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Preface

The 19th Theory of Cryptography Conference (TCC 2021) was held during November
8–11, 2021 at North Carolina State University in Raleigh, USA. It was sponsored by
the International Association for Cryptologic Research (IACR). The general chair
of the conference was Alessandra Scafuro.

The conference received 161 submissions, of which the Program Committee
(PC) selected 66 for presentation giving an acceptance rate of 41%. Each submission
was reviewed by at least four PC members. The 43 PC members (including PC chairs),
all top researchers in our field, were helped by 197 external reviewers, who were
consulted when appropriate. These proceedings consist of the revised version of the 66
accepted papers. The revisions were not reviewed, and the authors bear full respon-
sibility for the content of their papers.

As in previous years, we used Shai Halevi’s excellent Web Submission and Review
software, and are extremely grateful to him for writing it, and for providing fast and
reliable technical support whenever we had any questions.

This was the seventh year that TCC presented the Test of Time Award to an
outstanding paper that was published at TCC at least eight years ago, making a sig-
nificant contribution to the theory of cryptography, preferably with influence also in
other areas of cryptography, theory, and beyond. This year the Test of Time Award
Committee selected the following paper, published at TCC 2005: “Keyword Search
and Oblivious Pseudorandom Functions” by Michael Freedman, Yuval Ishai, Benny
Pinkas, and Omer Reingold. The award committee recognized this paper for “intro-
ducing and formalizing the notion of Oblivious Pseudorandom Functions, and iden-
tifying connections to other primitives such as keyword search, inspiring a vast amount
of theoretical and practical work”.

We are greatly indebted to many people who were involved in making TCC 2021 a
success. A big thanks to the authors who submitted their papers and to the PC members
and external reviewers for their hard work, dedication, and diligence in reviewing the
papers, verifying the correctness, and in-depth discussions. A special thanks goes to the
general chair Alessandra Scafuro, Kevin McCurley, Kay McKelly, and the TCC
Steering Committee.

October 2021 Kobbi Nissim
Brent Waters
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Dory: Efficient, Transparent Arguments
for Generalised Inner Products and

Polynomial Commitments

Jonathan Lee(B)

Microsoft Research, Nanotronics Imaging, Cuyahoga Falls, USA
jlee@nanotronics.co

Abstract. This paper presents Dory, a transparent setup, public-coin
interactive argument for inner-pairing products between committed vec-
tors of elements of two source groups. For a product of vectors of length
n, proofs are 6 log n target group elements and O(1) additional elements.
Verifier work is dominated by an O(log n) multi-exponentiation in the
target group and O(1) pairings. Security is reduced to the standard
SXDH assumption in the standard model.

We apply Dory to build a multivariate polynomial commitment
scheme via the Fiat-Shamir transform. For a dense polynomial with n
coefficients, Prover work to compute a commitment is dominated by a
multi-exponentiation in one source group of size n. Prover work to show
that a commitment to an evaluation is correct is O(n log 8/ log 25) in gen-
eral (O(n1/2) for univariate or multilinear polynomials); communication
complexity and Verifier work are both O(log n). These asymptotics pre-
viously required trusted setup or concretely inefficient groups of unknown
order. Critically for applications, these arguments can be batched, saving
large factors on the Prover and improving Verifier asymptotics: to vali-
date � polynomial evaluations for polynomials of size at most n requires
O(� + log n) exponentiations and O(� log n) field operations.

Dory is also concretely efficient: Using one core and setting n = 220,
commitments are 192 bytes. Evaluation proofs are ∼18 kB, requiring ∼3
s to generate and ∼25 ms to verify. For batches at n = 220, the marginal
cost per evaluation is <1 kB communication, ∼300 ms for the Prover
and ∼1 ms for the Verifier.

1 Introduction

Zero-knowledge succinct arguments of knowledge (zkSNARKs) for the satisfia-
bility of Rank-1 Constraint Systems (R1CS) are the subject of ongoing research.
A general strategy to construct zkSNARKS for R1CS is to partition the proof
into two phases. First, an information-theoretic argument reduces proving the
existence of a satisfying assignment to a consistency check on commitments
to evaluations of (possibly multi-variate) polynomials. Some computationally

Current Affiliation: Nanotronics Imaging; work done primarily at Microsoft Research.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 1–34, 2021.
https://doi.org/10.1007/978-3-030-90453-1_1
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2 J. Lee

sound argument with sub-linear verification time is used to show these commit-
ments to evaluations are correct. These auxiliary arguments are variously inner-
product arguments, or the more restricted polynomial commitments, introduced
by Kate [27] and generalised to multivariate polynomials in [30].

Spartan [31] makes the independence of the information-theoretic argument
and these auxiliary arguments explicit, provides an extensive overview of the his-
tory and details of prior works, and details key practical considerations relating
to the uniformity of the computation to verify. There are multiple approaches
in the literature to constructing these auxiliary arguments, and for each many
concrete constructions. Non-exhaustively, Bulletproofs [15] use inner-product
arguments and Hyrax [34] utilise polynomial commitments, both based on the
logarithmic communication complexity discrete log-based work (LCC-DLOG) of
Bootle et al. [13], which in turn uses ideas from [22]. Spartan [31] optimises this
approach further, and Halo [14] applies these on cycles of pairing friendly curves
to achieve recursive composition.

Ligero [3], Aurora [8], Virgo [35] and Fractal [18] use Interactive Oracle
Proofs based on Reed-Solomon codes (RS-IOP) to prove that a polynomial is
of bounded degree [6]. Supersonic and its follow on works [11,16] makes use of
groups of unknown order to construct Diophantine ARguments of Knowledge
(DARK-GUO) proofs for polynomial evaluations over fields. Other works rely on
some trusted setup, which allows the use of other commitment schemes. For
example PLONK [20] makes use of KZG [27] commitments directly, whilst [17]
uses sublinear-sized KZG commitments as a component in their GIPP argument
and polynomial commitment. In all cases these interactive arguments are then
compiled to non-interactive arguments in the random-oracle model.

This paper introduces a new transparent setup argument for generalised inner
products, inspired by Bootle et al. [13] but applying new techniques to achieve
a logarithmic V complexity. This argument can be applied to give polynomial
commitments for arbitrary numbers of variables, using two-tiered homomorphic
commitments of Groth [23] applied to matrix commitment strategy of [34], as in
Bünz et al. [17] for univariate and bivariate polynomials.

For transparent polynomial commitment schemes, there are four key opera-
tions: (1) P and V must generate public parameters; (2) P must commit to a
polynomial and transmit that commitment to V; (3, 4) P and V must compute,
transmit and verify a proof of evaluation of the polynomial. We give the best
achieved asymptotics of previous transparent polynomial commitment schemes,
grouped by overall approach, in Fig. 1.

Unfortunately, implementations generally bundle their polynomial commit-
ment with differing polynomial IOPs for some language, so concrete comparisons
of the polynomial commitments in isolation are challenging. To allow for a some-
what concrete discussion, we first note typical object sizes and operation times
for fast implementations of the required primitives at the 128-bit security level
in Fig. 2. We note that blstrs is enhanced to apply torus-based pairing compres-
sion [29] of GT for serialisation.
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Transparent Communication Time
Setup? Complexity Complexity

Commit Eval Gen Commit Eval Eval

LCC-DLOG
RS-IOP
DARK-GUO

KZG [27,30]
GIPP [17]

This work

Fig. 1. Asymptotic comparisons for dense polynomials of degree n, neglecting
Pippenger-type savings. We report the most expensive dominant operations for the
most efficient instantiations of each class. H denotes a hash function. G denotes a group.
G1, G2, GT denote the two source groups and the target group of a pairing P . GU is
a group of unknown order. These schemes all generalise to multivariate polynomials of
degree (d1, . . . , dr ), setting n =

∏
i(di + 1)

Setting Implementation Size (bytes) Time (µs)

Group of Unknown Order ANTIC-QFB 832 27000
Hashing rust-crypto 32 0.072
Group curve25519-dalek 32 42
Group with Pairing blstrs 48 110

96 270
192 470
– 600

Fig. 2. Micro-benchmarks on a single core (AMD Ryzen 5 3600). For groups we give
the serialised size in bytes of a group element, and the time taken to multiply a random
point by a 256-bit scalar. P denotes a pairing computation, and |H| denotes hashing of
a 512-bit message to a 256-bit digest.

1.1 Limitations of Prior Approaches

Unfortunately, each prior approach to transparent polynomial commitments
have substantial problems in practice. Concretely, only LCC-DLOG based-
schemes provide a linear-time Prover, which is key for large applications where
n ∼ 220-30. Unfortunately, these schemes require Ω(n1/2) computation by V
to Eval a committed polynomial, and have similarly sized commitments. This
is because they commit to a matrix with O(n) entries by committing to the
rows and later opening a commitment to some linear combination of the rows.
Hyrax [34] and its successors saturate this bound with small concrete constants.
However for large n these commitments remain quite large (�10 kB), and can
be challenging in applications applications where the polynomial commitment is
used as a routine and so many commitments must be sent.

RS-IOP-based schemes are built on Reed-Solomon based IOPPs, and would
have attractive concrete costs, even with their asymptotic slowness, if the concrete
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constants were commensurate with the cost of hashing. Unfortunately the sound-
ness error of the underlying IOPP is quite large and the proven bounds are worse
still, requiring a number of repetitions linear in the security level. For example,
libiop [7] runs the underlying proof in Fractal [18] ∼500 times to achieve provable
128-bit security. This large additional multiplicative constant largely closes the
micro-benchmark gap with curve arithmetic, especially as multi-exponentiations
in groups permit log savings using Pippenger’s algorithm.

DARK-GUO-based schemes [11,16] are built around groups of unknown order,
which can be constructed transparently as class groups of quadratic number fields,
or analogously as Jacobians of higher genus curves [19]. They have a long history
of crpytographic use [12,26,28]. Unfortunately, general sub-exponential attacks
on the order are known [10]; fast attacks on a low-density sets of weak groups are
problematic for applications with transparent setup [19], which forces the group
operation to be materially slower than operations on curves, as is seen in Fig. 2.
In the particular case of Supersonic [11,16], even with Pippenger-type accelera-
tion P must perform O(nλ) group operations, and generating parameters takes
O(nλ log n) group operations, which is unlikely to be efficient in practice.

Finally, if transparent setup is given up then Kate commitments [27] and their
multivariate generalisation [30] are available, generally requiring O(n) operations
inG1 for P, O(1) commitment sizes and a V time linear in the number of variables.
This is combined with ideas from LCC-DLOG in [17] to achieve sublinear Prover
computation for evaluation. Whilst performant, these systems have unprovable
knowledge-of-exponent type assumptions for their security, which is undesirable.

1.2 Review of LCC-DLOG Techniques

Dory builds on the LCC-DLOG tradition, which construct inner-product argu-
ments [13,15,17] or reductions of Hadamard products to inner products [22] with
efficient Provers and sublinear communication from homomorphic commitments.

Explicitly for the inner product as a bilinear form, these provide arguments for
inner products between vectors of scalars and group elements or generalised prod-
ucts between the source groups of a pairing, where either input may be committed.
Let these vectors have length n ′, WLOG a power of two (in most cases for polyno-
mial commitments n ′ = O(n1/2)). The key idea, which is inherited in Dory, is to
observe that for any vectors �uL, �uR, �vL, �vR, and any non-zero scalar a:

〈 �uL|| �uR, �vL|| �vR〉 = 〈a �uL + �uR, a−1 �vL + �vR〉 − a〈 �uL, �vR〉 − a−1〈 �uR, �vL〉.
So a claim about the inner product 〈�u,�v〉 of length n ′ can be reduced to some claims
about the inner products of vectors of length n ′/2. The Verifier uses the homomor-
phic properties of the commitment scheme (WLOG of �u) and some Prover assis-
tance to find commitments to these shorter vectors �u ′ = a �uL + �uR, a−1 �vL + �vR,
and to a claim for a commitment to the product 〈�u ′, �v ′〉, for some Verifier challenge
a. This procedure is applied recursively to obtain a claim about vectors of length
1, for which some sigma protocol are used. Computational soundness comes from
rewinding the Prover, since �u can be recovered from a few samples of �u ′ considered
as a function of a.
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The key problem is that when the commitment key used for �u is unstructured,
the commitment to �u ′ is made with some challenge-dependent commitment key.
This point is typically implicit, since the entire iterated reduction and final proof
is presented as a single protocol. In this case, what one sees is that the Verifier
has some final O(n ′) computation that must be performed, using the challenges
to convert the initial commitment key to a single curve point.

In [22], similar techniques are applied to a sequence of vectors with common
commitment keys, which allows the Verifier computation to be avoided, at the cost
of being only able to combine inner-products rather than compute them. In [13,15],
inner-product arguments are given, but with linear Verifier computation. These
are generalised to pairing groups in [17], where the key point (following [14]) is that
this Verifier computation can be expressed as the evaluation of a polynomial whose
coefficients are entries in the original commitment key. In this case they structure
the commitment key to allow this to be done by opening a Kate commitment. To
construct polynomial commitments, these works use the matrix commitment idea
of [22] in an essentially similar fashion as [17,34]. In its simplest form, this repre-
sents a polynomial f (x ) of degree n = n ′2 by a matrix M s.t.:

f (x ) = (1, x , x 2, . . . , xn′−1)M (1, xn′
, x 2n′

, . . . , xn−n′
)T ,

which is possible as each entry of M is multiplied by a distinct power x i for
i ∈ {0, . . . ,n − 1}. In [34], the Verifier keeps a homomorphic commitment to
each row of M , combines them by hand, and then engages in a

√
n-sized inner

product argument. In this case the
√

n lower bound is sharp, as either the initial
linear combination or the inner-product argument must be this large. In [17], this
outer combination is done with a multivariate Kate opening, using the structure-
preserving commitment scheme of Abe et al. [2].

1.3 Core Techniques Enabling a Logarithmic Verifier in Dory

Symmetry of Messages and Commitment Keys: The structure-preserving
commitment scheme of [2] has a symmetry between the messages and the com-
mitment key; for some pairing group (G1,G2,GT ) if the message is a vector in G1

then the commitment key is a vector in G2 (and vice versa), with the commitment
itself in GT . So the Verifier is free to treat parts of a commitment key as messages,
and compute a commitment to them with a second commitment key. Additionally,
the commitment key and all Verifier challenges are public, so we can hope to out-
source computations on the commitment key to the Prover. This is not possible in
the no-pairing setting of [13,15,34], and is not exploited in [17].

Structured Verifier Computation: The computations that the Verifier has
to perform on the commitment key are highly structured; as observed in [14,17]
that this inner product can be thought of as a multivariate polynomial eval-
uation. Equivalently, it is an inner product with a vector of scalars, which is
a Kronecker products of log n ′ vectors of length 2 (each built from one of the
Verifier’s challenges); this kind of vector occurs throughout Dory, and we say
that a vector with such a cauterisation has multiplicative structure. Given the
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first challenge a, the Verifier must turn the commitment key �Γ = ( �ΓL|| �ΓR) into
Γ ′ = (f (a) �ΓL + g(a) �ΓR), where f , g are cheap to compute; after this a can
be discarded. Plainly if the verified holds structure-preserving commitments to
�ΓL, �ΓR they can quickly compute a commitment to Γ ′. Once the remaining chal-
lenges are known, the Verifier’s remaining computation with Γ ′ is a length n ′/2
inner product. So we can hope to outsource this to the Prover. The key point is
that given structure-preserving commitments to the commitment key, the Veri-
fier can apply one (or a few) challenges to shrink the commitment key and have
the Prover do the linear work of computing the actual inner product.

Naively, this let us to use a log n ′-round protocol along the lines of [13,15,17]
as a black box to reduce computing a length n ′ inner product of committed
vectors to computing a length n ′/2 inner product on committed vectors derived
from the commitment keys of the commitments used in the length n ′ inner
product. If we recursively use this idea, we obtain an O(log2 n ′)-round protocol
for length n ′ inner products.

Alternately, we can start to run these inner product arguments in parallel,
so that the inner product arguments in parallel, so that after k rounds we would
have k + 1 claims about inner products of n ′2−k -length vectors. This allows
us to combine claims about vectors in the same group along the lines of the
‘collapsing’ observed in [14]. This makes each round somewhat more complex,
but the number of claims remains O(1), and so a logarithmic Verifier is feasible.

Structured Public Scalars: Finally, Dory must handle public vectors of
scalars, or for a polynomial commitment the point of evaluation. For general
inner products this seems hopeless, as even reading a full vector would be a linear
lower bound. However, for polynomial commitments the polynomial size vector of
scalars has multiplicative structure, as it is the evaluation of monomials for fixed
values of variables. Conveniently, inner products of vectors of this form can be
computed in only logarithmically many operations. For a small concrete exam-
ple, (1, x , y , xy , z , xz , yz , xyz )·(1, a, b, ab, c, ac, bc, abc) = (1+ax )(1+by)(1+cz ).
So any final inner product of public vectors with a challenge-derived vector can,
in the context of polynomial commitments, be computed in logarithmic time.

Public Parameters: We note that for Dory, the public parameters contain
commitment keys for of every power-of-2 length less than n ′ in both G1 and G2,
and commitments to the left and right halves of each commitment key (using the
a commitment key of half the length). This use of public parameters with struc-
ture but without trusted setup can be seen as analogous to the computational
commitments used in Spartan [31], as we perform some linear-size computation
once during setup to accelerate the online proof generation and verification.

Batching: Throughout, ideas similar of those of Bowe et al. [14] allow these
arguments to be batched for reduced verification time further (see Sect. 3.4,
Sect. 4.4, Sect. 5.1, Sect. 6.2). Ultimately the cost of evaluating each additional
polynomial commitment is reduced to O(1) group operations and O(log n) addi-
tional operations in F .
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Application to Polynomial Commitments: In Sect. 6, similarly to Hyrax
[34, Sect. 6] and Bünz et al. [17], we construct a polynomial commitment from
a two-tiered homomorphic commitment to matrices. Prior approaches here break
knowledge soundness (c.f. Definition 10). Ultimately, evaluation of a dense univari-
ate ormultilinear polynomialwithn coefficients is reduced to to two inner products
of size O(n1/2) (see Sect. 5), between public vectors of scalars with multiplicative
structure and vectors inG1,G2 respectively (see Sect. 4). Unlike prior works, these
two inner products are proved together, saving a further 2×.

2 Preliminaries

2.1 Notation

Vector, matrix and tensor indices will begin at 1. For any two vectors v1, v2
we denote their concatenation by (v1||v2). We use ⊗ to denote the Kronecker
product, sending an m × n matrix A and p × q matrix B to an mp × nq matrix
built up of appended copies of B multiplied by scalars in A. For any vector v
of even length we will denote the left and right halves of v by vL and vR; more
formally: vL = ((1, 0) ⊗ In/2)v and vR = ((0, 1) ⊗ In/2)v .

We write ←$ S for a uniformly random sample of S , with the understanding
that this encodes no additional structure; for example for groups G we assume
that samples gi ←$ G have unrelated logarithms, and V challenges are indepen-
dent of the transcript. Techniques to sample from curves are known [9,25,32,33].

We write all groups additively, and assume we are given some method to
sample Type III pairings [21] at a given security level. Then we are furnished
with a prime field F = Fp , three groups G1,G2,GT of order p, a bilinear map
e : G1 × G2 → GT , and generators G1 ∈ G1, G2 ∈ G2 such that e(G1,G2)
generates GT . Concretely, classes of pairing-friendly curves (e.g. Barreto-Lynn-
Scott [4] or Barreto-Naehrig [5] curves) are believed to satisfy these properties.

We generally suppress the distinction between e and multiplication of
F ,G1,G2 or GT by elements of F , writing all of these bilinear maps as mul-
tiplication; we will also use 〈, 〉 to denote the generalised inner products given
by 〈�a,�b〉 =

∑n
i=1 �ai�bi , with signatures: F n × F n → F , F n × Gn

{1,2,T} → G{1,2,T}
or Gn

1 × Gn
2 → GT .

2.2 Computationally Hard Problems in Type III Pairings

For Type III pairings there are no efficiently computable morphisms between
G1,G2, so the standard security assumption is Symmetric eXternal Diffie-
Hellman:

Definition 1 (SXDH [2]). For (Fp ,G1,G2,GT , e,G1,G2) as above, the Deci-
sional Diffie-Hellman (DDH) assumption holds for (Fp ,G1,G1) and (Fp ,G2,G2)

A DDH instance in G1 can be mapped to one in GT by g → e(g ,G2), so SXDH
implies that DDH holds in GT . In any group, DDH implies DLOG, and so:
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Lemma 1. For (Fp ,G1,G2,GT , e,G1,G2) satisfying SXDH, n = poly(λ) and

G ∈ {G1,G2,GT}, given �B $← Gn no non-uniform polynomial-time adversary
can compute a non-trivial �A ∈ F n such that 〈�A, �B〉 = 0.

SXDH also implies the Double Pairing and reverse Double Pairing assumptions:

Lemma 2. For (Fp ,G1,G2,GT , e,G1,G2) as above, given A1,A2 ←$ G1 no
non-uniform polynomial-time adversary can compute non-trivial B1,B2 ∈ G2

such that: A1B1 + A2B2 = 0. Similarly, given A1,A2 ←$ G2 no adversary can
compute non-trivial B1,B2 ∈ G1 such that B1A1 + B2A2 = 0.

Lemma 3. For (Fp ,G1,G2,GT , e,G1,G2) as above and n = poly(λ), given
�A $← Gn

1 no non-uniform polynomial-time adversary can compute a non-trivial
�B ∈ Gn

2 such that: 〈�A, �B〉 = 0. Similarly, given �A ←$ Gn
2 , no adversary can

compute non-trivial �B ∈ Gn
1 such that 〈�B , �A〉 = 0.

2.3 Succinct Interactive Arguments of Knowledge

We follow the presentation in [31]. Let P,V be a pair of interactive PPT algo-
rithms. Fix an algorithm Gen and public parameters pp = Gen(λ), where λ a
security parameter such that O(2−λ) = negl(λ) is negligible. For a NP lan-
guage L there is a deterministic polynomial time SatL s.t. {∃w : SatL(x,w) =
1} ⇔ x ∈ L. We denote the transcript of the interaction of two PPTs P,V with
random tapes zP , zV ∈ {0, 1}∗ on x by tr〈P(zP),V(zV)〉(x).

Definition 2. A public-coin succinct interactive argument of knowledge for an
NP language L is a protocol between P,V satisfying: properties:

– Completeness: If x ∈ L, for any witness w, x ∈ L and r ∈ {0, 1}∗,
P[〈P(pp,w),V(pp, r)〉(x) = 1|SatL(x,w) = 1] ≥ 1 − negl(λ).

– Soundness: For x �∈ L, any PPT Prover P∗, and for all r ∈ {0, 1}∗,
P[〈P∗(pp),V(pp, r)〉(x) = 1] ≤ negl(λ).

– Knowledge soundness: For any PPT adversary A, there exists a PPT
extractor E such that ∀x ∈ L,∀r ∈ {0, 1}∗, if P[〈A(pp),V(pp, r)〉(x) = 1] ≥
negl(λ), then P[SatL(x, EA(pp,x)) = 1] ≥ negl(λ).

– Succinctness: Communication between P and V is sublinear in |w |.
– Public coin: Each V message M $← C, for C some fixed set.

Definition 3. An interactive argument (Gen,P,V) for L is Honest-Verifier Sta-
tistical Zero-Knowledge (HVSZK) if there exists a PPT algorithm S (x, z ) called
the simulator, running in time polynomial in |x|, such that for every x ∈ L,
w ∈ Rx, and z ∈ {0, 1}∗, the statistical distance between the distributions
tr〈P(w),V(z )〉(x) and S (x, z ) is negl(λ).

If we have a family of languages Lparams, we will often name a pair of interactive
PPT algorithms Func = (P,V), and suppress reference to the tapes and prover
witness, i.e. write that P,V run Funcparams(x) successfully to mean that P pos-
sesses some witness w for x ∈ Lparams and 〈P(pp,w),V(pp, r)〉(params,x) = 1.
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Definition 4 (Witness-extended emulation [24,34]). An public coin inter-
active argument (Gen,P,V) for L has witness-extended emulation if for all
deterministic polynomial time programs P∗ there exists an expected polynomial
time emulator E such that for all non-uniform polynomial time adversaries
A and all zV ∈ {0, 1}∗, the following probabilities differ by at most negl(λ):
P[A(t ,x) = 1|pp ← Gen(1λ) ∧ (x, zP) ← A(pp) ∧ t ← tr〈P∗(zP),V(zV)〉(x)] and
P[A(t ,x) = 1 ∧ (Accept(t) = 1 ⇒ SatL(x,w) = 1)|pp ← Gen(1λ) ∧ (x, zP) ←
A(pp) ∧ (t ,w) ← EP∗(zP)(x)].

Witness-extended emulation implies soundness and knowledge soundness. For a
(2μ + 1)-move interactive protocol, a (w1, . . . ,wμ)-tree of accepting transcripts
is a tree of depth μ in which: (1) the root is labelled with x and the initial
P message; (2) each node at depth i has wi children, labelled with distinct V
challenges and subsequent P message; (3) the concatenation of the labels on any
path from the root to a leaf of the tree is an accepting transcript for the protocol.

Definition 5 (Tree extractability (arguments)). A (2μ + 1)-move inter-
active protocol (P,V) with Verifier message space C is (W , ε)-tree extractable
if there exists a PPT algorithm extracting a witness from (w1, . . . ,wμ)-tree of
accepting transcripts with failure probability ≤ ε,

∏
i wi ≤ W and maxi(wi) ≤

ε|C|.
Definition 6 (Tree extractability (reductions)). We say an interactive
protocol reducing x ∈ L to x′ ∈ L′ is (W , ε)-tree extractable if the composi-
tion of this argument with a final P message revealing a witness w ′ for x′ ∈ L′

is a (W , ε)-tree extractable argument for L.

Lemma 4. Let (P,V) be a (W , ε)-tree extractable reduction from L to L′, and
(P ′,V ′) be a (W ′, ε′)-tree extractable argument for L′. Then the composition of
(P,V) and (P ′,V ′) is a (WW ′, ε + W ε′)-tree extractable argument for L.

Proof. Let the first protocol be extractable from a (w1, . . . ,wμ)-tree of accepting
transcripts and the second from a (w ′

1, . . . ,w
′
μ′)-tree of accepting transcripts. We

ask for a (w1, . . . ,wμ,w ′
1, . . . ,w

′
μ′)-tree of accepting transcripts, which has size

bounded by WW ′. We run the PPT extractor for (P,V) on the depth wμ subtree
rooted at the origin, and for each new witness w ′ for x′ ∈ L′ that it asks for
we run the PPT extractor for (P ′,V ′) on the depth wμ′ subtree rooted at this
depth μ point. We run the inner extractor at most W times, so taking a union
bound our overall failure probability is bounded by ε + W ε′.

Lemma 5 ([13, Lemma 1][34, Lemma 13]). If W = poly(λ) and ε =
negl(λ), then any (W , ε)-tree extractable (P,V) has witness-extended emula-
tion.

We now state a lemma whose object is to obtain results similar to those provided
by the Schwartz-Zippel lemma without requiring random evaluation points.

Lemma 6. For V a finite vector space over F , if g ∈ V [X ,X −1] is a formal
Laurent polynomial of degree d and order e, and g(x ) = [0]V for d +e +1 values
of x ∈ F then g ≡ [0]V .
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Proof. V is finite so has a basis {v1, . . . , vk}. Each coefficient of g can be uniquely
represented by a linear combination of the vi , so there exist Laurent polynomials
fi ∈ F [X ,X −1] of degree at most d and order at most e such that: g ≡ ∑

i vi · fi .
At each of the given d + e + 1 values each of these fi vanish. So fi(X ).X e is a
polynomial of degree ≤ d + e, vanishing at > d + e points. So each fi ≡ 0 by the
factor theorem and hence g ≡ [0]V

Remark 1. Suitable vector spaces V for the above lemma include any G a group
of order p, or any finite vector Gk of such a group, or Laurent polynomials in
another variable Y of bounded degree and order (as a finite dimensional sub-
space of the vector space Gk [Y ,Y −1]).

2.4 Commitments

As in [31], we work with the definitions of polynomial commitments from Bünz
et al. [16], which allows interactive proofs for evaluations, rather than those of
Kate et al. [27]. A commitment scheme for some space of messages X is a tuple
of three protocols (Gen,Commit,Open):

– pp ← Gen(1λ): produces public parameters pp.
– (C,S) ← Commit(pp; x ): takes as input some x ∈ X ; produces a public

commitment C and a secret opening hint S.
– b ← Open(pp; C, x ,S): verifies the opening of commitment C to x ∈ X with

the opening hint S; outputs b ∈ {0, 1}.

Our commitment schemes sample S uniformly from some space, so we can pass
it as a parameter, which gives a modified signature C ← Commit(pp ; S).

Definition 7. A tuple of three protocols (Gen,Commit,Open) is a commitment
scheme for X if for any PPT adversary A:

P

[
b0 = b1 = 1

∧x0 �= x1

∣
∣
∣
∣

pp ← Gen(1λ) ∧ (C, x0, x1, S0, S1) = A(pp)∧
b0 ← Open(pp; C, x0, S0) ∧ b1 ← Open(pp; C, x1, S1)

]

≤ negl(λ).

Definition 8. A commitment scheme (Gen,Commit,Open) provides hiding com-
mitments if for all PPT adversaries A = (A0,A1):

∣
∣
∣
∣
∣
∣
1 − 2 · P

⎡

⎣b = b̄
∣
∣

pp ← Gen(1λ)∧
(x0, x1, st) = A0(pp) ∧ b $← {0, 1}∧

(C,S) ← Commit(pp; xb) ∧ b̄ ← A1(st , C)

⎤

⎦

∣
∣
∣
∣
∣
∣
≤ negl(λ)

If this holds for all algorithms, then the commitment is statistically hiding.

Pedersen and AFGHO Commitments: For messages X = F n and any
i ∈ {1, 2,T}, the Pedersen commitment scheme is defined by:

pp ← Gen(1λ) = (g $← Gn
i , h $← Gi)

(C,S) ← Commit(pp; x ) = {r $← F ; (〈x , g〉 + rh, r)}
Open(pp; C, x ,S) = (〈x , g〉 + r(h) ?= C)
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If DLOG in Gi is hard, then this is a hiding commitment scheme. Similarly, Abe
et al. [2] define a structure preserving commitment to group elements. In this
case we have X = Gn

i for i ∈ {1, 2} and:

pp ← Gen(1λ) = (g $← Gn
3−i ,H1

$← G1,H2
$← G2)

(C,S) ← Commit(pp ; x ) = {r $← F ; (〈x , g〉 + r · e(H1,H2), r)}
Open(pp, C, x ,S) = (〈x , g〉 + S · e(H1,H2)

?= C)

This is hiding as r ·e(H1,H2) is uniformly random in GT . It is a commitment con-
ditional on SXDH; providing two distinct openings violates Lemma 3). This com-
mitment reduces to that of [2], since in that work an opening for a commitment to
a vector x ∈ Gn

1 would supply some R ∈ G1 such that C = 〈x , g〉+e(R,H2). Here,
an opening provides r ∈ F such that R = rH1, which is strictly stronger. Both
the Pedersen and AFGHO commitments are additively homomorphic. Com-
mitments to matrices Composing the Pedersen and AFGHO commitments
yields a two-tiered homomorphic commitment [23] to matrices. Formally, we take
X = F n×m , and for Mij ∈ X we have:

pp ← Gen(1λ) = (Γ1
$← Gm

1 ,H1
$← G1,Γ2

$← Gn
2 ,H2

$← G2)

(C,S) ← Commit(pp; Mij ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rrows
$← F n ; rfin

$← F ; HT ← e(H1,H2) ;
Vi ← CommitPedersen((Γ1,H1) ; Mij , rrows,i) ;

C ← CommitAFGHO((Γ2,HT ) ; �V , rfin ;
(C , (rrows , rfin , �V ))

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

Open(pp; C,M ,S) =

(
C ?=

∑
i Γ2i

(∑
j MijΓ1j + rrows,iH1

)

+rfin · e(H1,H2)

)

2.5 Polynomial Commitments and Evaluation from
Vector-Matrix-Vector Products

Let (GenF ,CommitF ,OpenF ) be a commitment scheme for X = F with public
parameters ppF . We define polynomial commitments for multilinear polynomials,
following [16,31], which (contra Kate [27]) allow interactive evaluation proofs.

Definition 9. A tuple of protocols (Gen,Commit,Open,Eval) is an honest-
verifier, zero-knowledge, extractable polynomial commitment scheme for �-
variable multilinear polynomials over F if (Gen,Commit,Open) is a commitment
scheme for �-variable multilinear polynomials over F , and Eval is an HVSZK
interactive argument of knowledge for:

REval(pp, ppF ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈(CG ,�x , Cv ), (G ,SG , v ,Sv )〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

G ∈ F [X1, . . . ,X�]
∧G is multilinear
∧v ∈ F ∧ G(�x ) = v

∧Open(pp; CG ,G ,SG) = 1
∧OpenF (ppF ; Cv , v ,Sv ) = 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.
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Note that we have modified the definition from [16] by requiring evaluations G(�x )
are committed, which is required for zkSNARK applications. We also define a
weaker knowledge soundness property useful for R1CS SNARKs as in [13,31]:

Definition 10. Random Evaluation Knowledge Soundness.
For pp ← Gen(1λ), ppF ← GenF (1λ), and commitment CG , the protocol:

V → P: �x $← F �

P: (Ce ,Se) ← CommitF (ppF ; G(�x ))
P → V: CF

P,V: Accept if Eval(pp, ppF ; CG ,�x , Cv ) = 1.

is an argument of knowledge with witness-extended emulation for:

R(pp, ppF ) =
{

〈CG , (G ,SG)〉
∣
∣
∣
∣

∃�x , v , Cv ,Sv s.t.
〈(CG ,�x , Cv ), (G ,SG , v ,Sv )〉 ∈ REval(pp, ppF )

}

.

We say a scheme providing this property in place of knowledge soundness is
random evaluation extractable. We also note that prior polynomial commitment
schemes in [13,17] satisfy only this weaker property. In these works, the commit-
ment to a polynomial is a n1/2 length list of commitments to lists of scalars of
length n1/2 (resp. a structure-preserving commitment to a list of Kate commit-
ments to polynomials). However, for any particular point of evaluation �x , P only
shows that know an opening of some �x -dependent linear combination of these
commitments. So a Knowledge Soundness adversary may pick �x , then produce
CG , without knowledge of openings of all rows (and hence without knowledge of
a G ,SG opening of CG). In the R1CS SNARK context of [13], this is mitigated
as the surrounding protocol enforces that �x ← F � after CG is made public.

Any polynomial f in variables X1, . . . ,X� of degree d1, . . . , d� can be refor-
mulated as a multilinear polynomial in {Xi ,X 2

i , . . .X 2�log(di+1)�−1

i : i ∈ [�]}. For
example, the bivariate polynomial f (X1,X2) := 1 + X 2

1 X2 + X 7
1 can be written

as a 4-variable multilinear polynomial g(Y1,Y2,Y3,Y4) = 1 + Y2Y4 + Y1Y2Y3,
with f (x1, x2) ≡ g(x1, x 2

1 , x 4
1 , x2). Any multilinear polynomial g in r variables can

be written as a sum of monomials, so:

g(x1, ..., xr ) =
∑

(i1,...,ir )∈{1,2}r

Ti1,...,ir

∏

j∈{1,...,r}
x ij −1
j ,

where T is an order r tensor. In the given concrete example, T would be an
2 × 2 × 2 × 2 tensor Tijkl , with T1111 = T1212 = T2221 = 1 and Tijkl = 0
otherwise. Note that this sum is the contraction of T with the r vectors (1,�xi).
In general, for any n1 × . . . × nr tensor T and 0 ≤ k ≤ r we can rearrange T
into a (

∏
i<k ni) × (

∏
i≥k ni) matrix M , such that:

n1∑

i1=1

· · ·
nr∑

ir=1

Ti1...ir (�vj )ij = (⊗i<k �vi)
TM (⊗i≥k �vi)
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for all vectors �vi ∈ F ni . Explicitly this is given by setting Mij := Ti1,...,ir where:

i − 1 = (ik−1 − 1) + nk−1((ik−2 − 1) + nk−2(· · · ((i2 − 1) + n2(i1 − 1)))),
j − 1 = (ir − 1) + nr ((ir−1 − 1) + nr−1(· · · ((ik+1 − 1) + nk+1(ik − 1))))

We select k to make the matrix M approximately square. In our concrete example
k = 2 and Mij is a 4 × 4 matrix with M11 = M22 = M43 = 1 and Mij = 0
otherwise.

So the evaluation of f at some point x can be replaced with the evalua-
tion of a multilinear polynomial in r =

∑
i�log(di + 1)�, variables, which can

in turn be replaced by a vector-matrix-vector product with vectors of length
at most 2m = 2�r/2� = O((

∏
i di)

1/22�/2). The vectors in this product have
multiplicative structure, being formed as Kronecker products of vectors (1, x 2j

i )
for i ∈ {1, . . . , r}, j ∈ {0, . . . , �log(di + 1)� − 1}. For univariate polynomials
of degree d , m ≤ (3 + log d)/2, and for multilinear polynomials in � variables
m ≤ (� + 1)/2. In the concrete example, we have:

f (x1, x2) ≡ g(x1, x 2
1 , x 4

1 , x2) = (1, x 2
1 , x1, x 3

1 )TM (1, x2, x 4
1 , x 4

1 x2),

where the two vectors (1, x 2
1 , x1, x 3

1 ) = (1, x1) ⊗ (1, x 2
1 ) and (1, x2, x 4

1 , x 4
1 x2) =

(1, x 4
1 ) ⊗ (1, x2) have multiplicative structure.

3 An Inner-Product Argument with a Logarithmic
Verifier

We begin by showing the simplest form of Dory: an argument for inner products
between two vectors in �v1 ∈ Gn

1 , �v2 ∈ Gn
2 , committed with AFGHO commitments

with generators (Γ2, e(H1,H2)) ∈ Gn
2 × GT and (Γ1, e(H1,H2)) ∈ Gn

1 × GT .
We highlight the parts of protocols and calculations needed only for zero-

knowledge in blue. Formally, we define a language:

(C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 ⊂ G3
T

⇔ ∃(�v1 ∈ Gn
1 , �v2 ∈ Gn

2 , rC ∈ F , rD1 ∈ F , rD2 ∈ F ) :
D1 = 〈�v1,Γ2〉+ rD1 · e(H1,H2), D2 = 〈Γ1, �v2〉+ rD2 · e(H1,H2),
C = 〈�v1, �v2〉+ rC · e(H1,H2)

For n even, and Γ ′
{1,2} ∈ G2n/2

{1,2}, we will show (Sect. 3.2) an reduction from
membership in Ln,Γ1,Γ2,H1,H2 to membership in Ln/2,Γ ′

1,Γ
′
2,H1,H2 . In Sect. 3.1,

we give an argument of knowledge for L1,Γ1,Γ2,H1,H2 . In Sect. 3.4 we give an
argument reducing two claims of membership of Ln,Γ1,Γ2,H1,H2 to one. In Sect. 3.3
we discuss concrete efficiency and optimisations for V.

3.1 Scalar-Product

We give a interactive argument of knowledge for L1,Γ1,Γ2,H1,H2 . This requires
showing the product of two elements v1 ∈ G1 and v2 ∈ G2 under AFGHO
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commitments; the analogous argument for Pedersen commitments is folklore.
Since pairings are more expensive than multiplications in G1 or G2, we combine
the usual final three checks into a single pairing with a Verifier challenge.

Scalar-ProductΓ1,Γ2,H1,H2(C ,D1,D2)
Precompute: HT = e(H1,H2), χ = e(Γ1,Γ2)

P witness: (v1, v2, rC , rD1 , rD2) for (C ,D1,D2) ∈ L1,Γ1,Γ2,H1,H2

P: rP1 , rP2 , rQ , rR ←$ F , d1 ←$ G1, d2 ←$ G2

P → V: P1 = e(d1,Γ2)+ rP1HT , P2 = e(Γ1, d2)+ rP2HT ,
Q = e(d1, v2) + e(v1, d2)+ rQHT , R = e(d1, d2)+ rRHT ,

V → P: c ←$ F

P → V: E1 ← d1 + cv1, E2 ← d2 + cv2,

r1 ← rP1 + crD1 , r2 ← rP2 + crD2 , r3 ← rR + crQ + c2rC
V: d ←$ F , accept if:

e(E1 + dΓ1,E2 + d−1Γ2) = χ +R + cQ + c2C

+ dP2 + dcD2 + d−1P1 + d−1cD1

− (r3 + dr2 + d−1r1)HT

Theorem 1. For Γ1,H1
$← G1, Γ2,H2

$← G2, Scalar-Product is an HVSZK,
public-coin, succinct interactive argument of knowledge for L1,Γ1,Γ2,H1,H2 with
(9, 9/|F |)-tree extractability under SXDH.

Proof. Succinctness and the Public Coin property are immediate. The argument
is complete as for an honest P, V accepts:

e(E1 + dΓ1,E2 + d−1Γ2) = e(d1 + cv1, d2 + cv2)

+d · e(Γ1, d2 + cv2) + d−1 · e(d1 + cv1,Γ2) + e(Γ1,Γ2)

= χ + c2 · e(v1, v2) + c[e(d1, v2) + e(v1, d2)] + e(d1, d2)

+ d · e(Γ1, d2) + dc · e(Γ1, v2)+ d−1 · e(d1,Γ2) + d−1c · e(v1,Γ2)

= χ +R + cQ + c2C

+ dP2 + dcD2 + d−1P1 + d−1cD1 − (r3 + dr2 + d−1r1)HT

HVSZK: Note that for an honest P, E1,E2,Q are uniformly random in GT

and r1, r2, r3
$← F . We split the final check into terms that are proportional to

d−1, d , 1:

P1 = e(E1,Γ2) + r1HT − cD1, P2 = e(Γ1,E2) + r2HT − cD2,

R = e(E1,E2) + r3HT − cQ − c2 C

To construct a simulator: Sample Q ,E1,E2
$← G3

T and compute the challenge c

from V’s coins. Then sample r1, r2, r3
$← F and compute P1,P2,R as above.
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Tree Extractability: We have μ = 2 with an empty final P message, and set
w1 = w2 = 3. So we have a tree of accepting transcripts for 3 values c, and for
each c there are 3 accepting values of d . We fail if any of these 9 d are 0, which
occurs with probability ≤ 9/|F |. Across all transcripts, P1, P2, Q , R, C , D1, D2

are constant, and E1,E2, r1, r2, r3 can be interpolated as quadratics in c.
For each c, the final check contains terms in d only of form d , 1, d−1, so is a

check of equality of Laurent polynomials of degree and order 1. This difference
vanishes for three distinct choices of d , so Lemma 6 implies the coefficients for
each degree must be separately equal. So for each of the three challenge c:

e(E1(c),E2(c)) + r3(c)HT = R + cQ + c2 C (1)
e(E1(c),Γ2) + r1(c) · e(H1,H2) = P1 + cD1 (2)
e(Γ1,E2(c)) + r2(c) · e(H1,H2) = P2 + cD2 (3)

For i = 1, 2, we interpolate Ei(c) = di + cvi + c2Ui and ri = rPi
+ crDi

+ c2rUi
.

Our first task is to show that Ui = [0]Gi
and rUi

= 0, i.e. that P is constrained
to send E1,E2, r1, r2 that depend only affinely on c. Equation 2 is an equality of
polynomials in GT [c] of degree 2 which holds at 3 points. Applying Lemma 6,
the coefficients are equal. Writing out the quadratic and linear coefficients gives:

e(U1,Γ2) + e(rU1H1,H2) = 0, e(v1,Γ2) + rD1HT = D1.

Since Γ2,H2
$← G2, Lemma 3 forces the first equation to be satisfied by U1 =

rU1H1 = [0]G1 . We also have v1, rD1 satisfying our constraint on D1. Similar
considerations applied to Eq. 3 imply that U2 = [0]G2 , rU2 = 0, and provide a
v2, rD2 satisfying the constraint on D2.

It remains to extract rC to satisfy the constraint on C . We interpolate r3(c) =
rR + crQ + c2rC , and substitute our linear expressions for E1,E2 into Eq. 1:

R + cQ + c2 C = e(d1, d2) + rRHT + c(e(d1, v2) + e(v1, d2) + rQHT )

+ c2(e(v1, v2) + rCHT )

This is an equality of quadratics in GT [c] holding at 3 distinct values, so
from Lemma 6 the c2 coefficients are equal. So C = e(v1, v2) + rCHT . Hence
(v1, v2, rD1 , rD2 , rC ) is a witness for (C ,D1,D2) ∈ L1,Γ1,Γ2,H1,H2 .

3.2 Dory-Reduce

We now show an interactive argument reducing membership of L2m ,Γ1,Γ2,H1,H2

to membership of L2m−1,Γ ′
1,Γ

′
2,H1,H2 . Informally, the simplest approach to this

(neglecting zero-knowledge) would be to start with the 3 claims:

D1 = 〈�v1,Γ2〉, D2 = 〈Γ1, �v2〉, C = 〈�v1, �v2〉,
and fold each in some LCC-DLOG-like [13,15,17] fashion with a V challenge α

into claims about 2m−1 length vectors �v ′
iα,Γiα:

D ′
1 = 〈 �v1α,Γ2α〉, D ′

2 = 〈Γ1α, �v2α〉, C ′ = 〈 �v1α, �v2α〉,
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P,V would separately compute commitments Δ1 = 〈 �v1α,Γ ′
2〉 and Δ2α =

〈Γ ′
1, �v2α〉 from α and precomputed data. We would then combine �viα and Γiα for

each i in accordance with additional Verifier challenges. This produces a final
C ′′ from C ′,D ′

1,D
′
2, a final D ′′

1 from D ′
1 and Δ1, and a final D ′′

2 from D ′
2 and Δ2,

with the Prover sending additional cross-terms to support these combinations.
However, this approach requires sending at least 8 elements of GT (two for each
claim to fold and two for the final combining stage). Instead, in Dory-Reduce
we effectively swap the order of these two stages, which allows sending only 6
elements of GT .

Dory-Reducem,Γ1,Γ2,Γ ′
1,Γ

′
2,H1,H2

(C ,D1,D2)
Precompute: HT = e(H1,H2), Δ1L = 〈Γ1L,Γ ′

2〉, Δ1R = 〈Γ1R,Γ ′
2〉,

Δ2L = 〈Γ ′
1,Γ2L〉, Δ2R = 〈Γ ′

1,Γ2R〉, and χ = 〈Γ1,Γ2〉
P witness: (�v1, �v2, rc , rD1 , rD2) for (C ,D1,D2) ∈ L2m ,Γ1,Γ2,H1,H2

P: rD1L , rD1R , rD2L , rD2R ←$ F

P → V: D1L = 〈 �v1L,Γ ′
2〉+ rD1LHT , D1R = 〈 �v1R,Γ ′

2〉+ rD1RHT

D2L = 〈Γ ′
1, �v2L〉+ rD2LHT , D2R = 〈Γ ′

1, �v2R〉+ rD2RHT

V → P: β ←$ F

P(∗): �v1 ← �v1 + βΓ1, �v2 ← �v2 + β−1Γ2, rC← rC + βrD2 + β−1rD1

P: rC+ , rC− ←$ F

P → V: C+ = 〈 �v1L, �v2R〉 + rC+HT , C− = 〈 �v1R, �v2L〉 + rC−HT

V → P: α ←$ F

P(∗∗): �v1
′ ← α �v1L + �v1R, �v2

′ ← α−1 �v2L + �v2R
r ′
D1

← αrD1L + rD1R , r ′
D2

← α−1rD2L + rD2R ,

r ′
C← rC + αrC+ + α−1rC−

V(∗∗): C ′ ← C + χ + βD2 + β−1D1 + αC+ + α−1C−
D ′

1 ← αD1L + D1R + αβΔ1L + βΔ1R

D ′
2 ← α−1D2L + D2R + α−1β−1Δ2L + β−1Δ2R

V: Accept if (C ′,D ′
1,D

′
2) ∈ L2m−1,Γ ′

1,Γ
′
2,H1,H2

P witness: (�v1
′, �v2

′, r ′
C , r ′

D1
, r ′

D2
)

Theorem 2. For Γ ′
1

$← G2m−1

1 , H1
$← G1, Γ ′

2
$← G2m−1

2 , H2
$← G2, Dory-Reduce

is an an HVSZK, public-coin, succinct interactive argument of knowledge for
L2m ,Γ1,Γ2,H1,H2 with (9, 12/|F |)-tree extractability under SXDH.

To informally see why tree-extractability holds, we observe that the P witness
for (C ,D ′

1,D
′
2) ∈ L2m−1,Γ ′

1,Γ
′
2,H1,H2 opens D ′

1,D
′
2 as binding commitments. V

computes these commitments with bivariate Laurent polynomials, and across a
tree of accepting transcripts P opens at enough points to allow an extractor to
open each coefficient of each polynomial.

Since these commitments are binding, coefficients equal to 0 must be opened
by �0, and coefficients Δ{1,2}{L,R} must be opened by Γ{1,2}{L,R}. So P is sub-
stantially constrained in their witness �v ′

1, �v ′
2, . . .. The extractor also finds vectors

opening D{1,2}{L,R} (which will end up being �v{1,2}{L,R}).
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Substituting these into the product constraint on C ′ (as a function of α,β),
we again get an equality of bivariate Laurent polynomials at enough places to
force equality of coefficients. Each of C ,D1,D2 can be computed from coefficients
of C ′, and these will turn out to be exactly the conditions on C ,D1,D2 required
to have found a witness (v1, v2, . . .) for (C ,D1,D2) ∈ L2m ,Γ1,Γ2,H1,H2 . Essentially
similar arguments are used throughout for tree-extractability.

Proof (Theorem 2). Succinctness and the Public Coin properties are immediate.
HVSZK holds as all messages from P to V are uniformly random elements of GT ,
so are trivially simulated. Completeness holds from substituting the definition
of P’s witness into the constraints of L2m−1,Γ ′

1,Γ
′
2,H1,H2 , and cancelling terms to

obtain the constraints of L2m ,Γ1,Γ2,H1,H2 .

Tree Extractability: We have μ = 2, and set w1 = w2 = 3. So we have a tree
of accepting transcripts for 3 values β, and for each β 3 values of α. We fail if any
of these challenges are 0, which occurs with probability ≤ 12/|F |. For each leaf,
the Prover reveals the witness (�v1

′, �v2
′, r ′

C , r ′
D1

, r ′
D2

). Our witness extraction is
analogous to witness extraction of GIPA in [17] or of the improved inner product
argument in [15, Appendix B].

D1L,D1R are constant for all transcripts in the tree. We interpolate C+,C−
as a Laurent polynomials in GT [β,β−1] of degree 1 and order −1, and interpo-
late �v1

′, �v2
′, r ′

D1
, r ′

D2
, r ′

C can as bivariate Laurent polynomials of degree 1 and
order −1 in variables α,β, with computable coefficients in G

n/2
1 ,Gn/2

2 , F , F and
F respectively. Since (C ′,D ′

1,D
′
2)(α,β) ∈ L2m−1,Γ ′

1,Γ
′
2,H1,H2 for each leaf:

D ′
1 = αD1L + D1R + αβ〈Γ1L,Γ ′

2〉 + β〈Γ1R,Γ ′
2〉

= 〈�v1
′(α,β),Γ ′

2〉+ r ′
D1

(α,β) · e(H1,H2),

holds for all 9 (β,α) pairs. For each challenge value of β, we have two Laurent
polynomials in α of degree and order 1, equal at 3 values. So by Lemma 6 at each
of these three β we have an equality of Laurent polynomials. So overall, we have
a pair of Laurent polynomials in β of degree and order 1, whose coefficients are
in a finite dimensional subspace of G[α,α−1], with equality holding at 3 values
of β. So applying Lemma 6 again, we have an equality of bivariate Laurent
polynomials, and so each coefficient must match.

So monomials with α−1 or β−1 factors have vanishing coefficients. Γ ′
2

$←
G2m−1

2 and H2
$← G2, so Lemma 3 implies that if we can compute �v , r such that

〈�v ,Γ ′
2〉+ r · e(H1,H2) = 0, then �v = �0 and r = 0. So �v1

′, r ′
D1

must be multilinear
in α,β. Similarly the αβ and β coefficients of �v1

′(α,β) must be vectors with
inner products with Γ ′

2 of 〈Γ1L,Γ ′
2〉 and 〈Γ1R,Γ ′

2〉 respectively, and so must be
Γ1L and Γ1R respectively (or else we violate Lemma 3).

We apply symmetric arguments to �v2
′, r ′

D2
. So the interpolation of �v1

′(α,β)
and �v2

′(α,β) provides vectors �v1L, �v1R, �v2L, �v2R such that:

�v1
′(α,β) = α �v1L + �v1R + β(αΓ1L + Γ1R)

�v2
′(α,β) = α−1 �v2L + �v2R + β−1(α−1Γ2L + Γ2R)
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We interpolate r ′
C (α,β) = rC + βrD2 + β−1rD1 + αfα(β) + α−1fα−1(β), for

fα, fα−1 two Laurent polynomials of degree 1 and order −1. Then substituting
into the constraint of L2m−1,Γ ′

1,Γ
′
2,H1,H2 on C ′:

C ′ = C + χ + βD2 + β−1D1 + αC+(β) + α−1C−(β)

= 〈�v1
′(α, β), �v2

′(α, β)〉 + r ′
C (α, β)HT

= (〈 �v1L, �v2L〉 + 〈 �v1R, �v2R〉 + rCHT ) + χ

+ β(〈Γ1L, �v2L〉 + 〈Γ1R, �v2R〉 + rD2HT ) + β−1(〈 �v1L, Γ2L〉 + 〈 �v1L, Γ2L〉 + rD1HT )

+ α(〈 �v1L, �v2R〉 + 〈Γ1L, Γ2R〉 + β〈Γ1L, �v2R〉 + β−1〈 �v1L, Γ2R〉 + fα(β)HT )

+ α−1(〈 �v1R, �v2L〉 + 〈Γ1R, Γ2L〉 + β〈Γ1R, �v2L〉 + β−1〈 �v1R, Γ2L〉 + fα−1(β)HT )

These are two bivariate Laurent series of degree 1 and order −1, equal at 3
values of α, for each of 3 values of β, and so applying Lemma 6 in two rounds
we conclude they are equal coefficient by coefficient. In particular comparing the
1,β,β−1 coefficients:

C = 〈 �v1L, �v2L〉 + 〈 �v1R, �v2R〉+ rCHT

D1 = 〈 �v1L,Γ2L〉 + 〈 �v1R,Γ2R〉+ rD1HT

D2 = 〈Γ1L, �v2L〉 + 〈Γ1R, �v2R〉+ rD2HT

and so (( �v1L|| �v2L), ( �v2L|| �v2R), rC , rD1 , rD2) is the desired witness.

Remark 2. No property of Dory-Reduce depends on the construction of Γ1,Γ2.
Instead we require only that the smaller commitment keys (Γ ′

1||H1), (Γ ′
2||H2) are

sampled randomly. In particular Γ1,Γ2 can depend on Γ ′
1, Γ ′

2 without affecting
the tree-extractability of Dory-Reduce.

3.3 Dory-Innerproduct

The full inner product argument applies Dory-Reduce iteratively to shrink an
inner-product to a product, and then applies Scalar-Product.

Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C ,D1,D2)

Precompute: HT = e(H1,H2), for all j ∈ 0 . . .m − 1 compute
Γ1,j+1 = (Γ1,j )L, Γ2,j+1 = (Γ2,j )L, for all i ∈ 0 . . .m compute
χi = 〈Γ1,i ,Γ2,i〉, and for all i ∈ 0 . . .m − 1 compute:

Δ1L,i = 〈(Γ1,i)L,Γ2,i+1〉 = Δ2L,i = 〈Γ1,i+1, (Γ2,i)L〉,
Δ1R,i = 〈(Γ1,i)R,Γ2,i+1〉, Δ2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

P witness: (�v1, �v2, rC , rD1 , rD2) for (C ,D1,D2) ∈ L2m ,Γ1,0,Γ2,0,H1,H2

For j = 0 . . .m − 1:
P,V: (C ,D1,D2) ← Dory-Reducem−j ,Γ1,jΓ2,j ,Γ1,j+1,Γ2,j+1,H1,H2

(C ,D1,D2)
P,V: Scalar-ProductΓ1,m ,Γ2,m ,H1,H2(C ,D1,D2)
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Theorem 3. If Γi,0
$← G2m

i and Hi
$← Gi , then Dory-Innerproduct is an HVSZK,

public-coin, succinct interactive argument of knowledge for L2m ,Γ1,Γ2,H1,H2 with
(9m+1, 10.5 · 9m/|F |)-tree extractability under SXDH. If n = 2m = poly(λ) then
Dory-Innerproduct has witness extended emulation.

Proof. Since Γi,0
$← G2m

i , for any j ≥ 0 we have Γi,j
$← G2m−j

i as it is the first
2m−j elements of Γi,0. So for each round the requirements of Theorems 2 and 1
are satisfied. Succinctness, the Public Coin property, Completeness and HVSZK
follow from the same properties of the two sub-arguments.

Tree-extractability follows from Lemma 4 applied round by round. We have
m + 1 rounds each with W = 9, and the error bound ε is given by (9m+1 +
12(9m + 9m−1 + . . . ))/|F | = 10.5 · 9m/|F |. When n = 2m = poly(λ), then
W = O(n log 9) = poly(λ) and ε = O(n log 9/|F |) = negl(λ). Witness extended
emulation follows from Lemma 5.

Concrete costs of Dory-Innerproduct P: In each call to Dory-Reduce, P sends
6 elements of GT to V. For the j -th call P performs 6 multi-pairings of size
2m−j−1, O(2m−j ) operations in F , and O(1) operations in GT . For the call to
Scalar-Product, P computes O(1) pairings and exponentiations in GT . So the
overall cost to P is dominated by multi-pairings of total size 6 × 2m , O(m)
group operations, and O(2m) field arithmetic.

V: Naively, in each invocation of Dory-Reduce V computes 10 exponentiations
in GT , 2 inversions and 2 multiplications in F , and O(1) additional operations
in GT and additions in F . In the invocation of Scalar-Product V computes 1
pairing, 7 exponentiations in GT , 1 inversion and 5 multiplications in F , and
O(1) additional operations in GT and additions in F .

Deferring V Computation: V’s computation depends only on the messages
from P and the 4m +1 precomputed values. For each call to Dory-Reduce, V uses
the values Δ1L = Δ2L,Δ1R,Δ2R,χ, and in the final check V uses e(Γ1m ,Γ2m).
We will use superscripts on group elements and subscripts on the challenge
scalars to denote which call they came from. We assume that we precompute
Δj

{1,2}{L,R} as before, but instead of computing χi for i ∈ 0 . . .m, we compute:

χ =
∑m−1

j=0 〈Γ1j ,Γ2j 〉 and χfin = 〈Γ1m ,Γ2m〉. Collapsing the Dory-Reduce rounds,
we obtain the arguments for Scalar-Product:
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C ← C + χ + β0D0
2 + β−1

0 D0
1 +

m−1∑

j=0

(αjC
j
+ + α−1

j C j
−)

+
m−1∑

j=1

βj (α−1
j−1D

j−1
2L + D j−1

2R + α−1
j−1β

−1
j−1Δ

j−1
2L + β−1

j−1Δ
j−1
2R )

+
m−1∑

j=1

β−1
j (αj−1D

j−1
1L + D j−1

1R + αj−1βj−1Δ
j−1
1L + βj−1Δ

j−1
1R )

D1 ← αj−1Dm−1
1L + Dm−1

1R + αm−1βm−1Δ
m−1
1L + βm−1Δ

m−1
1R

D2 ← α−1
j−1D

m−1
2L + Dm−1

2R + α−1
m−1β

−1
m−1Δ

m−1
2L + β−1

m−1Δ
m−1
2R

which are substituted into the check in Scalar-Product. This reduces V’s group
operations to a multi-exponentiation in GT of size 9m+9, two exponentiations in
GT , and one pairing. Using Montgomery’s trick for batch inversions, we compute
the coefficients with one inversion and O(m) multiplications and additions in F .

3.4 Batching Inner Products

Suppose we have (C ,D1,D2), (C ′,D ′
1,D

′
2) ∈ Ln,Γ1,Γ2,H1,H2 , and P possesses wit-

nesses (�v1, �v2, rC , rD1 , rD2) and (�v1
′, �v2

′, r ′
C , r ′

D1
, r ′

D2
) respectively. Then we have

the following two-to-one interactive argument:
Batch-InnerproductΓ1,Γ2

(C ,D1,D2,C ′,D ′
1,D

′
2)

Precompute: HT = e(H1,H2) ∈ GT

P witness:(�v1, �v2, rc , rD1 , rD2) for (C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 , and
(�v1

′, �v2
′, r ′

c , r
′
D1

, r ′
D2

) for (C ′,D ′
1,D

′
2) ∈ Ln,Γ1,Γ2,H1,H2

P: rX ←$ F

P → V: X = 〈�v1, �v2
′〉 + 〈�v1

′, �v2〉+rXHT

V → P: γ ←$ F

P: �v1
′′ ← γ �v1 + �v1

′, �v2
′′ ← γ �v2 + �v2

′,

r ′′
D1

← γrD1 + r ′
D1

, r ′′
D2

← γrD2 + r ′
D2

, r ′′
C← γ2rC + γrX + r ′

C

V: D ′′
1 ← γD1 + D ′

1, D ′′
2 ← γD2 + D ′

2, C ′′ ← γ2C + γX + C ′,
V: Accept if (C ′′,D ′′

1 ,D ′′
2 ) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (�v1
′′, �v2

′′, r ′′
C , r ′′

D1
, r ′′

D2
)

Theorem 4. If Γi
$← Gn

i , Hi
$← Gi , Batch-Innerproduct is an HVSZK,

public-coin, succinct interactive argument of knowledge for (Ln,Γ1,Γ2,H1,H2)
2 with

(3, 3/|F |)-tree extractability under SXDH.

Proof. Succinctness, the Public Coin property, Completeness, Soundness and
HVSZK of this protocol are immediate.

To show tree extractability, we have μ = 1 and set w1 = 3. We are given wit-
nesses for 3 distinct challenges γ. For i ∈ {1, 2}, we interpolate �v ′′

i and r ′′
Di

as quadratics in γ. Then from Lemma 6, the contribution of the quadratic
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terms to D ′′
i = γDi + D ′

i is identically zero, and so from Lemma 3 there
are no quadratic terms. Hence �vi

′′(γ) = γ�vi + �v ′
i for some �vi and �v ′

i , and
r ′′
Di

(γ) = γr + Di + r ′
Di

, compatible with the commitments Di ,D ′
i . Interpolating

r ′′
C (γ) = r ′

C + γrX + γ2rC and substituting in our affine �vi :

γ2 C + γX + C ′ = C ′′(γ) = 〈�v1
′′(γ), �v2

′′(γ)〉+ r ′′
C (γ)HT

= γ2(〈�v1, �v2〉+ rCHT ) + γ(〈�v1, �v2
′〉 + 〈�v1

′, �v2〉+ rXHT ) + (〈�v1
′, �v2

′〉+ r ′
CHT ).

Since this holds for 3 values of γ, Lemma 6 implies that the two polynomials
have identical coefficients, so C = 〈�v1, �v2〉+ rCHT and C ′ = 〈�v1

′, �v2
′〉+ r ′

CHT

and we have extracted the required witnesses.

Concretely, in Batch-Innerproduct messages from P to V have size |GT |; P’s
computation is clearly dominated by an 2n-sized multi-pairing and V’s compu-
tation is clearly O(1) exponentiations in GT .

4 Inner Products with Public Vectors of Scalars

In the previous section, we constructed Dory-Innerproduct, a succinct argument
of knowledge for generalised inner products between committed vectors in Gn

1

and Gn
2 . For a polynomial commitment scheme we also require the ability to

prove products of committed vectors with vectors of scalars with multiplicative
structure. However, this structure is not preserved when instances are batched,
so we will extend our arguments to allow for general vectors in F n . We define a
family of languages, parameterised by a pair of vectors �s1, �s2 ∈ F n :

(C ,D1,D2,E1,E2) ∈ Ln,Γ1,Γ2,H1,H2(�s1, �s2) ⊂ G3
T × G1 × G2

⇔ ∃(�v1 ∈ Gn
1 , �v2 ∈ Gn

2 , rC , rD1 , rD2 , rE1 , rE2 ∈ F ) :
D1 = 〈�v1,Γ2〉+ rD1 · e(H1,H2), D2 = 〈Γ1, �v2〉+ rD2 · e(H1,H2),
E1 = 〈�v1, �s2〉+ rE1H1, E2 = 〈�s1, �v2〉+ rE2H2,
C = 〈�v1, �v2〉+ rC · e(H1,H2),

We extend the arguments of the previous section to these languages. Note that
(C ,D1,D2,E1,E2) ∈ Ln,Γ1,Γ2,H1,H2(�s1, �s2) implies (C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 .

4.1 General Reduction with O(n) cost

There is a reduction from Ln,Γ1,Γ2,H1,H2(�s1, �s2) to Ln,Γ1,Γ2,H1,H2 , with O(n) cost
to P,V, where the �si are essentially multiplied by some V-selected challenge in
Gi and added to the witness vectors.
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Fold-Scalarsn,Γ1,Γ2,H1,H2(C ,D1,D2,E1,E2, �s1, �s2)
Precompute: HT = e(H1,H2)

P witness: (�v1, �v2, rC , rD1rD2 , rE1 , rE2) for
(C ,D1,D2,E1,E2) ∈ Ln,Γ1,Γ2,H1,H2(�s1, �s2)

V → P: γ ←$ F

P(∗∗): �v1
′ ← �v1 + γ �s1H1, �v2

′ ← �v2 + γ−1 �s2H2,

r ′
C← rC + γrE2 + γ−1rE1

V(∗∗): C ′ ← C + 〈�s1, �s2〉HT + γ · e(H1,E2) + γ−1 · e(E1,H2),

D ′
1 ← D1 + e(H1, 〈�s1, γΓ2〉), D ′

2 ← D2 + e(γ−1〈Γ1, �s2〉,H2)
V: Accept if (C ′,D ′

1,D
′
2) ∈ Ln,Γ1,Γ2,H1,H2

P witness: (�v1
′, �v2

′, r ′
C , rD1 , rD2)

Theorem 5. For Γi
$← Gn

i , Hi
$← Gi , Fold-Scalars is an HVSZK, public-

coin, succinct interactive argument of knowledge for Ln,Γ1,Γ2,H1,H2(�s1, �s2) with
(3, 3/|F |)-tree extractability under SXDH.

Proof. Completeness, Succinctness and Public-Coin are immediate. P messages
are independent and uniformly random, so zero-knowledge is straightforward.

To show tree-extractability, we have μ = 1 and w1 = 3. We have 3 challenges
of γ, and fail if any are 0, which occurs with probability at most 3/|F |. For
i ∈ {1, 2}, we interpolate �v ′

i and r ′
i as degree 1 order 1 Laurent polynomials in

γ. Then from Lemma 6, the contribution of the γ−1 terms of �v ′
1 and r ′

1 to D ′
1 are

identically zero, and so from Lemma 3 there are no γ−1 terms. Similarly the γ

term of �v ′
1 must be H1 �s1. Similarly there are no γ terms in �v ′

2 and r ′
2, and the γ−1

term of �v ′
2 must be H2 �s2. So we find some �v1, �v2 such that: �v1

′(γ) = �v1 + γ �s1H1,
�v2

′(γ) = �v2 + γ−1 �s2H2. We interpolate r ′
C (γ) = r ′

C + γrE2 + γ−1rE1 , and get:

C ′(γ) =C + 〈�s1, �s2〉HT + γ · e(H1,E2) + γ−1 · e(E1,H2)

= 〈�v1
′(γ), �v2

′(γ)〉 + r ′
C (γ)HT

= 〈�v1, �v2〉 + (r ′
C + 〈�s1, �s2〉)HT

+ γ · e(H1, 〈�s1, �v2〉 + rE2H2) + γ−1 · e(〈�v1, �s2〉 + rE1H1,H2).

Since this holds for 3 values of γ, the 1, γ, γ−1 Lemma 6 implies that the coeffi-
cients must be equal, which immediately implies we have extracted the required
witness.

4.2 Extending Dory-Reduce

We add E1β = 〈Γ1, �s2〉, E2β = 〈�s1,Γ2〉 to P’s first message. Prior to their second

message, P samples rE{1,2}{+,−}
$← F and adds
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P → V: E1+ = 〈 �v1L, �s2R〉+ rE1+H1, E1− = 〈 �v1R, �s2L〉+ rE1−H1,
E2+ = 〈 �s1L, �v2R〉+ rE2+H2, E2− = 〈 �s1R, �v2L〉+ rE2−H2

to their second message. After P’s second message, P and V compute:

P: r ′
E1

← rE1 + αrE1+ + α−1rE2− , r ′
E2

← rE2 + αrE2+ + α−1rE2− .
V: E ′

1 ← E1 + βE1β + αE1+ + α−1E2−,

E ′
2 ← E2 + β−1E2β + αE2+ + α−1E2−,

P,V: �s1
′ ← α �s1L + �s1R, �s2

′ ← α−1 �s2L + �s2R

Theorem 6. For Γ ′
2

$← Gm−1
2 ,H2

$← G2,Γ1
$← Gm−1

2 ,H1
$← G1, the extended

Dory-Reduce is an HVSZK, public-coin, succinct interactive argument of knowl-
edge for L2m ,Γ1,Γ2,H1,H2(�s1, �s2) with (9, 12/|F |)-tree extractability under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold as in the proof of Theorem 2. (9, 12/|F |)-tree extractability is
implied by Theorem 2 as a witness for (C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 suffices.

4.3 Extending Dory-Innerproduct

We use the extended Dory-Reduce, and apply Fold-Scalars at n = 1:

Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C ,D1,D2,E1,E2, �s1, �s2)

Precompute: HT = e(H1,H2), for all i ∈ 0 . . .m − 1 compute:

Γ1,i+1 = (Γ1,i)L, Γ2,i+1 = (Γ2,i)L,
Δ1L,i = 〈(Γ1,i)L,Γ2,i+1〉, Δ1R,i = 〈(Γ1,i)R,Γ2,i+1〉,
Δ2L,i = 〈Γ1,i+1, (Γ2,i)L〉, Δ2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

and for all i ∈ 0 . . .m compute χi = 〈Γ1i ,Γ2i〉.
P witness: (�v1, �v2, rC , rD1 , rD2 , rE1 , rE2) for
(C ,D1,D2,E1,E2) ∈ L2m ,Γ1,0,Γ2,0,H1,H2(�s1, �s2)

For j = 0 . . .m − 1
P,V: (C ,D1,D2,E1,E2, �s1, �s2) ←

Dory-Reducem−j ,Γ1,j Γ2,j ,Γ1,j+1,Γ2,j+1,H1,H2
(C ,D1,D2,E1,E2, �s1, �s2)

P,V: (C ,D1,D2) ← Fold-ScalarsΓ1,m ,Γ2,m ,H1,H2(C ,D1,D2,E1,E2, �s1, �s2)
P,V: Scalar-ProductΓ1,m ,Γ2,m ,H1,H2(C ,D1,D2)

Theorem 7. If Γ1,0
$← G2m

1 , Γ2,0
$← G2m

2 , H1
$← G1 and H2

$← G2, then
the extended Dory-Innerproduct is an HVSZK, public-coin, succinct interactive
argument of knowledge for L2m ,Γ1,Γ2,H1,H2(�s1, �s2) with (9m+1, 10.5 · 9m/|F |)-
tree extractability under SXDH. If n = 2m = poly(λ) then the extended
Dory-Innerproduct has witness extended emulation.
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Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold as in the proof of Theorem 3. Tree-extractability and witness
extended emulation when n = poly(λ) is implied by Theorem 3 as a witness for
(C ,D1,D2) ∈ Ln,Γ1,Γ2,H1,H2 suffices.

Concrete Costs of the Extended Dory-Innerproduct P sends 3 additional
elements of G1 and G2 in each invocation of Dory-Reduce. P also computes
exponentiations of total size 2×2m−j exponentiations in G1 and G2, and O(2m−j )
additional field arithmetic. So in total, P’s work is: (6P+4G2+4G1+O(1)F )×n+
o(n) which is dominated by the 6n pairings, especially as multi-exponentiations
in G1,G2 can be accelerated with variants of Pippenger’s algorithm. The total
size of P’s messages is: (6|GT | + 3|G2| + 3|G1|) log n + 4|GT | + |G2| + |G1| +
5|F |. As before, V defers computation to reduce their costs. To compute the
C ,E1,E2 passed to Fold-Scalars requires, respectively, a multi-exponentiation
in GT of size 9m + 9, a multi-exponentiation in G1 of size 4 m and a multi-
exponentiation in G2 of size 4 m. The computation of the final D1,D2 and
verification of Fold-Scalars and Scalar-Product require 3 additional pairings and
O(1) exponentiations. Whilst naively there are 5 pairings, 2 of them are pairings
with H1 and 2 are pairings with H2, which can be combined in the final check
of Scalar-Product.

V must also compute the final �s1, �s2 used as arguments to Fold-Scalars. In
particular, these are the scalars: 〈�s1,⊗m−1

i=0 (αi , 1)〉, 〈�s2,⊗m−1
i=0 (α−1

i , 1)〉. For gen-
eral vectors �s1, �s2, these require O(n) operations in F . However, when the vectors
�si themselves have multiplicative structure, we have the identity:

〈⊗m−1
i=0 (�i , ri),⊗m−1

i=0 (ai , 1)〉 =
m−1∏

i=0

(�iai + ri),

which allows the computation of the product in O(m) operations in F . Similarly,
a vector that can be written as a sum of � vectors with multiplicative structure
can have this inner product computed in O(�m) operations in F (as in Sect. 4.4).

4.4 Extending Batch-Innerproduct

P samples rY1 , rY2

$← F , and we add:

P → V: Y1 = 〈�v1, �s2
′〉 + 〈�v1

′, �s2〉 +rY1H1, Y2 = 〈�s1
′, �v2〉 + 〈�s1, �v2

′〉 +rY2H2

to P’s first message. After receiving γ, P and V compute:

P: r ′′
E1

← γ2rE1 + γrY1 + r ′
E1

, r ′′
E2

← γ2rE2 + γrY2 + r ′
E2

V: E ′′
1 ← γ2E1 + γY1 + E ′

1, E ′′
2 ← γ2E2 + γY2 + E ′

2

P,V: �s1
′′ ← γ �s2 + �s2

′, �s2
′′ ← γ �s1 + �s1

′
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Theorem 8. If Γ1
$← Gn

1 , Γ2
$← Gn

2 , H1
$← G1 and H2

$← G2, the extended
Batch-Innerproduct is an HVSZK, public-coin, succinct interactive argument of
knowledge for Ln,Γ1,Γ2,H1,H2(�s1, �s2)×Ln,Γ1,Γ2,H1,H2(�s1

′, �s2
′) with witness extended

emulation under SXDH.

Proof. Succinctness and the Public Coin properties are immediate. Completeness
and HVSZK hold following the proof of Theorem 4. Witness extended emulation
is implied by Theorem 4, as a witness for membership of (Ln,Γ1,Γ2,H1,H2)

2 suffices.

P’s messages to V have size |GT |+ |G2|+ |G1|. As before, P’s computation is
dominated by a 2n-size multi-pairing and V’s group operations are O(1) expo-
nentiations. For general vectors �s1, �s2, V must perform O(n) operations in F .
However, if �si , �si

′ are some linear combination of �, �′ vectors with multiplicative
structure, then s ′′

i is a linear combination of � + �′ vectors with multiplicative
structure; this representation can be computed in O(m) operations in F .

5 Vector-Matrix-Vector Products

Let n = 2m . Fix some commitment scheme for F and F n×n with public param-
eters ppF , ppF n×n respectively, and define:

(CM , Cy , �L, �R) ∈ LVMV ,n,pp
Fn×n ,ppF

⊂ GT × G1 × F n × F n

⇔ ∃(M ∈ F n×n , y ∈ F ,SM ,Sy) : y = �LTM �R,
Open(ppF n×n , CM ,M ,SM ) = 1, Open(ppF , Cy , y ,Sy) = 1.

This is a stepping stone to polynomial commitments, in which �L, �R will have
multiplicative structure. For a batch of � evaluations these vectors will be lin-
ear combinations of � vectors with multiplicative structure. We require public
parameters ppVMV , generated by the public coin GenVMV :

Γ1,0,Γ1,fin ,H1
$← G2m

1 × G1×G1, Γ2,0,Γ2,fin ,H2
$← G2m

2 × G2×G2,

∀i ∈ 1, . . . ,m : Γ1,i = (Γ1,i)L, Γ2,i = (Γ2,i)L,
∀i ∈ 0, . . . ,m − 1 : Δ1L,i = 〈Γ1,i+1,Γ2,i+1〉, Δ2L,i = 〈Γ1,i+1,Γ2,i+1〉,
∀i ∈ 0, . . . ,m − 1 : Δ1R,i = 〈(Γ1,i)R,Γ2,i+1〉, Δ2R,i = 〈Γ1,i+1, (Γ2,i)R〉,

χ =
m−1∑

j=0

〈Γ1,j ,Γ2,j 〉, χfin = 〈Γ1m ,Γ2m〉

HT= e(H1,H2) Υ= e(H1,Γ2,fin)

We fix Pedersen commitment parameters ppF = (Γ1,fin ,H1), and parameters
ppF n×n = {Γ1,0,H1,Γ2,0,H2} for the matrix commitment from Sect. 2.4. Recall
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that if Commit(pp,M ) = (T , ( �rrows, rfin,�T ′)), then �T ′ ∈ Gn
1 is a vector of Ped-

ersen commitments to the rows of M with generators (Γ1,0; H1), and T is a
AFGHO commitment to �T ′ with generators (Γ2,0; H2). So T is a hiding com-
mitment to M . The alert reader may note that �T ′ depends only on M and �rrows;
it is retained in the opening hint by P to accelerate the evaluation proof.

The general strategy for an argument of knowledge for LVMV ,n,pp
Fn×n ,ppF

is as follows. The commitment to y = �LTM �R is ycom = yΓ1,fin + ryH1.
P can compute the vector �v = �LTM , and by construction y =
�LTM �R = 〈�v , �R〉. Since the commitment is linearly homomorphic: vcom :=
〈�L,C ′〉 = CommitΓ1,0;H1(�v ; 〈�L, �rrows〉) is a hiding commitment to �v with blind
rv = 〈�L, �rrows〉. Recall also that T is a hiding commitment to �T ′ ∈ Gn

1 . So
to prove (T , ycom , �L, �R) ∈ LVMV ,n,pp

Fn×n ,ppF
, it suffices to prove knowledge of

�T ′ ∈ Gn
1 ,�v ∈ F n , rv , rfin, ry ∈ F such that: T = 〈�T ′,Γ2〉+ rfinHT , 〈�L, �T ′〉 =

〈�v ,Γ1〉+rvH1, and ycom = 〈�v , �R〉Γ1,fin + ryH1

Eval-VMV-REppVMV
(T , ycom , �L, �R)

P witness: M , (�T ′, �rrows, rfin), ry
P: �v = �LTM , rv = 〈�L, �rrows〉, y = 〈�v , �R〉, rC , rD2 , rE1 , rE2

$← F

P → V: C = e(〈�v , �T ′〉,Γ2,fin)+ rCHT , D2 = e(〈Γ1,�v〉,Γ2,fin)+ rD2HT ,

E1 = 〈�L,C ′〉+ rE1H1, E2 = yΓ2,fin + rE2H2,
P,V: Σ-protocol showing P knows s ∈ F 3:

E2 = s1Γ2,fin+s2H2 ∧ yC = s1Γ1,fin+s3H1

P witness: s = (y , rE2 , ry)
P,V: Σ-protocol showing P knows t ∈ F 2:

e(E1,Γ2,fin) − D2 = e(H1, t1Γ2,fin + t2H2)
P witness: t = (rE1 + rv ,−rD2)

P,V: Dory-InnerproductΓ1,0,Γ2,0,H1,H2
(C ,T ,D2,E1,E2,L, �R).

P witness: (�T ′,�vΓ2,fin , rC , rfin, rD2 , rE1 , rE2)

Theorem 9. For ppVMV sampled as above, Eval-VMV-RE is an HVSZK, public-
coin, complete, succinct interactive argument of knowledge for LVMV . Assuming
SXDH: If for fixed T and tuples ( �Li , �Ri , y i

com) ∈ F n × F n × G1, �Ri( �Li)T span
F n×n and P can pass Eval-VMV-RE(T , y i

com , �Li , �Ri) with non-negligible proba-
bility for each i, then M , �T ′, �rrows, rfin and the set {r i

y}i can be extracted.

Remark 3. Note that we do not claim that Eval-VMV-RE with �L, �R sampled is
(O(n2),O(n2)/|F |)-tree extractable, as without the spanning condition on �L, �R
the transcript can be independent of at least one entry of M .

Proof. Completeness is straightforward from the definition of P’s witnesses.
Succinctness, the Public Coin property and HVSZK of Eval-VMV-RE follow
straightforwardly from the same properties for the two auxiliary Σ-protocols
and Dory-Innerproduct.
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Recall that in GenVMV , Γ1,0,Γ2,0,Γ1,fin ,Γ2,fin ,H1,H2 are all sampled, so
on SXDH finding a non-trivial linear relationship between them contradicts
Lemma 3. Given tuples ( �Li , �Ri , y i

com) such that P passes Eval-VMV-RE for some
fixed T with non-negligible probability, witness extract Dory-Innerproduct and
the two sigma proofs in Eval-VMV-RE. For each i , we have (suppressing i super-
scripts):

�v1 ∈ Gn
1 , �v2 ∈ Gn

2 ,S , yC ∈ G1,D2 ∈ G2,E1,E2 ∈ GT , y ∈ F .
s2, ry , t1, t2, rC , rD1 , rD2 , rE1 , rE2 ∈ F :

e(E1,Γ2,fin) = D2 + e(H1, t1Γ2,fin − t2H2) (4),
E2 = yΓ2,fin + s2H2 (5), yC = yΓ1,fin + ryH1 (6),
T = 〈�v1,Γ2,0〉+ rD1 · e(H1,H2) (7), D2 = 〈Γ1,0, �v2〉+ rD2 · e(H1,H2) (8),

E1 = 〈�L, �v1〉+ rE1H1 (9), E2 = 〈�R, �v2〉+ rE2H2 (10)

Since T is a constant in (7), �v1
i , r i

D1
must also be fixed for all i , as other-

wise the difference of some pair gives a non-trivial relationship between Γ2,H2,
contradicting Lemma 3. Then substituting (8, 9) into (4) we have for each i
(suppressing i superscripts):

e(〈�L, �v1〉,Γ2,fin) = 〈Γ1,0, �v2〉+ e(H1, (t1 − rE1)Γ2,fin − (t2 − rD2)H2) (11)

Then if �v2
i is not a linear function of �Li , there exists a linear combination of

these relationships eliminating �Li from the left hand side (since �v1 is a constant)
without eliminating �v2 on the right. So we would obtain a non-trivial relationship
between Γ1,0, ,H1, contradicting Lemma 3. From (5, 10) we have (suppressing
i superscripts): 〈�R, �v2〉 = yΓ2,fin+(s2 − rE2)H2, and so if y i and (s i2 − r i

E2
) are

not bilinear in �Li , �Ri we obtain a non-trivial relationship between Γ2,fin ,H2,
contradicting Lemma 3. In particular since �Ri( �Li)T span F n×n we extract fixed
matrices M ,B ∈ F n×n such that y i = ( �Li)TM �Ri and s i2 − r i

E2
= ( �Li)TB �Ri for

all i . So �v2
i = ( �Li)TMΓ2,fin + ( �Li)TBH2. Substituting into (11), we have for

each i (suppressing i superscripts):

e(〈�L, �v1 − MΓ1,0〉+ (rE1 − t1)H1,Γ2,fin) = e(〈�LTB ,Γ1,0〉+ (rD2 − t2)H1,H2)

and so either we find a non-trivial pairing relationship between Γ2,fin ,H2, con-
tradicting Lemma 3, or for all i and suppressing superscripts:

0 = 〈�L, �v1 − MΓ1,0〉+ (rE1 − t1)H1(12), 0 = 〈�LTB ,Γ1,0〉+ (rD2 − t2)H1(13).

Similarly a non-trivial relationship between Γ1,0,H1 would violate Lemma 1. So
Equation 13 implies that ( �Li)TB = 0 and r i

D2
= t i2 for all i , so B = 0. From
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Equation 12 the first we deduce that r i
E1

− t i1 must be a linear function of �Li and
independent of �R, so we have some �rrows ∈ F n such that r i

E1
− t i1 = ( �Li)T �rrows,

which implies that �v1 = MΓ1,0 + �rrowsH1. Substituting into (7) we find T equals
〈MΓ1,0,Γ2,0〉+ e(H1, rD2H2 + 〈 �rrows,Γ2,0〉), i.e. that T is a commitment to M
with opening hint ( �rrows, rfin = rD2 , �T ′ = �v1). Substituting y = ( �Li)TM �Ri into
(6), y i

C is a commitment to the evaluation. So we have extracted a matrix M ,
evaluations y i and opening hints �T ′, �rrows, rfin and r i

y consistent with the com-
mitments.

We show a modified protocol for which tree extractability is achieved in
isolation, where P shows that T can be opened at a random point:

Eval-VMVppVMV
(T , ycom , �L, �R)

P witness: M , (�T ′, �rrows, rfin), ry
V → P: u ←$ F

P,V: �L′ = (1, u, u2, . . . un−1), �R′ = (1, un , u2n , . . . , u(n−1)n)
P: ry′ ←$ F .
P → V: y ′

com = �L′MR′Γ1,fin+ry′H1

P,V:
Eval-VMV-REppVMV

(T , ycom , �L, �R) ∧ Eval-VMV-REppVMV
(T , y ′

com , �L′, �R′)
P witnesses: (M , (�T ′, �rrows, rfin), ry) and (M , (�T ′, �rrows, rfin), ry′)

Theorem 10. Eval-VMV is a HVSZK succinct interactive argument of knowl-
edge for LVMV with (O(n2+log 9,O(n2+log 9)/|F |)-tree extractability under
SXDH.

Proof. All properties except tree extractability are immediate.
We take μ = 1 and set w1 = n2. Internal to each of the 2n2 calls to

Eval-VMV-RE, the two sigma proofs are each (2, 2/|F |)-tree extractable, and
Dory-Innerproduct is (O(n log 9),O(n log 9)/|F |)-tree extractable.

So it suffices to show that this O(n2+log 9)-sized tree of accepting transcripts
requires P to pass Eval-VMV-RE for T fixed and some collection of �Li , �Ri con-
taining �L, �R such that �Ri( �Li)T span F n×n . Reading off the entries in �R′(�L′)T

row-wise gives 1, u, u2, . . . , un2−1. Any linear dependence between these n2 vec-
tors would imply the existence of a non-zero polynomial of degree n2−1 vanishing
at n2 distinct u, which is impossible. Hence they span F n×n as required.

5.1 Batching

From Sect. 4.4, we can batch multiple invocations of Dory-Innerproduct and so
we similarly have an argument for a batches of Eval-VMV-RE or Eval-VMV.
We can further optimise these batch argument by observing that the Sigma
proofs in Eval-VMV-RE show knowledge of logarithms with respect to fixed bases
Γ2,fin ,H2,Γ1,fin ,H1. So as is standard we linearly combine these claims with
random challenges supplied by V and prove the combination, with negligible
alteration to soundness and extractability.



Dory: Efficient, Transparent Arguments for Generalised Inner Products 29

5.2 Concrete Costs

For an n × n matrix M , the size of the public parameters is (n + 2)|G1| + (n +
2)|G2| + (3 log n + 4)|GT |, and running Gen requires sampling n + 2 elements of
G1, n + 2 elements of G2, 3n pairings and log n additions in GT .

To Commit a matrix M , P samples n + 1 elements of F , and performs n
multi-exponentiations of size n + 1 in G1, a multi-pairing of size n, and an
exponentiation and addition in GT . The n multi-exponentiations in G1 are over
fixed generators (Γ1,0||H1), so Pippenger-type optimisations save an asymptotic
factor 2 log n. Proving Eval-VMV-RE requires proving Dory-Innerproduct, three
multi-exponentiations in G1 of size n and O(1) additional exponentiations in
G1,G2,GT . The messages from P to V have size 5|F | + 2|G1| + 2|G2| + 3|GT |;
V’s computation is 5 exponentiations in |G2|, 3 exponentiations in |G1|, an expo-
nentiation in GT and 2 pairings. Beyond proving a batch of two instances of
Eval-VMV-RE, proving Eval-VMV requires P perform O(1) exponentiations in
G1. The messages from P to V have size |G1|. �L′, �R′ have multiplicative struc-
ture, so V’s computation with them is O(log n) multiplications in F .

6 Dory-PC

We recall the discussion in Sect. 2.5. Concretely, the evaluation of any multi-
variate polynomial in X1 . . .X� of degrees d1, . . . , d� at �x ∈ F � can be replaced
by the evaluation of a multilinear polynomial in r =

∑
i�log(di + 1)� variables,

where the coefficients of the two polynomials are equal. Let m = �r/2�. Follow-
ing Sect. 2.5, we extract a 2m × 2m or 2m−1 × 2m matrix M . If m is odd we
replace M with (1, 0) ⊗ M , which is square. Then f (�x ) = (1 − z )�LTM �R where
�L = ⊗m

i=1(1,�xi) and z = 0 for r even, �L = (1, z ) ⊗ (⊗m−1
i=1 (1,�xi)

)
and z $← F for

r odd, and �R = ⊗r
i=r−m+1(1,�xi). Note that the implicit extension to a polyno-

mial in 2m variables has no impact, as the additional variable is unconditionally
set to 0. So we have reduced polynomial evaluation to a vector-matrix-vector
product, where the vectors �L, �R have multiplicative structure. Dory-PC-RE uses
the commitment scheme of Sect. 2.4, and uses Eval-VMV-RE as Eval. Similarly
Dory-PC uses Eval-VMV as Eval.

Theorem 11. Dory-PC-RE is an honest-verifier, statistical zero-knowledge,
random evaluation extractable polynomial commitment scheme for r-variable
multilinear polynomials. Dory-PC is an honest-verifier, statistical zero-
knowledge, extractable polynomial commitment scheme for r-variable multilinear
polynomials.

Proof. All properties except extractability are immediate for both schemes. For
Dory-PC, Theorem 10 proves extractability. For Dory-PC-RE: Suppose some
2r+1 = 2n2 distinct �x ∈ F r are sampled. If the outer products �R�LT do not
span F n×n , there is some non-zero element of the dual whose inner product with
these is 0; this gives a some non-zero multilinear polynomial vanishing for all �x .
By the Schwartz-Zippel lemma and a union bound, this has probability at most
|F |2r .(r/|F |)−2r+1

= (r2/|F |)2r = negl(λ). Theorem 9 then completes the proof.
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Since the vectors �L, �R (and �L′, �R′ in Dory-PC) have multiplicative structure,
the remarks made in Sect. 4.3 apply; V’s use of these vectors are restricted to
computing inner products with vectors ⊗m−1

i=0 (αi , 1), ⊗m−1
i=0 (α−1

i , 1) which can
be computed in O(m) operations in F given x , αi ,α−1

i .

6.1 Concrete Costs of Dory-PC-RE

Let n =
∏

i(di +1), and let |M | = O(n) be the number of non-zero entries in the
matrix M . In the worst case di = 4 and m = 3

2 log 5 log n +O(1). For multilinear
or univariate polynomials m = 1

2 log n + O(1).
Using the fact that the 2m × 2m matrix has at most |M | non-zero entries,

P’s time to run Commit is dominated by |M |+2m exponentiations in G1 and 2m

pairings. From Sect. 5.2, P’s time to run Eval is dominated by O(2m) pairings.
The size of P → V messages is (6m+7)|GT |+(3m+3)(|G2|+|G1|)+8|F |, and

V → P messages are O(m) sampled elements of F . V computes a 9m+O(1) sized
multi-exponentiation in GT and O(1) additional exponentiations and pairings.

6.2 Batching

Given a batch of � polynomials with individual mi ≤ m, we can use the results of
Sect. 5.1 to batch. The P → V messages then have size (6m+3�+5)|GT |+(3m+
2� + 2)(|G2| + |G1|) + 8|F |. P’s main computation remains O(� × 2m) pairings,
though the implied constant is reduced 3×. Deferring V’s computations as before,
V’s performs an exponentiation in GT of size 9m + 3� + 6, exponentiations in
G1 and G2 of size 3m + 2� + 2, and a multi-pairing of size 4. Unfortunately, the
computations with vectors �L, �R cannot be efficiently batched, and so V performs
an additional 2�m multiplications and additions in F .

As a corollary, the concrete costs of a batch of � instances of Dory-PC is
given by the cost of a batch of 2� instances of Dory-PC-RE, with an additional
� elements of G1 added to the P to V messages.

7 Implementation

We implemented Dory to provide polynomial commitments for dense multilin-
ear polynomials, building on framework for non-interactive arguments and dense
multilinear polynomials in the Spartan library [31]. This took ∼3400 LOC. Our
implementation used the BLS12-381 curve as implemented in blstrs [1]. We
implemented fast algorithms for computing (multiple) multi-exponentiations and
torus based compression for serialisation of elements of GT in ∼1650 LOC.

The implementation was evaluated on a machine with an AMD Ryzen 5
3600 CPU at 3.6 GHz and 16 GB RAM. All measurements were taken for a
single core. We compare with Spartan-PC, a discrete-log based random evalu-
ation extractable polynomial commitment scheme implemented in the Spartan
library [31], which is a highly optimised derivative of the commitment scheme
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in [34] using Curve25519 as implemented by curve25519-dalek for its curve arith-
metic. Throughout, we compare dense multilinear polynomials in m variables,
i.e. with n = 2m random coefficients. We report results for a variety of polyno-
mial sizes in Fig. 3.
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Fig. 3. Measured performance of Dory-PC-RE for varying polynomial degree.

As can be seen, Dory is slower than the baseline for P in Commit by a con-
sistent factor ∼2.7, matching the relative speed of G1 arithmetic on the imple-
mentations of Curve25519 and BLS12-381 as seen in Fig. 2.

The time taken for P to prove an evaluation is similarly somewhat slower than
Spartan-PC. Naively scaling from microbenchmarks in Fig. 2 would suggest that
Dory might be ∼45× slower asymptotically. As can be seen, this is essentially
true on small instances, but for n ∼ 220 the linear F arithmetic to evaluating
the polynomial becomes dominant for Spartan-PC; for n = 228 Dory is ∼30%
slower than Spartan-PC. Dory’s V clearly shows O(log n) complexity to verify
an evaluation, concretely taking ∼(15 + 0.85 log n) ms. The V of Spartan-PC
scales like n1/2, and is concretely slower than Dory for n � 224.

In terms of communication complexity, Dory clearly shows a fixed 192-
byte commitment size, whilst Dory’ proofs are consistently larger than those of
Spartan-PC by a factor ∼24. This is this is the ratio between 6|GT |+3(|G2|+|G1|)
in the BLS12-381 curve and 2|G1| in Curve25519, and so is the ratio between
the log n contributions to the proof size in the two systems. In applications, one
might expect to have ≈1 evaluation proof of each freshly committed polynomial;
in this context the point where a Dory evaluation proof becomes smaller than a
Spartan-PC commitment is n = 218.
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Batching: Recall that Dory-PC effectively batches two evaluations of Dory-
PC-PE. We use the batched Dory-PC-RE argument to open multiple committed
polynomial evaluations. This naturally impacts the time taken for P to run Eval,
the resulting proof size, and V’s time taken to run Eval on the batch. We report
results for a variety of batch sizes in Fig. 4.
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Fig. 4. Performance of Eval for batched Dory-PC-RE evaluations, n = 220.

As can be seen, the marginal costs to increase the batch size by one are small;
the marginal P time is ∼305 s, the marginal contribution to the proof size is 912
bytes, and the marginal V time is ∼1.1 ms. For large batches, this provides P a
constant ∼11.5× saving over proving each evaluation separately; for proof sizes
and V large batches save a factor ∼2 log n.
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Abstract. Secure multi-party computation (MPC) allows a set of n
parties to jointly compute an arbitrary computation over their private
inputs. Two main variants have been considered in the literature accord-
ing to the underlying communication model. Synchronous MPC proto-
cols proceed in rounds, and rely on the fact that the communication
network provides strong delivery guarantees within each round. Asyn-
chronous MPC protocols achieve security guarantees even when the net-
work delay is arbitrary.

While the problem of MPC has largely been studied in both variants
with respect to both feasibility and efficiency results, there is still a sub-
stantial gap when it comes to communication complexity of adaptively
secure protocols. Concretely, while adaptively secure synchronous MPC
protocols with linear communication are known for a long time, the best
asynchronous protocol communicates O(n4κ) bits per multiplication.

In this paper, we make progress towards closing this gap by providing
two protocols. First, we present an adaptively secure asynchronous pro-
tocol with optimal resilience t < n/3 and O(n2κ) bits of communication
per multiplication, improving over the state of the art protocols in this
setting by a quadratic factor in the number of parties. The protocol has
cryptographic security and follows the CDN approach [Eurocrypt’01],
based on additive threshold homomorphic encryption.

Second, we show an optimization of the above protocol that tolerates
up to t < (1 − ε)n/3 corruptions and communicates O(n · poly(κ)) bits
per multiplication under stronger assumptions.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a func-
tion of their private inputs, in such a way that the parties’ inputs remain secret,
and the computed output is correct. This must hold even when an adversary
corrupts a subset of the parties.
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The problem of MPC [Yao82,GMW87,BGW88,CCD88,RB89] has been
studied mostly in the so-called synchronous network model, where parties have
access to synchronized clocks and there is an upper bound on the network com-
munication delay. Although this model is theoretically interesting and may be
justified in some settings, they fail to model real-world networks such as the
Internet, which is inherently asynchronous. This gave rise to the asynchronous
network model, where protocols do not rely on any timing assumptions, and
messages sent can be arbitrarily delayed.

Asynchronous MPC protocols have received much less attention than their
synchronous counterpart, partly because of their inherent difficulty and the
weaker achievable security guarantees. In particular, one cannot distinguish
between a dishonest party not sending a message, or an honest party that sent
a message that was delayed by the adversary. As a result, parties have to make
progress in the protocol after seeing messages from n − t parties. This also
implies that in this setting it is impossible to consider the inputs of all honest
parties, i.e., the inputs of up to t (potentially honest) parties may be ignored.
Moreover, one can show that the optimal achievable corruption tolerance in the
asynchronous setting is t < n/3, even with setup, in both the cryptographic
and information-theoretic setting; and perfect security is possible if and only if
t < n/4.

1.1 Communication Complexity of Asynchronous MPC Protocols

The communication complexity in MPC has been the subject of a huge line
of works. While the most communication-efficient synchronous MPC solutions
without the usage of multiplicative-homomorphic encryption primitives achieve
O(nκ) bits per multiplication gate (see e.g. [HN06,DI06,BH08,BFO12,GLS19,
GSZ20]), asynchronous MPC protocols still feature higher communication com-
plexities, most notably when it comes to protocols with adaptive security.

In the adaptive security setting, all protocols are information-theoretic. The
first protocol was provided by Ben-Or et al. [BKR94], and later improved by
Patra et al. [PCR10,PCR08] to O(n5κ) per multiplication, and by Choudhury
[Cho20] to O(n4κ) per multiplication.

When considering static security, the most efficient protocols with optimal
resilience t < n/3 provide cryptographic security. The works by Hirt et al.
[HNP05,HNP08] make use of an additive homomorphic encryption, with the
protocol in [HNP08] being slightly more efficient and communicating O(n2κ)
per multiplication. The work by Choudhury and Patra [CP15] achieves O(nκ)
per multiplication at the cost of using somewhat-homomorphic encryption, and
the work by Cohen [Coh16] achieves a communication independent of the circuit
size using fully-homomorphic encryption.

Other efficient solutions have been provided for the t < n/4 setting.
Notable works include the protocols in [SR00,PSR02,CHP13,PCR15], achieving
information-theoretic security.
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1.2 Contributions

In this paper, we consider the problem of MPC over an asynchronous network
with adaptive security. Our contributions can be summarized as follows.

First, we present an adaptively secure protocol with optimal resilience
t < n/3 and O(n2κ) bits of communication per multiplication, improving over
the state of the art adaptively-secure protocols by a quadratic factor in the num-
ber of parties. Note, however, that in contrast to the protocol in [Cho20] which is
information-theoretic, our protocol has cryptographic security. The protocol fol-
lows the CDN approach [CDN01,DN03] and makes use of an additive threshold
homomorphic encryption.

Second, we show a protocol that tolerates up to t < (1 − ε)n/3 corruptions
and communicates a O(n · poly(κ)) number of bits per multiplication, assuming
secure erasures, non-interactive zero-knowledge proofs, and access to a network
providing atomic send1 (see e.g. [BKLL20]), which guarantees that parties are
able to atomically send messages to all other parties, and also guarantees that
messages sent by honest parties cannot be retrieved back, even if the sender
becomes corrupted. Note that a linear protocol with optimal resilience, and
without the usage of any type of multiplicative-homomorphic encryption is not
known even for the case of static security.

2 Preliminaries

We consider protocols among a set of n parties P1, . . . , Pn. We denote the secu-
rity parameter by κ and use the abbreviation ewnp for “except with negligible
probability”. Our protocols are proven in the model by Canetti [Can00a]. A
summary can be found in the full version [CHL21].

2.1 Communication and Adversary Model

Parties have access to a network of point-to-point asynchronous and secure
channels (for details of the asynchronous network model, we refer the reader
to [CR98]). Asynchronous channels guarantee eventual delivery, meaning that
messages sent are eventually delivered, and the scheduling of the messages is
done by the adversary. In particular, the adversary can arbitrarily (but only
finitely) delay all messages sent and deliver them out of order.

We consider a computationally bounded adversary that can actively corrupt
up to t parties in an adaptive manner. That is, as long as the adversary has
corrupted strictly less than t parties, it can corrupt any party at any point in
time based on the information during the protocol execution.

1 This model has also been referred to as weakly-adaptive corruption, or simply adap-
tive corruption model in the literature.



38 A. Chopard et al.

2.2 Zero-Knowledge Proofs of Knowledge

In this subsection, we introduce the notion of patchable zero-knowledge proof of
knowledge. For more details, see [DN03].

Definition 1. A 2-party patchable zero-knowledge proof of knowledge for a
predicate Q is a protocol between a prover P and a verifier V where P has as
public input an instance z and as secret input a witness x and V has public input
the instance z and output in {accept, reject}. The protocol needs to satisfy the
following properties.

– Completeness: On common input z, if P ’s secret input x satisfies Q(x, z) =
true, then V accepts.

– Soundness: There exists an efficient program K (the knowledge extractor) that
can interact with any prover P ′ such that if P ′ succeeds to make V accept with
non-negligible probability, then K can extract a witness x′ from its interaction
with P ′ such that Q(x′, z) = true.

– Zero-Knowledge: For any efficient verifier V ′, there exists an efficient simula-
tor S such that for any common input z, S can simulate a run of the protocol
with V ′ in a computationally indistinguishable way.

– Patchability: Let z be an arbitrary instance and let t̃ be any step of the pro-
tocol. Let TV ′

t̃
(z) be the communication of the simulator (which might not

know a witness to z) with a verifier V ′ in the simulated run of the protocol
until step t̃. We require that there exists an efficient algorithm Pat that takes
as input z, t̃, TV ′

t̃
(z) and a witness x such that Q(x, z) = true and outputs

randomness ν which satisfies the following: If an honest prover P executes the
protocol with V ′ up to step t̃ on instance z and witness x using randomness ν,
then the communication is identical to TV ′

t̃
(z). Furthermore, the randomness

ν looks uniformly random to V ′.

All zero-knowledge proofs used in our protocol will be 2-party patchable zero-
knowledge proofs of knowledge with constant communication complexity.

2.3 Universally Composable Commitments

In this section, we briefly introduce universally composable (UC) commitment
schemes. A detailed exposition is given in the full version [CHL21].

A commitment scheme allows a party P to commit to a value v towards other
parties without revealing information about v. If at any point in time, P wants
to reveal v, then it can open the given commitment to v.

A universally composable (UC) commitment scheme is a commitment scheme
in the UC framework [Can00b]. Like usual commitment schemes, a UC commit-
ment scheme is hiding and binding. Additionally, it is extractable (that is, the
simulator can extract the value a corrupted party committed to from its com-
mitment) and equivocable (that is, the simulator can simulate a commitment
on behalf of an honest party towards a corrupted party without knowing the
committed value and later open the given commitment to any value it wants).
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Since in our model we consider an adaptive adversary, we require that when the
adversary corrupts a party, the simulator can patch the internal state of that
party.

In our MPC protocol, we need the following additional property of our com-
mitment scheme. A detailed discussion about the selective decommitment prob-
lem can be found in [DNRS03].

Selective Decommitment Security: Consider the following security game with an
integer t ∈ {1, . . . , n} (representing the corruption threshold) and a message
distribution M over Rn

pk as parameters.

– The challenger samples a uniform random bit b ∈R {0, 1}.
– The adversary sends a set of indices I ⊂ {1, . . . , n} of size t′ ∈ {0, . . . , t} to

the challenger.
– The challenger samples n messages according to the distribution M , enumer-

ates them in the natural way and gives the messages with indices in I to the
adversary. Next, for each message with index not in I, the challenger commits
to it and gives the computed n − t′ commitments to the adversary.

– The adversary can adaptively choose up to t − t′ of the given commitments
and the challenger gives the underlying messages and the randomness used
to obtain the commitments in question to the adversary. As soon as the
adversary does not want to choose any more commitments, it sends “End-
Corruption” to the challenger.

– Upon receipt of the “EndCorruption”-message or if the adversary has already
chosen t − t′ commitments, the challenger does the following. Let I ′ ⊆
{1, . . . , n} be the set of indices that are not in I and such that the adversary
did not choose the commitments with indices in I ′.

• If b = 0, the challenger gives the messages underlying the commitments
with indices in I ′ to the adversary.

• Let MI′ be the distribution M conditioned on the components with
indices not in I ′ being equal to the messages already given to the adver-
sary. If b = 1, the challenger samples |I ′| messages according to the dis-
tribution MI′ and gives them to the adversary.

– The adversary outputs a guess b′ for the value of the bit b.

The idea in the above game is that every party commits to one value and the
adversary can corrupt up to t parties. In doing that, the adversary should not
learn anything about the messages underlying the commitments of honest par-
ties. This game can be generalized in a natural way to the case where each party
Pi commits to a fixed number �i of values (and this number can be different
for each party). For the sake of simplicity, we do not give the formal descrip-
tion of the more general game. We define the advantage of the adversary in the
generalized game by

AdvtgM,t
{�1,...,�n} := |Pr[b′ = b] − 1

2
|.
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We require from our commitment scheme that for all n-tuples {�1, . . . , �n} of
integers, all message distributions M and all t < n/3, there does not exist any
adversary that has non-negligible advantage AdvtgM,t

{�1,...,�n}.
For all the commitments in our protocols, we will use a UC adaptively secure

(equivocable and extractable) commitment scheme that satisfies the “Selective
decommitment security” property above and has constant communication com-
plexity.

2.4 Threshold Homomorphic Encryption

We briefly discuss threshold homomorphic encryption schemes. For a detailed
exposition, see the full version [CHL21].

A threshold homomorphic encryption scheme is a tuple (KeyGen, Enc, Dec-
Share, Comb) of four algorithms, where

– KeyGen is a probabilistic algorithm that takes a security parameter κ, the
number of parties n and the threshold parameter t as input and outputs a
uniformly distributed tuple (pk, sk1, . . . , skn) where the public key pk is given
to all parties and the secret key ski is given to Pi for all i ∈ {1, . . . , n}.

– Enc is an efficient probabilistic non-interactive algorithm that takes as input
a public key pk and a message m from the message ring Rpk and outputs an
encryption Encpk(m) of m. If we want to specify the randomness r used in
the execution of the algorithm, we write Encpk(m, r).
The Enc algorithm is a homomorphism in the sense that there exists an
efficient algorithm that takes as input the public key pk and two encryp-
tions Encpk(m1, r1) and Encpk(m2, r2) of m1 and m2 and that outputs an
encryption Encpk(m1, r1) ⊕pk Encpk(m2, r2) := Encpk(m1 +pk m2, r1 �pk r2)
of m1 +pk m2, where +pk and �pk are the group laws in the message space
and the randomness space. Similarly, there exists an efficient algorithm that
takes as input the public key pk, an encryption Encpk(m, r) and a message
c ∈ Rpk and outputs a uniquely determined encryption c �pk Encpk(m, r) of
c ·pk m.

– DecShare is an efficient algorithm that takes as input an index i ∈ {1, . . . , n},
the public key pk, the secret key ski and a ciphertext c and outputs a decryp-
tion share ci and a proof that ci is correctly computed using i, pk, c and
ski.

– Comb is an efficient algorithm that takes as input the public key pk, a cipher-
text c and pairs (ci, pi) where each pair has a different index. The algorithm
outputs a message m or fails.

The scheme is correct (that is, if at least t + 1 distinct decryption shares with
valid proofs for the same ciphertext c are given as input to the Comb algorithm,
then it outputs the message underlying c) and threshold semantically secure
(that is, without the help of at least one honest party, an adversary corrupting
at most t parties cannot extract information about the plaintext underlying a
given ciphertext). Furthermore, there exists a patchable zero-knowledge proof of
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plaintext knowledge and a patchable zero-knowledge proof of correct multipli-
cation with constant communication complexity.

From the definition of threshold homomorphic encryption scheme, it follows
that there is an algorithm Blind that takes an encryption of a message m and
the public key pk as input and outputs a uniformly random encryption of m
(without knowing m). For details, see the full version [CHL21].

For convenience, we introduce the following functions which we will often
use. For an encryption M in the ciphertext space, we define

EncM
pk : (x, r) → EncM

pk(x, r) = (x �pk M) ⊕pk Encpk(0pk, r).

We call a preimage with respect to the function EncM
pk of an encryption y a

“preimage of y under (pk,M)”. If we do not specify the second argument r of the
function, then we implicitly mean that r is uniformly random in the randomness
space. So (by the homomorphic property of the encryption scheme and because
the randomness space is a group) EncM

pk(x) is a uniformly random encryption of
x ·pk m, where m is the value encrypted by M .

In our MPC protocol, we need the following additional properties of our
encryption scheme.

– Proof of compatible commitment: Let QM
pk((m′, r1, r2), (y,B)) be the binary

predicate that is 1 if and only if y = EncM
pk(m′, r1) and (m′, r2) is the open-

ing information for the commitment B. We require that there exist efficient
patchable zero-knowledge proofs of knowledge for QM

pk with constant com-
munication complexity for all public keys pk and all encryptions M under
pk.

– Lagrange arguments: There exists an n-tuple {α1, . . . , αn} ∈ (Rpk\{0pk})n of
distinct elements such that for all (i, j) ∈ {1, . . . , n}2 we have that αi − αj

is invertible in Rpk. For these elements, the usual Lagrange polynomials and
Lagrange coefficients are well-defined.

– Patch: Given a public key pk, two encryptions E = Encpk(0pk, r0) and K =
Encpk(0pk, rK) of 0pk under key pk and the randomness r0 and rK used, there
exists an efficient probabilistic algorithm that given any constant x computes
randomness rE such that E = (x �pk K) ⊕pk Encpk(0pk, rE) = EncK

pk(x, rE).
– Selective decryption security: This property is similar to the “Selective decom-

mitment security” property of our commitment scheme. For a detailed dis-
cussion, we again refer the reader to [DNRS03].
Consider the following security game with a message distribution M over
Rn

pk and a randomness distribution Rd over the n product of the randomness
space as parameters.

• The challenger samples a uniform random bit b ∈R {0, 1}.
• The adversary sends a set of indices I ⊂ {1, . . . , n} of size t′ ∈ {0, . . . , t}

to the challenger.
• The challenger samples n messages according to the distribution M and n

randomness elements according to the distribution Rd, enumerates them
in the natural way and gives the messages and randomness elements with
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indices in I to the adversary. Next, for each message with index not in
I, the challenger encrypts it using the corresponding randomness element
(i.e. the randomness element with the same index) and gives the computed
n − t′ ciphertexts to the adversary.

• The adversary can adaptively choose up to t − t′ of the given ciphertexts
and the challenger gives the underlying messages and the randomness
used to obtain the ciphertexts in question to the adversary. As soon as
the adversary does not want to choose any more ciphertexts, it sends
“EndCorruption” to the challenger.

• Upon receipt of the “EndCorruption”-message or if the adversary has
already chosen t − t′ ciphertexts, the challenger does the following. Let
I ′ ⊆ {1, . . . , n} be the set of indices that are not in I and such that the
adversary did not choose the ciphertexts with indices in I ′.

* If b = 0, the challenger gives the messages underlying the ciphertexts
with indices in I ′ to the adversary.

* Let MI′ be the distribution M conditioned on the components with
indices not in I ′ being equal to the messages already given to the
adversary. If b = 1, the challenger samples |I ′| messages according to
the distribution MI′ and gives them to the adversary.

• The adversary outputs a guess b′ for the value of the bit b.
The idea in the above game is that every party encrypts one value and
the adversary can corrupt up to t parties. In doing that, the adversary
should not learn anything about the messages underlying the encryptions
of honest parties. This game can be generalized in a natural way to the
case where each party Pi encrypts a fixed number �i of values (and this
number can be different for each party). For the sake of simplicity, we do
not give the formal description of the more general game. We define the
advantage of the adversary in the generalized game by

AdvantM,Rd
{�1,...,�n} := |Pr[b′ = b] − 1

2
|.

We require from our encryption scheme that for all n-tuples of integers
{�1, . . . , �n}, all message distributions M and all randomness distributions
Rd, there does not exist any adversary that has non-negligible advantage
AdvantM,Rd

{�1,...,�n}, even if it has access to a simulator for zero-knowledge
proofs and the Pat algorithm.

Remark 1. By the homomorphic property of the encryption scheme, in the Patch
property we have that x�pk K = Encpk(0pk, r0�pk rE). Since multiplication by a
constant is a deterministic algorithm and since the randomness space is a group,
this implies that if r0 is uniformly random from the randomness space, then rE

is also uniformly random from the randomness space.

In the full version [CHL21], we present the Paillier threshold encryption
scheme which is an instantiation of the definition above.
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3 Subprotocols

This section is devoted to the exposition of the subprotocols that will be used
in the MPC protocol.

3.1 Agreement Protocols

Often, parties need to have agreement on certain values or objects. To achieve
this, we use the following primitives in our protocol.

1. Reliable consensus: Reliable consensus is a weaker version of asynchronous
consensus. It allows the parties to agree on one of the honest parties’ input
values without requiring termination if there is no pre-agreement. More pre-
cisely, every party has a (private) input and the primitive guarantees that if
all honest parties have the same input, then all honest parties output their
inputs. Furthermore, if an honest parties outputs a value, then all other hon-
est parties output the same value. In the full version [CHL21], we discuss
the definition of reliable consensus in more details and we present a reliable
consensus protocol RC for t < n/3. Our protocol is based on Bracha’s A-Cast
protocol [Bra84] and has communication complexity O(n2κ), where κ is the
size any party’s secret input.

2. A-Cast: A-Cast is an asynchronous broadcast protocol. It allows the par-
ties to agree on the value of a sender without requiring termination if the
sender is corrupted. More precisely, the sender has a private input and the
primitive guarantees that if the sender is honest, then all parties output the
senders message. Furthermore, if an honest party outputs a value, then all
other honest parties output the same value. In the full version [CHL21], we
discuss the definition of reliable broadcast in more details and we present
Bracha’s reliable broadcast protocol RBC for t < n/3 [Bra84]. The protocol
has communication complexity O(n2κ), where κ is the size of the sender’s
input. Moreover, we show that if the sender has computationally indistin-
guishably distributed input, then the RBC protocol maintains computational
indistinguishability.
In some situations, we use Patra’s Multi-Valued-Acast protocol [Pat11] which
is a reliable broadcast protocol that achieves linear communication complex-
ity for messages of size Ω(n3 log(n)). This allows us to improve the efficiency
of our MPC protocol.

3. Byzantine agreement: Byzantine agreement allows the parties to agree on one
of the honest parties’ input values. It guarantees that all honest parties termi-
nate and that they output the same value. For t < n/3, Byzantine agreement
can be achieved with expected communication complexity O(n2). For a more
detailed definition of Byzantine agreement, see the full version [CHL21].

4. ACS: The agreement on a common subset (ACS) primitive allows the parties
to agree on a set of at least n− t parties that satisfy a certain property (a so-
called ACS property). In the full version [CHL21], we discuss the definitions
of ACS property and ACS protocol in more details and we present an ACS
protocol ACS with communication complexity O(n3).
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3.2 Decryption Protocols

To decrypt ciphertexts of our threshold homomorphic encryption scheme, we
use two decryption protocols. The PrivDec protocol is a straightforward private
decryption protocol which takes as input the public key pk, the private keys
sk1, . . . , skn, a ciphertext c and a party P and correctly decrypts c towards P
even in the presence of an active adaptive adversary corrupting t < n/3 par-
ties. The PubDec protocol is a public decryption protocol which takes as input
pk, sk1, . . . , skn, n − 2t ciphertexts c1, . . . , cT and uses the PrivDec protocol to
correctly publicly decrypt c1, . . . , cT even in the presence of an active adaptive
adversary corrupting t < n/3 parties. The PubDec protocol has communica-
tion complexity O(n2κ) and thus achieves linear communication complexity per
decrypted ciphertext. For details about these two protocols and their guarantees,
see Appendix A.1.

Remark 2. Additionally to the properties in the definition of threshold homo-
morphic encryption scheme, we require the following from our encryption
scheme. Let P be any party and let c1 and c2 be two computationally indis-
tinguishably distributed ciphertexts with computationally indistinguishably dis-
tributed underlying plaintexts. An instance of the PrivDec protocol with
(pk, c1, P ) as public input (and sk1, . . . , skn as private inputs) is computation-
ally indistinguishably distributed to an instance of the PrivDec protocol with
(pk, c2, P ) as public input (and sk1, . . . , skn as private inputs) even in the pres-
ence of an active adaptive adversary corrupting up to t < n/3 parties.

Remark 3. By inspection of the PubDec protocol in Appendix A.1, it is clear
that the “computational indistinguishable decryption” property also holds for
the PubDec protocol.

3.3 Multiplication

In this section, we briefly discuss the multiplication protocol. A detailed descrip-
tion is given in Appendix A.2.

The main idea for the multiplication protocol is to use circuit randomization
[Bea92]. To make it more efficient, we apply the ideas of [DN07] and [BH08],
namely we use the PubDec protocol to process up to T = �n−2t

2 	 independent
multiplication gates simultaneously. Hence, the multiplication protocol takes as
input T independent multiplication gates, their encrypted inputs and their asso-
ciated multiplication triples and outputs the encrypted outputs of the given
gates. The protocol guarantees that if the inputs to the processed multiplication
gates are computationally indistinguishably distributed, then the executions of
the multiplication protocol are as well (see Proposition 1). Furthermore, it com-
municates O(n2κ) bits.

3.4 Triple Generation

This subsection is devoted to the introduction of the Triples protocol which takes
as input an integer � and outputs � encrypted multiplication triples. The protocol
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is based on the multiplication protocol in [DN03], the kfd-triples protocol in
[HN06] and on [CP15]. We first adapted their protocols to the asynchronous
setting using the ACS primitive and then improved efficiency by amortizing the
cost of the ACS instances over the number of generated triples and using the
communication efficient Multi-Valued-Acast protocol.

1: Every party Pj independently chooses uniformly random elements ai
j in the

message space Rpk and ri
j in the randomness space for all i ∈ {1, . . . , �}. Then,

Pj computes Ai
j = Encpk(ai

j , r
i
j) and uses the Multi-Valued-Acast protocol to

broadcast Ai
j for all i ∈ {1, . . . , �}. Finally, Pj proves to Pk in zero-knowledge

that it knows the plaintext underlying Ai
j using the “proof of plaintext knowl-

edge” property of the encryption scheme with instance Ai
j and witness (ai

j , r
i
j)

for all i ∈ {1, . . . , �} and all k ∈ {1, . . . , n}.
2: Let Q be the property such that a party Pk satisfies Q towards another party

Pj if and only if the broadcasts of all Ai
k with i ∈ {1, . . . , �} terminated for Pj

and Pj accepted all proofs of plaintext knowledge for Ai
k with i ∈ {1, . . . , �}.

The parties run the ACS protocol with Q and obtain a set S of parties.
3: The parties wait until the broadcasts of all parties in S terminated and set

Ai =
⊕

Pk∈S Ai
k for all i ∈ {1, . . . , �}.

4: Every party Pj independently chooses uniformly random elements bi
j in the

message space Rpk and r′i
j in the randomness space for all i ∈ {1, . . . , �}. Then,

Pj computes Bi
j = Encpk(bi

j , r
′i
j ) and (Ci

j , r
′′i
j ) = Blind(bi

j �pk Ai) and uses
the Multi-Valued-Acast protocol to broadcast Bi

j and Ci
j for all i ∈ {1, . . . , �}.

Finally, Pj proves to Pk in zero-knowledge that Ci
j was computed correctly

using the “proof of correct multiplication” property of the encryption scheme
with instance (Bi

j , A
i, Ci

j) and witness (bi
j , r

′i
j , r′′i

j ) for all i ∈ {1, . . . , �} and all
k ∈ {1, . . . , n}.

5: Let Q′ be the property such that a party Pk satisfies Q′ towards another party
Pj if and only if the broadcast of all (Bi

k, Ci
k) with i ∈ {1, . . . , �} terminated

for Pj and Pj accepted all proofs of correct multiplication for (Bi
k, Ai, Ci

k) with
i ∈ {1, . . . , �}. The parties run the ACS protocol with Q′ and obtain a set S′ of
parties.

6: The parties wait until the broadcasts of all parties in S′ terminated and set
Bi =

⊕
Pk∈S′ Bi

k and Ci =
⊕

Pk∈S′ Ci
k for all i ∈ {1, . . . , �}.

7: Each party outputs (Ai, Bi, Ci) for all i ∈ {1, . . . , �}.

Protocol Triples

To prove security of the above Triples protocol, we give the simulator STriples

who does not have access to the secret keys of honest parties.

The simulator STriples executes the protocol acting honestly on behalf of the honest
parties. If the adversary decides to corrupt a party Pi at any point of the protocol,
STriples gives all the information it holds on behalf of Pi about the execution of the
Triples protocol to the adversary.

Simulator STriples
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Lemma 1. The Triples protocol above satisfies the following:

– Termination: All honest parties terminate the protocol and output � triples.
– Consistency: All honest parties output the same triples.
– Correctness: The output triples are correct.
– Secrecy: The plaintexts underlying the output triples are unknown to the

adversary. In other words, the adversary has no more information about these
plaintexts than that the plaintexts underlying the third components are the
product of the plaintexts underlying the corresponding first and second com-
ponents.

– Computational Uniform Randomness: The distribution of the plaintexts
underlying any output triple is computationally indistinguishable from the
uniform distribution over the set of all triples (a, b, a ·pk b) for a, b ∈ Rpk.

– Independence: The plaintexts underlying any output triple are computation-
ally independent of the plaintexts underlying all other output triples.

– Privacy: The adversary’s views in the simulation and the protocol are perfectly
indistinguishably distributed, i.e. the adversary does not learn anything.

– Communication complexity: The protocol communicates O(n2�κ + n5 log(n))
bits.

The proof is given in the full version [CHL21].

Remark 4. If we choose �κ = Ω(n3 log(n)), we obtain that the Triples protocol
communicates O(n2κ) bits per triple.

4 Asynchronous Adaptively Secure MPC Protocol

In this section, we present an asynchronous MPC protocol based on the protocols
in [CDN01,DN03,BH08]. Then we informally prove that our protocol is secure
against an active adaptive adversary corrupting up to t parties.

4.1 Ideal Functionality

In this subsection, we define the specification that our protocol achieves. The
following exposition is based on [BKR94,CDN00].
Let f : N×{0, 1}∗×({0, 1}∗)n → ({0, 1}∗)n be an efficiently computable function.

1: The trusted party receives the security parameter κ ∈ {0, 1}∗ and the number
of parties n ∈ N as input.

2: Every party Pi gives its input xi to the trusted party. Corrupted parties are
allowed to give wrong input, no input at all or — as long as the adversary has
not specified the core set S in step 3 — change their inputs (for example after
corruption of any party). If the adversary corrupts a party Pj at any point in
time during or after this step, then the trusted party gives xj to the adversary.

Functionality
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3: The adversary chooses a set of parties S ⊆ P of size at least n − t and gives it
to the trusted party.

4: The trusted party evaluates the function f on the given inputs of parties in S
and using a default input d for parties not in S. From this, it obtains output y.

5: The trusted party sends y to all parties.
6: All honest parties output y. Corrupted parties can output whatever they like.

Recall that since we are in the asynchronous setting with at least n − t
honest parties, the size of the set S of parties whose inputs are considered for
the evaluation of f is between n − t and n. Note that it is not guaranteed that
all parties in S are honest. However, we require from the adversary that it only
includes corrupted parties in S for whom it gave input to the ideal functionality
in step 2.

4.2 Informal Explanation of the Protocol

To achieve adaptive security in the asynchronous setting, we proceeded as fol-
lows. We started with the statically secure synchronous MPC protocol intro-
duced by Cramer, Damg̊ard and Nielsen [CDN01]. Next, we used circuit ran-
domization [Bea92] to split the protocol into a preparation phase and a com-
putation phase. After that, we adapted the protocol to the asynchronous set-
ting using asynchronous broadcast and agreement on a common subset (ACS).
Finally, we made the protocol adaptively secure by applying the techniques from
Damg̊ard and Nielsen [DN03], namely redefining the way values are encrypted
and randomizing the output ciphertext in a specific way before decrypting it.
Concretely, the new rule of encryption is: Given an encryption M and a value
v to be encrypted, the encryption is set to EncM

pk(v). Recall that if we denote
the value that M encrypts by m, then by the homomorphic property of the
encryption scheme and by definition of the function EncM

pk, EncM
pk(v) is a uni-

formly random encryption of v ·pk m. In the protocol, we will mostly choose
m = 1pk to have an encryption of v while in the simulation we will often choose
m = 0pk which helps the simulator to provide computationally indistinguishably
distributed information. In detail, the idea of the protocol is the following.

Preparation Phase

– Setup phase (steps 1–4): The keys for all the keyed primitives used in our
protocol (namely the encryption scheme, the commitment scheme and the
zero-knowledge proofs) are set up. Each party receives the keys it is enti-
tled to along with public Lagrange arguments {αi}i∈{1,...,n}. Additionally,
two public encryptions K and R are set up and given to all parties. The
encryption K is a uniformly random encryption of 1pk and the encryption R
is a uniformly random encryption of 0pk. In the simulation, the simulator will
cheat by choosing K to be a uniformly random encryption of 0pk and R to be
a uniformly random encryption of 1pk. By semantic security of the encryption
scheme, this is computationally indistinguishable to the adversary.
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Finally, the parties compute the circuit corresponding to the function to be
evaluated and generate multiplication triples that will be used in the Evalu-
ation phase to evaluate the multiplication gates of the circuit.

Computation Phase

– Input phase (steps 1 and 2): The parties receive their inputs xi needed for
the execution and want to give them to an agreed function f . To do so, every
party reliably broadcasts an encryption of its input applying the new rule of
encryption with M = K. While EncK

pk(xi) is indeed an encryption of xi in
the real world (recall that in the protocol K is an encryption of 1pk), it is
an encryption of 0pk in the simulation as there, K is an encryption of 0pk.
Hence, in the simulation all encryptions of inputs will be encryptions of 0pk

independently of the inputs of the parties. However, the simulator needs to
be able to extract the inputs of corrupted parties because it has to provide
those inputs to the ideal functionality on behalf of the corrupted parties. This
is why every party commits to its input towards every other party using a
UC commitment scheme. The extraction property of UC commitments allows
the simulator to extract the correct inputs of corrupted parties (ewnp) and
give them to the ideal functionality. To ensure correctness and prevent the
adversary in the real world from having more power than an adversary in the
ideal world, the parties need to prove in zero-knowledge (using the “proof of
compatible commitment” property) that they know a preimage of the reliably
broadcasted encryption EncK

pk(xi) under (pk,K) and that the first component
of this preimage is the same as the value that they committed to. This is
important because without these proofs a corrupted party could just wait
for the reliable broadcast of another party Pj to terminate and then set
its input to the same as the one from Pj without knowing it. This is not
possible in the ideal world and therefore, we want to prevent it in the protocol
execution. Furthermore, the simulator extracts the inputs of the corrupted
parties from the commitments whereas for the computation in the protocol
we will use the encryptions. Thus, the simulator needs to ensure that the
value underlying the commitment and the first component of the preimage
under (pk,K) of the encryption are the same so that it does not give wrong
inputs to the ideal functionality on behalf of the corrupted parties. Finally,
the parties run the ACS protocol and obtain a set S of size at least n − t
of parties that successfully broadcasted an encryption of their input which
they committed to. The inputs of the parties in S are the ones that will be
taken into account in the evaluation of f . Thus, the ACS protocol needs to
ensure that S only contains parties that successfully completed the reliable
broadcast of their inputs and all their zero-knowledge proofs towards at least
one honest party (so that everything is correct and the simulator can extract
the correct inputs ewnp as it received at least one valid commitment to every
input of the corrupted parties in S). All inputs of parties that are not in S
are set to a default value. Each party then waits until the reliable broadcast
for every party in S terminated. It is okay for the parties to wait until the
reliable broadcast of the parties in S terminate because we saw that for all
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parties Pk in S, there exists an honest party for which the reliable broadcast
of Pk terminated. By the properties of reliable broadcast this implies that the
reliable broadcast of Pk eventually terminates for all honest parties.
The computation of the encryptions of the inputs, their reliable broadcast,
the zero-knowledge proofs and the run of the ACS protocol are summed up
in the BrACS protocol in Appendix B.

– Evaluation phase (step 3): The parties evaluate the circuit on the encrypted
inputs of the parties using the “+pk-homomorphic” property, the “Multipli-
cation by constant” property and the multiplication protocol from Appendix
A.2. In the end, the parties get a ciphertext c (called Encpk(s) in the protocol
and Encpk(ŝ) in the simulation).

– Randomization phase (steps 4–7): Before the parties jointly decrypt c, they
randomize it. This is done so that the simulator can cheat. In fact, as we saw
above, all inputs to the circuit in the simulation are encryptions of 0pk. By
the correctness of the gates, this implies that all ciphertexts in the circuit are
encryptions of 0pk (not counting the intermediate ciphertexts in the multipli-
cation protocol). Hence, c is also an encryption of 0pk and therefore, we cannot
simply honestly decrypt c as otherwise the simulator would fail to provide a
computationally indistinguishable simulation with overwhelming probability.
Furthermore, our encryption scheme is not adaptively secure which is why we
cannot decrypt c to anything but 0pk either. Thus, the parties randomize the
ciphertext before decrypting it honestly.
To randomize the ciphertext c, the parties do the following. Each party
chooses a random ri and reliably broadcasts the encryption EncR

pk(ri). Then
the parties agree on a set Ŝ of parties of size at least t+1 of successful broad-
casts using the ACS protocol. Denote the indices of the parties in the set Ŝ
by I. Next, the parties consider the unique polynomial p of degree |I| − 1
that goes through EncR

pk(ri) at position αi for all i ∈ I. They interpolate
this polynomial at 0pk and add this to c using the “+pk-homomorphic” and
the “Multiplication by constant” properties of the encryption scheme. This
gives the new ciphertext c′ (denoted by Encpk(s)′ in the protocol and the
simulation). In the real execution, R is an encryption of 0pk under pk and
therefore, all EncR

pk(ri) are encryptions of 0pk under pk. Since interpolation
is a linear operation and the encryption scheme is homomorphic, the value of
p at 0pk will also be an encryption of 0pk and thus c′ will encrypt the same
message as c. In the simulation however, R is an encryption of 1pk. This will
help the simulator to cheat. Concretely, the simulator will adjust the ri’s of
honest parties so that at position 0pk, p will have a uniformly random encryp-
tion of the output s (received from the ideal functionality) of the function f
evaluated on the inputs of the parties. This is possible since |I| � t + 1 and
hence, there is at least one honest party whose ri is taken into account in the
randomization and can be chosen by the simulator in the simulation. Since c
is an encryption of 0pk in the simulation, we get that c′ encrypts s as wanted.
But we need to integrate a mechanism that allows the simulator to choose
the ri’s of honest parties according to those of corrupted parties. This is done
in the following way.
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Before reliably broadcasting EncR
pk(ri) and agreeing on a set of successful

broadcasts, the parties commit to their ri and use the BrACS protocol to
reliably broadcast EncK

pk(ri) and agree on a set S′ of successful broadcasts
(including a successful proof of compatible commitment). By the ACS prop-
erty we will use and by the guarantees of the ACS protocol, we have that the
simulator received at least one valid commitment to rk for every corrupted
party Pk ∈ S′. Thus, it can extract all rk from corrupted parties in S′ ewnp
(by the extraction property of UC commitment schemes). Now the simulator
can adjust the ri’s of the honest parties as described above. Then the parties
execute the BrACS for EncR

pk(ri) (see above) but using the same commitments
in the zero-knowledge proof as in the previous BrACS (with EncK

pk(ri)). We
obtain a set S′′ and encryptions EncR

pk(ri) for all Pi ∈ S′′. The ACS property
the parties use in the second BrACS is slightly modified to ensure that the
value used to compute the broadcasted encryption in the first BrACS (the
one with EncK

pk(ri)) and the value used to compute the broadcasted encryp-
tion in the second BrACS (the one with EncR

pk(ri)) is the same except with
negligible probability. Concretely, the property ensures that for all Pi ∈ S′′

at least one honest party likes Pi for both BrACS executions. Since those
BrACS protocols were run with the same commitments, we can be sure that
the values used to compute the broadcasted encryptions are the same in both
runs of the BrACS protocol. Then we set Ŝ = S′ ∩ S′′ and observe that Ŝ is
of size at least n − 2t � t + 1 as wanted.
Note that the simulator has to know the rk’s of corrupted parties in Ŝ ⊆ S′

before the broadcasting of EncR
pk(ri) because while it can patch the encryp-

tions and proofs of the first BrACS (with EncK
pk(ri)) due to K being an encryp-

tion of 0pk, it can not do the same for the second BrACS (with EncR
pk(ri))

because R is an encryption of 1pk.
– Output phase (steps 8 and 9): The parties decrypt c′ and obtain s. Then they

run the reliable consensus protocol on secret input s as termination proce-
dure. The persistency property of reliable consensus ensures that everyone
terminates on the same correct output s.

A detailed description of the protocol can be found in Appendix B.

4.3 Main Theorem

Our protocol achieves the following.

Theorem 1. The MPC protocol in Appendix B t-securely realizes the ideal func-
tionality in Subsect. 4.1 in the KG-hybrid model for t < n/3. The protocol com-
municates O(cMn2κ + Dn2κ + n3κ + n5 log(n)) bits, where cM is the number of
multiplication gates in the circuit and D is the multiplicative depth of the circuit.

The simulator and an informal proof of the theorem are given in the full
version [CHL21].
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Remark 5. It is straightforward to generalize the above protocol to the case
where the function f takes cI inputs and provides cO outputs. If a party Pi has
multiple inputs, it commits to each one of them, reliably broadcasts a random
encryption of each one of them and proves compatible commitment for each one
of them (in the BrACS). Furthermore, with multiple outputs, the parties execute
steps 4–7 of the protocol for each encrypted output of the circuit and then
reconstruct the randomized outputs towards the entitled parties. This results in
an increase of the communication complexity by a quadratic factor per input
and by a cubic factor per output, which leads to the following theorem.

Theorem 2. There exists an MPC protocol that t-securely realizes the ideal
functionality in Subsect. 4.1 in the KG-hybrid model for t < n/3. The protocol
communicates O(cMn2κ + Dn2κ + cIn

2κ + cOn3κ + n3κ + n5 log(n)) bits, where
D is the multiplicative depth of the circuit, cM is the number of multiplication
gates, cI is the number of input gates and cO is the number of (public and private)
output gates in the circuit.

Remark 6. This paper does not focus on round complexity. For information
about round-efficient MPC, we refer the reader to [CGHZ16]. Our protocol has
a round complexity that depends on the circuit depth.

5 Near-Linear MPC in the Atomic Send Model

In this section, we show how to improve the efficiency of our MPC protocol at
the cost of stronger assumptions on the model and a slightly lower corruption
threshold.

Taking a closer look at the communication complexity of the protocol in
Appendix B reveals that the complexity is dominated by the communication in
the Triples protocol. While the number of messages sent between the parties per
produced triple (and hence per multiplication gate of the circuit) in the Triples
protocol is quadratic in the number of parties, the computation phase of the
protocol only needs near-linear communication per evaluated gate assuming a
shallow circuit (except for the input phase which has quadratic communication
complexity per input gate) . By considering slightly stronger assumptions on
the model, we can reduce the communication complexity of the triple generation
and obtain a near-linear MPC protocol.

5.1 Model

In this subsection, we present the model which will be used to achieve better
efficiency in the generation of multiplication triples. The subsection is based on
[BKLL20].

As before (see Subsect. 2.1), we consider multiparty computation among a
set of n parties P1, . . . , Pn, where every pair of parties is connected by a secure
asynchronous communication channel. A protocol in our setting comprises a
number of atomic steps.
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The adversary in the new setting is computationally bounded and can
actively corrupt up to t parties in an atomic send adaptive manner. That is,
as long as the adversary has corrupted strictly less than t parties, it can corrupt
any party at any point in time considering all the information it has seen so far
and make this party behave as it wishes for the remaining steps of the protocol.
However, if in some step a party needs to send several messages simultaneously,
then the adversary is only allowed to corrupt this party before or after it sent
all the messages (that is, the adversary cannot corrupt the party in the midst of
the sending). Furthermore, messages sent by any honest party Pi are guaranteed
to arrive eventually, even if Pi is later corrupted. Once a party is corrupted, the
adversary learns its internal state and the party remains corrupted until the end
of the protocol.

We assume the existence of non-interactive zero-knowledge (NIZK) proofs
and secure erasure. Moreover, we assume the existence of a trusted party that
provides the parties with public and private setup information before the exe-
cution of a protocol, more details below. The size of the setup is defined to be
the sum of the size of the total private setup information and the size of the
public setup information (hence, we count the private information of each party
separately, but the public information only once for all parties).

5.2 VACS

This subsection is devoted to the introduction of the VACS primitive. We follow
the exposition in [BKLL20].

In the efficient WeakTriples protocol, we need a primitive that allows the
parties to agree on a sufficiently large subset of their inputs satisfying a specific
predicate. This can be achieved by the VACS primitive.

Definition 2. Consider a predicate Q and an n-party protocol π, where every
party Pi has a secret input mi and outputs a multiset S of size at most n. Every
honest party’s input satisfies Q and every party terminates upon generating out-
put. We say that π is a t-secure Q-validated ACS protocol (VACS) with q-output
quality if for all adversaries corrupting up to t parties and for all inputs the fol-
lowing is satisfied:

– Q-Validity: Let S be the output of an honest party. Then for every m ∈ S,
we have Q(m) = 1.

– Consistency: All honest parties agree on S.
– q -Output Quality: The output multiset S of every honest party is of size at

least q and contains the inputs of at least q − t parties that were honest at the
beginning of the protocol.

Theorem 3. Let 0 < ε < 1/3, t � (1 − 2ε) · n/3 and q � (1 + ε/2) · 2n/3. There
exists a t-secure Q-validated ACS protocol Πq,Q

VACS with q-output quality, expected
setup size O(qκ4) and expected communication complexity O((I + κ3) · qκn),
where I is the size of any party’s secret input. In addition to the properties
of t-secure Q-validated ACS protocols, the Πq,Q

VACS protocol guarantees that the
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output multiset S contains the inputs of at least q
2 parties that were honest at

the beginning of the protocol except with probability smaller than e
−qε2

(2−3ε)(2+ε) .

The construction of Πq,Q
VACS and the proof of the first part of the theorem

can be found in [BKLL20]. The second part of the theorem can be proven using
Lemma 24 of [BKLL20].

5.3 Triple Generation

To obtain an efficient protocol for the triple generation in the atomic send model,
we start with our Triples protocol from Subsect. 3.4 and make it more efficient
using the VACS primitive, NIZK proofs and erasures. The following protocol is
inspired by the protocols in [BKLL20]. It takes as input an integer � and outputs
� encrypted multiplication triples.

Let � be the number of triples we want to generate . We assume that the parties
have access to the setup for two runs of the VACS protocol with output quality κ.
1: Each party Pj independently chooses uniformly random messages ak

j ∈ Rpk and
uniformly random elements rk

j in the randomness space for all k ∈ {1, . . . , �}.
Then, Pj computes Ak

j = Encpk(ak
j , rk

j ) and an NIZK proof pk
1,j of plaintext

knowledge with instance Ak
j and witness (ak

j , rk
j ) for all k ∈ {1, . . . , �}. Finally,

Pj erases (ak
j , rk

j ) for all k ∈ {1, . . . , �}.

2: The parties run an instance of the Πκ,Q
VACS protocol with output quality κ, where

every party Pj has input {(Ak
j , pk

1,j)}k∈{1,...,�} and Q({(Ak
j , pk

1,j)}k∈{1,...,�}) = 1
if and only if pk

1,j is a correct NIZK proof of plaintext knowledge with instance
Ak

j for all k ∈ {1, . . . , �}. The parties obtain a multiset S of size at least κ and
define Ai =

⊕
j : {(Ak

j ,pk
1,j)}k∈{1,...,�}∈S Ai

j for all i ∈ {1, . . . , �}.

3: Each party Pj independently chooses uniformly random messages bk
j ∈ Rpk and

uniformly random elements r̂k
j in the randomness space for all k ∈ {1, . . . , �}.

Then, Pj computes Bk
j = Encpk(bk

j , r̂k
j ) and (Ck

j , r̃k
j ) = Blind(bk

j �pk Ak), where
Blind is the blinding algorithm of the encryption scheme. Furthermore, Pj com-
putes an NIZK proof pk

2,j of correct multiplication with instance (Bk
j , Ak, Ck

j )
and witness (bk

j , r̂k
j , r̃k

j ) for all k ∈ {1, . . . , �}. Finally, Pj erases (bk
j , r̂k

j ), r̃k
j and

the information used in the blinding algorithm for all k ∈ {1, . . . , �}.

4: The parties run an instance of the VACS protocol Πκ,Q′
VACS with output qual-

ity κ, where every party Pj has input {(Bk
j , Ck

j , pk
2,j)}k∈{1,...,�} and Q′ is

defined such that Q′({(Bk
j , Ck

j , pk
2,j)}k∈{1,...,�}) = 1 if and only if pk

2,j is a cor-
rect NIZK proof of correct multiplication with instance (Bk

j , Ak, Ck
j ) for all

k ∈ {1, . . . , �}. The parties obtain a multiset S′ of size at least κ and define Bi =⊕
j : {(Bk

j ,Ck
j ,pk

2,j)}k∈{1,...,�}∈S′ Bi
j and Ci =

⊕
j : {(Bk

j ,Ck
j ,pk

2,j)}k∈{1,...,�}∈S′ Ci
j for

all i ∈ {1, . . . , �}.
5: Every party outputs (Ai, Bi, Ci) for all i ∈ {1, . . . , �}.

Protocol WeakTriples

Remark 7. Because we want to ensure that all parties who contribute to the
triples know the plaintexts underlying their contributions and because the VACS
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protocol requires Q and Q′ (defined in steps 2 and 4) to be predicates on the
inputs of the parties to the VACS protocol, we need to use NIZK proofs.

To prove security of the above WeakTriples protocol, we give the simulator
SWeakTriples who does not have access to the secret keys of honest parties.

The simulator SWeakTriples executes the protocol acting honestly on behalf of the
honest parties. If the adversary decides to corrupt a party Pi at any point of the
protocol, SWeakTriples gives all the information it holds on behalf of Pi about the
execution of the WeakTriples protocol to the adversary.

Simulator SWeakTriples

Lemma 2. For 0 < ε < 1/3 and t � (1 − 2ε) · n/3, the WeakTriples protocol
above satisfies the following:

– Termination: All honest parties terminate the protocol and output � triples.
– Consistency: All honest parties output the same triples.
– Correctness: The output triples are correct.
– Secrecy: The plaintexts underlying the output triples are unknown to the

adversary. In other words, the adversary has no more information about these
plaintexts than that the plaintexts underlying the third components are the
product of the plaintexts underlying the corresponding first and second com-
ponents.

– Computational Uniform Randomness: The distribution of the plaintexts
underlying any output triple is computationally indistinguishable from the
uniform distribution over the set of all triples (a, b, a ·pk b) for a, b ∈ Rpk.

– Independence: The plaintexts underlying any output triple are computation-
ally independent of the plaintexts underlying all other output triples.

– Privacy: The adversary’s views in the simulation and the protocol are perfectly
indistinguishably distributed, i.e. the adversary does not learn anything.

– Communication complexity: The protocol has expected communication com-
plexity O(�κ3n + κ5n).

The proof is given in the full version [CHL21].

5.4 Main Theorem for the Atomic Send Model

By replacing the instance of the Triples protocol in step 4 of the Preparation
Phase of the MPC protocol in Appendix B by the WeakTriples protocol above,
we can improve the communication complexity of our MPC protocol and achieve
O(n · poly(κ)) bits per multiplication. Furthermore, using the reliable broadcast
protocol presented in [BKLL20] in our BrACS protocol, we can reduce the com-
munication complexity per input and obtain the following theorem.
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Theorem 4. Let 0 < ε < 1/3 and t � (1 − 2ε) · n/3. There exists an MPC
protocol that t-securely realizes the ideal functionality in Subsect. 4.1 in the
KG-hybrid atomic send model and that has expected communication complexity
O(cMnκ3 + Dn2κ + cInκ2 + cOn3κ + n3κ + nκ5), where D is the multiplicative
depth of the circuit, cM is the number of multiplication gates, cI is the number
of input gates and cO is the number of (public and private) output gates in the
circuit.

A Details of the Subprotocols

A.1 Decryption protocols

Private Decryption. The private decryption protocol PrivDec takes the pub-
lic key pk, a ciphertext c and a party P as public input and the secret keys
sk1, . . . , skn as private inputs. The protocol has no public nor private output for
all parties except for P , who privately outputs the plaintext underlying c. This
section is along the lines of [BH08,CHP12,CP15].

1: Every party Pi computes (ci, p
c
i ) = DecShare(i, pk, ski, c), sends (ci, p

c
i ) to P

and terminates.
2: As soon as P has received at least t + 1 pairs (ck, pc

k) from distinct parties Pk

such that pc
k is a valid proof for ck from Pk, P uses the Comb algorithm to

compute m = Comb(pk, c, {(ck, pc
k)}k∈{1,...,n}), where P sets all the values that

is has not received to ⊥. Then P outputs m.

Protocol PrivDec

Lemma 3. Every party that remains uncorrupted until the end of the execution
terminates the PrivDec protocol. Furthermore, if P is honest at the end of the
protocol, then its output m is the correct decryption of c even in the presence
of an adaptive adversary actively corrupting up to t < n/3 parties. The protocol
has communication complexity O(nκ).

Proof. In this whole proof, an honest party is a party that is never corrupted by
the adversary and remains honest during the whole execution of the protocol.
Termination: Clearly all honest parties apart from P terminate as they only
need to compute a decryption share and send it to P . Furthermore, if P is hon-
est, then it terminates since all honest parties send correct decryption shares.
Hence, P eventually receives at least n− t � t+1 correct decryption shares from
distinct parties, runs Comb and obtains and outputs a message m.
Correctness: As we saw above, P eventually receives at least t+1 correct decryp-
tion shares from distinct parties. Hence, thanks to correctness of the threshold
homomorphic encryption scheme, we can deduce that P can compute the correct
decryption m of c. If P is honest, then it computes and outputs m.
It is easy to see that the communication complexity is indeed O(nκ) .
The proof works for an adaptive adversary corrupting at most t parties because
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the reasoning above is independent of which parties the adversary corrupts at
what point in time (we only talk about parties that remain honest during the
whole execution of the protocol).

Amortized Public Decryption. The public reconstruction protocol PubDec
takes the public key pk and T = n − 2t ciphertexts c1, . . . , cT as public inputs
and the secret keys sk1, . . . , skn as private inputs. The protocol publicly outputs
the plaintexts m1, . . . ,mT underlying the ciphertexts c1, . . . , cT . This section is
along the lines of [DN07,CHP12,BH08,CP15].

1: Every party defines the polynomial g(x) =
∑T

j=1 xj−1 �pk cj and computes
vi = g(αi) for all i ∈ {1, . . . , n}.

2: The parties use their secret keys to run PrivDec(Pi, vi) for all i ∈ {1, . . . , n}. Let
ui be Pi’s private output from PrivDec(Pi, vi) for all i ∈ {1, . . . , n}.

3: Every party Pi ∈ P sends ui to all other parties.
4: Every party Pi ∈ P locally defines a set P ′

i of parties and adds party Pk to P ′
i

as soon as it receives u′
k from Pk.

For j = 0, 1, . . . t, as soon as |P ′
i| � T + t + j, Pi applies an efficient algo-

rithm PolyFind (for example the Berlekamp-Welch decoder) on the points
{(αk, u′

k)}Pk∈P′
i

to check whether there exists a polynomial p of degree at most
T −1 such that at least T + t of the input points lie on p. If this is the case, then
PolyFind outputs this polynomial and Pi outputs m1 = p1, . . . , mT = pT , where
p(x) =

∑T
j=1 xj−1 ·pk pj , and terminates. Otherwise, Pi proceeds with iteration

j + 1.

Protocol PubDec

Lemma 4. Every party that remains uncorrupted until the end of the execution
terminates the PubDec protocol and outputs the correct decryptions of c1, . . . , cT

even in the presence of an adaptive adversary actively corrupting up to t < n/3
parties. The protocol has communication complexity O(n2κ).

Proof. In this whole proof, an honest party is a party that is never corrupted by
the adversary and remains honest during the whole execution of the protocol.
Termination: (taken from [CHP12]) Since all honest parties participate in the
PrivDec(Pi, vi) protocols for all i ∈ {1, . . . , n}, termination of the PrivDec pro-
tocol implies that all honest parties terminate steps 1–3. Next, define the poly-
nomial g′(x) =

∑T
j=1 xj−1 ·pk mj . Since cj is an encryption of mj under pk for

all j ∈ {1, . . . , T}, the homomorphic property of the encryption scheme implies
that g(x) is an encryption of g′(x) under pk for all x ∈ Rpk. In particular, this
holds for x = αk for all k ∈ {1, . . . , n}. Hence, by the correctness of the PrivDec
protocol and by definition of uk, we have uk = g′(αk) for all honest parties Pk.
Now, let Pi be an arbitrary honest party and let ĵ be the first iteration when
all honest parties are in P ′

i (note that every honest party eventually includes all
honest parties in P ′

i and since there are at most n = T + 2t parties, we have
ĵ � t). Then, either PolyFind already found a polynomial in iteration j for j < ĵ
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and Pi terminated before iteration ĵ or in iteration ĵ, P ′
i is of size T + t + ĵ and

contains n− t = T + t honest parties. Hence, since g′ is a polynomial of degree at
most T −1 and at least T +t input points (namely the points from honest parties)
lie on g′, we can be sure that the PolyFind algorithm finds a polynomial and Pi

terminates in step ĵ. Hence, after at most ĵ � t iterations, Pi terminates. Note
that if in an iteration j the PolyFind algorithm fails to find a polynomial that
passes the checks, then Pi has not received all the u′

k = uk’s from honest parties
as otherwise the PolyFind algorithm would have succeeded (see above). Hence,
if in an iteration the PolyFind algorithm fails to compute a suitable polynomial,
then it is ok for Pi to proceed with the next iteration because it is guaranteed
that Pi can eventually add at least one party to P ′

i and as soon as Pi has all the
uk’s from honest parties (i.e. all honest parties are in P ′

i), it can terminate (and
this will happen before the tth iteration ended).

Correctness: Let Pi be any honest party. As Pi terminates, it found a polynomial
p of degree at most T − 1 and a set of parties P ′′

i of size at least T + t such that
Pi received a message u′

k from all Pk ∈ P ′′
i and u′

k = p(αk) for all Pk ∈ P ′′
i . Since

there are at most t corrupted parties, at least T of the parties in P ′′
i are honest.

In the proof for termination, we saw that for honest parties, u′
k = uk = g′(αk).

Therefore, there exist T distinct elements αk with p(αk) = g′(αk). Since T
points uniquely define a polynomial of degree at most T − 1 and both p and
g′ are polynomials of degree at most T − 1, we can conclude that p = g′ and
Pi can correctly compute and output the messages m1, . . . ,mT underlying the
ciphertexts c1, . . . , cT .

The claim about the communication complexity follows directly from the
communication complexity of the PrivDec protocol.

Again, the proof works for an adaptive adversary corrupting at most t par-
ties because the reasoning above is independent of which parties the adversary
corrupts at what point in time (we only talk about parties that remain honest
during the whole execution of the protocol).

Remark 8. In every instance of the PubDec protocol, each party executes the
PolyFind algorithm up to t + 1 times. By using local player elimination, we
can reduce the number of runs of the PolyFind algorithm in m instances of the
PubDec protocol to t + m per party (instead of m(t + 1)). More precisely, if in
iteration j the run of the PolyFind algorithm of an honest party fails to output
a polynomial that passes the checks, then at least j + 1 of the inputs must be
wrong (otherwise the PolyFind algorithm would have succeeded). Since every
party outputs a polynomial satisfying all the checks at latest in round t, each
party can then detect which inputs were wrong and can locally eliminate the
parties that sent those wrong values. In any future run of the PolyFind algorithm
in the PubDec protocol, the party ignores the values sent from parties it locally
eliminated (respectively, it does not include parties it locally eliminated in P ′

i).

Remark 9. By reduction and by Remark 2, we can deduce that for c11, . . . , c
1
T and

c21, . . . , c
2
T two computationally indistinguishably distributed sets of T cipher-

texts with computationally indistinguishably distributed sets of underlying
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plaintexts, an instance of the PubDec protocol with (pk, c11, . . . , c
1
T ) as public

input (and sk1, . . . , skn as private inputs) is computationally indistinguishably
distributed to an instance of the PubDec protocol with (pk, c21, . . . , c

2
T ) as pub-

lic input (and sk1, . . . , skn as private inputs) even in the presence of an active
adaptive adversary corrupting up to t < n/3 parties.

A.2 Multiplication

This subsection presents the multiplication protocol which is based on [DN07]
and the Multiplication Gate in the Computation Phase protocol of [BH08].
The protocol uses circuit randomization which was originally introduced in
[Bea92].

Let T = �n−2t
2 	. Our multiplication protocol processes up to T independent

multiplication gates at the same time. To ensure independence of the gates,
every run of the multiplication protocol only considers multiplication gates with
a specific multiplicative depth.

The multiplication protocol takes as input T multiplication gates m1, . . . ,mT

with the same multiplicative depth, the 2T inputs {(Xi, Yi)}i∈{1,...,T} (encrypt-
ing the values {(xi, yi)}i∈{1,...,T}) to the given multiplication gates and the
T encrypted multiplication triples {(Ai, Bi, Ci)}i∈{1,...,T} (encrypting the val-
ues {(ai, bi, ai ·pk bi)}i∈{1,...,T}) associated with the given multiplication gates
m1, . . . ,mT . We require that the multiplication triples underlying the encrypted
triples {(Ai, Bi, Ci)}i∈{1,...,T} are unknown to the adversary and computation-
ally uniformly and independently distributed over the space of all multiplication
triples (the latter is equivalent to the plaintexts underlying the first and second
components of the triples being computationally uniformly and independently
distributed and the third component being the product of the first two). The
protocol publicly outputs T encryptions {Zi}i∈{1,...,T}, where the underlying
plaintexts zi are equal to xi ·pk yi for all i ∈ {1, . . . , T}.

1: Every party locally computes Xi �pk Ai encrypting xi −pk ai and Yi �pk Bi

encrypting yi−pkbi for all i ∈ {1, . . . , T} using the “+pk-homomorphic” property
of the encryption scheme.

2: The parties use their secret keys to run PubDec({Xi �pk Ai}i∈{1,...,T}, {Yi �pk

Bi}i∈{1,...,T}) and obtain xi −pk ai and yi −pk bi for all i ∈ {1, . . . , T}.
3: Each party locally computes Ei = Encpk((xi −pk ai) ·pk (yi −pk bi), e) for all

i ∈ {1, . . . , T}, where e is the neutral element of the randomness space. Then,
it computes Zi = Ei ⊕pk [(xi −pk ai) �pk Bi] ⊕pk [(yi −pk bi) �pk Ai] ⊕pk Ci for
all i ∈ {1, . . . , T}.

4: Every party outputs {Zi}i∈{1,...,T}.

Protocol Multiplication

Remark 10. 1. If n−2t is odd, then the parties only input n−2t−1 ciphertexts
to the PubDec protocol in step 2. In that case, the parties additionally give
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Encpk(0pk, e) as input to the PubDec protocol, where e is again the neu-
tral element of the randomness space, obtain the plaintext 0pk as one of the
outputs of PubDec and simply disregard it in all further steps.

2. If only T ′ < T multiplication gates are input to the multiplication protocol
(for example when there are less than T multiplication gates with the same
multiplicative depth in a given circuit), then the parties execute the protocol
normally doing all the computations for indices in {1, . . . , T ′} instead of in
{1, . . . , T} and adding the encryption Encpk(0pk, e) to the inputs of the Pub-
Dec protocol n − 2t − 2T ′ times (where e is again the neutral element of the
randomness space).

The multiplication protocol achieves the following.

Proposition 1. Let m1, . . . ,mT be T multiplication gates with the same mul-
tiplicative depth and let {(Ai, Bi, Ci)}i∈{1,...,T} be the encrypted multiplication
triples associated with the given gates. Furthermore, let {(X1

i , Y 1
i )}i∈{1,...,T} and

{(X2
i , Y 2

i )}i∈{1,...,T} be two computationally indistinguishably distributed sets of
2T ciphertexts. Then, even in the presence of an active adaptive adversary
corrupting up to t < n/3 parties, an execution of the multiplication protocol
with {(X1

i , Y 1
i )}i∈{1,...,T} as inputs to the given gates is computationally indis-

tinguishably distributed from an execution of the multiplication protocol with
{(X2

i , Y 2
i )}i∈{1,...,T} as inputs to the given gates.

Proof. Using reduction it is easy to see that step 1 is computationally indistin-
guishably distributed in both executions (even if the adversary corrupts a party
during step 1).

For step 2, we know by reduction that the ciphertexts ({X1
i �pk Ai}i∈{1,...,T},

{Y 1
i �pk Bi}i∈{1,...,T}) and ({X2

i �pk Ai}i∈{1,...,T}, {Y 2
i �pk Bi}i∈{1,...,T}) are

computationally indistinguishably distributed. Furthermore, we know that the
plaintexts underlying {Ai}i∈{1,...,T} and the plaintexts underlying {Bi}i∈{1,...,T}
are unknown to the adversary and computationally uniformly and independently
distributed. Therefore, the plaintexts underlying {X1

i �pk Ai}i∈{1,...,T}, {Y 1
i �pk

Bi}i∈{1,...,T}), {X2
i �pk Ai}i∈{1,...,T} and {Y 2

i �pk Bi}i∈{1,...,T}) are all unknown
to the adversary and computationally uniformly and independently distributed
and thus, they are computationally indistinguishably distributed. By Remark 9,
we can conclude that step 2 of the multiplication protocol is computationally
indistinguishably distributed in both executions, even if the adversary corrupts
a party.

As for step 1, a reduction argument shows that steps 3 and 4 maintain com-
putational indistinguishability (even if the adversary corrupts a party during
these steps).

Proposition 2. The multiplication protocol communicates O(n2κ) bits.

B Protocol

The protocol we present uses a key generation oracle (KG) which sets up all
the public and private keys used in our protocol, gives the keys to the entitled
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parties and provides public Lagrange arguments for all parties. We assume that
the simulator has access to an efficient key generation algorithm (KGA) that
computes a computationally indistinguishably distributed set of public and pri-
vate keys and Lagrange arguments. Furthermore, we assume that the parties
have access to an encoder and a decoder algorithm that transform values from
the message space of the encryption scheme to {0, 1}∗ and vice versa. We do
not explicitly mention when the parties use the encoder and decoder algorithms.
They are implicitly used whenever a transformation is necessary.
The description of the protocol follows the structure of the FuncEvalf Algorithm
in [CDN00].

Preparation Phase:

1: Every party Pi receives a security parameter κ, the number of parties n, a secret
input xi ∈ {0, 1}∗ and a random string bi ∈ {0, 1}∗ as input. The adversary is
given the inputs κ, n, a random string b ∈ {0, 1}∗ and an auxiliary string
a ∈ {0, 1}∗.

2: The parties call the key generation oracle KG. Each party Pi gets the common
inputs pk, K, R, {Kν}ν , {αi}i∈{1,...,n} and the secret inputs ski, {Ki

χ}χ, where
(pk, sk1, . . . , skn) is a uniformly random threshold encryption key, K is a uni-
formly random encryption of 1pk under pk, R is a uniformly random encryption
of 0pk under pk, {Kν}ν are the public keys used for the zero-knowledge proofs
and the commitment scheme, {Ki

χ}χ are the private keys of Pi used for the zero-
knowledge proofs and the commitment scheme and {αi}i∈{1,...,n} are Lagrange
arguments.

3: On input pk, every party computes the arithmetic circuit over Rpk corresponding
to the function f evaluated on n inputs. We denote the gates in the circuit by
H1

pk, . . . , H l
pk.

4: Let cM be the number of multiplication gates in the circuit. The parties execute
the Triples protocol with input cM and obtain a set of triples {(Ai, Bi, Ci)}i∈I ,
where I is the set of all indices of multiplication gates in the circuit.

Computation Phase:

1: Each party Pi commits to its secret input xi towards every party Pj for all j ∈
{1, . . . , n} under the corresponding commitment key. For all (i, j) ∈ {1, . . . , n},
let Ci→j be the commitment to xi from Pi towards Pj and let (xi, cij) be the
opening information for Ci→j .

2: Each party Pi chooses a uniformly random value rxi from the randomness space.
The parties run the BrACS protocol from Appendix B with public input (pk, K)
and secret input (xi, rxi , {cij}j∈{1,...,n}, {Ci→j}j∈{1,...,n}, {Cj→i}j∈{1,...,n}) for
every party Pi and obtain as output a set S and encryptions {EncK

pk(xi)}i : Pi∈S .
3: Evaluate the circuit as in [CDN00]: While there are gates that have not been

evaluated yet, let J ⊆ {1, . . . , l} be the set of non-evaluated gates that are ready
to be evaluated. Evaluate all gates in J in parallel by doing for every j ∈ J :
a) If Hj

pk is an input gate for a party Pi ∈ S, then every party sets Encpk(hj) =

EncK
pk(xi). If Hj

pk is an input gate for a party Pi /∈ S, then every party

Protocol
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computes d �pk K using the “Multiplication by constant” property of the
encryption scheme and sets Encpk(hj) = d�pk K, where d is a default value.

b) If Hj
pk is a constant input gate for a constant c, then every party sets

Encpk(hj) = c �pk K by using the “Multiplication by constant” property
of the encryption scheme.

c) If Hj
pk is an addition gate for Encpk(hj1) and Encpk(hj2), every party sets

Encpk(hj) = Encpk(hj1) ⊕pk Encpk(hj2) using the “+pk-homomorphic” prop-
erty of the encryption scheme.

d) If Hj
pk is a multiplication by a constant gate for values c and Encpk(hj1),

every party sets Encpk(hj) = c �pk Encpk(hj1) using the “Multiplication by
constant” property of the encryption scheme.

e) If Hj
pk is a multiplication gate , the parties wait until all the multiplication

gates with the same multiplicative depth as Hj
pk are ready to be evaluated.

As soon as this is the case , the parties split these multiplication gates into
blocks of �n−2t

2
	 gates. For each block, the parties use the multiplication

protocol from Appendix A.2 with the following input: the gates in the block,
their input ciphertexts and the encrypted multiplication triples associated
with the gates in the considered block. From this, the parties obtain the
encrypted outputs of all the multiplication gates with the same multiplicative
depth as Hj

pk.
Let Encpk(s) be the output of the evaluated circuit.

4: Every party Pi generates a uniformly random ri from the message space Rpk.
Each Pi commits to ri towards every party Pj for all j ∈ {1, . . . , n} under
the corresponding commitment key. For all (i, j) ∈ {1, . . . , n}, let Bi→j be the
commitment to ri from Pi towards Pj and let (ri, bij) be the opening information
for Bi→j .

5: Every party Pi chooses a uniformly random value rK
ri

from the randomness space.
Parties run the BrACS protocol (see Appendix B) with public input (pk, K) and
secret input (ri, r

K
ri

, {bij}j∈{1,...,n}, {Bi→j}j∈{1,...,n}, {Bj→i}j∈{1,...,n}) for every
party Pi. The parties get as output a set S′ and encryptions {EncK

pk(ri)}i : Pi∈S′ .
6: Every party Pi chooses a uniformly random value rR

ri
from the randomness space.

Then, the parties run the BrACS protocol with public input (pk, R) and secret
input (ri, r

R
ri

, {bij}j∈{1,...,n}, {Bi→j}j∈{1,...,n}, {Bj→i}j∈{1,...,n}) for every party
Pi. In this execution of the BrACS, we take a slightly modified ACS property
Q, namely to all the conditions described in the BrACS protocol, we add that
a party Pj only likes another party Pi if Pj likes Pi for the ACS property of the
BrACS execution in step 5 (it is okay if Pj only likes Pi after the BrACS from
step 5 terminated and input 0 to BAi in the ACS of step 5). The parties obtain
as output a set S′′ and encryptions {EncR

pk(ri)}i : Pi∈S′′ .

7: Let Ŝ = S′ ∩S′′. Let I be the set of indices of the parties in Ŝ and let {λi}i∈I be
the Lagrange coefficients of degree |I|−1 over Rpk such that for any polynomial
g of degree at most |I| − 1 we have g(0pk) =

∑
i∈I λi ·pk g(αi) (precisely λi =∏

j∈I
j �=i

(0pk − αj) ·pk (αi − αj)
−1 for all i ∈ I). Every party Pi locally computes

Encpk(s)′ = Encpk(s)
⊕

pk
i∈I

(λi �pk EncR
pk(ri)).

8: The parties use their secret keys to run PrivDec(Pi, Encpk(s)′) for all i ∈
{1, . . . , n} and all parties obtain s.
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9: The parties run the reliable consensus protocol RC taking as secret input the
value s decrypted in the previous step (as soon as they obtain it).

BrACS. In this subsection, we discuss the BrACS protocol used in our MPC
protocol. The subprotocol takes as public input the public key pk of the encryp-
tion scheme and an encryption M (in our protocol and simulation this is some-
times an encryption of 1pk and other times an encryption of 0pk). The message
encrypted by M is denoted by m. For each party Pi the protocol takes as secret
input a message ai, a randomness rai

, n values cij and 2n commitments Cj→i

and Ci→j for j ∈ {1 . . . , n}. The Cj→i’s represent commitments from Pj towards
Pi. If Pi and Pj are both honest, (ai, cij) is the opening information for the com-
mitment Ci→j that Pj holds. The protocol publicly outputs a set S of parties
and for each party Pi ∈ S it publicly outputs an encryption of ai ·pkm.

1: Every party Pi generates an encryption of ai ·pk m by computing EncM
pk(ai, rai)

and reliably broadcasts EncM
pk(ai, rai) using the RBC protocol.

2: Every Pi uses the “proof of compatible commitment” property in Subsect. 2.4
and proves to all Pj for j ∈ {1, . . . , n} with instance (EncM

pk(ai, rai), Ci→j) and
witness (ai, rai , cij).

3: Let Q be the property such that a party Pk satisfies Q towards another party
Pj if and only if the reliable broadcast of Pk in step 1 terminated for Pj and
the proof in step 2 was accepted by Pj . The parties run the ACS protocol with
property Q and obtain a set S ⊆ P. Every Pi waits until the reliable broadcast
of all parties Pk ∈ S terminated. Then each party outputs S and for each Pk ∈ S
the value received from the terminated reliable broadcast.

Protocol BrACS

Proposition 3. The BrACS protocol achieves the following properties.

a) The protocol terminates for all honest parties.
b) All parties agree on the set S and the encryptions of parties in S.
c) The set S is of size at least n − t.
d) Every honest party Pi in S succeeds to reliably broadcast a correct encryption

EncM
pk(ai) of ai ·pk m. This means that the reliable broadcast of EncM

pk(ai)
terminates for all honest parties and that at least one honest party Pj accepts
the proof given by Pi in step 2, namely that Pi knows a preimage of EncM

pk(ai)
under (pk,M) and that the first component of this preimage is equal to the
value Pi committed to with Ci→j.
Furthermore, for every corrupted party Pi in S, the reliable broadcast of y of
Pi in step 1 terminates for all honest parties and at least one honest party Pj

accepts the proof (see above) given by Pi in step 2. Hence, with high probability,
Pi knows values (a′

i, c
′
ij) such that y = EncM

pk(a′
i) and (a′

i, c
′
ij) is the opening

information to Ci→j.

The proof is straightforward and therefore omitted.
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Abstract. Secure computation enables n mutually distrustful parties
to compute a function over their private inputs jointly. In 1988 Ben-Or,
Goldwasser, and Wigderson (BGW) demonstrated that any function can
be computed with perfect security in the presence of a malicious adver-
sary corrupting at most t < n/3 parties. After more than 30 years, proto-
cols with perfect malicious security, with round complexity proportional
to the circuit’s depth, still require sharing a total of O(n2) values per
multiplication. In contrast, only O(n) values need to be shared per mul-
tiplication to achieve semi-honest security. Indeed sharing Ω(n) values
for a single multiplication seems to be the natural barrier for polynomial
secret sharing-based multiplication.

In this paper, we close this gap by constructing a new secure com-
putation protocol with perfect, optimal resilience and malicious security
that incurs sharing of only O(n) values per multiplication, thus, match-
ing the semi-honest setting for protocols with round complexity that is
proportional to the circuit depth. Our protocol requires a constant num-
ber of rounds per multiplication. Like BGW, it has an overall round
complexity that is proportional only to the multiplicative depth of the
circuit. Our improvement is obtained by a novel construction for weak
VSS for polynomials of degree-2t, which incurs the same communication
and round complexities as the state-of-the-art constructions for VSS for
polynomials of degree-t.

Our second contribution is a method for reducing the communication
complexity for any depth-1 sub-circuit to be proportional only to the
size of the input and output (rather than the size of the circuit). This
implies protocols with sublinear communication complexity (in the size
of the circuit) for perfectly secure computation for important functions
like matrix multiplication.
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1 Introduction

Secure multiparty computation is a major pillar of modern cryptography. Break-
through results on secure multiparty computation in the late 80’ prove feasibility
with optimal resilience: perfect, statistical and computational security can be
achieved as long as t < n/3 [7], t < n/2 (assuming broadcast) [36] and t < n
[27,40], respectively, where n is the number of computing parties such that at
most t of them are controlled by a malicious adversary.

In this paper we focus on secure computation with perfect security, which is
the strongest possible guarantee: it provides unconditional, everlasting security.
Such protocols come with desirable properties. They often guarantee adaptive
security [12,32] and remain secure under universal composition [11]. A central
foundational result in this context is the Completeness Theorem of Ben-or, Gold-
wasser, and Wigderson [7] from 1988:

Theorem 1.1 (BGW with improvements [3,7,18,25]- informal). Let f be an
n-ary functionality and C its arithmetic circuit representation. Given a syn-
chronous network with pairwise private channels and a broadcast channel, there
exists a protocol for computing f with perfect security in the presence of a static
malicious adversary controlling up to t < n/3 parties, with round complexity
O(depth(C)) and communication complexity of O(n4 · |C|) words in point-to-
point channels and no broadcast in the optimistic case, and additional Ω(n4 · |C|)
words of broadcast in the pessimistic case.1

The communication complexity in the above statement (and throughout the
paper) is measured in words (i.e., field elements), and we assume a word of size
O(log n) bits.

In the past three decades there has been great efforts to improve the commu-
nication complexity of the BGW protocol [3,25]. Theorem 1.1 states the round
and communication complexity of the protocols after these improvements. Most
recently, Goyal, Liu and Song. [28], building upon Beaver [5], and Beerliová and
Hirt [6], achieved O(n|C| + n3) communication words (including all broadcast
costs) at the expense of increasing the round complexity to O(n + depth(C)).

In some natural setting, e.g., secure computation of shallow circuits in high
latency networks, this additive O(n) term in the round complexity might render
the protocol inapplicable. This state of affairs leads to the fundamental ques-
tion of whether the communication complexity of perfectly secure computation
can be improved without sacrificing the round complexity. Moreover, from the-
oretical perspective, the tradeoff between round complexity and communication
complexity is an interesting one.

1 In the optimistic case the adversary does not deviate from the prescribed protocol.
Thus, in the pessimistic case (when it does deviate from the protocol) the adversary
might only make the execution more expensive.
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1.1 Our Results

We show an improvement of the communication complexity of perfectly secure
protocols, without incurring any cost in round complexity. Notably, our improve-
ment applies both to the optimistic case and to the pessimistic case:

Theorem 1.2 (Main technical result - informal). Let f be an n-ary function-
ality and C its arithmetic circuit representation. Given a synchronous network
with pairwise private channels and a broadcast channel, there exists a protocol
for computing f with perfect security in the presence of a static malicious adver-
sary controlling up to t < n/3 parties, with round complexity O(depth(C)) and
communication complexity of O(n3 · |C|) words on point-to-point channels and
no broadcast in the optimistic case, and additional O(n3 · |C|) words of broadcast
in the pessimistic case.

Our result strictly improves the state of the art and is formally incomparable
to the result of Goyal et al. [28]. Our protocol will perform better in high-latency
networks (e.g., the internet) on shallow circuits when depth(C) � n. Whereas
the protocol of [28] performs better in low-latency networks (e.g., LAN), or when
depth(C) ≈ Ω(n).

Sub-linear perfect MPC for sub-circuits of depth-1. As our second main result,
we show for the first time that for a non-trivial class of functions, there is in fact a
sub-linear communication perfectly secure MPC (in the circuit size). Specifically,
we design a perfectly secure MPC that supports all functionalities that can be
computed by depth 1 circuits. The communication complexity of our protocol
depends only on the input and output sizes of the function, but not on the circuit
size, i.e., the number of multiplications. We prove the following:

Theorem 1.3. Let n > 3t, and let F be a finite field with |F| > n. For every
arithmetic circuit G : FL → F

M of multiplication depth 1 (i.e., degree-2 poly-
nomial), there exists a perfect t-secure protocol that computes (y1, . . . , yM ) =
G(x1, . . . , xL) in O(1) rounds and O((M + L) · n3) words over the point-to-
point channels in the optimistic case, and additional O((M + L) · n3) broadcast
messages in the pessimistic case. Specifically, the communication complexity is
independent of |G|.

The above theorem can also be applied to compute circuits with higher depth,
while paying only communication complexity that is proportional to the number
of wires between the layers, and independent of the number of multiplications
in each layer. Similar techniques were shown in the statistical case [14], but no
protocol is known for perfect security.

Application: Secure Matrix Multiplication. As a leading example of the useful-
ness of our depth 1 circuit protocol, consider matrix multiplication of two T ×T
matrices. This operation has inputs and outputs of size O(T 2), but implement-
ing it requires O(T 3) multiplications (at least when implemented näıvely). The
starting point (Theorem 1.1) is Ω(T 3 · n4) point-to-point in the optimistic case
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(and additional Ω(T 3 · n4) words of broadcast in the pessimistic case. Theo-
rem 1.3 improves the communication complexity to O(T 2 · n3) in the point-to-
point channels with no additional broadcast in the optimistic case (and addi-
tional O(T 2 · n3) words on broadcast in the pessimistic case). Our protocol also
achieves O(1) rounds in both the optimistic and pessimistic cases.

Secure matrix multiplication is a key building block for a variety of appeal-
ing applications. For example, anonymous communication [1] and secure col-
laborative learning. The latter involves multiplication of many large matrices
(see [4,13,33–35,39], to name a few). For instance, the deep convolutional neu-
ral network (CNN) ResNet50 [38] requires roughly 2000 matrix multiplications,
which, when computed securely, results in more than 4 billion multiplication
gates. Using our protofocol of matrix multiplication, computing this task reduces
by order of magnitudes, the communication to be proportional to computing only
millions multiplications.

Secure Multiplication: A Natural Barrier of Ω(n) Secret Sharings
We give a very high level overview of our technical controbution, pointing to
the core of our improvements. When viewed from afar, all secret-sharing based
MPC protocols have a very similar flow. The starting point property is that
polynomial secret sharing is additively homomorphic. This allows computing any
linear combination (additional and multiplication by public constants) of secrets
locally and with no interaction. The challenge is with multiplication gates: while
multiplication can also be applied homomorphically (and non-interactively), it
increases the degree of the underlying polynomial that hides the secret. Secure
multiplication uses the fact that polynomial interpolation is just a linear combi-
nation of points on the polynomial, and hence a central part of the computation
can be applied locally.

Given shares of the two inputs, every party shares a new secret which is its
locally computed multiplication of its two shares. Then, all these new shares are
locally combined using the linear combination of the publicly known Lagrange
coefficients. This results in the desired new sharing of the multiplication of the
two inputs.

This elegant framework for secure multiplication embeds a natural commu-
nication complexity barrier: each multiplication requires Ω(n) secret sharing
(each party needs to secret share its local multiplication). In the malicious case,
the secret sharing protocol is Verifiable Secret Sharing (VSS), hence, the total
communication complexity in this framework is at least Ω(n · comm(V SS)).

State of the art MPC for almost all settings matches this natural bar-
rier, obtaining constant round protocols with optimal resilience using O(n ·
comm(V SS)) communication per multiplication complexity, where V SS is the
best secret sharing for that setting.

The only exception we are aware of is the family pf BGW protocols for a
malicious adversary, where all known improvements until now [3,7,25] require
Ω(n2 · comm(V SS)) communication. This is because each party needs to share
n invocations of VSSs of degree-t polynomials in order to prove that the secret
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it shared for the product is indeed equal to multiplication of the already shared
multiplicands.

Weak VSS and the complexity of perfect MPC. The main technical contribution
of this work is a multiplication protocol that meets the natural barrier and
achieves communication complexity of O(n · comm(V SS)). Since comm(V SS) is
O(n2) words in the optimistic case (and no broadcast) and O(n2) over the point-
to-point channels and additional O(n2) words of broadcast in the pessimistic
case, Theorem 1.2 is obtained. The improvement can thus be described as follows:

– Semi-honest BGW requires O(n · comm(SS)) communication per multiplica-
tion.

– Malicious BGW requires O(n2 · comm(V SS)) communication per multiplica-
tion.

– Our malicious protocol requires O(n · comm(V SS)) communication per mul-
tiplication.

Our improved efficiency is obtained by replacing n invocations of degree-t
VSSs with just one invocation of a weak VSS for degree-2t, which we denote by
WSS. By weak VSS, we refer to the setting in which the parties’ shares define
a single secret at the end of the sharing phase, and during the reconstruction
phase, the parties can either recover that secret or ⊥. We show that a single
weak VSS for a degree-2t polynomial (along with a constant number of strong
VSS) is sufficient to prove that the secret shared for the product is equal the
multiplication of its two already shared multiplicands.

Lemma 1.4 (informal). Given n > 3t, there is a protocol for implementing
Weak Verifiable Secret Sharing with optimal resilience, for a polynomial of
degree-2t with communication complexity of O(n2) words on point-to-point chan-
nels in the optimistic case, and additional O(n2) words of broadcast in the pes-
simistic case, and O(1) rounds.

Our new weak verifiable secret sharing of degree-2t has the same asymptotic
complexity as verifiable secret sharing of degree-t. In addition to improving the
efficiency of the core building block in secure computation (i.e. the multiplica-
tion), we believe it also makes it simpler, which is a pedagogical benefit.

Adaptive Security and UC. Protocols that achieve perfect security have sub-
stantial advantage over protocols that are only computationally secure: It was
shown [32] that perfectly secure protocols in the stand-alone setting with a
black-box straight-line simulator are also secure under universal composition
[11]. Moreover, it was shown [12] that perfectly secure protocols in presence of a
static malicious adversary (under the security definition in [22]) enjoy also per-
fect security in the presence of an adaptive malicious adversary, albeit with the
weaker guarantee provided by inefficient simulation. We prove security in the
classic setting of a static adversary and stand-alone computation. This implies
UC security. The additional requirements under the definition of [22] hold in our
protocols, and thus we derive also security in the presence of adaptive adversary
(with inefficient simulation).
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The Broadcast Channel Model. We analyze our protocol in the broadcast model
and count messages sent over private channels and over the broadcast channel
separately. In our setting (t < n/3) the broadcast channel can also be simulated
over the point-to-point channels. However, this comes with some additional cost.
There are two alternatives: replace each broadcast use in the protocol requires
O(n2) communication and O(n) rounds [8,16], or O(n4 log n) communication and
expected constant round (even with bounded parallel composition [17,24,31]).

1.2 Related Work

Constant-Round per Multiplication. In this paper we focus on perfect security
in the presence of a malicious adversary, optimal resilience and constant round
per multiplication. Our protocol improves the state of the art in this line of
work. As mentioned in Asharov, Lindell and Rabin [3], an additional verification
protocol is needed for completing the specification of the multiplication step of
BGW. In Theorem 1.1, we ignore the cost associated with those verification steps
and just count the number of verifiable secret sharing needed, which is Ω(n2)
VSSs per multiplication gate. The protocol presented by Asharov, Lindell and
Rabin [3] also requires O(n2) VSSs per multiplication gate. Cramer, Damg̊ard
and Maurer [18] presented a protocol that works in a different way to the BGW
protocol, which also achieves constant round per multiplication. It has worst-case
communication complexity of O(n5) field elements over point-to-point channels
and O(n5) field elements over a broadcast channel. The optimistic cost is O(n4)
field elements over point-to-point channels and O(n3) field elements over the
broadcast channel.

Protocols that are Based on the Player Elimination Technique. There is a large
body of work [6,19,28–30] that improves the communication complexity of
information-theoretic protocols using the player elimination technique. All of
these protocols have a round complexity that is linear in the number of parties.
This is inherent in the player elimination technique since every time cheating
is detected, two players are eliminated and some computations are repeated.
In many cases player elimination would give a more efficient protocol than our
approach. However, there are some cases, specifically for a low-depth circuit
where n is large and over high-latency networks, in which our protocol is more
efficient. Moreover, our protocol can achieve communication complexity which
is sub-linear in the number of multiplication gates, depends on the circuits to
be evaluated. We do not know how to achieve similar results on protocols that
are based on Beaver multiplication triplets [5], such as the protocol of Goyal et
al. [28]. These lines of work are therefore incomparable.

Lower Bounds. Recently, Damg̊ard and Schwartzbach [21] showed that for any
n and all large enough g, there exists a circuit C with g gates such that any
perfectly secure protocol implementing C must communicate Ω(ng) bits. Note
that Theorem 1.3 is sub-linear (in the circuit size) only for particular kind of
circuits in which the circuit is much larger than the size of the inputs or its
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outputs. It is easy to find a circuit C with g gates in which our protocol must
communication O(n4g) in the pessimistic case. A lower bound by Damg̊ard et
al. [20] shows that any perfectly-secure protocol that works in the “gate-by-
gate” framework must communicate Ω(n) bits for every multiplication gate. Our
protocol deviates from this framework when computing an entire multiplication
layer as an atomic unit.

1.3 Open Problems

Our protocol improves the communication complexity of constant round mul-
tiplication with optimal malicious resilience from O(n2 · comm(V SS)) to O(n ·
comm(V SS)), matching the number of secret-shares in the semi-honest protocol.
The immediate open problem is exploring the optimal communication complex-
ity of verifiable secret sharing protocol. To the best of our knowledge, we are
not aware of any non-trivial lower bound for perfect VSS (also see survey by C,
Choudhury and Patra [9]). The VSS protocol requires O(n2) words in the opti-
mistic case over the point-to-point channel, and additional O(n2) words over the
broadcast channel in the pessimistic case.

Another possible direction to generalize our work is to mitigate between
the two approaches for perfect security: Design a “hybrid” protocol that com-
putes some sub-circuits using the linear communication complexity approach,
and some sub-circuits using the constant-round per multiplication approach and
achieving the best of both worlds. Another interesting direction is to make sub-
linear communication complexity improvement compatible with the protocols
that are based on multiplication triplets.

2 Technical Overview

In this section we provide a technical overview of our results. We start with an
overview of the BGW protocol in Sect. 2.1 and then overview our protocol in
Sect. 2.2.

2.1 Overview of the BGW Protocol

In the following, we give a high level overview of the BGW protocol while incor-
porating several optimization that were given throughout the years [3,25].

Let f be the function that the parties wish to compute, mapping n inputs to
n outputs. The input of party Pi is xi and its output is yi, where (y1, . . . , yn) =
f(x1, . . . , xn). On a high level, the BGW protocol works by emulating the com-
putation of an arithmetic circuit C that computes f and has three phases. In
the first phase, the input sharing phase, each party secret shares its input with
all other parties. At the end of this stage, the value of each input wire of the
circuit C is secret shared among the parties, such that no subset of t parties
can reconstruct the actual values on the wires. In the second phase, the circuit
emulation phase, the parties emulate a computation of the circuit gate-by-gate,
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computing shares on the output wire of each gate using the shares on the input
wires. At the end of this stage, the output wires’ values are secret shared among
all parties. Finally, in the output reconstruction phase, Pi receives all the shares
associated with its output wire and reconstructs its output, yi.

The invariant maintained in the original BGW protocol is that each wire in
the circuit, carrying some value a, is secret-shared among the parties using some
random polynomial A(x) of degree-t with a as its constant term. We follow the
invariant of [3], and in our protocol, the parties hold bivariate sharing and not
univariate sharing. That is, the secret is hidden using a bivariate polynomial
A(x, y) of degree-t in both variables in which the share of each party Pi is
defined as A(x, αi), A(αi, y), where αi is the evaluation point associated with
Pi. Maintaining bivariate sharing instead of univariate sharing removes one of
the building blocks in the original BGW protocol, where parties sub-share their
shares to verify that all the shares lie on a polynomial of degree-t. Obtaining
bivariate sharing essentially comes for free. In particular, when parties share a
value, they use a verifiable secret sharing protocol (VSS, see Sect. 2.2) [15,23,24],
which uses bivariate sharing to verify that all the shares are consistent. However,
in BGW, the parties then disregard this bivariate sharing and project it to
univariate sharing. We just keep the shares in the bivariate form.

The Multiplication Protocol. In the input sharing phase, each party simply shares
its input using the BGW’s VSS protocol. Emulating the computation of addition
gates is easy using linearity of the secret sharing scheme. The goal in the multi-
plication protocol is to obtain bivariate sharing of the value of the output wire
of the multiplication gate using the shares on the input wires. Let a, b be the two
values on the input wires, hidden with polynomials A(x, y), B(x, y), respectively.
The protocol proceeds as follows:

1. Each party Pi holds shares fa
i (x) = A(x, αi) and f b

i (x) = B(x, αi), each are
univariate polynomials of degree-t. Each party Pi shares a bivariate polyno-
mial Ci(x, y) of degree-t such that Ci(0, 0) = fa

i (0) · f b
i (0).

2. Using a verification protocol, each party Pi proves in perfect zero knowledge
that Ci(0, 0) = fa

i (0) · f b
i (0). We elaborate on this step below.

3. Given the shares on all (degree-t) polynomials C1(x, y), . . . , Cn(x, y), the par-
ties compute shares of the polynomial C(x, y) def=

∑n
i=1 λi · Ci(x, y), where

λ1, . . . , λn are the Lagrange coefficients, by simply locally computing a linear
combination of the shares they obtained in the previous step.

To see why this protocol is correct, observe that since each one of the polynomials
C1(x, y), . . . , Cn(x, y) is a polynomial of degree-t, then the resulting polynomial
C(x, y) is also a polynomial of degree-t. Moreover, define h(y) def= A(0, y) ·B(0, y)
and observe that h(y) is a polynomial of degree-2t satisfying h(0) = A(0, 0) ·
B(0, 0) = ab. It holds that ab = λ1 · h(α1) + . . . + λn · h(αn). Thus,

C(0, 0) def=
n∑

i=1

λi · Ci(0, 0) =
n∑

i=1

λi · fa
i (0) · f b

i (0) =
n∑

i=1

λi · h(αi) = ab ,
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as required. Crucially, each Ci(x, y) must hide h(αi) = fa
i (0) ·f b

i (0) as otherwise
the above linear combination would not result with the correct constant term.
This explains the importance of the verification protocol.

BGW’s verification protocol. In the verification protocol, the dealer holds the
univariate polynomials fa

i (x), f b
i (x) and a polynomial Ci(x, y), and each party

Pj holds a share on those polynomials, that is, points fa
i (αj), f b

i (αj) and degree-
t univariate polynomials Ci(x, αj), Ci(αj , y). The parties wish to verify that
Ci(0, 0) = fa

i (0) · f b
i (0).

Towards that end, the dealer defines random degree-t polynomials D1, . . . , Dt

under the constraint that

Ci(x, 0) = fa
i (x) · f b

i (x) −
t∑

�=1

x� · D�(x, 0) . (1)

As shown in [3,7], the dealer can choose the polynomials D1, . . . , Dt in a special
way so as to cancel all the coefficients of degree higher than t of fa

i (x) ·f b
i (x) and

to ensure that Ci(x, y) is of degree t. The dealer verifiably shares the polynomials
D1, . . . , Dt with all parties, and then each party Pk verifies that the shares
it received satisfy Eq. (1). If not, it complaints against the dealer. Note that
at this point, since all polynomials Ci,D1, . . . , Dt are bivariate polynomial of
degree-t, and fa

i (x), f b
i (x) are univariate polynomials of degree-t, it is possible

to reconstruct the shares of any party Pk without the help of the dealer. The
parties can then unequivocally verify the complaint. If a complaint was resolved
to be a true complaint, the dealer is dishonest, we can reconstruct its points and
exclude it from the protocol. If the complaint is false, we can also eliminate the
complaining party.

An honest dealer always distributes polynomials that satisfy Eq. (1). For the
case of a corrupted dealer, the term fa

i (x) · f b
i (x) − ∑t

�=1 x� · D�(x, 0) defines a
univariate polynomial of degree at most 2t for every choice of degree-t bivariate
polynomials D1, . . . , Dt. If this polynomial agrees with the polynomial Ci(x, 0)
for all honest parties, i.e., on 2t + 1 points, then those two polynomials are
identical, and thus it must hold that Ci(0, 0) = fa

i (0) · f b
i (0), as required.

2.2 Our Protocol

Simplifying the Verification Protocol. In the above verification protocol, the
dealer distributes t polynomials D1, . . . , Dt using VSS. We show how to use
a more efficient technique for accomplishing the verification task. Namely, we
introduce a weak secret sharing protocol, for sharing a polynomial D(x, y) of
degree-2t in x and degree-t in y. The dealer then chooses a single random poly-
nomial D(x, y) under the constraint that:

Ci(x, 0) = fa
i (x) · f b

i (x) − D(x, 0) (2)

The dealer distributes D(x, y) and the parties jointly verify that (a) Eq. (2)
holds and (b) that D(0, 0) = 0.



Efficient Perfectly Secure Computation with Optimal Resilience 75

Our weak secret sharing protocol for distributing such D(x, y) has the same
complexity as verifiable secret sharing of a degree-t polynomial, and therefore we
improve by a factor of t = O(n). The secret sharing is weak in the sense that
the parties cannot necessarily reconstruct the secret from the shares without
the help of the dealer during the reconstruction. However, the verifiability part
guarantees that there is a well-defined polynomial that can be reconstructed (or,
if the dealer does not cooperate, then no polynomial would be reconstructed).
Since the role of the polynomial D(x, y) is just in the verification phase and
requires the involvement of the dealer, to begin with, this weak verifiability
suffices. If the dealer does not cooperate during the verification phase, then the
parties can reconstruct its inputs and resume the computation on its behalf.

Our Weak Secret Sharing. Our weak verifiable secret sharing protocol is similar
to the BGW verifiable secret sharing protocol. Introducing modifications to the
protocol enables sharing of a polynomial of a higher degree, but in that case –
satisfies only weak verifiability. We start with an overview of the verifiable secret
sharing protocol and then describe our weak secret sharing protocol.

The Verifiable Secret Sharing Protocol. In a nutshell, the verifiable secret sharing
protocol of BGW (with the simplifications of [23]) works as follows:

1. Sharing: The dealer wishes to distribute shares of a polynomial D(x, y) of
degree t in both variables. The dealer sends to each party Pi the degree-t
univariate polynomials fi(x) = D(x, αi) and gi(y) = D(αi, y).

2. Exchange sub-shares:
Each party Pi sends to party Pj the pair (fi(αj), gi(αj)). Note that if indeed
the dealer sent correct shares, then fi(αj) = D(αj , αi) = gj(αi) and gi(αj) =
D(αi, αj) = fj(αi). If a party does not receive from Pj the shares it expects
to receive, then it broadcasts a complaint. The complaint has the form of
complaint(i, j, fi(αj), gi(αj)), i.e., Pi complaints that it receives from Pj wrong
points, and publishes the two points that it expected to receive, corresponding
to the information it had received from the dealer.

3. Complaint resolution – the dealer: The dealer publicly reveals all the
shares of all parties that broadcast false complaints – i.e., if party Pi com-
plaints with points different than those given in the first round, then the
dealer makes the share (fi(x), gi(y)) public.

4. Vote: The parties vote that whatever they saw is consistent. A party is
happy with its share and broadcasts good if: (a) Its share was not publicly
revealed. (b) The dealer resolved all conflicts the party saw in the exchange
sub-shares phase, i.e., all its complaints were resolved by the dealer by publicly
opening the other parties’ shares. (c) All shares that the dealer broadcasts
are consistent with its shares. (d) There are no parties (j, k) that complain
of each other, and the dealer did not resolve at least one of those complaints.
If 2t+1 parties broadcast good then the parties accept the shares. A party that
its share was publicly revealed updates its share to be the publicly revealed
one.
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Note that if more than 2t+1 parties broadcast good then more than t+1 hon-
est parties are happy with their shares. Those shares determine a unique bivariate
polynomial of degree-t. Moreover, any polynomial that is publicly revealed must
be consistent with this bivariate polynomial, as agreeing with the points of t+1
honest parties uniquely determine a polynomial of degree-t.

Weak Secret Sharing. Consider this protocol when the dealer shares a poly-
nomial D(x, y) that is of degree-2t in x and degree-t in y, i.e., D(x, y) =
∑2t

i=0

∑t
j=0 di,jx

iyj for some set of coefficients {di,j}i,j . Here, if t + 1 honest
parties are happy with their shares and broadcast good, their polynomials also
define a unique polynomial D(x, y) of degree-2t in x and degree-t in y. However,
if there is a complaint and the dealer opens some party’s share, since fi(x) is
of degree-2t it is not sufficient that these t + 1 honest parties agree with that
polynomial fi(x), and fi(x) might still be “wrong”. This implies that the hon-
est parties cannot identify whether their shares are compatible with the shares
of the other honest parties (that their shares were publicly revealed), and fur-
ther verification is needed, which seems to trigger more rounds of complaints.
Guaranteeing all honest parties obtain consistent shares is a more challenging
task.

To keep the protocol constant round, we therefore take a different route and
do not require the dealer to publicly open any of the fi(x) polynomials! Still, it
has to publicly open only the gi(y) polynomials, as those are of degree-t. Each
honest party broadcasts good only if the same conditions as in VSS are met.
At the end of this protocol, some honest parties might not hold fi(x) shares
on the polynomial D(x, y). Those parties will not participate in the reconstruc-
tion protocol. In the reconstruction phase, since the corrupted parties might
provide incorrect shares and since some honest parties do not have shares, we
cannot guarantee reconstruction of the polynomial D(x, y) without the help of
the dealer. However, we can guarantee that only the polynomial D(x, y) can be
reconstructed, or no polynomial at all.

Concluding the Multiplication Protocol. Recall that in our protocol, the parties
also have to jointly verify that (a) Eq. 2 holds, and that (b) that D(0, 0) = 0.
We now elaborate on those two steps.

To verify that the polynomial D(x, y) satisfies D(x, 0) = fa
i (x) · f b

i (x) −
Ci(x, 0), each party Pj simply checks that its own shares satisfy this condition,
i.e., whether D(αj , 0) = fa

i (αj) · f b
i (αj) − Ci(αj , 0). Note that if this holds for

2t + 1 parties, then the two polynomials are identical. Each party Pj checks its
own shares, and if the condition does not hold then it broadcasts complaint(j).
With each complaint the dealer has to publicly reveal the shares of Pj . Since all
those polynomials were shared using (weak or strong) verifiable secret sharing,
the parties can easily verify whether the shares that the dealer opens are correct
or not.

To check that D(0, 0) = 0, the parties simply reconstruct the polynomial
D(0, y). This is a polynomial of degree-t and it can be reconstructed (with the
help of the dealer, as D is shared using a weak secret sharing scheme). Moreover,
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it does not reveal any information on the polynomials fa
i (x), f b

i (x), Ci(x, 0): In
case of an honest dealer, the adversary already holds t shares on the polynomial
D(0, y) and it always holds that D(0, 0) = 0, since the dealer is honest.

2.3 Extensions

Our zero knowledge verification protocol allows the dealer to prove that its shares
of a, b, c satisfy the relation c = ab. The cost of the protocol is proportional to a
constant number of VSSs. We show an extension of the protocol allowing a dealer
that its shares of (x1, . . . , xL), (y1, . . . , yM ) satisfy (y1, . . . , yM ) = G(x1, . . . , xL),
where G is any circuit of multiplication depth 1 (i.e., a degree-2 polynomial).
The communication complexity of the protocol is O(L+M) VSSs and not O(|G|)
VSSs (where —G— is the number of multiplication gates in the circuit G). This
allows computing the circuit in a layer-by-layer fashion and not gate-by-gate and
leads to sub-linear communication complexity for circuits where |G| ∈ ω(L+M).

2.4 Organization

The rest of the paper is organized as follows. In Sect. 3 we provide preliminaries
and definitions. In Sect. 4 we cover our weak verifiable secret sharing, strong
verifiable secret sharing and some extensions. Our multiplication protocol (with
a dealer) is provided in Sect. 5 and its generalization to arbitrary gates with
multiplicative gate 1 is given in Sect. 6. In the full version of the paper we
provide the missing proofs, as well as an overview of how the dealer is removed
and how to compute a general function, following the BGW approach.

3 Preliminaries

Notations. We denote {1, . . . , n} by [n]. We denote the number of parties by n
and a bound on the number of corrupted parties by t. Two random variables
X and Y are identically distributed, denoted as X ≡ Y , if for every z it holds
that Pr[X = z] = Pr[Y = z]. Two parametrized distributions D1 = {D1(a)}a

and D2 = {D2(a)}a are said to be identically distributed, if for every a the two
random variables (a,D1(a)), (a,D2(a)) are identically distributed.

3.1 Definitions of Perfect Security in the Presence of Malicious
Adversaries

We follow the standard, standalone simulation-based security of multiparty com-
putation in the perfect settings [2,10,26]. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an
n-party functionality and let π be an n-party protocol over ideal (i.e., authen-
ticated and private) point-to-point channels and a broadcast channel. Let the
adversary, A, be an arbitrary machine with auxiliary input z, and let I ⊂ [n]
be the set of corrupted parties controlled by A. We define the real and ideal
executions:
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– The real execution: In the real model, the parties run the protocol π where
the adversary A controls the parties in I. The adversary cannot modify mes-
sages sent over the point-to-point channel. The adversary is assumed to be
rushing, meaning that in every round it can see the messages sent by the
honest parties before it determines the message sent by the corrupted par-
ties. We denote by REALπ,A(z),I(�x) the random variable consisting of the view
of the adversary A in the execution (consisting of all the initial inputs of the
corrupted parties, their randomness and all messages they received), together
with the output of all honest parties.

– The ideal execution: The ideal model consists of all honest parties, a
trusted party and an ideal adversary SIM, controlling the same set of cor-
rupted parties I. The honest parties send their inputs to the trusted party.
The ideal adversary SIM receives the auxiliary input z and sees the inputs of
the corrupted parties. SIM can substitute any xi with any x′

i of its choice (for
the corrupted parties) under the condition that |x′

i| = |xi|. Once the trusted
party receives (possibly modified) inputs (x′

1, . . . , x
′
n) from all parties, it com-

putes (y1, . . . , yn) = f(x′
1, . . . , x

′
n) and sends yi to Pi. The output of the ideal

execution, denoted as IDEALf,SIM(z),I(�x) is the output of all honest parties
and the output of the ideal adversary SIM.

Definition 3.1. Let f and π be as above. We say that π is t-secure for f if
for every adversary A in the real world there exists an adversary SIM with
comparable complexity to A in the ideal model, such that for every I ⊂ [n] of
cardinality at most t it holds that

{
IDEALf,SIM(z),I(�x)

}
z,�x

≡ {
REALπ,A(z),I(�x)

}
z,�x

where �x is chosen from ({0, 1}∗)n such that |x1| = . . . = |xn|.

Corruption-aware Functionalities. The functionalities that we consider are
corruption-aware, namely, the functionality receives the set I of corrupted par-
ties. We refer the reader to [2, Section 6.2] for further discussion and the necessity
of this when proving security.

Reactive Functionalities, Composition and Fybrid-world. We also consider more
general functionalities where the computation takes place in stages, where the
trusted party can communicate with the ideal adversary (and sometimes also
with the honest parties) in several stages, to obtain new inputs and send outputs
in phases. See [26, Section 7.7.1.3].

The sequential modular composition theorem is an important tool for ana-
lyzing the security of a protocol in a modular way. Assume that πf is a pro-
tocol that securely computes a function f that uses a subprotocol πg, which in
return securely computes some functionality g. Instead of showing directly that
πf securely computes f , one can consider a protocol πg

f that does not use the
subprotocol πg but instead uses a trusted party that ideally computes g (this
is called a protocol for f in the g-hybrid model). Then, by showing that (1)
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πg securely implements g, and; (2) πg
f securely implements f , we obtain that

the protocol πf securely implements f in the plain model. See [10] for further
discussion.

Remark 3.2 (Input assumption). We sometimes present functionalities in
which we assume that the inputs satisfy some guarantee, for instance, that all
points of the honest parties lie on the same degree-t polynomial. We remark that
if the input assumption does not hold, then no security guarantees are obtained.
This can be formalized as follows: In case that the condition does not hold (and
the functionality can easily verify that), then it gives all the honest parties’ inputs
to the adversary and let the adversary singlehandedly determine all of the outputs
of the honest parties. Clearly, any protocol can then be simulated. Note, however,
that we always invoke the sub-protocols when the input assumptions are satisfied.

3.2 Robust Secret Sharing

Let F be a finite field of order greater than n, let α1, . . . , αn be any distinct non-
zero elements from F and denote �α = (α1, . . . , αn). For a polynomial q, denote
Eval�α(q) = (q(α1), . . . , q(αn)). The Shamir’s t + 1 out of n sharing scheme [37]
consists of two procedure Share and Reconstruct as follows:

– Share(s). The algorithm is given s ∈ F, then it chooses t independent uni-
formly random elements from F, denoted q1, . . . , qt, and defines the polyno-
mial q(x) = s +

∑t
i=1 qtx

t. Finally, it outputs Eval�α(q) = (q(α1), . . . , q(αn)).
Define si = q(αi) as the share of party Pi.

– Reconstruct(�s). For a set J ⊆ [n] of cardinality at least t + 1, let �s = {si}i∈J .
Then, the algorithm reconstructs the secret s.

Correctness requires that every secret can be reconstructed from the shares for
every subset of shares of cardinality t + 1, and secrecy requires that every set
of less than t shares is distributed uniformly in F. We refer to [2] for a formal
definition.

Reed Solomon Code. Recall that a linear [n, k, d]-code over a field F is a code of
length n, dimension k and distance d. That is, each codeword is a sequence of
n field elements, there are in total |F|k different codewords, and the Hamming
distance of any two codewords is at least d. Any possible corrupted codeword ĉ
can be corrected to the closest codeword c as long as d(c, ĉ) < (d − 1)/2, where
d(x, y) denote the Hamming distance between the words x, y ∈ F

n.
In Reed Solomon code, let m = (m0, . . . ,mt) be the message to be encoded,

where each mi ∈ F. The encoding of the message is essentially the evaluation of
the degree-t polynomial pm(x) = m0 + m1x + . . . + mtx

t on some distinct non-
zero field elements α1, . . . , αn. That is, Encode(m) = (p(α1), . . . , p(αn)). The
distance of this code is n − t. This is because any two distinct polynomials of
degree-t can agree at most t points. We have the following fact:
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Fact 3.3. The Reed-Solomon code is a linear [n, t + 1, n − t] code over F.
In addition, there exists an efficient decoding algorithm that corrects up to
(n − t − 1)/2 errors. That is, for every m ∈ F

t+1 and every x ∈ F
n such that

d(x,C(m)) ≤ (n − t − 1)/2, the decoding algorithm returns m.

For the case of t < n/3 we get that is is possible to efficiently correct up to
(3t+1− t− 1)/2 = t errors. Putting it differently, when sharing of a polynomial
of degree-t, if during the reconstruction t errors were introduced by corrupted
parties, it is still possible to recover the correct value.

3.3 Bivariate Polynomial

We call a bivariate polynomial of degree q in x and degree t in y as (q, t)-bivariate
polynomial. If q = t then we simply call the polynomial as degree-t bivariate
polynomial. Such a polynomial can be written as follows:

S(x, y) =
q∑

i=0

t∑

j=0

ai,jx
iyj .

Looking ahead, in our protocol we will consider degree-t bivariate polynomials
and degree (2t, t)-bivariate polynomials. The proof of the following claim is given
in the full version of this paper:

Claim 3.4 (Interpolation). Let t be a nonnegative integer, and let α1, . . . , αt+1

distinct elements in F, and let f1(x), . . . , ft+1(x) be t+1 univariate polynomials
of degree at most q. Then, there exists a unique (q, t) bivariate polynomial S(x, y)
such that for every k = 1, . . . , t + 1: S(x, αk) = fk(x).

Symmetrically, one can interpolate the polynomial S(x, y) from a set of q +1
polynomials gi(y). The proof is similar to Claim 3.4.

Claim 3.5 (Interpolation). Let t be a nonnegative integer, and let α1, . . . , αq+1

distinct elements in F, and let g1(y), . . . , gq+1(y) be q +1 univariate polynomials
of degree at most t each. Then, there exists a unique (q, t) bivariate polynomial
S(x, y) such that for every k = 1, . . . , t + 1 it holds that S(αk, y) = gk(y).

Hiding. The following is the “hiding” claim, showing that if a dealer wishes
to share some polynomial h(x) of degree-q, it can choose a random (q, t)-
polynomial S(x, y) that satisfies S(x, 0) = h(x) and give each party Pi the
shares S(x, αi), S(αi, y). The adversary cannot learn any information about h
besides {h(αi)}i∈I , when it corrupts the set I ⊂ [n]. We prove the following two
claims in the full version of this paper:

Claim 3.6 (Hiding). Let h(x) be an arbitrary univariate polynomial of degree q,
and let α1, . . . , αk with k ≤ t be arbitrary distinct non-zero points in F. Consider
the following distribution Dist(h):

– Choose a random (q, t)-bivariate polynomial S(x, y) under the constraint that
S(x, 0) = h(x).
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– Output {(i, S(x, αi), S(αi, y))}i∈[k].

Then, for every two arbitrary degree-q polynomials h1(x), h2(x) for which
h1(αi) = h2(αi) for every i ∈ [k] it holds that Dist(h1) ≡ Dist(h2).

Claim 3.7 (Hiding II). Same as Claim 3.6, except that it holds that h1(0) =
h1(0) = β for some publicly known β ∈ F. The output of the distribution is
{(i, S(x, αi), S(αi, y))}i∈[k] ∪ {S(0, y)}.

4 Weak Verifiable Secret Sharing and Extensions

In this section we show how to adapt the verifiable secret sharing protocol of [7]
to allow weak secret sharing of a polynomial degree-t. We start with a description
of the verifiable secret sharing protocol and highlight the main differences for
getting a weak verifiable secret sharing protocol (sometimes we may omit the
‘verifiable’ and write only ‘weak secret sharing’). We formally define the weak
verifiable secret sharing in Sect. 4.2 and then strong VSS in Sect. 4.4. In our
formalization of weak secret sharing, not all parties are happy with their shares.
The set of parties that are happy with their shares is known to all parties,
and is part of the output of all parties. Their shares also uniquely define the
polynomial. Only parties that are happy with their shares will take part in the
reconstruction. Thus, the output of WSS is a set K of all parties that are happy
with their shares, where parties in k ∈ K also output their shares (i.e., a pair
fk(x), gk(y)), where parties i �∈ K just hold gi(y).

We remind that in BGW, after the parties verify the shares and obtain
fi(x), gi(y), they just project the bivariate shares to univariate shares by out-
putting fi(0). As mentioned, we will maintain bivariate sharing and the output
(fi(x), gi(y)) in the strong VSS variant of the protocol.

4.1 Verifying Shares of a (q, t)-Bivariate Polynomial

Protocol 4.1: Weak/Strong Verifiable Secret Sharing of a Polynomial

– Input: The dealer holds a bivariate polynomial S(x, y).
– Common input: The description of a field F and n non-zero distinct ele-

ments α1, . . . , αn ∈ F.
– The protocol:

1. Sharing – the dealer:
(a) Send to each party Pi the shares (fi(x), gi(y)) defined as fi(x) def=

S(x, αi), gi(y) def= S(αi, y).
2. Initial checks – each party Pi:

(a) If (1) fi(x) has degree greater than q; or (2) gi(y) has degree greater
than t; or (3) fi(αi) �= gi(αi) then broadcast complaint(i) and proceed
to step 5.

(b) Let R = {k | Pk broadcast complaint(k)}.
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3. Exchange subshares – each party Pi for i �∈ R:
(a) Send (fi(αj), gi(αj)) to Pj for each j �∈ R.
(b) Let (uj , vj) be the values received from Pj , for j �∈ R. If no value was

received, then use (⊥,⊥). If uj �= gi(αj) or vj �= fi(αj) then broadcast
complaint(i, j, fi(αj), gi(αj)).

