sA
′
+e′+e′′

0 , (sA
′
+e′)R+e′′) ≈c (c+e′′

0 , cR+e′′), c ← Z
m−n log q
q

even given A,R, where the first ≈s uses noise smudging. We can then use R
to simulate OA(·).

– By left-over hash lemma, we can replace c′R with random, even given
(A′, c′,A′R). Here, we crucially rely on the fact that the distribution OA(·)
depends only on A (and thus A′,A′R) and leaks no additional information
about R.

3.2 Trapdoor Sampling with T1/2

Additional Notation. We adopt additional notation from [11]. We use ηε(·)
to denote the smoothing parameter of a lattice, and Λ⊥(·) to denote the q-ary
kernel lattice. We use � · � for probability distributions.

Lemma 1 ([10, Lemma 4.1, 4.2]). Fix parameters ε, s, n,m, q such that m >
18n log q. For all A ∈ Z

2n×m
q satisfying A · {0, 1}m = Z

2n
q , and for all z ∈ Z

n
q

and s > ηε(Λ⊥(A)), the distributions:
�
A−1

((
d
z

)
, s

)
| d ← Z

n
q

�
and

�
A−1(z, s)

�

are 2ε-statistically close.

Note that the difference from the notation in [10] in that we switched the roles
of A,A. Also, the condition in A as stated in [10] is that

{
A ·x | x ∈ {0, 1}m ∩

Λ⊥(A)
}

= Z
n
q , which is implied by A · {0, 1}m = Z

2n
q .

Theorem 2. Fix parameters n, q,m ≥ O(n log q). There is an efficient algo-
rithm that on input A ∈ Z

2n×m
q ,T1/2 ∈ Z

m×n log q,M ∈ Z
Q×Q
q ,Z ∈ Z

n×Q
q , s ∈ N

such that A ·T1/2 =
(
0
G

)
, outputs a sample statistically close to the distribution

�
A−1

((
D

DM + Z

)
, s

)
| D ← Z

n×m
q

�

if the following conditions are satisfied:

A · {0, 1}m = Z
2n
q , λm(Λ⊥(A)) = O(1), s2 ≥ O(1) · s1(T1/2)

2 +ω(log mQ + log n)

As shown in [12], the conditions A · {0, 1}m = Z
2n
q and λm(Λ⊥(A)) = O(1) are

satisfied for all but a 1 − 2q−2n fraction of A.

ABE for DFA from LWE Against Bounded Collusions, Revisited 301

Proof. We start by specifying the algorithm:

Algorithm. Output

vec−1((IQ ⊗ A − M� ⊗ A)−1(vec(Z), s))

where (IQ ⊗ A − M� ⊗ A)−1(·) is computed using MP trapdoor sampling [22]
with IQ ⊗ T1/2 as a trapdoor.

The analysis proceeds in three steps:

Step 1. We show that for all M,Z:

�
vec

(
A−1

(
D

DM + Z

))
: D ← Z

n×Q
q

�
≈s (IQ ⊗ A − M� ⊗ A)−1(vec(Z))

To show this, first observe that for all A,D,M,Z and all K, we have:

A · K =
(

D
DM + Z

)

⇐⇒ AK = D, AK − AKM = Z

⇐⇒
(

IQ ⊗ A
IQ ⊗ A − M� ⊗ A

)
· vec(K) =

(
vec(D)
vec(Z)

)

where the second ⇐⇒ uses

vec(AK) = (IQ⊗A)·vec(K), vec(AK) = (IQ⊗A)·vec(K), vec(AKM) = (M� ⊗A)·vec(K).

This means that for all A,D,M,Z and all s, the two distributions

vec
(
A−1

((
D

DM + Z

)
, s

))
and

(
IQ ⊗ A

IQ ⊗ A − M� ⊗ A

)−1 ((
vec(D)
vec(Z)

)
, s

)

are identically distributed.
Applying Lemma 1 to

A′ :=
(

IQ ⊗ A
IQ ⊗ A − M� ⊗ A

)

we have
�

(IQ ⊗ A

IQ ⊗ A − M� ⊗ A

)−1(vec(D)

vec(Z)

)
: D ← Z

n×Q
q

�
≈s

�
(IQ ⊗ A − M� ⊗ A)−1(vec(Z))

�

In Step 3, we check that A′ satisfies the conditions for Lemma 1.