(c) If no party broadcasts complaint(i, j, ·, ·) and R = ∅, then2

VSS: Output (fi(x), gi(y)) and halt.
WSS: Output (fi(x), gi(y), [n]) and halt.

4. Resolve complaints – the dealer:
(a) If Pi that broadcasted complaint(i) in Step 2a, or broadcasted

complaint(i, j, u, v) with u �= S(αj , αi) or v �= S(αi, αj) then
VSS: Broadcast reveal(i, S(x, αi), S(αi, y)).
WSS: Broadcast reveal(i, S(αi, y)).

5. Evaluate complaint resolutions – each party Pi:
(a) Add to R all indices k for which the dealer broadcasted reveal(k, . . .).

If i ∈ R, then replace gi(y) with the one provided in the broadcasted
in reveal(i, ·, ·).

VSS: If i ∈ R, then rewrite also fi(x).
If i ∈ R then proceed to Step 6.

(b) Verify that the dealer replied to each complaint(k) message from
Step 2a with reveal(k, . . .). If not, proceed to Step 6.

(c) Upon viewing complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broad-
cast by Pk and Pj , respectively, with u1 �= v2 or v1 �= u2, mark (j, k)
as a joint complaint. If the dealer did not broadcast reveal(k, ·) or
reveal(j, ·), then go to Step 6.

(d) For every j ∈ R verify that fi(αj) = gj(αi),
VSS: and that gi(αj) = fj(αi).

If the verification does not hold for some j ∈ R, then go to Step 6.
(e) Broadcast the message good.

6. Output: Let K be the set of of all parties that broadcast good and are
not in R. If |K| < 2t + 1, then output ⊥. Otherwise,

VSS: Output (fi(x), gi(y)).
WSS: Each party Pk for k ∈ K outputs (fi(x), gi(y),K). All other
parties output (gi(y),K).

It is easy to see that in the optimistic case, when there are no cheats, the
protocol ends at Step 3c and incurs a communication overhead of O(n2) point-to-
point messages and no broadcast. In the pessimistic (worst) case, however, there
may be O(n) and O(n2) complaints (broadcasts) in Steps 2a and 3b, respectively.
Then, in step 4, there are O(n) messages of total size O(n2) that are broadcasted

2 We use two rounds of silence as an optimistic early stopping agreement on no com-
plaints. We then combine this with a standard termination protocol that uses either
the fast decision or the broadcast decision. It is easy to see that there will be no
conflict between the two.
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by the dealer (i.e. in order to reveal the polynomials of at most t parties who
placed their complaint). Finally, there are O(n) broadcast of the message good
if the secret sharing is successfully verified. Overall, the pessimistic case incurs a
communication overhead of O(n2) point-to-point messages and O(n2) broadcast
messages.

4.2 Weak Verifiable Secret Sharing

In weak verifiable secret sharing, the dealer wishes to distribute shares to all
parties, and then allow reconstruction only if it takes part in the reconstruction.
The result of the reconstruction can be either a unique, well-defined polynomial
which was determined in the sharing phase, or ⊥.

Functionality 4.2: FWSS – Weak Verifiable Secret Sharing Functional-
ity
The functionality receives a set of indices I ⊂ [n] and works as follows:

– If the dealer is honest (1 �∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1.
2. Send to the ideal adversary the shares {S(x, αi), S(αi, y)}i∈I .
3. Receive back from the adversary the set I ′ ⊆ I and define K = ([n]\I)∪I ′.

– If the dealer is corrupted (1 ∈ I):
1. Receive a polynomial S(x, y) of degree (q, t) from the dealer P1.
2. Receive a set K ⊆ [n] of cardinality at least 2t + 1.
3. Verify that S(x, y) is of degree (q, t). If verification fails, overwrite K = ⊥.

– Output: Send K to all parties. Moreover, for every k ∈ K, send
S(x, αk), S(αk, y) to Pk. For every j �∈ K, send Pj the polynomial S(αk, y).

Theorem 4.3. Let t < n/3. Then, Protocol 4.1: when using the WSS branch is
t-secure for the fWSS functionality (Functionality 4.2) in the presence of a static
malicious adversary. The protocol incurs O(n2) point-to-point messages in the
optimistic case and additional O(n2) broadcast messages in the pessimistic case.

Proof. Let A be an adversary in the real world. We have two cases, depending on
whether the dealer is corrupted or not. We note that the protocol is deterministic,
as well as the functionality.

Case 1: The Dealer is Honest. In this case in the ideal execution, the honest
parties always hold shares of a polynomial S(x, y) that is of degree (q, t). We
describe the simulator SIM.
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The simulator SIM.

1. SIM invokes the adversary A on the auxiliary input z.
2. SIM receives from the trusted party the polynomials of the corrupted par-
ties, that is, fi(x), gi(y), and the simulates the protocol execution for A:

(a) Sharing: Simulate sending the shares fi(x), gi(y) to each Pi, i ∈ I,
as coming from the dealer P1.
(b) Initial checks: Initialize R = ∅. An honest party never broadcasts
complaint(i). If the adversary broadcast complaint(i), then add i to R.
(c) Exchange subshares: send to the adversary A the shares
gi(αj), fi(αj) from each honest party Pj, for each corrupted party i ∈ I\R.
Receive from the adversary A the points (ui,j , vi,j) that are supposed to
be sent from Pi to Pj, for i ∈ I \ R and j �∈ I.
(d) Broadcast complaints: The simulator checks the points (ui,j , vi,j)
that the adversary sent in the previous step. If ui,j �= fi(αj) or vi,j �=
gi(αj) then SIM simulates a broadcast of complaint(j, i, gi(αj), fi(αj))
as coming from party Pj.
Moreover, receive complaint(i, j, u, v) broadcast messages from the adver-
sary.
If the adversary does not broadcast any reveal message and no complaint
message was broadcasted by any party, then send I to the trusted party,
and halt.
(e) Resolve complaints – the dealer: The dealer never reveals the
shares of honest parties. For every complaint(i, j, u, v) message received
from the adversary, check that u = fi(αj) and v = gi(αj).
If not, then broadcast reveal(i, gi(y)) as coming from the dealer, and add
i ∈ R. Moreover, if there was a complaint(i) in the initial checks step,
then broadcast reveal(i, gi(y)).
(f) Evaluate complaint resolutions: Simulate all honest parties broad-
cast good. Let I ′ be the set of corrupted parties that broadcast good.

3. The simulator sends I ′ \ R to the trusted party.

It is easy to see by inspection of the protocol, and by inspection of the
simulation, and since the two are deterministic, that the view of the adversary
in the real and ideal execution is equal. Our next goal is to show that the output
of the honest parties is the same in the real and ideal executions.

In the optimistic case, where no reveal(i) messages are broadcasted by the
dealer, and there are no complaint messages by any party, then in the real exe-
cution the output of all honest parties is [n] and likewise, in the simulation the
simulator sends I to the trusted party, which then sends [n] to all parties.
We now consider the case where there are complaints and there is a vote. An
honest party Pj broadcasts good if all the following conditions are met:

1. The polynomial fj(x) has degree at most 2t, gj(y) has degree at most t and
fj(αj) = gj(αj). An honest party Pj therefore never broadcasts complaint(j).

2. While resolving complaints, the dealer never broadcasts reveal(j).
3. Each complaint(k) message is replied by the dealer with reveal(k, ·) message.



Efficient Perfectly Secure Computation with Optimal Resilience 85

4. All reveal(i, gi(y)) messages broadcasted by the dealer satisfy fj(αi) = gi(αj).
5. The dealer resolves all joint complaints.

It is easy to see that all those conditions are met in the case of an honest
dealer. In particular: (1) is true by the assumption on the inputs; (2) An honest
party never broadcasts complaint with the values it received from the dealer; As a
result, according to our input assumption, the dealer never broadcasts reveal(j);
(3) True by inspection of the code of the dealer; (4) When the dealer broadcasts
a polynomial it always agrees with fj(x) initially given to Pj ; (5) By the dealer’s
code specifications, it resolves all joint complaints.

Therefore, in the real execution all honest parties broadcast good, and some
additional parties I ′ ⊆ I that the adversary controls might also broadcast good.
Then, all honest parties exclude from this set the parties in R, and output it.
Since the view of the adversary is equal in the ideal execution, the same parties in
the simulated ideal execution broadcast good. Let I ′ ⊆ I be the set of corrupted
parties that broadcast good. The simulator sends I ′ \ R to the trusted party,
which then defines K to be ([n] \ I) ∪ (I ′ \ R), i.e., all honest parties and all
corrupted parties that broadcast good, excluding those that are in R. Thus, the
outputs of the honest parties in the real and ideal are identical.

Case 2: The Dealer is Corrupted. The proof of this case is deferred to the full
version of this paper.

��

4.3 Evaluation with the Help of the Dealer

We show how the parties can recover the secret polynomial using the help of
the dealer. Towards that end, we show how the parties can evaluate polynomial
gβ(y) for every β ∈ E, where E is a set of elements in F. By taking E to be of
cardinality q + 1, it is possible to completely recover S (see Claim 3.5). When
we are only interested in the constant term of S, we take E = {0} to obtain
g(y) = S(0, y) and then output g(0). The polynomial can be recovered with the
help of the dealer. Looking ahead, in Protocol 5.2: in the optimistic case we
will use just E = {0}. In the pessimistic case, E will contain another indices of
parties that raised a complaint against the dealer.

Functionality 4.4: FWEval: Evaluation of a polynomial in Weak VSS
The functionality receives a set of indices I ⊆ [n] and works as follows:

1. The functionality receives the sets (K,E) from all honest parties, where E
is a set of elements in F. Moreover, for every k ∈ ([n] \ I) ∩ K it receives
the polynomial fk(x) from Pk. The dealer holds a polynomial S′ of degree
(q, t). When the dealer is honest, it is guaranteed that the indices of all honest
parties are included in K.
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2. The functionality reconstructs the unique (q, t) bivariate polynomial S that
agrees with the shares of the honest parties. When the dealer is honest it
always holds that S′ = S. Note that if the shares do not define a unique
polynomial, then no security is guaranteed3.

3. If the dealer is honest (1 �∈ I) then send S(x, αi), S(αi, y) for every i ∈ I
together with the set E to the ideal adversary. Moreover, send the set of
polynomials {S(β, y)}β∈E to all parties (and the ideal adversary).

4. If the dealer is corrupted (1 ∈ I) then:
(a) Send the polynomial S(x, y) to the ideal adversary together with

(K, {S(β, y)}β∈E).
(b) Receive either ok or ⊥ from the ideal adversary.
(c) If ok, then send {S(β, y)}β∈E to all parties, and otherwise, send ⊥ to all

parties.

Protocol 4.5: Evaluation of a polynomial in Weak VSS

– Input: All parties hold a set K ⊆ [n] and a set E of elements in F. Each
party Pk with k ∈ K holds fk(x). The dealer holds also a polynomial S(x, y).

– Input guarantees: When the dealer is honest, the indices of all honest
parties are included in K.

– The protocol:
1. The dealer broadcasts {S(β, y)}β∈E .
2. Each party Pk with k ∈ K checks that the broadcasted polynomials are

of degree at most t, and that S(β, αk) = fk(β) for every β ∈ E. If so, it
broadcast good.

3. Output: If 2t + 1 parties in K broadcast good, then output the message
broadcasted by the dealer. Otherwise, output ⊥.

We prove the following theorem in the full version of this paper:

Theorem 4.6. Let t < n/3. Protocol 4.5: is t-secure for the FWEval functionality
(Functionality 4.4:) in the presence of a static malicious adversary. The protocol
incurs O(n · |E|) broadcast field elements.

Remark 4.7. (On the optimistic case of Protocol 4.5:). In the optimistic case,
we can implement Protocol 4.5: without any broadcast messages and with O(n2)
field elements over the point-to-point channels. Specifically, in the optimistic case
of the entire protocol (Protocol 5.2:) we have that K = [n] and E = {0}. Each
party Pk can send on the point-to-point channel to every other party Pj the
message fk(0). Then, each party Pj uses the Reed Solomon decoding procedure
to obtain the unique degree-t polynomial gβ(y) satisfying g0(α) = γk, where γk is
the point received from party Pk. Since there are 2t+1 honest parties in K, and
since S(0, y) is guaranteed to be a polynomial of degree-t, reconstruction works.
3 In that case, we simply give the adversary all inputs of all honest parties which makes

any protocol vacuously secure as anything can be easily simulated, see Remark 3.2.
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4.4 Strong Verifiable Secret Sharing

We provide the functionality for strong verifiable secret sharing, and prove its
security. The main difference from [2] is that the output is the two univari-
ate polynomials and not the projection to univariate sharing, and we therefore
provide a proof for completeness in the full version of this paper.

Functionality 4.8: Strong Verifiable Secret Sharing

– Input: Receive S(x, y) from the dealer P1.
– Output: If S(x, y) is of degree-t in both variables, then send

(S(x, αi), S(αi, y)) to each party Pi. Otherwise, send ⊥.

Theorem 4.9. Let t < n/3. Then, Protocol 4.1: when using the VSS branch
and with q = t is t-secure for the fVSS functionality (Functionality 4.8:) in the
presence of a static malicious adversary. The protocol incurs O(n2) field elements
in the point-to-point channels in the optimistic case and additional O(n2) field
elements on the broadcast channel in the pessimistic case.

Evaluation. Once a polynomial was shared using strong VSS, we use Function-
ality 4.4: to evaluate points on the polynomial with the help of the dealer. Note
that in this case we have that q = t. Moreover, the parties use K = [n]. Note
that K might now not be the same group of parties that broadcast good when
the polynomial was shared, yet, since all honest parties hold shares (fj(x), gj(y))
it is safe to use K = [n]. Thus, to evaluate points E on a polynomial that was
shared with VSS can be implemented using O(n|E|) field messages broadcasted,
as in Theorem 4.6.

4.5 Extending Univariate Sharing to Bivariate Sharing
with a Dealer

Sometimes each party Pi holds a share h(αi) of some univariate degree-t polyno-
mial h(x). The following functionality allows a dealer, who holds h, to distribute
shares of a bivariate polynomial S(x, y) satisfying S(x, 0) = h(x). The protocol
is very simple, demonstrating the advantage for working with bivariate sharing.
This is the functionality F̃extend from [3]:

Functionality 4.10: FExtend: Extending Univariate Sharing to Bivariate
Sharing
The functionality receives the set of corrupted parties I ⊂ [n] and works as
follows:

– Input: The functionality receives the shares of the honest parties {uj}j �∈I .
Let h(x) be the unique degree-t polynomial determined by the points (αj , uj)
for every j �∈ I. If no such polynomial exists then no security is guaranteed.
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– If the dealer is corrupted then send h(x) to the ideal adversary.
– Receive S(x, y) from the dealer. Check that S(x, y) is of degree-t and that

S(x, 0) = h(x).
– If both conditions hold, then send to S(x, αi), S(αi, y) to Pi for every i. Oth-

erwise, send ⊥ to everyone.

Protocol 4.11: Implementing FExtend in the FV SS-hybrid model

– Input: Each party holds uj . The dealer holds S(x, y) and h(x).
– The protocol:

1. The dealer uses FV SS to distribute S(x, y).
2. Each party Pi receives (fi(x), gi(y)) def= (S(x, αi), S(αi, y)). If instead ⊥

was received, then output ⊥ and halt.
3. Each party Pi verifies that gi(0) = uj . If not, it broadcast complaint(i).
4. Output: If there are more than t complaints, then output ⊥. Otherwise,

output (fi(x), gi(y)).

The communication cost of the protocol is the same as Protocol 4.1: for VSS.
Note that in the optimistic case there are no complaints, and thus there are no
additional broadcast messages. We provide a proof of the following theorem in
the full version paper.

Theorem 4.12. Let t < n/3. Then, Protocol 4.11: is t-secure for the FExtend

functionality (Functionality 4.10:) for in the presence of a static malicious adver-
sary, in the FV SS-hybrid model. The protocol incurs O(n2) point-to-point mes-
sages in the optimistic case and additional O(n2) broadcast messages in the
pessimistic case.

5 Multiplication with a Constant Number of VSSs
and WSSs

We now turn to the multiplication protocol. The multiplication protocol is
reduced to multiplication with a dealer, i.e., when one dealer holds two uni-
variate polynomials fa(x), f b(x), each party holds a share on those polynomials,
and the dealer wishes to distribute a polynomial C(x, y) of degree-t in both vari-
ables in which C(0, 0) = fa(0) · f b(0). We refer the reader to the full version of
this paper to see how this functionality suffices to compute any multiplication
gate (i.e., when there is no dealer). In Sect. 5.1 we show the functionality of this
building block, in Sect. 5.2 we show the protocol that realizes it.
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5.1 Functionality – Multiplication with a Dealer

Functionality 5.1: Functionality F mult
V SS for sharing a product of shares

F mult
V SS receives a set of indices I ⊆ [n] and works as follows:

1. Receive a pair of points (uj , vj) ∈ F
2 from Pj .

2. Compute the unique degree-t univariate polynomials fa(x) and fb(x) satisfying fa(αj) =
uj and fb(αj) = vj for every j �∈ I. (if no such polynomials fa or fb exist, then no security
is guaranteed).

3. If the dealer P1 is honest (1 /∈ I), then:
(a) choose a random degree-t bivariate polynomial C(x, y) under the constraint that

C(0, 0) = fa(0) · fb(0).
(b) Output for honest: send C(x, y) to P1, and C(x, αj), C(αj , y) to Pj for every j /∈ I.
(c) Output for adversary: send fa(αi), f

b(αi), C(x, αi), C(αi, y) to the (ideal) adversary,
for every i ∈ I.

4. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send fa(x), fb(x) to the (ideal) adversary.
(b) Receive a bivariate polynomial C as input from the (ideal) adversary.
(c) If either deg(C) > t or C(0, 0) �= fa(0) · fb(0), then reset C(x, y) = fa(0) · fb(0); that

is, C(x, y) is a constant polynomial that equals fa(0) · fb(0) everywhere.
(d) Output for honest: send C(x, αj), C(αj , y) to Pj , for every j /∈ I. (There is no more

output for the adversary in this case.)

5.2 The Protocol

As mentioned in the introduction, in our protocol the dealer distributes C(x, y)
using verifiable secret sharing, and then also distributes a random (2t, t)-
polynomial D(x, y) under the constraint that D(x, 0) = fa(x) · f b(x) − C(x, 0)
and that D(0, 0) = 0 by reconstructing the univariate polynomial D(0, y).

To verify that D(x, y) indeed satisfies this constraint, each party Pi verifies
that D(αi, 0) = fa(αi) · f b(αi) − C(αi, 0) using the shares it received from P1.
If the verification fails, it broadcasts a complaint and all parties reconstruct the
share of Pi. Since all polynomials are shared, it is possible to see whether the
complaint is justified. Moreover, if for all honest parties the verification holds,
then it must be that the two degree-2t polynomials, D(x, 0) and fa(x) · f b(x) −
C(x, 0) are equal, as they agree on 2t + 1 points.

Protocol 5.2: Computing Fmult
V SS in the (FV SS , FWSS , FExtend, FWEval) -

hybrid model

– Input:
1. The dealer P1 holds two degree-t polynomials fa(x), f b(x).
2. Each party Pi holds two points (ui, vi) = (fa(αi), f b(αi)).

– Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
– The protocol:

1. Sharing phase:
(a) P1 chooses a degree-t bivariate polynomial C(x, y) under the con-

straint that C(0, 0) = fa(0) · f b(0).
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(b) P1 chooses a random degree (2t, t)-bivariate polynomial D(x, y) under
the constraint that D(x, 0) = fa(x) · f b(x) − C(x, 0).

(c) Invoke FV SS to share C(x, y), and let (fc
i (x), gc

i (y)) be the output of
Pi.

(d) Invoke FWSS to share D(x, y). Let K ⊆ [n] be the output of FWSS ,
such that each Pk for k ∈ K also receives (fd

k (x), gd
k(y)), and each

party Pj for j �∈ K receives gd
j (y).

(e) If ⊥ was received in any of the above, then proceed to Step 5b.
2. Verifying that D(x, 0) = fa(x) · fb(x) − C(x, 0):

(a) Each party Pi verifies that gd
i (0) = ui · vi − gc

i (0). If no, broadcast
complaint(i).

(b) If no party broadcasts a complaint, then proceed to Step 4.
3. Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E =
{αi}i∈R.

(b) P1 chooses two random degree-t bivariate polynomials, A,B under
the constraint that A(x, 0) = fa(x) and B(x, 0) = f b(x). The parties
run the FExtend functionality twice, where each party Pi inputs ui and
the dealer inputs A(x, y) in the first execution, and each party Pi

inputs vi and the dealer inputs B(x, y) in the second execution.
(c) The parties call to FWEval where each party Pi inputs (fa

i (x),
ga

i (y), E, [n]). Let (fa
j (x), ga

j (y)) be the result for every j ∈ R. Like-
wise, reconstruct (f b

j (x), gb
j(y)), (fc

j (x), gc
j(y)). If FWEval returned ⊥

in any one of the invocations, then proceed to Step 5b.
(d) The parties call to FWEval where all parties input K,E and each party

Pk for k ∈ K inputs also (fd
k (x), gd

k(y)). The output of FWEval is gd
i (y)

for every i ∈ R. If FWEval returned ⊥, then proceed to Step 5b.
(e) For every j �∈ K, all parties verify that gd

j (0) = ga
j (0) · gb

j(0) − gc
j(0).

If not, then proceed to Step 5b.
4. Verifying that D(0, 0) = 0:

(a) The parties call to FWEval where all parties input K, {0} and each
party Pk for k ∈ K inputs also (fd

k (x), gd
k(y)). The output of FWEval

is gd
0(y) = D(0, y) to all parties. If FWEval returned ⊥, then proceed

to Step 5b.
(b) Verify that gd

0(0) = 0. If not, proceed to Step 5b.
5. Finalization:

(a) Accept: If the dealer was not rejected, then each party Pi outputs
(fc

i (x), gc
i (y)).

(b) Reject: If the dealer is rejected, then each party Pi sends to Pj its
points ui, vi. The parties reconstruct the polynomials fa(x), f b(x)
using Reed-Solomon decoding, and define their output shares fc

i (x) =
gc

i (y) = fa(0) · f b(0).
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The communication cost of the entire sharing phase (Step 1) is equal to the
cost of a VSS/WSS, since it calls to FV SS for C and FWSS for D. Thus, it
completes with communication overhead of O(n2) over the point-to-point chan-
nels in the optimistic case and additional overhead of O(n2) over the broadcast
channel in the pessimistic case.

In Step 2, the optimistic case we have no complaints, no evaluation is
required, therefore, there is no communication cost. On the other hand, the
size of E may be O(n) in the worst case, which leads to O(n · |E|) = O(n2)
broadcasted field elements.

Finally, in Step 4 there is a reconstruction of D(0, y). In the optimistic case,
this can be done using O(n2) words over the point-to-point channels and no
broadcast (see Remark 4.5:). In the pessimistic case, this requires a broadcast
of O(n) field elements.

Overall, the optimistic case incurs a communication overhead of O(n2) over
the point-to-point channels, and the pessimistic case incurs an additional com-
munication overhead of O(n2) over the broadcast channel.

Theorem 5.3. Let t < n/3. Then, Protocol 5.2: is t-secure for the Fmult
V SS func-

tionality in the presence of a static malicious adversary, in the (FV SS , FWSS ,
FExtend, FWEval)-hybrid model. The optimistic case incurs O(n2) point-to-point
field elements, and the pessimistic case incurs additional O(n2) broadcast mes-
sages of field elements.

The proof is provided in the full version of this paper.
By combining Theorems 4.9, 4.3, 4.12 and 4.6 with Theorem 5.3 we obtain

the following Corollary:

Corollary 5.4. Let t < n/3. Then, there exists a protocol that is t-secure for
the Fmult

V SS functionality in the presence of a static malicious adversary in the
plain model.

6 Extension: Arbitrary Gates with Multiplicative
Depth-1

We show how to extend the protocol in Sect. 5 to allow the dealer distributing
any shares b1, . . . , bL given input shares a1, . . . , aM such that (b1, . . . , bL) =
G(a1, . . . , aM ) where G is some circuit of multiplicative depth 1. Section 5 is a
special case where G(a1, a2) = a1 · a2.
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Functionality 6.1: Functionality F G
V SS for sharing a result of an eval-

uation of G

FG
V SS receives a set of indices I ⊆ [n] and works as follows, where P1 is the

dealer:

1. Receive a sequence of points uj,1, . . . , uj,M ∈ F
M from Pj .

2. Compute the unique degree-t univariate polynomials fa1(x), . . . , faM (x) sat-
isfying fam(αj) = uj,m for every j �∈ I and m ∈ [M ] (if no such polynomials
fam(x) exist, then no security is guaranteed).

3. Let (a1, . . . , am) def= (fa1(0), . . . , fam(0)). Evaluate (b1, . . . , bL) =
G(a1, . . . , am).

4. If the dealer P1 is honest (1 �∈ I) then:
(a) For every 
 ∈ [L], choose a random degree-t bivariate polynomial C� under

the constraint that C�(0, 0) = b�.
(b) Output for honest: send C� to P1 and (C�(x, αj), C�(αj , y)) to Pj for every

j �∈ I and 
 ∈ [L].
(c) Output for adversary: send to the (ideal) adversary: (1)

fa1(αi), . . . , fam(αi) for every i ∈ I; (2) (C�(x, αi), C�(αi, y)) for every
i ∈ I.

5. If the dealer P1 is corrupted (1 ∈ I), then:
(a) Send fa(x), f b(x) to the (ideal) adversary.
(b) Receive bivariate polynomials C1, . . . , CL as input from the (ideal) adver-

sary.
(c) If either deg(C�) > t or C�(0, 0) �= b� for some 
 ∈ [L], then reset

C�(x, y) = b� for every 
 ∈ [L].
(d) Output for honest: send C�(x, αj), C�(αj , y) to Pj , for every j /∈ I and


 ∈ [L]. (There is no more output for the adversary in this case.)

The protocol is similar to Protocol 5.2:. Given such a circuit G with L
outputs, we let G1, . . . , GL be the circuits that define each outputs. That is,
for (b1, . . . , bL) = G(a1, . . . , am) we let b� = G�(a1, . . . , am) for every 
 ∈ [L].
In the protocol, the dealer distributes polynomials C1(x, y), . . . , CL(x, y) using
VSS that are supposed to hide b1, . . . , bL. Then, it defines L bivariate poly-
nomials of degree(2t, t), D1, . . . , DL such that for every 
 ∈ [L] it holds that
D�(x, 0) = G(fa1(x), . . . , fam(x)) − C�(x, 0). The dealer distributes them using
FWSS . The parties then check from the shares they received that each one of
the polynomials C1, . . . , CL is correct, and that D�(0, 0) for every 
 ∈ [L]. When
a party Pi complains the parties open the shares of Pi and publicly verify the
complaint.
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Protocol 6.2: Computing FG
V SS in the (FV SS , FWSS , FExtend, FWEval)-

hybrid model

– Input:
1. The dealer P1 holds M degree-t polynomials {fam(x)}m∈[M ].
2. Each party Pi holds a point ui,m for every m ∈ [M ] (where ui,m =

fam(αi)).
– Common input: A field F and distinct non-zero elements α1, . . . , αn ∈ F.
– The protocol:

1. Sharing phase:
(a) P1 computes (b1, . . . , bL) = G(fa1(0), . . . , faM (0)).
(b) For every 
 ∈ [L], P1 chooses a random degree-t bivariate polynomials,

C�(x, y) such that C�(0, 0) = b�.
(c) For every 
 ∈ [L], P1 chooses a random degree (2t, t)-

bivariate polynomial D�(x, y) under the constraint that D�(x, 0) =
G�(fa1(x), . . . , faM (x)) − C�(x, 0).

(d) For every 
 ∈ [L], invoke FV SS to share C�(x, y) and let
(f b�

i (x), gb�
i (y)) be the resulting share of Pi.

(e) For every 
 ∈ [L], invoke FWSS to share D�(x, y). Let K� ⊆ [n]
be the output of FWSS , such that each Pj for k ∈ K� also receives
(fd�

k (x), gd�

k (y)), and each party Pj for j �∈ K� receives gd�
j (y).

(f) If ⊥ was received in any of the above FV SS or FWSS invocations, then
proceed to Step 5b.

2. Verifying that D�(x, 0) = G�((fa1(x), . . . , faM (x))) − C�(x, 0)
for all � ∈ [L]:4

(a) For every 
 ∈ [L], each party Pi verifies that gd�
i (0) =

G�(ui,1, . . . , ui,M ) − gc�
i (0). If not, broadcast complaint(i)

(b) If no party broadcast a complaint, proceed to Step 4.
3. Complaint resolution (only in pessimistic case):

(a) Let R be the set of all parties broadcast complaint(i), and let E =
{αi}i∈R.

(b) For every m ∈ [M ], the dealer chooses a random bivariate polynomial
of degree-t polynomial Am such that Am(x, 0) = fam(x). The parties
run FExtend where each party Pi inputs ui,m and P1 inputs Am. Let
(fam

i (x), gam
i (y)) be the output share of Pi.

(c) For every m ∈ [M ], the parties call to FWEval where each party
Pi inputs (fam

i (x), gam
i (y), E, [n]) and the dealer inputs Am. Let

(fam
j (x), gam

j (y)) be the result for every j ∈ R. Likewise, reconstruct
(f b�

j (x), gb�
j (y)) for every 
 ∈ [L]. If FWEval returned ⊥ in any of those

invocations, then proceed to Step 5b.

4 We abuse notation and write G�((f
a1(x), . . . , faM (x))) to denote a univariate poly-

nomial in the variable x. Specifically, we take all polynomials fa1(x), . . . , faM (x)
and perform the same arithmetic operations as in G� on those input polynomials to
receive a univariate polynomial in x.
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(d) For every 
 ∈ [L], the parties call to FWEval where all parties input
K�, E and each party Pk for k ∈ K� inputs also (fd�

k (x), gd�

k (y)). The
output of FWEval is gd�

j (y) for every j ∈ R. If FWEval returned ⊥, then
proceed to Step 5b.

(e) For every j ∈ R, 
 ∈ [L], all parties verify that gd�
j (0) =

G(ga1
j (0), . . . , gaM

j (0)) − gc�
j (0). If not, then proceed to Step 5b.

4. Verifying that D�(0, 0) = 0 for all � ∈ [L]:
(a) For every 
 ∈ [L], the parties call to FWEval where all parties input

K�, {0} and each party Pj for j ∈ K� inputs also (fd�
j (x), gd�

j (y)). The
output of FWEval is gd�

0 (y) = D�(0, y) to all parties. If FWEval returned
⊥, then proceed to Step 5b.

(b) Verify that gd�
0 (0) = 0. If not, proceed to Step 5b.

5. Finalization:
(a) Accept: If the dealer was not rejected, then each party Pi outputs

(fc�
i (x), gc�

i (y)) for every 
 ∈ [L].
(b) Reject: If the dealer is rejected, then each party Pi sends to

Pj its points ui,m for every m ∈ [M ]. The parties reconstruct
the polynomials fam(x) using Reed-Solomon decoding, and output
G(fa1(0), . . . , faM (0)).

Theorem 6.3. Let t < n/3. Then, Protocol 6.2: is t-secure for the FG
V SS func-

tionality in the presence of a static malicious adversary, in the (FV SS , FWSS ,
FExtend, FWEval)-hybrid model. The communication complexity of the protocol is
just O(L) VSSs in the optimistic case. In the pessimistic case, it corresponds to
O(L + M) VSSs.

The proof is provided in the full version of this paper.

Acknowledgments. Gilad Asharov would like to thank Ilan Komargodski and Ariel
Nof for helpful discussions.

References

1. Abraham, I., Pinkas, B., Yanai, A.: Blinder: MPC based scalable and robust anony-
mous committed broadcast (2020)

2. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure
multiparty computation. J. Cryptol. 30(1), 58–151 (2017)

3. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-secure multiplication for any t¡n/3.
In: Rogaway, P. (ed.) Advances in Cryptology - CRYPTO 2011–31st Annual Cryp-
tology Conference, Santa Barbara, CA, USA, 14–18, August 2011. Proceedings.
Lecture Notes in Computer Science, vol. 6841, pp. 240–258. Springer, Berlin (2011).
https://doi.org/10.1007/978-3-642-22792-9 14

4. Barak, A., Escudero, D., Dalskov, A.P.K., Keller, M.: Secure evaluation of quan-
tized neural networks. IACR Cryptol. ePrint Arch. 2019, 131 (2019)

https://doi.org/10.1007/978-3-642-22792-9_14


Efficient Perfectly Secure Computation with Optimal Resilience 95

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
CRYPTO, pp. 420–432 (1991)
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Abstract. Recently, a sequence of works have made strong advances in
two-round (i.e., round-optimal) secure multi-party computation (MPC).
In the honest-majority setting – the focus of this work – Ananth et al.
[CRYPTO’18, EC’19], Applebaum et al. [TCC’18, EC’19] and Garg et
al. [TCC’18] have established the feasibility of general two-round MPC
in standard communication models involving broadcast (BC) and private
point-to-point (P2P) channels.

In this work, we set out to understand what features of the com-
munication model are necessary for these results, and more broadly the
design of two-round MPC. Focusing our study on the plain model – the
most natural model for honest-majority MPC – we obtain the following
results:

– Dishonest majority from Honest majority: In the two round
setting, honest-majority MPC and dishonest-majority MPC are sur-
prisingly close, and often equivalent. This follows from our results
that the former implies 2-message oblivious transfer, in many set-
tings. (i) We show that without private point-to-point (P2P) chan-
nels, i.e., when we use only broadcast (BC) channels, honest-majority
MPC implies 2-message oblivious transfer. (ii) Furthermore, this
implication holds even when we use both P2P and BC, provided
that the MPC protocol is robust against “fail-stop” adversaries.

– Best-Achievable Security: While security with guaranteed out-
put delivery (and even fairness) against malicious adversaries is
impossible in two rounds, nothing is known with regards to the “next
best” security notion, namely, security with identifiable abort (IA).
We show that IA is also impossible to achieve with honest-majority
even if we use both P2P and BC channels. However, if we replace
P2P channels with a “bare” (i.e., untrusted) public-key infrastruc-
ture (PKI), then even security with guaranteed output delivery (and
hence IA) is possible to achieve.

These results “explain” that the reliance on P2P channels (together with
BC) in the recent two-round protocols in the plain model was in fact nec-
essary, and that these protocols couldn’t have achieved a stronger secu-
rity guarantee, namely, IA. Overall, our results (put together with prior
works) fully determine the best-achievable security for honest-majority
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MPC in different communication models in two rounds. As a conse-
quence, they yield the following hierarchy of communication models:

BC < P2P < BC + P2P < BC + PKI.

This shows that BC channel is the weakest communication model, and
that BC + PKI model is strictly stronger than BC + P2P model.

1 Introduction

Recently, a sequence of works [1–4,9,12,18,19,30] have made strong advances
in two-round secure multi-party computation (MPC). These works have estab-
lished the feasibility of general two-round (i.e., round-optimal) MPC, relying on
essentially minimal computational assumptions.

Such round optimality is of both theoretical and practical interest. In partic-
ular, it opens up the possibility of using MPC in scenarios where more rounds
of interaction leads to significant costs, or in tools where a third round is simply
inadmissible (e.g., if the communication is over blockchains, or if the first round
messages are to be interpreted as “public keys” used to create “ciphertexts” in
the second round). On the theoretical front, the separation between 1, 2 or more
round protocols is arguably as fundamental as the separation between minicrypt,
cryptomania or obfustopia, in that they admit only some cryptographic tools and
not others. Indeed, the round complexity of protocols (e.g., of zero-knowledge
proofs [23] and MPC) has always been a central theoretical question.

The practical and theoretical significance of round complexity is intertwined
with the specific communication models employed. There are two major models
of communication channels – broadcast (BC) channels and secure point-to-point
(P2P) channels – that have been central in the MPC literature, starting from
early results in the multi-party setting [8,11,21,31]. In the honest-majority set-
ting – the focus of this work – these channels can provide varying “powers”: e.g.,
P2P channels are necessary for achieving information-theoretic security [8,11],
and broadcast channels are necessary for achieving security against t > n/3 cor-
ruptions [17]. They can also provide different use cases, e.g., a protocol that solely
uses BC would be applicable in scenarios where, say, the first round messages
are to be interpreted as public keys.

Our Work. The focus of this work is on understanding the role of these channels
in the two-round setting with honest majority, where their differences come into
sharper contrast. We ask:

In two-round honest-majority MPC, in the different communication models
involving BC and P2P, what levels of security are achievable for general

computation, and under what assumptions?

That is, we seek to understand the best-achievable security and the neces-
sary assumptions in different communication models. We focus our study on the
plain model – the most natural model for honest-majority MPC.1 We sometimes
1 Typically, the honest-majority assumption is viewed as an alternative to trusted

setup assumptions such as a common reference string (CRS).
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augment our model to include a “bare” (i.e., untrusted) public-key infrastruc-
ture (PKI) as a means for emulating P2P channels over BC.2 Throughout this
work, we use PKI to refer to a bare PKI setup.

Background on Security Notions. Before presenting our results, we provide
a brief discussion on the prominent security notions studied in the literature.
The weakest of them all is semi-honest (SH) security that guarantees privacy
against semi-honest (a.k.a. honest but curious) adversaries. The case of malicious
adversaries is more complex, and a variety of security notions have been studied.3

– Security with abort: A suite of three increasingly stronger security notions
allows a malicious adversary to prevent the honest parties from learning the
output by prematurely aborting the protocol: (a) selective abort (SA), where
the adversary may selectively force a subset of honest parties to abort,(b)
unanimous abort (UA), where all the honest parties agree on whether or not
to abort, and (c) identifiable abort (IA) [29], where the honest parties agree
on the identity of a corrupted party in the case of an abort.

– Security with guaranteed output delivery: Security with guaranteed
output delivery ensures that an adversary cannot prevent the honest parties
from learning the output via premature aborts. This notion is meaningful,
both against fully malicious adversaries, and fail-stop adversaries who behave
like semi-honest adversaries, except that they may prematurely abort. We
refer to security in these two cases as M-GoD and FS-GoD, respectively.

The relationship between all of these notions can be summarized as follows:
SH < SA < UA < IA < M-GoD, and SH < FS-GoD < M-GoD (note that FS-GoD is
incomparable to SA, UA and IA).

Summary of Our Contributions. We start by providing a high-level state-
ment of the key conclusions from our study, while omitting some finer points
and results. We sketch an overview (omitting the specifics of the computational
assumptions involved) in Fig. 1, which shows how our results fill in the gaps from
prior work with regards to the feasibility of different security notions. A detailed
description of our results in different communication models is given in Sect. 1.1.

– Necessity of Oblivious Transfer: While honest-majority MPC without
any round restrictions is possible information-theoretically, our first set of
results show that in many cases two-round MPC implies the existence of a
two-message two-party oblivious transfer (OT) protocol:

2 In a bare PKI setup, an adversarial party does not need to register its key prior to
protocol; specifically, it does not need to prove knowledge of its secret key.

3 The list of notions we discuss here is not exhaustive and some other notions have
been studied that lie “in-between” the primary notions. This includes, e.g., semi-
malicious security [5], which is a slight strengthening of SH, and fairness, which is
a weakening of M-GoD. The lower and upper bounds for these notions tend to be
similar to their respective “closest” notions; hence we do not explicitly discuss them.
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SH FS-GoD SA UA IA M-GoD

BC

P2P

BC + P2P

BC + PKI

This work

[30]

This work

[19,9]

[1] [2]

[1,2,4]

This work

[24]

[20,30]

Fig. 1. Hierarchy of communication models in two-round honest-majority MPC with-
out trusted setup. Green denotes feasibility of a security level and red denotes impossi-
bility. The security notions featured in the columns are explained below. (Color figure
online)

• When the two-round honest-majority MPC protocol is over a BC channel
only (no P2P channels), then it implies a two-message OT protocol. If
the original MPC protocol is semi-honest or malicious secure, and if it is
in the plain model or uses a setup like a common reference string, the OT
protocol inherits the same properties.

• Even if the honest-majority MPC protocol uses both a BC channel and
P2P channels, if it offers FS-GoD security, then it implies two-message
semi-honest OT. Interestingly, this holds only when the corruption thresh-
old is n/3 ≤ t < n/2; for t < n/3, we show that minicrypt assumptions
are in fact sufficient.

– Equivalence of Honest Majority and Dishonest Majority: An interest-
ing consequence of the first of the above results is that it removes the qualitative
difference between honest-majority and dishonest-majority in the two-round
BC-only setting. Specifically, in the semi-honest setting, an honest-majority
protocol implies two-message semi-honest OT, which in turn implies two-round
dishonest-majority MPC [9,19]. On the other hand, in the malicious adver-
sary setting, two-message OT is impossible in the plain model, and it follows
that achieving malicious security is impossible in the honest-majority setting
without P2P channels (as was already known for dishonest majority [22]). In
other words, removing P2P channels “strips off” the advantages of the honest-
majority model and places it on equal footing with dishonest-majority MPC –
both in terms of necessary assumptions and feasibility.

– Best-Achievable Security: In the plain model, M-GoD and fairness are
known to be impossible in two rounds even in the BC +P2P setting [20,30].4

Yet, nothing is known with regards to the “next best” security notion,
namely, IA.

4 There is a corner case of exactly one corruption (i.e., t = 1) and n ≥ 4 where this
impossibility result can be circumvented in the plain model [26,28].
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We first prove that IA is also impossible in the plain model in the BC + P2P
setting. However, if we replace P2P channels with a bare PKI setup, then we
observe that M-GoD (and hence, fairness and IA) is in fact possible. Previously,
two-round protocols achieving M-GoD relied on a CRS setup in addition to bare
PKI [24].

These results “explain” that the reliance on P2P channels (together with BC)
in the recent constructions of two-round honest-majority MPC protocols [1–
4,18,30] was in fact necessary, and that these protocols couldn’t have achieved
the stronger security guarantee of IA or achieved security with FS-GoD under
weaker assumptions.

Overall, our results (put together with prior works) fully determine the best-
achievable security notions in different communication models in two rounds in
the honest-majority setting. Referring to Fig. 1, we obtain the following hierarchy
of communication models:

BC < P2P < BC + P2P < BC + PKI.

This shows that BC channel is the weakest communication model, and that
BC + PKI model is strictly stronger than BC + P2P model.

1.1 Our Results in Detail

We conduct a comprehensive study of the role of communication channels in
two-round honest-majority MPC. There are four natural communication models
that one can consider: (i) BC only, i.e., where the protocol only uses BC channels,
(ii) P2P only, i.e., where the protocol only uses P2P channels, (iii) BC + P2P,
where protocol uses both BC and P2P channels, and (iv) BC + PKI, where we
replace P2P channels with a “bare” public-key infrastructure. Out of these four,
the P2P only model is already pretty well-understood from prior work. Hence,
we primarily focus on the remaining three models.

For each of these models, we obtain new results for two-round honest-
majority MPC that we elaborate on below. See Fig. 2 for a summary.

I. Broadcast only. We first investigate the feasibility of two-round honest-
majority MPC without P2P channels, i.e., by relying only on BC. In this
model, we show that two-round honest-majority MPC is equivalent to two-
round dishonest-majority MPC. In other words, without P2P channels,
achieving security against dishonest minority is as hard as against dishon-
est majority.

Specifically, we show that any two-round honest-majority MPC for general
functions in the BC only model can be transformed into two-round oblivious
transfer (OT). Starting with an MPC with SH security yields semi-honest OT
(sh-OT), while starting with one with SA (or stronger malicious) security yields
malicious-receiver OT (mR-OT), where the view of a malicious receiver can be
simulated.
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Overall, in Sect. 4, we establish that sh-OT (resp., mR-OT) is necessary for
SH (resp., SA, UA, IA), thereby yielding the following corollaries:

– SA, UA and IA are impossible in the plain model. This follows from the impos-
sibility of two-round mR-OT in the plain model.
Recently, two-round honest-majority MPC protocols with SH [1–3,18], SA [2,4]
and UA [1,2,4] security were constructed for general circuits based on one-way
functions (OWF) and for NC1 circuits unconditionally, i.e., with information-
theoretic (IT) security. These protocols use (only) P2P channels for achieving
SH and SA security, and BC + P2P channels for achieving UA security. The
above result establishes that the reliance on P2P channels in these protocols
is necessary.

– We observe that our transformation in fact also works in the CRS model. In
the CRS model, two-round dishonest-majority MPC with SA and UA security
was established in [9,19] based on mR-OT.5 Recently, [12] extended these
results to also capture IA security. A natural question is whether one could
obtain similar feasibility results in the CRS model from weaker assumptions
by assuming an honest majority. We establish that this is not the case; in
particular, mR-OT is necessary even when we assume an honest majority.

II. Broadcast + P2P. We next investigate how the above landscape changes
when we use P2P channels together with BC. Recent works have already
shown that SH, SA, UA and FS-GoD are achievable in this model. Our contri-
bution here is in providing a more complete picture, both with regards to
best-achievable security and the necessary computational assumptions.

SH SA UA IA FS-GoD M-GoD

t < n/2 t < n/2 t < n/3 t < n/2 t < n/2

BC
sh-OT

Cor 1 [24]

[20,30]

[19,9]
Thm 1

P2P OWF/IT
[1,3,18,2,4]

OWF/IT
[2,4] [30]

BC + P2P OWF/IT
[1,3,18,2,4] Thm 2

OWF/IT sh-OT
[1]

Cor 2
Thm 3

BC + PKI PKE
[1,3,18,2,4]

PKE+
m-NIZK
Cor 3

PKE
[1]

PKE+
m-NIZK
Cor 3

Fig. 2. Feasibility of two-round honest-majority MPC. The symbol ✗ denotes impos-
sibility and � denotes necessity of an assumption.

5 These works in fact rely on mR-OT in the CRS model with universally composable
security [10].
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1. Identifiable Abort. In light of the impossibility of M-GoD (as well as fair-
ness), we investigate the feasibility of the “next best” security notion, namely,
IA for which no prior results are known in the two-round setting (without
trusted setup).
In Sect. 5.1, we show that IA is impossible to achieve for general honest major-
ity even in the BC+P2P model.6 This separates it from UA for which positive
results are known in this model [1,2,4,30].

2. Fail-Stop Guaranteed Output Delivery. On the one hand, FS-GoD is
known to be impossible in two rounds in the BC only model [24] due to
implications to general-purpose program obfuscation [7]. On the other hand,
it was recently shown to be achievable in the P2P only model based on sh-OT
[1] for any t < n/2. A natural question is whether it is possible to base it on
weaker assumptions, possibly in the stronger BC + P2P model. We find that
the answer is mixed:

– For n/3 ≤ t < n/2, in Sect. 5.2, we show that sh-OT is necessary for
FS-GoD in the BC + P2P model.

– For t < n/3, in Sect. 5.2, we observe that FS-GoD can be easily achieved
for general circuits based on only OWFs (and for NC1 circuits, with IT
security) in the P2P only model.

III. Broadcast + PKI. Next, we consider the case where the protocol uses a
bare PKI setup instead of P2P channels, together with BC. It is easy to
see that BC + PKI model is at least as strong as BC + P2P since private
channels can be emulated over BC using public-key encryption (PKE). While
it might be tempting to believe that these models are equivalent, this is not
the case – BC + PKI model is strictly stronger than BC + P2P.

– In Sect. 6, we observe that by leveraging a specially crafted bare PKI, it is
possible to achieve M-GoD against t < n/2 corruptions in two rounds in the
BC + PKI model.

– In the full version of this paper, we show that by using a bare PKI based on
generic PKE, it is possible to achieve IA against t < n/2 corruptions in two
rounds in the BC + PKI model.

Both of these constructions rely on multi-CRS non-interactive zero-knowledge
(m-NIZK) [25] proofs in addition to PKE. m-NIZK proof systems for NP are
known based on Zaps [15] (which in turn can be constructed from various stan-
dard assumptions such as trapdoor permutations and assumptions on bilinear
maps) or learning with errors [6].

We note that while the first protocol achieves a strictly stronger result, it is
qualitatively different from the second in that it relies on a specially crafted bare
PKI setup where the public keys contain CRSes of an m-NIZK proof system in
addition to public keys of a PKE scheme. On a technical level, such a PKI allows
for using m-NIZK proofs in the first round of the protocol which is instrumental
6 In the weaker P2P only model, honest-majority protocols with IA security are known

to be impossible even if we allow for arbitrary rounds [13].



104 A. Goel et al.

for achieving M-GoD security. Without such a PKI, however, we can still use
m-NIZK proofs in the second round and we observe that this is sufficient for
achieving IA security.

IV. P2P Only. The remaining case is when the parties have access to only P2P
channels. A recent work of [30] established SA as the strongest achievable
notion of security against malicious adversaries in this setting, and a match-
ing positive result for computing general circuits was given by [2,4] based on
OWFs (and for NC1 circuits, with IT security). For FS-GoD, [1] showed that
it is achievable for t < n/2 based on sh-OT. We have further sharpened this
result by showing that for t < n/3, OWFs suffice, and for n/3 ≤ t < n/2,
sh-OT is necessary. Put together, these results complete the picture for the
P2P only model as well.

1.2 Related Work

In this work, we show that any form of malicious security is impossible in the
BC only setting in the plain model. In the CRS model, however, SA, UA and IA
are possible to achieve in the BC only setting [9,12,19].

In a concurrent and independent work, Damg̊ard et al. [14], explore a related
(but different) question in the setting where parties have access to both a PKI
and a trusted CRS setup. They investigate the necessity of BC in each individual
round of a two-round honest-majority MPC protocol. In contrast, we consider a
setting without any trusted setup (i.e., either the plain model or the plain model
augmented with a bare PKI). Hence, their results are incomparable to ours.

2 Technical Overview

In this section, we discuss the main ideas underlying our results.

2.1 Lower Bounds in the BC only Model

In the BC only model, we show that 2-round honest-majority MPC implies the
existence of 2-message oblivious transfer (sh-OT or mR-OT, depending on the
level of security of the honest-majority MPC). This is in sharp contrast to the
general setting, where without any restriction on the number of rounds or com-
munication channels, honest-majority MPC (even with M-GoD security) is possi-
ble unconditionally.

To understand the source of this requirement, we consider an n-party variant
of OT, denoted as Fn-OT, in which there is a sender, a receiver, and (n−2) “helper
parties” (who do not have any inputs or outputs). Interestingly, by relying on
P2P channels, Fn-OT can be securely realized (with SH security) unconditionally
in two rounds.7 Further, even if we only use BC channels but allow for at least
7 Specifically, it can be implemented as OLE over a large field, using a protocol in

which each helper party receives degree t Shamir shares of a and x from sender
and receiver respectively, and degree 2t shares of b from sender, and sends degree 2t
shares of ax + b to the receiver.
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three rounds, then public-key encryption (rather than OT) is sufficient, by using
the first round to send public keys for establishing private channels for the next
two rounds. Thus the necessity of OT must stem from the combination of the
two-round constraint and the restriction to BC.

Our strategy is to build a two-message (two-party) OT protocol from an
honest-majority two-round protocol Π for Fn-OT, in the BC model. In this
section, we only consider n = 3 (with the sender, the receiver and a single helper
party), so that honest-majority translates to corruption of at most one party.
The proof easily generalizes to an arbitrary number of parties and is shown in
the technical section.

As a first attempt, one may hope that the helper party – who has no input
and receives only publicly visible messages – can be implemented by either party
(thus collapsing to a 2-party protocol), and the protocol will remain secure.
Unfortunately, this is not true. For instance, suppose the receiver and the helper
also broadcast a public key for encryption in the first round, and the sender’s
second round message also includes a 2-out-of-2 secret-sharing of its inputs, each
share encrypted using one of these keys. In such a case, corrupting at most one
party in Π does not reveal these inputs, but if the helper is implemented by the
receiver, then the protocol is no longer secure. This attack is symmetric, and
prevents clubbing the helper with either the sender or the receiver. On the other
hand, the sender and the receiver jointly implementing the helper in a secure
manner is not an option, as it leaves us with a harder problem than we set out
to solve.

The key to resolving this conundrum is to break the symmetry between the
receiver and the sender. We observe that Π can first be modified so that the
receiver does not send any message in the second round. This is a legitimate
modification, since the last round messages are only used for output generation,
and the receiver is the only party with an output in the protocol. This modifica-
tion to Π prevents the attack mentioned above when the helper is implemented
by the sender. We go on to show that this in fact, leads to a protocol that
is secure against all passive attacks. Clearly, security against corruption of the
receiver follows from the same in Π. Security against corruption of the sender
follows, informally, from the fact that even in Π, by corrupting the sender alone,
the adversary can obtain the same view as in the transformed 2-party protocol,
by internally simulating the helper party. Specifically, since the honest receiver
never responds to the helper’s messages, the internally simulated helper’s view
can be combined with the independently generated message of the receiver to
obtain a valid simulation.

Thus the transformed protocol is a semi-honest secure 2-party OT protocol
(i.e., sh-OT). Further, it can be cast as a two message protocol:

– Round 1: The first message from the receiver consists of its first round
message in Π.

– Round 2: The second message from the sender consists of both first and
second round messages from the sender and the helper in Π.
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Note that we are able to “postpone” the first round messages of the sender and
helper in Π to the second message of OT because an honest receiver is non-
rushing; i.e., its first round message does not depend on the messages of the
other parties.

This argument partly extends to the case when Π is secure against active
corruptions. In this case, the transformed protocol will have the same security as
Π against the corruption of the receiver, but only security against semi-honest
corruption of the sender. When Π is secure w.r.t. straightline simulation (which
is standard for security with honest majority) this yields a 2-party, 2-round
OT protocol that is secure against passive corruption of senders, and active
corruption of receivers, with straightline simulation in the latter case. We term
such a protocol an mR-OT protocol.

These arguments readily extend to all n ≥ 3. Thus two-round n-party honest-
majority MPC over BC channels implies two-round sh-OT or two-round mR-OT,
depending on the security level of the honest-majority protocol. In the latter
case, we obtain an impossibility result for MPC in the plain model, by proving
the impossibility of two-round mR-OT protocol (in the plain model), similar to
the impossibility of UC security in the plain model. We give a formal proof in
Sect. 4.

2.2 BC + P2P Model

Impossibility of IA in BC + P2P Model. We next describe our ideas for
proving the impossibility of 2-round honest-majority MPC with IA security in
the BC + P2P model, without any setup. We focus on the case of n = 3 parties
and t = 1 corruption.

From our first lower bound, we know that security with IA is impossible
in two-rounds in the BC only model. In general, access to P2P channels can
often help in overcoming such impossibilities. Indeed, recent two-round protocols
[1,2,4] that achieve SA/UA security crucially rely on the use of P2P channels. An
obvious advantage of using P2P channels in the honest majority setting is “easy”
(straight-line) extraction of the adversary’s inputs during simulation. However,
there is also a potential disadvantage: an adversary may use P2P channels to
create inconsistent views amongst the honest parties. For example, it may send
honestly computed messages to one honest party, but not to the other.

While such attacks can usually be handled (by requiring the honest parties to
output ⊥ by default in case of any conflict or confusion) when we only require SA
or UA security, it becomes a challenge in achieving IA security. Recall that in IA,
if the honest parties output ⊥, they must also be able to identify a corrupt party.
In a two round protocol, even if an honest party – who does not receive a “valid”
message in the first round from the adversary – tries to complain to another
honest party in the second round, the latter party is left in a dilemma about
whether the complaint is legitimate or fabricated (to frame the other party). As
a result, it is unable to decide who amongst the other two parties is actually
corrupt. This observation forms the basis of our impossibility result.
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Consider a 3-party functionality F that takes inputs b ∈ {0, 1} from P2 and
(x0, x1) from P3 and outputs xb to P1. That is, F(⊥, b, (x0, x1)) = (xb,⊥,⊥).
Consider an adversary who corrupts P2 in the following manner: it behaves
honestly, except that it does not send any protocol specified private channel
message to P1 (i.e., simply drops them).8 We argue that no protocol can achieve
IA security against such an attack.

In particular, we argue that in this case, the honest parties can neither output
⊥ nor a non-⊥ value. As discussed earlier, if the honest parties output ⊥, they
must also be able to identify the corrupt party. However, P3’s view in this case
is indistinguishable from another execution where a corrupt P1 falsely accuses
an honest P2 of not sending private channel messages. It is easy to see that this
inherent “conflict” for P3 about who amongst P1 and P2 is the corrupt party is
impossible to resolve. Hence, the output of the honest parties cannot be ⊥.

This leaves the possibility of the output being non-⊥. Consider P2 using an
input b in the protocol execution. In case the output of the honest parties is a
non-⊥ value, there are two possible outcomes, corresponding to what a simulator
extracts as P2’s input: (1) the simulator extracts b with probability (almost) 1
or (2) with at least a non-negligible probability, it extracts 1 − b.

– In the first case, note that the simulator’s view of P2’s messages only involves
messages visible to P3. Then, since the simulator is a straight-line simulator,
and the protocol is in the plain model, a corrupt P3 can violate privacy by
running the same simulator to extract an honest P2’s input. Hence this case
is not possible.

– In the second case, consider another instance where P1 is corrupt, while P2

and P3 are honest. Consider an execution where P1 follows the protocol hon-
estly and learns the output xb. Later it launches an “offline reset attack,” by
recomputing its second round messages pretending that it did not receive a
message from party P2 in the first round. Upon recomputing the output using
this alternate view (where P2’s private messages were not received), it learns,
with non-negligible probability, x1−b. Hence, P1 can distinguish between the
case x0 = x1 and x0 �= x1 with a non-negligible advantage, thereby violating
P3’s privacy. Hence, this case is also not possible.

We present a formal proof in Sect. 5.1.

Necessity of sh-OT for FS-GoD in the BC+P2P Model. In the BC + P2P
model, we show that 2-round honest-majority that achieves FS-GoD security
implies the existence of 2-message sh-OT. This implication holds for n/3 ≤ t <
n/2; for t < n/3, we describe a simple FS-GoD protocol in the technical sections
based on weaker assumptions.

8 If the protocol does not require any P2P message from P2 to P1, then the corrupted
P2 is simply behaving honestly since there is no message to be dropped. In this case,
the protocol must result in a not-⊥ output. This case is addressed below.
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Recall that in the transformation from a two-round BC only protocol for
F3-OT to a secure protocol for OT (discussed in Sect. 2.1), the sender implements
the helper party. Security against a semi-honest sender follows from the fact that
in the BC only model, the view of an adversary who corrupts the sender and the
helper in the transformed protocol is no different from the view of an adversary
who only corrupts the sender in the original protocol. It is easy to see that this
argument fails (even in the semi-honest setting) when the protocol additionally
uses P2P channels. Consider, for example, the case where the receiver is required
to send a private message to the helper in the first round. An adversary who
corrupts both the sender and the helper now gets this additional information,
which it does not get by corrupting the sender alone. Indeed, since two-round
protocols [1–4,18] that achieve security with SA or UA in the BC + P2P model
are already known, we know that the above approach must fail.

Our key insight is that if the two-round protocol achieves FS-GoD security,
then it means that some private channel messages are “redundant,” and can
be removed if one only cares about security against semi-honest adversaries.
This observation allows us to start with a “truncated” version of the underlying
FS-GoD protocol (which only achieves SH security) and then use a similar strategy
as in Sect. 2.1 to construct two-message sh-OT. We first focus on the setting with
n = 3 parties and t = 1 corruption. Later we discuss how this argument can be
extended for arbitrary n and n/3 ≤ t < n/2.

As earlier, we consider the functionality F3-OT involving a sender, a receiver
and a helper party. Let Π be a 3-party protocol for this functionality with FS-GoD
security. Note that FS-GoD security implies that even if the helper does not send
its second round message, the protocol must still remain (at the very least) semi-
honest secure. Furthermore, if the helper is not required to send any messages in
the second round, the sender and receiver do not need to send any messages to
the helper in the first round (except the broadcast channel messages, which are
received by everyone). Combining these observations with the observation from
Sect. 2.1 that the receiver (by virtue of being the only output party) does not
need to send a message in the second round, and that the sender and helper can
send all their messages in the second round, we obtain the following two-message
protocol:

– Round 1: The receiver computes and sends its first round broadcast message
and its private message for the sender.

– Round 2: The sender computes and sends its first and second round broad-
cast messages and its private channel messages for the receiver. It also com-
putes and sends the first round broadcast message and the private channel
message of the helper for the receiver.

Security against a semi-honest sender and receiver in the transformed OT pro-
tocol can be argued similarly as before, although we need to be slightly more
careful in handling private channel messages of each party in the underlying
three-party protocol.



On Communication Models and Best-Achievable Security 109

The above idea can be generalized to n parties and n/3 ≤ t < n/2 corruptions
for the n-party functionality Fn-OT (described earlier). In this case, the first 2t
parties are emulated by the sender and the remaining n − 2t are emulated by
the receiver. Since n/3 ≤ t < n/2, we know that n − 2t ≤ t. Security against a
semi-honest receiver in this case follows exactly as before. For security against a
semi-honest sender, we rely on the fact that since t out of the 2t parties emulated
by the sender do not send second round messages, the receiver parties do not
need to send them private channel messages in the first round. We can now
rely on the semi-honest security of (the truncated version of) Π to show that
an adversary who corrupts the sender does not gain any more advantage over
an adversary who corrupts the first t parties in Π. We defer further details to
Sect. 5.2.

2.3 BC + PKI Model

Positive Result for M-GoD. There exist two-round M-GoD protocols in the BC+
PKI model that rely on a trusted CRS setup [24]. We observe that there is simple
way to eliminate the centralized CRS setup.

The CRS setup in existing two-round M-GoD protocols is only used for NIZK
proofs. In the honest majority setting, it is easy to verify that standard NIZKs
can be replaced with multi-CRS NIZKs (m-NIZKs) [25], where the setup consists
of multiple CRS strings (as opposed to a single CRS) and soundness holds as
long as a majority of the CRS are honestly generated. Our key observation is
that a multi-CRS setup can in fact be embedded inside the bare PKI setup:
start with any bare PKI setup and modify it such that the public key of each
party also includes a CRS for a m-NIZK. This is still a valid bare PKI setup
since the adversary in m-NIZK is allowed to choose its CRSes adaptively after
looking at the honest parties’ CRSes. Putting this together, we obtain a 2-round
M-GoD protocol in the PKI + BC model.

By using the same observation, the three-round M-GoD protocol of Ananth
et al. [1] in the plain model can also be transformed into a two-round protocol in
the BC +PKI model by moving the entire first round of their protocol to a bare
PKI setup. For the sake of completeness, in Sect. 6, we give a formal description
of the resulting two-round M-GoD protocol. We in fact present a transformation
from any two-round (semi-malicious) FS-GoD protocol in the BC + PKI model
(which is known from [1]) into a two-round M-GoD protocol using m-NIZKs.

Positive Result for IA. The above M-GoD protocol also implies a two-round
protocol for IA in the BC + PKI model and complements the IA impossibility
result from Sect. 2.2. However, the protocol uses a specially crafted PKI where
the public keys contain CRSes of an m-NIZK proof system in addition to public
keys of a PKE scheme.

We present a separate protocol for IA in the BC + PKI model, where the
PKI can be instantiated from generic PKE. We obtain this protocol by devising
a generic transformation from any two-round UA-secure protocol in the BC+P2P
model that achieves perfect correctness to a two-round IA-secure protocol in the
BC + PKI model.
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Given a two-round protocol Π that achieves security with UA in the BC+P2P
model, a natural idea to strengthen its security to IA (in the BC + PKI model)
is to simply require each party to prove honest behavior using the standard
“commit and prove” approach: the parties encrypt their private channel messages
under the public-keys of the recipient parties, broadcast them in the first round
and attach a proof of having computed all of these messages honestly in each
round. If a party cheats, then its proof will fail verification, and all the honest
parties will be able to identify that corrupt party. While this idea can be easily
implemented using NIZKs, it would result in a protocol in the CRS model.

Since we are in the honest majority setting, we can attempt to replace stan-
dard NIZKs with multi-CRS NIZKs (m-NIZKs) [25]. In our setting, the CRS
strings can be generated by the parties in the first round of the protocol and
the honest majority assumption implies that a majority of the CRS are com-
puted honestly. Using m-NIZKs, the parties can still prove honest behavior in the
second round of the protocol. However, a proof of honest behavior in the first
round can no longer be sent in the first round itself (since the CRS strings are
not known at that point); instead it can only be sent (belatedly) in the second
round. In this case, we need to ensure that it is not “too late” for the honest
parties to detect and identify a cheating party.

We implement this idea in the following manner. If the parties are able to
compute their second round messages – given the first round messages from all
the other parties – they give a single proof in the second round to prove that
they computed all their (first and second round) messages honestly.

In case a corrupt party does not compute and encrypt its first round private
channel messages honestly, there are two possibilities: (1) the honest recipient
of the malformed private message is able to detect that the message is not
“well-formed” (e.g. if the message is an empty string or it does not satisfy the
syntax specified by underlying protocol, etc.) and is unable to use this message
to compute its second round message, or (2) the honest recipient does not detect
any issues with the message and is able to compute its second round message as
per the specification of the underlying protocol. We handle these two scenarios
differently.

In the first case, the recipient party simply reveals the decrypted malformed
message to all other parties in the second round and gives a proof to convince
them that its (respective) public key was honestly generated and that the corrupt
party did indeed send them an encryption of this malformed message. Given
the decrypted message, the remaining parties can perform the same (public)
verification as the recipient party to determine whether or not the message is
well-formed and identify the corrupt party. In the second case, we will rely on
the soundness of the proof given by the corrupt party. In case the corrupt party
did not encrypt its first round private channel messages honestly, it will not be
able to give a convincing proof in the second round, and will be easily identified.
The formal description of this construction is deferred to the full-version of this
paper.
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3 Preliminaries

Throughout the paper, we use λ to denote the security parameter. We recall
some standard cryptographic definitions in this section. Apart from this, we also
use the standard definitions of public key encryption and the different security
notions in secure multiparty computation. We omit their definitions here.

3.1 Oblivious Transfer (OT)

In this paper, we consider the standard notion of 1-out-of-2 oblivious transfer
[16]; where one party (the sender) has inputs (m0,m1) in some domain (say
{0, 1}∗), and another party (the receiver) has a choice bit b ∈ {0, 1}. At the end,
the receiver should learn mb and nothing more while the sender should learn
nothing about b.

We consider two variants of this OT protocol, a semi-honest version called
sh-OT and one that is secure against a malicious receiver called mR-OT. For
mR-OT, we require an efficient straight-line simulator for a maliciously corrupt
receiver.

We define the syntax and the security guarantees of a two-message OT pro-
tocol in the plain model. The definition can be naturally extended to the CRS
model.

Definition 1 (2 Message OT). A two-message oblivious transfer between
a receiver R and a sender S is defined by a tuple of 3 PPT algorithms
(OTR,OTS ,OTout). Let λ be the security parameter. The receiver computes
msgR, ρ as the evaluation of OTR(1λ, b), where b ∈ {0, 1} is the receiver’s input.
The receiver sends msgR to the sender. The sender computes msgS as the evalua-
tion of OTS(1λ,msgR, (m0,m1)), where m0,m1 ∈ {0, 1}∗ are the sender’s input.
The sender sends msgS to the receiver. Finally the receiver computes mb by
evaluating OTout(ρ,msgR,msgS).

A sh-OT protocol satisfies correctness, security against semi-honest receiver
and semi-honest sender, while a mR-OT satisfies correctness, security against
semi-honest sender and malicious receiver, which are defined as follows:

– Correctness: For each m0,m1 ∈ {0, 1}∗, b ∈ {0, 1}, it holds that

Pr

[
(ρ,msgR) ← OTR

(
1λ, b

)
msgS ← OTS

(
1λ,msgR, (m0,m1)

)
∣∣∣∣∣ OTout (ρ,msgR,msgS) = mb

]
= 1,

– Security against Semi-Honest Sender: It holds that,{
(msg0R, ρ0) ← OTR

(
1λ, 0

) ∣∣∣ msg0R

}
≈c

{
(msg1R, ρ1) ← OTR

(
1λ, 1

) | msg1R
}

– Security against Semi-Honest Receiver: it holds that for each b ∈ {0, 1},
m0,m1,m

′
0,m

′
1 ∈ {0, 1}∗, and mb = m′

b,{
OTS

(
1λ,msgR, (m0,m1)

)} ≈c

{
OTS

(
1λ,msgR, (m′

0,m
′
1)

)}
where (msgR, ρ) ← OTR(1λ, b).
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– Security against a Malicious Receiver: For every PPT adversary A,
there exists a PPT simulator SR = (S1

R,S2
R) for any choice of m0,m1 ∈

{0, 1}∗ such that the following holds∣∣∣∣ Pr
[
IDEALSR,FOT

(1λ,m0,m1) = 1
] − Pr

[
REALA,OT(1λ,m0,m1) = 1

] ∣∣∣∣
≤ 1

2
+ negl(λ).

Where experiments IDEALSR,FOT
and REALA,OT are defined as follows:

Exp IDEALSR,FOT
(1λ,m0,m1) :

msgR ← A (
1λ

)
b ← S1

R(1λ,msgR)
mb ← FOT(m0,m1, b)

msgS ← S2
R(1λ,mb,msgR)

Out A(msgS)

Exp REALA,OT(1λ,m0,m1) :

msgR ← A (
1λ

)

msgS ← OTS

(
1λ,msgR, (m0,mb)

)
Out A(msgS)

3.2 Multi-CRS Non-interactive Zero Knowledge (m-NIZK)

We use the definition from [6], which is adapted from [25]. Let R be an efficiently
computable binary relation and L an NP-language of statements x such that
(x,w) ∈ R for some witness w.

Definition 2 (Multi-CRS NIZK). A multi-CRS NIZK for a language L is a
tuple of PPT algorithms m-NIZK = (m-NIZK.Gen,m-NIZK.Prove,m-NIZK.Verify)
satisfying the following specifications:

– m-NIZK.Gen(1λ): It takes as input the security parameter λ and outputs a
uniformly random string crs.

– m-NIZK.Prove(crs, x, w): It takes as input a set of n random strings −→crs, a
statement x, and a witness w and outputs a proof.

– m-NIZK.Verify(−→crs, x, proof): It takes as input a set of n random strings −→crs, a
statement x, and a proof. It outputs 1 if it accepts the proof and 0 if it rejects
it.

We require that the algorithms satisfy the following properties for all non uniform
PPT adversaries A:
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– Perfect Completeness

Pr

[
s = ∅; (−→crs, x, w) ← Am-NIZK.Gen

proof ← m-NIZK.Prove(−→crs, x, w)

∣∣∣∣∣ m-NIZK.Verify(−→crs, x, proof) = 0

and (x, w) ∈ R

]
= 0,

where m-NIZK.Gen is an oracle that when queried, outputs crs ←
m-NIZK.Gen(1λ) and sets −→crs = −→crs ∪ crs. Note that this says that even if
the adversary arbitrarily picks all the random strings, perfect completeness
still holds.

– Soundness

Pr

[
S = ∅;

(−→crs, x, proof) ← Am-NIZK.Gen

∣∣∣∣∣ m-NIZK.Verify(−→crs, x, proof) = 0 ∧
x /∈ L ∧ |−→crs ∩ S| > n/2

]
≤ negl(λ)

where m-NIZK.Gen is an oracle that when queried, outputs crs ←
m-NIZK.Gen(1λ) and sets S = S ∪ crsq. Note that this says that as long as at
least half of the random strings are honestly generated, the adversary cannot
forge a proof except with negligible probability.

– Zero-Knowledge. There exist PPT algorithms SGen, SProve such that

Pr[crs ← m-NIZK.Gen(1λ) | A(crs) = 1] ≈ Pr[(crs, τ) ← SGen(1
λ) : A(crs) = 1]

and

Pr

[
s = ∅; (−→crs, x, proof) ← ASGen

proof ← m-NIZK.Prove(−→crs, x, w)

∣∣∣∣∣ A(proof) = 1 and (x,w) ∈ R

and |−→crs ∩ S| > n/2

]

≈ Pr

[
s = ∅; (−→crs, x, proof) ← ASGen

proof ← SProve(−→crs, x,−→τ )

∣∣∣∣∣ A(proof) = 1 and (x,w) ∈ R

and |−→crs ∩ S| > n/2

]

where −→τ is the set containing all simulation trapdoors τ generated by SGen.

4 Broadcast Model

In this section, we investigate the minimal assumptions required to enable two-
round honest-majority secure MPC protocols over only a BC channel. In Sect. 4.1,
we show that any two-round honest majority MPC for general functionalities
that achieves either semi-honest security or security against malicious adver-
saries, over a BC channel can be transformed into a two-message oblivious trans-
fer protocol. In the semi-honest case, this yields a semi-honest OT protocol (sh-
OT), while in the malicious setting, this yields a malicious receiver OT protocol
(mR-OT). Later in Sect. 4.2, we show that such a two-round malicious receiver
OT is impossible in the plain model, thereby showing that maliciously secure,
two-round MPC is impossible in the plain model given only broadcast channels.
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4.1 Lower Bound for t = 1

We start by formally stating the observation that for functionalities where only
a single party receives an output, the output party need not send any messages
in the last round.

Observation 1. Let F be any n-input functionality and let Π be a secure MPC
protocol that computes F , such that only one party Pout receives the output of F .
Then Π can be transformed into a protocol Π ′, where the output party does not
send any message in the last round. Moreover, Π ′ achieves the same security as
Π in the same communication/setup model.

Indeed, the above observation holds w.l.o.g. If Pout simply drops its last round
message, then by virtue of being the only output party, the output of all other
parties remains unaffected. While Pout can still compute its output by first locally
computing its last round message in Π and then running the output reconstruc-
tion algorithm of Π on the protocol transcript and this locally computed mes-
sage. It is easy to see that the security of this modified protocol follows from the
security of Π.

Given this observation, we now show that any two-round protocol in the BC
model can be transformed into a two-message OT in the same setting.

Theorem 1. If there exists a 2-round, n-party protocol over BC channels for
general functions, in the plain model, that is secure against t = 1 semi-honest
corruption, then there exists a 2-message semi-honest OT protocol in the plain
model.

If there exists a 2-round, n-party protocol over BC channels for general func-
tions, in the plain model, that achieves security with abort (SA, UA, IA) against
t = 1 malicious corruption, then there exists a 2-message malicious receiver OT
protocol in the plain model.

Looking ahead, in Sect. 4.2, we show that two-message mR-OT in the plain
model is impossible, thereby proving impossibility of SA, UA and IA in the plain
model over only BC channels. We remark that while Theorem 1 is stated for the
plain model, it will be easy to see that this implication from two-round BC only
protocols to two-message OT also holds in the CRS model. As discussed in the
Introduction, since mR-OT is achievable in two-rounds in the CRS model, this
implication complements the two-round protocols based on two-message mR-OT
for SA, UA and IA from [9,12,19] in the CRS model.

The proof of Theorem 1 is organised as follows: We first give a common
transformation from an n-party protocol Π to a two-message OT protocol. Then
in Lemma 1, we show that if Π is semi-honest secure, then the resulting OT
protocol is also semi-honest secure. Finally, in Lemma 2, we show that if Π
achieves security with abort (SA,UA,IA) against a malicious adversary, then the
resulting OT protocol achieves malicious receiver security.
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Proof (Proof of Theorem 1). Consider the following functionality involving a set
of n parties, P = {P1, . . . , Pn}:

Fn-OT((m0,m1), {⊥}i∈[n−2], b) = ({⊥}i∈[n−1],mb)

where the input of the first party P1 is (m0,m1) ∈ {0, 1}∗, parties P2, . . . , Pn−1

have no inputs and the input of the last party Pn is a bit b ∈ {0, 1}. Party Pn is
the only output party in this functionality.

Let Π be a protocol for Fn-OT that operates over a BC channel. From Obser-
vation 1, we know that any MPC protocol with a single output party can be
transformed into one where the output party does not send any message in the
last round. In Fig. 3, we show how such a protocol (where Pn does not partic-
ipate in the second round) for Fn-OT can be used to design a two-message OT
protocol ΠOT in the same setup/communication model as Π. We assume Πr to
be the rth round next message function in Π that takes the index of a party Pi

among other values as input and outputs msgr
i , ρr

i (internal state). We use −−→msgr

to denote the set of all the messages sent by the parties in round r. For simplicity
of notation, we do not specify the randomness used in these functions explicitly.
We specify the input of a party as part of the input to Π1, and internal state as
part of the input to Πr, for r > 1.

Two-message OT from Two-round MPC for Fn-OT over BC

Receiver Message

The receiver computes (msg1n, ρ1
n) ← Π1(n, b) and sends msg1n to the sender.

Sender Message

The sender computes (msg11, ρ
1
1) ← Π1(1, (m0, m1)), and for each j ∈ [n − 1] \ {1}

it computes (msg1j , ρ
1
j) ← Π1(j, ⊥) and for each j ∈ [n − 1], it computes msg2j ←

Π2(j, ρ1
j ,

−−→msg1). It sends {msg1j ,msg2j}j∈[n−1] to the receiver.

Receiver Output

The receiver computes and outputs out = Πout(n, ρ1
n, −−→msg1, −−→msg2), where −−→msg1 =

{msg11, ...,msg1n}, and −−→msg2 = {msg21, ...,msg2n−1}.

Fig. 3. A transformation from a two-round MPC Π for Fn-OT that achieves
SH/SA/UA/IA over a BC channel to a two-message OT protocol ΠOT.

Lemma 1. Let Π be a two-round n-party protocol for Fn-OT, secure against a
single semi-honest corruption over BC in the plain (or CRS resp.) model, then
the protocol ΠOT in Fig. 3 is a two-message sh-OT in the plain (or CRS resp.)
model.
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Proof. Correctness of ΠOT follows directly from the correctness of the protocol
Π for functionality Fn-OT. We now argue sender and receiver security. Let E be
an execution of Π, where P ′

1s input is (m0,m1) and P ′
ns input is b.

1. Security against semi-honest receiver: From the semi-honest security of
Π, we know that there exists a simulator Sn corresponding to the real world
execution E where the adversary corrupts party Pn, such that the following
holds: {Sn(b,mb), {⊥}i∈[n−1]

} ≈c {viewn(E), out1(E), . . . , outn−1(E)}
=⇒ {Sn(b,mb)} ≈c {viewn(E)}

where viewi(E), outi(E) denote the view and output of party Pi in the real
world execution E .
Let E ′ be another execution of Π, where P ′

1s input is (m′
0,m

′
1) and P ′

ns input
is b and let mb = m′

b. Then it also holds that {Sn(b,mb)} ≈c {viewn(E ′)} .
From transitivity of the indistinguishability property,

{viewn(E)} ≈c {viewn(E ′)} =⇒ {viewR(E)} ≈c {viewR(E ′)}
where viewn = viewR. Thus, sender security holds.

2. Security against semi-honest sender: From the semi-honest security of
Π, we know that there exists a simulator S1 corresponding to E where the
adversary corrupts party P1, such that the following holds:{S1((m0,m1),⊥), {⊥}i∈[n−2],mb

} ≈c {view1(E), out2(E), . . . , outn(E)}{
msg1n

} ≈c

{
msg1n

}
where msg1n is the first round message of party Pn simulated by
S1((m0,m1),⊥).
Let E ′ be another execution of Π, where P ′

1s input is (m0,m1) and P ′
ns input

is b′ �= b. Then it also holds that
{
msg1n

} ≈c

{
msg′1

n

}
. Receiver security now

follows from transitivity of the indistinguishability property{
msg1n

} ≈c

{
msg′1

n

}
=⇒ {viewS(E)} ≈c {viewS(E ′)}

Lemma 2. Let Π be a two-round n-party protocol for Fn-OT, that achieves secu-
rity with abort (SA, UA, IA) against a single malicious corruption over BC in the
plain (or CRS resp.) model, then the protocol ΠOT in Fig. 3 is a two-message
mR-OT in the plain (or CRS resp.) model.

Proof. Correctness of the OT protocol follows directly from the correctness of
the underlying protocol Π. Receiver security against a semi-honest sender follows
exactly as in Lemma 1. We proceed to argue simulation-based sender security
against a malicious receiver. Let the adversary corrupt party Pn in the underlying
protocol Π. From security of Π, we know that there exists a stateful PPT
simulator Sn, that can simulate an indistinguishable view for this adversary
in the ideal world.
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Given Sn, the simulator SR for the OT protocol first computes
{msg1i }i∈[n−1] ← Sn. Upon receiving the OT receiver message msgR = msg1n,
it invokes Sn on this message. At some point, while running Sn, when Sn queries
the ideal functionality on input b of party Pn (receiver), the simulator SR of the
OT protocol forwards this query to its ideal functionality FOT. Upon receiving
the output mb from its ideal functionality, it forwards it to the simulator Sn.
At the end, Sn also outputs simulated second round messages {msg2i }i∈[n−1]. It
sends msgS = {msg1i ,msg2i }i∈[n−1] to the adversary.

Indistinguishability of the real and ideal world executions of the OT protocol
follow from security of protocol Π. We note that we do not need to explicitly
consider the output of honest parties in the real and ideal experiments in this
case, because the output of an honest sender in this case is ⊥.

This completes the proof of Theorem 1.

4.2 Impossibility of Two-Message mR-OT in the Plain Model

In this section we show that a two-message malicious receiver OT is impossible
in the plain model. We prove this impossibility by showing that if there exists
a simulator that can simulate an indistinguishable view for a malicious receiver,
then a malicious/semi-honest sender can run the same simulator to extract the
input of an honest receiver.

Lemma 3. There does not exist a 2-message OT with one-sided efficient
straight-line simulation security against a corrupt receiver.

Proof. Suppose there exists a 2-round protocol which securely realizes such an
OT, i.e. for each PPT A, there exists a PPT SR = (S1

R,S2
R) s.t for each m0,m1 ∈

{0, 1}∗:

∣∣∣∣ Pr
[
IDEALSR,FOT

(1λ,m0,m1) = 1
] − Pr

[
REALA,OT(1λ,m0,m1) = 1

] ∣∣∣∣
≤ 1

2
+ negl(λ).

where experiments IDEALSR,FOT
and REALA,OT are as defined in Definition 1.

Let b be the input on which SR queries the functionality FOT (m0,m1). Then, we
construct an adversary AS who corrupts the sender as follows: AS receives msgR

from an honest receiver, runs S1
R

(
1λ,msgR

)
and computes b. This enables AS to

extract an honest receiver’s input with a high probability. Note that AS is a semi-
honest adversary since it does not need to send any message before extracting
the receiver’s input. This contradicts the assumption that the protocol is secure
against a semi-honest sender.
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Combining Theorem 1 with the above Lemma, we get the following corollary.

Corollary 1. There exists a functionality F ∈ P/Poly, for which there does
not exist a two-round n-party protocol over BC that achieves security with
SA/UA/IA against t = 1 malicious corruption with straight-line simulation in
the plain model.

We note that all known honest majority protocols have straight-line simula-
tion.

Another interesting consequence of Theorem 1, is an equivalence between
a two-round honest-majority MPC and a two-round dishonest majority MPC
over broadcast channels. We note that the above reduction from 2-round honest
majority MPC for general functionalities to mR-OT compliments the protocols
in [9,19], where they show that OT is complete for two-round MPC over BC in
the CRS model.

5 BC + P2P Model

In this section, we investigate the feasibility of a two round IA protocol with
general honest majority in the BC + P2P model and investigate the minimal
assumptions that are required for designing a two round FS-GoD protocol in the
BC + P2P model.

5.1 Impossibility Result for Identifiable Result

In this section, we show that there does not exist a two-round IA protocol for
general functionalities and general honest majority over BC + P2P in the plain
model. To prove this result, it suffices to show that there exists a three-party
functionality that cannot be securely realized with IA security, over BC + P2P
in the plain model, in two-rounds, against a single corrupt party.

Theorem 2. There exists a functionality F ∈ P/Poly, for which there does
not exist a three-party protocol that achieves security with IA against a single
malicious corruption over BC + P2P with straight-line simulation in the plain
model.

Proof. Let F be a 3-party functionality in which party P1 has no input, P2’s
input is b ∈ {0, 1} and P3’s input is (x0, x1). P1 receives an output xb, while P2

and P3 do not receive any output. That is, F(⊥, b, (x0, x1)) = (xb,⊥,⊥). Let Π
be a three-party protocol over BC + P2P channels, realises F with IA security
and straight line simulation. Let E1 be an execution of the protocol Π computing
F . Also, let Π be such that the parties do not send any private messages in the
second round (this holds w.l.o.g.). Let A be an adversary who corrupts party
P2 and works as follows; it behaves like an honest party except that it does not
send its private channel message to party P1 in the first round.
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We consider the following three cases:

1. Output of the honest parties is ⊥: We know that in security with IA, if
the output of the honest parties is ⊥, then they must identify at least one
corrupted party. Since by assumption Π achieves security with IA, it must
be the case that both P1 and P3 correctly identify P2 as the corrupt party.
Let view3(E1) be the view of party P3 in execution E1.
Consider another execution E2 for the same functionality with the same set of
inputs, where the adversary corrupts party P1 and works as follows. It behaves
honestly in the first round. In the second round, it lies about not having received
a message from party P2 in the first round and computes its second round mes-
sages accordingly. Let view3(E2) be the view of partyP3 in execution E2. Clearly,
the view of party P3 in this case is indistinguishable from its view in execution
E1

Π , i.e., view3(E1) ≈c view3(E2). Since the output of P3 in E1 was (⊥, P2), it
must be the case that the output of party P3 in execution E2 is also (⊥, P2).
However, since P2 is an honest party, this violates the requirements of security
with IA.
Hence either Π does not achieve IA or the output of the honest parties in E1

cannot be ⊥.
2. The simulator extracts b as P2’s input with probability (almost) 1:

In this case, simulator S2’s view of P2’s messages only involves the broadcast
message (say bmsg12) and the private message (say pmsg12→3) that was sent to
P3. The simulator S2, it straight-line, it is able to extract P2’s input b only
using (bmsg12, pmsg12→3). Note that both of these messages are visible to P3,
i.e., (bmsg12, pmsg12→3) ∈ view3(E1).
Consider another execution E2, where the adversary passively corrupts P3

and all parties (including P3) compute and send their messages honestly. Let
(bmsg

1

2, pmsg12→3) be the messages sent by an honest P2 to P3 in execution E2.
Since the simulator S2 is straight-line, a corrupt P3 can now simply run S2 on
(bmsg

1

2, pmsg12→3) to extract an honest P2’s input. This would clearly break pri-
vacy of an honest P2’s input. Hence, either Π does not achieve IA or there does
not exist a straight-line simulator that extracts P2’s correct input b.

3. The simulator extracts 1 − b as P2’s input with some non-negligible
probability. Consider another execution E2 for the same functionality
F , with the same set of inputs, where the adversary passively corrupts
party P1 and behaves honestly throughout the protocol execution. Let
{bmsg1i , bmsg2i , {pmsg1i→j}j∈[3]}i∈[3] be the set of messages exchanged between
the parties. From correctness of protocol Π, it follows that P1 learns the out-
put x′

b′ , where x′
b′ is P3’s input in E2 and b′ is P2’s input.

A semi-honest P1 can now launch the following offline resetting attack: It
computes a new second round message while assuming that it did not receive
a message from P2 in the first round, i.e.,

bmsg
2

1 ← Π2(1, T
1
1),

where T
1
1 is the truncated first round transcript (bmsg12, bmsg13, pmsg13→1) of

party P1. Note that the transcript of P1 is now similar to the one in E1 and
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hence outcome of the protocol (output of P1) in this case must be x′
1−b′ with

non-negligible probability. As a result of this attack, P1 is able to learn both
x′

b′ and x′
1−b′ , which clearly violates the privacy of P3’s input. Hence, either

Π does not achieve IA or there does not exist a straight-line simulator that
extracts 1 − b with non-negligible probability.

Since all 3 cases above are impossible, protocol Π cannot be a secure implemen-
tation of functionality F , tolerating a single corruption with IA.

5.2 Fail-Stop Guaranteed Output Delivery

FS-GoD is known to be impossible [24] in the plain/CRS models in the absence
of private channels in two rounds. In this section, we investigate the minimal
assumptions that are required to a realize such protocols in the presence of
private channels. More specifically, we show that for n/3 ≤ t < n/2, sh-OT is
necessary for achieving FS-GoD for general functionalities in the plain model,9

while OWF suffice for t < n/3.

Necessity of sh-OT for (t < n/2). We first show that any n-party FS-GoD pro-
tocol for general functionalities with n/3 ≤ t < n/2 implies sh-OT.

Theorem 3. If there exists a 2-round n-party FS-GoD protocol for any F ∈
P/Poly in the plain model for n/3 ≤ t < n/2, then there exists a two-message
sh-OT protocol in the plain model.

Proof. Let Φ be a n-party FS-GoD protocol over BC + P2P for the following
functionality:

Fn-OT((m0,m1), {⊥}i∈[n−2], b) = ({⊥}i∈[n−1],mb)

where, input of P1 is (m0,m1) ∈ {0, 1}∗, parties P2, . . . , Pn−1 have no inputs,
input of Pn is a bit b ∈ {0, 1}; and output of Pn is mb.

From Observation 1, we assume that Pn does not send any message in the
last round. Additionally, the remaining parties only need to send private channel
messages to Pn in the second round. Now, since Φ achieves FS-GoD, even if t
parties, say Pt+1, . . . , P2t fail-stop after sending their first round messages, an
honest Pn will still be able to learn the output. Let Π be a slightly modified
version of Φ, which forces Pt+1, . . . , P2t to stop after sending their first round
messages, as follows:

– No messages are sent to Pt+1, . . . , P2t in the first round.
– Pt+1, . . . , P2t do not send any messages in the second round.

Note that Π is not only a correct protocol (based on FS-GoD security of Φ),
but also a semi-honest secure protocol against corruption of any t parties. This

9 We note that this lower bound complements the protocol designed by Ananth et al.
in [1].
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is true since an adversary in protocol Φ corrupting any t parties can further
pretend to not have received the messages omitted in Π, thus simulating the
view in protocol Π.

Two-message sh-OT from n-Party FS-GoD Protocol over BC + P2P

Receiver Message

– Compute bmsg1n, pmsg1n→j j∈{1,...,t,2t+1,...,n} ← Π1(n, b).

– For i ∈ [2t + 1, n], compute bmsg1i , pmsg1i→j j∈{1,...,t,2t+1,...,n} ← Π1(i, ⊥).

Send bmsg1i , pmsg1i→j i∈[2t+1,n],j∈[1,t]
to the sender.

Sender Message

– Compute bmsg11, {pmsg11→j}j∈[n] ← Π1 (1, (m0, m1)) .
– For each i ∈ [2t], compute bmsg1i , {pmsg1i→j}j∈{1,...,t,2t+1,...,n} ← Π1(i, ⊥).
– For each i ∈ [t], compute bmsg2i , pmsg2i→n ← Π2(i, T1i ), where T1i =

bmsg1j , pmsg1j→i j∈[n]
.

Send bmsg1i , pmsg1i→j i∈[2t],j∈[2t+1,n]
, bmsg2i , pmsg2i→n i∈[t]

to the receiver.

Receiver Output

– For each i ∈ [2t + 1, n], compute bmsg2i , pmsg2i→n ← Π2(i, T1i ), where T1i =
bmsg1j , pmsg1j→i j∈[n]

.

– Compute and output out = Πout(n, T2n), where T2n =
bmsg1j , bmsg2j , pmsg1j→n, pmsg2j→n j∈{1,...,t,2t+1,...,n} ..

Fig. 4. A transformation from an n-party FS-GoD protocol Φ with n/3 ≤ t < n/2 over
BC + P2P for Fn-OT to a two-message sh-OT. Π refers to a truncated SH variant of Φ,
where parties P2, . . . , Pt+1 and Pn do not send any messages in the second round.

In Fig. 4, we show how Π for Fn-OT can be used to design a two-message
sh-OT in the same setup/communication model as Π, where the first 2t parties
act as the sender and the remaining parties act as the receiver. We use Tr

i to
denote the transcript of party Pn, at the end of the round r. We borrow the
remaining notations from previous sections. Correctness of the OT protocol in
Fig. 4 follows directly from the correctness of the underlying protocol Π for
functionality Fn-OT. The proof for security against semi-honest receiver follows
from semi-honest security of Π, since, any adversary corrupting the receiver in
OT protocol can be viewed as an adversary corrupting the last n − 2t parties in
the underlying protocol Π (where n − 2t < t). We now argue security against
semi-honest sender.
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Security Against Semi-honest Sender. Recall that, we need to show that
the distribution of the first message by the receiver on input b = 0 is indis-
tinguishable from that on input b = 1. The message sent by the receiver is
{bmsg1j , {pmsg1j→i}i∈[2t]}j∈[2t+1,n]. But, since the parties do not send any mes-
sages to Pt, . . . , P2t in the underlying protocol Π, the first message is in fact
{bmsg1j , {pmsg1j→i}i∈[t]}j∈[2t+1,n]. This however, is part of the view of a semi-
honest adversary corrupting the first t parties in the underlying protocol Π.
Hence by the semi-honest security guarantee of Π, this view remains indistin-
guishable between b = 0 and b = 1.

Positive Result for (t < n/3). Now we construct a two-round FS-GoD pro-
tocol for t < n/3. Our construction is based on one-way functions for general
functionalities in P/Poly and achieves information-theoretic security for func-
tions in NC1. We obtain this result by using the compiler from [4], who show
that the task of securely computing any arbitrary polynomial function can be
non-interactively reduced to securely computing arbitrary quadratic functions
in the multi-party setting. An important property of their reduction is that the
resulting protocol for arbitrary polynomial functions achieves the same security
as the protocol for quadratic functions. We leverage this observation and focus
on constructing an FS-GoD protocol for quadratic functionalities and prove the
following theorem.

Theorem 4. There exists a perfectly secure two-round FS-GoD protocol for
quadratic functionalities with t < n/3 unbounded fail-stop corruptions over P2P
channels in the plain model.

Instantiating the Master Theorem from [4] using the protocol from the above
theorem, we get the following results.

Corollary 2. Assuming the existence of OWF, there exists a two round
FS-GoD protocol for t < n/3 over P2P channels in the plain model for any
f ∈ P/Poly.

There exists a statistically secure two round FS-GoD protocol for t < n/3 over
P2P channels in the plain model for any f ∈ NC1.

Proof (Proof of Theorem 4). We observe that a slightly modified version of
the semi-honest protocol in [27], achieves FS-GoD with t < n/3 for quadratic
functionalities. The protocol in [27] is based on the standard “share-evaluate-
reconstruct” approach, where the parties compute t-out-of-n threshold secret
shares [32] of their inputs in the first round. In the second round all the par-
ties evaluate the functionality (that they wish to compute) on their respective
shares and send the evaluated share to all other parties, who can then run the
reconstruction algorithm of the secret sharing scheme to reconstruct the output.
We observe that pre-mature aborts by a fail-stop adversary can be handled in
this protocol for t < n/3 as follows:
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– Abort in Round 1: If a corrupt party Pi aborts in the first round and does
not send any messages, the remaining parties can evaluate the functionality by
simply setting the shares that they were expecting from Pi to 0 and proceed
as normal, without any disruption.

– Abort in Round 2: Since there are >2t honest parties and evaluated shares
in the second round correspond to a 2t-out-of-n secret sharing, the shares of
the honest parties are sufficient to reconstruct the output. Therefore, aborts
in the second round do not disrupt the computation.

For the sake of completeness, we give a description of this protocol in Fig. 5. The
correctness and security of this modified protocol follows trivially and hence we
omit it.

A two-round FS-GoD protocol for any quadratic functionality with t < n/3
over P2P channels

Let P = {P1, . . . , Pn} be the set of parties and F be the function that they wish to
jointly compute. Let Xi be the input held by party Pi. We say that a party is ’active’,
if it does not abort in the first round. Let active ⊆ [n] be the subset of parties that
are active in the last round of the protocol. Let (Share,Recon) be a threshold secret
sharing scheme [32].

Party Pi in Round 1

1. Compute {[Xi]1 , . . . , [Xi]n} ← Share((t, n),Xi) and send [Xi]j to party Pj .
2. Compute {[Yi]1 , . . . , [Yi]n} ← Share((t, n), 0) and send [Yi]j to party Pj .

Party Pi in Round 2

Compute [Z]i = F([X1]i , . . . , [Xn]i) + j∈[n] [Yj ]i , where [Xj ]i = [Yj ]i = 0, if Pj /∈
active.

Output Evaluation

Compute and output Z = Recon((2t, n), [Z]i i∈[n]
).

Fig. 5. A two round FS-GoD protocol for quadratic functionalities with t < n/3 over
P2P channels.

6 BC + PKI Model: Guaranteed Output Delivery

In this section, we give a generic compiler from any two-round (semi-malicious)
FS-GoD protocol over BC + PKI channels to a two-round M-GoD protocol
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over BC + PKI. Our transformation relies on multi-CRS non-interactive zero-
knowledge (m-NIZK) proof systems and PKE. We refer the reader to Sect. 3.2
for a formal definition of m-NIZKs. This protocol is a simple adaptation of the
three-round M-GoD protocol of Ananth et al. [1], with the only modification that
the entire first round of their protocol is moved to the bare PKI setup in our
protocol.

Theorem 5. Assuming the existence of PKE and m-NIZK, there exists a generic
transformation from any two round, n-party (semi-malicious) FS-GoD protocol
in the BC + PKI model for t < n/2, to a two-round n-party M-GoD protocol in
the BC + PKI model for t < n/2.

Ananth et al. [1] present a two-round (semi-malicious) FS-GoD protocol in the
BC+PKI model based on public-key encryption (PKE) with perfect correctness.
Instantiating the above theorem with this protocol, we get the following corollary.

Corollary 3. Assuming the existence of PKE and m-NIZK, there exists an n-
party protocol in the BC + PKI model that achieves security with M-GoD against
t < n/2 corruptions for any F ∈ P/Poly.

Protocol Description. Let P = {P1, . . . , Pn} be the set of parties with inputs
X1, . . . ,Xn. We start by listing the building blocks and establishing some nota-
tions:

1. Protocol Π: A two-round n-party MPC protocol Π = (ΠPKI ,Π1,Π2,Πout)
that operates in the BC + PKI model and achieves (semi-malicious) FS-GoD
security against t < n/2. Here, ΠPKI is the algorithm used by each party
to compute its message in the bare PKI setup phase, Πr is the rth round
next-message function and Πout is the output computation function of Π. We
use msgr

i to denote the broadcast message of party Pi in round r.
2. PKE: Public key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec) with per-

fect completeness.
3. Secret Sharing: A threshold secret sharing scheme (Share,Recon) [32].
4. m-NIZK: Multi-string NIZK (m-NIZK.Gen,m-NIZK.Prove,m-NIZK.Verify)

(see Definitions 3.2). We assume the randomness used in these algorithms
to be implicit and do not specify them.

At the start of the protocol, each party Pi samples a sufficiently long random
tape ρi to use in the various sub-parts of the protocol; let ρkeyi be the randomness
used for generating keys (pki, ski), ρPKI

i be the randomness used to generate the
PKI in the underlying protocol Π, ρΠ

i be the randomness for generating messages
in protocol Π and ρenci,j to encrypt the private message intended for Pj . We use
the vector notation along with a • symbol to refer to a set of n messages, for
instance, −→

ct•→i = ct1→i, . . . , ctn→i. The remaining notations are borrowed from
previous sections. A full description of our protocol appears in Fig. 6. We defer
the security proof of this protocol to the full version of this paper.
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Two-Round M-GoD Protocol for t < n/2 in the BC + PKI Model

Party Pi for the Bare PKI Setup

– PKI for Protocol Π: Compute pkΠ
i ← ΠPKI(i; ρPKI

i ).
– PKE Compute (pki, ski) ← PKE.Gen(; ρkey

i )
– m-NIZK: For each j ∈ [n], compute crsi→j ← m-NIZK.Gen.
– Publish PKi = (pkΠ

i , pki,
−→crsi→•).

Party Pi in Round 1

– PKI: For each j ∈ [n], parse PKj = (pkΠ
j , pkj ,

−→crsj→•).

– Protocol Π: Compute msg1i ← Π1 i,Xi,
→
pkΠ

• ; ρΠ
i .

– Secret Sharing: Set Yi = (Xi, ρ
Π
i ) and compute {[Yi]1 , . . . , [Yi]n} ←

Share((t, n),Yi).
– Ciphertexts: For each j ∈ [n], compute cti→j ← PKE.Enc(pkj , [Yi]j ; ρ

enc
i,j ).

– m-NIZK: Compute proof1i ← m-NIZK.Prove −→crs•→i, yi, wi , where y1
i =

→
pkΠ

• ,
→
pk•,msg1i ,

→ct i→• and w1
i = Xi, ρ

Π
i , ρPKI

i , ρkey
i , →ρ enc

i,• , using language L1
i

(see Figure 7)
– Broadcast (msg1i , proof

1
i ,

→ct i→•).

Party Pi in Round 2

– Proof Check: For each j ∈ [n], check if m-NIZK.Verify −→crs•→j , y
1
j , proof1j = 1,

where y1
j =

−→
pkΠ

• ,
−→
pk•,msg1j ,

→ctj→• . If this check fails, set msg1j = ⊥.

– Protocol Π: Compute msg2i ← Π2 i,Xi,
→
pkΠ

• , −−→msg1•; ρΠ
i .

– m-NIZK: Compute proof2i ← m-NIZK.Prove −→crs•→i, y
2
i , w2

i , where y2
i =

→
pkΠ

• ,
→
pk•,

→ct i→•,msg2i ,
−−→msg1• and w2

i = Xi, ρ
Π
i , →ρ enc

i,• , using language L2
i (see

Figure 7)
– Broadcast (msg2i , proof

2
i ).

Output Reconstruction.

– For each j ∈ [n], check if m-NIZK.Verify −→crs•→j , y
2
j , proof2j = 1, where y2

j =
→
pkΠ

• ,
→
pk•,

→ctj→•,msg2j ,
−−→msg1• . If this check fails or if msg1j was set to ⊥, set

msg2j = ⊥.

– Compute and output z = Πout i,Xi, ρ
Π
i , ρPKI

i ,
→
pkΠ

• , −−→msg1•, −−→msg2• .

Fig. 6. A transformation from a two-round (semi-malicious) FS-GoD protocol for t <
n/2 in the BC+PKI model to a two-round M-GoD protocol for t < n/2 in the BC+PKI
model.
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L1
i : NP Language used in Round 1

Statement y1
i = pkΠ

• , pk•,msg1i , ct i

Witness w1
i = Xi, ρ

Π
i , ρPKI

i , ρkey
i , ρ enc

i,•

Relation R1
i (y1

i , w1
i ) = 1, if all of the fol-

lowing conditions hold:

1. The public key pki was generated hon-
estly using PKE.Gen() and random-
ness ρkey

i .
2. The PKI pkΠ

i was generated honestly
using ΠPKI with input i and random-
ness ρPKI

i .
3. Shares {[Yi]1 , . . . , [Yi]n} are honestly

computed (t, n) threshold shares of
Yi = (Xi, ρ

Π
i ).

4. For each j ∈ [n], the ciphertext cti j

is an honest encryption of [Yi]j under
the public key pkj , using randomness
ρenc

i,j .
5. msg1i is an honestly computed mes-

sage using the next message function
Π1 with inputs i,Xi, pkΠ

• and ran-
domness ρΠ

i .

L2
i : NP Language used in Round 2

Statement y2
i =

pkΠ
• , pk•, ct i ,msg2i ,msg1•

Witness w2
i = Xi, ρ

Π
i , ρ enc

i,•
Relation R2

i (y2
i , w2

i ) = 1, if all of the fol-
lowing conditions hold:

1. msg2i is an honestly computed mes-
sage using the next message function
Π2 with inputs i,Xi, pk•,msg1• and
randomness ρΠ

i .
2. Shares {[Yi]1 , . . . , [Yi]n} are honestly

computed (t, n) threshold shares of
Yi = (Xi, ρ

Π
i ).

3.
4. For each j ∈ [n], the ciphertext cti j

is an honest encryption of [Yi]j under
the public key pkj , using randomness
ρenc

i,j .

Fig. 7. NP Languages used in the protocol description in Fig. 6.
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Abstract. Secure multiparty computation (MPC) enables n parties, of
which up to t may be corrupted, to perform joint computations on their
private inputs while revealing only the outputs. Optimizing the asymp-
totic and concrete costs of MPC protocols has become an important line
of research. Much of this research focuses on the setting of an honest
majority, where n ≥ 2t + 1, which gives rise to concretely efficient pro-
tocols that are either information-theoretic or make a black-box use of
symmetric cryptography. Efficiency can be further improved in the case
of a strong honest majority, where n > 2t + 1.

Motivated by the goal of minimizing the communication and latency
costs of MPC with a strong honest majority, we make two related con-
tributions.

– Generalizedpseudorandomsecret sharing (PRSS).Linear cor-
relations serve as an important resource for MPC protocols and
beyond. PRSS enables secure generation of many pseudorandom
instances of such correlations without interaction, given replicated
seeds of a pseudorandom function. We extend the PRSS technique of
Cramer et al. (TCC 2005) for sharing degree-d polynomials to new
constructions leveraging a particular class of combinatorial designs.
Our constructions yield a dramatic efficiency improvement when the
degree d is higher than the security threshold t, not only for standard
degree-d correlations but also for several useful generalizations. In par-
ticular, correlations for locally converting between slot configurations
in “share packing” enable us to avoid the concrete overhead of prior
works.

– Cheap straggler resilience. In reality, communication is not fully
synchronous: protocol executions suffer from variance in communi-
cation delays and occasional node or message-delivery failures. We
explore the benefits of PRSS-based MPC with a strong honest major-
ity toward robustness against such failures, in turn yielding improved
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latency delays. In doing so we develop a novel technique for defend-
ing against a subtle “double-dipping” attack, which applies to the
best existing protocols, with almost no extra cost in communication
or rounds.

Combining the above tools requires further work, including new methods
for batch verification via distributed zero-knowledge proofs (Boneh et al.,
CRYPTO 2019) that apply to packed secret sharing. Overall, our work
demonstrates new advantages of the strong honest majority setting, and
introduces new tools—in particular, generalized PRSS—that we believe
will be of independent use within other cryptographic applications.

1 Introduction

Protocols for secure multiparty computation (MPC) [5,16,30,52] enable a set
of parties with private inputs to compute a joint function of their inputs while
revealing nothing but the output. MPC provides a general-purpose tool for dis-
tributed computation on sensitive data, as well as for eliminating single points of
failure. As a result, a major research effort focused on improving the asymptotic
and concrete efficiency of MPC.

Efficient honest-majority MPC. The most practical MPC protocols rely on an
honest majority assumption, namely security is guaranteed as long as t < n/2
out of the n parties are corrupted, and provide “security with abort” in the pres-
ence of malicious parties. Such protocols can be either information-theoretic, or
alternatively achieve better communication cost by making a black-box use of a
pseudorandom function. The latter is mainly useful for non-interactive genera-
tion of pseudorandom shared secrets via a pseudorandom secret sharing (PRSS)
technique [18,28]. Moreover, the most efficient protocols in this setting follow
the blueprint of Damg̊ard and Nielsen (DN) [22], where each layer of a circuit
is evaluated by having a designated “leader” party send messages to all other
parties and receive a message from each party in return.

In almost all of this line of research, one assumes the weakest honest majority
assumption of n = 2t+1 parties. However, assuming that up to half of the parties
can be corrupted may sometimes be overly pessimistic, and small relaxations of
corruption threshold can be highly preferred in favor of boosting performance.
On the other hand, existing honest-majority protocols are also overly optimistic
in that they assume all messages arrive on time and are not robust to transient
delays or failures. We will revisit this issue later.

The potential for savings in the “strong honest majority” regime of n > 2t+1
has been asserted within the context of asymptotic efficiency [4,19–21,24,27,36].
In a sense, existing MPC protocols for n = 2t+1 parties are analogous to using a
repetition code, which increases the total cost by a factor of n, whereas the latter
protocols are analogous to asymptotically good codes that provide a constant or
near-constant amortized asymptotic overhead. However, the techniques in these
theory-oriented works incur large concrete overheads placing them quite far from
practical efficiency, and their asymptotic efficiency benefits kick in only for large
computations.
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In the context of concretely efficient MPC, the potential gains of a strong
honest majority remain relatively untapped—both in the sense that asymptotic
benefits of prior works do not currently translate to concrete wins, and that
potential for concrete gains outside the standard theoretical models or (asymp-
totic) goals have not been well explored. One exception to this is a recent line
of works leveraging a larger number of honest parties for the purpose of closing
the efficiency gap between security against malicious (or active) adversaries and
security against semi-honest (or passive) adversaries [26,31]. However, recent
works [8,11,12,37] have successfully closed this gap even given a minimal honest
majority n = 2t + 1, in which case this advantage no longer applies.

In this work, we initiate a deeper study of concretely efficient MPC with
strong honest majority n > 2t+1. We focus on developing general-purpose prim-
itives and techniques to alleviate the concrete costs of existing theory-oriented
solutions, as well as exploring new directions for improved latency in realistic
networks. Our primary focus is on the case where the corruption threshold t
is small. This enables the use of PRSS techniques that give rise to simpler and
more efficient protocols, but incur (an offline) cost that scales exponentially with
t. We are motivated by two main limitations of current techniques.

The Overhead of Packed Secret Sharing. A major source of concrete overhead
in the aforementioned theory-oriented works is the use of a “share packing”
technique [24] in which secret-shared values are arranged into blocks, and a set
of shares can simultaneously encode several values at the same per-party cost.
This technique natively supports computing a single circuit on many inputs
in parallel (also known as a “SIMD computation”), by computing operations
simultaneously on all values within a block. However, it requires a costly routing
mechanism for general computations. This overhead applies even in the semi-
honest setting, but introduces additional challenges in the malicious setting.
While the initial O(log n) overhead of the routing-based technique from [20] was
recently improved to a constant [36], this comes at the cost of poor concrete
efficiency.

Extending the ideas of these works, one may observe that existence of certain
useful linear correlations across parties would enable avoiding these routing over-
heads altogether. The desired correlations correspond to sets of packed shares of
secret random values, where different sets include the same random values in dif-
ferent computation “slot” positions, in line with the routing of wires within the
computation circuit. But, unlocking these savings demands a large number of dif-
ferent rerouting patterns, whose generation would destroy the optimization sav-
ings in existing works. Much of the effort in previous works [4,19–21,27,33,36] was
spent on efficient distributed protocols for generating these linear correlations.

Tolerating Stragglers. One advantage of MPC with a strong honest majority,
which serves as a primary motivation for the current work, is the potential for
better robustness, in turn leading to reduced latency in realistic network environ-
ments. Existing MPC protocols with n = 2t+1 parties require at least one of the
parties to wait for messages from all other parties before proceeding to the next
round. In particular, in protocols that follow the DN blueprint, the leader needs
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to wait until it hears back from all other parties. But in reality, communica-
tion is not fully synchronous. Even in a semi-honest setting, protocol executions
suffer from variance in communication delays and occasional message-delivery
failures. This is sometimes referred to as the problem of stragglers. To deal with
this problem, practical distributed systems typically employ redundancy to allow
proceeding with the computation as long as “sufficiently many” messages were
received. See [42] for empirical studies of the impact of stragglers on realistic
network.

Interestingly, achieving robustness to stragglers becomes more challenging
when some parties can be malicious. Standard secure protocols with good con-
crete efficiency do not have this feature even when n > 3t. While such protocols
are able to terminate in the face of up to t stragglers, this occurs at the cost
of labeling these parties as corrupt, and their secrets are no longer protected.
Alternatively, attempting to run DN-style protocols in an “optimistic mode,” by
simply having the leader wait for the first 2t messages to arrive, gives rise to a
subtle “double-dipping” attack that allows a malicious leader to learn private
information. Previous solutions for this attack(see [26,35]) require significantly
more interaction and are not suitable for efficiently dealing with transient faults;
See Sect. 5.1 for more details.

1.1 Our Contributions

Motivated by the above opportunities and challenges, we present new techniques
for MPC within the setting of a strong honest majority, n > 2t + 1, focusing on
the case of small1 values of t that enable efficient use of PRSS. We make the
following two main contributions.

Contribution 1: Generalized pseudorandom secret sharing (PRSS). As noted
above, PRSS enables a secure non-interactive generation of (pseudo)random val-
ues that are uniformly distributed over some linear vector space. It relies on a
low-communication setup, where independent pseudorandom function (PRF)
seeds are distributed to different subsets of the parties. The prominent cost met-
ric of a PRSS scheme is the number of such seeds required for the parties to each
compute their entry within the sampled vector. Following a general framework of
Gilboa and Ishai [28], Cramer et al. [18] described PRSS techniques for sharing
degree-d polynomials between n parties using

(
n
d

)
seeds,

(
n−1

d

)
per party, target-

ing the typical use-case where the security threshold t is equal to d. Motivated
by the fact that in MPC with strong honest majority we have t < d, we present
new PRSS constructions exploiting this gap.

Our constructions leverage suitable combinatorial designs, and yield a dra-
matic efficiency improvement when t � d, not only for standard degree-d corre-
lations but also for several useful generalizations. This includes correlations for
locally converting between slot configurations in “share packing,” which enable
1 More precisely, our protocols have storage and (offline) computation costs that grow

exponentially in t but linearly in the number of parties n. Thus, when t is a small
constant, they can be practical even for a large n.
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us to avoid the concrete overhead of prior works on MPC based on share pack-
ing [20,27,33]. We remark that our PRSS results are independently motivated
by other applications beyond the context of MPC, including threshold cryptog-
raphy, advanced cryptographic primitives, and targeted multi-party protocols
(e.g., [6,7,13,15,23]).

We provide a general transformation yielding PRSS schemes from any
instance of a so-called “covering design” with appropriate parameters. An
(n,m, t)-cover is a collection of size-m subsets Si ⊂ [n], such that every sub-
set of t elements of [n] is covered by some set Si. The goal is to do so with
the fewest number of such sets Si. Construction of covering designs is a topic
of combinatorial research, where bounds are known for small parameters, and
several results are known in the larger parameter regime (see Sect. 3.3 for dis-
cussion). While it is not hard to see that the seed replication pattern of a PRSS
must induce a covering design, the converse direction is less obvious. Indeed,
our transformation incurs a small overhead that leaves a (d + 1) multiplicative
gap between the upper and lower bounds on the number of seeds for the case of
degree-d polynomials.

The following theorem summarizes our general transformation from covering
designs to PRSS for degree-d polynomials, as well as some corollaries obtained
by plugging in existing covering designs from the literature (cf. [32]).

Theorem 1.1 (PRSS for degree-d polynomials from covering designs,
informal). Let n, d, t be positive integers such that t < d < n. Given an
(n, d + 1, t)-cover of size k, one can construct a PRSS scheme for sharing ran-
dom degree-d polynomials between n parties with security threshold t, requiring
k(d + 1)(n − d)/n PRF seeds per party. As a special case, plugging in existing
covering designs for small t, we obtain the following:

– For t = 1, any n:
⌈

n
d+1

⌉
(d+1)(n−d)

n PRF seeds per party (or just n − d when
(d + 1)|n).

– For t = 2, any n ≤ 3(d + 1): 13(d + 1) PRF seeds per party.

We further obtain PRSS for “double Shamir sharing” (i.e. two random polyno-
mials of degrees d and 2d with the same evaluations on given d − t + 1 points)
with roughly twice as many PRF seeds.

In comparison to the parameters above, the naive baseline from [18] is
(
n−1

d

)

seeds per party, which in the case that t < d can be improved to
(
n−1

t

)
seeds per

party (we show the details in the full version of this paper). Plugging in explicit
covering design constructions from the literature, the PRSS solutions obtained
via Theorem 1.1 provide significant savings to even this improved baseline. For
example:

– (n, d, t) = (48, 15, 4) requires 2, 772 seeds per party, versus baseline
(
47
4

)
=

178, 365.
– (n, d, t) = (49, 23, 4) requires 484 seeds per party, versus baseline

(
48
4

)
=

194, 580.
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– (n, d, t) = (49, 23, 8) requires 57, 281 seeds per party, versus baseline
(
48
8

)
≈

3.7 · 108.

For additional data points, see the full version. Our PRSS constructions go
beyond basic Shamir or double-Shamir shares, to a generalized form of PRSS
that allows local generation of packed pseudorandom secrets with an arbitrary
replication pattern. We achieve this with with additional redundancy of seeds to
parties. However, the resulting complexity still provides significant savings as an
alternative to existing approaches within motivated regimes. We refer the reader
to Sect. 3.6 for a detailed treatment.

Contribution 2: Cheap Straggler Resilience. We propose a novel technique for
dealing with the “straggler” problem of delayed messages, allowing the protocol
to continue the execution once sufficiently many messages are received. In doing
so, we need to defend against the subtle “double-dipping” attack mentioned
above. In contrast to alternative approaches for defending against this attack [26,
35], our approach has no extra cost to the round complexity of the protocol and
only a sublinear additive communication overhead. Our protocol makes black-
box use of our PRSS construction to produce the required randomness without
interaction.

Combining the above tools to obtain efficient MPC protocols with security
against malicious parties requires additional ideas. In particular, we need to
adapt the distributed zero-knowledge proof techniques of Boneh et al. [8] to the
setting of MPC based on packed secret sharing. See additional discussion below.

The features of our final protocol are captured by the following theorem.

Theorem 1.2 (Malicious security with straggler resilience, informal).
Let t ≥ 1 be a security threshold, � ≥ 1 a packing parameter, n ≥ 2t + 2� − 1 a
number of parties, and F be a finite field such that |F| > n + t + 2�. Then, for
any arithmetic circuit C over F with S multiplication gates and depth D, there
is an n-party protocol for C with the following efficiency and security features:

– The protocol makes a black-box use of any pseudorandom function;
– Excluding O(1) rounds of preprocessing and postprocessing, the protocol con-

sists of D epochs, where in each epoch P1 sends a message to each other party
Pi and receives a message back from each Pi;

– It achieves security with abort in presence of t malicious parties even if τ =
n−(2t+2�−1) messages, chosen by the adversary, are dropped in each epoch;

– If the parties follow the protocol, it terminates successfully even if τ messages,
chosen by the adversary, are dropped in each epoch;

– Communication cost is
(
3
� − 2t+2�+1

n·�
)
S + o(S) elements of F sent per party.

We further discuss the communication, computation, and storage costs in the
following remarks.
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Remark 1.1 (Sensitivity to the topology of C.). As in other protocols based on
packed secret sharing, the communication complexity bound in Theorem 1.2
assumes that the circuit C is “non-pathological” in the sense that its width is
bigger than the packing parameter �. (Otherwise there is an extra communication
cost resulting from empty slots.) Since we typically expect � to be much smaller
than the circuit size, this condition is met for almost all natural instances of big
circuits.

Remark 1.2 (On the cost of PRSS.). The generalized PRSS primitive influences
the local storage and computational cost, which can be performed offline and
are practical for small t even for large values of � and n; see the full version of
this paper for concrete numbers. By increasing the degree parameter d of the
generalized PRSS construction beyond the minimum required by t and �, we get
better PRSS complexity at the cost of a lower straggler resilience threshold τ .

Remark 1.3 (On communication complexity.). When � = 2, the amortized com-
munication cost in Theorem 1.2 is always less than 1.5 elements per party per
gate, and when � = 3 it goes below 1 element per party. We present concrete
efficiency analysis of our protocol in the full version of the paper, showing that
as we increase n and �, our protocol not only can withstand stragglers, but also
achieves lower total communication than the best known semi-honest protocols
with n = 2t + 1 parties. In particular, whenever � = Ω(n) the total communica-
tion complexity (ignoring lower order additive terms) is O(s).

Technical Challenges and Contributions. Our final MPC protocol builds on new
solutions for the following main challenges:

– Generalized pseudorandom secret sharing (PRSS) based on combinatorial
designs that take advantage of the gap between the polynomial degree d
and the security threshold t to reduce computation and storage costs.

– Packed secret sharing beyond SIMD, without the asymptotic or concrete over-
head of previous techniques [20,27,33]. Our solution relies on generalized
PRSS for cheaper batch generation of useful linear correlations, for “repack-
ing” secret shared values in different orders.

– Preventing “double-dipping” attacks, identified by [26,35], which exploit the
redundancy of encoding across parties in a strong honest majority to obtain
related secret values under the same random mask (see below; note that
this attack arises even without share packing). The works of [26,35] protect
against the attack using methods that require participation from all parties
and increase the round complexity by 2x or more; we do so while supporting
resilience to stragglers, and with essentially no extra online cost.

– Applying sublinear distributed zero knowledge [8] on packed shares, as well as
achieving batched verification with missing shares (due to stragglers). The
former challenge arises again from the non-SIMD structure of general com-
putation, here relating to the statements to be efficiently verified. The latter
issue pertains to verifying consistency of several robustly secret shared values,
when each secret has a different subset of shares missing, corresponding to
different sets of straggling parties.
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1.2 Related Work

We mention here specific recent works relating to our second contribution, of
MPC in the strong honest majority setting achieving concrete efficiency and
straggler resilience.

PRSS-Based vs. Interactive Correlated Randomness Generation. In this work,
we use non-interactive PRSS to generate the double sharing required for the DN
multiplication protocol. While we improve the efficiency of PRSS dramatically
(when the polynomial degree d is higher than the corruption threshold t), the
computational overhead still limits the practical use of this method to a relatively
small number of corrupted parties t. See the full version for concrete estimates
of computational cost. An alternative to the PRSS-based approach is using an
interactive protocol, but with computation that scales polynomially with the
number of parties. The state-of-the-art protocol by Goyal et al. [34] shows how
to generate the double sharing with communication of just 0.5 field element sent
per party. This implies that our method requires approximately 25% less overall
communication. More importantly, the method of [34] does not support straggler
resilience and applies only to gate-by-gate evaluations. While it can be easily
extended to SIMD circuits, it does not extend to general non-SIMD circuits
with packed secrets. Finally, the correlated randomness generation procedure
from [34] requires interaction between all parties, which can be prohibitive in
other applications scenarios.

MPC with Strong Honest Majority. Concretely efficient MPC in the strong hon-
est majority setting has gained recent focus, including the works of Gordon et
al. [33] and Beck et al. [27]. In comparison, their protocols scale to a larger
number of parties, while our approach provides better efficiency for the regime
of small corruptions t. This is due largely to our ability to generate the neces-
sary setup correlations with minimal interaction via generalized PRSS. In addi-
tion, our protocols provide straggler resilience (yielding savings in settings with
latency variance), whereas [27,33] assume a fully synchronous network. Finally,
in these works, malicious security comes with a multiplicative overhead, whereas
in our protocol, the overhead is sublinear in the size of the circuit.

A very recent work of Goyal et al. [36] shows how to achieve asymptotic
constant communication cost per party in this setting for general non-SIMD
circuits with information-theoretic security, but with poor concrete efficiency
and without stragglers resilience.

MPC with Partial Synchrony. A number of works have studied MPC with var-
ious (stronger) flavors of partial synchrony from the perspective of feasibility,
without focus on concrete efficiency. For example, the work of Zikas et al. [53]
provides unconditionally secure protocols in a model where parties can addition-
ally be send-omission or receive-omission corrupted. Guo et al. [38] consider a
model where parties can periodically go offline and return. In Badrinarayanan et
al. [3] parties can turn non-adversarially “lazy.” Both of the latter rely on heavy
cryptographic tools, such as (multi-key) fully homomorphic encryption.
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Finally, a handful of works have considered concretely efficient MPC with
forms of partial synchrony, with incomparable conclusions. Hirt and Maurer [41]
consider a mixed model of malicious and fail-stop adversaries, achieve perfect
security, but with larger overall cost (e.g., without the savings of share packing).
The “Fluid MPC” work of Choudhuri et al. [17] builds efficient protocols within
a very different model, designed for long computations, where in each period of
time, a different set of parties carry-out the computation.

2 Preliminaries

Notation. Let P1, . . . , Pn be the set of parties and let t, �, d be integers such that
d ≥ t + � − 1 and n ≥ 2d + 1. The parameter t bounds the number of parties
that can be corrupted, the parameter � denotes the size of the block of secrets
that are evaluated together, and d will be the degree of the polynomial defined
below. We use [n] to denote the set {1, . . . , n} and denote by F a finite field.

2.1 Threshold Secret Sharing

Definition 2.1. A d-out-of-n secret sharing scheme is a protocol for a dealer
holding a secret value v and n parties P1, . . . , Pn. The scheme consists of
two interactive algorithms: share(v), which outputs shares (v1, . . . , vn) and
reconstruct({vj}j∈T , i), which given the shares vj , j ∈ T ⊆ [n] outputs v or
⊥. The dealer runs share(v) and provides Pi with a share vi of the secret v. A
subset of users T run reconstruct({vj}j∈T , i) to reveal the secret to party Pi. The
scheme must ensure that no subset of d shares provide any information on v,
while v = reconstruct({vj}j∈T , i) for T only if |T | ≥ d+1. We say that a sharing
is consistent if reconstruct({vj}j∈T , i) = reconstruct({vj}j∈T ′ , i) for any two sets
of honest parties T, T ′ ⊆ {1, . . . , n}, and |T |, |T ′| ≥ d + 1.

Packed Shamir Secret Sharing In Shamir’s secret sharing scheme [48], the
dealer defines a random polynomial p(x) of degree d over a finite field F such
that the constant term is the secret. Each party is associated with a distinct
non-zero field element α ∈ F and receives p(α) as its share of the secret. Since
the degree of the polynomial is d, any d + 1 points are sufficient to compute the
secret. We use the notation [[x]]d to denote a sharing of x via a polynomial of
degree d.

Two properties of this scheme that are very useful for MPC are: (1) linear
operations on secrets can be computed locally on the shares, since polynomial
interpolation is a linear operation; (2) given shares of x and y, the parties can
locally multiply their shares to obtain a sharing of degree 2d of x · y.

In this work, we use a generalization of Shamir’s sharing scheme where mul-
tiple secrets are being encoded together, introduced by Franklin and Yung [24]
and known as “packed secret sharing”. This is achieved by storing the secrets on
multiple points. Note however that if we pack � secrets together on a polynomial
of degree d, then the corruption threshold is being reduced to t = d − � + 1.
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Throughout this paper, we will use the notation [[x1 · · · x�]]d to denote a shar-
ing of the block x1, . . . , x� using a polynomial of degree d, and assume that
x1, . . . , x� are stored at points 0,−1, . . . ,−� + 1 respectively and that the share
of Pi is the value at the point i. Observe that the properties mentioned above
apply to packed secert sharing as well. Namely, given a constant α, β ∈ F and
two sharings [[x1 · · · x�]]d, [[y1 · · · y�]]d, the following are local operations over the
shares: (1) [[(αx1 + βy1) · · · (αx� + βy�)]]d = α [[x1 · · · x�]]d + β[[y1 · · · y�]]d; (2)
[[x1y1 · · · x�y�]]2d = [[x1 · · · x�]]d · [[y1 · · · y�]]d.

We say that a sharing [[x]]d or [[x1 · · · x�]]d is inconsistent if all points do not lie
on the same polynomial of degree d. Given all shares, this can be easily checked
by using d + 1 points to reconstruct the polynomial and checking whether the
remaining points lie on this polynomial

2.2 Computation Model: Layered Straight-Line Programs

In this work, we present a multi-party protocol for performing arithmetic com-
putations over a finite field. In the MPC literature, arithmetic computations are
usually represented by a circuit or a straight line program (SLP) with addition
and multiplication gates/operations. We use the notion of SLP, but choose a
slightly different representation, with one instruction, which we call “bi-linear”,
that captures the two operations together. This model will allow us a simple and
more clearer description of our protocols, and in particular, make the trick to
achieve “free-addition” easier to describe.

Definition 2.2 (Layered straight-line program (SLP)). A straight-line
programs (SLP) over F is defined by an arbitrary sequence of the following kinds
of instructions:

– Load an input into memory: Rj ← xi.
– Bilinear instruction: Rj ← (

∑w
ω=1 aω · Rω) · (

∑w
ω=1 bω · Rω)

– Output value from memory, as element of F: Oi ← Rj.

Here x1 . . . , xn are inputs, R1, . . . , Rw are registers and a1, . . . , aw, b1, . . . , bw

are public constants in F. We define the size of an SLP to be the number of
instructions. A layered SLP is an SLP where the instructions are partitioned into
sets called layers such that the inputs to instructions in layer j were computed
in layer k < j. An �-layered SLP is a layered SLP in which the number of
instructions in each layer is a multiple of �.

For simplicity, we assume in our MPC protocols for SLP that each party holds
one input and receives one output at the end. However, the protocols naturally
extend to the general case of multiple inputs or outputs per party.

Remark 2.1 (Simulating arithmetic circuits by layered SLPs). Every arithmetic
circuit of size S (counting only multiplication gates, inputs, and outputs) can be
converted into an SLP of size S by sorting its gates in an arbitrary topological
order. The “�-layered” notion of SLP intuitively corresponds to a lower bound
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on the circuit width. In particular, an SIMD circuit computing k ≥ � copies of a
size-S circuit C on k distinct inputs can be written as an �-layered SLP of size
kS. Any layered SLP can be converted into an �-layered one by naively adding
dummy gates if needed, where the latter adds (� − 1) times the depth in the
worst case. But almost all “natural” instances of big circuits can be compiled
into �-layered SLPs with no overhead.

3 Generalized Pseudorandom Secret Sharing

An important resource for our main protocol is a packed secret sharing of blocks
of � secrets that are randomly sampled from a given linear subspace. In this
section, we show how the parties can securely generate arbitrarily many such
blocks of secrets without any interaction, assuming a short setup step where
they distribute seeds for a Pseudorandom Function (PRF). Subsequently, shares
are obtained by local computation on the seeds. We refer to this problem as
generalized pseudorandom secret sharing (PRSS). This primitive is useful beyond
the context of this work, and our results are useful even without any share
packing (i.e., when � = 1).

More abstractly, we can view the problem as that of efficiently realizing a
linear correlation, namely an ideal functionality that picks a random vector from
a public linear space and delivers one or more entries of this vector to each party.
To be applicable in an MPC protocol, even with a semi-honest adversary, the
linear correlations must be generated securely. Loosely speaking, an adversary
should not get any information on the shares of honest parties beyond what
follows from the public linear correlation, even given the information that the
adversary holds.

The ideal functionality FLinRand. We will make security arguments relative
to an ideal functionality FLinRand for sharing instances of linear correlated ran-
domness. More concretely, FLinRand is parametrized by some linear subspace,
and in each invocation it picks a random vector from that linear subspace and
distributes one or more entries to each party. Both the linear space and the
assignment of which entry goes to what party are public. It is only the actual
vector sampled from the linear subspace that should remain secret.

Security is defined with respect to a static adversary who may corrupt up to
t parties. Concretely, the real world view of the adversary together with the out-
puts of honest parties should be indistinguishable from an ideal world in which
the adversary chooses the corrupted parties’ shares, and then the honest par-
ties’ shares are sampled from the target correlation conditioned on this choice.
This can be formally viewed as a multiparty instance of a Pseudorandom Cor-
relation Function (PCF), recently defined by Boyle et al. [10], applied to linear
correlations. The notion of PCF naturally extends the notion of a Pseudoran-
dom Correlation Generators (PCG) [9], analogously to the way a standard PRF
extends a standard PRG.

We are interested in t-secure realizations of FLinRand that have the following
structure: (1) During an offline setup phase, a trusted dealer picks random and
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independent PRF seeds, and distributes each seed to a subset of the parties.2 (2)
Next, to realize a fresh invocation of FLinRand with common identifier id, each
party locally evaluates the PRF with each seed it owns on one or more inputs
derived from id, and outputs a fixed linear combination of the PRF outputs.
(The linear combination is fixed and does not change from one id to the next.)

3.1 Overview

Following prior work, we reduce the goal of secure realization of FLinRand to
an information-theoretic problem where the PRF seeds are replaced with true
randomness. Namely, we consider locally generating an instance of the target cor-
relation with perfect t-security given independently random field elements that
are replicated between the parties. In the PRF-based computational realization
of FLinRand, the random field elements will be pseudorandomly sampled using
the PRF. Security under the above PCF-style definition reduces to information-
theoretic security via a standard hybrid argument.

The PRSS problem was first implicitly studied by Gilboa and Ishai [28].
Cramer, Damg̊ard, and Ishai [18] made this notion explicit and described a sim-
ple construction for the case of generating t-out-of-n Shamir sharing of random
values. This construction is a useful building block in many cryptographic appli-
cations. Here we extend the notion and construction of PRSS to more general
settings that are motivated (among other applications) by MPC with strong
honest majority. We show that a gap between the degree d and the security
threshold t can give rise to dramatic efficiency improvements. Concretely:

– We start by extending the standard PRSS problem to the case where the
degree of the Shamir-sharing polynomial can be larger than the security
threshold t, and reduce this problem to a well-studied combinatorial design
problem. This construction can be used for example to implement efficient
distribution of packed Shamir sharing [24] of random values, and can be useful
for many other applications.

– We show how to use the above construction in a black-box fashion to get
efficient implementation of the kind of “double sharing” needed for proto-
cols that follow the approach of Damg̊ard-Nielsen (DN) [22]. Specifically, we
implement the target correlation of two secret-sharing of the same (possibly
packed) random values, one with a degree-d polynomial and the other with a
degree-2d polynomial.

– We show an extension of this technique to the harder case where we have
degree-2d sharings of random values, and degree-d sharings of arbitrary linear
combinations of those random values. This is used to generate random packed
secrets that satisfy given replicated constraints, as needed by efficient MPC
protocols for general circuits based on packed secret sharing [19,20].

We note that our techniques can be used to improve the efficiency of even more
general forms of linear correlation, but leave systematic study of their application
to future work.
2 This setup can alternatively be implemented by a secure MPC protocol.
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3.2 The Gilboa-Ishai Framework

The functionality that we want to implement distributes linearly correlated ran-
dom variables over some field F to n parties. The functionality is parameterized
by a matrix C ∈ F

N×K whose columns span a linear code (i.e., linear subspace
of F

N ), and by a mapping ρ : [N ] → [n] saying which party gets what entry
of the output vector. The functionality chooses a random vector v in the code
(by choosing a uniformly random u ← F

K and setting v := Cu), then privately
sends to each party i′ all the entries indexed by ρ−1(i′).

Implementing this functionality without any interaction (beyond pre-
distribution of PRF seeds) was studied by Gilboa and Ishai [28], in the
information-theoretic setting where the PRF seeds are replaced by true random-
ness. In their framework, implementation of the linear-correlation functionality
consists of:

– Input distribution, where an honest dealer draws x1, x2, . . . , xk ∈ F uniformly
at random, and distributes each xj to some subset of parties Sj ⊂ [n];

– Local output computation, where each party i locally computes and outputs
its entries of v from the xj ’s that it received.

The complexity measures of interest for such a solution are:

– The number of distinct subsets Sj , corresponding to the number of PRF seeds
to be distributed, and

– The sum
∑k

j=1 |Sj |, corresponding to the total number of pseudorandom field
elements to be derived from these PRF seeds, across all the parties.

All the known implementations, including the ones that we describe here, rely
on “small-support codewords” and the Gilboa-Ishai security criteria: A solution
is specified by a “sparse” matrix M ∈ F

N×k (typically k � K), whose columns
span the same code as C. The output is computed by choosing a random vector
x = (x1, . . . , xk) and setting v := Mx, and each party gets all the xj ’es that
it needs in order to carry out this computation. Specifically, for an entry v[i]
that belongs to party ρ(i), we give that party the random elements xj for which
M [i, j] = 0, making it possible for this party to compute the inner product
between x and the i’th row of M . Hence the sets S1, . . . , Sk are defined

Sj = {i′ ∈ [n] : ∃i ∈ [N ], M [i, j] = 0 and i′ = ρ(i)}, (1)

(For example, if the mapping ρ assigns entries 1 through 10 in v to Party 1 then
the only xj values that are not given to this party correspond to columns of M
where the top 10 entries are all zero.) Clearly, the sparser the matrix M is, the
fewer xj values that must be distributed and the smaller we can make the sets
Sj .

Gilboa and Ishai proved a necessary and sufficient criterion for security within
this framework. Fix a code which is generated by the columns of the matrix C,
and a solution matrix M whose columns span the same code. For a subset of
parties T ⊂ [n], let IT be all the rows that belong to parties in T , and JT be all
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the indices of xj ’s that members of T get to see. That is, with the Sj ’s defined
as in Eq. 1, we have

IT =
⋃

i′∈T

ρ−1(i′), and JT =
{
j ∈ [k] : Sj ∩ T = ∅

}
.

Denote by CT̄ the restriction of span(C) to only the codewords that are zero
in all the coordinates IT . Also denote by M ′̄

T
the submatrix of M consisting of

the rows in the complement IT̄ = [N ] \ IT and the columns in the complement
JT̄ = [k] \ JT (i.e., the ones corresponding to xj ’s that none of the parties in T
receives).

Lemma 3.1 ([28]). Let C ∈ F
N×K and M ∈ F

N×k be two matrices with the
same column space (so M describes a solution to the distribution of a codeword
from span(C)).

For a subset of parties T ⊂ [n], the solution specified by M is secure against
a corrupted T iff the rank of M ′̄

T
equals the dimension of CT̄ .

3.3 Technical Tool: Covering Designs

The main technical tool that we use in our construction is the following notion
of covering designs:

Definition 3.1 ((n,m, t)-cover). Fix integers n ≥ m ≥ t > 0, and let C =
(S1, . . . , Sk) be a collection of k different subsets Sj ⊂ [n], all of size |Sj | = m.
C is said to be an (n,m, t)-cover if for every size-t subset T ⊂ [n], |T | = t, there
is a set Sj ∈ C that covers it, T ⊆ Sj. We will refer to an (n,m, t)-cover as a
t-cover when n,m are clear from the context.

This notion is equivalent to the notion of t-immunity of Alon et al. [2], in
which for every subset T there is a set Sj in the collection such that T

⋂
Sj = ∅.

The collection C is an (n,m, t)-cover iff the complement sets [n] \ Sj form an
(n, n − m, t)-immune collection. The smallest number of subsets in an (n,m, t)-
cover is also known as the hypergraph Turán number T (n, n− t, n−m) in honor
of Paul Turán who initiated the study of these objects in [50,51].

The parameters of covering designs have been studied extensively, e.g. see
[25,49] for surveys, but the exact value is still an open problem in the general
case. The best known analytical bounds for small values of t are summarized
in a Handbook of Combinatorial Designs chapter by Gordon and Stinson [32].
A good online resource that collects the best known bounds for concrete values
of n,m, t with t ≤ 8, including ones found via computer search, is Gordon’s
covering designs web page [1].

For general values of t, Micali and Sidney [44] proposed to construct an
(n,m, t)-cover by randomly choosing

(
n
t

)
/
(
m
t

)
ln

(
n
t

)
subsets of size m from [n]

and used a probabilistic argument to show that with good probability this col-
lection is an (n,m, t)-cover. Pieprzyk and Wang [39] construct a deterministic,
greedy algorithm that achieves the same bound on the size of the collection.



Generalized Pseudorandom Secret Sharing 143

Both works were motivated by variants of the PRSS problem where the seeds
are stored in a replicated form, without the compressing share conversion step
from [18,28]

A range of parameters which is especially appealing for our MPC protocol is
constant t, and m which is a linear fraction of n, e.g., m = n/3. In this case, the
protocol can cope with a large number of stragglers and reduce communication
by packing. When t is constant, the constructions in [39,44] have collections of
size O(log n).

We next describe a simple construction that achieves a constant-sized collec-
tion for t = O(1) and m = Ω(n), when t divides m and m divides n. Denote
c = n/m and partition [n] into ct subsets R1, . . . , Rct of equal size. Let the collec-
tion S1, . . . , Sk be all the possible choices of t subsets Ri1 ∪ · · · ∪ Rit . Obviously,
each |Sj | = t(n/ct) = m and for every T ⊆ [n], |T | = t there exists some Sj

such that T ⊆ Sj . The size of the collection is
(
ct
t

)
, which for constant t and c is

constant, improving over the construction of [39,44].
Taking for each parameter set (n,m, t) the minimal cover size between the

simple construction and the construction in [39] provides a baseline construction
for t-covers. This baseline achieves an upper bound for the cover size, which is
bigger than the minimal possible size by a factor of at most O(log n), due to a
simple lower bound of

(
n
t

)
/
(
m
t

)
on this size (see, e.g., Theorem 11.19 in [32]).

Both the upper bound of the baseline construction and the simple lower bound
are generally not tight. Improved bounds for certain parameter ranges can be
found in [1].

3.4 Generalized PRSS for Degree-d Polynomials

It is easy to see (see Theorem 3.2) that t-covers are necessary for t-secure dis-
tribution in the Gilboa-Ishai framework, since any corrupted subset must miss
at least some of the xj ’s. Here we observe that the other direction is also useful,
establishing a close connection between the size of the best (n, d+1, t)-cover and
the complexity of PRSS for distributing random degree-d polynomials between
n parties with security against t-collusions.

Theorem 3.1 (Generalized PRSS for degree-d polynomials). Fix inte-
gers n ≥ d > t > 0. A size-k′ (n, d + 1, t)-cover can be used to construct a
generalized PRSS solution for t-secure distribution of degree-d polynomials, with
the following complexity measures:

– The number of distinct subsets (or PRSS seeds) is k = k′(d + 1), and
– The total subset size (storage) is

∑
i |Si| = k′(d + 1)(n − d) and

– The total number of PRF calls is k′(d + 1)(n − d).

Proof: Let C′ = (S′
1, . . . , S

′
k′) be a size-k′ (n, d + 1, t)-cover, i.e. it consists of k′

subsets, each of size d + 1, that cover all the t-subsets. We then consider all the
subsets that are obtained by removing one element from any of the S′

j ’s,

C̄ =
{
S′ \ {j} : S′ ∈ C′, j ∈ S′}.
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Clearly, there are at most k ≤ k′(d + 1) distinct subsets in C̄, each of size d.
Let us denote the subsets in C̄ by S̄1, S̄2, . . . , S̄k, and we use these subsets in the
CDI construction to distribute a random degree-d polynomial. We let PS̄j

be the
unique polynomial of degree d interpolated from

PS̄j
(X) =

{
0 if X ∈ S̄j

1 if X = 0

As before, PS̄ is a nonzero degree-d polynomial, whose zeros are exactly all
the parties in S̄j . A random vector x ∈ F

k therefore defines the polynomial
Qx(X) =

∑
j xj · PS̄j

(X), and each party i ∈ [n] gets the xj ’s corresponding to
the S̄j ’s that do not include i, and can compute Qx(i) from these xj ’s. Thus,
there are k′(d + 1) distinct subsets, each of cardinality n − d. This implies that
the total stroage is k′(d+1)(n−d) as the theorem states. Since each seed is used
once, the total number of PRF calls is also the same.

In the language of the Gilboa-Ishai framework, the matrix M ∈ F
n×k is

defined by M [i, j] = PS̄j
(i), and the distribution sets are exactly the comple-

menting sets Sj = [n] \ S̄j (namely we distribute each xj to the complement of
some S′ ∈ C′, together with one more element). The complexity measures are
obvious.

It remains therefore to show security against a collusion of t parties, which for
degree-d polynomials means showing that for every t-subset T , the submatrix M ′̄

T
has rank at least d+1−t. Fix a t-subset T ⊂ [n], so there is a subset S′ ∈ C′ that
covers it. Consider now the sub-matrix corresponding to the subsets S̄ that were
obtained by removing from S′ one element which is not in T (hence those sets S̄
still all cover T ). That is, we consider the sub-matrix MT,S′ of M [i, j] = PS̄j

(i),
consisting of the rows for [n] \T and the columns for Sj = ([n] \S′)∪{j′} for all
j′ ∈ S′ \ T . Clearly MT,S′ is a sub-matrix of M ′̄

T
, it has n − t rows and d + 1 − t

columns (since S′ covers T ), and it has the form

MT,S′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ ∗ · · · ∗
...

...
. . .

...
∗ ∗ · · · ∗
∗

. . .
∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the ∗’s are non-zero and everywhere else there are zeros. The top rows
∗ · · · ∗ correspond to [n] \ S′ and the bottom rows correspond to S′ \ T . The last
d + 1 − t rows of this matrix are linearly independent, hence the rank of MT,S′

is d + 1 − t, as needed for the Gilboa-Ishai condition. �

Corollary 3.1. Fix integers n ≥ d > 1. Then, the following holds for gen-
eralized PRSS solutions for t-secure distribution of degree-d polynomials with
t = 1, 2:
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1. There exists a solution for t = 1 with
⌈

n
d+1

⌉
(d + 1) total seeds,

⌈
n

d+1

⌉
(d+1)(n−d)

n seeds stored by each party and
⌈

n
d+1

⌉
(d+1)(n−d)

n calls to the
PRF made by each party.

2. If n ≤ 3(d+1) then there exists a solution for t = 2 with 13(d+1) total seeds,
13(d + 1)(n − d)/n seeds stored by each party and 13(d + 1)(n − d)/n calls to
the PRF made by each party.

We can also prove a nearly-matching lower bound Theorem 3.1 on the solu-
tion complexity for t-secure distribution of degree-d polynomials, in terms of
the achievable size for (n, d + 1, t)-covers. This naturally generalizes a similar
negative result for standard PRSS from [18]. The proof is in the full version.

Theorem 3.2 (Necessity of cover designs). Any generalized PRSS solu-
tion for t-secure distribution of degree-d polynomials that has k distinct subsets
implies an (n, d + 1, t)-cover of size k′ ≤ k.

The combination of Theorems 3.1 and 3.2 prove that the best (n, d + 1, t)-
cover implies a nearly optimal number of distinct subsets, up to a factor of at
most d + 1.

3.5 Double Shamir Sharing

A useful resource for efficient honest-majority MPC protocols is a so-called “dou-
ble Shamir sharing” of a random secret, where the parties are given two random
polynomials of degrees d and 2d that share the same random secrets. Here we
consider the case of packed secret sharing. Letting � = d − t + 1 be the packing
parameter, we want to generate a random degree-d polynomial P1, and another
polynomial P2 of degree-2d which is random subject to P1(x) = P2(x) for all
x ∈ {0,−1,−2, . . . ,−�+1}. It is easy to see that this task reduces to generating
two independent random polynomials P1(X) of degree d and R(X) of degree
2d − �, then setting P2(X) = P1(X) + R(X) · X(X + 1)(X + 2) · · · (X + � − 1).

Indeed, the polynomial on the right side is a random degree-2d polynomial,
under the constraint that its values at the points {0,−1, . . . , � + 1} are 0. Since
P1(x) and R(x) are random independent polynomials, we can use the construc-
tion from the previous section in a black-box way. Specifically, we can generate
P1(x) using a (n, d+1, t)-cover and generate R(x) using an (n, 2d−�+1, t)-cover.

Theorem 3.3 (Generalized PRSS for packed double sharing). Fix inte-
gers d > t > 0 and n > 2d and let � = d − t + 1. A size-k′ (n, d + 1, t)-cover
and a size-k′′ (n, 2d − � + 1, t)-cover can be used to construct a solution for t-
secure distribution of double-Sharing of degree-d and degree-2d polynomials, both
packing the same � elements, with the following complexity measures:

– The number of distinct subsets (seeds) is at most k ≤ k′(d+1)+k′′(2d−�+1) ≤
k′(2d + t + 1);

– The total subset size (storage) is
∑

j |Sj | ≤ k′(d + 1)(n − d) + k′′(d + t)(n −
d − t + 1).

– The total number of PRF calls is k′(d + 1)(n − d) + k′′(d + t)(n − d − t + 1).
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The proof is in the full version. This construction is already strong enough to
support DN-type secure computation protocols, even while packing � elements
in each polynomial. (Hence it can be used to compute the same circuit on �
different inputs at once, in a SIMD fashion.)

As an alternative to the above, we can use an (n, d + 1, t)-cover to construct
both polynomials, by increasing the number of pseudorandom elements derived
from each seed. This will reduce the number of seeds stored by the parties (by
some factor smaller than two), but will increase the number of pseudorandom
elements that must be derived from these seeds. We provide the construction in
the full version of this paper. We use a similar idea in the construction in the
next section.

3.6 Beyond Double Sharing

In some applications, including the protocol that we describe in Sect. 4, we must
generate double-Shamir-sharing of linearly correlated packed values (rather than
the same values twice). While we don’t know how to use the random-polynomial
construction in a black-box manner to achieve this, we show here how to modify
that construction in order to distribute this more general linear correlation in a
t-secure manner.

This extension, however, comes with some loss of efficiency. Specifically, we
need to start from covers with smaller subsets, and moreover we no longer dis-
tribute only a single random element to each subset. Fix n > d > t > 0 and
� ≤ d − t (allowing � < d − t is useful to mitigate the parameter loss). The goal
in this section is to share two types of polynomials:

– m polynomials R1, . . . , Rm of degree 2d, each packing � “free variables” (i.e.
unconstrained) in positions 0,−1, . . . ,−� + 1.

– m′ additional polynomials U1, . . . , Um′ of degree d, each packing � constrained
variables, which are set as some fixed linear combinations of the free variables.

Denote the positions where these values are packed by L = {0,−1, . . . ,−� +
1}, and also denote the linear correlation above by L[n, d, �,m,m′]. In the full
version, we show the following:

Theorem 3.4 (Generalized PRSS for replicated packed secrets). Fix
integers n ≥ d > t > 0, � ≤ d − t, m,m′ > 1. A size-k′ (n, d − � + 1, t)-cover can
be used to construct a solution for t-secure distribution of the linear correlation
L[n, d, �,m,m′] above. The complexity is at most:

– The number of distinct subsets (seeds) is at most k ≤ k′(d − � + 1);
– The total subset size (storage) is

∑
j |Sj | ≤ k′(d − � + 1)(n − d + �);

– The total number of PRF calls is at most k(n − d + �)(m(d + � + 1) + m′).

Parameters. We remark that the parameters of this construction behave dif-
ferently than those of the previous constructions. For the constructions from
Sects. 3.4 and 3.5, increasing � (and d) was a double-win, not so for the cur-
rent construction. Here we need to start from a (n, d − � + 1, t)-cover, so setting
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� = d − t we hardly get any slackness in the size of the sets in our t-cover (they
will be of size only t + 1). To improve parameters (the cover size in particular),
it is better to choose a smaller value of �, thereby working with larger subsets
and hence being able to find smaller covers. It is likely that setting � ≈ (d− t)/2
will be a sweet spot for this construction in terms of complexity.

4 Constructions for Semi-honest Security

In this section, we present protocols to compute a layered straight-line program
over a finite field F, that is secure in the presence of a semi-honest adversary who
controls t parties, and with straggler-resilience. Recall that we have n ≥ 2d + 1
parties, where d ≥ t + � − 1.

The starting point of our constructions is the DN protocol [22], which is the
fastest protocol known to this date for n > 3 parties. We begin in Sect. 4.1 with
recalling the baseline DN protocol. In Sect. 4.2, we introduce straggler resilience
and show how to adapt the DN protocol accordingly. Then in Sect. 4.3 we provide
our solutions for improving the communication and computation requirements
of the protocol.

4.1 Baseline Protocol (with � = 1)

Recall that in the DN protocol [22], the parties compute linear operations with-
out any interaction and compute multiplication operations with small constant
communication cost per party. Given shares [[x]]d and [[y]]d, the parties compute
[[x ·y]]d in the following way. The parties prepare random sharings [[r]]d and [[r]]2d

in an offline step which are consumed as follows. First, the parties locally com-
pute [[x · y − r]]2d = [[x]]d · [[y]]d − [[r]]2d and send their shares to P1. Then, party
P1 computes x · y − r and shares the result to the parties as [[xy − r]]d. Finally,
the parties locally compute [[x · y]]d = [[r]]d + [[xy − r]]d.

As the random sharings can be generated non-interactively (in the way
described in Sect. 3), the communication cost is derived from parties sending
one field element to P1 and P1 secret sharing xy − r to the parties. Note that 2d
shares are sufficient for P1 to reconstruct xy − r (together with its own share).
Also, it is possible to reduce communication in the second round by setting the
shares of d parties to be 0, and having P1 define its own share and the remaining
n − d parties’ shares, given the value of xy − r and the d zero shares. This is
possible since xy − r is not secret (P1 could send it in the clear to the parties)
and since [[xy−r]]d is shared via a polynomial of degree d, and so d+1 points are
sufficient to define it. Overall, we have that the communication cost per party
per bilinear gate is 2d+n−d−1

n = 1 + d−1
n field elements. When n > 2d + 1, it

is possible to improve this by having the parties secret sharing their inputs to
2d + 1 parties who perform the computation. In this case, the communication
cost per party per bilinear gate reduces to 2d+d

n = 3d
n elements.
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We denote by Πbase
SH the base protocol, which thus works as follows:

Protocol Πbase
SH :

The parties hold a description of a layered SLP over F. Denote by S the set of
parties P1, . . . , P2d+1

– Pre-processing: The parties call FLinRand to obtain a pair of random shar-
ings [[r]]d and [[r]]2d for each bilinear instruction.

– The protocol:
1. Input sharing: for each instruction Rj ← xi, party Pi run [[xi]]d ←

share(xi) and sends the resulting shares to the parties in S.
2. Evaluating the jth bilinear instruction Rj ← (

∑
αωRω) · (

∑
βωRω): Let

[[r]]d, [[r]]2d be the next unused pair of random sharings. Then:
(a) The parties in S locally compute [[x]]d =

∑w
ω=1 αω · [[Rω]]d and [[y]]d =∑w

ω=1 bω · [[Rω]]d, where [[Rω]]d denotes sharing of the ω-index memory
value Rω (stored from previous operations).

(b) The parties in S locally compute [[xy − r]]2d = [[x]]d · [[y]]d − [[r]]2d and
send the result to P1.

(c) P1 locally reconstructs xy − r and then computes a sharing [[xy − r]]d
such that the shares of P2 . . . , Pd+1 are 0. Then, it sends the non-zero
shares to parties Pd+2, . . . , P2d+1.

(d) The parties in S set [[z]]d ← [[r]]d + [[xy − r]]d, and define [[z]]d as their
share of the output.

3. Output reconstruction: For each instruction Oi ← Rj , the parties in S
send their shares of the value in Rj to Pi, who uses them to reconstruct
the output Oi.

Security of Πbase
SH against a semi-honest adversary A controlling d parties

follows from the fact that A’s view consists of d random shares in the input
sharing step, and masked intermediate values when performing multiplication
operations.

4.2 Straggler Resilience

The classical communication model for secure multi-party computation considers
parties who advance in the same pace in a fully synchronous manner. However,
in real world scenarios, it is unreasonable to assume that all messages arrive at
the same time. A protocol which can proceed without having to wait for all the
parties’ messages to arrive in each round, has thus the potential to reduce the
overall latency of the execution.

We consider a model of straggler resilience, to account for the fact that com-
munication channels exhibit a distribution over latency times, each of which may
incur long delays with small probability. Instead of requiring parties to block and
wait in every communication round until the last messages arrive, we build into
the protocol design that the computation may proceed even in the absence of a
small number of messages per round, which have not yet successfully been deliv-
ered. We say that a protocol that terminates successfully even when τ messages
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are dropped in each round, is resilient to τ stragglers. As for privacy, following
the standard definition of multi-party computation [29], we consider an adver-
sary who controls t parties and, in addition, is allowed to choose τ messages to
be dropped in each round.

Definition 4.1 (Straggler resilience, semi-honest security). Let f be an
n-party functionality. We say that protocol Π computes f with t-semi-honest-
security and τ -straggler-resilience if it satisfies the following properties:

– Straggler-Robust Correctness: Π terminates successfully (i.e. each
party receives its prescribed output fi(x)), even if in each communication
round, τ messages, chosen adaptively by the adversary, are not delivered.

– Semi-Honest Security with Stragglers: For every real-world semi-
honest adversary A controlling a set I of parties with |I| ≤ t and, in addition,
can choose adaptively τ messages to drop in each communication round, there
exists an ideal-world simulator S such that for every vector of inputs x it
holds: {S(I,xI , fI(x))} ≡ {viewπ

A(x)}, where xI is the inputs of the parties
in I, fI(x) is the output intended to the parties in I, and viewπ

A(x) is A’s
view in a real execution of π.

Remark 4.1 (Straggler resilience)

1. Round vs. epoch. Our protocol constructions have a very specific structure,
common to concretely efficient n-party computation protocols (à la DN [22]),
where execution is divided into phases, or “epochs.” In each epoch, a fixed
designated party sends messages to the other parties, and then receives back
messages from the parties. Within such structure, a somewhat more natural
notion of straggler resilience will correspond to a given number of dropped
messages per epoch (i.e., 2 rounds). However, our notion of τ dropped mes-
sages per round is more generally applicable, while still capturing the setting
of bounded number of messages dropped per epoch (in this case 2τ , for the
two rounds).

2. Message vs. node drop. We choose to model latency behavior as embodied by
failure of delivery of individual messages. This captures settings where delays
are caused by network channels, each exhibiting some distribution of latency.
This further shares similarities to the “message omission” model, where mes-
sages sent to/from affected parties may never be delivered, as considered in,
e.g., [40,45,46].
An alternative approach is to consider temporary node failures per epoch (as
considered in, e.g., [43,47,53]). This models settings where delays are caused
centrally by the node itself. On one hand, our model can be more fine-grained;
on the other hand, failure of a node corresponds to failure of potentially
many incoming/outgoing communication messages. We remark that achieving
straggler resilience against node failures poses a challenge within protocols
following a star-topology communication structure as in DN and successors
since failure of the designated “central” party prevents forward progression
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of the protocol. Seeing as this protocol structure lies at the core of concretely
efficient n-party protocols to date, it remains an interesting open direction
to explore whether such node-straggler resilience notion can additionally be
achieved with good concrete efficiency.

Observe that the DN protocol Πbase
SH from the previous section is not resilient

to any straggler. Since it chooses a set S of 2d+1 parties in advance to carry-out
the computation, and then the server cannot proceed without all 2d messages
arriving to him in each multiplication, then an adversary who chooses to drop
the messages of even one party in the set S will cause the execution to get stuck.
Note that choosing a different set S in each step will not solve the problem, since
the adversary is allowed to adaptively choose a different set in each epoch (not
to mention the communication cost incurred by resharing intermediate values to
the new set of parties).

Next, consider a protocol, where we let all the parties participate in the
execution and send their 2d-degree shares of xy − r to P1, who then uses the
first 2d shares it receives (together with its own share) to compute xy−r. Then,
P1 shares xy − r to the parties, with the optimization outlined above, which
allows him to send shares to n − d − 1 parties only (d shares are always 0).

Note that now the cost is n−1+n−d−1
n = 2− d+2

n field elements sent per party.
We denote by Πsingle

SH a protocol that is identical to Πbase
SH , with the difference that

the input is shared to all the parties and multiplication operations are carried-
out in the way described above. While the communication cost of Πsingle

SH is higher
than of Πbase

SH , it does allow (n − 2d − 1) messages in each epoch to be dropped,
since P1 needs only 2d shares in order to compute its message to the parties. For
the input sharing and output reconstruction steps, note that d+1 shares suffices
to compute shared secrets, and so even if (n − 2d − 1) messages are dropped,
there are enough shares to proceed. We thus have:

Theorem 4.1. Let f be a n-ary functionality over a finite field F represented
by a layered SLP, let t be a security threshold, let d be a parameter such that
d ≥ t, n ≥ 2d + 1 and |F| > n + d + 1. Then, Protocol Πsingle

SH computes f in
the FLinRand-hybrid model, with t-semi-honest-security, (n − 1 − 2d)-stragglers-
resilience and communication of 2 − d+2

n field elements sent per party for each
bilinear instruction.

Observe that setting the d parameter gives rise to trade-offs between com-
munication cost, stragglers-resilience and storage cost. Specifically, increasing d
reduces communication and also the amount of PRSS keys needed for producing
the correlated randomness (see Sect. 3). In contrast, keeping d small (e.g., setting
d = t) provides more room for stragglers.

4.3 Reducing Communication and Computation

In this section, we show how to reduce communication and computation cost
while still providing resilience to stragglers. This is achieved by taking the app-
roach of packed secret sharing: encoding � secrets over the same polynomial and
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evaluating � bilinear instructions together, at the cost of a single instruction. We
begin with a construction that is designed for SIMD programs, and then show
how to extend our techniques to general programs.

Computing SIMD Programs. A program which evaluates the same sub-
program many times in parallel is called a SIMD (“same-instruction-multiple-
data”) straight-line program. Note that a program P which consists of � copies
of the same sub-program can be viewed as a program which evaluates each time
a bundle of � identical instructions. Following works in this area, our idea is
to store the � inputs to each bundle on the same polynomial, reducing both
communication and computation by a factor of �. Details can be found in the
full version.

Computing General Layered Straight-Line Programs. We next show how
use packing to reduce cost when computing any straight-line program. In the
protocol, the parties will process in each round � instructions together at the cost
of evaluating a single instruction. For a general-structured program this clearly
raises several difficulties. Recall that an instruction in our program consists of
taking a linear combination of two sets of inputs and multiply them together.
The goal is to carry-out this by packing the “left” inputs on one polynomial and
the “right” inputs on a second polynomial and multiply them together, to obtain
a polynomial encoding the outputs of � instructions. However, it is now not clear
how to proceed to the next batch of � instructions. In particular, when we move
from one batch of instructions to the next, the outputs should be reorganized
into new blocks of inputs corresponding to the ordering of the inputs in the next
� instructions. Moreover, it is possible that an output is used as an input to more
than one instruction in the next batch. In this case, we need to ensure that the
same value appears in several blocks and possibly in different positions. We call
this ordering the “repetition pattern” induced by the program. To overcome this
challenge, we leverage the fact that in the semi-honest multiplication protocol,
party P1 sees all outputs in the clear, masked using random values. Thus, we
can ask P1 to reshare all values according the ordering of the next batch of
instructions. Moreover, to achieve free-addition, we will ask P1 to first compute
the linear combinations over the masked outputs and only then reshare it to the
other parties in blocks. The parties, who receive block of masked values, will
unmask these values, using correlated randomness they hold, and proceed to the
multiplication operation.

In our protocol, the parties hold a sharing of two blocks of � inputs:
[[x1 · · · x�]]d and [[y1 · · · y�]]d. As in the DN protocol, they locally multiply their
shares and add shares of a random block [[r1 · · · r�]]2d to obtain a sharing
[[(x1 · y1 + r1) · · · (x� · y� + r�)]]2d. Then, the parties send their shares to P1

who reconstructs x1 · y1 + r1, . . . , x� · y� + r�. However, instead of sending these
back to the parties, we let P1 proceed to the next batch of instructions and
compute the linear combinations of the inputs over the masked secrets. Only
then P1 shares the left block of masked inputs and right block of masked inputs
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to the parties, to perform the next multiplication operation. Once the shares
of the blocks of masked inputs are received from P1, the parties unmask these
by adding a block of shared random secret that correspond to the repetition
pattern. That is, if we have in the kth position of, say, the left input, a linear
combination (

∑w
ω=1 ak,ω · Rω) and the value in Rω was masked using rω, then

the parties need here a sharing [[r‘1 · · · r‘�]]d where r‘k = (
∑w

ω=1 ak,ω · rω). For-
tunately, our pre-processing protocol from Sect. 3 can produce these types of
random blocks. As before, P1 proceed once 2d shares have been received, which
means that, as before, the protocol is resilient to n−1−2d stragglers. We stress
that our trick to let P1 compute the linear operations over the masked inputs
and only then reshare it back to parties, is crucial for achieving addition for free
- a property that is not trivial to achieve for non-SIMD circuits.

We formally describe our semi-honest protocol in the full version. Note
that for each batch of � bilinear instruction, n − 1 parties send an element to
P1, whereas P1 need to share the inputs of the two inputs blocks, thus send-
ing 2(n − 1 − d) elements. Overall, per a single instruction, each party sends
n−1+2(n−1−d)

n·� = 3
� − 2d+3

n·� field elements, where d ≥ t + � − 1.

Theorem 4.2. Let f be a n-party functionality over a finite field F represented
by a �-layered SLP, let t be a security threshold parameter and let d be a param-
eter such that d ≥ t + � − 1, n ≥ 2d + 1 and |F| > n + d + � + 1. Then, our
protocol computes f in the FLinRand-hybrid model with t-semi-honest-security,
(n − (2d + 1))-stragglers-resilience and communication of 3

� − 2d+3
n·� field elements

sent per party for each bilinear instruction.

The proof in the full version. Observe that when � ≥ 3 (i.e., packing at least
3 secrets on each polynomial), we have 3

� − 2d+3
n·� < 1, which means that each

party sends less than one field element for each bilinear instruction. When � = 2,
then the cost is less than 1.5 elements sent per party. We thus obtain a protocol
which provide the best of both worlds: it achieves both minimal communication
and stragglers resilience. This is in contrast to Πbase

SH which achieves minimal
communication without any resilience to stragglers, and Πsingle

SH which can handle
stragglers but at the cost of (at least) doubling the communication cost. We
provide exact cost analysis with concrete numbers in the full version.

5 From Semi-honest to Malicious Security

In this section, we show how to augment our protocol from the previous section
to malicious security (with abort). Our goal is to achieve malicious security
without increasing the amortized communication cost per instruction, and while
maintaining the resilience to stragglers.

We begin by defining the meaning of security and resilience to stragglers
in the presence of malicious adversaries. Note that unlike the definition with
semi-honest adversaries, we no longer guarantee a successful termination of the
protocol, but rather provide security with abort. The straggler-robust correct-
ness, however, will still require that the protocol ends successfully if the parties
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act honestly, even if in each round τ messages, chosen by the adversary, are
dropped. In addition to this requirement, we also need the protocol to be secure
in the presence of an adversary who controls t parties and, in addition, can drop
any τ messages in each round of communication.

Following the standard ideal-world vs. real-world paradigm of MPC [14,29],
let A be an adversary who chooses a set of parties before the beginning of the
execution and corrupts them. We assume that the adversary is rushing, meaning
that it first receives the messages sent by the honest parties in each round,
and only then determines the corrupted parties’ messages in this round. Let
realf

Π,A,I(1
κ,x) be a random variable that consists of the view of the adversary

A controlling a set of parties I, and the honest parties’ outputs, following an
execution of Π over a vector of inputs x to compute f with security parameter
κ. Similarly, we define an ideal-world execution with an ideal-world adversary S,
where S and the honest parties interact with a trusted party who computes f
for them. We consider secure computation with abort, meaning that S is allowed
to send the trusted party computing f a special command abort. Specifically,
S can send an abort command instead of handing the corrupted parties’ inputs
to the trusted party (causing all parties to abort the execution), or, hand the
inputs and then, after receiving the corrupted parties’ outputs from the trusted
party, send the abort command, and prevent them from receiving their outputs.
We denote by idealf,S,I(1κ,x), the random variable that consists of the output
of S and the honest parties in an ideal execution to compute f , over a vector of
inputs x, where S controls a set of parties I. The security definition states that
a protocol Π securely computes f with statistical error ε, if for every real-world
adversary there exists an ideal-world adversary, such that the statistical distance
between the two random variables is less than ε.

Definition 5.1 (Straggler resilience, malicious security). Let f be an n-
party functionality and let ε = ε(κ) be a statistical error bound. We say that
Π computes f with t-malicious-security-with-abort and τ -straggler-resilience with
statistical error ε if it satisfies the following properties:

– Straggler-Robust Correctness: If all parties act honestly, then Π ter-
minates successfully (i.e. each party receives its prescribed output fi(x)) even
if in each communication round, τ messages, chosen adaptively by the adver-
sary, are not delivered.

– Security with Stragglers: For every real-world malicious adversary A
who controls a set of parties I with |I| ≤ t and, in addition, can choose
adaptively any τ messages to drop in each round of communication, there
exists an ideal-world simulator S, such that for every κ and every vector of
inputs x it holds that SD

(
realf

Π,A,I(1
κ,x), idealf,S,I(1κ,x)

)
≤ ε where

SD(X,Y ) is the statistical distance between X and Y 3.

3 Note that we prove statistical security of our protocol in a hybrid model where
parties hold correlated randomness. The resulting combined protocol provides com-
putational security when this setup is instantiated using PRSS.
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To construct a protocol that satisfies the definition, we work in two steps.
First, we present a protocol to compute the program until (and not includ-
ing) the output-revealing stage, that provides privacy in the presence of mali-
cious adversaries. As we will see, maybe somewhat contrary to intuition, our
semi-honest protocol from the previous section may leak private data to a mali-
cious adversary. We thus show how to fix this without changing the communi-
cation cost or the round complexity and whilst providing the same resilience to
stragglers.

Then, we add a step, before the revealing of the output, in which the parties
verify the correctness of the computation, and abort with high probability if
cheating took place. The properties of this step are: (i) it has sublinear commu-
nication (in the size of the program) and so the overall amortized communication
cost per instruction remains the same, (ii) it requires a small constant number
of rounds and so does not increase the round complexity of our protocol.

We note that although the protocol we describe only guarantees security
with selective abort, it can be easily augmented to unanimous abort as required
by the definition above with small constant cost, by running a single Byzantine
agreement before the end of the execution. For simplicity, we omit this step from
the description.

Before proceeding, we briefly describe two building blocks required by our
protocol:

The Fcoin ideal functionality. In our protocol, the parties will sometimes need to
produce fresh random coins. The Fcoin functionality, when called by the parties,
hands them such coins. To compute Fcoin with abort, the parties can simply
generate a random sharing [[r]]d and open it. In the honest majority setting, there
is nothing the adversary can do here beyond causing an abort. We note that to
generate any number of coins with constant communication cost, it suffices to
call Fcoin once to obtain a seed, and expand it to many pseudo-random coins.

Consistency Check. To check that m sharings {[[xj,1 · · · xj,�]]d}m
j=1 are consistent,

we use the well-known method of taking a random linear combination of these
sharings, mask the result by adding a random sharing [[r1 · · · r�]]d, and open it.
For the random linear combination, the parties call Fcoin to obtain the random
coefficients.

5.1 Privacy in the Presence of Malicious Adversaries

In this section, we show how to compute a straight-line program with privacy in
the presence of a malicious adversary. We begin by showing that DN-style semi-
honest protocols which we consider in this work, may leak private information
to a malicious adversary in the strong honest majority setting. Recall that in the
semi-honest protocol, to carry-out a multiplication between shared inputs [[x]]d
and [[y]]d, the parties send [[x·y−r]]2d to P1, who reconstruct x·y−r and shares it
as [[x ·y−r]]d to the parties. Then, the parties compute [[x ·y]]d = [[x ·y−r]]d+[[r]]d
and obtain a sharing of the output.
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The “double-dipping” attack [35]. We now describe an attack that can be carried
out by a malicious P1, when n > 2d + 1. This attack was shown in [35] for
the setting of d < n/3 and works over two multiplication gates/instructions as
follows. Assume that the parties multiply [[x]]d with [[y]]d. Thus, after receiving
the masked shares from the parties, P1 reconstructs xy − r and computes a
random sharing [[x · y − r]]d. Then, P1 sends the correct shares to all parties
except for Pn, to whom it adds 1 to the intended share. Thus, all the parties,
except for Pn, can compute the correct share of x · y by adding [[r]]d. Denote the
share of x ·y held by Pi by αi. This means that Pn will hold αn +1. Next, assume
that the parties proceed to the next multiplication, where they need to multiply
[[xy]]d with [[z]]d, and denote the share of z held by Pi by zi. Note that once P1

receives 2d shares, it can not only reconstruct xyz − r′, where r′ is the random
masking for this multiplication, but also can compute the remaining n − 1 − 2d
shares that should be sent. In particular, after receiving shares from any subset
of 2d parties that does not contain Pn, it can compute the correct share that
should be sent by Pn, i.e., αn · zn − r′

n, where r′
n is Pn’s share of r′. However,

Pn will send the share (αn + 1) · zn − r′
n, which means that P1 can compute

(αn · zn − r′
n) − ((αn + 1) · zn − r′

n) = zn, obtaining the secret share zn of Pn.

Previous Solutions. The main reason for the above attack is that in the strong
honest majority setting, there is redundancy in the masking. Indeed, the solu-
tion suggested in [35] is to use as masking the sharing [[r]]n−1, which means that
x · y − r can be reconstructed only given the shares of all parties. A different
solution was given in [26], where a consistency check was carried-out between
each two layers of the program. This prevents the above attack, since by sending
an incorrect share to Pn, the resulting sharing of x · y becomes inconsistent.
Thus, a consistency check will detect this type of cheating and prevents P1 from
proceeding with the attack to the multiplication in the next layer. However,
these solutions are not sufficient in our case, since either they require all par-
ties to participate, preventing any resilience to stragglers, or, double the round
complexity of the protocol.

A New Solution with Straggler Resilience. We thus need a new solution that
achieves privacy, while allowing P1 to proceed without requiring all parties’
shares of x · y − r. Our idea is to have a different independent masking value
for each subset of 2d + 1 parties. In particular, for each subset T of 2d + 1 par-
ties, we want the parties to hold a pair ([[rT ]]d, [[rT ]]2d) which can be used in the
multiplication protocol. This however raises a question. If each subset of parties
have a different masking, then which masking share should a party use when it
sends its message to P1? To overcome this, we add an additional constraint: the
parties should hold a pair ([[rT ]]d, [[rT ]]2d) for each subset T under the constraint
that each Pi’s share in [[rT ]]2d will be identical for all subsets. If this holds, then
only one possible message exists for each Pi to send to P1 (i.e., xi · yi − ri where
ri is the random share used by Pi as a mask). We will see later how to generate
such correlated randomness in an efficient way (without requiring the parties to
store

(
n

2d+1

)
different polynomials). Assuming the parties have a way to generate

such random sharings, our private protocol to multiply [[x]]d and [[y]]d is:
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Πpriv
mult:

– Inputs: Each Pi holds two inputs shares xi, yi and a random share ri.
For each subset T ⊂ {P1, . . . , Pn} such that |T | = 2d + 1, the parties hold
a sharing [[rT ]]d, where rT =

∑

j|Pj∈T

λj · rj , with λj being the corresponding

Lagrange coefficient for the 2d-polynomial qT defined such that qT (j) = rj ,
for each j for which Pj ∈ T .

– The protocol:
1. Each party Pi locally computes ei = xi · yi − ri and sends it to P1.
2. Let ei1 , . . . , ei2d be the first 2d messages received by P1 and let T be

a subset of parties defined as T = {P1, Pi1 , . . . , Pi2d}. Then, P1 view
e1, ei1 , . . . , ei2d as points on a polynomial p of 2d-degree such that p(1) =
e1 and ∀j ∈ [2d] : p(ij) = eij and uses them to compute (via Lagrange
interpolation) the value e0 = p(0).

3. P1 chooses a new random sharing [[e0]]d, under the constraint that d shares
equal to 0, and sends each party Pi, with a non-zero share, its share. In
addition, it sends T to all parties.

4. The parties locally compute [[x · y]]d = [[e0]]d + [[rT ]]d.

It is easy to see that if the parties follow the protocol, then they will obtain
[[x·y]]d. Privacy is achieved since now there is no redundancy in the secret sharing
of the masking random element, and each random share held by each party is
independent from the other parties’ random shares. We show this formally in
the full version.

Efficient Generation of the Correlated Randomness. Recall that our protocol
requires that for each multiplication, each Pi will hold a random independent
ri and a sharing [[rT ]]d for each subset of parties T of size 2d + 1, such that
rT =

∑

j|Pj∈T

λj · rj . A simple way to achieve this, is to let each Pi choose a

random ri and share it to the other parties as [[ri]]d. Upon holding [[ri]]d for each
i ∈ [n], the parties can locally compute [[rT ]]d =

∑

j|Pj∈T

λj · [[rj ]]d for each subset

T of size 2d + 1. We note that in order to save cost, the parties can defer the
last step of computing [[rT ]]d until they receive the subset T from P1. This is
significant since now the parties need to compute just a single sharing of degree
d and not

(
n

2d+1

)
.

To generate any number of such correlated randomness without any interac-
tion but a short setup step, each party Pi can distribute a set of seeds to the
other parties. As explained in Sect. 3, it is possible to non-interactively generate
any number of Shamir’s secret sharings [[ri]]d from these seeds and then continue
as above. Note that since Pi knows all seeds, it can locally compute ri and use
it as its mask in the multiplication operation as required.

In the full version of this paper we show how to extend the solution when
multiple secrets are packed together.
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5.2 Verifying Correctness of the Computation

In the previous section, we showed how to prevent leakage of private data dur-
ing the computation of the program. However, nothing prevents a malicious
adversary from cheating by sending false messages, causing the output to be
incorrect. To achieve correctness, we add a step to our protocol, before the out-
put is revealed, where the parties verify the correctness of the computation, and
abort if cheating is detected. This additional step satisfies two desired proper-
ties: (i) it is a short constant-round protocol; (ii) it has sublinear communication
in the size of the program, which means that amortized over the program, the
communication cost remains the same.

We define the ideal functionality Fvrfy to verify that multiplications were
carried out correctly. Fvrfy receives from the honest parties their shares of all
inputs, the inputs to multiplications operations and all outputs of the program.
Then, it reconstructs the secrets and check for each value, that it is correct given
the values held by the parties as inputs for the multiplications that precede it.
We stress that it suffices for only the honest parties to send their shares, since
they fully define the secrets (as we will see, a consistency check is carried out
before calling Fvrfy in our main protocol and so we are guaranteed at this stage
that all sharings are consistent).

The formal description appears in the full version of the paper. We show how
to realize Fvrfy using distributed zero-knowledge proofs from [8], adapted to our
setting, in the full version.

5.3 Putting It All Together - The Main Protocol

We are now ready the present our main protocol with security against malicious
adversaries. The protocol works by having the parties run the private protocol
to compute the program, and then, before revealing the output, call the ideal
functionality Fvrfy to verify that the sharings they obtained throughout the exe-
cution, are correct. Since Fvrfy requires the sharings it receives to be consistent,
then the parties run a batch consistency check before calling Fvrfy.

Stragglers Resilience. We show what resilience our protocol guarantees:

– Input sharing step: In this step, we require the parties to send a masked input
x̂i = xi+r to all parties and not only to P1. Looking on an epoch that consists
of parties sending their masked input to the other parties, and then sending
messages to P1 in the first layer of bi-linear instructions, it is easy to see that
even if n − (2d + 1) messages are lost, party P1 will receive 2d messages and
will be able to proceed to the next epoch.

– Private computation of the program: Our new protocol in Sect. 5.1 can handle
n − (2d + 1) dropped messages in each epoch.

– Verification step: A subtle issue that arises here is the effect of stragglers
existence in the private protocol, on the consistency check and Fvrfy. Specifi-
cally, if different subset of parties participate in each epoch, then the sharings
used in the consistency check and Fvrfy are held by different subset of parties,
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which seems problematic. Nevertheless, we observe that the number of such
subsets is bounded by the depth of the program. Hence, we have three pos-
sible solutions. If the depth of the program is low, then the parties can run
these two steps for each subset separately (recall that each such subset is of
size 2d + 1 and so an honest majority required by the protocols is guaran-
teed). Since the cost in these final steps is anyway low and sublinear in the
size of the program, we can afford running them several times. If the depth is
larger than the number of possible subsets

(
n
τ

)
(with τ being the number of

stragglers), then we can simply go over all possible subsets. Alternatively, if
the program is very deep, then one can simply assume that all messages that
were delayed during the computation, arrive by the time the parties reach the
final steps. While this seems as a slight weakening of our stragglers-resilience
model, note that even with this assumption, our protocol has a huge advan-
tage over protocols with no resilience to stragglers, where the parties need to
wait for all messages to arrive when computing each layer, and not only at
the end of the entire computation.
Note that in the former solution we need to assume that no messages are
dropped inside this step, since in each subset of 2d + 1 parties, if a message
is lost, we might lose the honest majority and hence the security guaran-
tees. Since this step is a short constant-round protocol, this seems as a mild
assumption.

– Output Reconstruction: If 2d + 1 shares arrive to each party, then at least
d + 1 shares are sent by honest parties and so are correct. This implies that
the party can either reconstruct its correct output or abort if cheating took
place. Thus, this step can also withstand n − (2d + 1) stragglers.

The formal description appears in the full version of the paper. We thus
obtain a maliciously-secured protocol, with the same (amortized) communica-
tion cost and same stragglers resilience as for semi-honest adversaries (with a
small caveat for the short verification step). This is summarized in the following
Theorem (the proof can be found in the full version):

Theorem 5.1. Let F be a finite field, let f be a n-party functionality represented
by a �-layered straight-line program over F with S bilinear instructions, let t
be a security threshold parameter and let d be a parameter such that d ≥ t +
� − 1, n ≥ 2d + 1 and |F| > n + d + � + 1. Then, our protocol computes f
in the (FLinRand,Fcoin,Fvrfy)-hybrid model with t-malicious-security-with-abort,
(n− (2d+1))-stragglers-resilience, with statistical error 1

|F| , and communication
cost of

(
3
� − 2d+3

n·�
)
S + o(S) field elements sent per party.

The protocol has statistical error of 1
|F| due to the consistency check that

may fail. For small fields the error can be reduced by repeating the check with
independent randomness.
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Abstract. We propose to use blockchains to achieve MPC which does
not require the participating parties to be online simultaneously or inter-
act with each other. Parties who contribute inputs but do not wish to
receive outputs can go offline after submitting a single message. In addi-
tion to our main result, we study combined communication- and state-
complexity in MPC, as it has implications for the communication com-
plexity of our main construction. Finally, we provide a variation of our
main protocol which additionally provides guaranteed output delivery.

1 Introduction

Secure Multiparty Computation (MPC) [Yao82,GMW87] enables parties to eval-
uate an arbitrary function in a secure manner, i.e., without revealing anything
besides the outcome of the computation. MPC is increasingly important in
the modern world and allows people to securely accomplish a number of dif-
ficult tasks. Obtaining efficient MPC protocols is thus a relevant problem and it
has indeed been extensively studied [Yao82,GMW87,GMPP16]. One important
question is the round complexity of MPC schemes. In the semi-honest case, in
1990, Beaver et al. [BMR90] gave the first constant-round MPC protocol for
three or more parties. A number of works [KOS03,Pas04,Goy11] aiming to ana-
lyze and reduce round complexity followed, both in the semi-honest and fully
malicious models. In 2016, Garg et al. [GMPP16] proved that four rounds are nec-
essary to achieve secure MPC in the fully malicious case in the plain model. Four
round MPC protocols have been recently proposed [BHP17,BGJ+18,CCG+20],
resolving the questions of round complexity.

Unfortunately, solutions that achieve even the optimal round complexity are
still problematic for many applications since these solutions typically require
synchronous communication from the participants – imagine for example the
U.S. voting process. If the voting is conducted via secure multi-party computa-
tion, all participants are required to be online at the same time. It is unrealistic
to assume that all of the eligible U.S. voters can be persuaded to be online for
an entire Election Day. In this work, we rely on blockchains to achieve MPC
that does not require participants to be online at the same time or interact with
each other.

c© International Association for Cryptologic Research 2021
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Such non-interactive solutions advance the state of the art of secure multi-
party computation, opening up a whole new realm of possible applications. For
example, passive data collection for privacy preserving collaborative machine
learning becomes possible. Federated learning is already used to train machine
learning models for the keyboards of mobile devices for the purposes of autocor-
rect and predictive typing [Go17]. Unfortunately, using off-the-shelf MPC pro-
tocols to perform such training securely is not straight-forward. Not all smart-
phones are online at the same time and it might even be unknown how many
devices will end up participating. In contrast, off-the-shelf MPC protocols typ-
ically assume that all (honest) participants are indeed online during some time
period, and the number of participants is known. This leads us to the following
question:

Can we construct a secure MPC protocol which does not require the parties to
be online at the same time and guarantees privacy and correctness even if all
but one of the parties are fully malicious? Furthermore, is it possible to design
such a protocol under the constraint that only a single message is required from
the parties supplying the inputs, and the parties can go offline after submitting

this message if they are not interested in learning the output?

Consider such a protocol in the use case outlined above – each smartphone
could independently send a single message to a server, and at the end of the
collection period the server would obtain the model trained on the submitted
inputs, all while preserving the privacy of the gathered inputs.

1.1 Our Results

In our work, we provide a solution for MPC which achieves the property that
each MPC participant who supplies inputs but does not wish to receive the
output is not required to interact with other such participants and can go offline
after sending only a single message. We additionally provide variations of our
protocol that offer further desirable properties.

Before we provide the formal theorem statements, we discuss the protocol
execution model and the notation.

In our work, we assume the existence of append-only bulletin boards that
allow parties to publish data and receive a confirmation that the data was pub-
lished in return. Furthermore, we assume a public key infrastructure (PKI).
Finally, we rely on conditional storage and retrieval systems (CSaRs, see Sect. 2
for details). Roughly, CSaR systems allow a user to submit a secret along with a
release condition. Later, if a (possibly different) user is able to satisfy this release
condition, the secret is privately sent to this user. Intuitively, during the process,
the secrets cannot be modified and no information is leaked about the secrets. We
require that CSaRs are used as ideal functionalities. We note that due to the fact
that existing CSaR systems [GKM+20,BGG+20] rely on blockchains, and bul-
letin boards can be realized using blockchains as well [GG17,CGJ+17,Kap20],
relying on bulletin boards in our construction effectively does not add extra
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assumptions. In the following, for simplicity, we will state that we design our
protocols in the blockchain model. Finally, we assume IND-CCA secure public
key encryption, and digital signatures.

In our construction, we distinguish between parties who supply inputs
(dubbed MPC contributors) and parties who wish to receive outputs (dubbed
evaluators).

We are now ready to introduce our first result:

Theorem 1 (Informal). Any MPC protocol π secure against fully-malicious
adversaries can be transformed into another MPC protocol π′ in the blockchain
model that provides security with abort against fully-malicious adversaries and
does not require participants to be online at the same time. Only a single mes-
sage is required from the MPC contributors (the evaluators might be required to
produce multiple messages). The adversary is allowed to corrupt as many MPC
contributors in π′ as is supported by the protocol π.

In addition to this result, we discuss ways to optimize our construction. To
this end, we explain why the combined communication- and state complexity of
the underlying MPC protocol is of a particular importance in our construction.
Briefly, both the communication- and state complexities of the underlying MPC
translate directly into the number of CSaR storage- and retrieval requests (and
thus communication complexity) in our overall construction. We describe a pro-
tocol in the plain model which relies on multi-key fully homomorphic encryption
(MFHE). Its combined communication- and state complexity is independent of
the function that we are computing. While optimizing communication complex-
ity has received considerable attention in the community in the past few years,
optimizing internal state complexity has been largely overlooked. We believe that
this particular problem might be exciting on its own. In our construction which
optimizes the combined communication and state complexity, we assume multi-
key fully homomorphic encryption, probabilistically checkable proofs, collision-
resistant hash functions, and IND-CPA secure public key encryption. The result
that we achieve here is the following:

Theorem 2 (Informal). Let f be an N -party function. Protocol 6 is an MPC
protocol computing f in the standard model and secure against fully malicious
adversaries corrupting up to t < N parties. Its communication and state com-
plexity depend only on security parameters, number of parties, and input and
output sizes. In particular, the combined communication- and state complexity
is independent of the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication- and state complexity, we achieve
the following:

Corollary 1 (Informal). There exists an MPC protocol π′ in the blockchain
model which provides security with abort against fully-malicious adversaries and
does not require participants to be online at the same time. Only a single mes-
sage is required from the MPC contributors (the evaluators might be required to
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produce multiple messages). Furthermore, the communication complexity of this
protocol is independent of the function that is being computed using this MPC
protocol.

Finally, we achieve an MPC protocol which requires only a single message
from MPC contributors with the additional property of guaranteed output deliv-
ery, meaning that adversarial parties cannot prevent honest parties from receiv-
ing the output. For this, we in particular rely on the underlying protocol having
guaranteed output delivery as well (and thus requiring the majority of the MPC
contributors to be honest). We rely on the same assumptions (PKI, CSaRs,
append-only bulletin boards etc.) as the ones used in our main construction.
The formal result that we achieve is the following:

Theorem 3 (Informal). Any MPC protocol π that is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security
with guaranteed output delivery against fully-malicious adversaries and does not
require participants to be online at the same time. Only a single message is
required from the MPC contributors (the evaluators might be required to produce
multiple messages). The adversary is allowed to corrupt as many MPC contrib-
utors in π′ as is supported by the protocol π.

1.2 Technical Overview

In this work, we propose an MPC protocol that does not require participants to
be present at the same time. In order to do so, we rely on the following crypto-
graphic building blocks – garbled circuits [Yao82,Yao86,BHR12b], a primitive
which we dub conditional storage and retrieval systems (CSaRs) and bulletin
boards with certain properties. Before we introduce the construction idea, we
elaborate on each of these primitives.

Roughly, a garbling scheme allows one to “encrypt” (garble) a circuit and its
inputs such that when evaluating the garbled circuit only the output is revealed.
In particular, no information about the inputs of other parties or intermediate
values is revealed by the garbled circuit or during its evaluation. In our construc-
tion we use Yao’s garbled circuits [Yao82,Yao86].

In our construction, we rely on bulletin boards which allow parties to publish
strings on an append-only log. It must be hard to modify or erase contents from
this log. Additionally, we require that parties receive a confirmation (“proof of
publish”) that the string was published and that other parties can verify this
proof. Such bulletin boards have been extensively used in prior works [GG17,
CGJ+17,Kap20] and as pointed out by these works can be realized both from
centralized systems such as the Certificate Transparency project [tra20] and
decentralized systems such as proof-of-stake or proof-of-work blockchains.

Finally, we define a primitive which we call conditional storage and retrieval
systems (CSaRs). Roughly, this primitive allows for the distributed and secure
storage- and retrieval of secrets and realizes the following ideal functionality:
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– Upon receiving a secret along with a release condition and an identifier, if
the identifier was not used before, the secret is stored and all participants are
notified of a valid secret storage request. The release condition is simply an
NP statement.

– Upon receiving an (identifier, witness) from a user, the ideal functionality
checks whether a secret with this identifier exists and if so, whether the given
witness satisfies the release condition of this secret record. If so, the secret is
sent to the user who submitted the release request.

While systems that provide a similar primitive has been proposed in the
past [GKM+20,BGG+20] we provide a clean definition that captures the essence
of this functionality. We instantiate the CSaR with eWEB [GKM+20]1, which
stands for “Extractable Witness Encryption on a Blockchain”. Roughly, it allows
users to encode a secret along with a release condition and store the secret on a
blockchain. Once a user proves that they are able to satisfy the release condition,
blockchain miners jointly and privately release the secret to this user. Along the
way, no single party is able to learn any information about the secret.

Our Construction. By relying on bulletin boards, Yao’s garbled circuits and
CSaRs, we are able to transform any secure MPC protocol π into another secure
MPC protocol π′ that provides security with abort and does not require partici-
pants to be online at the same time. At a high level, our idea is as follows: first,
each contributor (party who supplies inputs in the protocol) P in the MPC pro-
tocol π garbles the next-message function for each round of π. Then, P stores the
garbled circuits as well as the garbled keys with a CSaR using carefully designed
release conditions. Note that each party P is able to do so individually, without
waiting for any information from other parties and can go offline afterwards.
Once all contributors have stored their data with the CSaR, one or more “evalu-
ators” (parties who wish to receive the output) interact with the CSaR and use
the information stored by the MPC contributors in order to retrieve the garbled
circuits and execute the original protocol π. The group of the contributors and
the group of evaluators do not need to be the same – in fact, these groups can
even be disjoint. The evaluators might change from round to round.

Note that while the high-level overview is simple, there are a number of
technical challenges that we must overcome in the actual construction due to
its non-interactive nature. For example, since the security of Yao’s construction
relies on the fact that for each wire only a single key is revealed, we must ensure
that each honest garbled circuit is executed only on a single set of inputs. The
adversary also must not trick a garbled circuit of some honest party A into
thinking that a message broadcast by some party C is message m, and tricking
a garbled circuit of another honest party B into thinking that C in fact broadcast
message m′ �= m. Furthermore, we must ensure that it is hard to execute the
protocol “out of order”, i.e., an adversary cannot execute some round i prior to
round j where i > j. Such issues do not come up in the setting where parties are

1 Other instantiations are possible, see Sect. 2 for details.
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online during the protocol execution and able to witness messages broadcast by
other parties.

We solve these issues by utilizing bulletin boards, carefully constructing the
release conditions for the garbled circuits and the wire keys, and modifying the
next-message functions which must be garbled by the contributors.

Note that the next-message functions from round two onward take as inputs
messages produced by the garbled circuits in prior rounds. At the time when
the MPC contributors are constructing their circuits, the inputs of other parties
are not known, and thus it is not possible to predict which wire key (the one
corresponding to 0 or the one corresponding to 1) will be needed during the
protocol execution. At the same time, one cannot simply make both wire keys
public since the security of the garbled circuit crucially relies on the fact that
for each wire only a single wire key can be revealed. We solve this problem by
storing both wire keys with the CSaR, utilizing bulletin boards, and requiring
the evaluators to publish the output of the garbled circuits of each round. Then,
(part of) the CSaR release condition for the wire key corresponding to bit b on
some wire w of some party’s garbled circuit for round i is that the message from
round i − 1 is published and contains bit b at position w. This way we ensure
that while both options for wire w are “obtainable”, only the wire key for bit b
(the one that is needed for the execution) is revealed.

Next, note that in our construction we specifically rely on Yao’s garbled
circuits. Yao’s construction satisfies the so-called “selective” notion of security,
which requires the adversary to choose its inputs before it sees the garbled circuit
(in contrast to the stronger “adaptive” notion of security which would allow the
adversary to choose its inputs after seeing the garbled circuits [BHR12a]). We
ensure that the selective notion of security is sufficient for our construction by
requiring that not only the wire keys, but also the garbled circuits are stored with
the CSaR. The release conditions both for the garbled circuit for some round i
and all its wire keys require a proof that all messages for rounds 1 up to and
including round i − 1 are published by the evaluators. This way, the evaluators
are required to “commit” to the inputs before receiving the selectively secure
garbled circuits, which achieves the same effect as adaptive garbled circuits.

As outlined above, we must ensure that it is hard for the adversary to trick
the garbled circuit produced by some honest party A into accepting inputs from
another honest party B that were not produced by B’s circuits. We accomplish
this by modifying the next-message function of every party A as follows: in
addition to every message m that is produced by some party B, the next-message
function takes as input a signature σ on m as well and verifies that the signature
is correct. If this is not the case for any of the input messages, the next-message
function outputs ⊥. Otherwise, the next-message function proceeds as usual and
in addition to outputting the resulting message it outputs the signature of party
A on this message.

Our end goal is to reduce the security of our construction to the security of
the underlying MPC protocol π. While utilizing bulletin boards and introducing
signatures is a good step forward, we must be careful when designing the CSaR
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release conditions. The adversary could sign multiple messages for each corrupted
contributor in π, publish these messages on the bulletin board and thus receive
multiple keys for some wires. To prevent this, the CSaR release condition must
consider only the very first message published for round i − 1 on the bulletin
board. This way, we ensure that there is only a single instance of the MPC
running (only a single wire key is released for each circuit): even if the adversary
is able to sign multiple messages on behalf of various MPC contributors, only
the very first message published on the bulletin board for a specific round will
be used by the CSaR system to release the wire keys for the next round.

The ideas outlined above are the main ideas in our protocol. We now elabo-
rate on a few additional details:

Note that the next-message function of the protocol typically outputs not
only the message for the next round, but also the state which is used in the next
round. It is assumed that this state is kept private by the party. In our case, the
output of the next-message function will be output by the garbled circuit and
thus made available to the evaluator. To ensure that the state is kept private,
we further modify the next-message function to add an encryption step at the
end: the state is encrypted under the public key of the party who is executing
this next-message function. To ensure that the state can be used by the garbled
circuit of the party in the next round, we add a state decryption step at the
beginning of the next-message function of that round. Similar to the public
output of the next-message function, we compute a signature on the encryption
of the state and verify this signature in the garbled circuit of the next round.

Finally, note that in the construction outlined above, we use some secret
information which does not depend on the particular execution but still must
be kept private (secret keys of the parties used for the decryption of the state,
signing keys used to sign the output of the next-message function etc.). This
information is hard-coded in the garbled circuits. We explain how this can be
done in Sect. 3.

We provide all protocol details and outline optimizations in Sect. 3 and give
the formal construction in Protocols 1, 2 and 3. The formal security proof is done
by providing a simulator for the construction and proving that an interaction
with the simulator in the ideal world is indistinguishable from the interaction
with an adversary in the real world.

To summarize, using the construction sketched above we achieve the following
result:

Theorem 4 (Informal). Protocols 1, 2 and 3 transform any MPC protocol
π secure against fully-malicious adversaries into another MPC protocol π′ in
the blockchain model that provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time. Only
a single message is required from the MPC contributors (the evaluators might be
required to produce multiple messages). The adversary is allowed to corrupt as
many MPC contributors in π′ as is supported by the protocol π.

In addition to our main protocol that requires only one message from the
MPC contributors and does not require any additional functionality from the
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CSaR participants apart from the core CSaR functionality itself (storing and
releasing secrets), we provide a number of variations that have further desirable
properties, such as guaranteed output delivery. We now outline these further
contributions.

Improving Efficiency. The efficiency of our construction is strongly tied to the
efficiency of the underlying MPC protocol π. Note that in our construction each
input wire key of each garbled circuit is stored with the CSaR, and the inputs of
the garbled circuits are exactly messages exchanged between the parties as well
as the state information passed from previous rounds. Thus, the communication-
and state complexities translate directly into the number of CSaR store- and
release operations that the MPC contributors, as well as later the evaluators,
must make. In order to reduce the number of CSaR invocations, we describe an
MPC protocol which optimizes the combined communication and internal-state
complexity. While communication complexity is typically considered to be one
of the most important properties of an MPC protocol, state complexity receives
relatively little attention. Our main construction shows that there are indeed
use cases where both the communication and the state complexity matter, and
we initiate a study of the combined state- and communication complexity.

Specifically, we introduce an MPC protocol in which the combined
communication- and state complexity is independent of the function we are
computing. We achieve it in two steps: we start with a protocol secure against
semi-malicious adversaries2 which at the same time has communication- and
state complexity which is independent of the function that is being computed.
Then, we extend it to provide fully malicious security while taking care to retain
the attractive communication- and state complexity properties in the process.

In more detail, we start with the MPC construction by Brakerski et
al. [BHP17] which is based on multi-key fully homomorphic encryption (MFHE)
and achieves semi-malicious security. We chose this construction in particular
because its communication and state complexity depends only on the security
parameters, the number of parties, and the input- and output sizes. In particu-
lar, note that the construction’s combined communication- and state complexity
is independent of the function we are computing.

Our next step is to extend this construction so that it provides security
against malicious adversaries. For this, we propose to use the zero-knowledge
protocol proposed by Kilian [Kil92] that relies on probabilistically checkable
proofs (PCPs) and allows a party P to prove the correctness of some statement
x to the prover V using a witness w. Along the way, we need to make minor
adjustments to Kilian’s construction because its state complexity is unfortu-
nately too high for our purposes – in particular, in the original construction,
the entire PCP string is stored by the prover to be used in later rounds. After
making a minor adjustment – recomputing the PCP instead of storing it – to
the construction to address this issue, we use this scheme after each round of

2 Intuitively, semi-malicious adversaries can be viewed as semi-honest adversaries
which are allowed to freely choose their random tapes.
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the construction by Brakerski et al. in order to prove the correct execution of
the protocol by the parties. The resulting construction achieves fully malicious
security, and its communication and state complexities are still independent of
the function that we are computing.

We provide the details of the construction and analyse its security and
communication/state complexity properties in Sect. 5 with the formal protocol
description in Protocol 6. In this protocol, we assume the existence of an MFHE
scheme with circular security and the existence of a collision-resistant hash func-
tions. We are able to achieve the following result which may be of independent
interest:

Lemma 1. Let f be an N -party function. Protocol 6 is an MPC protocol com-
puting f in the plain model and secure against fully malicious adversaries cor-
rupting up to t < N parties. Its communication and state complexity depend only
on security parameters, number of parties, and the input and output sizes. In par-
ticular, the communication and state complexity of Protocol 6 is independent of
the function f .

Using this MPC protocol in combination with our first construction, under
the assumptions that we rely on in our main construction and in the MPC
construction with optimized communication- and state complexity, we achieve
the following:

Corollary 2 (Informal). There exists an MPC protocol π′ in the blockchain
model that has adversarial threshold t < N , provides security with abort against
fully-malicious adversaries and does not require participants to be online at the
same time. Only a single message is required from the MPC contributors (the
evaluators might be required to produce multiple messages). Furthermore, the
communication complexity of this protocol is independent of the function that is
being computed using this MPC protocol.

Non-interactive MPC with Guaranteed Output Delivery (GoD). We need to mod-
ify our construction in order to provide guaranteed output delivery. In order to
achieve GoD, we require the protocol π to have the GoD property as well (thus,
the majority of the MPC contributors must be honest). While making this change
(in addition to a few minor adjustments) would be enough to guarantee GoD in
our construction in the setting with only a single evaluator, it is certainly not
sufficient when there are multiple evaluators, some of them dishonest. This is
due to the following issue: since we must prevent an adversary from executing
honest garbled circuits on multiple different inputs, we cannot simply allow each
evaluator to execute garbled circuits on the inputs of its choosing. In particu-
lar, the CSaR release conditions must ensure that for each wire only a single
key is revealed. In our first construction this results in the malicious evaluator
being able to prevent an honest evaluator from executing the garbled circuits as
intended by submitting an invalid first message for any round. Thus, to ensure
guaranteed output delivery while maintaining secrecy, we must ensure that a
malicious evaluator posting a wrong message does not prevent an honest evalua-
tor from posting a correct message and using it for the key reveal. In particular,
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we will ensure that only a correct (for a definition of “correctness” explained
below) message can be used for the wire key reveal.

Note that the inputs to the garbled circuits depend on the evaluators’ outputs
from the previous rounds. Checking the “correctness” of the evaluators’ outputs
is not entirely straight-forward since an honest execution of a garbled circuit
which was submitted by a dishonest party might produce outputs which look
incorrect (for example, have invalid signatures). Thus, simply letting the CSaR
system check the signatures on the messages supplied by the evaluators might
result in an honest evaluator being denied the wire keys for the next round.

In our GoD construction we overcome this issue largely using the following
adjustments:

– all initial messages containing garbled circuits and wire keys are required to
be posted before some deadline.

– we use a CSaR with public release (whenever a secret is released, it is released
publicly and the information can be viewed by anyone).

– we ensure that it is possible to distinguish between the case where the eval-
uator is being dishonest, and the case where the evaluator is being honest,
but the contributor in π supplied invalid garbled circuits or keys, or did not
supply some required piece of information.

We achieve the last point by letting the CSaR system check every output of
the evaluator that appears to be of an invalid form (e.g., missing a signature,
having an unexpected length, etc.) and verify that the evaluator’s output can
be explained by the information stored by the contributors in π. In particular,
as part of the CSaR’s release condition, we require a proof of correct execution
for the incorrect-looking garbled circuit outputs. The relation that the CSaR
system is required to check in this case is roughly as follows: “The execution of
the garbled circuit GC on the wire keys {ki}i∈I results in the output provided by
E. Here, the garbled circuit GC is the circuit, and {ki}i∈I are the keys for this
circuit reconstructed using the values published by the CSaR which are present
on the proof of publish supplied by E”. Note that due to the switch to the CSaR
with public release, the wire keys used for the computation are indeed accessible
to the CSaR system after their first release.

Similar to our first construction, we eventually reduce the security of the
new protocol to the security of the original protocol. In addition to our first
construction however, since the CSaR system is now able to verify incorrect-
looking messages submitted by the evaluators, honest evaluators are always able
to advance in the protocol execution. This insight allows us to ensure that honest
evaluators do not need to abort with more than a negligible probability along
the way. Thus, if the underlying protocol π achieves guaranteed output delivery,
the protocol we propose achieves guaranteed output delivery as well.

We give full details of the GoD construction in Sect. 6. The statement about
our GoD construction is given below.
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Lemma 2 (Informal). Any MPC protocol π which is secure against fully-
malicious adversaries and provides guaranteed output delivery can be transformed
into another MPC protocol π′ in the blockchain model that provides security
with guaranteed output delivery against fully-malicious adversaries and does not
require participants to be online at the same time. Only a single message is
required from the MPC contributors (the evaluators might be required to produce
multiple messages). The adversary is allowed to corrupt as many MPC contrib-
utors in π′ as is supported by the protocol π.

1.3 Related Work

Closest to our work is the line of research that studies non-interactive multiparty
computation [HIJ+17,FKN94,HLP11], initiated in 1994 by Feige et al. [FKN94],
in which a number of parties submit a single message to a server (evaluator)
that, upon receiving all of the messages, computes the output of the function.
In their work, Feige et al. allow the messages of the parties to be dependent
on some shared randomness that must be unknown to the evaluator. Unfortu-
nately, this means that if the evaluator is colluding with one or more of the
participants, the scheme becomes insecure. Overcoming this restriction, Halevi
et al. [HLP11] started a line of work on non-interactive collusion-resistant MPC.
Their model of computation required parties to interact sequentially with the
evaluator (in particular, the order in which the clients connect to the evaluator
is known beforehand). Beimel et al. [BGI+14] and Halevi et al. [HIJ+16] sub-
sequently removed the requirement of sequential interaction. Further improving
upon these results, the work of Halevi et al. [HIJ+17] removed the require-
ment of a complex correlated randomness setup that was present in a number
of previous works [BGI+14,HIJ+16,GGG+14]. Halevi et al. [HIJ+17] work in a
public-key infrastructure (PKI) model in combination with a common random
string. As the authors point out, PKI is the minimal possible setup that allows
one to achieve the best-possible security in this setting, where the adversary is
allowed to corrupt the evaluator and an arbitrary number of parties and learn
nothing more than the so-called “residual function”, which is the original func-
tion restricted to the inputs of the honest parties. In particular, this means that
the adversary is allowed to learn the outcome of the original function on every
possible choice of adversarial inputs.

Our work differs from the line of work on non-interactive MPC described
above in a number of aspects. In contrast to those works, our construction is not
susceptible to the adversary learning the residual function – roughly because the
adversary must effectively “commit” to its input, and the CSaR system ensures
that the adversary only receives a single set of wire keys per honest garbled
circuit (the set of wire keys that aligns with the adversarial input). Additionally,
in our work the parties do not need to directly communicate with the evaluator.
In fact, in our construction that ensures guaranteed output delivery, any party
can spontaneously decide to become an evaluator and still receive the result –
there is no need to rerun the protocol in this case.
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Related to us are also the works on reusable non-interactive secure computa-
tion (NISC) [AMPR14,BGI+17,BJOV18,CDI+19,CJS14], initiated by Ishai et
al. [IKO+11]. Intuitively, reusable NISC allows a receiver to publish a reusable
encoding of its input x in a way that allows any sender to let the receiver obtain
f(x, y) for any f by sending only a single message to the receiver. In our work,
we focus on a multi-party case, where a party that does not need the output is
not required to wait for other parties to submit their inputs.

Recently, Benhamouda and Lin [BL20] proposed a model called multiparty
reusable Non-Interactive Secure Computation (mrNISC) Market that beauti-
fully extends reusable NIZC to the multiparty setting. In this model, parties
first commit their inputs to a public bulletin board. Later, the parties can com-
pute a function on-the-fly by sending a public message to an evaluator. An
adversary who corrupts a subset of parties learns nothing more about the secret
inputs of honest parties than what it can derive from the output of the computa-
tion. Importantly, the bulletin board commitments are reusable, and the security
guarantee continues to hold even if there are multiple computation sessions. In
their work, Benhamouda and Lin mention that any one-round construction is
susceptible to the residual attacks and thus slightly relax the non-interactive
requirement in order to solve this problem. Indeed, their construction can be
viewed as a 2-round MPC protocol with the possibility to reuse messages of
the first round for multiple computations. Our scheme shows that when using
blockchains it is indeed possible to provide a construction that requires only a
single round of interaction from the parties supplying the input and is nonethe-
less not susceptible to residual attacks. Furthermore, in contrast to the work of
Benhamouda and Lin, our construction does not require any trusted setup3 even
in the fully malicious model.

Concurrent to our work, Almashaqbeh et al. [ABH+21] recently published
a manuscript which focuses on designing non-interactive MPC protocols which
use blockchains to provide short term security without residual leakage. They
focus on the setting where the inputs of all but one of the parties are public. In
this setting, designing one-round MPC can be done easily by having all parties
send their input to the only party which holds the secret input. This party can
then compute the output and distribute it to other parties. The authors are able
to extend the setting to the two-party semi-honest private input setting where
one round protocols for the party not getting the output can be easily designed
as well. While our protocol provides a worst-case security guarantee, they focus
on an incentive-based notion of security. While both constructions bypass the
residual leakage issue, their security guarantees might degrade with time. The
key challenge in their setting is fairness/guaranteed output delivery which they
solve using an incentive-based model of security. Hence their work is essentially
unrelated to ours.

Finally, recently two works ([CGG+21] and [GHK+21]) appeared which are
inspired by blockchains and focus on improving the flexibility of the MPC proto-
cols. Choudhuri et al. [CGG+21] proposed the notion of fluid MPC which allows

3 Other than a PKI.
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parties to dynamically join and leave the computation. Gentry et al. [GHK+21]
proposed the YOSO (“You Only Speak Once”) model which focuses on stateless
parties which can only send a single message. Similar to us, their construc-
tions allow the MPC participants to leave after the first round if they are not
interested in learning the output. However, to execute the MPC protocol both
Choudhuri et al. and Gentry et al. require a number of committees of different
parties which interact with each other, and each committee must provide hon-
est majority. Our protocol preserves privacy of inputs even if there is a single
evaluator who is dishonest.

2 Preliminaries – CSaRs

In our work, we rely on what we call conditional storage and retrieval systems
(CSaRs) that allow for a secure storage- and retrieval of secrets. In more detail,
the user who stores the secret with a CSaR specifies a release condition, and the
secret is released if and only if this condition is satisfied. While such systems
could be realised via a trusted third party, they can also be realised using a set
of parties with the guarantee that some sufficiently large subset of these parties
is honest. A user can then distribute its secret between the set of parties, and the
CSaR’s security guarantee ensures that no subset of parties that is smaller than
a defined threshold can use its secret shares to gain information about the secret.
Recently, multiple independent works appeared that use blockchains to provide
such functionality [GKM+20,BGG+20]. We provide a clean definition of the core
functionality that these works aim to provide (without fixating on blockchains)
and outline why the eWEB system [GKM+20] satisfies this definition. Note
that the system proposed by Benhamouda et al. does not formally explain how
the secrets can be stored to- and retrieved from the blockchain given a specific
release condition. While this requires further research, it should be possible to
take the same approach as is used by the eWEB system. Thus the system by
Benhamouda et al. is also a viable candidate for a CSaR instantiation.

Formally, the ideal CSaR functionality is described in Fig. 1. The security of
a CSaR system is then defined as follows:

CSaR Security. For any PPT adversary A there exists a PPT simulator S with
access to our security model IdealCSaR (described in Ideal CSaR), such that the
view of A interacting with S is computationally indistinguishable from the view
in the real execution.