Step 2. Observe that

(IQ ⊗ A − M� ⊗ A) · (IQ ⊗ T1/2) = (IQ ⊗ G − M� ⊗ 0) = IQ ⊗ G

302 H. Wee

which means that we can use IQ ⊗ T1/2 as a MP-trapdoor to sample from the
distribution (IQ ⊗ A − M� ⊗ A)−1(vec(Z)).

Step 3. To complete the analysis, we need to bound ηε(A′) and show that A′ ·
{0, 1}mQ = Z

2nQ
q (in order to invoke Lemma 1). Observe that

A′ =
(

IQ ⊗ In 0
−M� ⊗ In IQ ⊗ In

)(
IQ ⊗ A
IQ ⊗ A

)

This means that Λ⊥(A′) = Λ⊥(IQ ⊗A), and that we can bound ηε(Λ⊥(IQ ⊗A))
using λm(Λ⊥(A)) = O(1). In addition, we have:

A · {0, 1}m = Z
2n
q ⇒ (IQ ⊗ A) · {0, 1}mQ = Z

2nQ
q ⇒ A′ · {0, 1}mQ = Z

2nQ
q

This completes the proof. ��

4 ABE for DFA Against Bounded Collusions

In this section, we present our ABE scheme for DFA against bounded collusions.

4.1 Our Scheme

– Setup(1n,Σ, 1B): Sample
(Aσ, τσ) ← TrapGen(12n

, 1
m

, q), σ ∈ Σ, (Aend, τend) ← TrapGen(1n
, 1

m
, q), d0,j , dend ← Z

n
q , j ∈ [B]

Output

mpk :=
({d0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)
, msk :=

({ τσ }σ∈Σ , τend

)

– Enc(mpk, (x1, . . . , x�) ∈ Σ�, μ ∈ {0, 1}). Sample

s0, s1, . . . , s� ← Z
n
q , e0,j , e�+2 ← DZ,χ̂, j ∈ [B], e1, . . . , e�, e�+1 ← DZm,χ

Output

ct :=
({

c0,j
︷ ︸︸ ︷

s0d
�
0,j + e0,j }j∈[B], {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μ · � q

2 �)

– KeyGen(msk,Mj , j): Parse Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj). Sample

Dj ← Z
n×Qj
q s.t. Dj ·u�

0,j = d
�
0,j , Kend,j ← A

−1
end(Dj −d

�
end ⊗ fj), Kσ,j ← A

−1
σ

(
Dj

DjMσ,j

)
, σ ∈ Σ

using trapdoors τend, { τσ }σ∈Σ. Output

skMj
:=

(
Kend,j , {Kσ,j }σ∈Σ

)

– Dec(sk, ct, j): For i = 1, . . . , �, compute u�
i,j := Mxi,j · · ·Mx1,ju�

0,j . Output

roundq/2

(
c0,j +

(�∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j + c�+2

)

where roundq/2 : Zq → {0, 1} denotes rounding to the nearest multiple of q/2.

ABE for DFA from LWE Against Bounded Collusions, Revisited 303

Parameters. The Gaussians in A−1
σ (·),A−1

end(·) have parameters O(m+log Q).
The choice of n,m, q, χ comes from the LWE assumption subject to

n = O(λ), m = O(n log q), χ̂ = χ · (� + 1)m · λω(1), q = O((χ̂ + � · χ) · m · (m + logQ))

In particular, this means

|ct| = O((B + �)m log q) = Õ((B + �)), |sk| = O(|Σ|Qm log q) = Õ(|Σ|Qλ)

where Õ(·) hides poly(log λ, log �, log log Q) factors. To handle general a-prior
unbounded �,Q as is necessarily the case in ABE for DFA, we just bound �,Q
by λω(1).