3 Our Non-interactive MPC Construction

We now present our first construction - given an MPC protocol π, we use Yao’s
garbled circuits as well as a CSaR to transform it into an MPC protocol π′ that
does not require parties to be online at the same time. The contributors in π do
not need to interact with each other. First, we briefly outline the assumptions
we make and define the adversarial model.
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1. SecretStore Upon receiving an (identifier, release condition, secret) tuple
τ = (id, F, s) from a client P , IdealCSaR checks whether id was already used. If
not, IdealCSaR stores τ and notifies all participants that a valid storage request
with the identifier id and the release condition F has been received from a
client P . Here, the release condition is an NP statement.

2. SecretReleaseUpon receiving an (identifier, witness) tuple (id, w) from some
client C, IdealCSaR checks whether there exists a record with the identifier id.
If so, IdealCSaR checks whether F (w) = true, where F is the release condition
corresponding to the secret with the identifier id. If so, IdealCSaR sends the
corresponding secret s to client C.

Fig. 1. Ideal CSaR: IdealCSaR

Assumptions. We assume a public-key infrastructure and the existence of a
CSaR. To distinguish between concurrent executions of the protocol, we give
each computation a unique identifier id, and we assume that the evaluators know
the public keys of the parties eligible to contribute in the protocol π. We assume
the existence of a bulletin board modeled as an append-only log that provides a
proof of publish which cannot be (efficiently) forged. Such bulletin boards can be
implemented in practice via a blockchain. Finally, we assume IND-CCA secure
public key encryption, and digital signatures.

For the ease of presentation, we assume the following about the MPC protocol
π: (a) it is in a broadcast model, and (b) it has a single output which is made
public to all participants in the last round4.

Adversary Model. We consider a computationally bounded, fully malicious,
static adversary A. Once an adversary corrupts a party it remains corrupted:
the adversary is not allowed to adaptively corrupt previously honest parties.

3.1 Construction Overview

Intuitively, there are two main steps in the protocol. In the first step, the par-
ties (dubbed “contributors”) prepare the garbled circuits (and keys) and store
these with the CSaR. In the second step, one or more parties (we dub them
“evaluators”) use the garbled circuits to execute the original protocol π.

4 Note that these are not real limitations: if a protocol has several outputs, some of
which cannot be made public, each party simply broadcasts the encryption of its
output under this party’ public key. Each party then outputs the concatenation of
these ciphertexts. Additionally, later in this section we discuss how protocols with
point-to-point channels can be supported in the broadcast model.
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Step 1. Preparing Garbled Circuits and Keys. Each party Pj that wishes to par-
ticipate (contribute inputs) in π starts by garbling the slightly modified next-
message functions of each round of π. Typically, the next-message function takes
as input some subset of the following: the secret input of the party, local random-
ness of the party for that particular round, the messages received in the previous
rounds, some secret state passed along from the previous round. The output con-
sists of the message that is broadcast as well as the state that is passed to the
next round. We make the following modifications: in each round i, instead of the
state sij that is passed to the next round, the function outputs the encryption cij
of the state as well as a signature sigprij over this encryption. Additionally, the
modified next-message function outputs the public message mi

j that is supposed
to be broadcast by Pj in this round, as well as the signature sigpubij over this
message. The secret key as well as the signature key of Pj are hard-coded in the
circuit (we explain how it can be done later in this section). Prior to execut-
ing the original next-message function, the modified function decrypts the state
using the hard-coded secret key of Pj and verifies the signatures on each public
message as well as the signature on the state passed in from previous round.
Intuitively, these modifications are due to the following reasons:

– The state of the party is passed in an encrypted state because the state
information is assumed to be private in the original MPC construction.

– The parties need to sign their messages (and verify signatures on the messages
passed as inputs) since we must prevent the adversary from tricking an honest
party into acceptance of a message that is supposedly generated by another
honest party, but in reality is mauled by the adversary.

Once the garbled circuits are prepared, Pj stores the garbled circuits with
CSaR. Note that the next-round functions in particular take messages produced
by other parties as inputs. Thus, there is no way for the party to know at the
time the garbled circuits are constructed, whether the key corresponding to bit
0 or the key corresponding to bit 1 will be chosen for some wire w. To allow
an evaluator to execute the garbled circuits anyway, Pj additionally stores both
wire keys for each input wire with CSaR, each with a separate CSaR request.
This needs to be done for every single round, since in any particular round the
inputs will depend on the messages produced by the garbled circuits of other
parties in the previous round.

Intuitively, in order to be able to reduce the security of this protocol to
the security of the original MPC protocol, we need to ensure not only that the
adversary is not able to maul messages of the honest parties and see the parties’
private information, but also that the protocol is executed in order and there
is only a single instance of the protocol running. This is ensured by carefully
constructing conditions that must be met in order to release the garbled circuits
and wire keys. In order to release a garbled circuit for some round i, a party
needs to provide a proof that the execution of the protocol up to and including
round i − 1 is finalized. In order to release a wire key corresponding to bit b
on a wire corresponding to position p of the input to some garbled circuit, a
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party needs to additionally provide a proof that the input bit to position p in
this circuit is indeed bit b. In the following, we first explain how the protocol is
executed, and then explain how exactly the release conditions look like.

Step 2. Executing π. Once all required information is stored, an evaluator E
can execute the original MPC protocol π. It is not required that E is one of
the parties participating in the protocol π and in fact, there can be multiple
evaluators (for simplicity, we refer to all of them as “E”). E executes the garbled
circuits round-by-round. Once E has executed all garbled circuits for a certain
round, E publishes the concatenation of the output of these circuits on a the
bulletin board. Then, E uses the proof of publishing of this message in order to
release the garbled circuits as well as the wire keys of the next round.

First Round Optimization. Note that the message broadcast by the parties in
the first round of the protocol π does not require any information from the
other participants in the MPC protocol. Thus, instead of storing the garbled
circuits for the first round, we let the parties publish their first message (and the
signature on it) directly. The secret state that needs to be passed to the second
round is hard-coded in the garbled circuit of the second round.

Release Conditions. As described above, after the execution of all garbled circuits
of the certain round, the evaluator is tasked with publishing the (concatenation
of the) outputs of these circuit. This published message servers as a commitment
to the evaluator’s execution of this round, and this is what is needed to release
the gabled circuits of the next round. We additionally require that the length of
each published message is the same as expected by the protocol (corresponds to
the number of input wires), and the correct length requirement holds for every
part of this message (i.e., the public message, the signature over it, the state,
and the signature over the state for each contributing party). In order to ensure
that there is only a single evaluation of the original MPC running, only the
very first published message that is of a correct form (i.e., satisfies the length
requirements) can be used as the witness to release garbled circuits and keys
of a certain round. We call such messages authoritative messages. Formally, the
authoritative message of round d > 1 is a published message that satisfies the
following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖ md

n ‖
sigpubd1 ‖ · · · ‖sigpubdn ‖ cd1 ‖ · · · ‖ cdn ‖sigprd1 ‖ · · · ‖sigprdn). This corresponds to
the concatenated output of the garbled circuits of round d: public messages
followed by signatures over each public message, and encryptions of state
followed by signatures over each ciphertext.

– each md
j , cdj , sigpubdj , sigprdj has correct length.

– This is the first published message that satisfies the requirements above.

Due to our first round optimization the authoritative message of the first
round is slightly different. In particular, there are up to n authoritative messages
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for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sigpub1k).

– m1
k and sigpub1k both have correct length.

– This is the first published message that satisfies the requirements above.

In terms of authoritative messages, the release conditions can be now defined
as follows: in order to release the garbled circuits for round i, we require that
all authoritative messages for rounds 1 up to and including round i − 1 are
published. In order to release the wire key for some bit b of an input wire w of
a garbled circuit the authoritative message of the previous round must contain
bit b at the same position w.

Removing Point-to-Point Channels. While in our construction we assume that
the original MPC protocol is in a broadcast model, it is very common for MPC
protocols to assume secure point-to-point channels. We can handle such protocols
as well since an MPC protocol that assumes point-to-point channels can be
easily converted to a protocol in a broadcast model. A generic transformation
is outlined in the eWEB paper (Protocols 1 and 2 in [GKM+20]), it requires
using a protocol to “package” a message that must be sent and another protocol
to “unpack” a message received by a party. Intuitively, these protocols rely on
authenticated communication channels (which can be realized via signatures).
The packaging is done via appending the id of the sender to the message and
IND-CCA encrypting the resulting string. The unpacking is done via decrypting
and verifying that the party id specified in the message corresponds to the id of
the party who sent this message via the authenticated communication channel.

Hardcoding Secret Inputs. As mentioned above, some of the information used
in the modified next-message function (such as the secrets of the parties, their
secret keys etc.) is hardcoded in the circuit. Say the hardcoded input wire is
w, and its value is (bit) b. Then, the party preparing the garbled circuit that
uses w does so as follows: whenever one of the inputs to a gate is w, the party
removes the wire corresponding to w from the circuit and computes the values
in the ciphertexts using bit b only (instead of computing the output both for
w = 0 and w = 1). We give an example for the computation of the AND-Gate in
Fig. 2. For security purposes, it is important that we do not perform any circuit
optimizations based on the value of w.

Notation. In the following, we denote party Pj ’s public- and secret encryption
key pair as (pkj , skj). We denote party Pj ’s signature and verification keys as
sigkj and verkj . By mi

j we denote messages that are generated by the party Pj

in the i -th round.
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x w out
0 0 K0

0 1 K0

1 0 K0

1 1 K1

x out
0 K0
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Fig. 2. On the left, we show the computation of the AND-gate in Yao’s construction.
Given the garbled keys of x and w, depending on whether they correspond to zero or
one, the doubly-encrypted ciphertext contains K0 or K1. On the right, we show the
computation for the AND-gate if w = 0. In this case, both ciphertexts contain K0.

Further Details. Note that eWEB, the construction that we use as the instan-
tiation of the CSaR, assumes a CRS. This requirement can be removed in our
case by simply allowing each participant in the protocol π to prepare the CRS
on its own. From a security standpoint, this is unproblematic – we only wish to
protect the secrets of honest clients, and if a client is honest, it will generate the
CRS honestly as well5.

Additionally, we note that in eWEB the party storing the secret is required
to send multiple messages. In order to ensure that in our MPC protocol a single
message from the MPC participant is sufficient and the parties can go offline
after sending this message, we slightly modify the eWEB construction. Roughly,
in eWEB miners are tasked with jointly preparing a random value r s.t. each
miner knows a share of r. The user then publishes the value s + r (where s
denotes the secret to be stored), and the miners compute their shares ob s
by subtracting their shares of r from s + r. Along the way, the commitments
to the sharing of s are made public. We modify it as follows: the user simply
publishes the commitments to the sharing of s and sends shares of s (along with
the witnesses) to the miners who then verify the correctness of the shares and
witnesses.

The full construction is given in Protocols 1 and 2 (preparation of the garbled
circuits and keys), as well as Protocol 3 (execution phase).

Security Analysis. Intuitively, correctness of the construction as well as the
secrecy of the honest parties’ inputs follow from the correctness as well as secu-
rity properties of the underlying cryptographic primitives as well as the original
protocol π. We formally show security by providing a simulator that does not
have access to the parties’ secrets. No PPT adversary can distinguish between
interaction with the simulator and the interaction with the honest parties. We
rely on the security of the cryptographic primitives used in our construction to
show that the adversary is not able to use a garbled circuit from an honest party
in a “wrong” way. In particular, the adversary cannot trick an honestly pro-
duced garbled circuit into accepting wrong inputs from other honest parties i.e.,

5 Note that this change reduces the efficiency of the eWEB system – instead of batch-
ing secrets from different clients, only secrets from a single client can be processed
together now.
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Protocol 1. Non-Interactive MPC − CircuitPreparationPhase

1. Pj computes the output (m1
j , s

1
j ) of the first round of π. Pj computes the sig-

nature sigpub1j on the message (id, 1, j, m1
j ) using its signing key sigkj . Pj posts

(id, 1, j, m1
j , sigpub1j ) on chain.

2. Pj produces Yao’s garbled circuits {GCi
j} for each round i based on the circuit Ci

j

of the next-message function f i of the original MPC protocol π. The circuit Ci
j for

which Pj does the garbling takes as input messages {mi−1
k }n

k=1 published by the
parties in the previous round along with the signatures {sigpubi−1

k }n
k=1 of these

messages, and the encryption ci−1
j of the secret state passed by Pj from the previous

round as well as the signature sigpri−1
j over this ciphertext. All of Pj ’s keys, input

xj and randomness ri
j are hardcoded in the circuit. The verification- and public

keys of other participants are also hardcoded in the circuit. For the circuit of the
second round, the secret state passed from the first round is also hardcoded in the
circuit. The circuit decrypts the secret state and, if the ciphertext was correctly
authenticated, executes the next message function of the current round:
(a) If i = 2, proceed to step 2.(c).
(b) Verify the signature on the encryption of the state ci−1

j using verkj . If this
check fails, stop the execution and output ⊥.

(c) Verify the signature on each public message mi−1
z from party Pz. If any veri-

fication check fails, stop the execution and output ⊥.
(d) Compute si−1

j = Decskj (c
i−1
j ).

(e) Obtain (mi
j , s

i
j) by executing f i(xj , r

i
j , m

i, si−1
j ), where mi = mi−1

1 ‖· · ·‖mi−1
n .

(f) Compute the signature sigpubi
j on the public message (id, i, j, mi

j) using the
signing key sigkj .

(g) Compute the encryption of the state ci
j = Encpkj (s

i
j).

(h) Compute the signature sigpri
j on the tuple (id, i, j, ci

j) including the encryption
of state using the signing key sigkj .

(i) Output (mi
j , sigpubi

j , c
i
j , sigpri

j).
3. Pj securely stores garbled tables for all of the rounds using a CSaR. The witness

needed to release the garbled circuit of round i is a valid proof of publishing of all
authoritative messages from round 1 and up to and including round i − 1.

Protocol 2. Non-Interactive MPC − KeyStoragePhase

1. Securely store input wire keys for the circuit of the second round using CSaR.
For each party Pk whose first round message is needed for the computation, the
witness required to decrypt the wire key corresponding to the i-th bit of the input
being 0 (resp. 1) is a valid proof of publishing of the following:
(a) All of the authoritative messages of the first round are published.
(b) i-th bit of the authoritative message of round 1 of Party Pk is 0 (resp. 1).

2. Securely store input wire keys for the circuit of the d-th (d ≥ 3) round using CSaR.
The witness needed to decrypt the wire key corresponding to the i-th bit of the
input being 0 (resp. 1) is a valid proof of publishing of the following:
(a) All of the authoritative messages of the first d − 1 rounds are published.
(b) i-th bit of the authoritative message of round d − 1 is 0 (resp. 1).
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Protocol 3. Non-Interactive MPC − ExecutionPhase

1. The evaluator E uses messages (id, 1, z, m1
z, sigpub1z) posted on the bulletin board

by each party Pz as the proof of publishing to get the garbled circuits (and keys)
for the second round stored in CSaR by each participant in π. Then, E computes
the outputs (m2

j , sigpub2j , c
2
j , sigpr2j ) of the second round by executing the garbled

circuits.
2. If an authoritative message of the second round was not published on the bulletin

board yet, set m = (m2
1 ‖ · · · ‖m2

n ‖sigpub21 ‖ · · · ‖sigpub2n ‖c21 ‖ · · · ‖c2n ‖sigpr21 ‖ · · · ‖
sigpr2n), publish (id, 2, m) and use the proof of publish as the witness to decrypt the
wire keys of the next round. If an authoritative message (id, 2, m) was published
on the bulletin board, use it as witness to compute the outputs of the next round
if m = m2

1 ‖ · · · ‖ m2
n ‖ sigpub21 ‖ · · · ‖ sigpub2n ‖ c21 ‖ · · · ‖ c2n ‖ sigpr21 ‖ · · · ‖ sigpr2n.

Otherwise, stop the execution and output ⊥.
3. In each following round d ≥ 3, E executes each garbled circuit published by party

Pz for round d − 1. Then, E concatenates the outputs and checks if there is a
message on the bulletin board for this round. If there is no such message, E posts
the computed output (id, d, md−1

1 ‖ · · · ‖ md−1
n ‖ sigpubd−1

1 ‖ · · · ‖ sigpubd−1
n ‖ cd−1

1 ‖
· · · ‖ cd−1

n ‖ sigprd−1
1 ‖ · · · ‖ sigprd−1

n ) and uses the proof of publishing as witness to
decrypt input keys of the next round. Otherwise, if it is the same message as the
one computed by E, E uses the proof of publishing of this message as a witness to
decrypt the input keys of the next round. If it is not the same message as the one
computed by E, E aborts the execution.

4. E outputs the concatenation of the outputs of the garbled circuits of the last round
as the result.

inputs that were not produced using the garbled circuits or published (for the
first message) by those parties directly, or claim that a required message from
some honest party is missing. Additionally, there is no way for the adversary
to execute honest garbled circuits for the same round on inconsistent inputs (or
execute a single honest garbled circuit multiple times on a different inputs) since
only the authoritative message published for a single round is considered valid.
We then rely on the security of the original protocol π.

4 Optimizations

Our next goal is to minimize the number of CSaR invocations in our construction.
For this, we will focus on our main construction (Protocols 1, 2 and 3), but
the optimizations are applicable to our guaranteed output delivery construction
(which will be introduced later) as well.

Let n denote the number of parties participating in the original MPC protocol
π, nrounds denote the number of rounds in π, ni

wires,j denote the number of input
wires of a garbled circuit of the next-message function for round i of party Pj .
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Then, the number of CSaR secret store operations is upper bounded by:

Nstore = n ∗ (nrounds − 1) +
nrounds∑

i=2

n∑

j=1

2 ∗ ni
wires,j

The term n ∗ (nrounds − 1) is due to the fact that each party needs to
store a garbled circuit for each round, except for the very first one. The term∑nrounds

i=2

∑n
i=1 2 ∗ ni

wires,j is added because each party also needs to store two
wire keys for each input wire of each garbled circuit it publishes.

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +
nrounds∑

i=2

n∑

j=1

ni
wires,j

This is because the evaluator needs all of the garbled circuits, as well as
a single wire key for each input wire of each garbled circuit, to perform the
computation.

Note that the dominant factor in both of the equations is
∑nrounds

i=2

∑n
j=1

ni
wires,j . This term is precisely the combined communication- and (encrypted)

state complexity of the original MPC protocol π, minus the messages of the
first round and plus the signatures on the public messages and the state. Thus,
in order to minimize the number of eWEB invocations, we must first and fore-
most optimize the combined communication- and state complexity of the original
MPC scheme. We discuss a possible way to do this in the next section.

5 Optimizing Communication and State Complexity
in MPC

Our goal in this section is to design an MPC protocol in the plain model such
that its combined communication- and state complexity is independent of the
function that it is computing. While a number of works have focused on optimiz-
ing communication complexity, we are not aware of any construction optimizing
both the communication- and state complexity.

We achieve it in two steps, starting with a protocol secure against
semi-malicious adversaries. Semi-malicious security, introduced by Asharov et
al. [AJLA+12], intuitively means that the adversary must follow the protocol,
but can choose its random coins in an arbitrary way. The adversary is assumed to
have a special witness-tape and is required to write a pair of input and random-
ness (x, r) that explains its behavior. We specifically start with a semi-malicious
MPC protocol that has attractive communication- and state complexity (i.e.,
independent of the function being computed). Then, we extend it so that the
resulting construction is secure against not only semi-malicious, but also fully
malicious adversaries.
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5.1 Step. 1: MPC with Semi-malicious Security

Our starting point is the solution proposed in the work of Brakerski et
al. [BHP17] based on multi-key fully homomorphic encryption (MFHE) that
achieves semi-malicious security6. The construction is for deterministic func-
tionalities where all the parties receive the same output, however it can be easily
extended using standard techniques to randomized functionalities with individ-
ual outputs for different parties [AJLA+12]. For technical details behind the
construction and the security proof we refer to Brakerski et al., and Mukherjee
and Wichs.

We note that while Brakerski et al. do not explicitly explain how to handle
circuits of arbitrary depth, the bootstrapping approach outlined by Mukherjee
and Wichs [MW16] can be used here. Informally, the bootstrapping is done as
follows: each party encrypts their secret key bit-by-bit using their public key
and broadcasts the resulting ciphertext. These ciphertexts are used to evaluate
the decryption circuit, thus reducing the noise. To do so, the parameters of the
MFHE scheme must be set in a way that allows it to handle the evaluation of the
decryption circuit. We assume circular security that ensures that it is secure to
encrypt a secret key under its corresponding public key and refer to Mukherjee
and Wichs [MW16] for details.

To summarize, the construction in Protocol 4 is an MPC protocol secure
against semi-malicious adversaries and can handle functions of arbitrary depth7.

The communication complexity in Protocol 4 depends only on the security
parameters, the number of parties, and input- and output sizes [BHP17]. Note
that for a party Pi the state that is passed between the rounds in Protocol 4
consists of the following data:

– paramsk (passed from round one to round two and round three)
– params, (pkk, skk), {ck,j}j∈[lin], {c̃k,j}j∈[lkey] (passed from round two to round

three)
– {evk,j}j∈lout

(passed from round three to round four)

Note that this data depends only on security parameters, number of parties, and
input- and output sizes. Thus, the communication- and state complexity of the
semi-malicious protocol does not depend on the circuit we are computing.

6 Their scheme is secure when exactly all but one parties are corrupted. To trans-
form it into a scheme that is secure against any number of corruptions, Brakerski et
al. suggest to extend it by a protocol proposed by Mukherjee and Wichs (Sect. 6.2
in [MW16]) that relies on an so-called extended function. For simplicity, we skip this
technical detail in our protocol. We note, however, that the additional communica-
tion and state complexity incurred due to the transformation depend only on the
security parameter, as well as the parties’ input- and output sizes.

7 Again, this construction is secure against exactly N − 1 corruptions (where N is the
total number of parties). When used with the extended function transformation by
Mukherjee and Wichs (which we skip here for readability purposes), the construction
becomes secure against arbitrary many corruptions.
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Protocol 4. Optimizing MPC
1. Let Pk be the party executing this protocol.
2. Run paramsk ← MFHE.DistSetup(1κ, 1N , k). Broadcast paramsk.
3. Set params = (params1, . . . , paramsN ), and do the following:

– Generate a key-pair (pkk, skk) ← MFHE.Keygen(params, k)
– Let lin denote the length of the party’s input. Let xk[j] denote the j-th bit of

Pk’s input xk. Let lkey denote the length of the party’s secret key.
– Encrypt the input bit-by-bit:

{ck,j ← MFHE.Encrypt(pkk, xk[j])j∈[lin]

– Encrypt the secret key bit-by-bit:

{c̃k,j ← MFHE.Encrypt(pkk, skk[j])j∈[lkey ]

– Broadcast the public key and the ciphertexts (pkk, {ck,j}j∈[lin], {c̃k,j}j∈[lkey ])
4. On receiving values {pki, ci,j}i∈[N ]\{k},j∈[lin] execute the following steps:

– Let fj be the boolean function for j-th bit of the output of f . Let lout denote
the length of the output of f .

– Run the evaluation algorithm to generate the evaluated ciphertext bit-by-bit:

{cj ← MFHE.Eval(params, fj , (c1,1, . . . , cN,lin))}j∈[lout],

while performing a bootstrapping (using the previously broadcasted encryp-
tions of the secret keys) whenever needed.

– Compute the partial decryption for all j ∈ [lout] :

evk,j ← MFHE.PartDec(skk, cj)

– Broadcasts the values {evk,j}j∈lout

5. On receiving all the values {evi,j}i∈[N ],j∈[lout] run the final decryption to obtain
the j-th output bit: {yj ← MFHE.FinDec(ev1,j , . . . , evN,j , cj)}j∈[lout]. Output y =
y1 . . . ylout .

5.2 Step. 2: MPC with Fully Malicious Security

In order to protect from fully malicious adversaries, we extend the construc-
tion above with the zero-knowledge protocol proposed by Kilian [Kil92]. In the
following, we first elaborate on Kilian’s protocol and some changes we need to
make to it in order to keep the combined communication- and state complexity
low. Then, we elaborate on how Kilian’s protocol is used in the overall MPC
construction.

Kilian’s Zero-Knowledge Protocol. Kilian’s construction [Kil92] relies on
probabilistically checkable proofs (PCPs) and allows a party P to prove the cor-
rectness of some statement x using a witness w to the prover V . We specifically
chose Kilian’s construction because of its attractive communication- and state
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complexities. Note that we make a minor change to Kilian’s construction (Proto-
col 5) – instead of storing the PCP string that was computed in round two to use
it in round four (as is done in the Kilian’s original scheme), P recomputes the
string (using the same randomness) in round four. Clearly, this changes nothing
in terms of correctness and security. However, it allows us to drastically cut the
state complexity of Kilian’s original construction since the storage of the PCP
becomes unnecessary.

Protocol 5. Optimizing MPC - Kilian’s construction
1. Verifier V chooses a collision-resistant hash function h and sends its description to

the prover P .
2. Prover P uses the PCP prover P ′ to construct a PCP string ψ ← P (x, w). Denote

by rp the randomness used by the prover in the generation of ψ. P computes the
root of the Merkle tree (using the hash function h) on ψ, and sends the commitment
to the Merkle tree root to the verifier V .

3. V chooses a randomness rv and sends it to P .
4. P recomputes the PCP string ψ ← P (x, w) using the randomness rp and sends

PCP answers to the set of queries generated according to the PCP verifier V ′

(executed on randomness rv) to V .
5. V checks the validity of the answers, and accepts if all answers are valid and

consistent with the previously received Merkle tree root. Otherwise, V outputs ⊥.

Full Construction. The MPC construction secure against fully malicious
adversaries is effectively the same as the semi-malicious one, except that addi-
tionally Kilian’s construction is executed by each party Pk after each of the first
three rounds of Protocol 4. In more detail:

We assume that there exists some ordering of parties participating in Proto-
col 4. Following the approach outlined by Gilad et al. [AJLA+12], in each round
d of Protocol 4 we use Kilian’s construction as follows:

For each pair of parties (Pi, Pj), Pi acts as a prover to the verifier Pj in order
to prove the statement

NextMessaged(xi, r
d
i , {mk}dk=1, c

d−1
i ) = md

i .

Here, NextMessage is the function executed by Pi in this round according to
Protocol 4, xi is the secret input of Pi, rdi is the randomness used by Pi in round
d, {mk}dk=1 are (concatenations of) the messages broadcast by all parties par-
ticipating in Protocol 4 in rounds 1 to d, and md

i is the message broadcast by Pi

in round d. If a check fails, Pj broadcasts ⊥ and aborts. These proofs are done
sequentially (starting a new one only after the previous is fully finished), follow-
ing the ordering of the (pairs of) parties. If at least one party has broadcasted
⊥, all parties abort.
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Protocol 6. Optimizing MPC - handling fully malicious adversaries
1. Let Pz denote the party executing this protocol.
2. Let NextMessaged(·) denote the next message function of Protocol 4.
3. For each round d = 1, . . . , 3

(a) Let md = md−1
1 , . . . , md−1

n .
(b) Compute NextMessaged(xz, rz, {mk}d

k=1, c
d−1
z ) = (md

z , cd
z).

(c) Broadcast md
z .

(d) For each ordered pair of parties (Pi, Pj):
i. If Pi = Pz, Pz acts as a Prover in Protocol 5 and uses the witness

(xz, rz, cd−1
z ) to prove that the following holds:

NextMessaged(xz, rz, {mk}d
k=1, c

d−1
z ) = md

z .

ii. If Pj = Pz, Pz acts as a Verifier in Protocol 5 to verify that there exist
(xi, ri, c

d−1
i ) such that the following holds:

NextMessaged(xi, ri, {mk}d
k=1, c

d−1
i ) = md

i .

If this verification check fails, broadcast ⊥ and abort.
(e) If any party party broadcast ⊥, abort.

4. Output NextMessage4(xz, rz, {mk}4
k=1, c

3
z) = md

z .

5.3 Properties of the Resulting MPC Construction

We now discuss the properties of the scheme constructed above. Specifically, we
show the following:

Theorem 5. Let f be an N -party function. Protocol 6 is an MPC protocol com-
puting f in the plain model which is secure against fully malicious adversaries
corrupting up to t < N parties. Its communication and state complexity depend
only on security parameters, number of parties, and input and output sized. In
particular, the complexity is independent of the function f .

Correctness. Correctness of the overall construction follows directly from the
completeness of Kilian’s scheme [Kil92] as well as the correctness of the protocol
of Brakerski et al. [BHP17].

Security. We outline why this construction is secure. Intuitively, in order to prove
security we construct the simulator S as follows: S uses the zero-knowledge sim-
ulator Szk of Kilian’s protocol to simulate proofs on behalf of the honest parties.
S honestly checks the proofs submitted by the adversary, aborting whenever a
proof is invalid. Note that for the correctly chosen PCP, Kilian’s construction is
extractable, and thus there exists an extractor Ext. S uses Ext to retrieve the
witness (x, r) used by the adversary in each valid proof. Finally, S uses the sim-
ulator Ssm of the semi-malicious scheme (writing witnesses (x, r) extracted by
Ext on the adversary’s witness tape) to simulate the execution of the underlying
semi-malicious construction.
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Communication- and State Complexity Analysis. As we mentioned above, the
communication complexity of Protocol 4 depends only on security parameters,
number of parties, and input- and output sizes. In particular, the communication-
and state complexity of the semi-malicious protocol does not depend on the
circuit we are computing.

The communication complexity of Kilian’s protocol depends on the security
parameter as well as the length of the statement. In our case, the statement con-
sists of the messages sent by the parties participating in the semi-malicious MPC
protocol in the previous round as well as the message output by the party in the
current round. Since the communication complexity of the semi-malicious MPC
protocol is independent of the function being computed, the communication
complexity of the overall construction is also independent of the function being
computed. As for the state complexity, recall that we made a minor change to
Kilian’s original protocol – instead of storing the PCP, the prover simply recom-
putes (using the same randomness) it whenever it is needed. Due to this simple
modification the PCP string does not contribute to the state complexity. The
only other things contributing to the state complexity is the hash function h
and the randomness rv, both independent of the function being computed by
the MPC8.

Thus, we have shown that the communication- and state complexity of our
MPC construction that is secure against fully malicious adversaries with arbi-
trary number of corruptions is independent of the function the MPC protocol is
tasked with computing.

Integrating Communication- and State Optimized MPC. As we showed in Sect. 4,
the number of CSaR secret store operations in our main construction (Proto-
cols 1, 2 and 3) is upper bounded by:

Nstore = n ∗ (nrounds − 1) +
nrounds∑

i=2

n∑

j=1

2 ∗ ni
wires,j

The number of CSaR secret release operations for each evaluator is upper
bounded by:

Nrelease = n ∗ (nrounds − 1) +
nrounds∑

i=2

n∑

j=1

ni
wires,j

As we pointed out in Sect. 4, the term
∑nrounds

i=2

∑n
j=1 ni

wires,j is precisely the
combined communication- and (encrypted) state complexity of the underlying
MPC protocol π, minus the messages of the first round and plus signatures on
the public messages and the state. Thus, when using Protocol 6 as the underlying
protocol π in our main non-interactive MPC construction (Protocols 1, 2 and

8 Additionally, they can be chosen by V independently of any messages from P , and
thus they can be hardcoded in the garbled circuits and do not add to the state
complexity of the non-interactive construction.
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3), we obtain a construction which number of CSaR store and release operations
depends only on the number of rounds in π, security parameters, number of
parties, and input- and output sizes. All of these parameters are independent of
the function that π is tasked with computing.

Apart from the CSaR store- and release requests the only other data that is
contributing to the communication complexity of the overall construction is the
data that is being posted on the bulletin board:

– messages (as well as signatures) on these of the first round – MPC contributors
are tasked with posting these on the bulletin board.

– outputs of the garbled circuits – evaluators are tasked with posting these on
the bulletin board.

The outputs of the garbled circuits consist of the messages exchanged by the
parties in π, the signatures on these messages, the encrypted state information,
and the signatures on the encrypted state. Thus, the size of this data depends
only on the combined communication- and (encrypted) state complexity of the
underlying MPC protocol π. When using Protocol 6 as the underlying protocol
π, the size of this data is independent of the function which is being computed.

Thus, we get the following result:

Corollary 3. There exists an MPC protocol π′ in the blockchain model that has
adversarial threshold t < N , provides security with abort against fully-malicious
adversaries and does not require participants to be online at the same time. Only
a single message is required from the MPC contributors (the evaluators might be
required to produce multiple messages). Furthermore, the communication com-
plexity of this protocol is independent of the function that is being computed using
this MPC protocol.

6 Guaranteed Output Delivery

In this section, we provide an extension of our main construction that ensures
guaranteed output delivery, meaning that the corrupted parties cannot prevent
honest parties from receiving their output.

In order to provide guaranteed output delivery, the first step is to build upon
an MPC protocol π that also has this property. However, note that this change
by itself is not sufficient – a malicious evaluator could still disrupt the execution
of our original construction by simply providing an authoritative message that
contains an invalid signature and thus forcing honest garbled circuits to abort.
It is clear that we cannot simply accept such invalid signatures. Thus, further
modifications are required. In general, compared to our main protocol we make
the following changes:

– The original MPC protocol must have the guaranteed output delivery prop-
erty.

– We introduce a deadline by which all initial messages must be posted. In the
following, we denote this deadline by τ .
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– Signatures on the messages are verified not by the garbled circuits, but rather
by the CSaR parties as part of the CSaR request. The signature is computed
on the whole message, rather than separately for the public- and state parts
of the next-message function’s output.

– We use CSaR with public release, which is similar to CSaR, but instead of
privately releasing secret shares to the user, the parties release the shares
publicly (e.g., by posting them on the bulletin board).

– Whenever a message posted by the evaluator is of an invalid length or missing
a valid signature, the miners use the garbled circuits and wire keys of the
current round (that were previously published on the bullet board) to check
whether the message posted by the evaluator is indeed the output of the
garbled circuit in question. Only if this is the case (i.e., the evaluator acted
honestly) is the evaluator allowed to receive the next wire keys. The evaluator
uses a proof of publishing of the garbled circuits and the wire keys released by
the CSaR parties to prove the correctness of the computation. The relation
that the miners then check is roughly as follows: “The execution of the garbled
circuit GC on the wire keys {ki}i∈I results in the output provided by E. Here,
the garbled circuit GC is the circuit, and {ki}i∈I are the keys for this circuit
reconstructed using the published values of the CSaR participants present on
the proof of publish supplied by E”.

– If a message from the first round was not published, or a garbled circuit or
wire key from some party was not stored with CSaR, the evaluator needs to
prove that with respect to the genesis block, by deadline τ indeed no such
message was stored. We call such proof a “proof of missing message”.

– In the cases described in the last two points, the miners release default wire
keys (encoding “⊥”) for each garbled circuit that is supposed to use the
missing message.

In order to allow for an easy verification of the evaluator’s claims of invalid
garbled circuits, we use CSaR with public release (CSaR-PR), which is the same
as CSaR, except that the witness is supplied by the client that wishes to receive
the secrets publicly, and the secrets (garbled circuits and wire keys in our case)
are released publicly as well (as long as the release condition is satisfied). Such
CSaR-PR can be instantiated with the PublicWitness construction presented
in the eWEB work. For simplicity, in the following we assume that the public
release of the computation result is permitted. If the application requires that
only the evaluator obtains the function result, it can be easily supported by
changing the output of the function that is being computed to the encryption of
this output under the evaluator’s public key.

The definition of the authoritative message for this construction is a bit differ-
ent to account for the fact that the signatures are checked by the CSaR parties.
Formally, the authoritative message of round d > 1 is a published message that
satisfies the following conditions:

– Message is of the form (id, d,m), where m is of the form (md
1 ‖ · · · ‖ md

n ‖ cd1 ‖
· · · ‖ cdn ‖ sigd1 ‖ · · · ‖ sigdn).
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– each md
j has correct length, and each sigdj is a valid signature of Pk on the

tuple (id, d, j,md
j , c

d
j ), with the following exceptions allowed:

1. if a required message from some party Pj is missing, the evaluator must
prove that Pj failed to post some of the messages needed for the com-
putation and the deadline τ has passed (“proof of missing message”). In
this case, wire keys for the default value ⊥ are released by the CSaR
participants as wire keys corresponding to that message.

2. if the signature of some party Pj is invalid, or md
j (or cdj ) has invalid

length, the evaluator must prove that the output of the garbled circuit
posted by Pj in the previous round is indeed what the evaluator claims
this output to be. In this case, wire keys for the default value ⊥ are
released as wire keys corresponding to that messages.

– This is the first published message that satisfies the requirements above.

Same in our main construction, there are up to n authoritative messages
for the first round – one for each contributing party. Formally, an authoritative
message of round d = 1 from party Pk is a published message that satisfies the
following conditions:

– Message is of the form (id, 1, k,m1
k, sig

1
k).

– sig1k is a Pk’s correct signature over m1
k.

– m1
k has correct length.

– This is the first published message that satisfies the requirements above.

Just as in our main construction, we show security by providing a simulator
that does not have access to the honest parties’ secrets and showing that no
PPT adversary is able to distinguish the interaction with the simulator from the
interaction with the honest parties9.
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1 École Normale Supérieure, Paris, France
leonard.assouline@ens.fr

2 University of Washington, Seattle, USA
tianrenl@uw.edu

Abstract. We improve the communication complexity in the Private
Simultaneous Messages (PSM) model, which is a minimal model of non-
interactive information-theoretic multi-party computation. The state-of-
the-art PSM protocols were recently constructed by Beimel, Kushilevitz
and Nissim (EUROCRYPT 2018).

We present new constructions of k-party PSM protocols. The new
protocols match the previous upper bounds when k = 2 or 3 and improve
the upper bounds for larger k. We also construct 2-party PSM protocols
with unbalanced communication complexity. More concretely,

– For infinitely many k (including all k ≤ 20), we construct k-party
PSM protocols for arbitrary functionality f : [N ]k → {0, 1}, whose

communication complexity is Ok(N
k−1
2 ). This improves the former

best known upper bounds of Ok(N
k
2 ) for k ≥ 6, O(N7/3) for k = 5,

and O(N5/3) for k = 4.
– For all rational 0 < η < 1 whose denominator is ≤ 20, we construct

2-party PSM protocols for arbitrary functionality f : [N ] × [N ] →
{0, 1}, whose communication complexity is O(Nη) for one party,
O(N1−η) for the other. Previously the only known unbalanced 2-
party PSM has communication complexity O(log(N)), O(N).

1 Introduction

Private Simultaneous Messages (PSM) is a minimal model of secure multi-party
computation. It was introduced by Feige, Kilian and Naor [10], and was gener-
alized to the multi-party setting by Ishai and Kushilevitz [12].

In a PSM protocol for evaluating a k-ary functionality f : [N ]k → {0, 1},
there are k parties. They all share a common random string. For all i ∈ [k], the
i-th party holds a private input xi. There is additionally a special party, called
the referee. The referee receives one message from each party and is able to
compute f(x1, . . . , xk), and should learn no other information about x1, . . . , xk.

PSM is studied as an information-theoretic primitive. The key complexity
measure is the communication complexity. The common random string is crucial
for the model as the common random string is the only mean to protect the
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 194–223, 2021.
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Fig. 1. Illustration of a multi-party PSM protocol

privacy against an unbounded adversarial referee, when the k parties cannot
communicate with each other (Fig. 1).

In the PSM model, there are relatively efficient PSM protocols for com-
puting non-deterministic branching programs [10] and modular branching pro-
grams [12]. But for general functionalities, little is known regarding their com-
munication complexity in the PSM model. Assuming every party holds an input
in [N ], the best known lower bound of 2-party PSM is 3 log N −O(log log N) [4].
In k-party PSM where each party holds a 1-bit input, Ball et al. showed an
Ω(k2/ log k) lower bound [5]. Though the lower bounds are at most polyno-
mial in the total input length, all known upper bounds are exponential, leav-
ing an exponential gap between upper and lower bounds. For any functionality
f : [N ]k → {0, 1}, a “näıve” k-party PSM requires O(Nk−1) communication (the
2-party version was presented in [10]). The first novel upper bound is O(

√
N) for

2-party PSM [6], and it was recently generalized to an Ok(Nk/2) upper bound for
k-party PSM [8]. In the same paper, Beimel, Kushilevitz and Nissim also further
optimize the communication complexity for small k = 3, 4, 5. In particular, they
obtain an O(N) upper bound for 3-party PSM. For k = 4 or 5, they improve
the protocol by letting parties jointly emulate their 3-party PSM. Their results
are summarized in Table 1 (Table 2).

1.1 Our Contributions

In the paper, we present two classes of results: We present new k-party PSM
protocols that improve the communication complexity for infinitely many k.
We introduce the notion of unbalanced 2-party PSM protocols, which allows a
flexible repartition of the communication complexity among the two parties, and
we such protocols.

k -party PSM Protocols. We present a framework for constructing multi-party
PSM. The new framework improves the communication complexity upper bounds
for infinitely many k. To compute any k-ary functionality f : [N ]k → {0, 1},
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Table 1. The communication complexity of computing general f : [N ]k → {0, 1} in
multi-party PSM model

Number of parties BIKK [6] BKN [8] This work

2 O(N1/2) O(N1/2) O(N1/2)

3 O(N) O(N)

4 O(N5/3) O(N3/2)

5 O(N7/3) O(N2)

k ≥ 6 O(poly(k) · Nk/2) 2O(k) · N
k−1
2

for infinitely manyk
including allk≤20

Table 2. The unbalanced communication complexity of general f : [N ] × [N ] → {0, 1}
in 2-party PSM model

Communication
complexity of one party

Communication complexity
of the other party

FKN [10] O(log N) N

BIKK [6] O(N1/2) O(N1/2)

This work O(Nη) O(N1−η)

– For all k ≤ 20, our framework yields a k-party PSM protocol of communica-
tion complexity O(N

k−1
2 ).

– For all k such that k + 1 is a prime or a prime power, our framework yields
a k-party PSM protocol of communication complexity Ok(N

k−1
2 ).

– For all k, we conjecture that our framework will yield a k-party PSM protocol
of communication complexity Ok(N

k−1
2 ).

2-party Unbalanced PSM Protocols. We also present a framework for construct-
ing 2-party PSM protocols with unbalanced communication complexity. The new
framework allows us to reduce the message length of one party at the cost of
increasing the communication of the other party. We offer an almost smooth
trade-off between the communication complexity of the two parties. To compute
any functionality f : [N ] × [N ] → {0, 1},

– For every rational η ∈ (0, 1) whose denominator is no more than 20, our
framework yields a 2-party PSM protocol, where one party sends O(Nη) bits
and the other sends O(N1−η) bits.

– For every rational η ∈ (0, 1), we conjecture that our framework will yield
a 2-party PSM protocol, where one party sends Oη(Nη) bits and the other
sends Oη(N1−η) bits.

To some extent, such a trade-off was known in the literature when η = 0. The
first 2-party PSM protocol is of communication complexity O(N) but is strongly
unbalanced: one of the two parties only sends O(log N) bits [10].
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1.2 Proof Overview

This section presents the main ideas behind our new multi-party PSM proto-
cols. We start with a warm-up example of a 3-party PSM, which is originally
constructed by [8]. We present it in a way that matches the framework we will
later introduce. Then we present a new 5-party PSM to demonstrate the power
of our framework. The 5-party PSM example relies on new technique such as
“hard terms cancelling”. It can be easily generalized into a framework for con-
structing k-party PSM protocols for any odd k. But we do not formally present
this framework in the paper.

Instead, in Sect. 3, we develop a modified framework that supports odd as well
as even values of k. The modified framework evenly divides every party’s input
into two halves, this idea was first introduced in [6]. When we formally present
the modified framework in Sect. 3.1, we use a 4-party PSM as an example.

In Sect. 4, we develop another framework for constructing unbalanced 2-party
PSM protocols. Most terminologies and techniques are shared between the frame-
work for k-party and the framework for unbalanced 2-party. Informally, the
unbalanced 2-party PSM framework is the “tensor product” of two copies of the
k-party framework. When we present the new framework in Sect. 4.1, we use as
an example a 2-party PSM with unbalanced communication O(N1/3), O(N2/3).

Background: 3-Party PSM [8]. In this 3-party PSM protocol, three parties hold
x1, x2, x3 ∈ [N ] respectively. The protocol takes O(N) communication and allows
the referee to learn f(x1, x2, x3).

Fix a finite field F. Let the i-th party locally computes a unit vector xi ∈ F
N .

That is, all entries in xi are zero except for xi[xi] = 1. Let F be the truth table of
f represented as an N ×N ×N array, we have f(x1, x2, x3) = 〈F,x1 ⊗x2 ⊗x3〉,
where ⊗ denotes the tensor product and 〈·, ·〉 denotes the inner product.

Therefore, it is sufficient to construct a 3-party PSM protocol, where the i-th
party has input xi ∈ F

N (not necessarily being an unit vector) and the referee
learns 〈F,x1 ⊗ x2 ⊗ x3〉 for some public F ∈ F

N×N×N .
We start by letting the i-th party sample random ri ∈ F

N and send the
one-time padded x̄i := xi + ri to the referee. Then the referee can compute
〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉. We call this term a “masked term”, because it is computed
from the masked inputs x̄1, x̄2, x̄3. This masked term can be decomposed as the
sum of several “pure terms”

〈F, x̄1 ⊗ x̄2 ⊗ x̄3〉 = 〈F,x1 ⊗ x2 ⊗ x3〉 +
〈F,x1 ⊗ x2 ⊗ r3〉 + 〈F,x1 ⊗ r2 ⊗ x3〉 + 〈F, r1 ⊗ x2 ⊗ x3〉 +
〈F,x1 ⊗ r2 ⊗ r3〉 + 〈F, r1 ⊗ x2 ⊗ r3〉 + 〈F, r1 ⊗ r2 ⊗ x3〉 +
〈F, r1 ⊗ r2 ⊗ r3〉.

(1)

We classify the pure terms into two categories:

Target Term. The term 〈F,x1 ⊗x2 ⊗x3〉. It is the term that the referee should
learn as a consequence of the 3-party PSM protocol.
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Easy Term. All the other terms fall into this category. As the name suggested,
there also exist “hard terms”, which will be introduced in the next example
of 5-party PSM.

The easy terms are called “easy” because each of them can be securely
revealed to the referee using only O(N) communication. More formally, let the
parties additionally sample random r1, . . . , r7 ∈ F from their common random
string such that r1 + · · · + r7 = 0. There exist sub-protocols revealing each of

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, r2 + 〈F,x1 ⊗ r2 ⊗ x3〉, r3 + 〈F, r1 ⊗ x2 ⊗ x3〉,
r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, r5 + 〈F, r1 ⊗ x2 ⊗ r3〉, r6 + 〈F, r1 ⊗ r2 ⊗ x3〉,

r7 + 〈F, r1 ⊗ r2 ⊗ r3〉
(2)

to the referee without leaking any other information, taking at most O(N) com-
munication.

Assume that such sub-protocols exist, we can easily finish the 3-party PSM:
The i-th party sends x̄i := xi + ri, they use the aforementioned sub-protocols
to reveal (2). The correctness follows almost directly from (1).

The only missing piece is to construct sub-protocols for computing the terms
in (2). Let us discuss them individually:

– For the last term r7 + 〈F, r1 ⊗ r2 ⊗ r3〉, any party (e.g. the first party) can
compute it and send it to the referee.

– For the term r4 + 〈F,x1 ⊗ r2 ⊗ r3〉, the first party computes it and sends it
to the referee. Similarly for r5 + 〈F, r1 ⊗ x2 ⊗ r3〉 and r6 + 〈F, r1 ⊗ r2 ⊗ x3〉.

– For the term r1 + 〈F,x1 ⊗ x2 ⊗ r3〉, both first and second party need to
participate. Since the first party knows F,x1, r3, it can locally compute a
vector g ∈ F

N such that

r1 + 〈F,x1 ⊗ x2 ⊗ r3〉 = r1 + 〈g,x2〉.
Then they can jointly reveal it to the referee using the PSM for inner product
(more details are provided in Sect. B.1). Similarly for r2 + 〈F,x1 ⊗ r2 ⊗ x3〉
and r3 + 〈F, r1 ⊗ x2 ⊗ x3〉.

Example: 5-Party PSM. We will sketch a 5-party PSM protocol for any f :
[N ]5 → {0, 1} with communication complexity O(N2).

Let F be a finite field. Following the same observation we made in the 3-party
PSM example, it is sufficient to construct a PSM protocol for any function of
the form (x1, . . . ,x5) 	→ 〈F,x1 ⊗ · · · ⊗ x5〉, where ⊗ denotes the tensor product,
the i-th party having input xi ∈ F

N , F is public and fixed being the truth table
of f .

For each Ω ⊆ {1, 2, 3, 4, 5}, parties sample a dimension-|Ω| tensor RΩ ∈
F

N |Ω|
from the common random string. Define X̄Ω := RΩ +

⊗
i∈Ω xi. For exam-

ple, X̄{2} := R{2} +x2 and X̄{3,4} := R{3,4} +x3 ⊗x4. Since the communication
budget is O(N2), they can perform a PSM sub-protocol so that the referee learns
X̄Ω for all Ω such that |Ω| ≤ 2.
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Learning those tensors allows the referee to compute many terms, including
〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉. This term can be decomposed into the sum of the
following 8 terms:

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉

+ 〈F,x1 ⊗ x2 ⊗ R{3,4} ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3,4} ⊗ R{5}〉
+ 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 + 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ R{5}〉
+ 〈F,R{1,2} ⊗ R{3,4} ⊗ x5〉 + 〈F,R{1,2} ⊗ R{3,4} ⊗ R{5}〉.

(3)

Any term that is formed in the same way as the left-hand side of (3), i.e.
〈F, X̄S1 ⊗ · · · ⊗ X̄St

〉 for some S1 + · · · + St = {1, 2, 3, 4, 5}, is called a masked
term. It can be computed by the referee if |Si| ≤ 2 for all i.

Any term that is formed in the same way as the right-hand side of (3), i.e.
〈F,RS1 ⊗ · · · ⊗ RSt

⊗ xi1 ⊗ · · · ⊗ xiw
〉 for some S1 + · · · + St + {i1, . . . , iw} =

{1, 2, 3, 4, 5}, is called a pure term. As hinted by Eq. (3), every masked term is
equal to the sum of 2t pure terms.

The pure terms fall naturally into three categories. In particular, we introduce
a new category called hard terms.

Target term. The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5〉 is called the target term.
Easy term. A pure term 〈F,RS1 ⊗ · · ·⊗RSt

⊗xi1 ⊗ · · ·⊗xiw
〉 is easy if w ≤ 3.

Every easy term can be computed using a PSM protocol with communication
complexity O(N2). For example, 〈F,R{1,2} ⊗ x3 ⊗ x4 ⊗ x5〉 is an easy term.
The 5th party, based on its view, can compute a tensor G ∈ F

N2
such that

〈F,R{1,2} ⊗x3 ⊗x4 ⊗x5〉 = 〈G,x3 ⊗x4〉. And 〈G,x3 ⊗x4〉 can be computed
using a PSM protocol (Sect. B.1) with communication complexity O(N2).

Hard term. Any pure term that is neither the target term nor an easy term.

Let us ignore the easy terms for now. Then Eq. (3) can be rewritten as

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉 + easy terms.

There is only one hard term left. We would like to cancel out the hard term
by combining a few masked terms. Let us consider the following masked terms:
〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉, 〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 and 〈F, X̄{1,2} ⊗ X̄{3} ⊗
X̄{4} ⊗ X̄{5}〉.

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3} ⊗ x4 ⊗ x5〉 + easy terms,

〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4} ⊗ x5〉 + easy terms,



200 L. Assouline and T. Liu

〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉
= 〈F,x1 ⊗ · · · ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ R{3} ⊗ x4 ⊗ x5〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4} ⊗ x5〉 + 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ R{5}〉
+ easy terms.

By carefully combining these masked tensors, we have

〈F, X̄{1,2} ⊗ X̄{3,4} ⊗ X̄{5}〉 + 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4,5}〉
+ 〈F, X̄{1,2} ⊗ X̄{3,5} ⊗ X̄{4}〉 − 〈F, X̄{1,2} ⊗ X̄{3} ⊗ X̄{4} ⊗ X̄{5}〉

= 2 · 〈F,x1 ⊗ · · · ⊗ x5〉 + easy terms.
(4)

Equation (4) shows us how to construct the desired PSM protocol. All of
the masked tensors on the left-hand side of (4) can be computed by the referee.
The parties perform a PSM sub-protocol so that the referee learns the sum of
these easy terms. (The details are demonstrated in the last example of 3-party
PSM, and are explained in Sect. 3.2.) Then from Eq. (4), the referee learns
2 · 〈F,x1 ⊗ · · · ⊗ x5〉.

As long as F is a finite field in which 2 �= 0, the referee has learned the target
term. The protocol takes a communication cost of O(N2) field elements. �

1.3 Related Works

Besides [6,8], our construction of PSM protocols is also inspired by the progress
in Conditional Disclosure of Secrets (CDS). Until recently, CDS had a similar
exponential gap between known upper and lower bounds. CDS can be viewed as
a variant of PSM where the referee knows all but 1 bit of the input: Consider
the 2-party case and let [N ] be the input domain for both parties. The upper
bounds of O(

√
N) is conserved [6,11]. A similar lower bound of Ω(log N) is

known [2,11]. Recently, Liu, Vaikuntanathan and Wee improved the CDS upper
bound for arbitrary function to 2Õ

√
log N [14]. In a slightly different setting, the

amortized CDS upper bound per party is improved to Θ(1) [1,2].
Gay, Kerenidis and Wee constructed 2-party CDS with smooth communi-

cation complexity trade-off between the two party [11]. In particular, for any
η ∈ [0, 1], they constructed a 2-party CDS protocol where one party sends O(Nη)
bits and the other sends O(N1−η) bits.

In [3,9], constructions of ad hoc PSM are presented. In this framework, there
are k parties, but only a subset of them will perform the computation. This
notion, expanded in [7], was shown to imply obfuscation.

2 Preliminaries

Let N := {0, 1, . . .} denote the set of all natural numbers, and let [n] :=
{1, . . . , n}. In this paper, F denotes a field, R denotes a finite commutative
ring. For some prime power p, let Fp denote the unique finite field of order p.
A vector will be denoted by a bold face lowercase letter. For a vector v, let v[i]
denote its i-th entry.
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2.1 Tensor

A tensor refers to the generalization of vectors and matrices which have multiple
indices. Roughly speaking, a tensor is a multi-dimensional array. In the paper,
a tensor will be denoted by a bold face capital letter. A k-dimensional tensor
T ∈ F

n1×n2×...×nk is essentially an array of size n1 × n2 × · · · × nk. The entries
in T are indexed by (i1, . . . , ik) ∈ [n1] × · · · × [nk], and denoted by T[i1, . . . , ik].
A tensor can also be viewed as a representation of a multi-linear function: any
k-linear function f : Fn1 × F

n2 × . . . × F
nk → F can be uniquely determined by

its coefficient tensor F ∈ F
n1×...×nk , such that

f(v1, . . . ,vk) =
∑

i1∈[n1],··· ,ik∈[nk]

F[i1, . . . , ik] · v1[i1] · . . . · vk[ik]. (5)

The inner product of two tensors S,T ∈ F
n1×n2×...×nk is defined as

〈S,T〉 :=
∑

i1∈[n1],··· ,ik∈[nk]

S[i1, . . . , ik] · T[i1, . . . , ik].

Given two tensors S ∈ F
n1×...×nk and T ∈ F

m1×...×m� , we define S⊗T, their
tensor product. It is a tensor in F

n1×...×nk×m1×...×m� such that

(S ⊗ T)[i1, . . . , ik, j1, . . . , j�] = S[i1, . . . , ik] · T[j1, . . . , j�].

Using the notation of inner product and tensor product, Eq. (5) can also be
written as f(v1, . . . ,vk) = 〈F,v1 ⊗ . . . ⊗ vk〉.

2.2 Private Simultaneous Messages

Definition 1 (private simultaneous message). A k-party functionality is a
mapping f : X1 × . . . × Xk → Y, where X1, . . . ,Xk are its input spaces and Y is
its output space.

A private simultaneous message (PSM) protocol for a functionality f consists
of a randomness space W and a tuple of deterministic functions (M1, . . . ,Mk,R)

Mi : Xi × W → {0, 1}cci , for alli ∈ [k],
R : {0, 1}cc1 × . . . {0, 1}cck → {0, 1},

where cci is the communication complexity of the i-th party, cc := cc1 + . . .+ cck

is the total communication complexity.
A perfectly secure PSM protocol for f satisfies the following properties:

(correctness.) For all input tuple (x1, . . . , xk) ∈ X1 × . . .×Xk and randomness
w ∈ W,

R(M1(x1, w), . . . ,Mk(xk, w)) = f(x1, . . . , xk)

(privacy.) There exists a randomized simulator S, such that for any input
(x1, . . . , xk) ∈ X1×. . .×Xk, the joint distribution of M1(x1, w), . . . ,Mk(xk, w)
is the same as the distributions of S(f(x1, . . . , xk)), where the distributions
are taken over w ← W and the coin tosses of S.
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2.3 Randomized Encoding

Randomized encoding is a primitive closely relate to PSM. The randomized
encoding of a function f is a randomized function f̂ . The output f̂(x,w), where
w denotes the randomness, contains sufficient information to recover f(x) and
no other information about x.

Definition 2 (randomized encoding). A randomized encoding for a function
f : X → Y consists of a randomized encoding function f̂ : X × W → Ŷ and a
deterministic decoding function R : Ŷ → Y, where W denotes the randomness
space and Ŷ denotes the coding space.

A perfectly secure randomized encoding satisfies the following properties:

(correctness.) For all x ∈ X and randomness w ∈ W,

R(f̂(x,w)) = f(x)

(privacy.) There exists a randomized simulator S, such that for any input x ∈
X , the joint distribution of f̂(x,w) is the same as the distributions of S(f(x)),
where the distributions are taken over w ← W and the coin tosses of S.

Follows directly from the definitions, (M1, . . . ,Mk,R) is a PSM protocol for
f if and only if (f̂ ,R) is a randomized encoding for f , where f̂(x1, . . . , xk, w) :=
(M1(x1, w), . . . ,Mk(xk, w)).

In other words, PSM is a special form of randomized encoding, where the
input is divided into a few portions, and each bit of the encoding only depends
on the randomness and one portion of the input.

3 New Multi-party PSM Protocols

In this section, we present one of our main results: for many k, every function-
ality f : [N ]k → {0, 1} admits a PSM protocol of communication complexity
Ok(N

k−1
2 ).

Theorem 1. Let f : [N ]k → {0, 1} be an arbitrary k-party functionality.

– There is a k-party PSM protocol for f with communication and randomness
complexity O(N

k−1
2 ), if k ≤ 20.

– There is a k-party PSM protocol for f with communication and randomness
complexity Ok(N

k−1
2 ), if k + 1 is a prime or a prime power.

In this section, we prove a stronger statement. Let F be a finite field, consider
the following auxiliary k-party functionality Auxk

N :

k-party functionality Auxk
N

– The i-th party has input x2i−1,x2i ∈ F

√
N

– The output is 〈F,x1 ⊗· · ·⊗x2k〉, where F is public and fixed
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As shown in the beginning of Sect. 3.1, a PSM protocol for Auxk
N implies a PSM

for f : [N ]k → {0, 1} with the same communication complexity. The reduction
consists of having F be the truth table of f .

We will present a framework of constructing k-party PSM for Auxk
N , whose

communication complexity is Ok(N
k−1
2 ). Roughly speaking, the framework

reduces the problem to a system of linear equations. A solution of the system
implies a PSM protocol with the desired communication complexity. Therefore,
we should rule out the possibility that the induced system has no solution. We
partially achieve such a goal. We solve the induced system for infinitely many k:

– For all k ≤ 20, we checked that the induced system of linear equations is
solvable. For small k we solve the system by hand, and for larger k we verified
it with a computer program.

– For all k such that k+1 is a prime power, we prove that the system is solvable.

Backed by the above observations, we strongly believe the induced system is
solvable for all k.

Conjecture 1. Let f : [N ]k → {0, 1} be an arbitrary k-party functionality.
There is a k-party PSM protocol for f with communication and randomness
complexity Ok(N

k−1
2 ).

Organization. Section 3.1 presents our framework for constructing multi-party
PSM, introduces new notations, and gives a 4-party PSM as a concrete example.
The following Sects. 3.2, 3.3, 3.4 are independent. Section 3.2 provides more tech-
nical detail of the PSM protocols yielded by our framework. Section 3.3 shows
how the framework works for small k, and Sect. 3.4 shows how the framework
works for any integer k such that k + 1 is a prime power.

3.1 A Framework for Multi-party PSM

As mentioned in the beginning of Sect. 3, the functionality f : [N ]k → {0, 1} can
be reduced to functionality Auxk

N . The reduction works as follows: Let x1, . . . , xk

be the input, the j-th party has input xj ∈ [N ]. We evenly divide xj into
x′
2j−1, x

′
2j ∈ [

√
N ]. For each i ∈ [2k], let xi := ex′

i
∈ F

√
N be the x′

i-th standard
unit vector. We reduce f to Auxk

N :

f(x1, . . . , x2k) = 〈F,x1 ⊗ . . . ⊗ x2k〉

where F is the truth-table of f . For the remainder of the section, it is thus
sufficient to construct a PSM protocol for Auxk

N .
For each non-empty Ω ⊆ [2k], our protocol will sample a random dimension-

|Ω| tensor RΩ ∈ R(
√

N)|Ω|
from the common random string1. Define X̄Ω :=

RΩ +
⊗

i∈Ω xi. E.g., X̄{2} := R{2} + x2, X̄{3,4} := R{3,4} + x3 ⊗ x4.

1 A note on the randomness complexity: The final protocol uses RΩ only if |Ω| ≤ k−1.
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Within the communication complexity budget O(N
k−1
2 ), we can let the ref-

eree learn X̄Ω for all Ω such that |Ω| ≤ k − 1 (more details in Sect. 3.2). The
referee does not learn extra information as X̄Ω is one-time padded by RΩ. For
example when k = 4, we can let the referee learn tensors X̄{1}, X̄{2}, . . . , X̄{8},
X̄{1,2}, X̄{1,3}, . . . , X̄{7,8}, X̄{1,2,3}, X̄{1,2,4}, . . . , X̄{6,7,8}. The referee learns
those tensor by having subsets of the parties recursively perform PSM ptocols
with a smaller number of parties, so that the referee learns the required informa-
tion. Learning those tensors allows the referee to compute many terms including
〈F, X̄{1,2,3}⊗X̄{4,5,6}⊗X̄{7,8}〉, which equals to the sum of the following 8 terms,

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ R{7,8}〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ R{7,8}〉.

(6)

Before we continue, let us introduce a few notations to describe the terms
appearing in (6). The term (tensor) on the left hand side of the equation will be
called a masked term (masked tensor). The terms (tensors) on the right hand
side of the equation will be called pure terms (pure tensors).

Definition (masked tensor & masked term). A masked tensor is a tensor
product X̄Ω1 ⊗ . . . ⊗ X̄Ωt

2 such that Ω1, . . . , Ωt are disjoint and their union
equals [2k]. The shape of a masked tensor X̄Ω1 ⊗ . . . ⊗ X̄Ωt

is the multiset
{|Ω1|, . . . , |Ωt|}. The inner product of a masked tensor and F is called a masked
term.

For any multiset P such that sum(P ) = 2k, let
∑

X̄(P ) denote the sum of
all masked tensors of shape P , let

∑〈F, X̄(P )〉 denote the sum of all masked
terms of shape P . We thus have

∑〈F, X̄(P )〉 = 〈F,
∑

X̄(P )〉.
Definition (pure tensor & pure term). A pure tensor is a tensor product
RΩ1⊗. . .⊗RΩt

⊗xi1⊗. . .⊗xiw
such that {i1, . . . , iw}, Ω1, . . . , Ωt are disjoint and

their union equals [2k]. The shape of a pure tensor RΩ1⊗. . .⊗RΩt
⊗xi1⊗. . .⊗xiw

is the multiset {|Ω1|, . . . , |Ωt|}. The inner product of a pure tensor and F is called
a pure term.

2 We implicitly exchange the order of indices in tensor product. E.g. when k = 2,
the masked tensor X̄{1,4} ⊗ X̄{2,3} is defined by (X̄{1,4} ⊗ X̄{2,3})[j1, j2, j3, j4] =
X̄{1,4}[j1, j4] · X̄{2,3}[j2, j3].
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For any multiset P such that sum(P ) ≤ 2k, let
∑

R(P ) denote the sum of
all pure tensors of shape P , let

∑〈F,R(P )〉 denote the sum of all pure terms of
shape P . We thus have

∑〈F,R(P )〉 = 〈F,
∑

R(P )〉.
The pure terms (pure tensors) can be grouped into 3 natural categories:

target term (target tensor) 〈F,x1 ⊗ . . . ⊗ x2k〉 is called the target term as
it is desired functionality output. The corresponding tensor x1 ⊗ . . . ⊗ x2k is
called the target tensor.

easy terms (easy tensors) A pure tensor RΩ1 ⊗ . . .⊗RΩt
⊗xi1 ⊗ . . .⊗xiw

is
called an easy tensor if at most k+1 out of the 2k dimensions are contributed
by vector xi’s (i.e., w ≤ k+1). The corresponding term is called an easy term.
Every easy term admits a PSM protocol with communication complexity no
more than O(poly(k) · N

k−1
2 ) field elements (more details in Sect. 3.2).

hard terms (hard tensors) The rest.

With this terminology, we can give an overview of our PSM protocol. As the
referee can learn X̄Ω for all Ω such that |Ω| ≤ k − 1, the referee can compute
any masked term of shape P if max(P ) ≤ k − 1. As suggested by Eq. (6), every
masked term is the linear combination of a few pure terms. Ideally, the referee
only has to combine some computable masked terms, so that all the hard terms
cancel out, resulting a linear combination of the target term and easy terms:

a linear combination of masked terms = target term + some easy terms. (7)

Once we are in this ideal case, the easy terms can be easily removed by stan-
dard techniques, resulting the desired k-party PSM protocol for Auxk

N . (More
details are presented in Sect. 3.2.) Therefore, the task is reduced to a linear alge-
bra problem: is the target term (resp. tensor) spanned by the referee-computable
masked terms (resp. tensors) and easy terms (resp. tensors)?

When solving such linear algebra problem, it is fair to assume that the solu-
tion is symmetric. (Otherwise, assume that a solution that looks like (7) is asym-
metric, it can be symmetrized by applying the symmetric sum on both sides.)

We have defined the (symmetric) sum of terms or tensors of the same shape.
For example when k = 4,

∑
X̄(3, 3, 2) is defined as the sum of all masked tensors

X̄Ω1 ⊗ X̄Ω2 ⊗ X̄Ω3 such that the multiset {|Ω1|, |Ω2|, |Ω3|} equals {3, 3, 2}, i.e.
∑

X̄(3, 3, 2) := X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8} + X̄{1,2,3} ⊗ X̄{4,5,7} ⊗ X̄{6,8}
+ X̄{1,2,3} ⊗ X̄{4,5,8} ⊗ X̄{5,6} + X̄{1,2,3} ⊗ X̄{4,6,7} ⊗ X̄{5,8}
+ . . . + X̄{3,4,5} ⊗ X̄{6,7,8} ⊗ X̄{1,2}.
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Let’s revisit Eq. (6),

〈F, X̄{1,2,3} ⊗ X̄{4,5,6} ⊗ X̄{7,8}〉
︸ ︷︷ ︸

a masked term of shape {3, 3, 2}
= 〈F,x1 ⊗ · · · ⊗ x8〉

︸ ︷︷ ︸
a pure term of shape {}

+ 〈F,x1 ⊗ · · · ⊗ x6 ⊗ R{7,8}〉
︸ ︷︷ ︸

a pure term of shape {2}
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉 + 〈F,R{1,2,3} ⊗ x4 ⊗ · · · ⊗ x8〉

︸ ︷︷ ︸
pure terms of shape {3}

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ R{4,5,6} ⊗ R{7,8}〉 + 〈F,R{1,2,3} ⊗ x4 ⊗ x5 ⊗ x6 ⊗ R{7,8}〉
︸ ︷︷ ︸

pure terms of shape {3, 2}
+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ x7 ⊗ x8〉

︸ ︷︷ ︸
a pure term of shape {3, 3}

+ 〈F,R{1,2,3} ⊗ R{4,5,6} ⊗ R{7,8}〉
︸ ︷︷ ︸

a pure term of shape {3, 3, 2}

.

By applying a symmetric sum on both sides, we get
∑〈F, X̄(3, 3, 2)〉 = 280 · ∑〈F,R()〉

︸ ︷︷ ︸
the target term

+ 10 · ∑〈F,R(2)〉
︸ ︷︷ ︸
hard pure terms

+ 10 · ∑〈F,R(3)〉 +
∑〈F,R(3, 2)〉 +

∑〈F,R(3, 3)〉 +
∑〈F,R(3, 3, 2)〉

︸ ︷︷ ︸
easy pure terms

.

As another example of the symmetric sum of masked term that the referee can
compute,

∑〈F, X̄(2, 2, 2, 2)〉 = 105 · ∑〈F,R()〉
︸ ︷︷ ︸

target term

+ 15 · ∑〈F,R(2)〉
︸ ︷︷ ︸
hard pure terms

+ 3 · ∑〈F,R(2, 2)〉 +
∑〈F,R(2, 2, 2)〉 +

∑〈F,R(2, 2, 2, 2)〉
︸ ︷︷ ︸

easy pure terms

.

By carefully combining the above two equations, we get

3 ·∑〈F, X̄(3, 3, 2)〉− 2 ·∑〈F, X̄(2, 2, 2, 2)〉 = 630 ·∑〈F,R()〉+easy terms, (8)

which induces a 4-party PSM whose communication complexity is O(N3/2), if
we let F to be any field in which 630 �= 0. (Section 3.2 explains how Eq. (8)
implies a 4-party PSM with desired communication complexity.)

In the general k-party case, for each legit shape P of masked term (i.e., P is
a multiset consisting of positive integers and sum(P ) = 2k),

∑〈F, X̄(P )〉 =
∑

Q⊆P

α(Q) · ∑〈F,R(P \ Q)〉, (9)

where P \ Q is the multiset subtraction and

α(Q) :=
(sum(Q))!

∏
i∈Q i! · ∏

m∈Z+(number of m’s in Q)!
(10)
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is the following combinatoric number: α(Q) is the number of ways to partition
sum(Q) distinct elements into some unordered subsets S1, . . . , St such that Q =
{|S1|, . . . , |St|}. Equations (9), (10) are proved in Appendix A.

3.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped some technique
details in Sect. 3.1. In this section, we will show how to construct a k-party PSM
protocol assuming that the target term is spanned by referee-computable masked
terms and easy pure terms.

By our assumption, there are referee-computable masked terms X̄(1), . . . ,
X̄(t), easy pure terms R(1), . . . ,R(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F

such that

〈F,x1 ⊗ · · · ⊗ x2k〉 =
t∑

j=1

ajX̄(j) +
s∑

j=1

bjR(j). (11)

A k-party PSM for f , together with its correctness and security, is yielded
by the following facts:

– Fact I:
∑s

j=1 bjR(j) and X̄Ω for all 0 < |Ω| ≤ k − 1 form a randomized
encoding of 〈F,x1⊗· · ·⊗x2k〉. That is, they contain the sufficient information
to recover 〈F,x1⊗· · ·⊗x2k〉, and they are garbled with additional randomness
so that no other information can be recovered.

– Fact II: For every Ω ⊆ [2k] such that 0 < |Ω| ≤ k−1, there is a PSM protocol
for X̄Ω with communication complexity poly(k) · N

k−1
2 field elements.

– Fact III: There is a PSM protocol for
∑s

j=1 bjR(j) with communication com-

plexity poly(k) · s · N
k−1
2 field elements.

The k-party PSM for f works as the follows: For each Ω ⊆ [2k] such that
0 < |Ω| ≤ k − 1, use the PSM guaranteed by Fact II to reveal X̄Ω to the referee.
Use the PSM guaranteed by Fact III to reveal

∑s
j=1 bjR(j) to the referee. Then

Fact I allows the referee to compute the output from Eq. (11).

Proof of Fact I. Equation (11) shows that 〈F,x1 ⊗ · · · ⊗ x2k〉 can be com-
puted from the encoding. Moreover, the distribution of the encoding is perfectly
simulatable: The joint distribution of tensors X̄Ω for 0 < |Ω| ≤ k − 1 is uni-
form distribution, as they are independently one-time padded. Then the value
of

∑s
j=1 bjR(j) is uniquely determined by Eq. (11).

Proof of Fact II. Each coordinate of XΩ is defined as

X̄{j1,...,jt}[i1, . . . , it] = R{j1,...,jt}[i1, . . . , it] + xj1 [i1] · . . . · xjt
[it],

which is an arithmetic formula of size O(k). Thus each coordinate has a PSM
protocol with communication complexity poly(k) field elements [13].
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Proof of Fact III. Sample random c1, . . . , cs ∈ F from the common random
string such that c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM
protocol for computing bjR(j) + cj for each j. Say this easy pure term R(j) is
〈F,RΩ1 ⊗ . . . ⊗ xi1 ⊗ . . . ⊗ xiw

〉. By our definition of an easy term, w ≤ k + 1.
There exists a special party, such that the other parties hold at most k − 1 of
xi1 , . . . ,xiw

. When w = k + 1, the special party is the one who holds two of
xi1 , . . . ,xiw

(the existence is guaranteed by the pigeonhole principle). W.l.o.g.
assume that the other parties hold xi1 , . . . ,xiw′ such that w′ ≤ k − 1. Then the
special party knows a dimension-w′ tensor G (which is determined by its input
and bj ,RΩ1 ,RΩ2 , . . . ) such that

bjR(j) + cj = 〈G,xi1 ⊗ . . . ⊗ xiw′ 〉 + cj ,

which admits a PSM protocol (presented in Sect. B.1) with communication com-
plexity O(poly(k) · Nw′/2) field elements.

3.3 When k is Small

As shown in Sect. 3.1, to construct PSM protocol for Auxk
N with communication

complexity Ok(N
k−1
2 ), it is sufficient to prove the target term is spanned by

the referee-computable masked terms and easy pure terms. In this section, we
verify the condition holds for all k ≤ 20, which proves the first bullet of Theo-
rem 1. However, we do not have a general construction of such linenar systems
of equations for an arbitrary k.

The case when k = 2 was solved by [6]. Our framework yields the same
protocol from

∑〈F, X̄(1, 1, 1, 1)〉 =
∑〈F,R()〉 + easy terms.

The case when k = 3 was solved by [8]. Our framework yields a similar
protocol from

∑〈F, X̄(2, 2, 2)〉 =
∑〈F,R()〉 + easy terms.

The case when k = 4 is solved in Sect. 3.1.
For k = 5, consider the following two masked terms,

∑〈F, X̄(4, 4, 2)〉 = 1575 · ∑〈F,R()〉 + 35 · ∑〈F,R(2)〉 + easy terms,
∑〈F, X̄(4, 2, 2, 2)〉 = 3150 · ∑〈F,R()〉 + 210 · ∑〈F,R(2)〉 + easy terms.

We have 6·∑〈F, X̄(4, 4, 2)〉−∑〈F, X̄(4, 2, 2, 2)〉 = 6300·∑〈F,R()〉+easy terms,
which induces a 5-party PSM with communication complexity O(N2).

For k = 6, consider the following masked terms
⎡

⎣

∑〈F, X̄(5, 4, 3)〉∑〈F, X̄(4, 4, 4)〉∑〈F, X̄(3, 3, 3, 3)〉

⎤

⎦ =

⎡

⎣
27720 126 56
5775 35
15400 280

⎤

⎦

⎡

⎣

∑〈F,R()〉∑〈F,R(3)〉∑〈F,R(4)〉

⎤

⎦ + easy terms
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Therefore, 100·∑〈F, X̄(5, 4, 3)〉−160·∑〈F, X̄(4, 4, 4)〉−45·∑〈F, X̄(3, 3, 3, 3)〉 =
1155000 · ∑〈F,R()〉 + easy terms, which induces a 6-party PSM with commu-
nication complexity O(N2.5).

For k = 7, consider the following masked terms
⎡

⎣

∑〈F, X̄(4, 4, 4, 2)〉∑〈F, X̄(6, 6, 2)〉∑〈F, X̄(6, 4, 4)〉

⎤

⎦ =

⎡

⎣
525525 5775 1575
42042 462
105105 210

⎤

⎦

⎡

⎣

∑〈F,R()〉∑〈F,R(2)〉∑〈F,R(4)〉

⎤

⎦ + easy terms

Therefore, 14·∑〈F, X̄(4, 4, 4, 2)〉−175·∑〈F, X̄(6, 6, 2)〉−105·∑〈F, X̄(6, 4, 4)〉 =
−11036025 · ∑〈F,R()〉 + easy terms, which induces a 7-party PSM with com-
munication complexity O(N3).

For larger k, we wrote a simple program3 to check if the target term can
be spanned by referee-computable masked terms and easy terms. For simplicity,
our program requires specifying the finite field in advance. Our program verifies
that the framework yields a PSM protocol with c.c. O(N

k−1
2 ) for every k ≤ 20.

For example when k = 20, our program found:

∑〈F,R()〉 = 2895 · ∑〈F, X̄(19, 19, 2)〉 + 1902 · ∑〈F, X̄(19, 17, 4)〉 + 2843 · ∑〈F, X̄(19, 16, 5)〉 + 1025 · ∑〈F, X̄(19, 16, 3, 2)〉 + 691 ·∑〈F, X̄(19, 15, 6)〉 + 2507 · ∑〈F, X̄(19, 15, 4, 2)〉 + 1923 · ∑〈F, X̄(19, 14, 7)〉 + 1836 · ∑〈F, X̄(19, 14, 5, 2)〉 + 2385 · ∑〈F, X̄(19, 13, 8)〉
+ 2073 · ∑〈F, X̄(19, 13, 6, 2)〉 + 1312 · ∑〈F, X̄(19, 12, 9)〉 + 2963 · ∑〈F, X̄(19, 12, 7, 2)〉 + 568 · ∑〈F, X̄(19, 11, 10)〉 + 975 ·∑〈F, X̄(19, 11, 8, 2)〉+2445 ·∑〈F, X̄(19, 10, 9, 2)〉+2047 ·∑〈F, X̄(19, 9, 8, 4)〉+318 ·∑〈F, X̄(19, 9, 8, 2, 2)〉+2118 ·∑〈F, X̄(19, 9, 6, 6)〉
+ 2189 · ∑〈F, X̄(19, 9, 6, 4, 2)〉 + 1271 · ∑〈F, X̄(19, 9, 6, 2, 2, 2)〉 + 1557 · ∑〈F, X̄(19, 9, 4, 4, 4)〉 + 2482 · ∑〈F, X̄(19, 9, 4, 4, 2, 2)〉
+ 173 · ∑〈F, X̄(19, 9, 4, 2, 2, 2, 2)〉 + 1943 · ∑〈F, X̄(19, 9, 2, 2, 2, 2, 2, 2)〉 + 29 · ∑〈F, X̄(18, 18, 4)〉 + 1247 · ∑〈F, X̄(18, 17, 5)〉 + 1768 ·∑〈F, X̄(18, 17, 3, 2)〉 + 2735 · ∑〈F, X̄(18, 16, 6)〉 + 416 · ∑〈F, X̄(18, 16, 4, 2)〉 + 1009 · ∑〈F, X̄(18, 15, 7)〉 + 130 · ∑〈F, X̄(18, 15, 5, 2)〉
+138 ·∑〈F, X̄(18, 14, 8)〉+52 ·∑〈F, X̄(18, 14, 6, 2)〉+2661 ·∑〈F, X̄(18, 13, 9)〉+26 ·∑〈F, X̄(18, 13, 7, 2)〉+731 ·∑〈F, X̄(18, 12, 10)〉+
16·∑〈F, X̄(18, 12, 8, 2)〉+145·∑〈F, X̄(18, 11, 11)〉+12·∑〈F, X̄(18, 11, 9, 2)〉+818·∑〈F, X̄(18, 10, 8, 4)〉+1728·∑〈F, X̄(18, 10, 8, 2, 2)〉
+ 2676 · ∑〈F, X̄(18, 10, 6, 6)〉 + 1533 · ∑〈F, X̄(18, 10, 6, 4, 2)〉 + 2490 · ∑〈F, X̄(18, 10, 6, 2, 2, 2)〉 + 760 · ∑〈F, X̄(18, 10, 4, 4, 4)〉
+ 747 · ∑〈F, X̄(18, 10, 4, 4, 2, 2)〉 + 2752 · ∑〈F, X̄(18, 10, 4, 2, 2, 2, 2)〉 + 83 · ∑〈F, X̄(18, 10, 2, 2, 2, 2, 2, 2)〉 + easy terms mod 3001

which induces a PSM protocol with c.c. O(N9.5).

3.4 When k + 1 is a Prime Power

As shown in Sect. 3.1, to construct PSM protocol for Auxk
N with communication

complexity Ok(N
k−1
2 ), it is sufficient to prove the target term is spanned by the

referee-computable masked terms and easy pure terms. In this section, we prove
that the condition holds for all k such that k + 1 is a prime power, which proves
the second bullet of Theorem 1.

When k + 1 is a prime p or a prime power pe, we obtain a simple k-party
PSM, by doing computations in the finite field Fp.

3 The source code can be downloaded from https://github.com/tianren/psm.

https://github.com/tianren/psm
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Proof. Consider the symmetric sum of all masked terms of shape {k−1, 1, . . . , 1}
∑〈F, X̄(k − 1, 1, . . . , 1

︸ ︷︷ ︸
k+1 1’s

)〉

=
k+1∑

i=0

α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉

+
k+1∑

i=0

α( 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(k − 1, 1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉

= α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

) · ∑〈F,R()〉

+
k−2∑

i=1

α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) · ∑〈F,R(1, . . . , 1
︸ ︷︷ ︸

i 1’s

)〉 + easy terms.

(12)

(Recall that a pure term of shape P is easy iff sum(P ) ≥ k − 1.)
W.l.o.g. assume k > 2. By definition, α(k − 1, 1, . . . , 1

︸ ︷︷ ︸
t 1’s

) =
(
k−1+t
k−1

)
. Lemma 2

shows that α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

) =
(

2k
k−1

) ≡ 1 mod p, while α(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1−i 1’s

) =

(
2k−i
k−1

)
is a multiple of p for all 1 ≤ i ≤ k − 2. Therefore,

∑〈F, X̄(k − 1, 1, . . . , 1
︸ ︷︷ ︸
k+1 1’s

)〉 =
∑〈F,R()〉 + easy terms mod p,

which induces a k-party PSM protocol with c.c. Ok(N
k−1
2 ). �

Lemma 1. For any prime p and positive integer e,
(
pe

t

)
is a multiple of p for

all 0 < t < pe.

Proof. (
pe

t

)

=
pe

t
·
(

pe − 1
t − 1

)

.

�
Lemma 2. For any prime p and positive integer e, binomial coefficient

(
pe+t
pe−2

)

is a multiple of p for all 0 ≤ t ≤ pe − 3, while binomial coefficient
(
2pe−2
pe−2

) ≡ 1
mod p.

Proof. For every 0 ≤ t ≤ pe − 3,

(
pe + t

pe − 2

)

=
t∑

j=0

(
t

j

)(
pe

pe − 2 − j

)

︸ ︷︷ ︸
multiple of p
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is a multiple of p. While

(
2pe − 2
pe − 2

)

=
pe−3∑

j=0

(
pe − 2

j

) (
pe

pe − 2 − j

)

︸ ︷︷ ︸
multiple of p

+
(

pe − 2
pe − 2

)(
pe

0

)

≡ 1 mod p.

�

4 Unbalanced 2-Party PSM Protocols

The two parties in 2-party PSM are conventionally called Alice and Bob. Let
x ∈ [N ] denote Alice’s and y ∈ [N ] denote Bob’s input. In this section, we show
that every functionality f : [N ] × [N ] → {0, 1} admits a 2-party PSM protocol,
where Alice sends O(Nη) bits and Bob sends O(N1−η) bits.

Theorem 2. For any functionality f : [N ] × [N ] → {0, 1}, and any η = d/k
such that d, k are integers and 0 < d < k ≤ 20, there is a 2-party PSM protocol
for f with unbalanced communication complexity O(Nη), O(N1−η).

In this section, we prove a stronger statement. Let F be a finite field, consider
the following auxiliary 2-party functionality Aux2k,N :

2-party functionality Aux2k,N

– Alice has input x1, . . . ,xk ∈ F
k√

N

– Bob has input y1, . . . ,yk ∈ F
k√

N

– The output is 〈F,x1 ⊗ . . . ⊗ xk ⊗ y1 ⊗ . . . ⊗ yk〉, where F is
public and fixed

A PSM protocol for Aux2k,N implies a PSM for f : [N ] × [N ] → {0, 1} with the
same communication complexity of each party. The reduction consists of having
F be the truth table of f .

We present a framework for the construction of 2-party PSM protocols for
Aux2k,N , where Alice sends Oη(Nη) bits and Bob sends Oη(N1−η) bits, for all η ∈
{ 1

k , . . . , k−1
k }. Similar to the framework in Sect. 3, the framework in this section

also reduces the problem to a system of linear equations. A solution of the system
implies a 2-party PSM protocol with the desired communication complexity.
By verifying with a computer, we find that our framework works well for all η
whose denominator is no larger than 20. Backed by those observations, we believe
that our framework allows for a smooth trade-off between the communication
complexity of Alice and Bob:

Conjecture 2. For any functionality f : [N ]×[N ] → {0, 1}, and any 0 < η < 1,
there is a 2-party PSM protocol for f with unbalanced communication complexity
Oη(Nη), Oη(N1−η).
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Organization. Section 4.1 presents our framework for constructing multi-party
PSM, introduces new notations, and gives as a concrete example a 2-party PSM
with communication O(N1/3), O(N2/3). The following Sects. 4.2, 4.3 are inde-
pendent. Section 4.2 provides more technical detail of the PSM protocols yielded
by our framework. Section 4.3 shows how the framework works for small k.

4.1 A Framework for 2-Party PSM

Consider a rational η = d
k ∈ (0, 1). Let F be a finite commutative ring that we

will fix later. All the operations are within ring F unless otherwise specified.
As mentioned in the beginning of Sect. 4, there is an non-interactive reduc-

tion from the functionality f : [N ] × [N ] → {0, 1} to functionality Aux2k,N .
The reduction works as follows: Let x, y ∈ [N ] be the input of Alice and Bob
respectively. Evenly divide x into x1, . . . , xk ∈ [ k

√
N ], similarly divide y into

y1, . . . , yk ∈ [ k
√

N ]. For each j ∈ [k], let xj := exj
∈ F

√
N be the xj-th standard

unit vector. Similarly let yi := eyi
∈ F

k√
N for every i ∈ [k]. The functionality f

can be reduced to Aux2k,N by doing:

f(x1, . . . , xk, y1, . . . , yk) = 〈F,x1 ⊗ . . . ⊗ xk ⊗ y1 ⊗ . . . ⊗ yk〉.

where F is the truth-table of f . For the remainder of the section, it is thus
sufficient to construct a PSM protocol for Aux2k,N .

For every Ω ⊆ [k], our protocol will sample random RΩ ,SΩ ∈ F
(

k√
N)|Ω|

from
the common random string. Let X̄Ω := RΩ+

⊗
i∈Ω xi and ȲΩ := SΩ+

⊗
i∈Ω yi.

As the communication complexity of Alice is Oη(N
d
k ), she can send X̄Ω to

the referee for every Ω that |Ω| ≤ d. So far no information is leaked as X̄Ω is
one-time padded by RΩ . Similarly, Bob can send ȲΩ for every Ω that |Ω| ≤ k−d.

There are many meaningful terms that the referee can compute once he
receives (X̄Ω)|Ω|≤d and (ȲΩ)|Ω|≤k−d. For example, when η = d/k = 1/3, the
referee can compute:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉
+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ S{3}〉
+ . . . (28 other terms)
+ 〈F,R{1} ⊗ R{2} ⊗ R{3} ⊗ S{1,2} ⊗ S{3}〉.

(13)

Before we continue, we have to introduce a few notations. We will define
shape, masked tensor, pure tensor, easy & hard tensor, etc., in the same way as
in Sect. 3.1.

Definition (masked tensor & masked term). An Alice-side masked tensor
is a tensor product X̄Ω1 ⊗ . . . ⊗ X̄Ωt

such that Ω1, . . . , Ωt are disjoint and their
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union equals [k]. The shape of an Alice-side masked tensor X̄Ω1 ⊗. . .⊗X̄Ωt
is the

multiset {|Ω1|, . . . , |Ωt|}. Bob-side masked tensors are defined symmetrically.
The tensor product of an Alice-side masked tensor and a Bob-side masked

tensor is called a masked tensor. The inner product of F and a masked tensor is
called a masked term.

An Alice-side masked tensor of shape P is referee-computable if max(P ) ≤ d.
A Bob-side masked tensor of shape Q is referee-computable if max(Q) ≤ k−d. An
masked tensor (and its corresponding masked term) is called referee-computable
if it’s the tensor product of a referee-computable Alice-side masked tensor and
a referee-computable Bob-side masked tensor.

Definition (pure tensor & pure term). An Alice-side pure tensor is a tensor
product RΩ1 ⊗ . . . ⊗RΩt

⊗xi1 ⊗ . . . ⊗xiw
such that {i1, . . . , iw}, Ω1, . . . , Ωt are

disjoint and their union equals [k]. The shape of an Alice-side masked tensor
RΩ1 ⊗ . . . ⊗RΩt

⊗xi1 ⊗ . . . ⊗xiw
is the multiset {|Ω1|, . . . , |Ωt|}. Bob-side pure

tensors are defined symmetrically.
The tensor product of an Alice-side pure tensor and a Bob-side pure tensor

is called a pure tensor. The inner product of a pure tensor and F is called a pure
term.

For any legit shape, let
∑

R(P ) denote the sum of all Alice-side pure tensor
whose shape is P . Similarly, define Bob-side pure tensor sum

∑
S(P ).

Let’s go back to the example when η = 1/3: examine the pure terms on
the right side of Eq. (13), and check which of them has a 2-party PSM with
communication complexity O(N

1
3 ), O(N

2
3 ).

– The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 is the desired functionality.
– The term 〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 has a PSM protocol with com-

munication complexity O(N
1
3 ). Because Alice knows a vector g (which is

determined by F, Alice’s input and randomness (RΩ)Ω , (SΩ)Ω) such that
〈F,x1 ⊗ x2 ⊗ x3 ⊗ S{1,2} ⊗ y3〉 = 〈g,y3〉.

– The term 〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 admits a PSM protocol with
unbalanced communication complexity O(N

1
3 ), O(N

2
3 ). Because Bob knows

a dimension-2 tensor G such that 〈F,S{1} ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉 =
〈x2 ⊗ x3,G〉. (This PSM is presented in Sect. B.2.)

The discussion above hints at the right classification of pure tensors.

target tensor. The only Alice-side target tensor is x1 ⊗ · · · ⊗ xk. The only
Bob-side target tensor is y1 ⊗ · · · ⊗ yk. The only target tensor is x1 ⊗ · · · ⊗
xk ⊗ y1 ⊗ · · · ⊗ yk.

easy tensor. An Alice-side pure tensor of shape P is called easy if sum(P ) ≥ d.
A Bob-side pure tensor of shape Q is called easy if sum(Q) ≥ k − d. A pure
tensor R ⊗ S is called easy if either R or S is easy.

hard tensor. The rest.
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The inner product of F and a target/easy/hard tensor is called a tar-
get/easy/hard term.

Then, Eq. (13) can be rewritten by grouping and ignoring the easy terms:

〈F, X̄{1} ⊗ X̄{2} ⊗ X̄{3} ⊗ Ȳ{1,2} ⊗ Ȳ{3}〉
= 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ y3〉

+ 〈F,x1 ⊗ x2 ⊗ x3 ⊗ y1 ⊗ y2 ⊗ S{3}〉 + easy terms
.

By a symmetric sum, we get

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(2, 1)〉

= 3 · 〈F,
∑

R() ⊗ ∑
S()〉

︸ ︷︷ ︸
target

+〈F,
∑

R() ⊗ ∑
S(1)〉 + easy terms.

Similarly, we have decomposed another referee-computable term

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(1, 1, 1)〉

= 〈F,
∑

R() ⊗ ∑
S()〉

︸ ︷︷ ︸
target

+〈F,
∑

R() ⊗ ∑
S(1)〉 + easy terms.

Combine them to cancel out the hard terms:

〈F,
∑

X̄(1, 1, 1) ⊗ ∑
Ȳ(2, 1)〉 − 〈F,

∑
X̄(1, 1, 1) ⊗ ∑

Ȳ(1, 1, 1)〉
= 2 · 〈F,

∑
R() ⊗ ∑

S()〉 + easy terms.

Thus, by setting F to be any finite field where 2 �= 0, the above equation
induces a 2-party PSM protocol with unbalanced communication complexity
O(N

1
3 ), O(N

2
3 ).

In general, a masked term 〈F,
∑

X̄(P ) ⊗ ∑
Ȳ(Q)〉 can be decomposed into

pure terms by

∑
X̄(P ) =

∑

P ′⊆P

α(P ′)
∑

X̄(P \ P ′),

∑
Ȳ(Q) =

∑

Q′⊆Q

α(Q′)
∑

Ȳ(Q \ Q′),

〈F,
∑

X̄(P ) ⊗ ∑
Ȳ(Q)〉 =

∑

P ′⊆P
Q′⊆Q

α(P ′)α(Q′)
〈
F,

∑
X̄(P \ P ′) ⊗ ∑

Ȳ(Q \ Q′)
〉
.

with the combinatoric number α defined as in Sect. 3.1. The first two equations
are essentially the same as Eq. (9) and they imply the third equation.

To construct a PSM protocol of the desired unbalanced communication
complexity, it is sufficient to show the target term is spanned by the referee-
computable masked terms and the easy terms. Namely,

the target term = a linear combination of referee-computable masked terms +
a linear combination of easy terms. (14)
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The details of how this sufficient condition implies a PSM with desired commu-
nication complexity is presented in Sect. 4.2.

This sufficient condition of form (14) is unfortunately too combinatorically
hard to use in practice, especially since we are going to use a program to search
for the proof for different values of η. There are too many distinct masked terms
and pure terms – their number is equal to the number of pairs of legit shapes
(P,Q).

Fortunately, we come up with a simpler sufficient condition. A PSM proto-
col of the desired unbalanced communication complexity exists if both of the
following hold:

– The Alice-side target tensor is spanned by referee-computable Alice-side
masked tensors and Alice-side easy tensors;

– The Bob-side target tensor is spanned by referee-computable Bob-side masked
tensors and Bob-side easy tensors.

The proof is quite straight-forward: Assume the new sufficient condition,

a linear combination of referee-computable Alice-side masked tensors
=

∑
R() + Alice-side easy tensors,

a linear combination of referee-computable Bob-side masked tensors
=

∑
S() + Bob-side easy tensors.

The tensor product of the above two equations is

a linear combination of referee-computable masked tensors
=

∑
R() ⊗ ∑

S() + a linear combination of easy tensors.

Multiplying both sides of the above equation with F yields the desired sufficient
condition of form (14). �

4.2 The Induced PSM Protocol

In order to develop the previous section smoothly, we skipped the technique
details on how the condition (14) implies a 2-party PSM of the desired commu-
nication complexity. In this section, we will show how to construct such a 2-party
PSM protocol assuming that the target term is spanned by referee-computable
masked terms and easy pure terms.

By the condition (14), there are referee-computable masked terms Z̄(1), . . . ,
Z̄(t), easy pure terms T(1), . . . ,T(s), and coefficients a1, . . . at, b1, . . . , bs ∈ F such
that

〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 =
t∑

j=1

ajZ̄(j) +
s∑

j=1

bjT(j). (15)

A 2-party PSM for f , together with its correctness and security, is yielded
by the following facts:
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– Fact I:
∑s

j=1 bjT(j) together with X̄Ω for all 0 < |Ω| ≤ d and ȲΩ for all
0 < |Ω| ≤ k − d form a randomized encoding of the functionality output.

– Fact II: There is a PSM protocol for
∑s

j=1 bjT(j), in which Alice sends k·s·N d
k

field elements, Bob sends k · s · N1− d
k field elements.

The 2-party PSM for f works as the follows: For each Ω ⊆ [k] such that 0 <
|Ω| ≤ d, Alice sends X̄Ω to the referee. Symmetrically, for Ω ⊆ [k] such that
0 < |Ω| ≤ k − d, Bob sends ȲΩ to the referee. Use the PSM guaranteed by
Fact II to reveal

∑s
j=1 bjT(j) to the referee. Then Fact I allows the referee to

compute the output from Eq. (15).

Proof of Fact I. (Similar to the proof of Fact I in Sect. 3.2.) Equation (15) shows
that 〈F,x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ yk〉 can be computed from the encoding.
Moreover, the distribution of the encoding is perfectly simulatable: The joint
distribution of tensors X̄Ω for 0 < |Ω| ≤ d and ȲΩ for 0 < |Ω| ≤ k−d is uniform,
as they are independently one-time padded. Then the value of

∑s
j=1 bjT(j) is

uniquely determined by Eq. (15).

Proof of Fact II. Sample random c1, . . . , cs ∈ F from the common random string
such that c1 + . . . + cs = 0. Then it’s sufficient to construct a PSM protocol for
computing bjT(j) + cj for each j.

Because T(j) is an easy term, we have T(j) = 〈F,R(j) ⊗ S(j)〉, where R(j) is
an Alice-side pure tensor, S(j) is a Bob-side pure tensor, and either R(j) is an
Alice-side easy tensor, S(j) is a Bob-side easy tensor. W.l.o.g., assume R(j) is an
Alice-side easy tensor.

Say this Alice-side easy pure term R(j) is RΩ1 ⊗ . . .⊗xi1 ⊗ . . .⊗xiw
. By the

definition of an Alice-side easy term, w ≤ k−d. Then Bob knows a dimension-w
tensor G (which is determined by S(j), bj ,RΩ1 ,RΩ2 , . . . ) such that

bjT(j) + cj = 〈G,xi1 ⊗ . . . ⊗ xiw
〉 + cj ,

which admits a PSM protocol (presented in Sect. B.2) in which Alice sends O(w ·
N1/k) field elements, Bob sends Nw/k field elements.

4.3 When η Has a Small Denominator

Section 4.1 proves a sufficient condition that implies 2-party PSM protocols with
the desired unbalanced communication complexity. In this section, we will verify
that the sufficient condition holds for all rational η ∈ (0, 1) whose denominator
is no larger than 20. Theorem 2 follows as a consequence.

For η = 1/3, the 2-party PSM protocol in Sect. 4.1 is also induced by
∑

X̄(1, 1, 1) =
∑

R() + Alice-side easy tensors,
∑

Ȳ(2, 1) − ∑
Ȳ(1, 1, 1) = 2 · ∑

S() + Bob-side easy tensors.
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For η = 1/4, a 2-party PSM protocol with c.c. O(N1/4), O(N3/4) is induced
by

∑
X̄(1, 1, 1, 1) =

∑
R() + Alice-side easy tensors,

∑
Ȳ(1, 1, 1, 1) + 2 · ∑

Ȳ(3, 1)
+

∑
Ȳ(2, 2) − ∑

Ȳ(2, 1, 1) = 6 · ∑S() + Bob-side easy tensors.

For η = 1/5, a 2-party PSM protocol with desired c.c. is induced by
∑

X̄(1, 1, 1, 1, 1) =
∑

R() + Alice-side easy tensors,

6 · ∑
Ȳ(4, 1) + 2 · ∑Ȳ(3, 2)

− 2 · ∑
Ȳ(3, 1, 1) − ∑

Ȳ(2, 2, 1)
+

∑
Ȳ(2, 1, 1, 1) − ∑

Ȳ(1, 1, 1, 1, 1) = 24 · ∑S() + Bob-side easy tensors.

For η = 2/5, a 2-party PSM protocol with desired c.c. is induced by

2 · ∑
X̄(2, 2, 1) − ∑

X̄(2, 1, 1, 1) = 20 · ∑R() + Alice-side easy tensors,

3 · ∑
Ȳ(3, 2) +

∑
Ȳ(3, 1, 1)

− ∑
Ȳ(2, 2, 1) − ∑

Ȳ(1, 1, 1, 1, 1) = 24 · ∑S() + Bob-side easy tensors.

For larger denominators, we wrote a computer program (See footnote 2) to
assist us in the proof. For example, for η = 7/20, a 2-party PSM with desired
c.c. is induced by

ΣR() = Alice-side easy tensors+18 ·ΣX̄(7, 7, 6)+10 ·ΣX̄(7, 7, 5, 1)+14 ·ΣX̄(7, 7, 4, 2)+14 ·ΣX̄(7, 7, 4, 1, 1)+17 ·ΣX̄(7, 7, 3, 3)+20 ·
ΣX̄(7, 7, 3, 2, 1)+20·ΣX̄(7, 7, 3, 1, 1, 1)+10·ΣX̄(7, 7, 2, 2, 2)+10·ΣX̄(7, 7, 2, 2, 1, 1)+10·ΣX̄(7, 7, 2, 1, 1, 1, 1)+10·ΣX̄(7, 7, 1, 1, 1, 1, 1, 1)+
6 · ΣX̄(7, 6, 6, 1) + 19 · ΣX̄(7, 6, 5, 2) + 19 · ΣX̄(7, 6, 5, 1, 1) + 21 · ΣX̄(7, 6, 4, 3) + 22 · ΣX̄(7, 6, 4, 2, 1) + 22 · ΣX̄(7, 6, 4, 1, 1, 1) + 7 ·
ΣX̄(7, 6, 3, 3, 1)+15·ΣX̄(7, 6, 3, 2, 2)+15·ΣX̄(7, 6, 3, 2, 1, 1)+15·ΣX̄(7, 6, 3, 1, 1, 1, 1)+19·ΣX̄(7, 6, 2, 2, 2, 1)+19·ΣX̄(7, 6, 2, 2, 1, 1, 1)+
19 · ΣX̄(7, 6, 2, 1, 1, 1, 1, 1) + 19 · ΣX̄(7, 6, 1, 1, 1, 1, 1, 1, 1) mod 23

ΣS() = Bob-side easy tensors+13·ΣȲ(13, 7)+20·ΣȲ(13, 6, 1)+2·ΣȲ(13, 5, 2)+22·ΣȲ(13, 5, 1, 1)+1·ΣȲ(13, 4, 3)+17·ΣȲ(13, 4, 2, 1)+
3 · ΣȲ(13, 4, 1, 1, 1) + 19 · ΣȲ(13, 3, 3, 1) + 21 · ΣȲ(13, 3, 2, 2) + 1 · ΣȲ(13, 3, 2, 1, 1) + 11 · ΣȲ(13, 3, 1, 1, 1, 1) + 12 · ΣȲ(13, 2, 2, 2, 1) +
17 · ΣȲ(13, 2, 2, 1, 1, 1) + 3 · ΣȲ(13, 2, 1, 1, 1, 1, 1) + 10 · ΣȲ(13, 1, 1, 1, 1, 1, 1, 1) + 11 · ΣȲ(12, 8) + 17 · ΣȲ(12, 7, 1) + 1 · ΣȲ(12, 6, 2) +
11 ·ΣȲ(12, 6, 1, 1)+17 ·ΣȲ(11, 9)+14 ·ΣȲ(11, 8, 1)+6 ·ΣȲ(11, 7, 2)+20 ·ΣȲ(11, 7, 1, 1)+7 ·ΣȲ(11, 6, 3)+4 ·ΣȲ(11, 6, 2, 1)+21 ·
ΣȲ(11, 6, 1, 1, 1) + 2 · ΣȲ(10, 10) + 4 · ΣȲ(10, 9, 1) + 15 · ΣȲ(10, 8, 2) + 4 · ΣȲ(10, 8, 1, 1) + 1 · ΣȲ(10, 7, 3) + 17 · ΣȲ(10, 7, 2, 1) + 3 ·
ΣȲ(10, 7, 1, 1, 1)+21·ΣȲ(10, 6, 4)+8·ΣȲ(10, 6, 3, 1)+4·ΣȲ(10, 6, 2, 2)+21·ΣȲ(10, 6, 2, 1, 1)+1·ΣȲ(10, 6, 1, 1, 1, 1)+20·ΣȲ(9, 9, 2)+
13 ·ΣȲ(9, 9, 1, 1)+4 ·ΣȲ(9, 8, 3)+22 ·ΣȲ(9, 8, 2, 1)+12 ·ΣȲ(9, 8, 1, 1, 1)+14 ·ΣȲ(9, 7, 4)+13 ·ΣȲ(9, 7, 3, 1)+18 ·ΣȲ(9, 7, 2, 2)+14 ·
ΣȲ(9, 7, 2, 1, 1)+16·ΣȲ(9, 7, 1, 1, 1, 1)+11·ΣȲ(9, 6, 5)+13·ΣȲ(9, 6, 4, 1)+12·ΣȲ(9, 6, 3, 2)+17·ΣȲ(9, 6, 3, 1, 1)+20·ΣȲ(9, 6, 2, 2, 1)+
13 · ΣȲ(9, 6, 2, 1, 1, 1) + 5 · ΣȲ(9, 6, 1, 1, 1, 1, 1) + 19 · ΣȲ(8, 8, 4) + 16 · ΣȲ(8, 8, 3, 1) + 8 · ΣȲ(8, 8, 2, 2) + 19 · ΣȲ(8, 8, 2, 1, 1) + 2 ·
ΣȲ(8, 8, 1, 1, 1, 1)+17·ΣȲ(8, 7, 5)+18·ΣȲ(8, 7, 4, 1)+6·ΣȲ(8, 7, 3, 2)+20·ΣȲ(8, 7, 3, 1, 1)+10·ΣȲ(8, 7, 2, 2, 1)+18·ΣȲ(8, 7, 2, 1, 1, 1)+
14·ΣȲ(8, 7, 1, 1, 1, 1, 1)+18·ΣȲ(8, 6, 6)+6·ΣȲ(8, 6, 5, 1)+13·ΣȲ(8, 6, 4, 2)+5·ΣȲ(8, 6, 4, 1, 1)+1·ΣȲ(8, 6, 3, 3)+17·ΣȲ(8, 6, 3, 2, 1)+
3·ΣȲ(8, 6, 3, 1, 1, 1)+20·ΣȲ(8, 6, 2, 2, 2)+13·ΣȲ(8, 6, 2, 2, 1, 1)+5·ΣȲ(8, 6, 2, 1, 1, 1, 1)+9·ΣȲ(8, 6, 1, 1, 1, 1, 1, 1)+5·ΣȲ(7, 7, 6)+1·
ΣȲ(7, 7, 5, 1)+6·ΣȲ(7, 7, 4, 2)+20·ΣȲ(7, 7, 4, 1, 1)+4·ΣȲ(7, 7, 3, 3)+22·ΣȲ(7, 7, 3, 2, 1)+12·ΣȲ(7, 7, 3, 1, 1, 1)+11·ΣȲ(7, 7, 2, 2, 2)+
6 ·ΣȲ(7, 7, 2, 2, 1, 1)+20 ·ΣȲ(7, 7, 2, 1, 1, 1, 1)+13 ·ΣȲ(7, 7, 1, 1, 1, 1, 1, 1)+15 ·ΣȲ(7, 6, 6, 1)+13 ·ΣȲ(7, 6, 5, 2)+5 ·ΣȲ(7, 6, 5, 1, 1)+
18 ·ΣȲ(7, 6, 4, 3)+7 ·ΣȲ(7, 6, 4, 2, 1)+8 ·ΣȲ(7, 6, 4, 1, 1, 1)+20 ·ΣȲ(7, 6, 3, 3, 1)+10 ·ΣȲ(7, 6, 3, 2, 2)+18 ·ΣȲ(7, 6, 3, 2, 1, 1)+14 ·
ΣȲ(7, 6, 3, 1, 1, 1, 1)+9 ·ΣȲ(7, 6, 2, 2, 2, 1)+7 ·ΣȲ(7, 6, 2, 2, 1, 1, 1)+8 ·ΣȲ(7, 6, 2, 1, 1, 1, 1, 1)+19 ·ΣȲ(7, 6, 1, 1, 1, 1, 1, 1, 1) mod 23

We checked every rational η = d/k such that k ≤ 20, and verified that our
framework does in fact yield a 2-party PSM protocol with unbalanced commu-
nication complexity O(Nη), O(N1−η).
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5 Open Problems

This paper presents two frameworks: a framework of constructing k-party PSM
protocols for general f : [N ]k → {0, 1} with c.c. Ok(N

k−1
2 ), and a framework of

constructing 2-party PSM protocols for general f : [N ]× [N ] → {0, 1} where one
party sends Oη(Nη) bits and the other party sends Oη(N1−η) bits. An immediate
open problem is to prove our frameworks work for all integer k and all rational η.
Currently, we can only prove it works for some k and η.

For simplicity, our analysis only considers the symmetric sum of terms. The
symmetric sum incurs a blow-up exponential on k. Thus the communication
complexity of our k-party PSM protocols is exp(k) · N

k−1
2 . While [8] achieves

communication complexity poly(k) · N
k
2 . Our protocols are less efficient in the

domain where log N < k. A possible approach of getting rid of the exponential
dependency in k is to break the symmetry. The potential of such an approach is
evidenced by the 5-party PSM protocol in Sect. 1.2, which is asymmetric.

There is no clear reason why our framework will not yields more efficient
PSM protocols. Can our multi-party framework yield PSM protocols with com-
munication complexity Ok(N

k
2 −1), when k is sufficiently large? Can our 2-party

framework might yield PSM protocol with communication Oη(Nη) for some
rational η < 1

2? Our technique transfers such questions into some linear sys-
tems. Each question has an affirmative answer (for a given k or η) if and only
if the corresponding linear system is solvable. We have modified our program
to generate and solve these linear systems, but all the system we have tried are
unsolvable. The failure suggests that our new upper bounds might be tight, or
are tight for a natural class of PSM protocols.

The question of the communication complexity trade-off for multi-party PSM
remains widely open. In our k-party PSM protocol, every party sends Ok(N

k−1
2 )

bits. A variant of [10] provides a k-party PSM protocol where the i-th party
sends Õk(N i−1) bits, whose geometric average is Õk(N

k−1
2 ). Should a future

work achieves the smooth trade-off between the two, there is little doubt that it
will bring us a deep insight into PSM.

Finally, this work belongs to a not-fully-successful attempt at constructing
PSM with sub-exponential communication complexity, which is probably the
moonshot open problem in the PSM literature.

Acknowledgements. We would like to thank Hoeteck Wee, Vinod Vaikuntanathan
amd Michel Abdalla for helpful discussions. TL was supported by NSF grants CNS-
1528178, CNS-1929901, CNS-1936825 (CAREER), CNS-2026774, a JP Morgan AI
research Award, and a Simons Foundation Collaboration Grant on Algorithmic Fair-
ness. Part of this work was performed while TL was in MIT, during which he was
supported in part by NSF Grants CNS-1350619, CNS-1414119 and CNS-1718161, an
MIT-IBM grant and a DARPA Young Faculty Award. LA was supported by a doctoral
grant from the French Ministère de l’Enseignement Supérieur et de la Recherche.



Multi-party PSM, Revisited 219

A Proof of Eq. (9) and (10)

Proof (Proof of Eq. (9)). By definition:

∑〈F, X̄(P )〉 =
∑

(∗)
〈F, X̄S1 ⊗ . . . ⊗ X̄St

〉

where (∗) denotes “for all unordered E = {S1, . . . , St} being a partition of [2k]
such that {|S1|, . . . , |St|} = P”. Thus,

∑〈F, X̄(P )〉 =
∑

(∗)

〈
F,

⊗

i∈[t]

(RSi
+

⊗

j∈Si

xj)
〉

=
∑

(∗)

∑

G⊆E

〈
F,

⊗

S∈G

RS ⊗
⊗

j /∈⋃

S∈G

S

xj

〉

=
∑

Q⊆P

∑

G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

β(P,G) ·
〈
F,

⊗

i∈[t]

RSi
⊗

⊗

j /∈⋃

i∈[t]
Si

xj

〉
,

where β(P,G) accounts for the redundancy: define β(P,G) as the number of
unordered partitions E of [2k] such that G ⊆ E and P is the shape of E. It is
equivalent to count the number of F := E \ G. That is, β(P,G) also equals the
number of unordered partitions F of [2k] \ ⋃

S∈G

S such that Q is the shape of F .

Thus by definition, β(P,G) = α(Q). The proof is concluded by

∑〈F, X̄(P )〉 =
∑

Q⊆P

∑

G={S1,...,St} s.t.
{|S1|,...,|St|}=P\Q

α(Q) ·
〈
F,

⊗

i∈[t]

RSi
⊗

⊗

j /∈⋃

i∈[t]
Si

xj

〉

=
∑

Q⊆P

α(Q) · ∑〈F,R(P \ Q)〉.

�
Proof (Proof of Eq. (10)). Let n = sum(Q). By definition, α(Q) is the number of
unsorted partitions E = {S1, . . . , St} of [n] such that the multiset {|S1|, . . . , |St|}
(i.e. the shape of E) equals Q.

To compute α(Q), we count the number of ways to arranging 1, . . . , n into a
sequence.

– First, pick an unsorted partitions E of [n] s.t. the shape of E equals Q. The
number of choices is α(Q).

– Then, sort the sets in the partion E = {S1, . . . , St}. Sort them by their sizes,
i.e. |S1| ≤ |S2| ≤ · · · ≤ |St|. For any m, if several sets are of the size m, their
order has to be specified, the number of such choices is (number of m’s in Q)!.

– Finally, arrange the elements in each Si into a sub-sequence, the number of
possible sequences is |Si|!. Concatenate these sub-sequences in order.
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α(Q) ·
∏

m∈Z+

(number of m′s in Q)! ·
∏

i∈Q

i! = n! �

B Auxiliary PSM Protocols for 〈x1 ⊗ . . . ⊗ xk,Y〉 + s

B.1 The Multi-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine
by our multi-party PSM in Sect. 3.

The functionality is 〈x1 ⊗ . . . ⊗ xk,Y〉 + s. It is a (k + 1)-party functionality
where the i-th party has as input xi ∈ F

N for i ∈ [k], and the (k + 1)-th party
has as inputs Y ∈ F

N×···×N
k times and s ∈ F. We will present a PSM protocol for this

functionality with a communication complexity of O(poly(k)·Nk) field elements.
This protocol is implicitly used in [8].

First, we consider the special case when k = 1. That is, there are only two
parties. Say we call them Alice and Bob. Alice has x ∈ F

N , Bob has y ∈ F
N , s ∈

F. The functionality output is 〈x,y〉 + s. The PSM protocol works as follows:

– Random a,b ∈ F
N , c ∈ F are sampled from the common random string,

which is known by both Alice and Bob.
– Alice sends x̄ := x + a, z := c − 〈b,x〉 to the referee.
– Bob sends ȳ := y + b, w := s − c − 〈a,y〉 − 〈a,b〉 to the referee.
– The referee outputs 〈x̄, ȳ〉 + z + w.

For the case k ≥ 2, the first k parties need to jointly emulate Alice. The
protocol works as follows:

– Random A,B,C ∈ F
N×···×N are sampled from the common random string.

Define c ∈ F as the sum of entries in C.
– The (k + 1)-th party sends Ȳ := Y + B, z := s − c − 〈A,Y〉 − 〈A,B〉 to the

referee.
– The first k parties jointly reveal X̄ := x1 ⊗ . . . ⊗ xk + A, w := c − 〈B,x1 ⊗

. . . ⊗ xk〉 to the referee.
Since every coordinate of X̄ can be computed by an arithmetic formula of
size O(k), each of these coordinates can be computed by the referee by
using a PSM protocol with communication complexity of O(poly(k)) field
elements [13]. The referee learns X̄ after receiving O(poly(k) · Nk) field ele-
ments.
The term w := c − 〈B,x1 ⊗ . . . ⊗ xk〉 equals the sum of all entries in W :=
C − B ◦p.w. (x1 ⊗ . . . ⊗ xk), where ◦p.w. denotes the point-wise product. In
other words, we defines W ∈ F

N×···×N as

W[i1, . . . , ik] = C[i1, . . . , ik] − B[i1, . . . , ik]x1[i1] . . .xk[ik].

Due to the randomness of C, we know W is a randomized encoding of w.
Thus, it is equivalent for the first k parties to jointly reveal W to the referee.
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Since every coordinate of W can be computed by an arithmetic formula
of size O(k), each of them can be revealed by using the Ishai-Kushilevitz
PSM protocol [13], which has a communication complexity of O(poly(k)) field
elements. The referee learns w after receiving O(poly(k) · Nk) field elements.

– The referee outputs 〈X̄, Ȳ〉 + z + w.

The correctness of the protocol can be verified in the following equation:

〈X̄, Ȳ〉 + z + w

= 〈x1 ⊗ . . . ⊗ xk + A,Y + B〉 + s − c − 〈A,Y〉 − 〈A,B〉 +
c − 〈B,x1 ⊗ . . . ⊗ xk〉

= 〈x1 ⊗ . . . ⊗ xk,Y〉 + s.

The privacy is guaranteed by the following simulator:

– Simulate X̄, Ȳ,W as uniform random, since they are one-time-padded by
A,B,C.

– Given X̄, Ȳ,W and the function output, w, z are uniquely determined since
w =

∑
(W) and 〈X̄, Ȳ〉 + z + w = output.

– Simulate the transcripts of the inner Ishai-Kushilevitz PSM protocols using
its own simulator, which takes X̄,W as input.

B.2 The 2-party Variant

In this section, we present an auxiliary PSM protocol that is used as a subroutine
by our unbalanced 2-party PSM in Sect. 4.

The functionality is 〈x1 ⊗ . . .⊗xk,Y〉+ s. It is a 2-party functionality where
the first party, namely Alice, has as inputs x1, . . . ,xk ∈ F

N and the second
party, namely Bob, has as inputs Y ∈ F

N×···×N
k times and s ∈ F. We will present a

PSM protocol for this functionality with unbalanced communication complexity,
where Alice sends O(kN) field elements and Bob sends (N + 1)k field elements.

As the first step, we consider a harder problem instead. Bob’s input is
replaced by a multi-affine function f : F

N × · · · × F
N → F. Corresponding,

the functionality is replaced by f(x1, . . . ,xk). Every multi-affine function f can
be uniquely represented by its coefficient tensor F ∈ F

(N+1)×···×(N+1) such that
for any z1, . . . , zk ∈ F

N ,

f(z1, . . . , zk) = 〈z1‖1 ⊗ · · · ⊗ zk‖1,F〉.
Here zi‖1 denotes the concatenation of zi and 1, which is a dimension-(N + 1)
vector. Notice that, if we let the “first” N × · · · × N subtensor of F equal Y, let
its “last” entry F[N + 1, . . . , N + 1] = s, and let all other entries in F be 0, we
have

f(x1, . . . ,xk) = 〈x1‖1 ⊗ · · · ⊗ xk‖1,F〉 = 〈x1 ⊗ . . . ⊗ xk,Y〉 + s.

The protocol works as follows:
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– Random r1, . . . , rk ∈ F
N and a random multi-affine function g are sampled

from the common random string.
– Alice sends x̄i = xi + ri to the referee, for all i ∈ [k].
– Bob computes the multi-affine function g, such that

g(z1, . . . , zk) := f(z1 − r1, . . . , zk − rk).

Bob sends ḡ = g + h to the referee.
– Alice additionally sends s = h(x̄1, . . . , x̄k) to the referee.
– The referee outputs ḡ(x̄1, . . . , x̄k) − s.

The correctness follows directly from the following equation:

ḡ(x̄1, . . . , x̄k) − s = g(x̄1, . . . , x̄k) + h(x̄1, . . . , x̄k) − h(x̄1, . . . , x̄k)
= g(x̄1, . . . , x̄k)
= f(x1 − r1 + r1, . . . ,xk − rk + rk)
= f(x1, . . . ,xk).

The privacy is guaranteed by the following simulator:

– Simulate x̄1, . . . , x̄k, ḡ as uniform random, since they are one-time padded by
r1, . . . , rk, h.

– Given x̄1, . . . , x̄k, ḡ and the function output, simulate s by computing s from
the equation ḡ(x̄1, . . . , x̄k) − s = output.
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Abstract. We initiate the study of multi-party functional encryption
(MPFE) which unifies and abstracts out various notions of functional
encryption which support distributed ciphertexts or secret keys, such
as multi-input FE, multi-client FE, decentralized multi-client FE, multi-
authority FE, dynamic decentralized FE, adhoc multi-input FE and such
others. Using our framework, we identify several gaps in the literature
and provide some constructions to fill these:

1. Multi-Authority ABE with Inner Product Computation.
The recent work of Abdalla et al. (ASIACRYPT’20) constructed a novel
“composition” of Attribute Based Encryption (ABE) and Inner Prod-
uct Functional Encryption (IPFE), namely functional encryption schemes
that combine the access control functionality of attribute based encryp-
tion with the possibility of performing linear operations on the encrypted
data. In this work, we extend the access control component to support
the much more challenging multi-authority setting, i.e. “lift” the prim-
itive of ABE in their construction to multi-authority ABE for the same
class of access control policies (LSSS structures). This yields the first
construction of a nontrivial multi-authority FE beyond ABE from simple
assumptions on pairings to the best of our knowledge.

Our techniques can also be used to generalize the decentral-
ized attribute based encryption scheme of Michalevsky and Joye
(ESORICS’18) to support inner product computation on the message.
While this scheme only supports inner product predicates which is less
general than those supported by the Lewko-Waters (EUROCRYPT’11)
construction, it supports policy hiding which the latter does not. Our
extension inherits these features and is secure based on the k-linear
assumption, in the random oracle model.
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2. Function Hiding DDFE. The novel primitive of dynamic decen-
tralized functional encryption (DDFE) was recently introduced by
Chotard et al. (CRYPTO’20), where they also provided the first con-
struction for inner products. However, the primitive of DDFE does not
support function hiding, which is a significant limitation for several appli-
cations. In this work, we provide a new construction for inner prod-
uct DDFE which supports function hiding. To achieve our final result,
we define and construct the first function hiding multi-client functional
encryption (MCFE) scheme for inner products, which may be of indepen-
dent interest.

3. Distributed Ciphertext-Policy ABE. We provide a distributed
variant of the recent ciphertext-policy attribute based encryption
scheme, constructed by Agrawal and Yamada (EUROCRYPT’20). Our
construction supports NC1 access policies, and is secure based on
“Learning With Errors” and relies on the generic bilinear group model
as well as the random oracle model.

Our new MPFE abstraction predicts meaningful new variants of func-
tional encryption as useful targets for future work.

1 Introduction

Functional encryption (FE) [14,32] is a powerful generalization of public key
encryption which enables a user to learn a function of the encrypted data. Con-
cretely, in FE, a secret key SKf is associated with a function f and the ciphertext
CTx is associated with a message x (in the domain of f). And, by combining
SKf with CTx, the decryptor learns f(x) and nothing else.

The original motivation behind the concept of functional encryption, as dis-
cussed in [14], was to put forth a new broad vision of encryption systems. Since its
introduction, the concept of FE has been massively impactful in several aspects:
(i) it helped unify the existing literature on encryption systems (such as identity-
based encryption [12,33], attribute-based encryption [26,32], predicate encryp-
tion [15,27] and more) and place them under a single umbrella which enabled
clear comparisons, (ii) it helped in predicting new natural encryption primitives
that had not been studied before, such as partially hiding predicate/functional
encryption [25], and (iii) it served as the right abstraction to understand the
relationship of this broad concept with other notions in cryptography, such as
to indistinguishability obfuscation [9,11].

Supporting Multiple Users. Subsequently, many new primitives arose
to generalize FE to the multi-user setting – multi-input functional encryp-
tion [24], multi-client functional encryption [20], decentralized multi-client func-
tional encryption, adhoc multi-input functional encryption [5], multi-authority
attribute based encryption [17], dynamic decentralized functional encryption [22]
and such others. Similar to the many special cases of functional encryption, these
notions are related yet different and it is often difficult to understand how they
compare to one-another, whether they use related techniques, and what is known
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in terms of feasibility. Moreover, each new variant that springs up acquires a dif-
ferent name, leading to a plethora of acronyms which clutter the landscape, often
adding to confusion rather than clarity.

In this work, we initiate the study of “Multi-Party Functional Encryption”
(MPFE) which unifies and abstracts out various notions of multi-user functional
encryption, such as those described above. Our starting point is the observation
that all above notions of FE support some form of distributed ciphertexts or
distributed keys or both. In more detail, we summarize the state of affairs as:

1. Distributed Ciphertexts. The primitives of multi-input functional encryp-
tion (MIFE) [24] and multi-client functional encryption (MCFE) [20] gener-
alize FE to support distributed inputs. Both notions permit different parties
P1, . . . ,Pn each with inputs x1, . . . ,xn to compute joint functions on their
data, namely f(x1, . . . ,xn). Each party encrypts its input xi to obtain CTi,
a key authority holding a master secret MSK generates a functional key SKf

and these enable the decryptor to compute f(x1, . . . ,xn).
The main difference between these definitions lies in the way the inputs can be
combined. In multi-client functional encryption (MCFE), inputs xi are addi-
tionally associated with public “labels” labi and inputs can only be combined
with other inputs that share the same label. On the other hand, multi-input
functional encryption does not restrict the way that inputs are combined and
permits all possible combinations of inputs. Both primitives are defined as key
policy systems – namely, the access control policy or function is embedded in
the secret key rather than the ciphertext.

2. Distributed Keys. Distribution or decentralization of keys in the context of
FE has also been considered in various works, to achieve two primary objec-
tives (not necessarily simultaneously) – a) handling the key escrow problem,
so that there is no single entity in the system that holds a powerful mas-
ter secret against which no security can hold, and b) better fitting real world
scenarios where different authorities may be responsible for issuing keys corre-
sponding to different attributes of a user, such as offices for passport, drivers
license and such others. We summarize some relevant primitives next.
(a) Decentralized Attribute Based Encryption with Policy Hiding (DABE): A

decentralized policy-hiding ABE, denoted by DABE [31] was proposed
by Michalevsky and Joye to handle the key escrow problem. In a DABE
scheme, there are n key authorities, each of which run a local setup to gen-
erate their private and public keys. An encryptor encrypts a message m
along with a general access structure C, while secret keys corresponding to
(the same) attribute x are issued by independent authorities. Decryption
recovers m if C(x) = 1. The access policy in the ciphertext is hidden.

(b) Multi-Authority Functional Encryption (MAFE): The notion of Multi-
Authority FE/ABE [16,17,29] emerged to address the second objective,
i.e. handling the case where different authorities are responsible for dif-
ferent sets of attributes. Since ABE is a special case of FE, we focus on
MAFE. A MAFE scheme is defined as a ciphertext-policy scheme, namely
the policy/function is embedded in the ciphertext as against the function
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keys. In MAFE, n key authorities may independently generate their pri-
vate and public keys, without any interaction. An encryptor computes a
ciphertext for a message m along with a policy f over the various author-
ities. Any authority i, can generate a token for a user P for attributes
labi. A decryptor with tokens for labi from authority i ∈ [n], can decrypt
the ciphertext to recover f(lab1, . . . , labn,m).

3. Distributed Ciphertexts and Keys. Some primitives allow to distribute
both ciphertexts and keys. Some examples below.
(a) Decentralized Multi-Client Functional Encryption (D-MCFE): The notion

of decentralized multi-client FE was defined by Chotard et al. [2,20,30]
in order to handle the key escrow problem in an MCFE scheme. D-MCFE
is defined as a key policy primitive, and adapts MCFE as described above
to ensure that there is no single master secret held by any entity – the
parties participate in an interactive setup protocol to establish their indi-
vidual (correlated) master secret keys. In more detail, there are n parties,
each holding PKi for i ∈ [n], that compute ciphertexts for their inputs
(labi,xi) as well as generate partial decryption keys SKi,f for a given
function f . The decryptor can combine the partial secret keys and indi-
vidual ciphertexts to compute f(x1, . . . ,xn) if and only if all the labels
are equal.

(b) Ad Hoc MIFE (aMIFE): Similar to D-MCFE, this notion was introduced
in [5] to handle the key escrow problem in MIFE. This notion is key
policy, and offers some additional features as compared to D-MCFE—
non-interactive setup and dynamic choice of function arity as well as
parties that participate in a computation. This notion does not differen-
tiate between key authorities and users, and lets users generate their own
partial decryption keys along with ciphertexts. Thus, for i ∈ [n], party i
computes a ciphertext for xi and partial key SKf,i which can be combined
by the decryptor to obtain f(x1, . . . ,xn).

(c) Dynamic Decentralized FE (DDFE): This primitive was introduced very
recently in [22] to further generalize aMIFE – it requires non-interactive,
local setup and allows dynamic choice of function arity as in aMIFE,
but additionally allows partial decryption keys provided by users to be
combined in more general ways than in aMIFE. Also, unlike aMIFE, it
supports the public key setting.

1.1 Unifying the View: Multi-Party Functional Encryption

While the above notions enable controlled manipulation of encrypted data in
increasingly expressive ways, they are too related to warrant independent iden-
tities. To unify and extend the above primitives, we propose the notion of multi-
party functional encryption (MPFE). All the above examples (and more) can be
cast as examples of MPFE with a suitable choice of parameters: this clarifies the
connections between these primitives. MPFE allows for both distributed cipher-
texts and distributed keys, and specifies how these may be combined for func-
tion evaluation. To avoid bifurcating key-policy and ciphertext-policy schemes,
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we allow either ciphertext or key inputs to encode functions. To better capture
attribute and function hiding, we allow every message or function being encoded
to have a public and private part. To support schemes with interactive, indepen-
dent or centralized setup, we allow the setup algorithm of MPFE to function in
any of these modes.

A bit more formally, let nx be the number of ciphertext inputs and ny be the
number of key inputs. Let X = Xpub×Xpri be the space of ciphertext inputs and
Y = Ypub ×Ypri be the space of key inputs. We define two aggregation functions
as Aggx : X nx → X , and Aggy : Yny → Y, which specify how these inputs may
be combined to capture a given primitive. The definitions of the algorithms that
constitute an MPFE scheme are the same as in all prior work:

– a Setup algorithm outputs the encryption keys for nx encryptors and mas-
ter keys for ny key authorities. This algorithm1 may now run in one of
three modes (Central, Local,Decentralized), which captures centralized setup,
local/independent setup or decentralized/interactive setup.

– an Encrypt algorithm which is run independently by nx users, each encoding
their own message xi = (xpub,i, xpri,i) with their own encryption key EKi.

– a key-generation algorithm KeyGen which is run independently by all ny

key authorities, each generating its own partial key for an input yj =
(ypub,j , ypri,j) of its choice using its own master secret key PKj .

– a decryption algorithm Decrypt, which given input the partial keys
{SKi}i≤ny

and partial ciphertexts {CTj}j≤nx
can combine them to compute

U (
Aggx({xi}),Aggy({yj})

)
, where U is the universal circuit.

Note that either xi or yj can be descriptions of functions, capturing both key
and ciphertext policy schemes. By suitably choosing nx, ny, Aggx, Aggy and
the mode of setup, namely (mode ∈ {Central, Local,Decentralized}), the above
abstraction lets us specify all the aforementioned primitives in a unified manner,
and also allows us to instantiate these parameters in different ways to yield new,
meaningful primitives. Please see Sect. 2 for the formal definition and the full
version [6] for details on how the above primitives can be expressed as instances
of MPFE.

Dynamic MPFE. In the above description, we assume that the number of parties
as well as the aggregation functions are input to the setup algorithm. A more
powerful definition could support full dynamism, where the parties generate their
own keys, join the protocol dynamically without prior agreement, and choose the
functionality (in our case Aggx and Aggy) dynamically so that it can change for
every instance of the protocol.

While dynamism is obviously desirable, it is significantly harder to instantiate
since it necessitates a local setup algorithm without any co-ordination between
the parties. While there do exist some constructions for dynamic FE supporting
1 If the setup mode is decentralized/interactive, then the description of setup could

correspond to an interactive multi-round protocol instead of an algorithm. However,
for ease of exposition we abuse the notation and use setup algorithm to refer to the
corresponding protocol description.
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multiple users, such as adhoc MIFE [5] and DDFE [22], most constructions in
the literature are “static” and rely on centralized or interactive setup [1,2,4,
19–21,24,30]. Thus, a definition which is inherently dynamic would preclude
representation of most constructions in the literature.

For simplicity of notation and ease of workability, we define MPFE with and
without dynamism separately. We provide the definition of the static variant
in Sect. 2 and the dynamic variant in the full version. We note that these two
variants may be condensed to a single one using additional notation but this
makes the definitions harder to work with.

Feasibility. In the full version, we provide a general feasibility of MPFE for circuits
from the minimal assumption of MIFE for circuits.

1.2 Comparison with Prior Work

The notions of D-MCFE, aMIFE and DDFE are most closely related to our work,
since they allow combining both ciphertexts and keys simulataneously. However,
our notion differs from these in important ways. To begin, the setup algorithms
of the above primitives have a fixed format – in D-MCFE, this is interactive,
while for aMIFE and DDFE, it is decentralized and non-interactive. Thus, aMIFE
and DDFE cannot capture D-MCFE and vice versa. Moreover, neither of these
can capture most existing constructions in the literature which have trusted,
centralized setup as discussed above. In contrast, we allow setup to have either
of these, as well as other formats, allowing us to capture all the above primitives
and more. Next, D-MCFE, aMIFE require partial keys to represent the same
function. While DDFE does allow partial keys to be combined in expressive
ways, it does not support any function hiding. Even the support for partial
input hiding in these primitives is less than complete: for instance, aMIFE does
not support public input in the ciphertext, and while DDFE allows for some part
of the input to be public, this is via a separate empty key ε. In contrast, MPFE
captures public and private input in both the ciphertext and the function key
directly, making it feasible (in the case of function inputs) and simpler (in the
case of ciphertext inputs) to capture partial hiding.

The most important feature of MPFE is that is captures existing constructions
using a uniform, simple notation, allowing to place all prior work on the same
map, making these constructions easier to compare and allowing to identify gaps
between these. Using our MPFE framework, we interpolate the space in prior
work to predict several new, natural and useful primitives. Then, we provide
multiple new constructions from simple, standard assumptions to address these
limitations (described next), as well as identify novel new primitives (described
in Sect. 1.5) to be constructed in future work.
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1.3 New Constructions

We next describe the new constructions we provide in this work.

Multi-Authority ABE ◦ IPFE. The recent work of Abdalla et al. [4] (ACGU20)
constructed a novel “composition” of ABE and IPFE, namely functional encryp-
tion schemes that combine the access control functionality of attribute based
encryption with the possibility of performing linear operations on the encrypted
data. In more detail, the message space contains a policy predicate φ ∈ NC1 and
a message vector v ∈ Z

�
q, while decryption keys are jointly associated with an

attribute vector x ∈ {0, 1}n and a key vector u ∈ Z
�
q. The functionality provided

by such a system is that a decryptor recovers the inner product value 〈u,v〉 if
φ(x) = 1. Thus, it provides a fine-grained access control on top of inner prod-
uct functional encryption (IPFE) capability. For ease of exposition, we denote
this primitive, which is called “IPFE with fine-grained access control” in [4] by
ABE ◦ IPFE in our work2. Abdalla et al. [4] provide a construction leveraging
state of the art ABE from pairings to support predicates represented by Linear
Secret Sharing Schemes (LSSS) in the above functional encryption scheme.

Seen from the lens of MPFE, the ACGU20 construction has nx = ny = 1, with
(xpub, xpri) = (φ,v), (ypub, ypri) = ((fx,u),⊥) where fx is a function that takes
as input three arguments (φ,v,u) and outputs 〈u,v〉 if φ(x) = 1. The aggrega-
tion functions are trivial as there is only a single encryptor and key generator.
In this work, we extend the ACGU20 construction to the multiparty setting. In
more detail, we support ny = n for some fixed, polynomial n and Local mode of
setup algorithm, so that each key generator generates its key components locally
and independently. The number of encryptors nx as well as the (xpub, xpri) remain
unchanged. However, each of the n key generators now has input (ypub, ypri) =
((GIDi, xi,ui),⊥) where GIDi ∈ {0, 1}∗ is a global identifier, xi ∈ {0, 1} is an
attribute bit, and ui ∈ Z

�
q is the key vector for i ∈ [n]. The Aggx function

remains trivial as before but the Aggy function checks if all the global identifiers
match GID1 = . . . = GIDn, key vectors are consistent u1 = . . . = un, and sets
(ypub, ypri) = ((fx,u),⊥) if so, where x = (x1, . . . , xn) and fx is as above.

The above generalization has been studied in the literature in the context
of ABE under the name multi-authority ABE, or MA-ABE – here, we extend the
access control component of ACGU20 to support the multi-authority setting, i.e.
“lift” the primitive of ABE ◦ IPFE to MA-ABE ◦ IPFE. Our construction departs
significantly from ACGU20 in details – our starting point is the MA-ABE con-
struction of Lewko and Waters [29] which we extend to support inner product
computation. This yields the first construction of a nontrivial multi-authority FE
beyond ABE from simple assumptions on pairings to the best of our knowledge.

Using our techniques, we also extend the decentralized attribute based
encryption (DABE) scheme of Michalevsky and Joye [31] to support inner prod-
uct computations. While [31] only supports inner product predicates unlike [29],
it supports policy hiding unlike the latter – our extension inherits these features.

2 We caution the reader that the notation ABE ◦ IPFE is for readability and does not
denote a formal composition.



Multi-Party Functional Encryption 231

Function Hiding DDFE. The novel primitive of dynamic decentralized inner
product functional encryption (IP-DDFE) was recently introduced by Chotard
et al. [22], where they also provided the first construction. As discussed above,
DDFE is an instance of dynamic MPFE. Using the notation of MPFE, we have
the setup algorithm in the Local mode, so that each party i can dynamically
join the system by generating a public key PKi and a master secret key PKi.
For encryption, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set

of parties whose inputs will be combined and labM is a label which imposes a
constraint on which values can be aggregated together. For key generation, party
i sets (ypub, ypri) =

(
(yi,UK ,y),⊥)

where UK is a set of public keys that defines
the support of the inner product, and y is an agreed upon vector y = {yi}i∈UK

.
The function Aggx checks if the public inputs (UM , labM ) match for all parties
and that all the ciphertexts are provided for the set UM . If so, outputs (UM ,x)
where x = (x1‖ . . . ‖xnx

). The function Aggy checks that all values UK and y
are the same for all parties, and that value yi matches with its corresponding
component in the agreed vector. If so, it outputs the function fUK ,y which takes
as input (UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

However, as discussed before, the primitive of DDFE does not support func-
tion hiding. We see this as a significant limitation of this notion. Function hiding
is a well studied and very useful property with many applications – for instance,
it allows parties to securely delegate computation to an untrusted server with-
out the server being able to learn the functionality. In some cases, knowing the
functionality and the output (which the server computes in the clear) may leak
information about the underlying data. In other cases, the functionality itself
may be private and protected by copyright laws. In our work, we provide a new
construction for IP-DDFE which supports function hiding. In more detail, the
key generator, similar to the encryptor associates a label labK with its vector
yi and combining partial keys is only possible when their labels match. Impor-
tantly, the key vector yi may now be hidden analogously to the vector xi in the
ciphertext.

In more detail, for key generation, party i sets (ypub, ypri) =
(
(UK , labK),yi

)

where UK , labK have the same roles as UM , labM , respectively. The function
Aggy, analogously to Aggx checks that all values UK and labK are the same for
all parties. If so, it outputs the function fUK ,y=(y1‖...‖yny ) which takes as input
(UM ,x), checks that UM = UK and if so, outputs 〈x,y〉.

To achieve our final result, we define and construct the first function hiding
MCFE scheme for inner products, which may be of independent interest.

Ciphertext-Policy ABE with Distributed Key Generation. We provide a
multiparty variant of the recent ciphertext-policy attribute based encryption
scheme, constructed by Agrawal and Yamada [8]. In our scheme, the setup
algorithm is run in the Local mode and key generation is distributed amongst
ny = n parties for any polynomial n. As in single-party ABE, we have nx = 1
(hence Aggx is trivial) where (xpub, xpri) = (C,m) where C is a circuit in NC1

and m is a hidden bit. For key generation, the ith party produces a key for
(ypub, ypri) = ((y,GID, yi),⊥) where GID is a global identifier, and y is an agreed
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upon vector y = (y1, . . . , yn). The aggregation function Aggy checks if all the
values GID and y are the same, and that value yi matches with its corresponding
component in the agreed vector y. It then outputs a function fy which takes as
input a circuit C and message m and outputs m if C(y) = 1. Our construction is
secure based on “Learning With Errors” and relies on the generic bilinear group
model as well as the random oracle model. We show that as long as at least one
authority is honest, the scheme remains secure.

1.4 Technical Overview

In this section, we provide an overview of the techniques used for our construc-
tions. We begin with our two constructions that extend multi-authority schemes
[29,31] to support inner products.

Multi-Authority ABE ◦ IPFE for LSSS Access Structures. We described
the functionality of MA-ABE◦ IPFE in Sect. 1.3. Security is defined in a multifold
setting where: (1) adversary is allowed to corrupt the key authorities, (2) make
key queries that do not satisfy the challenge policy predicate φ∗, and (3) also
make key queries that satisfy the challenge policy predicate φ∗ but decrypt to
the same value for both challenge vectors (that is, 〈u,v∗

0〉 = 〈u,v∗
1〉).

A natural first line of attack is to consider whether such a scheme can gener-
ically be built from combining these two primitives. As it turns out, any such
generic construction suffers from the common problem of mix and match attacks,
that is, we must prevent an authorized MA-ABE portion of the key from being
used along with an IPFE portion of an unauthorized key. Another idea is to
extend the ABE ◦ IPFE construction of [4] to support multiple authorities. How-
ever, this work relies on the predicate encoding framework which is not suit-
able as-is for our application. Instead, our approach is to start with the multi-
authority ABE construction by Lewko and Waters [29] for LSSS access struc-
tures, and show how to leverage it’s intrinsic algebraic structure to add an inner
product functionality “on top” of the multi-authority ABE construction.

To begin, we provide an informal sketch of a simplified version of our con-
struction. Recall that an access policy corresponding to a linear secret sharing
scheme access structure contains a share generating matrix A and a row index
to party index mapping function ρ.

LSetup: The i-th authority samples a length � masking vector αi as its secret
key, and publishes its encoding

[
αi

]
T

in the target group as the public key.
KeyGen: To generate a secret key for key vector u, the i-th authority projects

αi on the vector space defined by key vector u. That is, if the attribute bit
xi is 13, then the partial decryption key is simply

[〈αi,u〉].
Enc: For encrypting a message vector v under an access policy (A, ρ), the encryp-

tor first secret shares the message vector v using the access policy A into a
share matrix Sv. That is, Sv is a random matrix with the property that for
each accepting attribute x there exists a reconstruction vector zx such that

3 As in prior ABE schemes based on bilinear maps, the key is empty when xi = 0.
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z�
x · Sv = v�. It next arranges the authority public keys

[
αi

]
T

row-wise in a
matrix Δ as per the function ρ, that is i-th row on Δ is ρ(i)-th public key[
αρ(i)

]
T
. Finally, it output the ciphertext as the following matrix

CT0 =
[
Sv + Δ 	 (r ⊗ 1�)

]
T
, CT1 =

[
r
]
,

where r is a random vector of appropriate dimension and 	 denotes the
component-wise multiplications between two matrices of same dimensions.

Dec: A decryptor then simply left-multiplies CT0 with the reconstruction vector
zx and right-multiplies with the key vector u to compute the following:

z�
x · CT0 · u = z�

x · [
Sv + Δ 	 (r ⊗ 1�)

]
T

· u
=

[
v� · u + z�

x · (Δ 	 (r ⊗ 1�)) · u]
T

=
[
v� · u + z�

x · (Δ 	 (r ⊗ u�))
]
T

It next arranges the partial decryption keys
[〈αi,u〉] row-wise in a vector

K as per the function ρ, that is i-th element of K is ρ(i)-th decryption key[〈αρ(i),u〉]. It performs the component pairing between K and CT1, and
then takes the linear combination as specified by zx which can be simplified
as follows:

z�
x · e (K,CT1) =

[
z�
x · (Δ 	 (r ⊗ u�))

]
T

Finally, it can recover
[
v� · u

]
T

from the above two terms, and learn the
exponent value by brute force search.

Now in the above sketch we ignored the global identifier GID that is necessary
for tying together the partial decryption keys provided by each authority, and
we also ignore the modifications necessary for proving security under standard
bilinear assumptions. At a very high level, for proving security we rely on ideas
from the dual system paradigm [34] as in the multi-authority ABE scheme of [29].
However, we must deal with several new challenges to adapt this paradigm to
our setting, as we describe next.

In the dual system paradigm, the intuition is that the reduction algorithm
first switches all the secret keys to semi-functional keys, and thereafter it also
switches the challenge ciphertext to a semi-functional ciphertext, and after both
these changes security follows directly from the property that semi-functional
secret keys and ciphertexts are not compatible for decryption. In IPFE, we can-
not hope to execute the same strategy directly since now we cannot switch all
secret keys to semi-functional keys since some secret keys might allow decrypt-
ing the challenge ciphertext (but they still would not help in distinguishing by
admissibility constraints on the attacker). At this point, we define the concept
of partial semi-functional ciphertexts such that (at a high level) we first switch
all the rejecting secret keys to semi-functional while leaving the accepting keys
as is, and thereafter we switch the challenge ciphertext to be a “partial” semi-
functional ciphertext such that this hides the non-trivial information about the
encrypted message vectors.
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Although this intuition seems to work at a high level, it is still insufficient
since it is unclear how to switch the entire ciphertext to semi-functional in the
standard model. To that end, our idea is to switch all the accepting secret keys
(including the ones for satisfying predicates) to their semi-functional counter-
parts as well, but now ensure that the challenge ciphertext components that the
accepting keys interact with are only nominally semi-functional. Here the differ-
ence between a regular ciphertext, a nominally semi-functional, and a standard
semi-functional ciphertext is that – regular ciphertexts lie in a special subgroup
with no special blinding terms; while nominally semi-functional ciphertexts have
structured blinding factors outside the special subgroup but it does not affect
decryption irrespective of the type of secret key being used; and a standard
semi-functional ciphertext has unstructured blinding factors outside the special
subgroup such that it affects decryption when using semi-functional keys. Now
switching portions of the challenge ciphertext as nominally semi-functional is
necessary because of two reasons: first, making the entire challenge ciphertext
semi-functional will affect decryption w.r.t. accepting keys which will be distin-
guishable for the adversary; second, it is unclear how to sample the challenge
ciphertext in which only one component is semi-functional while other are reg-
ular sub-encryptions due to the fact that these different ciphertext components
are significantly correlated. Thus, we get around this barrier by ensuring that the
challenge ciphertext is sampled as what we call a partial semi-functional cipher-
text (which has nominally semi-functional components along with a standard
semi-functional component).

Please see Sect. 3 for the formal construction and proof. Our construction
relies on standard assumptions over composite-order bilinear groups, but could
be also be easily adapted to prime-order groups with a security proof in the
generic group model as in [29].

DABE ◦ IPFE for Inner Product Predicates, with Policy Hiding. Next,
we extend the construction of decentralized attribute based encryption by
Michalevsky and Joye [31] to incorporate inner product functional encryption.
Observe that [31] supports only inner product predicates but allows for hiding the
policy in the ciphertext. While our extension to the scheme of [31] also yields a
multi-authority ABE extended to support inner products as above, the details of
the transformation are quite different. We observe that the algebraic structure
of [31] makes it amenable to incorporating the IPFE functionality using ideas
developed in the literature for constructing IPFE generically from public-key
encryption which have special structural and homomorphic properties [3,7,10].
We proceed to describe this transformation next.

In an overly simplified version of the Michalevsky-Joye construction, one
could interpret the i-th key authority as simply sampling a pair of secret expo-
nents δi, wi ← Zp, where δi is regarded as the partial message masking term,
while wi is considered the i-th attribute bit binding term. Now each authority’s
public key is simply set as the group encodings

[
δi

]
and

[
wi

]
. Implicitly, the

scheme uses the linear combination of partial message masking terms δ =
∑

i δi

to derive the main message masking term (used for deriving the secret key encap-
sulating the message, or the KEM key in short).
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To encrypt a message m under attribute x, the user chooses randomness r ←
Zp and computes

[
rδ

]
T

to be used as the KEM key, and binds each attribute bit
to a ciphertext component as

[
(xiα + wi)r

]
(where

[
α
]

is taken from the CRS).
It sets the ciphertext to be C0 =

[
r
]
, Cm = m · [

rδ
]
T
, and Ci =

[
(xiα + wi)r

]

for i ∈ [n]. While a partial secret key for policy vector y for user GID is simply
generated as Ki,y =

[
δi −yiwih

]
where

[
h
]

is computed as H(GID) so as to bind
the different authorities’ secret keys. The decryption can be simply performed
given the bilinear operation as:

Dec({Ki,y}i,CT) =
Cm

∏
i e(Ci,H(GID)yi )·∏i e(Ki,y,C0)

=
m·

[
rδ

]
T[

〈x,y〉αrh+����∑
i wihyir

]
T

·
[
δr−����∑

i yiwihr
]

T

=
m

[
〈x,y〉αrh

]
T

As discussed above, we upgrade the [31] construction using ideas from [3,7,10]
as follows. During key generation, each authority now samples a vector of partial
masking terms instead of a single element, i.e. δi ← Z

�
p, and appropriately sets

the public key too. Implicitly, the main message masking term is now set as
δ =

∑
i δi. To encrypt a message vector u under attribute vector x, the user

chooses randomness r ← Zp and computes
[
rδ

]
T

to be used as the KEM key for
encrypting u index-by-index, and binds the attribute bit as before. Thus, only
the message binding ciphertext component changes to Cm =

[
rδ +u

]
T
. Looking

ahead, it will be decryptor’s job to first homomorphically take an inner product
between the Cm vector and the inner product key vector v. Next, a partial secret
key for policy vector y and inner-product vector v for user GID is generated as
Ki,y,v =

[ ∑
j δi,jvj − yiwih

]
. In words, the idea here is that the partial secret

key now uses a linear combination of its partial (un)masking term
∑

j δi,jvj

depending on the underlying inner-product vector v. The decryption can be
naturally extended by performing inner products via the bilinear operations.

As in the case of our first construction, the proof techniques in [31] do not
apply directly as they were specially designed for ABE which is an all-or-nothing
encryption primitive, and do not translate directly to IPFE. Again, we solve this
issue by a careful analysis in the dual system paradigm [34]. We refer the reader
to the full version for more details.

Function-Hiding DDFE for Inner Products. In this section, we describe the
main ideas in the construction of our function hiding DDFE for inner products.
The functionality of IP-DDFE was discussed in Sect. 1.3. Informally, the security
of DDFE requires that the adversary cannot distinguish two sets {CT0

i } and
{CT1

i } of ciphertexts even given a set {SKi} of secret keys and a set {PKi} of
master secret keys of corrupted parties as long as two sets of values are the
same that are legitimately obtained from {CT0

i } and {CT1
i } using {SKi} and

{PKi}. Let us recall dynamic decentralized inner product functional encryption
(IP-DDFE) by Chotard et al. [22].

The starting point of the IP-DDFE scheme of [22] is the multi-client inner
product functional encryption (IP-MCFE) scheme in [20], where participants
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{1, ..., n} in the system are a priori fixed, and there is an authority who gen-
erates encryption keys mcEKi for each party and a master secret key mcMSK,
which is used to generate secret keys mcSK. Here, mcMSK = {mcMSKi}i∈[n]

and mcEKi = mcMSKi (and we denote an encryption key for i by mcMSKi in
what follows). We also recall that in MCFE, only a set of ciphertexts with the
same label can be decrypted. Chotard et al. [22] lifted the IP-MCFE scheme
to an IP-DDFE scheme via following steps. First, each party joins the system
dynamically by generating a key Ki of a pseudorandom function (PRF) as a
master secret key PKi. In encryption and key generation for party set U , party
i ∈ U generates mcMSKi,U on the fly, which corresponds to mcMSKi of the IP-
MCFE scheme for participants U . Then, it can generate mcCTi,U and mcSKi,U
with mcMSKi,U , which corresponds to CTi and SKi of the IP-DDFE scheme. Sec-
ond, they introduce a class of DDFE called DSum, which allows a decryptor to
securely obtain mcSKU =

∑
i∈U mcSKi,U from encryption of partial secret keys

{mcSKi,U}i∈U . Then, the decryptor can compute mcDec(mcSKU , {mcCTi,U}i∈U ).
DSum also plays a role in preventing combination of partial secret keys for which
the agreed vectors are inconsistent.

Our Function-Hiding IP-DDFE. Our approach is to lift function-hiding IP-MCFE
to function-hiding IP-DDFE following their blueprint. Unfortunately, there are
no function-hiding IP-MCFE schemes, and we need to start with constructing
this. Our first idea is to leverage the recent conversion by Abdalla et al. [1] from
IPFE to IP-MCFE. However, this idea does not work since all parties share the
same encryption key of an IPFE scheme in their converted schemes, and once a
single party is corrupted, the adversary can learn the entire function (or vector)
in secret keys. Thus, we could not achieve a function-hiding IP-MCFE scheme
even if we apply the conversion to a function-hiding IPFE scheme.

To address this challenge, we devise a new technique to convert function-
hiding IPFE to function-hiding IP-MCFE, which is inspired by the function-hiding
multi-input IPFE scheme by Datta et al. [23]. In their scheme, each party i has a
master secret key iMSKi of a function-hiding IPFE scheme, the ciphertext miCTi

of xi is iCTi[(xi, 1)], and the secret key miSK of {yi}i∈[n] is {iSKi[(yi, ri)]}i∈[n]

where ri are randomly chosen so that
∑

i∈[n] ri = 0. iCTi[x] and iSKi[y] denotes
the ciphertext of x and the secret key of y in the function-hiding IPFE scheme,
respectively. To lift their MIFE to MCFE, we need to add the label checking mech-
anism and security against corruption of parties. Fortunately, we can achieve the
latter almost for free since each party uses independent master secret key and
corruption of a party does not affect other parties’ ciphertexts and secret keys.
We can achieve the former by changing miCTi to iCTi[(xi, ti)] where ti = H(lab)
is a hash of a label. Then, a decryptor can learn

∑
(〈xi,yi〉+ tiri), which reveals∑〈xi,yi〉 only when t1 = · · · = tn. We can prove the masking term tiri hides

〈xi,yi〉 under the SXDH assumption in the random oracle model.
Our next step is to lift function-hiding IP-MCFE to function-hiding IP-DDFE.

To do so, we must address additional technical challenges as described next.
In the original definition of IP-DDFE, recall that each secret key is associated
with (yi,U ,y = {yi′}i′∈U ) where the first element yi is a vector for a linear
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function while the third element y is an agreed vector that controls combination
of partial secret keys. More precisely, a decryptor can combine partial secret
keys to obtain a full secret key for y only when it has {SKi}i∈U associated with
y. However, y cannot be hidden in the blueprint by Chotard et al. To tackle
this, we observe that the role of the agreed vector is analogous to a label in the
ciphertext, controlling combination of partial secret keys. Thus, we alternatively
use an independent label labK to create a natural symmetry between inputs for
encryption and key generation. Now, since the vector yi for a linear function can
be hidden by function-hiding IP-MCFE, we obtain function-hiding IP-DDFE.

Another deviation from their blueprint arises in the part that securely
generates mcSKU from mcSKi,U . In our IP-MCFE construction, mcSKi,U =
iSKi[(yi, ri)] and mcSKU = {iSKi[(yi, ri)]}i∈U . Thus, we do not need to sum
up mcSKi,U to obtain mcSKU , instead, each party has to somehow generate a
secret share ri without interaction such that

∑
i∈[U ] ri = 0 only when all mcSKi,U

are generated on behalf of the same label. To handle this issue, we employ a
technique by Chase and Chow [18] to generate such shares via pseudorandom
function. Please see Sect. 4 for more details.

Distributed Ciphertext-Policy ABE. The recent construction of Agrawal-
Yamada [8] proposed a succinct ciphertext-policy ABE for log-depth circuits
provably secure under LWE in the bilinear generic group model. In our work,
we extend the setup and key generation in [8] among a polynomial number of
authorities that are working completely non-interactively and asynchronously.
We start by describing the syntax of a distributed CP-ABE scheme. In a fully
distributed setting, the authorities run their local setup algorithms individually
to generate a fresh master public-secret key pair (PK,PK) per authority such
that given a sequence of, say N , master public keys {PKi}i∈[N ], an encryptor
could encrypt a message μ for a predicate circuit F of its choice. Such ciphertexts
can be decrypted after obtaining a partial predicate key from all N authorities
for a consistent identifier GID, and attribute vector x such that F (x) = 1. Note
that here the key generation algorithm is run locally (and independently) by
each authority, which on input its master key PKi along with GID and attribute
x, computes a partial key SKi,GID,x. While correctness is natural, security must
be defined carefully.

In this work, we consider the strongest form of corruption, where we allow
the adversary to pick the key parameters for all corrupt authorities, and also
allow it to query honest authorities on identifier-attribute pairs (GID,x) such
that F ∗(x) = 1 (where F ∗ is the challenge predicate circuit) as long as there
is at least one honest authority to which the adversary did not query the pair
(GID,x). All other queries are unconstrained since if F ∗(x) = 0, then such keys
should not be useful for decryption to begin with. The intuition behind allowing
the queries to honest authorities such that F ∗(x) = 1 is that we want to prevent
partial secret keys for two distinct accepting attributes provided by two distinct
authorities to be usable for decryption.

To describe our construction, we recall the high level structure of the
Agrawal-Yamada scheme [8], which in turn uses the BGG+ ABE construction [13].
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Roughly, a BGG+ ciphertext is sampled in two steps—first, it samples a sequence
of 2� encodings {ψi,b}i,b; second, depending upon the attribute x the final cipher-
text consists of � encodings {ψi,xi

}i. (Note that BGG+ is a key-policy scheme,
whereas we are building a ciphertext-policy system.) The main idea behind the
ciphertext-policy ABE of [8] is as follows:

Setup: Sample 2� random exponents wi,b, store it as master secret key, and give
its encoding {[

wi,b

]
1
}i,b as the public key.

KeyGen: To generate a secret key for attribute x ∈ {0, 1}�, first sample a random
exponent δ and then given out

[
δ/wi,xi

]
2

for i ∈ [�] as the secret key.
Enc: To encrypt under predicate F , the encryptor samples all 2� BGG+ encodings

{ψi,b}i,b, and also samples a random exponent γ. It then gives out the cipher-
text as a BGG+ secret key for predicate C along with encodings

[
γwi,bψi,b

]
1

for i ∈ [�], b ∈ {0, 1}.
Dec: A decryptor pairs the encodings

[
γwi,xi

ψi,xi

]
1

with
[
δ/wi,xi

]
2

to learn[
γδψi,xi

]
T
, and then it performs the BGG+ decryption in the exponent to

learn the plaintext.

For the multi-authority extension, each authority samples its own sequence of
2� random exponents w

(j)
i,b for j ∈ [N ]. Then during encryption, the encryptor N -

out-of-N (additively) secret shares the BGG+ encodings {ψi,b}i,b into {φ
(j)
i,b }i,b for

j ∈ [N ]. Now it encodes each sequence of {φ
(j)
i,b }i,b terms under the corresponding

authority’s master public key as above. During decryption, a decryptor will first
recover {φ

(j)
i,xi

}i for all j in the exponent, then add them to reconstruct the actual
BGG+ ciphertext {ψi,xi

}i which it can decrypt as before. In order to let multiple
independent authorities sample the same δ, we rely on a hash function which we
model as a ROM, and set

[
δ
]
2

= H(GID).
Although our multi-authority transformation is natural, the proof does not

follow trivially from [8]. This is primarily due to the fact that in the distributed
setting, the adversary could potentially make key queries on accepting attributes
as long as there is at least one honest party that does not receive the same query.
Such queries did not exist in the single-authority setting. However, we can extend
the single-authority proof to the multi-authority setting by a careful analysis of
the additional “bad” zero-test queries that an adversary can make. Please see
the full version for more details.

1.5 Predicting New and Useful Primitives via MPFE

One of the most exciting benefits of MPFE is that it provides the right framework
to pose new, compelling questions that have not been studied before. For exam-
ple, a very interesting question is what new kinds of dynamic key accumulation
are possible, namely how to combine keys of different users chosen dynamically.
So far, most existing literature on FE systems that enable aggregation of multiple
decryption keys still consider very restricted scenarios: (i) each partial decryp-
tion key corresponds to a portion of a much larger decryption key of a single
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user (e.g., distributed/decentralized/multi-authority FE etc.), (ii) each partial
decryption key corresponds to a function and many such keys may be combined
if they each encode the same function (e.g. adhoc MIFE, D-MCFE).

However, the ability to combine keys in much more creative ways can enable
several cool new applications. As an example, consider the following notion of
“reputation point based encryption” – in this setting, each user key is associated
with a subject tag T (say math, history etc.) and a reputation value v (that
is, a point score denoted as an integer). Now an encryptor specifies a tag T ′

along with a threshold reputation value w, and hides its message m under it.
That is, CT(T ′, w,m) denotes such a ciphertext, and we require the functional-
ity that such a ciphertext should be decryptable by any sequence of user keys
SK(T1, v1), . . . SK(T�, v�) where all the subject tags match (T ′ = T1 · · · = T�) and
the combined reputation value of the group

∑
i≤� vi is greater than threshold

w. For example, an encryption of a message under subject ‘math’ and minimum
reputation value of 1000 points can be decrypted by not only a single user with
1000 reputation points in ‘math’ but also by say a group of three users with
400, 250, 350 reputation points (respectively) in ‘math’, but not by a group of
users who satisfy either the subject check or the reputation point check but not
both. To the best of our knowledge, such an encryption framework has not been
studied before, but our MPFE framework enables expressing and introducing
such an encryption functionality.

2 Multi-Party Functional Encryption

In this section, we define our notion of multi-party functional encryption (MPFE).
Let nx be the number of ciphertext inputs and ny be the number of key inputs.
Let X = Xpub×Xpri be the space of ciphertext inputs and Y = Ypub×Ypri be the
space of key inputs. We define two aggregation functions as Aggx : X nx → X ∗,
and Aggy : Yny → Y∗.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols MPFE =
(Setup,KeyGen,Encrypt,Decrypt). To suitably capture existing primitives, we
define our Setup algorithm/protocol to run in three modes, described next.
Setup modes. The Setup algorithm/protocol can be run in different modes:
central, local, or interactive. For mode ∈ {Central, Local, Interactive}, consider
the following.

Central: Here the Setup algorithm is run by one trusted third party which outputs
the master secret keys and encryption keys for all users in the system.

Local: Here it is run independently by different parties without any interaction,
and each party outputs its own encryption key and/or master secret key.

Interactive: Here it is an interactive protocol run by a set of users, at the end of
which, each user has its encryption key and/or master secret key. We note
that these keys may be correlated across multiple users.
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A multi-party functional encryption (MPFE) consists of the following:

Setup
(
1λ, nx, ny,Aggx,Aggy

)
: This algorithm/protocol can be executed in any

one of the three modes described above.4 Given input the security parameter,
number of ciphertext inputs nx, number of key inputs ny and two aggrega-
tion functions Aggx, Aggy as defined above, this algorithm outputs a set of
encryption keys {EKi}i≤nx

, master secret keys {PKi}i≤ny
and public key PK.

KeyGen (PK,PK, j, y = (ypub, ypri)): Given input the public key PK, a master
secret key PK, user index j ∈ [ny] and a function input y = (ypub, ypri), this
algorithm outputs a secret key SKy.

Encrypt (PK,EK, i, x = (xpub, xpri)): Given input the public key PK, an encryp-
tion key EK, user index i ∈ [nx], an input x = (xpub, xpri), this algorithm
outputs a ciphertext CTx.

Decrypt
(
PK, {SKj}j≤ny

, {CTi}i≤nx

)
: Given input the public key PK, a set of

secret keys {SKj}j≤ny
and a set of ciphertexts {CTi}i≤nx

, this algorithm
outputs a value z or ⊥.

We remark that in the local setup mode, it will be helpful to separate the
setup algorithm into a global setup, denoted by GSetup along with a local setup,
denoted by LSetup, where the former is used only to generate common parame-
ters of the system, such as group descriptions and such.

Correctness. We say that an MPFE scheme is correct if, ∀(nx, ny) ∈ N
2, cipher-

text inputs xi ∈ X for i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and
function aggregation circuits Aggx and Aggy, it holds that:

Pr

⎡

⎢
⎢
⎢
⎢
⎣

z = z′ :

(PK, {EKi}, {PKj}) ← Setup(1λ, nx, ny,Aggx,Aggy)
CTi ← Encrypt(PK,EKi, i, xi) ∀i ∈ [nx]
SKj ← KeyGen(PK,PKj , j, yj) ∀j ∈ [ny]
z ← Decrypt

(
PK, {SKj}j≤ny

, {CTi}i≤nx

)

z′ = U (
Aggx({xi}),Aggy({yj})

)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Recall that U is the universal circuit with appropriate input and output size.

Indistinguishability Based Security. Next, we define security of MPFE. The secu-
rity definition is modelled in a similar fashion to MIFE security [24, §2.2] while
taking into account corruption queries.

For any choice of parameters λ, nx, ny, aggregation functions Aggx,Aggy, and
master keys K = (PK, {EKi}i∈[nx], {PKj}j∈[ny ]) ← Setup(1λ, nx, ny,Aggx,Aggy),
we define the following list of oracles:

CorruptK(·), upon a call to this oracle for any i ∈ [nx] or j ∈ [ny], the
adversary gets the corresponding encryption key EKi or master secret key PKj .
In the case of a local setup, the adversary could instead also supply the oracle
with adversarially generated keys for the corresponding user; whereas in case of
an interactive setup, the adversary could simulate the behavior of the queried

4 We omit specifying the mode in the syntax for notational brevity.
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user index in the setup protocol. (Let Sx ⊆ [nx] and Sy ⊆ [ny] denote the set of
user indices for which the corresponding encryption and master keys have been
corrupted.)5

KeyK,β(·, ·), upon a call to this oracle for an honest user index j ∈ [ny],

function inputs (yk,0
j , yk,1

j ) (where yk,b
j =

(
yk,b

j,pub, y
k,b
j,pri

)
for b ∈ {0, 1}), the

challenger first checks whether the user j was already corrupted or not. That
is, if j ∈ Sy, then it sends nothing, otherwise it samples a decryption key for
function input yk,β

j using key PKj and sends it to the adversary. (Here β is the
challenge bit chosen at the start of the experiment.).

EncK,β(·, ·), upon a call to this oracle for an honest user index i ∈ [nx], mes-
sage inputs (x�,0

i , x�,1
i ) (where x�,b

i =
(
x�,b

i,pub, x
�,b
i,pri

)
for b ∈ {0, 1}), the challenger

first checks whether the user i was already corrupted or not. That is, if i ∈ Sx,
then it sends nothing, otherwise it samples a ciphertext for input x�,β

i using key
EKi and sends it to the adversary.

We let Qx and Qy be the number of encryption and key generation queries
(respectively) that had non-empty responses. Let Qx = {(i, (x�,0, x�,1))}�∈[Qx]

be the set of ciphertext queries and Qy = {(j, (yk,0
j , yk,1

j ))}k∈[Qy ] be the set of
key queries.

We say that an adversary A is admissible if:

1. For each of the encryption and key challenges, the public components of the
two challenges are equal, namely x�,0

pub = x�,1
pub for all � ∈ [Qx], and yk,0

pub = yk,1
pub

for all k ∈ [Qy].
2. For each of the encryption and key challenges, the private components of the

two challenges are also equal, namely x�,0
pri = x�,1

pri for all � ∈ [Qx] whenever
(i, (x�,0, x�,1)) ∈ Qx and i ∈ Sx, and yk,0

pri = yk,1
pri for all k ∈ [Qy] whenever

(j, (y�,0, y�,1)) ∈ Qy and j ∈ Sy. That is, the private components must be
the same as well if the user index i or j, that the query was made for, was
corrupted during the execution.

3. There do not exist two sequences (−→x 0,−→y 0) and (−→x 1,−→y 1) such that:

U (
Aggx({x0

i }),Aggy({y0
j })

) �= U (
Aggx({x1

i }),Aggy({y1
j })

)

and i) for every i ∈ [nx], either xb
i was queried or EKi was corrupted, and ii) for

every j ∈ [ny], either yb
j was queried or PKj was corrupted, and iii) at least

one of inputs
{
xb

i

}
,
{
yb

j

}
were queried and indices i, j were not corrupted.

5 Note that in case EKi is completely contained in some PKj then make a master
secret corruption query for j will also add the corresponding index i to Sx, and
vice versa. At a very high level, although having separate aggregation functions for
partial secret key and ciphertexts as part of the framework allows us to capture a
highly expressive class of encryption scheme; defining the most general notion of
security for MPFE that captures all different types of setup and key distribution
settings could be very dense. To that end, here we provide a clean security game
which captures the existing encryption primitives. Capturing security for each setup
mode and corruption model individually would be more precise in certain settings.
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(Note that if i ∈ [nx] or j ∈ [ny] were queried to the Corrupt oracle, the
adversary can generate partial keys or ciphertexts for any value of its choice.)

An MPFE scheme (Setup,KeyGen,Encrypt,Decrypt) is said to be IND secure
if for any admissible PPT adversary A, all length parameters nx, ny ∈ N, and
aggregation functions Aggx,Aggy, there exists a negligible function negl(·) such
that for all λ ∈ N, the following holds

Pr

⎡

⎣ACorruptK(·),KeyK,β(·),EncK,β(·)
(1

λ
,PK) = β :

K ← Setup(1λ, nx, ny,Aggx,Aggy),

K = (PK, {EKi}i, {PKj}j),

β ← {0, 1}

⎤

⎦ ≤ 1

2
+ negl(λ).

Remark 2.1 (Weaker notions of security). We say the scheme is selective IND
secure if the adversary outputs the challenge message and function pairs at the
very beginning of the game, before it makes any queries or receives the PK.
One may also consider the semi-honest setting, where the Corrupt oracle is not
provided, or the case of static corruptions where the adversary provides all its
corruptions once and for all at the start of the game.

Due to space constraints, we provide our definition of dynamic MPFE in the
full version, and also provide a general feasibility of MPFE for circuits from the
minimal assumption of MIFE for circuits.

3 Multi-Authority ABE◦ IPFE for LSSS Access Structures

In this section, extend the construction of Abdalla et al. [4] (ACGU20) to the
multiparty setting. As discussed in Sect. 1, we support ny = n for some fixed,
polynomial n and Local mode of setup algorithm, so that each key generator gen-
erates its key components locally and independently. The number of encryptors
nx = 1 and public, private input (φ,v). Each of the n key generators has public
inputs (GIDi, xi,ui) where xi ∈ {0, 1} and ui ∈ Z

�
q for i ∈ [n]. The ciphertext

aggregation function remains trivial but the key aggregation function checks if
GID1 = GID2 = . . . = GIDn, u1 = u2 = . . . = un, and outputs (fx,u) if so,
where x = (x1, . . . , xn) and fx is a function that takes as input three arguments
(φ,v,u) and outputs 〈u,v〉 if φ(x) = 1.

In other words, we build a multi-authority attribute-based inner product
functional encryption (MA-AB-IPFE) scheme for linear secret sharing schemes
(LSSS) access structures. We rely on simple assumptions over bilinear maps.

3.1 Specializing the MPFE Syntax

Since our framework of MPFE described in Sect. 2 is general enough to capture
a large family of functionalities, using the general syntax as-is would result in a
cumbersome definition in which multiple parameters are non-functional. Hence,
we specialize the general framework to the specific functionality of interest here
for ease of exposition.
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Syntax. A MA-AB-IPFE scheme for predicate class C = {Cn : Xn → {0, 1}}n∈N

and inner product message space U = {U�}�∈N
consists of the following PPT

algorithms:

GSetup(1λ) → PP. On input the security parameter λ, the setup algorithm
outputs public parameters PP.

LSetup(PP, 1n, 1�, i) → (PK,PK). On input the public parameters PP, attribute
length n, message space index �, and authority’s index i ∈ [n], the authority
setup algorithm outputs a pair of master public-secret key (PK,PK) for the
i-th authority.

KeyGen(PKj ,GID, b,u) → SKj,GID,b,u. The key generation algorithm takes as
input the authority master secret key PKj , global identifier GID, an attribute
bit b ∈ {0, 1}, and key vector u ∈ U�. It outputs a partial secret key SKj,GID,b,u.

Enc({PKi}i∈[n], C,v) → CT. The encryption algorithm takes as input the list of
public keys {PKi}i, predicate circuit C, and a message vector v ∈ U�, and
outputs a ciphertext CT.

Dec({SKi,GID,x,u}i∈[n],CT) → m/⊥. On input a list of n partial secret keys
{SKi,GID,x,u}i and a ciphertext CT, the decryption algorithm either outputs
a message m (corresponding to the inner product value) or a special string ⊥
(to denote decryption failure).

Correctness. A MA-AB-IPFE scheme is said to be correct if for all λ, n, � ∈ N,
C ∈ Cn, u,v ∈ U�, x ∈ Xn,GID, if C(x) = 1, the following holds:

Pr

⎡
⎢⎢⎣Dec(SK,CT) = 〈u,v〉 :

PP ← GSetup(1λ)
∀i ∈ [n] : (PKi,PKi) ← LSetup(PP, 1n, 1�, i)
∀j ∈ [n] : SKj,GID,xj ,u ← KeyGen({PKi}i,PKj ,GID, xj ,u)

CT ← Enc({PKi}i, C,v),SK = {SKi,GID,xi,u}i

⎤
⎥⎥⎦ = 1.

Security. In terms of security, a MA-AB-IPFE provides powerful notion of
encrypted message vector indistinguishability where the adversary is allowed
to corrupt the key generation authorities and also make key queries for mes-
sage vector distinguishing key vectors (as long as the attribute does not satisfy
the encrypted predicate). Below we provide the selective security variant of the
corresponding property.6

Definition 3.1 (Selective MA-AB-IPFE security with static corruptions).
A MA-AB-IPFE scheme is selectively secure with static corruptions if for every

6 In this work, we only focus on standard semantic security, but one could also amplify
to its CCA counterpart by relying on the generic CPA-to-CCA amplification tech-
niques [28].
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stateful admissible PPT adversary A, there exists a negligible function negl(·)
such that for all λ ∈ N, the following holds

Pr

⎡
⎢⎢⎢⎢⎣

AO(key,·,·,·)({PKi}i∈[n]\S∗ ,CT) = b :

PP ← GSetup(1λ)
(1n, 1�, S∗, C, (v0,v1), {PKi}i∈S∗ ) ← A(1λ,PP)
∀i ∈ [n] \ S∗ : (PKi,PKi) ← LSetup(PP, 1n, 1�, i)
b ← {0, 1},CT ← Enc({PKi}i∈[n], C,vb)

key = {(PKi,PKi)}i∈[n]\S∗

⎤
⎥⎥⎥⎥⎦

≤ 1

2
+ negl(λ),

where the oracle O(key, ·, ·, ·) has the master key for honest authorities hard-
wired. The oracle on input a tuple of a global identifier GID, an authority index
j ∈ [n]\S∗, and an attribute-key vector pair (b,u), responds with a partial secret
key computed as SKj,GID,b,u ← KeyGen(PKj ,GID, b,u). Note that the adversary
is only allowed to submit key queries for non-corrupt authorities (i.e., j /∈ S∗).
Also, the adversary A is admissible as long as every secret key query made
by A to the key generation oracle O satisfies the condition that—(1) either
〈u,v0〉 = 〈u,v1〉, or (2) C does not accept any input x such that xj = b for
(b, j) ∈ QGID where QGID contains the attribute bits queries for GID7.

3.2 Construction

Let Gen be a composite-order bilinear group generator. Also, let G and GT be the
source and target groups, respectively. Additionally, we rely on a hash function
H : {0, 1}∗ → G that maps global identities GID to elements of G and we later
model it as a random oracle in the proof. Below we provide our MA-AB-IPFE
scheme based on composite-order bilinear maps for the predicates described as
an access policy for a linear secret sharing scheme.

GSetup(1λ) → PP. The setup algorithm samples a bilinear group as follows

(p1, p2, p3,G,GT , e (·, ·)) ← Gen(1λ, 3).

It samples a random generator g1 ∈ G1, and sets the global public parameters
as PP = (g1, N = p1p2p3,G,GT , e (·, ·)).
(Notation. Here and throughout, we use the ‘bracket’ notation for repre-
senting group elements. Where [1]1 := g1, and [1]T,1 := e (g1, g1).)

LSetup(PP, 1n, 1�, i) → (PK,PK). The algorithm samples two random vec-
tors α,w ← Z

�
N , and sets the authority public-secret key pair as PK =

(PP,
[
α

]
T,1

,
[
w

]
1
) and PK = (α,w). (Here and throughout, note that

[
w

]
1

and similar terms can be computed as gw1 .)
KeyGen(PKj ,GID, b,u) → SKj,GID,b,u. It parses the authority key as described

above. If b = 0, it sets the secret key as empty string. Otherwise, it first

7 Note that in general this could be a non-falsifiable condition to check if S∗ is ω(log λ)
and the predicate class contains general non-monotonic functions.
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hashes the GID to create a masking term
[
μ
] ∈ G as

[
μ
]

= H(GID). It then
outputs the secret key as

SKj,GID,b,u =
[〈α,u〉]

1
· [

μ · 〈w,u〉].
Note that since the vectors u,w,α are known to the algorithm in the clear,
thus the above key term can be computed efficiently.

Enc({PKi}i∈[n], (A, ρ),v) → CT. The encryption algorithm first parses the keys
PKi as (PP,

[
αi

]
T,1

,
[
wi

]
1
), and the predicate contains an m1 × m2 access

matrix A with function ρ mapping the rows to the attribute positions. It
samples a m2 × � matrix S and (m2 − 1) × � matrix T′ uniformly at random
as S ← Z

m2×�
N and T′ ← Z

(m2−1)×�
N . It sets a m2 × � matrix T, and arranges

two m1 × � matrices Δ and Γ as

T =
(
0�

T′

)
, Δ =

⎛

⎜
⎝

α�
ρ(1)

...
α�

ρ(m1)

⎞

⎟
⎠ , Γ =

⎛

⎜
⎝

w�
ρ(1)

...
w�

ρ(m1)

⎞

⎟
⎠ .

That is, the matrix T contains all zeros in the first row and is random oth-
erwise. It also samples a random vector as r ← Z

m1
N , and computes the

ciphertext CT = (C0, C1, C2, C3) as:

C0 =
[
s1 + v

]
T,1

, C1 =
[
A · S + Δ 	 (r ⊗ 1�)

]
T,1

,

C2 =
[
r
]
1
, C3 =

[
A · T + Γ 	 (r ⊗ 1�)

]
1
.

Here the vector s1 is the first column vector of matrix S� (that is, s1 = S� ·e1
where e1 is the first fundamental basis vector of Zm2

N ).
Dec({SKi,GID,xi,u}i∈[n],CT) → M. It parses the secret key and ciphertext as

described above. Let (A, ρ) be the access policy associated with the cipher-
text, and u be the key vector associated with the partial secret keys. (This
could either be explicitly addded to the ciphertext and secret keys above, or
passed as an auxiliary input.)
The decryptor first computes the LSSS reconstruction vector z such that
z� · A = e�

1 = (1, 0, . . . , 0). The decryptor then arranges the key terms as

K =

⎛

⎜
⎝

SKρ(1),GID,xρ(1),u

...
SKρ(m1),GID,xρ(m1),u

⎞

⎟
⎠

and recovers the inner product message value M by computing the discrete
log of the following the following:

[
M

]
T,1

=
〈C0,u〉

(z� · C1 · u)
· z� · e (K,C2)
e (H(GID), z� · C3 · u)

where the matrix vector operations involving group elements and exponents
are performed by first raising the exponent of each term (component-by-
component) for performing multiplication in the exponent, and then followed
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by multiplication of the resulting encodings to simulate addition being per-
formed in the exponent. Also, the operation e (K,C2) performs the pairing
operation element-by-element for each element of the vector.

3.3 Correctness and Security

Due to space constraints, the proof is provided in the full version [6].

4 Function-Hiding DDFE for Inner Products

In this section, we present our function-hiding decentralized dynamic inner prod-
uct functional encryption (IP-DDFE) scheme. As described in Sect. 1, we have the
setup algorithm in the Local mode, so that each party i can dynamically join the
system by generating a public key PKi and a master secret key PKi. For encryp-
tion, party i sets (xpub, xpri) =

(
(UM , labM ),xi

)
where UM is the set of parties

whose inputs will be combined and labM is a label which imposes a constraint
on which values can be aggregated together. For key generation, party i sets
(ypub, ypri) =

(
(UK , labK),yi

)
where UK , labK have the same roles as UM , labM ,

respectively. The function Aggx checks if the public inputs (UM , labM ) match
for all parties and that all the ciphertexts are provided for the set UM . If so,
outputs (UM ,x) where x = (x1‖ . . . ‖xnx

). The function Aggy checks that all
values UK and labK are the same for all parties. If so, it outputs the function
fUK ,y=(y1‖...‖yny ) which takes as input (UM ,x), checks that UM = UK and if so,
outputs 〈x,y〉.

As discussed in the introduction, we first obtain a function-hiding multi-
client inner product functional encryption (IP-MCFE) scheme, and then lift it to
a function-hiding IP-DDFE scheme in a non-black box manner. We first define
necessary notions to describe our IP-MCFE and IP-DDFE scheme. As before, we
will specialize the MPFE syntax for ease of exposition.

4.1 Specializing the MPFE Syntax

Syntax of MCFE. Let F be a function family such that, for all f ∈ F , f :
M1 × · · · × Mn → Z. Let L be a label space. An MCFE scheme for F and L
consists of four algorithms.

Setup(1λ, 1n): It takes a security parameter 1λ and a number 1n of slots, and
outputs a public parameter PK, encryption keys {EKi}i∈[n], a master secret
key PK. The other algorithms implicitly take PK.

KeyGen(PK, f): It takes PK and f ∈ F , and outputs a secret key SK.
Enc(i,EKi, xi, lab): It takes PK, an index i ∈ [n], xi ∈ Mi, and a label lab and

outputs a ciphertext CTi.
Dec(CT1, ...,CTn,SK): It takes CT1, ...,CTn and SK, and outputs a decryption

value d ∈ Z or a symbol ⊥.
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Correctness. An MCFE scheme is correct if it satisfies the following condition.
For all λ, n ∈ N, (x1, ..., xn) ∈ M1 × · · · × Mn, f ∈ F , lab ∈ L, we have

Pr

⎡

⎢
⎢
⎣d = f(x1, ..., xn) :

(PK, {EKi},PK) ← Setup(1λ, 1n)
CTi ← Enc(i,EKi, xi, lab)
SK ← KeyGen(PK, f)
d = Dec(CT1, ..., ,CTn,SK)

⎤

⎥
⎥
⎦ = 1.

Security. We basically adopt the security definition for MCFE in [2] and extend
it to function-hiding security. We also introduce a selective vatiant because our
final goal is IP-DDFE with selective security, and selectively secure IP-MCFE is
sufficient for the security analysis of our IP-DDFE scheme.

Definition 4.1 (Function-hiding security of MCFE). An MCFE scheme is
Leaky-xx-yy-function-hiding (xx ∈ {sel, sta, adt}, yy ∈ {any,pos}) if for every
stateful PPT adversary A, there exists a negligible function negl(·) such that for
all λ, n ∈ N, the following holds

Pr

[
β ← AQCor(),QEncβ(),QKeyGenβ()(PK) :

β ← {0, 1}
(PK, {EKi},PK) ← Setup(1λ, 1n)

]
≤ 1

2
+ negl(λ)

where QCor(i) outputs EKi, QEncβ(i, x0
i , x

1
i , lab) outputs Enc(i,EKi, x

β
i , lab), and

QKeyGenβ(f0, f1) outputs KeyGen(PK, fβ). Let qc,i,lab be the numbers of queries
of the forms of QEncβ(i, ∗, ∗, lab). Let HS be the set of parties on which the
adversary has not queried QCor at the end of the game, and CS = [n]\HS.
Then, the adversary’s queries must satisfy the following conditions.

– For i ∈ CS, the queries QEncβ(i, x0
i , x

1
i , lab) and QKeyGenβ(f0, f1) must sat-

isfy x0
i = x1

i and Leaky(i, f0) = Leaky(i, f1), respectively.8

– There are no sequences (x0
1, ..., x

0
n, f0, lab) and (x1

1, ..., x
1
n, f1, lab) that satisfy

all the conditions:
• For all i ∈ [n], [QEncβ(i, x0

i , x
1
i , lab) is queried and i ∈ HS] or [x0

i = x1
i ∈

Mi and i ∈ CS].
• QKeyGenβ(f0, f1) are queried.
• f0(x0

1, ..., x
0
n) �= f1(x1

1, ..., x
1
n).

– When xx = sta: the adversary cannot query QCor after querying QEnc or
QKeyGen even once.

– When xx = sel: the adversary must make all queries in one shot. That
is, first it outputs (CS, {i, x0

i , x
1
i , lab}, {f0, f1}) and obtains the response:

({EKi}i∈CS , {Enc(i,EKi, x
β
i , lab)}, {KeyGen(PK, fβ)}).

– When yy = pos: for each lab ∈ L, either qc,i,lab > 0 for all i ∈ HS or qc,i,lab = 0
for all i ∈ HS.

8 The leakage function captures information that EKi reveals from SK.
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Syntax of DDFE. We define the syntax of DDFE. Note that we use an identifier
i ∈ ID to specify each party while they use PK for identifier in the original
definition [22], since it allows more precise indexing than the indexing by PK9.
We assume that the correspondence between id i and public key PKi is publicly
known, or it could be supplied as an input to the local setup algorithm. We
describe the syntax of DDFE in the context of MPFE and change some expressions
from the original definition. For instance, we use PK instead of SK for secret keys
of each party, public/private inputs for Enc and KeyGen instead of using empty
keys, and so on.

Let ID,K,M be an ID space, a key space, and a message space, respectively.
K,M consist of a public part and a private part, that is, K = Kpri ×Kpub,M =
Mpri × Mpub. Let f be a function such that f :

⋃
i∈N

(ID × K)i × ⋃
i∈N

(ID ×
M)i → Z. A DDFE scheme for f consists of five algorithms.

GSetup(1λ): It takes a security parameter 1λ and outputs a public parameter
PP. The other algorithms implicitly take PP.

LSetup(PP): It takes PP and outputs local public parameter PKi and a master
secret key PKi. The following three algorithms implicitly take PKi.

KeyGen(PKi, k = (kpri, kpub)): It takes PKi and k ∈ K, and outputs a secret key
SKi.

Enc(PKi,m = (mpri,mpub)): It takes PKi and m ∈ M, and outputs a ciphertext
CTi.

Dec({SKi}i∈UK
, {CTi}i∈UM

): It takes {SKi}i∈UK
, {CTi}i∈UM

and outputs a
decryption value d ∈ Z or a symbol ⊥ where UK ⊆ ID and UM ⊆ ID
are any sets.

Correctness. An DDFE scheme for f is correct if it satisfies the following con-
dition. For all λ ∈ N, UK ⊆ ID, UM ⊆ ID, {i, ki}i∈UK

∈ ⋃
i∈N

(ID ×
K)i, {i,mi}i∈UM

∈ ⋃
i∈N

(ID × M)i, we have

Pr

⎡

⎢
⎢
⎢
⎢
⎣

d = f({i, ki}i∈UK
, {i,mi}i∈UM

) :

PP ← GSetup(1λ)
PKi,PKi ← LSetup(PP)
CTi ← Enc(PKi,mi)
SKi ← KeyGen(PKi, ki)
d = Dec({SKi}i∈UK

, {CTi}i∈UM
)

⎤

⎥
⎥
⎥
⎥
⎦

= 1.

Note that we can consider the case where UK and UM are multisets as in the
original definition in [22]. However, we do not consider the case here since it
induces ambiguity that can be also found in [22]10. We assume that N contains 0
here and (ID × K)0 = {i, ki}i∈∅ = ∅. That is, UK and UM can be an empty set,

9 In [22], some definitions have ambiguity that seems to stem from the indexing by
pk. For instance, correctness of DDFE in Definition 1 implicitly assumes that skpk is
uniquely decided by pk, while the syntax does not require such a condition. Another
example is the IP-DDFE construction in [22, § 7.2].

10 Concretely, when UK is a multiset, and i′ ∈ UK has multiplicity 2, how to treat
ki′ ∈ {ki}i∈UK is unclear.



Multi-Party Functional Encryption 249

which corresponds to the case where Dec does not take secret keys/ciphertexts
as input.

Security. We naturally extend the security definition for DDFE in [22] to the
function-hiding setting as follows.

Definition 4.2 (Function-hiding security of DDFE). An DDFE scheme is
xx-yy-function-hiding (xx ∈ {sel, adt}, yy ∈ {sym, asym}) if for every stateful
PPT adversary A, there exists a negligible function negl(·) such that for all
λ ∈ N, the following holds

Pr

[
β ← AQHonestGen(),QCor(),QEncβ(),QKeyGenβ()(PP) :

β ← {0, 1}
PP ← GSetup(1λ)

]
≤ 1

2
+ negl(λ).

Each oracle works as follows. For i ∈ ID, QHonestGen(i) runs (PKi,PKi) ←
LSetup(PP) and returns PKi. For i such that QHonestGen(i) was queried, the
adversary can make the following queries: QCor(i) outputs PKi, QEncβ(i,m0,m1)
outputs Enc(PKi,m

β), and QKeyGenβ(i, k0, k1) outputs KeyGen(PKi, k
β). Note

that kβ and mβ consist of the private elements kβ
pri,m

β
pri and the public elements

kpub,mpub, respectively (we always require that k0
pub = k1

pub = kpub and m0
pub =

m1
pub = mpub as the public elements are not hidden in SK or CT). Let S be the set

of parties on which QHonestGen(i) is queried, HS be the set of parties on which
the adversary has not queried QCor at the end of the game, and CS = S\CS.
Then, the adversary’s queries must satisfy the following conditions.

– There are no sequences ({i, k0
i }i∈UK

, {i,m0
i }i∈UM

) and ({i, k1
i }i∈UK

,
{i,m1

i }i∈UM
) that satisfy all the conditions:

• For all i ∈ UK , [QKeyGenβ(i, k0
i , k1

i ) is queried and i ∈ HS] or [k0
i = k1

i ∈
K and i ∈ CS].

• For all i ∈ UM , [QEncβ(i,m0
i ,m

1
i ) is queried and i ∈ HS] or [m0

i = m1
i ∈

M and i ∈ CS].
• f({i, k0

i }i∈UK
, {i,m0

i }i∈UM
) �= f({i, k1

i }i∈UK
, {i,m1

i }i∈UM
).

– When xx = sel: the adversary first generates a set S of honest users in one
shot. After that it makes the corruption, key generation, encryption queries
in one shot to obtain {PKi}, {KeyGen(PKi, k

β)}, {Enc(EKi,m
β)}.

– When yy = sym: for i ∈ CS, the queries QKeyGenβ(i, k0, k1) and
QEncβ(i,m0,m1) must satisfy k0 = k1 and m0 = m1, respectively11.

Definition 4.3 (Inner Product Functional Encryption (IPFE)). Let
Π = (p,G1,G2,GT , e, g1, g2) be bilinear groups. IPFE for Π is a class of FE
where M = G

N
1 , and function f ∈ F is represented by [y]2 ∈ G

N
2 where y ∈ Z

N
p

and defined as f([x]1) = [〈x,y〉]T . We say IPFE is function-hiding if it has both
message and function privacy.

Definition 4.4 (IP-MCFE). Let B ∈ N be a bound of the infinity norm of
vectors. IP-MCFE is a class of MCFE where Mi = [−B,B]N, Z = Z, and
L = {0, 1}∗. The function f is represented by y ∈ [−B,B]nN and defined as
f(x1, ...,xn) = 〈(x1||...||xn),y〉.
11 The symmetric setting captures the case where PKi can be used to not only

encrypt/key generation but also decryption/decoding of CTi/SKi.
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Definition 4.5 (IP-DDFE). Let B ∈ N be a bound of the infinity norm of vec-
tors. IP-DDFE is a class of DDFE where ID = {0, 1}∗, Kpri = Mpri = [−B,B]N,
Kpub = Mpub = 2ID × L, Z = Z for label space L = {0, 1}∗. The function f is
defined as, for {ki = (yi,UK,i, labK,i)}i∈U ′

K
and {mi = (xi,UM,i, labM,i)}i∈U ′

M
,

f({i, ki}i∈U ′
K

, {i,mi}i∈U ′
M

) =

{∑
i∈U ′

K
〈xi,yi〉 the condition below is satisfied

⊥ otherwise

– U ′
K = U ′

M , and ∀i ∈ U ′
K ,UK,i = UM,i = U ′

K .
– ∃(labK , labM ) ∈ L2,∀i ∈ U ′

K , labK,i = labK , labM,i = labM .

Definition 4.6 (One key-label restriction for IP-DDFE). We define an addi-
tional restriction for the adversary in the security game for IP-DDFE. We say an
IP-DDFE scheme is xx-yy-function-hiding under the one key-label restriction if
it satisfies Definition 4.2 where the adversary’s queries additionally satisfy the
following condition: QKeyGen with respect to user i ∈ ID and label labK ∈ L
(the query of the form of QKeyGen(i, ∗, ∗, ∗, labK)) can be made only once for
each pair (i, labK).

Definition 4.7 (All-or-nothing encryption (AoNE)). AoNE is a class of
DDFE where ID = {0, 1}∗, Mpri = {0, 1}L for some L ∈ N, Mpub = 2ID × L,
K = ∅, Z = {0, 1}∗. The function f is defined as, for U ′

K ∈ 2ID and {mi =
(xi,UM,i, labM,i)}i∈U ′

M
,

f({i}i∈U ′
K

, {i,mi}i∈U ′
M

) =

{
{xi}i∈U ′

M
the condition below is satisfied

⊥ otherwise

– ∀i ∈ U ′
M ,U ′

M = UM,i.
– ∃labM ∈ L,∀i ∈ U ′

M , labM,i = labM .

This means that KeyGen is unnecessary, and Dec works without taking secret
keys as input in AoNE (recall that U ′

K can be an empty set).

Chotard et al. showed that sel-sym-IND-secure AoNE can be generically con-
structed from identity-based encryption [22]12. We also use pseudorandom func-
tions and non-interactive key exchange with quite simple requirements, which
can be realized by the original Diffie-Hellman key exchange. We formally define
it in the full version.

4.2 Construction of Function-Hiding IP-MCFE

We first construct a function-hiding IP-MCFE scheme as a step to a function-
hiding IP-DDFE scheme. Let Π = (p,G1,G2,GT , e, g1, g2) be bilinear groups.
Let iFE = (iSetup, iKeyGen, iEnc, iDec) be a function-hiding IPFE scheme (recall
12 In AoNE, there are no secret keys and thus the IND-security defined in [22] is exactly

the same as function-hiding security in our paper.
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that iKeyGen, iEnc take a group-element vector as input instead of a Zp-element
vector (see Definition 4.3)) and H : L → G1 be a hash function modeled as a
random oracle. The construction of function hiding IP-MCFE for vector length
N is provided in Fig. 1.

Setup(1λ,1n): On input the security parameter 1λ, the number of slots 1n, the setup
algorithm outputs (PK,EKi,MSK) as follows.

iMSKi i [n] iSetup(1λ,12N+2)

PK = Π, EKi = iMSKi, MSK = EKi i [n].

KeyGen(MSK, yi i [n]): The key generation algorithm takes as input the master secret
key MSK, and vectors yi i [n] and outputs SK as follows. It randomly chooses
ri Zp so that

i [n]
ri = 0 and compute

yi = (yi,0N, ri,0), iSKi iKeyGen(iMSKi,yi), SK = iSKi i [n].

Enc(i,EKi,xi, lab): The encryption algorithm takes as input user index i [n], an
encryption key EKi, an input vector xi, a label lab and outputs CTi as follows.

[tlab]1 = H(lab), xi = (xi,0N,tlab,0), CTi = iCTi iEnc(iMSKi,[xi]1).

Dec(SK,CT1,...,CTn): The decryption algorithm takes as input the secret key SK,
ciphertexts CT1,...,CTn and outputs d as follows.

[d]T =
i [n]

iDec(iSKi, iCTi).

Fig. 1. Function-Hiding IP-MCFE

Correctness and Security. For correctly generated (SK,CT1, ...,CTn) for {yi,xi},
we have ∏

i∈[n]

iDec(iSKi, iCTi) = [
∑

i∈[n]

〈xi,yi〉]T = [
∑

i∈[n]

〈xi,yi〉]T .

In our scheme, EKi has a power to decode both CTi and SKi since EKi is a
part of PK. This is captured as the function Leaky below.

Theorem 4.8. If the SXDH assumption holds in G1 and iFE is function-hiding,
then our IP-MCFE scheme is Leaky-sel-pos-function-hiding in the random oracle
model, where Leaky(i, {yi}i∈[n]) = yi.

Due to limited space, we present the proof in the full version.
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4.3 Construction of Function-Hiding IP-DDFE

We next construct our function-hiding IP-DDFE scheme. Intuitively, our IP-
DDFE scheme instantiates our IP-MCFE scheme in parallel per each party set
via a pseudorandom function in a non-black box manner. Nevertheless, in the
security proof, we can delete the information of the challenge bit β in a hybrid
sequence similarly to the security proof of IP-MCFE.

Let iFE = (iSetup, iKeyGen, iEnc,Dec) be a function-hiding IPFE scheme
with the length of the random tape for iSetup(1λ, 12N+2) being p(λ,N),
AoNE = (aGSetup, aLSetup, aEnc, aDec) be an all-or-nothing encryption scheme,
NIKE = (nSetup, nKeyGen, nSharedKey) be a non-interactive key exchange
scheme, {PRFK

1 } : L → Zp, {PRFK
2 } : 2ID → {0, 1}p(λ,N) be families of pseu-

dorandom functions where ID denotes an identity space, and H : 2ID ×L → G1

is a hash function modeled as a random oracle. Let K1,K2 be key spaces of
PRF1,PRF2. We assume that the range of nSharedKey and the key space for
PRF1 are the same, namely, K1. Our construction for vector length N is pro-
vided in Fig. 2.

Correctness and Security. Thanks to the correctness of AoNE, we have ˜iCTi =
iCTi, ĩSKi = iSKi. For all labK , {Ki,j,1},U , we have

∑

i∈U
ri =

∑

i∈U

∑

j∈U
i=j

(−1)j<iPRF
Ki,j,1
1 (labK) = 0

since Ki,j,1 = Kj,i,1. For all i ∈ U , iSKi and iCTi are generated under the
same iMSKi since they are generated using the same random tape PRF

Ki,2
2 (U).

Thus, thanks to the correctness of iFE, we have
∑

i∈U iDec(ĩSKi, ˜iCTi) =
[
∑

i∈U 〈xi,yi〉]T = [
∑

i∈U 〈xi,yi〉]T.
We show security via the following theorem.

Theorem 4.9. If {PRFK
1 }, {PRFK

2 } are families of pseudorandom functions,
NIKE is IND-secure, AoNE is sel-sym-IND-secure, the SXDH assumption holds
in G1, and iFE is function-hiding, then our IP-DDFE scheme is sel-sym-function-
hiding under the one key-label restriction in the random oracle model.

Due to space constraints, we present the proof in the full version.



Multi-Party Functional Encryption 253

Fig. 2. Function Hiding IP-DDFE
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Abstract. We present a construction of indistinguishability obfuscation
(iO) that relies on the learning with errors (LWE) assumption together
with a new notion of succinctly sampling pseudorandom LWE samples.
We then present a candidate LWE sampler whose security is related to
the hardness of solving systems of polynomial equations. Our construc-
tion improves on the recent iO candidate of Wee and Wichs (Eurocrypt
2021) in two ways: first, we show that a much weaker and simpler notion
of LWE sampling suffices for iO; and secondly, our candidate LWE sam-
pler is secure based on a compactly specified and falsifiable assumption
about random polynomials, with a simple error distribution that facili-
tates cryptanalysis.

Keywords: Indistinguishability obfuscation · Learning with errors

1 Introduction

Indistinguishability obfuscation (iO) [BGI+01,GR07] is a probabilistic
polynomial-time algorithm O that takes as input a circuit C and outputs an
(obfuscated) circuit C ′ = O(C) satisfying two properties: (a) functionality: C
and C ′ compute the same function; and (b) security: for any two circuits C1

and C2 that compute the same function (and have the same size), O(C1) and
O(C2) are computationally indistinguishable. Since the first candidate for iO
was introduced in [GGH+13], a series of works have shown that iO would have
a huge impact on cryptography.

In this work, we build upon the recent line of works on lattice-inspired iO can-
didates [Agr19,CHVW19,AP20,BDGM20b,BDGM20a,WW21,GP21] that are
plausibly post-quantum secure. The dream goal here is to ultimately base iO
on the hardness of the learning with errors (LWE) problem together with an
assumption about simple Boolean or integer pseudorandom generators (PRGs).
Such a result would, in particular, eliminate pairings from the recent break-
through result basing iO on well-founded assumptions [JLS21].
c© International Association for Cryptologic Research 2021
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1.1 Our Contributions

We present a candidate construction of iO that relies on LWE together with a
new notion of succinctly sampling pseudorandom LWE samples. In addition, we
present a candidate sampler whose security is related to the hardness of solv-
ing systems of polynomial equations. Our construction improves on the recent
iO candidate of Wee and Wichs [WW21] (henceforth referred to as the WW
construction) in two ways:

– First, our new notion of succinct LWE sampling simplifies and relaxes the
notion of oblivious LWE sampling from WW. Instead of a simulation-based
definition as in WW, we have a simple indistinguishability-based definition,
where the generated LWE sample can be used to drown out the differences
between certain error distributions. Furthermore, we put forth two variants
of succinct LWE sampling, and provide a general amplification from a weak
(falsifiable) notion that refers to a specific error distribution to a strong (non-
falsifiable) notion that refers to general error distributions.

– Next, our candidate succinct LWE sampler is easy to describe and is based
on random polynomials. It yields an LWE sample with a simple error dis-
tribution that facilitates cryptanalysis. This is in contrast to WW, where
the LWE sampler involved complex FHE evaluation, and the resulting error
distribution in the samples was dependent on the concrete implementation
of the circuit being evaluated. Indeed, a recent work of [HJL21] carefully
crafted circuit implementations that would render the WW candidate as well
as the related candidate in [GP21] insecure (see Sect. 1.3 for a more detailed
discussion).

1.2 Technical Overview

The starting point of our construction is essentially the same as that of the Wee-
Wichs (WW) iO candidate, which in turn builds on [BDGM20a]. We begin by
describing a notion of succinct randomized encoding (SRE), which can be seen
as a relaxation of the notions of split FHE and functional encodings used in prior
works. It is also very related to the notion of exponentially efficient iO (XiO)
from [LPST16], and is easily seen to imply it, but we find the SRE abstraction
easier to work with in the context of our work. By leveraging prior results on
XiO [LPST16], our notion of SRE implies iO under the LWE assumption.

Succinct Randomized Encodings. A succinct randomized encoding1 [BGL+15,
LPST16] of a function f : {0, 1}� → {0, 1}N is an efficient probabilistic algorithm
Encode such that:

– functionality: we can efficiently recover f(x) given f and Encode(f, x);

1 Our notion of succinct randomized encodings is weaker than prior works: indeed,
[BGL+15] required the encoder to run in time sublinear in N , whereas we allow the
encoder run-time to be polynomial in N .



258 L. Devadas et al.

– security: for any x0, x1 such that f(x0) = f(x1), we have Encode(f, x0) ≈c

Encode(f, x1); and
– succinctness: Encode(f, x) is shorter than the output length of f . That is,

|Encode(f, x)| = ˜O(N δ) for some constant δ < 1, ignoring factors polynomial
in � and the security parameter.

Henceforth, we will focus on building SRE for circuits.

Base Scheme. We start with a base scheme for succinct randomized encod-
ings implicit in WW, which is insecure, but serves as the basis of our even-
tual construction. The base scheme uses a variant of the homomorphic encryp-
tion/commitment schemes of [GSW13,GVW15], along with the “packing” tech-
niques in [PVW08,MW16,BTVW17,PS19,GH19,BDGM19]. Given a commit-
ment C to an input x ∈ {0, 1}�, along with a circuit f : {0, 1}� → {0, 1}N ,
this scheme allows us to homomorphically compute a commitment Cf to the
output f(x). Moreover, the opening for the output commitment is shorter than
the output size N . Concretely, we define C,Cf as follows:

– We treat the function f : {0, 1}� → {0, 1}N as a function f : {0, 1}� →
{0, 1}M×K , where M and K are parameters we shall specify shortly, such
that MK = N .

– Given a public random matrix A ∈ Z
M×w
q where M � w, we define a com-

mitment C to an input x as

C := AR + x ⊗ G + E

where A ← Z
M×w
q , R ← Z

w×�M log q
q are uniformly random, E ← χM×�M log q

has its entries chosen from an error distribution χ, G ∈ Z
M×M log q
q is the

gadget matrix [MP12], and we treat x as a row vector of length � in x ⊗ G.
– Homomorphic evaluation of f on C yields Cf satisfying

Cf = ARf,x + Ef,x + f(x) · q
2 ∈ Z

M×K
q (1)

where f(x) ∈ {0, 1}M×K , Rf,x ∈ Z
w×K
q and Ef,x has small entries.

A
R

x ⊗ G+ + E �→ A
Rf,x

f(x) · q
2+ + Ef,x

Our base scheme2 simply outputs

A, C := AR + x ⊗ G + E, Rf,x

2 In the WW terminology, this would be a candidate K-sim functional encoding for
f1, . . . , fK : {0, 1}� → {0, 1}M .



Succinct LWE Sampling, Random Polynomials, and Obfuscation 259

as the encoding of x. Decoding computes Cf given (C, f), subtracts A ·Rf,x to
obtain f(x) · q

2 plus error (following Eq. 1) and rounds to obtain f(x).
The encoding is also succinct: The total size of the encoding (in bits) is

O((Mw + M2� + wK) · log q).

Setting M = N1/3,K = N2/3, w = O(λ) yields encoding size ˜O(N2/3), where
˜O(·) hides polynomial factors in λ, � and the depth of the circuit computing f .

The scheme is, however, completely insecure as written because, given C,Rf,x

and a “guess” for x, we can recover R by solving a system of linear equations,
and test if our guess was correct (see WW). This allows us to easily distinguish
between encodings of any x0 and x1.

“Pseudorandom” LWE Sampling. Following [WW21], we fix the insecurity of
the base scheme by masking Rf,x using a “pseudorandom” LWE sample; similar
ideas were used in several prior works [BDGM20a,GP21,JLS21,AR17,Agr19,
JLMS19,AJL+19] with “pseudorandom” noise. That is, we generate a “pseudo-
random” LWE sample B∗ = AS∗ + E∗ ∈ Z

M×K
q and output

seedB∗ , A, AR + x ⊗ G + E, Rf,x + S∗ (2)

where seedB∗ is a succinct description of B∗, with |seedB∗ | ≤ (MK)δ for some
δ < 1. Correctness now relies on the fact that

A · (Rf,x + S∗) ≈ B∗ + Cf + f(x) · q
2 .

WW’s security requirement for the pseudorandom LWE sample, “oblivious
LWE sampling”, was cumbersome to define, required a simulator, and only made
sense in the common reference string model. The reliance on a simulator means
the definition did not have an inherently falsifiable format that enables demon-
strating insecurity by constructing an efficient attacker. Here, we reformulate a
simpler and falsifiable variant that we call “succinct LWE sampling”.3

Defining pseudorandom LWE sampling, in WW and in our work, is difficult
because we want B∗ = AS∗ + E∗ to look like a random LWE sample, but this
is impossible since it is succinctly described in seedB∗ . Instead, we essentially
want E∗ to drown out the difference between any two sufficiently small error
distributions Z0 and Z1, in the sense that seedB∗ ,E∗ −Zb hides b. Unfortunately,
this too is impossible, since seedB∗ lets us get B∗ = AS∗ + E∗ from which we
can then derive AS∗ + Zb; this allows us to distinguish between (say) Z0 = 0
and Z1 being a small Gaussian by checking rank. Our main observation is that
we don’t need indistinguishability to hold for worst-case distributions Zb, but
rather only for ones where an LWE sample AR + Zb with the error Zb and a
truly random R would hide the bit b. Formally, the definition says that for any
two distributions of (Zb, auxb) where Zb is sufficiently short:
3 It is simpler in terms of syntax, since we do not refer to LWE trapdoors for A, and

in terms of the security requirement since we do not require a simulator, but instead
have a simple indistinguishability criterion.
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If (aux0,A,AR + Z0) ≈c (aux1,A,AR + Z1), (3)
then (seedB∗ , aux0,A,E∗ − Z0) ≈c (seedB∗ , aux1,A,E∗ − Z1). (4)

Note that, since seedB∗ defines AS∗ +E∗, giving E∗ −Zb in (4) is equivalent to
giving AS∗ + Zb, and hence we use these interchangeably in the definition.

The above definition is not falsifiable since it quantifies over all (auxb,Zb)
satisfying the pre-condition (3). However, we also consider a weaker, falsifiable
definition, where we fix a specific (aux∗

b ,Z
∗
b) that satisfies the pre-condition (3).

We then show a generic transformation that lifts any scheme realizing the weak
definition into one that realizes the general definition. Specifically, in the weak
definition, we fix aux∗

b = (̂B,C) to consist of a commitment ̂B to 0, along with
a commitment C to −b. We then homomorphically evaluate an AND operation
(multiplication) on the commitments ̂B,C, which results in a commitment to 0,
and we define Z∗

b to be the error term for this commitment. Formally,

aux∗
b =

(

̂B = AS0 + F, C = AR + E − bG
)

and Z∗
b = EG−1(̂B) − bF,

where E and F are matrices with small entries. The transformation is inspired by
a trick employed in WW to frame the security of their candidate oblivious LWE
sampler construction as a falsifiable assumption. Here, we are able to abstract
this trick out and formally prove that it amplifies a weak definition of security
to a strong one. Therefore, we get a simple and falsifiable definition of succinct
LWE sampling as our target. We refer to the full version for more details.

Our final definition introduces additional relaxations. Instead of a uniformly
random matrix A, we allow the use of matrices A∗, which may not be uniformly
random and can have some additional structure, as long as LWE still holds
w.r.t. A∗. We also allow the succinct sampler to rely on a non-succinct common
reference string (CRS) of length poly(N). This is analogous to the reliance on a
CRS in WW (as well as [BDGM20a,GP21]) and suffices for iO.