Correctness. Fix x, j,Mj such that Mj(x) = 1. Write di,j := Dj · u�
i,j , for

j = 0, . . . , �. First, we show that

− c0,j +
(�∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j ≈ −s�d�
end ⊗ fju�

�,j (6)

This follows readily from

(si−1Axi
− siAxi

) · Kxi,j · u�
i−1,j = si−1d�

i,j − sid�
i,j

s�Aend · Kend,j · u�
�,j = s�d�

�,j − s�d�
end ⊗ (fju�

�,j)

which in turns follows from

Axi
· Kxi,j · ui−1,j =

(
Dj

DjMxi

)
· ui−1,j =

(
di−1,j

di,j

)

Aend · Kend,j · u�
�,j = (Dj − d�

end ⊗ fj)u�
�,j = d�

�,j − d�
end ⊗ (fju�

�,j)

Next, since Mj(x) = 1, we have fju�
�,j = 1. It follows from (6) that

−

≈−s�d
�
end︷ ︸︸ ︷

c0,j +
(∑�

i=1
ci · Kxi,j · u�

i−1,j

)
+ c�+1 · Kend,j · u�

�,j +

≈ s�d
�
end+μ·� q

2 	
︷ ︸︸ ︷

c�+2 ≈ μ ·
 q
2�

In particular, the error term is bounded by χ̂ + (� + 1)χ̇.

4.2 sk-Selective Security

We assume that the adversary always makes exactly B key queries; this is
WLOG, since we can always repeat some of the queries.

304 H. Wee

Game Sequence. The proof of security follows a sequence of games:

– H0: Real game where

ct :=
({

c0,j
︷ ︸︸ ︷

s0d
�
0,j + e0,j }j∈[B], {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μβ · � q

2 �)

– H′
0: same as H0, except we replace every c0,j with

(�∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j + e0,j (7)

This game is well-defined because the adversary fixes all key queries (Mj , j)
before it chooses x in the sk-selective setting.

– H′
i, i = 1, . . . , �: same as H′

0, except we sample c1, . . . , ci ← Z
m
q . Note that this

also changes the distribution of { c0,j }j∈[B], since they depend on c1, . . . , ci

as defined in (7).
– H�+1: same as H�, except we replace c�+2 in H� with c′

�+2 ← Zq.

Lemma 2. H0 ≈s H′
0.

Proof. It suffices to show that The only difference in the two games lies in the
distribution of { c0,j }j∈[B]. Since Mj(x) = 0, we have fjd�

�,j = 0. It follows from
(6) that

c0,j ≈ (∑�

i=1
ci · Kxi,j · u�

i−1,j

)
+ c�+1 · Kend,j · u�

�,j

Combined with noise smudging using e0,j , namely

e0,j ≈s e0,j +
(�∑

i=1

ei · Kxi,j · u�
i−1,j

)
+ e�+1 · Kend,j · u�

�,j

which in turn follows from χ̂ ≥ χ · (� + 1)m · λω(1), we have

{ c0,j }j∈[B] ≈s {−(∑�

i=1
ci · Kxi,j · u�

i−1,j

) − c�+1 · Kend,j · u�
�,j + e0,j }j∈[B]

The lemma follows readily. ��
Lemma 3. For i = 1, . . . , �, H′

i−1 ≈c H′
i.

Proof. Observe that the only difference between H′
i−1 and H′

i lies in the distri-
bution of ci:

– in H′
i−1, we have ci = si−1Axi

− siAxi
+ ei;

– in H′
i, we have ci ← Z

m
q .

ABE for DFA from LWE Against Bounded Collusions, Revisited 305

We show that H′
i−1 ≈c H′

i follows from the T1/2-LWE assumption.
As a simplifying assumption, we assume that the reduction knows xi from

the start. In the more general setting, the reduction simply guesses xi at random
at the beginning of the experiment, and aborts if the guess is wrong; this incurs
a loss of |Σ| in the security reduction.

By the T1/2-LWE assumption applied to secret si−1 and public matrix Axi
,

we have:

si−1Axi
≈c c , c ← Z

m
q

given Axi
and oracle access to OAxi

(·).
The reduction on input Axi

, c̃ ∈ {si−1Axi
, c},Kxi,j and oracle access to

OAxi
(·):

– samples

(Aσ , τσ) ← TrapGen(12n, 1m, q), σ �= xi (Aend, τend) ← TrapGen(1n, 1m, q), dend ← Z
n
q

– when A makes a key query (Mj , j) where Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj):
• queries OAxi

(Mxi,j ,0) to get Kxi,j ← A−1
xi

(
Dj

DjMxi,j

)
;

• computes Dj = Axi
· Kxi,j ;

• for all σ �= xi, uses τσ to compute Kσ,j as in KeyGen;
• uses τend to compute Kend,j as in KeyGen;
• outputs skMj

:=
(
Kend,j , {Kσ,j }σ∈Σ

)

– computes mpk =
({Dju�

0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)

– runs x = (x1, . . . , x�), μ0, μ1 ← A(mpk)
– picks β ← {0, 1} and computes ct as follows:

• samples random s0, . . . , s�−1, s� except si−1;
• computes ci := c̃ − siAxi

;
• computes the rest of ct as in H′

i−1;
– outputs A(ct).

Now, observe that when

– if c̃ = si−1Axi
+ ei, this matches H′

i−1.
– if c̃ = c, this matches H′

i since c − siAxi
is uniformly random.

This completes the proof. ��
Lemma 4 (final transition). H′

� ≈c H�+1.

Proof. By the LWE assumption, we have

Aend,dend,

c�+1
︷ ︸︸ ︷
s�Aend + e�+1, s�d�

end + e�+2

≈c Aend,dend,

c�+1
︷ ︸︸ ︷
s�Aend + e�+1, c

′
�+2

The reduction on input Aend,dend, c�+2, c̃, where c̃ ∈ {s�d�
end + e�+2, c

′
�+2},

306 H. Wee

– samples
(Aσ, τσ) ← TrapGen(12n, 1m, q), σ ∈ Σ

– when A makes a key query (Mj , j) where Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj):
• samples Kend,j ← D

Z
m×Qj

• programs Dj = AendKend,j + d�
end ⊗ fj ;

• for all σ ∈ Σ, computes Kσ,j using τσ as in KeyGen;
• outputs skMj

:=
(
Kend,j , {Kσ,j }σ∈Σ

)

– computes mpk =
({Dju�

0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)

– runs x = (x1, . . . , x�), μ0, μ1 ← A(mpk)
– picks β ← {0, 1} and computes ct as follows:

• samples random c1, . . . , c�;
• for all j ∈ [B], compute c0,j using (7) except replacing s�d�

�,j with

c�+1 · Kend,j · u�
�,j

• outputs ct := ({ c0,j }j∈[B], c1, . . . , c�, c�+1, c̃ + μβ ·
 q
2�).

– outputs A(ct).

Here, we use

Dj ← Z
n×Qj
q ,Kend,j ← A−1

end(Dj −d�
end ⊗ fj) ≈s AendKend,j +d�

end ⊗ fj ,Kend,j ← D
Z

m×Qj

This completes the proof. ��

5 Candidate ABE for DFA Against Unbounded
Collusions

In this section, we describe a candidate ABE scheme for DFA against unbounded
collusions:

– Setup(1n,Σ): Sample

(Aσ, τσ) ← TrapGen(12n, 1m, q), σ ∈ Σ, (Aend, τend) ← TrapGen(1n, 1m, q), ,
(Ast, τst) ← TrapGen(1n, 1m, q), dend ← Z

n
q ,

Output

mpk :=
({Aσ }σ∈Σ ,Aend,Ast,dend

)
, msk :=

({ τσ }σ∈Σ , τend

)

– Enc(mpk, (x1, . . . , x�) ∈ Σ�, μ ∈ {0, 1}). Sample

s0, s1, . . . , s� ← Z
n
q , e�+2 ← DZ,χ̂, j ∈ [B], e0, e1, . . . , e�, e�+1 ← DZm,χ