Our Succinct Randomized Encoding. To go from succinct LWE sampling to SRE,
we essentially follow WW, and replace A with A∗ in (2). The SRE consists of:

seedB∗ , A∗, A∗R + x ⊗ G + E, Rf,x + S∗ . (5)

Correctness and succinctness follow readily as before. To prove security, we need
to argue as follows that Encode(f, xb) hides b as long as f(x0) = f(x1).

– As long as A∗ is full-rank, (Rf,xb
+ S∗) can be computed from A∗ and A∗ ·

(Rf,xb
+ S∗), so it suffices to argue that:

seedB∗ , A∗, A∗R + xb ⊗ G + E, A∗ · (Rf,xb
+ S∗)

hides b.
– Using Cf = A∗Rf,xb

+Ef,xb
+ f(xb) · q

2 and deriving B∗ = A∗S∗ +E∗ from
seedB∗ , we can write

A∗ · (Rf,xb
+ S∗) = Cf − f(xb) · q

2 + B∗ − E∗ − Ef,xb
,
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so it suffices to argue that

seedB∗ , A∗, A∗R + xb ⊗ G + E, E∗ + Ef,xb

hides b.
– At this point, we will invoke security of our succinct LWE sampler with

auxb = A∗R + xb ⊗ G + E, Zb = Ef,xb

For this step, we need to show that the pre-condition (3) holds:

(A∗R + x0 ⊗ G + E, A∗, A∗S′ + Ef,x0 ) ≈c (A∗R + x1 ⊗ G + E, A∗, A∗S′ + Ef,x1 ).

This follows from LWE w.r.t. A∗ and the fact that A∗S′ + Ef,xb
≡ A∗S′ +

Cf − f(xb) · q
2 , where f(x0) = f(x1).

Note that, in the above, we only relied on the security of the LWE sampler for
the special case where auxb is an encryption of xb and Zb is the error in the
ciphertext one gets by homomorphically computing f(xb) for some function f
such that f(x0) = f(x1). However, as mentioned previously, we can also rely
on an even more restricted form of (auxb,Zb), essentially corresponding to the
extremely simple case where f just computes the AND of b and 0, and generically
lift security to the completely general case.

Our Candidate Succinct LWE Sampler. We want to design a succinct LWE
sampler generating B∗ = A∗S∗+E∗. The security requirement in Eq. (4) implies
that E∗ − Zb hides b for any short matrices Z0,Z1 satisfying some additional
properties which we shall ignore in the rest of this overview. In addition, we want
B∗ to admit a short description seedB∗ , which means that E∗ ∈ Z

M×K should
compute a “pseudorandom” noise-flooding distribution.

Following [JLMS19,AJL+19], a good candidate for E∗ is to evaluate MK
random degree-d polynomials in dmk variables drawn from independent Gaus-
sian distributions, where MK � (dmk)d/2 to avoid linearization and potential
sum-of-squares-based attacks; the ensuing distribution is plausibly indistinguish-
able from MK independent samples from a “noise-flooding” distribution D for
a suitable choice of parameters. Concretely, thinking of d as a small constant,
we sample “secret” Gaussian matrices E1, . . . ,Ed ← χm×k and public Gaussian
matrices P ← χM×md

and P′ ← χkd×K and we define

E∗ := P(E1 ⊗ E2 ⊗ · · · ⊗ Ed)P′ ∈ Z
M×K

where P,P′ are published in the CRS. In the special case of m = M = 1 and
P = 1, the distribution of E∗ ∈ Z

K corresponds roughly to the evaluation of
K random (i.e. Gaussian) degree-d (multilinear) polynomials in dk variables
(where the dk variables are the entries of the E1, . . . ,Ed and the coefficients of
the polynomial are specified by P′). In the general case, we have a collection of
polynomials, where each one looks at a certain structured set of monomials. For
more details, see Sect. 4.5.
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Next, we specify (B∗,A∗,S∗, seedB∗), starting with seedB∗ . Following
[JLMS19], we additionally sample Ai ← Z

m×w
q ,Si ← Z

w×k
q for i = 1, . . . , d

and some w � m, k, and we define:

seedB∗ := (B1 := A1S1 + E1 , . . . , Bd := AdSd + Ed) ∈ (Zm×k
q )d.

Inspired by the homomorphic operations of the Brakerski-Vaikuntanathan
FHE [BV11], we want to relate E∗ to B1 ⊗ · · · ⊗ Bd and from there, derive
B∗,A∗,S∗ such that B∗ = A∗S∗ + E∗ (we will discuss succinctness after that).
We start with d = 2 for simplicity. By the mixed product property:

B1 ⊗ B2 = A1S1 ⊗ B2 + E1 ⊗ A2S2 + E1 ⊗ E2

= [A1 ⊗ Im | Im ⊗ A2]
(

S1 ⊗ B2

E1 ⊗ S2

)

+ E1 ⊗ E2.

We start by defining B∗ and “pre-cursor” values A
∗
,S

∗
, which we will use to

derive the final A∗,S∗ later, via:

B∗
︷ ︸︸ ︷

P · (B1 ⊗ B2) · P′ =

A
∗

︷ ︸︸ ︷

P[A1 ⊗ Im | Im ⊗ A2] ·

S
∗

︷ ︸︸ ︷

(

S1 ⊗ B2

E1 ⊗ S2

)

P′ +

E∗
︷ ︸︸ ︷

P(E1 ⊗ E2)P′

For general d, we have:

B∗ = P · (B1 ⊗ · · · ⊗ Bd) · P′ ∈ Z
M×K
q , E∗ = P(E1 ⊗ E2 ⊗ · · · ⊗ Ed)P′ ∈ Z

M×K ,

A
∗

= P · (A1 ⊗ Im ⊗ · · · ⊗ Im‖ · · · · · · ‖Im ⊗ · · · ⊗ Im ⊗ Ad) ∈ Z
M×dwmd−1

q ,

S
∗

=

⎛
⎜⎜⎜⎝

S1 ⊗ B2 ⊗ · · · ⊗ Bd

E1 ⊗ S2 ⊗ · · · ⊗ Bd

...
E1 ⊗ E2 ⊗ · · · ⊗ Sd

⎞
⎟⎟⎟⎠ · P′ ∈ Z

dwmd−1×K
q , which we show satisfy

B∗ = A
∗ · S∗

+ E∗.

Note that while the width of A in both the base scheme and WW is w = poly(λ),
the width of A

∗
is much larger and will in fact grow with N .

As mentioned above, it seems reasonable to conjecture that E∗ on its own
is pseudo-iid. However, S

∗
is structured and does not look random on its own,

which is problematic since we want S
∗

+ Rf,x to drown out differences in the
distribution of Rf,x. Therefore, we will rely on a variant of Kilian randomization
[Kil88] to hide the structure of A

∗
,S

∗
. We compute a random basis A∗ of the

column span of A
∗

and then solve for S∗ subject to A∗S∗ = A
∗ · S

∗
. This

ensures that A∗,S∗ essentially do not reveal more than the product A
∗
S

∗
.

Succinctness. With the above implementation of succinct LWE sampling, from
(5), the encodings of the resulting SRE have size
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|Encode(f, x)| = ˜O

⎛

⎝ M2
︸︷︷︸

A∗R+x⊗G+E

+ dmk
︸︷︷︸

seedB∗

+ Mdwmd−1
︸ ︷︷ ︸

A∗
+ Kdwmd−1
︸ ︷︷ ︸

S∗+Rf,x

⎞

⎠

where ˜O(·) hides poly(λ, log q, �) factors, which is in turn polynomial in λ, � and
circuit depth of f . We set

w = poly(λ),

m = N
1
2d ,

k = m5 = N
5
2d ,

M = md−1/2 = N
1
2− 1

4d ,

K = md+1/2 = N
1
2+

1
4d .

Then, |Encode(f, x)| = ˜O(m2d−1/6) = ˜O(N1− 1
12d ), that is, our scheme achieves

(1 − 1
12d )-succinctness, which can then be lifted to iO using [AJ15,BV15,

LPST16].

Our Final Assumption: Subspace Flooding. Combined with the transformation
discussed earlier, we only need our sampler to satisfy weak security, which boils
down to the following subspace flooding assumption: that

P,P′, seedB∗ , A∗, ̂B = A∗S0 + F, C = A∗R + E − bG, E∗ + E · G−1(̂B) − bF
(6)

hides b where P ∈ Z
M×md

, P′ ∈ Z
kd×K , E ∈ Z

M×M log q, and F ∈ Z
M×K and

{Ei}i∈[d] are sampled from small distributions;

E∗ = P(E1 ⊗ E2 ⊗ · · · ⊗ Ed)P′ ∈ Z
M×K ;

for i = 1, . . . , d, Ai is sampled from Z
m×w
q and Si is sampled from Z

w×k
q ;

seedB∗ = {Bi = AiSi + Ei}i∈[d] ∈ (Zm×w
q )d;

S0 is sampled from Z
dwmd−1×K
q and R is sampled from Z

dwmd−1×M log q
q so ̂B ∈

Z
M×K
q and C ∈ Z

M×M log q
q ; and A∗ is the result of the Kilian randomization

process described above.
Note that the columns of E · G−1(̂B) ∈ Z

M×K live in a low-rank subspace
defined by the columns of E ∈ Z

M×M log q where K � M log q and F is sampled
independently from a small distribution. Thus, the assumption states that E∗

masks whether the error EG−1(̂B) − bF ∈ Z
M×K lives in this low-rank subspace,

hence the name “subspace flooding”.
A different, less syntactic, perspective on the subspace flooding assumption

tells us that to protect arbitrary computations, it is sufficient to protect a single
homomorphic multiplication. Indeed, consider C to be a GSW encryption of −b
and ̂B to be a GSW encryption of 0. Their homomorphic multiplication gives us

C · G−1(̂B) = A∗(RG−1(̂B) − bS0) + (E · G−1(̂B) − bF)

Subspace flooding says that adding E∗ “protects” the error E ·G−1(̂B) − bF in
the evaluated ciphertext in the sense of hiding b.
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Theorem 1 (Informal). Under the (subexponential hardness of the) learning
with errors assumption and the subspace flooding assumption (Eq. 6 above), there
exists an indistinguishability obfuscation scheme.

1.3 Discussion

Noise Distribution in Prior Works. The sampler in WW sampler works by
homomorphically generating pseudorandom LWE samples using an encrypted
(weak) pseudorandom function, such as that given by k, u �→ round(〈k, u〉) for
key k and random input u. Prior works used the GSW FHE for homomorphic
evaluation, but did not specify the circuit implementation for the PRF. Hopkins,
Jain and Lin (HJL) [HJL21] presented attacks on these prior LWE samplers that
“exploit the flexibility to choose specific implementations of circuits and LWE
error distributions in the Gay-Pass and Wee-Wichs assumptions.” Specifically,
they showed how to introduce redundancy into the circuit used in homomorphic
evaluation following the GSW FHE so that the last two bits of E∗ + Zb leak b.

Note that the above attack can be circumvented by fixing some natural choice
of a concrete weak PRF, such as the aforementioned, which corresponds to FHE
decryption; and a circuit evaluation of it, such as [AP14], which is in fact a
read-once branching program with k hardwired. Unfortunately, writing down an
explicit expression for the error distribution in the pseudorandom LWE sample
is far from straightforward, which in turn impedes any cryptanalytic efforts. In
this work, we avoid such considerations by directly considering succinct LWE
samplers, as opposed to homomorphically evaluated weak PRFs.

Relation to the “LWE with Leakage” Assumption of [JLMS19]. Our assumption
basically asserts that for small Z0,Z1 satisfying some precondition:

A1, . . . ,Ad, (Bi := AiSi + Ei)i∈[d], P,P′, P(E1 ⊗ · · · ⊗ Ed)P′ − Zb

hides b. (In fact, we do not give away A1, . . . ,Ad, rather a random basis for the
column span of A∗. We ignore this difference for the rest of the comparison.)

The LWE with leakage assumption of [JLMS19] basically asserts that for
small z0, z1, and Ai ∈ Z

m×w
q , si ∈ Z

w×1
q , ei ∈ χm×1:

A1, . . . ,Ad−2, (bi := Aisi + ei)i∈[d−2], P, P(e1 ⊗ · · · ⊗ ed) + zb

hides b.
The LWE with leakage assumption of [JLMS19] can be viewed as a variant

of our flooding assumption. Syntactically, their definition can be recovered from
ours with three modifications:

1. Set k = 1 as opposed to our assumption where k � m;
2. Set P to be very compressing, namely, the output has length M � md/2,

whereas in our case M ≈ md−1/2; and
3. Do not release Ad−1,Ad,Bd−1,Bd to the distinguisher, ensuring that the

only leakage about ed−1, ed comes from E∗.
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These syntactic differences have the following consequences:

– With k = 1 and M ≈ md−1/2, the assumption can indeed be broken with
sum-of-squares attacks (see, e.g., [BHJ+19].) Thus, our source of security
comes from the fact that k is large. Semantically, this means that we take
multiple, albeit correlated, instances of the [JLMS19] problem, defined by
the kd columns of our matrix E1 ⊗ · · · ⊗ Ed, and output a “few”, namely,
K � kd/2 linear combinations of them.

– An adversary in our setting can check the rank of

P(B1 ⊗ · · · ⊗ Bd)P′ − E∗ + Zb mod q

which is something that cannot be computed in the [JLMS19] assumption
since Bd−1,Bd are not given to the distinguisher. This allows the latter to
plausibly handle worst-case small zb, whereas we require an additional pre-
condition on Zb.

Their final iO scheme additionally assume bilinear groups (in addition to
LWE), which we do not.

Cryptanalytic Challenges. A central open problem from this work is to design
succinct LWE samplers based on weaker assumptions and to carry out crypt-
analysis of our candidate succinct LWE sampler. To facilitate the latter, we
describe concrete cryptanalytic challenges in Sect. 4.6. Thanks to our amplifica-
tion theorem, in order to base iO on our candidate LWE sampler, it suffices for
security to hold for a specific pair of distributions (Z0,Z1). On the other hand,
the heuristic underlying our candidate sampler (related to random polynomials
being indistinguishable from independent copies of a noise-flooding distribution
D) does not refer to properties of the specific distribution. For this reason, our
cryptanalytic challenges also refer to more general distributions Z0,Z1 that may
not correspond to those which are sufficient for iO.

2 Preliminaries

2.1 Notations

We will denote by λ the security parameter. The notation negl(λ) denotes any
function f such that f(λ) = λ−ω(1), and poly(λ) denotes any function f such
that f(λ) = O(λc) for some c > 0. For a probabilistic algorithm alg(inputs), we
might explicitly refer to its random coins by writting alg(inputs; coins). We will
denote vectors by bold lower case letters (e.g. a) and matrices by bold upper
cases letters (e.g. A). We will denote by a� and A� the transposes of a and A,
respectively. We will denote by �x� the nearest integer to x, rounding towards
0 for half-integers. For matrices A,B of appropriate dimensions, we will denote
by (A‖B) their horizontal concatenation and

(

A
B

)

their vertical concatenation.
For an integer n ≥ 1, we denote by In the identity matrix of dimension n. For
integral vectors and matrices (i.e., those over Z), we use the notation ‖r‖, ‖R‖
to denote the maximum absolute value over all the entries.
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For matrices A,B, we denote by A ⊗ B their tensor (or Kronecker) prod-
uct. We’ll use the following mixed-product property: for matrices A,B,C,D of
appropriate dimensions, we have (AB) ⊗ (CD) = (A ⊗ C) · (B ⊗ D).

For p ∈ Q, we write Roundp(x) = �x · 1/p�. If X is a matrix, Roundp(X)
denotes the rounded value applied component-wise. We denote by �x� the small-
est integer larger or equal to x.

For a finite set S, s ← S denotes sampling uniformly in S. We define the
statistical distance between two random variables X and Y over some domain Ω
as: SD(X,Y ) = 1

2

∑

w∈Ω |X(w) − Y (w)| . We say that two ensembles of random
variables X = {Xλ}, Y = {Yλ} are statistically indistinguishable, denoted X ≈s

Y , if SD(Xλ, Yλ) ≤ negl(λ).
We say that two ensembles of random variables X = {Xλ}, and Y = {Yλ}

are computationally indistinguishable, denoted X ≈c Y , if, for all (non-uniform)
PPT distinguishers A, we have |Pr[A(Xλ) = 1] − Pr[A(Yλ) = 1]| ≤ negl(λ). We
also refer to sub-exponential security, meaning that there exists some ε > 0 such
that the distinguishing advantage is at most 2−λε

.

2.2 Learning with Errors

Definition 1 (B-bounded distribution). We say that a distribution χ over
Z is B-bounded if

Pr[χ ∈ [−B,B] ] = 1.

We recall the definition of the (decision) Learning with Errors problem, intro-
duced by Regev [Reg05].

Definition 2 ((Decision) Learning with Errors ([Reg05])). Let n = n(λ)
and q = q(λ) be integer parameters and χ = χ(λ) be a distribution over Z. The
Learning with Errors (LWE) assumption LWEn,q,χ states that for all polyno-
mials m = poly(λ) the following distributions are computationally indistinguish-
able:

(A,As + e) ≈c (A,u)

where A ← Z
m×n
q , s ← Z

n
q , e ← χm,u ← Z

m
q .

Just like many prior works, we rely on LWE security with the following
range of parameters. We assume that for any polynomial p = p(λ) = poly(λ)
there exists some polynomial n = n(λ) = poly(λ), some q = q(λ) = 2poly(λ) and
some B = B(λ)-bounded distribution χ = χ(λ) such that q/B ≥ 2p and the
LWEn,q,χ assumption holds. Throughout the paper, the LWE assumption with-
out further specification refers to the above parameters. The sub-exponentially
secure LWE assumption further assumes that LWEn,q,χ with the above param-
eters is sub-exponentially secure, meaning that there exists some ε > 0 such that
the distinguishing advantage of any polynomial-time distinguisher is 2−λε

.
The works of [Reg05,Pei09] showed that the (sub-exponentially secure)

LWE assumption with the above parameters follows from the worst-case (sub-
exponential) quantum hardness SIVP and classical hardness of GapSVP with
sub-exponential approximation factors.
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2.3 Lattice Tools

Noise Flooding. We will use the following fact.

Lemma 1 (Flooding Lemma (e.g., [AJL+12])). Let B = B(λ), B′ =
B′(λ) ∈ Z be parameters and let U([−B,B]) be the uniform distribution over
the integer interval [−B,B]. Then for any e ∈ [−B′, B′], the statistical distance
between U([−B,B]) and U([−B,B]) + e is B′/B.

Gadget Matrix [MP12]. For an integer q ≥ 2, define: g = (1, 2, · · · , 2�log q	−1) ∈
Z
1×�log q	
q . The gadget matrix G is defined as G = g ⊗ In ∈ Z

n×m
q where n ∈ N

and m = n�log q�. There exists an efficiently computable deterministic function
G−1 : Z

n
q → {0, 1}m such for all u ∈ Z

n
q we have G · G−1(u) = u. We

let G−1($) denote the distribution obtained by sampling u ← Z
n
q uniformly at

random and outputting t = G−1(u). These extend directly to matrices: G−1 :
Z

n×k
q → {0, 1}m×k by concatenating the outputs.

2.4 Homomorphic Operations

In this section, we describe how to perform homomorphic operations over certain
encodings of inputs. For readers familiar with lattice-based primitives, these
essentially are packed versions of the GSW homomorphism.

Our operations follow readily from [WW21] (building on [GSW13,GVW15],
along with the “packing” techniques in [PVW08,MW16,BTVW17,PS19,GH19,
BDGM19]), who build homomorphic operations for f : {0, 1}� → {0, 1}M ,
producing some vector cf ∈ Z

M
q . We extend these operations to functions

f : {0, 1}� → {0, 1}M×K to produce some matrix Cf ∈ Z
M×K
q , obtained by

concatenating K vectors cfi
. This yields the following.

Definition 3 (Homomorphic operations). Let M,W, q, �,K, t be parame-
ters. We define the following efficient algorithms:

– Eval(f : {0, 1}� → {0, 1}M×K , C ∈ Z
M×�M log q
q ): deterministically outputs a

matrix Cf ∈ Z
M×Q
q .

– Evalopen(f,A ∈ Z
M×W
q , x ∈ {0, 1}�,R ∈ Z

W×�M log q
q ,E ∈ Z

M×�M log q):
deterministically outputs two matrices (Rf,x ∈ Z

W×Q
q ,Ef,x ∈ Z

M×Q).

These operations have the following property. For all f : {0, 1}� → {0, 1}M×K

of depth t, x ∈ {0, 1}�, A ∈ Z
M×W
q , R ∈ Z

W×�M log q
q and E ∈ Z

M×�M log q, if

C = AR + x� ⊗ G + E ∈ Z
M×�M log q
q ,

Cf = Eval(f,C),

(Rf,x,Ef,x) = Evalopen(f,A, x,R,E),

where we view x as a row vector x ∈ {0, 1}1×�, then

Cf = ARf,x + q/2 · f(x) + Ef,x ∈ Z
M×K
q ,

where f(x) ∈ {0, 1}M×K . Furthermore ‖Ef,x‖ = ‖E‖ ·Mg(t) for some efficiently
computable g such that g(t) = O(t).
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Similarly to [WW21], these algorithms extend to functions f with outputs
in Zq.

– Evalq(f : {0, 1}� → Z
M×K
q , C ∈ Z

M×�M log q
q ): deterministically outputs a

matrix Cf ∈ Z
M×Q
q .

– Evalqopen(f,A ∈ Z
M×W
q , x ∈ {0, 1}�,R ∈ Z

W×�M log q
q ,E ∈ Z

M×�M log q):
deterministically outputs two matrices (Rf ∈ Z

W×Q
q ,Ef ∈ Z

M×Q).

The correctness requirement becomes:

Cf = ARf,x + f(x) + Ef,x ∈ Z
M×K
q ,

where C = AR+ x ⊗G+E ∈ Z
M×�M log q
q , x being again seen as a row vector,

Cf = Evalq(f,C) and (Rf,x,Ef,x) = Evalqopen(f,A, x,R,E), and f(x) ∈ Z
M×K
q .

Again, ‖Ef,x‖ = ‖E‖ · Mg(t).

2.5 Succinct Randomized Encodings

Next, we define succinct randomized encodings [BGL+15,BCG+18,LPST16].

Definition 4. A succinct randomized encoding scheme (SRE) for the function
family F�,N,t = {f : {0, 1}� → {0, 1}N} of circuits of depth at most t, is a tuple
of PPT algorithms (CRSGen,Encode,Decode) with the following syntax:

– CRSGen(1λ,F�,N,t) → crs: on input the security parameter and a function
family, outputs crs.

– Encode(crs, f, x) → C: on input crs, a function f ∈ F�,N,t and x ∈ {0, 1}�,
outputs an encoding C.

– Decode(crs, C, f) → y: a deterministic algorithm which, on input crs, an
encoding C, and a function f ∈ F�,N,t, outputs a value y ∈ {0, 1}N .

We require the following properties:

Correctness: For f ∈ F�,N,t and any x ∈ {0, 1}�:

Pr [Decode(crs,Encode(crs, f, x), f) = f(x)] ≥ 1 − negl(λ),

where crs ← CRSGen(1λ,F�,N,t) (over the randomness of CRSGen,Encode).

δ-Succinctness: There exists a constant δ < 1 such that, for all crs ←
CRSGen(1λ,F�,N,t), C ← Encode(crs, f, x), we have:

|C| = N δ · poly(λ, �, t).

Indistinguishability-Based Security: For all PPT A, all x0, x1 ∈ �, and all f ∈
Ft,�,N such that f(x0) = f(x1), the following distributions are indistinguishable
for b = 0 and b = 1:

– Db: Sample crs ← CRSGen(1λ,Ft,�,N ), Cb ← Encode(crs, f, xb). Output
(crs, Cb).
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Relation to XiO. Our notion of SRE is also very related to the notion of expo-
nentially efficient iO (XiO) from [LPST16]. An XiO scheme obfuscates a circuit
C : {0, 1}log N → {0, 1} with the same security guarantee as iO, but the run-
time of the obfuscator can be as high as poly(λ, |C|, N) and the only constraint
that makes the problem non-trivial is that the obfuscated circuit is succinct, of
size at most N δpoly(λ, |C|) for δ < 1. An SRE scheme immediately yields an
XiO scheme by thinking of f as the universal circuit that takes as input a circuit
x = C an evaluates it on all N inputs in {0, 1}log N . The output size of f is N
and the depth of f can be bounded by t = poly(|C|), so the succinctness of the
SRE yields the corresponding succinctness of the XiO. Therefore, by leveraging
the prior work of [LPST16] that shows how to go from XiO (in the CRS model)
to iO via LWE, we get the following theorem.

Theorem 2 [AJ15,BV15,LPST16]. Assuming sub-exponentially secure SRE
exist and sub-exponentially secure LWE, there exists an iO scheme.

3 Succinct LWE Sampler: Definition and Amplification

In Sect. 3.1, we define the notion of succinct LWE samplers. In Sect. 3.2, we
describe a seemingly weaker notion of LWE sampler, and prove that it implies
the first (and stronger) notion.

3.1 Definition and Discussion

Definition 5 (Succinct LWE Sampler). A succinct LWE sampler is a tuple
of PPT algorithms (SampCRSGen, LWEGen,Expand) with the following syntax:

– SampCRSGen(1λ, 1N , α): on input the security parameter λ, a size parameter
N and a blow-up factor α, samples a common reference string crs, which
include parameters params = (q,M,K, χ,B).

– LWEGen(crs): samples (seedB∗ ,A∗,S∗).
– Expand(crs, seedB∗) is a deterministic algorithm that outputs a matrix B∗.

Domains and Parameters. The outputs of LWEGen and Expand satisfy:

A∗ ∈ Z
M×W
q , S∗ ∈ Z

W×K
q , B∗ ∈ Z

M×K
q ,

for some integer W . We require that:

– N = MK;
– B = poly(N);
– χ is a B-bounded noise distribution; and
– q ≥ 8 · 2λ · α · B.

Correctness. We require that

||B∗ − A∗S∗|| := β ≤ q/8

where crs ← SampCRSGen(1λ, 1N , α), (seedB∗ ,A∗,S∗) ← LWEGen(crs) and
B∗ := Expand(crs, seedB∗). Furthermore, we require that A∗ is full-rank with
overwhelming probability over the randomness of SampCRSGen and LWEGen.
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δ-Succinctness. We require the total bit length of the output of LWEGen is small.
That is,

bitlength(seedB∗ ,A∗,S∗) ≤ N δ · poly(λ, log q) = (MK)δ · poly(λ, log q) ,

where δ < 1 is a constant. When we omit δ, it means succinctness holds for
some constant δ < 1.

LWE with respect to A∗. We require that

(coinscrs, coinsseed,A∗s′ + e′) ≈c (coinscrs, coinsseed,b),

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) ← LWEGen(crs;
coinsseed), s′ ← ZW

q , and e′ ← χM .

Security (or β0-Flooding). Let D0,D1 be any two polynomial-time samplable dis-
tributions such that (auxb,Zb) ← Db(A∗) satisfies Zb ∈ Z

M×K , ‖Zb‖ ≤ β0 where
β0 · 2λ ≤ β and

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux1)

where crs = SampCRSGen(1λ, 1N , α; coinscrs), (seedB∗ ,A∗,S∗) = LWEGen(crs;
coinsseed) and S′ ← Z

W×K
q . Then,

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).

We will refer to the assumption on D0,D1 as the pre-condition for security, and
the resulting indistinguishability the post-condition.
Furthermore, as we will later describe a relaxed notion of security, we will some-
times refer to the notion above as strong security to avoid ambiguity.

Remark 1 (Alternate formulation). Since the sampler allows us to compute
Expand(crs, seedB∗) = B∗ = A∗S∗ + E∗, the security post-condition can be
equivalently stated as:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 2 (Implied Statements). The randomness coinscrs and coinsseed respec-
tively used by SampCRSGen and LWEGen allow us to compute crs, seedB∗ ,A∗,S∗.
In particular, LWE with respect to A∗ implies that

(crs, seedB∗ ,A∗,S∗,A∗s′ + e) ≈c (crs, seedB∗ ,A∗,S∗,b),

and the pre-condition on D0,D1 for security implies that

(crs, seedB∗ ,A∗,S∗, aux0,A∗S′ + Z0) ≈c (crs, seedB∗ ,A∗,S∗, aux1,A∗S′ + Z1).
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Remark 3 (Restrictions on Z0,Z1). We note that security (namely, the post-
conditionition) cannot hold for arbitrary Z0,Z1, for which the pre-condition
does not hold. Even if one only required that Z0 and Z1 had small entries, one
can efficiently distinguish Z0 = 0 from any Z1 not in the column span of A∗. In
particular, the rank of A∗S∗ + Zb would leak b: this is because A∗S∗ is rank-
deficient by succinctness. We can rule out such distinguishers simply by requiring
that Z0 − Z1 lies in the column span of A∗; our pre-condition is in some sense
a “distributional” or “computational” relaxation of such a requirement.

Remark 4 (Triviality without succinctness). We remark that it is easy to build
a succinct LWE sampler if there are no restrictions on the bit-length of seedB∗

(looking ahead, such a sampler would not be sufficient to build iO). Indeed,
without any succinctness requirement, we could set:

crs = ∅, seedB∗ = A∗S∗ + E∗ ∈ Z
M×K
q

where S∗ is random and E∗ has small entries, but large enough to “noise-flood”
Zb (namely, β0/β = 2−λ).

For convenience, we consider the equivalent notion of security from Remark 1.
We claim that this construction (unconditionally) satisfies security. To see this,
first note that for all b ∈ {0, 1}:

(seedB∗ , A∗, E∗ − Zb, auxb) ≈s (A∗S∗ + (E∗ + Zb), A∗, E∗, auxb)

by noise flooding, where we use that E∗ is sampled independently of auxb,Zb.
The pre-condition then implies that

(A∗, (A∗S∗ + Z0) + E∗,E∗, aux0) ≈c (A∗, (A∗S∗ + Z1) + E∗,E∗, aux1),

where we again use that E∗ is sampled independently of auxb,Zb,S∗, and that
S∗ is sampled uniformly at random independently of the other components (and
takes the role of S′ in the pre-condition).

Remark 5 (Heuristic necessity of a CRS). We heuristically show that security
requires a (long) CRS if seedB∗ is required to be short, namely the CRS needs
to be of length ≈ N for any δ-succinct scheme with δ < 1.

Suppose for contradiction that there is such a sampler that expands
some short input (crs, seedB∗) of length at most N δ · poly(λ, log q) to some
Expand(seedB∗) = B∗ = A∗S∗ + E∗ of bit-length N log q. Let Zb be a random
LWE error and let auxb be an obfuscation of the following program:

Pb,A∗,Zb
: on input (crs, seedB∗) of bit-length N δ · poly(λ, log q), and ˜B of bit-

length N log q,
– Check that ˜B − Zb is in the column span of A∗, and output ⊥ if not.
– Compute B∗ = Expand(crs, seedB∗) = A∗S∗ +E∗. Output b if ‖B∗ − ˜B+
Zb‖ ≤ β, and output ⊥ otherwise.
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Then (crs, seedB∗ , ˜B = A∗S∗ + Z0, aux0) is efficiently distinguishable from
(crs, seedB∗ , ˜B = A∗S∗ + Z1, aux1), by running auxb on input ((crs, seedB∗), ˜B)
and using the fact that (crs, seedB∗) has bit-length at most ˜O(N δ) by assump-
tion, that ‖E∗‖ ≤ β, that A∗S∗ has low rank by succinctness, and that
A∗S∗ + Z0 − Z1 has high rank w.h.p.

Furthermore, suppose heuristically that auxb acts like an ideal obfuscation
of Pb,Zb

, meaning that it does not reveal more than black-box access to the
program. Then, the pre-condition would hold since given (coinscrs, coinsseed,Bb =
A∗S′ + Zb) and black-box access to Pb,Zb

, one cannot distinguish b = 0 vs b = 1.
The idea is that the only way to learn anything about b is to provide a “good”
input to Pb,Zb

that makes it output something other than ⊥. Any good input
must be of the form ((crs′, seed′

B∗),Bb + A∗S) for some S ∈ Z
W×K
q . But if Bb

was uniform, there would be no inputs of this form, where (crs′, seed′
B∗) is short,

such that ‖Expand(crs′, seed′
B∗) − Bb + A∗S‖ is also small, meaning that Pb,Zb

would always output ⊥ in this case. This follows by a counting argument, where
the sizes of crs′, seed′

B∗ and S are much smaller than the size of Bb whenever δ
is sufficiently small, and β is relatively small compared to q. Therefore finding a
good input to Pb,Zb

would require breaking LWE with respect to A∗.

3.2 Weak Succinct LWE Samplers

We now present a weaker security notion for succinct LWE samplers. Instead
of quantifying over all (Zb, auxb) that satisfy the specified pre-condition as we
did previously, we now fix one particular and simple choice of (Zb, auxb). In
particular, this makes the definition falsifiable. We then show in Theorem 3
that there is a generic compiler that upgrades this type of weak security to the
previous definition of strong security (Definition 5).

Definition 6. Weak Security (or Weak β0-Flooding). Define D0,D1 as follows.

Db : auxb =
(

̂B := A∗
̂S + ̂E, C = A∗R + E − b · G

)

Zb = EG−1(̂B) − b̂E,

where

– SampCRSGen defines (q,M,K, χ,B) = params;
– LWEGen defines A∗ ∈ Z

M×W
q ;

– ̂B ∈ Z
M×K
q , ̂S ← Z

W×K
q , and ̂E ← [−Bflood, Bflood]M×K , where Bflood =

(β0 + B) · 2λ;
– C ∈ Z

M×M log q
q , R ← Z

W×M log q
q , and E ← χM×M log q.

We say that the sampler (SampCRSGen, LWEGen,Expand) is weakly secure if

(crs, seedB∗ ,A∗,A∗S∗ + Z0, aux0) ≈c (crs, seedB∗ ,A∗,A∗S∗ + Z1, aux1).
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Remark 6 (Alternate formulation of security). Similar to Remark 1, as the sam-
pler allows us to compute Expand(crs, seedB∗) = B∗ = A∗S∗ + E∗, weak security
equivalently states that:

(crs, seedB∗ ,A∗,E∗ − Z0, aux0) ≈c (crs, seedB∗ ,A∗,E∗ − Z1, aux1).

Remark 7 (Pre-condition from LWE). We note that the distributions D0,D1

satisfy the pre-condition for security of Definition 5, assuming LWE, namely:

(coinscrs, coinsseed,A∗S′ + Z0, aux0) ≈c (coinscrs, coinsseed,A∗S′ + Z1, aux0), (7)

where (auxb,Zb) ← Db and S′ ← Z
W×K
q .

This is true because one can efficiently sample A∗S′ + Zb given only
(A∗, auxb), as follows:

– Compute C
̂B = CG−1(̂B) ∈ Z

M×K
q ; and

– Output C
̂B + A∗S for some random S ← Z

W×K
q .

Indeed,

C
̂B + A∗S = (A∗R + E − bG)G−1(̂B) + A∗S

= A∗(RG−1(̂B) − b̂S + S) + (EG−1(̂B) − b̂E)

and the latter term is distributed identically to A∗S′ + Zb with a random S′.
Therefore, to show the precondition Eq. (7), it suffices to prove that

(coinscrs, coinsseed, auxb) hides b. But this follows from LWE with respect to A∗

(Definition 5) with noise distribution χ.

3.3 Amplification

The following theorem allows to lift weak security (Definition 6) to strong secu-
rity (Definition 5).

Theorem 3. Suppose there exists a weakly secure, δ-succinct LWE sampler
(Definition 6). Suppose furthermore that it satisfies M2 ≤ N δ · poly(λ, log q).
Then, assuming LWE, there exists a secure δ-succinct LWE sampler, satisfying
strong security (Definition 5). Moreover, with the parameters of Definition 6,
there exists such a sampler that is (strongly) β0-flooding.

We refer to the full version for a construction and a proof.

4 Candidate Succinct LWE Sampler

In Sect. 4.1, we present the template of our main candidate. In Sect. 4.2, we state
correctness and succinctness (and refer to the full version for proofs). In Sect. 4.3,
we explain how to setup parameters, and state our conjectured security. Last,
we discuss the plausibility of our conjecture in Sect. 4.5.
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4.1 A Basic Framework

We describe a basic template to build succinct LWE samplers. Looking ahead,
the SRE construction in Sect. 5 requires an additional succinctness requirement,
namely, that additional encodings produced by the SRE are succinct. We make
sure that our template and the parameters we propose are compatible with that
constraint.

We now describe our framework. It uses a set of parameters:

parameters := (d,m, k, w,M,K, χ, χ, β, q)

which in particular includes params = (q,M,K, χ,B, χ) directly output by
SampCRSGen. Informally,

– the security of our sampler is related to the hardness of solving systems of
random degree d polynomials;

– q is the underlying LWE modulus;
– m, k,w define the dimensions of the “seed” LWE samples Ai,Si,Ei, which

together with d, determine M,K, which are the dimensions for “expanded”
sample B∗;

– χ is the noise distribution for Ei; it is B-bounded over Z;
– χ is the noise distribution used for LWE w.r.t A∗; it is B-bounded over Z;
– DP a σ-bounded distribution over Z. We will take DP = χ for simplicity.

We now describe our candidate (SampCRSGen, LWEGen,Expand).

– SampCRSGen(1λ, 1N , α): Derive parameters = (d,m, k, w,M,K, χ,B, χ, β, q)
from (1λ, 1N , α) as described later in Sect. 4.3. Set params = (q,M,K, χ,B, χ).
Sample P′ ← χkd×K and P ← χM×md

. Output

crs = (params,P,P′).

– LWEGen(crs): On input crs = (params,P,P′), sample, for i ∈ [d], Ai ← Z
m×w
q ,

Si ← Z
w×k
q , Ei ← χm×k where χ is specified in params. Compute:

Bi = AiSi + Ei ∈ Z
m×k
q .

Set:

A
∗

= P ·
(

A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · ·

· · · ‖ Im ⊗ · · · ⊗ Im ⊗ Ad

)

∈ Z
M×dwmd−1

q

S
∗

=

⎛

⎜

⎜

⎜

⎝

S1 ⊗ B2 ⊗ · · · ⊗ Bd

E1 ⊗ S2 ⊗ · · · ⊗ Bd

...
E1 ⊗ E2 ⊗ · · · ⊗ Sd

⎞

⎟

⎟

⎟

⎠

· P′ ∈ Z
dwmd−1×K
q .
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Sample a random basis A∗ ∈ Z
M×W
q of the column space of A

∗
, and solve

for S∗ ∈ Z
W×K
q such that A∗S∗ = A

∗ · S∗
. Output:

seedB∗ = {Bi}i∈[d], A∗, S∗.

– Expand(crs, seedB∗): On input crs = (params,P,P′) and seedB∗ = {Bi}i∈[d],
output:

B∗ = P · (B1 ⊗ · · · ⊗ Bd) · P′ ∈ Z
M×K
q .

4.2 Correctness, Succinctness, and LWE with Respect to A∗

We show that for appropriate parameters, the sampler described above is correct
and succinct.

Claim 1. Assume β ≥ B2(mkB)d. Then the sampler (SampCRSGen, LWEGen,
Expand) described above satisfies correctness (Definition 5).

Claim 2. Suppose there exists δ < 1 such that

(dmk + MW + WK) ≤ N δ · poly(λ, log q),

where W is the width of A∗. Then (SampCRSGen, LWEGen,Expand) described
above is δ-succinct.

Proof. This follows as bitlength({Bi}i∈[d],A∗,S∗) = (dmk +MW +WK) · log q.

Next, we show that LWE holds with respect to A∗ (assuming standard LWE),
for our candidate sampler. We first show that it holds with respect to A

∗
.

Lemma 2 (LWE with respect to A
∗
). Let χ(λ) be a B(λ)-bounded distribu-

tion. Let DP be a σ-bounded distribution over Z such that if P = DM×md

P (coinsP )
is sampled using randomness coinsP , then with overwhelming probability over
coinsP , P is full-rank. Suppose furthermore that M ≤ md.

Suppose LWEw,q,χ holds. Let χ = U([−B,B]) be the uniform distribution in
[−B,B], where B ≥ σmdB · 2λ. Then:

(

coinsP ,P, {Ai}i∈[d],A
∗
,A

∗ · s + e
)

≈c

(

coinsP ,P, {Ai}i∈[d],A
∗
,b
)

,

where P = DM×md

P (coinsP ), b ← Z
M
q , s ← Z

dwmd−1

q , e ← χM .

Corollary 1 (LWE with respect to A∗). Let χ(λ) be a B(λ)-bounded
distribution. Suppose furthermore that M ≤ md. Then, assuming LWEw,χ,q,
(SampCRSGen, LWEGen,Expand) satisfies LWE with respect to A∗ with noise
distribution χ = U([−B,B]) where B = B2 · md · 2λ.

We refer to the full version for proofs of Claim 1, Lemma 2, and Corollary 1.
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4.3 Instantiating the Parameters

Parameters. We first go through our parameters, and show that they satisfy the
constraints of Definition 5.

Our candidate is a “degree-d” sampler, where d ≥ 2 is a fixed constant
integer. It expands LWE samples Bi ∈ Z

m×k
q to a matrix B∗ ∈ Z

M×K
q , using

matrices P ← χM×md

and P′ ← χkd×K .4 This expansion has stretch γ, in the
sense that MK = (mk)γ . w and W are the respective widths of the underlying
matrices Ai ∈ Z

m×w
q and A∗ ∈ Z

M×W
q . δ is the succinctness parameter of our

sampler.
χ denotes a B-bounded distribution used to sample seedB∗ , namely the matri-

ces {Ei}i∈[d], and we assume that LWEw,q,χ holds. β is a bound on ‖E∗‖ which
depends on B.

χ denotes a B-bounded distribution such that LWE with respect to A∗ holds
(assuming LWE holding for some fixed parameters only dependent on the secu-
rity parameter λ). α denotes a blow-up factor that defines the noise bound β0

that the sampler is masking in the security property, namely β0 = αB.
We gather the constraints on our parameters below:

– N = MK //constraint of the sampler
– (dmk + MW + WK) ≤ N δ · poly(λ, log q) for some δ < 1 //δ-succinctness
– M2 ≤ N δ · poly(λ, log q) //for SRE succinctness
– M ≤ md //LWE with respect to A∗ (Corollary 1)
– χ is a B-bounded distribution s.t. LWEw,q,χ holds. //base LWE assumption
– B = B2md · 2λ //LWE with respect to A∗ (Corollary 1)
– β = B2(mkB)d //bound on ‖E∗‖
– B large enough s.t. β ≥ β0 · 2λ where β0 = αB. //constraint of the sampler
– q ≥ 8β. //constraint of the sampler

We additionally add the following constraints to ensure security:

– γ < d/2 //to avoid SOS attacks (Sect. 4.5).
– M ≤ md,K ≤ kd //to avoid rank attacks5 (Sect. 4.5).

Next, we show our candidate sampler satisfies these constraints. Given the
security parameter λ, fix a degree d = O(1), a dimension w = w(λ), and a bound
B = B(λ). Given additional parameters N ≥ w6d and α as input, our candidate
sets the following parameters.

It fixes a stretch parameter γ ∈
[

2d
2d−1/6 , d/2

)

.

Set m = N1/2d ≥ w3. It then defines the following “dimension” parameters
k,M,K:

k = m
2d
γ −1, M = md−1/2, K = md+1/2

4 In general, we can use a different (small) distributions DP and DP ′ for P, P′. We
only set DP = D′

P = χ to minimize the number of distributions and parameters.
5 The first constraint is redundant with the constraints of Corollary 1.
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and wmd−1 ≤ W = rank
(

A
∗) ≤ md − (m − w)d < dwmd−1 = width

(

A
∗)

by

construction of A∗.6 Note that the second inequality is strict as m > w,7 that
is, A

∗
is rank deficient.

It then defines the following “bound” parameters B, β:

B = B2md · 2λ, β = B2(mkB)d,

where we assume that χ is B-bounded with B ≥ (α·22λ)1/d

k such that LWEw,q,χ

holds.8

Let χ = U([−B,B]) be the uniform distribution over [−B,B]. It finally sets
the modulus q as

q = 8β.

We show that the setting of parameters satisfy all the constraints described
above. First, by definition, N = m2d = MK. Furthermore:

bitlength(seedB∗ ,A∗,S∗) = dmk log q + M · W log q + W · K log q

<
(

dm2d/γ + dwm2d−3/2 + dwm2d−1/2
)

· log q

=
(

m2d− 1
6 + dm2d/γ

)

· log q

= N δ · poly(λ, log q)

with δ = 1 − 1
12d = 2d−1/6

2d , where we used W < dwmd−1, w ≤ m1/3, which
follows as N ≥ w6d and m = N1/2d, and 1/γ ≤ δ.

We furthermore have M2 = m2d−1 ≤ N δ.
We have by construction: B = B2md · 2λ, β0 = αB , β = β0 · 2λ, β ≥

B2(mkB)d and q = 8β, so that the constraint β ≥ β0 · 2λ can be rewritten as:

B2(mkB)d ≥ α · 2λ · (B2md2λ),

which is exactly our constraint on B.
Last, we have γ < d/2 by definition, M = md−1/2 ≤ md, and K = md+1/2 ≤

(m3)d.

Remark 8 (Length of the CRS). As noted in Remark 5, a long CRS is required for
security to hold if we allow arbitrary auxiliary information aux. We note this is
the case for the parameters of Conjecture 1. Indeed: bitlength(P′) = kdK log q ≥
m4d+1/2 log q ≥ N poly(λ, log q) = m2d poly(λ, log q).

6 We prove that rank
(
A

∗)
≤ md − (m − w)d in Sect. 4.5, paragraph Rank of A∗S∗.

7 Writing m = m′ + w where m′ > 0, the difference (m′ + w)d − (m′d + dw(m′ +
w)d−1) is the sum of monomials in m′, w with positive coefficients.

8 This is without loss of generality by defining for instance χ′ = χ + [−B, B] where
B′ is large enough to satisfy the previous constraint. A direct reduction ensures that
if LWE holds with χ, then it holds with χ′.
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Remark 9 (Parameters as a function of γ). Our construction induces different
parameters, according the choice of γ. The main affected parameter is k, which
goes from k = m3+o(1) to k ≈ m2d. We note here that it also makes sense to use
a constant γ ∈

(

1, 2d
2d−1/6

]

for our construction. The only difference is that the
succinctness of the scheme then becomes 1/γ as opposed to 1 − O(1/d).

We gather some example parameters in the table below. In all cases, we set
d ≥ 4 be a constant, m ≥ w3 so that N = m2d, M = md−1/2 and K = md+1/2.
The third column represent the components that should have size bounded by
N δ to satisfy δ-succinctness (Fig. 1).

Stretch γ Dimension k M2 + Succinctness

γ = d/3 k = m5 (m2d 1/6) = 1 1
12d

γ = 2d
2d 1/6

k = m2d 7/6 (m2d 1/6) = 1 1
12d

= 1/γ

γ = 2d
2d

k = m2d 1 (m2d ) = 1/γ

Fig. 1. Example parameters. In the above, we fix a constant d ≥ 4 and w = w(λ). The
output size is N = m2d where N ≥ w6d.

Next, we state our main conjecture for our candidate, namely that it satisfies
the weak notion of security of Definition 6. Looking ahead, thanks to Theorem3,
this suffices to imply iO.

Conjecture 1 (Conjectured security). Let χ be a B-bounded distribution, and
assume LWEw,q,χ holds. Then (SampCRSGen, LWEGen,Expand) with any of the
parameters above satisfies weak β0-flooding (Definition 6), where β0 = αB.

Remark 10 (Security as a function of d). Our constructions decouples the stretch
γ, defined as (bitlength({Bi}i∈[d))γ = bitlength(B∗) (up to polynomial factors
in λ, log q), from the degree d. In particular, for a fixed (constant) stretch γ ≥

2d
2d−1/6 , we expect Conjecture 1 to be weaker as d increases.

Next, combining the above with Theorem 3, we describe two distributions
whose indistinguishability would imply the existence of succinct LWE sampler
with θ-flooding (Definition 5) for some parameter θ. Looking ahead, combined
with Theorem 4, this suffices to imply an iO scheme.

Conjecture 2 (Stand-alone θ-flooding). Let β0 = θ · 2λ. With any of the parame-
ters params described above, the following distributions Δb are indistinguishable:

Δb =
(

P,P′, seedB∗ , A∗, ̂B = A∗S0 + F,

C = A∗R + E − bG, E∗ + E · G−1(̂B) − bF
)
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where
P ← χM×md

, P′ ← χkd×K ,

seedB∗ = {Bi}i∈[d] ∈ (Zm×w
q )d

̂B ∈ Z
M×K
q , where S0 ← Z

W×K
q , F ← χM×K

flood

C ∈ Z
M×M log q
q , where R ← Z

W×M log q
q , E ← χM×M log q

where (seedB∗ ,A∗,S∗) ← LWEGen(params,P,P′), B∗ = Expand(params,P,P′,
seedB∗), and E∗ = B∗ −A∗S∗. Furthermore, χ is a noise distribution such that
LWE with respect to A∗ holds, and χflood is a β0-bounded distribution that
floods θ-bounded distributions.

4.4 Alternate Candidate Construction

In the full version, we present a variant of the construction in Sect. 4.1. The main
intuition is that this new variant sums T copies of the candidate of Sect. 4.1, but
reusing the same matrices Ai across all copies. We refer to the full version for a
complete description of that candidate.

4.5 Cryptanalysis

Recall that security of a succinct LWE sampler requires

(crs, seedB∗ ,A∗,E∗ − Zb, auxb)

to hide b for appropriate auxb and small Zb.
Ignoring the auxiliary information related to the sampler for now, the crucial

requirement is that E∗ −Zb (or, equivalently, A∗S∗ +Zb) hides b for sufficiently
small Zb. As noted in the technical overview, pseudorandomness of E∗ cannot
hold given seedB∗ : one can compute B∗ − E∗ and check that it is low rank.
Nonetheless, as a sanity check, we would like to ensure that the marginal dis-
tribution of E∗ is pseudorandom by itself, i.e. in the absence of seedB∗ . We first
describe some attacks on the pseudorandomness of E∗, and their influence on
our parameters in Sect. 4.3.

Linearization Attacks. A strong break for the pseudorandomness of E∗ is
to recover the initial errors Ei ∈ Z

m×k such that P
(

⊗d
i=1 Ei

)

P′ = E∗. This
would be enough to break pseudorandomness: only a small fraction of small
E∗ ∈ Z

M×K have such a succinct description as long as N = MK is large
enough compared to m and k (say MK = (mk)γ for some constant γ > 1).

One way of recovering the Ei’s given E∗, P and P′ is to view the equation

P

(

d
⊗

i=1

Ei

)

P′ = E∗
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as a set of linear equations with the (mk)d variables

Xi1,j1,··· ,id,jd
= Ei1,j1

1 × · · · × Eid,jd

d

where i1, · · · , id ∈ [m] and j1, · · · , jd ∈ [k], and where Ei,j denotes the (i, j)th
component of E. In particular, this is solvable as long as the number of equations
is no smaller than the number of variables, that is:

MK ≥ (mk)d.

Our choice of parameters reflects security against linearization attacks. We also
note that the linearization attack (in contrast to the sum of squares attack)
works just as well over any finite field as it does over the integers.

Low-Degree Polynomials and Sum of Squares. The recovery attack
described above can be generically improved using the more refined sum of
squares (SOS) attacks. These ensure that pseudorandomness of E∗ cannot hold
whenever

MK ≥ (mk)d/2.

We refer the reader to [BHJ+19] for more details on sum of squares attacks.
In our scheme, we explicitly require that the stretch of our sampler, namely γ
such that MK = (mk)γ , is smaller than d/2.

Security when m = 1. When m = 1, P is a scalar that we will ignore. We are
given

e∗ =

(

d
⊗

i=1

ei

)

P′

which is a vector of length K. Since
⊗d

i=1 ei is simply the set of all degree-d mul-
tilinear monomials with a variable from each of the ei, this can be interpreted as
evaluating K degree-d polynomials with Gaussian coefficients on the dk variables
in e1, . . . , ed. Since K � kd/2, neither linearization nor sum of squares seems to
apply [BHJ+19].

The work of Kosov [Kos20] tells us each entry in E∗ by itself, namely a
polynomial with Gaussian coefficients evaluated on Gaussian inputs, comes from
a noise-flooding distribution (for mild choices of parameters).

This analysis also points to the qualitative distinction between our assump-
tion and the analysis above for m = 1. When m = 2, for example, we obtain
MK polynomials evaluated on a number of correlated random variables. That
is, setting the two rows of Ei to be ei1 and ei2,

E∗ = P

⎡

⎢

⎢

⎢

⎣

e11 ⊗ e21 ⊗ · · · ⊗ ed1

e12 ⊗ e21 ⊗ · · · ⊗ ed1

...
e12 ⊗ e22 ⊗ · · · ⊗ ed2

⎤

⎥

⎥

⎥

⎦

P′

To the best of our knowledge, all attacks described above still fail. In fact, we
don’t even have an attack if P = I2d was the identity and M = 2d. However,
this is certainly a cryptanalytic avenue worth pursuing in the future.
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Rank Attacks. Towards analyzing the case of larger m, we attempt another
class of attacks which consist of looking at the rank of the various matrices that
arise in the assumption.

Rank Attack on E∗. Note that a random (e.g. Gaussian) E∗ would be full-rank
with overwhelming probability. In particular, as

E∗ = P

(

d
⊗

i=1

Ei

)

P′,

where P ∈ Z
M×md

and P′ ∈ Z
kd×K , the rank of E∗ is at most the rank of

P,P′. In particular, P and P′ need to be full-rank and compressing, meaning
that M ≤ md and K ≤ kd, respectively. Our setting of parameters (see Sect. 4.3)
ensure these restrictions hold.

The rank of
⊗d

i=1 Ei is the product of the ranks of Ei, and is therefore,
min(md, kd) with high probability. Heuristically, then, the rank of E∗ is exactly
min(K,M) with high probability, as long as the Gaussians have sufficiently large
width, a statement that we verified experimentally.

Rank Attack on A∗S∗. Note that if A∗S∗ is computationally indistinguishable
from A∗S′ for a uniformly random S′ given crs, seedB∗ ,A∗, auxb, then the pre-
condition implies the post-condition in Definition 5, guaranteeing security. Thus,
we evaluate possible distinguishers between A∗S∗ and A∗S′.

One such class of attacks consist in comparing the rank of A∗S∗ to the rank
of A∗. We heuristically and experimentally analyzed the ranks of A∗ and A∗S∗

to reason about these attacks.
First, note that A

∗
S

∗
= A∗S∗. Recall that the matrices Ai ∈ Z

m×w
q are

random and therefore w.h.p. full-rank (i.e., rank w). Let A⊥
i ∈ Z

(m−w)×m
q be a

basis for the left-kernel of Ai, that is, they are rank-(m − w) matrices such that

A⊥
i Ai = 0 (mod q)

We note that w.h.p. the rank of the matrix

(A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ A2 ⊗ Im ⊗ · · · ⊗ Im ‖ · · · ‖ Im ⊗ · · · ⊗ Im ⊗ Ad)

is at most md − (m − w)d ≈ dwmd−1−d2w2md−2/2 (the approximation assumes
that m � w which is the case for us) since the row-span of A∗ is contained in
the right kernel of (A⊥

1 ⊗ · · · ⊗ A⊥
d ), and the latter has rank md − (m − w)d.

Our experiments indicate that the rank is indeed md − (m − w)d w.h.p. In other
words, this matrix is rank-deficient by approximately d2w2md−2/2.

Heuristically,

A
∗

= P · (A1 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ A2 ⊗ Im ⊗ · · · ⊗ Im ‖ Im ⊗ · · · ⊗ Im ⊗ Ad)

has the same rank since P ∈ Z
M×md

is Gaussian and nearly full-rank, i.e., rank
M ≈ md−1/2. That is, w.h.p., (heuristically)

rank(A
∗
) = md − (m − w)d
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Also, heuristically, A
∗
S

∗
has this rank as long as S

∗
has sufficiently many

columns, i.e. as long as K is large enough compared to rank(A
∗
). (Note that

the entries of A
∗

and S
∗

are correlated.)
To test these heuristic statements, we ran experiments for d = 3 and a range

of values of m, k and q. We found that A
∗

had rank md−(m−w)d as expected (in
all the runs of our experiment, suggesting a high probability statement). We also
found that when k ≥ m and K is large enough so that S∗ is wide, A

∗
S

∗
= A∗S∗

also had rank md − (m − w)d with high probability. This is the same as one
would expect from A∗S′ for a random S′, suggesting that rank attacks fail.

4.6 Cryptanalytic Challenges

We describe a few cryptanalytic challenges and how they relate to our candidate
and our assumptions. For each of these problems, we can also consider easier
challenges where (a) the challenger also gets A∗; and (b) we replace P with the
identity matrix.

Pseudo-flooding in the Absence of seedB∗ . Our intuition says that for any two
low-norm matrices Z0 and Z1, E∗ + Zb hides b. Concretely, let χ be a discrete
Gaussian of sufficiently large parameter σ. A challenge is to come up with matri-
ces Z0 and Z1 where ||Zb|| < σ/2λ such that the bit b can be recovered given

P

(

d
⊗

i=1

Ei

)

P′ + Zb .

We note that when m = 1 and P = 1, as argued above, this seems to follow from
the noise-flooding properties of random (e.g. Gaussian) polynomials [BHJ+19].

Pseudo-flooding in the Presence of seedB∗ . Our stronger notion of security
(Definition 5) would imply that it would be hard to recover b from

(seedB∗ , A∗S∗ + Zb, E∗ − Zb), b ← {0, 1}

for the following concrete distributions of Z0,Z1:

– (norm and ideal membership) Z0 is drawn from a Gaussian, and Z1 = 2Z0,
and q is odd. In particular, an attacker that manages to learn the parity of
Zb or accurately approximate the norm of Zb will be able to learn b.

– (subspace membership) Zb = E0M + bÊ where ‖E0‖ � ‖Ê‖ and M is a
public low-norm matrix. The distribution here is closely related to that for
weak flooding. Here, ‖Z0‖ ≈ ‖Z1‖, but an attacker that manages to learn
whether Zb lies in the row span of M will be able to learn b.

In both cases, an attacker could try to exploit the leakage on b from A∗S∗ + Zb

or from E∗ − Zb. For instance, an efficient algorithm that recovers E∗ from
seedB∗ or one that recovers b from E∗ − Zb solves this problem.
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Distinguishing A∗S∗ from A∗S′. As described above, we think the following
claim is plausible:

A∗S∗ ≈c A∗S′

where S′ ← Z
W×K
q . As A∗S∗ = A

∗ · S∗
(where A

∗
,S

∗
are defined in Sect. 4.1),

and given that A∗ and A
∗

have the same column span, this is equivalent to

A
∗ · S∗ ≈c A

∗ · S′′

where S′′ ← Z
dwmd−1×K
q , and A

∗
,S

∗
have closed form expressions described in

Sect. 4.1.
A distinguisher here does not immediately break strong or weak-flooding,

but we believe it constitutes strong evidence that strong-flooding is false.

5 Our Succinct Randomized Encoding Construction

Let (SampCRSGen, LWEGen,Expand) be a succinct LWE sampler (Definition 5)
with parameters to be determined later.

We now describe our SRE for the family F�,N,t = {f : {0, 1}� → {0, 1}N} of
depth-t circuits. Let q be a modulus and χ be a B-bounded distribution to be
determined later.

Let g(t) = O(t) be the function defined in Definition 3.

– CRSGen(1λ,F�,N,t): Output crs ← SampCRSGen(1λ, 1N , Ng(t)). It in particu-
lar includes parameters params = (q,M,K, χ,B).

– Encode(crs, f, x): Compute (seedB∗ ,A∗,S∗) ← LWEGen(crs), where A∗ ∈
Z

M×W
q , S∗ ∈ Z

W×K
q .

Sample R ← {0, 1}W×�M log q, and E ← χM×�M log q. Compute

C = A∗R + x ⊗ G + E ∈ Z
M×�M log q
q ,

where we view x ∈ {0, 1}1×� as a row vector, and compute (Rf,x,Ef,x) =
Evalopen(f,A∗, x,R,E).
Output:

C = (seedB∗ , C, A∗, (Rf,x + S∗)).

– Decode(crs, C, f)): On input C = (seedB∗ ,C,A∗,V), compute Cf =
Eval(f,C), and B∗ = Expand(crs, seedB∗). Output

f(x) = Roundq/2 (Cf + B∗ − A∗ · V) ∈ {0, 1}M×K .

Theorem 4. Suppose (SampCRSGen, LWEGen,Expand) is a succinct LWE sam-
pler satisfying δ-succinctness and β0-flooding (Definition 5) with β0 = B ·Ng(t).
Suppose furthermore that:

M2 = N δ · poly(λ, �, t).

Then (CRSGen,Encode,Decode) is an SRE for F�,N,t satisfying δ-succinctness.

Next, we show that the construction above satisfies correctness and succinct-
ness.
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Claim 3 (Correctness). Suppose (SampCRSGen, LWEGen,Expand) satisfy the
parame-
ters constraints and correctness Definition 5. Then (CRSGen,Encode,Decode)
is correct.

Proof. Define V = (Rf,x + S∗). By Definition 3, we have

Cf + B∗ − A∗ · (Rf,x + S∗) = f(x) · q/2 + Ef,x + E∗.

Let β0 = B · Ng(t). The setting of parameters β, B and q from
(SampCRSGen, LWEGen,Expand) imply ‖E‖ ≤ B and therefore ‖Ef,x‖ ≤
BMg(t) ≤ Ng(t) = β0 by definition of g (Definition 3), and using M ≤ N .
Furthremore β ≥ β0 · 2λ and q ≥ 8β so that ‖Ef,x + E∗‖ < q/4, and therefore

Roundq/2 (Cf + B∗ − A∗ · V)) = Roundq/2 (f(x) · q/2 + Ef,x + E∗) = f(x).

Claim 4. Suppose the sampler (SampCRSGen, LWEGen,Expand) is δ-succinct
(Definition 5), and suppose that the sampler furthermore satisfies

M2 = N δ · poly(λ, �, t).

Then (CRSGen,Encode,Decode) is δ-succinct.

Proof. The setting of the parameters implies log q = poly(λ, t). Then
�M2 log2 q = N δ · poly(λ, �, t).

Furthermore V = (Rf,x+S∗) ∈ Z
W×K
q and therefore bitlength(seedB∗ ,C,A∗,

V) ≤ N δ · poly(λ, �, t) by δ-succinctness of (SampCRSGen, LWEGen,Expand).
Therefore the SRE is δ-succinct.

5.1 Security

Claim 5 (Indistinguishability-based security.). Let f : {0, 1}� → {0, 1}N

of depth t, and x0, x1 ∈ {0, 1}� such that f(x0) = f(x1). Suppose
(SampCRSGen, LWEGen,Expand) is secure (Definition 5), and LWE hold. Then:

(crs,Encode(crs, f, x0)) ≈c (crs,Encode(crs, f, x1)),

where crs ← CRSGen(1λ,F�,N,t).

We refer to the full version for a proof of Claim 5. Combining Theorem 4
with our candidate succinct LWE sampler (Sects. 4.1 and 4.3), noting that our
proposed parameters in Sect. 4.3 satisfy M2 = N δ ·poly(λ, �, t), gives a candidate
SRE. Invoking Theorem 2, we obtain the following.

Corollary 2. Assuming Conjecture 1 and sub-exponential LWE, there exists an
iO scheme.

We can furthermore use Theorem 3 to relax the requirement on our candidate
succinct LWE sampler (Sect. 4.1), and only rely on weak security Definition 6),
thus obtaining the following.

Corollary 3. Assuming Conjecture 2 and sub-exponential LWE, there exists an
iO scheme.
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Abstract. We present a new public-key ABE for DFA based on the LWE
assumption, achieving security against collusions of a-priori bounded size.
Our scheme achieves ciphertext size Õ(� + B) for attributes of length �
and collusion size B. Prior LWE-based schemes has either larger ciphertext
size Õ(� · B), or are limited to the secret-key setting. Along the way, we
introduce a new technique for lattice trapdoor sampling, which we believe
would be of independent interest. Finally, we present a simple candidate
public-key ABE for DFA for the unbounded collusion setting.

1 Introduction

Attribute-based encryption (ABE) [19,24] is a generalization of public-key encryp-
tion to support fine-grained access control for encrypted data. Here, ciphertexts
are associated with a description value x and keys with a policy M , and decryp-
tion is possible when M(x) = 1. One important class of policies we would like to
support are those specified using deterministic finite automata (DFA). Such poli-
cies capture many real-world applications involving simple computation on data
of unbounded size, such as network monitoring and logging, pattern matching in
gene sequences, and processing tax returns. Since the seminal work of Waters [26]
introducing ABE for DFA and providing the first instantiation from pairings,
substantial progress has been made in the study of pairing-based ABE for DFA
[2,4,7,8,13], culminating in adaptively secure public-key ABE for DFA against
unbounded collusions based on the k-Lin assumption [14,21].

In this work, we look at ABE for DFA based on the LWE assumption, which
has seen fairly limited progress in spite of the exciting progress we have made in
obtaining expressive ABE for circuits [9,16]. Here, the state of the art is as follows:

– a public-key scheme secure against collusions of a-prior bounded size (that
is, the adversary gets to see a bounded number of secret keys), by combining
the scheme of Agrawal and Singh [5] –henceforth AS17– for collusions of size
one with generic amplification techniques for bounded collusions in [6,15,20];

– a secret-key scheme for DFA (and NFA) secure against unbounded collusions
[3].

Henceforth, we focus on the setting studied in AS17, namely public-key ABE
for DFA secure against bounded collusions (indeed, most of the ABE litera-
ture consider the public-key setting). From a practical stand-point, the bounded
collusion setting already captures a fairly realistic attack scenario. From a
c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 288–309, 2021.
https://doi.org/10.1007/978-3-030-90453-1_10
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ct sk

AS17 [5] (log ) B Q extends to FE

AMY19 [3] (log ) poly( ) poly(Q) secret-key, unbounded B

this work (1) B Q

Fig. 1. Summary of LWE-based ABE schemes for DFA, secure against collusions of size
B (cf. Sect. 2.1). In the table, Q is the number of states in the DFA M associated with
sk and � is the length of x associated with ct, and Q, � < λω(1). Hardness refers to the
modulus-to-noise ratio for the LWE assumption, for λω(1)-security and λ−ω(1) decryption
error. We ignore factors polynomial in the security parameter λ, |Σ|, and log �.

theoretical stand-point, it often already requires interesting and insightful tech-
niques. In particular, the core technical novelty in the recent works on ABE for
DFA from k-Lin [13,14,21] –both in the selective and the adaptive settings– lies
in solving the problem in the one-collusion setting; amplification to unbounded
collusions is achieved via the dual system encryption methodology [7,25,27],
which unfortunately, we do not know how to instantiate from LWE.

1.1 Our Contributions

Our main result is a new public-key ABE for DFA based on the LWE assumption,
in the bounded collusion setting:

– Our scheme achieves ciphertext size Õ(� + B) for attributes of length � and
collusion size B and only requires a λω(1) modulus-to-noise ratio, whereas the
AS17 scheme achieves ciphertext size Õ(� ·B) and requires a larger λpoly(log λ)

modulus-to-noise ratio; see Fig. 1 for a comparison.
– As in AS17, our scheme achieves sk-selective security, where all the key queries

are made before the adversary sees the public key or the ciphertext.

Our construction and its analysis are inspired by the pairing-based ABE for
DFA in [13,14,26,26], and is simpler than prior LWE-based schemes in [3,5] in
that we do not require an ABE for circuits [9,16] as an intermediate building
block. Our construction is very algebraic and entails the use of multiple LWE
secrets in the ABE ciphertext, whereas the prior LWE-based schemes are more
combinatorial. Along the way, we introduce a new technique for lattice trapdoor
sampling, which we believe to be of independent interest. Finally, we present a
simple candidate public-key ABE for DFA for the unbounded collusion setting
(no such heuristic post-quantum candidate was known before, without assuming
post-quantum iO).

ABE for DFA. Our ABE scheme follows the high-level structure of the pairing-
based schemes in [13,26]:

– encryption of x ∈ {0, 1}� picks � + 1 fresh LWE secrets s0, s1, . . . , s� (row
vectors);

– a secret key for a DFA with Q states is associated with Q random row vectors
d̃1, . . . , d̃Q;
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– during decryption, we compute sid̃�
ui

(approximately), where ui denotes the
state reached upon the first i bits of x, for i = 0, 1, . . . , � (i.e., u0 is the DFA
start state).

In a bit more detail,

– the master public key specifies a pair of matrices A0,A1 as well as d̃�
u0

;
– the ciphertext contains s0d̃�

u0
and ci ≈ (si−1‖ − si)Axi

, i = 1, . . . , �;

– the secret key contains k�
u,σ ← A−1

σ

(d̃�
u

d̃�
v

)
for all state transitions (u, σ) ∈

[Q] × {0, 1} �→ v ∈ [Q], where A−1
σ (·) denotes a Gaussian pre-image;

– in order to compute sid̃�
ui

, it suffices to compute the successive differences
si−1d̃�

ui−1
− sid̃�

ui
as follows1:

ci · k�
ui,xi

≈ (si−1‖ − si)Axi
· A−1

xi

(d̃�
ui−1

d̃�
ui

)
= si−1d̃�

ui−1
− sid̃�

ui

In the proof of security, we will modify the ciphertext distribution in a way
that traces the DFA computation path while keeping the secret key distribution
unchanged. In contrast, prior ABE for DFA based on k-Lin modifies both the
ciphertext and secret key distribution in the security proof (even for collusions
of size one). Our proof strategy requires knowing the DFA while simulating the
challenge ciphertext, and for that reason, we only achieve sk-selective security.

Lattice Trapdoor Sampling. We introduce a new lattice trapdoor notion
and sampling technique for our proof of security. Given a wide LWE matrix A,
the Micciancio-Peikert (MP) trapdoor [22] is a low-norm matrix T such that
A ·T = G, where G is the gadget matrix. Such a matrix T allows us to sample
a random Gaussian preimage A−1(z) for all z, but it also breaks the LWE
assumption with respect to A (in fact, we can use T to recover s given sA+ e).

In this work, we consider a “half trapdoor”, namely a low-norm matrix T1/2

such that

A · T1/2 =
(
0
G

)
, A ∈ Z

2n×m
q ,T1/2 ∈ Z

m×n log q,G ∈ Z
n×n log q
q ,m > 2n log q

That is, let A,A ∈ Z
n×m
q denote the top and bottom halves of A. Then, A ·

T1/2 = 0 and A · T1/2 = G, which means T1/2 is a MP trapdoor for A. We
show that T1/2 satisfies the following properties:

1 To facilitate comparison with Waters’ pairing-based scheme, we note that the terms
corresponding to ci and ku,σ there-in are given by:

(g
si−1
1 , g

si−1z+siwxi
1 , gsi

1 ), (g−d̃u+zr
2 , gr

2 , g−d̃v+wσr
2 )

where g1, g2 are the respective generators the group G1,G2 in a bilinear group e :
G1 × G2 → GT . We can then compute a pairing-product over these terms to derive

e(g1, g2)
si−1d̃ui−1−sid̃ui .
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– restricted trapdoor sampling: Given Z ∈ Z
n×Q
q ,M ∈ {0, 1}Q×Q, we can effi-

ciently sample (using A,T1/2) a random Gaussian pre-image

A−1

(
D

DM + Z

)
, for random D ← Z

n×Q
q (1)

These Gaussian pre-images appear in the secret keys with D = [d̃�
1 | · · · | d̃�

Q],
M ∈ {0, 1}Q×Q being a DFA transition matrix, and Z = 0.

– LWE given T1/2: We also require computational hardness of the form

(A, sA + e) is pseudorandom given T1/2. However, such a statement is false
since (sA+ e) ·T1/2 ≈ 0. Instead, we require that (A, sA+ e) is pseudoran-
dom even if the distinguisher gets adaptive queries to the restricted trapdoor
sampling oracle in (1); we refer to this as T1/2-LWE.

As a sanity check for restricted trapdoor sampling, observe that it is easy to
sample from each of A

−1
(D) and A−1(DM+Z), the latter since T1/2 is a MP-

trapdoor for A. However, what we need is to sample from the “intersection” of
these two distributions. With regards to T1/2-LWE, prior works [10,18] showed
that LWE implies T1/2-LWE for the special case where the oracle queries are
restricted to M = 0; these in turn generalize a classic result in [12] showing
pseudorandomness of (A, sA + e) given A

−1
(D) for random D.

1.2 Technical Overview I: T1/2

In the first part of the technical overview, we address the properties of T1/2.

Restricted Trapdoor Sampling. We show how to sample from the distribu-
tion in (1) given T1/2. Our sampler combines two ideas:
Step 1. First, we describe how to use T1/2 to sample from a related distribution,
namely:

A−1

(
D

MD + Z

)
, for random D ← Z

n×Q
q (2)

where we replaced DM,M ∈ {0, 1}Q×Q with MD ,M ∈ {0, 1}n×n. We begin
by writing (2) as

A−1

(
D

MD + Z

)
≈s

(
A

A − MA

)−1(
D
Z

)
≈s (A − MA)−1(Z)

where the first ≈s holds for all D, and the second ≈s uses the fact that D is
random and a statistical lemma shown in [10,18]. Next, observe that (A−MA) ·
T1/2 = G, which means we can use the MP trapdoor sampling algorithm [22]
with T1/2 as a trapdoor to sample from the distribution (A − MA)−1(Z).
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Step 2. We rely on the vectorization operator vec(·) for matrices from linear
algebra (see Sect. 2) to relate the distributions in (2) and (1). The vectorization
of a matrix Z, denoted by vec(Z), is the column vector obtained by stacking the
columns of the matrix Z on top off one another. Using a standard vectorization
identity vec(XYZ) = (Z� ⊗ X)vec(Y), we have

vec(DM) = (M� ⊗ In)vec(D)

This basically says that we can sample from the desired distribution in (1) by
sampling from the distribution in (2) with (M� ⊗ In)vec(D) in place of MD .

LWE Implies T1/2-LWE. Next, we sketch a proof of the statement LWE
implies T1/2-LWE, that is, (A, sA + e) is pseudorandom given the restricted
trapdoor sampling oracle in (1). In the reduction, we sample A as

A :=
[
A′ | A′R +

(
0
G

)]

where A′ ← Z
2n×(m−n log q)
q ,R ← {0, 1}(m−n log q)×n log q.

– Note that T1/2 =
(−R

I

)
satisfies A · T1/2 =

(
0
G

)
. This means that we can

use R to compute T1/2 and to implement the restricted trapdoor sampling
oracle in (1).

– By LWE w.r.t. the public matrix A
′
, we have

sA + e ≈s (sA
′
+ e′, (sA

′
+ e′)R + e′′) ≈c (c, cR + e′′), c ← Z

m−n log q
q

This holds even if the distinguisher gets R, which we need to implement the
oracle.

– Now, observe that the oracle in (1) leaks no information about R beyond A
′
R.

By the left-over hash lemma, cR is statistically random given c,A
′
,A

′
R. (A

similar argument first appeared in [1].)

1.3 Technical Overview II: ABE for DFA

We proceed to provide a technical overview of our ABE for DFA. In this work,
it is convenient to specify a DFA using vector-matrix notation. That is, a DFA
M is a tuple (Q,Σ, {Mσ}σ∈Σ,u0, f ) where Σ is the alphabet and

Q ∈ N; Mσ ∈ {0, 1}Q×Q,∀σ ∈ Σ; u0, f ∈ {0, 1}1×Q.

The DFA accepts an input x = (x1, . . . , x�) ∈ Σ�, denoted by M(x) = 1, if

fMx�
· · ·Mx2Mx1u

�
0 = 1 (3)



ABE for DFA from LWE Against Bounded Collusions, Revisited 293

ABE for B = 1. We begin with our ABE scheme for collusions of size one:

mpk =
(
d0, {Aσ }σ∈Σ ,Aend,dend

)
, Aσ ← Z

2n×m
q , Aend ← Z

n×m
q (4)

ct =
(

c0
︷ ︸︸ ︷
s0d

�
0 + e0, {

ci
︷ ︸︸ ︷
si−1Axi − siAxi

+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷
s�d

�
end + e�+2 + μ · � q

2
� )

skM =
(
Kend, {Kσ }σ∈Σ

)
,

where D ← Z
n×Q
q s.t. D · u�

0 = d0, Kend ← A−1
end(D − d�

end ⊗ f), Kσ ← A−1
σ

( D
DMσ

)

In the rest of this overview, we assume Σ = {0, 1}, and mostly ignore the error
terms e0, ei for notational simplicity. To see how decryption works, we first let

u�
i := Mxi

· · ·Mx2Mx1u
�
0

That is, u�
i is the characteristic vector for the state reached upon reading

x1, . . . , xi. In addition, let d�
i := D · u�

i denote the corresponding column in
D (denoted by d̃�

ui
in Sect. 1.1). It is straight-forward (though a little tedious)

to verify that

−
≈ s0d

�
0︷︸︸︷

c0 + (
�∑

i=1

≈ si−1d
�
i−1−sid

�
i

︷ ︸︸ ︷
ci · Kxi

· u�
i−1 ) +

≈ s�(d
�
� −M(x)d�

end)
︷ ︸︸ ︷
c�+1 · Kend · u�

� ≈ −M(x) · s�d�
end(5)

In particular, whenever M(x) = 1, we can recover μ from c�+2. Note that the noise
growth in (5) grows with �, and since we can only bound � by λω(1), we require a
λω(1) modulus-to-noise ratio for decryption correctness. The security proof addi-
tionally uses noise smudging, which also requires a λω(1) modulus-to-noise ratio.

Security. The main tool we have for the proof of security is T1/2-LWE, which
we want to use to replace si−1Axi

in ci with random (while relying the oracle
for restricted trapdoor sampling to simulate the corresponding secret keys). We
cannot do so directly, since each si−1 also appears in ci−1 (c0, in the case i = 1).
To resolve this issue, we start by using (5), which tells us that when M(x) = 0
as is the case for unauthorized keys in the proof of security, we have:

−c0 +
(∑�

i=1
ci · Kxi

· u�
i−1

)
+ c�+1 · Kend · u�

� ≈ 0

This allows us to write c0 as a function of c1, . . . , c�, c�+1 and K0,K1 from skM ,
thereby “eliminating” s0 from c0. (Here, we use the fact that we are in the sk-
selective setting.) At this point, we can replace s0Ax1 in c1 with random, and
thus c1 with random. This in “eliminates” s1 from c1, upon which we can replace
s1Ax2 in c2 and thus c2 with random. This continues until we have replaced c�

with random. At this point, it suffices to argue that

s�Aend, s�d�
end + μ · 
 q

2�,Kend

hides μ, which can be handled using fairly standard techniques.
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Handling B Collusions. Our basic scheme extends naturally to handle B
collusions by sampling a fresh D per secret key except one important caveat:
the encryptor needs to know d0 = D · u�

0 in order to compute s0d0, and for
the security proof, we need a fresh d0 per secret key. To solve this problem, we
modify the scheme as follows:

– during set-up, we sample and publish d0,j , j ∈ [B] in mpk;
– the encryptor includes { c0,j := s0d0,j }j∈[B] in ct, which increases the cipher-

text size by an additive factor of B · poly(λ) (independent of �);
– when issuing the j’th key, we sample a random D such that D · u�

0 = d0,j .

The security proof is similar to that for B = 1, except we start by using (5) to
rewrite each c0,j in terms of c1, . . . , c�+1.

Candidate ABE for DFA Against Unbounded Collusions. We start with
our ABE for B = 1 in (4) and make the following modifications:

– replace d0 in mpk with a random matrix Ast;
– replace s0d�

0 in ct with s0Ast;
– add kst ← A−1

st (Du�
0) to the secret key, where a fresh random D ← Z

n×Q
q is

chosen for each key.

Correctness follows as before, except we first compute s0d�
0 using s0Ast ·kst. We

believe that our candidate sheds new insights into both avenues and concrete
difficulties for realizing a public-key ABE for DFA against unbounded collusions
from LWE.

1.4 Prior Works

We provide a brief overview of prior LWE-based scheme, along with a folklore
construction based on general circuits. We will refer to constructions secure
against collusions of size 1 as a one-key scheme, and we use Qmax to denote an
upper bound on the number of DFA states.

A Folklore Construction via General Circuits. We can get bounded-
collusion ABE for DFA by using bounded-collusion ciphertext-policy ABE for
circuits; the latter can be constructed based on any semantically secure public-
key encryption scheme –and thus LWE with poly(λ) hardness– via garbled
circuits [15,23]. Concretely, we encode the DFA M as a bit string of length
O(Q log Q) and the DFA input x ∈ {0, 1}� as a circuit of size O(� · Q) that on
input M , outputs M(x). The main draw-back is that the ciphertext size grows
with Qmax, which we want to avoid.

The Agrawal-Singh AS17 Scheme. The AS17 scheme is a one-key sk-
selective functional encryption (FE) scheme for DFA based on LWE. The con-
struction uses the GKPVZ compact one-key FE cFE for circuits, a symmetric-
key encryption scheme SE, and a PRF PRF (the AS17 scheme uses a pairwise-
independent hashing instead of a PRF). We sketch a simplified variant of the
AS17 scheme in the ABE setting:
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– Encryption of x ∈ {0, 1}� picks � PRF keys K1, . . . ,K�. During decryption,
the decryptor computes PRF(Ki, ui) for i = 1, . . . , �, where ui denotes the
state reached upon the first i bits of x.

– In order to go from PRF(Ki, ui) to PRF(Ki+1, ui+1), the decryptor would
need to compute

SE.EncPRF(Ki,ui)(PRF(Ki+1, ui+1))

To compute the quantity above, the decryptor first computes cFE.Enc
(xi, ui,Ki,Ki+1). The ABE secret key then contains cFE secret keys
that decrypts the cFE-ciphertext to SE.EncPRF(Ki,ui)(PRF(Ki+1, ui+1)). This
requires generating cFE secret keys for circuits of depth O(log Q), and hence
a noise-to-modulus ratio λO(log Qmax) = λpoly(log λ).2

– One question remains: how does the decryptor compute cFE.Enc(xi, ui,Ki,
Ki+1)? Note that the encryptor cannot compute this quantity because it
does not know ui. The naive solution would be for the encryptor to publish
in the ciphertext:

{
SE.EncPRF(Ki,u)(cFE.Enc(xi, u,Ki,Ki+1)) : u ∈ [Qmax]

}

However, this would mean that the final ABE ciphertext size grows with
Qmax instead of log Qmax. Instead, AS17 shows how to compress the above
quantity, using the fact that the cFE ciphertext is “decomposable”.

An open problem is whether our techniques extend to functional encryption for
DFA, as achieved in AS17.

The Agrawal-Maitra-Yamada AMY19 Scheme. The AMY19 scheme is
a private-key ABE for NFA based on LWE; the scheme achieves ct, sk-selective
security against unbounded ciphertext queries and against unbounded collusions.
The AMY19 scheme uses two special ABE schemes:

(i) a public-key ABE for the relation M(x) ∧ (|x| ?≤ |M |);
(ii) a secret-key ABE for the relation M(x) ∧ (|x| ?

> |M |).
These two ABE schemes are constructed using the BGGHNSVV ABE for circuits
[9] and using the fact that an NFA M for inputs of length � can be simulated
using a circuit of size O(� · |M |) and depth poly(log �, log |M |). The final ABE
scheme for NFA contains BGGHNSVV ciphertexts into both the ciphertexts and
the secret keys, and since the BGGHNSVV scheme is sk-selective, the AMY19
scheme is ct, sk-selective.

Prior k-Lin Based Schemes. As mentioned in the first step of our security
proof, we essentially embed the DFA computation into the challenge ciphertext.
In contrast, prior k-Lin based schemes embed the DFA computation into the
secret key, which in turn requires using a computational assumption over the
secret key space.
2 It seems plausible (with some considerable changes to the scheme and the proof) that

we can replace cFE for depth O(log Q) circuits with an ABE for branching programs
of size poly(Q). The latter can realized from LWE with a polynomial modulus-to-
noise ratio [16,17].
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1.5 Discussion

ABE for DFA and More. In this work, we present new constructions and
techniques for LWE-based ABE for DFA, achieving some improvements over
prior works of AS17 and AMY19 along the way. Our techniques are largely
complementary to those in AS17 and AMY19, and we believe there is much more
to be gained by combining the techniques and insights from all three works. We
conclude with two open problems:

– Find an attack on our candidate ABE against unbounded collusions. Or, use
the candidate as a starting point to design a simple secret-key ABE for DFA
against unbounded collusions based on the LWE assumption, possibly by
leveraging additional insights from AMY19.

– It seems quite plausible that we can combine our techniques with ideas from
[21] to obtain a simple one-collusion ABE for Turing machines M running
in time T and space S, where |ct| = poly(�) · T · S · 2S and |sk| = O(|M |).
A more interesting problem is to design a simple and algebraic one-collusion
ABE for Turing machines running in time T where |ct| = poly(�, T ) and
|sk| = poly(|M |), as achieved in AS17.

LWE-based ABE with Multiple LWE Secrets. More broadly, we see this
work as also taking a first step towards exploring the use of multiple LWE
secrets in LWE-based ABE as well as bringing design ideas from more complex
pairing-based schemes to the LWE setting. While the use of multiple LWE secrets
is implicit also in AS17 and AMY19 (where the ciphertext contains multiple
ciphertexts from some existing LWE-based scheme), our construction makes the
connection more explicit.

2 Preliminaries

Notations. We use boldface lower case for row vectors (e.g. r) and boldface
upper case for matrices (e.g. R). For integral vectors and matrices (i.e., those
over Z), we use the notation |r|, |R| to denote the maximum absolute value over
all the entries. We use v ← D to denote a random sample from a distribution
D, as well as v ← S to denote a uniformly random sample from a set S. We
use ≈s and ≈c as the abbreviation for statistically close and computationally
indistinguishable.

Matrix Operations. The vectorization of a matrix Z, denoted by vec(Z), is
the column vector obtained by stacking the columns of the matrix Z on top off

one another. For instance, for the 2 × 2 matrix Z =
(

a b
c d

)
, we have

vec(Z) =

⎛

⎜
⎜
⎝

a
c
b
d

⎞

⎟
⎟
⎠
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We use vec−1(·) to denote the inverse operator so that vec−1(vec(Z) = Z. For
all matrices X,Y,Z of the appropriate dimensions, we have vec(XYZ) = (Z� ⊗
X)vec(Y).

The tensor product (Kronecker product) for matrices A = (ai,j) ∈ Z
�×m,

B ∈ Z
n×p is defined as

A ⊗ B =

⎡

⎣
a1,1B, . . . , a1,mB
. . . , . . . , . . .

a�,1B, . . . , a�,mB

⎤

⎦ ∈ Z
�n×mp.

The mixed-product property for tensor product says that

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD)

DFA. We use M = (Q,Σ, {Mσ}σ∈Σ,u0, f ) to describe deterministic finite
automata (DFA for short), where u0, f ∈ {0, 1}Q,Mσ ∈ {0, 1}Q×Q, and both u0

and every column of Mσ contains exactly one 1. For any x = (x1, . . . , x�) ∈ Σ�,
we have:

M(x) = fMx�
· · ·Mx1u

�
0

2.1 Attribute-Based Encryption

Syntax. An attribute-based encryption (ABE) scheme for some class C consists
of four algorithms:

Setup(1λ, C) → (mpk,msk). The setup algorithm gets as input the security param-
eter 1λ and class description C. It outputs the master public key mpk and the
master secret key msk.

Enc(mpk, x, μ) → ctx. The encryption algorithm gets as input mpk, an input x
and a message μ ∈ {0, 1}. It outputs a ciphertext ctx. Note that x is public
given ctx.

KeyGen(mpk,msk,M) → skM . The key generation algorithm gets as input mpk,
msk and M ∈ C. It outputs a secret key skM . Note that M is public given
skM .

Dec(mpk, skM , ctx) → m. The decryption algorithm gets as input skM and ctx
such that M(x) = 1 along with mpk. It outputs a message μ.

Correctness. For all inputs x and M with M(x) = 1 and all μ ∈ {0, 1}, we
require

Pr

⎡

⎣Dec(mpk, skM , ctx) = μ :
(mpk,msk) ← Setup(1λ, C)
skM ← KeyGen(mpk,msk,M)
ctx ← Enc(mpk, x, μ)

⎤

⎦ = 1 − negl(λ).
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Security Definition. For a stateful adversary A, we define the advantage func-
tion

AdvabeA (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

β = β′ :

(mpk,msk) ← Setup(1λ, C)
AKeyGen(mpk,msk,·)(1λ)
(x∗, μ0, μ1) ← A(mpk)
β ← {0, 1}; ctx∗ ← Enc(mpk, x∗, μβ)
β′ ← A(ctx∗)

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2

with the restriction that all queries M that A sent to KeyGen(mpk,msk, ·) satisfy
M(x∗) = 0. An ABE scheme is sk-selectively secure if for all PPT adversaries
A, the advantage AdvabeA (λ) is a negligible function in λ. Note that A only gets
oracle access to KeyGen at the beginning of the experiment before it sees mpk.
(The security experiment starts with (mpk,msk) ← Setup to generate the first
two inputs to the KeyGen oracle.)

Bounded-Collusion Setting. We say that an ABE scheme is B-bounded
secure if Setup gets an additional input 1B , and the adversary is only allowed
to make at most B queries to KeyGen. For simplicity, we focus on tag-based
B-bounded security (sometimes referred to as stateful key generation in the
literature) where:

– KeyGen takes an additional tag j ∈ [B] and correctness holds for all j ∈ [B];
– In the security game, the queries made to KeyGen must correspond to distinct

tags.

It is easy to see that we can construct a tag-based B-bounded scheme from any 1-
bounded scheme by running B independent copies of the 1-bounded scheme; this
incurs a factor B blow-up in |mpk|, |ct| while |sk| remains the same. Furthermore,
we can construct a B-bounded scheme from a tag-based O(B)-bounded scheme
[6,15,20], with an additional O(λ2(log B)2) multiplicative blow-up in |mpk|, |ct|.
We sketch a construction from [20] for removing tags with a bigger blow-up:
take a tag-based O(B2)-bounded scheme and generate secret keys for a random
tag. Now, if the adversary gets at most B keys, then by a birthday bound, the
advantage of the adversary is bounded by 1/4, and then we can apply hardness
amplification to reduce the advantage to negligible.

2.2 Lattices Background

Learning with Errors. Given n,m, q, χ ∈ N, the LWEn,m,q,χ assumption states
that

(A, sA + e) ≈c (A, c)

where
A ← Z

n×m
q , s ← Z

n
q , e ← DZm,χ, c ← Z

m
q
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Trapdoor and Preimage Sampling. Given any z ∈ Z
n
q , s > 0, we use A−1(z, s) to

denote the distribution of a vector y sampled from DZm,s conditioned on Ay = z
(mod q). We sometimes suppress s when the context is clear.

There is a p.p.t. algorithm TrapGen(1n, 1m, q) that, given the modulus q ≥
2, dimensions n, m such that m ≥ 2n log q, outputs A ≈s U(Zn×m

q ) with a
trapdoor τ . Moreover, there is a p.p.t. algorithm that for s ≥ 2

√
n log q, given

(A, τ) ← TrapGen(1n, 1m, q), z ∈ Z
n
q , outputs a sample from A−1(z, s).

3 Trapdoor Sampling with T1/2 and a Computational
Lemma

We describe our new computational lemma, which we coin the “T1/2-LWE
assumption” and which says that LWE holds in the presence of some oracle
OA(·). Then, we show that the T1/2-LWE assumption follows from the LWE
assumption.

3.1 LWE Implies T1/2-LWE

Theorem 1 (T1/2-LWE assumption). Fix parameters n,m, q. Under the
LWEn,m−n log q,χ assumption, we have that

(A, sA + e) ≈c (A, c)

where
A ← Z

2n×m
q , s ← Z

n
q , e ← DZm,χ̂, c ← Z

m
q , χ̂ = χ · nω(1)

and where the distinguisher gets unbounded, adaptive queries to an oracle OA(·)
that on input M ∈ Z

Q×Q
q ,Z ∈ Z

n×Q
q , outputs a sample from

�
A−1

(
(

D
DM + Z

)
, s

) | D ← Z
n×Q
q

�

where s2 ≥ O(m) + ω(log mQ + log n).

Proof. We sample A as

A :=
[
A′ | A′R +

(
0
G

)]

where A′ ← Z
2n×(m−n log q)
q ,R ← {0,±1}(m−n log q)×n log q.3 Setting T1/2 :=(−R

I

)
, we have A ·T1/2 =

(
0
G

)
. We show in the next section that using A,T1/2,

we can efficiently simulate the oracle OA. We can then complete the current
proof in two steps:
3 Following [22, Section 5.2], we choose each entry of R to be 0 with probability 1/2,

and ±1 each with probability 1/4. This yields |R| = 1 and s1(R) = O(
√

m) w.h.p.
Moreover, (A,AR) ≈s uniform.
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– By the LWE assumption, we have:

(A′, sA′ + e′) ≈c (A′, c′)

where c′ ← Z
m−n log q
q , e′ ← DZm−n log q,χ. This means that

sA+e ≈s (sA
′
+e′+e′′

0 , (sA
′
+e′)R+e′′) ≈c (c+e′′

0 , cR+e′′), c ← Z
m−n log q
q

even given A,R, where the first ≈s uses noise smudging. We can then use R
to simulate OA(·).

– By left-over hash lemma, we can replace c′R with random, even given
(A′, c′,A′R). Here, we crucially rely on the fact that the distribution OA(·)
depends only on A (and thus A′,A′R) and leaks no additional information
about R.

3.2 Trapdoor Sampling with T1/2

Additional Notation. We adopt additional notation from [11]. We use ηε(·)
to denote the smoothing parameter of a lattice, and Λ⊥(·) to denote the q-ary
kernel lattice. We use � · � for probability distributions.

Lemma 1 ([10, Lemma 4.1, 4.2]). Fix parameters ε, s, n,m, q such that m >
18n log q. For all A ∈ Z

2n×m
q satisfying A · {0, 1}m = Z

2n
q , and for all z ∈ Z

n
q

and s > ηε(Λ⊥(A)), the distributions:
�
A−1

((
d
z

)
, s

)
| d ← Z

n
q

�
and

�
A−1(z, s)

�

are 2ε-statistically close.

Note that the difference from the notation in [10] in that we switched the roles
of A,A. Also, the condition in A as stated in [10] is that

{
A ·x | x ∈ {0, 1}m ∩

Λ⊥(A)
}

= Z
n
q , which is implied by A · {0, 1}m = Z

2n
q .

Theorem 2. Fix parameters n, q,m ≥ O(n log q). There is an efficient algo-
rithm that on input A ∈ Z

2n×m
q ,T1/2 ∈ Z

m×n log q,M ∈ Z
Q×Q
q ,Z ∈ Z

n×Q
q , s ∈ N

such that A ·T1/2 =
(
0
G

)
, outputs a sample statistically close to the distribution

�
A−1

( (
D

DM + Z

)
, s

)
| D ← Z

n×m
q

�

if the following conditions are satisfied:

A · {0, 1}m = Z
2n
q , λm(Λ⊥(A)) = O(1), s2 ≥ O(1) · s1(T1/2)

2 +ω(log mQ + log n)

As shown in [12], the conditions A · {0, 1}m = Z
2n
q and λm(Λ⊥(A)) = O(1) are

satisfied for all but a 1 − 2q−2n fraction of A.
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Proof. We start by specifying the algorithm:

Algorithm. Output

vec−1((IQ ⊗ A − M� ⊗ A)−1(vec(Z), s))

where (IQ ⊗ A − M� ⊗ A)−1(·) is computed using MP trapdoor sampling [22]
with IQ ⊗ T1/2 as a trapdoor.

The analysis proceeds in three steps:

Step 1. We show that for all M,Z:

�
vec

(
A−1

(
D

DM + Z

))
: D ← Z

n×Q
q

�
≈s (IQ ⊗ A − M� ⊗ A)−1(vec(Z))

To show this, first observe that for all A,D,M,Z and all K, we have:

A · K =
(

D
DM + Z

)

⇐⇒ AK = D, AK − AKM = Z

⇐⇒
(

IQ ⊗ A
IQ ⊗ A − M� ⊗ A

)
· vec(K) =

(
vec(D)
vec(Z)

)

where the second ⇐⇒ uses

vec(AK) = (IQ⊗A)·vec(K), vec(AK) = (IQ⊗A)·vec(K), vec(AKM) = (M� ⊗A)·vec(K).

This means that for all A,D,M,Z and all s, the two distributions

vec
(
A−1

((
D

DM + Z

)
, s

))
and

(
IQ ⊗ A

IQ ⊗ A − M� ⊗ A

)−1 ((
vec(D)
vec(Z)

)
, s

)

are identically distributed.
Applying Lemma 1 to

A′ :=
(

IQ ⊗ A
IQ ⊗ A − M� ⊗ A

)

we have
�

( IQ ⊗ A

IQ ⊗ A − M� ⊗ A

)−1(vec(D)

vec(Z)

)
: D ← Z

n×Q
q

�
≈s

�
(IQ ⊗ A − M� ⊗ A)−1(vec(Z))

�

In Step 3, we check that A′ satisfies the conditions for Lemma 1.

Step 2. Observe that

(IQ ⊗ A − M� ⊗ A) · (IQ ⊗ T1/2) = (IQ ⊗ G − M� ⊗ 0) = IQ ⊗ G
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which means that we can use IQ ⊗ T1/2 as a MP-trapdoor to sample from the
distribution (IQ ⊗ A − M� ⊗ A)−1(vec(Z)).

Step 3. To complete the analysis, we need to bound ηε(A′) and show that A′ ·
{0, 1}mQ = Z

2nQ
q (in order to invoke Lemma 1). Observe that

A′ =
(

IQ ⊗ In 0
−M� ⊗ In IQ ⊗ In

)(
IQ ⊗ A
IQ ⊗ A

)

This means that Λ⊥(A′) = Λ⊥(IQ ⊗A), and that we can bound ηε(Λ⊥(IQ ⊗A))
using λm(Λ⊥(A)) = O(1). In addition, we have:

A · {0, 1}m = Z
2n
q ⇒ (IQ ⊗ A) · {0, 1}mQ = Z

2nQ
q ⇒ A′ · {0, 1}mQ = Z

2nQ
q

This completes the proof. ��

4 ABE for DFA Against Bounded Collusions

In this section, we present our ABE scheme for DFA against bounded collusions.

4.1 Our Scheme

– Setup(1n,Σ, 1B): Sample
(Aσ, τσ) ← TrapGen(12n

, 1
m

, q), σ ∈ Σ, (Aend, τend) ← TrapGen(1n
, 1

m
, q), d0,j , dend ← Z

n
q , j ∈ [B]

Output

mpk :=
( {d0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)
, msk :=

( { τσ }σ∈Σ , τend

)

– Enc(mpk, (x1, . . . , x�) ∈ Σ�, μ ∈ {0, 1}). Sample

s0, s1, . . . , s� ← Z
n
q , e0,j , e�+2 ← DZ,χ̂, j ∈ [B], e1, . . . , e�, e�+1 ← DZm,χ

Output

ct :=
( {

c0,j
︷ ︸︸ ︷

s0d
�
0,j + e0,j }j∈[B], {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μ · � q

2 � )

– KeyGen(msk,Mj , j): Parse Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj). Sample

Dj ← Z
n×Qj
q s.t. Dj ·u�

0,j = d�
0,j , Kend,j ← A−1

end(Dj −d�
end ⊗ fj), Kσ,j ← A−1

σ

( Dj

DjMσ,j

)
, σ ∈ Σ

using trapdoors τend, { τσ }σ∈Σ. Output

skMj
:=

(
Kend,j , {Kσ,j }σ∈Σ

)

– Dec(sk, ct, j): For i = 1, . . . , �, compute u�
i,j := Mxi,j · · ·Mx1,ju�

0,j . Output

roundq/2

(
c0,j +

( �∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j + c�+2

)

where roundq/2 : Zq → {0, 1} denotes rounding to the nearest multiple of q/2.
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Parameters. The Gaussians in A−1
σ (·),A−1

end(·) have parameters O(m+log Q).
The choice of n,m, q, χ comes from the LWE assumption subject to

n = O(λ), m = O(n log q), χ̂ = χ · (� + 1)m · λω(1), q = O((χ̂ + � · χ) · m · (m + logQ))

In particular, this means

|ct| = O((B + �)m log q) = Õ((B + �)), |sk| = O(|Σ|Qm log q) = Õ(|Σ|Qλ)

where Õ(·) hides poly(log λ, log �, log log Q) factors. To handle general a-prior
unbounded �,Q as is necessarily the case in ABE for DFA, we just bound �,Q
by λω(1).

Correctness. Fix x, j,Mj such that Mj(x) = 1. Write di,j := Dj · u�
i,j , for

j = 0, . . . , �. First, we show that

− c0,j +
( �∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j ≈ −s�d�
end ⊗ fju�

�,j (6)

This follows readily from

(si−1Axi
− siAxi

) · Kxi,j · u�
i−1,j = si−1d�

i,j − sid�
i,j

s�Aend · Kend,j · u�
�,j = s�d�

�,j − s�d�
end ⊗ (fju�

�,j)

which in turns follows from

Axi
· Kxi,j · ui−1,j =

(
Dj

DjMxi

)
· ui−1,j =

(
di−1,j

di,j

)

Aend · Kend,j · u�
�,j = (Dj − d�

end ⊗ fj)u�
�,j = d�

�,j − d�
end ⊗ (fju�

�,j)

Next, since Mj(x) = 1, we have fju�
�,j = 1. It follows from (6) that

−

≈−s�d
�
end︷ ︸︸ ︷

c0,j +
(∑�

i=1
ci · Kxi,j · u�

i−1,j

)
+ c�+1 · Kend,j · u�

�,j +

≈ s�d
�
end+μ·� q

2 	
︷ ︸︸ ︷

c�+2 ≈ μ · 
 q
2�

In particular, the error term is bounded by χ̂ + (� + 1)χ̇.

4.2 sk-Selective Security

We assume that the adversary always makes exactly B key queries; this is
WLOG, since we can always repeat some of the queries.
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Game Sequence. The proof of security follows a sequence of games:

– H0: Real game where

ct :=
( {

c0,j
︷ ︸︸ ︷

s0d
�
0,j + e0,j }j∈[B], {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μβ · � q

2 � )

– H′
0: same as H0, except we replace every c0,j with

( �∑

i=1

ci · Kxi,j · u�
i−1,j

)
+ c�+1 · Kend,j · u�

�,j + e0,j (7)

This game is well-defined because the adversary fixes all key queries (Mj , j)
before it chooses x in the sk-selective setting.

– H′
i, i = 1, . . . , �: same as H′

0, except we sample c1, . . . , ci ← Z
m
q . Note that this

also changes the distribution of { c0,j }j∈[B], since they depend on c1, . . . , ci

as defined in (7).
– H�+1: same as H�, except we replace c�+2 in H� with c′

�+2 ← Zq.

Lemma 2. H0 ≈s H′
0.

Proof. It suffices to show that The only difference in the two games lies in the
distribution of { c0,j }j∈[B]. Since Mj(x) = 0, we have fjd�

�,j = 0. It follows from
(6) that

c0,j ≈ (∑�

i=1
ci · Kxi,j · u�

i−1,j

)
+ c�+1 · Kend,j · u�

�,j

Combined with noise smudging using e0,j , namely

e0,j ≈s e0,j +
( �∑

i=1

ei · Kxi,j · u�
i−1,j

)
+ e�+1 · Kend,j · u�

�,j

which in turn follows from χ̂ ≥ χ · (� + 1)m · λω(1), we have

{ c0,j }j∈[B] ≈s {−(∑�

i=1
ci · Kxi,j · u�

i−1,j

) − c�+1 · Kend,j · u�
�,j + e0,j }j∈[B]

The lemma follows readily. ��
Lemma 3. For i = 1, . . . , �, H′

i−1 ≈c H′
i.

Proof. Observe that the only difference between H′
i−1 and H′

i lies in the distri-
bution of ci:

– in H′
i−1, we have ci = si−1Axi

− siAxi
+ ei;

– in H′
i, we have ci ← Z

m
q .
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We show that H′
i−1 ≈c H′

i follows from the T1/2-LWE assumption.
As a simplifying assumption, we assume that the reduction knows xi from

the start. In the more general setting, the reduction simply guesses xi at random
at the beginning of the experiment, and aborts if the guess is wrong; this incurs
a loss of |Σ| in the security reduction.

By the T1/2-LWE assumption applied to secret si−1 and public matrix Axi
,

we have:

si−1Axi
≈c c , c ← Z

m
q

given Axi
and oracle access to OAxi

(·).
The reduction on input Axi

, c̃ ∈ {si−1Axi
, c},Kxi,j and oracle access to

OAxi
(·):

– samples

(Aσ , τσ) ← TrapGen(12n, 1m, q), σ �= xi (Aend, τend) ← TrapGen(1n, 1m, q), dend ← Z
n
q

– when A makes a key query (Mj , j) where Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj):
• queries OAxi

(Mxi,j ,0) to get Kxi,j ← A−1
xi

(
Dj

DjMxi,j

)
;

• computes Dj = Axi
· Kxi,j ;

• for all σ �= xi, uses τσ to compute Kσ,j as in KeyGen;
• uses τend to compute Kend,j as in KeyGen;
• outputs skMj

:=
(
Kend,j , {Kσ,j }σ∈Σ

)

– computes mpk =
( {Dju�

0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)

– runs x = (x1, . . . , x�), μ0, μ1 ← A(mpk)
– picks β ← {0, 1} and computes ct as follows:

• samples random s0, . . . , s�−1, s� except si−1;
• computes ci := c̃ − siAxi

;
• computes the rest of ct as in H′

i−1;
– outputs A(ct).

Now, observe that when

– if c̃ = si−1Axi
+ ei, this matches H′

i−1.
– if c̃ = c, this matches H′

i since c − siAxi
is uniformly random.

This completes the proof. ��
Lemma 4 (final transition). H′

� ≈c H�+1.

Proof. By the LWE assumption, we have

Aend,dend,

c�+1
︷ ︸︸ ︷
s�Aend + e�+1, s�d�

end + e�+2

≈c Aend,dend,

c�+1
︷ ︸︸ ︷
s�Aend + e�+1, c

′
�+2

The reduction on input Aend,dend, c�+2, c̃, where c̃ ∈ {s�d�
end + e�+2, c

′
�+2},
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– samples
(Aσ, τσ) ← TrapGen(12n, 1m, q), σ ∈ Σ

– when A makes a key query (Mj , j) where Mj = (Qj ,Σ, {Mσ,j }σ∈Σ ,u0,j , fj):
• samples Kend,j ← D

Z
m×Qj

• programs Dj = AendKend,j + d�
end ⊗ fj ;

• for all σ ∈ Σ, computes Kσ,j using τσ as in KeyGen;
• outputs skMj

:=
(
Kend,j , {Kσ,j }σ∈Σ

)

– computes mpk =
( {Dju�

0,j }j∈[B], {Aσ }σ∈Σ ,Aend,dend

)

– runs x = (x1, . . . , x�), μ0, μ1 ← A(mpk)
– picks β ← {0, 1} and computes ct as follows:

• samples random c1, . . . , c�;
• for all j ∈ [B], compute c0,j using (7) except replacing s�d�

�,j with

c�+1 · Kend,j · u�
�,j

• outputs ct := ({ c0,j }j∈[B], c1, . . . , c�, c�+1, c̃ + μβ · 
 q
2�).

– outputs A(ct).

Here, we use

Dj ← Z
n×Qj
q ,Kend,j ← A−1

end(Dj −d�
end ⊗ fj) ≈s AendKend,j +d�

end ⊗ fj ,Kend,j ← D
Z

m×Qj

This completes the proof. ��

5 Candidate ABE for DFA Against Unbounded
Collusions

In this section, we describe a candidate ABE scheme for DFA against unbounded
collusions:

– Setup(1n,Σ): Sample

(Aσ, τσ) ← TrapGen(12n, 1m, q), σ ∈ Σ, (Aend, τend) ← TrapGen(1n, 1m, q), ,
(Ast, τst) ← TrapGen(1n, 1m, q), dend ← Z

n
q ,

Output

mpk :=
( {Aσ }σ∈Σ ,Aend,Ast,dend

)
, msk :=

( { τσ }σ∈Σ , τend

)

– Enc(mpk, (x1, . . . , x�) ∈ Σ�, μ ∈ {0, 1}). Sample

s0, s1, . . . , s� ← Z
n
q , e�+2 ← DZ,χ̂, j ∈ [B], e0, e1, . . . , e�, e�+1 ← DZm,χ

Output

ct :=
(

c0
︷ ︸︸ ︷
s0Ast + e0, {

ci
︷ ︸︸ ︷
(si−1Axi

− siAxi
+ ei }i∈[�],

c�+1
︷ ︸︸ ︷
s�Aend + e�+1,

c�+2
︷ ︸︸ ︷

s�d
�
end + e�+2 + μ · � q

2 � )
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– KeyGen(msk,M): Parse M = (Q,Σ, {Mσ }σ∈Σ ,u0, f). Sample

D ← Z
n×Q
q , k

�
st ← A

−1
st (D ·u�

0 ), Kend ← A
−1
end(D−d

�
end ⊗f), Kσ ← A

−1
σ

( D

DMσ

)
, σ ∈ Σ

using trapdoors τst, τend, { τσ }σ∈Σ. Output

skM :=
(
kst, Kend, {Kσ }σ∈Σ

)

– Dec(sk, ct): For i = 1, . . . , �, compute u�
i := Mxi

· · ·Mx1u
�
0. Output

roundq/2

(
c0k�

st +
�∑

i=1

ci · Kxi
· u�

i−1 + cend · Kend · u�
� + c�+2

)

where roundq/2 : Zq → {0, 1} denotes rounding to the nearest multiple of q/2.

Preliminary Cryptanalysis. We make two small observations:

– Given unbounded keys, the adversary can recover a full short basis for the
matrices

[Ast | Aσ],∀σ

This follows from the fact that for each key,

[Ast | Aσ]
(

kst

−Kσu�
0

)
= D · u�

0 − D · u�
0 = 0

However, we do not know how to use such a collection of short basis to break
security of the scheme.

– Suppose we replace each k�
st with c0k�

st+e′
0 for some fresh e′

0, then the scheme
is indeed sk-selective secure, via essentially the same analysis as our bounded-
collusion scheme. (Recall that the role of k�

st for correctness is indeed only
to compute c0k�

st, so this change does not ruin functionality.) This means
that any attack on our candidate scheme must crucially exploit access to k�

st

(beyond approximating c0k�
st), for instance, to recover a short basis as in the

previous bullet.
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meticulous and constructive feedback.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

https://doi.org/10.1007/978-3-642-13190-5_28


308 H. Wee

2. Agrawal, S., Chase, M.: Simplifying design and analysis of complex predicate
encryption schemes. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 627–656. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 22

3. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption (and more) for
nondeterministic finite automata from LWE. In: Boldyreva, A., Micciancio, D.
(eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 765–797. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-26951-7 26

4. Agrawal, S., Maitra, M., Yamada, S.: Attribute based encryption for deterministic
finite automata from DLIN. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS,
vol. 11892, pp. 91–117. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
36033-7 4

5. Agrawal, S., Singh, I.P.: Reusable garbled deterministic finite automata from learn-
ing with errors. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.)
ICALP 2017, volume 80 of LIPIcs, pp. 36:1–36:13. Schloss Dagstuhl, July 2017

6. Ananth, P., Vaikuntanathan, V.: Optimal bounded-collusion secure functional
encryption. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp.
174–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6 8

7. Attrapadung, N.: Dual system encryption via doubly selective security: frame-
work, fully secure functional encryption for regular languages, and more. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–
577. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 31

8. Attrapadung, N.: Dual system encryption framework in prime-order groups via
computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53890-6 20

9. Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 30

10. Chen, Y., Vaikuntanathan, V., Wee, H.: GGH15 beyond permutation branching
programs: proofs, attacks, and candidates. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018. LNCS, vol. 10992, pp. 577–607. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-96881-0 20

11. Genise, N., Micciancio, D., Peikert, C., Walter, M.: Improved discrete Gaussian
and subgaussian analysis for lattice cryptography. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12110, pp. 623–651. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45374-9 21

12. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC,
pp. 197–206. ACM Press, May 2008

13. Gong, J., Waters, B., Wee, H.: ABE for DFA from k -Lin. In: Boldyreva, A., Mic-
ciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 732–764. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26951-7 25

14. Gong, J., Wee, H.: Adaptively secure ABE for DFA from k -Lin and more. In:
Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 278–308.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3 10

15. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-319-56620-7_22
https://doi.org/10.1007/978-3-030-26951-7_26
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36033-7_4
https://doi.org/10.1007/978-3-030-36030-6_8
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-662-53890-6_20
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-319-96881-0_20
https://doi.org/10.1007/978-3-030-45374-9_21
https://doi.org/10.1007/978-3-030-26951-7_25
https://doi.org/10.1007/978-3-030-45727-3_10
https://doi.org/10.1007/978-3-642-32009-5_11


ABE for DFA from LWE Against Bounded Collusions, Revisited 309

16. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC,
pp. 545–554. ACM Press, June 2013

17. Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for
branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 23

18. Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th ACM STOC,
pp. 660–670. ACM Press, June 2018

19. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani
di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press, October/November
2006. Available as Cryptology ePrint Archive Report 2006/309

20. Itkis, G., Shen, E., Varia, M., Wilson, D., Yerukhimovich, A.: Bounded-collusion
attribute-based encryption from minimal assumptions. In: Fehr, S. (ed.) PKC 2017.
LNCS, vol. 10175, pp. 67–87. Springer, Heidelberg (2017). https://doi.org/10.1007/
978-3-662-54388-7 3

21. Kowalczyk, L., Wee, H.: Compact adaptively secure ABE for NC1 from k -Lin. J.
Cryptol. 33(3), 954–1002 (2019). https://doi.org/10.1007/s00145-019-09335-x

22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

23. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM CCS 2010, pp.
463–472. ACM Press, October 2010

24. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

25. Waters, B.: Dual system encryption: realizing fully secure IBE and HIBE under
simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–
636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 36

26. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-32009-5 14

27. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54242-8 26

https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-48797-6_23
https://doi.org/10.1007/978-3-662-54388-7_3
https://doi.org/10.1007/978-3-662-54388-7_3
https://doi.org/10.1007/s00145-019-09335-x
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-03356-8_36
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26


Distributed Merkle’s Puzzles

Itai Dinur(B) and Ben Hasson

Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

Abstract. Merkle’s puzzles were proposed in 1974 by Ralph Merkle as
a key agreement protocol between two players based on symmetric-key
primitives. In order to agree on a secret key, each player makes T queries
to a random function (oracle), while any eavesdropping adversary has
to make Ω(T 2) queries to the random oracle in order to recover the key
with high probability. The quadratic gap between the query complexity
of the honest players and the eavesdropper was shown to be optimal by
Barak and Mahmoody [CRYPTO’09].

We consider Merkle’s puzzles in a distributed setting, where the goal
is to allow all pairs among M honest players with access to a random
oracle to agree on secret keys. We devise a protocol in this setting, where
each player makes T queries to the random oracle and communicates at
most T bits, while any adversary has to make Ω(M · T 2) queries to the
random oracle (up to logarithmic factors) in order to recover any one
of the keys with high probability. Therefore, the amortized (per-player)
complexity of achieving secure communication (for a fixed security level)
decreases with the size of the network.

Finally, we prove that the gap of T ·M between the query complexity
of each honest player and the eavesdropper is optimal.

1 Introduction

In 1974 Merkle proposed a protocol that allows a pair of players to agree on
a shared secret key without any secret shared in advance (the work was pub-
lished in 1978 [17]). We describe an idealized variant of the protocol, assum-
ing that player 1 (Alice), player 2 (Bob) and the adversary have access to a
cryptographic hash function H : [N ] → [N ′] (where [N ] = {1, . . . , N}) that is
hard to invert, modeled as a random function (oracle). Alice begins by selecting√

N elements in [N ] independently and uniformly at random (x1, . . . , x√
N ), and

sends (H(x1), . . . , H(x√
N )) to Bob. Then, Bob attempts to invert one of the ele-

ments by selecting
√

N elements in [N ] independently and uniformly at random
(y1, . . . , y√

N ), computing (H(y1), . . . , H(y√
N )), and comparing with the hashed

elements received from Alice. By a birthday paradox-like argument, with high
probability, the query sets {x1, . . . , x√

N} and {y1, . . . , y√
N} intersect, namely,
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there exist i, j such that xi = yj . Thus, Bob sends i to Alice and the players
agree on xi as the shared secret key. The properties of H should guarantee that
collisions (i.e., different inputs that hash to the same output) are unlikely inside
query sets of this size, and thus the players agree on the same key with high
probability. In terms of security, as H is a random oracle, an eavesdropping
adversary has to query it on essentially the entire domain [N ] in order to recover
xi with high probability.

The quadratic gap between the query complexity of the honest players and
the eavesdropper was shown to be optimal by Barak and Mahmoody [2,3]
(tightening the previous bound of Impagliazzo and Rudich [13]), assuming the
symmetric-key primitive is used as a black box. This stands in contrast to var-
ious key-agreement protocols (notably, the Diffie–Hellman protocol [7]) that
achieve a super-polynomial gap between the complexity of the honest players
and the eavesdropper, based on stronger assumptions which imply that public-
key encryption schemes exist (refer to [1] for more details about such protocols).
Clearly, the security of Merkle’s puzzles is far from the ideal exponential secu-
rity. However, Biham, Goren and Ishai [4] pointed out that it is not completely
unacceptable, since the ratio between the work of the honest players and the
adversary grows as technology advances and the honest players can afford more
computation.

Key agreement protocols based on black-box use of symmetric-key primitives
are still subject to active research. For example, the recent work [12] by Haitner
et al. studied the communication complexity of such protocols. In this work we
propose a distributed model for Merkle’s puzzles and show that in this model
the gap in query complexity between each honest player and the eavesdropper
can be super-quadratic.

1.1 Distributed Key Agreement Based on Symmetric-Key
Primitives

We study key agreement protocols in a generalized (distributed) model in which
there are M honest players p1, . . . , pM that form a fully connected network.1

The goal is to allow all pairs of players to agree on secret keys. We assume that
all honest players and the eavesdropping adversary have access to a random
oracle H. We measure the query and communication complexity of the players
and the query complexity of the adversary. The problem can be easily solved if
the players already have secure communication channels with a trusted party,
which can use the channels to distribute all keys. However, in this work we do
not assume any pre-existing secure channels.

Motivation. We do not expect our protocol to be used in practice for the pur-
pose of key agreement, largely due to the small gap between the complexity of the
honest players and the eavesdropper. However, we believe that the distributed
1 Our protocol can also be made to work with small overhead in a sparse, but well-

connected network such as the hypercube or the butterfly networks [18, Chapter 4.5].



312 I. Dinur and B. Hasson

model is a natural generalization of the basic problem of pairwise key agreement
using symmetric-key primitives, and is worth studying. Moreover, techniques
used in the protocol could potentially be useful in other settings as well. For
example, they may be used to optimize key pre-distribution schemes in highly
connected networks (see Sect. 1.4 for details about these schemes).

Basic Protocol. In the most straightforward distributed protocol, each of the(
M
2

)
pairs of players independently carry out the standard 2-player Merkle’s

puzzles protocol. However, a closer examination reveals that this is wasteful and
it is sufficient to form O(M) secure links or edges (i.e., shared keys between
player pairs) such that the secure communication graph is connected. Thus, in
order for an arbitrary pair of players pi, pj to agree on a key, pi chooses a key
ki,j and sends it encrypted on a path to pj in the secure link graph. Namely, if
(�,m) is a secure link in the graph, then p� sends ki,j to pm encrypted with the
key shared by p� and pm. Player pm decrypts ki,j and then sends it encrypted
on the next secure link.

This protocol has the disadvantage that ki,j is not kept private from the other
players (and is thus insecure in a model which does not assume all players are
perfectly honest). It can be (partially) mitigated by pi splitting ki,j into different
secret shares, and sending the shares to pj on non-intersecting paths.

In this improved protocol, it is sufficient for each player to agree on secret
keys with O(1) other players via standard Merkle’s puzzles. Thus, every player
makes O(T ) queries to H and an eavesdropping adversary has to make Ω(T 2)
queries to recover any particular key with high probability. However, a key is
now used to encrypt (shares of) other keys, and thus if the adversary is able to
recover a few keys, the security of the entire network may collapse. Thus, we
would like security guarantees against recovering any one of the keys with high
probability. In order to achieve this, we can split the domain of H (assuming
it is sufficiently large) among the different executions of Merkle’s puzzles, such
that they are completely independent.

The main question we consider in this work is whether the quadratic gap
in query complexity in the distributed model (obtained by the basic protocol
above) between the honest players and the eavesdropping adversary is optimal.

1.2 Our Results

We show that the quadratic gap obtained by the basic protocol in the distributed
model is suboptimal.

Theorem 1 (informal). For parameters M and T such that T = Ω̃(M),2

there is a key agreement protocol based on symmetric-key primitives in the dis-
tributed model, where each honest player makes T queries to the random oracle
and communicates at most Õ(T ) bits, while any adversary has to make Ω̃(M ·T 2)

2 Throughout this paper, the notation Õ(·) and Ω̃(·) hide poly-logarithmic factors
in T .
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queries to the random oracle in order to recover any one of the keys with high
probability.

We further note that the computational complexity (in the standard word
RAM model) of each honest player in our protocol is Õ(T ). Consequently, up to
small factors, a group of about 220 players can communicate with 100-bit security
after each player performs 240 work. The complexity of the basic protocol above
is 250, which is much higher.

More generally, if we fix the number of queries of the adversary (i.e., the
security level of the protocol) to TA, then the query and communication com-
plexity of each player in our protocol is about

√
TA/M . This gives the following

(informal) property of our protocol.

Property 1. The complexity per player for securely connecting a network
decreases with the size of the network.

This property may seem counterintuitive, as the number of targets (secure
links) available to the adversary increases with the size of the network, so one
may be tempted to conclude that each player must work at least as hard.

We also show that the gap of T · M obtained in our protocol between the
query complexity of each player and the adversary is optimal (up to logarithmic
factors). In fact, we show that this gap is the best possible even if we set a
presumably weaker goal of establishing a single key between p1 (or any other
fixed player) and any other player pj for j ∈ [M ]\{1}. In other words, we obtain
the following property of the distributed model.

Property 2. The complexity per player for securely connecting p1 to any one of
the other players is essentially the same as for securely connecting the entire
network.

Property 1 and Property 2 are due to a combination of the birthday paradox
and properties of random graphs, as described next.

1.3 Overview of the Protocol and Its Analysis

Setup Protocol. Instead of trying to create pre-fixed secure links between
pairs of players (as in the basic protocol described above), we start by creating
arbitrary secure links based on a setup protocol via a distributed variant of
Merkle’s puzzles. Fixing the parameters T and M , every player selects T elements
uniformly at random from [N ] (the domain of H : [N ] → [N ′]) and queries H
to obtain the corresponding T images. If we choose N ≈ M · T 2, a birthday
paradox-like argument shows that with high probability, the T elements chosen
by any player pi intersect the (M − 1) · T ≈ M · T elements chosen by the other
players. As in standard Merkle’s puzzles, two players with intersecting query
sets can agree on a shared key. However, it is not yet clear how the players can
detect such intersections with limited communication.

One way to detect intersections is to have each player send its T query images
to p1 (or any designated player) that acts as an intermediate and informs all
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player pairs about the matches. However, this requires that p1 communicates
Ω(M · T ) bits. In order to get around this problem, we distribute the role of the
intermediate among the different players: for each query x ∈ [N ], H(x) is sent to
player number H(x) mod M . This guarantees that each player receives about T
images (with high probability), and can detect matches among them and then
inform the corresponding players.

Choosing N ≈ M ·T 2/ log M , ensures that the secure network formed by the
setup protocol is connected with high probability. However, in terms of security,
an adversary may invert any one of the Ω(M) images (i.e., recover any one of
the secret keys) and can succeed with high probability in doing so after making
about N/M ≈ T 2/ log M queries. Therefore, we have not yet improved upon the
basic protocol.

Amplification. In order to strengthen the security of the protocol, we perform
amplification. The goal is to connect the network via “strong links” (keys) that
the adversary has negligible probability (e.g., less than 2/N) of recovering unless
making (about) N/2 queries. For this purpose, for a (small) parameter L, we per-
form L independent executions of the setup protocol (with independent random
oracles that can be derived by splitting the domain of H). Assume we wish to
connect pi and pj by a strong link. Then, pi selects ki,j (from a sufficiently large
space), computes an L-out-of-L secret sharing of ki,j and sends the �’th share on
a path to pj , encrypted using the keys of the �’th execution. In terms of security,
in order to recover ki,j , the adversary has to recover one setup key on each of
the L paths. For a fixed number of queries, the probability of the adversary to
recover a setup key on a path depends on its length (which defines the number
of targets). If the paths are too long then we need to select a large value of L to
achieve the required security level, resulting in an inefficient protocol (in terms
of both query and communication complexity).

Fortunately, the secure link graph formed by an execution of the setup pro-
tocol has diameter (i.e., maximal distance between two nodes) of O(log M) with
high probability, and thus the paths are short. A similar phenomenon occurs in
the G(n, p) graph model [6] (in which each edge in the n-node graph is present
independently with probability p ≈ log n

n ). We note, however, that the edges of
the secure link graph formed by the setup protocol are not independent.

Extension to the Semi-honest Model. Our basic protocol assumes that all
players are perfectly honest. However, using similar techniques used for ampli-
fication, the protocol can be extended with logarithmic overhead to the semi-
honest model (in which some players are honest but curious), where an adversary
controls a fraction of O(1/ log M) of the players.

Analysis. The main contribution of this work is proposing a distributed key
agreement model based on symmetric-key primitives and devising a protocol
in this model. On the other hand, the analysis of the protocol is elementary
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and mainly consists of basic concentration inequalities (it is easy to check that
the protocol “works on average”). The proof of optimality follows by reduction
from a 2-player protocol and is based on the result of Barak and Mahmoody [3].
Throughout the paper we aim for simplicity and make little effort to optimize
low-order terms. In particular, it seems that a logarithmic improvement can be
obtained by running the setup protocol only once with appropriate parameters,
such that it is possible to select sufficiently many short disjoint paths in the
secure link graph for the purpose of amplification. However, the analysis of such
a protocol is substantially more complicated.

We chose to analyze our protocol in an idealized (information-theoretic)
model as it simplifies the protocol and its analysis, and emphasizes its most
important differences compared to previous works. An idealized model is also
necessary for the proof of optimality. Alternatively, we could have investigated
the minimal complexity-theoretic assumptions under which our protocol could
be proven secure. Based on the analysis of [4] for 2-player protocols, it seems
that we similarly need a one-way function of exponential strength and a “dream
version” of Yao’s XOR lemma [11]. We leave the formal treatment of this subject
to future work.

1.4 Previous Work

Since Merkle’s seminal work [17], various aspects of key agreement protocols
based on symmetric-key primitives have been studied (c.f., [2–4,12,13]).

Key agreement protocols among a group of players have been investigated in
numerous previous works, many of which make use of asymmetric-key primitives
(c.f., [14]).

Various works also investigated the problem of key agreement among a group
of players without using asymmetric-key primitives in models that are fundamen-
tally different from ours. Among these we mention [16] by Leighton and Micali,
that studied the problem in a model where keys are pre-assigned to players by
a trusted dealer. Another example is [10] by Fischer and Wright, where it is
assumed that the players have access to a particular type of correlated random-
ness (specifically, each player is given a secret set of cards that are not given to
any other player).

The key agreement problem among a group of players is also related to secure
message transmission (c.f., [8]), but our adversarial model is completely different
and the relation is mostly indirect.

To the best of our knowledge, key agreement protocols among a group of
players based on symmetric-key primitives have not been previously investigated
in our (i.e., Merkle’s) model, perhaps because it is not obvious that they offer
any advantage compared to 2-player protocols. Below we elaborate on the line
of work that seems to be the closest to ours (and is also related to [16]).

Random Key Pre-distribution Schemes. In random key pre-distribution
schemes each player (node) is initialized with a set of symmetric keys (chosen
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randomly from a group of keys, unknown to the adversary) prior to the key
agreement protocol in order to bootstrap it. This model has been mostly stud-
ied in the context of sensor networks which have limited computational power
(c.f., [5,9] and many followup works).

The random key pre-distribution model is related to ours, as our goal is
also to connect a network via secure links using symmetric-key cryptography.
However, there are important differences between the models, as in random key
pre-distribution schemes, there is no random oracle (keys are pre-distributed)
and the adversarial model allows the attacker to compromise nodes and discover
their keys (but not to break cryptography). On the other hand, in our model
the adversary may break the cryptography by querying the random oracle after
eavesdropping. In addition, the network topology assumed in key pre-distribution
scheme is different than ours and it has a substantial effect on the protocols.

To demonstrate the effect of the different models, note that in key pre-
distribution schemes we can trivially establish a pre-shared key between any
(fixed) pair of nodes, and the difficulty is in deploying a large-scale system with
pre-shared keys where the adversary can compromise some of the nodes. Hence,
Properties 1 and 2 do not hold for these schemes. On the other hand, in our
case, a larger network allows us to make use of its collective power to agree on
keys with reduced amortized complexity, resulting in Property 1 (and indirectly,
in Property 2).

Despite the different models and analysis, there are similarities between key
pre-distribution protocols and our protocol. In particular, our setup protocol is
analogous to the initial phase in key pre-distribution protocols, where each node
discovers its neighbors by communicating identifiers of keys that it holds. How-
ever, the setup protocol of [5,9] is similar to the basic (undistributed) protocol
we considered in which suboptimal parameters are selected (each pair of nodes
share a common key with high probability). On the other hand, our advantage
comes from the distributed variant of Merkle’s puzzles in which each player
shares a key only with a few other players not selected in advance. This allows
to increase the key space (and the complexity of exhaustive search) by a factor
of about M . Additionally, unlike [5,9], we match player couples (i.e., discover
immediate neighbors in the secure link graph) via intermediate players in order
to minimize communication.

The amplification we use is similar to the multipath-reinforcement protocol
of [5] that strengthens the security of a link between two nodes by leveraging
other secure links. However, we use paths of length about log M , while [5] mainly
uses paths of length 2, which are unlikely to exist in our case.

Open Problems. An interesting open problem deals with an extended security
model in which the goal of the adversary is to recover κ of the keys (where κ ≥ 1
is an integer parameter). In our protocol, the adversary has to query the random
oracle about M · T 2 times in order to recover one key with high probability, yet
roughly the same number of queries suffice for recovering all keys. We conjecture
that this is essentially optimal, namely, in any protocol where the players agree



Distributed Merkle’s Puzzles 317

on Ω(M) pairwise keys, the adversary can recover a constant fraction of them
with O(M · T 2) queries.

Structure of Paper. Next, we describe some preliminaries in Sect. 2 and then
formally define our model in Sect. 3. Our setup and main protocols are described
and analyzed in Sects. 4 and 5, respectively. In Sect. 6 we prove the optimality of
our protocol with respect to query complexity. Finally, we discuss the extension
to the semi-honest model and a communication-security tradeoff in Sect. 7.

2 Preliminaries

For numbers x and b, we denote by log x, logb x and lnx the logarithm of x with
basis 2, b and e, respectively.

Given positive integers n, t, denote [n] = {1, . . . , n} and [n]t =
[n] × [n] × . . . × [n]
︸ ︷︷ ︸

t

.

We will use the following inequalities. For every positive integer n, n! >
(

n
e

)n,
while for every positive integers n, t (such that n ≥ t),

(
n
t

) ≤ nt

t! <
(

e·n
t

)t
.

2.1 Graphs

Let G = (V,E) be an undirected graph. The distance between two vertices
v, u ∈ V in G is the length of the shortest path between them. The diameter of
G is the maximal distance between any two vertices of G.

The vertex v is a neighbor of u if (v, u) ∈ E. Let U ⊆ V . We define the
neighborhood of U as NG(U) � {v ∈ V \U | v has neighbor in U}.

We will use the notion of (vertex) expander graphs.

Definition 1 (Expander graphs). Let G = (V,E) be an undirected graph with
n vertices and let δ > 0. The graph G is a δ-expander if |NG(U)| ≥ δ · |U | for
every vertex subset U ⊂ V with |U | ≤ n/2.

The following result is considered folklore (c.f., [15, Corollary 3.2]).

Proposition 1 (Diameter of expander graphs). Let G = (V,E) be
an undirected graph with n vertices that is a δ-expander. Then, diam(G) ≤
2
log1+δ(n/2)� + 1 = Oδ(log n).

Proof. Let v ∈ V . For an integer t ≥ 0, denote by Bt(v) the set of vertices within
distance t from v in G. We prove by induction on t that

|Bt(v)| ≥ min(n/2, (1 + δ)t).

For t = 0, we have Bt(v) = {v} and |Bt(v)| = 1. For the induction step,
assume that |Bt−1(v)| ≥ min(n/2, (1 + δ)t−1) and note that Bt−1(v) ⊆ Bt(v).
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If |Bt−1(v)| ≥ n/2, we are done. Otherwise, |Bt−1(v)| ≥ (1 + δ)t−1 and
|Bt−1(v)| < n/2. Denote U = Bt−1(v). We have Bt(v) = U ∪ NG(U) and
|NG(U)| ≥ δ·|U | since G is a δ-expander. Therefore, |Bt(v)| ≥ (1+δ)|U | ≥ (1+δ)t

as claimed.
In particular, for t = 
log1+δ(n/2)�, for any v, u ∈ V we have Bt(v) ≥ n/2

and Bt(u) ≥ n/2. Thus, Bt+1(v) > n/2 intersects Bt(u), proving the result. �

2.2 Random Functions and Encryption

A random function (oracle) can be thought of as an idealization of a crypto-
graphic hash function. For positive integers N,N ′, a random function H : [N ] →
[N ′] is random variable, where for each x ∈ [N ], H(x) is selected independently
uniformly at random from [N ′].

We also make use of an idealization of an encryption scheme using a random
function. There are various ways to implement such an encryption scheme and
we choose the following one that resembles the counter mode-of-operation: let
F : [N ] → [N ′] be a random function such that N = N1 × N2 (i.e., we can
write F : [N1] × [N2] → [N ′]). Given a key k ∈ [N1] and a counter ct ∈ [N2], a
message m ∈ [N ′] is encrypted as F (k, ct)+m mod N ′. Decryption is performed
by computing F (k, ct) and subtracting it modulo N ′ from the ciphertext.

Assuming a pair (k, ct) is not reused to encrypt different messages and the
adversary does not query F with the key k, then the scheme essentially acts as a
one-time pad and no information is revealed about the encrypted messages from
the ciphertexts and the values of F queried to the adversary.

3 Distributed Key Agreement Protocols Based on
Random Oracles

We consider a complete network with M players p1, . . . , pM that have access to
a random oracle H. The players run a protocol whose the goal is to establish
keys between a fixed set of pairs of players Es ⊆ [M ]× [M ]. We do not assume a
broadcast channel, and thus broadcasting a bit requires M bits of communica-
tion. We note that if a broadcast channel is assumed, then the communication
restrictions in the protocols we devise are essentially trivial to satisfy.

All probabilities are computed with respect to the random oracle and the
coin tosses of the players and adversary (whenever relevant).

Definition 2 (Distributed key agreement protocol). A (M,α, T, β)-
DKAP is a protocol between M players p1, . . . , pM with access to a random
oracle H. Each player receives as input the same set of edges Es ⊆ [M ] × [M ].
For i ∈ [M ], denote the total number of queries of player pi to H by Ti and the
total communication of pi by Ci. The protocol satisfies the following properties:

– For each (i, j) ∈ Es, player pi outputs ki,j and player pj outputs kj,i such
that Pr[∀(i, j) ∈ Es : ki,j = kj,i] ≥ α.
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– Pr[∀i ∈ [M ] : Ti ≤ T ] = 1, and Pr[∀i ∈ [M ] : Ci ≤ T ] ≥ β.

A variant of this definition places a worst-case upper bound on the commu-
nication complexity of each player. For sufficiently large α and β this variant
is essentially equivalent to the one above, since a (M,α, T, β)-DKAP can eas-
ily be converted into a (M,α + β − 1, T, 1)-DKAP: a player that exceeds the
communication bound simply aborts and outputs a random value.

Another potential variant also places a bound of Õ(T ) on the total compu-
tation performed by each player (in some standard computational model). Our
protocol satisfies this additional constraint.

As in standard Merkle’s puzzles, security is defined with respect to a passive
adversary that has access to the complete transcript of the protocol. The adver-
sary makes a bounded number of queries to H and outputs a string of the form
((i, j), k). The adversary wins if (i, j) ∈ Es and k = ki,j .

Definition 3 (Security of a distributed key agreement protocol). A
(M,α, T, β)-DKAP is (TA, αA)-secure if for any adversary A with access to the
communication (transcript) of the protocol Λ that makes at most TA queries to
H, Pr[(i, j) ∈ Es ∧ k = ki,j | AH(Λ) → ((i, j), k)] ≤ αA.

The security definition does not restrict the keys on which the players agree. In
particular, a protocol in which all players agree on the same key can potentially
satisfy the definition. However, in our specific protocol the players agree on
independent keys. This allows to easily extend it to the semi-honest model, as
described in Sect. 7.

Supporting Es = [M ] × [M ]. In general, the parameters of a key agreement
protocol may depend on (be a function of) Es. Ultimately, we would like to
design a protocol that allows all pairs of players to exchange keys, namely, Es =
[M ] × [M ]. However, as we outline below, a protocol for Es = [M ] × [M ] can be
easily obtained (with a small loss in parameters) from a protocol in which Es is
much sparser.

Specifically, assume we have a protocol that supports inputs Es where
G = (V,Es) is a sparse network with |Es| = Õ(M) for which there exist routing
protocols with small congestion (such as the hypercube or the butterfly net-
works [18, Chapter 4.5]). Then, we can extend it to allow all

(
M
2

)
pairs of players

to agree on keys such that each player performs Õ(M) additional encryptions
(i.e. oracle queries) and communicates additional Õ(M) bits almost surely: for
each (i, j) ∈ [M ] × [M ] such that i < j, pi picks a key k′

i,j uniformly at random
and sends it encrypted to pj along a short path in (V,Es).3 If the exchanged
keys are in a sufficiently large space (of size Ω̃(M · T 2) in our case) and perfect
encryption with domain separation is used (as described in Sect. 2), then recov-
ering any k′

i,j requires recovering at least one key in Es and hence the advantage

3 This exposes k′
i,j to the players along the path, and is therefore insecure in the

semi-honest model. However, the protocol can be patched by secret sharing k′
i,j and

sending multiple shares encrypted along disjoint paths. We use a somewhat similar
protocol for the purpose of amplification.
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of an adversary (with a fixed upper bound on the number of queries) does not
increase due to the additional key agreements. Therefore, we may restrict our-
selves to designing distributed key agreement protocols in which |Es| = Õ(M).

4 The Setup Protocol

Algorithm 1 describes the setup protocol for player pi (for any i ∈ [M ]), assuming
the M players have access to a random oracle H : [N ] → [N ′]. The protocol
first establishes keys between various pairs of players and then propagates the
information about which players share keys.

Algorithm 1: Setup protocol (pi’s algorithm)
Parameters: M, T, N, N ′, D

1 For all j ∈ [M ]\{i}, set ki,j = ⊥
2 Choose (x1, . . . , xT ) ∈ [N ]T uniformly at random (with replacement)

3 Compute (H(x1), . . . , H(xT )) ∈ [N ′]T and store the T pairs (xj , H(xj)) in a
table T1, sorted by the second column

4 For each j ∈ [T ], send (i, H(xj)) to player number H(xj) mod M ∈ [M ]
5 Receive messages from other players: (u1, y1), (u2, y2), . . . and store them in a

table T2, sorted by the second column
6 forall the collisions in T2: {(uj , yj), (u�, y�) | yj = y� ∧ uj �= u�} do
7 send (u�, yj) to player number uj

8 send (uj , yj) to player number u�

9 Receive messages from other players: (v1, z1), (v2, z2), . . .
10 For each message (vj , zj), search for zj in T1. If there exists an entry (x�, H(x�))

in T1 such that zj = H(x�), set

ki,vj =

{
x� if ki,vj = ⊥ or H(ki,vj ) < H(x�),

ki,vj otherwise

� Distribute secure link graph

11 Broadcast the elements of the set {(i, j) | ki,j �= ⊥ ∧ i < j}
12 Receive and store messages (f1, g1), (f2, g2), . . . from other players
13 Construct a graph G = (V, E), where V = [M ], E = {(f1, g1), (f2, g2), . . .}
14 Run breadth-first search on G from node i and calculate the minimal distance

to each j ∈ [V ]. If there exists j ∈ [V ] whose distance from i is larger than D,
broadcast “fail” and output ⊥.

15 If a “fail” message is received, then output ⊥. Otherwise, output G and
{(j, ki,j) | ki,j �= ⊥}

Parameter Selection. We assume for simplicity that M divides N ′. We choose
N = � T 2·M

25 lnM �, N ′ = T 6 and D = 4 log M . We further denote R � T 2·M
N .
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We assume that M ≥ 64, T ≥ 20000 and note that 25 ln M ≤ R ≤ 26 ln M .
Moreover, we assume M ≤ T , which is reasonable as otherwise, iterating over
the list of players requires more than T time (and broadcasting a bit has com-
munication complexity of M bits).

We now analyze the setup protocol with respect to correctness, query and
communication complexity, connectivity of the secure link graph G and security.

4.1 Correctness

Proposition 2. Assume that for all (i, j) ∈ Es, pi outputs ki,j player pj outputs
kj,i. Then, Pr[∀(i, j) ∈ Es : ki,j = kj,i] ≥ 1 − T−2.

Proof. Note that if the players output ⊥ the protocol is still formally correct.
Therefore, the only event that may cause a pair of players to output non-
matching keys is that their joint query set contains a collision in H, namely
a pair of elements qi, qj ∈ [N ] such that H(qi) = H(qj) but qi �= qj .

Based on the randomness of H, a pair of different queries collide with proba-
bility 1/N ′. By a union bound over all query pairs, the probability of a collision
in the M · T queries made by the players is bounded by (T ·M)2

N ′ ≤ T 4

N ′ = T−2. �

4.2 Query and Communication Complexity

Proposition 3. Each player makes at most T queries to H and communicates
Õ(T ) bits, except with probability at most M · 2−T + (36 log T · T )−1 + T−2.

Clearly, each player makes T queries to H. It remains to bound the com-
munication complexity by Õ(T ). First, all the messages are in a space of size
polynomial in T , hence the length of each message is Õ(1) bits. Propositions 4
and 5 below bound the number of messages sent and received by each player.
Given that G contains Õ(T ) edges (which is guaranteed with high probability
by Proposition 5), then the communication of all players for propagating the
edges is bounded by Õ(T ). Therefore, it remains to prove Propositions 4 and 5
in order to complete the proof of Proposition 3.

Proposition 4. In lines 4–5 of the setup protocol, each player communicates at
most 8T messages, except with probability at most M · 2−T .

Proposition 5. In lines 6–9 of the setup protocol, all players (collectively)
communicate at most 130 log T · T messages, except with probability at most
(36 log T · T )−1 + T−2.

The probability bound in Proposition 5 is rather loose, but it is sufficient for our
purpose.

Proof (of Proposition 4). In Line 4, each player sends at most T messages. It
remains to analyze the number of messages each player receives in Line 5.
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The number of received messages by pi is determined by the number of images
of H computed by the M players that are equal to i modulo M . As we assume
that M divides N ′ and each image of H is uniform in [N ′], the probability that
each query to H results in a message sent to pi is 1/M .

Overall, the players make M · T queries to H, each is uniform in [N ]. We
order them arbitrarily and denote them by q1, . . . , qM ·T . The query q� results in
a message to pi if H(qj�

) mod M = i and we bound the probability that this
happens for many queries below.

Claim. Consider any ordered subset of 7T queries qj1 , . . . , qj7T
. Then,

Pr[∀� ∈ [7T ] : H(qj�
) mod M = i] <

(
2
M

)7T
.

Proof. For some positive integer r < 7T , assume that H(qjr
) mod M =

i for all � ∈ [r]. Then, H(qjr+1) mod M = i holds if either qjr+1 ∈ {qj1 , . . . , qjr
}

(which occurs with probability at most r/N), or qjr+1 /∈ {qj1 , . . . , qjr
} and

H(qjr+1) mod M = i (which occurs with probability at most 1/M). Therefore
H(qjr+1) mod M = i holds with probability at most

1
M + r

N ≤ 1
M + 7T

N < 1
M + 1

M = 2
M ,

as N = M ·T 2

R ≥ 7M · T (given that T ≥ 20000). The claim follows by induction
on r. ��

There are (
M ·T
7T

) ≤ (
e·M ·T
7T

)7T
=

(
e·M
7

)7T

different query subsets of size 7T . By a union bound over all of them, the prob-
ability that at least 7T messages are sent to pi in Line 5 is at most

(
e·M
7

)7T · (
2
M

)7T
< 2−T .

The results follows by a union bound over all M players. �

Proof (of Proposition 5). The number of messages sent in lines 6–8 and received
in Line 9 is upper bounded by twice the number of collisions in the tables
of the players. Consider the queries made by the players in arbitrarily order
q1, . . . , qM ·T . We will make a distinction between two types of collisions. A col-
lision in H was shown in Proposition 3 to occur with probability at most T−2.
We assume such a collusion does not occur and use a union bound to obtain the
final result. A query collision occurs if qj = q� for j �= � and it results in a shared
key (assuming the queries are issued by different players).

We denote the total number of query collisions by Col and bound
Pr [Col ≥ 65 log T · T ] to finish the proof.

For all j, � ∈ [M ·T ] such that j �= �, define an indicator random variable Cj,�

that is equal to 1 if qj = q�. We have

E[Cj,�] = Pr[Cj,� = 1] = N−1, and

Var[Cj,�] = E[(Cj,�)2] − (E[Cj,�])2 = N−1 − N−2 < N−1.
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Hence,

E[Col] = E

⎡

⎣
∑

j,�

Cj,�

⎤

⎦ =
∑

j,�

E[Cj,�] < (M ·T )2

N = R · M.

Note that the random variables {Cj,�} are pairwise independent. Hence,

Var[Col] = Var

⎡

⎣
∑

j,�

Cj,�

⎤

⎦ =
∑

j,�

Var[Cj,�] < (M ·T )2

N = R · M.

For a parameter c > 0, Chebyshev’s inequality gives

Pr
[
Col − E[Col] ≥ c ·

√
Var[Col]

]
≤ c−2.

Recalling that T ≥ M and 25 log M ≤ R ≤ 26 log M , we obtain

Pr [Col ≥ 65 log T · T ] ≤ Pr [Col − R · M ≥ 39 log T · T ]

≤ Pr
[
Col − R · M ≥ 6

√
log T · T ·

√
R · M

]
≤ (36 log T · T )−1,

as required. �

4.3 Connectivity

We prove that the secure link graph formed by the setup protocol is a good
expander with high probability, and therefore it has small diameter.

Let U be a group of players of size k > 0. We call U useful if the players in
U make at least T · k/2 distinct queries to H.

Proposition 6. Any group of players is useful, except with probability at most
2−2T .

Proof. Fix a group U of size k. There are k ·T queries made by the players in U .
Consider them in some order. We call the j’th query useful if it does not collide
with the previous j − 1 queries (and not useful otherwise). For each j ∈ [k · T ],
the probability that query number j is not useful is at most k·T

N .
Consider an arbitrary subset of k·T

2 queries made by players in U . The prob-

ability that they are all not useful is at most
(

k·T
N

)(k·T )/2
. Taking a union bound

over all such sets (whose number is less than 2k·T ), the probability that there is a
set of size k·T/2 of non-useful queries is at most 2k·T ·(k·T

N

)k·T/2
=

(
4·k·T

N

)k·T/2 ≤
2−2T , given that N = M ·T 2

R ≥ 64M ·T (as T ≥ 20000). Hence U is useful, except
with probability at most 2−2T . �

Proposition 7. Consider the secure link graph G = (V,E) formed by the setup
protocol. Let U ⊂ V be a set of size k for 1 ≤ k ≤ M/2. Then,

Pr[|NG(U)| ≤ k
2 ] ≤ e−R·k/12 + 2−2T .
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Proof. We first prove that

Pr[|NG(U)| ≤ k
2 | U is useful] ≤ e−R·k/12 (1)

Combined with Proposition 6, this implies

Pr[|NG(U)| ≤ k
2 ] ≤

Pr[|NG(U)| ≤ k
2 | U is useful] + Pr[U is not useful] ≤ e−R·k/12 + 2−2T ,

as required.
We now prove (1). Given that U is useful, we fix a set Q of T · k/2 distinct

queries made by the players in this group.
Note that if |NG(U)| ≤ k

2 then there exists a set V ′ ⊆ V \U of size at least
M −k− k

2 = M −3k/2 ≥ M/4 such that V ′ ∩NG(U) = ∅. Hence the intersection
of the queries of the players in V ′ (whose number is at least T · M/4) with Q is
empty. The probability of a query hitting Q is |Q|/N . Since all the T ·(M −3k/2)
queries are independent, the probability none of them hits Q is at most

(
1 − |Q|

N

)T ·M/4

≤ e−|Q|·T ·M/4N = e−T 2·k·M/8N = e−R·k/8.

where for the inequality we have used in inequality 1−x ≤ e−x (which holds for
any real x).

The number of sets V ′ ⊆ V \U of size M − 3k/2 is
(

M−k
M−3k/2

)
=

(
M−k
k/2

) ≤ (
M
k/2

) ≤ (
2eM

k

)k/2
= ek(1+ln 2+lnM−ln k)/2.

Taking a union bound over all of them, we conclude

Pr[|NG(U)| ≤ k
2 | U is useful] ≤ e−R·k/8+k(1+ln 2+lnM−ln k)/2 ≤

e−k(R/8−1−lnM/2) ≤ e−R·k/12,

where the last inequality follows since R ≥ 25 ln M . �
Proposition 8. The secure link graph G = (V,E) formed by the setup protocol
satisfies Pr[diam(G) > 4 log M ] ≤ 2e · M−1.

Proof. We show that G is a δ-expander for δ = 1/2, except with probability
at most 2e · M−1. Then, by Proposition 1, diam(G) ≤ 2
log3/2(M/2)� + 1 ≤
2 log3/2(M/2) + 3 ≤ 3.42 log2 M + 3 ≤ 4 log M (as M ≥ 64).

Let U ⊂ V be of size k ≤ M/2. By Proposition 7, |NG(U)| > k/2 except
with probability at most e−R·k/12 + 2−2T . Taking union bound over all subsets
of size k, whose number is

(
M
k

) ≤ (
eM
k

)k
= ek(lnM+1−ln k), we conclude that for

all of them |NG(U)| > k/2, except with probability at most

ek(lnM+1−ln k−R/12) +
(
M
k

)
2−2T

≤ ek(lnM+1−ln k−24 lnM/12) +
(
M
k

)
2−2T

≤ M−k · ek(− ln k+1) +
(
M
k

)
2−2T

≤ e · M−k +
(
M
k

)
2−2T ,
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where we have used the inequality R ≥ 25 ln M ≥ 24 ln M .
Taking a union bound over all k ∈ [M/2], we conclude that all groups U

of size at most M/2 satisfy |NG(U)| > k/2, except with probability at most
2M · 2−2T +

∑M/2
k=1 e · M−k ≤ 2e · M−1, since M ≥ 64 and T ≥ M . �

4.4 Security

Proposition 9. Fix any pair of players (pi, pj) for which ki,j �= ⊥. Then, any
adversary (with access to the full transcript of the protocol) that makes at most
TA queries to H, makes the query ki,j with probability at most TA

N .

The security proof is essentially identical to the proof for standard Merkle’s
puzzles.

Proof. Let Λ be a random variable for the transcript of the protocol, which
includes H(ki,j), as well as other images. The query sets of the players are uni-
form, and H is a random function for which images do not give any information
about their preimages.4 Consequently, ki,j | Λ = λ is uniformly distributed in
[N ] for any λ (for which the images of H computed by pi and pj intersect).

Fix an adversary for Algorithm 1 that receives Λ as input. Let Γt be a
random variable for the first t (adaptive) queries of the adversary and their
answers. Since H is a random function, any query q �= ki,j to H may only give
the information that q �= ki,j (in case H(q) �= H(ki,j)). Thus, by induction on
the number of queries t, they either hit ki,j with probability at most t/N , or
ki,j | Λ = λ, Γt = γ remains uniformly distributed in a set which contains (at
least) the remaining N − t inputs to H. Setting t = TA gives the result. �

5 The Distributed Key Agreement Protocol

We describe our key agreement protocol in Algorithm 2, where every player
receives as input the same set of edges Es. We set L = 
16 log T � (the other
parameters are set as in the setup protocol).

It remains to describe the strong secure link protocol. We assume that the
players have access to a perfect encryption scheme: for � ∈ [L] given access
to an (independent) random function F (�) : [N ] × [M ] × [M ] × [T 2] → [N ],
players f, g that share a key k

(�)
f,g ∈ [N ], encrypt the ct’th message m ∈ [N ] as

F (�)(k(�)
i,j , f, g, ct) + m mod N . We embed f and g into the input of F in order

to make sure that it is not invoked twice on the same input.
In the protocol, pi chooses L independent and uniform values r1, . . . , rL ∈ [N ]

and computes ki,j =
∑L

�=1 r� mod N (i.e., ki,j is split into L shares using a
standard additive L-out-of-L secret sharing scheme). Then, pi sends the �’th

4 The transcript reveals information about the equalities (and inequalities) among
different queries made by the players, yet any individual query remains uniform in
[N ].
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Algorithm 2: Distributed key agreement protocol
Parameters: M, T, N, N ′, D, L
Input: Es

1 Run the setup protocol (with parameters M, T, N, N ′, D) 2L times with
independent random oracles (derived from H)

2 If more than L executions fail (i.e., output ⊥), then each player outputs an
independent and uniform value in [N ]. Otherwise, for the first L successful
executions, denote the corresponding random oracles and secure graphs by
H(1), . . . , H(L) and G(1), . . . , G(L)

3 For each (i, j) ∈ Es, run the strong secure link protocol (Algorithm 3), after
which pi outputs ki,j and pj outputs kj,i

share r� on a short path to pj , encrypted with the keys of G(�). Specifically,
for each edge (f, g) on the selected path, pf encrypts r� with counter ct as
F (�)(k(�)

f,g, f, g, ct) + r� mod N (pf and pg then increment the counter). Player

g decrypts the message (by subtracting F (�)(k(�)
f,g, f, g, ct) modulo N from the

encryption) and encrypts it using the next key on the path. Finally, pj receives
the (encrypted) values r1, . . . , rL and computes kj,i (which should equal ki,j) by
decrypting and summing the values mod N .

The algorithm of pi is given below.

Algorithm 3: Strong secure link protocol (pi’s algorithm)
Parameters: M, N, L
Input: j such that (i, j) ∈ Es

1 Select L uniform and independent values r1, . . . , rL ∈ [N ] and define

ki,j =
∑L

�=1 r� mod N .
2 forall the � ∈ [L] do

3 Find the shortest path between i and j in G(�) via breadth-first search, and

send r� on that path (encrypted with the corresponding keys of G(�))

5.1 Security Analysis

Proposition 10. Fix an adversary A that makes TA ≤ N/4 queries to H(1), . . . ,
H(L) and F (1), . . . , F (L). Then, given the view of the adversary viewA (the tran-
script of the protocol of Algorithm 2 and the oracle queries and answers), each ki,j

for (i, j) ∈ Es is uniformly distributed in [N ], except with probability at most T−6.
Namely, Pr[(∀(i, j) ∈ Es : ki,j is uniformly distributed in [N ]) | viewA] ≤ T−6.

Proof. Let Λ be a random variable for the transcript of Algorithm 2. The adver-
sary for Algorithm 2 receives Λ as input. Let Γ be a random variable for the
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(adaptive) queries of the adversary to H(1), . . . , H(L), and F (1), . . . , F (L) and
their answers.

Fix (i, j) ∈ Es. For � ∈ [L], let K(�) be the set of keys under which r� is
encrypted in Algorithm 3. Namely, K(�) contains k

(�)
f,g for all edges (f, g) on the

path in G(�) selected by pi. Define the random variable E� as an indicator for
the event that Γ contains a query F (�)(k(�)

f,g, f, g, ct) for some k
(�)
f,g ∈ K(�) and

counter ct.

Claim. For any values λ, γ (that occur with positive probability),

ki,j | Λ = λ, Γ = γ,∧�∈[L]E� = 0

is distributed uniformly in [N ].

In other words, if ∧�∈[L]E� = 0 occurs, then ki,j is distributed uniformly in [N ]
given the view of the adversary.

Proof. Given that ∧�∈[L]E� = 0, then there exists � ∈ [L] such that E� = 0. We
fix any such �.

For each k
(�)
f,g ∈ K(�), denote by c

(�)
f,g = F (�)(k(�)

f,g, f, g, ct) + r� mod N the

encryption (ciphertext) of r�, and denote C(�) = {c
(�)
f,g | k

(�)
f,g ∈ K(�)}. Since we

assume the adversary did not query F (�)(k(�)
f,g, f, g, ct) for any k

(�)
f,g ∈ K(�), and

since F (�) is a random function, then r� | C(�), E� = 0 remains uniformly dis-
tributed in [N ]. As the additional values in the adversary’s view are independent
of r� (and of all F (�)(k(�)

f,g, f, g, ct)), then

r� | Λ = λ, Γ = γ, E� = 0

is also uniform in [N ]. Recall that ki,j =
∑L

�=1 r� mod N , where each share is
selected independently and uniformly at random from [N ]. Since r� is uniform
in [N ] given the view of the adversary, then ki,j is uniform in [N ] given the view
of the adversary regardless of the other shares. ��

It remains to upper bound Pr[∧�∈[L]E� = 1]. A bound on this quantity in the
information theoretic model essentially follows from Proposition 9.

Recall that for each � ∈ [L], the path length in G(�) between i and j is at
most D = 4 log M , and hence |K(�)| ≤ 4 log M .

Assume without loss of generality that the adversary makes exactly TA

queries to H(�) (and F (�)) for each � ∈ [L]. Recall that the L executions
of the setup protocol are independent. Therefore, as in the proof of Proposi-
tion 9, by induction on the number of queries to H(�) (and F (�)) (denoted by
t), they either hit K(�) with probability at most |K(�)| · t/N ≤ 4 log M · t/N ,
or only give the information that K(�) does not intersect these queries. Hence,
Pr[E� = 1] ≤

(
4 log M ·TA

N

)
holds for each � ∈ L independently of all Ef for f �= �.

Thus,

Pr[∧�∈[L]E� = 1] =
∏

�∈[L]

Pr[E� = 1 | ∧f∈[�−1]Ef = 1] ≤
(

4 log M ·TA

N

)L

. (2)
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Remark 1. We also need to condition on the success of the protocol that con-
structs G(�), i.e., on the event that the graph G(�) is of diameter at most
D = 4 log M . However, the diameter of the graph (or its structure in general)
does not reveal any information about the individual queries of the players to
H(�) (each one remains uniformly distributed). Hence the event is independent
of the success probability of the adversary.

We can obtain a slightly better bound as follows. Consider a restricted adver-
sary that before making any query to the oracles, fixes some subset L′ ⊆ L of
size L/2 and makes at most 2TA/L queries to H(�) (and F (�)) for each � ∈ L′.
For such an adversary,

Pr[∧�∈[L]Ē� = 1] ≤ Pr[∧�∈[L′]Ē� = 1] ≤
(

8 log M ·TA

L·N
)L/2

similarly to (2) (where Ē� are random variables associated with the restricted
adversary). For an arbitrary adversary that makes a total of at most TA queries,
there is always such a subset L′ ⊆ L of size L/2, but L′ may depend on the
oracle queries. Yet, we can build a restricted adversary from an arbitrary one
by guessing the subset L′ uniformly at random in advance. Since our guess is
correct with probability at least 2−L, we have

Pr[∧�∈[L]E� = 1] ≤ 2L · Pr[∧�∈[L]Ē� = 1] ≤ 2L
(

8 log M·TA
L·N

)L/2
=

(
32 log M·TA

L·N
)L/2

.

Since L ≥ 16 log T and TA ≤ N/4, we get Pr[∧�∈[L]E� = 1] ≤ 2−L/2 ≤ T−8.
The proposition follows by a union bound over all (i, j) ∈ Es (whose size is

less than M2 ≤ T 2). �

5.2 Main Theorem

The formal version of Theorem 1 is given below.

Theorem 2. Assume that M ≥ 64, T ≥ 20000, T ≥ M and |Es| = Õ(M). Let
T̂ = Õ(T ) be sufficiently large. Then, Protocol 2 is a

(
M,α = 1 − Õ(T̂−1), T̂ , β = 1 − Õ(T̂−1)

)
-DKAP

which is (
TA = Θ̃(M · T̂ 2), αA = Õ

(
1

M ·T̂ 2

))
-secure.

Proof. We prove the equivalent statement that Protocol 2 is a
(
M,α = 1 − Õ(T−1), Õ(T ), β = 1 − Õ(T−1)

)
-DKAP

which is (
TA = Θ̃(M · T 2), αA = Õ

(
1

M ·T 2

))
-secure.
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Correctness. The protocol is correct if at least L of the setup protocol executions
do not fail and all pairs of players agree on consistent keys. By Proposition 2
and a union bound over the 2L executions, a pair of players output inconsistent
keys with probability at most 2L · T−2.

By Proposition 8, each execution of the setup protocol fails (the players
output ⊥) with probability at most 2e · M−1 ≤ 1/8 (since M ≥ 64). In a
sequence of L independent executions, all fail with probability at most 2−3L.
Hence, there exists such a sequence among the 2L executions of the protocol
with probability at most 22L · 2−3L = 2−L.

Therefore, the protocol is correct, except with probability at most

2L · T−2 + 2−L ≤ T−1 = Õ(T−1)

(as T ≥ 20000).

Queries and Communication. The setup protocol is executed 2L = 2
16 log T � <
34 log T times. By Proposition 3, in each execution each player makes at most T
queries with probability 1 and communicates Õ(T ) bits, except with probability
M · 2−T +(36 log T ·T )−1 +T−2. Moreover, each edge in Es results in at most L
additional queries (and L messages) per player in the strong secure link protocol
(Algorithm 3).

Thus, each player makes less than

34 log T · T + 17 log T · |Es| = Õ(T )

queries, and communicates Õ(T ) bits, except with probability at most

2L · (M · 2−T + (36 log T · T )−1 + T−2) ≤ T−1 = Õ(T−1)

(since T ≥ 20000).

Security. By Proposition 10, any adversary that makes at most

TA = N
8 ≥ M ·T 2

208 lnM = Θ̃(M · T 2)

queries to the random oracle outputs ((i, j), ki,j) for (i, j) ∈ Es with probability
at most

T−6 · 1 + (1 − T−6) · 1/N ≤ 2
N ≤ 52 lnM

M ·T 2 = Õ
(

1
M ·T 2

)
.

�

6 Optimality of the Distributed Key Agreement Protocol

We prove the optimality of our key agreement protocol (up to logarithmic fac-
tors) with respect to the ratio of the number of queries made by each honest
player and the adversary. We use the following result.
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Theorem 3 ([3], Theorem 3.1, adapted). Let Π be a 2-player key agreement
protocol between p1 and p2 using a random oracle H in which:

– p1 makes at most T1 queries to H and outputs k1,2.
– p2 makes at most T2 queries to H and outputs k2,1.
– Pr[k1,2 = k2,1] ≥ α

Then, for every 0 < δ < α, there is an adversary with access to the transcript
of the protocol that makes at most 400 · T1 · T2/δ2 queries to H and outputs k2,1

with probability at least α − δ.

Proposition 11. Let Π be a protocol between M players using a random oracle
H in which:

– Every player makes at most T queries to H.
– p1 outputs j ∈ [M ]\{1} and k1,j, and pj outputs kj,1.
– Pr[k1,j = kj,1] ≥ α.

Then, for every 0 < δ < α, there is an adversary with access to the transcript
of the protocol that makes at most 400 · M · T 2/δ2 queries to H and outputs kj,1

with probability at least α − δ.

Proof. Given an M -player protocol Π as above with players p1, . . . , pM , we
devise a 2-player protocol Π ′ with players p′

1 and p′
2 as follows: player p′

1 simu-
lates p1 by sending all messages intended for p2, . . . , pM to p′

2. Player p′
2 simulates

p2, . . . , pM by sending all messages intended for p1 to p′
1 (messages sent among

p2, . . . , pM do not require communication). Finally, if p1 outputs j and k1,j , then
p′
1 outputs k′

1,2 = k1,j and sends j to p′
2 that outputs k′

2,1 = kj,1.
We have Pr[k1,j = kj,1] ≥ α, and hence Pr[k′

1,2 = k′
2,1] ≥ α. Moreover, p′

1

makes at most T queries to H, while p′
2 makes at most (M − 1) · T < M · T

queries to H. Therefore, by Theorem 3, there exists an adversary A′ with access
to the transcript of Π ′ that makes at most 400 · M · T 2/δ2 queries to H and
outputs k′

2,1 with probability at least α − δ.
We devise an adversary A for Π using A′: A gives to A′ only the messages

sent and received by p1 (so that the transcript is identical to the corresponding
execution of Π ′) and outputs the same value. Thus, A makes at most 400 · M ·
T 2/δ2 queries to H and outputs kj,1 = k′

2,1 with probability at least α − δ. �

Theorem 4. Any (M,α, T, β)-DKAP that is (TA, αA)-secure for non-empty
Es ⊆ [M ] × [M ] such that α ≥ 3/4 and TA ≥ 6400M · T 2, satisfies αA ≥ 1/2.

Proof. Apply Proposition 11 for an edge (j, 1) ∈ Es (by renaming the players)
and δ = 1/4. Since Pr[k1,j = kj,1] ≥ 3/4, and TA ≥ 6400M · T 2 = 400M · T 2/δ2,
there exists an adversary that makes at most TA queries to H and outputs kj,1

with probability at least 3/4 − 1/4 = 1/2. �

7 Extensions

We briefly discuss two extensions of the protocol.
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7.1 The Semi-honest Model

We consider security in a model where adversarial players execute the protocol
as designed, but try to learn the secret keys of the honest players.

With small overhead, the protocol can be extended to provide resistance
against an adversary that controls a fraction of O(1/ log M) of the players in
the semi-honest model, which are chosen in advance (i.e., static corruptions).
In particular, such an extension allows any two honest players to communicate
securely, except with negligible probability (unless the adversary makes Ω̃(M ·
T 2) queries to the random oracle).

The extension is simple. Fix some edge (i, j) ∈ Es between two honest play-
ers. Note that the only advantage of the corrupted players (over an eavesdropping
adversary) is in the strong secure link protocol. Specifically, in this protocol pi

chooses ki,j and sends each of its shares on a path to pj , encrypted using secure
links created by a setup protocol execution. In order to maintain security, we
must ensure that with high probability, there is at least one path in which all
players are honest.

Recall that each path chosen by pi to encrypt ki,j is of length at most
D = 4 log M . Therefore, each path does not include any corrupted player with
constant probability. Repeating the setup protocol independently Ω(log T ) times
(while choosing among shortest paths independently via randomization), ensures
that Ω(log T ) paths do not include a corrupted player (except with small proba-
bility) and the analysis of the original protocol applies to these paths with small
modifications. Thus, the only change required is to repeat the setup protocol
according to the fraction of adversarial players we wish to tolerate. On the other
hand, we conjecture that it is not possible to tolerate a constant fraction of
adversarial players with a small overhead of Õ(1) in query complexity.

7.2 Communication-Security Tradeoff

For a parameter B ≥ 1 such that T = Ω̃(M · B), it is possible to extend the
protocol such that each player makes T queries and communicates Õ(T/B) bits,
while any adversary has to make Ω̃

(
M ·T 2

B

)
queries to recover any key with high

probability. As for standard Merkle’s puzzles, this can done by defining a new
random oracle H ′ based on H by partitioning its domain into groups of size B.
The output of a query to H ′ is computed by summing (modulo N ′) the outputs
of the corresponding group (consisting of B queries to H).
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Abstract. We study non-malleable secret sharing against joint leakage
and joint tampering attacks. Our main result is the first threshold secret
sharing scheme in the plain model achieving resilience to noisy-leakage
and continuous tampering. The above holds under (necessary) minimal
computational assumptions (i.e., the existence of one-to-one one-way
functions), and in a model where the adversary commits to a fixed parti-
tion of all the shares into non-overlapping subsets of at most t−1 shares
(where t is the reconstruction threshold), and subsequently jointly leaks
from and tampers with the shares within each partition.

We also study the capacity (i.e., the maximum achievable asymptotic
information rate) of continuously non-malleable secret sharing against
joint continuous tampering attacks. In particular, we prove that when-
ever the attacker can tamper jointly with k > t/2 shares, the capacity is
at most t − k. The rate of our construction matches this upper bound.

An important corollary of our results is the first non-malleable secret
sharing scheme against independent tampering attacks breaking the rate-
one barrier (under the same computational assumptions as above).

Keywords: Secret sharing · Non-malleability · Leakage resilience

1 Introduction

A t-out-of-n secret sharing scheme [5,28] allows to distribute a message into
n shares in such a way that: (i) given t or more shares we can reconstruct
the original message; and (ii) any attacker corrupting strictly less than t share
holders has no information about the message. The parameter t is called the
reconstruction threshold, and a scheme with the above properties is called a
threshold secret sharing. An important efficiency parameter of secret sharing is
the so-called information rate, which equals the ratio between the length of the
message and the maximum length of a share.

Goyal and Kumar [18] introduced non-malleable secret sharing, which further
satisfies the following guarantee: (iii) no attacker tampering with possibly all of
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the shares can generate a valid secret sharing of a message which is related to
the original shared value. This notion was inspired by the related concept of
non-malleable codes defined by Dziembowski, Pietrzak and Wichs [14], and by
similar notions in the setting of non-malleable cryptography [12,13].

Clearly, we must put some restriction on how the attacker can tamper with
the shares (as if she can tamper with all of them in a joint manner she can recon-
struct the message and compute a valid secret sharing of a related value). The orig-
inal paper by Goyal and Kumar constructed threshold secret sharing schemes both
against independent tampering attacks (i.e., each share can be tampered arbitrar-
ily yet independently) and joint tampering attacks (i.e., the attacker can partition
any set of t shares into two non-empty subsets and tamper jointly with the shares
contained in each subset). This initial result spurred further research on the sub-
ject, yielding non-malleable secret sharing schemes with additional properties and
with resilience to stronger tampering attacks. We review the state of the art for
joint tampering (which is the focus of this paper) below, and in Table 1, and refer
the reader to Sect. 1.4 for additional related work.

1.1 Non-malleability Against Joint Tampering

In a follow-up paper, Goyal and Kumar [19] constructed n-out-of-n non-
malleable secret sharing in a stronger tampering model where the attacker can
partition the n shares into two (possibly overlapping) subsets of its choice, and
then jointly tamper with the shares in each of the subsets independently. Simi-
larly to the construction in [18], the information rate of this scheme asymptoti-
cally reaches zero (when the message length goes to infinity).

Brian, Faonio and Venturi [7] showed how to compile any leakage-resilient
secret sharing into a continuously non-malleable one [15,16] using a trusted setup
(and computational assumptions). Here, leakage resilience refers to the guarantee
that the secret remains hidden even given leakage from the shares. Continuous
non-malleability refers to the ability of the attacker to adaptively tamper poly-
many1 times with the same target secret sharing.

When the initial secret sharing is resilient to joint-leakage attacks, the com-
piled scheme tolerates continuous joint-tampering and joint-leakage attacks in
a model where the adversary commits to a partition B = (B1, . . . ,Bm) of [n]
into m disjoint subsets of size at most k at the beginning of the experiment,
and subsequently can tamper with and leak from the shares within each sub-
set in an adaptive fashion. The reconstruction set T (with cardinality |T | ≥ t)
associated to each tampering query can be chosen adaptively, a feature some-
times known under the name of adaptive concurrent reconstruction [1]. In this
work, we dub secret sharing schemes that are secure in the above setting as
leakage-resilient continuously non-malleable under selective k-joint leakage and
tampering attacks. By plugging recent constructions of leakage-resilient secret
sharing under joint-leakage attacks [9,22,23], we get rate-zero schemes satisfy-
ing this notion either for arbitrary access structures with k = O(log n), or for
threshold access structures with k = t − 1 (which is optimal).
1 The only (necessary) restriction is that the experiment self-destructs after the first

tampering query yielding an invalid secret sharing.
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Brian et al. [6] showed how to compile any leakage-resilient one-time non-
malleable secret sharing scheme with statistical security under selective k-joint
leakage and tampering attacks into a p-time computationally non-malleable
secret sharing under selective k-joint tampering attacks in the plain model
(assuming one-to-one one-way functions). Here, p-time non-malleability means
that the number of tolerated tampering queries is a-priori bounded (and the
length of the shares depends on it). Moreover, when the initial secret sharing is
secure under adaptive k-joint leakage and tampering attacks (i.e., the attacker
can change the partition adaptively within each leakage/tampering query), the
compiled scheme satisfies p-time non-malleability under semi-adaptive2 k-joint
tampering attacks too. Combined with [9,18,19,22,23], the results of [6] ulti-
mately yield rate-zero schemes satisfying the latter notion either for arbitrary
access structures with k = O(log n), or for threshold access structures with
k = O(t/ log t) (and k = t − 1 in case of selective partitioning).

Finally, Goyal, Srinivasan and Zhu [20] obtain rate-zero one-time non-
malleable threshold secret sharing with statistical security against t-cover free
tampering, which intuitively requires that every share is tampered together with
at most t−2 other shares (this model includes disjoint tampering as a special case).

1.2 Our Results

A major drawback of [6] is that it only satisfies computational p-time non-
malleability. This is far from optimal, as the notion could in principle be
obtained information theoretically. On the other hand, [7] achieves continuous
non-malleability under selective partitioning of the shares at the price of assum-
ing a trusted setup (and minimal, inherent, computational assumptions).

Our main contribution is a construction of leakage-resilient continuously non-
malleable t-out-of-n secret sharing under selective k-joint leakage and tampering
attacks in the plain model (assuming one-to-one one-way functions), for any
k < t and t ≥ 2n/3. Furthermore, our scheme achieves the following features:

– The information rate asymptotically reaches 1, which we show to be optimal.
– Leakage resilience holds in the stronger (and more practical) model where the

length of the leakage (from each subset in the fixed partition of the shares)
is arbitrary, so long as it does not decrease the min-entropy of the shares by
more than � bits (where � ≥ 0 is called the noisy-leakage parameter).

An interesting corollary of our results is the first non-malleable t-out-of-n secret
sharing under independent tampering attacks in the plain model (assuming one-
to-one one-way functions) breaking the rate-one barrier (for t ≥ 2n/3). In par-
ticular, we obtain asymptotic rate t/2.

All previous non-malleable secret sharing schemes against joint tampering
had rate zero, and the only scheme with rate one was secure in the much weaker
setting of independent tampering [15]. In this vein, our result shows that the

2 In this setting, once a subset of shares has been tampered with jointly, that subset
is always either tampered jointly or not modified by future tampering queries.
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Table 1. State-of-the-art non-malleable secret sharing schemes tolerating joint tam-
pering and leakage attacks. The value n denotes the number of parties, |μ| is the size of
the message, � denotes the leakage parameter, p is the number of tampering queries, λ
denotes the security parameter, t is the reconstruction threshold, and k is the maximal
number of shares that can be tampered jointly. Semi-adaptive partitioning refers to
the ability of the attacker to change the way the target shares are partitioned within
each leakage/tampering query in a somewhat restricted manner [6]. OWFs stands for
“one-way functions”, TDPs for “(doubly-enhanced) trapdoor permutations”, CRHs
for “collision-resistant hash functions”, CRS for “common reference string”, ROM for
“random oracle model”, and AGM for “algebraic group model”. For readability, in the
last two rows the values for the rates are displayed as lower bounds.

Reference Access Structure Non-Malleability Leakage Rate Assumptions Partitioning

[18] Threshold (t ≥ 2) 1-Time (k < t) ✗ Θ
(|μ|−9

)
— Disjoint

[19] Threshold (t = n) 1-Time (k < t) ✗ Θ(|μ|−6) — Overlapping

[7] General Continuous (k ≤ O(log n)) Bounded poly(|μ|, n, �, λ)−1 TDPs, CRHs, CRS Selective, Disjoint

Threshold (t ≥ 2) Continuous (k < t) Bounded poly(|μ|, n, �, λ)−1 TDPs, CRHs, CRS Selective, Disjoint

Threshold (t = n) Continuous (k ≤ 0.99n) Bounded poly(|μ|, n, �, λ)−1 TDPs, CRHs, CRS Selective, Disjoint

[6] Threshold (t ≥ 2) p-Time (k < t) ✗ poly(|μ|, n, p, λ)−1 1-to-1 OWFs Selective, Disjoint

Threshold (t = n) p-Time (k < t) ✗ poly(|μ|, n, p, λ)−1 1-to-1 OWFs Selective, Disjoint

General p-Time (k ≤ O(log n)) ✗ poly(|μ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint

Threshold (t ≥ 2) p-Time (k ≤ O(t/ log t)) ✗ poly(|μ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint

Threshold (t = n) p-Time (k ≤ 0.99n) ✗ poly(|μ|, n, p, λ)−1 1-to-1 OWFs Semi-Adaptive, Disjoint

[20] Threshold (t ≥ 2) 1-Time (k < t) ✗ poly(|μ|, n, �, λ)−1 — Overlapping

[8], Sect. 6.1 Threshold (t ≥ 2) 1-Time (k < t) Noisy poly(|μ|, n, �, λ)−1 — Disjoint

Section 6.2 Threshold (t ≥ 2n/3) Continuous (k < t) Noisy 1−poly(n, �, λ) · |μ|−1 1-to-1 OWFs Selective, Disjoint

[8], Sect. 6.2 Threshold (t ≥ 2n/3) Continuous (k < t) Noisy t−poly(n, �, λ) · |μ|−1 ROM/AGM Selective, Disjoint

Section 6.3 Threshold (t ≥ 2n/3) 1-Time (k = 1) Noisy t/2−poly(n, �, λ) · |μ|−1 1-to-1 OWFs —

lower bounds on the rate of leakage-resilient and non-malleable secret shar-
ing [6,25] can be circumvented in the computational setting. We stress that cryp-
tographic assumptions are inherent for continuous non-malleability [15,16,29].

1.3 Overview of Techniques

The construction of our secret sharing schemes consists of two main steps. First,
we show how to obtain leakage-resilient continuously non-malleable t-out-of-n
secret sharing under selective (t − 1)-joint leakage and tampering attacks in
the plain model, with asymptotic rate zero. Second, we show how to boost the
asymptotic rate to one generically.

Rate-Zero Construction. In order to explain our techniques, it will be useful
to recall the construction of leakage-resilient continuously non-malleable t-out-
of-n secret sharing under independent3 tampering attacks in the plain model,
by Brian, Faonio and Venturi [7] (which in turn builds on the construction by
Ostrovsky et al. [26]). For simplicity, let us focus on the case t = n = 2 (i.e.,
so-called leakage-resilient non-malleable split-state codes).

Here, one takes the message μ and commits to it via a non-interactive (per-
fectly binding) commitment scheme using random coins ρ, yielding a commit-
ment γ. Hence, the string μ||ρ is secret shared using a leakage-resilient one-time
3 i.e., one-joint leakage and tampering attacks.
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non-malleable 2-out-of-2 secret sharing scheme. This yields shares (σ1, σ2), so
that the final shares become σ∗

1 = (γ, σ1) and σ∗
2 = (γ, σ2). In the following,

we will refer to σ∗
1 as the left share and to σ∗

2 as the right share. The recon-
struction algorithm proceeds naturally by first checking that the left and right
commitment are the same value γ, and thus reconstructing the string μ||ρ from
the shares (σ1, σ2) and outputting μ if and only if (μ, ρ) is a valid opening for
the commitment.

The security analysis crucially relies on the assumption that the underlying
one-time non-malleable secret sharing scheme has statistical security. In partic-
ular, the main hurdle in the proof is to reduce continuous non-malleability to
one-time non-malleability. Brian et al. overcome this obstacle using the following
strategy. First, they move to a mental4 experiment in which (σ1, σ2) is a secret
sharing of μ||ρ′, where ρ′ is random and independent of the random coins ρ used
to compute the commitment γ. Second, they reduce a distinguisher between
the real and mental experiment to an (inefficient) attacker against statistical
leakage-resilient one-time non-malleability. The key idea of this reduction is to
simulate multiple tampering queries by leaking the commitments γ̃1 and γ̃2 con-
tained in the tampered shares σ̃1 and σ̃2. If γ̃1 �= γ̃2 the reduction outputs ⊥
and self-destructs, and otherwise it brute forces the commitment and outputs
the corresponding message.

In order for the reduction to go through, one needs to argue that it does
not ask too much leakage. Here is where noisy-leakage resilience kicks in. Brian
et al. assume that the underlying secret sharing satisfies an additional prop-
erty known as conditional independence: For any message, the right (resp. left)
share drops the conditional average min-entropy of the left (resp. right) share
by some (possibly small) parameter d ∈ N. This property is satisfied by existing
leakage-resilient one-time non-malleable t-out-of-n secret sharing schemes in the
independent leakage and tampering model [7,26]. Now, the point is that, so long
as the commitments γ̃1 and γ̃2 are equal, the leakage on the left (resp. right) share
can be thought of as a function of the right (resp. left share), and thus the overall
leakage does not drop the min-entropy by more than d + |γ| + O(log λ) where
the additional loss |γ| corresponds to the tampering query in which γ̃1 �= γ̃2

(and the term O(log λ) corresponds to the index of such query). Luckily, the
latter happens only once because after that a self-destruct is triggered, which
ultimately allows the reduction to go through.

1st Barrier: Leakage-Resilient One-Time Non-malleability. The first (obvious)
difficulty in order to generalize the above construction to the joint-tampering set-
ting is that we need a leakage-resilient one-time non-malleable t-out-of-n secret
sharing under joint leakage and tampering attacks, which was not known. We
overcome this difficulty by suitably modifying a recent construction by Goyal,
Srinivasan and Zhu [20], which we briefly recall below.
4 In the hybrid experiment, one also needs to adjust the reconstruction algorithm so

that an attacker cannot distinguish between the hybrid and the original experiment
by mauling σ1, σ2 without changing the underlying shared value. In the description,
we omit these details to simplify the exposition.
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The sharing procedure first shares the message μ using a t-out-of-n secret
sharing scheme Π. Then, given the resulting shares (σ1, . . . , σn), it encodes each
σi into a codeword (σL,i, σR,i) using a t-time non-malleable split-state code Π ′.
Finally, it uses again the t-out-of-n secret sharing scheme Π to obtain shares
(σ(1)

R,i , . . . , σ
(n)
R,i ) of the right part of the codeword σR,i for each i ∈ [n]. This yields

shares (σL,i)i∈[n] and (σ(j)
R,i)i,j∈[n], which are distributed to the players by letting

σ∗
i = (σL,i, (σ

(i)
R,j)j∈[n]) for all i ∈ [n].

Goyal et al. proved that the construction is a t-out-of-n one-time non-
malleable secret sharing scheme with statistical security under k-joint tam-
pering5 attacks for any k < t. The original analysis did not consider leakage
resilience. However, it is not too hard to lift the proof to the setting in which the
attacker is also allowed to perform noisy-leakage attacks, so long as the secret
sharing scheme Π ′ is noisy-leakage-resilient t-time non-malleable. See the full
version [8] for a formal treatment.

2nd Barrier: Conditional Independence. The second barrier is more subtle. One
may think that after obtaining leakage-resilient one-time non-malleable t-out-of-
n secret sharing under joint leakage and tampering attacks we would be done by
using this scheme instead of the t-out-of-n one-time non-malleable secret sharing
under independent leakage and tampering attacks in the construction by Brian,
Faonio and Venturi [7].

Unfortunately, generalizing their analysis based on conditional independence
to the case of joint leakage and tampering attacks is not straightforward. Recall
that the reduction cannot perform too much noisy leakage. In our case, the reduc-
tion needs to leak the tampered commitments (γ̃i)i∈[m], i.e. one commitment for
each set of tampered shares.6

For concreteness, let us focus on the leakage performed on the shares within a
fixed subset Bi of the partition. While it is still true that, before self-destruct, the
tampered commitment γ̃i corresponding to a tampering query (T , (f1, . . . , fm))
can be thought of as a function of the shares within T \Bi, the fact that the recon-
struction set T can change across different tampering queries would require the
following flavor of conditional independence: For any message and any unautho-
rized subset U , the shares within [n]\U drop the conditional average min-entropy
of the shares within U by some (possibly small) parameter d ∈ N.

However, the leakage-resilient one-time non-malleable t-out-of-n secret shar-
ing under joint leakage and tampering attacks we described in the previous para-
graph does not satisfy such a strong flavor of conditional independence. This is
because, e.g., in Shamir’s secret sharing with t < n, the conditional average
min-entropy of the first share conditioned on all other shares is zero (as given
any t shares we can interpolate the polynomial used to determine the shares).
In Sect. 4, we show how to circumvent this problem by leaving off one level of
5 Actually, Goyal et al. prove security in the more general setting of t-cover-free tam-

pering, in which, intuitively, the subsets of the partition of the shares may overlap.
6 Note that in case the tampered commitments within one of the subsets Bi are not

equal, the reduction can immediately self-destruct.
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abstraction. Namely, we analyze the compiler from [7] when instantiated with
(our leakage-resilient variant of) the secret sharing scheme from [20]. Intuitively,
this allows us to perform an hybrid argument where at each step we reduce
to leakage-resilient t-time non-malleability of the underlying 2-out-of-2 secret
sharing schemes, and thus to only assume the standard flavor of conditional
independence for such kind of secret sharing schemes, which is much easier to
achieve.

Capacity of Continuously Non-malleable Secret Sharing. The above
construction still has shares of length polynomial in the number of parties, the
leakage parameter, the security parameter, and the message size, thus yielding
information rate asymptotically reaching 0. Motivated by this limitation, we
study the capacity (i.e., the best achievable rate) of continuously non-malleable
threshold secret sharing against joint tampering. As our main negative result,
in Sect. 5.1, we establish that whenever the attacker can tamper jointly with
k > t/2 shares, the capacity is at most t − k.

The latter can be seen as follows. Let Π be any continuously non-malleable
threshold secret sharing scheme against joint tampering with at most k shares.
Consider the non-interactive commitment scheme whose commit procedure does
a secret sharing of the message μ obtaining (σ1, . . . , σn) using a continuous non-
malleable secret sharing scheme, and finally outputs γ = (σ1, . . . , σt−k). If we
can show that this commitment is perfectly binding then |μ| ≤ |γ| = (t − k) · s
(where s is the size of a single share), and thus the rate of Π must be at most
t − k. Assume the commitment scheme is not perfectly binding, namely, there
exist two distinct messages μ(0) and μ(1), along with openings ρ0 and ρ1, such
that γ = (σ1, . . . , σt−k) is consistent with both (μ(0), ρ0) and (μ(1), ρ1).

We show how to construct an efficient adversary breaking continuous non-
malleability of Π. Let σ∗ = (σ∗

1 , . . . , σ∗
n) be the target secret sharing. The adver-

sary computes offline σ(0) = (σ(0)
1 , . . . , σ

(0)
n ) and σ(1) = (σ(1)

1 , . . . , σ
(1)
n ) by secret

sharing μ(0) with coins ρ0 and μ(1) with coins ρ1. Note that, by construction,
the first t − k shares of σ(0) and σ(1) are identical. Hence, the attacker tampers
repeatedly with σ∗ as described below:

– It fixes the partition B of [n] to be B = (B1,B2,B3), such that B1 = [t − k]
and B2 = [t] \ [t − k], and B3 is any k-sized partition of [n] \ [t]. The fact that
k > t/2 ensures that B is a k-sized partition of [n].

– It defines the tampering query f that replaces the first t−k shares of σ∗ with
the corresponding shares of σ(0) (which are the same of σ(1)), and the shares
of σ∗ within B2 with the corresponding shares of either σ(0) or σ(1) depending
on whether the i-th bit of σ∗

B2
is either zero or one. The shares within B3 are

unchanged.
– It submits f = (f1, f2, f3) to the tampering oracle along with the reconstruc-

tion set T = [t]. Note that it is irrelevant how the shares within B3 were
modified, as those are not included in [t].

Using the above tampering query, the attacker learns the i-th bit of σ∗
B2

.
After all the shares σ∗

B2
are obtained, it is trivial to break non-malleability by
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hard-wiring those shares in the tampering function that is allowed to modify
the shares within B1 (as B1 ∪ B2 = [t], which allows to reconstruct the target
message).

Rate-One Construction (and More). The above upper bound shows that
the best possible rate of continuously non-malleable secret sharing against (t−1)-
joint tampering attacks is 1. As our last contribution, in Sect. 5.2, we show that
such a rate is achievable under the same computational assumptions needed for
our rate-zero construction. We do so by revisiting a paradigm originally due to
Krawczyk [21] for boosting the rate of classical threshold secret sharing.

Let Π be a threshold secret sharing scheme with rate zero. The main idea is
to use Π to share the private key κ of a symmetric encryption scheme, obtaining
shares (κ1, . . . , κn); hence, we encrypt the message μ and use an information
dispersal in order to distribute the ciphertext γ (along with the shares of the
key) to the parties. Namely, by denoting with γi the i-th share of the information
dispersal, the final share of party i is going to be σi = (κi, γi). Krawczyk proved
that computational privacy of this construction follows easily from the privacy
property of the underlying secret sharing scheme, along with semantic security of
encryption. Moreover, let t∗ be the reconstruction threshold of the information
dispersal, by setting t∗ = t, the rate of the scheme asymptotically reaches t
(thus share size is smaller than the message size) the reason is that the size of
the shares of the key do not depend on the size of the message. Such a rate is
known to be optimal.

Unfortunately, our capacity upper bound immediately implies that the above
construction cannot yield a continuously non-malleable secret sharing scheme
against (t− 1)-joint leakage and tampering attacks when t∗ = t. In fact the best
possible rate is one, which corresponds to setting the reconstruction threshold
of the information dispersal to t∗ = 1, essentially meaning that the same cipher-
text must be repeated in every share, i.e. σi = (κi, γ). The main step of the
proof is to transition to a mental experiment in which the shares (σ1, . . . , σn)
are computed by sharing an unrelated key κ̂, and reduce a distinguisher between
this experiment and the original game to an adversary attacking leakage-resilient
continuous non-malleability of the underlying secret sharing scheme. In partic-
ular, the reduction needs to obtain the tampered ciphertexts (γ̃i)i∈[m], i.e. one
ciphertext for each set of tampered shares,7 so that it can either decrypt the
ciphertext γ̃ := γ̃1 = · · · = γ̃m with the tampered key κ̃ obtained from the
challenger, or self-destruct in case the ciphertexts within the reconstruction set
T specified by the distinguisher are not all equal.

One possibility would be to obtain each ciphertext γ̃i via leakage queries,
and then to argue that this does not reduce the conditional average min-entropy
by too much since, before self-destruct, the ciphertext γ̃i can be thought of as a
function of the other shares. However, the possibility to change the reconstruc-
tion set T adaptively within each tampering query, would require us to assume
7 Note that in case the tampered ciphertexts within one of the subsets Bi are not

equal, the reduction can immediately self-destruct.
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the strong flavor of conditional independence discussed in Sect. 1.3 (which we do
not know how to achieve). Instead, we use a different technique, and obtain the
tampered ciphertexts via multiple tampering queries (and thus with no leakage).
In particular, given a tampering query from the adversary, our reduction sends
|γ| + 1 different tampering queries. The first |γ| queries extract the tampered
ciphertext γ̃ one bit at a time, while the last tampering query extracts the secret
key used to encrypt the message. To perform the first |γ| queries we fix two valid
secret sharing (σ(0)

1 , . . . , σ
(0)
n ) and (σ(1)

1 , . . . , σ
(1)
n ) for two distinct messages μ(0)

and μ(1). The i-th tampering query coordinates its outputs using the i-th bits
of the tampered ciphertexts. If the tampered ciphertexts are all the same then
the shares produced by the i-th tampering function are either (σ(0)

1 , . . . , σ
(0)
n )

or (σ(1)
1 , . . . , σ

(1)
n ) (depending on the i-th bit of γ̃). On the other hand, if the

tampered ciphertexts are not all the same, let j, j′ be the indexes such that the
ciphertexts γ̃j and γ̃j′ differ on the i-th bit, then the tampering function outputs
(σ(0)

k )k∈Bj
and (σ(1)

k )k∈Bj′ which triggers a self-destruct.
Finally, we show how to bypass the limitations imposed by our capacity upper

bound by extending the ideas behind our rate compiler in two directions:

– First, we analyze the rate compiler assuming the reconstruction threshold of
the information dispersal is any value t∗ ≤ t−1 and the adversary is limited to
what we call t∗-intersecting tampering: Each tampering query (T , f) output
by the attacker is such that, for all subsets Bi of the partition B, either Bi∩T =
∅ or |Bi ∩T | ≥ t∗. Note that this yields asymptotic rate t∗ for the final secret
sharing scheme (without contradicting our capacity upper bound which does
not consider t∗-intersecting tampering). An important consequence of this
generalization is that it yields the first non-malleable secret sharing scheme
against independent tampering attacks with positive rate t/2. We achieve this
by setting t∗ = t/2, and by reducing an attacker for independent tampering
to a t∗-intersecting-tampering attacker that partitions the shares into two
blocks of t/2 shares each.

– Second, in the full version [8], we show that optimal asymptotic rate t can
be obtained both in the random oracle model (ROM) and in the algebraic
group model (AGM). More in detail, we consider the same rate compiler
but where the sharing procedure additionally appends to each of the shares a
cryptographic hash h of the ciphertext γ. The reconstruction procedure checks
that the hash values are consistent (i.e., they are all the same and equal to the
hash of γ). In the ROM, we model the hash function as a random oracle, while
in the AGM we instantiate it using the so-called Pedersen’s hash function.
In the reductions, we show that one can extract the tampered ciphertext γ̃
from the tampered hash h̃ corresponding to each tampering query, without
the need to rely on leakage resilience of the underlying t-out-of-n continuously
non-malleable secret sharing scheme.
These results do not contradict our capacity upper bound which is for the
plain model only. Informally, this is true because both in the ROM and in the
AGM we can obtain extractable commitment schemes that are succinct (i.e.,
where the size of a commitment is shorter than the size of the message).
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Concrete Instantiations. Finally, in Sect. 6, we show how to instantiate the
building blocks required for all of our constructions. We construct a leakage-
resilient t-time non-malleable split-state code by generalizing the black-box
transformation of Ball et al. [4] to the setting of noisy-leakage and multiple-
tampering attacks. This construction satisfies the conditional independence
property that is needed for the analysis of our secret sharing scheme from Sect. 4.

Putting everything together, for any t ≥ 2 (resp. t ≥ 2n/3) we obtain the
first statistically-secure (resp. computationally-secure) t-out-of-n noisy-leakage-
resilient one-time (resp. continuously) non-malleable secret sharing under selec-
tive (t− 1)-joint leakage and tampering attacks with asymptotic rate zero (resp.
one), as also highlighted in Table 1.

1.4 Related Work

Non-malleable secret sharing with security against one-time joint-tampering
attacks further exists for certain restricted tampering classes including poly-
nomials of bounded degree (see Ball et al. [3]) and affine tampering (see Lin et
al. [24]), and for ramp secret sharing (see Chattopadhyay and Li [10]).

A series of papers focuses on constructing non-malleable secret sharing in the
weaker setting of independent tampering attacks [1,2,7,15,18,19,29]. In partic-
ular, Faonio and Venturi [15], as well as Brian et al. [7], previously analyzed a
simplified version of the rate compiler of Krawczyk [21] and the non-malleable
code construction by Ostrovsky et al. [26] (generalized to threshold secret shar-
ing) in the setting of both independent and joint leakage and tampering attacks.
However, their analysis requires a non-standard8 flavor of noisy-leakage resilience
for the underlying rate-zero secret sharing scheme which we show to be not nec-
essary in this work.

2 Standard Definitions

For a string x ∈ {0, 1}∗, we denote its length by |x|; if x, y ∈ {0, 1}∗ are two
strings, we denote by x||y the concatenation of x and y. If X is a set, |X |
represents the number of elements in X . We denote by [n] the set {1, . . . , n}.
For a set of indices I = (i1, . . . , it) and a vector x = (x1, . . . , xn), we write xI
to denote the vector (xi1 , . . . , xit). When x is chosen randomly in X , we write
x ←$ X . When A is a randomized algorithm, we write y ←$ A(x) to denote a run
of A on input x (and implicit random coins ρ) and output y; the value y is a
random variable and A(x; ρ) denotes a run of A on input x and randomness ρ. An
algorithm A is probabilistic polynomial-time (PPT for short) if A is randomized
and for any input x, ρ ∈ {0, 1}∗, the computation of A(x; ρ) terminates in a
polynomial number of steps (in the size of the input).
8 They require that the leakage on the i-th share does not drop the conditional aver-

age min-entropy of the share i conditioned on all other shares j �= i by too much.
This additional requirement makes their rate compiler incompatible with the non-
malleable secret sharing scheme by Brian, Faonio, Obremski, Simkin and Venturi [6]
which does not satisfy this property.
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Negligible Functions. We denote with λ ∈ N the security parameter. A function
p is polynomial (in the security parameter) if p(λ) ∈ Θ(λc) for some constant
c > 0 ; we sometimes write poly(λ) for an unspecified polynomial. A function
ν : N → [0, 1] is negligible (in the security parameter) if it vanishes faster than the
inverse of any polynomial in λ, i.e. ν(λ) ∈ O(1/p(λ)) for all positive polynomials
p(λ); we sometimes write negl(λ) to denote an unspecified negligible function. We
assume that the security parameter is given as input (in unary) to all algorithms.

Random Variables. For a random variable X, we write Pr[X = x] for the prob-
ability that X takes on a particular value x ∈ X , with X being the set where X
is defined. The statistical distance between two random variables X and Y over
the same set X is defined as

Δ(X,Y) =
1
2

∑

x∈X
|Pr[X = x] − Pr[Y = x]| .

Given two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N, we write X ≡ Y to
denote that they are identically distributed, X

s≈ Y to denote that they are
statistically close, i.e. Δ(Xλ,Yλ) ≤ negl(λ), and X

c≈ Y to denote that they are
computationally indistinguishable, i.e. for every PPT distinguisher D:

|Pr[D(Xλ) = 1] − Pr[D(Yλ) = 1]| ≤ negl(λ).

We extend the notion of computational indistinguishability to the case of inter-
active experiments (a.k.a. games) featuring an adversary A. In particular, let
GA(λ) be the random variable corresponding to the output of A at the end of the
experiment, where wlog. we may assume that A outputs a decision bit. Given two
experiments GA(λ, 0) and GA(λ, 1), we write {GA(λ, 0)}λ∈N

c≈ {GA(λ, 1)}λ∈N

as a shorthand for

|Pr[GA(λ, 0) = 1] − Pr[GA(λ, 1) = 1]| ≤ negl(λ).

The above naturally generalizes to statistical distance, which we denote by
Δ(GA(λ, 0),GA(λ, 1)), in case of unbounded adversaries.

Average min-entropy. The min-entropy of a random variable X with domain X is
H∞ (X) := − log maxx∈X Pr [X = x], and intuitively it measures the best chance
to predict X (by a computationally unbounded algorithm). For conditional dis-
tributions, unpredictability is measured by the conditional average min-entropy
H̃∞ (X | Y) := − logEy

[
2−H∞(X | Y=y)

]
[11]. The lemma below is sometimes

known as the “chain rule” for conditional average min-entropy.

Lemma 1 ([11], Lemma 2.2). Let X,Y,Z be random variables. If Y has
at most 2� possible values, then H̃∞ (X | Y,Z) ≥ H̃∞ (X,Y | Z) − � ≥
H̃∞ (X | Z) − �. In particular, H̃∞ (X | Y) ≥ H̃∞ (X,Y) − � ≥ H̃∞ (X) − �.
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Game SKEind-cca
Σ,A (λ, b):

κ $ K
(μ0, μ1, α) $ AOenc(κ,·),Odec(κ,·)

1 (1λ)
γ̂ $ Enc(κ, μb)
Return AOenc(κ,·),Odec(κ,·)

2 (α, γ̂)

Oracle Oenc(κ, μ):
Return Enc(κ, μ)

Oracle Odec(κ, γ):
If γ = γ̂

Return ⊥
Else

Return Dec(κ, γ)

Fig. 1. Experiment defining security of SKE.

2.1 Non-interactive Commitment Schemes

A non-interactive commitment scheme Com is a randomized algorithm taking
as input a message μ ∈ M and random coins ρ ∈ R and outputting a value
γ = Com(μ; ρ) called commitment. The pair (μ, ρ) is called opening.

Intuitively, a secure commitment scheme satisfies two properties called bind-
ing and hiding. The first property says that it is hard to open a commitment
in two different ways. The second property says that a commitment hides the
underlying message. The formal definitions follows.

Definition 1 (Binding). We say that a non-interactive commitment scheme
Com is computationally binding if for all PPT adversaries A the following is
negligible:

Pr
[
μ′ �= μ ∧ Com(μ′; ρ′) = Com(μ; ρ) | (μ, ρ, μ′, ρ′) ←$ A(1λ)

]
.

If the above holds even in the case of unbounded adversaries, we say that Com is
statistically binding. Finally, if the above probability is exactly 0 for all adver-
saries (i.e. each commitment can be opened to at most a single message), we say
that Com is perfectly binding.

Definition 2 (Hiding). We say that a non-interactive commitment scheme
Com is computationally hiding if for all messages μ0, μ1 ∈ M it holds that

{
Com(1λ, μ0)

}
λ∈N

c≈
{
Com(1λ, μ1)

}
λ∈N

.

In case the above ensembles are statistically close (resp. identically distributed),
we say that Com is statistically (resp. perfectly) hiding.

2.2 Symmetric Encryption

A secret-key encryption (SKE) scheme is a tuple Σ = (Enc,Dec) of polynomial-
time algorithms specified as follows.

– Enc is a randomized algorithm that takes as input a key κ ∈ K and a message
μ ∈ M and outputs a ciphertext γ ∈ C, where M and C are the message
space and the ciphertext space respectively.
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– Dec is a deterministic algorithm that takes as input the key κ ∈ K and a
ciphertext γ ∈ C and outputs a message μ ∈ M ∪ {⊥}, where ⊥ denotes an
invalid ciphertext.

We say that Σ satisfies correctness if, for all κ ∈ K and all messages μ ∈ M,
we have that Dec(κ,Enc(κ, μ)) = μ with probability 1 over the randomness of
Enc. As for security, we will need SKE schemes satisfying the standard notion of
indistinguishability against chosen-ciphertext attacks (IND-CCA). Informally,
this property states that it is hard to distinguish the encryption of any two
messages even if the adversary has encryption/decryption capabilities under the
target key. Formally, we have the following definition.

Definition 3 (Security of SKE). We say that Σ = (Enc,Dec) is an IND-
CCA secure SKE scheme if the following holds for the experiment in Fig. 1: For
all PPT adversaries A,

{
SKEind-cca

Σ,A (λ, 0)
}

λ∈N

c≈
{
SKEind-cca

Σ,A (λ, 1)
}

λ∈N

.

2.3 Information Dispersal

Information dispersals are similar to secret sharing schemes but they do not
guarantee privacy. Formally, let n, t ∈ N, with t ≤ n. A t-out-of-n information
dispersal is a pair of (deterministic) polynomial-time algorithms (IDisp, IRec)
defined as follows:

– IDisp takes as input a message μ ∈ M and outputs n shares μ1, . . . , μn, where
each μi ∈ Mi.

– IRec takes as input a certain subset of shares and outputs a value in M∪{⊥}.

We require the following correctness property: For all μ ∈ M and all I with
|I| ≥ t, it holds that IRec((IDisp(μ))I) = μ.

3 Secret Sharing Schemes

A n-party secret sharing scheme Π, with message space M and share space
S = S1 × . . . × Sn, consists of polynomial-time algorithms (Share,Rec) specified
as follows:

– Share is a randomized algorithm that takes as input a message μ ∈ M and
outputs n shares σ1, . . . , σn, with σi ∈ Si.

– Rec is a deterministic algorithm that takes as input a certain subset of shares
and outputs a value in M ∪ {⊥}.

The subset of parties allowed to reconstruct the secret by pulling their shares
together form the so-called access structure. We consider the t-out-of-n access
structure where any subset of shares of cardinality bigger or equal to t can recon-
struct (we call such subsets authorized), while any subset of shares of cardinality
less than t cannot (we call such subsets unauthorized). Subsets of cardinality
exactly t are called minimal authorized sets.
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Definition 4 (Threshold secret sharing scheme). Let n, t ∈ N and t ≤ n,
we say that Π = (Share,Rec) is a t-out-of-n secret sharing scheme if the following
two properties are satisfied.

– Correctness: for all λ ∈ N, all μ ∈ M and all I with |I| ≥ t, we have that
Rec((Share(1λ, μ))I) = μ with overwhelming probability over the randomness
of the sharing algorithm.

– Perfect Privacy: for all pairs of messages μ0, μ1 ∈ M and for any U with
|U| < t, we have that

{(Share(1λ, μ0))U}λ∈N ≡ {(Share(1λ, μ1))U}λ∈N,

If the above ensembles are statistically (resp. computationally) close, we speak
of statistical (resp. computational) privacy.

Finally, when considering the length of the shares, we define the information rate
of a secret sharing scheme as the ratio between the length of the secret message
and the maximal length of a share.

Definition 5 (Asymptotic rate). Let Π be an n-party secret sharing scheme
with message space M = {0, 1}∗ and share space S1 × . . . × Sn. Let s(|μ|, λ) =
maxi∈[n] log |Si(|μ|, λ)| where S1(|μ|, λ) × . . . × Sn(|μ|, λ) is the share space for
messages μ of length |μ| and security parameter λ. The asymptotic information
rate of Π is defined to be

 = inf
λ∈N

lim
|μ|→∞

|μ|
s(|μ|, λ)

.

3.1 Tampering and Leakage Model

In our model the attacker partitions all of the shares into m (non-overlapping)
blocks with size at most k, covering the entire set [n]. This is formalized through
the notion of a k-sized partition.

Definition 6 (k-sized partition). Let k,m ∈ N. We call B = (B1, . . . ,Bm) a
k-sized partition of [n] if: (i)

⋃
i∈[m] Bi = [n]; (ii) ∀i1, i2 ∈ [m] such that i1 �= i2,

Bi1 ∩ Bi2 = ∅; (iii) ∀i ∈ [m], |Bi| ≤ k.

Fix μ ∈ M and let B be a k-sized partition of [n]. To define our security
model, we consider an adversary A interacting with a target secret sharing σ =
(σ1, . . . , σn) of μ as follows:

– Leakage queries. For each i ∈ [m], the attacker can leak jointly from the
shares σBi

. This can be done repeatedly and in an adaptive fashion, so long
as the leakage does not decrease the min-entropy of the shares by too much.
Formally, for any μ ∈ M, for each i ∈ [m] and for � ≥ 0, we require that

H̃∞((Σj)j∈Bi
|Λi) ≥ H̃∞((Σj)j∈Bi

) − �, (1)

where (Σ1, . . . ,Σn) is the r.v. corresponding to Share(μ), and Λi is the r.v.
corresponding to the total leakage performed within Bi (over all queries). An
adversary obeying this restriction is called �-leakage admissible.
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LR-CNMSSμ0,μ1
Π,A,B(λ, b):

σ $ Share(μb)
stop false

Return AOleak(σ,·),Oµ0,µ1
tamp (σ,·,·)

Oracle Oleak(σ, (g1, . . . , gm)):
If stop = true

Return ⊥
Else
∀i ∈ [m], Λi = gi(σBi)
Return Λ = Λ1|| . . . ||Λm

Oracle Otamp(σ, , (f1, . . . , fm)):
If stop = true

Return ⊥
Else

∀i ∈ [m], σ̃Bi = fi(σBi)
μ̃ = Rec(σ̃ )
If μ̃ ∈ {μ0, μ1}

Return �
If μ̃ = ⊥

Return ⊥, and stop true

Else
Return μ̃

Fig. 2. Experiment defining leakage-resilient continuously non-malleable secret sharing
against joint tampering. The tampering and leakage oracles are implicitly parameter-
ized by set B, messages μ0, μ1 and flag stop.

– Tampering queries. For each i ∈ [m], the attacker can tamper jointly with
the shares σBi

. Each such query yields tampered shares σ̃1, . . . , σ̃n, for which
the adversary is allowed to choose a different reconstruction set T ⊆ [n],
with |T | ≥ t, and see the corresponding reconstructed message. This can be
done repeatedly and in an adaptive fashion, the only restriction being that
after the first tampering query yielding an invalid message, the answer to all
future tampering (and leakage) queries is automatically set to ⊥ (the so-called
self-destruct feature). This restriction is well-known to be necessary when an
arbitrary polynomial number of tampering queries is allowed [15,29].

Now we are ready to give the formal notion of security. Intuitively, leakage-
resilient continuous non-malleability states that, given two9 messages μ0, μ1 ∈
M, no admissible adversary, as defined above, can distinguish whether it is
interacting with a secret sharing of μ0 or of μ1.

Definition 7 (Leakage-resilient continuous non-malleability [7]). Let n,
t, k ∈ N and � ≥ 0 be parameters. A t-out-of-n secret sharing scheme Π is �-
noisy-leakage-resilient continuously non-malleable under selective k-joint leakage
and tampering attacks ((k, �)-LR-CNMSS, for short), if for all messages μ0, μ1 ∈
M, all k-sized partitions of [n], and all PPT �-leakage admissible attackers A,
the following holds for the experiment of Fig. 2:

{
LR-CNMSSμ0,μ1

Π,A,B(λ, 0)
}

λ∈N

c≈
{
LR-CNMSSμ0,μ1

Π,A,B(λ, 1)
}

λ∈N

. (2)

When no leakage is allowed (i.e. � = 0), we simply say that Π is a k-CNMSS.
9 Goyal and Kumar [18] originally gave a simulation-based definition of non-

malleability (for the case of one-time tampering). It is folklore that this flavor of
non-malleability can be shown to be equivalent to the indistinguishability-based
notion we define (even in the setting of continuous tampering), so long as the mes-
sage length is super-logarithmic in the security parameter.
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3.2 Related Notions

By adapting the above definition, we obtain several notions as special cases, as
detailed below.

Leakage-Resilient One-Time Non-malleability. Let LR-NMSSμ0,μ1
Π,A,B(λ, b) be the

experiment that is defined identically to LR-CNMSSμ0,μ1
Π,A,B(λ, b), except that the

attacker is allowed a single tampering query and all the leakage happens before
such query. In this case, Definition 7 can be achieved information theoretically
(i.e., for all unbounded adversaries). In particular, Eq. (2) now becomes

Δ
(
LR-NMSSμ0,μ1

Π,A,B(λ, 0);LR-NMSSμ0,μ1
Π,A,B(λ, 1)

)
≤ ε (3)

for some ε ∈ [0, 1), and we speak of �-noisy-leakage-resilient one-time statistically
ε-non-malleable secret sharing under selective k-joint leakage and tampering
attacks ((k, �, ε)-LR-NMSS, for short).

Asymmetric p-time Non-malleable Codes. When the number of parties is n = 2,
i.e. in case Π is a 2-out-of-2 secret sharing, we obtain the notion of leakage-
resilient split-state continuously non-malleable codes [16,26] as a special case.
Here, it will be useful to consider asymmetric shares and possibly to tolerate
different amounts of leakage from each side; towards this, when we explicitly need
the size of the shares, we speak of (sL, sR)-asymmetric codes, where sL = log |SL|
is the size of the left share and sR = log |SR| is the size of the right share.
Moreover, it will suffice for us to consider an attack scenario where the adversary
performs all the leakage before tampering, and can only send p tampering queries
(where p is fixed a priori). Notice that, when the number of tampering queries is
bounded, then we can obtain security even without assuming self-destruct (i.e.,
the self-destruct flag stop is never set to true in the experiment of Fig. 2).

An adversary A is called (�L, �R)-leakage and p-time tampering admissible, so
long as it makes at most p tampering queries and performs all leakage queries
before the first tampering query, with the restriction that:

H̃∞(ΣL |ΛL) ≥ H̃∞(ΣL) − �L,

H̃∞(ΣR |ΛR) ≥ H̃∞(ΣR) − �R,

where Σ = (ΣL,ΣR) is the r.v. corresponding to the target secret sharing, and
ΛL,ΛR are the r.v. corresponding to the total leakage performed on ΣL,ΣR (over
all queries). In this case, we say that Π is an asymmetric (�L, �R)-leakage-resilient
p-time ε-non-malleable split-state code (asymmetric (�L, �R, p, ε)-LR-NMC, for
short). We denote the corresponding experiment as LR-NMCμ0,μ1

Π,A (λ, b).
When no leakage is allowed (i.e., �L, �R = 0), we simply speak of asymmet-

ric p-time ε-non-malleable split-state codes (asymmetric (p, ε)-NMC for short);
similarly, when no tampering is allowed (i.e. p = 0), we speak of asymmetric
(�L, �R, ε)-leakage-resilient split-state code (asymmetric (�L, �R)-LRC for short).
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Finally, in the latter case, we also need the existence of an efficiently com-
putable algorithm Share such that, for all σR ∈ SR and μ ∈ M, it holds that
Rec(Share(μ, σR), σR) = μ and moreover the distributions of the left shares sam-
pled from Share is equivalent to the distribution of the left shares of Share con-
ditioned on the right share being σR and the message being μ. In other words,
given as input the message μ and a right share σR, the algorithm Share produces
a left share σL such that (σL, σR) is a valid and properly distributed encoding
of μ. We refer the reader to Sect. 6 for concrete examples of leakage-resilient
split-state codes meeting the above property.

4 Rate-Zero Continuously Non-malleable Secret Sharing

In this section, we give a construction of a leakage-resilient continuously non-
malleable secret sharing scheme against selective joint tampering. We refer the
reader to Sect. 1.3 for an overview of our scheme (and its security) and here
directly provide a formal treatment.

Let Π = (Share,Rec) be the t-out-of-n Shamir’s secret sharing scheme. For
simplicity we assume that Π can support messages of variable length, namely
the sharing procedure chooses a field that is large enough to encode the input
message μ for n parties (for simplicity, we assume that |μ| ≥ log n), and we
denote such field as F(|μ|), or simply F when the message is clear from the
context. A share σi of Π is a tuple (i, x) where i ∈ [n] and x ∈ F is a field
element; in particular, if p is the polynomial chosen by the Share algorithm, for
all i ∈ [n], σi = (i, p(i)). Let Si(|μ|) := {(i, x) : x ∈ F(|μ|)}, clearly a secret
sharing of μ has support S1(|μ|) × · · · × Sn(|μ|). Consider the function idx that,
upon input a tuple σ = (i∗, x), outputs the first component idx(σ) = i∗; in
particular, for a share σi generated by the sharing function Share, it holds that
idx(σi) = i. Finally, let Π ′ = (Share′,Rec′) be a split-state code with codeword
space SL × SR and Com be a non-interactive commitment scheme. Consider the
following derived scheme Π∗ = (Share∗,Rec∗).

– Algorithm Share∗: upon input μ, first sample randomness ρ ←$ R and com-
pute γ ← Com(μ; ρ) and (σ1, . . . , σn) ←$ Share(μ||ρ). Then, for each i ∈ [n],
compute (σL,i, σR,i) ←$ Share′(σi) and (σ(1)

R,i , . . . , σ
(n)
R,i ) ←$ Share(σR,i). Finally,

set σ∗
i = (γ, σL,i, (σ

(i)
R,j)j∈[n]) for all i ∈ [n] and output (σ∗

1 , . . . , σ∗
n).

– Algorithm Rec∗: upon input shares (σ∗
i )i∈I , parse σi = (γi, σL,i, (σ

(i)
R,j)j∈[n])

for all i ∈ I. Check that all the commitments (γi)i∈I are the same; if not
output ⊥, and else let γ be the commitment contained in each share. Compute
σR,i = Rec((σ(j)

R,i)j∈I) and σi = Rec′(σL,i, σR,i); check that there exist no
distinct i1, i2 ∈ I such that idx(σi1) = idx(σi2) (and output ⊥ otherwise).
Finally, reconstruct μ||ρ = Rec((σi)i∈I) and output μ if γ = Com(μ; ρ) and
⊥ otherwise.

We are now ready to state the following theorem.
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LR-CNMSSμ0,μ1
Π∗,A,B(λ, b) Hybμ0,μ1

r (λ, b) :

ρ $ R
γ := Com(μb; ρ)
(σ1, . . . , σn) $ Share(μb||ρ)
(σ′

1, . . . , σ
′
n) $ ×i∈[n] Si(|μb| + |ρ|)

∀i > r, σ′
i := σi

∀i ∈ [n] :
(σL,i, σR,i) $ Share′(σi)
(σL,i, σR,i) $ Share′(σ′

i)

(σ(1)
R,i , . . . , σ

(n)
R,i ) $ Share(σR,i)

σ∗
i := (γ, σL,i, (σ

(i)
R,j)j∈[n])

σ∗ := (σ∗
1 , . . . , σ∗

n)
stop false

Return AOtamp(σ
∗,·),Oleak(σ

∗,·)(1λ)

Algorithm Split((σ∗
i )i∈ ):

σR,i = Rec((σ(j)
R,i)j∈ )

σi = Rec′(σL,i, σR,i)
Output (σi)i∈

Oracle Otamp(σ∗, , (f1, . . . , fm)):
If stop = true, return ⊥
∀i ∈ [m] : σ̃∗

Bi
:= fi(σ∗

Bi
)

σ̃∗ = (σ∗
1 , . . . , σ∗

n)
∀i ∈ , σ̃∗

i = (γ̃i, σ̃L,i, (σ̃
(i)
R,j)j∈[n])

If ∃i1, i2 ∈ : γ̃i1 �= γ̃i2

stop true and return ⊥
Else, let γ̃ := γ̃i

(σ̃i)i∈ = Split((σ̃∗
i )i∈ )

If ∃i1, i2 ∈ : idx(σ̃i1) = idx(σ̃i2)
stop true and return ⊥

∀i1, i2 ∈ : σ̃i1 = σ′
i2

Let σ̃i1 := σi2

μ̃||ρ̃ = Rec((σ̃i)i∈ )
If γ̃ �= Com(μ̃; ρ̃),

stop true and return ⊥
If μ̃ ∈ {μ0, μ1}, return �
Return μ̃

Oracle Oleak(σ∗, (g1, . . . , gm)):
If stop = true, return ⊥
Else, return g1(σ∗

1), . . . , gm(σ∗
m
)

Fig. 3. Experiments in the proof of Theorem 1. The instructions boxed in red are the
modifications introduced by the hybrid experiment. For compactness, we denote by
Split the algorithm that reconstructs the shares σi from the shares (σL,i, (σ

(i)
R,j)j∈[n]).

(Color figure online)

Theorem 1. Let n, t ∈ N, with t > 2n/3, and �L, �R ≥ 0. Assume that Com is
a perfectly binding and computationally hiding commitment and Π ′ is an asym-
metric (�L, �R, negl(λ), t)-LR-NMC satisfying the following properties:

(i) There exists σ∗
L ∈ SL such that, for any μ, there exists σR ∈ SR such that

Rec′(σ∗
L , σR) = μ.

(ii) There exists d ≥ 0 such that, for any μ, it holds that H̃∞(ΣL |ΣR) ≥
H∞(ΣL) − d and H̃∞(ΣR |ΣL) ≥ H∞(ΣR) − d, where (ΣL,ΣR) is the r.v.
corresponding to Share′(μ).

Then, the above secret sharing scheme Π∗ is a t-out-of-n (t− 1, �∗)-LR-CNMSS
so long as:

�R ≥ (t − 1) · �∗ + |μ| + |γ| + d + 1 + log(λ)
�L ≥ �∗ + n · (t − 1) · sR + |γ| + d + 1 + log(λ),

where |μ| ∈ N is the length of the message, |γ| is the length of a commitment
and sR = log |SR| is the size of a right share under Π ′.
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The privacy property of Π∗ follows readily by privacy of Π and the computa-
tional hiding property of Com. In what follows, we focus on the proof of leakage-
resilient continuous non-malleability. Wlog., we are going to assume that each
reconstruction set T queried by the adversary is minimal.10 Furthermore, we will
make the simplifying assumption that the partition B fixed by the attacker only
contains two subsets, i.e. B1 and B2. Note that this restriction is wlog. whenever
t > 2n/3: in fact, for any partition B = (B1, . . . ,Bm), it is always possible to find
a set of indices I ⊆ [m] such that t/2 ≤ |

⋃
i∈I Bi| < t and then consider the two

subsets to be B̂1 =
⋃

i∈I Bi (which contains less than t elements by construction)
and B̂2 =

⋃
i/∈I Bi (which contains n − |

⋃
i∈I Bi| < 3t/2 − t/2 = t elements).

Remark 1. Note that if we restrict the adversary to only choose partitions of two
subsets, i.e. B1,B2 ⊆ [n] s.t. B1∩B2 = ∅ and B1∪B2 = [n], then it only suffices to
require t ≥ n/2+1. This is because we can put B̂1 := B1 and B̂2 := B2, while the
restriction on t comes from the fact that both B1 and B2 must be unauthorized,
i.e. |B1|, |B2| ≤ t − 1, and therefore n = |B1| + |B2| ≤ 2t − 2, that is, t ≥ n/2 + 1.

For r ∈ [n], consider the auxiliary hybrid experiments Hybr(λ, b) described
in Fig. 3 along with the original experiment in order to highlight the main dif-
ferences. In particular, in Hybr(λ, b), we replace the first r shares (σ1, . . . , σr)
from the first application of Π with random and independent values (σ′

1, . . . , σ
′
r),

letting the remaining shares σ′
r+1, . . . , σ

′
n the same as the original experiment.

Note that, when r = 0, we do not replace any share, hence, for all b ∈ {0, 1},
Hyb0(λ, b) ≡ LR-CNMSSμ0,μ1

Π∗,A,B(λ, b). For all r ∈ [n], we will prove by induc-
tion over the number of tampering queries that the experiments Hybr−1(λ, b)
and Hybr(λ, b) are statistically close. Towards this, for all r ∈ [n] ∪ {0}, let
us denote by Hybr(λ, b, p) the experiment Hybr(λ, b) where the adversary A is
limited to ask exactly p tampering queries.

4.1 Induction Basis

The lemma below constitutes the basis of the induction.

Lemma 2. For all b ∈ {0, 1}, and all r ∈ [n], it holds that
{
Hybr−1(λ, b, 1)

}
λ∈N

s≈ {Hybr(λ, b, 1)}λ∈N
.

Proof. The difference between the two hybrids is that in Hybr(λ, b, 1) the share
σ′

r is uniformly random, whereas in Hybr−1(λ, b, 1) the share σ′
r is set to be σr

(as defined in the original experiment). For any j ∈ [n], let ξ(j) ∈ {1, 2} be the
index such that j ∈ Bξ(j). The proof proceeds by reduction to leakage-resilient t-
time non-malleability of Π ′. In more detail, for a fixed choice of b ∈ {0, 1} and r ∈
[n], let A be an adversary telling apart the two hybrids with probability at least
1/poly(λ). Consider the following (possibly inefficient) adversary A′ attacking
Π ′.
10 It is always possible to modify the reconstruction algorithm Rec so that, upon input

more than t shares, say σi1 , . . . , σit , . . ., with i1 < i2 < . . . < it < . . ., it only
considers the first t shares σi1 , . . . , σit in order to reconstruct the message.
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1. Setup. Set the challenge messages to be σr and σ′
r sampled as in

Hybr(λ, b, 1), and let γ be the commitment corresponding to the message
μb.

2. Shared randomness. For every i ∈ [n] \ {r}, sample σL,i, (σ
(j)
R,i)j∈[n] accord-

ing to Hybr(λ, b). Then, let iL = ξ(r) and iR = 3 − iL ∈ {1, 2}. Let J be any
set such that BiL ⊆ J ⊆ [n] and |J | = t − 1. For all j ∈ J , sample the shares
σ

(j)
R,r uniformly at random. Finally, sample the left share σ∗

L given by property
(i) of Π ′.
After this step, the reduction A′ knows σ∗

L and the following values:

∀i ∈ [n] \ J : γ, σL,i, (σ(i)
R,j)j∈[n]\{r} (4)

∀i ∈ J \ {r} : γ, σL,i, (σ(i)
R,j)j∈[n] (5)

For i = r : γ, (σ(i)
R,j)j∈[n] (6)

3. Leakage queries. Upon receiving a leakage query g = (g1, g2) from A, con-
struct the following leakage functions.
(a) Let gL be the leakage function which takes as input the value σL,r, plugs

it in Eq. (6) and appends the values of Eq. (5) to obtain (σ∗
i )i∈BiL

(recall
that BiL ⊆ J ), and finally outputs ΛiL = giL((σ

∗
i )i∈BiL

).
(b) Let gR be the leakage function which takes as input the value σR,r, com-

putes the values (σ(i)
R,r)i∈[n]\J using σR,r and the values (σ(i)

R,r)i∈J and
plugs them in Eq. (4) in order to obtain (σ∗

i )i∈[n]\J ; then, appends the val-
ues of Eq. (5) to obtain (σ∗

i )i∈BiR
, and finally outputs ΛiR = giR((σ

∗
i )i∈BiR

).
Send (gL, gR) to the leakage oracle and forward the answer Λ1||Λ2 to A.

4. Tampering query. Upon receiving the tampering query (T , f = (f1, f2))
from A, construct the following leakage and tampering functions.
(a) Let ĝL be the leakage function which takes as input the value σL,r, plugs it

in Eq. (6) and appends the values of Eq. (5) to obtain (σ∗
i )i∈BiL

, computes
the tampered shares (σ̃∗

i )i∈BiL
= fiL((σ

∗
i )i∈BiL

), checks if all the tampered
commitments within T ∩ BiL agree on a single value γ̃L (and outputs ⊥ if
not), and finally outputs the values γ̃L, (σ̃

(i)
R,j)i∈BiL

,j∈T .
(b) Let ĝR be the leakage function which takes as input the value σR,r, com-

putes the values (σ(i)
R,r)i∈[n]\J using σR,r and the values (σ(i)

R,r)i∈J and
plugs them in Eq. (4) in order to obtain (σ∗

i )i∈[n]\J ; then, appends the
values of Eq. (5) to obtain (σ∗

i )i∈BiR
, applies fiR to (σ∗

i )i∈BiR
, thus obtain-

ing (σ̃∗
i )i∈BiR

, checks if all the tampered commitments within T ∩BiR agree
on a single value γ̃R (and outputs ⊥ if not), and finally outputs γ̃R.

(c) For all i ∈ T , let fL,i be the function which takes as input the value
σL,r, obtains (σ∗

j )j∈BiL
by appending the values of Eq. (5) and plugging

σL,r into Eq. (6), and then computes the tampered shares (σ̃∗
j )j∈BiL

=
fiL((σ

∗
j )j∈BiL

) and outputs σ̃L,i if i ∈ BiL and the special share σ∗
L other-

wise.
(d) For all i ∈ T , let fR,i be the function which takes as input the value σR,r,

computes the values (σ(i)
R,r)i∈[n]\J using σR,r and the values (σ(i)

R,r)i∈J and
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plugs them in Eq. (4) in order to obtain (σ∗
i )i∈[n]\J ; then, appends the val-

ues of Eq. (5) to obtain (σ∗
i )i∈BiR

, applies fiR to (σ∗
i )i∈BiR

, thus obtaining

(σ̃∗
i )i∈BiR

, uses these values along with the values (σ̃(i)
R,j)i∈BiL

,j∈T obtained
by ĝL in order to reconstruct σ̃R,i for all i ∈ T , and finally outputs σ̃R,i if
i ∈ BiL and a share σ∗

R,i such that Rec′(σ∗
L , σ

∗
R,i) = Rec′(σ̃L,i, σ̃R,i) other-

wise.
Send the leakage query (ĝL, ĝR), thus obtaining ((γ̃L, (σ̃

(i)
R,j)i∈Bi∗ ,j∈[n]), γ̃R),

return ⊥ to A if γ̃L �= γ̃R and, otherwise, call γ̃ the tampered commitment
obtained from such a query. Next, for all i ∈ T , send the tampering query
(fL,i, fR,i), thus obtaining the tampered share σ̃i (or ⊥, in which case return
⊥ to A), and replace σ̃i with σr if σ̃i = � or replace σ̃i with σj if there
exists j ∈ [n] such that σ̃i = σ′

j . Finally, check that there exist no distinct
i1, i2 ∈ T s.t. idx(σi1) = idx(σi2) (and output ⊥ otherwise), reconstruct μ̃||ρ̃ =
Rec((σ̃i)i∈T ), check that γ̃ = Com(μ̃; ρ̃) (and return ⊥ otherwise), replace μ̃
with � if μ̃ ∈ {μ0, μ1} and return μ̃ to A.

5. Guess. Return the same distinguishing bit as that of A.

For the analysis, call Badi the event that one tampering query modifies
the shares so that the tampered value (σ̃L,i, σ̃R,i) is a valid encoding of σ′

r

(i.e., the adversary purposely replaces (σL,i, σR,i) with a valid encoding of σ′
r).

Clearly, the probability of the event Badi in the hybrid experiment Hybr−1

is O(2−λ) as provoking the event corresponds to guessing the value σ′
r which

is uniformly random over Sr(|μb| + |ρ|). Furthermore, the reduction perfectly
simulates Hybr−1(λ, b, 1) if the target codeword encodes σr and conditioning
on Bad =

⋃
i Badi not happening. On the other hand, if the target code-

word encodes σ′
r, the reduction perfectly simulates Hybr(λ, b, 1). In particular,

the latter holds because: (i) By perfect privacy of Shamir’s secret sharing the
distribution of the shares (σ∗

i )i∈BiL
and (σ∗

i )i∈BiR
computed inside the leakage

and tampering oracles is identical to that of the target secret sharing of either
Hybr−1(λ, b, 1) or Hybr(λ, b, 1); (ii) The auxiliary information leaked by the
functions (ĝL, ĝR), along with the answer to the tampering queries (fL,i, fR,i)i∈[t],
yield a perfect simulation of A’s tampering query.

Hence, to conclude the proof, it only remains to show that the constraints on
the leakage hold. The amount of leakage performed by the reduction is exactly
the one performed by A, plus the leakage used to obtain the tampered commit-
ments γ̃L, γ̃R and the tampered shares (σ̃(i)

R,j)i∈Bi∗ ,j∈[n], therefore we need:

�L ≥ �∗ + t · (t − 1) · sR + |γ| and �R ≥ �∗ + |γ|.

The lemma follows.

4.2 Inductive Step

The lemma below constitutes the inductive step. The proof appears in the full
version [8].
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Lemma 3. Fix any p ∈ poly(λ) and assume that for all b ∈ {0, 1}, and all
r ∈ [n], it holds:

{
Hybr−1(λ, b, p)

}
λ∈N

s≈ {Hybr(λ, b, p)}λ∈N
.

Then, {
Hybr−1(λ, b, p + 1)

}
λ∈N

s≈ {Hybr(λ, b, p + 1)}λ∈N
.

4.3 Putting It Together

By Lemmas 2 and 3, we get that, for all b ∈ {0, 1} and all r ∈ [n],

{
Hybr−1(λ, b)

}
λ∈N

s≈ {Hybr(λ, b)}λ∈N
.

Hence, by repeatedly applying the triangular inequality, we have obtained

{Hyb0(λ, b)}λ∈N

s≈ {Hybn(λ, b)}λ∈N
.

The lemma below concludes the proof of the theorem. The proof appears in the
full version [8].

Lemma 4. {Hybn(λ, 0)}λ∈N

c≈ {Hybn(λ, 1)}λ∈N
.

5 Rate Compilers and Capacity Upper Bounds

In this section, we first establish an upper bound on the capacity of continu-
ously non-malleable threshold secret sharing against joint tampering. We focus
on secret sharing scheme that are not leakage resilient. Indeed, an upper bound
on the capacity of this weaker primitive implies an upper bound on the capacity
of leakage-resilient continuous non-malleable secret sharing schemes. Addition-
ally, we exhibit a compiler for boosting the rate of our construction from the
previous section so that it achieves the best possible rate in the plain model.
For completeness, in the full version [8], we show that our upper bound on the
capacity can be overcome both in the random oracle model (ROM) and in the
algebraic generic group model (AGM).

5.1 Capacity Upper Bounds

We show the following upper bound on the maximal achievable rate of any
continuously non-malleable secret sharing scheme against k-joint tampering, for
k > t/2. Recall that computational assumptions are inherent for continuous
non-malleability, and thus our negative results hold even in the computational
setting.

Theorem 2. Let Π be a t-out-of-n k-CNMSS scheme. If k > t/2, then Π cannot
achieve better asymptotic rate than  ≤ t − k.
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Proof. We prove the slightly stronger statement that the capacity upper bound
holds even if the attacker always uses the same reconstruction set T across
all tampering queries. For simplicity, we assume that the share space of Π is
S = S1×· · ·×Sn with |Si| = |Sj | for all i, j ∈ [n]. (A generalization is immediate.)
Consider the following commitment scheme:

– The commitment procedure Com, upon input a message μ and random coins
ρ, samples shares (σ1, . . . , σn) := Share(μ; ρ) and outputs γ = (σ1, . . . , σt−k).

– The opening procedure, upon input an opening μ, ρ and a commitment γ,
recomputes the shares σ1, . . . , σn and checks that γ equals the first t − k
shares.

We now prove that the above defined commitment scheme is perfectly binding.
Note that the latter implies that |μ| ≤ |γ| because Com must be an injective
function. Thus, by letting s = log |S1|, the rate satisfies  = |μ|/s ≤ |γ|/s ≤ t−k
(as desired).

Towards a contradiction, assume that Com is not perfectly binding. Namely,
there exist a commitment γ and two openings (μ(0), ρ0) and (μ(1), ρ1) such that
both openings are valid for γ and μ(0) �= μ(1). Consider the following PPT
attacker against continuous non-malleability, with the values μ(0), ρ0, μ

(1), ρ1

hard-coded in:

1. Let μ∗
0 and μ∗

1 be any two distinct messages, and denote by (σ1, . . . , σn)
the target secret sharing of μ∗

b in the experiment defining continuous non-
malleability. For better readability, set � = |(σt−k+1|| · · · ||σt)|.

2. Compute the shares (σ(0)
0 , . . . , σ

(0)
n ) := Share(μ(0); ρ0) and (σ(1)

0 , . . . , σ
(1)
n ) :=

Share(μ(1); ρ1). By validity of the openings, we have that σ
(0)
i = σ

(1)
i for all

i ∈ [t − k].
3. Set T := [t], B1 := [t − k], and B2 := [t] \ [t − k].
4. For each j ∈ [�], the j-th tampering query is defined to be (T , (f1, f

(j)
2 ))

where the tampering functions are specified as follows:
– f1((σi)i∈B1) := (σ(0)

i )i∈B1 .
– f

(j)
2 ((σi)i∈B2) is the function that outputs (σ(0)

i )i∈B2 if and only if the
j-th bit of the string (σi)i∈B2 equals 0 (and outputs (σ(1)

i )i∈B2 otherwise).
Let μ̃ be the output of the j-th tampering query. Set αj := 0 if and only if
μ̃ = μ(0) (and αj := 1 otherwise).

5. Parse the string α1, . . . , α� as σt−k+1, . . . , σt. Forward the query (T , (f ′
1, f

′
2))

to the tampering oracle, where f ′
1 takes as input (σi)i∈B1 , reconstructs the

message μ∗
b (using the values σt−k+1, . . . , σt), and finally either does nothing

(say, if the reconstructed message is μ∗
0) or outputs garbage.

6. Output b′ = 0 if and only if the output of the last tampering query is � (and
otherwise output b′ = 1).

Note that t−k < k as k > t/2, and thus B = (B1,B2) is a k-sized partition of T =
[t]. Moreover, the above reduction clearly breaks continuous non-malleability of
Π with overwhelming probability. This concludes the proof.
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LR-CNMSSμ0,μ1
Π∗,A,B(λ, b) Hybμ0,μ1

Π∗,A,B(λ, b) :

κ $ K
κ̂ $ K
(κ1, . . . , κn) $ Share(κ)
(κ1, . . . , κn) $ Share(κ̂)

γ $ Enc(κ, μb)
(γ1, . . . , γn) = IDisp(γ)
∀i ∈ [n] :

σi := (κi, γi)
σ := (σ1, . . . , σn)
stop false

Return AOtamp(σ,·),Oleak(σ,·)(1λ)

Oracle Oleak(σ, (g1, . . . , gm)):
If stop = true, return ⊥
Else, return g1(σB1), . . . , gm(σBm)

Oracle Otamp(σ, , (f1, . . . , fm)):
If stop = true, return ⊥
∀i ∈ [m] : σ̃Bi := fi(σBi)
σ̃ = (σ1, . . . , σn)
∀i ∈ , σ̃i = (κ̃i, γ̃i)
γ̃ = IRec((γ̃i)i∈ )
If IDisp(γ̃) �= (γ̃i)i∈

stop true and return ⊥
κ̃ = Rec((κ̃i)i∈ )
If κ̃ = ⊥, stop true and return ⊥
If κ̃ = κ̂, κ̃ κ

μ̃ = Dec(κ̃, γ̃)
If μ̃ = ⊥, stop true and return ⊥
If μ̃ ∈ {μ0, μ1}, return �
Else return μ̃

Fig. 4. Experiments in the proof of Theorem 3. The instructions boxed in red are the
modifications introduced by the hybrid experiment. (Color figure online)

5.2 Rate Compiler (Plain Model)

Let (IDisp, IRec) be an information dispersal, Π = (Share,Rec) be a secret sharing
scheme and Σ = (Enc,Dec) be a secret-key encryption scheme. Consider the
following derived secret sharing scheme Π∗ = (Share∗,Rec∗).

– Algorithm Share∗: upon input a message μ, sample a random key
κ ←$ K and compute γ ←$ Enc(κ, μ), (γ1, . . . , γn) = IDisp(γ) and
(κ1, . . . , κn) ←$ Share(κ); finally, for all i ∈ [n], let σi = (κi, γi) and output
(σ1, . . . , σn).

– Algorithm Rec∗: upon input a set (σi)i∈I of at least t shares parse σi =
(κi, γi) for all i ∈ I, reconstruct κ = Rec((κi)i∈I) and γ = IRec((γi)i∈I),
check that IDisp(γ)I = (γi)i∈I (and return ⊥ if not), and finally output
μ = Dec(κ, γ).

The construction above was first proposed and analyzed by Krawczyk [21]
in the setting of plain threshold secret sharing. The theorem below states its
security in the setting of continuous joint tampering and leakage attacks.

Theorem 3. Let n, t, t∗, � ∈ N be parameters such that t∗ ≤ t−1. Assume that:

– (IDisp, IRec) is a t∗-out-of-n information dispersal;
– (Share,Rec) is a t-out-of-n (�, t − 1)-LR-CNMSS;
– (Enc,Dec) is an IND-CCA secure secret-key encryption scheme.

Then, Π∗ is a t-out-of-n (�, t − 1)-LR-CNMSS under the following restriction:
Each tampering query (T , f) output by the attacker is such that, for all subsets
Bi of the partition B, either Bi∩T = ∅ or |Bi∩T | ≥ t∗. Moreover, the asymptotic
rate of Π∗ is  = t∗.
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Proof. The proof proceeds by a hybrid argument. In particular, we argue that
the original experiment is computationally close to a mental experiment in which
we replace the secret sharing of the key κ with a secret sharing of an unrelated
random key κ̂. The mental experiments is depicted in Fig. 4 along with the
original experiment in order to highlight the main differences. The lemma below
states that the two experiments are computationally indistinguishable. The proof
appears in the full version [8].

Lemma 5. For all μ0, μ1 ∈ M, all (t − 1)-sized partitions B of [n], and all
b ∈ {0, 1}, it holds that:

{
LR-CNMSSμ0,μ1

Π∗,A (λ, b)
}

λ∈N

c≈
{
Hybμ0,μ1

Π∗,A,B(λ, b)
}

λ∈N

.

The lemma below concludes the proof of continuous non-malleability in Theo-
rem 3.

Lemma 6. For all μ0, μ1 ∈ M, and all (t− 1)-sized partitions B of [n], it holds
that: {

Hybμ0,μ1
Π∗,A,B(λ, 0)

}

λ∈N

c≈
{
Hybμ0,μ1

Π∗,A,B(λ, 1)
}

λ∈N

.

Proof. By reduction to IND-CCA security of the symmetric encryption scheme.
Suppose that there exist two messages μ0, μ1 ∈ M, a (t − 1)-sized partition
B of [n], and a PPT adversary A that is able to distinguish between the two
experiments with non-negligible probability. Consider the following reduction A′

attacking IND-CCA security of Σ.

1. Setup. Set the challenge messages to be μ0 and μ1, obtain the challenge
ciphertext γ, sample a key κ̂ ←$ K and compute (γ1, . . . , γn) = IDisp(γ̂), and
(κ1, . . . , κn) ←$ Share(κ̂). Finally, for all i ∈ [n], construct the share σ∗

i :=
(κi, γi).

2. Leakage queries. Answer leakage queries as in the hybrid experiment.
3. Tampering queries. Upon input a tampering query (T , (f1, . . . , fm)), for

all i ∈ [m], compute (σ̃j)j∈Bi
= fi((σj)j∈Bi

), perform the consistency checks
on the tampered ciphertext γ̃ (and output ⊥ if any of these checks fails), and
then reconstruct the tampered key κ̃ ∈ K. If κ̃ = κ̂, obtain the tampered
message μ̃ ∈ M ∪ {⊥} by sending γ̃ to the decryption oracle; otherwise,
compute μ̃ = Dec(κ̃, γ̃). If μ̃ ∈ {μ0, μ1}, set μ̃ = �. Finally, return μ̃ to A (and
self-destruct if μ̃ = ⊥).

4. Guess. Output the same distinguishing bit as A does.

For the analysis, note that the reduction is perfect and, in particular, for b ∈
{0, 1}, it perfectly simulates Hybμ0,μ1

Π∗,A,B(λ, b) whenever the challenge ciphertext
γ is an encryption of μb. This concludes the proof.

It only remains to discuss the rate of the construction. Towards this, note
that the length of the key κ for the SKE scheme Σ, and thus the size of the
shares of the secret sharing scheme Π, only depends on the security parameter
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λ, the number of parties n and the tolerated leakage � (but not on the length
|μ| of the message); call s0(λ, n, �) the length of this portion of the final shares
(namely, κi). On the other hand, it is possible to achieve length of the ciphertext
|γ| = |μ| + O(λ), hence the length of each share γi of the information dispersal
amounts to |γi| = |γ|

t∗ = |μ|+O(λ)
t∗ . Putting it together, we have obtained:

s(λ, n, �, |μ|) = s0(λ, n, �) +
|μ| + O(λ)

t∗
,

that translates into

 = inf
λ∈N

lim
|μ|→∞

|μ|
s(λ, n, �, |μ|)

= inf
λ∈N

lim
|μ|→∞

t∗ · |μ|
|μ| + t∗ · poly(λ, n, �)

= t∗.

This completes the proof of Theorem 3.

Rate Optimality. We stress that when k = t − 1, Theorem 2 says that the
capacity of continuously non-malleable secret sharing against joint tampering
with at most t − 1 shares is 1. This is not in contrast with the fact that our
rate compiler from Theorem 3 achieves rate larger than 1, as the latter only
holds under an additional restriction on the way the attacker can manipulate
the shares. Nevertheless, it is possible to adapt the proof of Theorem 2 in order
to show that our rate compiler achieves the best possible rate whenever t∗ < t/2.

Theorem 4. Let Π be a t-out-of-n (t−1)-CNMSS scheme under the restriction
that each tampering query (T , f) output by the attacker must be such that, for
all subsets Bi of the partition B, either Bi ∩ T = ∅ or |Bi ∩ T | ≥ t∗. If t∗ ≤ t/2,
then Π cannot achieve better rate than  ≤ t∗.

Proof. The proof is almost identical to that of Theorem 2, and thus we only
highlight the main differences. We change the definition of Com so that it now
outputs the value γ = (σ1, . . . , σt∗), and we adjust the opening procedure accord-
ingly. Hence, the goal is to prove, again, that Com is perfectly binding, so that
the rate of Π must satisfy  ≤ t∗.

The reduction is identical to that in the proof of Theorem 2, except that now
we define � := |σt∗+1|| · · · ||σt| and moreover the adversary attacking continuous
non-malleability sets B1 := [t∗] and B2 := [t]\[t∗] in step 3., and parses the string
α1, . . . , α� as σt∗+1, . . . , σt in step 5.. Note that |B1| = t∗ and |B2| = t − t∗ ≥
2t∗ − t∗ = t∗. Since t∗ ≤ t − 1, the adversary is admissible which concludes the
proof.

Remark 2. More generally, Theorem 4 holds for t-out-of-n k-CNMSS so long as
k ≥ t − t∗.
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6 Instantiations

In this section, we show how to instantiate the building blocks required by the
abstract constructions of Theorems 1 and 3.

6.1 Leakage-Resilient p-time Non-malleable Code

Here, we explain how to obtain noisy-leakage-resilient p-time non-malleable
asymmetric split-state codes with the additional properties stated in Theo-
rem 1. Our construction exploits leakage-resilient asymmetric split-state codes
as defined in Sect. 3.2, as recently introduced by Ball, Guo, and Wichs [4] and
generalized to the noisy-leakage setting by Brian, Faonio and Venturi [7].

Let Π = (Share,Rec), ΠL = (ShareL,RecL) and ΠR = (ShareR,RecR) be split-
state codes. Consider the following split-state code Π∗ = (Share∗,Rec∗).

– Algorithm Share∗: upon input a message μ, compute (σL, σR) ←$ Share(μ),
and (σL,L, σL,R) ←$ ShareL(σL) and (σR,L, σR,R) ←$ ShareR(σR). Set σ∗

L =
(σL,L, σR,R) and σ∗

R = (σR,L, σL,R), and output σ∗
L , σ

∗
R.

– Algorithm Rec∗: upon input two shares (σ∗
L , σ

∗
R), parse σ∗

L = (σL,L, σR,R)
and σ∗

R = (σR,L, σL,R), compute the shares σL = RecL(σL,L, σL,R) and σR =
RecR(σR,L, σR,R), and output μ = Rec(σL, σR).

Theorem 5. For all i, j ∈ {L,R}, let p, si, si,j ∈ N, �i, �i,j ≥ 0, and ε, εi ∈ [0, 1]
be parameters such that:

– sR < sL;
– sL,R < sL,L, �L,L ≥ �L + p · sR,R and �L,R ≥ �R;
– sR,R < sR,L, �R,L ≥ �R + p · sL,R and �R,R ≥ �L.

Assume that:

– Π is an (sL, sR)-asymmetric (p, ε)-NMC;
– ΠL is an (sL,L, sL,R)-asymmetric (�L,L, �L,R, εL)-LRC;
– ΠR is an (sR,L, sR,R)-asymmetric (�R,L, �R,R, εR)-LRC.

Then, Π∗ is an (s∗
L, s

∗
R)-asymmetric (�L, �R, p, ε + 2(εL + εR))-LR-NMC, where

s∗
L = sL,L + sR,R and s∗

R = sL,R + sR,L.

The proof to the above theorem (which appears in the full version [8]) goes
along the same lines of the proof of Theorem 7 in [7] for the case of 2-out-of-2
secret sharing. The only difference is that Π is a p-time NMC instead of a one-
time NMC, and we use different parameters for ΠL and ΠR. In particular, all
the hybrid experiments are the same as in [7] with the only difference that we
have to leak 2p tampered values (namely, σ̃

(j)
R,R, σ̃

(j)
L,R for j ∈ [p]) instead of only

two; however, our choice of the leakage parameters allows us to do so, since

�L,L ≥ �L + p · sR,R and �R,L ≥ �R + p · sL,R.

Finally, we show that the scheme Π∗ of Theorem 5 is able to achieve the
properties (i)–(ii) needed to instantiate Theorem 1. The lemma below states
that if the underlying NMC Π satisfies the additional property (i), so does the
scheme Π∗.
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Lemma 7. Suppose that there exists σL such that, for all μ ∈ M, there exists
σR such that Rec(σL, σR) = μ. Then, there exists σ∗

L such that, for all μ ∈ M,
there exists σ∗

R such that Rec∗(σ∗
L , σ

∗
R) = μ.

Proof. Let σL be such that, for all μ ∈ M, there exists σR such that Rec(σL, σR) =
μ. Then, we can fix σR,R and σL,R and compute σL,L ←$ ShareL(σL, σL,R). The new
left share will be σ∗

L = (σL,L, σR,R) and, once fixed σ∗
L and μ ∈ M, in order to

obtain the right share it suffices to compute σR,L ←$ ShareR(σR, σR,R) and set
σ∗
R = (σR,L, σL,R).

The property (ii) is a bit more delicate because, even if ΠL,ΠR achieve it,
the random variables (ΣL,L,ΣR,R) and (ΣR,L,ΣL,R) are defined by (ΣL,L,ΣL,R) =
ShareL(ΣL) and (ΣR,L,ΣR,R) = ShareR(ΣR), and ΣL and ΣR are related distri-
butions. Instead, here we use a non-blackbox approach and prove that the asym-
metric code given by Appendix A of [7], which we describe below, allows Π∗ to
achieve property (ii).

Let Ext be a seeded extractor with d-bits source, r-bit seed and m-bit output
and let 2Ext be a two-source extractor with s2-bits sources and r-bit output.
Consider the following secret sharing scheme ΠLRC with message space M =
{0, 1}m and shares space S = {0, 1}s1 × {0, 1}s2 :

– Algorithm Share: upon input the message μ, randomly sample
σ2 ←$ {0, 1}s2 , x ←$ {0, 1}d, y ←$ {0, 1}s2 , compute ρ := 2Ext(σ2, y) and z :=
Ext(x, ρ) ⊕ μ and finally output (σ1, σ2), where σ1 = (x, y, z).

– Algorithm Rec: upon input the shares (σ1, σ2), parse σ1 = (x, y, z) and
output μ := z ⊕ Ext(x, 2Ext(σ1, y)).

For all ε, �1, �2 ≥ 0 there exists an appropriate choice of the parameters d
and r such that the above is an (�1, �2, ε)-LRC (see [4,7] for the details) and,
moreover, the above admits the following alternative sharing algorithm Share :

– Algorithm Share: upon input the message μ and the value σ2, randomly sam-
ple x ←$ {0, 1}d, y ←$ {0, 1}s2 , compute ρ := 2Ext(σ2, y) and z := Ext(x, ρ)⊕μ
and finally output (σ1, σ2), where σ1 = (x, y, z).

The following lemma proves that the above scheme allows our construction
Π∗ to achieve property (ii) of Theorem 1. The proof appears in the full version [8].

Lemma 8. Instantiating ΠL and ΠR with the asymmetric LRC ΠLRC , for all
μ ∈ M it holds that

H̃∞(Σ∗
L |Σ∗

R) ≥ H∞(Σ∗
L) − d H̃∞(Σ∗

R |Σ∗
L) ≥ H∞(Σ∗

R) − d,

where d = sL + sR and (Σ∗
L,Σ

∗
R) = Share∗(μ) is the distribution of the shares of

μ using the scheme Π∗.

Corollary 5.7 of [20] shows that, for all n1, n2 ∈ N and all polynomials p′, there
exists a two-source p-time ε-non-malleable extractor for sources of full-entropy
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of size n1, n2, where p = n
Ω(1)
2 , n1 = 4n2 + p′(n2) and ε = 2−n

Ω(1)
2 . This scheme

has efficient pre-image sampleability and further satisfies the additional prop-
erty described in the hypothesis of Lemma 7. By the known connection between
(leakage-resilient) non-malleable extractors with efficient pre-image sampleabil-
ity and (leakage-resilient) non-malleable codes, we obtain a (p, ε · 2p|μ|+1)-NMC.
Additionally, we note that by our setting of the parameters in Theorem 5 we can
have �L ≥ s∗

R so long as the underlying schemes ΠL and ΠR allow to arbitrarily
set the parameters of leakage and of the codeword size of the left shares and
right shares, which is the case thanks to Theorem 6 of [7].

Hence, together with Lemmas 7 and 8, we have obtained the following corol-
lary:

Corollary 1. For any sL, sR, �L, �R, p ∈ N, ε ∈ [0, 1], there is a construction
of an (sL, sR)-asymmetric (�L, �R)-noisy leakage-resilient p-time ε-non-malleable
code satisfying the additional properties stated in Theorem 1.

6.2 Leakage-Resilient Continuously Non-malleable Secret Sharing

By instantiating Theorem 1, we obtain the following.

Corollary 2. Assuming the existence of one-to-one one-way functions, for any
n, t, � ∈ N with t > 2n/3, there is a construction of a t-out-of-n secret shar-
ing scheme satisfying noisy-leakage resilient continuous non-malleability under
selective k-joint leakage and tampering attacks, where k = t − 1.

Proof. The proof follows by instantiating the inner non-malleable code using
Corollary 1 and recalling that perfectly binding and computationally hiding com-
mitment schemes can be instantiated from one-to-one one-way functions [17].

Furthermore, by instantiating Theorem 3 with t∗ = 1, we obtain the following.

Corollary 3. Assuming the existence of one-to-one one-way functions, for any
n, t, � ∈ N with t > 2n/3, there is a construction of a t-out-of-n secret shar-
ing scheme satisfying noisy leakage-resilient continuous non-malleability under
selective k-joint leakage and tampering attacks; moreover, the scheme achieves
asymptotic rate 1, which is optimal.

Proof. It is well known that IND-CCA secure SKE schemes can be constructed
in a black-box way from any OWF, whereas the information dispersal can be
instantiated using linear algebra over finite fields [27]; as for the continuously
non-malleable secret sharing scheme we can take the one given by Corollary 2.
Finally, when applying Theorem 3 with t∗ = 1, the restriction on the tampering
queries disappears (any subset either contains at least t∗ = 1 share in T or does
not contain any share in T ) and we obtain the standard definition of continu-
ous non-malleability against (t − 1)-joint tampering attacks; since t∗ = 1, the
asymptotic rate11 of the construction is one, which, by Theorem 2, is optimal.
11 For the information dispersal, it suffices to define IDisp(μ) := (μ, . . . , μ) (i.e., the

same message repeated n times) and IRec(μ) := μ.
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6.3 Breaking the Rate-One Barrier

Finally, Theorem 3 also allows to obtain the first non-malleable secret sharing
scheme against independent tampering attacks with rate larger than one.

Corollary 4. Assuming the existence of one-to-one one-way functions, for any
n, t ∈ N with t > 2n/3, there is a construction of a t-out-of-n secret shar-
ing scheme satisfying one-time non-malleability under independent tampering
attacks; moreover, the scheme achieves asymptotic rate t/2.

Proof. The construction is the same of Theorem 3 with t∗ = t/2,12 therefore the
concrete instantiation follows by Corollary 3.

The proof of security follows by a simple reduction to non-malleability against
joint tampering. In particular, assume that there exists an adversary A which is
able to break one-time non-malleability by submitting an independent tampering
query (T , f) to the tampering oracle. Then, it is possible to construct a reduction
Â which partitions T into two subsets B1,B2 of t/2 shares each, runs A, forwards
the tampering query (T , f) to the tampering oracle (recall that any independent
tampering query is also a k-joint tampering query for all k ≥ 1), and finally
returns the tampered message μ̃ to A and outputs the same distinguishing bit of
A. Clearly, the attacker Â perfectly simulates the view of A, and moreover the
condition |B1 ∪ T | = |B2 ∪ T | = t/2 is satisfied.

Remark 3. Corollary 4 can be trivially extended to include noisy-leakage
resilience. Moreover, it can also be extended to continuous non-malleability if we
assume that the reconstruction set T is the same across all tampering queries.

Acknowledgments. We thank Mark Simkin and Maciej Obremski for their valuable
comments.
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Abstract. In this work, we study disappearing cryptography in the
bounded storage model. Here, a component of the transmission, say a
ciphertext, a digital signature, or even a program, is streamed bit by bit.
The stream is too large for anyone to store in its entirety, meaning the
transmission effectively disappears once the stream stops.

We first propose the notion of online obfuscation, capturing the goal of
disappearing programs in the bounded storage model. We give a negative
result for VBB security in this model, but propose candidate construc-
tions for a weaker security goal, namely VGB security. We then demon-
strate the utility of VGB online obfuscation, showing that it can be used
to generate disappearing ciphertexts and signatures. All of our applica-
tions are not possible in the standard model of cryptography, regardless
of computational assumptions used.

1 Introduction

The bounded storage model [Mau92] leverages bounds on the adversary’s storage
ability to enable secure applications. A typical bounded storage model scheme
will involve transmitting more information than what the adversary can possibly
store. One approach is then to use some small piece of the transmission to
perform, say, a one-time pad or other tasks. Since the adversary cannot record
the entire transmission, they most likely will not be able to recover the small
piece that is used, preventing attacks. Other approaches, say those based on
taking parities [Raz16,GZ19], are also possible. In any case, the honest users’
space requirements are always much less than the adversary’s storage bound;
usually, if the honest parties have space N , the adversary is assumed to have
space up to roughly O(N2).

The bounded storage model has mostly been used to achieve information-
theoretic, unconditional, and everlasting security; in contrast, the usual time-
bounded adversary model generally requires computational assumptions.

This Work: Disappearing Cryptography. A critical feature of the bounded storage
model is that the large transmission cannot be entirely stored by the adversary.
This large transmission is then subsequently used in such a way that whatever

c© International Association for Cryptologic Research 2021
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space-limited information the adversary managed to record about the trans-
mission will become useless. In this way, the large transmission is ephemeral,
effectively disappearing immediately after it is sent.

Most work in the bounded storage model uses this disappearing communica-
tion to achieve information-theoretic security for primitives such as key agree-
ment, commitments, or oblivious transfer, for which computational assumptions
are necessary in the standard model. However, apart from insisting on statistical
security, the security goals are typically the same as standard-model schemes.

The goal of this work, in contrast, is to use such “disappearing” communi-
cation to realize never-before-possible security goals, especially those that are
impossible in the standard model.

Remark 1. The usual bounded storage model as defined in [Mau92] envisions
a trusted third party broadcasting a large stream of uniformly random bits,
which is assumed to be too large to store. All other communication remains
short. In this work, we operate in a slightly different setting where there is no
trusted third party, but the large streams are instead generated by the users
themselves. Additionally, we allow the stream of bits to be structured. However,
we emphasize that we still require all parties to be low space.

1.1 Motivating Examples

Example 1: Deniable Encryption. Deniable encryption [CDNO97] concerns the
following scenario: Alice has the secret key sk for a public key encryption scheme.
At some point, Bob sends a ciphertext ct encrypting message m to Alice. Charlie
observes the ciphertext ct.

Later, Charlie obtains the ability to force that Alice reveals sk (say, through
a warrant), so that he can decrypt ct and learn the message m. Alice wants to
maintain the privacy of the message m in this scenario, so she reveals a fake
decryption key sk′, such that decrypting ct with sk′ will result in a fake message
m′. This version of deniable encryption is called receiver deniable encryption.

Unfortunately, as shown in [BNNO11], such receiver deniable encryption is
impossible for “normal” encryption where the ciphertext is just a single (con-
cise) transmission from Bob to Alice1. Prior works [CDNO97,CPP20] therefore
consider a more general notion of encryption that involves back-and-forth com-
munication between the parties.

In this work, we consider a different solution: what if the ciphertext is so large
that it cannot be recorded by Charlie? Alice also cannot store the ciphertext in its
entirety, but she will be able to decrypt it live using her secret key. Charlie, who
does not know the secret key, will be unable to decrypt during the transmission.
Then we may hope that, even if Alice subsequently reveals the true secret key
sk, that Charlie will not be able to learn the message m since he no longer has

1 The deniable encryption literature often refers to such a scheme as having two-
messages, as they consider the transmission of the public key from Alice to Bob as
the first message.
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access to ct. Such a scheme would immediately be deniable: Alice can claim
that ct encrypted any arbitrary message m′, and Charlie would have no way to
verify whether or not she was telling the truth. Relative to the solution in prior
work, such a scheme would then require only one-way communication, but at
the expense of greatly increased communication in order to ensure that Charlie
cannot record all of ct. Such a scheme might make sense in a setting where Bob
is unable to receive incoming communication, or Alice is unable to broadcast.

Example 2: Second-hand Secret Keys. Consider an encrypted broadcast service
where a user may buy a decoder box which decrypts broadcasts. The content dis-
tributor wants to enforce that for each decoder box, only one individual at a time
can decrypt broadcasts. Specifically, the content distributor is concerned about
several users trying to share a single decoder box. During broadcast time, each
user records the encrypted broadcast individually. Then they pass the decoder
box around to the various users, allowing them to decrypt their locally-stored
broadcast one at a time. Of course, once one user decrypts the broadcast, they
can simply send the decrypted contents to the other users. We imagine, however,
that the contents are very large, and it is easier to send the decoder box than to
transmit the large decrypted contents.

Our solution, again, is to imagine the ciphertexts being so long that they
cannot be stored. As such, Alice’s decoder box will be completely useless to Bob
after the broadcast occurs.

Example 3: Non-interactive Security Against Replay Attacks. Consider a sce-
nario where instructions are being broadcast from a command center to a num-
ber of recipients. Suppose that the recipients are low-power embedded devices
with limited capabilities; in particular, they cannot keep long-term state nor
transmit outgoing messages. We are concerned that an attacker may try to issue
malicious instructions to the recipients.

The natural solution is to authenticate the instructions, say by signing them.
However, this still opens up the possibility of a replay attack, where the adver-
sary eavesdrops on some signed instruction, and then later on sends the same
instruction a second time, causing some adverse behavior.

In the classical model with stateless recipients, the only way to prevent replay
attacks is with an interactive protocol, since a stateless recipient cannot distin-
guish the command center’s original message and signature from the adversary’s
replay. In a broadcast scenario, interacting with each recipient may be imprac-
tical. Moreover, interaction requires the recipients themselves to send messages,
which may be infeasible for weak devices.

As before, our idea is to have the signatures be so large that the adversary
cannot record them in their entirety. The recipients can nonetheless validate the
signatures, but an adversary will be unable to ever generate a valid signature,
even after witnessing many authenticated instructions from the command center.
The result is non-interactive security against replay attacks.
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Example 4: Software Subscription. The traditional software model involves the
software company sending the software to users, who then run the software
for themselves. Software-as-a-Service, instead, hosts the software centrally and
allows the users to run remotely. The centralized model allows for subscription-
based software services—where the user can only have access to the program by
making recurring payments—that are impossible with traditional software.

On the other hand, software-as-a-service requires the user to send their inputs
to the software company. While many technologies exist to protect the user data,
this model inherently requires interaction with the users.

We instead imagine the company sends its software to the users, but the
transmissions are so large that the users cannot record the entire program. Nev-
ertheless, the users have the ability to run the program entirely locally during the
transmission, without sending any information to the software company. Then,
once the transmission ends, the user will be unable to further run the program.

Example 5: Overcoming Impossibility Results for Obfuscation. Program obfus-
cation is a form of intellectual property protection whereby a program is trans-
formed so that (1) all implementation details are hidden, but (2) the program can
still be run by the recipient. Virtual Black Box (VBB) obfuscation, as defined
by Barak et al. [BGI+01], is the ideal form of obfuscation: it informally says
that having the obfuscated code is “no better than” having black box access to
the functionality. Unfortunately, Barak et al. show that such VBB obfuscation
is impossible. The counter-example works by essentially running the program on
its own description, something that is not possible just given oracle access. As a
consequence, other weaker notions have been used, including indistinguishabil-
ity obfuscation (iO), differing inputs obfuscation [BGI+01], and virtual grey box
obfuscation (VGBO) [BCKP14]. These notions have proven tremendously use-
ful for cryptographic applications, where special-purpose programs are designed
to be compatible with the weaker obfuscation notions. However, for securing
intellectual property, these weaker notions offer only limited guarantees.

Our model for transmitting programs above may appear to give hope for
circumventing this impossibility. Namely, if the obfuscated program is so large
that it cannot be recorded in its entirety, then maybe it also becomes impossible
to run the program on its own description.

1.2 Our Results

In this work, we explore the setting of disappearing cryptography, giving both
negative and positive results.

Online Obfuscation. First, we propose a concrete notion of online obfuscation,
which is streamed to the recipient. We then explore what kinds of security guar-
antees we can hope for, motivated by Examples 4 and 5 above.

We demonstrate that, under the Learning With Errors (LWE) assumption,
VBB obfuscation is still impossible. The proof closely follows Barak et al.’s proof
for circuits, adapting it for online obfuscation. This rules out Example 5.
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This still leaves open the hope that online obfuscation can yield something
interesting that is not possible classically. We next define a useful notion of online
obfuscation, motivated by the goal of classically-impossible tasks. We note that
differing inputs obfuscation is known to be a problematic definition [GGH+13b]
in the standard model. We also observe that indistinguishability obfuscation
appears to offer no advantages in the streaming setting over the classical setting.
We therefore settle on a notion of virtual grey box (VGB) obfuscation for online
obfuscation. We formulate a definition of VGB obfuscation which allows the
recipient to evaluate the program while it is being transmitted, but then loses
access to the program after the transmission completes.

We give two candidate VGB online obfuscators based on very different ideas,
and leave a provable secure scheme as an interesting open question.

Applications of Online Obfuscation. Next we turn to applications, establishing
VGB online obfuscation as a central tool in the study of disappearing cryptog-
raphy, and providing techniques for its use. We show how to use VGB online
obfuscation to realize each of the Examples 1–3.

Specifically, assuming VGB online obfuscation (and other comparatively mild
computational assumptions), we define and construct the following:

– Public key encryption with disappearing ciphertext security in the bounded
storage model. Here, ciphertexts are streamed to the recipient, and message
secrecy holds against adversaries with bounded storage2, even if the adversary
later learns the secret key. This solves Examples 1 and 2.

– We generalize to functional encryption with disappearing ciphertext security,
which combines the disappearing security notion above with the expressive
functionality of functional encryption. This allows, for example, to combine
the advantages of disappearing ciphertext security with traditional functional
encryption security goals of fine-grained access control.

– Digital signatures with disappearing signature security, where signatures are
streamed, and the recipient loses the ability to verify signatures after the
stream is complete. This solves Example 3.

In the following, we expand and explain our results in more detail.

1.3 Defining Obfuscation in the Bounded Storage Model

We first study obfuscation in the bounded storage model. We specifically imagine
that obfuscated programs are too large to store, but can be streamed and run
in low space while receiving the stream.

Negative Result for VBB Obfuscation. We show that virtual black box (VBB)
security remains impossible, even for this model. Recall that VBB secu-
rity requires that anything which can be efficiently learned from the obfus-
cated code can be efficiently learned given just oracle access. We follow the
2 We also require the usual polynomial time constraint on the adversary.
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Barak et al. [BGI+01] impossibility, but take care to show that it still works for
online obfuscation.

The idea is that, the version of Barak et al.’s impossibility that works for
circuit obfuscation already has to contend with the fact that circuits cannot be
evaluated on themselves, since a circuit is almost always larger than its input
size. In order to get an impossibility result for online obfuscation, we show that
their attack works in low storage. The full proof is given in the full version.

One issue that comes up in the naive adaptation of Barak et al.’s attack is
that it requires the obfuscation to be streamed multiple times. We explain how
to make the attack work with just a single stream using Compute-and-Compare
obfuscation [GKW17,WZ17], following ideas from [AP20].

Defining Online Obfuscation. Above, we only considered the standard notions
of security, but for online obfuscation. We now seek to formulate a definition
which captures the goal of having the obfuscated program “disappear” after the
stream is complete. Concretely, we want that, after the stream is complete, it is
impossible to evaluate the program on any “new” inputs.

Our formalization of this is roughly as follows: we imagine the attacker gets
the program stream, and then later learns some additional information. We ask
that any such attacker can be simulated by an oracle algorithm. This algorithm
makes queries to the program, and then receives the same additional information
the original adversary received. Importantly, after the additional information
comes in, the simulator can no longer query the program any more.

Some care is needed with the definition. VBB security, which requires the
simulator to be computationally bounded, is impossible for the reasons dis-
cussed above. Indistinguishability obfuscation (iO) allows for a computationally
unbounded simulator, which avoids the impossibility. While iO is immensely
useful in the standard model, we observe that there is little added utility to
considering iO in the online model. Indeed, an unbounded simulator can query
the entire function on all inputs during the query phase, and thus has no need
to make additional queries after receiving the additional information3.

We therefore give a virtual grey box (VGB) notion of security [BCKP14],
where the simulator is computationally unbounded, but can only make a polyno-
mial number of queries. The computationally unbounded simulator then receives
the additional information, but can make no more queries. Our full definition is
in Sect. 3. We note that it may be possible to also consider a version of differing
inputs obfuscation (diO) in our setting, but there is evidence that diO may be
impossible [GGHW14]. So we therefore stick to VGB obfuscation.

3 The usual way indistinguishability approach to defining iO does not use a simulator,
but is equivalent in the standard model to the simulation definition. In the online
model, the indistinguishability and simulation models may not be equivalent. Nev-
ertheless, the indistinguishability version of iO still appears to offer no advantages
in the online setting, since in this version the adversary knows the programs in the
clear from the very beginning.
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1.4 Applications

Before giving our candidate online obfuscation schemes, we discuss applications.

Disappearing Ciphertext Security. We first demonstrate how to use online obfus-
cation to construct public key encryption where ciphertexts effectively disappear
after being transmitted. Concretely, we say that a public key encryption scheme
has disappearing ciphertext security if the contents of a ciphertext remain hidden,
even if the attacker subsequently learns the secret key.

Our first attempt is to use an online obfuscator as a witness encryption
scheme [GGSW13]: the public key pk is set, say, to be the output of a one-way
function f on the secret key sk. To encrypt a message m to pk, generate an online
obfuscation of the program P (sk′) which outputs m if and only if f(sk′) = pk.
Decryption just evaluates the program on the secret key.

For security, the key difficulty is that we cannot switch to a hybrid where the
secret key does not exist, as would be used to prove the standard CPA security
of the scheme using witness encryption. After all, the adversary eventually sees
the secret key, so it must always exist!

Toward a proof, we note that, by the one-wayness of f , an attacker who just
knows pk and sees the ciphertext cannot evaluate the ciphertext program on
any input that will reveal m. Hence, m presumably remains hidden. Moreover,
even if the attacker learns sk after seeing the ciphertext, it should not help the
attacker learn m, since the attacker no longer has access to the program stream.

Security would be trivial with online obfuscation with VBB security. How-
ever, difficulties arise with trying to formalize this intuition with our notion of
VGB security. Suppose we have an adversary A for the encryption scheme. We
would like to use A to reach a contradiction. To do so, we invoke the security of
the online obfuscator to arrive at a simulator S that can only query the cipher-
text program, but does not have access to the program stream. Unfortunately,
this simulator is computationally unbounded, meaning it can invert f to recover
sk at the beginning of the experiment, and then query the program on sk.

Our solution is to replace f with a lossy function [PW08], which is a function
with two modes: an injective mode (where f is injective) and a lossy mode (where
the image of f is small). The security requirement is that the two modes are indis-
tinguishable. Lossy functions can be build under various standard assumptions
such as DDH or LWE.

We start with f being in the injective mode. In the proof, we first switch
the ciphertext program to output m if and only if sk′ = sk; by the injectivity
of f this change does not affect the functionality of the program. Hence, the
simulator cannot detect the change (even though it can invert f and learn sk for
itself), meaning the adversary cannot detect the change either.

In the next step, we switch f to being lossy, which cannot be detected by
a computationally bounded attacker. We next change the ciphertext program
again, this time to never output m. This only affects the program’s behavior on
a single point sk. But notice that for lossy f , sk is statistically hidden from the
attacker, who only knows pk when the ciphertext is streamed. This means the
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simulator, despite being computationally unbounded, will be unable to query on
sk, and thus cannot detect the change. This holds true even though the simulator
later learns sk, since at this point it can no longer query the ciphertext program.
Since indistinguishability holds relative to the simulator, it also holds for the
original attacker. The result is the following, proved in Sect. 4:

Theorem 1 (Informal). Assuming the existence of VGB online obfuscation and
lossy functions, there exists a public key encryption scheme with disappearing
ciphertext security.

Extension to Functional Encryption. We can also extend disappearing cipher-
text security to functional encryption. Functional encryption allows users to
obtain secret keys for functions g, which allow them to learn g(m) from a cipher-
text encrypting m. The usual requirement for functional encryption is that an
attacker, who has secret keys for functions gi such that gi(m0) = gi(m1) for all
i, cannot distinguish encryptions of m0 from encryptions of m1.

In Sect. 6, we consider a disappearing ciphertext security variant, where the
requirement that gi(m0) = gi(m1) only holds for secret keys in possession when
the ciphertext is transmitted. Even if the attacker later obtains a secret key
for a function g such that g(m0) �= g(m1), indistinguishability will still hold.
Analogous to the case of plain public key encryption, this captures the intuition
that the ciphertext disappears, becoming unavailable once the transmission ends.

We show how to combine standard-model functional encryption with online
VGB obfuscation to obtain functional encryption with such disappearing cipher-
text security. The basic idea is as follows. To encrypt a message m, first compute
an encryption c of m under the standard-model functional encryption scheme.
Then compute an online obfuscation of the program which takes as input the
secret key skg for a function g, and decrypts c using skg, the result being g(m).

This construction seems like it should work, but getting the proof to go
through using computationally unbounded simulators is again non-trivial. In
Sect. 6, we show how to modify the sketch above to get security to go through,
yielding the following:

Theorem 3 (Informal). Assuming the existence of VGB online obfuscation,
NIZKs, non-uniform secure PRFs, and standard-model functional encryption,
there exists a functional encryption scheme with disappearing ciphertext security.

Disappearing Signatures. We next turn to constructing disappearing signatures,
signatures that are large streams that can be verified online, but then the signa-
ture disappears after the transmission ends. We formalize this notion by mod-
ifying the usual chosen message security notion to give disappearing signature
security, where the attacker (who does not know the signing key) cannot produce
a signature on any message, even messages that it previously saw signatures for.

We show how to construct disappearing signatures in Sect. 5, using online
obfuscation. An additional building block we need is a prefix puncturable signa-
ture. This is a scheme where, given the signing key sk, it is possible to produce
a “punctured” signing key skx∗ which can sign any message of the form (x,m)
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such that x �= x∗, but skx∗ is incapable of signing messages of the form (x∗,m).
Such prefix puncturable signatures can be built from standard tools [BF14].

We construct a signature scheme with disappearing signatures by setting the
signature on a message m to be an online obfuscation of the following program
P . P has sk hardcoded, and on input x outputs a signature on (x,m). To verify,
simply run the streamed program on a random prefix to obtain a signature, and
then verify the obtained signature.

We then prove that an attacker cannot produce a valid signature stream on
any message, even messages for which it already received signature streams. For
simplicity, consider the case where the attacker gets to see a signature on a single
message m. Let x∗ be the prefix that the verifier will use to test the adversary’s
forgery. Note that x∗ is information-theoretically hidden to the adversary at the
time it produces its forgery. We will switch to having the signature program for
m reject the prefix x∗. Since the program no longer needs to sign the prefix x∗,
it can use the punctured key skx∗ to sign instead. The only point where the
program output changes is on x∗. The simulator will be unable to query on x∗

(since it is information-theoretically hidden), meaning the simulator, and hence
the original adversary, cannot detect this change.

Now we rely on the security of the puncturable signature to conclude that
the adversary’s forgery program cannot output a signature on any message of
the form (x∗,m), since the entire view of the attacker is simulated with the
punctured key skx∗ . But such a signature is exactly what the verifier expects
to see; hence the verifier will reject the adversary’s program. The result is the
following theorem:

Theorem 2 (Informal). Assuming the existence of VGB online obfuscation
and one-way functions, there exists a disappearing signature scheme.

1.5 Constructing Online Obfuscation

We finally turn to giving two candidate constructions of online obfuscation. We
unfortunately do not know how to prove the security of either construction,
which we leave as an interesting open problem. However, we discuss why the
constructions are presumably resistant to attacks.

Construction 1: Large Matrix Branching Programs. Our first construction is
based on standard-model obfuscation techniques, starting from [GGH+13a]. As
in [GGH+13a], we first convert an NC1 circuit into a matrix branching pro-
gram using Barrington’s theorem [Bar86]. In [GGH+13a], the program is then
“re-randomized” following Kilian [Kil88] by left and right multiplying the various
branching program components with random matrices, such that the randomiza-
tion cancels out when evaluating the program. We instead first pad the matrices
to be very large, namely so large that honest users can record a single column,
but the adversary cannot write down the entire matrix. We then re-randomize
the large padded matrix.
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We show that, if the matrix components are streamed in the correct order, hon-
est users can evaluate the program in space proportional to N , the height of the
matrices. However, recording even a single matrix from the program requires space
N2, and so for adversaries with space somewhat less than N2, it may be reasonable
to conjecture that the program “disappears” after the stream concludes.

We note that in the standard model, re-randomizing the branching program is
not enough to guarantee security. Indeed, linear algebra attacks on the program
matrices are possible, as well as “mixed-input” attacks where multiple reads of
the same input bit are set to different values. Garg et al. [GGH+13a] and follow-
up works block these attacks by placing the branching program matrices “in the
exponent” of a cryptographic multilinear map.

In our setting, the large matrices presumably prevent linear algebra attacks,
since an adversary with space somewhat less than N2 will be unable to even
record a single matrix from the program. Moreover, we show how to block mixed-
input attacks by choosing the matrix padding to have a special structure, which is
inspired by the classical obfuscation techniques. While we are unable to prove the
security of our multilinear-map-less scheme, we conjecture that it nevertheless
remains secure. The result is a plausible VGB online obfuscator for NC1 circuits.
Details are given in Sect. 7.

Remark 2. The re-randomization of N × N matrices samples random N × N
matrices, and must compute their inverses. Inverting a random N ×N matrix is
impossible with space o(N2), a consequence of [Raz16]. Our basic construction
thus has the sender use O(N2) space, while the receiver requires only O(N)
space. We show, however, how to reduce the space requirements of the sender
to O(N) by generating the re-randomization matrices and their inverses using
PRFs. The resulting low-sender-space obfuscation scheme is secure, provided the
basic construction is a secure (with large sender space) online obfuscation, and
the PRF is secure. Details are given in Sect. 7.2.

Construction 2: Time-Stamping. Our second construction is based on time-
stamping [MST04] in the bounded storage model. Here, a large stream is sent.
Anyone listening can use the stream to compute a time-stamp on any mes-
sage. However, once the stream concludes, it will be impossible to time-stamp
a “new” message. The concrete security notion guarantees a fixed (polynomial-
sized) upper bound on the total number of stamped messages any adversary can
produce.

Our construction uses time-stamping, together with standard-model obfus-
cation. To obfuscate a program P , first generate and send a random stream for
time-stamping. Afterward, compute and send a standard-model obfuscation of
the program P ′, which takes as input x together with a time-stamp, verifies the
time-stamp is valid for x, and then runs P if and only if the stamp is valid.

The intuition for security is that we can invoke the standard-model security
of P ′ to get a simulator S′ which just makes black box queries to P ′. We then
use the security of the time-stamping protocol to conclude that the accepting
queries from the simulator, which are those containing valid time stamps, must
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have been “known” when the time-stamping stream was sent. For any inputs
derived from new information sent after the stream concludes, the adversary
will not be able to produce a valid time stamp, and thus P ′ will reject any such
inputs. The result is that S′ should be simulatable just by making queries to
P , and these queries are all made prior to receiving any additional post-stream
information.

Unfortunately, turning the above intuition into a full proof appears challeng-
ing. One issue is that the obfuscation of P ′ serves as a verification oracle for
checking the validity of time stamps. Existing time stamping security notions
offer no guarantees in the presence of a verification oracle, and we do not know
if the existing constructions are secure in this setting.

If we were to assume the time-stamping protocol secure even with verification
queries, there are still potential problems, mostly revolving around formalizing
that the simulator “knows” its input when the time-stamping stream is sent.
Indeed, to prove security we need to convert our simulator S′ into a simulator S
which makes all of its queries by the time the stream concludes, before receiving
any additional information. The above intuition would show that S′ “knew”
these inputs before the stream concludes, but perhaps the inputs (and their
time stamps) were hidden inside of the code of S′ and only revealed later, after
more information is received.

We conjecture that such an S can nevertheless be constructed from S′. The
idea is to have S run S′ until the time-stamping stream concludes. Then S will try
to extract the queries from the state of S′ by simulating many possible executions
of the remaining security experiment for S′ and collecting the queries S′ makes
to P ′. It then uses its assumed time-stamping verification oracle to check which
queries have valid time stamps. Since S′ can only know a polynomial number of
valid time stamps, it seems S should eventually collect all of them. Then it can
make these queries to its own oracle for P , and run S′ one more time using the
answers to P . Unfortunately, formalizing this idea appears tricky, and we leave
it as a direction for future work.

1.6 Related Work, Discussion, and Future Directions

Never-Before-Possible Results. The bounded storage model is most often used
to eliminate computational assumptions. Time-stamping in the bounded stor-
age model [MST04], as discussed above, is perhaps the first application of the
bounded storage model beyond achieving information-theoretic security. We
note, however, that non-interactive time-stamping was recently achieved in the
standard model using appropriate computational assumptions [LSS19].

Our work shows that there is potentially a rich landscape of applications
which leverage the bounded storage model to give results that are impossible in
the standard model. Our particular applications can all be seen as achieving ver-
sions of forward security, where a key revealed does not affect the security of prior
sessions. Forward security has been studied in numerous standard-model con-
texts (e.g. [DvW92]). However, standard-model constructions of forward secure
(non-interactive) encryption such as [CHK03] always involve updating the secret
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keys. Our constructions do not require the secret key to be updated. We note
that Dziembowski [Dzi06] considers a notion of forward-secure storage, which
is very similar to our notion of disappearing ciphertext security for encryption.
A key difference is that their work only considers the secret key case, and it
is unclear how to adapt their constructions to the public key setting. A natu-
ral direction for future work is to explore other potential areas besides forward
security which may be impossible classically but are achievable in the bounded
storage model.

Obfuscation in the Bounded Storage Model. We also initiate the study of obfus-
cation in the bounded storage model. Just as standard-model obfuscation has
proven to be a central tool in the study of standard-model cryptography, our
work demonstrates online obfuscation is analogously a central tool in the study of
disappearing cryptography. Just as standard-model obfuscation schemes started
out as conjectures, with security gradually improved culminating with [JLS20],
we hope that future work will improve the status of our candidates.

Besides achieving never-before-possible applications, one advantage of our
setting is that we may be able to leverage the bounded storage model to achieve
security under milder assumptions than is known for obfuscation in the standard
model. Indeed, online obfuscation could plausibly exist information-theoretically,
and our first construction could plausibly be an instantiation4. This gives hope
that security can actually be proved unconditionally, without requiring the
strong algebraic assumptions needed in the standard model. We leave explor-
ing such information-theoretic security as a fascinating open question.

The Quadratic Gap. All prior information-theoretic results in the bounded stor-
age model achieve at best an adversary storage that is quadratic in the honest
users’ storage. Our first candidate construction of an online obfuscator, being
plausibly information-theoretic, inherits this quadratic gap. While some nega-
tive results are known [DM04], it remains open whether this quadratic “gap” is
necessary. While our constructions are probably impractical due to the reliance
on obfuscation techniques, such a quadratic gap may be meaningful in practice:
for example, if the honest users’ storage is 16 GB, then security would be main-
tained against adversaries with ∼5ZB, which is on the order of the total data
center storage capacity world-wide in 2021 [Mli21]. On the other hand, using
computational assumptions, it is possible to get an improved “gap” for time-
stamping, and our second construction built from time-stamping can similarly
be obtained with an arbitrarily-large polynomial gap.

Other Computational Models. It is possible to achieve classically-impossible
results using either hardware assumptions (e.g. [GKR08]) or non-classical laws
of physics such as quantum mechanics (e.g. [BB84]). However, as far as we are

4 The basic large-sender-space version would be purely information-theoretic, whereas
the version with low sender space requires only the information-theoretic conjecture
together with the existence of one-way functions.
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aware, none of these models besides the bounded storage model allows for send-
ing messages that effectively disappear after the transmission is over.

2 Preliminaries

Different sections of this paper rely on different cryptographic primitives. To
minimize the page-turning effort of our reader, we will introduce the related
notions and definitions separately in each section. Here we will just state the
notations that are used throughout this paper.

We use capital bold letters to denote a matrix M. Lowercase bold letters
denote vectors v. For n ∈ N we let [n] denote the ordered set {1, 2, . . . , n}. For a
bit-string x ∈ {0, 1}n, we let xi denote the i-th bit of x. We use diag(M1, . . . ,Mn)
to denote a matrix with block diagonals M1, . . . ,Mn.

3 Defining Obfuscation in the Bounded Storage Model

In this section we will formally define online obfuscation (oO) and its correspond-
ing security notions, but before we start, we will first introduce an idea called a
stream. It is similar to the publicly-accessible random string as in [Mau92], but
now it is created and sent by one of the parties, and it does not need to be random.

A stream s� is a long sequence of bits sent sequentially from one party to
another. Generally, we require that the length of the stream, denoted as |s�|,
to be greater than the memory bound of the users and adversaries5. This means
that a properly constructed stream can not be stored in its entirety. However,
algorithms or programs can still take a stream as an input, reading the bits
one-by-one. This means that the algorithm or program would operate in an
online manner - as the streaming happens, it actively reads the stream bit by
bit, performs the computation simultaneously, and produces the output in one
pass. Since the outputs of such algorithms or programs could have significantly
smaller sizes than the stream, while s� itself is too large to write down, the
short outputs can be reasonably stored. We denote a variable as a stream by
putting a “�” in the subscript.

Definition 1 (Online Obfuscator). Let λ, n be security parameters. An
online obfuscator oO for a circuit class {Cλ} consists of a pair of uniform PPT
machines (Obf,Eval) that satisfy the following conditions:

– Obf takes as input a circuit C ∈ Cλ, uses up to O(n) memory bits, and
produces a stream s� ← Obf(C).

– Eval takes as input a stream s� and an input x, uses up to O(n) memory
bits, and outputs y ← Eval(s�, x).

– For all C ∈ Cλ, for all inputs x, we have that

Pr [C(x) = y : s� ← Obf(C), y ← Eval(s�, x)] = 1.

5 Notice that generating such a stream could still be done using a low memory bound.
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To define security for an online obfuscator oO = (Obf,Eval), consider the
following two experiments:

1. ExpAdvA,ch,oO(C ∈ Cλ, k):
– The experiment consists of an arbitrary number of rounds. At each round,

one of the following two scenarios happens:
• At an interaction round, the adversary A interacts arbitrarily with

the challenger ch.
• At a stream round, the adversary A receives a fresh stream6 of the

obfuscated circuit s� ← Obf(C). The challenger ch will receive a
special tag notifying it that a streaming has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

2. ExpSimS,ch,oO(C ∈ Cλ, k, q):
– The experiment consists of an arbitrary number of rounds:

• At an interaction round, the simulator S interacts arbitrarily with the
challenger ch.

• At a stream round, the simulator S may send up to q adaptive oracle
queries to the circuit C and receive corresponding responses. The
challenger ch will receive a special tag notifying it that a streaming
has happened.

– The challenger ch may choose to terminate the experiment at any time
by outputting a bit b ∈ {0, 1}, and b will be the output of the program.

– Whenever the number of stream rounds is greater than k, the challenger
ch immediately outputs 0 and terminates the experiment.

The purpose of the interaction round is to allow the challenger to obtain
auxiliary information about the circuit C, such as an accepting input. The key
feature is that this auxiliary information can be obtained after seeing the obfus-
cated stream, at which point the stream effectively disappears and the adversary
can no longer query the program.

We note that in the stream round, we allow the simulator to make adaptive
queries. One could also imagine a stronger variant where the simulator can only
send a single round of non-adaptive queries to the circuit in the stream round.
We focus on the weaker version since it suffices for our applications and our VBB
impossibility already applies in this setting.

6 Notice that a fresh stream is sampled every time, so that no single stream is sent
repeatedly. One could also imagine a stronger version where the same stream is sent
repeatedly, but to achieve that the randomness used must be small. It has also been
shown that for learning parities, even just two-pass learning, where the same stream
is repeated only once more, has a weaker time-space lower bound than the one-pass
one [GRT19] (Ω(n1.5) vs. Ω(n2)). Therefore, applications are far less plausible in
the setting where the same stream is repeated many more times.
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Definition 2 (k-time Virtual Grey-Box (VGB) Security). Let λ, n be
security parameters. Let k be a fixed positive integer. For an online obfuscator
oO to satisfy k-time Virtual Grey-Box security under memory bound S(n), we
require that for any challenger ch, and any adversary A that uses up to S(n)
memory bits, there exists a computationally unbounded simulator S s.t. for all
circuits C ∈ Cλ:

|Pr[ExpAdvA,ch,oO(C, k) = 1] − Pr[ExpSimS,ch,oO(C, k, q) = 1]| ≤ negl(λ),

where q = poly(λ)7.

The definitions for Indistinguishability Obfuscation (iO) security and Virtual
Black-Box (VBB) security are obtained analogously by applying minor changes
to the VGB security definition.

Remark 3 (k-time iO Security). We modify Definition 2 to allow q =
superpoly(λ) to obtain the definition for k-time iO Security.

Remark 4 (k-time VBB Security). We modify Definition 2 to restrict S to be a
PPT simulator to obtain the definition for k-time VBB Security. We show in the
full version of the paper that online obfuscators with VBB security do not exist.

Remark 5 (1-time VBB/VGB/iO Security). Under the special case where k = 1,
we obtain the definitions for 1-time VBB/VGB/iO security correspondingly.

Remark 6 (Unbounded VBB/VGB/iO Security). Under the special case where
k = superpoly(λ), we obtain the definitions for unbounded VBB/VGB/iO secu-
rity correspondingly.

4 Public Key Encryption with Disappearing Ciphertext
Security

4.1 Definition

We will start by defining a security notion for public key encryption that we
name Disappearing Ciphertext Security.

Essentially, it captures the security game where the adversary is given the
private key after all of its queries but before it outputs a guess for the bit b. In
traditional models, this definition does not make much sense, as the adversary
can simply store the query responses, and then later use the received private
7 A space S(n) attacker can always run the honest evaluation procedure S(n)/O(n)

times in parallel on different inputs, thereby evaluating the program on S(n)/O(n)
different points. Thus, the number of queries q the simulator makes must be at least
this quantity. One could imagine an alternative definition that sets q to be exactly
this value. We instead opt for a weaker notion where the simulator is allowed to make
an arbitrarily large polynomial number of queries in order to simulate, potentially
much larger than S.
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key to decrypt. However, in the bounded storage model, the adversary cannot
possibly store the ciphertexts, so even if the adversary is handed the private key
afterwards, it cannot possibly use it to decrypt anything.

Put formally, for security parameters λ and n, a public key encryption scheme
in the bounded storage model is a tuple of PPT algorithms Π = (Gen,Enc,Dec)
that each uses up to O(n) memory bits. The syntax is identical to that of a
classical PKE, except that now the ciphertexts are streams ct�. For the security
definition, consider the following experiment:

Disappearing Ciphertext Security Experiment DistDisCt
A,Π (λ, n):

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– Sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– The adversary A submits two messages m0 and m1, and receives ct� ←
Enc(pk,mb), which is a stream.

– The adversary A is given the private key sk.
– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary

succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Using this experiment, we are now able to formally define disappearing
ciphertext security.

Definition 3 (Disappearing Ciphertext Security). Let λ, n be security
parameters. A public key encryption scheme Π = (Gen,Enc,Dec) has disap-
pearing ciphertext security under memory bound S(n) if for all PPT adversaries
A that use at most S(n) memory bits:

Pr
[
DistDisCt

A,Π (λ, n) = 1
]

≤ 1
2

+ negl(λ).

Now we will show how to use online obfuscation to construct a public key
encryption scheme with disappearing ciphertext security. One important tool
that we will take advantage of is lossy functions, which we will introduce in the
following.

4.2 Lossy Function

Lossy functions are a subset of Lossy Trapdoor Functions due to Peikert and
Waters [PW08] that do not require the existence of a trapdoor for the injective
mode. To put formally:

Definition 4 (Lossy Function). Let λ be the security parameter. For �(λ) =
poly(λ) and k(λ) ≤ �(λ) (k is referred to as the “lossiness”), a collection of (�, k)-
lossy functions is given by a tuple of PPT algorithms (S, F ) with the following
properties. As short-hands, we have Sinj(·) denote S(·, 1) and Slossy(·) denote
S(·, 0).
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– Easy to sample an injective function: Sinj outputs a function index
s, and F (s, ·) computes an injective (deterministic) function fs(·) over the
domain {0, 1}�.

– Easy to sample a lossy function: Slossy outputs a function index s,
and F (s, ·) computes a (deterministic) function fs(·) over the domain {0, 1}�

whose image has size at most 2�−k.
– Hard to distinguish injective mode from lossy mode: Let Xλ be the

distribution of s sampled from Sinj, and let Yλ be the distribution of s sampled
from Slossy, the two distributions should be computationally indistinguishable,
i.e. {Xλ} c≈ {Yλ}.

4.3 Construction

Here we present our construction of a PKE scheme with disappearing ciphertext
security, using online obfuscation and lossy function as building blocks.

Construction 1. Let λ, n be the security parameters. Let LF = (S, F ) be a
collection of (�, k)-lossy functions, and oO = (Obf,Eval) an online obfuscator
with 1-time VGB security under S(n) memory bound. The construction Π =
(Gen,Enc,Dec) works as follows:

– Gen(1λ, 1n): Sample an injective function index fs from Sinj, and a uniform
sk ← {0, 1}�. Compute y = F (s, sk) = fs(sk), and set pk = (s, y). Output
(pk, sk).

– Enc(pk,m): Construct the program Pfs,y,m as follows:

Pfs,y,m(x) =

{
m if fs(x) = y

⊥ otherwise
.

Obfuscate the above program to obtain a stream ct� ← Obf(Pfs,y,m). The
ciphertext is simply the stream ct�.

– Dec(sk, ct�): Simply evaluate the streamed obfuscation using sk as input. An
honest execution yields Eval(ct�, sk) = Pfs,y,m(sk) = m as desired.

4.4 Proof of Security

Now we show that if LF is a collection of (�, k)-lossy functions with a lossiness
k = poly(λ), and oO is an online obfuscator with 1-time VGB security under
S(n) memory bound, then the above construction has disappearing ciphertext
security under S(n) memory bound.

We organize our proof into a sequence of hybrids. In the very first hybrid, the
adversary plays the disappearing ciphertext security game DistDisCt

A,Π (λ, n) where
b is fixed to be 0. Then we gradually modify the hybrids to reach the case where
b = 1. We show that all pairs of adjacent hybrids are indistinguishable from each
other, and therefore by a hybrid argument the adversary cannot distinguish
between b = 0 and b = 1. This then directly shows disappearing ciphertext
security.
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Sequence of Hybrids

– H0: The adversary plays the original disappearing ciphertext security game
DistDisCt

A,Π (λ, n) where b = 0, i.e. it always receives Enc(pk,m0).
– H1: The same as H0, except that in Enc(pk,mb), we replace Pfs,y,mb

with
P ′
sk,mb

such that

P ′
sk,mb

(x) =

{
mb if x = sk

⊥ otherwise
.

So now instead of checking the secret key by checking its image in the injective
function, the program now directly checks for sk.

– H2: The same as H1, except that instead of sampling fs from Sinj, we now
use fs′ sampled from Slossy.

– H3: The same as H2, except that now we set b = 1 instead of 0.
– H4: Switch back to using injective fs instead of the lossy fs′ .
– H5: Switch back to using the original program Pfs,y,mb

instead of P ′
sk,mb

.

Theorem 1. If LF is a collection of (�, k)-lossy functions with lossiness k =
poly(λ), and oO is an online obfuscation with 1-time VGB security under S(n)
memory bound, then Construction 1 has disappearing ciphertext security under
S(n) memory bound.

For the proofs of the hybrid arguments and the Theorem, please refer to the
full version of the paper.

5 Disappearing Signature Scheme

5.1 Definition

In this section, we define a public-key signature scheme in the bounded storage
model which we call Disappearing Signatures. The idea is that we make the sig-
natures be streams such that one can only verify them on the fly, and cannot
possibly store them. The security game requirement is also different. Tradition-
ally, for an adversary to win the signature forgery game, the adversary would
need to produce a signature on a fresh new message. However, in the disappear-
ing signature scheme, the adversary can win even by producing a signature on a
message that it has previously queried. The catch here is that even though the
message might have been queried by the adversary before, the adversary has no
way to store the valid signature on the message due to its sheer size.

Put formally, for security parameters λ and n, a disappearing signature
scheme consists of a tuple of PPT algorithms Π = (Gen,Sign,Ver) that each
uses up to O(n) memory bits. The syntax is identical to that of a classical public
key signature scheme, except that now the signatures are streams σ�. In addition
to the standard model signature security (where the adversary has unbounded
space), we also require disappearing signature security that utilizes the following
experiment:
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Signature Forgery Experiment SigForgeA,Π(λ, n):

– Run Gen(1λ, 1n) to obtain keys (pk, sk).
– The adversary A is given the public key pk.
– For q = poly(λ) rounds, the adversary A submits a message m, and receives

σ� ← Sign(sk,m), which is a stream.
– The adversary A outputs m′ and streams a signature σ′

�. The output of the
experiment is Ver(pk,m′, σ′

�).

Notice that traditionally, we would require m′ to be distinct from the mes-
sages m’s queried before, but here we have no such requirement. With this
experiment in mind, we now define the additional security requirement for a
disappearing signature scheme.

Definition 5 (Disappearing Signature Security). Let λ, n be security
parameters. A disappearing signature scheme Π = (Gen,Sign,Ver) has disap-
pearing signature security under memory bound S(n), if for all PPT adversaries
A that use up to S(n) memory bits,

Pr
[
SigForgeA,Π(λ, n) = 1

] ≤ negl(λ).

To construct such a disappearing signature scheme, one tool that we will use
alongside online obfuscation is a prefix puncturable signature.

5.2 Prefix Puncturable Signature

A prefix puncturable signature is similar to a regular public key signature scheme
that works for messages of the form (x,m), where x is called the prefix. Addi-
tionally, it has a puncturing procedure Punc that takes as input the secret key sk
and a prefix x∗, and outputs a punctured secret key skx∗ . skx∗ allows one to sign
any message of the form (x,m) with x �= x∗. The security requirement is that,
given skx∗ , one cannot produce a signature on any message of the form (x∗,m).

To put formally, in addition to the usual correctness and security require-
ments of a signature scheme, we also have a correctness requirement and a secu-
rity requirement for the punctured key.

Definition 6 (Correctness of the Punctured Key). Let λ be the security
parameter. We require that for all m ∈ {0, 1}∗ and x, x∗ ∈ {0, 1}λ s.t. x �= x∗:

Pr

⎡
⎢⎢⎣σ = σ′ :

(pk, sk) ← Gen(1λ)
σ ← Sign(sk, (x,m))
skx∗ ← Punc(sk, x∗)

σ′ ← Sign(skx∗ , (x,m))

⎤
⎥⎥⎦ = 1.

Definition 7 (Security of the Punctured Key). Let λ be the security
parameter. We require that for all x∗ ∈ {0, 1}λ and m ∈ {0, 1}∗, for all PPT
adversaries A, we have

Pr

⎡
⎣Ver(pk, (x∗,m), σ) = 1 :

(pk, sk) ← Gen(1λ)
skx∗ ← Punc(sk, x∗)

σ ← A(skx∗ , pk, (x∗,m))

⎤
⎦ ≤ negl(λ).
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Bellare and Fuchsbauer [BF14] have shown that a puncturable signature
can be built from any one-way function using certificates, though their basic
construction does not satisfy the strong correctness we require: their punctured
key yields valid signatures, but not necessarily identical signatures. Nevertheless,
it is straightforward to modify the ideas to yield a scheme with the desired
correctness. Our modified scheme for prefix puncturable signature can be found
in the full version of the paper.

5.3 Construction

We now present our construction of the disappearing signature scheme.

Construction 2. Let λ, n be the security parameters. Let PPS = (Gen,Sign,
Ver,Punc) be a prefix puncturable signature scheme, and oO = (Obf,Eval) be
an online obfuscator with 1-time VGB security under S(n) memory bound. The
construction Π = (Gen,Sign,Ver) works as follows:

– Gen(1λ, 1n): Run (pk, sk) ← PPS.Gen(1λ), and output (pk, sk).
– Sign(sk,m): Construct the program P as follows:

Psk,m(x) = PPS.Sign(sk, (x,m)).

Obfuscate the above program to obtain a stream σ� ← Obf(P ). The signa-
ture is simply the stream σ�.

– Ver(pk,m, σ�): Sample a random prefix x∗ ∈ {0, 1}λ, and evaluate the
streamed obfuscated program using x∗ as input. This yields

σ∗ = Eval(σ�, x∗) = PPS.Sign(sk, (x∗,m)).

Then, output PPS.Ver(pk, (x∗,m), σ∗) as the result.

The correctness of the construction comes directly from the correctness of
the underlying prefix puncturable signature scheme.

Theorem 2. If PPS is a correct and secure prefix puncturable signature scheme,
and oO is an online obfuscator with 1-time VGB security under S(n) memory
bound, then Construction 2 is secure under S(n) memory bound.

The proof of this theorem uses some similar techniques as that of Theorem 1
and can be found in the full version of the paper.

6 Functional Encryption

6.1 Definition

The concept of Functional Encryption (FE) is first raised by Sahai and
Waters [SW05] and later formalized by Boneh, Sahai, Waters [BSW11] and
O’Neill [O’N10]. Here we review the syntax and security definition of functional
encryption and how they would translate to the bounded storage model.
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Syntax of Functional Encryption. Let λ be the security parameter. Let {Cλ}
be a class of circuits with input space Xλ and output space Yλ. A functional
encryption scheme for the circuit class {Cλ} is a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) defined as follows:

– Setup(1λ) → (pk,msk) takes as input the security parameter λ, and outputs
the public key pk and the master secret key msk.

– KeyGen(msk, C) → skC takes as input the master secret key msk and a circuit
C ∈ {Cλ}, and outputs a function key skC .

– Enc(pk,m) → ct takes as input the public key pk and a message m ∈ Xλ, and
outputs the ciphertext ct.

– Dec(skC , ct) → y takes as input a function key skC and a ciphertext ct, and
outputs a value y ∈ Yλ.

We require correctness and security of a functional encryption scheme.

Definition 8 (Correctness). A functional encryption scheme Π = (Setup,
KeyGen,Enc,Dec) is said to be correct if for all C ∈ {Cλ} and m ∈ Xλ:

Pr

⎡
⎢⎢⎣y = C(m) :

(pk,msk) ← Setup(1λ)
skC ← KeyGen(msk, C)

ct ← Enc(pk,m)
y ← Dec(skC , ct)

⎤
⎥⎥⎦ ≥ 1 − negl(λ).

For the security definition, consider the following experiment:
Functional Encryption Security Experiment DistFEA,Π(λ):

– Run Setup(1λ) to obtain keys (pk,msk) and sample a uniform bit b ∈ {0, 1}.
– The adversary A is given the public key pk.
– For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ},

and receives skC ← KeyGen(msk, C).
– The adversary A submits the challenge query consisting of 2 messages m0

and m1 s.t. C(m0) = C(m1) for any circuit C that has been queried before,
and receives Enc(pk,mb).

– For a polynomial number of rounds, the adversary submits a circuit C ∈ {Cλ}
s.t. C(m0) = C(m1), and receives skC ← KeyGen(msk, C).

– The adversary A outputs a guess b′ for b. If b′ = b, we say that the adversary
succeeds and the output of the experiment is 1. Otherwise, the experiment
outputs 0.

Definition 9 (Adaptive Security). A functional encryption scheme Π =
(Setup,KeyGen,Enc,Dec) is said to be secure if for all PPT adversaries A:

Pr
[
DistFEA,Π(λ) = 1

]
≤ 1

2
+ negl(λ).
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Now we discuss how these definitions would need to be modified for defining
functional encryption in the bounded storage model. As we have seen in the
PKE with disappearing ciphertext security construction, the core idea here is
similar: we now produce ciphertexts that are streams.

Concretely, for security parameters λ and n, a functional encryption scheme
in the bounded storage model consists of a tuple of PPT algorithms Π =
(Setup,KeyGen,Enc,Dec) that each uses up to O(n) memory bits. The rest of
the syntax is identical to that of the classical FE scheme, except that now the
ciphertexts ct� are streams. The correctness requirement remains unchanged
apart from the syntax change, but the security definition would need to be sup-
plemented with a memory bound for the adversary and a slightly different secu-
rity experiment DistFE-BSMA,Π . DistFE-BSMA,Π is identical (apart from syntax changes)
to DistFEA,Π except that for function key queries submitted after the challenge
query, we no longer require that C(m0) = C(m1).

Definition 10 (Adaptive Security in the Bounded Storage Model). A
functional encryption scheme Π = (Setup,KeyGen,Enc,Dec) is said to be secure
under memory bound S(n) if for all PPT adversaries A that use at most S(n)
memory bits:

Pr
[
DistFE-BSMA,Π (λ, n) = 1

]
≤ 1

2
+ negl(λ).

With these definitions in mind, we now present how one can construct a
secure functional encryption scheme in the bounded storage model using online
obfuscation. The construction will also be based on three classical cryptographic
primitives: a Non-Interactive Zero Knowledge (NIZK) proof system, a secure
classical functional encryption scheme, and a Pseudo-Random Function (PRF).

6.2 Construction

Construction 3. Let λ, n be the security parameters. Let NIZK = (P,V) be a
non-interactive zero knowledge proof system, FE = (Setup,KeyGen,Enc,Dec) a
functional encryption scheme, PRF : {0, 1}w×{0, 1}∗ → {0, 1}w a pseudorandom
function for w = poly(λ), and oO = (Obf,Eval) an online obfuscator with 1-
time VGB security under memory bound S(n). We construct the functional
encryption scheme Π = (Setup,KeyGen,Enc,Dec) as follows:

– Setup(1λ, 1n): Sample (pk,msk) ← FE.Setup(1λ). Sample the common refer-
ence string crs for the NIZK system. Output (pk, crs) as the overall public
key. Output msk as the master secret key.

– KeyGen(msk, C): Sample random x, y ∈ {0, 1}w. Consider the following func-
tion:

FC,x,y(m, k) =

{
C(m) if k = ⊥ or PRF(k, (C, y)) �= x

⊥ otherwise
.
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Compute skF ← FE.KeyGen(msk, FC,x,y). Also, produce a NIZK proof π that
skF is correctly generated, i.e. the tuple (pk, C, x, y, skF ) is in the language

Lpk,C,x,y,skF :=
{

(pk, C, x, y, skF )
∣∣∣∣

(pk,msk) ← FE.Setup(1λ)
skF ← FE.KeyGen(msk, FC,x,y)

}
.

Output the function key as skC = (C, x, y, skF , π).
– Enc((pk, crs),m): Compute c ← FE.Enc(pk, (m,⊥)). Then consider the follow-

ing program that takes as input a function key skC = (C, x, y, skF , π):

Pc,pk,crs(skC) =

{
FE.Dec(skF , c) if NIZK.V(crs, (pk, C, x, y, skF ), π) = 1
⊥ otherwise

.

Obfuscate the above program to obtain a stream ct� ← Obf(P ). The cipher-
text is simply the stream ct�.

– Dec(skC , ct�) : Simply output Eval(ct�, skC).

It should be easy to verify that an honest execution yields

Pc,pk,crs(C, x, y, skF , π) = FE.Dec(skF , c) = FC,x,y(m,⊥) = C(m)

as desired.

Theorem 3. If NIZK is zero-knowledge and statistically sound, PRF is a secure
pseudorandom function against non-uniform attackers, FE is a secure functional
encryption scheme, and the online obfuscator oO has 1-time VGB security under
S(n) memory bound, then Construction 3 is secure under S(n) memory bound.

The proof of this theorem uses some similar techniques as that of Theorem 1
and can be found in the full version of the paper.

7 Candidate Construction 1

Here, we give a candidate online obfuscation scheme, for NC1 circuits. This
suffices for our applications, provided the underlying building blocks can be
computed in NC1. Note that we might heuristically be able to bootstrap our
scheme to all circuits using FHE, but such bootstrapping (e.g. [GGH+13a]) is
not known to provably apply to VGB obfuscation. In Sect. 8, we give a very
different construction that directly yields VGB obfuscation.

7.1 Matrix Branching Programs

A matrix branching program BP of length h, width w, and input length �
consists of an input selection function inp : [h] → [�], 2h matrices {Mi,b ∈
{0, 1}w×w}i∈[h];b∈{0,1}, a left bookend that is a row matrix s ∈ {0, 1}1×w, and a
right bookend that is a column matrix t ∈ {0, 1}w×1. BP is evaluated on input
x ∈ {0, 1}� by computing BP(x) = s

(∏
i∈[h] Mi,xinp(i)

)
t.

We say that a family of matrix branching programs are input-oblivious if
all programs in the family share the same parameters h, w, �, and the input
selection function inp.
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Lemma 1 (Barrington’s Theorem [Bar86]). For a circuit C of depth d where
each gate takes at most 2 inputs, we can construct a corresponding matrix branch-
ing program BP with width 5 and h = 4d.

7.2 The Basic Framework

Here we present the basic framework of an online obfuscator based on matrix
branching programs. Our framework will be parameterized by a randomized
procedure Convert, which takes as input a log-depth circuit C and width w, and
produces a branching program of length h = poly(λ) and width w. w will be
chosen so that the honest parties only need O(w) space to evaluate the program
as it is streamed, while security is maintained even if the adversary has up to
γw2 space, for some small constant γ.

Since the branching program BP will be too large for a space bounded obfus-
cator to write down, we will need to provide a local, space-efficient way to com-
pute each entry of the branching program, given the circuit C and the random
coins of Convert.

Note that Barrington’s theorem implies, for log-depth circuits, that h =
poly(λ) and that w can be taken as small as 5. Convert can be thought of as
some procedure to expand the width to match the desired space requirements,
and also enforce other security properties, as discussed in Sect. 7.3, where we
discuss our particular instantiation of the framework.

Our basic framework actually consists of three schemes. As we will demon-
strate, the three schemes have equivalent security, under the assumed existence
of a pseudorandom function. The first scheme is much simpler, highlights the
main idea of our construction, and allows us to more easily explore security. The
downside of the first scheme is that the obfuscator requires significant space,
namely more than the adversary. We therefore present two additional schemes
with equivalent security, where the final scheme allows the obfuscator to run in
space O(w), while having equivalent security to the original scheme.

Construction with Kilian Randomization. We start with the first and
simpler scheme, denoted OKil, that uses randomization due to Kilian [Kil88] to
construct a matrix branching program BP′ as follows.

Sample random invertible matrices Ri ∈ {0, 1}w×w for i = 0, 1, . . . , h. Com-
pute M′

i,b = R−1
i−1Mi,bRi for i ∈ [h] and b ∈ {0, 1}. Additionally, compute new

bookends s′ = s · R0, and t′ = R−1
h · t. The new randomized matrix branching

program is now BP′ = (inp, {M′
i,b}i∈[h];b∈{0,1}, s′, t′). Notice that when we com-

pute BP′(x), these random matrices will cancel each other out and hence the
output of the program should be unchanged.

Now to turn BP′ into an online obfuscator, all we need to do is to properly
stream the branching program. Here we specify the order that the matrices will
be streamed:

s′,M′
1,0,M

′
1,1,M

′
2,0,M

′
2,1, . . . ,M

′
h,0,M

′
h,1, t

′.
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When streaming a matrix M, we require that the matrix M is streamed
column by column, i.e. we start by sending the first column of M, followed by
the second column, then the third, so on and so forth.

Now let’s take a look at how to evaluate the obfuscated program, i.e. the
matrix branching program sent over the stream. Notice that we would need to
do this using only space linear to w.

To evaluate the program, we will keep a row matrix v ∈ {0, 1}1×w as our
partial result. When the streaming begins, we will set v = s′ received over the
stream.

For i ∈ [h], we will compute b = xinp(i) and listen to the stream of M′
i,b. Let

the columns of M′
i,b be c1, c2, . . . , cw. Since M′

i,b is streamed column by column,
we will receive on the stream c1, c2, . . . , cw. As the columns are being streamed,
we will compute an updated partial result v′ = (v1, v2, . . . , vw) on the fly. As we
receive cj for j ∈ [w], we would compute vj = v · cj . After all the columns of
M′

i,b have been streamed and that v′ has been fully computed, we set v = v′.
In the end after we receive t′, we output BP′(x) = v · t′.
Notice that throughout the evaluation process, we use at most 2w memory

bits, which is linear to w.
However, one issue with this construction is that running the obfuscator

requires computing products of matrices of size w × w, and this inherently
requires O(w2) space. In the full version of the paper, we show two additional
schemes that eventually help us carry out the randomization process using only
O(w) space. The security of these schemes are equivalent to the security of the
construction above, assuming the existence of pseudorandom functions. There-
fore, it suffices to analyze the security of the construction above. Next, we will
explain how to instantiate Convert in a way that presumably gives security.

7.3 Instantiating Convert

Now we will discuss how we specifically instantiate Convert, constructing the
branching program BP for a circuit C that we plug into our framework.

To motivate our construction, we recall that Barrington’s theorem [Bar86]
plus Kilian randomization [Kil88] already provides some very mild security: given
the matrices corresponding to an evaluation on any chosen input x (which selects
one matrix from each matrix pair), the set of matrices information-theoretically
hides the entire program, save for the output of the program on x.

This one-time security, however, is clearly not sufficient for full security. For
starters, the adversary can perform mixed-input attacks, where it selects a single
matrix from each pair, but for multiple reads of the same input, it chooses
different matrices. This allows the attacker to treat the branching program as a
read-once branching program. It may be that, by evaluating on such inputs, the
adversary learns useful information about the program.

Another problem is linear-algebraic attacks. The rank of each matrix is pre-
served under Kilian randomization. Assuming all matrices are full-rank (which
is true of Barrington’s construction), the eigenvalues of Mi,0 ·M−1

i,1 are preserved
under Kilian randomization.
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In branching program obfuscation starting from [GGH+13a], multi-linear
maps are used to block these attacks. In our setting, we will instead use the
storage bounds on the attacker. First, we observe that Raz [Raz16] essentially
shows that linear-algebraic attacks are impossible if the attacker cannot even
record the matrices being streamed. While we do not know how to apply Raz’s
result to analyze our scheme, we conjecture that for appropriately chosen matri-
ces, it will be impossible to do linear-algebraic attacks.

The next main problem is to enforce input consistency to prevent mixed-
input attacks. To accomplish this, we will do the following. We will first run
Barrington’s theorem to get a branching program consisting of 5 × 5 matrices.
We will then construct an “input consistency check” branching program, and
glue the two programs together.

As a starting point, we will construct a read-once matrix branching program
BP1 (one that reads each input bit exactly once) that outputs 0 on an all-zero
or all-one input string, and outputs 1 on all other inputs. Looking forward, we
will insert this program into the various reads of a single input bit: any honest
evaluation will cause the branching program to output 0, whereas an evaluation
that mixes different reads of this bit will cause the program to output 1.

Matrix Branching Program BP1:

– The width, the length, and the input length of the branching program
are all L.

– inp is the identity function, i.e. Mi,b reads xi as input.
– For i ∈ [L], Mi,0 = IL where IL is the L × L identity matrix. Mi,1 is the

L × L permutation matrix representing shifting by 1. Specifically,

Mi,1 =
(

0(L−1)×1 IL−1

1 01×(L−1)

)
.

– The left bookend is s =
(
1 0 0 · · · 0

)
and the right bookend is t =(

0 1 1 · · · 1
)T .

We now briefly justify why BP1 works as desired. Let 0 ≤ w(x) ≤ L be the
Hamming weight of the input x. Notice that when evaluating BP1(x), the number
of Mi,1 matrices chosen is exactly w(x), and the rest of the chosen matrices are
all Mi,0, the identity matrix. Therefore, the product of all the M matrices is
equivalent to a permutation matrix representing shifting by w(x). When this
product is left-multiplied by s =

(
1 0 0 · · · 0

)
, we get a resulting row matrix s′

that is equivalent to s right-shifted by w(x). Notice that s′ has a single 1 at
position (w(x) mod L) + 1. When multiplying s′ by the right bookend t , the
result will always be 1, unless (w(x) mod L)+1 = 1. The only w(x) values that
satisfy (w(x) mod L) + 1 = 1 are w(x) = 0 and w(x) = L, which correspond to
x = 0L and x = 1L respectively. Hence BP1 gives us the desired functionality.
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Next up, we will expand BP1 to a read-once matrix branching program BP2

with the following functionality: for a set S of input bits, BP2 outputs 0 if and
only if all the input bits within S are identical (the input bits outside of S can
be arbitrary). This is accomplished by simply setting the matrices for the inputs
in S to be from BP1, while the matrices for all other inputs are just identity
matrices.

Next, we describe a simple method of taking the “AND” of two matrix
branching programs with the same length, input length and input function.
Given matrix branching programs BPA = (inp, {MA

i,b}i∈[h];b∈{0,1}, sA, tA) and
BPB = (inp, {MB

i,b}i∈[h];b∈{0,1}, sB , tB) with length h and input length �, we
construct a new brancing program BPC such that BPC = BPA(x) · BPB(x) for
all inputs x:

Constructing BPC = AND(BPA,BPB):

– The length, the input length, and the input function of BPC are also h,
� and inp, respectively. The width of BPC is wC = wA · wB , where wA

and wB are the widths of BPA and BPB , respectively.
– For all i ∈ [h] and b ∈ {0, 1}, compute MC

i,b = MA
i,b ⊗ MB

i,b where ⊗
denotes the matrix tensor product (Kronecker product). Notice that the
widths of MA

i,b,M
B
i,b, and MC

i,b are wA, wB , and wAwB as desired.
– The left bookend is sC = sA ⊗sB , and the right bookend is tC = tA ⊗tB .

Using the mixed-product property of matrix tensor products, it should be
easy to verify that BPC(x) = BPA(x) · BPB(x) as desired.

Next, let BP∗ be a random read-once matrix branching program with input
length L and width m = poly(λ). We can sample such a branching program by
uniformly sampling each of its matrices and bookends.8

We will assume that the program computed by BP∗ gives a pseudo-
random function. This is, unfortunately not strictly possible: write x =
(x1, x2) for two contiguous chunks of input bits x1, x2. Then the matrix(
BP∗(x1, x2)

)
x1∈X1,x2∈X2

for any sets X1,X2 will have rank at most m. By
setting X1,X2 to be larger than m, one can distinguish this matrix consisting of
outputs of BP∗ from a uniformly random one. The good news is that this attack
requires a large amount of space, namely m2. If the attacker’s space is limited
to be somewhat less than m2, this plausibly leads to a pseudorandom function.
We leave justifying this conjecture as an interesting open question.

Now consider the branching program BP3 = AND(BP2,BP∗). Notice that
BP3 has width nm and is equal to 0 on inputs x where ∀i, j ∈ S, xi = xj , and is
equal to BP∗(x) on all other x.

8 When this is later put through the basic framework, we would need to generate these
random matrices using a PRF. This allows us to reconstruct it at a later point.
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With these tools in hand, we are now ready to show how to enforce input
consistency on an existing matrix branching program.

Given a matrix branching program BP = (inp, {Mi,b}i∈[h];b∈{0,1}, s, t) with
length h, width w and input length �, we construct the branching program BP′

as follow:

Input Consistent Branching Program BP′:

– BP′ has the same length h, input length �, and input function inp as BP.
The width is now w + mh where m = poly(λ).

– For all j ∈ [�], let Sj be the set of all reads of xj , i.e. Sj = {i|i ∈
[h], inp(i) = j}. Construct the branching program BP

(j)
2 using the BP2

construction with input length h and S = Sj . Overwrite the input func-
tion of BP(j)

2 with inp so that it now takes x ∈ {0, 1}� as input. Notice
that BP(j)

2 (x) = 0 if and only if all reads of the j-th bit of x are identical.
Sample a fresh random matrix branching program BP(j)

∗ with length
h, width m, input length � and input function inp. Compute BP

(j)
3 =

AND(BP(j)
2 ,BP(j)

∗ ). Denote the matrices in BP
(j)
3 as {M(j)

i,b }i∈[h];b∈{0,1},
and the bookends as s(j), t(j).

– For all i ∈ [h], and b ∈ {0, 1}, construct the matrix M′
i,b by adding all

the M(j)
i,b ’s to the diagonal as M′

i,b = diag(Mi,b,M
(1)
i,b , . . . ,M(�)

i,b ). Notice
that the width of M′

i,b is w +
∑

j∈[�] m|Sj | = w + mh.
– The left bookend is now s′ =

(
s s(1) s(2) · · · s(�)) and the right bookend

is now t′ =
(
tT

(
t(1)

)T (
t(2)

)T · · · (
t(�)

)T
)T

.

Notice that we have

BP′(x) = BP(x) +
∑
j∈[�]

BP
(j)
3 (x) = BP(x) +

∑
j∈[�]

BP
(j)
2 (x)BP(j)

∗ (x).

If all reads of the input x are consistent, then we have BP
(j)
2 (x) = 0 for all

j, and the program outputs the original output BP′(x) = BP(x).
If the reads of the input x are not consistent, then BP

(j)
2 (x) = 1 for some

j, and consequently BP(j)
∗ (x) will be added to the program output. By our con-

jecture that BP(j)
∗ (x) acts as a PRF to space-bounded attackers, we thus add

a pseudorandom value to BP(x), hiding its value. Thus, we presumably force
input consistency. BP′ will be the output of Convert, which we then plug into
our framework.
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8 Candidate Construction 2

Now we present the second candidate construction from digital time-stamping
and standard-model obfuscation. The concept of a digital time-stamp was first
introduced by Haber and Stornetta [HS91], and since then we have seen various
instantiations of digital time-stamping systems. One construction of particular
interest is by Moran, Shaltiel and Ta-Shma [MST04], where they construct a
non-interactive time-stamping scheme in the bounded storage model using a
randomness beacon. A slightly modified definition that uses a stream instead of
a randomness beacon will be what we base our candidate construction on.

Definition 11 (Non-Interactive Digital Time-stamp in the Bounded
Storage Model). Let λ, n be the security parameters. A non-interactive digital
time-stamp scheme in the bounded storage model with stamp length � = O(n)
consists of a tuple of PPT algorithms Π = (Stream,Stamp,Ver) that each uses
up to O(n) memory bits:

– Stream(1λ, 1n) → (s�, k) takes as input security parameters λ, n and outputs
a stream s� and a short sketch k of the stream.

– Stamp(s�, x) → σ takes as input the stream s� and an input x ∈ {0, 1}∗,
and outputs a stamp σ ∈ {0, 1}�.

– Ver(k, x, σ) → 0/1 takes as input the sketch k, an input x ∈ {0, 1}∗ and a
stamp σ and outputs a single bit 0 or 1.

We require correctness and security of the digital time-stamp scheme.

Definition 12 (Correctness). We require that for all x ∈ {0, 1}∗, we have

Pr
[
Ver(k, x, σ) = 1 : (s�, k) ← Stream(1λ, 1n), σ ← Stamp(s�, x)

]
= 1.

For security, we ideally want that an adversary cannot produce a valid time-
stamp on an input x that the adversary did not run Stamp on. Instead, [MST04]
notice that an adversary with S(n) memory bits can store at most S(n)/� time-
stamps, and therefore define security as upper bounding the number of time-
stamps an adversary can produce. While not the same as the ideal goal, it at
least implies the adversary cannot produce arbitrary time-stamped messages.

Definition 13 (Security). We require that for all adversary A that uses up to
S(n) memory bits, we have

Pr

⎡
⎢⎢⎣∀(x, σ) ∈ M,Ver(k, x, σ) = 1

∣∣∣∣∣∣∣∣

(s�, k) ← Stream(1λ)
M ← AStamp(·)(s�)

|M | > S(n)
�∀(x1, σ1), (x2, σ2) ∈ M,x1 �= x2

⎤
⎥⎥⎦ ≤ negl(λ).

Now we show how we can use such a digital time-stamping scheme to con-
struct an online obfuscator.
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Construction 4. Let λ, n be the security parameters. Let TSP be a digital
time-stamping scheme in the bounded storage model. Let VGB = (Obf,Eval) be
a classical VGB obfuscator for all circuits. We construct our online obfuscator
for the circuit class {Cλ} as follows:

– Obf(C): Run TSP.Stream(1λ, 1n) to stream s� and obtain the sketch k. Con-
sider the following program PC,k:

PC,k(x, σ) =

{
C(x) if TSP.Ver(k, x, σ) = 1
⊥ otherwise

.

Let P ← VGB.Obf(PC,k) be the standard-model VGB obfuscation of PC,k.
The obfuscated program is simply the stream s� followed by P.

– Eval((s�,P), x): To evaluate the obfuscated program, first compute σ ←
TSP.Stamp(s�, x) when s� is being streamed. Then the output is simply
VGB.Eval(P, (x, σ)).

Correctness is straightforward. One detail is that, using the basic time-stamping
protocol of [MST04], the sketch k, and thus PC,k will be of size O(n) bits. Thus,
we need to use an obfuscator such that VGB.Obf only expands the input circuit
by a constant factor. While no such constructions are currently known, there
are also no known impossibilities. Alternatively, one can use branching-program
based obfuscation directly from multilinear maps, for example [GGH+13a] and
follow-ups. [BCKP14] even gives evidence that these constructions may be VGB
secure. The difficulty is that the constructions blow up the input program by a
polynomial factor, and therefore cannot be written down. However, as they have
the form of a branching program, they can be streamed much the same way
as we stream Candidate Construction 1. Finally, another option is to use the
computational time-stamping protocol from [MST04], which shrinks the size of
the sketch and the proof, at the cost of relying on computational assumptions.
We therefore conjecture that some instantiation of VGB.Obf will lead to a secure
online VGB obfuscator that can also be streamed in low space. We leave proving
or disproving this conjecture as an open question.
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Abstract. Digital hardware Trojans are integrated circuits whose
implementation differ from the specification in an arbitrary and malicious
way. For example, the circuit can differ from its specified input/output
behavior after some fixed number of queries (known as “time bombs”)
or on some particular input (known as “cheat codes”).

To detect such Trojans, countermeasures using multiparty computa-
tion (MPC) or verifiable computation (VC) have been proposed. On a
high level, to realize a circuit with specification F one has more sophis-
ticated circuits F� manufactured (where F� specifies a MPC or VC of
F), and then embeds these F�’s into a master circuit which must be
trusted but is relatively simple compared to F . Those solutions impose a
significant overhead as F� is much more complex than F , also the master
circuits are not exactly trivial.

In this work, we show that in restricted settings, where F has no evolv-
ing state and is queried on independent inputs, we can achieve a relaxed
security notion using very simple constructions. In particular, we do not
change the specification of the circuit at all (i.e., F = F�). Moreover the
master circuit basically just queries a subset of its manufactured circuits
and checks if they’re all the same.

The security we achieve guarantees that, if the manufactured circuits
are initially tested on up to T inputs, the master circuit will catch Tro-
jans that try to deviate on significantly more than a 1/T fraction of the
inputs. This bound is optimal for the type of construction considered,
and we provably achieve it using a construction where 12 instantiations
of F need to be embedded into the master. We also discuss an extremely
simple construction with just 2 instantiations for which we conjecture
that it already achieves the optimal bound.
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1 Hardware Trojans

Preventing attacks on cryptographic hardware that are based on leakage and
tampering has been a popular topic both in the theory in the practical research
communities [6–10,15]. Despite being very powerful, the models considered in
this area are restricted in the sense that it is typically assumed that a given
device has been manufactured correctly, i.e., the adversary is present during the
execution of the device, but not when it is produced. As it turns out, this assump-
tion is not always justifiable, and in particular in some cases the adversary may
be able to modify the device at the production time. This is because, for eco-
nomic reasons, private companies and government agencies are often forced to
use hardware that they did not produce themselves. The contemporary, highly-
specialized digital technology requires components that are produced by many
different enterprises, usually operating in different geographic locations. Even a
single chip is often manufactured in a production cycle that involves different
entities. In a very popular method of hardware production, called the foundry
model, the product designer is only developing the abstract description of a
device. The real hardware fabrication happens in foundry. Only few major com-
panies (like Intel) still manufacture chips by themselves [16].

Modifications to the original circuit specification introduced during the man-
ufacturing process (in a way that is hard to detect by inspection and simple test-
ing) are called hardware Trojans, and can be viewed as the extreme version of
hardware attacks. For more on the practical feasibility of such attacks the reader
may consult, e.g., books [13,16], or popular-science articles [1,12]. Hardware Tro-
jans can be loosely classified into digital and physical ones. Physical hardware
Trojans can be triggered and/or communicate via a physical side-channel, while
digital hardware Trojans only use the regular communication interfaces. In this
paper we only consider digital hardware Trojans.

1.1 Detecting Digital Hardware Trojans

A simple non-cryptographic countermeasure to detect whether a circuit F con-
tains a hardware Trojan or follows the specification F is testing: one samples
inputs x1, . . . , xT , queries yi ← F(xi) and checks whether yi = F(xi) for all
i. Two types of digital hardware Trojans discussed in the literature that evade
detection by such simple testing are time bombs and cheat codes (see, e.g., [5]).
A time bomb is a hardware Trojan where the circuit starts deviating after a
fixed number of queries. Cheat codes refer to hardware Trojans where the cir-
cuits deviate on a set of hard-coded inputs. To achieve some robustness against
all digital hardware Trojans, solutions using cryptographic tools, in particular
verifiable computation (VC) [2,17] and multiparty computation (MPC) [5] were
suggested. In both cases the idea is to take the specification F of the desired
circuit and replace it with a more sophisticated construction of one or more
circuits F�. The circuit(s) F� that (presumably) are manufactured according to
specification F� are then embedded into a master circuit M to get a circuit MF�
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Fig. 1. Comparison of cryptographic solutions with our new construction. We achieve
weaker security, but with a much simpler construction.

which is proven to follow specification F with high probability as long as it pro-
duces outputs. The master circuit must be trusted, but hopefully can be much
simpler than F . We elaborate on these two methods below.

Using Verifiable Computation. Here the idea is to let F�(x) output a tuple
(y, π) where y = F(x) and π is a succinct zero-knowledge proof (see [3]) that
y is the correct output. In the compiled circuit MF�

the master M in input x
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invokes (y, π) ← F�, then verifies the proof π and only outputs y if the check
passes. If verification fails, the master aborts with a warning. As long as the
compiled circuit provides outputs, they are guaranteed to be correct. If there
are no Trojans, the number of outputs is unbounded; but if there is a Trojan,
they can make the compiled circuit abort already at the first query. See [2,17]
for the details.

Using Multiparty Computation. In this case, the idea is to use secure multiparty
computation protocols (MPCs, see, e.g., [4]). The compiled circuit MF�

contains
some number of sub-components F� that communicate only via the master cir-
cuit. In [5], this number is 3k (where k is a parameter). The sub-components
are grouped in triples, each of them executing a 3-party protocol. In order to
avoid the “cheat code” attacks, the master secret shares the input between the
3 parties. To get assurance that the sub-components are not misbehaving they
are tested before deployment. In order to avoid the “time bomb” attacks, the
number of times each sub-component is tested is an independently chosen ran-
dom number from 1 to T . The output of each triple is secret-shared between
its sub-components. Each of them sends its share to the master circuit, who
reconstructs the k secrets, and outputs the value that is equal to the majority
of these secrets. For the details see [5].

Simple Schemes. In this work we consider compilers as discussed above, but only
particularly simple ones which have the potential of being actually practical.
In particular, we require that F ≡ F�. That is, the specification F� of the
functionality given to the untrusted manufacturer is the actual functionality
F : X → Y we want to implement. Moreover, our master just invokes (a random
subset of) the circuits on the input and checks if the outputs are consistent.

This restricted model has very appealing properties. For example, it means
one can use our countermeasures with circuits that have already been manufac-
tured. But there are also limitations on what type of security one can achieve.
Informally, the security we prove for our construction roughly states that for any
constant c > 0 there exists a constant c′ such that no malicious manufacturer
can create Trojans which (1) will not be detected with probability at least c,
and (2) if not detected, will output a ≥ c′/T fraction of wrong outputs. Here T
is an upper bound on the number of test queries we can make to the Trojans
before they are released.

In particular, we only guarantee that most outputs are correct, and we addi-
tionally require that the inputs are iid. Unfortunately, it’s not hard to see that
for the simple class of constructions considered these assumptions are not far
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from necessary.1 We will state the security of the VC and MPC solutions using
our notion of Trojan-resilience in Sect. 2.7.

It’s fair to ask whether our notion has any interesting applications at all. Two
settings in which Trojan resilience might be required are (1) in settings where a
computation is performed where false (or at least too many false) outputs would
have serious consequences, and (2) cryptographic settings where the circuit holds
a key or other secret values that should not leak.

For (1) our compiler would only be provably sufficient if the inputs are iid,
and only useful if a small fraction of false outputs can be tolerated. This is
certainly a major restriction, but as outlined above, if one doesn’t have the luxury
to manufacture circuits that are much more sophisticated than the required
functionality, it’s basically the best one can get. Depending on the setting, one
can potentially use our compiler in some mode – exploiting redundancy or using
repetition – to fix those issues. We sketch some measures in the cryptographic
setting below.

For the cryptographic setting (2) our notion seems even less useful: if the
adversary can learn outputs of the Trojans, he can use the Θ(1/T ) fraction of
wrong outputs to embed (and thus leak) its secrets. While using the compiler
directly might not be a good idea, we see it as a first but major step towards
simple and Trojan-resilient constructions in the cryptographic setting. As an
example, consider a weak PRF F : K × X → Y (a weak PRF is defined like
a regular PRF, but the outputs are only pseudorandom if queried on random
inputs). While implementing F(k, ·) using our compiler directly is not a good
idea as discussed above,2 we can compile t > 1 weak PRFs with independent keys
and inputs and finally XOR the outputs of the t master circuits to implement a
weak PRF F3((k1, . . . , kt), (x1, . . . , xt)) = ⊕t

i=1F(ki, xi). Intuitively, the output
can only leak significant information about the keys if all t outputs are wrong
as otherwise the at least one pseudorandom output will mask everything. If each
output is wrong with probability, say 1/T for a modest T = 230 and we use t = 3,
then for each query we only have a probability of 1/T 3 = 2−90 that all t = 3
outputs deviate, which we can safely assume will never happen. Unfortunately, at
this point we can’t prove the above intuition and leave this for future work. For
one thing, while we know that the XOR will not leak much if at least one of the t
values is correct when the weak PRFs are modelled as ideal ciphers [11], we don’t
have a similar result in the computational setting. More importantly, we only

1 We show that a small fraction of wrong outputs must be allowed in Sect. 2.4. The
iid assumption can be somewhat relaxed, but as we don’t have a clean necessary
condition we will not discuss this further in this paper. Informally, a sufficient condi-
tion seems to just require that there is no (efficiently recognisable) subset of inputs
which appear rarely (not more than with probability around 1/T ) but can come in
“bursts”, say two such inputs are consecutive with prob. � 1/T 2.

2 It’s acceptable by our construction if the inputs are iid conditioned on some secret, so
the master on input x and key k can forward (k, x) to the circuits. Alternatively the
key k can be hard-coded in the circuit (probably not a good idea if the manufacturer
is not trusted in the first place) or, if the circuits have some storage, one can give
them k after receiving the circuits from the manufacturer.
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prove that at most a 1/T fraction of the outputs is wrong once a sufficiently large
number of queries was made, but to conclude that in the above construction all t
instances fail at the same time with probability at most 1/T t we need a stronger
statement saying that for each individual query the probability of failure is 1/T
(we believe that this is indeed true for our construction, but the current proof
does not imply this).

Weak PRFs are sufficient for many basic symmetric-key cryptographic tasks
like authentication or encryption.3 Even if a fraction of outputs can be wrong,
as long as they don’t leak the key (as it seems to be the case for the construction
just sketched), this will only affect completeness, but not security. An even more
interesting construction, and the original motivation for this work, is a trojan-
resilient stream cipher. This could then be used to e.g., generate the high amount
of randomness required in side-channel countermeasures like masking schemes.
The appealing property of a stream-cipher in this setting is that we don’t care
about correctness at all, we just want the output to be pseudorandom. It’s
not difficult to come up with a candidate for such a stream-cipher based on
our compiler, but again, a proof will require more ideas. One such construction
would start with the weak PRF construction just discussed, and then use two
instantiations of it in the leakage-resilient mode from [14].

2 Definition and Security of Simple Schemes

For m ∈ N, an m-redundant simple construction Πm = (T∗,M∗) is specified by
a master circuit M∗ : X → Y ∪ {abort} and a test setup T∗ : N → {fail, pass}.4

The ∗ indicates that they expect access to some “oracles”. The following oracles
will be used: (a) F1, . . . ,Fm—the Trojan circuits that presumably implement the
functionality F : X → Y, (b) F—a trusted implementation of F (only available
in the test phase), and (c) $—a source of random bits (sometimes we will provide
the randomness as input instead),

2.1 Test and Deployment

The construction Πm which implements F in a Trojan-resilient way using the
untrusted F1, . . . ,Fm is tested and deployed as follows.

Lab Phase (test): In this first phase we execute {pass, fail} ← TF1,...,Fm,F,$(T )
The input T specifies that each Fi may be queried at most T times. If the
output is fail, a Trojan was detected. Otherwise (i.e. the output is pass) we
move to the next phase.

Wild Phase (deployment): If the test outputs pass, the Fi’s are embedded into
the master to get a circuit MF1,...,Fm,$ : X → Y ∪ abort.

3 To encrypt m sample a random r and compute the ciphertext (r, F(k, r) ⊕ m).
4 We consider much stronger M∗,T∗ for the lower bounds compared to what we require

in the constructions as discussed in Sect. 2.5.
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2.2 Completeness

The completeness requirement states that if every Fi correctly implements F ,
then the test phase outputs pass with probability 1 and the master truthfully
implements the functionality F . That is, for every sequence x1, x2, . . . , xq (of
arbitrary length and potentially with repetitions) we have

Pr[∀i ∈ [q] : yi = F(xi)] = 1 where for i = 1 to q : yi := MF1,...,Fm,$(xi)

The reason we define completeness this way and not simply for all x we have
Pr[MF1,...,Fm,$(x) = F(x)] is that the Trojan Fi can be stateful, so the order in
which queries are made does matter.

2.3 Security of Simple Schemes

We consider a security game TrojanGame(Π,T,Q) where, for some T,Q ∈ Z, an
adversary Adv can choose the functionality F and the Trojan circuits F1, . . . ,Fm.
We first run the test phase τ ← TF1,...,Fm,F,$(T ) We then run the wild phase by
querying the master on Q iid inputs x1, . . . , xQ.

for i = 1, . . . , Q : yi ← MF1,...,Fm,$(xi).

The goal of the adversary is two-fold:

1. They do not want to be caught, if either τ = fail or yi = abort for some i ∈ [Q]
we say the adversary was detected and define the predicate

detect = false ⇐⇒ (τ = pass) ∧ (∀i ∈ [Q] : yi �= abort)

2. They want the master to output as many wrong outputs as possible. We
denote the number of wrong outputs by Y

def= |{i : yi �= F(xi)}|.
Informally, we call a compiler (like our simple schemes) (win,wrng)-Trojan
resilient, or simply (win,wrng)-secure, if for every Trojan, the probability that
it causes the master to output ≥ wrng fraction of wrong outputs without being
detected is at most win. In the formal definition win and wrng are allowed to be
a function of the number of test queries T .

Definition 1 ((win,wrng)-Trojan resilience). And adversary (win,wrng)-
wins in TrojanGame(Π,T,Q) if the master outputs more than a wrng fraction
of wrong values without the Trojans being detected with probability greater than
win, i.e.,

Pr
TrojanGame(Π,T,Q)

[(detect = false) ∧ (Y/Q ≥ wrng)] ≥ win

For win : N → [0, 1],wrng : N → [0, 1], q : N → N, we say that Π
is (win(T ),wrng(T ), q(T ))-Trojan-resilient (or simply “secure”) if there exists
a constant T0, such that for all T ≥ T0 and Q ≥ q(T ) no adversary
(win(T ),wrng(T ))-wins in TrojanGame(Π,T,Q).

We say Π is (win(T ),wrng(T )) Trojan-resilient if it is (win(T ),wrng(T ),
q(T ))-Trojan-resilient for some (sufficiently large) polynomial q(T ) ∈ poly(T ).
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In all our simple constructions the test and master only use the outputs of the
Fi (and for the test also F) oracles to check for equivalence. This fact will allow
us to consider somewhat restricted adversaries in the security proof.

Definition 2 (Generic Simple Scheme). A generic simple scheme T∗,M∗

treats the outputs of the Fi (and for T∗ additionally F) oracles like variables.
Concretely, two or more oracles can be queried on the same input, and then one
checks if the outputs are identical. Moreover the master can use the output of an
Fi as its own output.

By the following lemma, to prove security of generic simple schemes, it will
be sufficient to consider restricted adversaries that always choose to attack the
trivial functionality F(x) = 0 and where the output range of the Trojans is a
bit.

Lemma 1. For any generic simple scheme Πm, assume an adversary Adv exists
that (win,wrng)-wins in TrojanGame(Πm, T,Q) and let F : X → Y , F1, . . . ,Fm :
X → Y denote its choices for the attack. Then there exists an adversary Adv′

who also (win,wrng)-wins in TrojanGame(Πm, T,Q) and chooses F ′ : X →
{0, 1} , F′

1, . . . ,F
′
m : X → {0, 1} where moreover ∀x ∈ X : F ′(x) = 0.

Proof. Adv′ firstly runs Adv to learn (i) the functionality F : X → Y which it
wants to attack and (ii) its Trojans F1, . . . ,Fm. It then outputs (as its choice
of function to attack) an F ′ where ∀x ∈ X : F ′(x) = 0 and, for every i ∈ [m],
it chooses the Trojan F′

i to output 0 if Fi would output the correct value, and
1 otherwise. More formally, F′

i(x) invokes the original Trojan y ← Fi(x) and
outputs 0 if F(x) = y and 1 otherwise.

By construction, whenever one of the F′
i’s deviates (i.e., outputs 1), also

the original Fi would have deviated. And whenever the test or master detect
an inconsistency in the new construction, they would also have detected an
inconsistency with the original F and Fi.5 �

2.4 Lower Bounds

By definition, (win,wrng)-security implies (win′,wrng′)-security for any win′ ≥
win,wrng′ ≥ wrng. The completeness property implies that no scheme is (1, 0)-
secure (as by behaving honestly an adversary can (1, 0)-win). And also no scheme
is (0, 1)-secure (as Pr[E] ≥ 0 holds for every event E). Thus our (win,wrng)-
security notion is only interesting if both, win and wrng are > 0. We will prove
the following lower bound:

Lemma 2 (Lower bound for simple schemes). For any c > 0 and m ∈ N

there exists a constant c′ = c′(c,m) > 0 such that no m-redundant simple scheme
Πm is (c, c′

T )-Trojan-resilient.

5 Let us mention that the opposite is not true (it’s possible that for some i �= j we
have F′

i(x) = F′
j(x) = 1, while Fi(x) �= Fj(x)). This just captures the observation

that an adversary who wants to deviate as often as possible without being detected
can wlog. always deviate to the same value.
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Proof. Adv chooses the constant functionality F(x) = 0 with a sufficiently large
input domain |X | � (m · T )2 (so that sampling m · T elements at random from
X with or without repetition is basically the same). Now Adv samples a random
subset X ′ ⊂ X , |X ′|/|X | = 1.1·c′

T (for c′ to be determined) and then defines
Trojans which deviate on inputs from X ′

∀i ∈ [m] : Fi(x) =
{

1 if x ∈ X ′ (deviate)
0 if x �∈ X ′ (correct)

Should the test pass, the master will deviate on each input with probability
1.1 · c′/T , if we set the number of queries Q large enough, the fraction of wrong
outputs will be close to its expectation 1.1·c′/T , and thus almost certainly larger
than c′/T .

It remains to prove that the test passes with probability ≥ c. By correctness,
the testing procedure TF1,...,Fm,F,$ must output pass unless one of the total ≤ m·T
queries it made to the Fis falls into the random subset X ′. The probability that
no such query is made is at least

(
1 − 1.1 · c′

T

)m·T

and this expression goes to 1 as c′ goes to 0. We now choose c′ > 0 sufficiently
small so the expression becomes > c. To get a quantitative bound one can use
the well known inequality limT→∞(1 − 1/T )T = 1/e ≈ 0.367879. �

The (proof of) the previous lemma also implies the following.

Corollary 1. If a simple scheme Πm is (win(T ),wrng(T )) secure with

1. win(T ) ∈ 1 − o(1) then wrng(T ) ∈ o(1/T ).
2. wrng(T ) ∈ ω(1/T ) then win(T ) ∈ o(1).

The first item means that if Adv wants to make sure the Trojan is only detected
with sub-constant probability, then he can only force the master to output a
o(1/T ) fraction of wrong outputs during deployment. The second item means
that if Adv wants to deviate on a asymptotically larger than 1/T fraction of
outputs, it will be detected with a probability going to 1.

Not Interesting Security for 1-Redundant Schemes. For m = 1 redundant cir-
cuits a much stronger lower bound compared to Lemma 2 holds. The following
Lemma implies that no 1-redundant scheme is (ε(T ), δ(T ))-Trojan-resilient for
any ε(T ) > 0 and δ(T ) = 1/poly(T ) (say ε(T ) = 2−T , δ(T ) = T−100).

Lemma 3 (Lower bound for m = 1). For any 1-redundant scheme Π1 and
any polynomial p(T ) > 0, there is an adversary that (1, 1 − 1/p(T ))-wins in the
TrojanGame(Π1, T,Q) game for Q ≥ p(T ) · T .

Proof. Consider an adversary who chooses a “time bomb” Trojan F1 which cor-
rectly outputs F(x) for the first T queries and also stores those queries, so it can
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output the correct value if one of those queries is repeated in the future. From
query T + 1 the Trojan outputs wrong values unless it is given one of the first
T queries as input, in which case it outputs the correct value. This Trojan will
pass any test making at most T invocations, while the master will deviate on
almost all queries, i.e., all except the first T .

To see why we store the first T queries and do not deviate on them when
they repeat in the future, consider a master which stores the outputs it observes
on the first T queries so it can later detect inconsistencies. �

2.5 Efficiency of Lower Bound vs. Constructions

For the lower bounds in the previous section, the only restriction on the test
TF1,...,Fm,F,$(T ) is that each Fi can only be queried at most T times. There are
no restrictions on the master MF1,...,Fm,$(·) at all. In particular, it can be stateful,
computationally unbounded, use an arbitrary amount of randomness, and query
the Fis on an unbounded number of inputs (as the Trojan Fis can be stateful
this is not the same as learning the function table of the Fi’s).

While the lack of any restrictions makes the lower bound stronger, we want
our upper bounds, i.e., the actual constructions, to be as efficient (in terms of
computational, query and randomness complexity) and simple as possible, and
they will indeed be very simple.

Let us stress that one thing the definition does not allow is the test to pass
a message to the master. If we would allow a message of unbounded length
to be passed this way no non-trivial lower bound would hold as T could send
the entire function table of F to M, which then could perfectly implement F .
Of course such a “construction” would get against the entire motivation for
simple schemes where M∗ should be much simpler and independent of F . Still,
constructions where the test phase sends a short message to the master (say, a
few correct input/output pairs of F which the master could later use to “audit”
the Trojans) could be an interesting relaxation to be considered.

2.6 Our Results and Conjectures

Our main technical result is a construction of a simple scheme which basically
matches the lower bound from Lemma 2. Of course for any constant c > 0, the
constant c′ in the theorem below must be larger than in Lemma 2 so there’s no
contradiction.

Theorem 1 (Main, optimal security of Π12). For any constant c > 0 there
is a constant c′ such that the simple construction Π12 from Fig. 3 is (c, c′

T )-Trojan
resilient.

While (c, c
T )-Trojan-resilience matches our lower bound, the construction is m =

12-redundant (recall this means we need 12 instantiations of F manufactured
to instantiate the scheme). While for m = 1 redundancy is not sufficient to get
any interesting security, as we showed in Lemma 3, we conjecture that m = 2 is
sufficient to match the lower bound, and give a candidate construction.
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F1

Test Phase
TF1,F2(T )

sample Δ ←$ [T − 1]0
xi ←$ X for i ∈ [Δ]

F

?=

xi (for i = 1 . . .Δ)

Output pass if all outputs
= 1, output fail otherwise.

F1 F2

xi

?=

Wild Phase
MF1,F2

{
1 if y = z
0 if y �= z

?=

y z

y z

?={
y if y = z

abort if y �= z

Test (trusted)

Manufactured (not trusted)

Master (trusted)

Fig. 2. Construction Π�
2 (discussed in Sect. 2.9), which is (c, c′

T
) secure for history-

independent Trojans.

Fj

Test Phase
TF1,...,F12,F,$(T )

sample Δ ←$ [T − 1]0
xi ←$ X for i ∈ [Δ]

F

?=

Output pass if all Δ outputs
= 1, output fail otherwise.

For i ∈ [Δ]
j ∈ {1, 4, 5, 8, 9, 12}

xi

Wild Phase MF1,...,F12,$(x)
set x1 := x and sample

x2, x3 ←$ X
sample b ←$ {0, 1}

F1 F2 F3 F4

x1 x2

b

b

?= ?=

F5 F6 F7 F8

x1 x2 x3

b

?= ?=

b b b

Master outputs y1 = F1(x) if all output ok and outputs
abort otherwise

y1

F9 F10 F11 F12

x1 x2 x3

b

?= ?=

b bb

?=

y7 y10

?=

y3 y11

?=

y2 y6

y2

y6

y3

y7y11y10

Π12 = (T∗,M∗)

Test (trusted)

Manufactured (not trusted)

Master (trusted)

x0 x1

b ∈ {0, 1}

xb x1−b

y z

?={
ok if y = z

abort if y �= z

{
1 if y = z
0 if y �= z

?=

y z

?=

Fig. 3. Construction Π12 for which we prove optimal Trojan-resilience as stated in
Theorem 1. Very informally, the security proof is by contradiction: via a sequence of
hybrids an attack against Π12 is shown to imply an attack where the yellow part basi-
cally corresponds to Π�

2 with two history independent circuits. This attack contradicts
the security of Π�

2 as stated in Theorem 2. (Color figure online)
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Conjecture 1 (Optimal security of Πφ
2 ). For any 0 < φ < 1 and any constant

c > 0 there is a constant c′ = c′(c, φ) such that the simple construction Πφ
2 from

Sect. 3 is (c, c′
T )-Trojan resilient.

The parameter φ in this construction basically specifies that the master will
query both oracles F1 and F2 on a (random) T−φ fraction of the input, and
check consistency in this case. While the conjecture is wrong for φ = 0 and
φ ≥ 1, the φ = 0 case (i.e., when we always query both, F1 and F2) will be
of interest to us as security of the Π�

2
def= Π0

2 construction against a limited
adversary (termed history-independent and discussed in Sect. 2.9 below) will be
a crucial step towards our proof of our main theorem.

2.7 Comparison with VC and MPC

Let us shortly compare the security we achieve with the more costly solutions
based on verifiable computation (VC) [2,17] and multiparty computation (MPC)
[5] discussed in the introduction. We can consider (win,wrng)-security as in Def-
inition 1 also for the VC and MPC construction, here one would need change
the TrojanGame(Π,T,Q) from Sect. 2.3 to allow the trojans Fi to implement a
different functionality than the target F (for VC one needs to compute an extra
succinct proof, for MPC the trojans implement the players in an MPC compu-
tation). For VC there’s no test (so T = 0) and only one m = 1 Trojan, and for
MPC and VC we can drop the requirement that the inputs are iid.

In the VC construction the master will catch every wrong output (except with
negligible probability), so for any polynomial poly there is a negligible function
negl (in the security parameter of the underlying succinct proof system), such
that the scheme is (1/poly, negl,Q) secure for any polynomial Q.

For the MPC construction the master will provide Q < c0T outputs with
probability cm

1 (where c0 ∈ [0, 1/2] and c1 ∈ [0, 1] are some constants), but while
outputs are provided they are most likely correct, so for any polynomial Q,T we
have (1 − cm

1 , negl,Q) security.

2.8 Stateless Trojans

In our security definition we put no restriction on the Trojans Fi provided by
the adversary (other than being digital hardware Trojans as discussed in the
introduction), in particular, the Fi’s can have arbitrary complex evolving state
while honestly manufactured circuits could be stateless. We can consider a vari-
ant of our security definition (Definition 1) where the adversary is only allowed
to choose stateless Trojan circuits Fi. Note that the lower bound from Lemma 2
still holds as in its proof we did only consider stateless Fi’s. There’s an extremely
simple 1-redundant construction that matches the lower bound when the adver-
sary is only allowed to chose stateless Trojans.

Consider a construction Π1 = (T∗,M∗) where the master is the simplest
imaginable: it just forwards inputs/outputs to/from its oracle, if F1 is stateless
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this simply means MF1(·) = F1(·). The test TF1,F,$(T ) queries F1 and the trusted
F on T random inputs and outputs fail iff there is a mismatch.

Proposition 1 (Optimal security for 1-redundant scheme for stateless
Trojans). For any constant c > 0 there is a constant c′ > 0 such that Π1

is (c, c′
T )-Trojan resilient if the adversary is additionally restricted to choose a

stateless Trojan.

Proof. If wrng′ denotes the fraction of inputs on which the Trojan F1 differs from
the specification F (both chosen by an adversary Adv, note that wrng′ is only
well defined here as F1 is stateless), then wrng′ must satisfy c > (1 − wrng′)T if
the adversary wants to (c,wrng)-win for any wrng, as otherwise already the test
catches the Trojan with probability (1 − wrng′)T > c. For c > (1 − wrng′)T to
hold wrng′ ∈ Ω(1/T ), in particular, wrng′ ≥ c′/T for some c′ > 0. �

2.9 History-Independent Trojans

A notion of in-between general (stateful) Trojans and stateless Trojans will play
a central role in our security proof. We say a trojan Fi is history-independent if
its only state is a counter which is incremented by one on every invocation, so
it’s answer to the i’th query can depend on the current index i, but not on any
inputs it saw in the past.

We observe that Lemma 3 stating that no 1-redundant simple scheme can be
secure still holds if we restrict the choice of the adversary to history-independent
Trojans as the “time-bomb” Trojan used in the proof is history-independent. We
will show a 2-redundant construction Π�

2 that achieves optimal security against
history-independent Trojans.

Theorem 2 (History-Independent Security of Π�
2 ). For any constant c >

0 there is a constant c′ = c′(c) > 0 such that Π�
2 from Fig. 2 is (c, c′

T )-Trojan
resilient if the adversary is additionally restricted to choose a history-independent
Trojans.

The technical Lemma 4 we prove and which implies this theorem, actually implies
a stronger statement: for any positive integer k, the above holds even if we
relax the security notion and declare the adversary a winner as long a Trojan is
detected by the test or master at most k − 1 times. What this exactly means is
explained in Sect. 4.2. Note that this notion coincides with the standard notion
for k = 1.

The Π�
2 scheme is just the Πφ

2 scheme from Conjecture 1 for φ = 0, where
we conjecture that Πφ

2 is (in some sense) optimally secure for 0 < φ < 1. For
φ the conjecture is wrong, but somewhat ironically we are only able to prove
security against history-independent Trojans for φ = 0, and this result will be
key towards proving the security of Π12 as stated in our main Theorem 1.
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2.10 Proof Outline

The proof of our main Theorem 1 stating that Π12 is optimally Trojan-resilient
is done in two steps. As just discussed, we first prove security of Π�

2 against
history-independent Trojans, and in a second step we reduce the security of
Π12 against general Trojans to the security of Π�

2 against history-independent
Trojans. We outline the main ideas of the two parts below.

Part 1: Security of Π�
2 Against History-Independent Trojans (Theorem 2,

Lemma 4). Π�
2 is a very simple scheme where the test TF1,F2,F,$ just queries

F1 on a random number Δ, 0 ≤ Δ < T of inputs and checks if they are correct
(the test ignores F2). The master MF1,F2,$(x) queries y ← F1(x) and y′ ← F2(x)
on x and aborts if they disagree.

In the proof of Lemma 4 we define pi and qi as the probability that F1 and F2

outputs a wrong value in the ith query on a random input, respectively. As F1,F2

are history independent, this is well defined as this probability only depends on
i (but not previous queries).

Let the variable ΦΔ denote the number of times the Trojans will be detected
conditioned on the random number of test queries being Δ. This value is (below
Q is the number of queries to the master and we use the convention qi = 0 for
i < 0)

E[ΦΔ] =
Q+Δ∑
i=1

|pi − qi−Δ| (1)

In this sum, the first Δ terms account for the test, and the last Q terms for the
wild-phase. Moreover let YΔ denote the number of times F1 deviates (and thus
the master outputs a wrong value), its expectation is

E[YΔ] =
Q+Δ∑

i=Δ+1

pi

To prove Trojan-resilience of Π�
2 as stated in Lemma 4 boils down to proving

that, for most Δ, whenever the probability of ΦΔ = 0 (i.e., the Trojan is not
detected) is constant, the fraction of wrong outputs YΔ/Q must be “small”
(concretely, O(1/T )).

The core technical result establishing this fact is Lemma 5. Unfortunately,
this Lemma only establishes this fact for the expectation, i.e., whenever E[ΦΔ]
is small, also E[YΔ] is small. Here is where we use the fact that the F1,F2 are
history independent: in the history independent case ΦΔ and YΔ can be written
as the sum of independent boolean variables, so using a Chernoff bound it follows
that their actual value will be close to their expectation with high probability.

It is instructive to see why for example setting pi = qi = δ for some fixed δ > 0
does not contradict Theorem 2. To contradict it, the fraction of wrong outputs
(which here is simply δ) must be ω(1/T ). In this case, E[ΦΔ] = Δ · δ = ω(Δ/T ),
which to contradict the lemma must be at least constant, which in turn means
Δ ∈ o(T ) must hold. As Δ, 0 ≥ Δ < T is uniform, t’s o(T ) with o(1) probability,
but for a contradiction we also need this probability to be constant.
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Part 2: Reducing the Security of Π12 Against General Trojans to the Security of
Π�

2 Against History Independent Trojans (Theorem 1). While the random shift
Δ makes Π�

2 secure against history-independent attacks (like time-bombs, where
a Trojan starts deviating after some fixed number of queries), it succumbs to
cheat codes: as the master always queries F1,F2 on the same inputs, a Trojan can
specify some set of trigger inputs, and after receiving such a trigger the Trojans
will deviate forever. By making the fraction of inputs that are triggers sparse,
the Trojans will likely not be detected during testing (a 1/T fraction will survive
testing with constant probability).

To prevent such a coordination via the inputs, in Π12 inputs are somewhat
randomly assigned to the different Trojans. In particular, as emphasized in the
yellow area in Fig. 3, the F1 is always queried on the input x, and then the random
bit b determines whether F2 or F3 are queried on x. If an input x were to trigger
the Trojans to always deviate, F1 and one of F2 and F3 will be triggered, say it’s
F2. But now, as soon as F3 is queried in a future round the master will abort as
F1 will deviate, but F3 will not (except if this query also happens to be a trigger,
which is unlikely as triggers must be sparse to survive the testing phase).

This just shows why a particular attack does not work on Π12. But we want
a proof showing security against all possible Trojans. Our proof proceeds by
a sequence of hybrids, where we start with assuming a successful attack on
Π12, and then, by carefully switching some circuits and redefining them by hard
coding “fake histories”, we arrive at a hybrid game where there is still a successful
attack, but now the circuits in the yellow area basically correspond to two the Π�

2

construction instantiated with history-independent Trojans, but such an attack
contradicts our security proof for Π�

2 as stated in Lemma 4.

3 Conjectured Security of 2-Redundant Schemes

While the main technical result in this paper is a simple scheme Π12 that prov-
ably achieves optimal security as stated in Theorem 1, this construction is not
really practical as it is 12-redundant. Recall that k-redundant means the master
needs k instantiations of the functionality F , so it’s in some sense the hardware
cost. For this section let us also define a computational cost: the rate of a simple
construction is the average number of invocations to its Fi oracles the master
MF1,...,Fm,$(·) makes with any query.

3.1 A 2-Redundant Scheme Πφ
2

We will now define a scheme Πφ
2 which in terms of redundancy and rate is as

efficient as we possibly could hope for a scheme with non-trivial security: it’s
2-redundant and has a rate of slightly above (the trivial lower bound of) 1. The
construction Πφ

2 = (M∗,T∗), where φ ∈ R, φ ≥ 0 is illustrated in Fig. 4.

test: In the test phase, TF1,F2,F(T ) picks a random Δ, 0 ≤ Δ ≤ T − 1, then
queries F1 on Δ random inputs and checks if the outputs are correct by
comparing with the trusted F.
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master: With probability 1 − T−φ the master MF1,F2,$(x) picks either F1 or
F2 at random, queries it on x and uses the output as its output. Otherwise,
with probability T−φ, the master queries both oracles and outputs abort if
their outputs don’t match, and forwards the output of F1 otherwise.

Fig. 4. Construction Πφ
2 from Conjecture 1.

Our Conjecture 1 states that this construction achieves optimal security (optimal
in the sense of matching the lower bound from Lemma 2) for any 0 < φ < 1, i.e.,

For any 0 < φ < 1 and any constant c > 0 there is a constant c′ such that
Πφ

2 is (c, c′
T )-Trojan resilient.

We discuss how Πφ
2 performs against typical Trojans like time-bombs and cheat

codes. Our conjecture only talks about (win(T ),wrng(T ))-security where the
winning probability win(T ) = c is a constant, and here the exact value of φ
does not seem to matter much as long as it is bounded away from 0 and 1. For
win(T ) = o(1) the parameter φ will matter as those attacks will illustrate. (the
o(1) always denotes any value that goes to 0 as T → ∞).

Proposition 2 (Time Bomb against Πφ
2 ). For any φ, there exists an adver-

sary that (Θ(T−φ), 1 − o(1))-wins in TrojanGame(Θ(Πφ
2 ), T, ω(T ))

Proof (sketch). Let Adv choose the constant functionality ∀x ∈ X : F(x) = 0,
and a Trojan F1 which outputs the correct value 0 for the first T queries, and 1
for all queries > T , while F2 always outputs 1.

F1 will always pass the test. The master will abort iff one of its first T − Δ
queries to F1 (where the output is 0) is a “b = 2” query (as then F1(x) = 1 �= 0 =
F2(x)). With probability T−φ we have Δ ≥ T − Tφ, and in this case such a bad
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event only happens with constant probability (using (1−ε)1/ε ≈ 1/e = 0.368 . . .).
So the Trojan will not be detected with probability T−φ/e, and in this case also
almost all outputs will be wrong. �

Proposition 3 (Cheat Code against Πφ
2 ). For any φ, there exists an adver-

sary that (Θ(Tφ−1), 1 − o(1))-wins in TrojanGame(Θ(Πφ
2 ), T, ω(T ))

Proof (sketch). Let Adv choose the constant functionality ∀x ∈ X : F(x) = 0.
The Trojans F1,F2 output 0 until they get a query from a “trigger set” X ′ ⊂ X ,
after this query they always deviate and output 1.

If we set |X ′|/|X | = 1/T , then the test will pass with constant probability
(1 − 1/T )Δ ≥ (1 − 1/T )T ≈ 1/e. Assuming the Trojans passed the test phase,
the master will not catch the Trojans if the first trigger query to F1 and F2

happen in-between the same b = 2 queries (or in such a query). This happens
with probability ≈ Tφ−1. �

The two propositions above imply that the adversary can always
(Tmax{−φ,φ−1}, 1−o(1))-win by either using a time-bomb or cheat-code depend-
ing on φ. The winning probability is minimized if −φ = φ − 1 which holds for
φ = 0.5. We conjecture that the above two attacks are basically all one can do
to attack Πφ

2 .

Conjecture 2 (Security of Π0.5
2 for low winning probabilities). For win(T ) ∈

ω(T−0.5), Π0.5
2 is (win(T ),wrng(T ))-Trojan resilient for some wrng(T ) ∈ o(1).

4 A Scheme for History-Independent Trojans

In this section we define the simple scheme Π�
2 and prove its security as claimed in

Theorem 2. Recall that a history-independent Trojan circuit is a stateless circuit,
except that it maintains a counter. We recall that a trojan is history-independent
if its state is a counter which is incremented by one on every invocation, so its
answer to the i’th query can depend on the current index i and current input
xi, but not on any inputs it saw in the past.

4.1 Notation

For an integer n we define [n] def= {1, . . . , n} and [n]0
def= {0, . . . , n}. We will also

use the Chernoff bound.

4.2 Security of Π�
2

Relaxing the Winning Condition. We can think of the security experiment
TrojanGame(Π�

2 , T,Q) as proceeding in rounds. First, for a random Δ ∈ [T ], we
run the test for Δ rounds (in each querying F1 and F on a random input and
checking equivalence), and then Q rounds for querying the master (in each round
querying F1 and F2 and checking for equivalence). The adversary immediately
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loses the game if a comparison fails (outputs 0 in the test or abort in the master)
in any round.

We consider a relaxed notion of (win,wrng)-winning, “relaxed” as we make it
easier for the adversary, and thus proving security against this adversary gives
a stronger statement. We define (win,wrng)-k-winning like (win,wrng)-winning,
but the adversary is allowed to be detected in up to k−1 rounds, so (win,wrng)-
1-winning is (win,wrng)-winning.

This relaxed notion is not of practical interested, as one would immediately
abort the moment a Trojan is detected. We consider this notion as we need it for
the security proof of our main Theorem 1, where we will only be able to reduce
security of Π12 to the security of Π�

2 (against history-independent Trojans) if
Π�

2 satisfies this stronger notion.

Proof of Theorem 2. The following lemma implies Theorem 2 for k = 1, as
discussed after the statement of the theorem the lemma below is somewhat more
general as we’ll need the stronger security for any k.

Lemma 4. For any constant c > 0 and positive integer k, there exists a constant
c′, and integer T0 and polynomial q(.) such that no adversary Adv exists that only
chooses history-independent Trojans and that for any

T ≥ T0 , Q ≥ q(T )

can (c, c′/T )-k-win TrojanGame(Π�
2 , T,Q).

Proof. For a given c > 0 define

c′′ = max{64k,−256 ln(c/2)}

we then set c′, q(T ) and T0 as

c′ = c′′/c2 , q(T ) =
5 · T 2c

c′′ + 5T , T0 = 1 (2)

These values are just chosen so that later our inequalities work out nicely, we
did not try to optimise them.

By Lemma 1 we can consider the security experiment where an adversary
Adv chooses the constant functionality F : X → 0 as target and the two (history-
independent) Trojans F1,F2 : X → {0, 1} output a bit (so they can either cor-
rectly output 0 or deviate by outputting 1). As the F1,F2 are history indepen-
dent, we can think of F1 as a sequence F1

1,F
2
1, . . . of functions where Fi

1 behaves
like F1 on the ith query. Let pi and qi denote the probability that F1 and F2

deviates on the ith query, respectively

pi
def= Pr

x←X
[Fi

1(x) = 1] , qi
def= Pr

x←X
[Fi

2(x) = 1]
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In TrojanGame(Π�
2 , T,Q), for δ ∈ [T − 1]0 let the variable Yδ denote the number

of wrong outputs by F1 conditioned on the number of test queries Δ ←$ [T −1]0
being Δ = δ. The expectation is

E(Yδ) =
Q∑

i=1

pi+δ (3)

Let the variables ΦT
δ and ΦM

δ denote the number of times the test and the master
“catch” a Trojan conditioned on Δ = δ

E[ΦT
δ ] =

δ∑
i=1

|pi| , E[ΦM
δ ] ≥

Q∑
i=1

|pi+δ − qi|

let Φδ
def= ΦT

δ + ΦM
δ denote the total number of times the Trojans are detected,

and Φ′
δ being the same but we ignore the last δ queries. With the convention

that qi = 0 for i < 1

E[Φδ] ≥
Q+δ∑
i=1

|pi − qi−δ| , E[Φ′
δ] ≥

Q∑
i=1

|pi − qi−δ| , E[Φδ] ≥ E[Φ′
δ] (4)

As we consider history-independent Trojans the Yδ, Φδ variables are sums of
independent Bernoulli random variables. Using a Chernoff bound we will later
be able to use the fact that for such variables are close to their expectation with
high probability.

Claim. For any δ ∈ [T − 1]0, τ ∈ [T − 1 − δ] (so δ + τ ≤ T − 1)

E[Φδ] + E[Φδ+τ ] ≥ τ · E[Yδ] − T

Q + T
(5)

Proof (of Claim). Assume for a moment that p1, . . . , pτ = 0 as required to apply
Lemma 16, then

E[Φδ] + E[Φδ+τ ]
(4)

≥ E[Φ′
δ] + E[Φ′

δ+τ ] (6)

≥
∑

Δ∈{δ,δ+τ}

Q∑
i=1

|pi − qi−Δ| (7)

Lemma5

≥ τ ·
∑Q

i=1 pi

Q
= τ · E[Y0]

Q
(8)

≥ τ · E[Yδ] − T

Q
(9)

The last step used E[Y0] + δ ≥ E[Yδ] and δ ≤ T .
We now justify our assumption p1, . . . , pτ = 0. For this change the security

experiment and replace the Trojans F1,F2 chosen by the adversary with Trojans
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that first behave correctly for the first T inputs, and only then start behaving
like F1,F2 (technically, the new Trojans deviate with probabilities p′

i, q
′
i satisfying

p′
1, . . . , p

′
T = 0, q′

1, . . . , q
′
T = 0 and for i > T : : p′

i = pi−T and q′
i = qi−T ). At

the same time, we increase Q to Q + T . This change leaves E[Yδ] unaffected,
while E[Φ′

δ],E[Φ′
δ+τ ] can only increase. This proves the claim, note that in (5)

the denominator is Q + T not Q as in (9) to account for this shift. �

Claim. For all but at most a c/2 fraction of the δ ∈ [T ]0

E[Φδ] ≥ c · T

8
· E[Yδ] − T

Q + T
(10)

Proof (of Claim). We use Eq. (5) which can be understood as stating that if
E[Φδ] is “small” for some δ, then all E[Φδ′ ] with |δ − δ′| large enough can’t be
small too. Concretely, consider any δ for which (if no such δ exists the claim
already follows)

E[Φδ] <
c · T

8
· E[Yδ] − T

Q + T

then for all δ′ ∈ [T ]0 for with |δ − δ′| ≥ c·T
4 (note this is at least a c/2 fraction)

by Eq. (5)

E[Φδ] + E[Φδ′ ] ≥ c · T

4
· E[Yδ] − T

Q + T

the two equations above now give

E[Φδ′ ] ≥ c · T

8
· E[Yδ] − T

Q + T

as claimed. �

To prove the lemma we need to show that when Q is sufficiently large, any
adversary attacking at least c′/T fraction of times, can win at most k times with
probability less than c. Since the duration of test phase δ is chosen randomly
from the set {0, ..., T − 1}, we start with the following equation:

1
T

T−1∑
δ=0

Pr[(Yδ/Q ≥ c′/T ) ∧ (Φδ < k)] < c (11)

Let cδ denote the probability the adversary k-wins conditioned on Δ = δ

cδ
def= Pr[(Yδ/Q ≥ c′/T ) ∧ (Φδ < k)] (12)

With this notation we need to show

1
T

T−1∑
δ=0

cδ < c

which follow from the claim below
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Claim. cδ < c/2 holds for all δ, except (the at most c/2 fraction of) the δ ∈ [T ]0
for which (10) does not hold

Proof (of Claim). Consider any δ for which (10) holds. If for this δ Pr[Yδ ≥
Q · c′/T ] < c/2 we’re done as by (12) also cδ < c/2 (using that Pr[a ∧ b] ≤ Pr[a]
for all events a, b). To finish the proof of the claim we need to show that otherwise,
i.e., if

Pr[Yδ ≥ Q · c′/T ] ≥ c/2 (13)

then
Pr[Φδ < k] < c/2 (14)

as this again implies cδ < c/2. Equation (13) (using Pr[V ≥ x] ≥ p ⇒ E[V ] ≥ x·p
which follows from Markov’s inequality) gives

E[Yδ] ≥ Q · c′ · c/2T (15)

Plugging this into (10), then using or choice (2) of c′ = c′′/c2 and in the last
step of Q ≥ q(T ) = 5 ·T 2 · c/c′′ +5T (this bound for q(T ) was just chosen so the
last inequality below works out nice).

E[Φδ]
(10)
≥ c · T

8
· E[Yδ] − T

Q + T

(15)
≥ c · T

8
·

Q·c′·c
2T − T

Q + T

(2)
≥ Q · c′′ − 2T 2 · c

16(Q + T )
≥ c′′/32

Using the Chernoff bound with ε = 1/2 and c′′ ≥ −256 ln(c/2) (refer to
Appendix in the extended technical report for details).

Pr[Φδ < c′′/64] ≤ Pr[Φδ < E[Φδ]/2] ≤ e−E[Φδ]/8 ≤ e−c′′/256 ≤ c/2

With our choice (2) of c′′ = max{64k,−256 ln(c/2)} we get the bound Pr[Φδ <
k] ≤ c/2 claimed in (14). �

�

4.3 A Technical Lemma

Consider any t, z ∈ N, z > t, t = 0 mod 2 and p1, . . . , pz ∈ [0, 1]. Denote with
p̄

def=
∑z

i=1 pi

z be the average value.

Lemma 5. For any q1, . . . , qz ∈ [0, 1], (defining qi = 0 for i ≤ 0) and integers
Δ′, τ where 0 ≥ Δ′, τ ≥ 0, if p1 = p2 = . . . = pτ = 0 then

∑
Δ∈{Δ′,Δ′+τ}

z∑
i=1

|pi − qi−Δ| ≥ τ · p̄ (16)
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We refer the reader to our technical report for the full proof, but let us observe
that for example it implies, that if p1 = p2 = . . . = pt = 0, then

1
t

t−1∑
Δ=0

z∑
i=1

|pi − qi−Δ| =
1
t

t/2−1∑
Δ′=0

∑
Δ∈{Δ′,Δ′+t/2}

z∑
i=1

|pi − qi−Δ|

︸ ︷︷ ︸
≥t·p̄/2 by (16)

≥ t

4
· p̄ (17)

Looking ahead, the lhs. of Eq. (17) will denote the expected number of times
the master circuit detects an inconsistency in the experiment, while p̄ denotes
the fraction of outputs where F1 diverts. So if the fraction of wrong outputs is
larger than 4/t, the master circuit will on average raise an alert once. To get a
bound on the security the expected number of alerts is not relevant, only in the
probability that it’s larger than one, as this means that a Trojan was detected.
The more fine grained statement Eq. (16) will be more useful to argue this.

(Δ, i) entry contains value |pi − qi−Δ|
1 2 3 4 5 6 7 8 9 10 11 12

0

2

3

1

i =

Δ = |p10 − q9|

|p2 − q−1|

z = 12, t = 4, τ = 2,Δ′ = 1

τ

Δ′ Sτ=2,Δ′=1

|p12 − q9||p10 − q7|Z6

Fig. 5. Illustration of the main variables used in the proof of Lemma 5.

5 A 12-Redundant Scheme Π12

In this section we define a scheme Π12 and we will show that the lower bound
for achievable security for very simple schemes (shown in Lemma 2) is asymp-
totically tight. Our proof is constructive - the analysis of our Π12 construction
shows that it is (c, c′

T )-Trojan resilient for suitable constants.
Our Π12 scheme operates with three independent input streams and one

independent bit stream. On each query, every circuit in Π12 receives one of
the three inputs and produces an output. The master circuit then checks the
consistency of the outputs, i.e. verifies if there is no mismatch between any pair
of circuits receiving the same input.

As stated in Sect. 1, digital Trojans mainly employ two types of strategies:
time bombs (where time is measured in the number of usages) and cheat codes
(as a part of the input). To counter these strategies, Π12 desynchronizes the
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circuits in two ways. First, some of the circuits are tested in the test phase for
a randomly chosen time (already employed in the Π∗

2 scheme). This effectively
makes it difficult for time bomb Trojans to coordinate the time in which they
start deviating. In Π12, half of the circuits are tested for T times where T is a
random variable with uniform distribution on [t].

The second method of desynchronization involves using the value of the afore-
mentioned input bit to alternate the way inputs are distributed among the cir-
cuits. Consequently, cheat code Trojans are rendered ineffective as only a subset
of the circuits share the same input. Moreover, at any given point in time a cir-
cuit never “knows” which alternating state it is in (i.e. it does not know whether
its output would be compared with deviating circuits or not).

F F F F

b = 0
x x′

?= ?=

F F F F

b = 1
x x′

?= ?=

x, x′ ←$ X , b ←$ {0, 1}

Fig. 6. In a given group of circuits, depending on the value of b, the leftmost and
rightmost circuits (outer circuits) are paired with the circuits in the middle (inner
circuits). Circuits in a pairing are given the same input, and their outputs are checked
for equivalence.

The main building block of the Π12-scheme is a group of four circuits: two
outer ones and two inner ones (see Fig. 6). On each query, every group of cir-
cuits receives two inputs - the first is given to the outer circuit on the left and
the second to the outer circuit on the right. Additionally, in every step a fresh
decision/alternation bit b is sampled. According to its value these two inputs are
given to the inner circuits. Π12 consists of three such groups. Crosschecks are
performed whenever two distinct circuits receive the same input (both within a
group and among groups).

The proof that the construction Π12 is actually Trojan-resilient starts with
assuming that it is not secure, goes via a hybrid argument and leads to a con-
tradiction with security of Π∗

2 construction. In every hybrid we change the con-
struction slightly by swapping some pairs of circuits, arguing that the advantage
of the adversary does not change much between each successive hybrids. In
the final hybrid we show that the modified construction contains Π�

2 as a sub-
construction. It turns out, that any adversary who wins with reasonable good
probability in the final hybrid can be used to build an adversary who breaks the
security of Π�

2 which is a contradiction with Theorem 2.
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5.1 The Π12 Scheme

We will now define our Π12 construction. It is illustrated in Fig. 3. We view
our 12-circuit construction as three groups of four circuits each. Group 1 con-
sists of circuits F1, . . . ,F4, group 2 consists of F5, . . . ,F8, and group 3 consists of
F9, . . . ,F12. At the beginning the three independent and identically distributed
sequences of inputs are sampled. Moreover, independent sequence of bits is sam-
pled (it is used to alternate the inputs’ distribution in the wild). For every query
in the wild, the construction performs two steps: (i) the querying step, where
the inputs are distributed to all the 12 circuits depending on the value of the
corresponding bit (ii) the cross-checking step, where the master circuit checks
the consistency of the outputs of the circuits who receive the same inputs.

Now we can take a closer look on our construction. There are three pairs of
circuits that share the same input throughout the course of the game regardless
of the value of the random bit (see Fig. 3). For instance, the circuit pairs (F2,F6),
(F3,F11) and (F7,F10) share the exact same inputs throughout the game. The
outer two circuits within each circuit group (circuits Fi for i ≡ 0, 1 mod 4) are
uniquely paired with exactly one of the middle circuits, i.e. given the same input,
depending on the value of the random bit bi sampled by the master circuit at
each step of the game. For instance, in circuit group 1 if bi = 0, F1 is paired with
F2 and both circuits given x1

i as input, and F4 is paired with F3 and both given
x2

i as input. After the querying phase, the master cross-checks the output of the
circuits which share the same input streams. If any of the cross checks in any
round fail, then the master aborts and the adversary looses. We now provide a
more detailed description of the construction as follows:

test: In the test phase, TF1,··· ,F12,F(T ) picks a random Δ such that 0 ≤ Δ ≤
T − 1, then queries F1,F4,F5,F8,F9 and F12 on Δ random and independent
inputs x1

i , x
4
i , x

5
i , x

8
i , x

9
i and x12

i respectively and checks if the outputs of the
corresponding circuits are correct by comparing them with the trusted F.

master: The master samples three independent input streams x1 = (x1
1, x

1
2, x

1
3,

· · · ), x2 = (x2
1, x

2
2, x

2
3, · · · ), x3 = (x3

1, x
3
2, x

3
3, · · · .) and an independent bit

string b = (b1, b2, · · · ). The operation of the master circuit is split into two
phases: (i) querying phase and (ii) cross-checking phase.
Querying step. For all i ∈ [Q], it queries the functions F1,F2 · · · ,F12 as fol-
lows:
1. If bi = 0,

– The functions F1,F2,F5,F6 get x1
i as input,

– The functions F3,F4,F11,F12 get x2
i as input, and

– The functions F7,F8,F9,F10 get x3
i as input.

2. if bi = 1,
– The functions F1,F3,F9,F11 get x1

i as input,
– The functions F2,F4,F6,F8 get x2

i as input, and
– The functions F5,F7,F10,F12 get x3

i as input

Cross-Checking Step. For all i ∈ [Q], the master circuit pairwise compares the
outputs of the circuits that receive the same inputs (refer to the technical report
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for the details of the cross-checking phase). If at any round any of the checks
fail, the master outputs abort and the adversary looses.
Output. If all the checks succeed in the cross-checking phase, the master outputs
the output of the circuit F1, i.e., y = F1( x1) as the output of Π12.

5.2 Security of Π12

In this section we prove Theorem 1, which states that the construction presented
in Sect. 5.1 is (c, c′

T )-secure for appropriate choice of constants c and c′. More pre-
cisely, we show that the security of the 2-circuit construction from Sect. 2.9 can
be reduced to the security of the 12-circuit construction presented above. Before
proceeding with the proof, we introduce some useful definitions and notations.

5.2.1 History Hardcoded Circuits and Plaits
We observe that the notation F(x) for stateful circuits is ambiguous, since its
value depends also on the history of queries to F (which is not provided as a
parameter). We can thus assume that each F is associated with some stream
x = (x1, x2, ...) and that F(xi) := F(xi|x1, x2, ..., xi−1). This notation uniquely
describes the i-th query to F given the stream x.

In our proof we will however need a slightly different notion called history-
hardcoded circuits. Given any stateful circuit F and two arbitrary streams x =
(x1, x2, x3, ...) and w = (w1, w2, w3, ...), we say Fx is an x-history-hardcoded
circuit if at the i-th query it hardcodes the stream values x1, . . . , xi−1 as its
history and takes wi from the stream w as the input to query i. Thus Fx on the
i-th query with input wi returns the value: Fx,i(wi) = F(wi|x1, x2, ..., xi−1) and
on the i + 1-th query returns Fx,i+1(wi+1) = F(wi+1|x1, x2, ..., xi−1, xi). We call
the stream x the hardcoded history stream and w the input stream.

For a random variable X which takes values from {X1,X2, ...} and a circuit
F we define another random variable FX as follows. Its value for X = x is simply
Fx. We will call this random variable an X-history-hardcoded circuit. Note that
as long as FX receives inputs from a stream W independent from X, we can say
that Fx is a history-independent circuit.

We emphasize that when the hardcoded history stream is equal to the actual
input stream, the history-hardcoded circuit returns the same results as the orig-
inal stateful circuit receiving the same input stream. In other words:

F(Xi) = FX,i(Xi), (18)

for all i ∈ N with probability 1.
Another idea exploited in our construction is the concept of alternating inputs

depending on the values of random bits. We will express this idea using the notion
of b-plaits, where b is a stream of random bits. A b-plait of two streams a0 and
a1 is a new stream (a0a1)b, where its i-th value is either a0

i from stream a0 or
a1

i from stream a1 depending on the i-th value of the decision stream b. More
precisely:

(a0a1)b = (ab1
1 , ab2

2 , ab3
3 , ...)



422 S. Chakraborty et al.

In our construction, there is only one decision stream used for every plait, there-
fore the b will be omitted for simplicity. Thus to express the plait of two streams
a0, a1 we will simply write a0a1. A plait of two identical streams of say s will
simply be written as s, rather than ss.

Similarly to b-plaits of streams we can define the plaits of history-hardcoded
circuits. Let Gx0

0 be an x0-history-hardcoded circuit and Gx1

1 be an x1-history-
hardcoded circuit. We say (Gx0

0 Gx1

1 )b is b-plait for Gx0

0 ,Gx1

1 iff

(Gx0

0 Gx1

1 )ib(x) = Gxbi ,i
bi

(x). (19)

Note that the plaited circuit (Gx0

0 Gx1

1 )b can be expressed as a function of G0,G1

and streams x0,x1. Looking ahead, this notion of plaited circuits will be crucial
in our final reduction of the security of Π12 to Π�

2

Finally, we define an operation on history-hardcoded circuits in the context
of our construction:
Swap(Fx,Gt): Given two history hardcoded circuits Fx and Gt in our construc-
tion, this operation physically exchanges the positions of both circuits. That is,
that Ft physically replaces Gx and vice versa. Swapped circuits keep their his-
tories, but since they change their place in the construction, they now receive
potentially different inputs and are crosschecked with different circuits.

An important notion related to the Swap operation which we will exploit
in a proof is a red edge. We say there is a red edge in the k-th query between
two history hardcoded circuits Fx and Gt iff after performing the Swap(F,G)
operation there is a change in either of the outputs of the swapped circuits on
the k-th query compared to the outputs of the circuits if the Swap operation
was not performed. Looking ahead, the notion of swaps and red edges would be
used in our proof to show that modifying the original Π12 construction by some
Swap operations does not change much the security parameters.

Now, given these definitions, we are ready to present an intuition that lies
behind our construction. We might (and should) ask the authors “but why 12 cir-
cuits?”. The reason is understandable: it is hard to perform any direct proof for
history-dependent circuits; things become too complicated. Fortunately, there
exist reductions. As long as we have a valid proof of Theorem 2 for history-
independent circuits, we can try to find some construction of history-dependent
circuits which can be reduced to it. The main goal is to design the crosschecks
is such a way, that, informally speaking, making circuit more history-dependent
make the whole construction more secure. It is not hard to believe in such a
statement; thanks to the alternating random bit, you never know which of some
two circuits will receive a specific input. If these two circuits are very history
dependent and have independent histories, there is a high probability, that on
the given input they would answer differently. Thank to crosschecks, the master
may detect such inconsistency with high probability. To make a practical advan-
tage of this remark, we need to perform many Swap operations and analyze the
behaviour of various parameters describing our construction. We were able to
handle such design and analysis for 12 circuits construction.
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Now we will give a more detailed description of the intuition. As written
a few lines before, the main idea of the proof is to reduce the construction
which consists of (possibly) history-dependent circuits to Π�

2 . Π�
2 consists of

2 history-independent circuits (alternatively speaking - pairs of circuits with
different hardcoded histories, independent of the inputs that they receive). The
Swap operation Swap(Fx,Gt) is legit whenever either one of the conditions holds -
the circuits F and G are engaged in the cross-checking process as pictured in the
Fig. 6 (e.g. circuits F1 and F4 or circuits F6 and F7 in the Fig. 7 (Hyb0) or the
circuits received the same inputs before performing any swaps (e.g. circuits F2

and F7 swapped in Hyb2 which are placed at the positions of F2 and F6 from
Hyb0 in the Fig. 7). Now, the main idea of the proof is that by performing a
series of Swap operations on the setting with 3 rows of 4-circuit groups, we are
able to end up with a setting Hyb2 that contains 2 pairs of history-independent
circuits at the place of cross-checked circuit pairs (F1, F2) and (F3, F4). We need
just 1 Swap operation in the middle row to have history-independent circuits in
the place of F1 and F4, but for F2 (and F2) we will need an additional input
stream that goes with a new row.

We are now ready to proceed to the proof of Theorem 1.

5.2.2 Proof of Theorem 1
The proof of Theorem 1 proceeds in two parts. We ultimately want to prove a
reduction from the security of Π12 to that of Π�

2 . Nevertheless recall in Lemma 4
the security of Π�

2 crucially depends on history independent circuits. Thus the
first part of our proof constructs a sequence of three hybrids, Hyb0, Hyb1, Hyb2,
to get a pair of history independent circuits, F2

4 and F3
7F

3
10, in the final hybrid.

Hyb0 is the original construction. To get from Hyb0 to Hyb1, we perform the Swap
operation on the following pairs of circuits in Hyb0: (F1

1 ,F2
4); (F12

6 ,F3
7); (F3

10,F
21
11 ).

To get from Hyb1 to Hyb2, we perform the Swap operation on the following pairs
of circuits in Hyb1: (F12

2 ,F3
7); (F21

3 ,F3
10) (refer to Fig. 7). Note that in the final

hybrid Hyb2, it is crucial that F2
4 and F3

7F
3
10 are not just history independent, but

also take in the same inputs from input stream 1 regardless of the value of the
random bit (F3

7F
3
10 takes inputs from stream 1 due to the definition of plaited

circuit in (19)). This will be necessary for the second part of our proof which
uses F2

4 and F3
7F

3
10 in the final hybrid as the two history independent circuits

needed for the Π�
2 construction and uses the Π�

2 construction with these circuits
as a subroutine.

Proof. For a given F1, ...,F12, we can define some random variables as follows.
Let φFA

j ;B be the total number of queries, where FA
j gets input from a stream B

and has a mismatch with any other circuit getting input from the same stream
in this query. We will refer to random variables related to the i-th hybrid by
adding a superscript i. For example, φ0

F1
1 ;2

= 0, since in Hyb0 no crosschecks are
made between F1

1 and the circuits receiving inputs from stream 2. Let Φ be the
total number of mismatches detected by the master circuit. Recall from Sect. 2.3
that Y is the total number of mistakes the master circuit makes. The probability
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Hyb0

F5 F6 F7 F8

F1 F2 F3 F4

13

13

12

12

3

3

32

32

1

1

12

12

21

21

2

2

F9 F10 F11 F12
31

31

3

3

21

21

23

23

Hyb1

F5 F8

F4 F2 F3

13

13

32

32

1

2

12

12

21

21

F9 F12
31

31

23

23

Hyb2

F5 F6 F8

F4 F1

13

13

3

12

32

32

1

2

2

1

F9 F11 F12
31

31

3

21

23

23

F1
2

1

F7
12

3 F6
3

12

F11
3

21 F10
21

3

F2
12

12

F7
12

3 F10
21

3

F3
21

21

Fig. 7. Hybrids with the circuits and their corresponding plaited hardcoded history
and input streams (above and below each circuit in black respectively). In Hyb2, F

2
4

and the plaited circuit F3
7F

3
10 (in red) are history independent. (Color figure online)

space of these random variables is the set of all choices of a stream of random
bits b and streams of random inputs 1,2,3 and a number of tests Δ.

We prove our statement by contradiction. To this end, we assume that

∃c>0∀c′>0,T0∈N,q∈poly∃T>T0,Q>q(T )∃Adv such that

Adv
(
c, c′

T

)
−wins TrojanGame(Π12, T,Q)

(20)

Therefore for some c and for all c′ there exists an infinite set T ⊂ N such that for
every t ∈ T there exists an infinite set Qt ⊂ N such that for every t ∈ T , z ∈ Qt

there exists an adversary Adv = Adv(c, c′, z, t) such that the following formula is
true:

Pr
[
Φ0 = 0 and Y 0 ≥ c′ ·

(
z

t

) ]
≥ c. (21)

Now we will look what happens to inequality (21) as we move through each
hybrid:

Hyb0: Hybrid 0 corresponds to the original construction due to equality (18).
Hence, the probability that the adversary Adv(c, c′, z, t) wins in this hybrid is
precisely that in Eq. (21).

Hyb1: In this hybrid we simply perform three Swap operations on the following
pairs of circuits: (F1

1 ,F2
4); (F12

6 ,F3
7); (F3

10,F
21
11 ).

Claim. Pr
[
φ1
F2
4 ,1

, φ1
F3
7 ,12

, φ1
F3
10,21

≤ k ∧ Φ0 = 0 ∧ Y 1 ≥ c′ · ( z
t ) − 3k

]
≥ c − 3 · 2−k.

Proof of the claim is in the technical report.

Hyb2: In this hybrid we simply perform two Swap operations on the following
pairs of circuits: (F12

2 ,F3
7); (F21

3 ,F3
10).
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Claim.
Pr

[
(φ2

F2
4 ,1 ≤ 3k) ∧ (Y 2 ≥ c′(

z

t
) − 5k)

]
≥ c − 3 · 2−k. (22)

Proof. Every Swap operation performed in Hyb2 changes the value of Y 2, φ2
F2
4 ,1

by at most k (since inequality (refer to our extended technical report for details)
holds). The inequality is explicit. �

Claim. For every k ∈ N and every adversary Adv who (c, c′
t )-wins (Π12, T,Q) −

TrojanGame there exists an adversary Adv′ who (c−3 ·2−k, c′
t − 5k

z )-(3k+1)-wins
the game TrojanGame(Π�

2 , T,Q).

We want to conclude, that the above statement contradicts Lemma 4. So we
want to show, that this incorrect statement is implied by our construction.

∃c̃>0∀c̃′>0,T0∈N,q∈poly∃T>T0,Q>q(T )∃Ãdv
such that

Ãdv (c̃, c̃′
T )−wins TrojanGame(Π�

2 , T,Q).
(23)

Let k = 2 + log(1c ) and c̃ = c − 3 · 2−k = c
4 > 0. Choose c̃′ arbitrarily and let

c′ = ·c̃′. Let T̃ = T . Let

Q̃t = {z ∈ Qt : z > t

(
5k

c̃′ + 1
)

}.

Obviously Q̃t is infinite. As a result, for every q ∈ poly there exists z ∈ Q̃t

such that z > q(t).
Now we can construct the adversary Ãdv which would break the security of

Π�
2 which lead us to contradiction. Thanks to the analysis of the hybrids we

know, that for Adv the inequality (22) holds. Define the circuits F̃1, F̃2 given to
Ãdv in the following way:

F̃1 = F2
4 , F̃2 = F3

7F
3
10,

where the latter is a b-plait (as defined in Eq. (19)). Actual values of streams
2,3,b are sampled uniformly and independently by Ãdv, and hardcoded in
F̃1, F̃2. Obviously F̃1, F̃2 are history independent, therefore Ãdv meets the require-
ments for the Π�

2 scheme.
Now we can bound a random variable Φ̃ - the number of queries in a

(Π�
2 , T,Q) − TrojanGame where the adversary is caught on deviating. If φ2

F2
4 ,1

≤
3k, then Φ̃ ≤ 3k, since if in the i-th query there was any inconsistency between
F̃1, F̃2, there must had been a mismatch between F3

4 and any other circuit receiv-
ing the same input. Which concludes in:

c̃ = c − 3 · 2−k ≤ Pr
[
(φ2

F2
4 ,1

≤ 3k) ∧ (Y 2 ≥ c′( z
t ) − 5k)

]

≤ Pr
[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c′( z

t ) − 5k)
]

≤ Pr
[
Φ̃ ≤ 3k ∧ (Ỹ ≥ c̃′( 5k

c̃′ + 1) − 5k = c̃′)
]
.
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Note that Ỹ is the number of mistakes made by the master circuit in the
TrojanGame(Π�

2 , T,Q) and the last inequality comes from z > t
(

5k
c′ + 1

)
. We

conclude, that that there exists c̃, such that for every c̃′ there exists Ãdv

who (c̃, c̃′
t )-(3k + 1)-wins TrojanGame(Π�

2 , T,Q). It is with contradiction with
Lemma 4, which ends the proof. �

5.3 Reapplying the Hybrid Argument

In the previous section, we have used the outputs produced on the input stream
1 in place of F1 as an output stream of the construction. By symmetry, the
argument from the previous section works for the input stream 2 in place of
F4. Now we will show that in fact the outputs from F5 or F8 may be used as
an output stream of the construction, which also implies the possibility of using
input stream 3 to produce the output stream of the construction.

Now, in Hyb0 (Fig. 7) firstly swapping the labels of the input streams 3 and
2 on the input bit 0 and the labels of the input streams 3 and 1 on the input bit
1 and secondly visually swapping the rows 1 and 2 does not change the setting.
We achieve the Hyb′′

0 construction as shown in Fig. 8.

Hyb′′
0

F1 F2 F3 F4

F5 F6 F7 F8

13

13

12

12

3

3

32

32

1

1

12

12

21

21

2

2

F9 F10 F11 F12
23

23

21

21

3

3

31

31

Fig. 8. Hyb′′
0 construction.

We can still reapply the hybrid argument from the previous section to
the modified Hyb′′

0 construction by applying the following swaps. Hyb′′
0 →

Hyb′′
1 swaps : (F1

5 ,F2
8); (F12

2 ,F3
3); (F3

11,F
21
10 ). Hyb′′

1 → Hyb′′
2 swaps :

(F12
3 ,F3

6); (F21
7 ,F3

11). Finally we conclude that the output streams of either F5 or
F8 (by symmetry) may be used as an output stream of the construction, what
implies that by taking outputs from circuit F8 on input bit 0 and circuit F5 on
input bit 1 could be used as an output of the construction produced with input
stream 3.

The above argument implies that in each round our construction may output
3 outputs produced by consuming inputs from the same number of 3 input
streams.
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6 Outlook and Open Problems

In this work we introduced countermeasures against hardware Trojans which
compared to existing solutions based on multiparty or verifiable computation
are extremely simple and efficient, but only achieve limited security guarantees
(i.e., we only guarantee that most outputs are correct or the Trojan is detected
with high probability) in a restricted setting (iid inputs and no evolving state).

Because of this, the scope of application for our schemes is limited, but as
discussed in the introduction, we believe they will serve as a first but major step
towards solving some of the main application targets like randomness generation.
In particular, creating pseudorandomness for “randomness hungry” side-channel
countermeasures like masking in a Trojan-resilient way is one of the main moti-
vations for this work. The reason our simple schemes are a promising starting
point towards Trojan-resilient pseudorandomness generation is the fact that in
most settings (like masking) one does not need that the pseudorandomness is
correctly generated, only that it is indistinguishable from uniform, so the relaxed
security of our schemes is not a deal breaker. Another reason is the fact that
one could use some of the pseudorandomness that is created to implement the
master’s randomness source, thus making it deterministic. Fleshing these ideas
out will require a better understanding of amplification and circularity issues in
this setting.

The main concrete technical question left open problem in this work is to
prove the security of the “minimal” and thus really practical scheme Πφ

2 as stated
in Conjecture 1. A positive resolution of the conjecture will need techniques that
go beyond our proof via history-independence used in the proof for Π12.
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Abstract. The celebrated result of Yao (Yao, FOCS’82) shows that con-
catenating n ·p(n) copies of a weak one-way function (OWF) f , which can
be inverted with probability 1− 1

p(n)
, suffices to construct a strong OWF g,

showing that weak and strong OWFs are black-box equivalent. This direct
product theorem for hardness amplification of OWFs has been very influ-
ential. However, the construction of Yao is not security-preserving, i.e., the
input to g needs to be much larger than the input to f . Understanding
whether a larger input is inherent is a long-standing open question.

In this work, we explore necessary features of constructions which
achieve short input length by proving the following: for any direct product
construction of a strong OWF g from a weak OWF f , which can be inverted
with probability 1 − 1

p(n)
, the input size of g must grow as Ω(p(n)). By

direct product construction, we refer to any construction with the follow-
ing structure: the construction g executes some arbitrary pre-processing
function (independent of f) on its input, obtaining a vector (y1, · · · , yl),
and outputs f(y1), · · · , f(yl). Note that Yao’s construction is obtained by
setting the pre-processing to be the identity. Our result generalizes to func-
tions g with post-processing, as long as the post-processing function is not
too lossy. Thus, in essence, any weak-to-strong OWF hardness amplifica-
tion must either (1) be very far from security-preserving, (2) use adaptiv-
ity, or (3) must be very far from a direct-product structure (in the sense of
having a very lossy post-processing of the outputs of f).

On a technical level, we use ideas from lower bounds for secret-sharing
to prove the impossibility of derandomizing Yao in a black-box way. Our
results are in line with Goldreich, Impagliazzo, Levin, Venkatesan, and
Zuckerman (FOCS 1990) who derandomize Yao’s construction for reg-
ular weak OWFs by evaluating the OWF along a random walk on an
expander graph—the construction is adaptive, since it alternates steps on
the expander graph with evaluations of the weak OWF.

1 Introduction

In this work, we continue the study of constructions of strong one-way functions
(OWFs) from weak OWFs. The classical weak-to-strong hardness amplification
c© International Association for Cryptologic Research 2021
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technique, due to Yao [40], uses direct product amplification which is not secu-
rity preserving1. Our main result shows that the increase in the input size is
inherent for direct product constructions. Namely, any direct product black-box
construction of a strong OWF from a (1 − 1/p(n))-weak OWF must have input
length at least Ω(p(n)).

Weak and Strong OWFs. An α(n)-secure OWF f : {0, 1}n �→ {0, 1} is
an efficiently computable function such that any probabilistic polynomial-time
adversaries A can invert f with probability at most α(n). When α is a negligible
function, we say that f is a strong OWF; when α(n) = 1−1/p(n) for a polynomial
p, we say that f is a weak OWF. The seminal work of Yao [40] shows that weak
OWFs imply strong OWFs, via a standard direct product hardness amplification:
given a weak OWF f , define g(x1, ..., xl) = f(x1)||...||f(xl). Then, Yao proved
that g is a strong OWF for l > |xi| p(|xi|).

Adaptive vs. Non-adaptive Construction. In this paper we study non-
adaptive weak-to-strong OWF constructions, that is, constructions where the
calls to the weak OWF can be made in parallel. I.e., a strong OWF construction
g that makes calls to a weak OWF f is called non-adaptive if g’s calls to f
only depend on g’s input, but not on the output of f on any of these inputs.
Yao’s construction is a simple, non-adaptive construction where each call to f is
an independent chunk of the input. In general, non-adaptive constructions can
make correlated calls to f though.

g1(x) := f(x)||f(x + 1)
g2(x) := f(f(x))

We say that a construction is adaptive, if the output
of (at least) one call to f is used to determine the
input to another f call. That is, adaptive constructions
cannot compute all calls to f in parallel. For the toy constructions on the right,
g1 is non-adaptive (it does not matter whether g1 computes f(x) or f(x + 1)
first) and g2 is adaptive (g2 must make the inner f call first).

On the (in)efficiency of Yao’s Construction. The construction of Yao is
generic: it turns an arbitrary weak OWF f into a strong OWF g and just depends
on the hardness of f . In addition, g has an appealing simple direct-product
structure. In turn, g is suboptimal w.r.t. its computational complexity:

1. g makes a large number of calls to the underlying weak OWF, and
2. g is not security preserving, in that the input length of g is polynomially

larger than the input length of f .

Many celebrated cryptographic reductions are similarly not security-preserving
and have a high number of calls—the HILL construction of pseudorandom gen-
erator from any OWF being perhaps one of the most well-known examples [14].

1 In a security-preserving construction, the input length of the strong OWF is linear
in that of the weak OWF.
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In beautiful works, a decade ago, Haitner, Reingold, Vadhan and Zheng [13,36]
developed rich tools for computational entropy, and improved the original n8

seed length by HILL to O(n3), where n is the input length of the OWF—since
further improvements seem extremely hard to obtain, it is natural to ask whether
large lower bounds on the input size are inherent.

In a seminal result [19], Impagliazzo and Rudich [19] formalize the notions
of black-box constructions/reductions, and develop methods to establish their
limitations. Informally, a (fully) black-box construction of a primitive C from
a primitive P treats both P and any adversary A against P in a black-box
way. Following this breakthrough result, a long line of work (see [6,8,9,23,24,
26,27,38]) has been devoted to proving limitations on the efficiency of black-box
reductions. Our work continues this successful line of work.

To our knowledge, three previous works study black-box limitations on the
efficiency of Yao’s construction. Lin, Trevisan, and Wee [24] address the first of
the two limitations above: they show that any fully black-box construction of
an ε(n)-secure OWF from a (1 − δ(n))-secure OWF f must make at least q =
Ω((1/δ) · log(1/ε)) calls to f . They also show that fully black-box construction
cannot be perfectly security-preserving: if f has input size n, the input size of the
strong OWF must be at least n+Ω(log 1/ε)−O(log q). The work of [26] showed
that non-adaptive fully black-box construction (i.e., a construction where all the
calls to f are made in parallel) cannot amplify security beyond poly(n) if the
algorithm implementing the reduction has constant depth, and its size is below
2poly(n). Eventually, the work of [27] extended the results of [24] to the weakly
black-box setting with bounded non-uniformity.

1.1 On Security-Preserving Amplification of Weak OWFs

The above result leaves open one of the most intriguing limitations of Yao’s
construction: the fact that it causes a polynomial blowup in the input size.
While [24] shows that some blowup in the input size is available, it leaves a
huge gap: starting with a (1−1/p(n))-secure OWF f with input length n, Yao’s
construction requires an input size n2 ·p(n) to build any strong OWF, while the
result of [24] only shows that to build an extremely strong OWF, say a 2−μ·n-
secure OWF (for some constant μ), one needs input size at least (1+μ)·n−log p.

In a sense, the proof of [24] cannot do much better, because it also applies to
the setting of regular one-way functions (where outputs have the same number
of preimages), and rules out even adaptive fully black-box reductions. However,
in this setting, it is actually known that we can do much better than Yao’s
construction and obtain an almost security-preserving construction, if we start
from a regular weak OWF, and use adaptivity. Indeed, the work of [10] provides
precisely such a construction, using random walks on expander graphs.

This leaves us in between two extremes: on the one hand, Yao’s construction
is non-adaptive (hence optimally parallelizable: if one starts with a paralleliz-
able weak OWF, one ends up with a parallelizable strong OWF), extremely sim-
ple (it has a straightforward direct product structure) and works for arbitrary
OWFs; however, it is not security-preserving. On the other hand, the construc-
tion of Goldreich, Impagliazzo, Levin, Venkatesan, and Zuckerman [10] is almost
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security-preserving, but is considerably more involved, requires adaptive calls,
and works only for regular OWFs. Improving this state of affair is a long-standing
and intriguing open problem.

1.2 Our Contribution

In this work, we make progress on this problem. Specifically, we show that
any relativizing direct product black-box construction of strong OWF from a
(1 − 1/p(n))-secure OWF cannot be security preserving, in a strong sense: it
requires an input length of at least Ω(p(n)). While this still leaves a gap with
respect to Yao’s construction, which has input length O(n2 · p(n)), this gap van-
ishes asymptotically when p grows. By direct product construction, we mean a
construction g of strong OWF with the following structure: on input x, g(x)
outputs (f(y1), · · · , f(y�)), where f is the weak OWF, and (y1, · · · , y�) are com-
puted from x arbitrarily, but without calling f (we call the mapping from x
to (y1, · · · , y�) the pre-processing). This is a natural generalization of Yao-style
constructions of strong OWFs (we recover Yao’s construction by letting the pre-
processing be the identity function). Furthermore, our result generalizes to the
setting where some post-processing (independent of f) is applied to the out-
puts (f(y1), · · · , f(y�)), whenever this post-processing is not too lossy : we prove
that whenever each output of the post-processing has at most polynomially
many preimages, the same Ω(p(n)) input length bound holds. We summarize
the results in the following informal theorem:

Theorem 1. Let f be a (1 − 1/p(n))-secure OWF (a weak OWF). Let g be any
non-adaptive construction, with not-too-compressing post-processing, of input
length < cp(n), for certain constant c. Then, it is impossible to prove, in a
relativizing fully black-box way, that g is a strong OWF.

Observe that if we could generalize our result to arbitrary (f -independent)
post-processing functions, the above would capture all non-adaptive construc-
tions. Hence, in essence, our result says the following: any (fully black-box)
construction of strong OWF from a weak OWF must either (1) be very far from
security preserving, or (2) use adaptivity, or (3) compute a highly non-injective
function of the outputs of the non-adaptive calls (i.e., be very far from a “direct
product” structure).

1.3 Relation to Correlated-Product and Correlated-Input Security

Usually, parallel concatenation of cryptographic primitives on independent
inputs preserves security. For example, if f and g are one-way functions, then
so is (x1, x2) �→ (f(x1), g(x2)). However, things might potentially change radi-
cally when x1 and x2 are not sampled independently, but are instead correlated,
e.g., sampled jointly from a high min-entropy source. Variants of this problem
have been studied on many occasions in cryptography, and have profound con-
nections to the feasibility of cryptography with weak sources of randomness,
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leakage-resilient cryptography, related-key attacks, or deterministic encryption
(to name a few); see e.g. [39] for discussions on cryptography with correlated
sources. In addition, security for correlated inputs has proven to be a very useful
assumption by itself: one-wayness under correlated product (i.e., one-wayness
of f(x1), · · · , f(xk) for (x1, · · · , xk) sampled from a joint distribution) has been
used to build CCA secure cryptosystems [16,30], and correlated-input secure
hash functions have found numerous applications such as OT extension [22],
trapdoor hash function [7], constrained pseudorandom functions [1], password-
based login [12], and many more.

A general and natural question to ask is: which type of constructions preserve
hardness, when the inputs are jointly sampled from a high min-entropy source,
rather than being sampled independently? This is a fundamental question in
itself, because this setting occurs in real-life use of standard cryptographic con-
struction (when they are misused, when the source of randomness is imperfect,
or when the adversary has access to some leakage on the inputs), but also due
to the many applications outlined above.

It is well-known that not all constructions will preserve security under cor-
related inputs. For example, even though the map x �→ xe mod n is believed
to be one-way when n is a product of two large safe primes (this is the RSA
assumption), the extended euclidean algorithm provides an efficient inverter for
the map x �→ (xe1 , xe2) mod n whenever gcd(e1, e2) = 1 (this example is taken
from [16]). Hence, there are specific functions fi (here, fi : x �→ xei) and specific
correlations of the inputs (here, the equality correlation: the same input x is used
for all functions) such that correlated-product security breaks down. However,
this leaves open the possibility that some specific input correlations preserve
correlated-product security (for example, this is the case when the correlated-
inputs are indistinguishable from random, e.g. when sampled as the output of a
PRG), or that some specific functions maintain correlated-product security for
general correlations.

Our results can be cast in the context of correlated-product security: we
show that even though Yao’s construction of OWF, which is a very natural and
seminal construction, is provably secure (with a black-box proof) when used
with random and independent inputs, it breaks down for any possible corre-
lated source, whenever the entropy of the source is below p(n). This provides
a natural example of a construction, from a weak OWF f , where correlated-
product security cannot be generically shown to hold (in a black-box way) for
arbitrary sources, unless they contain enough entropy such that all of the corre-
lated inputs can have independent entropy. In contrast, [30] shows that when f
is instantiated as a lossy trapdoor function, then f(x1), · · · , f(xk) is one-way for
correlated inputs (x1, · · · , xk), and [16] shows that assuming OWFs, there exists
a correlated-product secure function. Our results provide a partial complemen-
tary perspective to this line of work.

Comparison to [39]. Wichs [39] also studies, among other questions, the one-
wayness of constructions of the form (f(x1), · · · , f(xk)) for inputs (x1, · · · , xk)
sampled from a correlated source. Our results are incomparable: we show that
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for a generic weak OWF f , and for any fixed distribution over the inputs
(x1, · · · , xk) with o(k) bits of entropy, the one-wayness of f(x1), · · · , f(xk) does
not follow from that of f in a black-box way. In contrast, [39] shows that for
an arbitrary function f , there is no black-box reduction (to any standard hard-
ness assumption) of one-wayness of (f(x1), · · · , f(xk)) when the xi can come
from arbitrarily correlated distributions, even with high per-input entropy. That
is, [39] handles a considerably larger class of constructions and reductions to
many possible assumptions, but only rules out a much more stringent security
notion (where one-wayness must hold even when the input distributions are not
fixed a priori and can be correlated arbitrarily).

1.4 Related Works

We already pointed out to numerous related works on bounding the efficiency
of black-box reductions [6,8,9,23,24,26,27,38], including some specifically tar-
geting hardness amplifications of one-way functions, and related works on
correlated-product security. Besides, our black-box separations use some estab-
lished tools (in addition to key new technical insights, which we cover afterwards)
such as the two-oracle technique of [17,32] where one oracle implements the base
primitive and the second oracle breaks all constructions built from this primitive.
We use Borel-Cantelli style technique from [28] to extract a single oracle from
a distribution of random oracles analogously to the seminal work on black-box
separations by Impagliazzo and Rudich [19].

Hardness amplification of functions, via direct products and related construc-
tions, have a rich and dense history, which goes well beyond one-way functions
and is too vast to be covered here. In particular, amplifying the hardness of com-
puting boolean functions (rather than inverting functions) using direct product
constructions is at the heart of rich lines of work on worst-case to average-case
reductions, constructions of non-cryptographic pseudorandom generators, circuit
lower bounds, and many more – see e.g. [2,3,11,15,18,21,25,31,33–35,37] and
references therein.

1.5 Technical Overview

To prove our black-box separations, we exhibit an oracle relative to which there is
a weak one-way function, yet all strong one-way functions with an appropriate
structure can be inverted efficiently with constant probability. The standard
method to do so is to design oracles relative to which the starting primitive
(here, the weak one-way function) clearly exists and is the only possible source
of hardness. For example, in the seminal work by Impagliazzo and Rudich (IR) on
the separation of key exchange from OWFs [20], IR introduce a random oracle,
which is a strong OWF with high probability, as well as assuming P = NP,
thereby ruling out most other (stronger) cryptographic primitives. In our setting,
we instantiate this intuition by choosing three oracles:

(1) A PSPACE oracle, which destroys all possible sources of hardness,
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(2) a random oracle F, which instantiates the weak OWF, and
(3) an inverter INV, which inverts F on a (roughly) 1−1/p fraction of its inputs,

effectively turning it into a weak OWF. Note that a random oracle F alone
would already be a strong OWF, if we did not weaken it by adding INV.

Fig. 1. (n, m)-non-adaptive
construction. F is the weak
OWF. Length of d can be
arbitrary, |xi| = |yi| = m
and |s| = n.

In this oracle world, we consider non-adaptive
constructions of strong OWFs g from the weak
OWF F. Since we wish to rule out (relativizing) fully
black-box reductions (as defined by Reingold, Tre-
visan and Vadhan [29]), we do not give g access to
INV. In fact, this is inherent in our setting: observe
that given access to INV, it is not too hard to build
a strong OWF (e.g. the strong OWF can perform a
random walk starting from the input x, until it lands
on a hard input y – which can be tested using INV
– and outputs F(y)). In general, whenever one can
efficiently test which inputs are hard, constructing a
security-preserving OWF becomes feasible – and it
is precisely the lack of any such tester that makes it
highly nontrivial to improve over Yao’s seminal con-
struction. Since we rule out fully black-box reduc-
tions, we do not let g access INV and thus, g does
not know where the easy inputs are.

Modeling Non-adaptive Constructions. Non-
adaptive construction can be thought of as a cir-
cuit which first has a pre-processing layer, followed
by a layer of parallel calls to a weak OWFs and
then some post-processing, see Fig. 1. When the
construction omits the post-processing layer, as in
Yao’s construction, this corresponds to a direct
product construction. The input size n of the con-
struction might be different from the input size m of the weak OWF. As a
starting point, we consider what happens when the construction does not use
any post-processing, as is the case in Yao’s construction. When there is no post-
processing, the additional data d in Fig. 1 only reduces the input domain and
does not add any security. Thus, w.l.o.g., we assume that there is no d.

Inverting Direct Product Constructions. Considering the simple case with
no post-processing and no d, the first observation is that g must make more than
p(m) calls to the weak OWF, since otherwise all the calls will be easy to invert
with constant probability. In that case the adversary could simply invert all the
weak OWF calls and then use PSPACE to invert the pre-processing layer, thus
inverting g with constant probability.

Now that g makes at least p(m) calls to the weak OWF, we can make the
main observation of the paper: if we can invert a 1−1/p(m) fraction of the weak
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OWF calls and n is slightly smaller than p(m), then the remaining entropy of
the input s cannot be very high, on the average. This is formalized in Lemma 21.
This is because the number of calls to the weak OWF is at least the same order
of magnitude as the length of the input to the strong OWF. Hence, there is not
enough entropy in the strong OWF input to distribute among all the weak OWF
calls, so most of the calls will end up having very little entropy of their own, i.e.
entropy that is not shared with other calls.

Now the probability that an adversary can indeed invert a 1−1/p(m) fraction
of the weak OWF calls is high, since that is the expected fraction of easy calls.
Since the entropy of the input s is low, given the easy calls, and the adversary
has the PSPACE oracle, the adversary can guess s with high probability. Note
that low entropy alone is not enough to guess s, since inverting pre-processing
might be inefficient, hence we also need PSPACE.

To summarize, we know that there must be many calls to the underlying
weak one-way function—and since we can also show that each of them must
have a non-trivial amount of entropy (i.e., information about the input)—we can
show that we can invert all non-adaptive constructions without post-processing,
unless n is larger than a small constant times p(m), establishing the first lower
bound on the randomness efficiency of non-adaptive constructions. Note that
Yao’s construction consumes n = m2p(m) many bits.

On Strong OWFs with Injectiveish Post-processing. We sketched above
why constructions without post-processing (direct product constructions) can-
not be strongly one-way. It is relatively easy to extend the above argument to
constructions with not too lossy post-processing, i.e., constructions where any
output of the post-processing has at most polynomially many preimages: the
inverter chooses a uniformly random value amongst the (polynomial size) list of
all possible preimages of the post-processing, and applies the previous inversion
attack on the candidate. It then succeeds with probability 1

poly times the success
probability of the previous attack.

1.6 Relation to Threshold Secret Sharing

The pre-processing pre in Fig. 1 is conceptually similar to a threshold secret
sharing scheme, where the participants’ shares correspond to the values xi and
the secret together with the dealer’s randomness corresponds to the strong OWF
input s. On average, we learn the ‘shares’ of all but a 1

p(m) fraction of the
‘participants’. So effectively, we are interested in how long the secret and the
dealer’s randomness together must be in a (1− 1

p(m) +ε)-threshold secret sharing
scheme. The difference is that we allow a negligible failing probability for the
secret sharing scheme and we do not distinguish which part of the input is the
secret and which part of the input is the randomness of dealer in the secret
sharing scheme.

To make the intuition concrete, our result can be formulated as a result on
the threshold achievable by any deterministic threshold secret sharing schemes
with short secret.
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Definition 2 (Deterministic Threshold Secret Sharing Scheme). We say
that function S : {0, 1}n → ({0, 1}m)l (i.e. S outputs l bitstrings of length m) is
(l, t)-deterministic threshold secret sharing scheme if for all adversaries A:

Prπ ←$ permutations of (1,...,l),x ←$ {0,1}n

[
x ←$ A(S(x)π(1), ..., S(x)π(t))

] ≤ negl(n),

where S(x)i denotes the ith share, i.e., the ith length n bitstring of the output
of S. The secret length n should be polynomial in the share length m (hence,
negligible in n is also negligible in m).

Note that any threshold secret sharing scheme can be made deterministic by
considering the randomness as part of the secret – but then the randomness must
be counted towards the secret length. The fact that Definition 2 uses probability
over permutations of the shares only makes the definition cover a larger class of
schemes, in particular, a scheme that is secure for all permutations is also secure
by Definition 2.

Also, notice that Definition 2 relies on a very weak hiding notion: no subset
of size less than t should be able to fully recover the secret (except with negligi-
ble probability). This sets our result apart from most known bounds on secret
sharing, which apply to the indistinguishability setting.

In this language, our result states the following: let m be the share length and
p be any polynomial. Consider any candidate (l, t)-threshold deterministic secret
sharing scheme with t ≥ (1 − 1/p(m)) · l, now the scheme must have secret size
n > p(m)/c, for a certain constant. For traditional (l, t)-threshold secret sharing
schemes, this means that the combined length of the secret and the randomness
used by the scheme must be > p(m)/c, if t ≥ (1−1/p(m)) · l. Naturally, in order
to this result being meaningful, the number of shares l should be bigger than
the polynomial p(m).

The result follows from our main conceptual Lemma 21, which effectively
states that the expected entropy of the remaining shares, when you know (1 −
1/p(m)) fraction of the shares, is small. Hence, the remaining shares can be
guessed with non-negligible probability.

Our result stays the same even if we change Definition 2 to cover only effi-
cient, i.e. probabilistic polynomial time, adversaries A, provided that the scheme
S is such that you can compute the secret in polynomial time, when you know all
the shares. That is, we even rule out computational security if t ≥ (1−1/p(m)) ·l
and n < p(m)/c.

More precisely, let us change the Definition 2 to a definition that covers an
even larger class of schemes (the difference to Definition 2 is high-lighted in pink)
and subsequently state our result in the secret-sharing terminology.

Definition 3 (Computational Deterministic Threshold Secret Sharing
Scheme). A function S : {0, 1}n → ({0, 1}m)l (i.e. S outputs l bitstrings of
length m) is (l, t)-computational deterministic threshold secret sharing scheme
if for all probabilistic polynomial time adversaries A:

Prπ ←$ permutations of (1,...,l),x ←$ {0,1}n

[
x ←$ A(S(x)π(1), ..., S(x)π(t))

] ≤ negl(n),
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where S(x)i denotes the ith share, i.e., the ith length n bitstring of the output of
S. The secret length n should be polynomial in the share length m. The function
S−1 should be computable in polynomial time.