Output

ct :=
(

c0
︷ ︸︸ ︷
s0Ast + e0, {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μ · � q

2 �)

ABE for DFA from LWE Against Bounded Collusions, Revisited 307

– KeyGen(msk,M): Parse M = (Q,Σ, {Mσ }σ∈Σ ,u0, f). Sample

D ← Z
n×Q
q , k

�
st ← A

−1
st (D ·u�

0), Kend ← A
−1
end(D−d

�
end ⊗f), Kσ ← A

−1
σ

(D

DMσ

)
, σ ∈ Σ

using trapdoors τst, τend, { τσ }σ∈Σ. Output

skM :=
(
kst, Kend, {Kσ }σ∈Σ

)

– Dec(sk, ct): For i = 1, . . . , �, compute u�
i := Mxi

· · ·Mx1u
�
0. Output

roundq/2

(
c0k�

st +
�∑

i=1

ci · Kxi
· u�

i−1 + cend · Kend · u�
� + c�+2

)

where roundq/2 : Zq → {0, 1} denotes rounding to the nearest multiple of q/2.

Preliminary Cryptanalysis. We make two small observations:

– Given unbounded keys, the adversary can recover a full short basis for the
matrices

[Ast | Aσ],∀σ

This follows from the fact that for each key,

[Ast | Aσ]
(

kst

−Kσu�
0

)
= D · u�

0 − D · u�
0 = 0

However, we do not know how to use such a collection of short basis to break
security of the scheme.

– Suppose we replace each k�
st with c0k�

st+e′
0 for some fresh e′

0, then the scheme
is indeed sk-selective secure, via essentially the same analysis as our bounded-
collusion scheme. (Recall that the role of k�

st for correctness is indeed only
to compute c0k�

st, so this change does not ruin functionality.) This means
that any attack on our candidate scheme must crucially exploit access to k�

st

(beyond approximating c0k�
st), for instance, to recover a short basis as in the

previous bullet.

Acknowledgments. I would like to thank Yilei Chen and Vinod Vaikuntanathan
for illuminating discussions on lattice trapdoor sampling, as well as the reviewers for
meticulous and constructive feedback.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

https://doi.org/10.1007/978-3-642-13190-5_28

308 H. Wee

2. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

3. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 26

4. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 4

5. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learn-
ing with errors. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
ICALP 2017, volume 80 of LIPIcs, pp. 36:1–36:13. Schloss Dagstuhl, July 2017

6. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

7. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

8. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

9. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

10. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

11. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian
and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 21

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

13. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 25

14. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k -Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 10

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-642-32009-5_11

ABE for DFA from LWE Against Bounded Collusions, Revisited 309

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

17. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC,
pp. 660–670. ACM Press, June 2018

19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. Available as Cryptology ePrint Archive Report 2006/309

20. Itkis, G., Shen, E., Varia, M., Wilson, D., Yerukhimovich, A.: Bounded-collusion
attribute-based encryption from minimal assumptions. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10175, pp. 67–87. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54388-7 3

21. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. J.
Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x

22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

23. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
463–472. ACM Press, October 2010

24. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

25. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

26. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

27. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-54388-7_3
https://doi.org/10.1007/978-3-662-54388-7_3
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26

	ABE for DFA from LWE Against Bounded Collusions, Revisited*-8pt
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview I: T1/2
	1.3 Technical Overview II: ABE for DFA
	1.4 Prior Works
	1.5 Discussion

	2 Preliminaries
	2.1 Attribute-Based Encryption
	2.2 Lattices Background

	3 Trapdoor Sampling with T1/2 and a Computational Lemma
	3.1 LWE Implies T1/2-LWE
	3.2 Trapdoor Sampling with T1/2

	4 ABE for DFA Against Bounded Collusions
	4.1 Our Scheme
	4.2 sk-Selective Security

	5 Candidate ABE for DFA Against Unbounded Collusions
	References