Theorem 4 (Threshold Secret Sharing View). Fix a large enough m and
a polynomial p. Consider a computational deterministic threshold secret sharing
scheme where

– the dealer has an n bits secret;
– there are l participants, each getting a share of length m;
– the threshold t satisfies t ≥ (1 − 1

p(m) )l.

Then the secret must be long: n > 1
cp(m), where c is some constant.

Blundo, Santis, Vaccaro [5] discuss the minimum amount of randomness
needed by an information theoretically secure secret sharing scheme. They prove
that if the secret length is m and there are l participants, then the dealer needs
to use l · m bits of randomness (to choose both the secret and the participants’
shares). This is the same as the analogous number in Yao’s weak to strong OWF
construction (when number of weak OWF calls is l > mp(m), we use lm input
length) and it is close to the analogous number that we get in this paper (input
length to strong OWF needs to be O(p(m)), i.e. there is m2 gap between our
result and Yao’s).

It is intuitive that some gap should exist between the information theoreti-
cally secure secret sharing scheme and our more relaxed “mostly secure secret
sharing scheme”, where the adversary is allowed to learn part of the secret as
long as they cannot learn the whole input and additionally, the adversary is only
allowed to run in polynomial time. However, the two secret sharing schemes are
not really comparable (because we do not distinguish between randomness and
secret) and a better lower bound, than what we present, might be possible.

2 Preliminaries

Definition 5 (One-Way Functions). Let f : {0, 1}∗ → {0, 1}∗ be a
polynomial-time computable function. f is called a (strong) one-way function
(OWF), if for every probabilistic polynomial-time algorithm A there exists a
negligible function ε : N → [0, 1] such that for every n,

PrA,x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))
] ≤ ε(n).

Further, f is called a weak one-way function, if there exists a polynomial p(n)
such that for every probabilistic polynomial-time algorithm A there exists a N0 ∈
N such that for all n ≥ N0:

PrA,x←{0,1}n

[A(1n, f(x)) ∈ f−1(f(x))
] ≤ 1 − 1

p(n)
.

In this case we sometimes say that f is a p-weak OWF.
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Definition 6 (Oracle Algorithms). The complexity of an oracle algorithm
(e.g., Turing Machine) is the number of steps it makes, where an oracle query
is counted as one step.

In particular, a probabilistic polynomial-time (PPT) oracle algorithm makes at
most polynomial queries. Since our oracle algorithms have access to a PSPACE
oracles, we usually limit the discussion to the number of oracle calls the algorithm
makes.

We use the following Borel-Cantelli style theorem from [28, Lemma 2.9].

Theorem 7 Let (E1, E2, ...) be a sequence of events such that ∃c∀m ∈ N :
Pr[Em ] ≥ c, where c is a constant strictly between 0 and 1. Then,

Pr

[ ∞∧

k=1

∨

m>k

Em

]

≥ c (1)

2.1 Entropy Toolbox

Throughout this paper, the term entropy refers to Shannon entropy which sat-
isfies a chain rule.

Definition 8 (Shannon Entropy). Let X be a random variable and let
dom(X) be its domain, then

H(X) := −
∑

z∈dom(X)

Pr[X = z ] · log2(Pr[X = z ]),

is the Shannon entropy of X.

Lemma 9 (Chain Rule for Entropy). Let X1, . . . , Xn be random variables.
Then the following holds

H(X1, . . . , Xn) = H(X1) + H(X2|X1) + · · · + H(Xn|X1, . . . , Xn−1).

We use also other simple but useful properties of entropy. In particular, Def-
inition 8 implies that entropy is non-negative. Also, the entropy H(X) of a
random variable X is always more or equal to the entropy H(f(X)) of the
random variable f(X) for any deterministic function f—if f is injective, the
entropy is preserved, if f is not injective, it decreases. Finally, for any three ran-
dom variables X,Y,Z, we have that H(X|Y ) ≥ H(X|Y,Z), i.e., conditioning on
additional information maintains or decreases the entropy of a random variable.

3 Main Results

In this section, we introduce different types of constructions of strong OWF from
weak OWF which we study in this paper (Sect. 3.1) and state our main theo-
rems (Sect. 3.2). In particular, we introduce non-adaptive constructions, non-
adaptive constructions without post-processing and non-adaptive constructions
with injectiveish post-processing.
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3.1 Black-Box Constructions and Reductions

Definition 10 (Non-adaptive). A construction g = (pre, post) from a weak
one-way function F is non-adaptive, if it computes its output as post(F(pre(s)))
(see Fig. 1). The number of queries l is induced by pre. (n,m)-NA denotes a
non-adaptive construction with input length n based on a weak OWF F whose
input length is m.

Definition 11 (Non-adaptive, no post-processing construction). We say
that a construction g = (pre, post) is a (n,m)-NANPP, if it is (n,m)-NA and
the post-processing function is the identity function, i.e., post(y1, ..., yl, d) :=
y1||..||yl||d.
Definition 12 (Non-adaptive, injectiveish post-processing constr). We
say that a construction g = (pre, post) is a (n,m)-NAIPP, if it is (n,m)-NA and
the post-processing function is almost injective, that is, every image of post has
at most a polynomial (in n) number of preimages.

Note that the identity function is injective and thus, in particular, is injectiveish.
Therefore, every NANPP is also a NAIPP, but the converse does not hold.
Likewise, both NANPP and NAIPP are NA constructions, but the converse
does not hold. Since we are interested in ruling out negative results, whenever
we rule out NAIPP, we also rule out NANPP.

We formalized the kind of constructions our negative results capture, and
now specify which type of reduction proofs our theorems rule out. Namely, our
results concern BBB-style proofs following the notation of [4] or fully black-box
proofs following the notation of [29]. Since we consider parametrized definitions,
we here state a customized version of fully black-box security which precisely
captures the quantifiers our negative results capture.

Definition 13 (Fully Black-Box Proof). We say that a proof that weak OWF
implies strong OWF is fully black-box if it establishes a relativizing statement
of the following type:

∀poly p,∃ poly-time computable g,∀poly q,∃PPT R∀p-weak OWF F,A :
if Prx ←$ {0,1}n

[
gF(A(1n, gF(x))) = gF(x)

]
> 1

q(n) for inf. many n ∈ N

then Prx ←$ {0,1}n

[
F(RA,F(1n,F(x))) = F(x)

]
> 1 − 1

p (n) for inf. many n ∈ N.

In this case, we also refer to the construction g as fully black-box.

Note that typically, in the definition of fully black-box, the pink parts are
omitted. That is, the polynomial p is considered as part of the definition of F and
the polynomial q is considered as part of the definition of A (i.e. the adversary’s
success probability). We allow the construction g to depend on the polynomial
p and the reduction R to depend on q, since we seek to cover a larger and
meaningful class of proofs. In particular, Yao’s original proof building strong
OWFs from weak OWFs is fully black-box in the sense of Definition 13, but
would not be covered if the construction were now allowed to depend on p or if
the reduction were not allowed to depend on q.
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3.2 Theorems

We now state our main theorems, all of which rely on the two-oracle technique.
Namely, we construct a distribution over oracles (O1,O2) such that O1 will be a
weak one-way function and O2 will help to invert the strong one-way function.
Since we rule out black-box reductions rather than provide an oracle separation,
only the reduction has access to the oracle O2 while the construction does not
(cf. Section 1.5). Note that in Corollary 16, we extract a single oracle from the
oracle distribution, using the Borel-Cantelli style argument Theorem 7. However,
we prefer to state our theorem in terms of oracle distributions since this more
closely matches the technical core arguments of our separation results.

Theorem 14 (NANPP Impossibility). ∃ constant c such that ∀poly p,
∀(n,m)-NANPP g with input length n ≤ 1

cp(m), ∃ poly-query A, ∃poly q(n) =
nc, c ∈ N+, ∀PPT R, ∃ distribution D over pairs of oracles (O1,O2):

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is an indicator variable that is 1 iff at least one of the following

is true:

1. Weak OWF breaks:
Prx ←$ {0,1}m,R

[
RAO1,O2 ,O1,O2(1m,O1(x)) ∈ O−1

1 (O1(x))
]

≥ 1 − 1
p(m) .

2. Strong OWF is secure-ish:
Prs ←$ {0,1}n,A

[AO1,O2(1n, gO1(s)) ∈ (gO1)−1(gO1(s))
] ≤ 1

q(n) .

We emphasize that in the definition of the bad event, the oracles are fixed
and the randomness is taken only over the sampling of x as well as the internal
randomness of A and R, respectively.

Theorem 15 (NAIPP Impossibility). ∃ constant c∀poly p, ∀(n,m)-NAIPP
g with input length n ≤ 1

cp(m), ∃ poly-query A, ∃poly q(n) = nc, c ∈ N+,
∀PPT R, ∃ distribution D over pairs of oracles (O1,O2):

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is the same indicator variable as in Theorem 14.

We use the same oracle distribution for Theorem 15 and Theorem 14, see
Sect. 4. Theorem 15 implies Theorem 14, so it would suffice to prove Theorem 15.
However, we found the presentation to be easier to follow when presenting the
proof of the weaker Theorem 14 first (Sect. 5.2) and then discussing the general-
ization to the proof of Theorem 15 (Sect. 6). For both theorems, we prove that
relative to O1,O2, oracle O1 is a weak OWF. Before proving the theorems for
oracle distributions, we now use the strengthened Borel-Cantelli lemma by Mah-
moody, Mohammed, Nematihaji, Pass and Shelat [28] to extract a single oracle
from the distribution where the bad event happens with constant probability, as
opposed to less than 1/m2 required by standard Borel-Cantelli.
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Corollary 16 (Main). There is no fully black-box (n,m)-NAIPP construction
of a OWF from a p(m)-weak OWF with n ≤ 1

cp(m), where c is some constant.

Proof. Recall that a black-box proof means the following:

∀poly p,∃ poly-time computable g,∀poly q,∃PPT R∀p-weak OWF F,A :
(A inverts g) ⇒ (RA inverts F) Formally:

(
Prx ←$ {0,1}n

[
gF(A(1n, gF(x))) = gF(x)

]
> 1

q(n) for inf. many n ∈ N

)

⇒
(
Prx ←$ {0,1}n

[
F(RA,F(1n,F(x))) = F(x)

]
> 1 − 1

p (n) for inf. many n ∈ N

)

In order to rule out a black-box proof, we thus define an oracle O1 (and an oracle
O2 helping the adversary) such that the following holds:

∀poly p,∀ poly-time gO1 ,∃poly q,∀PPT RO1,O2 ∃AO1,O2 ,∃O1,O2 :
A breaks gO

1 , but R does not p-invert O1. Formally:
Prx ←$ {0,1}n

[
gO1(AO1,O2(1n, gO1(x))) = gO1(x)

]
> 1

q(n) for inf. many n ∈ N.

Prx ←$ {0,1}n

[O1(RA,O1,O2(1n,O1(x))) = O1(x)
]

< 1 − 1
p (n)

for all but finitely many n ∈ N.

In order to rule out a fully black-box reduction, we would only need to show that
statement with the pink universal quantifier being replaced by existential quan-
tifier. However, proving the statement for all polynomials p is stronger without
making the proof more complicated. Now, let us fix a polynomial p, a candidate
NAIPP g, a polynomial q (s.t. it satisfies Theorem 15) and a candidate reduction
R and show the existence of an adversary and a p-weak OWF F.

By Theorem 15, there is an oracle distribution over pairs (O1,O2), and an
adversary A such that the probability of the bad event BadR,A,g

m is constant
in m. We show that there exists a fixed oracle pair (O1,O2) for which the bad
event BadR,A,g

m in Theorem 15 happens only for finitely many m. From that it
follows that there is a fixed oracle pair for which AO1,O2 breaks the candidate
strong OWF gO1 infinitely many often, but the reduction RAO1,O2 inverts the
weak OWF O1 well enough at most on finitely many m. Thus, it suffices to show
via Theorem 7, that Theorem 15 implies that there is an oracle relative to which
BadR,A,g

m happens only for finitely many m.
By Theorem 15, we have

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= constant < 1.

Hence, the constant probability version of Borel-Cantelli (Theorem 7) yields

Pr(O1,O2) ←$ D

[ ∞∧

m=1

∨

m>k

BadR,A,g
m

]

= constant < 1,

which means that, with constant probability, there is a k for which no m > k
satisfies BadR,A,g

m . Taking such an oracle pair (O1,O2) concludes the proof of
Corollary 16. ��
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4 Oracle Distributions

In this section, we define the oracle (distribution)s we rely on. Firstly, a PSPACE
creates a world where no one-way functions exist. Then, we add an oracle (dis-
tribution) F in order to create a world where weak one-way functions exist, and
finally, we add an oracle (distribution) O2 which breaks NANPP and NAIPP
constructions. The adversary will have access to O2, PSPACE and F while the
candidate strong OWF construction only has access to PSPACE and F, but not
to O2. We recall from Sect. 1.5 that it is necessary to not give the construc-
tion access to the information which parts of F are easy and which parts are
hard, and not giving the construction access to O2 is related to this necessary
restriction, since the adversary (modeled by O2) uses the information of which
parts are easy. On a technical-conceptual level, it is meaningful to not give the
construction access to the adversary (modeled by O2), since the adversary is
inefficient, while the construction is efficient (in this (oracle) world where all
algorithms have access to PSPACE and F). We consider an inefficient adversary
since we rule out black-box reduction which work for any black-box adversary
that breaks the strong OWF, including inefficient ones.

As mentioned before, we denote our adversary by O2. We encode the pair
of oracles PSPACE and F into a single oracle O1 so that we are aligned with
the terminology of a two-oracle separation result (and this is also convenient
notation in the proof).

Definition 17 (Oracle Distributions). Let p be any fixed polynomial. The
oracle distribution Dp over oracles O1 and O2 samples permutations Πm of the
elements in {0, 1}m for every m ∈ N and a random subset EASYm

in of {0, 1}m

s.t. |EASYm
in | = (1 − 1/p(m))2m�. We define

O1 := (PSPACE,F) and O2 := INV,

where F and INV behave as follows:

F(x)

m ← |x|
y ← Πm(x)

return y

INV(y)

m ← |y|
if y ∈ EASYm

out

return F−1(y)

else return ⊥
Here, we use EASYm

out := Πm(EASYm
in ).

Remark. Throughout this paper we treat (1−1/p(m))2m as an integer, omitting
the ceil function since the difference is negligible and does not affect our proofs.
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5 Proof of Theorem 14

We split the proof of Theorem 14 into two parts. We first show that the proba-
bility of Case 1 (weak OWF breaks) of the bad event introduced in Theorem 14
is smaller than any constant (Sect. 5.1), and then we show that the probability
of Case 2 (strong OWF is secure-ish) of the bad event introduced in Theorem 14
is a small constant (Sect. 5.2). Recall that both probabilities are (only) over the
sampling of the oracles O1 and O2.

5.1 RA is Not a Successful Weak OWF Inverter

In this section, we show that the probability (over the oracle distributions) that
F is not a 2cp(m)-weak OWF is small.

Theorem 18 (F is Weak OWF). For all constants c, for all polynomials p,
for all poly-query AF,PSPACE,INV, for all adversaries R making polynomially many
(in m) queries to the oracles F,PSPACE, INV,AF,PSPACE,INV,

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − 1
2cp(m)

]
≤ 1/c

where SuccInvF,PSPACE,INV
A,R is defined as

Prx ←$ {0,1}m,R
[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

When we define p(m) := 1
2cp(m), the above is equivalent to

Pr(O1,O2) ←$ D
[
Case 1 of BadR,A,g

m

]
≤ 1/c,

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is defined as in

Theorem 14.

We prove Theorem 18 in Appendix B.

5.2 A is a Successful Strong OWF Inverter

We prove that an adversary with access to the oracles F, INV and PSPACE (cf.
Sect. 4), can break all short input NANPP constructions which have access to F
and PSPACE only.

Theorem 19 (Inverting OWF Candidate). ∀ poly p, ∀(n,m)-NANPP g
with input length n ≤ 1

4p(m), ∃ poly-query AF,INV,PSPACE, ∃constant c > 0 s. t.

Pr(F,INV) ←$ Dp

[
Prs, coins of A

[AF,INV,PSPACE inverts g(s)
] ≤ c

]
= constant < 1

This implies that

Pr(O1,O2) ←$ D
[
Case 2 of BadR,A,g

m

]
= constant < 1

where D := Dp, O1 := F,PSPACE, O2 := INV and BadR,A,g
m is defined as in

Theorem 14.
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For the proof of Theorem 19, let p(m) be a fixed polynomial. We start by
showing that Theorem 19 holds for constructions which make few queries. More
precisely, we show that no matter what the input length to g is, g must make
at least l > cp(m) calls to F, otherwise all the F calls are easy with constant
probability, which makes inverting g trivial.

Proposition 20 (Easy inversion if few F-Calls). Consider a NANPP g =
(pre, post) (where we recall that post(y1, .., yl, d) = y1||..||yl||d). For all constants
c, if pre(s) = (x1, .., xl, d) induces at most l ≤ cp(m) (parallel) calls to F, then
all yi := F(xi) are in EASYm

out with constant probability, more precisely

PrF ←$ Dp [Prs [∀yi ∈ g(s) : yi ∈ EASYm
out ] > constant > 0] > constant > 0 (2)

In particular, with constant probability over the choice of the oracle F, g can be
inverted with non-negligible (constant) probability by a poly-query adversary.

Proof. Suppose there are l ≤ cp(m) parallel calls to F. Denote by y1, ..., yl the
outputs of the parallel calls to F. Now, when considering the randomness of
choosing EASYm

in , we have

PrF ←$ Dp,s [y1, ..., yl ∈ EASYm
out ]

≥
∑

s

2−|s|

︸ ︷︷ ︸
=1

PrF ←$ Dp [y1 ∈ EASYm
out | s ] · ... · PrF ←$ Dp [yl ∈ EASYm

out | s ]

=
(

1 − 1
p(m)

)l

≥
(

1 − 1
p(m)

)cp(m)

≥
(

1
4

)c

∀p(m) > 2.

where the first inequality is an equality iff yi �= yj∀i �= j and the second inequal-
ity follows since (1 − 1

x )x converges monotonously to 1
e and is greater than 1

4

whenever x ≥ 2. Now since
(
1
4

)c is constant, we can use a simple averaging
argument (see Appendix A, Lemma 23) to prove (2).

In the case where all y1, ..., yl are all easy, A can invert y1, ..., yl using INV
oracle. Note that there is only a single pre-image xi per yi and thus, given the
list x1, ..., xl, A can use the PSPACE oracle to find an s such that pre(s) = x1,
..., xl. ��

Due to Proposition 20, for the remainder of this section, we can focus on
constructions where pre makes more than c · p(m) calls. Also in the case where
g makes many queries, we can always invert the easy fraction of (y1, .., yl). How-
ever, if many queries are made, then (with high probability) some yi will also
be hard. Of course, if pre-processing pre(s) = (x1, .., xl) distributes the entropy
well, then knowing some of the xi might suffice to restrict the set of suitable
candidate values s to a polynomial-sized set, and once a polynomial-sized set of
candidates is obtained, a random candidate s is a suitable pre-image with high
enough probability. How well does this strategy work when considering arbitrary
pre-processing pre?
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To analyze this strategy, we study the entropy of the hard values xi given
(1 − 1

p(m) )l many easy values xi (note that in expectation, (1 − 1
p(m) )l many

values are easy) and seek to prove that their entropy is low. Towards that goal,
we fix a permutation π and look at the entropy of the 1

p(m) l many first xi under
that permutation:

h(π) := H(Xπ(1), . . . , Xπ( l
p(m) )|Xπ( l

p(m)+1), . . . , Xπ(l)),

where Xi is the random variable defined as follows: sample a uniformly random
s from {0, 1}n, compute pre(s) and take the ith output (i.e. the input to the ith
F-call in g).

First, in Lemma 21 (Small Entropy Expectation), we show that the expec-
tation of entropy h(π) is small in our case. This is our main conceptual lemma.

Lemma 21 (Small Entropy Expectation). Suppose p(m) divides l. Then,

Eπ∈Π(l) [h(π)] ≤ n

p(m)
,

which is equivalent to

Eπ∈Π(l)

[
H(Xπ(1), . . . , Xπ( l

p(m) )|Xπ( l
p(m)+1), . . . , Xπ(l))

]
≤ n

p(m)
. (3)

Proof. Let’s consider a permutation π of the weak OWF inputs xπ(1), ..., xπ(l).
Let’s divide the inputs xi into p(m) equal-sized blocks as follows:
⎛

⎝xπ(1), ..., xπ(l/p(m)), xπ(l/p(m)+1), ..., xπ(2l/p(m))︸ ︷︷ ︸
one block

, xπ(2l/p(m)+1), ..., xπ(l)

⎞

⎠ .

Each pink index starts a new block. Let’s denote the set of the pink indices by
J := {1, l/p(m) + 1, 2l/p(m) + 1, ..., (p(m) − 1)l/p(m) + 1}. Now consider the
following sum

∑

j∈J

Eπ∈Π(l)

⎡

⎢
⎢
⎣H

⎛

⎜
⎜
⎝Xπ(j), . . . , Xπ(j+ l

p(m)−1)
︸ ︷︷ ︸

one block

|Xπ(j+ l
p(m) ), . . . , Xπ(l)

︸ ︷︷ ︸
all Xi after the block

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ (4)

= Eπ∈Π(l)

⎡

⎣
∑

j∈J

H
(
Xπ(j), . . . , Xπ(j+ l

p(m)−1)|Xπ(j+ l
p(m) ), . . . , Xπ(l)

)
⎤

⎦ (5)

= Eπ∈Π(l)

[
H
(
Xπ(1), . . . , Xπ(l)

)]
(6)

≤ Eπ∈Π(l) [H (S)] (7)
= n (8)
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where (5) holds by linearity of expectation and (6) holds by Lemma 9 (Chain
Rule for Entropy). The inequality (7) is equality iff the pre-processing is injective
(entropy of a random variable cannot increase when it is passed through a deter-
ministic function). The equality (8) follows from the fact that H(S) = |s| = n.

Now, from (4), we have that n is greater or equal to

∑

j∈J

Eπ∈Π(l)

[

H

(

Xπ(j), ..,X
π

(
j+

l
p(m)−1

)|X
π

(
j+

l
p(m)

), ..,Xl

)]

(9)

≥
∑

j∈J

Eπ∈Π(l)

[
H
(
Xπ(j), ..,Xπ(j+ l

p(m)−1)|Xπ(i), i = 1, .., j − 1, j + l
p(m) , .., l

)]

(10)

=
∑

j∈J

Eπ′∈Π(l)

[
H
(
Xπ′(1), ..,Xπ′( l

p(m) )|Xπ′( l
p(m)+1), ..,Xπ′(l)

)]
(11)

= p(m)Eπ′∈Π(l)

[
H
(
Xπ′(1), ..,Xπ′( l

p(m) )|Xπ′( l
p(m)+1), ..,Xπ′(l)

)]
(12)

where (10) follows from the general property of entropy: ∀A,B,C : H(A|B) ≥
H(A|B,C), i.e. conditioning the entropy on more random variables can only
decrease the entropy. In this case, we condition additionally on all Xi for i <
π(j) and not only on those for i ≥ π(j + l

p(m) ). At (11) we change to a more
convenient indexing where we choose permutation π′(1) = π(j),...,π′( l

p(m) ) =
π(j + l

p(m) − 1). Now, consider any of the summands, i.e. the expectation for
some fixed j. Now for that j, π′ still goes through all possible permutations (like
π did in (10)). At (12) we notice that the summands do not depend on j and
recall that |J | = p(m). Dividing by p(m) proves the Lemma 21. ��

With Lemma 21 as a tool, we can now prove Theorem 19. Note that, interest-
ingly, the result of Theorem 19, does not depend on the number of calls to F in
the strong OWF construction g. That is, if the input length of the construction
g is too short, then no number of calls to F can make it a strong OWF.

A(y1||...||yl||d)

for i ∈ 1, ..., l

xi ← INV(yi)

s ←$ pre−1(x1, ..., xl, d)

return s

Proof of Theorem 19. Let g be a (n,m)-NANPP g with input length n ≤ 1
4p(m)

and let l be the number of queries to F which g makes. The adversary A
(described on the right) now tries to invert all y1,..,yl using INV and put ⊥ when
inversion fails. A then computes a random pre-image of the pre-processing that
matches the known xis and d which is possible in polynomial-time when using the
PSPACE oracle. We now argue that a random pre-image of the pre-processing,
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that matches the known xis and d, is an actual preimage of y1||...||yl||d under g
with constant probability.

W.l.o.g., we assume that |d| = 0. This is because the data d is known to
the adversary, so it cannot add entropy. From now on, we assume that there is
no d. Further and also w.l.o.g., we assume that p(m) divides l for all m,n (if
there was some remainder, we could add constant dummy F-calls until there is
no remainder. Such F-calls would not make g weaker nor stronger, so our result
would still hold.) Note that if l ≤ p(m), then with constant probability all xi

are easy and INV inverts all of them (cf. Theorem 20). In that case A can use
PSPACE oracle to find a correct preimage s with probability 1. Hence, we can
assume that l > p(m).

First, in Lemma 21 (Small Entropy Expectation) establishes that the expec-
tation of entropy h(π) is small. Namely, since Theorem 19 assumes that p(m) >
4n, we have

Eπ ←$ Π(l) [h(π)] ≤ n

p(m)
<

1
4
.

Since the expectation of the entropy over π is small, an averaging argument
(cf. Lemma 24 (Small Entropy w.h.p.) in Appendix A) yields that for at least
half of the permutations, the entropy is small, i.e.,

Prπ∈Π(l)

[
h(π) <

2n

p(m)

]
≥ 1

2
. (13)

We call a π such that h(π) < 2n
p(m) good. If π is good, then the remaining

entropy of the input is small and thus, some inputs are very likely (cf. Lemma
25 (Predictable Inputs) in Appendix A) and thus likely chosen by adversary A
which chooses a random pre-image amongst the possible candidates.

With this high level intuition of the proof in mind, we can now lower-bound
the probability of A’s success.

PrF,s [A inverts g(s)]

≥ PrF
[
∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]

· Prs

[
A inverts g(s)

∣
∣
∣∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]

≥ 1
2

Prs

[
A inverts g(s)

∣
∣
∣ ∃π : xπ(1), ..., xπ((1− 1

p(m) )l) ∈ EASYm
in

]
(14)
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≥ 1
2

Prs

⎡

⎢
⎢
⎣H

(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)
︸ ︷︷ ︸

=:C

⎤

⎥
⎥
⎦ · (15)

Prs

[

Prs′

[∀k ∈
π(1),...,π(l/p(m)),
Xk = pre(s′)k

∣
∣
∣
∣
∣

∀j ∈
π(l/p(m)+1),...,π(l),
Xj = pre(s)j

]

>
1
4

|C
]

· (16)

Prs

[

A inverts g(s)

∣
∣
∣
∣
∣
Prs′

[∀k ∈
π(1),...,π(l/p(m)),
Xk = pre(s′)k

∣
∣
∣
∣
∣

∀j ∈
π(l/p(m)+1),...,π(l),
Xj = pre(s)j

]

>
1
4

∧ C

]

(17)

≥ 1
2

· 1
2

· 3
4

· 1
4

= constant (18)

where (14) follows from the fact that whether xi is easy or not follows bino-
mial distribution with (1 − 1

p(m) )l many easy values in expectation. Inequality
(15) uses chain rule of probability. The fractions at (18) follow from the lem-
mas, namely, the probability on line (15) is less than 1/2 by Lemma 21 (Small
Entropy Expectation) and probability on line (16) is less than 3/4 by Lemma 25
(Predictable Inputs). The last fraction follows from the definition of adversary
A and the probability statement at (17). Namely, if adversary guesses a random
s which is consistent with the known xi, and we condition the probability on
such s being correct 1/4 of the time, adversary must be right 1/4 of the time.

Now that we know that

PrF,s [A inverts g(s)] ≥ const > 0,

we can use a simple averaging argument (see Appendix A, Lemma 23) to show
that PrF [Prs [A inverts g(s)] > const > 0] ≥ const > 0 which proves Theo-
rem 19. ��
Theorem 14 follows from the Theorems 19 and 18 by union bound, namely

Pr(O1,O2) ←$ D
[
BadR,A,g

m

]
= Pr

[
Case 1 of BadR,A,g

m or Case 2 of BadR,A,g
m

]

≤ 1/c + constant from Theorem 19 < 1

Note that since the constant c in Theorem 18 can be made arbitrarily large, in
particular, it can be chosen s.t. 1/c + constant from Theorem 19 is < 1.

6 Constructions with Post-processing

In this section, we prove Theorem 15. Towards this goal, we use the oracles
F, INV and PSPACE (cf. Sect. 4), and show that there are no short input NAIPP
constructions under the oracles.
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Theorem 22 (No Strong OWFs with Injectiveish Post-Processing). ∀
poly p, ∀(n,m)-NAIPP g with input length n ≤ 1

4p(m), ∃poly q(n) = nc, c ∈
N+, ∃ poly-query AF,INV,PSPACE such that

Pr(F,INV) ←$ Dp

[
Prs, coins of A

[AF,INV,PSPACE inverts g(s)
] ≤ q(n)

]
= constant < 1

and thus Pr(O1,O2) ←$ D
[
Case 2 of BadR,A,g

m

]
= constant < 1

where BadR,A,g
m is defined as in Theorem 15.

Theorems 18 and 22 together imply Theorem 15 by union bound analogously
to the NANPP case. It thus remains to prove Theorem 22.

A(z)

y1, ..., yl, d ← post−1(z)

for i ∈ 1, ..., l

xi ← INV(yi)

s ←$ pre−1(x1, ..., xl, d)

return s

Proof. Let g be (n,m)-NAIPP which makes l queries to F and let A be the
adversary on the right which samples a uniformly random pre-image of z under
post, then inverts the easy queries and returns a seed s which is consistent with
the pre-image of the easy values. Firstly observe that A runs in polynomial-time
since it can use the PSPACE oracle for inverting post. Moreover, it makes only
a polynomial number of queries since l is a polynomial.

As the post-processing of g is almost injective, y1, ..., yl, d ←$ post−1(z)
returns the values y1, ..., yl, d which the one-wayness experiment used to com-
pute z with probability 1

poly(n) . This probability is independent of F. If y1, ..., yl, d

are indeed the correct values, then adversary A also finds a pre-image s with
constant probability by the same arguments as in Theorem 19. Thus, the over-
all success of A is 1

poly(n) · constant which is inverse polynomial as required by
Theorem 22. ��
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A Additional Lemmas and Proofs

Lemma 23 (Averaging Argument). Let An and Bn be probability distribu-
tions that depend on natural number n (e.g. uniform distribution over {0, 1}n).
For convenience, we write A := An, B := Bn. Let E(·, ·) be any event.

If Pra ←$ A,b ←$ B [E(a, b)] ≥ c, where c > 0 constant, then there exist constants
d, d′ > 0 s.t. Pra ←$ A [Prb ←$ B [E(a, b)] ≥ d ] ≥ d′.

The proof is standard, we defer it to the full version.
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Lemma 24 (Small Entropy w.h.p.). If Eπ∈Π(l) [h(π)] ≤ n
p(m) then

Prπ∈Π(l)

[
h(π) <

2n

p

]
≥ 1/2,

where h(π) = H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
.

The proof is a direct application of Markov bound, we defer it to the full
version.

Lemma 25 (Predictable Inputs). If

H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)

then

Prs′
[
Prs[Xk=pre(s)k∀k∈π(1),...,π( l

p(m) ) |Xj=pre(s′)j∀j∈π( l
p(m)+1),...,π(l) ]> 1

4

] ≥ 3
4

Proof. Since 4n < p(m), we get that

H
(
Xπ(1), . . . , Xπ( l

p(m) )

∣
∣
∣Xπ( l

p(m)+1), . . . , Xπ(l)

)
<

2n

p(m)
<

1
2

(19)

Let Sh,e ⊆ {0, 1}m be defined as

Sh,e = {s′ : Prs [Ph = ph(s′) |Pe = pe(s′) ] <
1
4
},

where we define Prs [Ph = ph(s′) |Pe = pe(s′) ] below. Using (19) and the defi-
nition of conditional Shannon entropy, we get that

1

2
> H

⎛
⎜⎜⎜⎝Xπ(1), . . . , Xπ

(
l

p(m)

)
︸ ︷︷ ︸

=:Ph

∣∣∣∣∣∣∣∣∣
X

π
(

l
p(m)+1

), . . . , Xπ(l)

︸ ︷︷ ︸
=:Pe

⎞
⎟⎟⎟⎠

=
∑

s′∈{0,1}m

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

=
∑

s′∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

+
∑

s′ �∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

] ·
∣∣log Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]∣∣

≥
⎛
⎝ ∑

s′∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

]
⎞
⎠ ·

∣∣∣∣log
1

4

∣∣∣∣

+

⎛
⎝ ∑

s′ �∈Sh,e

Prs
[
Ph = ph(s

′) and Pe = pe(s
′)

]
⎞
⎠ · |log 1|

≥ Prs′

[
Prs

[
Ph = ph(s

′)
∣∣Pe = pe(s

′)
]
<

1

4

]
· 2 + 0
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where log is the base-2 logarithm and

pe(s′) := pre(s′)π( l
p(m)+1), ..., pre(s

′)π(l)

and
ph(s′) := pre(s′)π(1), . . . , pre(s′)π( l

p(m) ).

Now

1
2

≥ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]
· 2

⇔ 1
4

≥ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]

⇒ Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] ≥ 1

4

]

= 1 − Prs′

[
Prs [Ph = ph(s′) |Pe = pe(s′) ] <

1
4

]

> 1 − 1
4

=
3
4

which proves the statement. ��

B Proof of Theorem 18 (F is a weak OWF)

In order to prove Theorem 18, we need to show that F is weak OWF with inver-
sion probability 1 − 1/2cp(m) with all but small constant probability. Namely,
we need to show that for all polynomials p, for all poly-query AF,PSPACE,INV,
for all adversaries R making polynomially many (in m) queries to the oracles
F,PSPACE, INV,AF,PSPACE,INV,

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − 1
2cp(m)

]
≤ 1/c, (20)

where SuccInvF,PSPACE,INV
A,R is defined as

Prx ←$ {0,1}m,R
[
RF,PSPACE,INV,AF,PSPACE,INV

(1m,F(x)) ∈ F−1(F(x))
]
.

Proof. Fix p, R and A. Since A and R both make polynomially many queries to
the same oracles, R can simply simulate A. Thus, w.l.o.g., we can assume that
R only makes queries to F, PSPACE and INV. Additionally, we consider R to be
a computationally unbounded algorithm so that w.l.o.g., we can assume that it
does not make queries to the PSPACE oracle.

Let q be a polynomial such that adversary R makes exactly q(m) queries
to the oracle F and an arbitrary number of queries to INV. Since we let the
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adversary R make an arbitrary number of queries to INV, that is, the adversary
can be assumed to know the EASYm

in and EASYm
out and how F maps EASYm

in to
EASYm

out completely. This only makes the adversary stronger. Importantly, using
INV does not give the adversary any information on F on the hard values (only
the fact that the values are hard).

Denote the preimages to F queries by x1, ..., xq(m) and the adversary’s guess
for the pre-image of its input y by xq(m)+1.

PrF,INV ←$ Dp,x ←$ {0,1}m,R
[R(F(x)) ∈ F−1(F(x))

]

= Pr
[R(F(x)) ∈ F−1(F(x))

∣
∣x ∈ EASYm

in

] · Pr[x ∈ EASYm
in ]

+ Pr
[R(F(x)) ∈ F−1(F(x))

∣
∣x �∈ EASYm

in

] · Pr[x �∈ EASYm
in ]

≤ 1 ·
(

1 − 1
p(m)

)
+ Pr

[R(F(x)) ∈ F−1(F(x))
∣
∣x �∈ EASYm

in

] · 1
p(m)

≤ 1 − 1
p(m)

+
1

p(m)

q(m)+1∑

i=1

Pr
[
F(xi) = F(x)

∣
∣
∣
∣
F(x1), ...,F(xi−1) �= F(x),
x �∈ EASYm

in

]

≤ 1 − 1
p(m)

+
1

p(m)

q(m)+1∑

i=1

1
1

p(m)2
m − i

≤ 1 − 1
2p(m)

when m is large enough.

Next, we apply an averaging argument. Consider the random variable

SuccInvF,PSPACE,INV
A,R

which maps F,PSPACE, INV ←$ Dp to the probability that

RF,PSPACE,INV,AF,PSPACE,INV

inverts F over the randomness of R, A and sampling x. Then, by the previous
analysis, the expected value μ of SuccInvF,PSPACE,INV

A,R is at most 1−ε for ε := 1
2p(m) .

Using Markov inequality on 1 − SuccInvF,PSPACE,INV
A,R , we obtain that

PrF,PSPACE,INV ←$ Dp

[
SuccInvF,PSPACE,INV

A,R ≥ 1 − cε
]

≤ 1
c
.

for any c. ��
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Abstract. Two of the most useful cryptographic primitives that can
be constructed from one-way functions are pseudorandom generators
(PRGs) and universal one-way hash functions (UOWHFs). In order to
implement them in practice, the efficiency of such constructions must
be considered. The three major efficiency measures are: the seed length,
the call complexity to the one-way function, and the adaptivity of these
calls. Still, the optimal efficiency of these constructions is not yet fully
understood: there exist gaps between the known upper bound and the
known lower bound for black-box constructions.

A special class of one-way functions called unknown-regular one-
way functions is much better understood. Haitner, Harnik and Rein-
gold (CRYPTO 2006) presented a PRG construction with semi-linear
seed length and linear number of calls based on a method called ran-
domized iterate. Ames, Gennaro and Venkitasubramaniam (TCC 2012)
then gave a construction of UOWHF with similar parameters and
using similar ideas. On the other hand, Holenstein and Sinha (FOCS
2012) and Barhum and Holenstein (TCC 2013) showed an almost linear
call-complexity lower bound for black-box constructions of PRGs and
UOWHFs from one-way functions. Hence Haitner et al. and Ames et al.
reached tight constructions (in terms of seed length and the number of
calls) of PRGs and UOWHFs from regular one-way functions. These con-
structions, however, are adaptive.

In this work, we present non-adaptive constructions for both primi-
tives which match the optimal call-complexity given by Holenstein and
Sinha and Barhum and Holenstein. Our constructions, besides being sim-
ple and non-adaptive, are robust also for almost-regular one-way func-
tions.
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1 Introduction

A wide class of cryptographic primitives can be constructed from one-way func-
tions, which is the minimal assumption for cryptography. Informally, a function
f is called a one-way function if it is easy to compute, but hard to invert by
polynomial-time algorithms. Two important primitives that can be constructed
from one-way functions are pseudorandom generators (PRGs) [5,22] and univer-
sal one-way hash functions (UOWHFs) [19]. These two primitives are useful for
constructing even more powerful primitives such as encryption, digital signatures
and commitments. Thus, an improvement in the efficiency of constructions for
PRGs and UWOHFs would have an effect on other primitives. Yet, the optimal
efficiency of these two basic primitives is not fully understood.

There are several important efficiency measures to account for when consid-
ering PRGs and UOWHFs. For PRG constructions, one aims to minimize the
seed length and the number of calls to the one-way function f . For UOWHF con-
structions, there is a need to minimize the key length and the number of calls to
f . Besides these two measurements, another important parameter is the adaptiv-
ity of the calls. That is, if the inputs for the one-way function are independent
of the output of previous calls, then the construction can be implemented in
parallel. By contrast, if the calls are adaptive, one must make them sequentially.

Constructions. Much progress was done since the notion of PRGs has been
introduced. The first construction of pseudorandom generators was given by
Blum and Micali [5] based on the assumption that a specific function is hard
to invert. This construction was generalized by Yao [22] to work with any one-
way permutation. Since then, many subsequent works made effort to construct
PRGs based on arbitrary one-way functions. Notably, through introducing the
randomized iterate1 method, Goldreich, Krawczyk and Luby [8] gave a PRG
construction from any unknown-regular one-way function. The notion of regular
one-way function is a refinement of a one-way permutation: A one-way function
f is called regular if for every n and x, x′ with |x| = |x′| = n it holds that
∣
∣f−1(f(x))

∣
∣ =

∣
∣f−1(f(x′))

∣
∣. We say that the function is unknown-regular if the

regularity parameter,
∣
∣f−1(f(x))

∣
∣, may not be a computable function of n. More

recently, the randomized iterate method was further studied by [11,23], who
reached a construction of PRGs from any unknown-regular one-way functions,
while having O(n log n) seed length and making O(n/ log n) calls to the one-way
function. [25] improved the seed length up to ω(n) by using a transformation that
converts any unknown-regular function into a function that is known-regular on
its image.

For arbitrary one-way function, a seminal work by H̊astad, Impagliazzo,
Levin and Luby [15] gave the first PRG construction. Since then, the efficiency
has been improved by many works [10,13,16,21]. Currently, the state-of-the-art
construction of PRGs due to [21] uses O(n3) bits of random seed and O(n3)

1 For a one-way function f and pairwise independent hash functions h1, . . . , hk, the
k-th randomized iteration of f is f ◦ hk ◦ · · · ◦ f ◦ h1 ◦ f .
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adaptive calls to the one-way function, or alternatively seed of size O(n4) with
non-adaptive calls [13,21].2

The constructions of UOWHFs use similar ideas to the constructions of
PRGs. Still, the best PRGs constructions from arbitrary one-way functions are
more efficient than the best known UOWHFs constructions. Rompel [20] gave
the first UOWHF construction from arbitrary one-way functions. The efficiency
was improved by [12], who gave a construction of UOWHF using O(n6) adaptive
calls with a key of size O(n7). Constructing a UOWHF using O(n3) calls to the
one-way function is still an interesting open question.

The efficiency of UOWHF based on an unknown-regular one-way function is
similar to the efficiency of the unknown-regular based PRGs. Interestingly, this
was shown by [2] using the same method of randomized iterate, resulting in a
construction that uses Θ(n) key length and Θ(n) calls. We stress that when the
regularity of f is known (i.e., can be computed efficiently given n), there are
much more efficient constructions for both PRGs and UOWHFs [7,9,19,23].

Lower Bounds. The lower bounds for black-box constructions are relatively far
from the upper bounds. In this line of work, there are two incomparable types
of results. The first type, due to [6] is stated with terms of the stretching and
compression of the PRG and UOWHF, respectively. Specifically, [6] showed that
any black-box PRG construction G : {0, 1}m → {0, 1}m+s from f must use
Ω(s/ log n) calls to f . Similarly, any black box UWOHF construction with input
size m and output size m − s must use Ω(s/ log n) calls. In the second type
of results [17] showed that any black-box PRG construction from f must use
Ω(n/ log n) calls to f , even for 1-bit stretching. [3] showed similar results for
1-bit compressing UWOHF.

As mentioned, there is a substantial gap between the aforementioned lower and
upper bounds. One explanation for that gap is that all of the above lower bounds
hold even when the one-way function f is unknown-regular. For this case, these
bounds are known to be tight with the mentioned above constructions, which are
based on randomized iterations. These constructions, however, are adaptive.

1.1 Our Contribution

In this paper, we give non-adaptive constructions of tight call complexity for
PRGs and UOWHFs from unknown-regular one-way functions. Both of our con-
structions are quite simple and are very similar to each other. Same as previous
results, the security of our constructions holds also if f is only almost-regular
[23], which means that for every |x| = |x′|, the ratio between

∣
∣f−1(f(x))

∣
∣ and

∣
∣f−1(f(x′))

∣
∣ is only bounded by a polynomial in |x| (compared to a ratio of 1,

in the case of regular functions).

2 We ignore low order terms for this introduction.
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The seed (or key) length in our construction for PRGs (or UOWHFs respec-
tively) is O(n2), compared to Õ(n) bits in the previous adaptive constructions.
This seems unavoidable and raises an interesting open question.3

Our Constructions and Results. In this section, we present our construc-
tions. The results here are stated for regular one-way functions but can be natu-
rally expanded to almost-regular functions, as stated in Sects. 3 and 4. The main
crux of the construction is the following observation. For regular f and i.i.d uni-
form random variables X1, X2 over {0, 1}n, given any fixing of f(X1), both the
entropy and min-entropy of the pair X1, f(X2) are exactly n. To see the above,
recall that for regular f with (unknown) regularity parameter r, it holds that
there are exactly r possible values for X1 given f(X1), and exactly 2n/r possible
values for f(X2). Thus, the regularity parameter r “cancels out” when consid-
ering the number of possible values (given f(X1)) of the pair X1, f(X2), which
is r · 2n/r = 2n. In the PRG construction, we exploit this fact by using a uni-
versal family of hash functions H (and the Goldreich-Levin theorem) in order to
extract pseudo-uniform bits. In the UOWHF construction, we use similar ideas
in order to compress the pair X1, f(X2) without creating too many collisions.
For both constructions, we need additional properties from the universal family
H that we ignore for this introduction. See more details in Sects. 3 and 4. We
next present the constructions. The main ideas of the proofs for the following
theorems are described in Sect. 1.2.

A Simple Construction of PRGs From Regular One-Way Functions.
We start with a description of our PRG construction. Let H =
{

h : {0, 1}2n → {0, 1}n+log n
}

be a family of 2-universal hash functions. For a

regular one-way function f : {0, 1}n → {0, 1}n and an integer t ∈ N,4 the gener-
ator Gt : H × {0, 1}n(t+1) → H × {0, 1}t·(n+log n) is given by

Gt

(

h, x1, . . . , xt+1

)

= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1)))

We show that for every polynomial t, the distribution Gt(H,X1, . . . , Xt) is pseu-
dorandom. Note that the input length of Gt is |h| + n · (t + 1) and the output
length is |h| + t · (n + log n). By making t = Θ(n/ log n) calls, we show that Gt

is indeed a pseudorandom generator.

Theorem 1.1. [Main theorem for PRG, informal] Let f : {0, 1}n → {0, 1}n

be an unknown-regular one-way function and let t(n) ≥ n/ log n + 1 be some
polynomial. Then, Gt is a PRG with seed length O(n2+n(t(n)+1)). Furthermore,
Gt makes t(n) non-adaptive calls to f .
3 By [17], Ω(n) calls are necessary for any black-box construction. Since for non-

adaptive constructions the uniformly random calls seem the only reasonable way
to use the one-way function, such construction needs at least Ω(n2) input bits. We
admit it is only a vague explanation.

4 The assumption that f is length-preserving is made for simplicity, and is not crucial
for our constructions.
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A Simple Construction of UOWHFs From Regular One-Way Functions. Now
we introduce the construction of the UOWHFs. It is a well-known fact that in
order to construct UWOHF, it is sufficient to construct a function for which it
is hard to find a collision for a random input. Let f be a one-way function, let t

be a parameter and let H =
{

h : {0, 1}2n → {0, 1}n−log n
}

be a family of hash

functions. We define the function Ct : H×{0, 1}n·t → H×{0, 1}(t−1)·(n−log n)+2n

as

Ct (h, x1, . . . , xt) = (h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt)

The main difference of this construction from the PRG one is that h is now
a shrinking function. In addition, we also output f(x1) and the very last input
of Ct. As before, since the output length of UOWHFs has to be shorter than the
input length, we have to make up for the additional output (f(x1), xt) by taking
t to be Θ(n/ log n).

The OUWHF can now be defined using Ct. Let k = log |H| + n · t and for
a string z ∈ {0, 1}k, let Cz be the function defined by Cz(w) = Ct(w ⊕ z) for
every w ∈ {0, 1}k. Our main theorem for this part is stated as follows.

Theorem 1.2. [Main theorem for UOWHF, informal] Let f : {0, 1}n → {0, 1}n

be an unknown-regular one-way function and let t(n) ≥ n/ log n+2 be some poly-
nomial. Then, {Cz}z∈{0,1}k is a family of universal one-way hash functions with
key length k = O(n2 + n · t(n)) and output length O(n2 + n · t(n)). Furthermore,
for every z ∈ {0, 1}k, Cz makes t non-adaptive calls to f .

1.2 Proof Overview

Here we give a short overview of our proofs. For both constructions, the
proof boils down to showing that each input pair xi, xi+1 induces a weak
version of the desired primitive. For PRG, the main part of the security
proof is showing that given f(x1) and h, it is hard to distinguish between
h(x1, f(x2)) and a uniform string. For UOWHF, we prove the security by show-
ing that given h, x1, x2, it is hard to find a collision h, x′

1, x
′
2 to the function

C(h, x1, x2) = h, f(x1), h(x1, f(x2)). Note that it may be easy to find x′
2 �= x2

with f(x′
2) = f(x2). To solve this, we further demand that f(x′

2) �= f(x2).5

To show that this is enough, we prove that any collision in our UOWHF must
contain a collision in the above form, for at least one input pair. Below we give
short descriptions of the main ideas in more details.

The PRG Construction. We start by sketching the security proof for the PRG.
Let X1 and X2 be uniform random variables over {0, 1}n, and let h be a
hash function, uniformly sampled from a universal family of hash functions
H =

{

h : {0, 1}2n → {0, 1}n+log n
}

. Recall that we want to show that given

5 For this reason we need to output the last input xt in our UOWHF construction.
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h and f(X1), it holds that h(X1, f(X2)) is computationally indistinguishable
from uniform n+log n bits. For simplicity, assume that we are only interested in
proving that the distinguish advantage is at most n−c, for some constant c > 1.

The main observation is that for regular f , given f(X1), the pair X1, f(X2)
has exactly n bits of min-entropy. Thus, by the leftover hash lemma, the
n − O(c log n) first bits of h(X1, f(X2)) are n−c/2 statistically close to uni-
form. To argue that the suffix of h(X1, f(X2)) looks uniform, we show that
g(x1, y) = h, f(x1), h(x1, y)1,...,n−O(c log n) is a one-way function,6 and thus we
can use Goldreich-Levin in order to extract additional O(c log n) pseudorandom
bits from X1, f(X2).

The UOWHF Construction. We now sketch the security proof for the UOWHF.
Let H be a universal family of hash functions

{

h : {0, 1}2n → {0, 1}n−log n
}

. We

show that given random h and uniformly sampled x1 and x2 from {0, 1}n, it is
hard to find (x′

1, x
′
2) �= (x1, x2) such that f(x1) = f(x′

1), f(x2) �= f(x′
2) and yet

h(x1, f(x2)) = h(x′
1, f(x′

2)). For x1, x2 ∈ {0, 1}n and h ∈ H we define

Gh,x1,x2 := {(x′
1, y) : h(x1, f(x2)) = h(x′

1, y) ∧ f(x1) = f(x′
1) ∧ y ∈ Im(f)} .

That is, the set Gh,x1,x2 contains all the pairs (x′
1, f(x′

2)) for which h, x′
1, x

′
2

collides with h, x1, x2. The main observation here is that, since h outputs n−log n
bits, and there are exactly 2n pairs (x′

1, y) such that y ∈ Im(f) and f(x′
1) =

f(x1), the expected size of Gh,x1,x2 is at most 2n/2n−log n = n. Thus, we can use
an algorithm A that finds a collision in the above function in order to invert f :
Given input y, we choose random x1, x2 ∈ {0, 1}n and plant y in Gh,x1,x2 . That
is, we choose a random h conditioned on the event that h(x1, f(x2)) = h(x′

1, y)
for some x′

1 ∈ f−1(f(x1)). Since there are about n such pairs, we can hope that
the planted pair (x′

1, y) will be output by A with good probability.
However, we need to find x′

1 for which the pair (x′
1, y) has a good probability

to be output by A. To do that, we also use A in order to find a pre-image x′
1 of

f(x1), and then show that x′
1 has a good probability to be output again by A.7

For more details, see Sect. 4.

1.3 Additional Related Work

Arbitrary One-Way Functions. In [12], the notion of inaccessible entropy (intro-
duced in [14]) was used in order to construct UOWHF. Similar techniques were
later used in [10] to construct PRG, where the notion of inaccessible entropy was
replaced with next-block pseudoentropy. This construction was later simplified
by [21], who also improved the seed length with the cost of adaptivity. Lately [1]
pointed out that the notions of accessible entropy and next-block pseudoentropy
are deeply related to each other.
6 Actually, we need to show that the function g is hard to invert on outputs sam-

pled from a specific distribution. This is sufficient for applying the Goldreich-Levin
theorem, see Lemma 2.5.

7 Such a “collision based” argument was also used in [2].
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Regular One-Way Functions. As mentioned above, the construction from regular
one-way functions are more efficient. Beside almost-regular, a few refinements of
regularity were considered in past works. [4] showed a construction for UOWHF
that uses O(ns6(n)) key-length under the assumption that f−1(f(x)) is concen-
trated in an interval of size 2s(n). [24] considered unknown-weakly-regular func-
tions. The last are functions for which the set of inputs with maximal number of
siblings is of fraction at least n−c for some constant c. For such functions, [24]
presented PRG with O(n log n) seed-length and O(n2c+1) calls. [23] considered
known-almost-regular and unknown-weakly-regular functions. For the last, [23]
showed a tight construction of UOWHF based on the randomized iterate method.

1.4 Paper Organisation

Formal definitions are given in Sect. 2. The PRG construction and proof of
Theorem 1.1 are in Sect. 3. The UOWHF construction and proof of Theorem1.2
are in Sect. 4.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a vector
s ∈ {0, 1}n, let si denote its i-th entry, and s1,...,i denote its first i entries. For
s, w ∈ {0, 1}∗ we use s ◦ w to denote their concatenation and for s, w ∈ {0, 1}n,
we use s ⊕ w ∈ {0, 1}n to denote their bit-wise XOR.

The support of a distribution P over a finite set S is defined by Supp(P ) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D let d ← D denote that d was
sampled according to D. Similarly, for a set S, let s ← S denote that s is drawn
uniformly from S. For a function f : {0, 1}n → {0, 1}n, let y ← f({0, 1}n) denote
that y sampled from the following distribution: sample x uniformly from {0, 1}n,
and let y = f(x). Let Im(f) := {f(x) : x ∈ {0, 1}n} be the image of f . The
statistical distance (also known as, variation distance) of two distributions P and
Q over a discrete domain X is defined by SD(P,Q) := maxS⊆X |P (S) − Q(S)| =
1
2

∑

x∈S |P (x) − Q(x)|. The min-entropy of a distribution X, denoted by H∞(X)
is defined by H∞(X) := − log(maxx∈Supp(X) {Pr [X = x]}).

Let poly denote the set of all polynomials, and let PPT stand for probabilistic
polynomial time. A function ν : N → [0, 1] is negligible, denoted ν(n) = neg(n),
if ν(n) < 1/p(n) for every p ∈ poly and large enough n. Lastly, we identify a
matrix M ∈ {0, 1}n×m with a function M : {0, 1}n → {0, 1}m by M(x) := x ·M ,
thinking of x ∈ {0, 1}n as a vector with dimension n.

2.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.
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Definition 2.1 (One-way function). A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a one-way function if for every probabilistic poly-
nomial time algorithm A, there is a negligible function ν : N → [0, 1] such that
for every n ∈ N

Pr
x←{0,1}n

[

A(f(x)) ∈ f−1(f(x))
] ≤ ν(n)

For simplicity we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.

In this paper we focus on almost-regular one-way functions, formally defined
below.

Definition 2.2 (Almost-regular function). A function family f = {fn :
{0, 1}n → {0, 1}n} is β-almost-regular for β ≥ 0 if for every n ∈ N and
x ∈ {0, 1}n it holds that

2n

|Im(f) | · n−β ≤ ∣
∣f−1(f(x))

∣
∣ ≤ 2n

|Im(f) | · nβ .

f is almost-regular if there exists β ≥ 0 such that f is β-almost-regular, and
regular if it is 0-almost-regular.

Note that we do not assume that the regularity of f can be computed effi-
ciently. That is, we only assume that f is unknown-(almost)-regular.

Immediately from the definition of a one-way function, we get the following
simple observation.

Claim 2.3. For every one-way function f : {0, 1}n → {0, 1}n there exists a
negligible function ν(n) such that for every input x ∈ {0, 1}n it holds that
∣
∣f−1(f(x))

∣
∣ ≤ 2n · ν(n).

2.3 Pseudorandom Generators

In Sect. 3 we use one-way functions in order to construct PRGs. The later are
formally defined below.

Definition 2.4 (Pseudorandom generator). Let n be a security parameter.
A polynomial-time computable function G : {0, 1}n → {0, 1}m(n) is called a
pseudorandom generator if for every n > 0 it holds that m(n) > n and, for
every probabilistic polynomial time algorithm D, there is a negligible function
ν : N → [0, 1] such that for every n > 0,

∣
∣
∣
∣
∣

Pr
x←{0,1}n

[D(G(x)) = 1] − Pr
x←{0,1}m(n)

[D(x) = 1]

∣
∣
∣
∣
∣
≤ ν(n).

A key ingredient in the construction of PRG from one-way function is the
Goldreich-Levin hardcore predicate. The following lemma follows almost directly
from [9].
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Lemma 2.5. Let n be a security parameter. Let f : {0, 1}n → {0, 1}n be a func-
tion, and D a distribution on {0, 1}n, such that for every PPT A

Pr
x←D

[

A(f(x)) ∈ f−1(f(x))
]

= neg(n).

Then for every PPT P,

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + neg(n)

where GL(x, r) := 〈x, r〉 is the Goldreich-Levin predicate.

Proof. By the proof of Goldreich-Levin [9], for every p ∈ poly there is an oracle-
aided PPT algorithm A such that for every algorithm P and x with

Pr
r←{0,1}n

[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)

it holds that

Pr
[

AP(f(x)) = x
] ≥ 1/p2(n).

Thus, it holds for every p ∈ poly that

Pr
x←D

[

Pr
r←{0,1}n

[P(f(x), r) = GL(x, r)] ≥ 1/2 + 1/p(n)
]

= neg(n)

which implies that

Pr
x←D,r←{0,1}n

[P(f(x), r) = GL(x, r)] ≤ 1/2 + 1/p(n) + neg(n)

for every p ∈ poly.

The next lemma, stated in [22], is useful for showing that a sequence of bits
is pseudorandom. The proof of the lemma is given in Appendix A.

Lemma 2.6 (Distinguishability to prediction). There exists an oracle-
aided PPT algorithm P such that the following holds. Let Q be a distribution
over {0, 1}∗ × {0, 1}n, let D be an algorithm and α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[

PD(x, y1,...,i−1) = yi

] ≥ 1/2 + α/n.
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2.4 Universal One Way Hash Function

Lastly, we formally define UOWHF.

Definition 2.7 (Universal one-way hash function)
Let k be a security parameter. A family of functions

F =
{

fz : {0, 1}n(k) → {0, 1}m(k)
}

z∈{0,1}k
is a family of universal one-way hash

functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k and x ∈ {0, 1}n(k), fz(x) can be evaluated in
time poly(n(k), k).

2. Shrinking: m(k) < n(k).
3. Target Collision Resistance: For every probabilistic polynomial-time adversary

A, the probability that A succeeds in the following game is negligible in k:
(a) Let (x, state) ← A(1k) ∈ {0, 1}n(k) × {0, 1}∗.
(b) Choose z ← {0, 1}k.
(c) Let x′ ← A(state, z) ∈ {0, 1}n(k).
(d) A succeeds if x �= x′ and fz(x) = fz(x′).

A relaxation of the target collision resistance property can be done by requir-
ing the function to be collision resistant only on random inputs.

Definition 2.8 (Collision resistance on random inputs). Let n be a secu-
rity parameter. A function f : {0, 1}n → {0, 1}m(n) is collision resistant on ran-
dom inputs if for every probabilistic polynomial-time adversary A, the probability
that A succeeds in the following game is negligible in n:

1. Choose x ← {0, 1}n.
2. Let x′ ← A(x) ∈ {0, 1}n.
3. A succeeds if x �= x′ and f(x) = f(x′).

The following lemma states that it is enough to construct a function that is
collision resistant on random inputs, in order to get UOWHF.

Lemma 2.9 (From random inputs to targets, folklore). Let n be a secu-
rity parameter. Let F : {0, 1}n → {0, 1}m(n) be a length-decreasing function.
Suppose F is collision-resistant on random inputs.

Then {Fy : {0, 1}n → {0, 1}m}y∈{0,1}n , for Fy(x) := F (y ⊕ x), is a family of
target collision-resistant hash functions.

2.5 2-Universal Hash Families

2-universal families are an important ingredient in our constructions. In this
section, we formally define this notion, together with some useful properties of
such families.
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Definition 2.10 (2-universal family). A family of function F =
{

f : {0, 1}n → {0, 1}�
}

is 2-universal if for every x �= x′ ∈ {0, 1}n it holds that

Prf←F [f(x) = f(x′)] = 2−�.
A universal a family is explicit if given a description of a function f ∈ F

and x ∈ {0, 1}n, f(x) can be computed in polynomial time (in n, �). Such family
is constructible if it is explicit and there is a PPT algorithm that given x, x′ ∈
{0, 1}n outputs a uniform f ∈ F , such that f(x) = f(x′).

An important property of 2-universal families is that they can be used to
construct a strong extractor. This is stated in the leftover hash lemma:

Lemma 2.11 (Leftover hash lemma [18]). Let n ∈ N, ε ∈ [0, 1], and let X be
a random variable over {0, 1}n. Let H =

{

h : {0, 1}n → {0, 1}�
}

be a 2-universal
hash family with � ≤ H∞(X) − 2 log 1/ε. Then,

SD((H,H(X)), (H,U�)) ≤ ε

for U� being the uniform distribution over {0, 1}� and H being the uniform dis-
tribution over H.

The family of all binary matrices of size n × �,
{

m : m ∈ {0, 1}n×�
}

, is a
constructible 2-universal family. This family has an additional property that is
useful in the proof. This property is defined below.

Definition 2.12 (Approximately flat family). A family of functions H =
{

h : {0, 1}2n → {0, 1}�
}

is approximately-flat if for every set Y ⊆ {0, 1}n,

x1, x2 ∈ {0, 1}n and y1 ∈ Y it holds that,

Pr
h←H

[∃y2 ∈ Y s.t. h(x1, y1) = h(x2, y2)] ≥ 2−10 · min
{|Y| · 2−�, 1

}

.

The proof of the next lemma is in Appendix A.

Lemma 2.13. For every �, n ∈ N such that � ≤ n, the family
{

m : m ∈ {0, 1}n×�
}

is approximately-flat.

2.6 Useful Inequalities

The following well-known inequalities will be useful later on.

Lemma 2.14 (Jensen Inequality). Let X be a distribution over R and let
f : R → R be a convex function. It holds that

f(E [X]) ≤ E [f(X)]

Lemma 2.15 (Cauchy–Schwarz inequality). Let n ∈ N and a1, . . . , an ∈ R

be numbers. Then,

(
∑

i∈[n]

ai)2 ≤ n ·
∑

i∈[n]

a2
i



468 N. Mazor and J. Zhang

Lastly, the following lemma will be useful in the security proof of the
UOWHF. Let A be an algorithm such that for every x, the output of A(x) is in
some small set Sx. Then the lemma roughly states the event of two executions
of A returning the same value is not too rare.

Lemma 2.16. Let Ω ⊆ {0, 1}n and X be some set, let X be a distribution over
X , and let S : X → P (Ω) be a function that maps elements in X to subsets of Ω.
Let A be an algorithm, such that for every x ∈ X , A(x) ∈ S(x) ∪ {⊥}. Assume
that for every u ∈ Ω, it holds that 0 < Prx←X [u ∈ S(x)] ≤ �/ |Ω|, and that
Prx←X [A(x) ∈ S(x)] ≥ p. Then

∑

u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)] ≥ p2/�.

.

Proof. Using Cauchy–Schwarz inequality, it holds that:
∑

u∈Ω

Pr
x←X

[A(x) = u] Pr
x←X

[A(x) = u | u ∈ S(x)]

=
∑

u∈Ω

Pr
x←X

[A(x) = u]2 / Pr
x←X

[u ∈ S(x)]

≥
∑

u∈Ω

Pr
x←X

[A(x) = u]2 · |Ω| /�

≥
(

∑

u∈Ω

Pr
x←X

[A(x) = u]

)2

/�

≥ p2/�.

3 The PRG Construction

In this section we prove the security of our PRG construction. We start with a
description of the construction. Let f : {0, 1}n → {0, 1}n be an almost-regular
one-way function, let t be a parameter and let H =

{

m : m ∈ {0, 1}2n×(n+log n)
}

be the 2-universal family induced by the set of matrices of size 2n× (n+log n).8

The generator G : H × {0, 1}n(t+1) → H × {0, 1}t·(n+log n) is given by

G
(

h, x1, . . . , xt+1

)

= (h, h(x1, f(x2)), . . . , h(xt, f(xt+1))) .

The main theorem of this part is as follows.

8 By taking H =
{

hm : m ∈ {0, 1}2n×(log2 n+log n) , h ∈ G
}

where

G =
{

g : {0, 1}2n → {0, 1}n−log2 n
}

is arbitrary 2-universal family, and

hm(z) := h(z) ◦ m(z), the seed of length can be reduced up to O(n · t).
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Theorem 3.1. [Main theorem for PRG] Let f : {0, 1}n → {0, 1}n be an almost-
regular one-way function and let t(n) ≥ n/ log n+1 be some polynomial. Then G
is a PRG with seed length O(n2 +n(t+1)). Furthermore, G uses t non-adaptive
calls to f .

Note that the stretch of G is t · log n−n, which is tight with [6] for large values of
t. We now prove Theorem 3.1. Our main lemma states that given h and f(x1),
the hash h(x1, f(x2)) looks uniform for a computationally bounded algorithm.

Lemma 3.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function.
For any PPT algorithm D, it holds that
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

is a negligible function of n.

We prove Lemma 3.2 below, but first we use it in order to give the proof of
Theorem 3.1, which is straight-forward.

Proof (Proof of Theorem 3.1). Let f and t be as in Theorem 3.1. By construction
G makes t calls to f . Additionally, t(n + log n) > n(t + 1) when t ≥ n/ log n + 1.
We are left to show that the output of G is indistinguishable from uniform.
The proof is by a hybrid argument. Let H be a uniform random variable over
H, and X1, . . . , Xt+1 be i.i.d. uniform random variables over {0, 1}n. Assume
toward a contradiction that there is a PPT algorithm D̂ that can distinguish
G(H,X1, . . . , Xt+1) from uniform. Then we show that the following algorithm
D contradicts Lemma 3.2.

Algorithm 3.3 (The distinguisher D)
Input: h ∈ H, y ∈ {0, 1}n

, z ∈ {0, 1}n+log n.
Operation:

1. Sample � ← [t].
2. Sample x1, . . . x�−1 ← ({0, 1}n)�−1 and u ← {0, 1}(t−�)n log n.
3. Compute w := h, h(x1, f(x2)), . . . , h(x�−2, f(x�−1)), h(x�−1, y), z, u.
4. Execute D̂(w) and output its output.

For each � ∈ [t + 1], let the distribution Hyb� be defined as

Hyb� :=
(

H,H(X1, f(X2)), . . . , H(X�−1, f(X�)), U(t+1−�)n·log n

)
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where U(t+1−�)n·log n is the uniform distribution over {0, 1}(t+1−�)n·log n. That is,
Hyb� is equal to G(H,X1, . . . , Xt+1) on the first �−1 blocks, and uniform on the
rest. Observe that for every fixing of � in the algorithm, the distribution of w for
input h ← H, y ← f(Un), z ← {0, 1}n+log n is exactly as the distribution Hyb�.
Similarly, the distribution of w for input h ← H, y ← f(Un) and z = h(X ′, Y ′)
for X ′ ← f−1(y) and Y ′ ← f({0, 1}n) is exactly as the distribution Hyb�+1.
Thus, it holds that,
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
1/t ·

t∑

�=1

(

Pr
w←Hyb�

[

D̂(w) = 1
]

− Pr
w←Hyb�+1

[

D̂(w) = 1
] )

∣
∣
∣
∣
∣

= 1/t ·
∣
∣
∣
∣

Pr
w←Hyb1

[

D̂(w) = 1
]

− Pr
w←Hybt+1

[

D̂(w) = 1
]
∣
∣
∣
∣

= 1/t ·
∣
∣
∣
∣
∣

Pr
w←{0,1}log|H|+(n+log n)·t

[

D̂(w) = 1
]

− Pr
w←G(H,X1,...,Xt+1)

[

D̂(w) = 1
]
∣
∣
∣
∣
∣
.

(1)

Where the last equality holds since Hybt+1 ≡ G(H,X1, . . . , Xt+1) and Hyb1
is the uniform distribution. We conclude by Lemma 3.2 that the advantage
probability of D̂ is negligible.

3.1 Proving Lemma 3.2

In the rest of this section we prove Lemma 3.2. Fix β ≥ 0, any β-almost-regular
one-way function f : {0, 1}n → {0, 1}n and n ∈ N. Recall that we want to show
that h(x1, f(x2)) looks uniform to computationally bounded algorithms, given h
and f(x1). By the leftover hash lemma, every prefix p(x1, x2) of the above hash
h(x1, f(x2)) is somewhat close to uniform. In order to show that the suffix looks
uniform as well, we prove that the concatenation of h, f(x1) and p(x1, x2) is a
one-way function, and then use Goldreich-Levin. The next claim states that the
described function is indeed one-way on part of its domain.

Claim 3.4. For every i ∈ [n+log n], let gi : H×{0, 1}n×{0, 1}n → H×{0, 1}n×
{0, 1}i−1 be the following function

gi(h, x1, y) := (h, f(x1), h(x1, y)1,...,i−1) .

Then it holds that for every PPT A and every function i = i(n)

Pr
h←H,x1,x2←{0,1}n

z=(h,x1,f(x2))

[

A(gi(z)) ∈ g−1
i (gi(z))

]

= neg(n). (2)



Simple Constructions from (Almost) Regular One-Way Functions 471

Proof. Assume toward contradiction that the claim does not hold. That is, there
exists PPT algorithm A, a function i(n) and a constant d ∈ N such that

Pr
h←H,x1,x2←{0,1}n

z=(h,x1,f(x2))

[

A(gi(z)) ∈ g−1
i (gi(z))

] ≥ n−d (3)

for infinitely many n ∈ N. Fix such n and consider the following algorithm Â. In
the following we show Â can be used to invert f .

Algorithm 3.5 (The inverter Â)
Input: h ∈ H, y ∈ {0, 1}n, z ∈ {0, 1}n−(4d+2β) log n.
Operation:

1. For every w ∈ {0, 1}(4d+2β+1) log n and j ∈ [n + log n]:
(a) Let (h, x, y′) be the output of A(h, y, (z ◦ w)1,...,j−1).
(b) If f(x) = y, output x.

That is, Â tries to invert y using A and only a prefix of h(x1, f(x2)). It does
so by iterating over all the possible values of the missing input bits

h(f−1(y), f(x2))n−(4d+2β) log n+1,...,n+log n

and every possible index j ∈ [n + log n]. Clearly Â runs in a polynomial time.
Let x1 be some preimage of y and let x2 be some element in {0, 1}n. Note that
when the guess w is equal to h(x1, f(x2))n−(4d+2β) log n+1,...,n+log n, and when the
index j is equal to i, the value of h, y, (z ◦ w)1,...,j−1 computed by the algorithm
is equal to the output of gi(h, x1, f(x2)). Thus, by definition it is clear that the
success probability of Â is better than A’s. Formally, we get that,

Pr
h←H,x1,x2←{0,1}n

[

Â(h, f(x1), h(x1, f(x2))1,...,n−(4d+2β) log n) ∈ f−1(f(x1))
]

≥ Pr
x1,x2←{0,1}n

[

A(gi(h, x1, f(x2))) ∈ g−1
i (gi(h, x1, f(x2)))

]

≥ n−d. (4)

Next, we show that Â can guess the value of h(x1, f(x2))1,...,n−(4d+2β) log n.
Indeed, recall that by the β-almost-regularity of f , given any fixing of f(x1),
the min-entropy of x1, f(x2) is at least n − 2β log n. Thus, by the left-over
hash lemma, h(x1, f(x2))1,...,n−(4d+2β) log n is n−d/2 close to uniform given h
and f(x1). Let k = n − (4d + 2β) log n. Combining the above with Eq. (4),
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Pr
h←H,x1←{0,1}n,u←{0,1}k

[

Â(h, f(x1), u) ∈ f−1(f(x1))
]

= E
y←f({0,1}n)

⎡

⎢
⎣ Pr

h←H,x1←f−1(y),

u←{0,1}k

[

Â(h, y, u) ∈ f−1(f(x1))
]

⎤

⎥
⎦

≥ E
y

⎡

⎢
⎣ Pr

h←H,x1←f−1(y),
x2←{0,1}n

[

Â(h, y, h(x1, f(x2))1,...,k) ∈ f−1(f(x1))
]

− n−d/2

⎤

⎥
⎦

= Pr
h←H,x1,x2←{0,1}n

[

Â(h, f(x1), h(x1, f(x2))1,...,k) ∈ f−1(f(x1))
]

− n−d/2

≥ n−d/2. (5)

Finally, let Inv be the algorithm that given f(x1) samples h ← H and u ←
{0, 1}n−(4d+2β) log n, and executes Â. By Eq. (5) Inv inverts f(x1) successfully
with probability at least n−d/2 for uniformly sampled x1 ∈ {0, 1}n, for infinitely
many n ∈ N, which is a contradiction.

We are now ready to prove Lemma 3.2. The proof is straight-forward from
Claim 3.4 together with Lemma 2.5 and Lemma 2.6.

Proof (Proof of Lemma 3.2.). Assume toward a contradiction that Lemma 3.2
does not hold. That is, there exists PPT algorithm D and a constant c ∈ N such
that
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}n,

h←H
[D(h, f(x1), h(x1, f(x2))) = 1]

∣
∣
∣
∣
∣
∣
∣
∣
∣

≥ n−c (6)

for infinitely many n ∈ N. We assume without loss of generality that for infinitely
many n ∈ N it holds that

Pr
x1←{0,1}n,

h←H,

u←{0,1}n+log n

[D(h, f(x1), u) = 1] − Pr
x1,x2←{0,1}2n,

h←H

[D(h, f(x1), h(x1, f(x2))) = 1]

≥ n−c (7)

as otherwise we can flip the output of D. By Lemma 2.6 there is a oracle-aided
PPT algorithm P such that for infinitely many n ∈ N and i = i(n) it holds that

Pr
x1,x2←{0,1}2n,

h←H

[

PD(h, f(x1), h(x1, f(x2))1,...,i−1) = h(x1, f(x2))i

] ≥ 1/2 + n−c−4.
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Recall that, by definition, h, f(x1), h(x1, f(x2))1,...,i−1 = gi(x1, f(x2)). Addi-
tionally, by our choice of the family H, h(x1, f(x2)))i is the GL predicate of the
function gi(x1, f(x2)).9 Thus, the above contradicts Claim 3.4 and Lemma 2.5.

4 The UOWHF Construction

In this section we prove the security of our UOWHF construction. We start
with a full description of the construction. Let f : {0, 1}n → {0, 1}n be
an almost-regular one-way function, let t be a parameter and let H =
{

m : m ∈ {0, 1}2n×(n−log n)
}

be the 2-universal family induced by the set of

matrices of size 2n × (n − log n).10

The function C : H × {0, 1}n·t → H × {0, 1}(t−1)·(n−log n)+2n is given by

C
(

h, x1, . . . , xt

)

= h, f(x1), h(x1, f(x2)), . . . , h(xt−1, f(xt)), xt.

Let k = log |H|+n · t. For a string z ∈ {0, 1}k, let Cz(w) := C(w ⊕ z). Our main
theorem for this part is stated as follows.

Theorem 4.1 [Main theorem for UOWHF] Let f = f : {0, 1}n → {0, 1}n be an
almost-regular one-way function and let t(n) ≥ n/ log n + 2 be some polynomial.
Then Fk = {Cz}z∈{0,1}k is a family of universal one-way hash functions with
key length k = O(n2 + n · t(n)) and output length O(n2 + n · t(n)). Furthermore,
for every z ∈ {0, 1}k, Cz uses t non-adaptive calls to f .

In the rest of this section we prove Theorem 4.1. Note that by Lemma 2.9 in
order to prove Theorem 4.1, it is enough to show that it is hard to find a collision
of C for a random input. The main lemma of this part is the following one, which
essentially states that no efficient algorithm can find a collision in a simpler
function, Ĉ(h, x1, x2) = h, f(x1), h(x1, f(x2)). Note that Ĉ is not UOWHF, as it
is not shrinking, and, as we are only interested in collisions (h, x′

1, x
′
2) in which

f(x2) �= f(x′
2).

Lemma 4.2. Let f : {0, 1}n → {0, 1}n be an almost-regular one-way function.
For every PPT algorithm A, it holds that,

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[f(x1) = f(x′
1) ∧ f(x2) �= f(x′

2) ∧ h(x1, f(x2)) = h(x′
1, f(x′

2))]

is a negligible function of n.

9 Note that if i ≤ n − ω(log n) there is no need in GL. Indeed, by the leftover hash
lemma, the first bits of h are statistically close to uniform.

10 Any approximately-flat, constructible, and 2-universal hash family will suffice. Such
a family with a smaller size, if exists, can be used in order to reduce the key length
up to O(n · t).
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We prove Lemma 4.2 below, but first let us prove the security of C using Lemma
4.2. The proof is by reduction, stated in the next claim. Informally, we show that
an algorithm that breaks the security of C can be used in order to find a collision
in the function Ĉ defined above.

Claim 4.3. There exists an oracle-aided PPT algorithm A such that the follow-
ing holds. Let f be a one-way function, t ∈ poly and C be the function described
above. Let n ∈ N, α ∈ [0, 1] and let ColFinder be an algorithm such that

Pr
w←H×({0,1}n)t,w′←ColFinder(w)

[w′ �= w ∧ C(w) = C(w′)] = α.

Then,

Pr
h←H,x1,x2←{0,1}n,

(x′
1,x′

2)←AColFinder(h,x1,x2)

[
f(x1)=f(x′

1)

∧f(x2) 
=f(x′
2)∧h(x1,f(x2))=h(x′

1,f(x′
2))

]

≥ (α − ν(n))/t,

where ν is a negligible function, depending only on f and t.

The proof of Theorem 4.1 is now immediate.

Proof (Proof of Theorem 4.1.). Let f, t and Cz be as in Theorem 4.1. It is clear
that Cz is efficiently computable for every z ∈ {0, 1}k, and that C is shrinking
since log |H| + n · t > log |H| + (t − 1) · (n − log n) + 2n for t ≥ n/ log n + 2.

Next, we show that it is collision-resistant for random input. Assume toward
contradiction that there exists a PPT ColFinder and p ∈ poly such that

Pr
w←H×({0,1}n)t,
w′←ColFinder(w)

[w′ �= w ∧ C(w) = C(w′)] ≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.3, for infinitely many n ∈ N it holds
that

Pr
h←H,x1,x2←{0,1}n,

(x′
1,x′

2)←AColFinder(h,x1,x2)

[
f(x1)=f(x′

1)∧
f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))

]

≥ 1/(2t · p(n)).

Note that by the choice of t, 1/(2t · p(n)) is not negligible, and that since both
A and ColFinder are efficient, AColFinder(·) can be efficiently implemented. Thus,
the above contradicts Lemma 4.2.

4.1 Proving Claim 4.3

We next prove Claim 4.3. The next simple claim will be useful in the proof,
as it states that given (h, x1, . . . , xt), with high probability there is no collision
(h, x′

1, . . . , x
′
t) of C in which for some j ∈ [t] it holds that xj �= x′

j while f(xj) =
f(x′

j) and f(xj+1) = f(x′
j+1).
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Claim 4.4. For every one-way function f and polynomial t, there exists a neg-
ligible function ν such that the following holds. For every x1, . . . , xt ∈ {0, 1}n,

Pr
h←H

[∀j∈[t−1], ∀x′
j∈f−1(f(xj))\{xj} it holds that

h(x′
j ,f(xj+1)) 
=h(xj ,f(xj+1))

]

≥ 1 − ν(n).

Proof. Fix x1, . . . , xt ∈ {0, 1}n, j ∈ [t − 1] and x′
j ∈ f−1(f(xj)) \ {xj}. Since H

is 2-universal, it holds that

Pr
h←H

[

h(x′
j , f(xj+1)) = h(xj , f(xj+1))

]

= n/2n.

By the union bound,

Pr
h←H

[∃j∈[t−1],x′
j∈f−1(f(xj))\{xj} s.t.

h(x′
j ,f(xj+1))=h(xj ,f(xj+1))

]

≤
∑

j∈[t−1]

∑

x′
j∈f−1(f(xj))\{xj}

Pr
h←H

[

h(x′
j , f(xj+1)) = h(xj , f(xj+1))

]

≤ t(n) · |f−1(f(xj))| · n/2n.

Since f is a one-way function, by Claim 2.3 it holds that |f−1(f(xk))| ≤ 2n ·
neg(n), and thus the claim follows.

Proof (Proof of Claim 4.3.). Let f , t n, α and ColFinder as in Claim 4.3. Let A
be the following algorithm.

Algorithm 4.5 (The reduction A)
Input: h ∈ H, x1, x2 ∈ {0, 1}.
Oracle: ColFinder.
Operation:

1. Sample i ← [t − 1], z1, . . . , zi−1, zi+2, . . . , zt ← {0, 1}n and set
zi = x1, zi+1 = x2.

2. Apply ColFinder(h, z1, . . . , zt) to get (h′, z′
1, . . . , z

′
t).

3. Output z′
i, z

′
i+1.

We next show that with all but negligible probability over the choice of
w = (h, x1, . . . , xt), the following must hold. For every w′ = (h′, x′

1, . . . , x
′
t) with

w �= w′ and C(w) = C(w′), there exists some i ∈ [t − 1] such that f(xi) = f(x′
i)

and f(xi+1) �= f(x′
i+1). The lemma then follows easily.

Indeed, fix such w and w′. First note that since C(w) = C(w′), it holds that
h = h′. Let j be the first index for which xj �= x′

j , and observe that by the
definition of C, j ∈ [t − 1]. We split into cases:

– If f(xj) �= f(x′
j), then j > 1 (since C(w) = C(w′) implies that f(x1) = f(x′

1))
and for i = j − 1 it holds that f(xi) = f(x′

i) and f(xi+1) �= f(x′
i+1).
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– For the other case, assume that f(xj) = f(x′
j). By Claim 4.4, with proba-

bility all but negligible over the choice of w, it holds that, h(xj , f(xj+1)) �=
h(x′

j , f(xj+1)), and thus it must hold that f(xj+1) �= f(x′
j+1). We get that

for i = j, it holds that f(xi) = f(x′
i) and f(xi+1) �= f(x′

i+1).

Since i is chosen uniformly in Theorem 4.5, and since the distribution of
h, z1, . . . , zt in Theorem 4.5 is uniform for every i ∈ [t− 1] and uniformly chosen
input h, x1, x2, we conclude that the success probability of AColFinder is at least
(α − neg(n))/t.

4.2 Proving Lemma 4.2

We now prove Lemma 4.2. For the rest of this section, fix β ≥ 0, and a β-almost-
regular one-way function f . In order to prove the lemma, we show how to invert
the one-way function f using an algorithm that contradicts the lemma. Formally,

Claim 4.6. There exists PPT oracle-aided algorithm Inv such that the following
holds. Let n ∈ N, α ∈ [0, 1] and let A be an algorithm such that

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[f(x1)=f(x′
1)∧f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))] = α.

Then,

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ α2 · n−2β−2 · 2−12.

The proof of Lemma 4.2 is immediate from Claim 4.6, as
Prx←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

must be negligible.

Proof (Proof of Lemma 4.2.). Assume toward contradiction that there exists a
PPT algorithm A and p ∈ poly such that

Pr
h←H,x1,x2←{0,1}n,
(x′

1,x′
2)←A(h,x1,x2)

[
f(x1)=f(x′

1)∧
f(x2) 
=f(x′

2)∧h(x1,f(x2))=h(x′
1,f(x′

2))

]

≥ 1/p(n)

for infinitely many n ∈ N. Then, by Claim 4.6 it holds that

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ 1/p(n)2 · n−2β−2 · 2−10

for infinitely many n ∈ N, which is a contradiction to f being a one-way function.

The rest of this part is dedicated for proving Claim 4.6. Let n, α and A be as in
Claim 4.6. In the following we assume that A outputs a valid pair (x′

1, x
′
2) with

(f(x1) = f(x′
1) ∧ f(x2) �= f(x′

2) ∧ h(x1, f(x2)) = h(x′
1, f(x′

2))) or (⊥,⊥). For
x1, x2 and h, we define,

Gh,x1,x2 :=
{

(x′
1, y) ∈ f−1(f(x1)) × Im(f) : h(x1, f(x2)) = h(x′

1, y)
}

.
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For ease of notation, we say that x ∈ Gh,x1,x2 if there exists y ∈ Im(f) such
that (x, y) ∈ Gh,x1,x2 . Let Inv be the following algorithm. Note that Inv can be
implemented efficiently, by the constructibility of H.

Algorithm 4.7 (The inverter Inv)
Input: y ∈ Im(f) .
Oracle: A.
Operation:

1. Sample x1, x2 ← {0, 1}n and h ← H.
2. Apply A(h, x1, x2) to get (x′

1, x
′
2). If A outputs (⊥,⊥), output ⊥.

3. Sample h′ ← H such that h′(x1, f(x2)) = h′(x′
1, y).

4. Apply A(h′, x1, x2) to get (x′′
1 , x). Output x.

That is, in order to invert its input y, Inv samples x1, x2 and h. It then uses A
in order to find x′

1 with f(x′
1) = f(x1). Lastly, it samples h′ with h′(x1, f(x2)) =

h′(x′
1, y) and uses A in order to find a collision to h′, x1, x2. By the choice of h′,

a possible collision is (h′, x′
1, f

−1(y)). We observe that if A finds such a collision,
Inv successfully inverted y.

For x1, x2 ∈ {0, 1}n, x′
1 ∈ f−1(f(x)) and y ∈ Im(f) , let

pA(x1, x2, x
′
1, y)

:= Pr
h′←H

[

A(h′, x1, x2) ∈ {x′
1} × f−1(y) | h′(x1, f(x2)) = h′(x′

1, y)
]

= Pr
h′←H

[

A(h′, x1, x2) ∈ {x′
1} × f−1(y) | (x′

1, y) ∈ Gh′,x1,x2

]

and define pA(x1, x2,⊥, y) = 0. By the above observation, it holds that

Pr
x←{0,1}n

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
h←H,x1,x2←{0,1}n

y←f({0,1}n)
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)] (8)

and thus it is enough to bound the latter. We bound it using the following two
claims. The first shows that it is enough to bound the probability that A outputs
(x′

1, ·). The second claim bounds the last probability.

Claim 4.8. For every x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)) the following holds.

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

≥ Pr
h′←H

[A(h′, x1, x2) = (x′, ·) | x′ ∈ Gh′,x1,x2 ] · n−β−1 · 2−10.

Proof. Fix x1, x2 ∈ {0, 1}n and x′ ∈ f−1(f(x1)), and for every h ∈ H, let
A(h) := A(h, x1, x2) and Gh := Gh,x1,x2 . Then, by the definition of pA, it holds
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that

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

= E
y←f({0,1}n)

[

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | (x′, y) ∈ Gh′
]
]

= E
y←f({0,1}n)

[

Prh′←H
[

(x′, y) ∈ Gh′ ∧ A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′ ]

]

= E
y←f({0,1}n)

[

Prh′←H
[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

Prh′←H [(x′, y) ∈ Gh′ | x′ ∈ Gh′ ]

]

= E
y←f({0,1}n)

[

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
] · Prh′←H [x′ ∈ Gh′ ]

Prh′←H [(x′, y) ∈ Gh′ ]

]

Since by our assumption on A, for every (x′, y) with Pr
[

A(h) ∈ {x′} × f−1(y)
]

>
0 it holds that (x′, y) �= (x1, f(x2)), we get that for every such pair
Prh′←H [(x′, y) ∈ Gh′ ] = n/2n. Continue,

E
y←f({0,1}n)

[pA(x1, x2, x
′, y)]

=
∑

y∈Im(f)

Pr
x←{0,1}n

[f(x) = y] · Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

≥
∑

y∈Im(f)

1
|Im(f) | · nβ

· Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

=
1

|Im(f) | · nβ
· 2n

n
· Pr

h′←H
[x′ ∈ Gh′ ]

·
∑

y∈Im(f)

Pr
h′←H

[

A(h′) ∈ {x′} × f−1(y) | x′ ∈ Gh′
]

=
2n

|Im(f) | · nβ+1
· Pr

h′←H
[x′ ∈ Gh′ ] · Pr

h′←H
[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

where the inequality holds since f is β-almost-regular. Recall that the family H
is approximately-flat. That is,

Pr
h′←H

[∃y ∈ Im(f) s.t. h′(x1, f(x2)) = h′(x′, y)]

≥ 2−10 · min
{

|Im(f) | · 2−(n−log n), 1
}

.
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Thus,

2n

|Im(f) | · nβ+1
· Pr

h′←H
[x′ ∈ Gh′ ] · Pr

h′←H
[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

≥ 2n

|Im(f) | · nβ+1
· 2−10 · min

{

|Im(f) | · 2−(n−log n), 1
}

· Pr
h′←H

[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

≥ n−β−1 · 2−10 · Pr
h′←H

[A(h′) = (x′, ·) | x′ ∈ Gh′ ]

and the claim holds.

The next claim uses Lemma 2.16 in order to show that in a random execution
of Inv, A has a good probability to output the same element x′

1 in Items 2 and 4.

Claim 4.9. For every x1, x2 ∈ {0, 1} the following holds. Let αx1,x2 :=
Prh←H [A(h, x1, x2) �= ⊥]. Then,

∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ]

≥ α2
x1,x2

· n−β−1/4.

Proof. Fix x1, x2 ∈ {0, 1}n, and let αx1,x2 be as in Claim 4.9. Let α1 :=
Prh←H [A(h, x1, x2) = (x1, ·)] and let α2 := Prh←H [A(h, x1, x2) /∈ {(x1, ·),⊥}].
Notice that αx1,x2 = α1 + α2.

Define Ã(h) to be the algorithm that outputs the first coordinate of A’s
output (A(h, x1, x2)1) if it is different from x1, or ⊥ otherwise. Let Gh :=
Gh,x1,x2 . Note that by the assumption on A, Ã always outputs elements in

S(h) = {x ∈ Gh,x1,x2 : x �= x1}. We get that α2 := Prh←H
[

Ã(h) �= ⊥
]

. Let

Ω = f−1(f(x1)) \ {x1}. It holds that,
∑

x′
1∈f−1(f(x1))

Pr
h←H

[
A(h, x1, x2) = (x′

1, ·)]

· Pr
h′←H

[
A(h′, x1, x2) = (x′

1, ·) | x′
1 ∈ Gh′,x1,x2

]

=
∑

x′
1∈Ω

Pr
h←H

[
A(h, x1, x2) = (x′

1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x′

1, ·) | x′
1 ∈ Gh′,x1,x2

]

+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·) | x1 ∈ Gh′,x1,x2

]

=
∑

x′
1∈Ω

Pr
h←H

[
Ã(h) = x′

1

]
· Pr

h′←H

[
Ã(h) = x′

1 | x′
1 ∈ Gh′,x1,x2

]

+ Pr
h←H

[A(h, x1, x2) = (x1, ·)] · Pr
h′←H

[
A(h′, x1, x2) = (x1, ·)]

=
∑

x′
1∈Ω

Pr
h←H

[
Ã(h) = x′

1

]
· Pr

h′←H

[
Ã(h) = x′

1 | x′
1 ∈ S(h′)

]
+ α2

1,
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where the second equality holds by definition of Ã and since x1 is always a
member in Gh,x1,x2 . We next show that

∑

x′
1∈Ω

Pr
h←H

[

Ã(h) = x′
1

]

· Pr
h′←H

[

Ã(h) = x′
1 | x′

1 ∈ S(h′)
]

≥ α2
2 · n−β−1. (9)

Indeed, assume that Ω is not empty, as otherwise the above holds trivially. We
observe that for every x ∈ Ω,

0 < Pr
h′←H

[x ∈ S(h′)] ≤ |Im(f) | · n/2n ≤ nβ+1/
∣
∣f−1(f(x))

∣
∣ ≤ nβ+1/ |Ω| . (10)

Thus we can use Lemma 2.16, with X = H in order to get Eq. (9).
Combining the above, we conclude that

∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ]

≥ α2
2 · n−β−1 + α2

1.

The claim follows since either α1 or α2 is at least αx1,x2/2.

We are now ready to prove Claim 4.6.

Proof (Proof of Claim 4.6). For fixed x1 and x2 let αx1,x2 be as in Claim 4.9.
We start by showing that

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
x1,x2←{0,1}n

[

α2
x1,x2

] · n−2β−2 · 2−12. (11)

Indeed, by Eq. (8),

Pr
x←{0,1}

[

InvA(f(x)) ∈ f−1(f(x))
]

≥ E
h←H,x1,x2←{0,1}n

y←f({0,1}n)
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

= E
x1,x2←{0,1}n

⎡

⎢
⎣ E

h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

⎤

⎥
⎦ ,

and thus it is enough to show that for every fixed x1, x2 ∈ {0, 1}n,

E
h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)] ≥ α2

x1,x2
· n−2β−2 · 2−12.
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Indeed, recall that by definition, pA(x1, x2,⊥, y) = 0. Therefore,

E
h←H,y←f({0,1}n),
(x′

1,x′
2)←A(h,x1,x2)

[pA(x1, x2, x
′
1, y)]

=
∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)] · E

y←f({0,1}n)
[pA(x1, x2, x

′
1, y)]

≥
∑

x′
1∈f−1(f(x1))

Pr
h←H

[A(h, x1, x2) = (x′
1, ·)]

· Pr
h′←H

[A(h′, x1, x2) = (x′
1, ·) | x′

1 ∈ Gh′,x1,x2 ] · n−β−1 · 2−10

≥ α2
x1,x2

· n−2β−2 · 2−12.

Where the equality holds by the assumption that A always outputs a valid
collision, or ⊥. The first inequality holds by Claim 4.8 and the second by
Claim 4.9.

We are now left to bound Ex1,x2←{0,1}n

[

α2
x1,x2

] ·n−2β−2 ·2−12. Observe that
by definition Ex1,x2←{0,1}n [αx1,x2 ] = α, and thus by the Jensen inequality, it
holds that Ex1,x2←{0,1}n

[

α2
x1,x2

] ≥ α2, which concludes the proof.

Acknowledgement. We are thankful to Iftach Haitner and Salil Vadhan for very
useful discussions. We also thank the anonymous reviewers for their comments.

A Missing Proofs

A.1 Pseudorandom Generator

Lemma A.1 (Lemma 2.6, restated). There exists a PPT algorithm P such
that the following holds. Let Q be a distribution over {0, 1}∗ ×{0, 1}n, and let D
be an algorithm and α ∈ [0, 1] such that,

Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1] ≥ α.

Then there exists i ∈ [n] such that

Pr
(x,y)←Q

[

PD(x, y1,...,i−1) = yi

] ≥ 1/2 + α/n.

Proof (Proof of Claim 2.6.). Let Q,D and α be as in Claim 2.6. We start by
showing that D can be used in order to distinguish yi from uniform bit given
x, y1,...,i−1 for some index i ∈ [n]. Later we use this fact in order to predict yi.
Indeed, it holds that

α ≤ Pr
(x,y)←Q,z←{0,1}n

[D(x, z) = 1] − Pr
(x,y)←Q

[D(x, y) = 1]

≤
n∑

i=1

( Pr
(x,y)←Q,z←{0,1}n

[D(x, y1,...,i−1, zi,...,n) = 1]

− Pr
(x,y)←Q,z←{0,1}n

[D(x, y1,...,i, zi+1,...,n) = 1]),
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and thus there exists i ∈ [n] such that

ε := Pr
(x,y)←Q,
b←{0,1}

z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1] − Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1]

≥ α/n, (12)

as we wanted to show. We now describe the predictor P. Consider the following
algortihm.

Algorithm A.2 (The predictor P).
Input: x ∈ {0, 1}∗

, y1,...,i−1 ∈ {0, 1}i−1.
Oracle: A distinguisher D.
Operation:

1. Sample b ← {0, 1}, z ← {0, 1}n−i and execute D(x, y1,...,i−1, b, z).
2. If D output 1, output 1 − b. Otherwise, output b.

We next show that the probability that P outputs yi is at least 1/2 + α/n.
Let p := Pr(x,y)←Q,z←{0,1}n−i [D(x, y1,...,i−1, yi, z) = 1]. It holds that

p + ε = Pr
(x,y)←Q,b←{0,1}

z←{0,1}n−i

[D(x, y1,...,i−1, b, z) = 1]

= 1/2 · ( Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, yi, z) = 1]

+ Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1])

= 1/2 · (p + Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1])).

Thus, Pr(x,y)←Q,z←{0,1}n−i [D(x, y1,...,i−1, 1 − yi, z) = 1] = p + 2ε. Continue, the
probability that P outputs yi is given by

Pr
b←{0,1}n

[b = yi] · (1 − p) + Pr
b←{0,1}n

[b = 1 − yi]

· Pr
(x,y)←Q,

z←{0,1}n−i

[D(x, y1,...,i−1, 1 − yi, z) = 1]

= 1/2 · (1 − p) + 1/2 · (p + 2ε)
= 1/2 + ε

≥ 1/2 + α/n

as needed.
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A.2 Universal Hash Families

Lemma A.3 (Lemma 2.13, restated). For every �, n ∈ N such that � ≤ n,
the family

{

m : m ∈ {0, 1}n×�
}

is approximately-flat.

Proof (Proof of Lemma 2.13). Fix Y, x1, x2 and y1 as in Definition 2.12. We want
to show that

Pr
M←{0,1}2n×�

[∃y2 ∈ Y s.t. M(x1, y1) = M(x2, y2)] ≥ 2−10 · min
{|Y| · 2−�, 1

}

.

We first assume that x1 �= x2, as otherwise the lemma holds trivially. Next, we
observe that M can be written as MX ∈ {0, 1}n×� and MY ∈ {0, 1}n×�, such
that for every vectors x, y ∈ {0, 1}n it holds that

M(x, y) = (x · MX ) ⊕ (y · MY). (13)

We want to bound the probability that there exists y2 ∈ Y such that
M(x1, y1) = M(x2, y2), or equivalently,

(x1 ⊕ x2) · MX = (y2 ⊕ y1) · MY . (14)

Since x1 �= x2, it holds that (x1 ⊕ x2) · MX is a uniform element in {0, 1}�.
Thus, we are interested in lower bounding the probability

Pr
MY←{0,1}n×�,z′←{0,1}�

[∃y2 ∈ Y s.t. z′ = (y2 ⊕ y1) · MY ]

= Pr
MY←{0,1}n×�,z←{0,1}�

[∃y2 ∈ Y s.t. z = y2 · MY ]

where the equality holds since z := z′ ⊕ y1 · MY is a uniform element in {0, 1}�

which is independent from MY . In the following we show that with probability
at least 1/2 over the choice of MY , the size of the set Y · MY = {y · MY : y ∈ Y}
is at least min

{|Y|/2, 2�/32
}

, from which the lemma follows.
To see the above, first notice that for every vector v ∈ {0, 1}n with v �= 0, it

holds that PrMY [v · MY = 0] = 2−�, and thus,

E
MY

[|{y1 �= y2 ∈ Y : y1 · MY = y2 · MY}|]
= E

MY
[|{y1 �= y2 ∈ Y : (y1 ⊕ y2) · MY = 0}|]

≤ |Y|2 · 2−�.

By Markov inequality, we get that with probability at least 1/2 over the choice
of MY , it holds that

|{y1 �= y2 ∈ Y : y1 · MY = y2 · MY}| ≤ 2 |Y|2 · 2−�. (15)

In the following we show that for every matrix MY for which Eq. (15) holds, it
holds that Y · MY ≥ min

{|Y|/2, 2�/32
}

.
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Indeed, consider a graph G, in which the set of vertices is Y, and the set
of edges E is the set {y1 �= y2 ∈ Y : y1 · MY = y2 · MY}. By assumption, |E| ≤
2 |Y|2 · 2−�. Furthermore, it is not hard to see that G is composed of disjoint
cliques, and that the number of connected components in G is exactly the size
of Y · MY . To bound the number of connected components of G, we first assume
that G has no more than |Y|/2 isolated vertices, as otherwise the bound trivially
follows. We start with removing the isolated vertices from G, to get a graph with
at least |Y|/2 vertices and at most 2 |Y|2 · 2−� edges. Let k be the number of
connected components in the graph, and let c1, . . . , ck be the number of vertices
in each component. Since ci > 1 for every i, the number of edges in the i-th
component is larger than c2i /4. By Cauchy–Schwarz inequality,

(|Y| /2)2 ≤ (
∑

i∈[k]

ci)2 ≤ k ·
∑

i∈[k]

c2i ≤ 4k |E| ≤ 8k |Y|2 · 2−�,

which implies that k ≥ 2�/32, and the lemma follows.
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Abstract. We show that Yao’s garbling scheme is adaptively indistin-
guishable for the class of Boolean circuits of size S and treewidth w
with only a SO(w) loss in security. For instance, circuits with constant
treewidth are as a result adaptively indistinguishable with only a polyno-
mial loss. This (partially) complements a negative result of Applebaum
et al. (Crypto 2013), which showed (assuming one-way functions) that
Yao’s garbling scheme cannot be adaptively simulatable. As main tech-
nical contributions, we introduce a new pebble game that abstracts out
our security reduction and then present a pebbling strategy for this game
where the number of pebbles used is roughly O(δw log(S)), δ being the
fan-out of the circuit. The design of the strategy relies on separators, a
graph-theoretic notion with connections to circuit complexity.

1 Introduction

Suppose that Alice, who holds a function represented as a Boolean circuit C, and
Bob, who holds an input x to that function, want to jointly evaluate y = C(x)
such that Alice learns nothing about x while Bob learns nothing about C (except
for some side-information that is unavoidable). Yao put forward1 the following
elegant solution:

1. Alice first sends C̃, a “garbling” of the circuit C, to Bob,

1 According to [7], the idea was first presented by Yao in oral presentations on secure
function-evaluation [42,43] but formally described only in [21].
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2. Bob then obtains x̃, a “garbling” of his input x, from Alice via oblivious
transfer,

3. Bob finally evaluates C̃ on x̃ to learn y and sends it over to Alice.

Yao showed how the garbling steps above can be carried out using a symmetric-
key encryption (SKE) scheme (and hence one-way functions). This has been
ever since referred to as Yao’s garbling scheme, and is the focus of this work. We
describe it next in slightly more details.

Yao’s Garbling Scheme. Let (Enc,Dec) be a (special) SKE. To garble a circuit
C : {0, 1}n → {0, 1}� with fan-in 2 and arbitrary fan-out:

1. Alice first samples a pair of secret keys (k0
w, k1

w) for each wire w in C.
2. For every gate g : {0, 1}2 → {0, 1} with left input wire u, right input wire

v, and output wire w, she then computes a garbling table g̃ consisting of the
four ciphertexts listed in Table 1(a) in random order.

3. Finally, she constructs the output mapping μ which, for each output wire w,
maps each of the keys (k0

w, k1
w) to the bit it “encodes”.

The garbled circuit C̃ consists of all the garbling tables g̃ and the output map
μ, Alice sends it over to Bob. This constitutes the offline phase of the proto-
col. To garble an input x = x1‖ . . . ‖xn, Alice simply gives out, for each input
wire wi, the key kxi

wi
corresponding to the bit xi. This constitutes the online

phase of the protocol. To evaluate the garbled circuit on the garbled input, the
encryption scheme must satisfy a special correctness property : for each cipher-
text c ← Enck(m) there should exist a single key (i.e., k) such that decryption
passes. Using the keys in the garbling input, Bob can now evaluate C “over the
encryption” as follows:

1. Starting from the input level and in some topological order, he progressively
decrypts each garbling table in C̃ by trying the two keys in hand on all the
four ciphertexts for each garbling table. Thus, in each step, he learns one of
the secret keys corresponding to the output wire of the gate in consideration.

2. At the end of this process, Bob recovers exactly one of the two keys associated
with each output wire of the circuit. This allows him to use the output map
μ to “decode” the revealed output keys to the output string y ∈ {0, 1}�.

The scheme as described above is what is regarded to be the original formulation
of Yao’s garbling scheme [27,33]. A slight variant in which Alice defers sending
the output map μ to the online phase (along with x̃) is also of interest [27],
although it suffers from a higher online complexity compared to the original
formulation. To avoid confusion, we refer to the original scheme as Yao’s offline
garbling scheme and the modified scheme as Yao’s online garbling scheme or, in
short, Online Yao and Offline Yao respectively. Our work concerns the security
of Offline Yao.
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Table 1. Garbling tables for (a) general gate g (b) constant-0 gate and (c) constant-1
gate. u and v denote the two input wires and w denotes the output wire. The two keys
associated with (say) the wire u are denoted by k0

u and k1
u.

Ek0
u
(Ek0

v
(k

g(0,0)
w )) Ek0

u
(Ek0

v
(k0

w)) Ek0
u
(Ek0

v
(k1

w))

Ek1
u
(Ek0

v
(k

g(1,0)
w )) Ek0

u
(Ek1

v
(k0

w)) Ek0
u
(Ek1

v
(k1

w))

Ek0
u
(Ek1

v
(k

g(0,1)
w )) Ek1

u
(Ek0

v
(k0

w)) Ek1
u
(Ek0

v
(k1

w))

Ek1
u
(Ek1

v
(k

g(1,1)
w )) Ek1

u
(Ek1

v
(k0

w)) Ek1
u
(Ek1

v
(k1

w))

(a) (b) (c)

Security. Even though garbling schemes found several applications (see [7]), its
security was formally analysed much later in [33]. They consider a simulation-
based notion2 captured by the following experiment:

1. The adversary submits a circuit-input pair (C, x) to the challenger.
2. The challenger responds either with the real garbling (C̃, x̃) (i.e., real game

or Real) or with a “simulated” garbling where a constant-0 circuit is used
instead of C (i.e., simulated game or Sim). The constant-0 circuit has the
same topology as C but with all its gates replaced by constant-0 gates.

3. The adversary wins if it guesses which case it is.

Then they gave a reduction from the (special) indistinguishability of the under-
lying SKE for offline Yao. Note that the adversary in the above security game
must select the garbling input x at the same time as the circuit C. This is in
conflict with the online-offline nature of the actual scheme where Bob (a poten-
tial adversary) sees C̃ before he commits to x. Hence Bob could have chosen the
input, adaptively, based on C̃. In fact, such a scenario does arise in applications
such as one-time programs and secure outsourcing [6]. Therefore it is natural
to consider strengthening the above selective definition of simulatability to an
adaptive definition where A gets to choose the input after it sees the garbling of a
circuit of its choice. Unfortunately, this is too strong a notion to attain for Offline
Yao: it was shown in [4] that the online complexity of a garbling scheme (or, more
generally, a randomised encoding scheme) in the adaptive setting must exceed
the output-size of the circuit (given that one-way functions exist). Jafargholi
and Wichs [27] observed that this negative result does not apply to Online Yao
since the output map there gets sent in the online phase, and even managed to
prove adaptive simulatability of Online Yao. Security of other variants of Yao’s
garbling scheme was also proved [22,26]. However, the case of Offline Yao was
largely ignored.

2 This is an equivalent formulation of the definition in [33] and is taken from [27]. Our
overview of the proof in [33] to be discussed in Sect. 1.2 has been adapted accordingly.
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1.1 Our Results

Although the negative result in [4] rules out adaptive simulatability of Offline
Yao, it is not clear if it also applies to its adaptive indistinguishability [7], which
is defined by the following experiment:

1. The adversary submits a pair of circuits (C0,C1) of the same topology to the
challenger

2. The challenger. flips a coin b and responds with C̃b.
3. The adversary then submits a pair of inputs (x0, x1) such that C0(x0) =

C1(x1) and the challenger responds with x̃b.
4. The adversary wins if it guesses the bit b correctly.

Although it is a weaker notion of security, adaptive indistinguishability suffices
for certain applications (e.g, adaptively-indistinguishable symmetric-key func-
tional encryption [26]).

Table 2. Security of Yao garbling and its variants. The (only) negative result is high-
lighted in red.

Selective Adaptive

Offline Yao Online Yao Offline Yao Online Yao

Simulatability [33] [4] [27]

Indistinguishability This work

Our Results. We help (partially) complete the landscape for security of Yao’s
garbling (see Table 2). To this end, we characterise the adaptive indistinguisha-
bility of Offline Yao in terms of the treewidth3 of the circuit. Our main results
are informally stated below.

Theorem (main). Consider the class of Boolean circuits C of size S with
treewidth w = w(S). Offline Yao is adaptively indistinguishable for C with SO(w)

loss in security.

For Boolean circuits of constant (resp., poly-logarithmic) treewidth, we
obtain the following corollary.

Corollary. Offline Yao is adaptively indistinguishable for Boolean circuits of
size S and O(1) (resp., polylog(S)) treewidth with a polynomial (resp., quasi-
polynomial) in S loss in security.

3 Since treewidth is defined for undirected graphs, whenever we refer to the treewidth
of a directed graph (or a circuit) we refer to the treewidth of the graph obtained by
ignoring the direction of its edges.
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Interpreting Our Results. Treewidth is a notion from algorithmic graph
theory that has found several applications in parametrised and circuit complexity
(see Sect. 1.3) Intuitively, it is a (graph) property that measures how “far” the
circuit is from a formula (and, more generally, how far a graph is from a tree):
in particular, the smaller the treewidth the closer the circuit is to a formula.
Therefore, it is not surprising that having a low treewidth limits how powerful
a circuit can be. A precise characterisation of this (from above) was given in
[19]: every circuit of size S and treewidth w = w(S) can be simulated in depth
w log(S). Thus, e.g, circuits of constant treewidth can be simulated in NC1.
Whether the converse is true in general – i.e., whether NCi can be simulated
using circuits with treewidth O(logi−1(S)) – is an open problem to the best of our
knowledge.4 However it is partially true: namely, NC1 circuits can be simulated
using polynomial-sized Boolean formulae (which, by definition, have treewidth
1) [13,41]. Consequently, the first corollary applies to functions computable in
NC1.

Given the aforementioned negative result from [4], we find any proof of adap-
tive security for Offline Yao rather surprising. Nevertheless, there are scenarios
where our results also lead to improvements in concrete efficiency (even after the
loss in security is taken into account). We describe one such scenario next. Recall
from the discussion above that for functions computable in NC1, we show secu-
rity of Offline Yao at only a polynomial loss. Moreover, the online complexity
of garbling such a function using Offline Yao depends only on the input length
n (times the security parameter λ). Now, note that PRGs of arbitrary stretch
(say nc for a constant c ∈ N) exist in NC1 [15,23]. However, if one were to use
Online Yao, then the online complexity is substantial (nc × λ). This example is
particularly interesting since Offline Yao for such a function is not simulatable
at all as a consequence of the negative result.

Finally, a remark on the optimality of our upper bound: it was recently
shown in [30] that any black-box reduction that proves indistinguishability of
Offline Yao (or, for that matter, Online Yao) must lose security by a factor that
is sub-exponential in the depth of the circuit. Therefore, there remains a gap
between the lower bound proved there and the upper bound shown here.

Implications to Simulatability of Online Yao. It is worth pointing out that our
results may also imply tighter reductions for simulatability of Online Yao. The
reduction for simulatability of Online Yao from [27] loses a factor that is expo-
nential in the width of a circuit: our approach can be seen as an extension of their
techniques. Since treewidth is bounded from above by width, in cases where there
is a gap between treewidth and width for a circuit class, our approach would
lead to a tighter reduction for simulatability of Online Yao compared to [27]. A
more detailed explanation follows later in Remark 1.

Comparison with [26]. We conclude the section by comparing our result with [26],
which is also concerned with adaptively-indistinguishable garbled circuits. The

4 See this question (48504) posted on CSTheory, Stack Exchange.

https://cstheory.stackexchange.com/questions/48504/trading-treewidth-for-depth-in-boolean-circuits
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construction in [26] builds on [22] and therefore has Offline Yao as its basis. How-
ever, it requires (i) applying an additional layer of somewhere equivocal encryp-
tion to the garbling table and (ii) modifying the circuit to be garbled in order to
make the security proof go through. These modifications lead to their construc-
tion being less efficient compared to plain Offline Yao, but it does allow them to
prove adaptive indistinguishability. It is not clear if any of the ideas employed
there can be used to argue the indistinguishability of Offline Yao (this is, in fact,
posed as an open question there).

1.2 Technical Overview

Outline. Our starting point is the reduction provinf adaptive simulatability of
Online Yao [27]. The key idea in [27] is to abstract out the hybrid argument
using a pebble game on the circuit, which we call the black-gray (BG) pebble
game (Definition 8). To be precise, they showed that if a circuit allows a BG
pebbling strategy of length τ that uses σ (black) pebbles, then there exists a
reduction proving adaptive simulatability of Online Yao with a loss in security
at most O(τ2σ). This allows us to shift the focus from security reductions to
the conceptually-cleaner task of coming up with “pebble-efficient” strategies.
We start off below by describing this connection and then explain why this
approach falls short when it comes to arguing adaptive indistinguishability (or
simulatability) of Offline Yao. Next we show how this issue can be remedied, key
to it is a new pebble game, which we call the black-gray-red (BGR) pebble game
(Definition 11). Analogous to [27], we prove that if there exists a BGR pebbling
strategy of length τ that uses σ (“grayscale”, i.e.black or gray) pebbles, then
there exists a reduction for adaptive indistinguishability of Offline Yao where
the loss in security is at most O(τ2σ) (Theorem 6). Finally to complete the
proof – and as our main technical contribution – we describe a pebble-efficient
strategy for the BGR pebble game in which the number of (grayscale) pebbles
used grows only with the treewidth of the circuit (Theorem 5). The strategy
has a divide-and-conquer flavour and crucially relies on the notion of separators
from graph theory. We next elaborate on each of the steps above.

Pebble Game and Hybrids. The reduction in [27] builds on the reduction
for selective simulatability of Offline Yao [33]. Both these works follow a sophis-
ticated hybrid argument which can be described abstractly using a BG pebbling
strategy.

Pebbles and Garbling Modes. The BG pebble game (formally defined in Def-
inition 8), as its name suggests, uses two types of pebbles: black and gray. A
pebble configuration P for a circuit C determines how the garbled circuit C̃ is
simulated in the hybrid HP . To be more precise, the pebble configuration P can
associate each gate g in C with a black or gray pebble. In order to translate P
to the garbling C̃, the simulator in hybrid HP does the following:



492 C. Kamath et al.

– if g carries no pebble in P, then the corresponding garbling table in C̃ consists
of an honest garbling table of g (Table 1(a))

– if g carries a gray pebble, then the garbling table encodes a constant-0 gate
(Table 1(b)).

– if g carries a black pebble then the garbling table encodes either a constant-0
or a constant-1 gate (Table 1(c)) depending on the value of (the output wire
of) g when C is run on the garbling input x.

The three modes above of simulating individual gates are named real, simu-
lated and input-dependent modes respectively or, in short, Real, Sim and Input,
respectively (Table 3(a)). Note that the real garbling game corresponds to the
empty pebble configuration (since all the gates are honestly garbled), whereas
the simulated game will correspond to the all-gray configuration (since all the
gates have been replaced by the constant-0 gate).

Pebbling Rules. Note that any arbitrary configuration of pebbles P describes a
valid hybrid HP . The role of the pebbling rules is to model indistinguishability
of neighbouring hybrids. To be more precise, if a pebble configuration Q can be
obtained from another configuration P by a valid pebbling move (or vice versa)
then the hybrids HP and HQ should be indistinguishable. Consequently a BG
pebbling strategy P , which must start from an empty configuration and end with
the all-gray configuration, leads to a valid sequence of hybrids that establishes
that the real garbling game and simulated garbling game are indistinguishable,
proving the security of the garbling scheme. In the BG pebble game, the following
moves (see Fig. 1) are allowed:

Fig. 1. Rules for BG pebble game.

1. a black pebble can be placed on or removed from a gate g if and only if g’s
predecessor gates are pebbled black; and

2. a black pebble on a gate g can be replaced by a gray pebble if g’s successor
gates are pebbled, either black or gray.

To understand the rationale behind the two rules, one needs to take a closer
look at the structure of a garbling table in Yao’s scheme. Since this is not that
relevant to the current discussion, we refer the readers interested in more details
to Sect. 3.
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Selective Simulatability of Offline Yao. Observe that in order to simulate C̃ in a
hybrid HP , the simulator only needs to know the output value of those gates that
are pebbled black in P (i.e., the gates in Input mode). In the selective setting,
since the adversary commits to the garbling input x in the offline phase, the
value of all the gates is available beforehand. Hence, in this case the simulator
has the luxury of using as many pebbles as it needs. Therefore the pebbling
strategy (implicitly) employed in [33] is the following:

1. starting from the input gates, pebble the circuit completely black in some
topological order, and then

2. starting from the output gates and in reverse topological order, replace each
black pebble with a gray pebble.

To complete the description of the hybrid HP in the selective setting, one thing
remains to be addressed. For concreteness, let’s consider the simulated game,
which corresponds to the all-gray pebble configuration (the argument for other
hybrids is analogous). Note that it is not possible to send the honestly-generated
output map μ in HP since this will lead to the output being mapped to the all-0
string. However, since x is available in the offline phase, [33] resolved this issue by
programming the output map to map the zero-keys of the output wires to C(x).
The adversary cannot tell this from the honest output map since the change is
information-theoretic.

Since the above pebbling strategy takes at most 2S moves (and uses S black
pebbles) the corresponding hybrid argument only loses a 2S factor. It is possible
to further reduce to adaptive simulatability via random guessing, but this incurs
an additional loss in security that is exponential in the length of x.

Adaptive Simulatability of Online Yao. In order to avoid this exponential loss in
the adaptive setting, [27] had to mainly tackle two issues, both arising from the
fact that the garbling input x is now only available in the online phase.

1. Firstly, simulating the hybrids could not rely on the knowledge of the values
of too many gates in C.

2. Secondly, the output map could no longer be programmed in the offline phase
since the output C(x) is only determined in the online phase.

The first issue was resolved in [27] by employing BG pebbling strategies
that were more frugal in terms of the number of black pebbles used. To this
end, they proved that if there exists a BG pebbling strategy of length τ that
uses σ black pebbles, then the loss in the resulting security is at most O(τ2σ).
Here, loosely speaking, the 2σ factor is the cost of randomly guessing the output
values of the gates pebbled black, which they require in order to carry out the
simulation of the hybrids (as well as the reduction).5 To complete their proof,
[27] described two (generic) pebbling strategies: one where σ grows only with the
width of the circuit and another where σ grows only with the depth of the circuit.

5 This is one of the earliest applications of the piecewise-guessing framework [24].
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A consequence of the latter is the adaptive simulatability of log-depth (i.e., NC1)
circuits with a polynomial loss in security.

The second issue, on the other hand, was basically side-stepped by modifying
the garbling scheme to defer the sending of the output map to the online phase,
i.e., by resorting to online Yao. This tweak allowed [27] to carry out a “deferred
programming” of the output map since the garbling input is available in the
online phase. The cost is an increased online complexity which is now dependent
also on the output size.

Indistinguishability of Offline Yao: Our Approach. Unfortunately, given
the negative result from [4], it is unlikely that a result as strong as [27] could
be shown for adaptive simulatability of Offline Yao.6 However, as we will see,
relaxing the security requirement to adaptive indistinguishability offers some
wiggle room. The key to exploiting this, as we explain next, is to discard the
simulated garbling mode (Sim) in the hybrids altogether, which allows us to
argue security without having to program the output map.

Bypassing the Simulated Mode. A standard way to show that a simulation-based
definition implies an indistinguishability-based definition (e.g, think of semantic
security and IND-CPA) is to use a two-step hybrid argument where the simulated
game acts as an intermediary between the “left” and “right” indistinguishabil-
ity games. If one attempts to use this approach in our context and use the
result from [27] to argue adaptive indistinguishability of offline Yao garbling, we
immediately run into the issue with programming the output map. Thus it seems
that the necessity to program the output map is tied to the simulated game, and
hence to the simulated mode of garbling. The main idea behind our reduction is
therefore to avoid the simulated mode and instead only work with the real and
input-dependent modes, which do not require programming the output map.
Thus in all our hybrids, the output map is simply the honestly-generated output
map and therefore can be generated in the offline phase itself.

Our Approach. Our idea is to directly replace – gate by gate – the honest
garbling table of gates in C0 (Real0) with that of gates in C1 (Real1). Since the
luxury of programming the output map is no longer available, it is crucial to
ensure that the evaluation of the garbled circuit in all intermediate hybrids is
correct at all times: even though C0(x0) = C1(x1) holds (by definition) there is
no guarantee that the output of the internal gates of C0 and C1 match. An error
propagated as a result of one circuit influencing the computation of another may
render the hybrids trivially distinguishable to the adversary (via evaluation of
the garbling). To this end, we employ the input-dependent modes for (C0, x0) and
(C1, x1) (resp., Input0 and Input1). In more details, in all our hybrids, we ensure

6 Since pseudo-random generators (of arbitrary stretch) exist in NC1 [15,23], the
result in [4] rules out reductions with polynomial loss for offline Yao. This is in
stark contrast to the aforementioned positive result from [27] for online Yao for
NC1 circuits.



On Treewidth, Separators and Yao’s Garbling 495

that a gate in Real0 mode is never adjacent to another gate in the Real1 mode.
This is accomplished by maintaining a “frontier” of gates in Input0 and Input1
mode in between the gates in real mode. This separation of the left (Real0 and
Input0) and right (Real1 and Input1) modes guarantees that the computations
belonging to the two circuits do not “corrupt” each other. We point out that
this is reminiscent of (circuit) simulation strategies adopted in certain works in
circuit complexity [19] (see Sect. 1.3).

The design of our black-gray-red (BGR) pebble game is carried out keeping
the above blueprint in mind. Looking ahead, one can think of it as a symmetrised
formulation of the BG pebble game. Our proof that a BGR strategy implies a
valid sequence of hybrids is mostly similar to that in [27]: we show that if there
exists a BGR pebbling strategy of length τ that uses σ grayscale (i.e.black or
gray) pebbles, then there exists a reduction to adaptive indistinguishability of
Offline Yao with a loss in security at most O(τ2σ) (Theorem 6).7 The bulk of
our technical work goes into coming up with pebble-efficient strategies for the
BGR pebble game. This task turns out to be considerably more involved than
for the BG pebble game (primarily due to the constraints introduced by the
additional rules in the BGR game). The best strategy we could come up with
exploits the treewidth w of the circuit, and as a result the number of (grayscale)
pebbles used is roughly σ := wδ log(S), where S is the size of the circuit and
δ its fan-out. The strategy has a divide-and-conquer flavour and crucially relies
on the notion of separators from graph theory [11,40]. In the remainder of the
technical overview, we informally present the BGR pebble game and then briefly
explain the treewidth-based BGR strategy.

BGR Pebble Game. Let g denote the location of a gate in G := Φ(C0) = Φ(C1),
the directed acyclic graph (DAG) underlying the circuits, and let g0 (resp., g1)
denote the corresponding gate in C0 (resp., C1). The BGR pebble game (formally
defined in Definition 11), as its name suggests, uses three types of pebbles: black,
gray and red. In order to translate a BGR pebble configuration P to the garbling
C̃, the simulator in hybrid HP does the following for all internal gates g:

– if g carries no pebble in P, then its garbling table in C̃ will be the honest
garbling table of g0,

– if g carries a black pebble then the honest garbling table will be replaced by
that of constant-0 or constant-1 gate depending on the output value of g0
when C0 is run on x0,

– if g carries a gray pebble, then the simulation is the same as in previous case
except that the garbling depends on the output value of g1 when C1 is run
on x1,

– if g carries a red pebble, then its garbling table in C̃ will be the honest garbling
table of g1.

The input is then garbled as follows: For the i-th input gate, if this gate carries no
pebble or a black pebble, then the i-th key in x̃ is the key corresponding to the ith

7 We use the piecewise-guessing framework [24] instead of a direct argument as in [27].
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bit of x0, otherwise it is the key corresponding to the ith bit of x1. (The pebbles
on the output gates are simply ignored.) The four modes of simulation above are
real and input-dependent modes for the left and right game respectively or, in
short, Real0, Input0, Input1 and Real1 respectively (see Table 3(b)). Note that the
semantics of gates that carry no pebble or a black pebble is the same as in the BG
pebble game (if one sets (C0, x0) = (C, x)), but a gray pebble is now interpreted
differently. A BGR pebbling strategy starts off with a configuration with all
gates empty (i.e., honest garbling of C0) but the goal is now to pebble them all
red (i.e., honest garbling of C1). Thus the extreme hybrids correspond to the left
and right games in the adaptive indistinguishability game. The pebbling rules,
listed below (see Fig. 2), are designed keeping the above discussion in mind and
so that indistinguishability of neighbouring hybrids can be argued (Lemma 1):

Fig. 2. Rules for BGR pebble game.

1. a black pebble can be placed on or removed from a gate g if and only if g’s
predecessor gates are pebbled black; and

2. a black pebble on a gate g can be swapped with a gray pebble if g’s successor
gates are pebbled, either black or gray; and

3. a gray pebble on a gate g can be swapped with a red pebble if g’s predecessor
gates are pebbled gray.

Note that the dynamic between no pebbles and black pebbles is similar to the
dynamic between red and gray pebbles (hence the reason we consider it to be
a symmetric version of the BG pebble game). Since the output values of gates
which carry a black or gray pebble in P need to be known to carry out the
simulation of HP , the goal here is to minimise the number of such “grayscale”
pebbles.

Treewidth, Separators and BGR Pebbling Strategies. Compared to the BG pebble
game, pebble-efficient strategies for the BGR pebble game are harder to come by.
(This is not surprising, in hindsight, given the negative result [4].) In particular,
the generic pebbling strategies used in [27] no longer work without incurring
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a blow-up in the number of pebbles employed.8 Below we briefly explain our
treewidth-based strategy, the best (generic) strategy we could come up with.

Crucial to our strategy is the notion of separators. Informally, a separator
for a circuit C of size S is a subset of gates S such that removing S (and the
edges incident on it) from C partitions C into sub-circuits of “comparable” size.
Slightly more formally, S partitions C into sub-circuits C1, . . . ,Cp such that for
every sub-circuit Ci, |Ci| ≤ 2S/3 (say). In a classical result from graph theory,
it is shown that the size of separator of a graph (and therefore a circuit) is
at most its treewidth [11,40]. Since treewidth is a monotonous property – i.e.,
removing wires or gates from C can only decrease its treewidth – the process of
decomposition into sub-circuits using separators can be recursively carried out
further (using a different separator each time) till one ends up with constant-size
sub-circuits. Such a recursive decomposition is also carried out in the simulation
in [19, Theorem 2] (also see [9,35]).

Our pebbling strategy exploits this recursive decomposition to minimise the
number of grayscale pebbles used. To this end, the pebbling strategy maintains
long-term grayscale pebbles only at the separators. These pebbles help reduce
the task at hand to that of (recursively) pebbling the resulting sub-circuits, one
at a time reusing pebbles in that process. Therefore, our pebbling strategy can
be recursively described as follows:

– place grayscale pebbles at the separator S of G ,
– recursively, one at a time, place red pebbles on each subcircuit Ci,
– replace the grayscale pebbles on S with red pebbles.

Since the depth of the recursion is bounded by O(log S) (thanks to the prop-
erty of the separator), the hope would be that the number of grayscale pebbles
maintained overall does not blow up. We show that this is indeed the case as
our main technical contribution (Theorem 5).

Theorem (main). Any circuit C of size S, fan-out δ and treewidth w can be
BGR pebbled using O(δw log(S)) grayscale pebbles.

Translating the above divide-and-conquer approach into an actual pebbling
strategy (Sect. 4) turns out to be tricky due to the intricate nature of the BGR
pebbling rules. We refer the readers to Sect. 4 for the details.

Epilogue. It is instructive to review the above pebbling strategy in terms of
the actual simulation. The (garbling tables of) circuit C0 is being progressively,
piece by piece, replaced by the (garbling tables of) circuit C1 as dictated by
the recursion, with the bulk of the replacement happening at the base of the
recursion. It is exactly those long-term grayscale pebbles placed on the separators
which act as the frontier between the pieces of C0 and C1. This ensures that
computations of the two circuits are insulated from each other.
8 The width-based BG strategy from [22,27] can be modified to obtain a comparable

BGR strategy for levelled circuits. However, the resulting security bounds do not
yield any advantage over simply guessing the input (which we want to avoid).
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Remark 1. We remark that our result on the BGR pebbling complexity can also
be used to prove tighter security bounds for simulatability of Online Yao for
circuit classes where the treewidth is smaller as the width. This is true since
any BGR sequence with complexity σ implies a BG sequence with complexity
at most σ: simply consider the BG sequence obtained from a BGR sequence
by substituting all the red pebbles with a gray pebble, and note that for BG
pebbling only the number of black pebbles is counted.

1.3 Related Work

Garbling. Most of the works on garbling that are relevant to our paper have
already been discussed in Sect. 1. In addition to them, [5,20,25,31] pertain to
adaptively-secure garbling and are also worth pointing out. Besides, there are
several constructions of garbling schemes which aim to exploit structured primi-
tives to improve upon other aspects of garbling like, e.g, online complexity (e.g,
[3,12]). We refer the readers to [7] for an excellent exposition on both the historial
and technical aspects of Yao’s garbling.

Treewidth, Separators and Computational Complexity. Treewidth [40]
has its roots in algorithmic graph theory. Many hard graph-theoretical problems
become tractable when one restricts to graphs of bounded treewidth. In some
cases, this leads to even NC algorithms for problems which are otherwise known
to be NP-complete (e.g, [9]). More often than not, this is because bounding the
treewidth leads to divide-and-conquer algorithms, sometimes via separators (see
[10] for an instructive survey). Unsurprisingly, this also has several consequences
in circuit complexity (e.g, [1,2,34,36]), and perhaps the most relevant to our
work are [19,28]. It was shown in [28] that circuits with constant treewidth can
be simulated in NC1; [19] extended this result by using separators to show that
circuits of size S and treewidth w can be simulated in depth w log(S). Both these
results can be regarded to be a generalisation of Spira’s theorem that Boolean
formulae can be simulated by NC1 circuits [41].

Computing Separators. The problem of computing (balanced) separators in
its full generality is NP-complete [18,37]; finding minimal separators is NP-
hard [14]. The parameterised complexity of this problem is well-studied and it
is W[1]-hard (in both the size of the separator and size of the components) [37].
However, when restricted to constant-degree graphs, the problem becomes fixed-
parameter tractable [37]. For results pertaining to approximation algorithms for
computing (balanced) separators, see [16–18].

2 Preliminaries

2.1 Notation

By [a, b], we denote the sequence of integers a, a + 1, . . . , b − 1, b. All our loga-
rithms are base two.
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Notation for Graphs. For a graph G = (V, E) and a subset S ⊆ V, G|S denotes
the subgraph of G obtained by restricting to the set of vertices in S. That is
G|S = (S, E|S) where E|S := {(u, v) ∈ E : u, v ∈ S}. For a directed graph G, a
vertex u ∈ V is a predecessor (resp., successor) of another vertex v ∈ V if (u, v) ∈
E (resp., (v, u) ∈ E). We say that u is adjacent to v if it is either a predecessor or
a successor of v. These definitions can be naturally extended to a set of vertices
S by taking a union over all the vertices in S. The degree δ of a vertex is the
number of vertices adjacent to it. The in-degree δin (resp., out-degree δout) of
a vertex is its number of predecessors (resp., successors). The degree, in-degree
and out-degree of a graph is obtained by taking the corresponding maximum
over all its vertices.

Notation for Circuits. We consider Boolean circuits with explicit input and
output gates, associated with the input and output wires respectively. For a
circuit C : {0, 1}n → {0, 1}� with S gates (including the n input and � output
gates) and W wires of which n (resp., �) are input (resp., output) wires, we
denote the DAG that represents the topology of the circuit C by Φ(C). That is,
Φ(C) is a graph with V = [1, S] obtained by:

1. assigning the input (resp., output) gates to the vertices [1, n] (resp.,
[S − � + 1, S]),

2. assigning the internal gates to the vertices [n + 1, S − �], and
3. assigning the wires of the circuit to the edges.

The wires are assigned an index from [1,W ], with the input (resp., output)
wires indexed from [1, n] (resp., [W − � + 1,W ]). An internal gate of a circuit
is represented by a four-tuple (g, u, v, w) where g : {0, 1}2 → {0, 1} denotes
the predicate implemented, and u, v and w denote the left input, right input
and output wires, respectively. We use V0(w) (resp., V1(w)) as a short-hand for
V0(C0, x0, w) (resp., V1(C1, x1, w)), the function that returns the value of the
wire w when the circuit C0 (resp., C1) is evaluated on the input x0 (resp., x1).

2.2 Garbling

The formal definition of syntax and security of garbling schemes is originally
from [7]. Our definitions are taken mostly from [26].

Definition 1 (Indistinguishability). A function ε : N → [0, 1] is negligible
if for every polynomial p(λ) there exists an λ0 ∈ N such that ε(λ) ≤ 1/p(λ) for
all λ ≥ λ0. Let X = {Xλ}λ∈N

and Y = {Yλ}λ∈N
be two distribution ensembles

indexed by a security parameter λ. We say that Xλ and Yλ are (ε(λ), T (λ))-
indistinguishable if for any adversary A of size at most T (λ),

|Pra←Xλ
[A(a) = 1] − Pra←Yλ

[A(a) = 1]| ≤ ε(λ).

Definition 2 (Garbling Scheme). A garbling scheme GC is a tuple of PPT
algorithms (GCircuit,GInput,GEval) with syntax and semantics defined as follows.
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(C̃,K) ← GCircuit(1λ, C). On inputs a security parameter λ and a circuit C :
{0, 1}n → {0, 1}�, the garble-circuit algorithm GCircuit outputs the garbled
circuit C̃ and key K.

x̃ ← GInput(K,x). On input an input x ∈ {0, 1}n and key K, the garble-input
algorithm GInput outputs x̃.

y = GEval(C̃, x̃). On input a garbled circuit C̃ and a garbled input x̃, the evaluate
algorithm GEval outputs y ∈ {0, 1}�.

Correctness. There is a negligible function ε = ε(λ) such that for any λ ∈ N,
any circuit C and input x it holds that

Pr
[
C(x) = GEval(C̃, x̃)

]
= 1 − ε(λ),

where (C̃,K) ← GCircuit(1λ,C), x̃ ← GInput(K,x).

Definition 3 (Adaptive Indistinguishability). A garbling scheme GC is
(ε, T )-adaptively-indistinguishable for a class of circuits C, if for any probabilistic
adversary A of size T = T (λ),

|Pr
[
GA,GC(1λ, 0) = 1

]
− Pr

[
GA,GC(1λ, 1) = 1

]
| ≤ ε(λ).

where the experiment GA,GC,S(1λ, b) is defined as follows:

1. A selects two circuits C0,C1 ∈ C such that Φ(C0) = Φ(C1) and receives C̃b

where (C̃b,K) ← GCircuit(1λ,Cb).
2. A specifies x0, x1 such that C0(x0) = C1(x1) and receives x̃b ← GInput(K,xb).
3. Finally, A outputs a bit b′, which is the output of the experiment.

In the selective counterpart of Definition 3, the adversary has to select (along
with the circuit) the input also in the first step. For self-containment, we provide
the definition of selective indistinguishability in Definition 4.

Definition 4 (Selective Indistinguishability). A garbling scheme GC is
(ε, T )-selective-indistinguishable for a class of circuits C, if for any probabilis-
tic adversary A of size T = T (λ),

|Pr
[
HA,GC(1λ, 0) = 1

]
− Pr

[
HA,GC(1λ, 1) = 1

]
| ≤ ε(λ).

where the experiment GA,GC,S(1λ, b) is defined as follows:
1. A selects two circuits C0,C1 ∈ C and two inputs x0, x1 such that

Φ(C0) = Φ(C1) and C0(x0) = C1(x1). It receives (C̃b, x̃b) where (C̃b,K) ←
GCircuit(1λ,Cb) and x̃b ← GInput(K,xb)

2. A outputs a bit b′, which is the output of the experiment.

Remark 2. A few remarks concerning Definitions 3 and 4 are in order:
1. We call the experiments corresponding to b = 0 and b = 1 in Definitions 3

and 4 the “left” and “right” experiments, respectively.
2. When the context is clear, we use the simpler notation F0 and F1 to denote

the experiments FA,GC,S(1λ, 0) and FA,GC,S(1λ, 1), respectively. Similarly, we
use G0, G1, H0 and H1 for the experiments in Definitions 3 and 4

3. We use TG = TG(λ) (resp., TH = TH(λ)) to denote the time taken to run
experiment G (resp., H).



On Treewidth, Separators and Yao’s Garbling 501

Offline Yao. We formally describe Yao’s original garbling scheme in the full
version of the paper [29]. In addition to satisfying the standard notion of secu-
rity for SKE (IND-CPA), the SKE needs to satisfy the following property for
correctness of the garbling schemes to hold.

Definition 5 (Special Correctness [27]). We say that an SKE (Gen,Enc,
Dec) with message space M satisfies special correctness if for every security
parameter λ, every key k ← Gen(1λ), every message m ∈ M, and encryption
c ← Enck(m), Deck′(c) = ⊥ holds for all k′ 
= k with overwhelming probability.

2.3 Pebble Games

In this section, we formally define the pebble games that are relevant to our
discussion.

Definition 6 (Reversible black pebble game [8,38]). Consider a DAG G =
(V, E) with V = [1, S] and let XB = {⊥, B}. Let T ⊆ V denote the sinks of G.
Consider a sequence P := (P0, . . . ,Pτ ) of pebble configurations for G, where
Pi ∈ X V

B for all i ∈ [0, τ ]. We call such a sequence a reversible black pebbling
strategy9 for G if (i) every vertex is empty in the initial configuration (i.e.,
P0 = (⊥, . . . ,⊥)), (ii) every sink is black-pebbled in the final configuration (i.e.,
Pτ (j) = B for all j ∈ T ), and (iii) every configuration is obtained by applying
the following rule to its preceding configuration:

1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its pre-
decessors are black-pebbled. In particular, a black pebble can be placed on or
removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j∗) = B and Pi(j∗) = ⊥) or (Pi+1(j∗) = ⊥ and Pi(j∗) = B),
– ∀j ∈ preG(j∗) : Pi(j) = B, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a reversible black pebbling strategy P = (P0, . . . ,Pτ )
for a DAG G is defined as the maximum number of black pebbles used at any
point in the strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) = B}|.

Definition 7. If P = (P0, . . . ,Pτ ) is a black pebbling strategy of space-
complexity σ for a graph G, we say that P is a (σ, τ)-strategy for G. We say
that a class of graphs G has a (σ, τ)-strategy if every graph G ∈ G has a (σ, τ)-
strategy. Similarly, we say that a class of circuits C has a (σ, τ)-strategy if for
every circuit C ∈ C, Φ(C) has a (σ, τ)-strategy.

9 To be precise, such a pebbling strategy is said to be persistent [38] since the final
configuration consists of the sinks pebbled. In this paper, we only deal with persistent
strategies.
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Remark 3. Similar definitions apply to the rest of the pebble games considered
in the paper.

Definition 8 (Black-gray (BG) pebble game [22,27]). Consider a DAG
G = (V, E) with V = [1, S] and let XBG = {⊥, B, G} denote the set of colours
of the pebbles. Consider a sequence P := (P0, . . . ,Pτ ) of pebble configurations
for G, where Pi ∈ X V

BG for all i ∈ [0, τ ]. We call such a sequence a black-gray
pebbling strategy for G if (i) every vertex is empty in the initial configuration
(i.e., P0 = (⊥, . . . ,⊥)), (ii) every vertex is gray-pebbled in the final configuration
(i.e., Pτ = (G, . . . , G)) and (iii) every configuration is obtained by applying one
of the following rules to its preceding configuration (see Fig. 1):

1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its pre-
decessors are black-pebbled. In particular, a black pebble can be placed on or
removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j∗) = B and Pi(j∗) = ⊥) or (Pi+1(j∗) = ⊥ and Pi(j∗) = B),
– ∀j ∈ preG(j∗) : Pi(j) = B, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

2. B �→ G: a black pebble on a vertex v ∈ V can be replaced with a gray pebble if v’s
successors are pebbled (either black or gray). In particular, a black pebble on
a sink can be replaced by a gray pebble at any time. More formally, ∃!j∗ ∈ V
such that
– Pi+1(j∗) = G and Pi(j∗) = B,
– ∀j ∈ sucG(j∗) : Pi(j) ∈ {B, G}, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a BG pebbling strategy P = (P0, . . . ,Pτ ) for a DAG
G is defined as the maximum number of black pebbles used at any point in the
strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) = B}|.

Remark 4. The rule to place or remove a black pebble in Definition 8 (Rule 8.1)
is the same as in Definition 6 (Rule 6.1). Therefore the BG pebble game can be
thought of as an extension of the RB pebble game (with a different goal).

2.4 Graph Theory

We recall the definition of treewidth and graph separators, and then state a cru-
cial theorem connecting them, which will be exploited in our pebbling strategy.
We emphasise that understanding the definition of treewidth is not essential to
understanding our pebbling strategies: it is the notion of separators, along with
Theorem 1, which is key.

Definition 9 ([11,40]). A tree decomposition of a graph G = (V, E) is a tree,
T, with nodes X1, . . . ,Xp, where each Xi ⊆ V, satisfying the following properties:
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1. Each graph vertex is contained in at least one tree node (i.e., ∪i∈[1,p]Xi = V).
2. For every edge (v, w) ∈ E, there exists a node Xi that contains both v and w.
3. The tree nodes containing a vertex v form a connected subtree of T.

The width of a tree decomposition is the size of its largest node Xi minus one. Its
treewidth w(G) is the minimum width among all possible tree decompositions.

Definition 10 ([40]). For a graph G = (V, E), a set S ⊆ V is said to be a sepa-
rator if the graph G|S has at least two components, and each of these components
has size at most 2|V|/3.10

Theorem 1 ([11,40]). A graph G with treewidth w(G) has a separator of size
at most w(G).

3 Hybrid Argument and the BGR Pebble Game

In this section, we formally show that black-gray-red (BGR) pebbling strategies
lead to security reductions for Offline Yao. We start off in Sect. 3.1 by formally
defining the BGR pebble game and then explain the semantics of its pebbles,
described already (albeit informally) in Sect. 1.2. This enables us to define a
hybrid HP in terms of a pebble configuration P . Then, in Sect. 3.2, we justify
the pebble rules by proving that neighbouring pebble configurations can indeed
be proved indistinguishable (Lemma 1). Finally, we put these two steps together
in Sect. 3.3 and show that BGR strategies imply adaptive indistinguishability
of Offline Yao (Theorem 4) using the piecewise-guessing framework [24]. Since
most of the ideas in Sects. 3.2 and 3.3 are similar to pre-existing works [24,27],
we skip detailed proofs and resort to high-level sketches.

3.1 Pebble Configurations and Hybrids

The BGR pebble game is a symmetric version of the BG pebble game. In addition
to the ones in BG pebble game (Rules 8.1 and 8.2), there are additional rules
(Rules 11.2 and 11.3) which govern how the red pebbles interact with the gray
pebbles. Intuitively speaking, the dynamic between no pebbles and black pebble
(Rule 11.1) is similar to the dynamic between red pebbles and gray pebbles (Rule
11.3): see Remark 5. A more formal definition of the game is given next.

Definition 11 (Black-Gray-Red (BGR) pebble game). Consider a DAG
G = (V, E) with V = [1, S] and let XBGR = {⊥, B, G, R} denote the set of colours
of the pebbles. A pebble is called grayscale if it is black or gray. Consider a
sequence P := (P0, . . . ,Pτ ) of pebble configurations for G, where Pi ∈ X V

BGR

for all i ∈ [0, τ ]. We call such a sequence a BGR pebbling strategy for G if (i)
every vertex is empty in the initial configuration (i.e., P0 = (⊥, . . . ,⊥)), (ii) and
every vertex is red-pebbled in the final configuration (i.e., Pτ = (R, . . . , R)) and
(iii) every configuration is obtained by applying one of the following rules to its
preceding configuration (see Fig. 2):
10 To be precise, such a separator is called “balanced” [19]. In this paper, we only

consider balanced separators.
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1. ⊥ ↔ B: a black pebble can be placed on or removed from a vertex if its pre-
decessors are black-pebbled. In particular, a black pebble can be placed on or
removed from a source vertex at any time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j∗) = B and Pi(j∗) = ⊥) or (Pi+1(j∗) = ⊥ and Pi(j∗) = B),
– ∀j ∈ preG(j∗) : Pi(j) = B, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

2. B ↔ G: a black pebble on a vertex v ∈ V can be swapped with a gray pebble if
v’s successors carry grayscale pebbles (i.e., either black or gray). In particular,
a black pebble on a sink vertex can be swapped with a gray pebble at any time.
More formally, ∃!j∗ ∈ V such that
– (Pi+1(j∗) = G and Pi(j∗) = B) or (Pi+1(j∗) = B and Pi(j∗) = G),
– ∀j ∈ sucG(j∗) : Pi(j) ∈ {B, G}, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

3. G ↔ R: a gray pebble can be swapped with a red if its predecessors are gray-
pebbled. In particular, a gray pebble on a source vertex can be swapped with a
red pebble at any time. More formally, ∃!j∗ ∈ V such that
– (Pi+1(j∗) = G and Pi(j∗) = R) or (Pi+1(j∗) = R and Pi(j∗) = G),
– ∀j ∈ preG(j∗) : Pi(j) = G, and
– ∀j ∈ V \ {j∗} : Pi+1(j) = Pi(j).

The space-complexity of a BGR pebbling strategy P = (P0, . . . ,Pτ ) for a DAG
G is defined as the maximum number of grayscale pebbles used at any point in
the strategy:

σG(P) := max
i∈[0,τ ]

|{j ∈ [1, S] : Pi(j) ∈ {B, G}}|.

Remark 5. A few remarks on the BGR pebble game are in order:

1. Note that Rules 11.1 and 11.2 (the B �→ G part) correspond to the rules in
the BG pebble game. The end goals in the two games are however different.

2. When restricted to either black and empty (Rule 11.1) or gray and red pebbles
(11.3), the BGR pebble game simplifies to the reversible black pebble game
of Bennett [8] defined in Definition 6. This is obvious for the black pebbles
since the BGR pebble game is an extension of the BG pebble game which, in
turn, is an extension of the reversible black pebble game. To see why this is
the case for gray and red pebbles, simply think of vertices with red pebbles as
being empty (i.e., R = ⊥) and gray pebbles as black pebbles (i.e., G = B), and
note that Rule 11.3 is now the same as Rule 11.1. Therefore, if one starts with
an all-red (i.e., empty) configuration, the gray pebbles can be placed using
reversible pebbling rules. Some of the reversible pebbling strategies will serve
as crucial subroutines in the BGR pebbling strategies in the coming sections.

3. When restricted to black and gray pebbles, the BGR pebble game again
simplifies to the reversible pebble game played on the graph with the direction
of the edges flipped. However, we do not make use of this observation.

4. Only black pebbles can be placed on empty vertices. Gray (resp., red) pebbles
have to replace black or red (resp., gray) pebbles, respectively.
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5. By the pebbling rules, in any strategy a vertex that is empty can never end
up adjacent to another vertex with red pebble in any BGR pebbling strategy.
Moreover, a vertex with gray (resp., black) pebble cannot be a predecessor
of a vertex with no (resp.red) pebble; the converse is however possible. These
properties will turn out to be important sanity checks in ensuring the valid-
ity of BGR pebbling strategies in the later sections. Moreover, they ensure
correctness of the simulations they represent.

Table 3. (a) Garbling modes in [27]. The gate is denoted by g and the value of its
output wire w when run on input x is denoted by V (w). (b) Garbling modes in our
case. The gates g0 and g1 are the gates in the same position in the circuits C0 and C1,
respectively. The value V0(w) (resp., V1(w)) denotes the bit going over the wire w in
the computation C0(x0) (resp., C1(x1)).

Template for Hybrids. A pebble configuration P ∈ X V
BGR is used to encode

a selective hybrid HP . For an internal gate v, the translation is carried out as
described below:

– if v carries no pebble (⊥) in P then g is garbled as in the left game (Real0),
– a black pebble (B) on v indicates that the garbling of g is input-dependant

on x0 and C0, (Input0)
– a gray pebble (G) on v indicates that the garbling of g is input-dependant on

x1 and C1 (Input1)
– a red pebble (R) on v indicates g is garbled as in the right game (Real1).

The distributions corresponding to the four garbling modes – Real0, Input0, Input1
and Real1 – are formally defined in Table 3(b). (Note that the semantics of gray
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pebbles is different from that in the BG pebble game.) This information is suffi-
cient to construct the garbled circuit C̃. What remains to complete the descrip-
tion of HP , is describing how to generate the input garbling x̃ and the output
map. If an input gate carries no (resp., a red) pebble then the garbling key for
x0 (resp., x1) is selected in that hybrid. The output map, on the other hand, is
simply the default one prescribed in the scheme and therefore the pebbles on the
output gates are ignored. We refer the readers to the full version of the paper
[29] for a formal definition of HP .

Sequence of Hybrids. A pebbling strategy P = {P0, . . . ,Pτ} will give rise to a
sequence of selective hybrids

H0 = HP0 , . . . ,HPτ
= H1, (1)

Note that the extreme games correspond to the left selective experiment
H0 = HA,GC(1λ, 0) (since P0 = (⊥, . . . ,⊥)) and right selective experiment
H1 = HA,GC(1λ, 1) (since Pτ = (R, . . . , R)), respectively. The exact pebbling
strategy will be discussed later in Sect. 4. In the next section, we prove the
indistinguishability of two neighbouring hybrids in such a sequence.

3.2 Indistinguishability of Neighbouring Hybrids

Lemma 1 (neighbouring indistinguishability). Let P and Q denote two
neighbouring configurations in a BGR pebbling strategy. If the underlying encryp-
tion scheme SKE is (ε, T )-IND-CPA secure, then HP and HQ are (3ε, T − TH)-
indistinguishable, i.e., for any adversary A of size at most T − TH

|Pr [〈A,HP〉 = 1] − Pr [〈A,HQ〉 = 1] | ≤ 3ε.

Proof. Recall that hybrids correspond to pebble configurations and that two
neighbouring hybrids differ by a single pebble. We split the proof into three cases
which correspond to the pebbling moves ⊥ ↔ B, B ↔ G and R ↔ G respectively.
The reduction in the first and last cases is similar, and relies on the indistin-
guishability of the underlying encryption scheme (similar to [27, Lemma 1]).
Therefore in the claim below we focus on the first case. In the second case, we
argue that the hybrids are identically distributed (similar to [27, Lemma 2]).
Moreover, since the proofs are similar to those in [27], we refer the reader to the
full version of the paper [29].

Claim (Rule 11.1: ⊥ ↔ B). If the underlying encryption scheme SKE is (ε, T )-
IND-CPA secure, and if Q is obtained from P using Rule 11.1 then the hybrids
HP and HQ are (3ε, T − TH)-indistinguishable.

Claim (Rule 11.2: B ↔ G). If Q is obtained from P using Rule 11.2 then the
hybrids HP and HQ are identically distributed.

��
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Selective indistinguishability. Combining Lemma 1 with the semantics of the
pebbles (Table 3) yields (via the standard hybrid argument) selective indistin-
guishability of Offline Yao.

Theorem 2. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling
strategy. If the encryption scheme SKE is (ε, T )-secure then YGCSKE is
(3τε, T − TH)-selectively-indistinguishable for C.

3.3 Adaptive Indistinguishability via Piecewise Guessing

Observe that in the hybrid HP , the knowledge of the committed garbling inputs
x0 and x1 is used to compute the output value of gates that carry grayscale peb-
bles in the configuration P . So, in principle, the simulation of HP can be carried
out if this information is available as an “advice”. Moreover, the indistinguisha-
bility of two successive hybrids can be shown (Lemma 1) if such advice for both
the hybrids is available. In case the number of grayscale pebbles is small, the size
of this advice could potentially be smaller than the size of garbling inputs x0

and x1. This means that it is possible to apply the piecewise-guessing framework
[24]. We explain this in detail next.

Applying the Piecewise-Guessing Framework. The main theorem in [24] is stated
below in Theorem 3 after having been simplified and tailored for our application to
circuit garbing. The result of applying Theorem 3 to Offline Yao is stated in Theo-
rem 4. Furthermore, exploiting the properties of the pebbling strategies we design,
we provide an optimised version of Theorem 4 later in Sect. 4.2 (Theorem 6).

Theorem 3 (Theorem 2 in [24] tailored to Definitions 3 and 4).
Let G0, G1, H0 and H1 be as in Definitions 3 and 4. Furthermore, let
H0 = HP0 , . . . ,HPτ

= H1 be the sequence of hybrids from Equation (1) and sup-
pose that every pebbling configuration Pi in the strategy P0, . . . ,Pτ can be com-
puted in time Tp. Assume that for each i ∈ [0, τ − 1], there exists a func-
tion αi : {0, 1}1=∗ → {0, 1}σ such that the hybrids HPi

and HPi+1 are (ε, T )-
indistinguishable when A commits to αi(C0,C1, x0, x1) as advice at the beginning
of the experiment (instead of (x0, x1)). Then G0 and G1 are (ε·τ ·2σ, T−(Tσ+Tp))-
indistinguishable where Tσ denotes the time to sample a string in {0, 1}σ uni-
formly at random.

Theorem 4. Suppose that a class of circuits C has a (σ, τ)-BGR pebbling
strategy. If the encryption scheme SKE is (ε, T )-secure then YGCSKE is
(τ2σ · 3ε, T − (TH + Tσ + Tp))-adaptively-indistinguishable for C.

Proof (Sketch). As already observed, the advice function αi should return the
values of the output wires of all those gates that carry grayscale pebbles in Pi

and Pi+1. Therefore, in Theorem 3 we set

αi(C0,C1, x0, x1) := (V0(w) : (g, u, v, w) ∈ C0 and P(g) = B)‖
(V1(w) : (g, u, v, w) ∈ C1 and P(g) = G)

(2)
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where P := Pi+1 if Pi+1 is obtained from Pi by adding a grayscale pebble; and
P := Pi otherwise.11 The length of the advice is therefore smaller than in the
selective hybrid in case the pebbling complexity of G = Φ(C0) = Φ(C1) is smaller
than the input length. What remains is to show that indistinguishability of two
consecutive hybrids can be shown relying only on αi := αi(C0,C1, x0, x1). To
see this note that the knowledge of the committed garbling inputs x0 and x1

is used to compute the output value of gates that carry grayscale pebbles in
the configuration P . Since these are already present in the hint, the reduction
algorithm can simply extract these values from αi and use them instead of
explicitly computing V0(·) and V1(·). Following the arguments in Lemma 1, we
get that if the encryption scheme is (ε, T )-secure then the experiments HPi

and
HPi+1 are (3ε, T − TH)-indistinguishable when A commits to αi, and the proof
now follows Theorem 3.

��

4 BGR Pebbling Strategy

In this section, we describe our main strategy for the BGR pebble game. Then,
we discuss the implications of our pebbling strategy to the security of Offline
Yao (Sect. 4.2).

4.1 BGR Pebbling via Separators

The strategy we describe, BGRSwitch, is implicit in the simulation in [19]. As a
consequence of Theorem 1, a graph G with treewidth w(G) can be recursively
decomposed using separators of size at most w(G) into smaller and smaller
“component” sub-graphs till the sub-graph is of a manageable (constant) size.
As a result, one gets a “component tree” out of the graph, starting with the
whole graph at the root and ending with manageable-sized sub-graphs as leaves.
For a graph with S vertices and degree δ, the depth of the component tree is at
most O(log S) and its out-degree is at most δ · |S| (since each vertex in S can
be connected to at most δ components). The pebbling strategy using separators
exploits this recursive structure to minimise the number of grayscale pebbles
employed.

Remark 6. Note that Theorem 1 does not provide any guarantees on whether
such a sequence of separators can be found efficiently. This becomes crucial
when simulating the hybrids since it determines the factor Tp. We address this
question at the end of this section.

11 Recall from the proof of Lemma 1 that for pebbling configurations Pi and Pi+1 that
differ by a pebbling move B ↔ G, the corresponding hybrids HP1 and HPi+1 are
identically distributed.
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RB Pebbling via Separators. We first describe RBTreewidth, a space-
efficient RB pebbling strategy that will be used as a subroutine in BGRSwitch.
RBTreewidth places a black pebble on any vertex on a graph G of size S and
treewidth w using σ := O(w log(S)) pebbles. To the best of our knowledge, this
strategy is new and might be of independent interest.12 Since the strategy is
reversible, by RBTreewidth−1 we denote the reverse strategy that removes a
black pebble. This strategy, thanks to the observation in Remark 5.2, will also
be used to both place or remove a gray pebble on an all-red-pebbled graph
(RGRTreewidth).

Lemma 2. Every node in a DAG G with S vertices, in-degree δin and treewidth
w can be black-pebbled following the RB pebbling rules using at most σ :=
O((δin + w) log(S)) black pebbles in at most τ := (δinw)O(log(S)) steps.

Lemma 3. Starting from the all-red configuration, every node in a DAG G with
S vertices, in-degree δin and treewidth w can be gray-pebbled following the BGR
pebbling rules using at most σ := O((δin + w) log(S)) gray(scale) pebbles in at
most τ := (δinw)O(log(S)) steps.

Proof (of Lemma 2). We denote the pebbling strategy by RBTreewidth and it
takes as input a graph (component) C and a vertex v∗ to be pebbled. It uses
the same recursive decomposition into components as will be in BGRSwitch (i.e.,
the component tree). The base case is when the graph C is of small enough size
(i.e., with O(1) vertices) and here RBTreewidth simply places a black pebble on
v∗ using as many black pebbles as needed; i.e.:

1. place black pebbles on all vertices in C in topological order (Rule 6.1); and
then

2. remove the black pebbles on the ancestors of v∗ in reverse topological order
(Rule 6.1).

Otherwise, RBTreewidth splits C into smaller components using its separator,
recursively places a black pebble on every vertex in the separator in topological
order, places a black pebble on v∗ by recursing on the component C∗ that con-
tains v∗. Finally, it recursively removes the black pebbles on the separator in
reverse topological order. The details are given below.

1. Decomposes C into its components C1, . . . ,Cp using its separator S ⊆ C,
where C = S ∪ C1∪ . . . ∪Cp and Ci := C|Ci

.

12 It is possible to bound the space-complexity of RB pebbling on DAGs of treewidth w
using existing results. First, use the fact that the RB pebbling number of a graph of
size S is upper bounded by the plain black pebbling [39] number with a multiplicative
log(S) factor [32]. Second, use the fact that the black pebbling number is upper
bounded by treewidth w (via so-called pathwidth) with another multiplicative log(S)
factor [11, Theorem 2, Corollary 24]. Consequently, we get that the RB pebbling
number is at most w log2(S). But this is a worse bound compared to what we show
directly in Lemma 2.
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2. Recursively place black pebbles on the vertices in S in topological order. That
is, for each vertex s ∈ S chosen in topological order:
(a) recursively place a black pebble on each predecessor of s (unless it already

carries a black pebble) in topological order,
(b) place a black pebble on s (Rule 6.1), and
(c) recursively remove the black pebbles on each predecessor of s that is not

in S in reverse topological order.
3. Recursively pebble the component C∗ ∈ C1, . . . ,Cp which contains v∗.
4. Undo Item 2 by recursively removing the black pebbles on the separator in

reverse topological order. That is, for each vertex s ∈ S chosen in reverse
topological order:
(a) recursively place a black pebble on each predecessor of s in topological

order,
(b) remove the black pebble on s (Rule 6.1), and
(c) recursively remove the black pebbles on each predecessors of s in reverse

topological order.

As we explain next, carrying out Items 2 and 4 in topological and reverse
topological order, respectively, is crucial for the efficiency (and correctness) of
RBTreewidth. Recall that the property of the separator S guarantees that the
components C1, . . . ,Cp are themselves of small enough size (see Definition 10).
Therefore, once S is pebbled black RBTreewidth can be called on all the resulting
components as there are no edges between the components. However, pebbling a
vertex s in S itself is tricky: the predecessors of s could very well be in different
components (since there are no guarantees for the vertices in the separator).
However, we do have the guarantee that all the predecessors of a predecessor
(outside S) of s belong to the same component or the separator, and are reach-
able via either source vertices or vertices belonging to S. Therefore, as long
as the vertices in S are black-pebbled in topological order, S can be completely
pebbled in Item 2 by recursing on small enough components. A similar argument
applies when the black pebbles on the separator are removed in Item 4.

With this in mind, we now analyse RBTreewidth. The reason this strategy
requires at most σ := O(w log(S)) black pebbles is similar to what we will see in
the proof of Theorem 5. The number of pebbles is governed by the expression

σ(i) ≤ (w + δin) + σ(i + 1), (3)

where the index i is the depth of the recursion of RBTreewidth. The factor (w +
δin) is the cost of black pebbles placed on the separator in Item 2 and the factor
σ(i + 1) is the cost of recursions in Items 2 to 4. Note that since the size of the
components in each these recursive calls is at most 2/3 of the size of the original
component C, the overall depth of the recursion remains O(log(S)). The upper
bound on the number of pebbles claimed in the lemma follows on solving Eq.
(3).

As for the number of steps, it is governed by the expression

τ(i) ≤ τ(i + 1)O(δinw). (4)
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since RBTreewidth is recursively called at most O(δinw) times on the (sub-)
components. As in the case of space-complexity, since we end up with constant-
size components at the end of the recursion, the base cost is O(1). The lemma
follows on solving Eq. (4). ��

Recursive Switching. We are now primed to describe BGRSwitch. It takes as
input:

1. the original graph G = (V, E) that is to be pebbled
2. the vertices C ⊆ V that define the graph component C = G|C being currently

considered
3. the “higher” separator U , which is the union of all the separators in

the “higher” recursive calls that resulted in the creation of the current
component C.

Note that C and U are disjoint sets by definition. Throughout the execution of
BGRSwitch, we maintain a few pebbling properties as invariants:

– At the start of the execution of BGRSwitch on the current component C, it is
guaranteed that the vertices in U are all black-pebbled. This, in some sense,
“isolates” C from the rest of the graph and, as a result, it can be pebbled
independently of the rest.

– At the end of the execution of BGRSwitch, we guarantee that the vertices C
in C are red-pebbled (via black and then gray), except for the children of the
higher separator U , which will be left gray-pebbled.

Next, let’s see what happens in BGRSwitch when called on (G, C,U) (in the first
call C = V and U = ∅). The base case is when the current component C := G|C is
of small enough size (i.e., with O(1) vertices). Here BGRSwitch simply switches
C to red by using as many pebbles as needed; i.e.:

1. place black pebbles on all vertices in C (Rule 11.1),
2. replace them with gray pebbles (Rule 11.2), and
3. replace the gray pebbles with red pebbles (Rule 11.3) except if the vertex is

a child of the upper separator U .

Otherwise, BGRSwitch does the switching from no pebbles to red pebbles for
C by recursively splitting into smaller components using the separator for C as
follows .

1. Decompose C = G|C into its components C1, . . . ,Cp using its separator S ⊆ C,
where C = S ∪ C1 ∪ . . . ∪ Cp and Ci := G|Ci

. (Midpoint-separator analogy)
2. Place black pebbles on the vertices in S using RBTreewidth. Note that this is

possible only because all the vertices that are required to carry this out are
either empty or belong to U and therefore are black-pebbled.

3. Recursively switch each component C1, . . . ,Cp using BGRSwitch. After all
component are switched, all vertices in C, except the ones that are children
of S, are red-pebbled; the children of S are left gray-pebbled.
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4. Replace the black pebbles on the separator S with gray pebbles by using Rule
11.2.

5. Replace the gray pebbles on S and its adjacent vertices with red pebbles
(except if the vertex is a child of the upper separator) using Rule 11.3 and
RGRTreewidth.

Note that during the whole strategy, we maintain as invariant a black-gray fron-
tier between the empty and red-pebbled vertices, and this frontier is exactly at
the separators. That is, at any point of the pebbling no two vertices such that
one is empty and the other is red-pebbled are related (see Remark 5.5.). As
pointed out in the technical overview (Sect. 1.2), it is this frontier that insulates
the computations in the two circuits and help ensure correctness at all times. In
the following theorem we formally analyse its space- and time-complexity.

Theorem 5 (Main theorem). Every DAG G with S vertices, degrees
δin, δout ≤ δ and treewidth w can be BGR-pebbled using at most
σ = O((δin + wδout) log(S)) grayscale pebbles in at most τ := (δw)O(log(S)) steps.

Proof. To bound the space-complexity of BGRSwitch, first note that the algo-
rithm indeed maintains the invariants stated above:

1. At the start of the execution of BGRSwitch on the current component C, it
is guaranteed that the vertices in U are all black-pebbled. Hence, on input a
component at depth of recursion i ∈ [0, O(log(S))], there are |U(i)| = O(iw)
pebbles that remain black-pebbled.

2. At the end of the execution of BGRSwitch, all the vertices C in C are red-
pebbled, except for children of the higher separator U , which will be left
gray-pebbled. Hence, after the execution of BGRSwitch on a component at
depth i > 0 there are up to δout · |U(i)| = O(iδoutw) many gray pebbles on
the graph.

Now, in Item 3 there are up to δw many components, among which some are
already switched, some not, and one is currently processed. For the former set
of components, all nodes within these which are children of U ∪ S are pebbled
gray. Hence, by the above, there are up to δout · (|U(i)| + 1) + |U(i)| = O(iδoutw)
nodes that remain gray- or black-pebbled while BGRSwitch is processed on a
lower component. Now, while some node on the separator S ′ in the currently-
processed component is pebbled using RBTreewidth or RGRTreewidth (cf. Item
2), there are up to |S ′| ≤ w additional nodes that remain pebbled. By Lem-
mas 2 and 3, the space-complexity of RBTreewidth/RGRTreewidth is bounded by
O((δin + w) log(S)). Thus, we arrive at

σ(i) ≤ O(iδoutw) + w + O((δin + w) log(S)) = O((δin + wδout) log(S)).

As for the number of steps, on input a component at depth of recursion i,
the time-complexity of BGRSwitch is governed by the expression

τ(i) ≤ (δinw)O(log(S)) · w + τ(i + 1)δw. (5)
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The first factor is the cost of the subroutines used to pebble the separator black:
the subroutine is called at most |S| ≤ w times, each time incurring a cost of at
most (δinw)O(log(S)) (Lemma 2). The second factor is the cost of recursively call-
ing BGRSwitch on at most δw (sub-)components. Since we end up with constant-
size components at the end of the recursion, the base cost is O(1). On solving
Equation (5), the theorem follows. ��

Computing the Separators. Finally, let us return to the question of computing
the sequence of separators underlying our pebbling strategy. While we are not
aware of an efficient algorithm for computing balanced separators (see discussion
in Sect. 1.3), it suffices for our purpose that a separator of size w can be found in
time at most SO(w): since we anyway lose a similar factor in the distinguishing
advantage, the overall (asymptotic) loss that the reduction incurs remains sim-
ilar. Therefore, we simply enumerate all w-sized subsets of vertices till we find
a balanced separator – note that given a separator it is easy to verify that it
is indeed one, i.e., the problem lies in NP. Since computing any BGR pebbling
configuration requires knowledge of at most O(log(S)) many separators, the total
time required to compute a pebbling configuration is at most Tp = O(log(S)Sw).

4.2 Optimised Piecewise Guessing

Recall that in Theorem 4, the loss in adaptive security is exponential in the BGR
pebbling complexity. This is because the reduction requires as advice the value
of the output wire of all the gates that are grayscale pebbled. Therefore when
Theorem 4 is used in conjunction with Theorem 5, the loss is exponential in the
treewidth as well as degree. First, note that for Yao’s garbling scheme, we only
consider Boolean circuits with fan-in 2. We argue next that the dependence on
out-degree can be removed thanks to the structure of the configurations in the
BGRSwitch pebbling strategy. The resulting theorem is stated in Theorem 6.

Let’s return to the recursive step in Item 3 which is the cause of dependence
on the degree. At the start of this step, all the vertices in the separator S have
been pebbled. Then each component Ci is recursively switched to red one at a
time. At the end of switching Ci, each vertex in Ci is pebbled red, except for
those vertices that are children of S (or U) which are left gray. Therefore we can
restrict our focus on those vertices that have its predecessors in the separator –
let’s consider one such vertex v∗. Note that in any configuration where v∗ carries
a gray pebble, it is guaranteed that its predecessors in the separator are black-
pebbled. Therefore, instead of requiring the value of the gate g∗ corresponding
to v∗ as an advice, it can simply be computed as a function of the values of
its predecessor gates (which are included in the advice). To sum up, instead
of providing as advice the values of the output wires of all the gates that are
grayscale pebbled as in Eq. (2), it suffices to provide a much smaller advice as
outlined above. As a result of this observation, we get the following optimised
version of Theorem 4. This leads to the corollaries stated in Sect. 1.1.
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Theorem 6. Suppose that a class of circuits C of size S, fan-in 2 has degree δ
and treewidth w. If the encryption scheme SKE is (ε, T )-secure then YGCSKE

is (3τ2σε, T − (TH + Tσ + Tp))-adaptively-indistinguishable for C where

τ := (δw)O(log(S)), σ := O(w log(S)) and Tp := O(log(S)Sw).

5 Conclusion and Open Problems

Yao’s garbling scheme is one of the most fundamental cryptographic construc-
tions. In this work, we took another step towards completing the landscape of its
security. Our result leads to several interesting questions, the most natural being
whether the upper bound on loss in security can be improved. To this end, one
could look at other (orthogonal) graph properties. Another pressing question is
whether there are other applications of treewidth in cryptography (which seems
relatively overlooked compared to other fields such as circuit complexity or algo-
rithmic graph theory). This closely concerns the divide-and-conquer approach
employed in our security reduction: it seems that the approach of surgically
replacing one circuit with another should find use in other scenarios. Our hope
is that this work spurs further research in this direction.

Acknowledgements. We are grateful to Daniel Wichs for helpful discussions on the
landscape of adaptive security of Yao’s garbling. We would also like to thank Crypto
2021 and TCC 2021 reviewers for their detailed review and suggestions, which helped
improve presentation considerably.
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Abstract. Oblivious transfer (OT) is a foundational primitive within
cryptography owing to its connection with secure computation. One of
the oldest constructions of oblivious transfer was from certified trapdoor
permutations (TDPs). However several decades later, we do not know if
a similar construction can be obtained from TDPs in general.

In this work, we study the problem of constructing round optimal
oblivious transfer from trapdoor permutations. In particular, we obtain
the following new results (in the plain model) relying on TDPs in a black-
box manner:

– Three-round oblivious transfer protocol that guarantees indistingui-
shability-security against malicious senders (and semi-honest receivers).

– Four-round oblivious transfer protocol secure against malicious
adversaries with black-box simulation-based security.

By combining our second result with an already known compiler we
obtain the first round-optimal 2-party computation protocol that relies
in a black-box way on TDPs.

A key technical tool underlying our results is a new primitive we call
dual witness encryption (DWE) that may be of independent interest.

Keywords: Two-party computation · Trapdoor permutations ·
Oblivious transfer

1 Introduction

Oblivious transfer (OT) is one of the most recognizable protocols in cryptogra-
phy. It is a protocol executed by two parties, designated as sender and receiver,
with inputs (l0, l1) and b respectively. The goal of the protocol is for the receiver
to learn lb, while not learning anything about l1−b. At the same time, the sender
should be oblivious to the receiver’s input b. The importance of OT is underlined
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by its fundamental role in cryptography, as it is known to be both necessary and
sufficient for secure multiparty computation (MPC) [31]. In fact, recent works
[3,9] further strengthen this connection to devise round-preserving transforma-
tions from OT to MPC.

In this work, we revisit the well-studied problem of building round-optimal
OT in the plain model that are secure against malicious adversaries, who may
arbitrarily deviate from the protocol specification. We focus on the task of build-
ing such protocols from general assumptions, and in particular, trapdoor permu-
tations (TDPs). Roughly speaking, TDPs are permutations that are easy to
compute, but hard to invert unless one knows a “trapdoor” (in which case inver-
sion becomes easy).

OT and TDPs are, in fact, historically linked—the first constructions of semi-
honest1 1-out-of-2 OT protocols [13] were based on TDPs. Subsequent works
devised compilation strategies to transform the protocol of [13] to the setting of
malicious senders and receivers. In particular, [30] constructed a four-round OT
protocol that makes non-black-box use of TDPs. More recently, [35] improved
this result by only making black-box use of TDPs. Moreover, the round complex-
ity of these protocols is optimal (w.r.t. black-box simulation) [30].

A significant disadvantage of these works (including [13]), however, is that
when it comes to proving security against malicious adversaries, they require the
TDPs to be certifiable. Namely, it must be possible to publicly recognize whether
a given (possibly adversarially chosen) function is a permutation.

Investigating how to construct complex cryptographic protocols relying on
trapdoor permutations is interesting from both the theoretical and the practical
perspective.

Indeed, for this reason, the issue of certifiability of TDPs has garnered much
interest in the context of the other popular application of TDPs, which is to build
non-interactive zero-knowledge (NIZK) [1,6,14,18–21,23,29]. In a similar vein,
in this work we ask whether it is possible to forego the reliance on certifiability
in building round-optimal OT from TDPs:

Does there exist fully black-box round-optimal OT from trapdoor permutations?

Indeed, one simple way to relax the certifiability requirement is to let the
party choosing the TDP proving in zero-knowledge that the TDP was sampled
honestly. However this necessarily increases the number of rounds (or requires
trusted assumptions). Such an approach has been used in [36], in which the
authors show that one-way permutations (without trapdoors) are sufficient to
construct OT if one of the two parties is all-powerful. Thus, the problem becomes
interesting if one considers the round complexity of constructions.

On the use of Certifiability. To the best of our knowledge, we are not aware
of any maliciously secure round-optimal OT protocol that uses the underlying
trapdoor permutations even in a non-black-box way.
1 A semi-honest adversary, unlike a malicious adversary, follows the protocol specifi-

cation. However, it may still try to glean additional information from the execution
of the protocol.



520 A. R. Choudhuri et al.

In both of the classical applications of TDPs, namely, NIZK and OT, the
certifiability property is crucially used for security. In the case of NIZKs, it is
used to guarantee soundness against malicious provers in the classical protocol
of [14]. In the case of OT, it is used to guarantee security against malicious
senders. In both of these applications, one of the parties (the prover, in the case
of NIZKs, and the sender, in the case of OT) is required to sample a function
f from a family of trapdoor permutations. This is done by sampling an index I
via the index generation algorithm of the family of functions. If the party does
not sample the index I honestly, the resultant function is no longer guaranteed
to be a permutation. In such a scenario, in both of these applications, security
completely breaks down (we will give an example hereafter in the paper). A
cheating prover is able to break soundness, and a cheating sender is able to
break receiver input privacy.

In the context of NIZKs, [1] proposed a technique to address this issue when
the TDP family is full domain. Here, we say that a TDP family is full domain
if the domain is {0, 1}p(n) for some polynomial p, else we say that the domain is
partial. Subsequent works [19–21,23] showed that for the case of partial domain,
it suffices for one to start with TDPs that are doubly-enhanced, i.e., TDPs that
additionally have domain and range samplers with additional security properties
(see Sect. 3.1). [6] was able to further relax the requirements for partial domain
to only require TDPs that are public-domain, i.e. the domain is both efficiently
recognizable, and almost uniformly sampleable. In [18] the authors propose a
non-interactive proof to certify that the RSA public key specifies a permutation
in the random-oracle (RO) model.

These solutions, however, are in the common random string (CRS) model (or
in the RO model), and are not applicable to our plain model setting. The main
technical focus of our work is to eliminate the use of certifiability in building
OT, without relying on a CRS or on the RO, and requiring the least possible
number of rounds. To achieve this goal, we rely on new notion of dual witness
encryption (DWE).

1.1 Our Results

We resolve the aforementioned question in the affirmative, and provide details
for our result below.

Dual Witness Encryption. As a stepping stone to our solution, we define the
notion of dual witness encryption for the pair of disjoint languages (L0, L1) such
that L1 is in NP. Intuitively, the notion defines a public-key encryption scheme
where the public key (the instance) can either come from L0, L1 or may even
lie outside the union of these two sets. The scheme guarantees: (i) information
theoretic security when encryption is performed using a public-key belonging
to the set L0; and (ii) efficient decryption when encrypted using a public-key
belonging to the set L1 if the decryptor is additionally in possession of a witness
attesting to this fact.
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For use in our OT protocols, we construct a dual witness encryption (DWE)
scheme where the public keys will correspond to functions f . Specifically, we
build a DWE scheme for (L0, L1) where (i) L0 is the set functions for which a
large fraction of points in the domain result in collisions (the reader can think
of this as meaning that at least half the points in the domain result in collision
on application of functions f in L0); whereas (ii) L1 is the set of TDPs output
by an honest TDP generation algorithm Gen. While we discuss the details of the
encryption scheme in the technical overview, for the purposes of this discussion
it is helpful to think of an (overly) simplified version of a ciphertext in the
encryption scheme to be (f(k), k ⊕m)2 where k is a randomly sampled key, and
m is the message to be encrypted. Intuitively, if the instance f used to compute
an encryption is a function for which many points in the domain have the same
image, then f(k) (which is a part of the ciphertext) information theoretically
hides the specific key k chosen for encryption, and thereby hides the message m.
Instead, if the function f used for the decryption is a TDP, and the randomness
used to generate such a function is known, then there exists an efficient procedure
that inverts f(k) and decrypts the message. We note that in this case there are
instances that belong neither to L0 nor to L1 (e.g., the functions for which only
a small fraction of points in the domain result in collisions). This is our main
tool for tackling uncertifiability. As stated above, this is an oversimplification of
our scheme, and we provide more details both for the construction of the tool,
and how it is used, in the next section.

As an additional contribution, we show the existence of a dual witness encryp-
tion schemes for other languages. For instance the pair of languages (L0, L1),
where L0 represents the language of Diffie-Hellman (DH) tuples, and L1 repre-
sents the language of non-DH tuples. In this case, when an encryption is com-
puted using a DH tuple, the encrypted message is information theoretically hid-
den. In any other case, when the encryption is computed using a tuple that is not
DH, it is possible to efficiently decrypt the message. Moreover, the decryption is
efficient if the exponents of the non-DH-tuple are known by the decryptor. We
also argue that it is possible to extend the above construction to the language
of non-Quadratic Residuosity tuples [24]3.

Comparison with Similar Notions. Dual witness encryption is similar to witness
encryption with some important differences: First, we require semantic security
to hold even against unbounded adversaries when the instance used for the
encryption belongs to L0. Second, unlike witness encryption, we do not define
completeness or hiding for instances that are outside L0 and L1.

The notion of instance-dependent commitment (ID commitment) [7] enables
a committer to commit to a message with respect to an NP language L. When
the statement used to compute the commitment is not in L, then the commit-
ment is statistically hiding, in any other case the commitment is statistically

2 Note that this is not an accurate description of the encryption scheme, but is helpful
to provide an intuition.

3 We note that in this example L0 ∪ L1 = {0, 1}�, but this is not always the case, as
we show hereafter.
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binding. The notion of extractable ID commitment, in addition, admits an effi-
cient extraction procedure that on input a commitment computed with respect
to an instance in L, outputs the committed message. In [17] the authors show
how to construct such an extractable ID commitment scheme for all the lan-
guages that admit hash proof systems (e.g., QNR, QR, DDH, DCR). It is easy
to see that an extractable ID commitment for the language L is a DWE for the
languages (L0, L1) with L0 = {0, 1}� −L and L1 = L. Moreover, any DWE such
that L0 ∪ L1 = {0, 1}� is an extractable ID commitment for the language L1.
The main difference between DWEs and extractable ID commitments is that
the extractable ID commitments are defined with respect to one NP-language,
whereas our notion provides different guarantees depending on whether the state-
ment is in L0, L1 or in neither of the two languages.

Round Optimal Oblivious Transfer. Using Dual Witness Encryption (DWE), we
obtain the following results.

Theorem 1 (informal). Assuming full domain trapdoor permutations, we
construct a fully black-box three-round oblivious transfer protocol that is secure
against semi-honest receivers and malicious senders.

Theorem 2 (informal). Assuming full domain trapdoor permutations, we
construct a fully black-box four-round fully simulatable oblivious transfer pro-
tocol.

Round Optimal Two-Party Computation. An immediate corollary from the The-
orem 1, in conjunction with the work of [28] building a non-interactive secure
two-party protocol in the OT-hybrid model is the following.

Corollary 1. Assuming full domain trapdoor permutations, there exists a fully
black-box round optimal secure two-party computation protocol.

Functions with Partial Domain. To the best of our knowledge, to extend the
results of previous works [30,35] in the case of functions with partial domain
requires, in addition to the certifiability property, (i) the existence of a sampler
which uniformly samples elements from the domain/range; and (ii) the existence
of an efficient algorithm that checks whether a given element belongs inside or
outside the domain of the function. These properties are called respectively effi-
ciently sampleable domain/range and efficiently recognizable domain. We show
how to extend our theorems and corollary to the case of functions with partial
domain by removing the requirement on the function to be certifiable, while
maintaining the same requirements of efficiently sampleable domain/range and
efficiently recognizable domain.

2 Technical Overview

To illustrate the main ideas underlying this work, it will suffice to assume full
domain TDPs, and the extension to partial domains are deferred to the technical
sections.
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Background: 3-Round Semi-Honest OT. Before we describe the main ideas in our
construction, let us recall the basic three-round construction based on enhanced
trapdoor permutations (TDPs) in the semi-honest setting (EGL) [13,30].

Let l0, l1 ∈ {0, 1} be the input of the sender S and b be the input bit of the
receiver R, the construction is presented in Fig. 1.

Fig. 1. The EGL OT protocol [13]. Security holds against semi-honest receivers and
malicious senders

Here h(·) is a hardcore bit of f . If the parties follow the protocol (i.e. in the
semi-honest setting) then S cannot learn the receiver’s input (the bit b) as both
z0 and z1 are random strings. Also, due to the one-way property of f and the
security of the hard-core predicate, R cannot distinguish w1−b from random as
long as z1−b is randomly chosen.

Prior works [30] ([35] respectively) devised non-black-box (black-box respec-
tively) approaches to deal with both malicious senders and receivers. When deal-
ing with malicious senders, they still require certifiable TDPs. Without certifia-
bility, challenges arise, which are highlighted below.

Main Challenge: Necessity of Certification. In the above described semi-honest
protocol, a malicious sender is free to deviate from the protocol. If the malicious
sender sends a function f that is not a permutation, by simply looking at values
z0 and z1, it could decide which one of the values is randomly sampled from
the domain of the function, and which one is computed by evaluating f on a
random point. Specifically, {x

$←− {0, 1}λ : x} and {x
$←− {0, 1}λ : f(x)} are

distinguishable to the sender for such an f , thereby leaking the receiver’s input.
To see why this is true, let us consider an extreme case in which a malicious
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sender picks a function f in which half of the points in the domain of f all have
the same image y. Such a malicious sender, upon receiving the values z0, z1,
checks if there exists d ∈ {0, 1} such that y = zd. If this is the case, then the
malicious sender outputs d, otherwise it outputs a random bit. It is easy to see
that such a malicious sender guesses the input of the receiver with the probability
negligibly close to 1/2 + 1/4. The natural approach to dealing with a malicious
adversary is to force an adversarial party to prove honest behavior using a zero-
knowledge proof. In fact, in the NIZK constructions based on certifiable TDPs,
removing certification is non-trivial since it has direct bearing on the soundness.
A cheating prover that picks a function f that is not a permutation can break
the soundness of the NIZK. In this context, [1] proposed the first approach to
avoiding certifiability. Their solution proposes a special purpose NIZK to prove
that f is a trapdoor permutation over the full domain. Thus the prover, when
sending over f also sends a special purpose proof that f is indeed a trapdoor
permutation over the full domain. As mentioned earlier, these results were further
extended to the partial domain setting by [6,23] for a more restricted class of
TDPs. Unfortunately, all the above solutions are in the common random string
(CRS) model, and therefore not applicable in our setting. Following the above
line of work, the natural idea could be to devise a zero-knowledge proof in the
plain model whereby the sender proves that the function f is indeed a trapdoor
permutation. However, as we discuss below, this runs into fundamental barriers.
The main challenge in requiring the sender to send a zero-knowledge proof to
the receiver, is the limitation on the number of rounds. Even in the four-round
setting, the receiver sends its last message in the third round, and thereby must
know by the end of the second round if f sent by the sender is a permutation.
This would thereby require the sender to complete its zero-knowledge proof by
the send round, but providing such a zero-knowledge proof in two rounds is
impossible [22]. Another näıve solution to extend the techniques of [1] in the
plain model, would be to run a challenge-response protocol. In this, the party
that wants to check if a function f is a permutation (the receiver R in this
case), upon receiving the function f from the party that wants to certify that
f is a permutation (the sender S in this case), samples random values from the
domain, evaluates them, and sends them to S. S then inverts the received values
and sends them back to R. R now can check if the received values correspond to
the values he sampled from the domain of the function. It is easy to see that if the
function is not a permutation, then (with some probability) one of the evaluated
points R sends to S has a multiple pre-images, and S has no way to determine
which pre-image R picked, resulting in R rejecting the function. The problem
with this approach is that it requires at least three rounds of communication.
And this is clearly unacceptable if we want to construct an OT protocol that
overall consists of three (or even four) rounds.

Dual Witness Encryption (DWE). As alluded to in our result section, we will
rely on a Dual Witness Encryption scheme for the languages (L0, L1), where L1

is an NP language. A Dual Witness Encryption is described by an encryption
algorithm and a decryption algorithm. The encryption algorithm takes as input
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an instance (either in L0 or in L1) and a message, and outputs a ciphertext ct.
The decryption algorithm takes as input a ciphertext, an instance x ∈ L1 and a
witness for x, and returns a string. A DWE enjoys the following two properties:

Completeness: If the cipthertext ct is computed using an instance x ∈ L1, then
the decryption algorithm, on input x and a witness for x, efficiently outputs
the plaintext of ct.

Hiding: If the cipthertext ct is computed using an instance x ∈ L0, then ct
hides the plaintext in an information-theoretic sense.

Our Main Idea in a Nutshell. We now show how to use our techniques to trans-
form the EGL protocol of Fig. 1 into a protocol that protects the input of the
receiver against malicious senders relying on TDPs only. An honest receiver
wants to prevent a cheating sender from being able to view z0 and z1 if the sender
has not picked f honestly. To facilitate this intuition, the receiver encrypts, using
the dual witness encryption using f as the instance, its messages (z0 and z1),
and sends over the corresponding ciphertext to the sender. On the one hand,
if the sender has indeed picked a function by running the generation algorithm
Gen, then it can decrypt and obtain z0 and z1, on the other hand if the selected
function has a lot of collisions, then the ciphertext will hide z0 and z1. But this
only gives us a weak form of security against malicious senders since the f picked
might not have a lot of collisions. The security is then amplified using a weak
notion of OT combiners. More precisely, we use a (1, k)-combiner that takes as
input k OT instantiations and outputs a secure OT against malicious senders as
long as there is at least one OT that is secure against malicious sender. We note
that for simulation based security, we will have to do some further work and add
an additional round. This construction is already sufficient to obtain a 3-round
OT protocol that retains its security against malicious senders and semi-honest
receivers4 relying on uncertified TDPs.

Constructing a DWE Scheme for TDPs. We start with the construction of the
main tool used in our work: a DWE that encrypts with respect to a function f .
For simplicity, we will limit our discussion to a bit encryption scheme, with a
natural extension to encryption of bit strings. The rough idea to encrypt a bit
m, is to sample an element x from the domain, compute y ← f(x), and generate
the ciphertext to be (y, xj ⊕ m, j), where xj is the j-th bit of x for a randomly
sampled j. On the one hand, if f was indeed a permutation, generated alongside
the corresponding trapdoor f−1 (that can be obtained from the randomness used
to ran the generation algorithm), one can decrypt the ciphertext. On the other
hand, if f is not a permutation, then with some probability y has a collision, and
thereby there exists at least another x′ �= x such that f(x′) = f(x) = y. Hence,
with probability 1/n x and x′ differ at the j-th position (where n is the size of x),
thereby hiding m since the decryptor has no way to tell whether x or x′ was used
4 We provide privacy for the input of the receiver in the sense that a malicious sender

cannot distinguishes between when the receiver is using the input 0 and when he is
using the input 1.
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in the encryption. Of course, this only achieves a weak notion of security, that
needs to be amplified. In order to amplify the security, we want to increase the
likelihood of sampling an x such that f(x) has a collision. We take the natural
approach and additively secret share m as m ← m1⊕· · ·⊕mq, for an appropriate
parameter q, and repeat the above strategy of encryption, with fresh randomness
for each mi separately. Now, when f is not a permutation, as long as at least
one of the mi remains hidden, m remains information theoretically hidden. In
the technical section, we elaborate on this idea, and discuss the appropriate
parameters required to guarantee security.

Towards a Simulation-Based Secure Construction. To obtain a complete solution
(i.e., a protocol that is simulation based secure against malicious senders and
receivers), we integrate the above idea in the [35] construction. However, doing
so creates further challenges. The remainder of the section is dedicated to our
solution, and how we tackle the challenges that arise.

Let us now look at our solution is more detail.

The ORS [35] Methodology. The starting point for our protocol is the black-box
OT protocol presented in [35]. Their protocol is constructed in two steps. In the
first step, they construct a black-box OT protocol that is one-sided simulatable,
i.e. the protocol is fully simultable against a malicious receiver, but only satisfies
input indistinguishability against a malicious sender. In the second step, they
then provide a general transformation that allows one to go from one sided simu-
latable OT to fully simulatable OT in a black-box manner. Since we can directly
use their transformation in the second step, we limit our discussion to the con-
struction of a one sided simulatable OT protocol. Looking back at our description
of the semi-honest three-round oblivious transfer protocol, if we are to consider a
fully malicious receiver R� then this protocol is already no longer secure. Indeed
R� could just compute z1−b = f(y) picking a random y

$←− {0, 1}λ. In this way
R� can retrieve both the inputs of the sender l0 and l1. In [30] the authors solve
this problem by having the parties engage in a coin-flipping protocol such that
the receiver is forced to set at least one of z0 and z1 to a random string. This is
done by forcing the receiver to commit to two strings (r0, r1) in the first round
(for the coin-flipping) and providing a witness-indistinguishable proof of knowl-
edge (WIPoK) that either z0 = r0 ⊕ r′

0 or z1 = r1 ⊕ r′
1 where r′

0 and r′
1 are

random strings sent by the sender in the second round. The resulting protocol,
as observed in [35], leaks no information to S about R’s input. Moreover, the
soundness of the WIPoK forces a malicious R� to behave honestly, and the PoK
allows to extract the input from the adversary in the simulation. Therefore, the
protocol constructed in [30] is one-sided simulatable. The main drawback in the
above approach, addressed in [35], is that the use of a WI scheme requires using
the commitment scheme in a non-black-box manner. Instead, in [35] the authors
propose an approach that makes only black-box use of the underlying primitives.
The main insight in [35] was to recast the problem in terms of equivocal and
binding commitments, and having the output of the coin-flipping to be a pair of
strings (z0, z1).
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1. Receiver R, on secret input b, chooses random strings r0 and r1. R then
sends across commitments com0, com1 such that com1−b is a commitment to
r1−b while comb is an equivocal commitment. R now proves that one of the
commitments is binding.

2. The sender S then samples a trapdoor permutation from the family f, f−1 ←
Gen(1λ), and sends f to R. S also additionally samples a random string r,
and sends it over to R.

3. R will now choose its decommitments to send to S. For com1−b it will decom-

mit to r1−b, but for comb, R does the following. R sample x
$←− {0, 1}λ and

computes zb ← f(x), and sets rb ← zb ⊕ r. R now decommits comb to rb, and
both decommitments are sent to S.

4. S on receiving the decommitments, checks if they are valid before proceeding.
It then sets za ← ra ⊕ r for a ∈ {0, 1}, and sends (w0, w1) to the receiver
where wa ← �a ⊕ h(f−1(za)).

Since one of the commitments are guaranteed to be binding from the soundness
of the proof, the receiver can only equivocate one of the strings, and thereby
knows the pre-image to only one of the strings. From the above description,
the main technical contributions of [35] are to realize the above protocols in a
black-box manner using the commit-and-prove protocol due to [32]. The above
description is sufficient to discuss the main ideas and challenges underlying our
work, for a more detailed discussion of [35] we refer the reader to the technical
sections. Given the description of the above protocol, and equipped with the
dual witness encryption, the natural approach is for the receiver to encrypt
its decommitments sent in the third round using the function f sent by the
sender. This seems to work as a valid defense against a malicious sender, but
an unwanted consequence of this modification is that simulation now fails for a
malicious receiver. Let us see why this is the case.

Defending Against a Malicious Receiver. Consider an execution of the simulator
with a malicious receiver. At some point during the simulation, the simulator
will receive the encrypted messages from the receiver, and must proceed with
the simulation. But just from looking at the ciphertext, it does not know if
the ciphertexts contain legitimate decommitments, or some arbitrary values.
Why is this a problem? In the real execution of the OT protocol, an honest
sender, having picked f to be a permutation, will decrypt the ciphertexts and
abort if the ciphertexts do not decrypt to a legitimate decommitment. Therefore,
in order to avoid a trivial distinguisher, the simulator must also perform this
check. One natural way would be for the simulator to mimic the honest sender’s
behavior and decrypt the ciphertext, and then decide the appropriate action
from the decrypted value. Unfortunately, this strategy does not work, and we
illustrate why this would be a problem. In the above protocol, we said that the
intuitive reason for the receiver not to learn l1−b is that it does not know the
pre-image of the random string, and thereby can do no better than guessing the
hardcore predicate of the pre-image. To formalize this in the proof, we need to
make a reduction to security of the hardcore bit of f . Such a reduction receives
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only the function f and but must be able to complete the interaction against
the malicious receiver. And importantly, must do so without knowledge of the
randomness ρ used to generate f . A consequence of this is that decrypting is no
longer an option since the reduction does not have ρ. In essence, if we have to
decrypt to check, then we are breaking the security of the hardcore predicate.
One way to get around decrypting, is to have some sort of “public check” such
as a witness indistinguishable proof of knowledge as done in [30]. But the trivial
application of this approach results in a non-black-box use of the underlying
primitives, which we cannot afford to do. And indeed, it is unclear how one
would prove honest behavior in such a scenario in a black-box manner. Taking
a step back, we are seemingly deriving two distinct security properties from the
function f : (i) for the security of the hardcore predicate against a malicious
receiver; and (ii) hiding of the DWE scheme if f is not a permutation. The issue
then is that when we want to rely on the security of the hardcore predicate,
we do not care for the ciphertext to be hiding, since we are guaranteed that
the function f used in the reduction, is a permutation. This seems to indicate
that, while the current construction ties both these security properties, it does
not necessarily have to be the case. Our approach is to decouple the above
properties in a surprisingly simple manner. We use now two functions, an inner
fOT for the OT (and security of the hardcore predicate), and an outer fdWE for
the DWE scheme. The sender now samples the two functions along with the
corresponding trapdoors. As before, the functions are sent to the receiver in the
second round. The receiver then uses fOT to compute zb and uses fdWE to encrypt
the decommitment. This solves the issue indicated above since the reduction can
decrypt without breaking the security of the hardcore predicate. This means that
we can now reduce the security of the scheme to the security of the function
fOT. But now, a malicious sender could choose fdWE to be a permutation, while
choosing fOT maliciously. We seem to have lost the advantage of using the DWE
scheme. Our final solution is to stick to the idea of using two functions. But
instead of fixing the roles of the two functions, allow the receiver to determine
the roles of the corresponding function. As mentioned before, this provides only
a weak guarantee and is amplified through the use of OT combiners. While we
have described the main ideas underlying the construction, implementing these
ideas involve further work, and we refer the reader to the relevant technical
sections for the details.

2.1 Related Work

Oblivious Transfer. As stated earlier, oblivious transfer (OT) plays a fundamen-
tal role in cryptography and has a large body of work starting with [13]. We
restrict ourselves to relevant works focusing on the round optimality of OT. In
the random oracle model, [34] constructs a two-round OT protocol with indistin-
guishability based security against malicious receivers, but simulation security
against malicious senders. In the CRS model, [37] constructs a fully maliciously
secure two-round protocol. Moving to the relevant setting of the plain model,
[30] showed that four rounds are necessary for a fully maliciously secure OT
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protocol with black-box simulation, and further proved that this was tight by
constructing a four round OT protocol. The subsequent work [35] improved this
construction by making only black-box use of the underlying primitives. In [26]
the authors propose a weaker notion of trapdoor permutations whose permu-
tation domains are polynomially dense (i.e., contain polynomial fractions of all
strings of a particular length), and shows that these are sufficient to obtain semi-
honest OT. Unfortunately, it does not seem that the construction of [26] would
work against malicious senders, as the security of the protocol relies on the trap-
door function having a specific structure (i.e., being polynomially dense) that
needs to be certifiable.

Round-Complexity of 2PC. Studying the round complexity for secure computa-
tion has been the focus of many works in the past years. Whereas for uncon-
ditional security it is inherent to have protocol that are non-constant round
[2,8,12], for the computational case it was showed that three rounds are suf-
ficient to achieve security against semi-honest adversaries [40,41], and subse-
quently [31,33] showed constant round protocols for the case of malicious adver-
saries. In [30] the authors show that five rounds are necessary and sufficient
to compute any two-party functionality where both parties can get the output
(with black-box simulation)5. This result was later improved in [35] by showing
how to obtain a 5-round protocol with black-box use of the underlying certifiable
enhanced trapdoor permutations. In [16] the authors consider the case where the
parties have a simultaneous message exchange channel6 available and show that
four rounds are necessary and sufficient to do secure computation assuming 3-
robust non-malleable commitments. A followup work [10] showed how to obtain
a four-round secure protocol when a simultaneous message exchange channel is
available under the assumption of enhanced certifiable trapdoor permutations.
We remark that in this paper we do not assume simultaneous message exchange
channels.

Certifying Trapdoor Permutations. We have already mentioned some relevant
works in this area and we now extend our discussion. [23,39] discuss the security
of the 1-out-of-k oblivious transfer protocol [13] which is based on trapdoor per-
mutations, noting that its security is compromised in the case of partial-domain
trapdoor functions (when k ≥ 3). [23,39] then show how doubly enhanced trap-
door functions can be used to overcome this issue. Clearly, the problem of cer-
tifying trapdoor permutations does not arise when only semi-honest parties are
considered (like in the case of semi-honest OT), but it is fundamental in the case
of malicious adversary. This problem, for the case of secure computation, has
been circumvented in [10,16,30,35] by simply using certifiable trapdoor permu-
tations. That is, by using trapdoor permutations equipped with a verification
algorithm that can be used to check if a function is a permutation or not. The
problem of getting rid of the certifiability property has been studied mostly for
the case of NIZK in the shared random string model [1]. Recently [6] has studied

5 In this work we only refer to black-box simulation.
6 In this model everyone can send messages at the same time.
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additional certifiable properties that allows recognizing elements in the domain,
as well as uniformly sample from it even for illegitimate functions, and show
that some of these properties are necessary to apply the results of [1] to obtain
a secure NIZK even for maliciously sampled trapdoor functions.

2.2 Organization of the Paper

In the next section we provide the fundamental background required to read
our paper. We dedicate Sect. 4 to defining the notion of dual witness encryption,
providing a few examples for the languages of DH tuples and QR tuples. In Sect. 5
we show how to instantiate a DWE for the language of non-TDPs. We devote
Sect. 6 and 7 to our 4-round OT protocol secure against malicious adversaries,
and Sect. 8 to our round-optimal 2-PC protocol. For the formal construction and
proofs of our 3-round OT protocol we refer the reader to the full version.

3 Background

Notation. We denote the security parameter by λ and use “||” as concatenation
operator (i.e., if a and b are two strings then by a||b we denote the concatenation

of a and b). For a finite set Q, x
$←− Q denotes a sampling of x from Q with

uniform distribution. We use “=” to check equality of two different elements
(i.e. a = b then...), “←” as the assigning operator (e.g. to assign to a the value
of b we write a ← b). and := to define two elements as equal. We use the
abbreviation PPT that stands for probabilistic polynomial time. We use poly(·)
to indicate a generic polynomial function. A polynomial-time relation R (or
polynomial relation, in short) is a subset of {0, 1}∗×{0, 1}∗ such that membership
of (x,w) in R can be decided in time polynomial in |x|. For (x,w) ∈ R, we call
x the instance and w a witness for x. For a polynomial-time relation R, we
define the NP-language LR as LR = {x|∃w : (x,w) ∈ R}. Analogously, unless
otherwise specified, for an NP-language L we denote by RL the corresponding
polynomial-time relation (that is, RL is such that L = LRL

).
When it is necessary to refer to the randomness r used by and algorithm A

we use the following notation: A(·; r). We assume familiarity with the notion of
computational and statistical indistinguishability, sigma-protocols and with the
DDH assumption. We refer to the full version for the formal definitions.

3.1 Injective TDFs and TDPs

In this section we define the notion of trapdoor function following mostly the
notation proposed in [6].

Definition 1 (Trapdoor function). A family of one-way trapdoor functions,
or TDFs, is a collection of finite functions, denoted fα : {Dα → Rα}, accom-
panied by PPT algorithms Gen, SD (domain sampler), SR (range sampler) and
two (deterministic) polynomial time algorithms Eval (forward evaluator) and Inv
(backward evaluator) such that the following conditions hold.
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1. On input 1λ, the algorithm Gen selects a random index α of a function fα,
along with a corresponding trapdoor td.

2. On input α, algorithm SD samples an element from domain Dα.
3. On input α, algorithm SR samples an image from the range Rα.
4. On input α and any x ∈ Dα, y ← Eval(α, x) with y = fα(x).
5. On input td and any y ∈ Rα, Inv(td, y) outputs x such that Eval(α, x) = y.

The standard hardness condition refers to the difficulty of inverting fα on
a random image, sampled by SR or by evaluating Eval on a random pre-image
sampled by SD, when given only the image and the index α but not the trapdoor
td. That is, let I0(1λ) denote the first element in the output of Gen(1λ) (i.e., the
index); then, for every polynomial-time algorithm A, it holds that:

Pr[(α
$←− I0(1

λ);x
$←− SD(α); y ← Eval(α, x), x′ $←− A(α, y) : Eval(α, x′) = y] ≤ ν(λ). (1)

Or, when sampling an image directly using the range sampler:

Pr[(α $←− I0(1λ); y $←− SR(α);x′ $←− A(α, y) : Eval(α, x′) = y] ≤ ν(λ). (2)

Additionally, it is required that, for any α
$←− I0(1λ), the distribution sampled

by SR should be close the distribution sampled by Eval(SD(α)). In this context we
require the two distributions be computationally indistinguishable. We note that
this requirement implies that the two hardness requirements given in Eqs. 1 and 2
are equivalent. The issue of closeness of the sampling distributions is discussed
further at the end of this section. If fα is injective for all α

$←− I0(1λ), we say
that our collection describes an injective trapdoor function family, or iTDFs (in
which case Inv(td, ·) inverts any images to its sole pre-image). If additionally Dα

and Rα coincide than for any α
$←− I0(1λ), the resulting primitive is a trapdoor

permutation. If for any α
$←− I(1λ), SD = {0, 1}poly(λ), that is, every poly-bit

string describes a valid domain element, we say the function is full domain.
Otherwise we say the domain is partial.

Definition 2 (Hard-Core Predicate). h is a hard-core predicate for fα if
its value is hard to predict for a random domain element x, given only α and
fα(x). That is, if for any PPT adversary A there exists a negligible function ν
such that

Pr[(α $←− I0(1λ);x $←− SD(α); y $←− Eval(α, x), h(x) ← A(α, y)] ≤ 1/2 + ν(λ).

Enhancements. Goldreich [19] suggested the notion of enhanced TDPs, which
can be used for cases where sampling is required to be available in a way that
does not expose the pre-image. We recall the notion of enhanced injective TDF
proposed in [6] that extends the definition proposed by Goldreich to the case of
injective TDF (where the domain and range are not necessarily equal).
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Definition 3 (Enhanced injective TDF [19]). Let {fα : Dα → Rα} be a
collection of injective TDFs, and let SD be the domain sampler associated with
it. We say that the collection is enhanced if there exists a range sampler SR that
returns a random sample out of Rα, and such that, for every polynomial-time
algorithm A, it holds that

Prob
[

(α $←− I0(1λ); y $←− SR(α; r);x′ $←− A(α, r) : Eval(α, x′) = y
]

≤ ν(λ).

Definition 4 (Enhanced Hard-Core Predicate [21]). Let {fα : Dα → Rα}
be an enhanced collection of injective TDFs with domain sampler SD and range
sampler SR. We say that the predicate h is an enhanced hard-core predicate of
fα if it is computable in PPT time and for any PPT adversary A there exists
a negligible function ν such that

Pr[(α, td) $←− Gen(1λ); r $←− {0, 1}λ; y ← SR(α; r);x ← Inv(td, y);A(α, r)
= h(α, x)] ≤ 1/2 + ν(λ)

or equivalently, if the following two distribution ensembles are computationally
indistinguishable:

{(α, r, h(α, Inv(td, SR(α, rwα, td) $←− Gen(1λ), r $←− {0, 1}�}

{(α, r, u) : α
$←− I0(1λ), r $←− {0, 1}�, u

$←− {0, 1}}

Additional Properties. We define multiple notions of certifiability for trap-
door functions, where each requires the existence of a general prover and verifier
protocol for the function family. Let fα : {Dα → Dα} be a trapdoor permuta-
tion family, given by (Gen, S,Eval, Inv) (where S = SR = SD), we now define the
following properties.

Efficiently recognizable domain: that is, there exists a polynomial-time algo-
rithm RD which, for any index α and any string x ∈ {0, 1}∗, accepts on (α, x)
if and only if x ∈ Dα. In other words, Dα is defined as the set of all strings
x such that RD(α, x) accepts.

Efficiently sampleable domain: that is, there exists a PPT algorithm SDR

that on input α outputs a pair of (x, r) such that Eval(α, x) = S(α; r) where
x is sampled uniformly in Dα.

Efficiently sampleable range: that is, for any index α and r
$←− {0, 1}λ, S(α; r)

samples uniformly in Dα.

We stress that these properties should hold with respect to any α, including
ones that were not generated by running Gen(1λ). We also note that despite
the similarities between the notions of doubly enhancement and efficiently sam-
pleable domain, these two are incomparable. The notion of efficiently sampleable
domain just requires the existence of a sampling algorithm that samples uni-
formly in Dα even for a maliciously chosen α, and it puts no requirements of
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one-wayness. Note that any trapdoor permutation family with full domain triv-
ially enjoys all the properties listed above (one example is given by the candidate
trapdoor permutation proposed in [38]). We show how to obtain a secure 2-party
computation that relies on injective enhanced trapdoor permutations that have
efficiently sampleable range and domain in a black-box way (note that we put
no requirements on the certifiability of the injectivity). We finally recall that
previous works required the existence of the same samplers even in the case of
certifiable TDPs.

3.2 Commit-and-Open Protocols

In [15] the authors provide the definition of 3-round commit-and-open protocols.
In this the prover (committer) has two inputs m0,m1 ∈ M and a bit b ∈ {0, 1}
(we denote with M the message space of the commitment scheme). Informally,
the message mb is fixed in the first round of the protocol, and the message m1−b

can be decided in the last round where the messages (m0,m1) are revealed to
the verifier (receiver). More formally, a commit-and-open protocol is a tuple of
PPT algorithms Πc&o := (P := (P0,P1),V := (V0,V1)) specified as follows. The
algorithm P0 takes as input mb and outputs a string γ ∈ {0, 1}� and auxiliary

state information α ∈ {0, 1}�. The algorithm V0 outputs a random string β
$←− B

(where B represents the message space of the valid second rounds for Πc&o). The
algorithm P1 takes as input (α, β, γ,m1−d) and outputs a string δ ∈ {0, 1}�. The
deterministic algorithm V1 takes a transcript (γ, β, (δ,m0,m1)) and outputs a
bit. Following [15], we denote with < P(m0,m1, b),V(1λ) > an execution of P
where P uses (m0,m1, b) as input, and denote with T := (γ, β, (δ,m0,m1)) the
transcript obtained in this execution. We say that P satisfies completeness if
honestly generated transcripts are always accepting (i.e., V1 outputs 1).

Definition 5 (Secure commit-and-open protocol [15]). We say that a 3-
round protocol Πc&o is secure if it enjoys completeness and satisfies the following
properties.

Existence of Committing Branch: for every PPT malicious prover P� :=
(P�

0,P
�
1) there exists a negligible function ν such that

Pr[V1(T ) = 1 and V1(T ′) = 1 and m0 �= m′
0 and m1 �= m′

1 : (γ, α) $←− P�
0,

β, β′ $←− V0, (δ,m0,m1)
$←− P�

1(α, β), (δ′,m′
0,m

′
1)

$←− P�
1(α, β′)] ≤ ν(λ)

where T := (γ, β, (δ,m0,m1)) and T ′ := (γ, β′, (δ′,m′
0,m

′
1)), and where the

probability is taken over the random coin tosses of P and V.
Committing Branch Indistinguishability: for all PPT malicious verifier

V�, and for all messages m0,m1 ∈ M, we have that the following are indis-
tinguishable
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{T : T
$←−< P (m0,m1, 0),V�(1λ) >}λ∈N

{T : T
$←−< P (m0,m1, 1),V�(1λ) >}λ∈N

The authors of [15] show that one of the protocols proposed in [35] that
relies on statistically binding and computationally hiding commitment (and it
is black-box in the use of the underlying primitives) satisfies the above defini-
tion. Since statistically binding and computationally hiding commitments can
be constructed using one-to-one one way-functions in a black-box manner then
there exists a secure commit-and-open protocol that uses the underlying one-
way function is a black-box way. We refer to [15] for more discussion on the
notion of commit-and-open and for its black-box instantiation from one-to-one
one-way-functions.

3.3 Oblivious Transfer and 2-PC

Here we follow [35]. Oblivious Transfer (OT) is a two-party functionality FOT , in
which a sender S holds a pair of strings (l0, l1), and a receiver R holds a bit b, and
wants to obtain the string lb. The security requirement for the FOT functionality
is that any malicious receiver does not learn anything about the string l1−b and
any malicious sender does not learn which string has been transferred. This
security requirement is formalized via the ideal/real world paradigm. In the
ideal world, the functionality is implemented by a trusted party that takes the
inputs from S and R and provides the output to R and is therefore secure by
definition. A real world protocol Π securely realizes the ideal FOT functionalities,
if the following two conditions hold. (a) Security against a malicious receiver: the
output of any malicious receiver R� running one execution of Π with an honest
sender S can be simulated by a PPT simulator Sim that has only access to
the ideal world functionality FOT and oracle access to R�. (b) Security against
a malicious sender. The joint view of the output of any malicious sender S�

running one execution of Π with R and the output of R can be simulated by a
PPT simulator Sim that has only access to the ideal world functionality FOT
and oracle access to S�. We also consider the weaker definition of OT introduced
in [35] which is referred as one-sided simulatable OT. In this we do not demand
the existence of a simulator against a malicious sender, but we only require that
a malicious sender cannot distinguish whether the honest receiver is playing with
bit 0 or 1. That is, we require that for any PPT malicious sender S� the view
of S� executing Π with the receiver R playing with bit 0 is computationally
indistinguishable from the view of S� where R is playing with the bit 1. Finally,
we consider the Fm

OT functionality where the sender S and the receiver R run m
executions of OT in parallel.

Definition 6 ([35]). Let FOT be the Oblivious Transfer functionality as
described previously. We say that a protocol Π securely computes FOT with one-
sided simulation if the following holds:
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1. For every non-uniform PPT adversary R� controlling the receiver in the real
model, there exists a non-uniform PPT adversary Sim for the ideal model
such that: {REALΠ,R�(z)(1λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1λ)}z∈{0,1}λ ,
where REALΠ,R�(z)(1λ) denotes the distribution of the output of the adver-
sary R� (controlling the receiver) after a real execution of protocol Π, where
the sender S has inputs l0, l1 and the receiver has input b. IDEALf,Sim(z)(1λ)
denotes the analogous distribution in an ideal execution with a trusted party
that computes FOT for the parties and hands the output to the receiver.

2. For every non-uniform PPT adversary S� controlling the sender it holds that:
{ViewR

Π,S�(z)(l0, l1, 0)}z∈{0,1}� ≈ {ViewR
Π,S�(z)(l0, l1, 1)}z∈{0,1}�

where ViewR
Π,S�(z) denotes the view of adversary S� after a real execution of

protocol Π with the honest receiver R.

Definition 7 ([35]). A protocol Π securely realizes FOT with fully simulata-
bility if Π is one-sided simulatable and additionally for every non-uniform PPT
adversary S� controlling the sender in the real model, there exists a non-uniform
PPT adversary Sim for the ideal world such that

{REALΠ,S�(z)(1λ, b)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1λ, b)}z∈{0,1}λ

where REALΠ,S�(z)(1λ, b) denotes the distribution of the output of the adversary
S� (controlling the sender) and the output of the honest receiver, after a real
execution of protocol Π, where the receiver has input b. IDEALFOT ,Sim(z)(1λ, b)
denotes the analogous distribution but in an ideal execution with a trusted party
that computes FOT for the parties and hands the output to the honest receiver.

In this work we also consider the notion of parallel OT, which is the same as the
previous definition, except that the sender has multiple pairs of inputs and the
receiver has multiple bits.

Secure Two-Party Computation [35]. Let F (x1, x2) be a two-party func-
tionality run between parties P1 holding input x1 and P2 holding input x2. In
the ideal world, Pi with (i ∈ {1, 2}) sends its input xi to the F and obtains
only y = F (x1, x2). We say that a protocol Π securely realizes F if the view of
any malicious P �

i executing Π with an honest Pj with i �= j combined with the
output of Pj (if any) can be simulated by a PPT simulator that has only access
to F and has oracle access to P �

i .

4 Dual Witness Encryption (DWE)

A Dual Witness Encryption scheme for the languages L0, L1 with L0, L1 ⊆
{0, 1}� is equipped with two PPT algorithms: Enc and Dec. Enc takes as input
x ∈ {0, 1}λ, a message m ∈ {0, 1}λ and outputs ct ∈ {0, 1}poly(λ). Dec takes
as input x ∈ {0, 1}λ,w ∈ {0, 1}λ, ct ∈ {0, 1}poly(λ) and outputs a message m ∈
{0, 1}λ ∪ {⊥}.
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Definition 8. A Dual Witness Encryption scheme PK-IBS = (Gen,Enc,Dec)
for the languages (L0, L1) is secure if it enjoys the following properties.

Completeness: Pr[m ← Dec(x,w,Enc(x,m)) = 1 : (x,w) ∈ RL1 ] ≥ 1 − ν(λ).
Hiding: For any adversary A and for any x ∈ L0 the following holds:

Pr[b $←− {0, 1}; (m0,m1) ← A(x) ∧ b ← A(aux,Enc(x,mb))] < ν(λ)

4.1 DWE for the Languages of DH and QR Tuples

In this section we show how to construct a DWE for the languages of DH and QR
tuples. We do not need these constructions to build our OT and 2PC protocols,
we only want to show that our primitive can be instantiated also with respect to
other languages. The two constructions rely on similar ideas, hence, we provide
the details only for the construction for DH tuples. Our constructions are based
on the sigma-protocol for the language of the DH and QR tuples and on some
observations made in [5,11] on these sigma protocols. Following [11], we recall the
well-known Sigma protocol ΣDH = (P,V) for the language L0 := {(g, h, U, V ) :
∃α s.t. U = gα and V = hα}. On common input T = (g, h, U, V ), and honest
prover’s private input α such that U = gα and V = hα, the following steps are
executed. We denote the size of the group G by q.

– P picks r ∈ Zq at random and computes and sends A := gr, B := hr to V;
– V chooses a random challenge c ∈ {0, 1} and sends it to P;
– P computes and sends z = r + α · c to V;
– V accepts if and only if gz = A · U c and hz = B · V c.

In [11] the authors observe that the above protocol has the following interesting
property. There exists a PPT algorithm ChallExt that on input a first round
a = (A,B) of ΣDH , a non-DH tuple T and γ such that h = gγ , outputs the only
valid second round c ∈ {0, 1} (if any exists) such that there is some z that would
make the verifier to (mistakenly) accept the transcript (a, c, z) with respect to
the instance T . The algorithm ChallExt works as follows. Let T = (g, h,X,W )
be a non-DH tuple such that X = gα, W = hβ , α �= β and h = gγ . Upon input
(T = (g, h,X,W ), a, γ), algorithm ChallExt parses a as (A,B), and if Aγ = B
then it outputs 0, else it outputs 1. Note that when the first round of ΣDH

corresponds to a DH tuple, (i.e., Aγ = B) and T is not a DH tuple, then the
only c that would make true the conditions gz = A ·U c and hz = B ·V c is c = 0.
Instead, if (g, h,A,B) does not represent a DH tuple (i.e., Aγ �= B) then there
exists z such that gz = A·U c and hz = B ·V c if and only if c = 1. In what follows,
we make use of this special property of ΣDH , and we refer to ChallExt as the
bad-challenge extractor. The same holds true for the classical Sigma protocol for
QR [25] (along the lines of the full version of [5, Sec. 6.2]). The above observation,
together with the fact that ΣDH is SHVZK immediately yields to a DWE for
the languages (L0, L1) where L1 = {0, 1}� − L0, and where the NP-relation
associated to L1 is RL1 := {(g, h,X,W ), γ : h = gγ and W �= Xγ}.

In more detail, the encryption algorithm works by running the SHVZK simu-
lator for ΣDH on input T ∈ L0∪L1 and the message to be encrypted m ∈ {0, 1}.
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The output of the SHVZK algorithm corresponds to (A := gz−αm, B :=
hz−βm, z). The output of our encryption algorithm then corresponds to (A,B).

If T ∈ L1 (i.e., it is a non-DH tuple), then we can run the bad-challenge
extractor ChallExt to reconstruct m in polynomial-time (note that the tuple
(g, h,A,B) is DH only if m = 0). In the case when T is a DH tuple, then, by the
completeness and the SHVZK properties of ΣDH , (A,B) encodes no information
on the message m. Indeed, it is alway possible to find a valid z that makes the
transcript (A,B),m, z accepting for any m ∈ {0, 1}. For sake of completeness
we now provide the formal description of our protocol, that we denote with
(EncNDH,DecNDH).

– Let m ∈ {0, 1} be the message to be encrypted. The encryption algorithm
EncNDH takes as input the tuple T = (g, h,X,W ) and the message m ∈ {0, 1}
and does the following steps.
1. Sample z ∈ Zq and compute A ← gz

Xm , B ← hz

W m

2. Output A,B.
– The algorithm DecNDH takes as input T ∈ L1, the ciphertext (A,B) and the

witness γ such that (T, γ) ∈ RL1 , and outputs ChallExt(T,A,B, γ).

Theorem 3. (EncNDH,DecNDH) is a secure black-box DWE scheme with mes-
sage space {0, 1} for the languages (L0, L1) defined above, where the relation
associated to L1 is RL1 .

DWE for All NP Languages. If we do not care about the decryption algo-
rithm being efficient (PPT), then the above approach can be extended to any NP
language L that admits a sigma-protocol Σ. Indeed, if the instance used during
the encryption is x /∈ L, then the special soundness of Σ guarantees that for any
first round of Σ there exists at most one challenge that would make the verifier
to accept. This means that the first output of the SHVZK simulator of Σ on
input x and the message m ∈ {0, 1} encodes m. Hence, an unbounded decryptor
can easily compute it. On the other hand, when x ∈ L, then the first round of
Σ (hence, the first output of the SHVZK simulator) information theoretically
hides the message m (due to the completeness and the SHVZK properties of Σ).

5 Black-Box DWE for Trapdoor Permutations

A function fα : Dα → Dα is an ε-permutation if at most an ε fraction of the
points in Dα have more than one pre-image (under fα). More formally, we have
the following.

Definition 9. Let fα : {Dα → Dα}. The collision set of fα, denoted with C(fα),
is {x1 ∈ Dα : ∃x2 ∈ Dα s.t. x1 �= x2 and Eval(α, x1) = Eval(α, x2)}. Let
ε ∈ [0, 1], we call fα an ε-permutation if |C(fα)| ≤ ε|Dα|.
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We say that fα is an almost permutation if it is an ε(n)-permutation where
ε is a negligible function and n = |Dα|. Let fα : {Dα → Dα} be a collection
of trapdoor permutations with efficiently sampleable range and domain accom-
panied by the algorithms (Gen, S,Eval, Inv). We then define L as the language
of trapdoor functions with efficiently sampleable range and domain that have
a collision set greater (or equal) than half of the entire domain. More formally,
L0 = {α : |C(fα)| ≥ 2−1|Dα|}. We also define L1 as the set trapdoor func-
tion in the range of the generation algorithm Gen (i.e., L1 = {α : (α, td) ←
Gen(1λ; r), r ∈ {0, 1}λ}) We provide a DWE scheme for the languages (L0, L1).
Informally, this encryption scheme maintains the hiding of the encrypted mes-
sage if the collision set of fα is sufficiently large (i.e., fα is a lot non-injective).
Instead, if the function is generated using Gen(1λ), then any message can be
decrypted using the corresponding trapdoor (which is also an output of Gen and
thus can be obtained from the randomness r, which represents the witness).

5.1 Our Constructions

We start by constructing a dual witness encryption scheme (Encf1,Dec
f
1) for one-

bit messages for the language (L0, L1) described above. Let fα be a trapdoor
permutation with efficiently sampleable range accompanied by the algorithms
(Gen, S,Eval, Inv) with domain (and range) of size 2λ.

– Let m ∈ {0, 1} be the message to be encrypted, α ∈ L1, and n := 2λ2. The
encryption algorithm Encf1 takes as input (α,m) and does the following steps.
1. Compute a random secret sharing of m such that m = m1 ⊕ · · · ⊕ mn.
2. For i ← 1, . . . , n pick xi

$←− S(α) and compute yi ← fα(xi).7

3. For i ← 1, . . . , n parse xi as x1
i || . . . ||xλ

i , pick ji
$←− {1, . . . , λ} and compute

ci ← mi ⊕ xji

i .
4. Output ct ←

(
ji, yi, ci)i∈[n].

– The algorithm Decf1 takes as input α, r and a ciphertext cti, and executes the
following steps.
1. Compute (α, td) ← Gen(1λ; r).
2. Parse ct as

(
ji, yi, ci

)
i∈[n]

.
3. For i = 1, . . . , n compute xi ← Inv(α, td, yi), parse xi as x1

i || . . . ||xn
i and

compute mi ← ci ⊕ xji

i .
4. Compute and output m ← m1 ⊕ · · · ⊕ mn.

Theorem 4. (Encf1,Dec
f
1) is a secure black-box DWE scheme for the languages

(L0, L1) with message space {0, 1}.

We refer to the full version for the formal proof of the theorem. We note that
to obtain a DWE secure scheme (Encf ,Decf) for messages of length κ ∈ N we
can just run κ parallel executions of (Encf1,Dec

f
1).

7 To not overburden the notation we use fα instead of Eval(α, ·) as the evaluation
algorithm hereafter in the paper.



Oblivious Transfer from Trapdoor Permutations in Minimal Rounds 539

DWE for or Statements. For our OT constructions we use as a main
tool a DWE for the languages (L2f

0 , L2f
1 ) where L2f

0 := {α0, α1 : |C(fα0)| ≥
2−1|Dα0 | or |C(fα1)| ≥ 2−1|Dα1 |} and L2f

1 = {α0, α1 : (α0, td0) ←
Gen(1λ; r0) and (α1, td1) ← Gen(1λ; r1), r0, r1 ∈ {0, 1}λ}. (we recall that we
denote with C(fα) the collision set of the function indexed by α). Informally,
we require the semantic security of the encryption scheme to hold if at least
one of the functions used as a part of the public-key has a collision set of sub-
exponential size. Our scheme (Enc2f ,Dec2f) works as follows.

– The encryption algorithm Enc2f on input x := (α0, α1) and the message to
be encrypted m ∈ {0, 1}κ does the following steps.
1. Run Encf on input α0 and m thus obtaining ct0.
2. Run Encf on input α1 and ct thus obtaining ct1 and output ct1

– The decryption algorithm Dec2f on input x := (α0, α1), the witness w :=
(r0, r1) and the ciphertext ct1, executes the following steps.
1. Compute (α0, td0) ← Gen(1λ; r0) and (α1, td1) ← Gen(1λ; r1).
2. Run Decf on input α1, r1, ct1 and td1 thus obtaining ct0.
3. Run Decf on input α0, r0 ct0 and td0 thus obtaining m and output m.

Theorem 5. (Enc2f ,Dec2f) is a black-box DWE scheme for the languages
(L2f

0 , L2f
1 ) with message space {0, 1}κ.

The proof in this case follow via standard hybrid arguments.

6 Almost Secure OT Protocol

In this section we show how to obtain a protocol ΠOT = (SOT , ROT ) that
securely realizes FOT with one-sided simulation against any weak adversarial
sender S�

OT . Informally, we show that if the malicious sender S�
OT samples the

trapdoor permutations used in the protocol in some particular ways then ΠOT
is secure, otherwise we give no security guarantees. At a very high level our
protocol works like the four-round one-side simulatable OT protocol proposed
in [35]. As highlighted in the Introduction, in the ORS protocol the sender sends
a trapdoor permutation f in the second round which is used by the receiver
to compute the third round. In case that f is non-injective then a malicious
sender, by just inspecting the third round sent by the receiver, could extract the
receiver’s input. In our protocol we try to avoid this attack by modifying the
ORS protocol in two aspects: 1) the sender sends two trapdoor functions8 in the
first round and 2) the receiver samples a random bit to decide which function to
use to run ORS and which function to use to run DWE scheme Π. Π is a DWE
scheme that guarantees security if the trapdoor function used for the encryption
has a lot of collisions, and it is used by the receiver to encrypt the third round
of ORS. Unfortunately we cannot prove that this OT protocol is (in general)
secure, but we can prove that it is secure if one of the following cases occurs.
8 We need to send two pairs of functions, but for now we omit this since it is a technical

detail that will be helpful in the security proof.
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1. The malicious sender uses functions that are almost permutation. This comes
with no surprise since in this case an execution of ΠOT looks like an execution
of the ORS protocol.

2. The malicious sender uses functions that have a lot of collisions (exponentially
many). In this case the security of the DWE scheme kicks in protecting all the
information that are related to the ORS protocol that depends on the TDPs
(i.e., the information that could leak the receiver’s bit when the functions
sampled by the sender are non-injective).

Despite this limitation, in Sect. 7 we show that the security enjoyed by ΠOT
is (surprisingly) enough to obtain a secure OT protocol. We now provide a more
detailed description of ΠOT and prove formally its weak security in the case
of malicious sender. Moreover, we show that ΠOT is secure against any PPT
adversarial receiver under the standard simulation base security notion.

To construct ΠOT we make use the following tools.

1. A commit-and-open protocol Πc&o := (P0,P1,V0,V1).
2. An enhanced trapdoor permutation with efficiently sampleable range and

domain F := (Gen, S, SDR, f, f−1)9 with hard-core predicate h and domain
(and range) of size 2λ.

3. The DWE scheme (Enc2f ,Dec2f) for the languages (L2f
0 , L2f

1 ) described in
Sect. 5.

We now give an informal description of our protocol and refer to Fig. 2 for
the formal description.

Let b ∈ {0, 1} be the input of ROT and l0, l1 ∈ {0, 1} be the input of SOT .

In the first round ROT runs P0 on input a string r1−b
$←− {0, 1}λ thus

obtaining the first round of the commit-and-open protocol Πc&o.
In the second round SOT picks a pair of random strings and samples four

trapdoor permutations. That is, SOT picks R0
$←− {0, 1}λ, R1

$←− {0, 1}λ, and

for all i, j ∈ {0, 1} samples ρi,j
$←− {0, 1}λ, computes (fi,j , f

−1
i,j ) $←− Gen(1λ, ρi,j).

Then SOT runs V0 thus obtaining γ and sends {fi,j}i,j∈{0,1} , β,R0, R1 to ROT .

In the third round ROT chooses a bit d and computes (z′, r′) $←− SDR(fd,b)
and rb ← r′ ⊕ Rb. Then ROT computes the third round δ of Πc&o to open the
commitment to the messages r1−b (that is fixed in the first round) and rb by
running P1 on input α, β, γ and rb. In the end, ROT encrypts the opening of
Πc&o using the DWE scheme on input (f1−d,0, f1−d,1) and the message δ||r0||r1
thus obtaining c and sends (c, d) to SOT .

In the fourth round SOT decrypts c using the witness ρ1−d,0 and ρ1−d,1,
thus obtaining the opening information of Πc&o represented by δ, r0 and r1.
Then SOT checks if (δ, r0, r1) represents a valid opening for Πc&o by running

9 For convenience, we drop (Eval(α, ·), Inv(α, ·)) from the notation, and write f(·),
f−1(·) to denote algorithms Eval(fα, ·), Inv(fα, td, ·) respectively, when fα and td

are clear from the context. We also use the function fα instead of the index α as
input of the algorithm S and SDR.
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V1. If it is not, then SOT stops and outputs ⊥, otherwise she computes ω0 ←
f−1
d,0 (S(fd,0, r0 ⊕ R0)) and ω1 ← f−1

d,1 (S(fd,1, r1 ⊕ R1)). Then for j = 0, 1, SOT
encrypts the input lj via one-time pad using as a key the output of the hard-core
predicate of fd,j on input ωj thus obtaining Wj . SOT then sends (W0,W1) to
ROT and stops.

In the output phase, ROT computes and outputs lb = W 1
b ⊕ h(fd,b, z

′
1).

In Fig. 2 we propose a formal description of the protocol.

Theorem 6. If F is family of enhanced trapdoor permutations then for every
non-uniform PPT adversary R� controlling the receiver in the real model,
there exists a non-uniform PPT adversary Sim for the ideal model such that
{REALΠOT ,R�

OT (z)(1λ)}z∈{0,1}λ ≈ IDEALFOT ,Sim(z)(1λ)}z∈{0,1}λ .10

We refer to the full version for the formal proof of the theorem.

Theorem 7. For every non-uniform PPT adversary S�
OT controlling the

sender, if one of the following holds with overwhelming probability

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or
2. (f0,0, f0,1) ∈ L2f

0 and (f1,0, f1,1) ∈ L2f
0 .

then {ViewROT
ΠOT ,S�

OT (z)(l0, l1, 0)}z∈{0,1}� ≈ {ViewROT
ΠOT ,S�

OT (z)(l0, l1, 1)}z∈{0,1}�

We refer the reader to the full version for the formal proof of the theorem. In
the full version we also prove the following lemma that will be helpful hereafter.
Before stating the lemma, we introduce some additional notations. We say that
a value y ∈ Y is good if there exists and is unique a value x such that fα(x) = y.
We now denote with Eg

i the event in which a randomly sampled element from
the range of fi is good and prove this additional lemma.

Lemma 1. For every non-uniform PPT adversary S�
OT controlling the sender,

if one of the following holds with overwhelming probability

1. Prob
[
Eg

i,j
]

≥ 1 − ν(λ) ∀i, j ∈ {0, 1} or
2. Prob

[
Eg

0,0
]

< 2−1 or Prob
[
Eg

0,1
]

< 2−1 and Prob
[
Eg

1,0
]

< 2−1 or
Prob

[
Eg

1,1
]

< 2−1

then {ViewROT
ΠOT ,S�

OT (z)(l0, l1, 0)}z∈{0,1}� ≈ {ViewROT
ΠOT ,S�

OT (z)(l0, l1, 1)}z∈{0,1}�

7 Secure OT from Almost Secure OT

In Theorem 7 we have showed that ΠOT = (SOT , ROT ) guarantees that the
input of the receiver is protected only in the case that at least one of the following
properties holds:

1. f0,0 and f0,1 and f1,0 and f1,1 are almost permutations or

10 We refer to Sect. 3.3 for a formal definition of REALΠOT ,R�
OT (z) and IDEALFOT ,Sim(z).
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Fig. 2. Description of ΠOT .

2. (f0,0, f0,1) ∈ L2f
0 and (f1,0, f1,1) ∈ L2f

0 .

Moreover, Theorem 6 guarantees ΠOT is secure against malicious receivers. In
this section we show that the above property is sufficient to obtain a one-sided
simulatable OT by means of a compiler that takes as input ΠOT and outputs
a one-sided simulatable OT. Our compiler is inspired by the work of [27]. In
this the authors show how to combine k OTs (that we call OT candidates) to
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obtain an OT protocol that is secure against malicious sender even if k − 1 of
the OT candidates are insecure against malicious senders11. At a very high level
the construction proposed in [27] works as follows. First Harnik et al. show a
construction that works for k = 2 and then propose a generic compiler that
transforms (1, 2)-combiner into a (1, k)-combiner. The (1, 2)-combiner works as
follows. Consider two OT candidates Π0

OT and Π1
OT . Let b be the input of the

receiver and (l0, l1) be the input of the sender.

1. The sender chooses a random bit r
2. The receiver chooses random bits b0, b1 such that b = b0 ⊕ b1.
3. The parties run Π0

OT where the receiver uses b0 as input and the sender uses
the pair (r, r ⊕ l0 ⊕ l1). The parties also run Π1

OT where the receiver uses b1
as input and sender uses (r ⊕ l0, r ⊕ l1)

4. The receiver output corresponds to the XOR of his outputs in both executions.

To extend the above construction to the case where k > 2, Harnik et al.
consider k OT candidates and organize them as leaves of a binary tree, and
applies the construction proposed above to every internal node (in a bottom up
fashion). Now, by the properties of the combiner, for every node that securely
implements OT, its ancestor must also securely implement OT. The output of
the whole tree must therefore also securely implement OT since the root is
an ancestor to all leaves. If the running time of the above (1, 2)-combiner for
malicious sender is m times that of its candidates, then the running time of
the whole construction is mΩ(log k). Thus, in order for the running time to be
polynomial, m must be a constant (which it is actually the case if we use the
(1, 2)-combiner showed in this section). We now denote with ΠOT = (SOT , ROT )
the protocol obtained by combining 4λ2 parallel executions of ΠOT as described
above, we prove that ΠOT is secure with one-sided simulation accordingly to
Definition 6.

In our formal description we assume, without loss of generality, that the
sender’s (receiver’s) algorithm of ΠOT to compute its first message takes as
input the security parameter, the input and a message (if any), and returns an
auxiliary input and the first message to be sent. To compute the message for the
round i, the sender’s (receiver’s) algorithm takes as input the auxiliary input
and all the messages that have been send and received up to that round, and
returns the message to be send. We propose a formal description of ΠOT in
Fig. 3. To prove that ΠOT is secure we cannot just rely on the security of the
combiner since a malicious sender could sample the trapdoor functions in such
a way that the security of all the OT executions is compromised. We show that
this can happen only with negligible probability. We denote with Πi

OT the i-th
execution of ΠOT in a run of ΠOT . To denote the messages of Πi

OT we extend
the notation used in the description of ΠOT by writing mi (or mi) if m is a

11 To prove our theorem we do not need a fully secure combiner. That is, we only need
a combiner that guarantees security in the case that one execution of ΠOT is secure
against malicious senders and all the executions of ΠOT are secure against malicious
receivers.
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Fig. 3. Formal description of ΠOT

symbol used in the description of ΠOT (e.g., in the second round of Πi
OT the

sender sends f i
0,0, . . . f

i
1,1, β

i, Ri
0, R

i
1). At a high level the proof works in this way.

If by contradiction all the OT executions are insecure this implies that in any
of the OT executions the malicious sender sends the TDPs (f i

0,0, f
i
0,1, f

i
1,0, f

i
1,1)

such that for all pi ∈ {0, 1}

1. if the instance (f i
pi,0, f

i
pi,1) is used to run the DWE scheme then hiding of the

DWE would not hold and
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2. if (f i
1−pi,0, f

i
1−pi,1) are used to run the remaining computation of Πi

OT then
Πi

OT would be insecure (i.e., (f i
1−pi,0, f

i
1−pi,1) might not be injective).

This means that any OT executions Πi
OT has a pair of TDPs (f i

d′,0, f
i
d′,1)

with d′ ∈ {0, 1} that are not injective and that have a collision set smaller
than 2−1|Dα|. However, we note that if di = d′

i in a sufficiently large number
of executions then we have that the there is an execution j where rj

0 ⊕ Rj
0 and

rj
1 ⊕ Rj

1 are such that yj
0 ← S(f j

dj ,0, r
j
0 ⊕ Rj

0) and yj
1 ← S(f j

dj ,1, r
j
1 ⊕ Rj

1) have
exactly one pre-image each with overwhelming probability. This would allow us
to apply the Lemma 1 and state that Πi

OT is secure. Then we can simply rely
on the security of the combiner to claim that ΠOT is secure. To argue that such
a value j exists we use the fact that the receiver picks di randomly in {0, 1} for
all i ∈ {1, . . . , 4λ2}.

Theorem 8. If enhanced permutations with efficiently sampleable range and
domain exist, then ΠOT securely realizes the oblivious transfer functionality FOT
with one-sided simulation with black-box use of the underlying primitive.

We refer to the full version for the proof of the theorem. The protocol ΠOT
described in this section restricts the sender to use two bits as input (bit-OT).
In some applications (as the one that we are going to consider in this work)
it is crucial that the sender input is represented by strings l0 ∈ {0, 1}κ, l1 ∈
{0, 1}κ with κ ∈ N (string-OT). The work of Brassard et al. [4] proposes a
way to construct an information theoretically secure string OT protocol from an
information theoretically secure bit OT protocol. The idea proposed in [4] is to
use run κ bit-OT executions in such a way that regardless of the choices of the
input bits of malicious receivers in these executions, he can only obtain one of
the two inputs. We show how to use the technique proposed in [4] to transform
our bit-OT protocol ΠOT into a string-OT protocol Πκ

OT := (Sκ
OT , Rκ

OT ). We
refer the reader to the full version for the formal description of the protocol
and its proof. We note that Πκ

OT can be easily run in parallel polynomial many
times.

8 Black-Box Round Optimal 2PC

In [35, Sec. 3.2] the authors show how to obtain a fully simulatable OT protocol
using in a black-box way: (parallel) one-sided simulatable OTs and one-to-one
one-way functions. Using this result we can state the following theorem.

Theorem 9. If enhanced trapdoor permutations with efficiently sampleable
range and domain exist, then there exists a 4-round protocol OT that securely
realizes the oblivious transfer functionality Fm

OT with black-box use of the under-
lying primitive.

An immediate corollary from the above result, in conjunction with the work of
[28] building a non-interactive secure two-party protocol in the OT-hybrid model
is the following.
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Corollary 2. If enhanced trapdoor permutations with efficiently sampleable
range/domain and one-to-one OWFs exist, then there exists a round optimal
protocol that securely realizes any 2-party functionality with BB use of the prim-
itives.
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4. Brassard, G., Crépeau, C., Santha, M.: Oblivious transfers and intersecting codes.
IEEE Trans. Inf. Theory 42(6), 1769–1780 (1996). https://doi.org/10.1109/18.
556673

5. Canetti, R., et al.: Fiat-Shamir: from practice to theory. In: Charikar, M., Cohen,
E. (eds.) 51st ACM STOC, pp. 1082–1090. ACM Press, June 2019. https://doi.
org/10.1145/3313276.3316380

https://doi.org/10.1007/3-540-48071-4_31
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://doi.org/10.1007/978-3-319-78375-8_17
https://doi.org/10.1109/18.556673
https://doi.org/10.1109/18.556673
https://doi.org/10.1145/3313276.3316380
https://doi.org/10.1145/3313276.3316380


Oblivious Transfer from Trapdoor Permutations in Minimal Rounds 547

6. Canetti, R., Lichtenberg, A.: Certifying trapdoor permutations, revisited. In:
Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 476–
506. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6 18

7. Chailloux, A., Ciocan, D.F., Kerenidis, I., Vadhan, S.: Interactive and noninterac-
tive zero knowledge are equivalent in the help model. In: Canetti, R. (ed.) TCC
2008. LNCS, vol. 4948, pp. 501–534. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78524-8 28
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Abstract. The security of cryptographic primitives and protocols
against adversaries that are allowed to make adaptive choices (e.g., which
parties to corrupt or which queries to make) is notoriously difficult to
establish. A broad theoretical framework was introduced by Jafargholi
et al. [Crypto’17] for this purpose. In this paper we initiate the study of
lower bounds on loss in adaptive security for certain cryptographic pro-
tocols considered in the framework. We prove lower bounds that almost
match the upper bounds (proven using the framework) for proxy re-
encryption, prefix-constrained PRFs and generalized selective decryp-
tion, a security game that captures the security of certain group messag-
ing and broadcast encryption schemes. Those primitives have in common
that their security game involves an underlying graph that can be adap-
tively built by the adversary.

Some of our lower bounds only apply to a restricted class of black-
box reductions which we term “oblivious” (the existing upper bounds
are of this restricted type), some apply to the broader but still restricted
class of non-rewinding reductions, while our lower bound for proxy re-
encryption applies to all black-box reductions. The fact that some of our
lower bounds seem to crucially rely on obliviousness or at least a non-
rewinding reduction hints to the exciting possibility that the existing
upper bounds can be improved by using more sophisticated reductions.
Our main conceptual contribution is a two-player multi-stage game called
the Builder-Pebbler Game. We can translate bounds on the winning
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probabilities for various instantiations of this game into cryptographic
lower bounds for the above-mentioned primitives using oracle separation
techniques.

1 Introduction

Consider the following game played between a challenger C and an adversary
A using a symmetric-key encryption (SKE) scheme (Enc,Dec). The challenger
first samples, independently and uniformly at random, N keys k1, . . . , kN . These
correspond to users U1, . . . , UN respectively. The adversary A is now allowed to
adaptively make two types of queries:

1. Ask for an encryption of kj under the key ki to obtain Enc(ki, kj), or
2. Corrupt a user Ui to obtain the key ki.

At the end of the game, A challenges C on a user Ui∗ and is given either the real
key ki∗ or an independent, random key r. A wins this “real or random game”
if it correctly guesses which of the two it got. If no efficient A can win with
probability higher than 1/2 + ε we say the protocol is 2ε secure.

The above game can be thought of as the adversary A adaptively building a
“key-graph” G = (V, E), where the vertices V = {1, . . . , N} correspond to the
users and their keys, whereas the (directed) edges E correspond to the encryption
queries that A makes: a directed edge (i, j) is added to E if A requests the
encryption of kj under the key ki. Note that for i∗ to be a non-trivial challenge,
i∗ must be a sink and must not be reachable (in the graph-theoretic sense) from
any of the corrupted vertices—otherwise, A can simply decrypt the ciphertexts
along the path from any corrupted node to the challenge to learn ki∗ .

The above game is called generalised selective decryption (GSD) and it cap-
tures the security of protocols for multicast encryption [43] and continuous group
key agreements (CGKA) [1,2]. We will use GSD in this introduction as the run-
ning example to convey our ideas. The main question regarding GSD is whether
the security of this game (given that the key-graph is acyclic) can be based on
the IND-CPA security of the underlying SKE.1 For this we need to prove a com-
putational soundness (i.e., security) theorem of the form: if the SKE is ε-secure
then the GSD game is ε′-secure for some ε′ that depends on ε. Ideally, the loss
of security should be kept to a polynomial, i.e., ε′ = ε · poly(N). Otherwise,
this requires to either set the security parameter of the underlying SKE very
large if one wants to maintain provable security guarantees, which will lead to
inefficiency. Or the provided security is only heuristic, leaving the possibility of
an attack against GSD which does not break the underlying SKE.

1 In case the key-graph contains cycles, one must additionally assume that the SKE is
key-dependent message (KDM) secure [7]. Such problems are of a different flavour
and we don’t deal with them. As mentioned before, the GSD game is typically used
to capture the security of protocols where the acyclicity is enforced by the protocol
rules.
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The simpler task of proving a soundness theorem in case the adversary is
selective, in the sense that it commits to its queries (and thus the key-graph
G) at the beginning of the GSD game, is relatively straightforward to achieve.
If the graph is known ahead of time, it is easy to construct a series of O(N2)
hybrids, each of which can be shown indistinguishable under the security of the
SKE (see, e.g., [31]). The study of adaptive security of GSD, where the key-
graph is unknown at the beginning of the game and is only gradually revealed
during the query phase, was initiated in [43] and remains notoriously hard. In
particular, non-trivial results are only known in settings, where the adversary
is restricted to query (subgraphs of) specific key-graphs (which needs to be
enforced by the higher level protocol). The state of the art is represented by the
general Piecewise-Guessing framework [31,38].

1.1 Our Results

The Piecewise-Guessing Framework has been successfully used to give improved
security guarantees against adaptive attacks for various applications [1,2,20,
35,38], but there still are significant gaps to knows attacks. In this paper we
approach this question from the other “lower bounds” direction, and for several
applications show that this will not be possible, at least not when using existing
techniques. In particular, (in the full version [33] of this paper) we show that there
do not exist efficient non-rewinding black-box reductions – henceforth called
“straight-line” reductions for brevity – that prove security of

– certain forms of restricted GSD (including its public key variant) based on
the IND-CPA security of the underlying SKE (see Sect. 6),

– popular protocols for CGKA based on the IND-CPA security of the underly-
ing public-key encryption (PKE) (see full version [33, Section 7]),

– the GGM construction for prefix-constrained PRFs based on the pseudoran-
domness of the underlying PRG (see Sect. 7)

– proxy re-encryption2 (PRE) schemes [8] based on the IND-CPA security of
the PKE and N -weak key privacy (see full version [33, Section 9])

with only polynomial loss in advantage. For PRE we can even rule out general
(i.e., rewinding) black-box reductions. For the theorem statements of the latter
three results, we refer to the corresponding sections, but we will discuss GSD in
a little more detail, so we provide an informal statement here.

Theorem 1 (Informally Stated, Corollary 1). Any straight-line reduction
proving security of unrestricted adaptive GSD based on the IND-CPA security
of the underlying SKE scheme loses at least a factor that is super-polynomial
(NΩ(log N)) in the number of users N .

2 A proxy re-encryption scheme is a public-key encryption scheme that allows the
holder of a key pk to derive a re-encryption key for any other key pk′. This re-
encryption key lets anyone transform ciphertexts under pk into ciphertexts under
pk′ without having to know the underlying message.
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Table 1. Summary of lower bounds on the loss in security established in our work.
N = 2n denotes the size of the graph. Therefore, in the case of GGM constrained PRF,
n denotes the length of the input string. For TreeKEM, M denotes the number of users
and Q refers to the number of queries allowed to the adversary.

Application Underlying graph Lower bound Reduction Upper bound

GSD Path PN NΩlog(N) Oblivious NOlog(N)[19]

Rooted binary in-tree Bn NΩlog(N) Oblivious NOlog(N) [43]

Treea NΩlog(N) Straight-line NOlog(N)[19]

Arbitrary DAG 2Ω
√

N Oblivious NON/ log(N)[31]

PRE Path PN NΩlog(N) Oblivious NOlog(N)[20]

Binary Tree Bn NΩlog(N) Oblivious NOlog(N) [20]

Arbitrary DAG 2ΩN Arbitrary NON/ log(N)[20]

GGM CPRF Tree nΩlog(n) Straight-line nOlog(n) [21]

TreeKEM Regular Tree MΩlog(log(M)) Straight-line QOlog(M) [1]
aRecall that a tree does not necessarily have to be rooted, so this includes any DAG such

that the corresponding undirected graph does not contain any cycles.

For the proof we rely heavily on the adversary’s freedom to query arbitrary
directed acyclic graphs (DAG). (Actually, the graphs have some structure and
so certain conditions may be imposed on it but these restrictions are very weak.)
In many applications however, the adversary is much more restricted in terms of
the graphs it can query, e.g. in protocols for multicast encryption like logical key
hierarchies (LKH) [13,51,52], and hence our bound does not apply. However, for
a certain sub-class of straight-line reductions, which we term “oblivious” (see
discussion below), we obtain results for such applications. These results show
that the upper bounds for GSD given in [31], which are oblivious, are essentially
tight and can only be improved by exploiting new non-oblivious techniques (and
similarly for the bounds for PRE given in [20]), as stated informally below.

Theorem 2 (Informally Stated, Corollaries 2 to 4 in Full Version [33]).
Any oblivious reduction proving security of adaptive GSD restricted to paths
or binary trees based on the IND-CPA security of the underlying SKE scheme
loses a factor that is super-polynomial (NΩ(log N)) in the number of users N ;
for unrestricted GSD the loss is sub-exponential (2Ω(

√
N)).

Our results for PRE have a similar flavor, but are even stronger, since in this
case the reduction is naturally more restricted. A summary of the results can be
found in Table 1.

The common thread to the applications we consider is that their security
game can be abstracted out by a two-player multi-stage game which we call
the “Builder-Pebbler Game”. We are unable to establish lower bounds for other
applications of the Piecewise-Guessing Framework (e.g., computational secret
sharing or garbling circuits) as their security model is not quite captured by the
Builder-Pebbler Game. The high level reason for this is that the graphs (e.g.,
the circuit to be garbled or the access structure) in these applications is fixed
ahead of the time and the adaptivity comes from other sources (e.g., choice of
garbling input or targeted user). Therefore we would require other combinatorial
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abstractions to establish lower bounds for them. In fact, building on the high level
ideas introduced in this work, [34] showed lower bounds for adaptive security of
Yao’s garbling (see Sect. 1.2.2 for a comparison). We defer the discussion on the
Builder-Pebbler Game to the next section (Sect. 2.2) and explain informally what
we mean by oblivious reductions next, mostly from the perspective of GSD. We
will then argue that this comprises a natural class of reductions.

Oblivious Reductions. Oblivious reductions are a certain class of black-box
reductions and our definition is motivated by the reductions in [31]. On a high
level, the behaviour of an oblivious reduction is “independent” of the adversary’s
behaviour throughout the simulation of the security game. To see what we mean
by this, let’s return to the example of GSD. A reduction (simulating some consec-
utive hybrids) can decide to answer an encryption query issued by the adversary
either with a consistent or an inconsistent ciphertext (let’s ignore the challenge
ciphertext for the moment). In particular, it has total control over the number of
inconsistencies in the final simulation (assuming it knows the number of queries
the adversary will make). However, as the key-graph is only gradually revealed
to the reduction, it doesn’t know where the edge (representing the encryption
query) will end up within the key-graph. We call a GSD reduction oblivious if it
does not make use of the partial graph structure it learns during the game but
rather sticks to some strategy that is independent of the history of the adver-
sary’s queries. There are several ways one could formalise this: for example, one
could require the reduction as initially “committing” to which queries it will
answer inconsistently. However, this does not mean that for all queries it has
to commit to its decision, but rather commit to some minimal description of
the edges it intends to respond inconsistently to. In order to capture as many
reductions as possible (while still being able to prove lower bounds), we ended up
defining them as reductions which commit to a minimal set of nodes which cov-
ers all inconsistent edges, i.e., a minimal vertex cover.3 For example in the case
of graphs of high indegree, clearly, guessing the set of sinks of inconsistent edges
gives a much more succinct representation. A formal definition of an oblivious
GSD reduction is given in the full version [33, Definition 21]; the corresponding
definition for PREs is given in the full version [33, Definition 34].

Why Oblivious Reductions? We note that oblivious reductions are a quite
natural notion, since they can easily be defined uniformly for all adversaries.
Not surprisingly, they encompass some of the key reductions in the litera-
ture. Beside the reductions proposed and analysed in [31] (and its follow-up
works), partitioning-based reductions, which have been successfully employed in
a plethora of works [15], also roughly behave in an oblivious manner.4 Moreover,
3 Technically, we do not require minimal vertex cover, but a weaker notion which we

call “non-trivial” vertex cover (see Definition 2).
4 On every signature query issued by the adversary, the reduction in [15] tosses a

(biased) random coin (independent of the history of the simulation) and depending
on its outcome decides whether or not to embed the (RSA) challenge in the signature.
The simulation is identical if these coin-tosses are all carried out together at the
beginning of the game.
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oblivious reductions encompass the currently-known techniques for establish-
ing upper bounds for primitives with dynamic graph-based security games, like
GSD, PRE, CPRFs etc.. Therefore, our results imply that in order to obtain
better upper bounds on the loss function Λ even in the more restricted settings,
one needs to deviate significantly from the current proof techniques (i.e., non-
oblivious or rewinding reductions for GSD and restricted PRE). Accordingly, our
results on oblivious reductions should not be viewed as separations, but rather
as a guide towards new avenues to finding better reductions by ruling out a
large class of reductions – such possibilities are discussed in the full version [33,
Section 10].

1.2 Related Work

1.2.1 Adaptive Security
The security of multi-party computation in the context of adaptive corruption
has been well studied. It is known that a protocol that is proven secure against
static (i.e., non-adaptive) adversaries may turn out insecure once the adversary is
allowed adaptive corruption [12]. On the other hand, in the (programmable) ran-
dom oracle model it is possible to compile a selective protocol into an adaptively-
secure one through non-committing encryption [41].

The notion of generalised selective decryption (GSD) was introduced by Pan-
jwani [43] to study adaptive corruption in restricted settings. His motivation was
to better understand the problem of selective decommitment [16] (which is also
known as selective opening in some works [5]) and the closely-related problem
of selective decryption. The problem was further studied by Fuchsbauer et al.
[19] who gave a quasi-polynomial reduction when the GSD game is restricted to
trees.

In parallel, the study of adaptive security in the setting of circuit garbling
was undertaken in the works of Bellare et al. [4], Hemenway et al. [29] and
Jafargholi and Wichs [32]. The latter two works are especially relevant since
they established a relationship between adaptive security and graph pebbling.
It is also worth noting that the study of adaptive security of garbled RAM was
carried out in [22,23].

The above two series of works culminated in the Piecewise-Guessing Frame-
work of Jafargholi et al. [31] who managed to abstract out the ideas therein
and give even more fine-grained reductions. In addition to capturing the results
from [19,21,32], they applied the framework to obtain new results for adaptive
secret sharing. The framework was further applied to argue adaptive security
for attribute-based encryption schemes [38], proxy re-encryption schemes [20],
continuous group key-agreement [1,2] and non-interactive zero-knowledge [35].

1.2.2 Limitations of Reductions
The study of limitations of reductions (see Footnote 8) was initiated in the
seminal work of Impagliazzo and Rudich [30]. They used oracle separations to
rule out fully black-box reduction of key agreement to symmetric-key primitives.
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This approach turned out quite useful and has been further exploited to rule
out fully black-box reduction of a variety of cryptographic primitives from one
another (e.g., [48,50]). A fine-grained study of the notion of reductions and
separations was later carried out by Reingold et al. [47].

In addition to ruling out reductions, the more fine-grained question of effi-
ciency of reduction of one primitive to another has also been studied [24,25,37].
This has been applied to the case of adaptive security as well. Perhaps the works
most relevant to ours is that of Lewko and Waters [40], who showed that the
security of adaptively-secure hierarchical identity-based encryption must degrade
exponentially in the depth, and Fuchsbauer et al. [21], who showed that cer-
tain types of constrained PRFs must incur an exponential loss (in the size of
the input) in adaptive security. Note that this class of constrained PRFs does
not include the prefix-constrained PRF construction we consider in this work.
Both aforementioned works employ the more recent meta-reduction technique
[9,26,45], which is of different flavour from oracle separations.

Comparison with [34]. Building on the high level ideas in this paper, [34]
showed lower bounds on the adaptive security of Yao’s garbling scheme. As
pointed out in the introduction, the graph (i.e., the circuit) in Yao’s garbling
scheme is fixed ahead of time and the adaptivity comes from the choice of (gar-
bling) input. (The difficulty of the reduction comes from having to guess the bits
running over a subset of wires during evaluation of the circuit.) Therefore they
had to rely on a different combinatorial abstraction from Builder-Pebbler Game
(viz., a black-gray pebble game on the circuit) to establish their lower bound.
However, since the security game for Yao’s garbling consists of just two rounds,
[34] did not encounter some of the difficulties (to do with the multiple rounds
of interaction) we do and therefore were able to rule out arbitrary black-box
reductions. While both [34] and this work model choices made by a reduction
by putting pebbles on a graph structure, the analogy basically ends there. None
of the main ideas from [34] seem applicable in this setting and vice versa.

1.2.3 Graph Pebbling
The notion of graph pebbing, first introduced in the 70’s to study programming
languages, turned out quite useful in computational complexity theory to study
the relationship between space and time; in recent years, pebbling has found
applications in cryptography as well [3,17,18]. The notion of node pebbling first
appeared (albeit implicitly) in [46], whereas the notion of reversible node peb-
bling was introduced by Bennett to study reversible computation [6]. The notion
of edge pebbling used in this work is defined in [31]. The lower bound on the
reversible node pebbling complexity of paths was established by Chung et al.
[14] and an alternative proof can be found in [39]. As for the lower bound on the
node pebbling complexity for binary trees, a proof can be found in [49]. We refer
the reader to the textbook by Savage [49] or the excellent survey by Nordström
[42] for more details on pebbling.
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2 Technical Overview

On a high level, our approach can be divided into two steps. In the first step
(Sect. 2.2), which is purely combinatorial, we analyse a two-player multi-stage
game which we call the Builder-Pebbler Game. In particular, we exploit ideas
from pebbling lower bounds to establish upper bounds for the success probability
of the Pebbler (who is one of two players). These upper bounds are then, in the
second step (Sect. 2.3), translated to lower bounds on the loss in security of
concrete cryptographic protocols using oracle separation techniques to yield the
results stated in Sect. 1.1. Before explaining the two steps, we provide a summary
of the overall approach so that the two steps, especially the motivation behind
some of the underlying definitions, can be better appreciated.

2.1 Our Approach

Our goal is to design adversaries that break the GSD game but where any
reduction (in a specified class) to the security of the underlying SKE scheme loses
a significant (super-polynomial) factor in the advantage. Since we are aiming to
rule out black-box reductions, we have the luxury of constructing inefficient
adversaries and SKE schemes. The output of our adversaries will solely depend
on the distribution of inconsistent edges in the final key-graph, which we will
denote as pebbles in the following. Clearly, in order to win the GSD game, our
adversaries need to output 0 if the final key-graph is entirely consistent (i.e.,
contains no pebbles), and 1 if the final key-graph is entirely consistent except for
the edges incident on the challenge key. Otherwise, we have complete freedom in
assigning output probabilities of 0 and 1 to the remaining pebbling configurations
of the final key-graph.

As we prove formally in Sect. 6, any reduction attempting to take advantage
of our adversaries must send its IND-CPA challenge as a response to a query
and exploit the fact that the real and the random challenge will lead to different
pebbling configurations of the key-graph. Its hope is that the output distribution
of the adversary differs significantly between the two configurations. Note how-
ever, that when embedding the challenge in some edge (i, j) of the key-graph,
all edges incident to i will, with overwhelming probability, be inconsistent inde-
pendently of the challenge ciphertext, since the reduction does not know the
challenge secret key and thus is unlikely to be able to send consistent responses
to queries incident to i. In other words, the challenge can only be embedded into
an edge where the edges incident to the source are all pebbled. This naturally
leads to studying configurations that are related by valid moves in the reversible
edge-pebbling game: a pebble on an edge may only be added or removed if all
edges incident to the source are pebbled.

We may now define the configuration graph of our key-graph G: The vertices
of the configuration graph PG, as the name suggests, consist of all possible
pebbling configurations of G. Therefore it is the power set of the edges of G =
(V, E). An edge is present from a vertex Pi to another vertex Pj if Pj can
be obtained from Pi using a valid pebbling move. The edges represent pairs
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of configurations, where the reduction may embed its IND-CPA challenge, in
other words, a hybrid (from the reduction’s point of view). Since we consider
reversible pebbling games, the edges in our configuration graphs are undirected.
Therefore one can think of PG as a subgraph of the Boolean hypercube on 2|E|

vertices. Assuming that G has a single sink vertex T , PG has two special vertices
denoted Pstart = ∅ and Ptarget which consist of the pebbling configuration where
all incoming edges to T carry a pebble. The configuration graph for C4, the path
of length 4, is given in Fig 1. A path from Pstart to Ptarget corresponds to a
pebbling sequence in the reversible edge-pebbling game. Any such path can be
used for a hybrid argument to prove upper bounds for the loss in security, which
is what prior works did [31,43]. In this work we are interested in ruling out the
possibility of using any of the paths (or multiple at once) to improve on these
results.

0100

0101

0110

0111 1100

1101

1110

1111

0000

0001

0010

0011 1000

1001

1010

1011

Fig. 1. Configuration graph for paths of length four, C4 = ([5], {(1, 2), (2, 3), (3, 4),
(4, 5)}). It is a subgraph of the Boolean hypercube of dimension four (the missing edges
are dotted). The labels of the vertices encode the pebbling status of the corresponding
edge and therefore represents a pebbling configuration: e.g., the vertex labelled 0000
is completely unpebbled (configuration P = ∅) whereas the vertex labelled 1000 has
a pebble only on the first edge (1, 2) (configuration P = {(1, 2)}). An edge exists
between a configuration Pi and Pj if Pj can be obtained from Pi via one valid peb-
bling move. The special vertices for PC4 are Pstart = 0000 and Ptarget = 0001 (both
boxed). A cut for this configuration graph consists of the set of (red) vertices that
lie on the ‘bottom’ half of the graph: {0000, 0010, 1010, 1011, 0011, 1000, 0110, 1110}.
The set of edges from the top half to the bottom half form cut set: {(1111, 1110),
(1111, 1011), (1100, 1110), (1100, 1000), (0111, 0110), (0100, 0110)}. (Color figure online)

Pebbling Lower Bounds: Barriers to Better Cryptographic Upper
Bounds. In our approach, we will show that in any sequence of hybrids there
exist “bottleneck” configurations related to pebbling lower bounds. These bottle-
neck configurations define a cut for the configuration graph PG. Looking ahead,
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our adversaries will concentrate all their advantage on these cuts and we will
show that it is hard for any reduction to guess the pebbled edges of the corre-
sponding pebbling configurations.

From Pebbling Lower Bounds to Cryptographic Lower Bounds via
Builder-Pebbler Game. The immediate idea would be to translate pebbling
lower bounds directly to cryptographic lower bounds. But pebbling lower bounds
apply to fixed graphs. Therefore we are missing a component that captures the
dynamic nature of the security games, like that of GSD, which involves (the
adversary) choosing a graph G randomly from a class of graphs G. To remedy
this, we introduce a two-player multi-stage game that we call the Builder-Pebbler
Game and then show that pebbling lower bounds can be used to upper bound
the probability of success of the Pebbler (Step I: Sect. 2.2), one of the players.
Then we will use oracle separation techniques to translate these upper bounds
into cryptographic lower bounds (Step II: Sect. 2.3).

2.2 Step I: Combinatorial Upper Bounds

We start off with an informal description of the Builder-Pebbler Game, a two-
player game that will abstract out the combinatorial aspect of establishing lower
bounds for cryptographic protocols that are modelled by multi-user games where
the adversary adaptively builds a graph structure among the set of users, as in
GSD (formal definition in Sect. 4). The game is played between a Pebbler and a
Builder, and intuitively, Pebblers play the role of reduction algorithms whereas
Builders correspond to adversaries in security games.

Builder-Pebbler Game. For a parameter N ∈ N, the Builder-Pebbler Game
is played between a Builder and a Pebbler in rounds. The game starts with an
empty DAG G = (V = [1, N ] , E = ∅) and an empty pebbling configuration
P, and in each round the following happens: the Builder first picks an edge
e ∈ [1, N ]2 \ E and adds it to the DAG and the Pebbler then decides whether or
not to place a pebble on e. This way the Builder and the Pebbler will construct
a graph G and a pebbling configuration P on this graph. The Builder can stop
the game at any point by choosing a sink in G as the challenge. This results in
a challenge DAG G∗ = (V∗, E∗), the subgraph of G that is induced by all nodes
from which the challenge is reachable. The Pebbler wins if it ends up with a
pebbling configuration P that is in a designated subset of all configurations. This
winning set is determined by the graph G. Otherwise, the Builder is declared the
winner. In case the strategies are randomised, we call the probability with which
the Builder (resp., the Pebbler) wins the game as Builder’s (resp., Pebbler’s)
advantage, and denote it by β = β(N) (resp., π = π(N)). We also consider
restricted games where the Builder is restricted to query graphs G that are
subgraphs of some family of graphs G. In summary, one can think of the game
as the Builder building a graph and the Pebbler placing pebbles on this graph
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with the aim of getting into a winning configuration and the Builder preventing
this from happening.5

Defining Winning Configurations via Cuts of the Configuration
Graph. Although the Builder-Pebbler Game is meaningful for any notion of
winning configuration, we are interested in a particular definition that is essen-
tial in establishing our cryptographic lower bounds: we will set the winning
configurations as the ones that belong to bottleneck configurations in the config-
uration graph of G. The goal is to prove that it will be difficult for Pebblers to get
into such configurations. In some cases we can do so directly, but in others the
Pebbler may be able to achieve this by “flooding” the graph with many pebbles.
Our solution is to “artificially” restrict the Pebbler to placing very few pebbles
by requiring it to leave the part of the query graph that is not in the challenge
graph entirely unpebbled, i.e., if at the end of the game there is a pebble on an
edge that is not rooted in the challenge graph, the Pebbler loses. Note that this
does not trivialize our task of finding a suitable Builder, because for our appli-
cation to cryptographic lower bounds to work, the Builder’s querying strategy
(including the challenge) needs to be independent of the pebbles placed by the
Pebbler. (We call such Builders also oblivious, see below.) Of course, care must
be taken that this behaviour cannot be exploited by the reduction. Intuitively,
the reason this works is that in all our applications, if the reduction were to
embed the challenge outside of the challenge graph, our adversaries will almost
always interpret it to be a pebble, no matter if the challenge was real or random.

Combinatorial Upper Bounds in the Builder-Pebbler Game. We bound
the advantage of Pebblers from above against Builders with varying degree of
freedom, i.e., Builders that are restricted to querying certain classes of graphs.
The upper bounds in Theorems 3 to 5 are (almost) tight since a random Pebbler
yields (almost) matching lower bounds.

Theorem 3 (Informally Stated, Theorems 6 and 8 in Full Version [33]).
Any oblivious6 Pebbler in the Builder-Pebbler Game restricted to paths or binary
trees has advantage at most inverse quasi-polynomial (N−Ω(log N)) in N , the size
of the graph.

5 This is reminiscent of Maker-Breaker games [28], a class of positional games (which
includes Shannon Switching Game, Tic-Tac-Toe and Hex) which are played between
a Maker, who is trying to end up with a (winning) position and a Breaker, whose goal
is to prevent the Maker from getting into such (winning) positions. One fundamental
difference between Maker-Breaker Games and the Builder-Pebbler Game is that
in Maker-Breaker games one usually considers optimal (deterministic) strategies,
whereas we consider randomised strategies for the Builder-Pebbler Game. (Another
way of looking at this is that our “board” is dynamic.) Another difference is the
asymmetry in the nature of moves.

6 The notion of obliviousness for Pebblers is naturally derived from the one for reduc-
tions, see discussion above and Definition 9.
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Theorem 4 (Informally Stated, Theorem 9 in Full Version [33]). Any
oblivious Pebbler in the unrestricted Builder-Pebbler Game has advantage at
most inverse sub-exponential (2−Ω(

√
N)) in N , the size of the graph.

Theorem 5 (Informally Stated, Theorem 6). Any Pebbler in the Builder-
Pebbler Game restricted to trees has advantage at most inverse quasi-polynomial
(N−Ω(log N)) in N , the size of the graph.

Remark 1 (On Builder Obliviousness). It is worth mentioning that all our
Builder strategies are also oblivious, where oblivious is defined different for
Builders than for Pebblers: it means that the query strategy is independent
of the Pebbler’s responses (see Sect. 4.1).7 The reason we restrict ourselves to
such Builders is mostly for our convenience: looking ahead, it means that we
can ensure that the reductions in our cryptographic applications cannot exploit
the querying behaviour of the adversary to gain a larger advantage, rather they
must rely solely on the final output bit.

2.3 Step II: From Combinatorial Upper Bounds to Cryptographic
Lower Bounds

For translating upper bounds established in Step I into loss in security of concrete
cryptographic protocols, we adapt ideas from oracle separations.

Ruling out Tight Black-Box Reductions. Oracle separations are used to
rule out the reduction8 of a primitive Q (e.g., PKE) to another primitive P (e.g.,
SKE). Our case is slightly different since it involves a primitive P (e.g., SKE)
that is used in a graph-based “multi-instance” setting QP (e.g., GSD with SKE).
In this setting, we are interested in the more fine-grained question of bounding
Λ, the loss in security incurred by any efficient black-box reduction R that breaks
P when given black-box access to an adversary that breaks QP (i.e., from P to
QP ). This means we must show that for every R, there exists

– an instance P (not necessarily efficiently-implementable) of P and
– an adversary AQ (not necessarily efficient) that breaks QP

7 One could think of the Builder playing the role of “nature” (who also adopts a
strategy that is oblivious of the opposing player) in Papadimitrou’s Games Against
Nature [44].

8 The usage of the word ‘reduction’ here and in Sect. 1.2.2 is in a constructive sense
[47]: a primitive Q is reduced to another primitive P if (i) there is an efficient
construction C that takes an implementation P of P and gives an implementation
Q of Q and (ii) there is an efficient security reduction R which takes an adversary
AQ that breaks Q and constructs an adversary AP that breaks P. For example, the
most common type of reduction used in cryptography is a fully black-box reduction
where both R and C are black-box in that they only have black-box access to P and
AQ, respectively. In the rest of the paper, ‘reduction’ is used to refer to a security
reduction as in (ii).
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such that the loss in security incurred by R in breaking P is at least Λ.9 To this
end, we establish a tight coupling between the security game for QP and the
Builder-Pebbler Game (e.g., Lemma 2). If QP involves a graph family G then
the Builder-Pebbler Game will be played on G (or sometimes another family
related to G) and the winning condition is determined by the cut for G. The
coupling is established using a Builder strategy B and a related adversary AQ

such that

– every reduction R can be translated to a Pebbler strategy P against B on G,
and

– if R has a security loss of at most Λ then B’s advantage against P is at least
1/Λ (up to negligible additive factors).

If G is a class for which we derived an upper bound of π for Pebbler strategies
(in Step I) then any reduction R such that 1/Λ > π cannot exist. Put differently,
an upper bound on the success probability of the Pebbler in the Builder-Pebbler
Game translates to a lower bound on the loss in security for the reduction R. In
the remainder of the section, we explain how the coupling works in a bit more
detail using GSD on binary trees as the running example. To keep the exposition
simple, we will brush a lot of issues (e.g., dealing with ‘flooding’ reductions) under
the rug and refer the readers to Sect. 6 for a more formal treatment.

Example: GSD on Binary Trees. Let’s consider the case where P is SKE
and QP is the GSD game played on G = Bn, the class of binary trees of depth
n. Intuitively, the GSD adversary AQ “simulates” the oblivious Builder B used
to derive Theorem 3. That is, it

1. chooses a binary tree Bn ∈ Bn uniformly at random,
2. queries, in a random order, each edge (u, v) ∈ E(Bn) to obtain the corre-

sponding ciphertext Enc(ku, kv) from the reduction R and
3. challenges the sole sink T at the end of the game.

For it to be a valid adversary, AQ must distinguish the extreme games, i.e., the
real game where all the ciphertexts are real and the random game where the
ciphertexts incoming to T are both random. To this end, it looks at the cipher-
texts it obtained and extracts a pebbling configuration P from it (as described
in Sect. 2.1). Note that the extreme hybrids corresponds to Pstart = ∅ (real) and
Ptarget such that both the edges incoming to T carry a pebble (random). AQ

distinguishes these by concentrating all its advantage in the cut in the configu-
ration graph of Bn defined in Sect. 2.1: i.e., it outputs 0 if P is on one side of
the cut and 1 otherwise. To help AQ faithfully distinguish real ciphertexts from
random ones so that it can infer the exact pebbling configuration P, we fix P to
be an ideal implementation (Enc,Dec) of SKE:

9 This is obtained by simply negating the definition of a black-box reduction: there
exists an efficient reduction R such that for every (not necessarily efficient) imple-
mentation P of P and for every (not necessarily efficient) adversary AQ that breaks
QP the loss in security is at most Λ.
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– Enc is a random expanding function that implements encryption and
– Dec is the decryption function defined to be “consistent” with Enc.10

Since Enc is injective with overwhelming probability, given a ciphertext AQ can
brute force Enc to determine (exactly) whether or not the ciphertext correspond-
ing to an edge is real. By carrying this out for all the edges, it can extract a
unique pebbling configuration corresponding to R’s simulation. Since AQ con-
centrates its advantage in the cut, for R to have any chance of winning, its own
challenge c∗ must be ‘embedded at the cut’ so that – depending on whether or
not c∗ is real – P switches from one side of the cut to the other. Since this is the
only way R can exploit AQ, we may infer that a reduction with loss in security
at most Λ ends up in the cut with probability at least 1/Λ. However, thanks to
the fidelity of the extraction, this also means that the natural Pebbler strategy
P that underlies R, which simply places a pebble whenever R fakes, wins against
B in the Builder-Pebbler Game on Bn with an advantage at least π = 1/Λ (for-
mally, Lemma 1). If particular, if Λ is significantly less than quasi-polynomial
in N = 2n, it would imply the existence of a Pebbler that is successful with a
probability greater than inverse quasi-polynomial, a contradiction to Theorem 3.
Since Theorem 3 only holds for oblivious Pebblers, the bound on Λ only holds
for oblivious GSD reductions.

3 Preliminaries

We use the notation [N ] = {1, . . . , N} and [N ]0 = {0} ∪ [N ]. For a string
x = x0, . . . , xn−1 ∈ {0, 1}n, for 0 ≤ a ≤ b < n, we use x[a, b] to denote the
substring xa, . . . , xb.

3.1 Graph Theory

Let N ∈ N and G = (V, E) define a directed acyclic graph (DAG) with vertex
set V = [N ], edge set E ⊂ [N ] × [N ], and a set of sinks T . For a subset S ⊆ [N ]
of nodes, let in(S) denote the set of ingoing edges and parents(S) denote the
set of parent nodes of nodes in S. For a set of n edges P = {(vi, wi)}n

i=1,
let V(P) :=

⋃n
i=1{vi, wi} denote the set of nodes that have an incident edge

in P. The edge set P is called disjoint, if they do not share a node, i.e. if
|V(P)| = |

⋃n
i=1{vi, wi}| = 2n. We denote by E(G) (resp., V (G)) the edges E

(resp., vertices V) of G. By Bn, we denote a binary tree of depth n – the binary
tree is perfect if it has all 2n+1 − 1 vertices. We assume the standard indexing of
the vertices in Bn by associating them with binary strings in {0, 1}≤n determined
by their position in the tree: i.e., the root has index ε and the left (resp., right)
child of a vertex with index i is i‖0 (resp., i‖1).

10 Since most of our ideal functionalities are implemented using random oracles, it is
possible using standard tricks [30] to switch the order of the quantifiers and establish
the stronger statement that there exists a single oracle P and adversary AQ which
work for all reductions.
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Definition 1 (cuts, cut-sets, frontiers). Let G = (V, E) be an undirected
graph. A cut S of G is a subset of the nodes V. For two nodes v1, v2 ∈ V an s-t-
cut that separates v1 and v2 is a cut S such that v1 ∈ S and v2 /∈ S. The cut-set
of a cut S is the set of edges with one endpoint in S and the other outside of S.
We call the frontier of a cut S the set of all nodes in S that have an incident
edge in the cut-set of S.

Definition 2 (Vertex Covers). Let G = (V, E) be a directed or undirected
graph and P ⊆ E be a subset of edges. A vertex cover of P is a subset S of [N ]
such that for each edge (i, j) ∈ P either the source i or the sink j lies in S. We
define a non-trivial vertex cover to be a vertex cover S such that S ⊆ V(P). We
denote the size of a minimal vertex cover of P by

VC(P) := min{|S| : S ⊆ [N ] covers P}.

3.2 Graph Pebbling

A pebbling configuration on the graph G is a set P ⊆ E defining the subset of
pebbled edges. Let |P| denote the number of pebbles in the configuration and
V(P) the set of nodes involved in the pebbling. We define the complexity of
a pebbling configuration P as the size of a minimal vertex cover of P. For a
pebbling sequence P = (P0, . . . ,P�), we define VC(P) := maxi∈[L]0 VC(Pi).

Let Pstart denote the unique configuration with |Pstart| = VC(Pstart) = 0, i.e.,
Pstart = ∅, and Ptarget = in(T ) = {(i, T ) ∈ E} denote the configuration where
only all the edges incident on some sink T ∈ T are pebbled. We will consider
sequences of pebbling configurations P = (Pstart, . . . ,Ptarget) where subsequent
configurations have to follow certain pebbling rules.

Reversible Pebbling. We consider the pebbling game from [31].

Definition 3 (Edge-Pebbling). An edge pebbling of a DAG G = (V, E) with
unique sink T is a pebbling sequence P = (P0, . . . ,P�) with P0 = Pstart and
P� = Ptarget, such that for all i ∈ [�] there is a unique (u, v) ∈ E such that:

– Pi = Pi−1 ∪ {(u, v)} or Pi = Pi−1 \ {(u, v)},
– in(u) ⊆ Pi−1.

Definition 4 (Configuration Graph). Let G = (V, E) be some graph. We
define the associated configuration graph PG as the graph that has as its vertex
set all 2|E| possible pebbling configurations of G. The edge set will contain an edge
between two vertices, if the transisition between the two vertices is an allowed
pebbling move according to the pebbling game rules.

Note that the configuration graph depends on the pebbling game. If we con-
sider reversible pebbling as in Definition 3, the configuration graph is undirected.
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4 The Builder-Pebbler Game

In this work, we consider security games for multi-user schemes where an adver-
sary can adaptively do the following actions:

– query for information between pairs of users,
– corrupt users and gain secret information associated to these users,
– issue a distinguishing challenge query associated to a target user of its choice,
– guess a bit b ∈ {0, 1}.

We consider such games as games on graphs, where users represent the nodes
of the graph and edges are defined by the adversary’s pairwise queries. If the
pairwise information depends asymmetrically on the two users, then this is rep-
resented by the direction of the corresponding edge and after the game one can
extract a directed graph structure from the transcript of the game. Here, we only
consider the case of directed acyclic graphs, i.e., where the adversary is forbidden
to query cycles. Furthermore, to avoid trivial winning strategies, the adversary
must not query a challenge on a node which is reachable from a corrupt node.

To prove a scheme secure under such an adaptive game based on standard
assumptions (e.g., the security of some involved primitive), a common approach
is to construct a reduction that has black-box access to an adversary against
the scheme and tries to use the advantage of this adversary to break the basic
assumption. To this aim, the reduction has to simulate the game to the adversary
and at the same time embed some challenge c on the basic assumption into
its answers so that the adversary’s output varies depending on this embedded
challenge. Hence, the reduction might not answer all queries correctly but rather
“fakes” some of the edges; such wrong answers will be represented as pebbled
edges in the graph. However, if the reduction answers all queries connected to
the challenge node independent of the challenge user’s secrets, then the edge
queries do not help the adversary to distinguish its challenge and its advantage
in this game can be at most the advantage it has in an alternative security game
where no edge queries are possible. Indistinguishability in such a weaker scenario
usually follows trivially by some basic assumption.

Thus, we are interested in games that can be abstracted by the following
two-player game.

Definition 5 (N- and (N,G)-Builder-Pebbler Game). For a parameter
N ∈ N, the N -Builder-Pebbler Game is played between two players, called
Builder and Pebbler, in at most N · (N − 1)/2 rounds. The game starts with
an empty DAG G = ([1, N ] , E = ∅) and an empty set P = ∅. In each round:

1. the Builder first picks an edge e ∈ [1, N ]2 \ E and adds it to G (i.e., E :=
E ∪{e}); the Builder is restricted to only query edges that do not form cycles;
and

2. the Pebbler then either places a pebble on e (i.e., P := P ∪ {e}) or not (i.e.,
P remains the same).
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The Builder can stop the game at any point by choosing a sink in G as the
challenge. This results in a challenge DAG G∗ = (V∗, E∗), the subgraph of G
that is induced by all nodes from which the challenge is reachable.

In an (N,G)-Builder-Pebbler Game, the Builder is restricted to building
graphs (isomorphic to subgraphs of) G ∈ G for a class of graphs G.

Definition 6 (Winning Condition and Advantage for (N,G)-Builder-
Pebbler Game). Consider an (N,G)-Builder-Pebbler Game and let G = (V, E),
G∗ = (V∗, E∗) and P be as in Definition 5. We model the winning condition for
the game through a function X that maps a graph to a collection of subsets of
its own edges. We say that the Pebbler wins the (N,G)-Builder-Pebbler Game
under winning condition X if the following two conditions are satisfied:

1. only edges rooted in V∗ are pebbled, i.e. P ⊆ {(u, v) ∈ E | u ∈ V∗}
2. the pebbling induced on G∗ satisfies the winning condition, i.e., P|G∗ ∈

X(G∗).

Otherwise, the Builder is declared the winner. In case the strategies are ran-
domised, we call the probability (over the randomness of the strategies) with
which the Builder (resp., Pebbler) wins the game the Builder’s (resp., Pebbler’s)
advantage, and denote it by β = β(N) (resp., π = π(N)). Since there are no
draws, we have β + π = 1.

Remark 2. The corresponding definitions for the N -Builder-Pebbler Game can
be obtained by simply ignoring the restriction to G.

In our setting we will be interested in functions X that output sets of vertices
that represent the frontier of a cut in the configuration graph of the input.

Definition 7 (Cut Function). For a family G = (V, E) of graphs, a function
X : G 	→ 2E is called a cut function if X(G) is the frontier of an s-t-cut of the
configuration graph PG that separates Pstart from Ptarget for any input G ∈ G.
For a cut function X defined on G and G /∈ G, we set X(G) = ∅.

4.1 Player Strategies

Builder Strategies. As motivated in Remark 1, we will be dealing in this
paper mostly with a class of Builders who play independently of the Pebbler’s
strategy.11

Definition 8 (Oblivious Builders). We say that a Builder’s strategy in the
(N,G)-Builder-Pebbler Game is oblivious if its choice of graph G ∈ G and order
of edge queries are independent of (i.e., oblivious to) the Pebbler’s strategy.

This restriction on the Builder serves two main purposes.

11 The exact definition of the strategy will depend on the graph and the application.
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1. Firstly, it ensures that the Builder-Pebbler Game is not trivial for the cut
functions we are interested in: otherwise, it is easy to come up with Builder
strategies in which any Pebbler has advantage 0.

2. Moreover, non-oblivious Builder strategies are less interesting in our setting
since they could potentially allow reductions to exploit the query behaviour
of the adversary built on top of a non-oblivious Builder to gain advantage in
the security game.

Pebbler Strategies. Ideally, we would like to establish lower bounds that
hold against all Pebblers. Since this is not always possible, we consider Builder-
Pebbler Games where the Pebbler strategy is restricted to oblivious strategies.

Definition 9 (Oblivious Pebbler). We say that a Pebbler’s strategy is obliv-
ious if it fixes a subset of vertices S ⊆ [1, N ] at the beginning of the game, and
at the end of the game S is always a non-trivial vertex cover of the pebbling P.

Note that the notion of obliviousness differs from that in Definition 8.
Definition 9 is motivated by oblivious reductions used in [31] (see Sect. 1.1)
and the goal is to capture prior knowledge that a Pebbler may have about the
graph structure that a Builder builds during the query phase. This is captured in
Definition 9 by requiring the Pebbler to commit to a non-trivial vertex cover of
the pebbling configuration. This allows compressing of pebbling configurations
based on the graph structure: e.g., if the Pebbler knows that the graph con-
tains nodes with high degree and it aims to pebble all (or some) of the incident
edges of such a node, it may guess this node ahead of time and then adjust its
query responses assuming the guess is correct. In the known upper bounds for
the applications we consider, this is used to compress the amount of information
that needs to be guessed ahead of time. The fact that the vertex cover is required
to be non-trivial ensures that this restriction is also non-trivial: otherwise, the
Pebbler may simply output the entire set [1, N ]. On the other hand, using a
minimal vertex cover seems too strong, since we do not actually require it to
prove our bounds.

Remark 3. Note that restricting the Builder strategy does not weaken our
results: we are constructing lower bounds for reductions and an oblivious Builder
gives rise to oblivious adversaries. In contrast restricting to oblivious does weaken
the result. However, looking ahead, these restrictions allow us to prove much
stronger bounds compared to an unrestricted Pebbler.

5 Combinatorial Upper Bounds

In this section we show upper bounds for Pebblers in the Builder-Pebbler Game
by constructing Builders (potentially in a restricted Builder-Pebbler Game) and
then showing that no Pebbler can have a good advantage against such a Builder.
In the following, we show a bound that holds for arbitrary Pebblers. In the
full version of this paper, we also provide bounds for oblivious Pebblers [33,
Section 5.1] and so-called node Pebblers [33, Section 5.2], i.e. Pebblers that may
only pebble all or none of the edges incident on any node.
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5.1 Unrestricted Pebblers

In this section we prove a first combinatorial upper bound for unrestricted – i.e.,
non-oblivious – Pebblers in the Builder-Pebbler Game. While our upper bound
on the advantage of unrestricted Pebblers is significantly weaker than the result
for oblivious Pebblers in the full version of this paper [33, Section 5.1], it is still
non-trivial.

Generalized Pebbling Characteristics of Paths. Let k ∈ [N ] be arbitrary.
We prove that any pebbling sequence on a path of length N must contain a
pebbling configuration such that �log(�N/k)� + 1 of the �N/k subpaths of
length ≤ k contain at least one pebble respectively. For k = 1 this result is
well-known, for a proof we refer to the full version [33, Section 5.1.1]. Assume,
for contradiction, that there exists a k > 1 and a valid pebbling strategy P
for paths of length N such that the claim was false. Then this strategy implies
a pebbling strategy P ′ of complexity less than �log(�N/k)� + 1 for paths of
length �N/k as follows: For each pebbling configuration P in P , define P ′ in
P ′ to contain a pebble on the ith edge if the ith subpath of P contains a pebble.
Cancelling redundant steps in P ′, i.e., configurations that equal the preceding
configuration in the sequence, implies a valid pebbling sequence of complexity
less than �log(�N/k)� + 1 for paths of length �N/k – a contradiction.

We will use the following definition of k-cuts for paths matching this gener-
alized pebbling lower bound.

Definition 10 (k-good pebbling configurations, k-cuts and k-cut func-
tion for paths). For k ∈ N we call a pebbling configuration P for a path C = CN

on N nodes k-good if �log(�N/k−1)� of the �N/k−1 non-source subpaths of C
of length (≤)k contain at least one pebble respectively12, and there exists a valid
pebbling sequence P = (Pstart, . . . ,P) such that in all configurations in P at
most �log(�N/k − 1)� of the subpaths simultaneously carry a pebble. We define
a k-cut set X in the configuration graph PC as the set of all edges consisting of a
k-good pebbling configuration and a configuration which can be obtained from this
good configuration by adding one pebble (following the pebbling rules) in a pre-
viously unpebbled subpath. The k-cut function XC,k is defined as in Definition 7
as the frontier of this cut.

The Upper Bound. The Builder strategy is to query a (polynomial-sized)
subgraph of an exponential-sized tree of outdegree δout ≥ 2, so that in order to
pebble any edge in the final challenge path the Pebbler has to guess one out of
many source nodes at the same depth in the tree.

Theorem 6 (Combinatorial Upper Bound for Unrestricted Pebblers).
Let G be the family of directed trees on N = 2n nodes (with n ∈ N). Then
there exists a Builder strategy querying a challenge path G∗ ∈ C√

N , such that
the advantage of any Pebbler against this Builder in the (N,G)-Builder-Pebbler
Game with the winning condition XC√

N ,1 defined as in Definition 10 is at most

12 For technical reasons, we exclude the first subpath of length k in C.
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π ≤ 1/N log(N)/8.

Let G2 ⊂ G be the subset of graphs in G of bounded outdegree δout = 2. Then
there exists a Builder strategy querying a challenge path G∗ ∈ C√

N , such that the
advantage of any Pebbler against Builder in the (N,G2)-Builder-Pebbler Game
with the winning condition XC√

N ,k for k = log(N)/4 defined as in Definition 10
is at most

π ≤ 1/N log(N)/8−log(log(N))/4.

Proof. We define a Builder strategy B for graph family Gδout
of outdegree

bounded by δout as follows: First, B chooses a source node in [N ] uniformly
at random. It then proceeds in D = N/δ2k

out rounds (where k is the ‘overlap
parameter’ and will be specified later), increasing the current graph’s depth by
1 in each round. In each round R ≤ 2k and each round R �≡ 1 mod k, for all
sinks at depth R − 1 in the current graph B queries δout outgoing edges respec-
tively. Note, after the first 2k rounds, B’s queries form a δout-regular tree directed
from root to leaves, with δ2k

out sinks at depth 2k. For all rounds such that R > 2k
and R ≡ 1 mod k, the Builder B first chooses an integer i ∈ [δk

out] and then
only queries edges outgoing from the ith batch of δk

out sinks at depth R − 1.
Finally, B chooses the target node uniformly at random from the δ2k

out sinks at
depth D = N/δ2k

out.
First note that B’s queries involve less than D · δ2k

out = N nodes and the
challenge graph forms a path of length D. To win the game, the Pebbler needs
to place at least one pebble on �log(�D/k−1)� of the disjoint subpaths of length
k in the challenge path respectively. But whenever it wants to place a pebble
in a subpath starting from depth i · k with i ≥ 1, the Pebbler has to at least
guess which of the δk

out sources of edges at depth i ·k will end up in the challenge
graph. Since this choice is made uniformly at random by the Builder B only
after all queries at depth (i + 1) · k were made, the advantage of the Pebbler to
correctly pebble an edge in the subpath sourced at depth i · k is at most 1/δk

out.
Since this bound holds also conditioned on the event that previous guesses were
done correctly, and to win the game, the Pebbler has to pebble �log(�D/k−1)�
subpaths of the challenge path, we obtain

π ≤ 1/δ
k·�log(	D/k
−1)�
out . (1)

Now, for the graph family G of unbounded outdegree, we set δout = N1/4 and
k = 1 to obtain D =

√
N and hence π ≤ 1/N1/4 log(

√
N) = 1/N log(N)/8. For

δout = 2, on the other hand, we set k = log(N)/4 to obtain D =
√

N and
π ≤ 1/N1/4(log(

√
N)−log(log(N)/4)) = 1/N log(N)/8−log log(N)/4. ��
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6 Cryptographic Lower Bound I: Generalised Selective
Decryption

The generalized selective decryption game (GSD) was informally introduced in
Sect. 1; we refer to the full version [33, Section 6.1] for a formal definition. In the
following we interpret the combinatorial upper bound from Sect. 5.1 for GSD. In
the full version, we establish analogous lower bounds for public-key GSD, where
PKE is used instead of SKE as the underlying primitive; these can be used as
a basis for the lower bound on the continuous group key agreement protocol
TreeKEM [33, Section 5.1].

6.1 Lower Bounds for GSD

In many applications one considers games where the adversary’s queries are
restricted to certain graph structures, e.g., paths, “in-trees” (i.e. rooted trees
directed from the leaves to the root), or low-depth graphs. These restrictions
depend on the protocol under consideration and often allow to construct stronger
reductions.

Interesting upper bounds are known for specific settings for (oblivious) black-
box reductions R proving adaptive GSD security based on IND-CPA security
(short, GSD reductions). Our results now allow us to prove lower bounds on Λ
for GSD with various restrictions (which cover similar settings as known upper
bounds). Note that our lower bounds are stronger and more widely applicable
the more restrictions they can handle.

Definition 11 (Black-Box and Straight-Line GSD Reduction). R is a
black-box GSD reduction if for every SKE SKE = (Enc,Dec) and every adversary
A that wins the GSD game played on SKE, R breaks SKE. Moreover, if A is an
(ε, t) GSD adversary and R (ε′, t′)-breaks SKE (where ε′ and t′ are functions of
ε and t) then the loss in security is defined to be (t′ε)/(tε′). A black-box GSD
reduction R is straight-line if it, additionally, does not rewind A.

The following definition mirrors the obliviousness of Pebblers in the context
of the Builder-Pebbler Game (cf. Definition 9).

Definition 12 (Oblivious GSD Reduction). A straight-line GSD reduction
R (Definition 11) is oblivious if it commits to a non-trivial vertex cover of all
inconsistent edges at the beginning of the game.

In all our bounds we require the reduction to assign keys to nodes at the
beginning of the game.

Definition 13 (Key-Committing GSD Reduction). A black-box GSD
reduction R is key-commiting if it commits to an assignment of keys to all nodes
at the beginning of the game.
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This is due to the fact that Pebblers in the Builder-Pebbler Game commit to
whether an edge is pebbled or not as soon as they respond to the query. Without
this requirement, this is not true for reductions in the GSD game, since they
could potentially respond to a query and decide later if that edge is consistent
or inconsistent by choosing the key for the target accordingly (as long as this
node does not have an outgoing edge). However, this requirement should not be
seen as a very limiting restriction, but we introduce it for ease of exposition, since
there are several “work arounds” to this issue. 1) One could use an adversary
that “fingerprints” the keys by querying the encryption of some message under
each key before starting the rest of the query phase. This would entail adding the
corresponding oracle to the GSD game, which seems reasonable in many (but
not all) applications, since the keys are often not created for their own sake,
but to encrypt messages. 2) In case the adversary is not too restricted (which
is application dependent), there is a generic fix where the adversary abuses the
encrypt oracle to achieve this fingerprinting by introducing a new node and
querying the edges from every other node to this new node. This introduces
only a slight loss in the number N of nodes.

Both of these approaches work, but would make the proof more complicated:
recall that the challenge node must be a sink, so neither of the two fixes can
be applied to it. We can still fix all other nodes (which is sufficient), thereby
giving away the challenge node right at the start of the game. But this can
only increase the reduction’s advantage by a factor N , since it could also simply
guess the challenge node. Since we are only interested in super-polynomial losses
in this work, this would not affect the results. But for the sake of clarity we
refrain from applying this workaround and simply keep this mild condition on
the GSD reductions. In the full version [33], we see that some protocols are based
on a public key version of GSD rather than the secret key version we consider
here. In such cases the public keys are known to the adversary and commit the
reduction to the corresponding secret keys and thus no assumption or extra fix
are required.

We now give a general lemma that allows to turn lower bounds for the
Builder-Pebbler Game into lower bounds for the GSD game.

Lemma 1 (Coupling Lemma for GSD). Let G be a family of DAGs and
X a cut function. Let B be an oblivious Builder in the (N,G)-Builder-Pebbler
Game with winning condition X. Then there exists

1. an ideal SKE scheme Π = (Enc,Dec)
2. a GSD adversary A in PSPACE

such that for any key-committing straight-line reduction R there exists a Pebbler
P such that the advantage 1/Λ of R is at most the advantage π of P against B
(up to an additive term poly(N)/2Ω(N)). Moreover, if R is oblivious then so
is P.

Proof. We first construct Π = (Enc,Dec): We will pick Enc to be a random
expanding function (which is injective with overwhelming probability). More
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precisely, assuming (for simplicity) the key k, the message m and the randomness
r are all λ-bit long, Enc(k,m; r) maps to a random ciphertext of length, say, 6λ
with λ = Θ(N). Dec is simulated accordingly to be always consistent with Enc.

We now define a map φ from GSD adversaries and reductions to Builder-
Pebbler GameBuilders and Pebblers:

– The number N of nodes in the Builder-Pebbler Game corresponds to the
number N of keys in the GSD game.

– An encryption query (encrypt, vi, vj) maps to an edge query (i, j) in the
Builder-Pebbler Game.

– A response to a query (encrypt, vi, vj) is mapped to “no pebble” if it consists
of a valid encryption of kj under the key ki, and to “pebble” otherwise. (Note
that this is always well-defined for key-committing GSD reductions.)

– A corruption query (corrupt, vi) is ignored in the Builder-Pebbler Game.
– The challenge query (challenge, vt) is mapped to the challenge node t.

Let A ∈ PSPACE be the following preimage of B under φ: A performs the same
encryption queries as B and selects its GSD challenge node as the challenge node
chosen by B. It then corrupts all nodes not in the challenge graph Gt. If there is
an inconsistency (i.e. a pebble) in G\Gt, A aborts and outputs 0. Finally, it uses
its computational power to decrypt all the received ciphertexts and determines
the resulting pebbling configuration P on Gt. If P is in the cut defined by the
frontier X(Gt), A outputs 0, otherwise it outputs 1. Clearly, A wins the GSD
game against Π with probability 1. We will now show that the advantage of R
in using the GSD-adversary A to break the IND-CPA security of Π is at most
the advantage of P = φ(R) against B (up to a negligible additive term).

Note that since Enc is a random function, the GSD game is entirely indepen-
dent of the challenge bit b until the tuple (k,mb, r) such that c∗ = Enc(k,mb; r)
(where c∗ is the challenge ciphertext) is queried to Enc. Since R is PPT, the
probability of R doing this is at most poly(N)/2Ω(N). Accordingly, to gain a
larger advantage, R must send c∗ to A as response to some edge query. Since
B = φ(A) is oblivious, the behaviour of A does not depend on c∗ (and thus not
on b) during the entire query phase. This means that the statistical distance of
A induced by b = 0 and b = 1 is

∑

(Pi,Pj)∈PGt

pi,j |Pr [A(Pi) → 1] − Pr [A(Pj) → 1]|

where pi,j is the probability that the query phase results in the configuration Pi

or Pj depending on c∗. More formally, for an edge (Pi,Pj) in the configuration
graph PGt

, let Pc
ij be the “configuration” that is equal to Pi if c∗ represents a

consistent encryption edge (i.e. is not a pebble) and equal to Pj if c is inconsistent
(i.e. a pebble). Then we define pi,j as the probability of the query phase resulting
in Pc

ij . Clearly, we have |Pr [A(P1) → 1] − Pr [A(P2) → 1]| = 0 for any edge
(P1,P2) where P1 /∈ X(Gt) and 1 otherwise. The statistical distance of A induced
by b is thus bounded by the probability of the querying phase ending up in a
configuration in X(Gt) (if c∗ is considered not a pebble for this argument).
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This is exactly the advantage of Pebbler P = φ(R) in the Builder-Pebbler Game
against B. By data processing inequality, this also means that the advantage of
R is bounded from above by the same quantity.

For the final statement of the lemma, note that φ maps oblivious GSD reduc-
tions to oblivious Pebblers. ��

The following lower bound on GSD now easily follows from Lemma 1 and
Theorem 6; for stronger lower bounds for oblivious reductions we refer to the
full version [33, Corollaries 2 to 4].

Corollary 1 (Lower bound for GSD on Trees, Straight-Line Reduc-
tions). Let N be the number of users in the GSD game. Any key-committing
straight-line reduction proving adaptive GSD-security restricted to trees based
on the IND-CPA security of the underlying encryption scheme loses at least a
factor

Λ ≥ N log(N)/8.

Even if the adversary is restricted to querying graphs with outdegree 2, the reduc-
tion loses at least a factor

Λ ≥ N log(N)/8−log(log(N))/4.

7 Cryptographic Lower Bound II: Constrained PRF

In this section we use our combinatorial results for the Builder-Pebbler Game to
prove that the constrained pseudorandom function (CPRF) [10,11,36] based on
the GGM PRF [27] cannot be proven adaptively-secure based on the security of
the underlying pseudorandom generator (PRG) using a straight-line reduction.
Our lower bound almost matches the best-known upper bound by Fuchsbauer
et al. [21].

7.1 Definition, Construction and Security Assumption

The following definitions are essentially taken from [31].

Definition 14 (GGM PRF). Given a PRG : {0, 1}λ → {0, 1}2λ, the PRF
FGGM : {0, 1}λ × {0, 1}∗ → {0, 1}λ is defined as

FGGM (k, x) = kx where k∅ = k and ∀z ∈ {0, 1}∗ : kz‖0‖kz‖1 = PRG(kz).

A graphical representation of the GGM construction is depicted in Fig. 2.
Next, we give the definitions for CPRFs that are tailored to prefix-constrained

PRFs.
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Fig. 2. Illustration of the GGM PRF. Every left child kx‖0 of a node kx is defined
as the first half of PRG(kx), the right child kx‖1 as the second half. The thick node
(shaded in green) corresponds to FGGM (k∅, 010). (Color figure online)

Definition 15 (Prefix-constrained PRF). For n ∈ N, a function F : K ×
{0, 1}n → Y is a prefix-constrained PRF if there are algorithms F.Constrain :
K × {0, 1}≤n → Kpre and F.Eval : Kpre × {0, 1}n → Y which for all k ∈ K,
x ∈ {0, 1}≤n and kx ← F.Constrain(k, x) satisfy

F.Eval(kx, x′) =

{
F(k, x′) if x is a prefix of x′

⊥ otherwise.

That is, F.Constrain(k, x) outputs a key kx that allows evaluation of F(k, ·) on
all inputs that have x as a prefix. We can derive a prefix-constrained PRF from
the GGM construction by setting K = {0, 1}λ, Y = {0, 1}λ, and for a random
k ← K and x ∈ {0, 1}l with l ≤ n defining FGGM .Constrain(k, x) = (k1

x, k2
x) :=

(x,FGGM (k, x)) and

FGGM .Eval(kx, x′) :=

{
FGGM (k2

x, z) if x′ = x||z for some z ∈ {0, 1}n−l

⊥ otherwise.

The security for prefix-constrained PRFs is argued using the following game.

Definition 16. The game is played between a challenger G (which is either GL

or GR) and an adversary A using F. The challenger G picks a random key k ← K,
and initialises a set X = ∅. A can make at most q = q(n) queries, which is either:

– Constrain queries, (constrain, x): G returns F.Constrain(k, x), and adds x to
X .

– One challenge query (challenge, x∗): Here the answer differs between GL

and GR: GL answers with F.Eval(k, x∗) (real output), whereas GR answers
with random r ← Y (fake, random output) – for the task to be non-trivial, no
element in X must be a prefix of x∗. G adds x∗ to X .
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Definition 17. A prefix-constrained PRF F is (s, ε, q)-adaptive-secure if GL and
GR are (s, ε)-indistinguishable.

7.2 Lower Bound for the GGM CPRF

To prove a lower bound for GGM, we use the combinatorial upper bound from
Sect. 5.1 for non-oblivious Pebblers, restricted to the class of graphs with outde-
gree 2. The main challenge here is that – in contrast to our Builder from Sect. 5.1
– the constrain queries of an adversary in the security game for prefix-constrained
PRFs correspond to paths in an exponentially large binary tree (see Fig. 3). But
it’s not only that the adversary has to follow a certain query pattern, but more
importantly for each query (which corresponds to a path of up to n edges) it
only receives a single evaluation (and this evaluation allows A to efficiently com-
pute any evaluations for the entire subtree below it). While A might be able to
use its unrestricted computational power to distinguish whether the answer to
its query lies in the image of the PRG (for an appropriately chosen PRG), it
is impossible to extract a pebbling configuration on the entire path given just
the single evaluation. This is why we follow a different approach and instead of
choosing a PRG with sparse output range construct a PRG from two random
permutations, which allows A to invert the function and compare whether two
queries were computed from the same seed. Similar to the Builder strategy in
Sect. 5.1, our adversary A makes bunches of queries forming complete binary
subtrees, threaded along the challenge path. However, these queries are now
paths of length n such that their prefixes cover the binary subtrees, respectively.
Accordingly, we then map these bunches of queries to a pebbling strategy on
the corresponding binary subtrees, instead of mapping single edges to a pebble
or no pebble, as we did in previous applications. Fortunately, the combinatorial
bound from Sect. 5.1 still holds for Builders revealing such bunches of queries at
once.

Lemma 2 (Coupling Lemma for GGM CPRF). Let G be the family of
trees of depth D, size N = poly(D), indegree 1, outdegree 2 and a single source;
i.e. G denotes the set of poly(D)-sized subtrees of the binary tree of depth D
which include the root, where edges are directed from the root to the leaves.
Furthermore, let B and XCD,k for k = log(D)/2 be the Builder and the cut from
Theorem 6. Then there exists

1. an information-theoretically secure length-doubling PRG scheme PRG
2. a CPRF adversary A in PSPACE

such that for any straight-line reduction R that proves CPRF security of the
GGM construction for input length D+1 based on the security of the underlying
PRG scheme there exists a Pebbler P such that the advantage 1/Λ of R is at most
the advantage of P against B (up to a negligible additive term poly(D)/2Ω(D)).

To prove this lemma, we will use the following construction of an information-
theoretically secure PRG scheme.
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Lemma 3. Let π0, π1 : {0, 1}λ → {0, 1}λ be two random permutations. Then
PRG : {0, 1}λ → {0, 1}2λ defined by PRG(x) := (π0(x), π1(x)) is a poly(λ)/2λ/2-
secure length-doubling PRG.

Proof. Since random permutations are indistinguishable from random functions
using only polynomially many queries, we may consider the PRG as a concatena-
tion of two poly(λ)/2λ/2-secure PRFs by a hybrid argument. Again by hybrid
argument, the concatenation of two secure PRFs yields a PRF from {0, 1}λ to
{0, 1}2λ. The lemma follows, since length extending PRFs are PRGs.

Having a construction of a PRG in place, we are now ready to prove
Lemma 2.

Proof (Proof of Lemma 2). We pick the PRG from Lemma 3 for λ = Θ(D).
Analogously to the proof of Lemma 1 we define a map φ between the CPRF

game and the Builder-Pebbler Game:

– For a constrain query by adversary A, (constrain, x), we make a case dis-
tinction on the length l of x:

• if l = D + 1, the Builder B extends the current tree in the natural way,
ignoring k-sized blocks of trailing zeros in x and adding random nodes as
needed. More formally, write x = x1||x2||x3 ∈ {0, 1}l1 ×{0, 1}l2 ×{0}l3 ×
{0, 1} with l1, l2, l3 ≥ 0 and k|l3, where x1 is the longest prefix of x that
has been queried so far. For each prefix x′ of x with length between l1 +1
and l1 + l2, B chooses a uniformly random node (that is not associated
to any prefix yet) and associates it to x′. Writing x2 = (x2

1, x
2
2, . . . ), it

then queries the edges between the nodes associated with x1 and x1||x2
1,

between x1||x2
1 and x1||x2

1||x2
2, etc.

• if l ≤ D, B ignores the query.
– For the challenge query (challenge, x∗), proceed as for constrain queries to

extend the tree. Choose the node associated to x∗ as the challenge T .
– Pebbles are determined in the following way. Recall that the Builder from

Theorem 6 always extends the tree in chunks of entire subtrees (and the
queries comprising such a chunk can be sent at the same time). So we may
restrict the definition of φ to preimages of such Builders. To determine which
edges in such a subtree are pebbled, consider the responses yi corresponding
to the queries xi in such a chunk. For each yi invert π0 repeatedly to obtain the
seed associated to the i-th leaf in the subtree. Then for every node, bottom-
up, if

• the children are associated with seeds s0, s1, resp., check if π−1
0 (s0) =

π−1
1 (s1). If this is true, associate the node with this computed seed. Oth-

erwise, consider both outgoing edges from this node as pebbled and set
the seed of this node to ⊥.

• only the left (right) child is associated with a seed s, set the seed of this
node to π−1

0 (s) (π−1
1 (s), resp.).

• neither of the children is associated with a seed, set the seed of the current
node to ⊥.
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For the root of the subtree, which already has a seed s (or ⊥) associated to
it, check if s is consistent with its children; if not, update to ⊥ and pebble
both outgoing edges.

Let A be the preimage under φ of B from Theorem 6 as follows: A first
queries CPRF evaluations for {0, 1}2k||0D−2k+1 in reverse order (i.e. starting
from 12k||0D−2k+1)13 – this is in analogy to the first 2k rounds of B (see Fig. 3).
Then it proceeds in [D/k − 2] rounds, where in round j ∈ [D/k − 2] it first sam-
ples x∗

j ∈ {0, 1}k and then makes 22k queries x∗
1|| . . . ||x∗

j ||{0, 1}2k||0D−(j+2)k+1

in reverse order, starting with x∗
1|| . . . ||x∗

j ||12k||0D−(j+2)k+1. Next, A samples a
challenge x∗ = (x∗

1, . . . , x
∗
D, 1) in x∗

1|| . . . ||x∗
D/k−2||{0, 1}2k||1 uniformly at ran-

dom. Furthermore, it makes constrain queries for all prefixes (x∗
1, . . . , x

∗
j−1, x̄j)

for j ∈ [D]. If the answers to the prefixes are not consistent with the previous
CPRF queries, then A aborts and outputs 0. Otherwise, A uses its unrestricted
computational power to compute the mapping φ from the reduction’s answers
to its queries to a pebbling configuration on the subtree. Note that due to the
previous check, there must not be any pebbles on edges rooted at nodes outside
the challenge path. A now considers the pebbling configuration induced on the
challenge path. If this pebbling configuration lies in the cut defined by XCD,k,
the adversary A outputs 0, otherwise 1.

Clearly, A wins the CPRF game with probability 1. Now, let R be an arbi-
trary straight-line reduction. First, note that the probability that R queries PRG
on the challenge seed is negligibly small (poly(D)/2Ω(D)). Assuming this does
not happen, R can only gain a bigger advantage if it embeds its PRG challenge
when interacting with A and manages to hit a pebbling configuration in the cut,
i.e. such that depending on the challenge being real or random the pebbling con-
figuration which A extracts lies either in the cut set or not. Note that choosing
a value in the tree at random instead of applying PRG to the correct output is
equivalent (w.r.t. A’s behavior) to responding to the respective queries inconsis-
tently and will thus yield a pebble with overwhelming probability. Furthermore,
the consistency check after the constrain queries ensures that R may only place
pebbles on edges rooted in the challenge graph and can only embed its challenge
in the challenge graph. Similar to the proof in Lemma 1, one can see that R
maps (under φ) to a Pebbler in the Builder-Pebbler Game which has at least
the same advantage of achieving such a configuration.

��

Using the above lemma, the following corollary now easily follows from The-
orem 6.

13 This is for technical reasons: We defined the mapping φ to ignore k-blocks of trailing
zeros in order to associate queries x||0D−2k+1 to (non-disjoint) paths of length 2k. To
this aim φ prolongs the longest already existing subpath associated to some prefix x′

of x. If A now starts querying the string 0D+1, this query would simply be ignored.
On the other hand, if there was a preceding query 02k−1||1||0D−2k+1, then the query
0D+1 is mapped to an edge extending the path associated with the prefix 02k−1.
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Fig. 3. A schematic diagram showing the adversarial query strategy for GGM CPRF
in Lemma 2. The outer (gray) triangle represents the perfect binary tree of depth
D = 7k + 1 representing the GGM PRF. The internal (blue) triangles represent
perfect binary trees of depth 2k with the j-th triangle representing the 22k queries
x∗
1|| . . . ||x∗

j ||{0, 1}2k||0D−(j+2)k+1. The challenge x∗ is highlighted (in red) with the
label j indicating the string x∗

j . (Color figure online)

Corollary 2 (Lower Bound for GGM). Let n be the input length of the
GGM CPRF scheme. Then any straight-line reduction proving cPRF security of
the GGM construction based on the security of the underlying PRG scheme loses
at least a factor Λ ≥ n(log(n)−log log(n))/2.
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Abstract. We initiate a study of the composition properties of interac-
tive differentially private mechanisms. An interactive differentially pri-
vate mechanism is an algorithm that allows an analyst to adaptively ask
queries about a sensitive dataset, with the property that an adversarial
analyst’s view of the interaction is approximately the same regardless of
whether or not any individual’s data is in the dataset. Previous studies of
composition of differential privacy have focused on non-interactive algo-
rithms, but interactive mechanisms are needed to capture many of the
intended applications of differential privacy and a number of the impor-
tant differentially private primitives.

We focus on concurrent composition, where an adversary can arbi-
trarily interleave its queries to several differentially private mechanisms,
which may be feasible when differentially private query systems are
deployed in practice. We prove that when the interactive mechanisms
being composed are pure differentially private, their concurrent compo-
sition achieves privacy parameters (with respect to pure or approximate
differential privacy) that match the (optimal) composition theorem for
noninteractive differential privacy. We also prove a composition theorem
for interactive mechanisms that satisfy approximate differential privacy.
That bound is weaker than even the basic (suboptimal) composition the-
orem for noninteractive differential privacy, and we leave closing the gap
as a direction for future research, along with understanding concurrent
composition for other variants of differential privacy.

Keywords: Interactive differential privacy · Concurrent composition
theorem

1 Introduction

1.1 Differential Privacy

Differential privacy is a framework for protecting privacy when performing statis-
tical releases on a dataset with sensitive information about individuals. (See the
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surveys [10,23].) Specifically, for a differentially private mechanism, the prob-
ability distribution of the mechanism’s outputs of a dataset should be nearly
identical to the distribution of its outputs on the same dataset with any single
individual’s data replaced. To formalize this, we call two datasets x, x′, each
multisets over a data universe X , adjacent if one can be obtained from the other
by adding or removing a single element of X .

Definition 1.1 (Differential Privacy [8]). For ε, δ ≥ 0, a randomized algo-
rithm M : MultiSets(X ) → Y is (ε, δ)-differentially private if for every pair of
adjacent datasets x, x′ ∈ MultiSets(X ), we have:

∀ T ⊆ Y Pr[M(x) ∈ T ] ≤ eε · Pr[M(x′) ∈ T ] + δ (1)

where the randomness is over the coin flips of the algorithm M.

In the practice of differential privacy, we generally view ε as “privacy-loss
budget” that is small but non-negligible (e.g. ε = 0.1), and we view δ as cryp-
tographically negligible (e.g. δ = 2−60). We refer to the case where δ = 0 as
pure differential privacy, and the case where δ > 0 as approximate differential
privacy.

1.2 Composition of Differential Privacy

A crucial property of differential privacy is its behavior under composition. If we
run multiple distinct differentially private algorithms on the same dataset, the
resulting composed algorithm is also differentially private, with some degrada-
tion in the privacy parameters (ε, δ). This property is especially important and
useful since in practice we rarely want to release only a single statistic about
a dataset. Releasing many statistics may require running multiple differentially
private algorithms on the same database. Composition is also a very useful tool
in algorithm design. In many cases, new differentially private algorithms are cre-
ated by combining several simpler algorithms. The composition theorems help
us analyze the privacy properties of algorithms designed in this way.

Formally, let M0,M1, . . . ,Mk−1 be differentially private mechanisms, we
define the composition of these mechanisms by independently executing them.
Specifically, we define M = Comp(M0,M1, . . . ,Mk−1) as follows:

M(x) = (M0(x), . . . ,Mk−1(x))

where each Mi is run with independent coin tosses. For example, this is how we
might obtain a mechanism answering a k-tuple of queries.

A handful of composition theorems already exist in the literature. The Basic
Composition Theorem says that the privacy degrades at most linearly with the
number of mechanisms executed.

Theorem 1.2 (Basic Composition [7]). For every ε ≥ 0, δ ∈ [0, 1], if
M0, . . . ,Mk−1 are each (ε, δ)-differentially private mechanisms, then their com-
position Comp(M0, . . . ,Mk−1) is (kε, kδ)-differentially private.
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Theorem 1.2 shows the global privacy degradation is linear in the number of
mechanisms in the composition. However, if we are willing to tolerate an increase
in the δ term, the privacy parameter ε only needs to degrade proportionally to√

k:

Theorem 1.3 (Advanced Composition [12]). For all ε ≥ 0, δ ∈
[0, 1], if M0, . . . ,Mk−1 are each (ε, δ)-differentially private mechanisms and
k < 1/ε2, then for all δ′ ∈ (0, 1/2), the composition (M0, . . . ,Mk−1) is(
O

(√
k log(1/δ′)

)
· ε, kδ + δ′

)
-differentially private.

Theorem 1.3 is an improvement if δ′ = 2−o(k). However, despite giving an
asymptotically correct upper bound for the global privacy parameter, Theorem
1.3 is not exact. Kairouz, Oh, and Viswanath [18] shows how to compute the opti-
mal bound for composing k mechanisms where all of them are (ε, δ)-differentially
private. Murtagh and Vadhan [21] further extends the optimal composition for
the more general case where the privacy parameters may differ for each algorithm
in the composition:

Theorem 1.4 (Optimal Composition [18,21]). If M0, . . . ,Mk−1 are each
(εi, δi)-differentially private, then given any δg > 0, Comp(M0, . . . ,Mk−1) is
(εg, δg)-differentially private for the least value of εg ≥ 0 such that

1
∏k−1

i=0 (1 + eεi )

∑

S⊆{0,...,k−1}
max

{
e
∑

i∈S εi − eεg · e
∑

i/∈S εi , 0
}

≤ 1 − 1 − δg
∏k−1

i=0 (1 − δi)

A special case when all M0, . . . ,Mk−1 are (ε, δ)-differentially private, then pri-
vacy parameter is upper bounded by the least value of εg ≥ 0 such that

1

(1 + eε)k

k∑
i=0

(
k

i

)
max

{
eiε − eεg · e(k−i)ε, 0

}
≤ 1 − 1 − δg

(1 − δ)k

1.3 Interactive Differential Privacy

The standard treatment of differential privacy, as captured by Definition 1.1,
refers to a noninteractive algorithm M that takes a dataset x as input
and produces a statistical release M(x), or a batch by taking M =
Comp(M0, . . . ,Mk−1). However, in many of the motivating applications of dif-
ferential privacy, we don’t want to perform all of our releases in one shot, but
rather allow analysts to make adaptive queries to a dataset. Thus, we should
view the mechanism M as a party in a two-party protocol, interacting with a
(possibly adversarial) analyst.

To formalize the concept of interactive DP, we recall one of the standard
formalizations of an interactive protocol between two parties A and B. We do
this by viewing each party as a function, taking its private input, all messages
it has received, and the party’s random coins, to the party’s next message to be
sent out.
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Definition 1.5 (Interactive protocols). An interactive protocol (A,B) is
any pair of functions. The interaction between A with input xA and B with
input xB is the following random process (denoted (A(xA), B(xB))):

1. Uniformly choose random coins rA and rB (binary strings) for A and B,
respectively.

2. Repeat the following for i = 0, 1, . . .:
(a) If i is even, let mi = A (xA,m1,m3, . . . ,mi−1; rA).
(b) If i is odd, let mi = B (xB ,m0,m2, . . . ,mi−1; rB).
(c) If mi−1 = halt, then exit loop.

We further define the view of a party in an interactive protocol to capture
everything the party “sees” during the execution:

Definition 1.6 (View of a party in an interactive protocol). Let
(A,B) be an interactive protocol. Let rA and rB be the random coins
for A and B, respectively. A’s view of (A(xA; rA), B(xB ; rB)) is the tuple
ViewA〈A(xA; rA), B(xB ; rB)〉 = (rA, xA,m1,m3, . . .) consisting of all the mes-
sages received by A in the execution of the protocol together with the private
input xA and random coins rA. If we drop the random coins rA and/or rB,
ViewA〈A(xA), B(xB)〉 becomes a random variable. B’s view of (A(xA), B(xB))
is defined symmetrically.

In our case, A is the adversary and B is the mechanism whose input is usually
a database x. Since A does not have an input in our case, we will denote the
interactive protocol as (A,B(x)) for the ease of notation. Since we will only be
interested in A’s view and A does not have an input, we will drop the subscript
and write A’s view as View〈A,B(x)〉.

Now we are ready to define the interactive differential privacy as a type of
interactive protocol between an adversary (without any computational limita-
tions) and an interactive mechanism of special properties.

Definition 1.7 (Interactive Differential Privacy). A randomized algo-
rithm M is an (ε, δ)-differentially private interactive mechanism if for every
pair of adjacent datasets x, x′ ∈ MultiSets(X ), for every adversary algorithm A
we have:

∀T ⊆ Range (View〈A,M(·)〉) ,

Pr [View〈A,M(x)〉 ∈ T ] ≤ eε Pr [View〈A,M(x′)〉 ∈ T ] + δ
(2)

where the randomness is over the coin flips of both the algorithm M and the
adversary A.

In addition to being the “right” modelling for many applications of differential
privacy, interactive differential privacy also captures the full power of funda-
mental DP mechanisms such as the Sparse Vector Technique [9,22] and Private
Multiplicative Weights [17], which are in turn useful in the design of other DP
algorithms (which can use these mechanisms as subroutines and issue adaptive
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queries to them). Interactive DP was also chosen as the basic abstraction in the
programming framework for the new open-source software project OpenDP [14],
which was our motivation for this research.

Despite being such a natural and useful notion, interactive DP has not been
systematically studied in its own right. It has been implicitly studied in the
context of distributed forms of DP, starting with [1], where the sensitive dataset
is split amongst several parties, who execute a multiparty protocol to estimate
a joint function of their data, while each party ensures that their portion of the
dataset has the protections of DP against the other parties. Indeed, in an m-party
protocol, requiring DP against malicious coalitions of size m− 1 is equivalent to
requiring that each party’s strategy is an interactive DP mechanism in the sense
of Definition 1.7. An extreme case of this is the local model of DP, where each
party holds a single data item in X representing data about themselves [19].
There been extensive research about the power of interactivity in local DP;
see [5] and the references therein. In contrast to these distributed models, in
Definition 1.7 we are concerned with the centralized DP scenario where only one
party (M) holds sensitive data, and how an adversarial data analyst (A) may
exploit adaptive queries to extract information about the data subjects.

Some of the aforementioned composition theorems for noninteractive DP,
such as in [12,21], are framed in terms of an adaptive “composition game” where
an adversary can adaptively select the mechanisms M0, . . . ,Mk−1, and thus the
resulting composition Comp(M0, . . . ,Mk−1) can be viewed as an interactive
mechanism, but the results are not framed in terms of a general definition of
Interactive DP. In particular, the mechanisms Mi being composed are restricted
to be noninteractive in the statements and proofs of these theorems.

1.4 Our Contributions

In this paper, we initiate a study of the composition of interactive DP mecha-
nisms. Like in the context of cryptographic protocols, there are several different
forms of composition we can consider. The simplest is sequential composition,
where all of the queries to Mi−1 must be completed before any queries are
issued to Mi. It is straightforward to extend the proofs of the noninteractive
DP composition theorems to handle sequential composition of interactive DP
mechanisms; in particular the Optimal Composition Theorem (Theorem 1.4)
extends to this case. (Details omitted.)

Thus, we turn to concurrent composition, where an adversary can arbitrar-
ily interleave its queries to the k mechanisms. Although the mechanisms use
independent randomness, the adversary may create correlations between the
executions by coordinating its actions; in particular, its queries in one execu-
tion may also depend on messages it received in other executions. Concurrent
composability is important for the deployment of interactive DP in practice, as
one or more organizations may set up multiple DP query systems on datasets
that refer to some of the same individuals, and we would not want the privacy
of those individuals to be violated by an adversary that can concurrently access
those systems. Concurrent composability may also be useful in the design of DP
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algorithms; for example, one might design a DP machine learning algorithm that
uses adaptive and interleaved queries to two instantiations of an interactive DP
mechanism like the Sparse Vector Technique [9,22].

Although the concurrent composition for the case of differential privacy has
not been explored before, it has been studied extensively for many primitives in
cryptography, and it is often much more subtle than the sequential composition.
(See the surveys [4,15].)

For example, standard zero-knowledge protocols are no longer zero-knowledge
when a single prover is involved in multiple, simultaneous zero-knowledge proofs
with one or multiple verifiers [13,16].

We use ConComp(M0, . . . ,Mk−1) to denote the concurrent composition of
interactive mechanisms M0, . . . ,Mk−1. (See Sect. 2 for a formal definition.)

Our first result is roughly an analogue of the Basic Composition Theorem.

Theorem 1.8. If interactive mechanisms M0, . . . ,Mk−1 are each (ε, δ)-
differentially private, then their concurrent composition ConComp(M0, . . . ,

Mk−1) is
(
k · ε, ekε−1

eε−1 · δ
)
-differentially private.

More generally, if interactive mechanism Mi is (εi, δi)-differentially private
for i = 0, . . . , k − 1, then the concurrent composition ConComp(M0, . . . ,Mk−1)
is (εg, δg)-differentially private, where

εg =
k−1∑
i=0

εi, and

δg =
k−1∑
i=0

e
∑i−1

j=0 εj · δi ≤ eεg ·
k−1∑
i=0

δi.

Just like in the Basic Composition Theorem for noninteractive DP (Theo-
rem 1.2), the privacy-loss parameters εi just sum up. However, the bound on
δg is worse by a factor of at most eεg . In the typical setting where we want to
enforce a global privacy loss of εg = O(1), this is only a constant-factor loss com-
pared to the Basic Composition Theorem, but that constant can be important
in practice. Note that expression for δg depends on the ordering of the k mech-
anisms M0, . . . ,Mk−1, so one can optimize it further by taking a permutation
of the mechanisms that minimizes δg.

The proof of Theorem 1.8 is by a standard hybrid argument. We compare the
distributions of H0 = View〈A,ConComp(M0(x),M1(x), . . . ,Mk−1(x))〉 and
Hk = View〈A,ConComp(M0(x′),M1(x′), . . . ,Mk−1(x′))〉 on adjacent datasets
x, x′ by changing x to x′ for one mechanism at a time, so that Hi−1 and Hi differ
only on the input to Mi−1. To relate Hi−1 and Hi we consider an adversary
strategy Ai that emulates A’s interaction with Mi−1, while internally simu-
lating all of the other Mj ’s. Applying a “triangle inequality” to the distance
notion given in Requirement (2) yields the result. This proof is very similar to
the proof of the “group privacy” property of (noninteractive) differential privacy,
where (ε, δ)-DP for datasets that differ on one record implies

(
k · ε, ekε−1

eε−1 · δ
)

for datasets that differ on k records.
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Next we show that the Advanced and Optimal Composition Theorems (The-
orems 1.3 and 1.4) for noninteractive DP extend to interactive DP, provided that
the mechanisms Mi being composed satisfy pure DP (i.e. δi = 0). Note that the
final composed mechanism ConComp(M0, . . . ,Mk−1) can be approximate DP,
by taking δg = δ′ > 0, and thereby allowing for a privacy loss εg that grows
linearly in

√
k rather than k.

We do this by extending the main proof technique of [18,21] to interac-
tive DP mechanisms. Specifically, we reduce the analysis of interactive (ε, 0)-DP
mechanisms to that of analyzing the following simple “randomized response”
mechanism:

Definition 1.9 ([8,25]). For ε > 0, define a randomized noninteractive algo-
rithm RRε : {0, 1} → {0, 1} as follows:

RRε(b) =

{
b w.p. eε

1+eε

¬b w.p. 1
1+eε .

Note that RRε is a noninteractive (ε, 0)-DP mechanism. We show that every
interactive (ε, 0)-DP mechanism can be, in some sense, simulated from RRε:

Theorem 1.10. Suppose that M is an interactive (ε, 0)-differentially private
mechanism. Then for every pair of adjacent datasets x0, x1 there exists an inter-
active mechanism T s.t. for every adversary A and every b ∈ {0, 1} we have

View(A,M(xb)) ≡ View(A, T (RRε(b)))

Here T is an interactive mechanism that depends on M as well as a fixed pair
of adjacent datasets x0 and x1. It receives a single bit as an output of RRε(b),
and then interacts with the adversary A just like M would. Kairouz, Oh, and
Viswanath [18] proved Theorem 1.10 result for the case that M and T are
noninteractive. The interactive case is more involved because we need a single
T that works for all adversary strategies A. (If we allow T to depend on the
adversary strategy A, then the result would readily follow from that of [18], but
this would not suffice for our application to concurrent composition.)

Given the Theorem 1.10, to analyze ConComp(M0(xb), . . . ,Mk−1(xb)) on
b = 0 vs. b = 1, it suffices to analyze ConComp(T0(RRε0(b)), . . . , Tk−1

(RRεk−1(b))). An adversary’s view interacting with the latter concurrent com-
position can be simulated entirely from the output of Comp(RRε0(b), . . . ,
RRεk−1(b)), which is the composition of entirely noninteractive mechanisms.
Thus, we conclude:

Corollary 1.11. The Advanced and Optimal Composition Theorems (Theo-
rems 1.3 and 1.4) extend to the concurrent composition of (εi, δi)-interactive
DP mechanisms Mi provided that δ0 = δ1 = · · · = δk−1 = 0.



Concurrent Composition of Differential Privacy 589

We leave the question of whether or not the Advanced and/or Optimal Com-
position Theorems extend to the concurrent composition of approximate DP
mechanisms (with δi > 0) for future work. The Optimal Composition Theorem
for noninteractive approximate DP (Theorem 1.4) is also proven by showing that
any noninteractive (ε, δ)-DP mechanism can be simulated by an approximate-
DP generalization of randomized response, RR(ε,δ), analogously to Theorem 1.10.
Based on computer experiments described in Sect. 6, we conjecture that such a
simulation also exists for every approximate DP interactive mechanism, and the
Optimal Composition Theorem should extend at least to 2-round interactive
mechanisms in which all messages are 1 bit long.

Another interesting question for future work is analyzing concurrent com-
position for variants of differential privacy, such as Concentrated DP [2,3,11],
Rényi DP [20], and Gaussian DP [6]. Some of these notions require bounds on
Rényi divergences, e.g. that

Dα(View〈A,M(x)〉||View〈A,M(x′)〉) ≤ ρ,

for adjacent datasets x, x′ and certain pairs (α, ρ). Here sequential composition
can be argued using a chain rule for Rényi divergence:

Dα((Y,Z)||(Y ′, Z ′)) ≤ Dα(Y ||Y ′) + sup
y

Dα(Z|Y =y||Z ′|Y ′=y). (3)

Taking Y to be the view of the analyst interacting with M0(x), Z to be the
view of the analyst in a subsequent interaction with M1(x), and Y ′ and Z ′ to
be analogously defined with respect to an adjacent dataset x′, we obtain the
usual composition bound of ρ0 + ρ1 on the overall Rényi divergence of order α,
where ρ0 and ρ1 are the privacy-loss parameters of the individual mechanisms.
However, this argument fails for concurrent DP, since we can no longer assert the
privacy properties of M1 conditioned on any possible value y of the adversary’s
view of the interaction with M0. Unfortunately, the Chain Rule (3) does not
hold if we replace the supremum with an expectation, so a new proof strategy
is needed (if the composition theorem remains true).

2 Definitions and Basic Properties

The formal definition of the concurrent composition of interactive protocols is
provided here.

Definition 2.1 (Concurrent Composition of Interactive Protocols). Let
M0, . . . ,Mk−1 be interactive mechanisms. We say M = ConComp(M0, . . . ,
Mk−1) is the concurrent composition of mechanisms M0, . . . ,Mk−1 if M runs
as follows:

1. Random coin tosses for M consist of r = (r0, . . . , rk−1) where rj are random
coin tosses for Mj.

2. Inputs for M consists of x = (x0, . . . , xk−1) where xj is private input for
Mj.
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3. M(x,m0, . . . ,mi−1; r) is defined as follows:
(a) Parse mi−1 as (q, j) where q is a query and j ∈ [k]. If mi−1 cannot be

parsed correctly, output halt.
(b) Extract history (mj

0, . . . ,m
j
t−1) from (m0, . . . ,mi−1) where mj

i are all of
the queries to mechanism Mj.

(c) Output Mj(xj ,m
j
0, . . . ,m

j
t−1; rj).

We are mainly interested in the case where all mechanisms operate on the
same dataset, i.e., the private input for each Mi are all the same.

We show that to prove an interactive DP mechanism is (ε, δ)-differentially
private, it suffices to consider all deterministic adversaries.

Lemma 2.2. An interactive mechanism M is (ε, δ)-differentially private if and
only if for every pair of adjacent datasets x, x′, for every deterministic adversary
algorithm A, for every possible output set T ⊆ Range (View〈A,M(·)〉) we have

Pr [View〈A,M(x)〉 ∈ T ] ≤ eε Pr [View〈A,M(x′)〉 ∈ T ] + δ (4)

Proof. The necessity is immediately implied by the definition of interactive differ-
ential privacy. We prove the direction of sufficiency here. Assume that mechanism
M satisfies (4) for every deterministic adversary. Suppose, for contradiction, that
there exists a randomized adversary A and some output set T s.t.

Pr [View〈A,M(x)〉 ∈ T ] > eε Pr [View〈A,M(x′)〉 ∈ T ] + δ (5)

Since the random coins of A and M are independently chosen, we have

Pr [View〈A,M(x)〉 ∈ T ] = ErA

[
Pr
rM

[View〈A(rA),M(x; rM)〉 ∈ T ]
]

.

Therefore, there must exists at least one fixed rA s.t.

Pr [View〈A(rA),M(x)〉 ∈ T ] > eε Pr [View〈A(rA),M(x′)〉 ∈ T ] + δ

otherwise 5 is impossible. Therefore, we can define a deterministic adversary
ArA

= A(rA). For set TrA
= {(m1,m3, . . .) : (rA,m1,m3, . . .) ∈ T}, since we

have
Pr [View〈A(rA),M(x)〉 ∈ T ] = Pr [View〈ArA

,M(x)〉 ∈ TrA
]

we know that ArA
is a counter example for our assumption, which leads to the

conclusion.

For the convenience of the proof, we introduce a variant of concurrent com-
position of interactive protocols, which only accept queries in the exact order of
M0, . . . ,Mk−1.

Definition 2.3 (Ordered Concurrent Composition of Interactive Pro-
tocols). Let M0, . . . ,Mk−1 be interactive mechanisms. We say M =
ConComporder(M0, . . . ,Mk−1) is the ordered concurrent composition of mech-
anisms M0, . . . ,Mk−1 if M(x) runs as follows:
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1. Random coin tosses and inputs for M are the same as
ConComp(M0, . . . ,Mk−1).

2. M(x,m0, . . . ,mi−1; r) is defined as follows:
(a) Let j = i mod k, t = �i/k.
(b) Output Mj(x,mj ,mj+k, . . . ,mj+t·k; rj).

We also introduce a special kind of interactive mechanism, which ignores all
query strings begin with 0.

Definition 2.4 (Null-query Extension). Given an interactive mechanism
M, define its null-query extension M∅ defined as follows: For any input mes-
sage sequence m, M∅(x,m; r) = M(x,m′; r) where m′ = (m′

1, . . . ,m
′
k) such that

(1m′
1, . . . , 1m′

k) is the subsequence of m consisting of all strings that begin with
bit 1. That is, all messages that begin with 0 are “null queries” that are ignored.
By convention, M(x, λ; r) = ⊥ where λ is an empty tuple.

Now we show that in order to prove ConComp(M0, . . . ,Mk−1) is (ε, δ)-
differentially private, it suffices to prove a corresponding ordered concurrent
composition is also (ε, δ)-differentially private. We use X ≡ Y to denote that
two random variables X and Y have the same distribution.

Lemma 2.5. ConComp(M0, . . . ,Mk−1) is an (ε, δ)-differentially private inter-
active mechanism if the ordered concurrent composition of the null-query exten-
sions of M0, . . . ,Mk−1, i.e.,
ConComporder(M∅

1, . . . ,M∅
k), is an (ε, δ)-differentially private interactive mech-

anism.

Proof. Suppose ConComporder

(M∅
0, . . . ,M∅

k−1

)
is (ε, δ)-differentially private.

For every adversary A interacting with ConComp (M0, . . . ,Mk−1), we construct
another adversary A′ interacting with ConComporder(M∅

0, . . . ,M∅
k−1) as follows:

given any settings of coin tosses r, and any history (q0, a0, . . . , qi−1, ai−1) between
A and ConComp(M0, . . . ,Mk−1),

1. Let qi = A(a0, . . . , ai−1; r).
2. Parse qi−1 as (q∗

i−1, s) where q∗
i−1 is a query and s ∈ {0, . . . , k − 1} the index

of target mechanism. Parse qi as (q∗
i , t) in a similar way.

3. Send the null query 0 to M∅
(s+1) mod k, . . . ,M∅

(t−1) mod k in order.

4. Send 1q∗
i to M∅

t .

Write M = ConComp(M0, . . . ,Mk−1), and M′ = ConComporder(M∅
0, . . . ,

M∅
k−1). For every query sequence q from A, we have M(x, q; r) = M′(x, q′; r)

where q′ is the sequence of queries that A′ asks based on q (with ‘1’ in front
of every query in q and additional 0s). Therefore, for every A interact with M,
and for every dataset x we have

View〈A,M(x)〉 ≡ Post(View〈A′,M′(x)〉)
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where Post refers to remove all repeated answers due to the null queries. This
immediately leads to

Pr[View〈A,M(x)〉 ∈ T ]
= Pr[Post(View〈A′,M′(x)〉) ∈ T ]
≤ eε Pr[Post(View〈A′,M′(x′)〉) ∈ T ] + δ

= eε Pr[View〈A,M(x′)〉 ∈ T ] + δ

Therefore, M is also (ε, δ)-DP.

Given Lemma 2.5, for all of the concurrent compositions we considered
in this paper, we assume that the concurrent compositions are ordered. For
example, if an adversary A is concurrently interacting with two mechanisms
ConComp(M0,M1), we assumes that the queries are alternates between M0

and M1.

3 Concurrent Composition for Pure Interactive
Differential Privacy

In this section, we show that for pure differential privacy, the privacy bound
for concurrent composition is the same as for sequential or noninteractive com-
position. The proof idea is that in an interactive protocol where the adversary
is concurrently interacting with multiple mechanisms, its interaction with one
particular mechanism could be viewed as the combination of the adversary and
the remaining mechanisms interacting with that mechanism, and the differential
privacy guarantee still holds for the “combined adversary”.

A useful notation for thinking about differential privacy and simplify presen-
tations is defined below.

Definition 3.1. Two random variables Y and Z taking values in the same out-
put space Y is (ε, δ)-indistinguishable if for every event T ⊆ Y, we have:

Pr[Y ∈ T ] ≤ eε Pr[Z ∈ T ] + δ

Pr[Z ∈ T ] ≤ eε Pr[Y ∈ T ] + δ

which is denoted as Y
(ε,δ)≈ Z.

Notice that an algorithm M is (ε, δ) differentially private if and only if for all

pairs of adjacent datasets x, x′, we have M(x)
(ε,δ)≈ M(x′).

Lemma 3.2 ([23]). For random variables X,Y,Z, if X
(ε1,0)≈ Y , Y

(ε2,0)≈ Z, then

X
(ε1+ε2,0)≈ Z.
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Theorem 3.3 (Basic Composition of Pure Interactive Differential Pri-
vacy). If interactive mechanisms M0, . . . ,Mk−1 are each (εi, 0)-differentially
private, then their concurrent composition ConComp(M0, . . . ,Mk−1) is(∑k−1

i=0 εi, 0
)
-interactive differentially private.

Proof. We first consider the simplest case that A concurrently interact with 2
mechanisms M,M̃, and then extend the result to general amount of mechanisms.
Suppose M and M̃ are each (ε, 0) and (ε̃, 0)-differentially private interactive
mechanisms. Denote the messages received by A from M as (a0, a1, . . . , ), and
the messages received by A from M̃ as (ã0, ã1, . . . , ). Due to Lemma 2.5, we can
WLOG assume A alternates messages between M and M̃, i.e., the sequence of
messages A received is (a0, ã0, a1, ã1, . . . , ). We use rA, rM, rM̃ to denote the
random coin tosses for A, M, and M̃, respectively. We can view A and M̃(x)
as a single adversary A∗

M̃(x) interacting with M(x) defined as follows:

1. Random coin tosses for A∗
M̃(x) consist of r = (rA, rM̃).

2. A∗
M̃(x)(a0, a1, . . . , ai−1; r) is computed as follows:

(a) q̃i−1 = A(a0, ã0, a1, ã1, . . . , ai−1; rA).
(b) ãi−1 = M̃(x, q̃0, q̃1, . . . , q̃i−1; rM̃).
(c) qi = A(a0, ã0, . . . , ai−1, ãi−1; rA).
(d) Output qi.

We can see that A∗
M̃(x) is a well-defined strategy throughout the entire inter-

active protocol with M, where the randomness of A∗
M̃(x) is fixed as (rA, rM̃).

Given a transcript of A∗
M̃(x)’s view (rA, rM̃, x, a0, a1, . . . , ), we can recover the

corresponding transcript of View〈A,ConComp(M(x),M̃(x))〉 through the fol-
lowing post-processing algorithm Post, which is defined as follows:

Post (rA, rM̃, a0, a1, . . . , aT−1):

1. For i = 1 . . . T − 1, compute
(a) q̃i−1 = A(a0, ã0, . . . , ai−1; rA)
(b) ãi−1 = M̃(x, q̃1, q̃2, . . . , q̃i−1; rM̃)

2. Output (rA, a0, ã0, . . . , aT−1, ãT−1).

Observe that for every (x, rA, rM, rM̃),

Post
(
View〈A∗

M̃(x; rA, rM̃),M(x; rM)〉)

= View〈A(rA),ConComp(M(x; rM),M̃(x; rM̃))〉

Therefore we have

Pr
[
View〈A,ConComp(M(x),M̃(x))〉 ∈ T

]

≡ Pr
[
Post

(
View〈A∗

M̃(x),M(x)〉) ∈ T
]

for every T ⊆ Range(View〈A,ConComp(M(x),M̃(x))〉).
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Since M is ε-differentially private, we know that

View〈A∗
M̃(x),M(x)〉 (ε,0)≈ View〈A∗

M̃(x),M(x′)〉

which leads to

View〈A,ConComp(M(x),M̃(x))〉
≡ Post

(
View〈A∗

M̃(x),M(x)〉)
(ε,0)≈ Post

(
View〈A∗

M̃(x),M(x′)〉)

≡ View〈A,ConComp(M(x′),M̃(x))〉

Symmetrically, we can obtain

View〈A,ConComp(M(x′),M̃(x))〉
(ε̃,0)≈ View〈A,ConComp(M(x′),M̃(x′))〉

Therefore, we have

View〈A,ConComp(M(x),M̃(x))〉
(ε+ε̃,0)≈ View〈A,ConComp(M(x′),M̃(x′))〉

The result can be easily extended to the case when more than 2 mechanisms
are concurrently composed by induction. Therefore for every εi ≥ 0, if interac-
tive mechanism Mi is (εi, 0)-differentially private for i = 0, . . . , k − 1, then the
concurrent composition ConComp(M0, . . . ,Mk−1) is

(∑k−1
i=0 εi, 0

)
-differentially

private.

This result tells us that even under concurrent composition, the privacy
parameters of the resulting composed mechanisms are the “sum up” of the indi-
vidual algorithms for the case pure differential privacy.

4 Concurrent Composition for Approximate Interactive
Differential Privacy

In this section, we explore the privacy guarantee for the concurrent composition
of interactive differential privacy when δ > 0. We show a privacy guarantee
of concurrent composition in a similar logic flow as in Theorem 3.3, but in
approximate differential privacy. As argued in the proof of Theorem 3.3, when
the adversary is interacting with two mechanisms, we can view A and one of the
mechanisms as a single adversary interacting with another mechanism, and the
view of the combined adversary still enjoy the differential privacy guarantee.
Therefore, if both interactive mechanisms M and M̃ are (ε, δ)-differentially
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private, then for all S ⊆ Range(View〈A,ConComp(M(x),M̃(x))〉), we know
that

Pr
[
View〈A,ConComp(M(x),M̃(x))〉 ∈ S

]

≤ eε Pr
[
View〈A,ConComp(M(x′),M̃(x))〉 ∈ S

]
+ δ

and

Pr
[
View〈A,ConComp(M(x′),M̃(x))〉 ∈ S

]

≤ eε Pr
[
View〈A,ConComp(M(x′),M̃(x′))〉 ∈ S

]
+ δ

and therefore we know that

Pr
[
View〈A,ConComp(M(x),M̃(x))〉 ∈ S

]

≤ eε Pr
[
View〈A,ConComp(M(x′),M̃(x))〉 ∈ S

]
+ δ

≤ eε(eε Pr
[
View〈A,ConComp(M(x′),M̃(x′))〉 ∈ S

]
+ δ) + δ

≤ e2ε Pr
[
View〈A,ConComp(M(x′),M̃(x′))〉 ∈ S

]
+ (1 + eε)δ

A more general concurrent composition bound is stated and derived as fol-
lows:

Theorem 4.1 (Theorem 1.8 restated). Let σ : {0, 1, . . . , n − 1} →
{0, 1, . . . , n − 1} be any permutation of 0, . . . , n − 1. If interactive mecha-
nisms M0, . . . ,Mk−1 are each (εi, δi)-differentially private, then their concur-
rent composition ConComp(M0, . . . ,Mk−1) is

(∑k−1
i=0 εi, δg

)
-differentially pri-

vate, where

δg = min
σ

(
δσ(0) +

k−1∑
i=1

e
∑i−1

j=0 εσ(j)δσ(i)

)

For mathematical convenience, we use an upper bound for δg in practice and

ConComp(M0, . . . ,Mk−1) is
(∑k−1

i=0 εi, ke
∑k−1

i=0 εi maxi(δi)
)
-differentially pri-

vate.

Proof. We use a hybrid argument. For each 0 ≤ i ≤ k − 1, since Mi is (εi, δi)
differentially private, we know that

Pr
[
View〈A,ConComp(M0(x

′), . . . , Mi−1(x
′), Mi(x), . . . , Mk−1(x))〉 ∈ S

]

≤ eεi Pr
[
View〈A,ConComp(M0(x

′), . . . , Mi−1(x
′), Mi(x

′), . . . , Mk−1(x))〉 ∈ S
]
+ δi

by viewing A and M0, . . . ,Mi−1,Mi+1,Mk−1 as a combined adversary and
follow a similar argument as in the proof of Theorem 1.8.
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Therefore,

Pr [View〈A,ConComp(M0(x), M1(x), . . . , Mk−1(x))〉 ∈ S]

≤ eε0 Pr
[
View〈A,ConComp(M0(x

′), M1(x), . . . , Mk−1(x))〉 ∈ S
]
+ δ0

≤ eε0 (eε1 Pr
[
View〈A,ConComp(M0(x

′), M1(x
′), . . . , Mk−1(x))〉 ∈ S

]
+ δ1) + δ0

≤ . . .

≤ e
∑k−1

i=0 εi Pr
[
View〈A,ConComp(M0(x

′), M1(x
′), . . . , Mk−1(x

′))〉 ∈ S
]

+ (δ0 + eε0δ1 + eε0+ε1δ2 + . . . + e
∑k−2

i=0 εiδk−1)

We can see that the δ term of ConComp(M0, . . . ,Mk−1) depends on different
permutations of (M0, . . . ,Mk−1), and the tightest possible bound for the δ term
is

min
σ

(
δσ(0) +

k−1∑
i=1

e
∑i−1

j=0 εσ(j)δσ(i)

)

We also note that δ0+eε0δ1+eε0+ε1δ2+ . . .+e
∑k−2

i=0 εiδk−1 ≤ ke
∑k−1

i=0 εi maxi(δi),
which is more easier to work with in practice.

Notice that if the privacy parameters are homogeneous, i.e. every interactive
mechanism is (ε, δ) differentially private, then this bound reduce to the bound
of group privacy for (ε, δ)-differential privacy.

5 Characterization of ConComp for Pure Interactive
Differential Privacy

[18] shows that to analyze the composition of arbitrary noninteractive (εi, δi)-DP
algorithms, it suffices to analyze the composition of the following simple variant
of randomized response.

Definition 5.1 ([18]). Define a randomized noninteractive algorithm RR(ε,δ) :
{0, 1} → {0, 1, ‘Iam0’, ‘Iam1’} as follows:

Pr
[
RR(ε,δ)(0) = ‘Iam0’

]
= δ Pr

[
RR(ε,δ)(1) = ‘Iam0’

]
= 0

Pr
[
RR(ε,δ)(0) = 0

]
= (1 − δ) · eε

1+eε Pr
[
RR(ε,δ)(1) = 0

]
= (1 − δ) · 1

1+eε

Pr
[
RR(ε,δ)(0) = 1

]
= (1 − δ) · 1

1+eε Pr
[
RR(ε,δ)(1) = 1

]
= (1 − δ) · eε

1+eε

Pr
[
RR(ε,δ)(0) = ‘Iam1’

]
= 0 Pr

[
RR(ε,δ)(1) = ‘Iam1’

]
= δ

Note that RR(ε,δ) is a noninteractive (ε, δ)-differentially private mechanism. [18]
and [21] showed that RR(ε,δ) can be used to simulate the output of every (non-
interactive) (ε, δ)-DP algorithm on adjacent databases. RR refers to “random-
ized response”, as this mechanism is a generalization of the classic randomized
response to δ > 0 and ε �= ln 2 [25].

Theorem 5.2 ([18]). Suppose that M is (ε, δ)-differentially private. Then for
every pair of adjacent datasets x0, x1 there exists a randomized algorithm T s.t.
T (RR(b)) is identically distributed to M(xb) for both b = 0 and b = 1.
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This theorem is useful due to one of the central properties of differential privacy
is that it is preserved under “post-processing” [8,10], which is formulated as
follows:

Lemma 5.3 (Post-processing). If a randomized algorithm M : X → Y is
(ε, δ)-differentially private, and F : Y → Z is any randomized function, then
F ◦ M : X → Z is also (ε, δ)-differentially private.

In noninteractive setting, Theorem 5.2 can be used to prove the optimal com-
position theorem [18,21] since to analyze the composition of arbitrary (εi, δi)-DP
algorithms, it suffices to analyze the composition of RR(εi,δi) algorithms.

If we are able to prove a similar result that arbitrary interactive differential
private mechanisms can also be simulated by the post-processing of randomized
response where the interactive post-processing algorithm does not depend on the
adversary, then we will be able to extend all results of composition theorem for
noninteractive mechanisms to interactive mechanisms. In this paper, we consider
the case of pure differential privacy.

Theorem 5.4 (Theorem 1.10 restated). Suppose that M is an interactive
(ε, 0)-differentially private mechanism. Then for every pair of adjacent datasets
x0, x1 there exists an interactive mechanism T s.t. for every adversary A and
every b ∈ {0, 1} we have

View(A,M(xb)) ≡ View(A, T (RR(ε,0)(b)))

Proof. For arbitrary sequence of queries q(t) = (q0, . . . , qt−1) from A, we denote
by �M(x, q(t)) = (M(x, q(1)),M(x, q(2)), . . . ,M(x, q(t))) the random variable
consisting the first t responses from mechanism M. We construct the interactive
mechanism T receiving queries q(t) as follows:

1. If t = 0, we have

Pr [T (0, q0) = a0] =
eε Pr[M(x0, q0) = a0] − Pr[M(x1, q0) = a0]

eε − 1
(6)

Pr [T (1, q0) = a0] =
eε Pr[M(x1, q0) = a0] − Pr[M(x0, q0) = a0]

eε − 1
(7)

2. If t > 0, given earlier responses (a0, . . . , at−2), we define

Pr
[
T (0, q(t)) = at−1|a0, . . . , at−2

]

=
eε Pr

[
�M(x0, q

(t)) = (a0, . . . , at−1)
]

− Pr
[

�M(x1, q
(t)) = (a0, . . . , at−1)

]

(eε − 1)Pr
[
�T (0, q(t−1)) = (a0, . . . , at−2)

]

(8)
Pr

[
T (1, q(t)) = at−1|a0, . . . , at−2

]

=
eε Pr

[
�M(x1, q

(t)) = (a0, . . . , at−1)
]

− Pr
[

�M(x0, q
(t)) = (a0, . . . , at−1)

]

(eε − 1)Pr
[
�T (1, q(t−1)) = (a0, . . . , at−2)

]

(9)
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Therefore, the distribution of �T is

Pr
[
�T (0, q(t)) = (a0, . . . , at−1)

]

=
eε Pr

[
�M(x0, q

(t)) = (a0, . . . , at−1)
]

− Pr
[

�M(x1, q
(t)) = (a0, . . . , at−1)

]

eε − 1

Pr
[
�T (1, q(t)) = (a0, . . . , at−1)

]

=
eε Pr

[
�M(x1, q

(t)) = (a0, . . . , at−1)
]

− Pr
[

�M(x0, q
(t)) = (a0, . . . , at−1)

]

eε − 1

We can easily verify that all of the above are valid probability distributions.
For example,

∑

at−1

Pr
[
T (0, q(t)) = at−1|a0, . . . , at−2

]

=
eε

∑
at−1

Pr
[

�M(x0, q(t)) = (a0, . . . , at−1)
]

− ∑
at−1

Pr
[

�M(x1, q(t)) = (a0, . . . , at−1)
]

(eε − 1)Pr
[
�T (0, q(t−1)) = (a0, . . . , at−2)

]

=
eε Pr

[
�M(x0, q(t)) = (a0, . . . , at−2)

]
− Pr

[
�M(x1, q(t)) = (a0, . . . , at−2)

]

(eε − 1)Pr
[
�T (0, q(t−1)) = (a0, . . . , at−2)

]

= 1

and for every possible at−1, the probability density is never negative since

Pr
[

�M(x0, q
(t)) = (a0, . . . , at−1)

]
≤ eε Pr

[
�M(x1, q

(t)) = (a0, . . . , at−1)
]

as M is (ε, 0)-DP.
We now show

View(A,M(xb)) ≡ View(A, T (RR(ε,0)(b)))

for the case of b = 0.
Fix any possible view (r, a0, . . . , at−1), we can derive the queries q(t) =

(q0, . . . , qt−1) from A, where qi = A(a0, . . . , ai−1; r). Denote R as the random
variable of the randomness of A.
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Pr
[
View(A, T (RR(ε,0)(0))) = (r, a0, . . . , at−1)

]

= Pr
[
RR(ε,0)(0) = 0

]
Pr [View(A, T (0)) = (r, a0, . . . , at−1)]

+ Pr
[
RR(ε,0)(1) = 0

]
Pr [View(A, T (1)) = (r, a0, . . . , at−1)]

=
eε

1 + eε
Pr [View(A, T (0)) = (r, a0, . . . , at−1)]

+
1

1 + eε
Pr [View(A, T (1)) = (r, a0, . . . , at−1)]

=
eε

1 + eε
Pr [R = r] Pr

[
�T (0, q(t)

r ) = (a0, . . . , at−1)|R = r
]

+
1

1 + eε
Pr [R = r] Pr

[
�T (1, q(t)

r ) = (a0, . . . , at−1)|R = r
]

= Pr [R = r] Pr
[

�M(x0, q
(t)
r ) = (a0, . . . , at−1)|R = r

]

= Pr [View(A,M(x0)) = (r, a0, . . . , at−1)]

The case of b = 1 could be similarly proved. Therefore, we proved the existence
of such an interactive mechanism T for any (ε, 0) interactive DP mechanisms.

The above theorem suggests that the noninteractive RR(ε,0) can simulate
any (ε, 0) interactive DP algorithm. Since it is known that post-processing
preserves differential privacy (Lemma 5.3), it follows that to analyze the
concurrent composition of arbitrary (εi, 0) interactive differentially private
algorithms, it suffices to analyze the composition of randomized response
RR(εi,0). For an interactive mechanism M, we define PrivLoss(M, δ) =
inf {ε ≥ 0 : Mis (ε, δ) -DP}, thus given a target security parameter δg, the pri-
vacy loss of the concurrent composition of mechanisms M0, . . . ,Mk−1 is denoted
as PrivLoss(ConComp(M0, . . . ,Mk−1), δg). When the mechanisms Mi are non-
interactive (like RR(ε,δ)) we write Comp rather than ConComp.

Lemma 5.5. Suppose there are interactive mechanisms M0, . . . ,Mk−1 where
for each 0 ≤ i ≤ k − 1, Mi is (εi, 0)-differentially private. For any values of
ε0, . . . , εk−1 ≥ 0, δg ∈ [0, 1), we have

PrivLoss(ConComp(M0, . . . ,Mk−1), δg)

= PrivLoss
(
Comp(RR(ε0,0), . . . ,RR(εk−1,0)), δg

)

Proof. We want to show that

inf {εg ≥ 0 : ConComp(M0, . . . ,Mk−1) is (εg, δg) −DP}
= inf

{
εg ≥ 0 : Comp

(
RR(ε0,0), . . . ,RR(εk−1,0)

)
is (εg, δg) −DP

}

Since the noninteractive RR(ε0,0), . . . ,RR(εk−1,0) can be viewed as a special
case of interactive DP mechanisms, we have

inf {εg ≥ 0 : ConComp(M0, . . . ,Mk−1) is (εg, δg) −DP}
≥ inf

{
εg ≥ 0 : Comp

(
RR(ε0,0), . . . ,RR(εk−1,0)

)
is (εg, δg) −DP

}
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For the other direction, suppose Comp
(
RR(ε0,0), . . . ,RR(εk−1,0)

)
is (ε∗

g, δg)-
DP. By post-processing inequality, we know any for any tuple of post-processing
interactive mechanisms T0, . . . , Tk−1, ConComp

(
T0

(
RR(ε0,0)

)
, . . . , Tk−1(

RR(εk−1,0)

) )
is also (ε∗

g, δg)-DP. We know from Theorem 1.10 that for every pair
of adjacent datasets x0, x1, there must exist interactive mechanisms T0, . . . , Tk−1

such that for every adversary A, View〈A,Mi(xb)〉 is identically distributed
as View〈A, Ti(RR(ε,0)(b))〉 for all i = 0, . . . , k − 1. Therefore, we know that
ConComp(M0, . . . ,Mk−1) is also (ε∗

g, δg)-DP. Taking the infimum over ε∗
g will

then complete the proof.

We note that RR(ε0,0), . . . ,RR(εk−1,0) are noninteractive mechanisms, there-
fore we can use any composition theorems for noninteractive DP mechanisms
to bound the privacy parameter of their composition. The tightest composition
theorem for noninteractive DP is derived in [21].

Theorem 5.6 (Optimal Composition Theorem for noninteractive DP).
If M0, . . . ,Mk−1 are each (εi, δi)-differentially private, then given the tar-

get security parameter δg, the privacy parameter of concurrent composition
ConComp(M0, . . . ,Mk−1) is upper bounded by the least value of εg ≥ 0 such
that

1
∏k−1

i=0 (1 + eεi )

∑

S⊆{0,...,k−1}
max

{
e
∑

i∈S εi − eεg · e
∑

i/∈S εi , 0
}

≤ 1 − 1 − δg
∏k−1

i=0 (1 − δi)

Therefore, we are ready to bound the concurrent composition for an arbitrary
set of interactive differentially private algorithms by simply plugging parameters
to the optimal composition bound for noninteractive DP mechanisms in [21].

Theorem 5.7 (Corollary 1.11 Restated). If M0, . . . ,Mk−1 are each (εi, 0)-
differentially private, then given the target security parameter δg, the pri-
vacy parameter of concurrent composition ConComp(M0, . . . ,Mk−1) is upper
bounded by the least value of εg ≥ 0 such that

1∏k−1
i=0 (1 + eεi)

∑
S⊆{0,...,k−1}

max
{

e
∑

i∈S εi − eεg · e
∑

i/∈S εi , 0
}

≤ δg

A special case when all M0, . . . ,Mk−1 are (ε, 0)-differentially private, then pri-
vacy parameter is upper bounded by the least value of εg ≥ 0 such that

1

(1 + eε)k

k∑
i=0

(
k

i

)
max

{
eiε − eεg · e(k−i)ε, 0

}
≤ δg

6 Experimental Results

In this section, we present empirical evidence for our conjecture that the Opti-
mal Composition Theorems can be extended to the concurrent composition of
approximate DP mechanisms. Specifically, we experimentally evaluate the con-
jecture for 3-message interactive mechanisms with 1-bit messages, as illustrated
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in Fig. 1. The input for the mechanism is a bit x ∈ {0, 1} (corresponding to fixing
two adjacent datasets). In the first round, the mechanism outputs a bit a0 regard-
less of the query, so we omit q0 and directly writing the probability of outputting
a0 as Pr[M(x) = a0]. In the second round, the mechanism receives a query bit
A(a0) from the adversary, and output another bit a1. Each such mechanism
Mp is defined by 10 parameters p = (p0, p00, p01, p10, p11, p′

0, p
′
00, p

′
01, p

′
10, p

′
11),

where p0 = Pr[Mp(0) = 0], p′
0 = Pr[Mp(1) = 0], pij = Pr[Mp(0, j) = (i, 0)],

p′
ij = Pr[Mp(1, j) = (i, 0)]. We note that the concurrent composition of two

copies of such a mechanism already has a nontrivial interleaving, as shown in
Fig. 2.

We experimentally test whether instantiations of this 2-round interactive
mechanism that are (ε, δ)-DP can be simulated as the interactive post-processing
of randomized response RR(ε,δ). Specifically, we sample over 10,000 choices of
the parameter vector p defining the mechanism Mp . For each one, we pre-define
a value for δ and compute ε = PrivLoss(Mp , δ) through enumerating over all
possible adversaries.

Next, we used linear programming to see if there exists an interactive post-
processing mechanism �T which takes an output from RR(ε,δ), and sets it to have
the exact same output distribution as the original 2-round for every possible
query q = (q1) and output sequence (a0, a1):

Pr
[

�M(0, q) = (a0, a1)
]

= δ · Pr
[
�T (‘Iam0’, q) = (a0, a1)

]

+ (1 − δ) · eε

eε + 1
Pr

[
�T (0, q) = (a0, a1)

]
+ (1 − δ) · 1

eε + 1
Pr

[
�T (1, q) = (a0, a1)

]

Pr
[

�M(1, q) = (a0, a1)
]

= (1 − δ) · 1
eε + 1

Pr
[
�T (0, q) = (a0, a1)

]

+ (1 − δ) · eε

eε + 1
Pr

[
�T (1, q) = (a0, a1)

]
+ δ · Pr

[
�T (‘Iam1’, q) = (a0, a1)

]

Each Pr
[
�T (c, q) = (a0, a1)

]
is an unknown parameter here, where c ∈

{0, 1, ‘Iam0’, ‘Iam1’}. We also enforce them formulating valid distributions:

∀c, q, a0, a1,Pr
[
�T (c, q) = (a0, a1)

]
≥ 0

∀c,A,
∑
a0,a1

Pr
[
�T (c,A(a0)) = (a0, a1)

]
= 1

Besides, to construct a valid two-round mechanism, the probability of outputting
a0 in the first round should not depend on the future query q1:

∀c, a0,
∑
a1

Pr
[
�T (c, 0) = (a0, a1)

]
=

∑
a1

Pr
[
�T (c, 1) = (a0, a1)

]

We use the linear programming solver from SciPy [24] for solving the linear
equation systems.
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In all of our trials, we find a feasible �T , concluding that each of the mech-
anisms Mp can be simulated by the post-processing of randomized response of
the same (ε, δ) parameters.

Based on the above findings, we conjecture that the concurrent composition
of interactive DP mechanisms may still have the same bound as the composi-
tion for noninteractive DP mechanisms. Besides, we might be able to prove it
through a similar construction of interactive post-processing mechanisms as we
did in Theorem 1.10. This means that every interactive DP mechanisms can be
reduced to noninteractive randomized response. We leave the resolution of these
conjectures for future work.

Fig. 1. 2-round mechanism we use in the experiment.

Fig. 2. Concurrent Composition of 2-round Mechanisms
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Abstract. We revisit one of the most fundamental hardness amplifica-
tion constructions, originally proposed by Yao (FOCS 1982). We present
a hardness amplification theorem for the direct product of certain games
that is simpler, more general, and stronger than previously known hard-
ness amplification theorems of the same kind. Our focus is two-fold.
First, we aim to provide close-to-optimal concrete bounds, as opposed to
asymptotic ones. Second, in the spirit of abstraction and reusability, our
goal is to capture the essence of direct product hardness amplification
as generally as possible. Furthermore, we demonstrate how our amplifi-
cation theorem can be applied to obtain hardness amplification results
for non-trivial interactive cryptographic games such as MAC forgery or
signature forgery games.

1 Introduction

1.1 Security Amplification

Security amplification is a central theme of cryptography. Turning weak objects
into strong objects is useful as it allows to weaken the required assumptions.

Almost all cryptographic constructions rely on the hardness of a certain prob-
lem, often modeled as games. As such, hardness amplification is of fundamental
importance. Direct product theorems are one of the most natural and intuitive
ways to amplify hardness: If a game can be won with probability at most δ, one
would expect that n parallel instances of the game can be won with probabil-
ity at most δn. While intuitive and usually trivial in an information-theoretic
setting, these results are often surprisingly difficult to establish in a typical com-
putational setting.

The main challenge of computational direct product hardness amplification
statements is that they are essentially always based on a reduction, trying to turn
any winner (or solver) for the direct product with some small winning probability
into a winner for a single instance with much larger winning probability. Even
though the instances of the direct product are all independent, a winner is not
restricted to solving these instances independently. The main difficulty is usually
to work around such potential dependencies.

c© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13043, pp. 605–625, 2021.
https://doi.org/10.1007/978-3-030-90453-1_21
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1.2 Hardness of the Direct Product of Two Games

Consider two probabilistic games G and H, i.e., probability distributions over
deterministic instances of games from sets G and H, respectively. Let [G,H]∧

denote the independent parallel composition of the two games that is won exactly
if both G and H are won. Consider a winner (or player) W winning the two games
[G,H]∧ in parallel with probability δ.

Intuitively, we would like to argue that if W wins [G,H]∧ with probability δ,
then we can (by a simple reduction) use W to win at least one of the games G
or H with much higher probability, say,

√
δ. Note that this is trivially possible

if W played both games G and H completely independently.
If W was known to play deterministically1, certain instances S ⊆ G × H are

(always) solved successfully, while none of the other instances S are ever solved.
How does the set S look like? Suppose that S = SG × SH for some SG ⊆ G and
SH ⊆ H. This would, for example, be the case if W solved both given instances
independently. Visually, this means that S forms a rectangle as depicted in Fig. 1.

SH

SG

G

H

Fig. 1. The considered winner W is deterministic and wins exactly the instances SG ×
SH (marked in green) of the game [G, H]∧.

If we want to use W to win, say, the game G, we need to simulate an instance of
H towards W . In general, the only easy way to do this is simply by sampling an
independent instance from the distribution of H, resulting in a winner we denote
by W(·,H). However, it is easy to see (in our example) that it is necessary that
we hit into the set SH in order to win G. This means that the winner W(·,H) for
G might have the exact same winning probability that W has for [G,H]∧.

For many types of games2 such as one-way function inversion or collision-
finding for hash functions, we can overcome this problem by repeating the given
1 Of course, this is not without loss of generality.
2 Such games are called clonable in [9].
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winner, such that we are overall successful if only a single one of our attempts
has been successful. It is important to note that this property for itself does
not allow to amplify the winning probability of any winner. In particular, if
the winning probability on any instance is always either 0 or 1 (i.e., never in-
between), no amplification is achieved. However, one can argue that in the given
scenario, at least one of W(·,H) or W(G,·) must be amplifiable to a certain degree.
A typical analysis such as in [5,9] would achieve this as follows.

1. First, it is argued that if W wins [G,H]∧ with probability δ, the following
statement is true3 for any ε > 0:

With probability at least
√

δ − 2ε over G, the winner W(·,H) wins the
sampled instance of G with probability at least ε, or otherwise the
analogue is true for W(G,·) on H.

2. Second, it is argued that repeating W(·,H) for some q number of times, we
obtain a winning probability of at least

√
δ − 2ε · (1 − (1 − ε)q),

approaching
√

δ as desired.

For example, to amplify a winning probability of δ = 0.01 to close to
√

δ = 0.1,
say to 0.099, we need about q ≈ 76′600 repetitions (with the optimal choice of
ε ≈ 8.65 · 10−5). Even for a much less ambitious amplification to 0.09 only, we
need q = 4′981 repetitions (choosing ε ≈ 7.56 · 10−4).

In the above two-step analysis, it seems that both steps are (essentially)
optimal. Yet, their composition is, at least in certain regimes, quite far from
optimal. We present a combined analysis that takes into account how the winning
set S behaves under the amplification, proving the very same reduction to be
more efficient. In the above example, the desired amplification is achieved with
only q = 90 and q = 45 repetitions, respectively (instead of q ≈ 76′600 and
q = 4′981).

It is easy to verify that if the winning set S was a perfect square (similar
to the rectangle in Fig. 1), we would need q = 44 and q = 22 repetitions. A
consequence of our results is that a rectangle as in Fig. 1, even though it may
seem to be a naively optimistic perspective, is actually close to the worst that
can happen for the amplification.

1.3 Contributions and Outline

We briefly state our main contributions in a simplified manner. In Sect. 3, we
present amplification theorems at the level of probability theory. We start by
showing a basic amplification theorem (Theorem 2) that yields an amplification
similar to the known results [2,5,9]. Then, we show an improved analysis of the
same type of statement, obtaining stronger amplification (Theorem 4).

3 See our proof of Theorem 1.
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In Sect. 4, we discuss that the proved amplification result is close to optimal,
though still not perfect. We state a conjecture for a perfectly optimal amplifica-
tion bound.

Finally, in Sect. 5, we demonstrate how the presented type of amplification
theorem can be applied to non-trivial interactive games. We prove hardness
amplification results for a general type of game (which includes the MAC forgery
and the signature forgery game, and the simpler one-way function inversion as
well as the hash function collision finding game), and give a comparison to related
results of [3].

1.4 Related Work

There exists a vast amount of literature on hardness amplification. We just men-
tion some of them. Yao [10] originally proposed the direct product construction
for one-way functions. Goldreich [5] showed an asymptotic hardness amplifica-
tion result, stating that the direct product of weak one-way functions is a strong
one-way function. Canetti et al. [2] studied the amplification of hash function
collision resistance. They analyze a direct product construction similar to [5],
mainly to provide a baseline to compare against other constructions. [9] intro-
duced the notion of clonable games, and proved a bound similar to [5] but for
concrete parameters (non-asymptotic).

A related line of research [1,3,6–8] studies hardness amplification via the
direct product for games that are weakly-verifiable, i.e., where a solver may not
be able to verify itself (efficiently) whether a given answer is correct. Some of
these results are based on (a variant of) the XOR-Lemma.

In [4], it is shown that direct product hardness amplification “beyond neg-
ligible” is in general impossible (under certain plausible assumptions), meaning
that for any negligible function ε(n), there exist cryptographic games such that
their direct product can always be won with probability ε(n), no matter how
many copies one takes.

2 Preliminaries

Notation. For n ∈ N, we let [n] denote the set {1, . . . , n} with the convention
[0] = ∅. The set of sequences (or strings) of length n over the alphabet A is
denoted by An. An element of An is denoted by an = (a1, . . . , an) for ai ∈ A.

In this paper, we assume all probability distributions to be over a finite
set (or at least to have finite support). We let supp(X) denote the support of a
probability distribution X. Moreover, for two probability distributions X and Y ,
we let XY denote the independent joint distribution of X and Y . For example,
we have EXY [f(X,Y )] =

∑
x∈X

∑
y∈Y PrX(X = x) · PrY (Y = y) · f(x, y).

We will need the following lemma.
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Lemma 1. For some γ ∈ R+, let ψ : [0, γ] → R+ be a concave function. Then,
we have for any 0 ≤ a ≤ b ≤ γ

aψ(b) ≤ bψ(a).

Proof. Assume without loss of generality b 	= 0 (since otherwise a = 0, so the
inequality holds trivially). We have

aψ(b) = b · a

b
· ψ(b)

≤ b ·
(a

b
ψ(b) +

(
1 − a

b

)
ψ(0)

)

≤ b · ψ
(a

b
· b +

(
1 − a

b

)
· 0

)

= bψ(a).

In the third step, we have used that ψ is concave. 
�

3 The Amplification Theorem

3.1 The Setting

In order to justify the type of amplification theorems we will prove (and in order
to provide some intuition), we briefly explain the typical way they can be used.

We assume two finite sets G and H, representing the deterministic instances
of games4. Since the actual games are probabilistic, they are (not necessarily uni-
form) probability distributions G and H over the sets G and H. Wherever a joint
distribution of G and H is needed, we mean the independent joint distribution
(i.e., the product distribution).

We further consider a winner W for the product game [G,H]∧, and let the
function μ : G × H → [0, 1] denote the winning probability of W . This means
that for each pair of instances (g, h) ∈ G × H, the probability that W wins both
g and h is μ(g, h). Hence, the probability that W wins the game [G,H]∧ is the
expected value

EGH [μ(G,H)].

In order to use W as a winner for G, we simulate (or absorb) an instance of H
towards W to obtain a winner W(·,H). On a sampled instance g ∈ supp(G) we
want to win, we then apply an amplification to our winner W(·,H), such that if its
original success probability is5 ε on this fixed instance g, we obtain an amplified

4 For the amplification theorem itself, it will not be important what exact (type of)
object the games (i.e., the elements of G and H) are. For example, they may be
Turing machines (of a certain kind).

5 Of course, this probability will depend on the sampled instance g ∈ supp(G), so we
will not actually know the value of ε in general.
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success probability of ψ(ε) (for some amplification function ψ : [0, 1] → [0, 1]).
This means that our winning probability on G is (at least) the nested expectation

EG[ψ(EH [μ(G,H)])].

In the most straightforward applications, the amplification is achieved by repeat-
ing the winner q times independently, such that we are successful exactly
if one repetition has been successful, resulting in the amplification function
ψ(x) = 1− (1−x)q. This works for example for one-way function inversion [5] or
for hash function collision finding [2], where the winner needs to provide a solu-
tion (such as a pre-image of a given value) and we can efficiently verify whether
an obtained solution is correct or not.

Loosely speaking, the amplification statements we will prove are of the fol-
lowing type:

If EG[ψ(EH [μ(G,H)])] and EH [ψ(EG[μ(G,H)])] are both “somewhat
small”, then EGH [μ(G,H)] must be “much smaller”.

Turned around this means that

If EGH [μ(G,H)] is at least “somewhat large”, then at least one of
EG[ψ(EH [μ(G,H)])] or EH [ψ(EG[μ(G,H)])] is “much larger”.

3.2 Amplification for Monotonic ψ

We first present a basic amplification theorem that works whenever the amplifica-
tion function ψ is monotonically increasing. Technically, the proof is a simplified
version of the main idea in the amplification theorems of [5,9].

Theorem 1. Let μ : X × Y → [0, 1] be any function, and let X and Y be
probability distributions over X and Y, respectively. Moreover, let ψ and ψ′ be
monotonically increasing on [0, 1], and assume that

EX [ψ(EY [μ(X,Y )])] ≤ εψ(δ) and EY [ψ′(EX [μ(X,Y )])] ≤ ε′ψ′(δ′)

for some ε, δ, ε′, δ′ ∈ [0, 1]. Then we have

EXY [μ(X,Y )] ≤ εε′ + δ + δ′.

Proof. We first define the two sets

X≥δ := {x ∈ X | EY [μ(x, Y )] ≥ δ} and Y≥δ′ := {y ∈ Y | EX [μ(X, y)] ≥ δ′}.

The assumption implies that

PrX(X ∈ X≥δ) ≤ ε and PrY (Y ∈ Y≥δ′) ≤ ε′.
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Now, observe that

EXY [μ(X,Y )]

≤ PrXY ((X,Y ) ∈ X≥δ × Y≥δ′) · EXY [μ(X,Y ) | (X,Y ) ∈ X≥δ × Y≥δ′ ]

+ PrX(X /∈ X≥δ) · EX [EY [μ(X,Y )] | X /∈ X≥δ]

+ PrY (Y /∈ Y≥δ′) · EY [EX [μ(X,Y )] | Y /∈ Y≥δ′ ]

≤ PrX(X ∈ X≥δ) · PrY (Y ∈ Y≥δ′)
+ EX [EY [μ(X,Y )] | X /∈ X≥δ] + EY [EX [μ(X,Y )] | Y /∈ Y≥δ′ ]

≤ εε′ + δ + δ′.

This concludes the proof. 
�

A generalized n-fold version of Theorem 1 is as follows.

Theorem 2. Let μ : X n → [0, 1] be any function, and let {Xi}i∈[n] be proba-
bility distributions over X . Moreover, let {ψi}i∈[n] be a family of monotonically
increasing functions on [0, 1], and assume that for all i ∈ [n] we have

EXi
[ψi(EX1,...,Xi−1,Xi+1,...,Xn

[μ(X1, . . . , Xn)])] ≤ εi · ψi(δi)

for some εi, δi ∈ [0, 1]. Then we have

EX1...Xn
[μ(X1, . . . , Xn)] ≤

∏

i∈[n]

εi +
∑

i∈[n]

δi.

As mentioned in the introduction, the typical amplification function is of the
form ψ(x) = 1 − (1 − x)q for some q ∈ N. This motivates the following corollary
that is proved in Appendix A.

Corollary 1. For arbitrary ε ∈ (0, 1) and δi ∈ (0, 1), let ψ(x) = 1− (1−x)q for
q such that

q ≥ n · νn,ε ·
∏

i∈[n]

δ−1
i ,

where νn,ε := infc∈(0,1)
− ln(1−(1−ε)1−c)

1−(1−ε)cn ∈
[

ln(1/ε)
1−(1−ε)n , ln(2/ε)

1−(1−ε/2)n

]
.

Assume that for all i ∈ [n]

EXi
[ψ(EX1,...,Xi−1,Xi+1,...,Xn

[μ(X1, . . . , Xn)])] ≤ (1 − ε)δi.

Then, we have

EX1...Xn
[μ(X1, . . . , Xn)] ≤

∏

i∈[n]

δi.
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3.3 Amplification for Monotonic and Concave ψ

As mentioned in Sect. 3.1, the standard amplification function for such theorems
is ψ(x) = 1−(1−x)q, which is concave. In the following, we exploit the concavity
of ψ to obtain a stronger amplification.

Theorem 3. Let μ : X × Y → [0, 1] be any function, and let X and Y be
probability distributions over X and Y, respectively. Moreover, let ψ and ψ′ be
monotonically increasing and concave on [0, 1], and assume that

EX [ψ(EY [μ(X,Y )])] ≤ εψ(δ) and EY [ψ′(EX [μ(X,Y )])] ≤ ε′ψ′(δ′)

for some ε, δ, ε′, δ′ ∈ [0, 1]. Then we have

EXY [μ(X,Y )] ≤ max(εε′, εδ + ε′δ′).

Before proving the theorem, we remark that at first glance, one might expect the
proof to rely on Jensen’s inequality. For concave ψ, Jensen’s inequality would
give us

EX [ψ(EY [μ(X,Y )])] ≤ ψ(EXY [μ(X,Y )])

⇐⇒ ψ−1(EX [ψ(EY [μ(X,Y )])]) ≤ EXY [μ(X,Y )].

However, our goal is to upper bound EXY [μ(X,Y )]. Observe that by consid-
ering one dimension only, say EX [ψ(EY [μ(X,Y )])], no non-trivial bound on
EXY [μ(X,Y )] can be obtained, as we might have

EXY [μ(X,Y )] = EX [ψ(EY [μ(X,Y )])].

To consider both dimensions EX [ψ(EY [μ(X,Y )])] and EY [ψ(EX [μ(X,Y )])] is
what will enable us to obtain a good upper bound on EXY [μ(X,Y )].

Proof (of Theorem 3). Just as in the proof of Theorem 1, we first define the two
sets

X≥δ := {x ∈ X | EY [μ(x, Y )] ≥ δ} and Y≥δ′ := {y ∈ Y | EX [μ(X, y)] ≥ δ′}.

We derive

EX [ψ(EY [μ(X,Y )]) |X /∈ X≥δ] = EX

[δ

δ
· ψ(EY [μ(X,Y )]) |X /∈ X≥δ

]

≥ EX

[ψ(δ)
δ

· EY [μ(X,Y )] |X /∈ X≥δ

]

=
ψ(δ)

δ
EX [EY [μ(X,Y )] |X /∈ X≥δ].

The second step is due to Lemma 1. This implies that

EX [ψ(EY [μ(X,Y )])] = PrX(X ∈ X≥δ) · EX [ψ(EY [μ(X,Y )]) |X ∈ X≥δ]

+ PrX(X /∈ X≥δ) · EX [ψ(EY [μ(X,Y )]) |X /∈ X≥δ]

≥ PrX(X ∈ X≥δ) · ψ(δ)

+ PrX(X /∈ X≥δ) · ψ(δ)
δ

EX [EY [μ(X,Y )] |X /∈ X≥δ].
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Since we have εψ(δ) ≥ EX [ψ(EY [μ(X,Y )])] by assumption, we obtain

PrX(X /∈ X≥δ) · EX [EY [μ(X,Y )] |X /∈ X≥δ] ≤ δ · (ε − PrX(X ∈ X≥δ)).

Analogously, we obtain

PrY (Y /∈ Y≥δ′) · EY [EX [μ(X,Y )] |Y /∈ Y≥δ′ ] ≤ δ′ · (ε′ − PrY (Y ∈ Y≥δ′)).

Now, observe that

EXY [μ(X,Y )]

≤ PrXY ((X,Y ) ∈ X≥δ × Y≥δ′) · EXY [μ(X,Y ) | (X,Y ) ∈ X≥δ × Y≥δ′ ]

+ PrX(X /∈ X≥δ) · EX [EY [μ(X,Y )] | X /∈ X≥δ]

+ PrY (Y /∈ Y≥δ′) · EY [EX [μ(X,Y )] | Y /∈ Y≥δ′ ]

≤ PrX(X ∈ X≥δ) · PrY (Y ∈ Y≥δ′)

+ δ · (ε − PrX(X ∈ X≥δ)) + δ′ · (ε′ − PrY (Y ∈ Y≥δ′)).

By assumption we must have PrX(X ∈ X≥δ) ≤ ε and PrY (Y ∈ Y≥δ′) ≤ ε′, so
let PrX(X ∈ X≥δ) = γε and PrY (Y ∈ Y≥δ′) = ωε′ for γ, ω ∈ [0, 1]. Then we get

EXY [μ(X,Y )] ≤ γωεε′ + εδ(1 − γ) + ε′δ′(1 − ω)
≤ γωεε′ + εδ(1 − γω) + ε′δ′(1 − γω)
= γωεε′ + (1 − γω)(εδ + ε′δ′)
≤ max(εε′, εδ + ε′δ′).


�
In the symmetric case, the optimal choice is ε = ε′ = 2δ = 2δ′. This gives the
following bound.

Corollary 2. For any μ : X ×Y → [0, 1] and any monotonically increasing and
concave function ψ : [0, 1] → [0, 1], let ξ(x) := x · ψ(x). We have

EXY [μ(X,Y )] ≤ 4 · ξ−1

(
max

(
EX [ψ(EY [μ(X,Y )])], EY [ψ(EX [μ(X,Y )])]

)

2

)2

.

Equivalently,

max
(
EX [ψ(EY [μ(X,Y )])], EY [ψ(EX [μ(X,Y )])]

) ≥ 2ξ(
√

EXY [μ(X,Y )]/2).

A generalized n-fold version of Theorem 3 is as follows.
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Theorem 4. Let μ : X n → [0, 1] be any function, and let {Xi}i∈[n] be proba-
bility distributions over X . Moreover, let {ψi}i∈[n] be a family of monotonically
increasing and concave functions on [0, 1], and assume that for all i ∈ [n] we
have

EXi
[ψi(EX1,...,Xi−1,Xi+1,...,Xn

[μ(X1, . . . , Xn)])] ≤ εi · ψi(δi)

for some εi, δi ∈ [0, 1]. Then we have

EX1...Xn
[μ(X1, . . . , Xn)] ≤ max

⎛

⎝
∏

i∈[n]

εi,
∑

i∈[n]

εiδi

⎞

⎠ .

The following corollary is proved in Appendix A.

Corollary 3. For any i ∈ [n], let 	i ≥ 1, εi ∈ (0, 1), δi ∈ (0, 1), and

qi ≥ n · 	i · ln(1/εi) ·
∏

j∈[n],j �=i

δ−1
j

be arbitrary, and assume that for ψi(x) = 1 − (1 − x/	i)qi we have

EXi
[ψi(EX1,...,Xi−1,Xi+1,...,Xn

[μ(X1, . . . , Xn)])] ≤ (1 − εi)δi.

Then,

EX1...Xn
[μ(X1, . . . , Xn)] ≤

∏

i∈[n]

δi.

Note that Corollary 3 is a strictly stronger version of Corollary 1, where (assum-
ing all εi are equal to ε, and 	i = 1) we needed

q ≥ n · νn,ε ·
∏

i∈[n]

δ−1
i .

The improvements of the new bound are two-fold:

1. First, the weaker version has a factor of (at least)

νn,ε ≥ ln(1/ε)
1 − (1 − ε)n

≥ ln(1/ε)
nε

instead of just ln(1/ε).

For fixed n, this means that q is proportional to (1/ε) ln(1/ε) instead of just
ln(1/ε). It is easy to see that, at least in certain regimes, the value νn,ε is
significantly larger than ln(1/ε). For example, for n = 2 and ε = 0.001 we
have νn,ε ≈ 5118.5, and ln(1/ε) ≈ 6.9.
Moreover, this means that how close one can efficiently amplify δn to δ does
not depend any more on n.
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2. Second, the weaker version has a factor of
∏

j∈[n]

δ−1
j instead of just

∏

j∈[n],j �=i

δ−1
j .

Technically, the difference may seem to be small (in particular for large n
and all δj close to 1). Conceptually, however, the new term is exactly what
one would naturally expect, and the best one can hope for in an amplification
theorem of a very general type: If we want to boost the winning probability of
a winner W from δn to δ by running W q times with a success probability of
at most δn in each run, we need q · δn ≥ δ ⇐⇒ q ≥ (1/δ)n−1. Put differently:
When amplifying the hardness from δ to δn, the cost of the reduction is
inversely proportional to the hardness increase (which is unavoidable), as
opposed to the target hardness δn.

4 The Square Is Not (Always) Optimal

How tight are the bounds shown in the previous section, in particular those for
concave amplification function (Theorem 3 and Theorem 4)? It is easy to see
that the rectangle (or, in the symmetric case, the square) is optimal within a
factor of at most 2 (see the discussion in Sect. 1.2).

Corollary 4. Let μ : X × Y → [0, 1] be any function, let ψ and ψ′ be monoton-
ically increasing and concave on [0, 1], and assume that

EX [ψ(EY )] ≤ εψ(ε′) and EY [ψ′(EX)] ≤ ε′ψ′(ε).

Then we have

EXY [μ(X,Y )] ≤ 2εε′.

More generally, an n-dimensional orthotope (or hyperrectangle) is optimal within
a factor of at most n.

One might conjecture that the rectangle is always optimal, i.e., that the factor
of 2 in the above corollary can be removed. In the following, we show that this
is not true.

Proposition 1. There exist μ : X × Y → [0, 1], monotonically increasing and
concave functions ψ and ψ′ on [0, 1], as well as distributions X and Y over X
and Y, and ε, ε′ ∈ [0, 1], such that

EX [ψ(EY [μ(X,Y )])] ≤ ε · ψ(ε′) and EY [ψ′(EX [μ(X,Y )])] ≤ ε′ · ψ′(ε),

but

EXY [μ(X,Y )] > εε′.

Proof. Consider the following function μ : {x1, x2} × {y1, y2} → [0, 1]:
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y2 1 0
y1 1 1

x1 x2

Moreover, let PrX(x1) = PrY (y1) = 1
4 , and ψ(x) = ψ′(x) = 1 − (1 − x)2. For

ε = ε′ = 0.65582 we have

EX [ψ(EY [μ(X,Y )])] = EY [ψ′(EX [μ(X,Y )])] =
37
64

≤ ε′ · ψ′(ε) = ε · ψ(ε′).

However,

EXY [μ(X,Y )] =
7
16

= .4375 > εε′ = ε2 ≈ .431.


�
The choice of μ in the above example seems to works for any function of the
form ψ(x) = 1 − (1 − x)q, though for larger q we need PrX(x1) and PrY (y1) to
be closer to 0.

Even though the square is not optimal in general, we believe that whenever it
is not optimal, the “opposite square” is optimal. By “opposite square” we mean
that there is a square S = X ′ × Y ′ ⊆ X × Y such that μ(x, y) = 0 if (x, y) ∈ S
and μ(x, y) = 1 otherwise. Loosely speaking, this means that the worst that
can happen in terms of amplification is that either the success probability of a
winner is maximally concentrated (into a square), or the failure probability is
maximally concentrated. The following makes this mathematically rigorous.

Conjecture 1. Let μ : X × Y → [0, 1] be any function, and X and Y arbitrary
distributions over X and Y, respectively. Moreover, let ψ(x) = 1 − (1 − x)q for
some q ∈ N, and assume that

max(EX(ψ(EY [μ(X,Y )])),EY (ψ(EX [μ(X,Y )]))) ≤ εψ(ε)

for some ε ∈ [0, 1]. Let δ ∈ [0, 1] be the (unique) value such that

εψ(ε) = (1 − δ) + δψ(1 − δ).

Then, we have

EXY [μ(X,Y )] ≤ max(ε2, 1 − δ2).

The above conjecture is stated for the two-dimensional symmetric case and only
for the function ψ(x) = 1 − (1 − x)q, but we conjecture natural generalizations
to be true as well.
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5 Applying the Amplification Theorem

As mentioned in the introduction, it is easy to obtain concrete hardness ampli-
fication results for certain games such as one-way function inversion or hash
collision finding. Known asymptotic results such as “weak one-way functions
imply strong one-way functions” are straightforward to derive from Corollary 3
(with a more efficient reduction). Such games have been called clonable in [9].

In the following, we demonstrate how the presented amplification theorems
can be applied to more involved games that are not clonable, such as MAC
forgery or signature forgery games.

We first give a redefinition (with some minor changes) of the type of game
that has been introduced as “Dynamic Weakly Verifiable Puzzle” (or DWVP)
in [3]. A DWVP is an abstraction that captures certain cryptographic games
such as the MAC forgery game or the signature forgery game (but includes the
simpler one-way function inversion game as well as the hash function collision
finding game).

Definition 1. A deterministic DWVP is characterized by a function h : M →
H and a relation σ ⊆ M × S. The game supports the following query types:

– HINT-query: A query of the form m ∈ M that is answered with h(m).
– VERIFICATION-query: A query of the form (m′, s) ∈ M × S. This query is

always answered with a fixed symbol (say, ⊥).

The game is won when a VERIFICATION-query (m′, s) is made such that

(m′, s) ∈ σ and m′ was not asked before as HINT-query.

Moreover, the game may support arbitrary additional query types.

Definition 2. A probabilistic DWVP is a probability distribution over (com-
patible) deterministic DWVPs.

For the MAC forgery game, for example, the HINT-queries would enable the
winner to ask for tags of chosen messages, and the VERIFICATION-queries would
correspond to forgery attempts (H = S would correspond to the set of tags).

For certain games, an additional query type may be used to inform the winner
about the instance to be solved (in a way that does not count as a hint). For
example, a signature forgery game may use this to output the generated public
key. Or, a one-way function inversion game would use this to output the function
image y that is supposed to be inverted.

Now, we define the direct product of DVWPs. In contrast to [3], we give
a more general definition, taking the direct product of arbitrary (potentially
different) DVWPs, and define the direct product in a way such that the resulting
game is not necessarily a DVWP anymore.
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Definition 3. The direct product of deterministic DWVPs {gi}i∈[n], denoted
by

[g1, . . . , gn]∧,

is the game which answers queries of the form (i, q), where i ∈ [n] and q is a
query for the subgame gi. It is won exactly when all subgames gi are won.

The direct product [G1, . . . , Gn]∧ of probabilistic DWVPs is defined by lifting
the deterministic definition via the independent joint distribution.

Notation 1. Analogous to the above games, we model (compatible) winners (or
solvers) as probability distributions over deterministic winners.

We assume a predicate ω that describes whether a deterministic winner w
wins a game g or not, i.e., ω(g, w) = 1 if w wins g (and ω(g, w) = 0 otherwise).
For a given probabilistic winner W for a game G, we let

ω(G,W ) = EGW [ω(G,W )] ∈ [0, 1]

denote the winning (or success) probability of W playing G.

In the following, we present a direct product hardness amplification theorem for
arbitrary DWVPs.

Theorem 5. Let {Gi}i∈[n] be a family of probabilistic DWVPs. Let W be a
winner for the direct product [G1 . . . Gn]∧, and asking up to hi HINT-queries to
Gi.

For any {δj}j∈[n] and {εj}j∈[n] with δj , εj ∈ (0, 1], there are uniform reduc-
tions {ρi}i∈[n] and non-uniform reductions {ρ′

i}i∈[n], such that if W has a win-
ning probability of

∏

j∈[n]

δj ,

then,

(i) For some i ∈ [n], the winner ρi(W ) for Gi has winning probability at least

ω(Gi, ρi(W )) ≥ (1 − εi)δi

e(hi + 1)
,

where ρi runs the winner W for the direct product �qi� times for

qi = n · ln(1/εi) ·
∏

j∈[n],j �=i

δ−1
j .

(ii) For some i ∈ [n], the winner ρ′
i(W ) for Gi has winning probability at least

ω(Gi, ρ
′
i(W )) ≥ (1 − εi)δi,

where ρ′
i runs the winner W for the direct product �q′

i� times for

q′
i = n · e(hi + 1) · ln(1/εi) ·

∏

j∈[n],j �=i

δ−1
j .
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We provide some intuition before proving the theorem. We would like to amplify
the winning probability of W by repeating it multiple times. The problem is
that this might not increase our winning probability, since it can happen that
W makes a successful VERIFICATION-query on a message which was asked as
a HINT-query in an earlier repetition. To overcome this problem, the natural
idea, originating in [3], is to disallow certain messages to be asked as HINT-
query. We show two possibilities of achieving this: In the first version, we simply
pick messages randomly (ad-hoc) to disallow as HINT-query. This enables a
uniform and efficient reduction, but comes at the cost of introducing a loss
factor of (hi + 1) in the obtained winning probability. This is why we present a
second version, in which we provide the reduction with some non-uniform advice
(that depends on the winner W ). The advice essentially describes a fixed set of
messages that are supposed to be disallowed as HINT-query, such that the loss
in winning probability of the first (uniform) version can be overcome just by
repeating more often (by a factor of (hi + 1)). Our non-uniform version can be
made uniform in a similar way as in [3], at the cost of introducing a similarly
expensive precomputation.

We stress that the following proof is almost entirely concerned with analyz-
ing the loss when certain messages are disallowed as HINT-queries, whereas the
actual direct product amplification simply follows from Corollary 3.

Proof (of Theorem 5). The main idea, originating in [3], is to prevent certain
messages to be asked as HINT-query. This is why we introduce a filter system F ,
acting as a proxy between a winner W and a game Gi that does the following:

1. First, for each6 message m ∈ M, F decides independently with probability
1/(hi + 1) that m is disallowed to ask as a HINT-query.

2. Then, all queries from the connected winner are proxied and the response is
forwarded back, unless a HINT-query m is asked for a disallowed message m,
in which case F just returns an error symbol, say ⊥, as response.

For any filter f ∈ supp(F ) and any winner Wi for an instance g ∈ supp(Gi), we
let

ω̂(g,Wi, f)

denote the f -restricted winning probability of Wi playing g through the filter f ,
where only VERIFICATION-queries that are disallowed as HINT-queries by the
filter f are taken into account7. This gives us the following useful property: When

6 Of course, this is most efficiently done by sampling lazily as we go, only for the
messages that actually appear.

7 Note that Wi’s actual winning probability through the filter may be larger than
ω̂(g, Wi, f), since we allow to ask VERIFICATION-queries that are allowed as HINT-
queries as well. We do not want to disallow those with the filter, since it may happen
that Wi first asks some VERIFICATION-queries that are allowed as HINT-queries and
then still makes a successful VERIFICATION-query that is disallowed as HINT-query.
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a winner Wi for Gi is run q times independently through any fixed (deterministic)
filter f ∈ supp(F ), the obtained success probability is at least

1 − (1 − ω̂(Gi,Wi, f))q.

Observe that for any deterministic instance g, we have

ω(g,Wi) ≤ (e · (hi + 1)) · ω̂(g,Wi, F ).

This is because if we have hi (distinct) hint queries M1, . . . ,Mhi
and the first

successful attack query is Mhi+1, the probability that the attack is also successful
through the filter F and Mhi+1 is disallowed as a HINT-query is at least

(

1 − 1
hi + 1

)hi

· 1
hi + 1

≥ 1
e · (hi + 1)

.

In the following, let Wi∼ denote the winner for Gi that is obtained from W by
simulating independent instances of (G1, . . . , Gi−1, Gi+1, . . . , Gn) towards W .

For claim (i), consider the following reduction: ρi maps a winner W for the game
[G1 . . . Gn]∧ to a winner Wi for Gi which simply runs Wi∼ qi times independently
through the filter F (without resetting the filter). Let χi(x) := 1− (1−x)qi . For
any g ∈ supp(Gi) we have

χi(ω([G1 . . . G(i−1) g G(i+1) . . . Gn]∧,W ))
e · (hi + 1)

≤ χi(ω(g,Wi∼))
e · (hi + 1)

≤ χi(ω(g,Wi∼))
ω(g,Wi∼)

· ω̂(g,Wi∼, F )

=
χi(ω(g,Wi∼))

ω(g,Wi∼)
· EF [ω̂(g,Wi∼, F )]

= EF

[
ω̂(g,Wi∼, F )
ω(g,Wi∼)

χi(ω(g,Wi∼))
]

≤ EF

[
ω(g,Wi∼)
ω(g,Wi∼)

χi(ω̂(g,Wi∼, F ))
]

= EF [χi(ω̂(g,Wi∼, F ))]
≤ ω(g, ρi(W )).

In the first step, we have used that χi is monotonically increasing and that

ω([G1 . . . G(i−1) g G(i+1) . . . Gn]∧,W ) ≤ ω(g,Wi∼).

The second step is due to the inequality ω(g,Wi∼) ≤ (e · (hi +1)) · ω̂(g,Wi∼, F ).
The fifth step is due to χi being concave, Lemma 1, and the above inequality
ω̂(g,Wi∼, f) ≤ ω(g,Wi∼) for any f ∈ supp(F ). Since the shown inequality holds
for any g ∈ supp(Gi), it also holds in expectation:

e(hi + 1) · ω(Gi, ρi(W )) = e(hi + 1) · EGi
[ω(Gi, ρi(W ))]

≥ EGi
[χi(ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W ))].
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By Corollary 3 we must have

EGi
[χi(ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W ))] ≥ (1 − εi)δi

for some i ∈ [n], implying the first claim.

Now, we consider claim (ii). Recall that we have

ω(g,Wi∼) ≤ (e · (hi + 1)) · ω̂(g,Wi∼, F )

for any g ∈ supp(Gi), so the same is true in expectation:

ω(Gi,Wi∼) ≤ (e · (hi + 1)) · ω̂(Gi,Wi∼, F ) = (e · (hi + 1)) · EF [ω̂(Gi,Wi∼, F )].

Thus, there exists f ′ ∈ supp(F ) such that

ω(Gi,Wi∼) ≤ (e · (hi + 1)) · ω̂(Gi,Wi∼, f ′).

Now, let the reduction ρ′
i map a winner W for [G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧

to the winner W ′
i that simply runs Wi∼ q′

i times independently through the
filter8 f ′. Note that since we only use that the events Ei of message mi being
disallowed as a HINT-query are (hi+1)-wise independent, an appropriate f ′ with
short description always exists (one can take, for example, a (hi + 1)-universal
hash function).

For χi(x) = 1 − (1 − x)qi we have

EGi

[

χi

(
ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W )

e · (hi + 1)

)]

≤ EGi

[
χi

(ω(Gi,Wi∼)
e · (hi + 1)

)]

≤ χi

(
EGi

[ω(Gi,Wi∼)]
e · (hi + 1)

)

= χi

(ω(Gi,Wi∼)
e · (hi + 1)

)

≤ χi(ω̂(Gi,Wi∼, f ′))
≤ ω(Gi, ρ

′
i(W )).

The second step is due to Jensen’s inequality (χi is concave). By instantiat-
ing Corollary 3 with 	i = e(hi + 1) we obtain

EGi

[

χi

(
ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W )

e · (hi + 1)

)]

≥ (1 − εi)δi

for some i ∈ [n], implying the second claim. 
�

8 If the filter answers a HINT-query with ⊥, the current repetition can be aborted.
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We point out some differences between our non-uniform amplification statement
from Theorem 5 and the non-uniform DWVP amplification Theorem 4 of [3].

– The reduction in [3] guarantees that only a single VERIFICATION-query is
asked. This makes their analysis very complicated, and comes at the cost of
an increased number of asked HINT-queries (by an additional factor of h com-
pared to our bounds, where h is the total number of HINT-queries asked by
the considered winner W ). We describe a reduction that executes the winner
multiple times and submits all VERIFICATION-queries.
It is important to note that it depends on the concrete game whether the
number of VERIFICATION-queries asked is important or not. For example,
in the case of the signature forgery game, it is trivial to reduce the number
of submitted VERIFICATION-queries to one, since one can efficiently check
whether a forgery attempt will be accepted or not. The same is true for any
game where one can verify a VERIFICATION-query efficiently before submit-
ting it.
For the MAC forgery game it will in general not be possible to verify a
forgery attempt efficiently. However, it is still meaningful (and quite natural)
to consider the case where the adversary is allowed to make multiple forgery
attempts. Note, however, that our amplification statement is not applicable
for games that allow only very few (or even just one) VERIFICATION-queries.
This may be the case, for example, if the goal of the game is to guess a value
from a small set (say, a bit).

– The statement in [3] is a Chernoff-type amplification result that covers the
threshold case, i.e., it is in the more general setting where a winner does not
solve all n independent instances, but only a fraction of them. It seems though
that for MAC forgery and signature forgery games, the basic non-threshold
case (which we cover) is of most interest.

– Our Theorem 5 provides concrete (non-asymptotic) bounds with very small
constant factors. In contrast, the statements of [3] hide large constants in
asymptotic bounds. Moreover, we have a loss of a factor (hi +1), that is inde-
pendent of the number of VERIFICATION-query asked, whereas the loss in [3]
is O(h+v), where h and v are the total number of HINT- and VERIFICATION-
queries asked.

– We consider the direct product of n arbitrary DWVPs, i.e., the individual
games are not required to be the same. In contrast, [3] studies the case where
all n games are equal, and uses a restricted direct product definition that
requires to ask the same query m to all instances in parallel.
Note that because our games {Gi}i∈[n] may be all different, we obtain an
amplifying reduction for some Gi. If the games {Gi}i∈[n] are all the same,
and one is aiming for a uniform reduction, it is a standard technique to embed
the given instance g at a uniform random position I ∈ [n]. It may seem that
one would lose a factor of n in winning probability when this is done. However,
we note that by the AM–GM inequality, the conclusion of Corollary 3 can be
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extended to

EX1...Xn
[μ(X1, . . . , Xn)] ≤

∏

i∈[n]

δi ≤
(

∑

i∈[n]

δi

n

)n

.

This prevents losing a factor of n when embedding the given instance at a
uniform position.

6 Conclusions and Open Problems

We presented an abstract direct product hardness amplification theorem at the
level of probability theory. Our hope is that phrasing it at this level enables
reusability and leads to a more modular analysis of hardness amplification state-
ments, similar as in our proof of hardness amplification for DVWPs (Theorem
5). The theorem assumes an arbitrary concave amplification function ψ, sim-
ply because the proof does not require further assumptions. This leads to the
question of whether natural examples of games with corresponding reductions
exist, where the function ψ is something totally different than 1 − (1 − x)q or
1 − (1 − x/	)q.

Moreover, the shown bounds are close to optimal, but still not perfectly tight.
We phrased a conjecture for a perfectly tight bound, which states that the worst
case in terms of amplification is that either the success probability or the failure
probability of the considered winner is maximally concentrated. Independently
of this conjecture, it seems that the factor of n in the number of repetitions q
(see Corollary 3) can be significantly reduced.

Finally, we leave it for future work to generalize the amplification statements
beyond the “product” setting, for example to the “threshold” setting.

Appendix

A Proofs

Proof (of Corollary 1). Let c ∈ (0, 1) be arbitrary. Moreover, we let ai = (1−ε)cδi

and bi = − ln(1 − (1 − ε)1−c)/q.

ai · ψ(bi) = (1 − ε)cδi · ψi(− ln(1 − (1 − ε)1−c)/q)

= (1 − ε)cδi · (1 − (1 − (− ln(1 − (1 − ε)1−c)/q)q))

≥ (1 − ε)cδi · (1 − (exp(ln(1 − (1 − ε)1−c)/q)q))

= (1 − ε)cδi · (1 − ε)1−c

= (1 − ε)δi.
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From Theorem 2 we obtain

EX1...Xn
[μ(X1, . . . , Xn)] ≤

∏

i∈[n]

ai +
∑

i∈[n]

bi

= (1 − ε)cn
∏

i∈[n]

δi +
∑

i∈[n]

bi

= (1 − ε)cn
∏

i∈[n]

δi + n · − ln(1 − (1 − ε)1−c)/q

≤ (1 − ε)cn
∏

i∈[n]

δi + n · − ln(1 − (1 − ε)1−c)
n · νn,ε · ∏

i∈[n] δ
−1
i

≤ (1 − ε)cn
∏

i∈[n]

δi + (1 − (1 − ε)cn) ·
∏

i∈[n]

δi

=
∏

i∈[n]

δi.

Finally, we show that

νn,ε ∈
[ ln(1/ε)
1 − (1 − ε)n

,
ln(2/ε)

1 − (1 − ε/2)n

]
.

First, observe that

νn,ε = inf
c∈(0,1)

− ln(1 − (1 − ε)1−c)
1 − (1 − ε)nc

≥ infc∈(0,1) − ln(1 − (1 − ε)1−c)
supc∈(0,1) 1 − (1 − ε)nc

=
ln(1/ε)

1 − (1 − ε)n
.

The upper bound is shown as follows.

νn,ε = inf
c∈(0,1)

− ln(1 − (1 − ε)1−c)
1 − (1 − ε)nc

≤ inf
c∈(0,1)

− ln(1 − (1 − (1 − c)ε))
1 − (1 − c · ε)n

= inf
c∈(0,1)

− ln((1 − c)ε)
1 − (1 − c · ε)n

≤ ln(2/ε)
1 − (1 − ε/2)n

.

This concludes the proof. 
�
Proof (of Corollary 3). Observe that for any i ∈ [n] we have

δi · ψi(	i ln(1/εi)/qi) = δi · (1 − (1 − ln(1/εi)/qi)qi)

≥ δi · (1 − (e− ln(1/εi)/qi)qi)
= (1 − εi)δi.
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Thus, we have by Theorem 4

EX1...Xn
[μ(X1, . . . , Xn)] ≤ max

⎛

⎝
∏

i∈[n]

δi,
∑

i∈[n]

δi	i ln(1/εi)/qi

⎞

⎠

≤ max

⎛

⎝
∏

i∈[n]

δi,
∏

i∈[n]

δi

⎞

⎠

=
∏

i∈[n]

δi.

This concludes the proof. 
�
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Abstract. In universally composable (UC) security, a global setup is
intended to capture the ideal behavior of a primitive which is accessi-
ble by multiple protocols, allowing them to share state. A representative
example is the Bitcoin ledger. Indeed, since Bitcoin—and more gener-
ally blockchain ledgers—are known to be useful in various scenarios, it
has become increasingly popular to capture such ledgers as global setup.
Intuitively, one would expect UC to allow us to make security statements
about protocols that use such a global setup, e.g., a global ledger, which
can then be automatically translated into the setting where the setup is
replaced by a protocol implementing it, such as Bitcoin.

We show that the above reasoning is flawed and such a generic
security-preserving replacement can only work under very (often unreal-
istic) strong conditions on the global setup and the security statement.
For example, the UC security of Bitcoin for realizing a ledger proved by
Badertscher et al. [CRYPTO’17] is not sufficient per se to allow us to
replace the ledger by Bitcoin when used as a global setup. In particular,
we cannot expect that all security statements in the global ledger-hybrid
world would be preserved when using Bitcoin as a ledger.

On the positive side, we provide characterizations of security statements
for protocols that make use of global setups, for which the replacement is
sound. Our results can be seen as a first guide on how to navigate the very
tricky question of what constitutes a “good” global setup and how to use
it in order to keep the modular protocol-design approach intact.

1 Introduction

Universally Composable (UC) security [Can01] ensures strong composability
guarantees: Informally, a UC secure protocol remains secure no matter what
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environment it is placed in, i.e., no matter what other protocols might be exe-
cuted alongside. This powerful security definition enables a constructive app-
roach to protocols, where protocols can be designed and proved secure assum-
ing access to idealized primitives/functionalities, and instantiating the idealized
functionalities with UC-secure protocols does not affect the proven guarantees.

Canetti and Rabin [CR03] pointed out a limitation of the standard universal
composition theorem. In a nutshell, the issue is as follows: Assume that a protocol
π securely realizes a functionality F in the public-key infrastructure (PKI) model.
The UC composition theorem ensures that F can be replaced by π (and its PKI)
in any context. However, if a context protocol makes calls to two independent
instances of F, then any replacing instance of π needs to come with its own
independent (local to π) PKI; in other words, the two replaced instances of π
cannot share the same PKI1. This is a clear mismatch with reality, where we
would not create a different PKI for each protocol (instance), but rather people
would have one public-key/private-key pair which they would use in multiple –
and beyond this example, even different – protocols.

The first attempt to augment composable frameworks to realistically capture
shared setups was the JUC (Universal Composition with Joint State, [CR03])
model. However, JUC is limited to settings where we know in advance (the
number and even the session identifiers of) the protocols that will be using a
shared setup. Lifting this restriction, UC with global setups was proposed by
Canetti et al. [CDPW07], often referred to as the GUC framework. Intuitively, a
global setup can be accessed by arbitrary (unknown) protocols, and due to those
protocols the setup may be in any possible state at the point it gets accessed
by another protocol. Subsequently, a recent work [BCH+20] casts the notion of
global setups within the plain UC framework, eliminating the need for a new
model and thus enabling re-use of the vast literature about UC-secure protocols.
Both models come with a composition theorem that allows secure replacement
of protocols in the presence of a global setup.

Replacing Global Setups. In all the above models, the global setup is treated
as a functionality with fixed code that will eventually be implemented by a
trusted authority. In this paper, we investigate whether we can change this code
without affecting security of the context. More detailed, we analyze whether we
can replace a global setup with a (globally accessible) protocol that UC-emulates
the setup, and to which extent such a replacement preserves security statements
of protocols jointly using the global setup2. At first sight, it might be surprising
that none of the existing composition theorems solve this question. Intuitively,
as we depict a bit more formally in Fig. 1, composition theorems allow us to

1 The statement applies also to any non-trivial type of hybrid functionalities whose use
might correlate the views of the protocols calling them, e.g., the common reference
string (CRS).

2 The terms setup and subroutine are synonyms in the context of UC and refer to a
protocol instance that is called by another protocol. Subroutines can be any type of
protocol: interactive such as Bitcoin, or trusted parties (“ideal functionalities”) such
as the ideal ledger.
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φπ

S

φ

S

φ′π

S

φ′ φ

S ′

φ′
←↩

π

S ′

φ′
UC comp. GUC/UCGS

comp.
This work

←↩←↩

Fig. 1. Applying composition theorems in the UC literature. Here, X ←↩ Y denotes
that X can replace Y in arbitrary contexts. π, φ, φ′ denote protocols potentially calling
setup S. Assume π UC-emulates φ (with access to S) and that S′ UC-emulates S.
UC composition (left): If S is only called by π, then πS can replace φ in arbitrary
contexts. GUC/UCGS composition (middle): πS can replace φS even if the setup

S is called by other protocols, too, and hence is global. This work (right): πS′
can

replace φS′
(under certain conditions), i.e., replacing φ by π works, even when the

global setup S (that both protocols call) is replaced by its realization S′.

argue when we can replace some protocol φ by its UC-realization π. If π calls a
local setup S, then in any context any call to φ can be replaced by a call to πS

by the UC composition theorem. However, the UC composition theorem cannot
argue about φ and π anymore if any of these protocols call a setup that is not
local to them, i.e., that is also called by other protocols and hence global.

But why is considering global setups interesting? Indeed, until recently, global
setups such as an ideal PKI were intended to be replaced by trusted authori-
ties implementing the exact same functionality as the global PKI [CSV16]. But
with the rise of blockchain technology, more and more interactive protocols are
proposed to securely implement a global PKI [BdM93,RY16,MR17,GKLP18,
KKM19,PSKR20], a global clock [BGK+21] or a global ledger [BMTZ17]. Sud-
denly, the above question of global setup replacement becomes highly relevant!
Does a protocol’s claimed security in the presence of an ideal global PKI such
as, e.g., [CSV16,PS18,DPS19] still hold when the protocol is deployed with an
interactive PKI protocol instead? Does a security analysis carried out w.r.t an
ideal global ledger functionality [KZZ16,CGL+17,DFH18,DEFM19,DEF+19,
EMM19,CGJ19,ACKZ20,KL20] remain valid when the global ledger is replaced
by, e.g., the Bitcoin blockchain? The same question can be asked for proto-
cols using a global clock [KZZ16,BGK+18,DFH18,DEF+19] or a global CRS
[CKWZ13]. Our findings towards answering such questions are manifold. On the
positive side, we give several simple conditions on the global setup, or both the
global setup and the security statement, under which global replacement pre-
serves a security statement. On the negative side, our results indicate that global
setups need to be designed with care in order to not render the setup “irreplace-
able”. Unless such irreplaceable setups are hard-coded as trusted third parties,
security results stated with respect to them are mainly of theoretical interest.
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Fig. 2. Topology of a security statement with a global setup.

Technical Challenges of Global Replacement. Let us first explain the general
topology of a security statement in the presence of a global setup in its most
common schenario. In Fig. 2, protocol π securely realizes functionality F in the
presence of a global ideal PKI functionality. Being globally accessible by pro-
tocols that are part of the distinguishing environment, the global PKI exists in
both the real execution with π and the ideal execution with F. The adversarial
interface at the global PKI is marked with ∗ in Fig. 2, and it might allow the
adversary to, e.g., read public keys of others and register his own keys.

To understand why the global PKI in the above illustration might not be
replaceable by some protocol ΦPKI that securely realized an ideal PKI, we need
to review what “realization” (or UC-emulation, as it is often called) means here.
ΦPKI UC-realizes an ideal PKI if it is at least as strong as the ideal PKI. Hence,
intuitively, UC realization draws the “upper bound” of the attack surface against
ΦPKI in the following sense: protocol ΦPKI does not admit more attacks than
the ideal PKI. We use the notion of an “attack” to describe something that the
adversary can achieve via the adversarial interface. However, UC realization does
not imply a lower bound on attacks: ΦPKI can have arbitrarily strong guarantees,
thereby preventing several attacks that the ideal PKI admits3. And this lack of
a lower bound causes trouble in replacing a global protocol with its realization:
under replacement, the adversarial interface ∗ becomes restricted in an arbitrary
way, causing failure in the simulation carried out by S. If there is no way to rescue
the simulation (i.e., to work with the restricted interface), the security statement
witnessed by S is void and π does indeed not emulate F anymore in the presence
of the interactive PKI protocol ΦPKI.

With the above explanation, it should become clear that an extensive adver-
sarial interface at the global setup hinders its replacement. For example, the
ideal PKI might allow the adversary to register an unlimited amount of (fresh)

3 As an example, it is possible that a PKI protocol that disallows registration of
duplicate or non-wellformed public keys UC-emulates an ideal PKI that allows the
adversary to register arbitrary public keys. Intuitively, the larger the gap in the
guarantees, the easier is the UC realization to prove.
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public keys without delays, while a blockchain-based PKI protocol might pro-
tect against such “flooding” of the PKI simply because transaction throughput
is limited. A security statement in the presence of a global PKI with a simulation
that exploits the public key flooding of the global PKI thus fails under replace-
ment. Along these lines we can further give examples of ideal ledgers from the
literature that require care when cast as global ledgers. For example, consider an
ideal transaction ledger that allows the adversary to arbitrarily reorder trans-
actions [BMTZ17]. A blockchain-based protocol realizing this ledger, however,
might enforce a transaction order that is partially determined by honest miners.
Thus, simulators exploiting adversarial reordering would not work with access
to the blockchain-based protocol instead of the ideal transaction ledger. Another
example is a global account ledger that allows the adversary to transfer arbi-
trary amounts of his own money (i.e., money owned by corrupted parties) with
arbitrary delays [DEFM19]. Any security statement exploiting this weakness of
the ledger in its simulation is not preserved when, instead of accessing the global
account ledger, parties run a cryptocurrency protocol instead that, e.g., employs
a monetary transaction limit or prevents large and sudden stake shift.4

When Replacement Voids Security I. One might be tempted to say that in
the above examples, simulation can be adjusted to work with the stronger global
protocol since, intuitively, the stronger global protocol also allows less attacks in
the real world. However, this intuition can fail as we demonstrate now. We give
a constructed but not overly artificial example of a global setup replacement
that voids the underlying security statement, in the sense that there cannot
exist any simulator witnessing the emulation statement. Consider the following
“secure data distribution” protocol πsecDD run by some user U . The protocol
needs access to a global repository GauthBC where U can store data records:
GauthBC records (U , x) if user U provides input x and allows the adversary to
read out any recorded pair from its storage. Such a repository could be realized
by authenticated broadcast. Now, U first generates a key pair (pk, sk) and sends
pk to the repository. It then takes an input message m and pushes an encryption
c := Encpk(m) to GauthBC and additionally sends c on a network to a list of
receiving parties Ri. It also internally stores m and returns the activation to the
caller.

The ideal functionality this simple protocol πsecDD realizes is an “encrypt-
then-push” service that we call Fenc+push. Fenc+push takes input m from U and
asks the simulator for a public key pk (m is never leaked). Upon receiving pk,
Fenc+push encrypts m and provides the ciphertext as input to the repository in

4 We note that our results, on the positive side, can be used to state the conditions
such that a security proof is not jeopardized. For example, in the aforementioned
work [DEFM19], this could be achieved by letting the protocol’s security be oblivious
of how exactly the base ledger settles an account balance, as long as it is eventually
settled to the value the protocol (or the ideal functionality) demands. Intuitively,
since this only depends on the black-box properties of persistence and liveness of the
underlying ledger, such an approach would admit a replacement by known blockchain
protocols.
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Fig. 3. When simulation fails under global replacement: simulator S works with cipher-
text c (left), but might fail when only receiving ciphertext length |c| (right) from the
stronger global setup GAEncBC that replaces the weaker GauthBC.

the name of U . To prove that the protocol realizes Fenc+push (under adaptive
corruption of U), we come up with a proper simulator: the simulator simulates
a public-private key pair (for U), provides Fenc+push with the public key, and
simply reads out the ciphertext that the functionality created (in the name of
U) from GauthBC to simulate the ciphertext on the network to be sent to the
receivers. This is a perfect simulation of the real world. In case U is corrupted,
the simulator provides the secret key to the adversary which is consistent with
the encrypted input message m.

Now, assume we replace GauthBC by a stronger version GAEncBC that works
identically except that the adversary only receives the length |x| when reading
any of the user’s records, which corresponds to encrypted broadcast to a list
of receivers. Intuition says that working with a stronger repository, i.e., using
encrypted and authenticated broadcast rather than authenticated only, cannot
be of harm and improves security for everyone. But this change does not only
make the above simulation strategy impossible; in fact, no simulator exists to
prove the same statement, i.e., that πsecDD realizes Fenc+push anymore. The sim-
ulator does not have access to the ciphertext anymore which is now kept secret
by GAEncBC, and hence must simulate a ciphertext without knowing the under-
lying message m. Figure 3 illustrates the issue. The simulation is trapped in the
well-known commitment problem [Nie02]5. We conclude that πsecDD as defined
fails in realizing Fenc+push when running with GAEncBC (which implies the weaker
GencBC). This means that we must change the protocol (e.g., use non-committing
encryption) to again realize Fenc+push, or if we stick to protocol πsecDD, we must
weaken the security guarantees of Fenc+push (e.g., leak message m).

5 In order to conclude the proof, the environment can perform a standard trick: after
seeing the ciphertext on the network (either real or simulated), the distinguisher can
afterwards instruct the (dummy) adversary to corrupt the user U to obtain the secret
key and check that the ciphertext contains the right message. For ordinary encryp-
tion schemes, this test will always succeed in the real world, and with substantial
probability fail in the ideal world [Nie02].
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While this example is arguably constructed, the problem’s core translates
directly to more serious situations, such as protocols (e.g., state-channels) proven
secure with respect to a global ledger abstraction that is instantiated with a
concrete blockchain protocol that is typically stronger (i.e., offers less adversarial
capabilities) than its abstraction.

We now sketch another technically easy example that shows that security
statements can fail completely, once a global setup is replaced by another one
that UC-emulates it. Again, we replace the global setup by a stronger variant to
achieve the contradiction. The example also illustrates how security guarantees
can be blurred when exploiting adversarial capabilities of the global setup, and
it does not rely on adaptive corruptions in doing so.

When Replacement Voids Security II. Assume a simple protocol φ for
some party P that works as follows: it expects as input transactions of a cer-
tain type. Before submitting them to a global transaction ledger, φ orders the
transactions according to size and submits this list to the ledger. Assume that
the ledger is a transaction ledger similar to the one in [BMTZ17] that allows
the adversary to re-order transactions before a block is formed and added to the
immutable ledger state.

The ideal functionality Fφ that this protocol realizes can be the following:
it takes as input the list of transactions provided by P , and orders them differ-
ently, say according to lexicographic order, and submits this list to the global
transaction ledger. This is of course weird, but possible to simulate: to prove
this construction, we observe that the simulator has the freedom to reorder
freely (before the transactions are appended to the ledger state) and chooses the
ordering that equals the one induced by the actions of the real-world adversary,
which even yields a perfect simulation!

Now assume we use a stronger transaction ledger that does not allow to
reorder the transaction list in the ledger and hence makes the adversarial capa-
bilities less powerful. However, since no simulator can now change the order, the
order of transactions in the transaction ledger directly signals to the environ-
ment, whether it interacts with the ideal world (lexicographic order) or the real
world (size). Therefore, using a stronger ledger (which UC-realizes the weaker
one) renders the construction invalid as no simulator does exist. The point here
is that every simulator must crucially carry out a reordering attack and that
there is no other strategy to rectify the ideal world if re-ordering is impossible.
This shows how the usage of a global ideal ledger can create false impressions of
obtained guarantees, since Fφ is impossible to realize w.r.t any real transaction
ledger protocol which disallows arbitrary reordering.

Our Results. We provide various conditions under which replacement of a global
setup by a protocol realizing it does not affect the validity of the underlying secu-
rity statement. Our results of Sect. 3 give a partial guide on how to navigate the
very tricky question of what constitutes a “good” global setup. More concretely,
we provide three theorems for soundly replacing global setups by their emu-
lation in existing security statements. We note that only the first replacement
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strategy is conditioned on solely the global setup and its emulation, and is hence
oblivious of the underlying security statement. Contrary, the latter replacement
strategies require us to put conditions on the simulator of the underlying security
statement.

Replacement with Equivalent Setup. A setup can be replaced with its real-
ization if the realization is actually equivalent to the setup, including adversar-
ial capabilities. The notion of equivalence of adversarial capabilities is formalized
using the simulation argument: after replacing, there must be an efficient way to
emulate all queries that were available before. This is formalized in Theorem 3
and recovers the, to our knowledge, only pre-existing result about global setup
replacement in the literature [CSV16] (see related work below for details). How-
ever, replacement with equivalent protocols is only of limited interest in practise,
and thus Theorem 3 merely constitutes a sanity check of our chosen methodology
of considering global replacement using the UCGS terminology [BCH+20].

Replacements for Agnostic Simulations. We show that the replacement
of a global setup G in a protocol π UC-realizing φ is sound if the simulator S
witnessing this construction fulfills one of the following two conditions.

– S is agnostic of the adversarial capabilities of G and the only dependence
is on exported capabilities that are available also to honest parties. This is
formalized in Theorem 4.

– The interaction of S with the global setup can be characterized by a set
I of adversarial queries that are admissible, a concrete technical condition
that formalizes the idea that adversarial capabilities and their actions will be
preserved once G is going to be replaced. This is formalized in Theorem 5. A
generalization of the results to the case of several global subroutines is given
in Sect. 4.

The first condition on the simulator is appealing as it is simple to check. As
an example, [KZZ16] gives a security statement in the presence of a global ledger
that allows reordering, but their simulation is agnostic of this particular adversar-
ial capability. Similarly, the simulation of the lightning network in [KL20] works
by only assuming that the simulator can access capabilities of honest parties to
read the ledger state and submit transactions. We point out that since F can
communicate with G naturally via an ordinary party identifier (see [BCH+20])
or in its own “name”, the simulator S can indeed perform those tasks via F and
hence use G just like an honest caller of the protocol (and importantly without
making use of the adversarial interface of G).6

The second condition brings more flexibility to protocol designers since S can
use certain capabilities I at the adversarial interface. Formally, we introduce the
concept of filtering adversarial queries Definition 8 that would hinder replacement,

6 We note that prior works often leave it unspecified how exactly the simulator per-
forms those tasks in the name of honest parties and how it will get the replies. The
way we suggested, namely via F , is actually the only admissible way without directly
running into the replacement problem again.
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leaving only a set I of adversarial queries which are fine to use relative to an imple-
mentation (or a set of implementations) that is going to replace the setup.

Our theorems further follow by applications of the UCGS and UC composi-
tion theorems at a level of abstraction which seems to share a lot of similarities
with other frameworks and their composition theorems. For example, the exact
corruption model is irrelevant, as long as the behavior of and upon corruption
can be formulated via an “adversarial” interface, where the above conditions
can be evaluated on (such as the backdoor tape in UC). Our results are formu-
lated using terminology and composition theorem of [BCH+20], which equips
the standard UC model with a definition for global subroutines and composition
in the presence of such. In doing so, we refrain from introducing a new variant of
UC in order to state our results. We further believe that our results are natural
and can be adapted to other simulation-based frameworks than UC.

Implications on the Global Random Oracle Model. Often, a global
setup is modeled as a pure setup assumption for proofs. The probably most
prominent example is the global random oracle model (RO) [CJS14,BGK+18,
CDG+18]. While our results are presented in a rather constructive way that
help to evaluate protocol designers what impact their choice of global setup has
as a building block to-be-replaced, our results are general and hence applicable
to the global RO setting as well. For global random oracles, different versions
of different (adversarial) strengths exist and the question about comparability
and unification has been brought up by Camenisch et al. [CDG+18]. In fact,
composing different constructions w.r.t different global random oracles is unfor-
tunate, since the main reason to switch to global RO (vs. local RO) is that in
practice, all random oracles are instantiated by a single hash function anyway.
If composing constructions forces us to again have a couple of different global
random oracles (which are supposedly replaced by a single hash function) we
are back at square one. As we present in Sect. 3.4, our results provide a general
framework to evaluate whether different RO assumptions can be unified across a
set of constructions, which is very vital for the global RO model and nicely com-
plements the study of [CDG+18] (in the sense outlined described in the related
work section).

Why Replacing the Setup in BothWorlds? Looking back at Fig. 2 and the
described issues of simulation failing under a replaced and restricted adversarial
interface, one can ask the following question: why can’t we replace the global PKI
just in the real world, hence restricting only the real-world adversary? Indeed, we
formally prove (using only standard UC composition) that we can just let π make
subroutine calls to the replacement of global setup G, and leave the ideal world to
be F in combination with context G. However, such replacement is not very useful:
the different contexts allow to obscure the achieved level of security as formalized
by F . The high-level reason is that F is misleading in its role as idealization of π if
we ignore the context. For example, F can offer much better security guarantees
(for example, less powerful adversarial interface) because of the weak context that
offers more influence to an adversary. In the sum, the real world is stronger and
the ideal world is weaker (hence the statement must go through) but the exact
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idealization of π remains unclear because the context is not equal and cannot be
“factored out”. The second example above (the re-ordering example with a global
ledger) is of this type.

Why Not Simply Using a Stronger Ideal Setup to Begin With? To
circumvent the replaceability issues that we deal with in this paper, we could
simply prove our security statements with respect to a stronger global function-
ality that is very close or even UC-equivalent to the protocol. This way, we can
likely argue that the simulator of our security statement works equally well with
both setups, and we can allow for replacement of the global setup (cf. Theorem
3). What is the downside of this approach? The strengthened functionality no
longer abstracts an “ideal service” to be used in a modular protocol analysis
or design. For example, one could strengthen the ideal global ledger to exactly
match the guarantees and adversarial interfaces of Bitcoin. But then the security
analysis with respect to that ledger remains valid only when replacing it with
Bitcoin, while an analysis with respect to an abstracted global ledger function-
ality can (if carried out as suggested in our paper) remain valid when replacing
the global ledger with any blockchain that UC-realizes it. This idea of modular
composition is at the core of universal composability frameworks and our paper
shows how to preserve it for global functionalities.

Conclusion - What is a “Good” Global Setup? Our results indicate that
care has to be taken when global setups are used as building blocks intended to
be replaced with interactive protocols. Since replacement requires conditions on
both setup and security proof, “good” global setups cannot be identified as such
by just looking at the setup. Of course, to be instantiable by another protocol at
all, a “good” global ideal building block needs to be UC-realizable (in a non-trivial
manner) in the first place. But it also matters that such a global building block
is used in a good way in a security statement, meaning that the simulation does
not overly exploit the adversarial interface, as otherwise it would be doomed to
fail under replacement. We believe that our work provides good intuition and for-
mal guidance on how to design and use global building blocks in modular protocol
design.

Related Work. To our knowledge, there is very limited work on the replace-
ability of a global UC setup. In fact, the only work that has looked at the
question in general is [CSV16]. However, the treatment there is in GUC which
requires considerable effort to even define “global” protocols, and even then,
the treatment inherits the inconsistencies of the GUC model. [CSV16] identifies
emulation equivalence as a sufficient condition on the global setup and proto-
col replacing it, to allow a generic preservation of security properties. However,
these conditions are too strict to be applied on more complicated primitives,
such as blockchain ledgers, which have recently become a standard example of
global subroutines. Nonetheless, we recover their result (“General Functionality
Composition”, Theorem 3.1 [CSV16]) in Theorem 4.

While our results are described using the recent UCGS modelling [BCH+20],
they can easily be adapted to any framework which supports universal compo-
sition and global setups.
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Finally, an investigation of replaceability targeted to special variants of global
random oracles was recently made in [CDG+18]; in a nutshell, their approach
is contrary to ours in the sense that their work investigates the replacement of
a stronger by a weaker random oracle (i.e., one that gives the simulator more
power). Such a replacement can only be sound for specific definitions of ran-
dom oracles (ones that are defined to take away leverage from the real-world
adversary, but not the simulator) and need to be accompanied by a protocol
transformation. As we outline in Sect. 3.4, our most general theorem nicely com-
plements their study on unifying different global RO assumptions.

Organization of this Paper. While our ideas are formulated in a generality such
that they can be applied to several composable frameworks that support global
setup [KMT20,MR11], when it comes to proofs, we must fix a particular model
which we choose to be UC [Can20] and its treatment of global subroutines as
recently established in [BCH+20]. We provide a brief introduction to UC and
UCGS in Sect. 2, which should suffice to follow the ideas of our proofs. In Sect. 3
we provide global subroutine replacement theorems for protocols accessing only
a single global setup. We generalize our concepts to many global subroutines in
Sect. 4.

2 Preliminaries: Global Subroutines in UC

In this section we recap how to formalize global setups in the UC framework using
the language of UCGS [BCH+20]. We first provide the minimal background on
the UC model that is necessary to understand the concepts.

2.1 UC Basics

Formally, a protocol π is an algorithm for a distributed system and formalized as
an interactive Turing machine. An ITM has several tapes, for example an identity
tape (read-only), an activation tape, or input/output tapes to pass values to its
program and return values back to the caller. A machine also has a backdoor
tape where (especially in the case of ideal functionalities) interaction with an
adversary is possible or corruption messages are handled. While an ITM is a
static object, UC defines the notion of an ITM instance (denoted ITI), which is
defined by the extended identity eid = (M, id), where M is the description of
an ITM and id = (sid, pid) is a string consisting of a session identifier sid and
a party identifier pid ∈ P. An instance, also called a session, of a protocol π
(represented as an ITM Mπ) with respect to a session number sid is defined as
a set of ITIs {(Mπ, idpid)}pid∈P where idpid = (sid, pid).

The real process can now be defined by an environment Z (a special ITI) that
spawns exactly one session of the protocol in the presence of an adversary A (also
a special ITI), where A is allowed to interact with the ITIs via the backdoor tape,
e.g., to corrupt them or to obtain information from the hybrid functionalities, e.g.
authenticated channels, that the protocol is using. The adversary ITI can only
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communicate with the backdoor tapes of the protocol machines. An environment
can be restricted by a so-called identity bound ξ ∈ Ξ which formalizes which
external parties the environment might claim when interacting as input provider
to the protocol. The less restrictive the bound, the more general the composition
guarantees are. The UC theorem is quantified by such a predicate.

The output of the execution is the bit output by Z and is denoted
by execπ,A,Z(k, z, r) where k is the security parameter, z ∈ {0, 1}∗ is the
input to the environment, and randomness r for the entire experiment. Let
execπ,A,Z(k, z) denote the random variable obtained by choosing the random-
ness r uniformly at random and evaluating execπ,A,Z(k, z, r). Let execπ,A,Z
denote the ensemble {execπ,A,Z(k, z)}k∈N,z∈{0,1}∗ .

Ideal-World Process. The ideal process is formulated with respect to an another
protocol φ, which in its most familiar form is a protocol IDEALF for an ITM
F which is called an ideal functionality for which we describe the situation. In
the ideal process, the environment Z interacts with F , an ideal-world adversary
(often called the simulator) S and a set of trivial, i.e., dummy ITMs repre-
senting the protocol machines of IDEALF that forward to the functionality
whatever is provided as inputs to them by the environment (and return back
whatever received from the functionality). In the ideal world, the ideal-world
adversary (aka the simulator) can decide to corrupt parties and can interact via
the backdoor tape with the functionality. For example, via the backdoor tape,
the functionality could for example leak certain values about the inputs, or allow
certain influence on the system. We denote the output of this ideal-world pro-
cess by execF,A,Z(k, z, r) where the inputs are as in the real-world process. Let
execF,S,Z(k, z) denote the random variable obtained by choosing the random-
ness r uniformly at random and evaluating execF,S,Z(k, z, r). Let execF,S,Z
denote the ensemble {execF,S,Z(k, z)}k∈N,z∈{0,1}∗ .

Secure Realization and Composition. In a nutshell, a protocol π ξ-UC-emulates
(ideal) protocol φ if the “real-world” process (where π is executed) is indistin-
guishable from the ideal-world process (where φ is executed), i.e., if for any
(efficient) adversary A there exists an (efficient) ideal-world adversary (the sim-
ulator) S such that for every (efficient) ξ-bounded environment Z it holds that
execπ,A,Z ≈ execφ,S,Z .

The emulation notion is composable, i.e., if π UC-emulates φ, then in a
larger context protocol ρ, the subroutine φ can be safely replaced by π, denoted
by ρφ→π. For this replacement to be well-defined, a few technical preconditions
must be satisfied. First, the protocols must be compliant, which ensures that in
case π and φ might both be subroutines in ρ they do not share the same ses-
sion (ensuring that the replacement operator works as intended). Furthermore,
compliance also makes sure that the protocol is invoked properly, i.e., with the
correct identities specified in ξ. The definitions of these UC concepts relevant to
our work are given in the full version [BHZ20]. The second major precondition
is that protocols should be subroutine respecting, meaning that each session of
π can run in parallel with other sessions of protocols without interfering with
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them (in order for the UC-emulation notion which considers a single challenge
session to be a reasonable precondition for the composition theorem). The exact
condition is as follows:

Definition 1 (Subroutine respecting [Can20]). Protocol π is subroutine
respecting if each session s of π, occurring within an execution of any protocol
with any environment satisfies the following four requirements, in any execution
of any protocol ρ with any adversary and environment (as per the definition of
protocol execution; it is stressed that these requirements must be satisfied even
when session s of π is a subroutine of ρ, and in particular when the execution
involves ITIs which are not members of that extended session s):

1. The sub-parties of session s reject all inputs passed from an ITI which is
not already a main party or subsidiary of session s (note that rejecting a
message means that the recipient ITI returns to its state prior to receiving
the message and ends the activation without sending any message; see [Can20,
Section 3.1.2]).

2. The main parties and sub-parties of session s reject all incoming subroutine
outputs passed from an ITI which is not already a main party or subsidiary
of session s.

3. No sub-party of session s passes subroutine output to an existing ITI that is
not already a main party or sub-party of session s.

4. No main party or sub-party of session s passes input to an existing ITI that
is not already a main party or sub-party of session s.

Theorem 1 (UC Theorem). Let ρ, π, φ be protocols and let ξ be a predicate
on extended identities, such that ρ is (π, φ, ξ)-compliant, both φ and π are sub-
routine exposing and subroutine respecting, and π UC-emulates φ with respect to
ξ-identity-bounded environments. Then ρφ→π UC-emulates protocol ρ.

2.2 UC with Global Subroutines

A global subroutine can be imagined as a module that a protocol uses as a
subroutine, but which might be available to more than this protocol only. While
initial formalizations to capture when a module is available to everyone, i.e., to
the environment, defined a UC-variant [CDPW07], it was recently shown that
capturing this can be fully accommodated within UC [BCH+20]. In a nutshell,
if π is proven to realize φ in the presence of a global subroutine γ, then the
environment can access this subroutine in both, the ideal and the real world,
which must be taken care of by the protocol. As a rule of thumb, proving that π
realizes φ in the presence of global γ is harder than when γ is a local subroutine,
i.e., not visible by the environment.

The framework presented in [BCH+20] defines a new UC-protocol M[π, γ]
that is an execution enclave of π and γ. M[π, γ] provides the environment access
to the main parties of π and γ in a way that does not change the behavior of
the protocol or the set of machines. The clue is that M[π, γ] itself is a normal
UC protocol and the emulation is perfect under certain conditions on π and γ.
We first state the definition from [BCH+20].
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Definition 2 (UC emulation with global subroutines). Let π, φ and γ be
protocols. We say that π ξ-UC-emulates φ in the presence of γ if protocol M[π, γ]
ξ-UC-emulates protocol M[φ, γ].

The first condition is the following and expresses the fact that γ might com-
municate with protocols outside of π’s realm:

Definition 3 (γ-subroutine respecting). A protocol π is called γ-subroutine
respecting if the four conditions of Definition 1 required from any (sub-)party of
some instance of π are relaxed as follows:

– the conditions do not apply to those sub-parties of instance s that also belong
to some extended session s′ of protocol γ;

– (sub-)parties of s may pass input to machines that belong to some extended
session s′ of protocol γ, even if those machines are not yet part of the extended
instance of s.

The second condition is a technical condition on the global subroutine which
is called regularity. The condition says that (a) a shared subroutine does not
spawn new ITIs by providing subroutine output to them, and (b) that the shared
subroutine may not invoke the outside protocol as a subroutine. It is usually not
a problem for global setups to satisfy this, since most of the time, we can model
functionalities to be reactive and assume “signaling events” to happen out-of-
band.

The formal definition is taken from [BCH+20].

Definition 4 (Regular setup). Let φ, γ be protocols. We say that γ is a φ-
regular setup if, in any execution, the main parties of an instance of γ do not
invoke a new ITI of φ via a message destined for the subroutine output tape, and
do not have an ITI with code φ as subsidiary.

In [BCH+20, Proposition 3.5], the authors show that if the protocol π is γ-
subroutine respecting, where γ itself is π-regular and subroutine respecting, then
the interaction between π and the global subroutine γ is very structured without
unexpected artifacts. We state the proposition here for completeness. Here, α is
an arbitrary protocol and α̂ is a version of α that makes use of M[[]π, γ] instead
of π and has an indistinguishable behavior. We refer to [BCH+20] and just state
the proposition.

Proposition 1. Let γ be subroutine respecting and π be γ-subroutine respecting.
Then the protocol M[π, γ] is subroutine respecting. In addition, let γ be π-regular,
and let α be a protocol that invokes at most one subroutine with code π. Denote
by α̂ the transformed protocol described above. Then the transcript established by
the set of virtual ITIs in an execution of some environment with α̂ is identical
to the transcript established by the set of ITIs induced by the environment that
has the same random tape but interacts with α.

The UCGS theorem is then the composition theorem for protocols that are
defined with respect to a global subroutine γ. Note that not γ is replaced, but
φ by its implementation π.
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Theorem 2 (Universal Composition with Global Subroutines – UCGS
Theorem). Let ρ, φ, π, γ be subroutine-exposing protocols, where γ is a φ-
regular setup and subroutine respecting, φ, π are γ-subroutine respecting and ρ
is (π, φ, ξ)-compliant and (π,M[code, γ], ξ)-compliant for code ∈ {φ, π}. Assume
π ξ-UC-emulates φ in the presence of γ, then ρφ→π UC-emulates ρ.

3 Replacement Theorems for a Global Subroutine

In this section, we consider a setting where protocols access only one global sub-
routine, e.g., a global CRS, or a global ledger, but not both of them. That is,
we only consider protocols whose shared setup is formulated as a single proto-
col. For this simplest global setting, we start by exploring which replacement of
the global subroutine follows already from application of the UC composition
theorem. Then, we recover the replacement theorem of [CSV16], which pre-
serves security statements if the global subroutine is replaced by an equivalent
protocol. And finally, we give conditions for security-preserving replacement of
non-equivalent global subroutines.

3.1 Common Preconditions of Our Theorems

Throughout this section, we assume the following preconditions for our theorems.
Recall that we are interested in replacing a global subroutine while preserving
security statements made with respect to this subroutine. We assume the security
statement to be the following: protocol π (potentially with access to further
local hybrids H) UC-emulates an ideal functionality F in the presence of global
subroutine G, with respect to dummy adversary A. Simulator SA is a witness
for this emulation. The statement is depicted below and referred to in the text
as precondition (1).

GF
SA

Backdoor Tape Backdoor Tape

π

π

π π

H G
Backdoor Tape

A
(1)

UC-emulates

≈

Second, since our aim is to investigate how UC emulation of global subrou-
tines can be useful for context protocols, we assume that the global subroutine
is emulated as follows: ψ UC-emulates G, with respect to dummy adversary D
(where ψ potentially makes use of other hybrids H′). We call a simulator wit-
nessing this statement SD. We refer to this emulation as precondition (2).
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G
Backdoor Tape

SD

H′

ψ ψ

ψ

ψ
D

≈(2)
UC-emulates

Given this notation, the core question of our work can be stated as follows:
given preconditions (1) and (2), under which additional conditions does it hold
that

π UC-emulates F in the presence of global ψ?

Simplifying Notation. We note that, while our theorems hold for arbitrary UC
protocols, to ease understanding, we formulate them with the special protocols
idealF and idealG . Intuitively, F is a “target” functionality that is to be real-
ized and G a global ideal setup. To further simplify, we slightly abuse notation
and write G instead of idealG , e.g., we write “ψ UC-emulates G” instead of “ψ
UC-emulates idealG”.

3.2 Warm-Up: Replacing Real-World Global Setups

Our first lemma states that under precondition (2) we can replace the shared
subroutine by the construction that UC emulates it. Another way to view this is
that “lifting” to global subroutines (w.r.t any application protocol π) preserves
UC emulation. An important feature of this statement is that it follows from
standard UC composition thanks to the embedding of global setups in standard
UC. Throughout the section, we will maintain a running example to illustrate
all our statements.

Running Example. Let G = Gledger be an ideal ledger and π a lottery protocol
requiring a ledger. Further, let ψ = FunCoin be a cryptocurrency implementing
the ledger Gledger. By UC emulation, all manipulation and attacks allowed on
FunCoin must also be allowed against Gledger. In particular, this holds for any
manipulation or attack carried out while running a lottery.

Lemma 1. Assume a protocol π makes subroutine calls to global subroutine G
and that ψ is a protocol that UC-emulates G. Then π invoking ψ instead of G
UC-emulates protocol π.

Proof. On a high level, the argument is as follows: if an environment could tell
a run of π with ψ from a run of π with G, then running π internally would
already let the environment distinguish a run of ψ from a run of G, violating the
precondition of the lemma.
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π

π

π π

H G
Backdoor Tape

A SD
≈π

π

π π

H

A

H′

ψ ψ

ψ

ψ

by (2)

behave as if invoked
by the environmentUC-emulates

Since for the technical argument, we have to stick to a particular model, we
have use the UC language in a more precise way: hence, we assume that π, ψ,
G be protocols and let ξ ∈ Ξ be a predicate on extended identities, such that π
is (ψ,G, ξ)-compliant, π, G, ψ are subroutine exposing, G and ψ are subroutine
respecting, and π is subroutine respecting except via calls to G. We note that
these technical conditions are as they appear in UC in order to guarantee that
the UC-operator is well defined. To formalize emulation in the presence of a
shared setup, we use the terminology of UCGS [BCH+20] (see Sect. 2.2 for a
short recap), where global access to G is granted by an overlay M[·,G]. In order
for this overlay to be opaque to the execution of π with G, we need to assume G
to be π-regular (see Definition 4 and Proposition 1).

With this terminology, it remains to show that if ψ UC-emulates G with
respect to ξ-identity-bounded environments, then M[πG→ψ, ψ] UC-emulates pro-
tocol M[π,G] (with respect to ξ-identity bounded environments). This follows
from the UC composition theorem: First, observe that M[π,G] is an ordinary
UC-protocol, mimicking all effects that the global (and hence shared) subrou-
tine might have with the environment. Similarly, M[πG→ψ, ψ] is an ordinary
UC-protocol where subroutine G is replaced by ψ. Note that, similar to the role
of the control function in UC, the embedding M[·] does not reveal the code of the
main instances when interacting with the environment, and therefore we have
that M[π,G]G→ψ and M[πG→ψ, ψ] are equivalent protocols. Since ψ UC-emulates
G w.r.t. all environments that are bounded by ξ, the UC composition theorem
implies that M[πG→ψ, ψ] UC-emulates M[π,G]. ��

Lemma 1 will serve mainly as a tool in proving the upcoming theorems.
Next, we can apply the UC composition theorem to our two preconditions. This
yields the following theorem. It says that, in any UC emulation statement w.r.t
a global setup, we can safely strengthen the real-world setup, while leaving the
setup in the ideal world unchanged. The intuition behind it is illustrated with
the following example.

Running Example. Back to our lottery. The lottery’s provider wants to create
trust in his product. He therefore proves that, when run with the global ideal
ledger, the lottery protocol UC-emulates some ideal functionality Flottery which
enforces a fair lottery. In his proof, both the lottery protocol and Flottery may
exploit weaknesses of Gledger. Since FunCoin is at least as secure as Gledger, the
provider can safely advertise that running the lottery with FunCoin is as secure
as Flottery with Gledger, since this replacement can only decrease the number of
possible attacks on the global setup while running the lottery.



On the (Ir)Replaceability of Global Setups 643

Lemma 2. Assume a protocol π UC-emulates F in the presence of global sub-
routine G and that G is UC-emulated by ψ, then replacing π’s subroutine G by
ψ UC-emulates F that has access to global subroutine G.

Proof. We again need some technical conditions from standard UC and UCGS:
Let π, F , ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities,
such that π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and
ψ are subroutine respecting, π and F are subroutine respecting except via calls
to G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-bounded
environments, and if π UC-emulates F in the presence of G w.r.t. ξ′-identity-
bounded environments, then what we have to prove is that M[πG→ψ, ψ] UC-
emulates protocol M[F ,G] w.r.t. ξ′-identity-bounded environments. This how-
ever follows from standard composition: Recall that protocols M[πG→ψ, ψ] and
M[π,G] from Lemma 1 are embeddings of protocols with global setup as normal
UC protocols. Therefore, we can apply the UC composition theorem: M[πG→ψ, ψ]
UC-emulates M[π,G], and by our assumption M[π,G] UC-emulates M[F ,G]. ��

The conclusion of this subsection is that under both conditions (1) and (2) it
follows that both π and ψ running together are indistinguishable from the ideal
world, where both components are idealized. This is often assurance enough
that the protocol in combination with a particular implementation of the global
setup achieves a good level of security. However, note that the security is stated
in terms of abstractions of both real-world components. The overall guarantees
are thus hard to tell, and false impressions of security might be created. Let us
illustrate this issue with the following.

Running Example. Assume that the provider does not have a strong crypto-
graphic background and that he actually struggled conducting the aforemen-
tioned proof. But suddenly, he realized that the proof is easy when he assumes
that Gledger, which is used by both the poker game and Flottery, admits arbitrar-
ily many adversarial ledger entries. He calls this new setup GweakLedger and is
delighted when he finds out that it is still emulated by FunCoin (since UC emu-
lation is transitive). He then happily applies Lemma 2 and rightfully advertises
that his lottery (together with FunCoin) is as secure as Flottery (together with
GweakLedger).

With this example we see that Lemma 2 falls short in examining the security
of the challenge protocol when proven w.r.t. an (even slight) abstraction of the
setup and not its implementation. In the above example, Flottery might provide
very strong fairness guarantees, that however can only be achieved with a simu-
lation that crucially exploits introduction of adversarial entries into GweakLedger.
Thus, when looking only at Flottery, false impressions of security guarantees are
created. In particular, with the stronger global Gledger or the actual protocol
FunCoin, which do not have this weakness, Flottery might not even be realizable
by the lottery – to say the least, the existing simulation is likely to fall short in
witnessing such an emulation statement.

To remedy the situation (and to blow our provider’s cover), we need to
understand the implications of replacing the global setup in the ideal world.
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In particular, preventing a security proof from exploiting weaknesses in the
abstraction of the setup seems to be crucial to arrive at a plausible and realistic
level of security. In the remainder of this section, we ask under which conditions a
security proof might be preserved when replacing the global setup in both worlds.

3.3 Full Replacement of the Global Subroutine

We now turn our attention to “full” replacement strategies, where the global sub-
routine is replaced by a protocol UC-emulating it in both the real and the ideal
world. Of course, this is to be understood w.r.t an existing security statement,
that is, our precondition (1). Let us emphasize again that we are only interested
in replacement strategies that preserve the underlying security statement.

Equivalence Transformations of the Global Subroutine. Canetti et al.
demonstrated, using the terminology of GUC, that replacing the global subrou-
tine by an equivalent procedure preserves protocol emulation w.r.t the subrou-
tine. The replacement theorem is proven in [CSV16], and we recover it here for
completeness. Thanks to the embedding within plain UC that UCGS achieves,
our proof is able to capture the arguments at a more abstract level, essentially
reducing all steps to standard UC-emulation. Let us first illustrate how and why
equivalence replacement works with the lottery.

Running Example. The provider keeps receiving calls from cryptographers who
find it suspicious that his simulation exploits the weaknesses of GweakLedger. Since
FunCoin does not offer introduction of arbitrary adversarial blocks, the provider
however cannot carry out his simulation with FunCoin. Searching the inter-
net, the provider learns about a shady cryptocurrency called DarkCoin. Fur-
ther investigating, the provider can prove that DarkCoin admits the exact same
attacks as GweakLedger, i.e., is UC-equivalent to GweakLedger

7. Thus, the provider
can run his simulation with DarkCoin instead of GweakLedger, since DarkCoin
allows for all adversarial queries that are possible with GweakLedger. Moreover, the
provider can be assured that his simulation is still good for the now modified real
world, since DarkCoin does not admit more attacks than GweakLedger. Relieved, he
announces that, when using the globally available DarkCoin, his lottery protocol
emulates Flottery.

Theorem 3 (Full Replacement via Equivalence Transformations).
Assume π UC-emulates F in the presence of a global subroutine G. If ψ UC-
emulates G and vice-versa, i.e., their adversarial interfaces are equivalent, then
π, invoking ψ instead of G, UC-emulates F , invoking ψ instead of G, and where
ψ is the global subroutine.

Proof. We again have to phrase our theorem in the language of UCGS: Let π,
F , ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities,
such that π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and
7 Formally, ψ and ψ′ are UC-equivalent if ψ UC-emulates ψ′ and ψ′ UC-emulates ψ.
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ψ are subroutine respecting, π and F are subroutine respecting except via calls
to G and G is π-regular. If ψ UC-emulates G with respect to ξ-identity-bounded
environments —and vice-versa— and if π UC-emulates F in the presence of G
w.r.t. ξ′-identity-bounded environments, then M[πG→ψ, ψ] UC-emulates protocol
M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded environments.

The sequence of steps needed in this proof are the following hybrid protocols.

– The real protocol H0 := M[πG→ψ, ψ].
– The first intermediate step H1 := M[π,G].
– The second intermediate step H2 := M[F ,G].
– The destination protocol H3 := M[FG→ψ, ψ].

As in the proof of Lemma 1, H0 is equivalent to M[π,G]G→ψ and hence H1 =
Hψ→G

0 . By standard composition, H0 UC-emulates H1 since the embedding is an
normal UC-protocol and subroutine ψ UC-emulates G. Next, the transition from
H1 to H2 is trivial: H1 UC-emulates H2 by the theorem assumption. Finally, we
go the “reverse” direction as in the argument of the first step thanks to the fact
that we know that G UC-emulates ψ. More formally, we have H3 = M[F ,G]G→ψ

and again, H3 is obtained by normal subroutine replacement within protocol H2.
Therefore, H2 UC-emulates H3 by the theorem assumption and we have that
H0 UC-emulates H3 which concludes the proof. ��

To the best of our knowledge, Theorem 3 is the only composition theorem
allowing for replacement of global subroutines with their UC emulation that
already exists in the literature [CSV16]. It can be applied to soundly replace,
e.g., a globally available ideal PKI with its implementation at a trusted PKI
provider. However, it falls short in replacing global setups with protocols, which
are likely to be stronger than their abstraction as a UC functionality. In the
remainder of this section we discuss solutions for such replacements.

Global-Agnostic Simulations of the Challenge Protocol. The condition
discussed in this section is useful for protocols designers to check whether their
proof remains valid when a global subroutine is replaced, by means of checking
the structure of the simulator. Intuitively, a sufficient condition is if the simulator
can simulate without accessing the adversarial interface of the global setup.
More generally speaking, for all UC-adversaries A the corresponding simulation
strategy SA should only externally-write onto the backdoor tape of the global
subroutine session(s) if the real-world adversary did so. An easy way to achieve
this is to have the ideal functionality F communicate with the global setup
G directly and if needed, provide the simulator (simulating the actions of π
when having access to the backdoor tape of F) with the necessary information.
Intuitively, the reason this is sound is that the only way F can interact with
the global setup just like an honest party would do (and in particular, not via
the backdoor tape). Since replacing F by a protocol that implements it can
never change the behavior for honest parties in a noticeable way (otherwise, it is
obviously distinguishable) the replacement is unproblematic. We first formally
capture what it means for a simulator to not use the adversarial interface of the
global subroutine.
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Definition 5 (G-agnostic). An adversary S interacting with subroutine G is
G-agnostic if the only external write requests (made by S’s shell) destined for (the
backdoor tape) of parties and subparties of any session of G are those instructed
by the environment directly and any messages via the backdoor tapes of (sub-
)parties of any session of G are delivered directly to the environment without
activating the body of S.

Running Example. Recently, numbers of users participating in the provider’s
lottery dropped significantly. Being sure that this is because of his recent recom-
mendation to use DarkCoin, the provider desperately hires a team of cryptogra-
phers. Examining the provider’s simulation carried out with respect to GweakLedger,
the team finds a better simulation strategy that only requires legitimate use of
the ledger by sending transaction requests to it. The new simulator thus acts
like an honest party using the ledger. In particular it does not exploit any of the
adversarial interfaces of GweakLedger. Since FunCoin allows to submit transactions,
replacing GweakLedger by FunCoin in the proof does not hinder the new simulation.
With FunCoin back in the picture, user statistics begin to slowly recover and
the provider is delighted.

Theorem 4 (Full Replacement due to Agnostic Simulations I). Assume
π UC-emulates F in the presence of a global subroutine G such that the simulator
S for this construction is G-agnostic. Let further ψ UC-emulate G. Then π,
invoking ψ instead of G, UC-emulates F , invoking ψ instead of G, and where ψ
is the global subroutine.

Proof. We first state the theorem in the language of UCGS as before. Let π, F ,
ψ, G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that
π is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ are sub-
routine respecting, π and F are subroutine respecting except via calls to G and
G is π-regular. Let ψ UC-emulate G with respect to ξ-identity-bounded environ-
ments and let π UC-emulate F in the presence of G w.r.t. ξ′-identity-bounded
environments. Let SA denote a simulator for the latter emulation that satis-
fies Definition 5. Then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-
identity-bounded environments.

The proof strategy is as follows:

π

π

π π

H G
Backdoor

A SD

A′

G
Backdoor

SD
≈
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More formally, we make the following transitions, going from top left to
bottom right in the picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 1 and
the precondition of ψ UC-emulating G. Let A′ denote the simulator of this
emulation.

execπ,A′,Z ≈ execF,SA′ ,Z . We show how to simulate for the specific adversary
A′. SA′ works as SA, but lets the internally simulated A on π issue its external
write requests to the global subroutine directly to SD, which overall has the
effect as if A and SD were combined when talking to the global subroutine.
The simulator SA (simulating π while interacting with F) performs a good
simulation even against this combined attacker, because SA does not care
about this interaction due to the agnostic property: SA does not issue any
queries to G itself (that might get blocked or modified by SD) and acts as a
relay between G and Z. Assume Z distinguishes both distributions. Then, Z
running SD internally instead of sending requests to SD to the adversary is a
successful distinguisher of π,A and F ,SA, since due to SA being G-agnostic,
Z is oblivious of the order of SA and SD (and, naturally, of the order of A
and SD). Since such a Z would violate precondition (1), we conclude that
both distributions are indistinguishable.

execF,SA′ ,Z ≈ execF,S′,Z , where S ′ denotes the simulator SA sending requests
to ψ via dummy adversary D. Recall that SA′ combines SA and SD. If both
executions are distinguishable, an environment running SA and F could dis-
tinguish an execution of ψ and D from an execution of SD with G, violating
the precondition that ψ UC-emulates G, i.e., precondition (2).

execF,S′,Z ≈ execF,SA,Z . Since the dummy adversary D is just a relay, we can
safely remove it from the execution.

��

General Condition for Global-Functionality Replacement. With the pre-
vious theorem, we showed that a global subroutine can be safely replaced by its
emulation in all security statements which are proven via a simulator who does
not access the global subroutine. This however not only means that the sim-
ulator cannot manipulate the state of the global setup, but is also completely
oblivious of it. This is often too strong of a condition. For example, consider a
simulator witnessing a protocol’s security in the presence of a global CRS. Such
a simulator should at least be allowed to read out the CRS, since, intuitively, the
CRS is publicly available information. Similarly, a simulator in a global ledger
world should at least be allowed to read the state of the ledger. And indeed,
our next replacement theorem admits global replacements that do not interfere
with such simulators, as long as the power of the simulator is reflected in the
real world even with respect to the stronger emulation of the global subroutine.

To ease the technical presentation of the condition on the simulator, for the
next theorem we restrict ourselves to the special case of functionalities as global
subroutines. The treatment could be generalized to arbitrary global subroutines.
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Let us start with introducing some technical tools which help us formalize inter-
action between adversaries and global functionalities.

Definition 6 (Ordered interaction). Let I be a set of queries. An ideal
functionality G is called I-ordered if G answers to inputs x ∈ I on the backdoor
tape with (x, y), and uses format (⊥, ·) otherwise.

The definition simply demands that ITM G, in his answers to the adversary,
repeats what query it responds to if the query belongs to some set I. Note that
quite often in the literature, such an association is necessary but left implicit in
the description, since it is obvious which query will result in which answer (by
repeating the input and maintaining a clear order when answering adversarial
requests). Next, we define some useful notation when running two programs in
one machine. Essentially, we define a wrapper that routes incoming queries to
the program which they are intended for.

Definition 7 (Parallel composition of adversaries). Let S1 and S2 be two
ITMs. Then [S1,S2] denotes the adversary with the following shell: whenever
activated with value (x, y) on the backdoor tape, it activates Si if x was issued
by Si and in any other case activates S2 by default. Conversely, if activated with
input (i, x) on the input tape (for any x), the shell activates Si on input x.

Definition 8 (Admissible backdoor-tape filter). Let SD be the simulator
of condition (2), i.e., the construction of G from ψ. Let I be a subset of adversar-
ial queries allowed by G, and let G be I-ordered. Let further fI denote a simple
program which takes inputs x ∈ I and writes them on the backdoor tape of G, and
if provided with input (x, y) on the backdoor tape, returns y to the caller that pro-
vided the corresponding input x (other values on the subroutine output tape are
ignored by f). We say that fI is an admissible backdoor-tape filter for (SD, ψ,G)
if there exists a simulator [SfI

,D] such that execG,[fI ,SD],Z ≈ execψ,[SfI
,D],Z .

We omit (SD, ψ,G) if it is clear from the context.

Pictorially, fI is an admissible filter if there is a simulator SfI
such that:

G
Backdoor Tape

fI SD

≈ H′

ψ ψ

ψ

ψ

SfI D

comp. ind.

Note that a filter is nothing else than a program making the adversarial
interface of G less powerful while not interfering with the assumed simulator.

Running Example. Let us assume that the ledger GweakLedger has adversarial inter-
faces J := {readState, permute, putEntry }. DarkCoin UC-emulates GweakLedger

with simulator SD that, say, only uses interface putEntry. Thus, f{readState} is
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admissible for (SD,DarkCoin,GweakLedger) since SD does not depend on how often
GweakLedger outputs the state. The simulator Sf{readState} simply collects the state
of the DarkCoin ledger from publicly available information. On the other hand,
f{permute} (and f{permute,readState}) can only be admissible if SD performs a good
simulation regardless of the order in which entries (including adversarial ones)
appear on the ledger, and if there exists an attacker Sf{permute} that can carry out
a permuting attack against DarkCoin.

The next definition restricts the simulator’s usage of the global functionality.
Essentially, the simulator is not allowed to query the global G except for queries
in some set I.

Definition 9 (G \ I-agnostic). Let S denote an adversary interacting with
global subroutine G and let I denote a subset of the adversarial queries allowed
by G, and let G be I-ordered. S is called G\I-agnostic if the only external write
requests (made by the simulator’s shell) destined for G are either requests x ∈ I or
those instructed by the environment directly, and any messages via the backdoor
tapes from the (sub-)parties of G are delivered directly to the environment without
activating the body of S, except when they are of the form (x, ·) where the query
x ∈ I has been issued by the body of S.

We are now ready to state our most general replacement theorem for global
subroutines for simulators that are global-agnostic except for queries in some set
I that pass the backdoor-tape filter of the shared subroutine. Those queries can
be asked by the simulator any time. The intuition is that, due to the admissible
property, we know how to “attack” an instantiation of G to extract information
from it that is indistinguishable from what the filtered adversarial interface of G
offers.

Running Example. Bitcoin is known to UC-emulate a ledger functionality Gledger

[BMTZ17], which we assume to offer an adversarial interface readState8. Let
SD denote the simulator of this emulation statement. Since any permissionless
blockchain, and in particular Bitcoin, publicly encodes the ledger state, it holds
that f{readState} is admissible for (SD,Bitcoin,Gledger) (the simulator Sf{readState}
that witnesses admissibility is interacting with Bitcoin and obtains the state
the same way an honest miner would do). Now if some blockchain application
π proven w.r.t Gledger comes with a simulation that only queries Gledger with
readState, the security statement remains valid when Gledger is replaced with
Bitcoin. That is, π is guaranteed to realize the same functionality, regardless of
whether Gledger or Bitcoin is used as global ledger.

Theorem 5 (Full Replacement due to Agnostic Simulations II).
Assume execψ,D,Z ≈ execG,SD,Z and let I be a subset of adversarial queries
allowed by G such that fI is an admissible backdoor-tape filter for (SD, ψ,G).

8 In [BMTZ17], any party, including the adversary, can obtain the ledger state by
sending (READ, sid) to Gledger.
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Let further π UC-emulate F in the presence of the global subroutine G such that
the simulator SA for this precondition is G \ I-agnostic. Then, π, invoking ψ
instead of G, UC-emulates F , invoking ψ instead of G, and where ψ is the global
subroutine.

Proof. We first state the theorem in the language of UCGS as before. Let π, F , ψ,
G be protocols and let ξ, ξ′ ∈ Ξ be predicates on extended identities, such that π
is (ψ,G, ξ)-compliant, π, F , G, ψ are subroutine exposing, G and ψ are subroutine
respecting, π and F are subroutine respecting except via calls to G and G is π-
regular. Let ψ UC-emulate G with respect to ξ-identity-bounded environments.
Let SD denote the simulator of this condition, and be I a subset of adversarial
queries allowed by G such that fI is admissible for (SD, ψ,G). Let further π
UC-emulate F in the presence of G w.r.t. ξ′-identity-bounded environments.
Let SA denote a simulator for this emulation, and let SA be G \ I-agnostic.
Then M[πG→ψ, ψ] UC-emulates protocol M[FG→ψ, ψ] w.r.t. ξ′-identity-bounded
environments.

The sequence of steps needed in this proof are the following.

π

π

π π

H G
Backdoor

A SD

A′

G
Backdoor≈

F
Backdoor

≈
F

Backdoor

H′

ψ ψ

ψ

ψ ≈
S′

F
Backdoor

H′

ψ ψ

ψ

ψ

comp. ind.

SA G\I-agnostic

comp. ind.

≈π

π
π π

H

A

H′

ψ ψ

ψ

ψ
Lemma 1

UC-emulates

fI admissible

precondition (1)

precondition (2)

[fI ,SD]

SA′

SA

[SfI ,D]
SA perf. ind.

S′

More formally, we make the following transitions, going from top left to
bottom right in the picture.

M[πG→ψ, ψ] UC-emulates M[π,G]. This directly follows from Lemma 1 and
the precondition of ψ UC-emulating G. Let A′ denote the simulator of this
emulation.

execπ,A′,Z ≈ execF,SA′ ,Z . We show how to simulate for the specific adver-
sary A′. SA′ works as SA, but lets the internally simulated A on π issue its
external write requests to the global subroutine directly to [fI ,SD] (using the
adressing mechanism described in Definition 7), which overall has the effect
as if A and [fI ,SD] were combined when talking to the global subroutine. We
need to argue that the simulator SA (simulating π while interacting with F)
still performs a good simulation even against this combined attacker. Due to
SA being G\I-agnostic, SA’s requests reach G unmodified since they pass fI .
Definition 9 further ensures that SA acts as a dummy adversary regarding
all requests between Z and [fI ,SD]. A distinguisher Z between both distri-
butions can thus be turned into a distinguisher between executions π,A and
F ,SA which runs program [fi,SD] internally, violating precondition (1).



On the (Ir)Replaceability of Global Setups 651

execF,SA′ ,Z ≈ execF,S′,Z , where S ′ denotes the simulator SA sending requests
to ψ via adversary [SfI

,D]. Recall that SA′ combines SA and SD. If both
executions are distinguishable, an environment running SA and F could dis-
tinguish an execution of ψ and [SfI

,D] from an execution of [fI ,SD] with G,
violating the precondition that fI is an admissible backdoor-tape filter for
(SD, ψ,G).

��

3.4 Case Study: Comparable Constructions and Random Oracles

The benefit of composable security is that it enables a secure modular design of
protocols. When one tries to achieve a new functionality, then one can rely on
already realized functionalities as a setup, being assured that those can modu-
larly be replaced by their already known implementations at any time. As we
showed in this paper, this idea generally fails for global (hybrid) setups, but
is partly restored by the above theorems by giving conditions on when such a
replacement of a global setup is possible.

Still, the following mismatch might occur in such a modular protocol design
which motivates another important aspect of Theorem 5. Assume two protocols
are proven with respect to different global setups, π1 realizes F1 in the GRO
setting, and π2, which makes (local) calls to F1 and realizes F2 w.r.t. a GRO
that allows the adversary upon request to program random points of the func-
tion table and otherwise is identical to GRO. Therefore, obtaining a combined
security claim w.r.t. a single RO assumption is in general not clear and might
not be possible because they assume different global setups the realization of F1

w.r.t. the observable RO has never been formally realized. Applying the UCGS
theorem is not possible and replacing, within π, the functionality F1 by π1 can
only be a heuristic in the best case. This situation is of course unfortunate. As
pointed out in [CDG+18] obtaining a common RO for both constructions is very
vital for the global RO model: the main reason to switch to global RO (vs. local
RO) is that in practice, all random oracles are instantiated by a single hash
function anyway. If composing constructions forces us to again have a couple of
different global random oracles in the end (which we replace by a single hash
function) we are back at square one.

Luckily, Theorem 5 gives us a tool to figure out whether π2 actually achieves
F2 in the presence of the plain GRO (which in turn would allow us to apply the
UCGS composition theorem): For protocol π2 UC-emulating F2 in the presence
of a global RO that supports, say, adversarial queries I (e.g., including random-
points programmability), it is therefore enough to specify the set I ′ ⊆ I of
filter requests for which the preconditions of Theorem 5 is satisfied. In this case,
it follows that the very same construction can be proven with respect to any
stronger version of the assumed GRO that blocks inputs from any subset of
I \ I ′ and hence preserving the queries that are necessary for this simulator.
The reason is that the simulator in the UC-emulation proof of the construction
π2 is agnostic to what happens aside of its filter requests, and this includes the
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possibility that no request aside of its filter requests of queries in I ′ are made
(and on the other hand, the protocol in the real world is not disturbed by the
exact set of queries since it is proven w.r.t. the rpGRO).

The final conclusion is that incomparable constructions can become compa-
rable by general security-preservation results, such as the one in Theorem 5: if
I ′ does not contain the programmability request, then the two protocol π1 and
π2 work for the same GRO as established by Theorem 5. Hence, for those two
constructions, π2 can replace hybrid F1 by π1, which is then not a heuristic
argument, but a sound composition step that is formally backed by the UCGS
composition theorem.

We note that the study of [CDG+18] goes into the other direction by per-
forming a transformation on π1 in order to be secure w.r.t. some weaker oracle
G2. Such transformations can only exist for specific choices of RO’s (since generic
composition results fail when using a weaker setup due to increased attack sur-
face for the real attacker), and our results applied to global RO constructions
gives a tool to go the other way in certain cases.

4 Generalization to Many Global Subroutines

We now consider protocols that use more than one global setup. Such a situation
often appears in the literature, e.g., when a protocol makes use of a global ledger
and a global clock, or a global PKI and a global random oracle. Formally, such
a protocol is subroutine respecting except via calls to subroutines γi, i ∈ [n]. In
this section, we show how to leverage the results from the previous section to
replace one, or several, or all of the global subroutines γi. A bit more formally,
we now assume precondition (1) be as follows:

(1) π UC-emulates F in the presence of global γ1, . . . , γn

Looking ahead, we will have to make some assumptions on the global sub-
routines γ1, . . . , γn and the corresponding protocols ψ1, . . . , ψn to realize them.
Roughly speaking, ψn will not depend on any other global subroutine to realize
γn, while ψn−1 (and hence also γn−1) is allowed to depend γn but on no other
global subroutine. We will be more formal about how to define “depend” in this
context.

Before formalizing our results, let us describe the idea behind them. Essen-
tially, we will interpret the setups γ1, . . . , γn as a single global setup γ̂. γ̂ simply
runs all γi internally and dispatches messages correspondingly. For this single
global setup γ̂, we can interpret precondition (1) above as precondition (1) from
the previous section with single setup γ̂, and apply the replacement theorems
from the previous section. The only open question is: which protocol realizes the
single global setup γ̂? Note that this emulation is needed to replace precondition
(2) in Sect. 3.1. So let ψ1, . . . , ψn denote the protocols we want to replace the
global subroutines with, i.e., ψi UC-emulates γi for all i. We show that, under the
condition that all setups form a hierarchy regarding who gives input to whom,
̂ψ UC-emulates γ̂.
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We first state a general program structure:

Definition 10 (Merging subroutines.). Let ρ̂ρ1,...,ρn
:= [ρ1, . . . , ρn] be a pro-

gram that accepts inputs of the form (query, sid, i, x) and invokes subroutine ρi

with input x, all with respect to the same session sid.

In UC, we must ensure that this simple program structure can be made
a compliant protocol (and subroutine exposing) as we are going to replace its
subroutines later. For two protocols γi, ψi, the above program becomes (ψi, γi, ξ)
compliant if it never relays inputs not satisfying the bound ξ by its caller. The
remaining, more technical conditions for compliance can be trivially satisfied.
In order not to overload notation, we assume such a predicate is known and
enforced by ρ̂ρ1,...,ρn

. 9 We identify UC-realization with multiple setups with the
single global subroutine case as follows:

Definition 11 (UC emulation with multiple global setups). Let π, φ and
γ1, . . . , γn be protocols. We say that π ξ-UC-emulates φ in the presence of global
subroutines γ1, . . . , γn if protocols π and φ are formulated with respect to a global
subroutine γ̂γ1,...,γn

and M[π, γ̂γ1,...,γn
] ξ-UC-emulates protocol M[φ, γ̂γ1,...,γn

].

Note that the overlay we define is just a dispatching service. Hence, a protocol
designer might still define π in the way of having π directly access each γi. This
transition is straightforward.10

We hence obtained a reduction between the single global-subroutine world
and the multiple global-subroutine world.

Remark 1. The following theorem makes the hierarchy idea formal that we dis-
cussed at the onset of this section. In order to express that γi does not depend
on other subroutines γj , j < i we use the concept of regularity to ensure that γi

does only invoke global subroutines that presumably already have been replaced
(by condition 1. below, only the γi’s and no other protocol can be seen as global).
This facilitates that for any subroutine γi we can make use of precondition 3. that
ψi realizes γi in the presence of global subroutines γj , j < i, and be sure this
is independent of what is yet to be replaced later. This gives a sound order of
replacements.

Theorem 6 (Reduction Theorem). Let γ1, . . . , γn and ψ1, . . . , ψn be proto-
cols. ̂ψψ1,...,ψn

UC-emulates γ̂γ1,...,γn
if for each protocol ρi ∈ {γi, ψi} the follow-

ing conditions hold:

9 The remaining conditions are technicalities such as setting the forced-write flag and
not calling ψi and γi with the same session sid which obviously can be satisfied.
For the UCGS theorem, this protocol is compliant if it additionally never invokes a
model element, which is obvious.

10 Whether the transition is also trivial is a different question. In frameworks that have
a complex runtime structure, introducing such an intermediate dispatching machine
might be costly and would require π to request more runtime-resources. In UC, this
would cost k import more for π, where k denotes a security parameter.
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1. ρi, when i < n, is subroutine respecting except for calls to γi+1, . . . , γn. ρn is
subroutine respecting. All ρi are subroutine exposing.

2. ρi, when i > 1, is γj-regular and ψj-regular for all j ∈ {1, . . . , i − 1}.
3. ψi ξ-UC-emulates γi, for i < n, in the presence of global subroutines

γi+1, . . . , γn. And ψn UC-emulates γn.

Proof. We again use the transitivity of indistinguishability of ensembles. The
sequence of hybrid worlds that are needed to conclude are depicted below for
the case of three global subroutines.

≈
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ψ2 ψ2

ψ2

ψ2
H′′

ψ3 ψ3
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ψ1 ψ1
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ψ1 H′
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SDD
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Backdoor
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fin := SA′′

A′′

G1
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Each step is characterized by two elements: a single context protocol μi, and
the number i which protocol is to be replaced. Let μi := [ψ1, . . . , ψi, γi+1, . . . , γn],
i = 1, . . . , n and μ0 := γ̂γ1,...,γn

. We start with μn := ̂ψψ1,...,ψn
.

Step 1: In the context protocol μn−1 we perform the replacement μγn→ψn

n−1 ,
resulting in μn. By the Theorem’s precondition, we can invoke the UC com-
position theorem, since γn and ψn are subroutine respecting and subroutine
exposing and μn is compliant. Therefore, the UC composition theorem implies
execμn,D,Z ≈ execμn−1,Sn,Z .

Step 2 ≤ i ≤ n: starting with context protocol μn−i we replace μγn→ψn

n−i which
results in μn−i+1. For this step, we can invoke the UCGS theorem since the
preconditions of the UCGS theorem are satisfied: γi resp. ψi can be treated as
protocols that are subroutine respecting except with calls to γi+1, . . . , γn and
hence Definition 11 applies. Furthermore, all protocols are subroutine expos-
ing, and formally, the “global setup” of this construction, i.e., the subsystem
consisting of γi+1, . . . , γn, is γi- and ψi-regular as demanded by the precon-
dition, i.e., they never send input to any of the subroutine prior to i that
have not yet been replaced. Hence, the UCGS theorem yields that μn−i UC-
emulates μn−i+1 and in other words, execμn−i+1,A,Z ≈ execμn−i,Sn−i+1,Z .

The final step follows by applying transitivity to obtain the final simulator Sfin for
the overall construction. Since we started with the dummy real-world adversary
for ̂ψψ1,...,ψn

this formally yields a simulator for the dummy adversary that proves
exec

̂ψ,D,Z ≈ execγ̂,SD
fin,Z . ��
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We now set ψ := ̂ψψ1,...,ψn
, G := γ̂γ1,...,γn

and SD := SD
fin in precondition (2)

in Sect. 3.1. This yields a precondition that lets us replace all global subroutines
using the various replacement theorems from the previous section.

Remark 2. In some situations, we might want to replace only one global subrou-
tine but not all of them. As an example, consider a protocol accessing a global
PKI functionality γ1, which in turn uses a global RO γ2. In an instantiation, the
global PKI is likely replaced by an interactive protocol ψ1 (potentially involving
a certificate authority, but still using the global RO). To ensure that the proto-
col’s security proof remains valid under this replacement, we need to replace only
γ1 but not γ2. However, due to the fact that every protocol trivially UC-emulates
itself, we can apply Theorem 6 with ψ2 := γ2, which will leave the global RO as
a proof element.
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Abstract. We consider the Learning Parity with Noise (LPN) problem
with sparse secret, where the secret vector s of dimension n has Ham-
ming weight at most k. We are interested in algorithms with asymptotic
improvement in the exponent beyond the state of the art. Prior work in
this setting presented algorithms with runtime nc·k for constant c < 1,
obtaining a constant factor improvement over brute force search, which
runs in time

(
n
k

)
. We obtain the following results:

– We first consider the constant error rate setting, and in this case
present a new algorithm that leverages a subroutine from the
acclaimed BKW algorithm [Blum, Kalai, Wasserman, J. ACM ’03] as
well as techniques from Fourier analysis for p-biased distributions.
Our algorithm achieves asymptotic improvement in the exponent
compared to prior work, when the sparsity k = k(n) = n

log1+1/c(n)
,

where c ∈ o(log log(n)) and c ∈ ω(1). The runtime and sample com-
plexity of this algorithm are approximately the same.

– We next consider the low noise setting, where the error is subcon-
stant. We present a new algorithm in this setting that requires only
a polynomial number of samples and achieves asymptotic improve-
ment in the exponent compared to prior work, when the sparsity

k = 1
η

· log(n)
log(f(n))

and noise rate of η �= 1/2 and η2 =
(

log(n)
n

· f(n)
)
,

for f(n) ∈ ω(1) ∩ no(1). To obtain the improvement in sample com-
plexity, we create subsets of samples using the design of Nisan and
Wigderson [J. Comput. Syst. Sci. ’94], so that any two subsets have
a small intersection, while the number of subsets is large. Each of
these subsets is used to generate a single p-biased sample for the
Fourier analysis step. We then show that this allows us to bound
the covariance of pairs of samples, which is sufficient for the Fourier
analysis.
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– Finally, we show that our first algorithm extends to the setting where
the noise rate is very high 1/2−o(1), and in this case can be used as a
subroutine to obtain new algorithms for learning DNFs and Juntas.
Our algorithms achieve asymptotic improvement in the exponent for
certain regimes. For DNFs of size s with approximation factor ε this

regime is when log s
ε

∈ ω
(

c
log n log log c

)
, and log s

ε
∈ n1−o(1), for

c ∈ n1−o(1). For Juntas of k the regime is when k ∈ ω
(

c
log n log log c

)
,

and k ∈ n1−o(1), for c ∈ n1−o(1).

1 Introduction

The (search) Learning Parity with Noise (LPN) problem with dimension n and
noise rate η, asks to recover the secret parity s, given samples (x, 〈x, s〉 ⊕ e),
where x ∈ {0, 1}n is chosen uniformly at random, s ∈ {0, 1}n, error e ∈ {0, 1} is
set to 1 with probability η and 0 with probability 1 − η, and the dot product is
taken modulo 2.

While solving a linear system of n equations over F2 to recover a secret of
dimension n can be done in polynomial time via Gaussian elimination, even
adding a small amount of noise e renders the above a seemingly hard learning
problem, even given a large number of samples. Specifically, the search LPN
problem, which typically assumes the noise rate is a small constant, is believed
to be hard, with the asymptotically best algorithm (known as BKW) requiring
runtime 2Θ(n/ log(n)) and 2Θ(n/ log(n)) number of samples to recover s of dimension
n. Some evidence of its hardness comes from the fact that it provably cannot be
learned efficiently in the so called statistical query (SQ) model under the uniform
distribution [3,5].

Though originally arising in the fields of computational learning theory and
coding theory, the LPN problem has found numerous applications in cryptogra-
phy (see e.g. [4,13,17,18] for a partial list of applications) due to the fact that
(1) there is a search-to-decision reduction, meaning that the decision version—
which is more amenable to cryptographic applications and asks to distinguish
(x, 〈x, s〉 ⊕ e) from (x, b), where b is random—is as hard as the search ver-
sion (which asks to recover s) and (2) the LPN problem is believed to be
quantum-hard, as opposed to other standard cryptographic assumptions such
as discrete log and factoring which are known to have polynomial time quantum
algorithms [26].

Variants of the LPN problem have also been considered in the literature:
Sparse LPN [6], where the x vectors in the LPN problem statement are sparse,
LPN with structured noise, where the noise across multiple samples is guaranteed
to satisfy some constraint [2], and Ring LPN [16]. While typically the error rate
is assumed to be constant, LPN with low noise rate has also been considered
with applications to cryptography [8]. Indeed, LPN with noise rate even as low
as Ω(log2(n)/n) is considered a hard problem [8]. We further note that WLOG
can assume that the secret is drawn from the same distribution as the noise, as
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there is a reduction from LPN with secret s to LPN with secret e, where e is
the error vector obtained after n samples are drawn [1].

In this work we consider LPN with sparse parities (i.e. the “sparsity” or
Hamming weight k of the secret vector is significantly less than η · n, where η is
the error rate). We consider both the constant noise and the low noise setting
(where the error rate is subconstant). Motivations for considering this variant of
LPN include the fact that sparse secrets may be used in practical cryptosystems
for efficiency purposes (as is the case for some fully homomorphic encryption
implementations [9]), or some bits of the secret may be leaked via a side-channel
attack. More generally, analyzing the security of LPN with sparse parities tests
the robustness of the standard LPN assumption, since a lack of polynomial-time
algorithms in the sparse parities setting (when k is super-constant) would then
raise our confidence in the security of the standard setting. We also consider
applications of our results to other learning problems, such as learning DNFs
and Juntas. Prior work on LPN with sparse parities, has mainly considered
obtaining algorithms with runtime nc·k for constant c < 1 [14,27]. This beats
the trivial brute force search with runtime

(
n
k

)
in the regime where k � n. In

this work, our focus is to achieve an algorithm which, for certain regimes of k,
beats the prior best algorithms asymptotically in the exponent. Since our goal
is to achieve asymptotic improvement in the exponent, we will compare our
algorithm’s runtime against brute force search and not the prior work of [14,
27], since the latter algorithms are equivalent to brute force search in terms of
asymptotics in the exponent.

1.1 Our Results

We obtain new LPN algorithms for sparse parities that improve upon the state-
of-the-art in certain regimes, which will be discussed below.

Our first result pertains to the constant noise setting, where the noise rate
η ∈ Θ(1). In the theorem below, p ∈ (0, 1) is a free parameter that we set later
to optimize our runtime.

Theorem 1.1. For δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of
n variables and constant noise rate can be learned with total number of samples
and total computation time of

poly

(
1

(1 − 2η)
√

np · p2(k−1)(1 − p)2
· ln(

n

δ
) ·

(
2

np
log(np) · log(np)

))
,

and success probability of 1 − δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2

· ln(2n
δ ) · exp(−pn

8 )
)
.

By setting the parameter p appropriately, we obtain the following:

Corollary 1.2. For sparisty k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n))
and c ∈ ω(1), the runtime of our new learning algorithm is contained in both
log(n)o(k) and 2o(n/ log(n)), and it succeeds with constant probability. For this
range of k, Brute Force search requires runtime log(n)Ω(k) and BKW requires
runtime of 2Ω(n/ log(n)).
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Our second result pertains to the low noise setting, where the noise rate
η ∈ o(1). Again, p ∈ (0, 1) is a free parameter that we set later to optimize our
runtime.

Theorem 1.3. Assuming parameters are set such that

log
(

1
(1 − 2η)2np+2p2(k−1)(1 − p2)

)
∈ o(1/η · log(np)),

and that δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of n variables and
noise rate η ∈ o(1) can be learned using (2np+1)2·log(n) number of samples, total
computation time of N := poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves success

probability of

1 − δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))

By setting the parameter p appropriately, we obtain the following:

Corollary 1.4. For sparsity k(n) such that k = 1
η · log(n)

log(f(n)) , noise rate η �= 1/2

such that η2 =
(

log(n)
n · f(n)

)
, for f(n) ∈ ω(1) ∩ no(1) , the Learning Algorithm

of Fig. 4 runs in time O
(

1
(1−2η)2np+2p2k · log(n) · (np)3

)
∈ (

n
k

)o(k) with constant

probability. In this setting, the running time Brute Force is
(
n
k

) ≥ (n
k )k and the

running time of Lucky Bruteforce is eηn ∈ (
n
k

)ω(k).

Finally, applying known reductions to LPN [12] and solving LPN using our
algorithm, we also obtain applications to learning other classes of functions such
as DNF and juntas:

– Our algorithm can be applied to learn DNFs of size s and approxi-
mation factor ε, with asymptotic improvements over Verbeurgt’s bound
[28] of O

(
nlog s

ε

)
, and with negligible failure probability when log s

ε ∈
ω

(
c

log n log log c

)
, and log s

ε ∈ n1−o(1), where c ∈ n1−o(1).

– Our algorithm can be applied to learn Juntas of size k with a runtime of no(k)

and a negligible failure probability when k ∈ ω
(

c
log n log log c

)
, and k ∈ n1−o(1),

where c ∈ n1−o(1).

1.2 Technical Overview

Fourier Analysis of Boolean Functions. Every Boolean function, f : {0, 1}n →
{0, 1}—equivalently f : {−1, 1}n → {−1, 1}—can be represented as a linear com-
bination f(x) =

∑
S⊆[n] f̂(S) ·χS,p(x), known as the Fourier representation of f .

Typically, we consider the uniform distribution over examples x, in which case
χS,p(x) is defined as

∏
j∈S x[j] and f̂(S) = Ex∼{−1,1}n [f(x) · χS,p(x)]. However,

for any product distribution [p1, . . . , pn], where E[x[j]] = pj , we can also define
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χS,p(x) :=
∏

j∈S
x[j]−pj√

1−p2
j

and f̂(S) := Ex∼Dp
[f(x) · χS,p(x)], where Dp is a prod-

uct distribution defined over {−1, 1}n and is parameterized by its mean vector
[p1, . . . , pn] . Fourier analysis is a strong tool in computational learning theory
for learning under the uniform distribution (and can be extended to product
distributions as well). Specifically, the Low Degree Algorithm of [20] guarantees
that if most of the Fourier weight of a Boolean function is concentrated on low
degree parities (i.e. χS,p with small |S|), then an approximate version of the
function can be reconstructed, even in the presence of noise. However, for learn-
ing large parities under the uniform distribution Fourier analysis is not useful
since for a parity corresponding to secret s of Hamming weight k, all of the
Fourier weight is on a single Fourier coefficient of degree k and searching for this
Fourier coefficient would require a brute force search that enumerates over all
possible parities of size at most k. If the distribution is p-biased instead of uni-
form, however, then the above is no longer the case. Specifically, if we consider a
product distributions where the example x is no longer uniformly random, but
each coordinate of x is set to 0 with probability 1/2+p/2 and 1 with probability
1/2 − p/2 (so the expectation E[x[j]] = p for each coordinate of x), then the
Fourier weight is now spread over all parities S such that ∀j ∈ S, s[j] = 1. In
particular, this means that by approximately computing the Fourier coefficient
of all subsets consisting of a single element S = {s[1]}, . . . , S = {s[n]}, we can
distinguish the subsets of size 1 with non-zero versus zero Fourier weight and
thus determine all i such that s[j] = 1. We note that when the distribution is p-
biased, the magnitude of the Fourier coefficients that we must approximate is of
the order pk, and we will therefore require poly((1/p)k) samples to approximate
the quantity (even without considering noise). We will see in the following that
in order for our approach to improve upon known algorithms, we must consider
sparse parities with k ∈ o(n).

Attack Overview. Given the above discussion, the main idea of our attack is
to convert samples drawn from the uniform distribution to samples drawn from
a p-biased distribution and then use Fourier analysis techniques to learn the
elements of the parity one by one.

In order for this approach to succeed, our algorithm first needs to generate a
sufficient number of p-biased LPN samples, given uniformly random LPN sam-
ples. Specifically, the attacker has access to unbiased LPN oracle which outputs
samples xi and corresponding label bi such that bi = 〈xi, s〉+ei, noise ei has rate
η meaning that error ei is 1 with probability η and 0 with probability 1−η. The
attacker will generate new samples x′

i, which are p-biased, and a corresponding
label b′

i, with a higher error rate η′. We then approximate the Fourier coeffi-
cient of coordinate j, constructed as above, by b̂p({j}) := Ex′∼Dp

[b′ · χ{j},p(x′)].
The main observation is that for the secret key coordinate j such that s[j] = 0
we have b̂p({j}) = 0 and for the coordinates j such that s[j] = 1 we have
b̂({j}) = (1 − 2η′) · pk−1

√
1 − p2 . The value of b̂p({j}) is estimated by using a

sample mean with a sufficient number of generated p-biased samples to approx-
imate the expectation.
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We present two algorithms for generating the p-biased samples, each algo-
rithm is appropriate for a different scenario. Specifically, our first algorithm is
appropriate for the standard case where the noise rate is constant, while our
second algorithm is appropriate for the low noise case where the noise rate is
sub-constant. After generating the p-biased samples, the Fourier estimation step
is similar in both settings. We next elaborate on our algorithm for each of the
two settings.

Constant Noise. In the case where the noise rate is constant, to generate the p-
biased samples, we apply a variant of the BKW algorithm. The BKW algorithm
gives an 2O(n/ log(n))-time algorithm for the LPN problem that also requires
2O(n/ log(n)) number of samples. An intermediate step of the BKW algorithm uses
access to its LPN oracle to generates samples (x, 〈x, s〉⊕ e′), where x is a vector
that has all 0’s except in a single position, and e′ is an error term with higher
noise rate than the original error. The key idea of our algorithm is that in order to
create p-biased samples, we can choose a random set of coordinates, R ⊆ [n], by
including each i ∈ [n] in the set R independently with probability p, and then run
the subroutine of the BKW algorithm on the smaller set R, of expected size pn,
in order to create a sample x that is set to 0 for all i ∈ R. Such a sample x is now
distributed identically to a p-biased sample. The error rate increases, but since
Fourier analysis is robust against noise, these p-biased samples can still be used
to estimate the Fourier Coefficients corresponding to S = {s[1]}, . . . , S = {s[n]}
to determine the secret s. Crucially, our algorithm gains over simply running
BKW on the entire instance because the set of coordinates we run BKW on is of
size O(pn) instead of size n. Thus, generating the biased samples runs in time
2O(pn/ log(pn)) instead of time 2O(n/ log(n)). When p is subconstant, we achieve
an asymptotic gain in the exponent. In contrast, the Fourier estimation step
runs in time poly((1/p)k), so we must also set p large enough so that this step
achieves asymptotic gain in the exponent beyond the brute force search time of(
n
k

)
. We discuss at the end of the section the regime in which it is possible to set

the parameter p so that our algorithm improves asymptotically in the exponent
beyond the best known algorithms.

Low Noise. When the noise rate is sufficiently low, we can generate p-biased
samples using a simpler approach. As before, we randomly select a set R ⊆ [n],
by including each i ∈ [n] in the set R independently with probability p. Now,
instead of running BKW on the coordinates in the set R, we simply choose O(np)
number samples (since R has expected size np) from the non-biased oracle and
find a linear combination (guaranteed to exist) that sets all the coordinates in R
to 0. Again, the noise increases in the generated sample. Nevertheless, we gain
over the trivial approach (which instead of p-biasing the oracle simply creates
linear combinations that have x set to all 0 except for in a single coordinate)
because the linear combination we generate is over at most O(np) versus O(n)



664 D. Dachman-Soled et al.

vectors, which in turn guarantees that the noise rate will be lower.1 We gain
from this technique by choosing p small enough to lower the noise rate but large
enough to ensure that the (1/p)k necessary to estimate the Fourier coefficient
still beats brute force search asymptotically in the exponent.

In the low noise case we further show that we can generate the large number
of samples needed for the Fourier analysis using only a polynomial size set of
examples from the original LPN oracle. In this case, the generated samples will
not be i.i.d., but we will use a construction inspired by the designs of Nisan and
Wigderson to generate an exponentially large set of samples, where each pair
of samples from the generated set has low covariance.2 See Sect. 4.1 for more
details. This will be enough to then run the Fourier analysis, which requires
that one can use random sampling to estimate the mean of a random variable.
We can bound the deviation from the mean using Chebyshev’s inequality since
we guarantee that the covariance between any two distinct samples is small.

Parameters. We now discuss the regime of k and η in which we improve on prior
algorithms, and how to set the parameter p to achieve the optimal run time. For
the constant noise setting, with secret s with sparsity in the form k = k(n) =

n
log1+1/c(n)

, where c ∈ o(log log(n)) and c ∈ ω(1), we set p = 1/ log1/(c)(n) to
obtain an algorithm that improves upon both Bruteforce and BKW asymptoti-
cally in the exponent. Recall that prior work on LPN with parities of sparsity
k reduced the constant in the exponent beyond brute force, but did not achieve
asymptotic improvement in the exponent. In our work we care about asymptotic
improvement in the exponent and therefore do not compare against those algo-
rithms. For the low noise setting we show that for sparsity k = 1

η · log(n)
log(f(n)) and

the noise rate of η �= 1/2 and η2 =
(

log(n)
n · f(n)

)
, for f(n) ∈ ω(1) ∩ no(1), by

setting p = 1
f(n) and 1

p ∈ (
n
k

)o(1), our algorithm improves upon both Bruteforce
and “lucky Bruteforce”–i.e. an algorithm which gathers m samples until it has n
noiseless samples with high confidence (where m depends on the noiserate) and
then attempts Gaussian elimination with every possible subset of size n, giving
runtime poly(

(
m
n

)
)–asymptotically in the exponent. To our knowledge, these are

the best algorithms when considering asymptotics in the exponent.

Application to DNF and Juntas. In addition to parities, the reductions by Feld-
man et al. [12] provide a way to translate improvements in solving LPN to
learning Juntas and DNFs. As such, we present a formulation of our constant
noise algorithm that is parameterized according to these reductions, and provide
parameter settings such that our algorithm, when applied to learning DNFs or

1 We note that the above description is a bit inaccurate, since we must include an
additional step to ensure that the added noise is independent of the set of samples.
See discussion in Sect. 4.1, Fig. 3 and Lemma 4.1 for more details.

2 It is also possible to use a random choice of subsets in place of this design. How-
ever, the deterministic procedure allows for bounding the covariance of the newly
generated samples which is crucial in our analysis as seen later.
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Juntas, yields asymptotic improvements in the exponent. For DNFs, we present
an asymptotic result similar to that of [14] in that we improve on Verbeurgt’s
bound of O(nlog s

ε ) for learning DNFs of size s with approximation factor ε for
a different regime of s

ε , where log s
ε ∈ ω

(
c

log n log log c

)
, and log s

ε ∈ n1−o(1), for

c ∈ n1−o(1). Note that for Juntas, we present an algorithm that learns Juntas
of k variables in no(k) time for k ∈ ω

(
c

log n log log c

)
, and k ∈ n1−o(1), where

c ∈ n1−o(1).

1.3 Related Work

LPN. Blum, Kalai and Wasserman [5] presented the first algorithm that
improved upon the trivial 2Ω(n) time algorithm for LPN. They showed that
LPN with constant error rate can be learned in slightly subexponential time
2O(n/ log n) with the same amount of samples. To date, their algorithm remains
the state-of-the-art in terms of asymptotics in the exponent in the constant error
rate regime.

Lyubashevsky [22] extended the previous algorithm by Blum et al. [5] and
reduced the overall sample complexity. Lyubashevsky developed an algorithm for
creating a super-polynomial number of psuedorandom samples from a polyno-
mial number of original samples. Thus, Lyubashevsky traded sample complexity
for time complexity. More specifically, the algorithm solved LPN with constant
error rate and parities of size n in time 2O(n/ log log n) using only n1+ε samples.

In later work Bogos et al. [7] presented a unified framework for various
improvements and optimizations of BKW. Specifically, they focused on tighten-
ing the analysis of several previous works [15,19] to give more accurate bounds
for the time and sample complexity needed to solve the LPN problem. They
improved the bounds of the variant of the BKW algorithm proposed by Leviel
and Fouque [19] which is based on Walsh-Hadamard transform. Moreover, they
analyzed the algorithm by Guo et al. [15] which used a “covering codes” tech-
nique to reduce the dimension of the problem. We note that the many of the
improvements listed are heuristic in nature, while others provably improve the
runtime. We also note that our usage of BKW in our algorithms is compatible
with only some of these improvements. We only use the so-called “reduction”
phase of the algorithm to generate our p-biased samples. Thus, improvements
to this phase, such as covering codes, are applicable whereas others, such as the
Walsh-Hadamard transform, are not.

LPN with Sparse Parities. Grigorescu et al. [14] showed an improvement of
learning sparse parities with noise over brute force search, which has run time
(
n
k

)
. The algorithm ran in time poly

(
log(1δ ), 1

1−2η

)
· n(1+(2η)2+o(1))k/2 and had

sample complexity of k log(n/δ)ω(1)
(1−2η)2 in the random noise setting under the uniform

distribution, where η is the noise rate and δ is the confidence parameter.
Valiant [27] showed that the learning parity with noise problem can be solved

in time ≈ n0.8kpoly( 1
1−2η ). He also showed that noisy k-juntas can be learned
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in time n0.8kpoly
(

1
1−2η

)
and r-term DNF can be (ε, δ)-PAC learned in time

poly
(
1
δ , r

ε

)
n0.8 log( r

ε ), respectively. We note that the improvements of Grigorescu
et al. [14] and Valiant [27] do not improve upon the runtime of brute force search
of nk in terms of asymptotics in the exponent.

Learning DNF and Juntas. Mossel et al. [24] showed the first learning algo-
rithm which achieves a polynomial factor improvement over trivial brute force
algorithm which runs time O(nk). It shows that k-juntas can be learned in
absence of noise with confidence 1 − δ from uniform random examples with run
time of

(
nk

) ω
ω+1 · poly (

2k, n, log(1/δ)
)

where ω < 2.376 is the matrix multipli-
cation exponent.

Feldman et al. [11] presented a foundational work for learning both DNFs
and Juntas. They developed an oracle transformation procedure that enabled
reductions from learning DNFs and Juntas to that of LPN. In addition, Feldman
et al. presented a learning algorithm for agnostically learning parities by showing
a reduction from learning parities with adverserial noise to learning parities with
random noise. With this reduction, they showed that the algorithm by Blum et
al. [5] can learn parities with an adverserial noise rate of η in time O(2

n
log n ).

In a follow up work [12], Feldman et al. refined their reductions and included
the influence of sample complexity on the the runtime. These reductions have
streamlined the process of improving algorithms for learning DNFs and Juntas,
as improved algorithms for learning parities can be directly applied to both
problems. Both the work of Grigorescu et al. [14], and Valiant [27] were examples
of this.

One can also consider natural restrictions to the Junta problem. For mono-
tone Juntas, Dachman-Soled et al. [10] found lower bounds for solving monotone
Juntas in the statistical query model. Lipton et al. considered the problem of
learning symmetric Juntas [21] and showed they can be learned in no(k) time.
Note here that the symmetry requirement is orthogonal to restrictions on the
size of k.

2 Preliminaries

2.1 Notations

In this section we remind the reader some of the preliminary results used
throughout the paper. We use := as deterministic assignment and ← as uniformly
randomized assignment. We also use bold lowercase, e.g. x, to denote vectors and
bold uppercase, e.g. A, to denote matrix. The set {1, 2, . . . , n} is often denoted
by [n]. The i-th coordinate of vector x is denoted by x[i]. For the vector x of
dimension n and a set R that is a subset of [n], we denote x|R to be the restric-
tion of x to the coordinates in R, namely x|R = x[i1]‖x[i2]‖ . . .x[i|R|],∀i ∈ R}.
The indices in x are from 1 to n. For simplicity, we reset the indices in x|R and
have the indices from 1 to |R|.
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2.2 Fourier Analysis

The boolean Fourier transform is defined for boolean functions defined over the
domain {−1, 1}. Throughout the rest of the paper, when we discuss boolean func-
tions, we will use this representation. To map a boolean function from {0, 1} ∈ F2

to {−1, 1}, we set −1 := 1F2 and 1 := 0F2 . We now present some additional nota-
tion regarding the representation of the LPN problem in the {−1, 1} domain.

Notation. Assuming the LPN secret s is represented in F
n
2 , the following rep-

resent the boolean inner product of input x with s in different notation.

fs(x) := 〈x, s〉 ∈ F2 for x, s ∈ F
n
2

fs(x) =
n∏

i=1

x[i]s[i] ∈ {−1, 1} for x ∈ {−1, 1}n and s ∈ F
n
2

hence to represent a sample (x, b) from LPN oracle OLPN
0 ,η (s) we have the following

two notations

b = fs(x) + e for x, s ∈ F
n
2 and e ∈ F2

b = fs(x) · e for x ∈ {−1, 1}n, s ∈ F
n
2 and e ∈ {−1, 1}

Consider a vector x ∈ {−1, 1}n. We denote by Dp the product distribution
over {−1, 1}n, where each bit of the vector is independent and has mean p.

Definition 2.1 (Fourier Expansion). For a product distribution Dp as above,
every function f : {−1, 1}n → R can be uniquely expressed as the multilinear
polynomial

f(x) =
∑

S

f̂p(S)χS,p(x), where χS,p(x) =
∏

i∈S

x[i] − p
√

1 − p2
.

This expression is called the Fourier expansion of f with respect to Dp, and the
real numbers f̂(S) are called the Fourier coefficients of f on S.

The Fourier transform defines an inner product between two boolean func-
tions f and g: 〈f, g〉p = Ex∼Dp

[f(x) ·g(x)]. The Fourier coefficient for any S ⊂ N
over product distribution Dp is defined as follows:

f̂p(S) = Ex∼Dp
[f(x) · χS(x)].

Claim 2.2. Let sp = (x, b) be a p-biased sample and let b = fs(x) · e, where
e ∈ {−1, 1} is independent of x and E[e] = 1 − 2η′. Define b̂p({j}) := Ex∼Dp

[b ·
χ{j},p(x))]. If sp.s[j] = 0, then b̂p({j}) = 0. Whereas if sp.s[j] = 1, then b̂p({j}) =
(1 − 2η′) · pk−1

√
1 − p2.

Proof. For the proof of the claim, refer to the full version of our paper available
on ePrint. �
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3 Constant Noise Setting

In the constant noise setting, our algorithm consists of two steps. First, using
a modification of the acclaimed BKW algorithm [5], we implement a p-biased
LPN Oracle with noise rate η′ and secret value s which is denoted by OLPN

p,η′ (s)
and is defined in Sect.A.2. We present this modification, entitled BKWR (BKW
restricted to set R), in Subsect. 3.1. In Subsect. 3.2 we present the integration of
our p-biased oracle into the learning algorithm based on Fourier analysis. Finally,
in Subsects. 3.3 and 3.4, we combine our analysis to present the regime in which
we can set the free parameter p in order to improve on both BKW and brute
force search asymptotically in the exponent.

3.1 BKWR

As a first step, we present our BKWR algorithm in Fig. 1. The BKWR algorithm
is given access to an unbiased LPN Oracle OLPN

0 ,η (s) and its goal is to produce
a sample that is p-biased. The presented algorithm works similarly to BKW by
successively taking linear combinations of samples to produce a sample with all
zero entries one ‘block’ at a time. The algorithm accomplishes this by maintain-
ing successive tables such that samples in each table are combined to fill the
next table. The number of tables is a parameter of the algorithm denoted a. The
tables T (1), . . . , T (a) are each of size 2b, where b is the size of each block, except
the last table T (a) which might have a smaller number of entries, specifically
2|R| mod b. Each table T (j) is indexed by the value of the coordinates in the j-th
block of x|R, namely x|R [(j − 1) · b, j · b − 1]. The element in row i of table j is
denoted by

[
T

(j)
i

]
. Importantly, while the size of R may vary, a remains constant

each time the algorithm is called. This ensures that a constant number of sam-
ples are combined to produce the output. This decouples the noise present in the
output from the size of R, ensuring that all generated samples are independent.

Construction of p-biased Oracle Given BKWR. The construction of the
p-biased Oracle is quite simple. We sample an index set R where each index is
selected independently with probability p. R is then passed as input to BKWR. By
bounding the size of the set R, we can ensure that with overwhelming probability
BKWR outputs a p-biased sample in 2O(np/ log(np)) time. If the size of the set R
exceeds this bound (captured by the event Event1 occurring), the runtime may
be longer. Thus, when we invoke OLPN

p,η′ (s) multiple times to generate a large
number of p-biased samples for the Fourier analysis, we need to ensure that
w.h.p. Event1 never occurs. We bound the probability of Event1 in Theorem 3.2.

Lemma 3.1. The samples (x′, b′) outputted by BKWR Algorithm with access
to OLPN

0 ,η (s) are independent and distributed identically to samples drawn from a
p-biased LPN Oracle OLPN

p,η′ (s) for η′ = 1
2 − 1

2 (1 − 2η)
√
2np.

Proof. The proof can be found in Sect.A.4. �
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Fig. 1. BKWR “Zeroing” algorithm

Theorem 3.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s =

(x, b), the oracle OLPN
p,η′ (s) constructed from BKWR requires O(2

4np
log(2np) · log(2np))

samples, and O(2
4np

log(2np) ·log(2np)) runtime with probability at least 1−2 exp(−p·
n/8).

Proof. The proof can be found in Sect.A.5. �

3.2 Learning Secret Coordinates

In this subsection we first present the Learning Algorithm in Fig. 2. The Algo-
rithm starts by sampling num number of samples from a p-biased LPN Oracle
OLPN

p,η′ (s). As the samples are non-uniform, we can apply Fourier analysis tech-
nique described in Sect. 2.2.
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Fig. 2. LPN algorithm for constant noise

Lemma 3.3. For δ ∈ [0, 1], p ∈ (0, 1), the learning algorithm presented
in Fig. 2 uses samples from Oracle OLPN

p,η′ (s) to estimate the secret value s′.
The algorithm runs in time 8

(1−2η′)2·p2(k−1)·(1−p)2
· ln(2n/δ), requires num =

8
(1−2η′)2·p2(k−1)·(1−p)2

· ln(2n/δ) number of samples and outputs the correct secret
key, i.e. s = s′ with probability 1 − δ.

Proof. The proof can be found in Sect.A.6. �

3.3 Combining the Results

Combining the results of Sects. 3.1 and 3.2 we obtain the following theorem:

Theorem 3.4. For δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity with Noise
algorithm presented in Fig. 2, learns parity with k out of n variables with the
total number of samples and total computation time of

poly

(
1

(1 − 2η)
√

np · p2(k−1)(1 − p)2
· ln(

n

δ
) · 2

np
log(np) · log(np)

)
,

and achieves success probability of 1−δ−
(

16

(1−2η)
√

8np·p2(k−1)(1−p)2
· ln( 2n

δ
) · exp(−pn

8
)
)
.

Proof. Using Lemma 3.3, we have that the number of p-biased samples required
is num = 8

(1−2η′)2·p2(k−1)·(1−p)2
· ln(2n/δ) and using Lemma 3.1 we have that

η′ = 1
2 − 1

2 (1 − 2η)
√
2np. From Theorem 3.2 we have that with probability 1 −

2 exp(−p · n/8) each p-biased sample can be obtained by an invocation of the
BKWR algorithm, which requires O(2

4np
log(2np) · log(2np)) samples and O(2

4np
log(2np) ·

log(2np)) runtime with probability 1 − 2 exp(−p · n/8). Combining and taking
a union bound, we have that the algorithm in Fig. 2 requires at most num ·
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O
(
2

4np
log(2np) · log(2np)

)
samples and run time and succeeds with probability 1 −

δ − (2 · num · exp(−p · n/8)). �

3.4 Parameter Settings

We consider the parameter setting for which our algorithm asymptotically out-
performs the previous algorithms in the exponent. We consider two cases.

– The algorithm has to run faster than a brute force algorithm which tries
all the

(
n
k

)
combination to find the sparse secret. Note that the best algo-

rithms for k-sparse LPN achieve only a constant factor improvement in the
exponent beyond brute force search. Since we are concerned with asymptotic
improvement in the exponent, these algorithms are equivalent to brute force
search.

– The algorithm should run faster than the BKW algorithm for the length-n
LPN problem, as BKW is the asymptotically best algorithm for length-n LPN.

Corollary 3.5. For the sparsity k = k(n) = n
log1+1/c(n)

, where c ∈ o(log log(n))
and c ∈ ω(1), the runtime of our learning algorithm in Fig. 2 is contained in
both log(n)o(k) and 2o(n/ log(n)), with constant failure probability. For this range
of k, Brute Force search requires runtime log(n)Ω(k) and BKW requires runtime
of 2Ω(n/ log(n)).

Proof. Setting 1/p = log1/(c)(n) and k = n
log(c+1)/c(n)

in Theorem 3.4, we find
that our LPN Algorithm for constant noise rate presented in Fig. 2 succeeds
with constant probability and has runtime

(
1
p

)2k

· 2
4np

log(2np) = log(n)
(1/c)· n

log(c+1)/c(n) · 2
4n/ log1/(c)(n)

log(2n/ log1/(c)(n)) ∈ log(n)O((1/c)·k).

Note that if c ∈ ω(1), then our runtime is in log(n)o(k). On the other hand, if
c ∈ o(log log(n)) then our runtime

log(n)O((1/c)·k) = 2O((log log(n)/c)·k) ∈ 2o(k) ∈ 2o(n/ log(n)).

and so asymptotically beats the above two algorithms in the exponent for any c =
c(n) that satisfies c ∈ ω(1) and c ∈ o(log log(n)). Plugging the above parameter
into Theorem 3.4 yields probability of success of 1 − δ − negl(n) = 1 − δ. �

4 Low Noise Setting

In this section we present an improved learning algorithm for the low noise
setting. The algorithm will draw only a polynomial number of samples from the
given LPN oracle, use them to construct a much larger set of p-biased samples
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that are not independent, but have certain desirable properties, and then present
a learning algorithm that succeeds w.r.t. a set of p-biased samples satisfying these
properties.

4.1 Sample Partition

In this section we present the SamP algorithm which draws a polynomial-sized set
of samples from the original LPN oracle OLPN

0 ,η (s), and uses them to construct a
far larger set of p-biased samples that are “close” to being pairwise independent.
To achieve this, SamP constructs a large number of subsets of size 2np + 1 from
the polynomial-sized set of samples, such that each pair of distinct subsets has
at most t � 2np + 1 number of samples in common Then, from each subset of
size 2np + 1, we construct a single p-biased sample sp = (x′, b′) as follows: First,
a random subset R ⊆ [n] of coordinates is chosen, by placing each index i ∈ [n]
in R with independent probability p. Note that with overwhelming probability,
|R| ≤ 2np. Thus, given our set of 2np + 1 ≥ |R| + 1 samples, we construct a
matrix M that contains the samples as rows and we compute the left kernel of the
matrix to find a vector u to zero out the coordinates of R – i.e. (u · M) |R = 0|R|

and the returned sample is (x′, b′) := u · M. This procedure is denoted by RLK
(see Definition A.11 for more details). Note that the procedure always succeeds
when the size of R is at most 2np + 1.3

We show that the samples resulting from distinct subsets are “close” to inde-
pendent, due to the small intersection of any pair of subsets. We next provide
some additional details on the construction and guarantees on independence,
before formally describing the algorithm and its properties.

Constructing the subsets with small pairwise intersection. Our algorithm given
in Fig. 3 constructs the subsets using the designs of Nisan and Wigderson [25]: It
first draws (2np+1)2 samples from the original LPN distribution and associates
each sample with an ordered pair (x, y) for x, y ∈ F, for the field F of size 2np+1.
There are (2np+1)t polynomials of degree t−1 in F, and each subset is associated
with a particular polynomial, i.e. the samples contained in a particular subset
correspond to the 2np+1 points that lie on the associated polynomial. Note that
the maximum number of subsets that can be constructed is (2np+1)t and that,
furthermore, since any pair of distinct polynomials of degree t − 1 in F intersect
in at most t points, any two subsets have at most t samples in common. Note
that this construction allows at most maxnum := (2np + 1)t number of p-biased
samples to be generated. Looking ahead, in Sect. 4.2 we will present a learning
algorithm that requires O (log(n)) such independent sets of samples, each of size
at most maxnum to learn the parity function.

3 If the size of R is larger than this, a bad event Event1 occurs, and we must draw new
independent samples from the oracle. We will later show that Event1 occurs with
negligible probability.
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Fig. 3. SamP “Zeroing” algorithm
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Near pairwise independence. We note that by construction, the Sample Parti-
tion Algorithm SamP presented in Fig. 3 constructs sets of size (2np + 1) such
the intersection of any two sets is at most t for t ≤ (np + 1). This will allow us
to bound the covariance of the errors e′

i and e′
j obtained by taking linear combi-

nations of elements in the sets Oi, Oj . Overall, the set of samples generated by
SamP algorithm have certain properties enumerated in the following Lemma.

Lemma 4.1. Consider an experiment in which the setup phase is run and two
samples spi = (x′

i, b
′
i) and spj =

(
x′

j , b
′
j

)
are generated by running SamP(i) and

SamP(j) for distinct i, j ≤ maxnum then the following hold:

1. Each individual sample (x′
i, b

′
i) (resp.

(
x′

j , b
′
j

)
) outputted is distributed iden-

tically to a sample drawn from a p-biased LPN Oracle OLPN
p,η′ (s) for η′ =

1
2 − 1

2 (1 − 2η)2np+1.
2. x′

i and x′
j are pairwise independent

3. Recall that b′
i = fs(x′

i) + e′
i and b′

j = fs(x′
j) + e′

j. Then

Cov
[
e′
i, e

′
j

] ≤ (1 − 2η)2(2np−t)+2 − (1 − 2η)4np+2
.

Proof. The proof can be found in Sect.A.7. �

Finally, we analyze the runtime and sample complexity for each invocation
of SamP.

Theorem 4.2. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s =

(x, b), the SamP algorithm requires O
(
(np)2

)
samples in total, and poly(np)

runtime per invocation with probability at least 1 − 2 exp(−p · n/8) − (np)t ·
exp(−n/48) − (np)t · 1/2np/4.

Proof. The proof can be found in Sect.A.8. �

4.2 Learning Secret Coordinates

In this subsection we present our Learning Algorithm in Fig. 4. The input to
the algorithm is 8 log(n) independently generated sets of p-biased samples with
the properties given in Lemma 4.1. The algorithm uses the p-biased samples to
estimate the values of the Fourier Coefficients of the target function.

Lemma 4.3. For δ ∈ [0, 1], p ∈ (0, 1), given as input 8 log(n) independent sets
of samples S1,S2, . . . ,S8 log(n) each of size num := O

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)

and each satisfying the properties given in Lemma 4.1 for some t ∈ Θ(1/η), the
Learning Algorithm presented in Fig. 4 runs in time poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)

and outputs the correct secret key, i.e. s = s′ with probability 1 − δ.

Proof. The proof can be found in Sect.A.9. �
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The Learning Algorithm
The learning algorithm starts by having access to 8 log(n) sets S1, S2, . . . , S8 log(n)

of randomly generated samples. Each set of samples is independent and satisfies
the properties given in Lemma 4.1.

1. Initilizate set S ′ := ∅.
2. For j ∈ [n]

– count := 0
– T := 8 log(n)
– For i′ ∈ T :

(a) Use the set Si′ of num number of samples to approximate b̂p({j}) :=
1

num

∑num
i=1 bi · χ{j},p(xi), where each coordinate of xi, bi is switched to

{−1, 1} from F2.
(b) If b̂p({j}) > (1 − 2η′)pk−1

√
1 − p2/2, count := count+ 1

– if count ≥ T/2
• add j to S ′

3. Output s′ such that s′[j] = 1 for j ∈ [n], if j ∈ S ′.

Fig. 4. Low-noise LPN algorithm

4.3 Combining the Results

Combining the results of Sects. 4.1 and 4.2 we obtain the following theorem:

Theorem 4.4. Assuming parameters are set such that

log
(

1
(1 − 2η)2np+2p2(k−1)(1 − p2)

)
∈ o(1/η · log(np)), (4.1)

and with δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity from Noise Algorithm
presented in Fig. 4, learns parity with k out of n variables and noise rate η
using (2np + 1)2 · log(n) number of samples, total computation time of N :=
poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
and achieves success probability of

1 − δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))

Proof. Using Lemma 4.3, we have that, for some t ∈ Θ(1/η), the number of
p-biased samples with the following properties needed to succeed with proba-
bility 1 − δ is poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)

)
. From Theorem 4.2, we have that

as long as num = poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
≤ maxnum = (2np + 1)t we

can generate the required samples using (2np + 1)2 samples from the unbiased
LPN oracle OLPN

0 ,η (s), and with poly(np) runtime per sample, with probabil-
ity at least 1 − 2(np)t · exp(−p · n/8) − (np)t · exp(−n/48) − (np)t · 1/2np/4.
The fact that num and maxnum satisfy the above constraint is guaranteed
by the assumption in the theorem on the setting of parameters and the
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fact that t ∈ Θ(1/η). Combining and taking a union bound, we have that
the algorithm in Fig. 2 requires (2np + 1)2 · 8 log(n) samples, has run time
poly

(
1

(1−2η)2np+2p2(k−1)(1−p2)
· log(n)

)
, and succeeds with probability 1 − δ −

(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))
. �

4.4 Parameter Settings

We consider the parameter setting for which our algorithm’s runtime asymptoti-
cally outperforms the previous algorithms’ runtime in the exponent. We consider
two cases.

– The algorithm has to run faster than a brute force algorithm which tries all
the

(
n
k

)
combinations to find the sparse secret. Note that there are known

algorithms that improve upon brute force search, but the improvement is
a constant factor in the exponent. Since we are concerned with asymptotic
improvement in the exponent, these algorithms are equivalent to brute force
search.

– The algorithm should run faster than the algorithm which just gets lucky
and gets n noiseless samples, we call this algorithm “Lucky Bruteforce”. For
this algorithm to succeed, it needs n

1−η samples from LPN Oracle to ensures
that there are approximately n noiseless samples. The next step is to just
randomly select n out of these n

1−η samples and try Gaussian elimination on
them. The run time of such an algorithm for small η can be approximate by
eηn.

Corollary 4.5. For sparsity k(n) such that k = 1
η · log(n)

log(f(n)) , noise rate η �= 1/2

such that η2 =
(

log(n)
n · f(n)

)
for f(n) ∈ ω(1) ∩ no(1) , the Learning Algorithm

of Fig. 4 runs in time O
(

1
(1−2η)2np+2p2k · log(n) · (np)3

)
∈ (

n
k

)o(k) with constant

probability. In this setting, the running time Brute Force is
(
n
k

) ≥ (n
k )k and the

running time of Lucky Bruteforce is eηn ∈ (
n
k

)ω(k).

Proof. For k, η defined as above, we choose the biased p = 1
f(n) and 1

p ∈ (
n
k

)o(1)

, we have constraint (4.1) from Theorem 4.4 satisfied as follows:

log
(

1
(1 − 2η)2np+2p2(k−1)(1 − p2)

)
≈ 4npη + 2k log(

1
p
)

∈ o(1/η · log(n)) ∈ o(1/η · log(np)),

the runtime of the Learning Algorithm of Fig. 4 is bounded by

1
(1 − 2η)2npp2k

· log(n) · O
(
(np)3

) ≈ e4npη ·
(

1
p

)2k

· log(n) · O
(
(np)3

)

∈ eo(k)·log(n/k) ·
(n

k

)o(k)

· log(n) · o(n3)

∈
(n

k

)o(k)

,
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which outperforms Brute Force and Lucky Bruteforce under the same parameter
settings. Plugging the above parameters into Theorem 4.4 yields probability of
success of 1 − δ − negl(n). �

5 Learning Other Classes of Functions

In the following we apply our LPN algorithms from Sect. 3 to learn other classes
of functions. First, let us look at the reduction from learning DNFs to learning
noisy parities.

Theorem 5.1 (Theorem 2 in [12]). Let A be an algorithm that learns
noisy parities of k variables on {0, 1}n for every noise rate η < 1/2 in time
T (n, k, 1

1−2η ) and using at most S(n, k, 1
1−2η ). Then there exists an algorithm

that learns DNF expressions of size s in time Õ
(

s4

ε2 · T (n, log B,B) · S(n, log B,

B)2
)
, where B = Õ(s/ε).

We are interested in determining the parameter range for which our algorithm
yields an asymptotic improvement over the state of the art in the exponent.
The work of Grigorescu [14] is the current state-of-the-art. They present an
improvement of the bound from [28] of 2O(log(n) log s

ε ) for s
ε ∈ o

(
log1/3 n
log log n

)
. As

we are similarly applying the reductions from Feldman, our algorithm yields a
similar improvement on the bounds in [28] for a different range of s

ε .
Note the reduction in Feldman [12] relates the ratio of the size of the DNF

and its approximation factor to both the noise rate and sparsity of the parity
function. Thus, the parameter range for which our algorithm is optimal will be
expressed in terms of this ratio.

We begin by extending the runtime analysis of our algorithm from Sect. 3,
which dealt with the constant noise setting, to the arbitrary noise η < 1/2.

Theorem 5.2. The learning algorithm described in Fig. 2 has a runtime of

T

(
n, k,

1
1 − 2η

)
=

(
1

1 − 2η

)2a+1

8 ln(2n/δ)
p2(k−1)(1 − p)2

O
(
a2b

)

and requires

S

(
n, k,

1
1 − 2η

)
=

(
1

1 − 2η

)2a+1

8 ln(2n/δ)
p2(k−1)(1 − p)2

O
(
a2b

)

LPN samples in the high noise setting, and achieves a success probability of

1 − δ −
(

1
1 − 2η

)2a+1

16 ln(2n/δ)
p2(k−1)(1 − p)2

e
−np

8

where ab = np.
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Proof. The proof follows directly from Theorem 3.4. Instead of fixing a value
for a and b, we let them remain free parameters. As well, we no longer make
assumptions on the noise rate η. Thus, we start with the runtime in terms of

η′.

T (n, k, η′) =
8 ln(2n/δ)

(1 − 2η′)2p2(k−1)(1 − p)2
O

(
a2b

)

T (n, k, η) =
8 ln(2n/δ)

(1 − 2η)2a+1p2(k−1)(1 − p)2
O

(
a2b

)

T

(
n, k,

1
1 − 2η

)
=

(
1

1 − 2η

)2a+1

8 ln(2n/δ)
p2(k−1)(1 − p)2

O
(
a2b

)

The sample complexity of the algorithm is equal to its runtime complexity, and
thus we need to just need to consider the success probability. In the high noise

setting, the p-biased LPN oracle is called num =
(

1
1−2η

)2a+1
8 ln(2n/δ)

p2(k−1)(1−p)2
times,

and the success probability calculation follows the same formula from Theo-
rem 3.4. �

As we are concerned with asymptotic improvement in the exponent of the
runtime we will take the logarithm of the runtime and compare it to the state
of the art for learning DNFs and Juntas.

Corollary 5.3. The learning algorithm described in Fig. 2 learns DNFs of size
s and approximation factor ε, with asymptotic improvements over Verbeurgt’s
bound [28] of O

(
nlog s

ε

)
, and with negligible failure probability when log s

ε ∈
ω

(
c

log n log log c

)
, and log s

ε ∈ n1−o(1), where c ∈ n1−o(1).

Note here that the parameter regime in 5.3 requires setting the free param-
eters of the learning algorithm differently than in the constant noise setting. In
order to minimize the runtime of the BKWR step of the algorithm in the high
noise setting, the value for a must be changed from the description in Sect. 3.
Thus we set a = (1/2) log log(np). This change necessitates considerations for
δ, the Fourier analysis confidence. This ensures that the failure probability of
the full algorithm remains small, even after increasing the number of samples
required. We set δ = 2−n. The free parameter p is set to n−o(1) to satisfy asymp-
totic requirements. These parameters are set similarly for Corollary 5.5.

Aside from DNFs we can also use our LPN algorithm to learn Juntas. By
applying Feldman’s reduction we are able to yield an algorithm that, for certain
ranges for k, is able to improve on the O(n0.7k) runtime cited in [27] asymptot-
ically, not just by reducing the constant factor in the exponent.

Theorem 5.4. (Theorem 3 in [12]). Let A be an algorithm that learns
parities of k variables on {0, 1}n for every noise rate η < 1/2 in time
T (n, k, 1

1−2η ). Then there exists an algorithm that learns k-juntas in time
O

(
22kk · T (n, k, 2k−1)

)
.
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Corollary 5.5. The learning algorithm described in Fig. 2 learns Juntas of
size k with a runtime of no(k) and a negligible failure probability when k ∈
ω

(
c

log n log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).

Acknowledgments. The authors would like to thank the anonymous reviewers of
TCC 2021 for their insightful comments.

A Appendix

A.1 Probability Bounds

The following inequality is used to bound the magnitude of an observed ran-
dom variable with respect to the true expected value of that random variable.
The Chernoff-Hoeffding bound extends the Chernoff bound to random variables
with a bounded range. Another important fact is that Chernoff-Hoeffding bound
assumes the random variables are independent whereas Chebyshev’s bound
applies to arbitrary random variables. The reader in encouraged to refer to [23]
for more in depth reading.

Theorem A.1 (Multiplicative Chernoff Bounds). Let X1,X2, . . . , Xn be
n mutually independent random variables. Let X =

∑n
i=1 Xi and μ = E[X],

Pr[X ≤ (1 − β)μ] ≤ exp
(−β2μ

2

)
for all 0 < β ≤ 1

Pr[X ≥ (1 + β)μ] ≤ exp
(−β2μ

3

)
for all 0 < β ≤ 1

Theorem A.2 (Chernoff-Hoeffding). Consider a set of n independent ran-
dom variables X1,X2, . . . , Xn. If we know ai ≤ Xi ≤ bi, then let Δi = bi − ai.
Let X =

∑n
i=1 Xi. Then for any α ∈ (0, 1/2)

Pr
(∣∣X − E[X]

∣
∣ > α

) ≤ 2exp
( −2α2

∑n
i=1 Δ2

i

)
.

Theorem A.3 (Chebyshev’s). Consider a set of n arbitrary random variable
X1,X2, . . . , Xn. Let X =

∑n
i=1 Xi. Then for any α > 0,

Pr
(∣∣X − E[X]

∣
∣ ≥ α

) ≤ Var [X]
α2

.

The following lemma is being used to further simplify the Var[X] in Theorem A.3.

Lemma A.4. Let X1,X2, . . . , Xn be n arbitrary random variables. Then

Var

[
n∑

i=1

Xi

]

=
n∑

i=1

Var [Xi] + 2
n∑

i=1

∑

j>i

Cov [Xi,Xj ] .



680 D. Dachman-Soled et al.

A.2 Learning Parities

In this subsection, we define three Oracles . The first is the standard LPN Oracle,
that samples x uniformly. The second is the noise Oracle, which sets x to the
zero vector. The purpose of this Oracle is to return additional noise sampled
identically to the noise found in a normal LPN sample. The third Oracle is
the p-biased LPN Oracle, which samples x according to a p-biased Bernoulli
distribution.

Definition A.5 (Bernoulli Distribution). Let p ∈ [0, 1]. The discrete probability
distribution of a random variable which takes the value 1 with probability η and
the value 0 with probability 1−η is called Bernoulli Distribution and it is denoted
by Berη.

Definition A.6 (LPN Oracle). Let secret value s ← Z
n
2 and let η < 1/2 be a

constant noise parameter. Let Berη be a Bernoulli distribution with parameter η.
Define the following distribution L(1)

s,η as follows
{

(x, b) | x ← Z
n
2 , fs(x) := 〈x, s〉, b = fs(x) + e, e ← Berη} ∈ Z

n+1
2

with the additions being done module 2. Upon calling the LPN Oracle OLPN
0 ,η (s),

a new sample s = (x, b) from the distribution L(1)
s,η is returned.

Definition A.7 (Noise Oracle). Let secret value s ← Z
n
2 and let η < 1/2 be a

constant noise parameter. Let Berη be a Bernoulli distribution with parameter η.
Define the following distribution L(2)

s,η as follows
{

(x, b) | x := 0n, fs(x) := 〈x, s〉, b = fs(x) + e, e ← Berη} ∈ Z
n+1
2

with the additions being done module 2. Upon calling the Noise Oracle Õη a new
sample s = (x, b) from the distribution L(2)

s,η is returned.

Definition A.8 (p-biased LPN Oracle). Let secret value s ← Z
n
2 and let η <

1/2 be a constant noise parameter. Let Berη be a Bernoulli distribution with
parameter η and Bern(1−p)/2 be Bernoulli distribution with parameter (1 − p)/2

over n coordinates. Define the following distribution L(3)
s,η,p as follows

{
(x, b) | x ← Bern(1−p)/2, fs(x) := 〈x, s〉, b = fs(x) + e, e ← Berη} ∈ Z

n+1
2

with the additions being done modulo 2. Upon calling the p-biased LPN Oracle
OLPN

p,η (s) a new sample sp = (x, b) from the distribution L(3)
s,η,p is returned.

As our algorithms require linear combinations of LPN samples, we present the
following lemma that describes the noise growth associated with the linear com-
bination.
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Lemma A.9 (New Sample Error [5]). Given a set of  samples
(x1, b1), . . . , (x	, b	) from an LPN Oracle OLPN

0 ,η (s) with secret s, where the choice
of samples may depend on the values of xi but not on the values of bi, then
the new sample s	+1 can be formed as follows s	+1 =

∑	
i=1 si which has the

property that b	+1 is independent of x	+1 and the probability that the label of
the constructed sample is correct is as follows: (1 − η′) = Pr[b′ = 〈x	+1, s〉] =
1
2 + 1

2 (1 − 2η)	.

For reference we additionally provide the runtime of the original BKW algorithm:

Theorem A.10 (BKW [5]). The length-n parity problem, for noise rate η for
any constant less than 1/2, can be solved with number of samples and total
computation time of 2O(n/ log n).

For sample i, the j-th coordinate of x is denoted by si.x[j] and the j-th
coordinate of s is denoted by si.s[j]. For simplicity, given two sample pairs s1 =
(x1, b1) and s2 = (x2, b2) a new sample s3 = s1 + s2 can be formed by s3 =
(x1 + x2, b1 + b2) with the additions being done mod 2.

A.3 Miscellaneous

Definition A.11 (Restricted Left Kernel). Given a matrix A ∈ Z
m×n
2 for

m ≤ n and set R ⊂ [n] such that |R| < m, RLK first finds a vector u ∈ Z
m
2 such

that v = u ·A and v|R = 0|R|. The RLK algorithm returns (v,u) := RLK(A, R).

Note that the RLK algorithm mentioned above can be implemented by simply
modifying matrix A and only takes the columns pointed by set R, i.e. restriction
of A to only columns pointed by R. Let’s denote the new matrix by A′, find
a vector in left kernel of A′ and call it u. Then v can simply be computed as
v = u · A.

Definition A.12 (Hamming Weight). Given a vector u ∈ Z
m
2 , weight(u)

returns the number of 1’s in vector u, i.e. the Hamming weight of u.

A.4 Proof of Lemma 3.1

We first show that each coordinate of x′ is set to 0 with independent probability
(1 + p)/2. The probability that a coordinate j of x′ in sample sp is set to 0 after
running BKWR can be computed as follows:

Pr
[
x′[j] = 0

]
= Pr

[
x′[j] = 0 | j ∈ R

] · Pr [j ∈ R] + Pr
[
x′[j] = 0 | j /∈ R

] · Pr [j /∈ R]

= 1 · p + 1/2 · (1 − p) = (1 + p)/2

To show that the label b′ is correct with probability η′ and that the correctness of
the label is independent of the instance x′, s, note that x′ is always constructed
by XOR’ing a set of exactly 2a number of samples and that the choice of the
set of XOR’ed samples depends only on the random coins of the algorithm and
on the x values, which are independent of the e value. Therefore, we can apply
Lemma A.9 to conclude that the noise is independent and that b′ is correct with
probability η′ = 1

2 − 1
2 (1 − 2η)

√
2np.
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A.5 Proof of Theorem 3.2

From the description of BKWR, it is clear to see that it takes O(a2b) LPN samples
and running time to generate a p-biased sample, where a = log(2np)/2, b =
�|R|/a�. Remember that the BKWR algorithm will abort if |R| ≥ 2pn or |R| ≤
pn/2, i.e. Event1 occurs. By showing that Event1 occurs with probability at most
2 exp(−p · n/8) , we obtain that BKWR runs in time O(2

4np
log(2np) · log(2np)) with

probability at least 1 − 2 exp(−p · n/8).
To bound the probability of Event1 occurring, we notice that by multiplicative

Chernoff bounds in Theorem A.1, we can bound the size of set R as follows:

Pr [|R| ≥ 2pn] ≤ exp(−p · n/3)
Pr [|R| ≤ pn/2] ≤ exp(−p · n/8)

Pr [|R| ≥ 2pn ∨ |R| ≤ pn/2] ≤ exp(−p · n/3) + exp(−p · n/8) ≤ 2 exp(−p · n/8)
Pr [pn/2 < |R| < 2pn] > 1 − 2 exp(−p · n/8)

A.6 Proof of Lemma 3.3

Before proving Lemma 3.3, we present the following simple claims about the
number of samples needed to estimate the Fourier Coefficient of a single index.
Based on Claim 2.2, the magnitude of Fourier coefficient of the indexes with
secret value of 0 is equal to 0, while for the secret coordinates 1 that is equal to
ε = (1−2η′) ·pk−1

√
1 − p2. In the Following Claim we compute how many sam-

ples are needed to estimate the magnitude of Fourier coefficient within distance
of ε/2 of correct value. We will bound the failure probability with δ/n.

Claim A.13. For every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))], where (x, b) ∼
OLPN

p,η′ (s), can be estimated within additive accuracy ε
2 and confidence 1 − δ

n

using 8
ε2 · 1+p

1−p · ln(2n/δ) number of samples.

Proof. The estimate of b̂p({j}) based on the m samples spi = (xi, bi) is.

b̂estimate({j}) =
1
m

m∑

i=1

bi · χ{j},p(xi)

and notice that E
[
b̂estimate({j})

]
= b̂p({j}). Lets denote Xi = 1

m · bi ·χ{j},p(xi),

then note that |Xi| ≤ (1/m)
√

1+p
1−p . Finally by Chernoff-Hoeffding bound of

Theorem A.2 we have the following.

Pr
[∣∣
∣b̂estimate({j}) − b̂p ({j})

∣
∣
∣ ≥ ε/2

]
≤ 2 exp

(−mε2

8
· 1 − p

1 + p

)

Bounding the right hand side by δ/n and solving for m gives the desired
value for number of samples.
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Proof (Proof of Lemma 3.3). Invoking Claim 2.2, we have that for j such that
s[j] = 1 b̂p({j}) = (1 − 2η′) · pk−1

√
1 − p2 while for j such that s[j] = 0 ,

b̂p({j}) = 0. It is clear by inspection that Algorithm2 succeeds when it correctly
estimates the values of b̂p({j}) to within additive ε/2 := (1−2η′)·pk−1

√
1 − p2/2

for all j ∈ [n]. By Claim A.13, 8
ε2 · 1+p

1−p · ln(2n/δ) number of samples are sufficient
to estimate a single coordinate within additive ε/2 of its correct value with
confidence 1 − δ

n . By a union bound, the success probability of estimating all
coordinates to within additive ε/2 is 1 − δ. �

A.7 Proof of Lemma 4.1

The proof is similar to the proof of Lemma 3.1 and noticing that the SamP
algorithm uses 2np + 1 samples to generate a single p-biased sample. Two p-
biased samples x′

i,x
′
j , j > i are pairwise independent, unless the same linear

combination of samples in S was used to generate both of them. But in that
case, during execution, the condition x′

j |Ri
= 0|Ri| would evaluate to true, which

means that Event2 occurred and so fresh samples (not from S) would be used
to generate x′

j .
In the rest of the proof we switch to the ±1 representation instead of the

Boolean representation. The sample spi = (x′
i, b

′
i) is obtained from the samples in

set Oi alongside some extra error samples from Noise Oracle Õη. In the following
proof these are denoted by e1, e2, . . . , e2np+1. Moreover, notice that the sample
spj =

(
x′

j , b
′
j

)
, obtained from set Oj , has at most t elements in common with the

sample obtained from the set Oi. Hence we can represent the error in sample
spj =

(
x′

j , b
′
j

)
as e1, e2, . . . , et, e

′′
t+1 . . . e′′

2np+1. For the ease of notation we assumed
that the t samples which are in common are at index 1 to t.

Cov[e′
i, e

′
j ] = Cov[e1 · e2 . . . et · et+1 . . . e2np+1 , e1 · e2 . . . et · e′′

t+1 . . . e′′
2np+1]

= E[e21 · e22 . . . e2t · et+1 . . . e2np+1 · e′′
t+1 . . . e′′

2np+1]

− E[e1 · e2 . . . e2np+1] E[e1 · e2 . . . et . . . e′′
t+1 . . . e′′

2np+1]

= (1 − 2η)2(2np−t)+2 − (1 − 2η)4np+2

Where the last line follows from the independence of errors, E[ei] = 1 − 2η and
E[e2i ] = 1.

A.8 Proof of Theorem 4.2

Assuming Event1 and Event2 do not occur, the sample complexity and runtime
can be verified by inspection and assuming RLK takes poly(np) time.

It remains to bound the probability of Event1 and Event2. We can upper
bound the probability of Event1 by 2 exp(−p·n/8), as in the proof of Theorem3.2.

To upperbound the probability of Event2, we note that assuming Event1 does
not occur, Event2 occurs only if one of the following two events occur:

– Event′1: For some distinct i, j ∈ maxnum, |Ri ∩ Rj | ≥ np/4.
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– Event′2: For some distinct i, j ∈ maxnum, |Ri \ Rj | ≥ np/4 and x′
j |Ri\Rj

=
0|Ri\Rj |.

Since for distinct i, j, each coordinate  ∈ [n] is placed in both Ri and Rj

with probability p2, by a union bound over all pairs i, j and a standard Chernoff
bound, Event′1 can be upperbounded by:

maxnum2 · exp(−n/48) = (np)t · exp(−n/48).

Since for any x′
j , the coordinates outside of Rj are uniformly random, Event′2

can be upperbounded by:

maxnum2 · 1/2np/4 = (np)t · 1/2np/4
.

A.9 Proof of Lemma 4.3

Similar to Subsect. 3.2, before proving Lemma4.3, we first present the following
claim about the number of samples needed to estimate the Fourier Coefficient
of a single index. The algorithm gets access to 8 log(n) sets of p-biased samples.
In the following claim we first prove how many samples are needed to be able
to approximate the Fourier coefficient within additive distance of ε/2 and later
discuss how by repeating the approximation step, i.e. step 2b in Fig. 4, will reduce
the error in approximation even further.

Claim A.14. For δ ∈ [0, 1], p ∈ (0, 1), given 8 log(n) independent sets of sam-
ples S1,S2, . . . ,S8 log(n) that each of size num := O

(
1

(1−2η)4np+2p2(k−1)(1−p2)

)
and

each satisfying the properties given in Lemma 4.1 for some t ∈ Θ(1/η), then for
every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))] can be estimated within additive accu-
racy ε

2 = (1 − 2η′)pk−1
√

1 − p2/2 for η′ = 1
2 − 1

2 (1 − 2η)2np+1 with confidence
1 − δ

n .

Proof. Let X = 1
m

∑m
i=1 bi · χS,p(xi). Let f be a parity function. Assuming

S = {k}, let Xi = 1
m · bi · χ{k},p(xi). First we compute Cov[Xi,Xj ] for k such

that s[k] = 1

Cov[Xi, Xj ] = Cov

[
1

m
· b′

i · χ{k},p(x
′
i) ,

1

m
· b′

j · χ{k},p(x
′
j)

]

Cov[Xi, Xj ] =
1

m2
· Cov

[
b′
i · χ{k},p(x

′
i) , b′

j · χ{k},p(x
′
j)

]

=
1

m2
· Cov

⎡
⎣

⎛
⎝ ∏

u:s[u]=1

x′
i[u]

⎞
⎠ · e′

i · x
′
i[k] − p√
1 − p2

,

⎛
⎝ ∏

v:s[v]=1

x′
j [v]

⎞
⎠ · e′

j ·
x′

j [k] − p√
1 − p2

⎤
⎦

(A.1)

=
1

m2
· 1

1 − p2

(
Cov

⎡
⎣

⎛
⎝ ∏

u:s[u]=1∧u �=k

x′
i[u]

⎞
⎠ · e′

i ,

⎛
⎝ ∏

v:s[v]=1∧v �=k

x′
j [v]

⎞
⎠ · e′

j

⎤
⎦ −

Cov

⎡
⎣

⎛
⎝ ∏

u:s[u]=1∧u �=k

x′
i[u]

⎞
⎠ · e′

i , p ·
⎛
⎝ ∏

v:s[v]=1

x′
j [v]

⎞
⎠ · e′

j

⎤
⎦ −
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Cov

⎡
⎣p ·

⎛
⎝ ∏

u:s[u]=1

x′
i[u]

⎞
⎠ · e′

i ,

⎛
⎝ ∏

v:s[v]=1∧v �=k

x′
j [v]

⎞
⎠ · e′

j

⎤
⎦+

Cov

⎡
⎣p ·

⎛
⎝ ∏

u:s[u]=1

x′
i[u]

⎞
⎠ · e′

i , p ·
⎛
⎝ ∏

v:s[v]=1

x′
j [v]

⎞
⎠ · e′

j

⎤
⎦

)
(A.2)

=
1

m2
· 1

(1 − p2)

(
p2(k−1)Cov

[
e′
i, e

′
j

] − 2p2kCov
[
e′
i, e

′
j

]
+ p2(k+1)Cov

[
e′
i, e

′
j

])

(A.3)
= m−2p2(k−1)(1 − p2)Cov

[
e′
i, e

′
j

]

= m−2p2(k−1)(1 − p2)
[
(1 − 2η)2(2np−t)+2 − (1 − 2η)4np+2

]
(A.4)

where Eq. (A.1) follows from definition of Fourier Coefficients and noting that
b′
i is multiplications of xis and error term ei, Eq. (A.2) follows from properties

of Covariance, Eq. (A.3) follows from independence of x′
is and Eq. (A.4) follows

from Lemma 4.1. We can also bound Var[Xi] as follows

Var[Xi] = Var

[
1

m
· b′

i · χ{k},p(x
′
i)

]

=
1

m2
· Var

⎡
⎣

⎛
⎝ ∏

u:s[u]=1

x′
i[u]

⎞
⎠ · e′

i · x
′
i[k] − p√
1 − p2

⎤
⎦

=
1

m2
· 1

1 − p2

⎛
⎝Var

⎡
⎣

⎛
⎝ ∏

u:s[u]=1∧u �=k

x′
i[u]

⎞
⎠ · e′

i

⎤
⎦ − p2 · Var

⎡
⎣

⎛
⎝ ∏

v:s[v]=1

x′
i[u]

⎞
⎠ · e′

i

⎤
⎦

⎞
⎠

=
1

m2
· 1

1 − p2

(
E

⎡
⎣

⎛
⎝ ∏

u:s[u]=1∧u �=k

x
′2
i [u]

⎞
⎠ · e

′2
i

⎤
⎦ − E

⎡
⎣

⎛
⎝ ∏

u:s[u]=1∧u �=k

x′
i[u]

⎞
⎠ · e′

i

⎤
⎦
2

−

p2 · E
⎡
⎣

⎛
⎝ ∏

u:s[u]=1

x
′2
i [u]

⎞
⎠ · e

′2
i

⎤
⎦ + p2 · E

⎡
⎣

⎛
⎝ ∏

u:s[u]=1

x′
i[u]

⎞
⎠ · e′

i

⎤
⎦
2 )

(A.5)

=
1

m2
· 1

1 − p2

(
1 − p2(k−1)(1 − 2η)2np − p2 + p2(k+1)(1 − 2η)2np

)
(A.6)

= m−2

(
1 − p2(k−1)(1 + p2)(1 − 2η)2np

)
≤ m−2

where Eq. (A.5) follows from properties of variance and Eq. (A.6) follows from
independence of x′

is. Then we have the following bound from Chebyshev’s bound
of Theorem A.3

Pr [|X − E[X]| ≥ ε/2] ≤
∑m

i=1 Var [Xi] + 2
∑m

i=1

∑
j>i Cov [Xi, Xj ]

ε2/4

≤ 4 · m−1 + p2(k−1)(1 − p2)
[
(1 − 2η)2(2np−t)+2 − (1 − 2η)4np+2

]

ε2

By substituting ε = (1 − 2η′) · pk−1
√

1 − p2 for η′ = 1
2 − 1

2 (1 − 2η)2np+1,
we can bound the right hand side by a constant less than 1/2 by setting t <

− ln(9/8−1/c)
2 ln(1−2η) and setting m = c · 1

(1−2η)4np+2p2(k−1)(1−p2)
, where c > 8. We use
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random variable Yi′ to represents whether the value of count in step i′ is increased
or not, specifically Yi′ = 1 represents the event that count is increased in step i′.
Assume we repeat the protocol for T rounds in total. Let Y = (1/T ) · ∑T

i′=1 Yi′ .
First, take the case that j such that s[j] = 0 , we know that in each step of
loop over i′, Pr[Yi′ = 1] = 1/2 − ε. Note that the algorithm is run T times using
independent sets Si′ each time and index j is only added if in the majority of the
runs its estimated Fourier coefficient is more than ε/2. Using Chernoff bound,
we can bound Pr[Y ≥ T/2] ≤ 1/n.

Pr[index j is added to set S ′] = Pr[count ≥ T/2]

= Pr[
∑T

i′=1 Yi′

T
≥ 1

2
]

≤ Pr [|Y − E[Y ]| > ε] ≤ 2 exp(−2Tε2)

We can bound the right hand side by δ
n for constant δ by setting T = 8 log(n)

and ε = 1/4. Similar argument applies to the case for j such that s[j] = 1. �

Proof (Proof of Lemma 4.3). Invoking Claim 2.2, we have that for j such that
s[j] = 1 b̂p({j}) = (1 − 2η′) · pk−1

√
1 − p2 while for j such that s[j] = 0,

b̂p({j}) = 0. It is clear by inspection that Algorithm in Fig. 4 succeeds when it
correctly estimates the values of b̂p({j}) to within additive ε/2 := (1 − 2η′) ·
pk−1

√
1 − p2/2 for all j ∈ [n]. By Claim A.14, we need 8 log(n) sets such that

each set has O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
number of p-biased samples. So in total

num ·8 log(n) = O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

· log(n)
)

number of p-biased samples
are sufficient to estimate a single coordinate within additive ε/2 of its correct
value with confidence 1 − δ

n . By a union bound, the success probability of esti-
mating all coordinates to within additive ε/2 is 1 − δ. �
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Abstract. Robust (fuzzy) extractors are very useful for, e.g., authen-
ticated key exchange from a shared weak secret and remote biomet-
ric authentication against active adversaries. They enable two parties
to extract the same uniform randomness with a “helper” string. More
importantly, they have an authentication mechanism built in that tam-
pering of the “helper” string will be detected. Unfortunately, as shown by
Dodis and Wichs, in the information-theoretic setting, a robust extrac-
tor for an (n, k)-source requires k > n/2, which is in sharp contrast with
randomness extractors which only require k = ω(log n). Existing works
either rely on random oracles or introduce CRS and work only for CRS-
independent sources (even in the computational setting).

In this work, we give a systematic study about robust (fuzzy) extrac-
tors for general CRS dependent sources. We show in the information-
theoretic setting, the same entropy lower bound holds even in the CRS
model; we then show we can have robust extractors in the computa-
tional setting for general CRS-dependent source that is only with mini-
mal entropy. We further extend our construction to robust fuzzy extrac-
tors. Along the way, we propose a new primitive called κ-MAC, which is
unforgeable with a weak key and hides all partial information about the
key (both against auxiliary input); it may be of independent interests.

1 Introduction

Randomness extractors are well-studied tools that enable one to extract uniform
randomness (usually with the help of a short random seed) from a weak random
source with sufficient entropy. Robust (fuzzy) extractors, which are randomness
extractors that can be against an active attacker, are very useful in the settings
of authenticated key exchange (AKE) from shared weak secrets and remote
biometric authentication. Sometimes, a one-message AKE protocol from weak
secrets is directly known as a robust extractor (for close secrets, a robust fuzzy
extractor) [4,7,9,10,19,22]. Informally, a robust extractor consists of a gener-
ation algorithm Gen producing a nearly-uniform string R along with a public
helper string P (message sent in public) from a source W , and a reproduction

c© International Association for Cryptologic Research 2021
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algorithm Rep recovering R from P and W . Besides the normal requirement as
a randomness extractor that the extracted R should be uniform, the robustness
ensures that any manipulation on P by active attackers will be detected. Fur-
thermore, for composition with other applications that will use the extracted
randomness, stronger robustness (called post-application robustness) is usually
required, by allowing adversaries to have R directly, which ensures the security
even after adversaries learning information about R from applications using R.

Robust extractors turn out to be expensive. It is known that information-
theoretic robust extractors require the (min-)entropy k of the source W ∈ {0, 1}n

to be larger than n/2 [10,12], which is in contrast with regular randomness
extractors that only require a minimal entropy ω(log n) from the source. Natu-
rally, leveraging a random oracle as a “super” randomness extractor could cir-
cumvent this entropy lower bound. Indeed, one can directly hash a source (with
a minimal entropy like ω(log n)) for this purpose. Moreover, one can also trans-
form a fuzzy extractor [3,11] into a robust fuzzy extractor [4]. However, it is
always desirable to see whether we can remove this heuristic assumption [6],
particularly in the setting of randomness extraction.

The other approach uses a common reference string (CRS), which could be
generated by a trusted third party once and for all. It enables us to transform a
strong extractor into a robust extractor by using the CRS as the seed. Clearly,
this approach will not require more entropy from the source than the underlying
extractor. It also can be extended to the fuzzy setting [7,19,20,22]. However, as
the seed has to be independent of the source, this approach so far only works
for CRS-independent sources.

In many cases, sources could be dependent on the CRS. For example, for
sources generated from devices such as PUFs, adversaries might manufacture the
devices after seeing the CRS and insert some CRS-dependent backdoor into the
device to gain advantages. More seriously, for all sources, given a CRS-dependent
leakage (which is possible as the leakage function is adversarially chosen after
seeing the CRS), the distribution of the remained secret will be dependent on
the CRS as well. We are interested in the following natural open question:

Can we have a robust (fuzzy) extractor that works for general
CRS-dependent sources with minimal min-entropy (ω(log n))

without relying on an RO?1

Our Results. We systematically investigate this question, in both computa-
tional and information-theoretic settings, for both non-fuzzy and fuzzy cases.
All related results are summarized in Table 1.

1 For the non-fuzzy case, Dodis et al. [9] presented a partial solution in the computa-
tional setting. However, their construction only works for a very special source: the
sample consists of (w, c) where c is a ciphertext that probabilistically encrypts 0s
under w; they further require the source to have any linear fraction of min-entropy.
In comparison, we are aiming for general sources that only have minimal super log-
arithmic entropy. For the fuzzy case, there is no feasibility result at all.
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Table 1. Comparison between known robust (fuzzy) extractors. “Low Entropy-Rate?”
asks whether the scheme works for (n, k)-sources with k = ω(log n); “General Sources?”
asks whether the scheme works for sources without other requirements beyond that on
(n, k) (so CRS-independent ones are all not general). “Naive-RO” denotes the trivial
construction that extracts randomness H(w) using a random oracle H; “Naive-CRS”
denotes a strong extractor using the CRS as the seed.

Fuzzy? Schemes Model CRS-dependent? IT/Computational? Low Entropy Rate? General Sources?

Non Naive-RO RO – Computational
√ √

[10] Plain – IT × √

Naive-CRS CRS × IT
√ ×

[9] CRS
√

Computational × ×
Ours (Sect. 5) CRS

√
Computational

√ √

Fuzzy [4] RO – Computational
√ √

[10,16] Plain – IT × √

[7] CRS × IT
√ ×

[19,20,22] CRS × Computational
√ ×

Ours (Sect. 6) CRS
√

Computational
√ √

Lower-Bound in the Information-Theoretic Setting. We first give a negative
answer in the information-theoretic setting by proving that the lower bound
for plain-model constructions [12] also holds in CRS-dependent constructions.
Namely, if there is a CRS-model information-theoretically-secure (IT-secure) pre-
application robust extractor working for every source W ∈ {0, 1}n that has min-
entropy greater than k even conditioned on the CRS (we refer such a source
an (n, k)-source), it must be that k > n/2. This new lower bound justifies the
necessity of the CRS-independent requirement in existing CRS-model IT-secure
robust (fuzzy) extractors [7].

A Generic Construction of Computational CRS-Model Robust Extractors. We
then consider circumventing our new lower bound in the computational setting.
We present a generic construction of CRS-dependent post-application robust
extractors and thus firmly confirm its existence. This construction is built upon
a conventional randomness extractor and a novel message authentication code
(MAC) termed by key-private auxiliary-input MAC (κ-MAC for short) for which
we give efficient constructions from well-studied assumptions. Our construction
works for any efficiently samplable sources that have sufficient min-entropy (con-
ditional on CRS) just to admit a conventional randomness extractor.

An Extended Construction for Robust Fuzzy Extractors. We further extend our
solution and construct a computational CRS-dependent robust fuzzy extractor
by using a conventional randomness extractor, a secure sketch, and a stronger κ-
MAC that can work in the fuzzy setting. Here, a q-secure sketch is a tool allowing
one to convert a weak secret W ′ to a q-close one W with the help of a small
amount of information about W , which is the core of many fuzzy extractors and
has IT-secure instantiations.

For achieving error tolerance t, (namely, two close secrets W and W ′ whose
distance is within t), our construction requires the source to support a 2t-secure
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sketch2. This requirement indeed matches the requirement made by many exist-
ing CRS-model robust fuzzy extractors [19,20], while our construction is the first
one working for CRS-dependent sources.

Our Techniques. We give a technical overview as follows.

Proving Lower-Bounds for CRS-Model IT-Secure Robust Extractor. Our main
technique for the generalized lower bound is to show that a CRS-model IT-secure
robust extractor implies a plain-model IT-secure “authentication scheme”, which
was the main tool for showing the lower bound of entropy rate [12].

Note that a CRS-model robust extractor for all (n, k)-sources trivially implies
a CRS-model “authentication scheme” {Auth,Vrfy}: Auth runs the generation
algorithm Gen and outputs the helper string P as an “authentication tag” ς; Vrfy
runs Rep on input P and outputs 1 unless Rep fails. For any (n, k)-source W
and any unbounded adversary A, the scheme is correct and unforgeable w.r.t. a
randomly sampled crs according to the CRS distribution CRS. To show a CRS-
model “authentication scheme” gives a plain model one: we prove that there
exist at least one concrete CRS string crs∗ such that it will enable “correct”
authentication and “unforgeability” for all CRS-dependent sources.

For unforgeability, assume that the advantage of any adversary forging a tag
in the CRS-model scheme is bounded by δ. First, we show that, for each source
W , any adversary A, and any constants c0, c1 ∈ (0, 1), there will be a good set
SW,A with weight at least c0 (namely, Pr[CRS ∈ SW,A] ≥ c0) such that for every
crs ∈ SW,A, the advantage of A forging a valid tag for W is bounded by δ/c0.

Note that the above discussions give a “locally good” set for each W , but we
need a “globally good” set of CRSs for all sources and all adversaries. For any A,
we show that, ̂SA, the intersection of {SW,A} for all sources W , is with weight
at least c0; for every crs ∈ ̂SA, A’s advantage is bounded by δ/c0. We proceed
with proof by contradiction: if not, its complement ̂SC

A will have the weight
of at least (1 − c0). By definition, for every crs(i) ∈ ̂SC

A , there is one source
W (whose conditional distribution is W

(i)
crs) s.t. A has advantage greater than

δ/c0. We can define a “new” (n, k)-source W ∗ = {W |crs} where W |crs(i) = W
(i)
crs

if crsi ∈ ̂SC
A and uniform otherwise. For such W ∗ and A, there is no good

SW ∗,A with weight greater than c0, which contradicts our previous argument.
Finally, we can prove

⋂

A ̂SA is globally good, as otherwise, we can “construct”
an adversary A∗ contradicting the existence of ̂SA∗ .

By similar arguments, we can show there is a globally good CRS set ˜S for
correctness as well. Then by adequately choosing c0 and c1, the sum weight of
̂S and ˜S can be greater than 1, thus there exists a crs∗ which is globally good
for both correctness and unforgeability. Hardcoded with this string crs∗, the
CRS-model authentication scheme gives a plain-model authentication scheme.

2 Note that secure sketches achieving t error tolerance are also subject to some entropy-
rate lower-bounds [14]. However, for almost all error-rate t/n (except a small range),
the bound is notably smaller than 1/2.
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Adding Post-application Robustness to Randomness Extractor for “free”. We
then turn to computational setting. In a conventional strong extractor Ext (which
converts a weak secret w into a uniform r with the help of a uniform seed s), we
may view the seed as the “helper string”. To make it robust, we could let the
“helper string” additionally include a MAC tag for the seed such that adversaries
cannot malleate it without being detected. One might want to use r as the key,
but the verifier will not have r until receiving s, which leads to circularity. We
consider taking w as the MAC key directly.

We can see that a normal MAC will be insufficient. On the one hand, the
secret w is non-uniform, especially when we consider post-application robustness,
the randomness r and the seed s together give non-trivial information about w
and will be leaked to adversaries. On the other hand, the authentication tag
itself may contain information about w, which in turn affects the quality of
randomness extraction.

We, therefore, introduce a new MAC called κ-MAC. Besides unforgeability,
it satisfies key privacy, that is, adversaries cannot learn anything new about the
key from an authentication tag. Thus, the authentication tag will not affect the
randomness extraction (in the computational setting). Moreover, both unforge-
ability and key privacy should hold even when adversaries have arbitrary admis-
sible auxiliary information about the secret, making this primitive co-exist with
(r, s). We define κ-MAC in the CRS model and allow the distribution of secrets
to be arbitrarily dependent on the CRS, as long as it is efficiently samplable and
has sufficient min-entropy (conditioned on the CRS). We remark that a one-time
κ-MAC suffices for constructing robust extractors.

κ-MAC from sLRH Relation. It is natural to view κ-MAC as a special leakage-
resilient (more precisely, auxiliary-input secure) MAC; then upgrade it to add
key privacy. The known approach to auxiliary-input MAC is using the auxiliary-
input signature in the symmetric setting by taking both verification key vk and
signing key sk as the MAC key k. But in κ-MAC, k is just a non-uniform string
sampled from the source, which may not have a structure like (vk, sk); we have
to deal with it carefully.

We revisit Katz-Vaikuntanathan signature [17] that is shown to be auxiliary-
input secure [13]. On rough terms, they used a true-simulation-extractable NIZK
(tSE-NIZK) [8] to prove the knowledge of a witness k∗ w.r.t. a statement y
(contained in the verification key), such that (k∗, y) satisfy a leakage-resilient
hard (LRH) relation. In an LRH relation, for honest generated (y, k), and given
y and leakage about k, it is infeasible to find a witness of y. If there is a successful
forgery, we can extract k∗ for y (by tSE-NIZK), which contradicts the LRH
relation.

For our κ-MAC, we take the signing key sk as the authentication key k,
but vk cannot be posted on a trusted bulletin board, as in signatures, or be in
k as the source might not be structured. We address this challenge as follows.
First, there is a part of vk (denoted by pp) that can be generated without k
and reused across users, and we put it in the CRS. For the other part (denoted
by yk), while adversaries can manipulate it, we strengthen the LRH relation
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to ensure this manipulation will not give advantages. Specifically, we define the
strengthened LRH relation (sLRH relation): given honestly generated (pp, yk)
along with leakage about k, adversaries cannot find a (yk′, k′) such that both
(pp, yk′, k′) and (pp, yk′, k) satisfy the sLRH relation. This strengthening is suffi-
cient, since using tSE-NIZK to prove knowledge of k w.r.t. (pp, yk) and attaching
yk (and the proof) to the authentication tag could give an auxiliary-input MAC
from weak secrets. Here, the verifier algorithm checks whether (pp, yk′, k) satis-
fies this relation and whether π is valid, and a forgery violates either the sLRH
relation or tSE-NIZK.

For key privacy, we need yk to hide partial information about k, i.e., one can
simulate the yk distribution without k. Accordingly, we formulate the privacy of
generators for a sLRH relation. With a sLRH relation and its generator satisfying
privacy (called a private generator), we have a κ-MAC construction in this way.

Constructing sLRH Relation from DPKE+NIZK. The privacy of generator
indeed prevents adversaries from finding k from (pp, yk) and the leakage. If
it further has a kind of “collision-resistance”, namely, even when k is given, it
is infeasible to find a distinct k′ along with yk′ such that both (pp, yk′, k) and
(pp, yk′, k′) belong to RLR, RLR with a private generator will be a sLRH relation.
Specifically, consider an adversary that outputs (yk′, k′) and breaks the sLRH
relation; if k = k′, it contradicts the privacy of generator; otherwise, it violates
this “collision-resistance”.

We use an auxiliary-input-secure deterministic encryption scheme to instan-
tiate an NP relation Rde with a private generator. Specifically, (pk, c,m) ∈ Rde iff
c = DEnc(pk,m). From the security of DPKE, (pk, c) could hide partial informa-
tion about m. For handling all hard-to-invert auxiliary information, the DPKE
scheme from exponentially hard DDH assumption [24] will be the only choice.

Note that pk has to be a part of yk (not pp) since DPKE only works
for message distributions independent of pk, and we need work for CRS-
dependent sources. Now, the adversary can replace pk with a “bad” pk′ such
that (pk′, c′ = DEnc(pk′,m)) cannot uniquely determine the message m; so this
relation (together with its private generator) is not a sLRH relation. To get
around this obstacle, we let yk include a NIZK proof π (besides (pk, c)) demon-
strating that pk defines an injection DEnc(pk, ·). Though NIZK needs a CRS as
well, it is secure even when statements and witnesses are dependent on the CRS.

Extending to the Fuzzy Case. Finally, we extend our solutions to the fuzzy case.
The starting point is using κ-MAC to authenticate the helper string of a fuzzy
extractor. We take the standard secure-sketch-based fuzzy extractor as a building
block, in which one can recover the secret w using his secret w′ first.

The κ-MAC we just defined will be insufficient for the fuzzy case. Adversaries
may manipulate the helper string, such that one recovers another secret w′′

(which is t-close to w′) that a forged tag can be verified under w′′. We therefore
need κ-MAC to satisfy fuzzy unforgeability, that is, given an authentication tag
from w, adversaries cannot forge an authentication tag being accepted by any
string close to w. Note that the distance between w′′ and w is bounded by 2t,
the fuzzy unforgeability should prevent from a forgery w.r.t. any 2t-close secret.
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To construct a fuzzy unforgeable κ-MAC, we first introduce a fuzzy version
of sLRH relation. More specifically, for a 2t-fuzzy sLRH relation, it is infeasible
to find (yk′, k′) to “frame” any secret k∗ which is 2t-close to k. It is easy to
verify the according κ-MAC satisfies 2t-fuzzy unforgeability.

Interestingly, we do not need other tools to construct a fuzzy sLRH relation.
Our construction of sLRH relation is fuzzy already. Particularly, if a sLRH rela-
tion is “collision-resistant”, the adversary can “frame” some k′′ only when she
exactly finds k′′. It remains to argue that, given (pp, yk) from a private genera-
tor on input k and the leakage about k, can adversaries find a secret k′′ that is
2t-close to k?

This question seems straightforward at first glance but turns out to need
some care. Note that the privacy of generator cannot ensure that (pp, yk) hides
all partial information about k, as (pp, yk) itself must be non-trivial about k.
A safe way to check whether a value can be recovered from (pp, yk) is to see
whether this value is useful for distinguishing yk and ̂yk; anything can be used
to distinguish cannot be recovered. For small t (say, logarithmic in the security
parameter), one knowing k′′ ∈ B2t(k) can guess the original k with a non-
negligible probability, and then she can use k to distinguish. The situation gets
complicated when t is large and B2t(k) has exponentially many points. In this
case, one cannot naively guess k according to k′′. We overcome this challenge by
observing the task of recovering k from k′′ can be done with the help of 2t-secure
sketch. More specifically, assume an adversary can recover k′′ from (pp, yk).
Then, the distinguisher specifies the leakage as a 2t-secure sketch, invokes the
adversary to have this k′′ ∈ B2t(k), and converts k′′ to k with the help of the
secure sketch. Usually, auxiliary inputs are considered a “bad” object to be
against, but our proof leverages the auxiliary input to get around barriers of
security proof.

2 Preliminaries

Notations. All adversaries considered in this paper are non-uniform, and we
model an adversary A by a family of circuits {Aλ}n∈N. For a set X, x←$X

denotes sampling x from the uniform distribution over X. For a distribution X,
x ← X denotes sampling x from X. Let (X,Y ) be a joint distribution, X|y
denotes the conditional distribution of X conditioned on Y = y.

Min-entropy. The min-entropy of a distribution W is defined by H∞(W ) =
−minw∈Supp(W ) log Pr[W = w]. We say W has min-entropy of ̂k conditioned on
Z, if H∞(W |z) ≥ ̂k for every z ∈ Supp(Z).

Strong Extractor. Let n, k, � be integer functions of the security parame-
ter. An (n, k, �) strong randomness extractor Ext is a deterministic algorithm,
which on inputs w ∈ {0, 1}n(λ) along with a public seed iext (with length si(λ))
outputs another randomness r ∈ {0, 1}�(λ). Ext satisfies ε-privacy, if for any
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polynomial-time A and any (n, k)-sources W, it holds that AdvextW,A(λ) ≤ ε(λ),
where AdvextW,A(λ) is defined as

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎣

w ← Wλ, iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) :
1 ← A(iext, r)

⎤

⎥

⎦ − Pr

⎡

⎢

⎣

w ← Wλ, iext ←$ {0, 1}si(λ)

r ←$ {0, 1}(�(λ)) :
1 ← A(iext, r)

⎤

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

.

Metric Spaces. A metric space M = {Mλ}λ∈N is a collection of sets with a
distance function dist : Mλ × Mλ → [0,∞). Throughout this paper we consider
Mλ = {0, 1}n(λ) equipped with a distance function (e.g., Hamming distance).

Secure Sketch. Let M be a metric space. An (M, k, k′, t)-secure sketch scheme
is a pair of PPT algorithms SS and Rec that satisfies correctness and security.
For every λ ∈ N, SS on input w ∈ Mλ, outputs a sketch ss; Rec takes as inputs
a sketch ss and w̃ ∈ Mλ, and outputs w′.
Correctness. ∀w̃ ∈ Mλ, if dist(w, w̃) ≤ t(λ), then Rec(w̃,SS(w)) = w.
Security. For every λ, any distribution W over Mλ with min-entropy at least
k(λ), it holds that H∞(W |SS(W )) ≥ k′(λ).

We may abbreviate an (M, k, k′, t)-secure sketch by t-secure sketch without
specifying other parameters.

NIZK. A non-interactive zero-knowledge proof system (NIZK) Π for an NP
relation R can be described by the following three algorithms. Setup(1λ) gener-
ates a CRS crs; Prove(crs, x, ψ) takes as inputs a CRS crs, a statement x and
a witness ψ, and outputs a proof π; Verify(crs, x, π) checks the validity of π.

Π satisfies the perfect completeness, if for any λ ∈ N and for any (x, ψ) ∈ R,

Pr[crs ← Setup(1λ);π ← Prove(crs, x, ψ) : Verify(crs, x, π) = 1] = 1.

Π satisfies εsnd-adaptive soundness, if for any polynomial-time adversary A, it
holds that AdvsndA (λ) ≤ εsnd(λ), where AdvsndA (λ) is defined as

Pr[crs ← Setup(1λ); (x, π) ← A(crs) : Verify(σ, x, π) = 1 ∧ (∀ψ, (x, ψ) /∈ R)].

For zero-knowledgeness, we introduce the single theorem version, which suffices
for our applications. Namely, we say Π satisfies εzk-ZK, if there exists a simulator
(SimSetup,SimProve), such that for any polynomial-time A = (A1,A2), it holds
that AdvzkA (λ) ≤ εzk(λ), where AdvzkA (λ) is defined as

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

crs ← Setup(1λ)
(x, ψ, st) ← A1(crs)
π ← Prove(crs, x, ψ) :
1 ← A2(st, π)

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

(crs, tk) ← SimSetup(1λ)
(x, ψ, st) ← A1(crs)
π ← SimProve(crs, tk, x) :
1 ← A2(st, π)

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Furthermore, we will need a strengthened soundness termed by true-
simulation-extractability (tSE) [8], which says that any efficient adversary
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A cannot produce a valid proof π∗ for x∗ without knowing x∗’s witness, even
A can see a simulated proof for a valid statement x. Note that a tSE-NIZK is
implied by a simulation-extractable NIZK [18] which allows adversaries to see
simulated proofs on arbitrary statements, including false statements. Moreover,
tSE-NIZK may have more efficient constructions [8].

We now present the single-theorem version. We say Π satisfies (εtse1, εtse2)-
tSE, if there exists a simulation-knowledge extractor (SESetup,SimProve,KExt),
such that for any polynomial-time adversary A and B = (B1,B2), Advtse1A (λ) ≤
εtse1(λ), where Advtse1A (λ) is defined as

∣

∣

∣

∣

∣

Pr

[

(crs, tk, ek) ← SESetup(1λ) :
1 ← A(crs, tk)

]

− Pr

[

(crs, tk) ← SimSetup(1λ) :
1 ← A(crs, tk)

]∣

∣

∣

∣

∣

,

and Advtse2A (λ) ≤ εtse2(λ), where Advtse2A (λ) is defined as

Pr

[

(crs, tk, ek) ← SESetup(1λ), (x, ψ, st) ← B1(crs), π ← SimProve(crs,
tk, x), (x∗, π∗) ← B2(st, π), w∗ ← KExt(crs, tk, x∗, π∗) : (x∗, w∗) /∈ R

]

.

Deterministic Public-Key Encryption. A deterministic public-key encryp-
tion (DPKE) scheme Σ is defined by a triple of PPT algorithms
{KeyGen,Enc,Dec} where Enc and Dec are deterministic.

A DPKE scheme Σ is (n, εhv, εind)-PRIV-IND-secure [5], if for any message
source W defined over {{0, 1}n(λ)}λ∈N and any function ensemble F = {fλ}λ∈N

such that F is εhv-hard-to-invert w.r.t. W, for any polynomial-time adversary
A, it follows that AdvindA,W,F (λ) ≤ εind(λ), where AdvindA,W,F (λ) is defined as

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

(pk, sk) ← KeyGen(1λ)
m ← Wλ,

c ← Enc(pk,m) :
1 ← A(c, pk, fλ(m))

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

(pk, sk) ← KeyGen(1λ)

m ← Wλ,m′ ←$ {0, 1}n(λ),

c ← Enc(pk,m′) :
1 ← A(c, pk, fλ(m))

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

We assume w.l.o.g. that Σ has a key relation Rpk s.t. for every (pk, sk) ∈ Rpk,
it follows that Dec(sk,Enc(pk,m)) = m for any message m.

3 CRS-Model Robust Extractor: Definitions

In this section, we present both information-theoretic and computational defini-
tions of robust extractors in the CRS model.

CRS-Dependent Sources. Being different from all previous CRS-model works
of fuzzy extractors [7,19–22] that require sources to be independent of the CRS,
we consider all sources that could potentially depend on the CRS while having
sufficient conditional min-entropy. Formally, We model a source W as an ensem-
ble of distributions W = {Wλ}λ∈N. Let CRS = {CRSλ}λ∈N be an ensemble of
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CRS distributions, and we denote each Wλ by a collection {Wλ|crs}crs∈Supp(CRSλ).
Here Wλ|crs is used to denote the conditional distribution of Wλ conditioned on
that CRSλ = crs. For a distribution Wλ independent of CRS, it holds that
Wλ = Wλ|crs for every crs. Moreover, any collection {Wλ,crs}crs∈Supp(CRSλ) in
turn defines a distribution Wλ for which Wλ|crs = Wλ,crs.

Let n and k be integer functions of the security parameter. For a source W
defined over {{0, 1}n(λ)}λ∈N, we call it an (n, k)-source (w.r.t. CRS), if for any
λ, the distribution Wλ is an (n(λ), k(λ))-distribution (w.r.t. CRSλ). Namely,

H∞(Wλ) ≥ k(λ) (or for any crs ∈ Supp(CRSλ),H∞(Wλ|crs) ≥ k(λ).)

In the computational setting, we further require each Wλ to be efficiently
samplable by a polynomial-bounded circuit.

Definition 1 (Efficiently-samplable source w.r.t. CRS). For a distri-
butions ensembles CRS = {CRSλ}λ∈N and W = {Wλ}λ∈N, we call Wλ an
efficiently-samplable distribution w.r.t. CRSλ, if there is a circuit Gλ whose run-
ning time is polynomial in λ, such that for every crs ∈ Supp(CRSλ), it holds
that

Gλ(crs) = Wλ|crs.
If for every λ ∈ N, Wλ is an efficiently-samplable distribution w.r.t. CRSλ, we
call W an efficiently-samplable source w.r.t. CRS.

Remark 1. We consider efficiently samplable sources in the computational set-
ting, as the dependence between a source being extracted and the CRS distri-
bution is usually caused by an efficient adversary. A typical scenario could be
that a non-uniform PPT adversary A = {Aλ}λ∈N “creates” a source after seeing
the CRS. Therefore, we ask a uniform polynomial-bounded circuit Gλ (which
can be considered as Aλ) for every crs ∈ Supp(CRSλ), rather than different
polynomial-bounded circuits for different crs. Similar settings appeared in the
recent works on two sources extractors [1,15].

Robust Extractor. A robust extractor rExt in the CRS-model is defined by a
triplet of efficient algorithms {CRS,Gen,Rep}. CRS is a sampler algorithm that
specifies the CRS distribution. Gen takes as inputs a CRS and a weak secret w
and outputs a randomness R along with a helper string P . Then, Rep can recover
R from P using w. rExt requires privacy and robustness. The former says R is
pseudorandom conditioned on P , and the latter captures the infeasibility of
forging a different P that will not lead to the failure of Rep. Particularly, when
A is given both R and P , the robustness is called post-application robustness;
when only P is given, it is called pre-application robustness.

Formally, we define a robust extractor below.

Definition 2 (Robust extractor). For integer functions n, k, � of the secu-
rity parameter, an (n, k, �)-robust extractor rExt is defined by the following PPT
algorithms.
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– crs ← CRS(1λ). On input the security parameter λ, it outputs a CRS crs,
whose distribution is denoted by CRSλ.

– (R,P ) ← Gen(crs, w). On inputs crs and a string w ∈ {0, 1}n(λ), it outputs
a randomness R ∈ {0, 1}�(λ) along with a helper string P .

– R ← Rep(crs, w, P ). It recover the randomness R from P using w.

Correctness: For a function ρ : N → [0, 1], we say rExt satisfies ρ-correctness,
if for any (n, k)-source W, for every λ, it holds that

Pr

[

crs ← CRSλ;w ← Wλ|crs;
(R,P ) ← Gen(crs, w) : Rep(crs, w, P ) = R

]

≥ ρ(λ).

Privacy: For ε : N → (0, 1), rExt satisfies the ε-IT-privacy, if for any unbounded
adversary A and any (n, k)-source W, it holds that

AdvprivA,W(λ) := |Pr[Exppriv,0A,W (λ) = 1] − Pr[Exppriv,1A,W (λ) = 1]| ≤ ε(λ).

Robustness: For δ : N → (0, 1),rExt satisfies the δ-IT-post-application-
robustness (or pre-application robustness, without boxed items in the experiment
ExprobA,W), if for any unbounded adversary A, and any (n, k)-source W, it holds
that AdvrobA,W(λ) = Pr[ExprobA,W(λ) = 1] ≤ δ(λ).

Exppriv,bA,W(λ)

crs ← CRSλ;w ← Wλ|crs; (R, P ) ← Gen(crs, w);

R0 ←$ {0, 1} (λ);R1 = R; b ← A(crs, P, Rb)

return b

ExprobA,W(λ)

crs ← CRSλ;w ← Wλ|crs
(R,P ) ← Gen(crs, w);P ∗ ← A(crs, P , R )

if P ∗ = P ∧ Rep(crs, P ∗, w) =⊥) then return 1

return 0

Computational definitions can be defined by only considering polynomial-
time adversaries and efficiently-samplable sources. We directly call these com-
putational versions ε-privacy and δ-post-application-robustness (by removing
“IT”).

Robust Fuzzy Extractor. When the generation algorithm Gen and the repro-
duction algorithm Rep could use different but close secrets w, w̃, {CRS,Gen,Rep}
defines a robust fuzzy extractor. More formally, we require that w and w̃ are in
a metric space M with a distance function dist. For an integer ̂t, we say w is
̂t-close to w̃, if dist(w, w̃) ≤ ̂t. For W = {Wλ}λ∈N and ˜W = {˜Wλ}λ∈N defined
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over M, we say (W, ˜W) a t-pair for an integer function t, if for every λ ∈ N and
crs ∈ Supp(CRSλ), it holds that Pr[(w, w̃) ← (Wλ|crs, ˜Wλ|crs) : dist(w, w̃) ≤
t(λ)] = 1. For simplicity, we assume M is {{0, 1}n(λ)}λ∈N equipped with a dis-
tance function dist (e.g., Hamming distance).

We call rfExt = {CRS,Gen,Rep} an (M, k, �, t)-robust fuzzy extractor, if it
satisfies correctness, privacy, and robustness w.r.t. any t-pair of (n, k)-sources
(W, ˜W ). Formal definitions are given in the full paper.

4 A New Lower Bound for IT-Secure Robust Extractors

As briefly explained in the introduction, a plain-model IT-secure robust extractor
for all (n, k)-sources exists only when k > n/2 [12]. This lower bound can be
trivially circumvented by assuming a CRS and work only for the special sources
that are independent of the CRS. We are interested in the case for general sources
which may be CRS-dependent. This section gives a negative result that IT-secure
robust extractors for all (n, k)-sources also require that k > n/2 in the CRS
setting. The fuzzy case trivially inherits this generalized lower bound.

Previous Tool for the Plain Model Lower Bound. Dodis and Wichs’s
[12] lower-bound comes from a plain-model IT-secure authentication scheme
(for an-(n̂,̂k)-distribution W ), which is trivially implied by an IT-secure robust
extractor. Such an authentication scheme could be described by a pair of
randomized functions {Auth,Vrfy}, formed by Auth : {0, 1}n̂ → {0, 1}ŝ, and
Vrfy : {0, 1}n̂ × {0, 1}ŝ → {0, 1}, where n̂, ŝ are integers. It satisfies (1) ρ̂-
correctness: Pr[w ← W : Vrfy(w,Auth(w)) = 1] ≥ ρ̂; and (2) ̂δ-unforgeability:
for any adversary A, Pr[w ← W, ς ← Auth(w), ς∗ ← A(ς) : Vrfy(w, ς∗) = 1] ≤ ̂δ.

Lemma 1 ([12]). If there exists an authentication scheme for all (n̂,̂k)-
distributions with ρ̂-correctness and ̂δ-unforgeability, and ̂δ < ρ̂2/4, it follows
that ̂k > n̂/2.

Generalizing the Lower-Bound. We present a new lower bound for the CRS-
model in the following theorem; our main technical lemma is to show that a CRS-
model authentication scheme could imply that in the plain model (Lemma2).

Theorem 1. Let n, k, � : N → N and ρ, δ : N → {0, 1} be functions of the
security parameter. If there exists an (n, k, �) IT-secure robust extractor with
ρ-correctness and δ-pre-application-robustness, then for any λ ∈ N s.t. δ(λ) ≤
ρ(λ)2/4, it follows that k(λ) > n(λ)/2.

Proof. We first define a CRS-model authentication scheme, which consists
{CAuth,CVrfy} (randomized) along with a CRS distribution ̂CRS, satisfying the
following, for any (n̂,̂k)-source W :

– ρ̂-correctness: Pr[crs ← ̂CRS, w ← W |crs : Vrfy(crs, w,Auth(crs, w)) = 1] ≥
ρ̂.
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– ̂δ-unforgeability: for any adversary A,

Pr

[

crs ← ̂CRS, w ← W |crs, ς ← Auth(crs, w),
ς∗ ← A(crs, ς) : Vrfy(crs, w, ς∗) = 1.

]

≤ ̂δ.

It is easy to see that, if there is a CRS-model IT-secure (n, k, �)-robust extrac-
tor {CRS,Gen,Rep} with ρ-correctness and δ-robustness, for each λ ∈ N, we
can construct {CAuth,CVrfy} along with a CRS distribution ̂CRS = CRSλ that
satisfies ρ̂ = ρ(λ)-correctness and ̂δ = δ(λ)-unforgeability w.r.t. all (n(λ), k(λ))-
distributions. More detailly,

– CAuth(crs, w) : Invoke (R,P ) ← Gen(crs, w), and return σ = P ;
– CVrfy(crs, w, σ) : If Rep(crs, w, σ) =⊥, return 0; otherwise, return 1.

Next, we give our main technical lemma for the CRS-model authentication
scheme, whose detailed proof is deferred later.

Lemma 2. If there exists a CRS-model IT-secure authentication scheme
{CAuth,CVrfy} (along with a CRS distribution ̂CRS) for all (n̂,̂k)- distribu-
tions with ρ̂-correctness and ̂δ-unforgeability, then for any ĉ0, ĉ1 ∈ (0, 1) sat-
isfying (1 − ĉ1)ρ̂ + ĉ0 > 1, there exists a plain-model IT-secure authentication
scheme {Auth,Vrfy} for all (n̂,̂k)-distributions with ĉ1ρ̂-correctness and ̂δ/ĉ0-
unforgeability.

By Lemma 1, if ̂δ/ĉ0 < (ĉ1ρ̂)2/4, {Auth,Vrfy} established in Lemma 2 exists
only when ̂k > n̂/2. Putting requirements together, {CAuth,CVrfy} with ρ̂-
correctness and ̂δ-unforgeability could imply such {Auth,Vrfy}, if there exists
ĉ0, ĉ1 ∈ {0, 1}, such that

̂δ <
ĉ0ĉ

2
1ρ̂

2

4
, and (1 − ĉ1)ρ̂ + ĉ0 > 1. (1)

It remains to show when such (ĉ0, ĉ1) exist. Note for any ρ̂ ∈ (0, 1), there
always exists (ĉ0, ĉ1) ∈ (0, 1)2 satisfying (1 − ĉ1)ρ̂ + ĉ0 > 1 (denote the solution
space by Sρ̂). Then, we can have (ĉ0, ĉ1) satisfying Eq. 1 for (ρ̂, ̂δ), unless 4̂δ

ρ̂2 ≥
ĉ0ĉ

2
1 for any (ĉ0, ĉ1) ∈ Sρ̂.
By standard analysis, we have the following result: for any ρ̂, v̂ ∈ (0, 1),

there always exists (ĉ0, ĉ1) ∈ Sρ̂ such that ĉ0ĉ
2
1 > v̂. It follows that whenever

̂δ < ρ̂2/4, such (ĉ0, ĉ1) exist. Recall that for any λ s.t. δ(λ) < ρ(λ)2/4, the
robust extractor could give such {CAuth,CVrfy} for all (n(λ), k(λ))-distributions.
It follows k(λ) < n(λ)/2 in this case. ��
Deferred Proof for Lemma 2. The over goal is to show there exists a
“good” CRS crs∗ in the support of ̂CRS, such that with crs∗ hardcoded,
{CAuth(crs∗, ·),CVrfy(crs∗, ·)} is the plain-model authentication scheme. For
both correctness and unforgeability, we will prove that there exist a sufficiently
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large “good” set of CRSs (S and ˜S) for each of them. Then by properly tuning
parameters, we can see S ∩ S̃ �= ∅, thus we can find a string crs∗.

In the claim below, we show the existence of S (for correctness). We pro-
ceed in two steps. (i) For each source W and a randomly sampled crs, we have
ρ-correctness; then, by simple probabilistic analysis, there must exist a large
enough “good” set SW that every element of it will enable “correctness” (with a
smaller correctness parameter). (ii) To show

⋂

W SW is still with sufficient size,
we can use proof by contradiction in a sense that if it does not hold, we can define
a special source W ∗ whose “good” set SW∗ will be smaller than that established
in the previous step.

Claim. For any constant ĉ1 ∈ (0, 1), there exists a set S ∈ Supp( ̂CRS) such that
Pr[ ̂CRS ∈ S] ≥ (1 − ĉ1)ρ̂, and for any crs ∈ S and any (n̂, k̂)-distribution W , it
holds that

Pr
[

w ← W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1
]

≥ ĉ1ρ̂.

Proof (of claim). For convenience, we define the “verified correctly” event w.r.t.
W and crs:

VCW,crs := [w ← W |crs, ς ← CAuth(crs, w) : CVrfy(crs, w, ς) = 1].

Then define a “good” set S for an (n̂,̂k)-distribution W . Namely,

SW := {crs ∈ Supp(CRS) : Pr[VCW,crs] ≥ ĉ1ρ̂}. (2)

We now show
Pr[ ̂CRS ∈ SW ] ≥ (1 − ĉ1)ρ̂ (3)

for any (n̂, k̂)-distribution W . If not, for some W , we have the following,

Pr[crs ← ̂CRS : VCW,crs]

≤ Pr[VCW,crs|crs /∈ SW ] Pr[ ̂CRS /∈ SW ] + Pr[ ̂CRS ∈ SW ]
≤ĉ1ρ̂ + (1 − ĉ1)ρ̂ = ρ̂,

which contradicts the assumption that {CAuth,CVrfy} along with ̂CRS satisfies
the ρ̂-correctness.

Note that SW is a “locally good” set for W , and we need a “globally good”
set S for all (n̂,̂k)-distributions. By definition, S will be the intersection of all
SW , namely,

S =
⋂

∀(n̂,̂k)-distribution W

SW .

Our goal is to show Pr[ ̂CRS ∈ S] ≥ (1− ĉ1)ρ̂. We proceed it by contradiction.
Specifically, if not, the complement of S (denoted by SC) will satisfy Pr[ ̂CRS ∈
SC ] > 1 − (1 − ĉ1)ρ̂. By definition, for every crsi ∈ SC , there exists a (n̂,̂k)-
distribution Wi, such that
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Pr[VCWi,crsi
] < ĉ1ρ̂.

Next, we can define a distribution W ∗ for which the set SW ∗ does not satisfy
Eq. 3. Specifically, W ∗ = {W ∗|crsi

}
crsi∈Supp(̂CRS)

, where

W ∗|crsi
=

{

Wi|crsi
, if crsi ∈ SC ,

Un̂, if crsi ∈ S.
(4)

Here Un̂ denotes the uniform distribution over {0, 1}n̂. It is easy to verify W ∗

is an (n̂,̂k)-distribution. However, from the definition of W ∗, it follows that
SW ∗

⋂

SC = ∅, and thus Pr[CRS ∈ SW ∗ ] < (1 − ĉ1)ρ̂, which contradicts the
result Eq. 3. ��

For unforgeability, it follows similar idea. We have the following claim whose
formal proof is given in the full paper.

Claim. For any constant ĉ0 ∈ (0, 1), there exists a set ˜S ∈ Supp( ̂CRS) such that
Pr[ ̂CRS ∈ ˜S] ≥ ĉ0, and for any crs ∈ ˜S, any (n̂, k̂)-distribution W , and any
adversary A, it holds that

Pr

[

w ← W |crs, ς ← CAuth(crs, w),
ς∗ ← A(crs, ς) : CVrfy(crs, w, ς∗) = 1

]

< ̂δ/ĉ0.

Finally, by the parameter condition in Eq. 1 that (1− ĉ1)ρ̂+ ĉ0 > 1, it follows
that S∩˜S �= ∅. We pick one crs∗ ∈ S∩˜S, and define an ensemble of randomized
function pairs {Auth = CAuth(crs∗, ·),Vrfy = CVrfy(crs∗, ·)}. It is easy to verify
this {Auth,Vrfy} satisfies ĉ1ρ̂-correctness and δ̂/ĉ0 for all (n̂, k̂)-distributions. ��

5 Computational Robust Extractors

In this section, we provide a generic framework in the CRS model that compiles
any computational extractor into a robust one. Compared with previous works,
our construction is the first that can work for any CRS dependent source with
minimal entropy (ω(log n) instead of n/2 as in the IT setting).

Intuitions. As briefly discussed in Introduction, a fairly intuitive idea is to add a
MAC tag on the helper string. Namely, with a MAC {Tag,Verify} (for simplicity
here we omit the public parameters) and a strong extractor Ext, the generation
procedure produces a helper string formed by (s,Tag(w, s)) along with a ran-
domness r, where s is the seed for Ext and r is the extracted randomness by Ext.
The reproduce procedure first checks the validity of Tag(w, s), and reproduces
r = Ext(s, w) if the tag is valid.

However, it is not hard to see the insufficiency of a normal MAC here. First,
the secret w is non-uniform, and some information about w will be further
leaked by (s, r) (for the strong post-application robustness), while a MAC usu-
ally requires a uniform key. Moreover, the tag Tag(w, s) may also leak partial
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information about w (e.g., some bits of it) and thus affect the quality of r.
The above issues inspire us to consider a special MAC that can addresses the
concerns above simultaneously. At a high level, (1) it should be secure w.r.t.
auxiliary information about the weak secret w, as both the seed iext and the
extracted string r generated from w are leaked to adversaries; (2) the tag of
this MAC should also hide all partial information about w, such that given the
tag the extracted string r remains pseudorandom. We call such a MAC κ-MAC
(Key-Private Auxiliary-input Message Authentication). But, for constructing a
robust extractor, we only need to ask the one-time security of κ-MAC.3

We formally define κ-MAC, present and analyze our framework of robust
extractors from κ-MAC. Then, we show how to construct (one-time) κ-MAC
from well-studied assumptions.

κ-MAC: Definitions. We define the syntax of κ-MAC in the CRS model.

Syntax. A κ-MAC scheme Σ consists of a triple of algorithms {Init,Tag,Verify},
with associated key space K = {Kλ}λ∈N, message space Mes = {Mesλ}λ∈N,
and tag space T = {Tλ}λ∈N.

– Init(1λ). On input a security parameter 1λ, it outputs a crs whose distribution
is denoted by CRSλ.

– Tag(crs, k,m). The authentication algorithm takes as inputs a CRS crs, a
key k ∈ Kλ, and a message m ∈ Mesλ. It outputs a tag ς ∈ Tλ.

– Verify(crs, k,m, ς). The verification algorithm takes as inputs a CRS crs, a
key k, a message m, and an authentication tag ς. It outputs either 1 accepting
(m, ς) or 0 rejecting (m, ς).

The correctness states that for every crs ← Init(1λ), every secret k ∈ Kλ,
and every message m ∈ Mesλ, we have Pr[Verify(crs, k,m,Tag(crs, k,m))] = 1.
A secure κ-MAC scheme should satisfy unforgeability, which is similar to regular
MAC, and key privacy, which requires the tag to be simulatable without using
the key. The main difference (with the conventional definitions) in the security
notions is that they are all under auxiliary input. We first discuss the admissible
auxiliary input and then present the formal definitions.

Admissible Auxiliary Inputs. Note that the auxiliary information cannot be arbi-
trary. (1) it must be hard-to-invert leakage, as defined by Dodis et al. [9]. Namely,
the auxiliary input is a function f(w) of the secret w, and we say f is hard-to-
invert w.r.t. a distribution W , if it is infeasible to recover w from f(w), for a
random sample w ← W . (2) to avoid triviality, the auxiliary information should
not contain a valid authentication tag. Note that the authentication algorithm is
indeed “hard-to-invert”, and thus we have to put other restrictions on the leak-
age function to exclude the trivial case. Similar issues arise in auxiliary-input
secure digital signatures [13] that they require the admissible function f to be
exponentially hard-to-invert. For our purpose, however, this treatment will put
3 The RO-based MAC (where Tag(w, m) = H(w, m) for a random oracle H) employed

in Boyen et al.’s robust (fuzzy) extractor [4] captures all above intuitions, and thus
it can be considered as a κ-MAC in the random oracle model.
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unnecessary restrictions on either the sources being extracted or the underlying
extractor. Instead, we observe and leverage the following asymmetry: the authen-
tication algorithm is only required to be hard-to-invert for a randomly chosen
CRS; while the auxiliary-input function, particularly, the Gen of the underly-
ing extractor, can be hard-to-invert for every CRS. By defining the hardness
of inverting over every CRS, we can exclude the authentication algorithm from
admissible auxiliary-input functions. By design, we can further ensure that any
efficient algorithm that produces valid authentication tags may not be “hard-to-
invert” for some CRSs. Considering all the above, we define admissible auxiliary
inputs below.

Definition 3. Let CRS = {CRSλ}λ∈N be an ensemble of CRS distributions and
W be a source that may depend on CRS. We call an efficiently computable
function ensemble F = {fλ}λ∈N ε-hard-to-invert w.r.t. W and CRS, if for
any polynomial-time A, any λ ∈ N and any crs ∈ Supp(CRSλ), it holds that
Pr[k ← Wλ|crs : A(crs, f(crs, k)) = k] ≤ ε(λ).

One-Time Unforgeability. The unforgeability captures the infeasibility of forging
an authentication tag being accepted by a secret key k drawn from a high-
entropy source. Particularly, it considers a key from a non-uniform distribution
and allows adversaries to obtain auxiliary information.

Definition 4 (One-time unforgeability). Let Σ = {Init,Tag,Verify} be a
κ-MAC scheme with the key space {0, 1}n(λ). We say Σ satisfies (n, εunf , εhv)
one-time unforgeability, if for any polynomial-time adversary A, any efficiently-
samplable source W (defined over {{0, 1}n(λ)}λ∈N) and any function ensemble
F s.t. F is εhv hard-to-invert w.r.t. W and CRS, it holds that AdvunfA,W,F (λ) =
Pr[ExpunfA,W,F (λ) = 1] ≤ εunf(λ). The experiment ExpunfA,W,F is defined below.

ExpunfA,W,F (λ)

crs ← Init(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k)); ς ← Tag(crs, k, m)

(m∗, ς∗) ← A(ς, st)

if (m∗, ς∗) �= (m, ς) ∧ Verify(crs, k, m∗, ς∗) = 1 then return 1

return 0

One-Time Key Privacy. This property seeks to capture that an adversary cannot
learn anything new about the secret from an authentication tag.

We follow the simulation paradigm that was developed for defining non-
interactive zero-knowledge [2]. Namely, with the help of some “trapdoor” infor-
mation about the CRS, these tags can be simulated without the secret, and
adversaries cannot distinguish simulated tags from real ones. The simulation
procedure is done by the following pair: SimInit(1λ) – the init simulation algo-
rithm outputs a CRS crs along with its trapdoor τ . SimTag(crs, τ,m) – the
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tag simulation algorithm outputs a simulated tag ς for m. With the simulation
algorithms, we can formally define this property.

Definition 5 (One-time key privacy). Let Σ = {Init,Tag,Verify} be a κ-
MAC scheme with the key space {0, 1}n(λ). We say Σ satisfies (n, εkpriv, εhv) one-
time key privacy, if there is a pair of PPT algorithms (SimInit,SimTag), and for
any polynomial-time adversary A, any efficiently-samplable source W (defined
over {{0, 1}n(λ)}λ∈N) and any function ensemble F s.t. F is εhv hard-to-invert
w.r.t. W and CRS, it holds that

AdvkprivA,W,F (λ) = |Pr[Expkpriv,0A,W,F (λ) = 1] − Pr[Expkpriv,1A,W,F (λ) = 1]| ≤ εunf(λ).

The experiments Expkpriv,0A,W,F and Expkpriv,1A,W,F are defined below.

Expkpriv,0A,W,F (λ)

(crs, τ) ← SimInit(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k))

ς ← SimTag(crs, τ, m); b′ ← A(ς, st)

return b′

Expkpriv,1A,Σ,W,F (λ)

crs ← Init(1λ); k ← Wλ|crs
(m, st) ← A(crs, fλ(crs, k))

ς ← Tag(crs, k, m); b′ ← A(ς, st)

return b′

Making Any Computational Extractor Robust Without Requiring
More Entropy. We then show how to compile a strong extractor into a robust
extractor (for general CRS dependent sources) using one-time κ-MAC. Let Ext
be a (n, k, �) strong extractor (working on (n, k)-sources, and output � bits)
with the seed length s�, and let Σ = {Init,Tag,Verify} be a κ-MAC scheme
with the key space K = {{0, 1}n(λ)}λ∈N and the message space Mes that con-
tains {{0, 1}�(λ)+s�(λ)}λ∈N. Then, we illustrate our robust extractor construction
E = {CRS,Gen,Rep} in Fig. 1.

CRS(1λ)

crs ← Init(1λ)

return crs

Gen(crs, w)

s ←$ {0, 1}s (λ), r ← Ext(s, w)

ς ← Tag(crs, w, s)

return R = r, P = (s, ς)

Rep(crs, w, P )

if Verify(crs, w, s, ς) = 1

return R = Ext(s, w)

return ⊥

Fig. 1. Robust extractor from randomness extractor + one time κ-MAC

Analysis. The correctness and security of our construction are fairly straightfor-
ward. We remark that we only require the source to have minimal min-entropy
to enable a strong extractor. Formally, we have the following:
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Theorem 2. Let Ext be an (n, k, �)-strong extractor with εext-privacy, Σ be a κ-
MAC with (n, εkpriv, εhv) one-time key privacy and (n, εunf , εhv) one-time robust-
ness. If εhv ≥ εext, then for any εpriv,δrob, satisfying εpriv ≥ εext+2εkpriv, and δrob >
εunf , the construction in Fig. 1 is an (n, k, �)-robust extractor with εpriv-privacy
and δrob-post-application-robustness (defined in Sect. 4).

We prove privacy and robustness in Lemmas 3 and 4, respectively.

Lemma 3. Assume that Ext satisfies εext-privacy, and Σ satisfies (n, εkpriv, εhv)
one-time key privacy, where εhv ≥ εext. Then, rExt (in Fig. 3) satisfies εpriv-
privacy, for any εpriv > εext + 2εkpriv.

Proof. We prove this lemma by contradiction. Assume there is ε0 > εext +2εkpriv,
and we have a polynomial-time adversary B who has an advantage greater than
ε0 w.r.t. some efficiently-samplable (n, k)-source W. Then, we leverage B to
construct a polynomial-time adversary Aext for Ext, and two polynomial-time
adversaries Amac,0 and Amac,1 for κ-MAC Σ, such that, for the source W,

AdvextAext,W(λ) + AdvkprivAmac,0,W,F (λ) + AdvkprivAmac,1,W,F (λ) > ε0, (5)

where F is a function ensemble implementing Ext. As εhv ≥ εext, such F is an
admissible auxiliary inputs. Now, since we assume ε0 > εext + 2εkpriv, it follows
that either AdvextAext,W(λ) > εext, Adv

kpriv
Amac,0,W,F (λ) > εkpriv, or AdvkprivAmac,1,W,F (λ) >

εkpriv.
Now, we give the code of each adversary in Fig. 2.

Algorithm Aext(iext, r)

(crs, τ ) ← SimInit(1λ)

ς ← SimTag(crs, τ, iext)

b ← B(crs, (iext, ς), r)
return b

Algorithm AOβ

mac,b(crs, (iext, r))

Query Oβ with iext, and obtain ς

R0 ←$ {0, 1} (λ), R1 = r

β ← B(crs, (iext, ς), Rb)

return β

Fig. 2. Construction of Aext and Aam,b. In Aext, (SimInit, SimTag) is the simulator of
κ-MAC. In Amac,b, r is the extracted randomness from w with the seed iext. Oβ returns
a real tag when β = 1 or returns a simulated tag when β = 0.

It is easy to see that Aext and Aam,b are polynomial-time. Now, we argue
advantages of each adversary.

Recall the privacy definition of a robust extractor (cf. Definition 2). The
advantage of B against rExt’s privacy w.r.t. W is defined by AdvprivB,W(λ) =
|Pr[Exppriv,0B,W (λ) = 1] − Pr[Exppriv,1B,W (λ) = 1]|. Let us assume that

p0 = Pr

[

w ← Wλ, iext ←$ {0, 1}si(λ)

r ←$ {0, 1}�(λ) : 1 ← Aext(iext, r)

]

,
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p1 = Pr

[

w ← Wλ, iext ←$ {0, 1}si(λ)

r ← Ext(iext, w) : 1 ← Aext(iext, r)

]

.

Then, by definition, the advantage of Aext against Ext is AdvextAext,W(λ) = |p0−p1|.
For b ∈ {0, 1}, we denote Pr[Exppriv,bB,W (λ) = 1]−pb = Δb. By standard arguments,
we have

AdvprivB,W(λ) = AdvextAext,W(λ) + |Δ0| + |Δ1| (6)

It is easy to verify that, at the point of B’s view, the experiment Exppriv,bB,W
is identical to Expkpriv,1Amac,b,W,F (cf. Definition 5), and thus Pr[Exppriv,bB,W (λ) = 1] =

Pr[Expkpriv,1Amac,b,W,F (λ) = 1]. Similarly, we have pb = Pr[Expkpriv,0Amac,b,W,F = 1]. Notice

that AdvkprivAmac,b,W,F (λ) = |Pr[Expkpriv,0Amac,b,W,F (λ) = 1] − Pr[Expkpriv,1Amac,b,W,F (λ) = 1]|,
we have AdvkprivAmac,b,W,F (λ) = Δb, thus Eq. 6. ��

Lemma 4. Assume that Ext satisfies εext-privacy, and Σ satisfies (n, εunf , εhv)
one-time unforgeability, where εhv ≥ εext. Then, rExt (in Fig. 3) satisfies δrob-
post-application-robustness, for any δrob ≥ εunf .

Proof. We prove this lemma by contradiction. Assume there is δ0 > εunf , and we
have a polynomial-time adversary B who has an advantage greater than δ0 w.r.t.
some efficiently-samplable (n, k)-source W. Then, we leverage B to construct a
polynomial adversary Amac against the unforgeability of κ-MAC Σ w.r.t. W,
with advantage AdvunfAmac,W,F (λ) > δ0 > εunf . Here F is the function ensemble
implementing Ext.

Amac can be easily constructed. Given crs of Σ and (iext, r) which are the
seed and the extracted randomness respectively from w (treated as auxiliary
input), Amac asks an authentication tag ς on iext, and invokes B by giving
(crs, (iext, ς), r). When B breaks the robustness, i.e., it outputs P ∗ = (i∗ext, ς

∗) �=
(iext, ς) s.t. Verify(crs, w, i∗ext, ς

∗) = 1, Aam can output (i∗ext, ς
∗) as a forgery. It is

easy to see that Aam is polynomial-time. ��

Constructing One-Time κ-MAC. Now we discuss how to construct a κ-
MAC. It is natural to view κ-MAC as a special leakage-resilient MAC, then
upgrade it to add “key privacy”. Given state of the art, the only known approach
to MACs tolerating hard-to-invert leakage is using auxiliary-input secure signa-
tures [13,23]. However, when considering weak keys and key privacy, it turns out
to be more involved. We have to revisit the design framework of auxiliary-input
secure signatures, adapt it to the symmetric setting, and address the subse-
quent challenges for realizing the new framework. To illustrate the challenges
and ideas towards κ-MAC we first briefly recall Katz-Vaikuntanathan’s leakage-
resilient signature scheme [17] which was later shown by Faust et al. [13] to be
secure against hard-to-invert leakage (with minor modifications). For the sake of
clarification, we follow Dodis et al.’s [8] insightful abstraction, which bases KV
signature upon the following building blocks.
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– A leakage-resilient hard relation RLR with its sampling algorithm GenLR. R is
an NP relation, and GenLR is a PPT algorithm which always outputs (y, k) ∈
RLR. We say RLR is leakage-resilient, if for any efficient adversary A and any
admissible leakage function f , we have

Pr[(y, k) ← GenLR(1λ), k∗ ← A(y, f(y, k)) : (y, k∗) ∈ RLR] ≤ negl(λ).

– A true-simulation-extractable NIZK (tSE-NIZK) [8] Π for the relation R̄LR :=
{(y, k,m) : (y, k) ∈ RLR}. Π consists of a setup algorithm Szk, a prover
algorithm Pzk, and a verifier algorithm Vzk.

Informally, Katz-Vaikuntanathan signature proceeds as follows: To sign a
message m, the signer with sk proves the knowledge of k for a statement
(y, k,m) ∈ R̄LR and returns the proof π as the signature σ, where (y, k) ∈ RLR

is part of the verification key. Given that Π is a tSE-NIZK, a successful forgery
will violate that RLR is a leakage-resilient hard relation. Specifically, the zero-
knowledge guarantees the signature will not leak new information about k, and
the true-simulation-extractability ensures that an adversary who successfully
generated a forgery must have k∗ s.t. (y, k∗) ∈ RLR. It follows that this adver-
sary could produce k∗ only given the verification key y and the leakage f(y, k),
which contradicts our assumption that RLR is leakage-resilient hard.

Towards κ-MAC. While we can trivially use a signature scheme as a MAC by
taking both vk and sk as the authentication key, this approach will require the
key to be uniform. However, κ-MAC needs to work for weak keys. The central
question is how to safely generate and share (vk, sk) between the sender and
the receiver (verifier), while they initially only have a weak key in common that
relates to the CRS.

It is safe to treat the CRS of tSE-NIZK (contained in the verification key
vk) as a part of CRS in our κ-MAC construction. We then deal with (y, k) ∈
RLR. A natural approach is to take the shared weak key as k and efficiently
generate y according to k. However, while signatures can assume a bulletin board
for posting verification keys, in κ-MAC, y has to be sent to the verifier via
an unauthenticated channel (namely, being a part of the authentication tag).
Consequently, adversaries might alter y to y′, as the verifier will not notice this
change if (y′, k) ∈ RLR. To prevent those attacks, we take the following steps.

– Observe that there might be a part of y (denoted by pp) that could be gen-
erated without k and reused across statements. We let pp be a part of CRS
such that adversaries cannot modify it.

– We strengthen the definition of leakage-resilient hard relation against adver-
saries who alter the other part of y (denoted by yk). Namely, given (pp, yk)
and leakage about k, adversaries cannot generate (yk′, k′) s.t. ((pp, yk′), k′) ∈
RLR and ((pp, yk′), k) ∈ RLR. We call such a relation a strengthened leakage-
resilient hard relation (sLRH relation).

Next, for key privacy, yk (as a statement) should be indistinguishable
with another ˜yk (simulated without k). Note that this requirement cannot be
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bypassed, even when yk is uniquely determined by (pp, k) and is not contained
in the authentication tag explicitly, since a NIZK proof is not supposed to hide
the statement being proved. We therefore require the generator of κ-MAC to be
a private generator.

We formalize all notions and intuitions in the following definition.

Definition 6. Let RLR be an NP relation defined over {Yλ × {0, 1}n(λ)}λ∈N,

– Generator. A pair of PPT algorithms (PGen,SGen) is a generator of RLR,
if for every λ ∈ N and k ∈ {0, 1}n(λ), it follows that

Pr[pp ← PGen(1λ), yk ← SGen(pp, k) : ((pp, yk), k) ∈ RLR] = 1.

– sLRH relation. RLR along with (PGen,SGen) is an (n, εlr, εhv)-sLRH rela-
tion, if for any efficiently-samplable source W (over {{0, 1}n(λ)}λ∈N and
dependent of PGen) and any function ensemble F s.t. F is εhv hard-to-invert
w.r.t. W and PGen, for any P.P.T adversary A, it holds that AdvslrhA,W,F (λ) ≤
εlr(λ) where AdvslrhA,W,F (λ) is defined as

Pr

[

pp ← PGen(1λ), k ← Wλ|pp, yk ← SGen(pp, k),
(yk′, k′) ← A(pp, yk, fλ(pp, k)) : (pp, yk′, k′), (pp, yk′, k) ∈ RLR

]

.

– Private generator. (PGen,SGen) satisfies (n, εpr, εhv)-privacy, if for
(A,W,F) above, AdvprA,W,F (λ) ≤ εpr(λ), where AdvprA,W,F (λ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎣

pp ← PGen(1λ)
k ← Wλ|pp
yk ← SGen(pp, k) :
1 = A(pp, yk, fλ(pp, k))

⎤

⎥

⎥

⎥

⎦

− Pr

⎡

⎢

⎢

⎢

⎣

pp ← PGen(1λ)

k ← Wλ|pp, k′ ←$ {0, 1}n(λ)

yk ← SGen(pp, k′) :
1 = A(pp, yk, fλ(pp, k))

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Remark 2. The auxiliary-input function f does not take as input yk, because yk
is generated by the authentication algorithm, and the auxiliary input is supposed
to be leaked before authenticating. The source W and the leakage are dependent
on pp since it is a part of the CRS. Other parts of CRS are not considered
explicitly since SGen does not use them.

The Final κ-MAC Construction. Using an sLRH relation RLR along with its
private generator (PGen,SGen) and a tSE-NIZK Π = {Szk,Pzk,Vzk} for the
relation R̄LR := {(pp, yk, k,m) : ((pp, yk), k) ∈ RLR}, we construct an one-time
κ-MAC scheme in Fig. 3.4

4 The one-time κ-MAC is enough for our purpose; we may generalize our construction
to get a full-fledged κ-MAC using multi-message secure DPKE [5], which will require
concrete entropy bound on the source though.
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Init(1λ)

crszk ← Szk(1λ)

pp ← PGen(1λ)

return

crs = (crszk, pp)

Tag(crs, k, m)

yk ← SGen(pp, k)

π ← Pzk(crszk,

(pp, yk, m), k)

return ς = (yk, π)

Verify(crs, k, m, ς)

return 1 iff

(pp, yk, k) ∈ RLR and

Vzk(crszk, (pp,

yk, m), π) = 1

Fig. 3. One-time κ-MAC from tSE-NIZK + sLRH relation

Analysis. Correctness is easy to see. Regarding security: from the privacy of the
generator SGen and the zero-knowledgeness of Π, efficient adversaries cannot
learn new information about k from the tag (y, π), and the key privacy follows.
The tSE-NIZK ensures an adversary who successfully forges an authentication
tag can also output a pair (y′, k′) ∈ RLR s.t. (y′, k) ∈ RLR, which contradicts the
sLRH relation, and thus the unforgeability follows. Formal analysis is presented
in the full paper.

Theorem 3. Let (PGen,SGen) be an (n, εpr, εhv)-private generator for an NP
relation RLR, and RLR along with (PGen,SGen) be an (n, εlr, εhv)-sLRH relation.
Let Π = {Szk,Pzk,Vzk} be a NIZK for the relation R̄LR satisfying εzk-ZK and
(εtse1, εtse2)-tSE. Then, the construction in Fig. 3 satisfies (n, εkpriv, εhv) one-time
key privacy and (n, εunf , εhv) one-time unforgeability, for any εkpriv ≥ εpr + εzk,
and any εunf ≥ εzk + εtse1 + εtse2 + εlr.

As shown by Dodis et al. [8], a tSE-NIZK could be constructed using CPA-
secure PKE and standard NIZK, or CCA-secure PKE and simulation-sound
NIZK. Both approaches can be based on standard assumptions. However, while
a leakage-resilient hard relation can be instantiated with a second-preimage-
resistant hash function H, the statement y = H(k) will leak some information
about k. For key privacy, we need new constructions for strengthened LRH
relations.

sLRH Relation from Deterministic PKE. Note that the privacy of gener-
ator is not an orthogonal property of sLRH relation; it indeed prevents adver-
saries from finding the exact k from (pp, yk) and the leakage. If it is further
ensured that adversaries cannot find a distinct k′ along with yk′ such that both
(pp, yk′, k) and (pp, yk′, k′) belong to RLR, RLR with a private generator will be
a sLRH relation. We therefore abstract a useful property of RLR called “collision
resistance” below.

Definition 7. RLR is (n, εcr)-collision-resistant w.r.t. PGen, if for any
polynomial-time A, it holds that

Pr

[

pp ←PGen(1λ), (yk, k, k′) ← A(pp) :
k �= k′ ∧ (pp, yk, k) ∈ RLR ∧ (pp, yk, k′) ∈ RLR

]

≤ εcr(λ).
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As discussed before, a collision-resistant relation with a private generator will
be a sLRH relation. (The formal proof is in the full paper.)

Lemma 5. Let (PGen,SGen) be an (n, εpr, εhv)-private generator for RLR. If RLR

satisfies (n, εcr)-collision-resistance w.r.t. PGen, RLR with (PGen,SGen) is an
(n, εlr, εhv)-sLRH relation, for any εlr ≥ εpr + εcr.

We now construct a collision-resistant relation with a private generator. An
auxiliary-input secure deterministic public-key encryption (DPKE) scheme is
a natural tool for realizing an NP relation with a private generator. Since no
randomness is used, it is easy to check whether a ciphertext cde encrypts a
message mde under a public key pkde. We can define an NP relation Rde such that
(pkde, cde,mde) ∈ Rde iff cde=Ede(pkde,mde). From the auxiliary-input security of
DPKE, the key generation algorithm and the encryption algorithm will give a
private generator for Rde.

The relation Rde is almostly collision-resistant. Under a valid public key pkde
(namely, there is a secret key skde to decrypt all ciphertexts under pkde), the
(perfect) correctness of DPKE ensures that for any ciphertext cde there is at
most one message mde such that cde=Ede(pkde,mde). While it seems straight-
forward to ensure the validity of pkde by putting it into the CRS, however, it
violates security. The problem inherits from that DPKE only applies to message
distributions independent of public key, but our goal is to have a construction
for CRS-dependent sources.

We enforce the validity of public key as follows: note that a valid pair
(pkde, skde) defines an NP relation Rpk, and pkde can be ensured valid (with
overwhelming probability) using a NIZK proof demonstrating the knowledge of
skde s.t. (pkde, skde) ∈ Rpk (the key relation). Now, pkde (with its validity proof)
can be outputted by SGen, and PGen is only used to establish a CRS of NIZK.
Though CRS is still in need, adaptively secure NIZK does allow CRS-dependent
statements. The relation Rde will be extended for verifying the proof. Formally,
let Σde = {Kde,Ede,Dde} be an auxiliary-input secure DPKE scheme and the key
relation Rpk, and Πpk = {Spk,Ppk,Vpk} be a NIZK for Rpk. We define an NP
relation Rde

LR and construct its generator (PGende,SGende) below.

– Let pp = crspk, yk = (cde, pkde, πde) and k = mde. (pp, yk, k) ∈ Rde
LR iff

cde = Ede(pkde,mde) and Vpk(crspk, pkde, πde) = 1.
– PGende(1λ). Invoke crspk ← Spk(1λ), and return pp = crspk.
– SGende(pp, k = mde). Invoke (pkde, skde) ← Kde(1λ), πde ←
Ppk(crspk, pkde, skde), and cde ← Ede(pkde,mde). Return yk = (cde, pkde, πde).

Summarizing above, we have the following result, whose formal analysis is in
the full paper.

Lemma 6. Let Σde be (n, εhv, εind)-PRIV-IND secure DPKE with message space
{{0, 1}n(λ)}λ∈N, Rpk be its key relation. Let Πpk be a NIZK for Rpk with εzk-ZK
and εsnd-adaptive-soundness. (PGende,SGende) is a (n, εpr, εhv)-private generator
of Rde

LR for any εpr ≥ εind + 2εzk, and Rde
LR is (n, εcr)-collision resistant w.r.t.

PGende, for any εcr ≥ εsnd.
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Under the exponentially-hard DDH assumption [24], it is known to exist a
DPKE which is perfectly correct and secure against any ε-hard-to-invert leakage
(as long as ε is a negligible function and s is a polynomial). Following Theorem3
and Lemma 6, we have a κ-MAC against any ε-hard-to-invert leakage and thus
can compile any secure randomness extractor.

6 Extension to Robust Fuzzy Extractors

In this section, we construct robust fuzzy extractors.

Intuition. Similar to the non-fuzzy case, we use a κ-MAC scheme to authen-
ticate the helper string of the underlying fuzzy extractor. However, correctness
and security will not directly inherit from the non-fuzzy case. Correctness can be
fixed easily. We can use secure sketches to construct the underlying fuzzy extrac-
tor; thus, one can recover the original secret w from the helper string using a
close secret w′.

We now discuss the obstacles towards security. While the helper string has
to contain a secure sketch, the adversary may manipulate the secure sketch
such that secret w′′ recovered from it is not identical to the original secret w,
and she may forge an authentication tag being accepted by w′′ to break the
robustness. We can simply reject all w′′ that are not t-close to w′ (in this case
w′′ must be incorrect), and an allowed w′′ will be 2t-close to w. The challenge is
to ensure that adversaries cannot forge an authentication tag being accepted by
this 2t-close secret. In the following, we introduce fuzzy unforgeability of κ-MAC
and show that the construction in the last section already satisfies this property.
Then, we construct a robust fuzzy extractor for CRS-dependent sources by using
fuzzy-unforgeable κ-MAC.

κ-MAC with Fuzzy Unforgeability. A κ-MAC scheme Σ = {Init,Tag,Verify}
satisfies q-fuzzy unforgeability, if given an authentication tag ς from k along with
an auxiliary input about k, one cannot forge a new authentication tag being
accepted by any secret k′ which is q-close to k. The formal definition (presented
in the full paper) is parameterized by (n, q, εunf) along with W and F, where n
is the length of the secret, εunf is the advantage of polynomial-time adversaries,
W is the admissible family of sources, and F is the family of admissible leakage
functions.

Construction from Fuzzy sLRH Relation. Recall our κ-MAC construction in
Fig. 3. If an adversary who is given yk and leakage about k outputs a forgery
being accepted by a secret k∗, then, by tSE-NIZK, the adversary is able to output
(yk′, k′) such that both (pp, yk′, k′) and (pp, yk′, k∗) belong to the relation RLR.
For one-time standard unforgeability, k and k∗ are equal, and such an adversary
contradicts the definition of sLRH relation. For one-time q-fuzzy unforgeability,
k∗ will just be q-close to w, and we therefore strengthen the sLRH relation into
its fuzzy version accordingly. More precisely, we call an NP relation RLR a q-fuzzy
relation w.r.t. (PGen,SGen), if given (pp, yk) generated from k using the gener-
ator, one cannot find a new pair (yk′, k′) such that (pp, yk′, k′) and (pp, yk′, k′′)
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belong to RLR for some k′′ ∈ Bq(k). We show the κ-MAC construction in Fig. 3
will be a q-fuzzy unforgeable, if the underlying sLRH relation is a q-fuzzy sLRH
relation. The formal definition of the relation and the proof will be deferred to
the full paper.

Lemma 7. Let RLR along with (PGen,SGen) be an (n, εlr)-q-fuzzy sLRH relation
w.r.t. W and F. Let Π = {Szk,Pzk,Vzk} be a NIZK for the relation R̄LR satisfying
εzk-ZK and (εtse1, εtse2)-tSE. Then, the construction in Fig. 3 satisfies (n, q, εunf)
one-time fuzzy-unforgeability w.r.t. W and F, for any εunf > εzk+εtse1+εtse2+εlr.

Fuzzy sLRH Relation from Collision-Resistant Relation with Private Generator.
For a “collision-resistant” sLRH relation, the adversary can “frame” some k′′

only when she finds k′′. If given (pp, yk) finding k′′ ∈ Bt
q is hard, then the rela-

tion will be a q-fuzzy sLRH relation. We argue when we can have the latter
property from the privacy of the generator.

Note that the privacy of generator cannot ensure that (pp, yk) hides all par-
tial information about k, as (pp, yk) itself must be non-trivial about k. Actually,
the privacy ensures that adversaries cannot learn anything which is useful for
deciding that yk is either generated by using the leaked key k or using an inde-
pendent key. Then, for small q such that Bq(k) only contains polynomial points,
k′′ ∈ Bq(k) is surely hard-to-find from (pp, yk). However, for large q such that
Bq(k) could contain super-polynomial points, this argument does not apply.

We overcome this challenge by observing the task of recovering k from k′′ can
be done with the help of 2t-secure sketch. More specifically, assume an adversary
can recover k′′ from (pp, yk). Then, the distinguisher specifies the leakage as a
2t-secure sketch, invokes the adversary to have this k′′ ∈ B2t(k), and converts
k′′ to k with the help of the secure sketch. We establish the following theorem,
whose analysis is in the full paper.

Theorem 4. Let (PGen,SGen) be a (n, εpr, εhv)-private generator for an NP rela-
tion RLR, and let RLR be (n, εcr)-collision-resistant w.r.t. PGen. Then RLR along
with (PGen,SGen) will be a (n, q, εlr)-fuzzy sLRH relation, for any εlr > εpr + εcr,
w.r.t. W and F which satisfy the following conditions. (1) There is a q-secure
sketch {SS,Rec} for each W ∈ W. (2)For each f ∈ F, there is a one-way per-
mutation g, and define ˜f = (f,SS, g). Then ˜f is εhv-hard-to-invert w.r.t. every
W.

Constructing Robust Fuzzy Extractors. For a robust fuzzy extractor with
t-error tolerance, we use a 2t-fuzzy unforgeable κ-MAC to authenticate the helper
string of a fuzzy extractor with t-error tolerance. Note the helper string along
with the extracted randomness forms the auxiliary input f(w) of the κ-MAC,
our 2t-fuzzy unforgeable κ-MAC construction allows an auxiliary input function
f when f together with a 2t-secure sketch forms a hard-to-invert leakage. There-
fore, although a t-secure sketch is sufficient for constructing a fuzzy extractor
with t-error tolerance, we will use a 2t-secure sketch instead, such that f(w)
along with a 2t-secure sketch must be hard-to-invert.
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Let {SS,Rec} be a 2t-secure sketch, Σ = {Init,Tag,Verify} be a κ-MAC with
2t-fuzzy unforgeability, and Ext be a strong extractor. We present the detailed
construction of robust fuzzy extractor in Fig. 4.

CRS(1λ)

crs ← Init(1λ)

return crs

Gen(crs, w)

ss ← SS(w)

i ←$ {0, 1}s, r ← Ext(w, i)

ς ← Tag(crs, w, (ss, i))

return R = r, P = (ss, i, ς)

Rep(crs, w , P )

w ← Rec(ss, w )

return R ← Ext(w , i), if

dist(w , w ) ≤ t

Verify(crs, w , (ss, i), ς) = 1

return ⊥

Fig. 4. Robust fuzzy extractor from randomness extractor + secure sketch + κ-MAC

Regarding security, we present the following theorem whose formal proof will
be in the full paper.

Theorem 5. Assume {SS,Rec} is an (M, k, k′, 2t)-secure sketch scheme, Ext
is an (n, k′, �)-strong extractor with εext-privacy, and Σ is a κ-MAC with
(n, 2t, εunf)-fuzzy unforgeability w.r.t. W and F and (n, εkpriv, εhv). Then, if W is
all (n, k)-sources, F contains function ensembles implementing SS, and εext < εhv,
the construction in Fig. 4 is an (M, k, �, t)-robust fuzzy extractor with perfect cor-
rectness, ε-privacy and δ-robustness, for any ε > εext + 2εkpriv and δ > εunf .

7 Conclusion and Open Problems

We give the first CRS-dependent (fuzzy) robust extractors with minimal min-
entropy requirement (super-logarithmic) on the source, in the computational
setting. They close the major gap left by the state-of-the-art robust extractors
which require a linear fraction. Along the way, we formulate a new primitive
κ-MAC.

We believe our new robust extractors (and our new tool of κ-MAC) could
have broader applications. Also, converting other fuzzy extractors (not from
secure sketch) into robust fuzzy extractors may be applicable to more general
sources. We leave them all as interesting open problems.

Acknowledgement. Part of the work was done while both authors were at New Jer-
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Abstract. Consider a coin tossing protocol in which n processors P1, . . . , Pn

agree on a random bit b in n rounds, where in round i Pi sends a single mes-
sage wi. Imagine a full-information adversary who prefers the output 1, and in
every round i it knows all the finalized messages w1, . . . , wi−1 so far as well as
the prepared message wi. A k-replacing attack will have a chance to replace the
prepared wi with its own choice w′

i �= wi in up to k rounds. Taking majority
protocol over uniformly random bits wi = bi is robust in the following strong
sense. Any k-replacing adversary can only increase the probability of outputting
1 by at most O(k/

√
n). In this work, we ask if the above simple protocol is tight.

For the same setting, but restricted to uniformly random bit messages,
Lichtenstein, Linial, and Saks [Combinatorica’89] showed how to achieve bias
Ω(k/

√
n) for any k ∈ [n]. Kalai, Komargodski, and Raz [DISC’18, Combina-

torica’21] gave an alternative polynomial-time attack when k ≥ Θ(
√

n). Ete-
sami, Mahloujifar, and Mahmoody [ALT’19, SODA’20] extended the result of
KKR18 to arbitrary long messages. It hence remained open to find any attacks of
bias Ω(k/

√
n) in the few-corruption regime k = o(

√
n) when the messages are

of arbitrary length, and to find such polynomial-time (and perhaps tight) attacks
when messages are uniformly random bits. In this work, we resolve both of these
problems.

– For arbitrary length messages, we show that k-replacing polynomial-time
attacks can indeed increase the probability of outputting 1 by Ω(k/

√
n) for

any k, which is optimal up to a constant factor. By plugging in our attack into
the framework of Mahloujifar Mahmoody [TCC’17] we obtain similar data
poisoning attacks against deterministic learners when adversary is limited to
changing k = o(

√
n) of the n training examples.

– For uniformly random bits b1, . . . , bn, we show that whenever Pr[b = 1] =

Pr[
∑

bi ≥ t] = β
(t)
n for t ∈ [n] is the probability of a Hamming ball,

then online polynomial-time k-replacing attacks can increase Pr[b = 1] from
β
(t)
n to β

(t−k)
n , which is optimal due to the majority protocol. In comparison,

the (information-theoretic) attack of LLS89 increased Pr[b = 1] to β
(t−k)
n−k ,

which is optimal for adaptive adversaries who cannot see the message before
changing it. Thus, we obtain a computational variant of Harper’s celebrated
vertex isoperimetric inequality.
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1 Introduction

Collective coin tossing [6] is a fundamental problem in cryptography in which a set
of n parties aim to jointly produce a random bit b that remains (close to) random
even if an adversary controls a subset of these parties. The simple majority protocol
maj(b1, . . . , bn), when n is odd and each bit bi is broadcast by party Pi, is robust in
the following strong sense: Any adversary who even gets to see all the messages and
then replaces at most k ∈ [n] of the them can only bias the output bit by at most by
O(k/

√
n) [4]. In a nutshell, in this work we ask how optimal is the majority protocol

against such attacks? We study this question from various angels as explained below.

Problem Setting. Suppose Π is an n-round coin-tossing protocol between n parties,
where party Pi sends a single message wi in round i that could depend on all the pre-
vious messages, and the final bit b is a deterministic function of all messages.1 Now,
suppose an adversary aims to increase the probability of Pr[b = 1]. We call this a tar-
geted attack, as adversary can choose the target direction of the bias.2 We deal with
k-replacing adversaries who can replace k of the messages as follows. Suppose mes-
sages w1, . . . , wi−1 are already finalized and party Pi is about to send wi in round i.
The adversary will have a chance to replace wi, based on the knowledge of wi.3 Equiv-
alently, we will think of the protocol as a random process (w1, . . . , wn) with n steps,
and a k-replacing adversary will be allowed to override the content of k of the steps,
in which case the rest of the random process will depend on the new values. The goal
of the adversary is to increase the probability of Pr[b = 1] for a Boolean function
f(w1, . . . , wn) = b ∈ {0, 1}. Informally speaking, we would like to know what are the
most robust random processes in this setting.

Targeted Aspect. Studying targeted attacks is important due to several reasons. Firstly,
targeted attacks allow modeling adversaries who have a particular output preferred in
mind. For example, the coin tossing model’s output might determine whether a con-
tract would be signed or not. Then, a party who prefers signing the contract wants
to increase the chance of outputting b = 1. Moreover, targeted attacks allow mod-
eling attacks on specific “undesired” properties like B defined over random processes;
namely, the adversary aims to increase the probability of B happening at the end. Below
in the introduction we further discuss applications such as targeted poisoning attacks in
adversarial machine learning and computational isoperimetry results. See the full ver-
sion of this paper for formalization of these results.

Robustness of Threshold Functions. For a setting where wi is a uniform random bit bi,
consider the threshold function f defined as f(b1, . . . , bn) = 1 whenever

∑
bi ≥ t and

let β
(t)
n = Pr[

∑
bi ≥ t]. Then we get a robust protocol in the following sense. Any

k-replacing adversary will be limited to achieve Pr[b = 1] ≤ β
(t−k)
n , because all it can

1 This is also called a single-turn protocol.
2 In contrast, untargeted adversaries can bias the output towards either of 0 or 1.
3 This is also called the strongly adaptive corruption model [13].
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do is to replace k ones with zeros. In particular, it can be shown that for the majority
function (for odd n) any k-replacing attack increase Pr[b = 1] by at most O(k/

√
n).

In this work, we study the optimality of the simple threshold/majority protocols and ask
the following.

1. If Pr[b = 1] = 1/2 holds originally, can k-replacing adversaries increase the prob-
ability of Pr[b = 1] by Ω(k/

√
n) in every n-step random process with arbitrarily

long messages?
2. For simpler models such as those with uniformly random bits, can we obtain optimal

attacks that prove the threshold protocols to be the best possible for all Pr[b = 1] =
β
(t)
n ?

We answer both questions above affirmatively. Notably, we even obtain polynomial-
time attacks. Before describing our results in details, we briefly discuss what was known
before our work.

Previous Work for Uniform Binary Messages. Lichtenstein, Linial, and Saks [24]
showed that the threshold protocols are optimal when the messages are uniform random
bits, but under a weaker attack model where the adversary is supposed to corrupt parties
before seeing their message. In particular, they showed that if Pr[f(b1, . . . , bn) = 1]
without attack is the probability of the threshold function Pr[

∑
bi ≥ t] = β

(t)
n , then

there is an adaptive attack with budget k that achieves Pr[f(b1, . . . , bn) = 1] ≥
β
(t−k)
n−k . However, this attack was information theoretic and not polynomial time. It also

remained open whether k-replacing attacks can improve upon the bound of [24] and
potentially match the robustness of threshold functions. In other words, prior to our
work, it was not known whether threshold functions are optimal against k-replacing
attacks.

Previous Work on Arbitrary Length Messages. Kalai, Komargodski, and Raz [21]
showed that in the “many-replacement” regime where k = Ω(

√
n), a different attack

in the binary setting of [24] can be achieved in polynomial time.4 Building upon [21],
Etesami, Mahloujifar and Mahmoody [12,27] showed how to extend this result to arbi-
trary message length and obtain (again targeted) attacks in polynomial time, but again
only when k ≥ Ω(

√
n). (See Sect. 1.1 for more discussions on why those proofs lead to

many replacements.) Finally, Khorasgani, Maji, Mukherjee, and Wang [22,23] showed
how to get non-targeted attacks for large messages when k = 1.

Our Results. Previous works left open our two main questions. In this work, we resolve
both of these questions and show that (1) when Pr[b = 1] = Θ(1), then majority is
optimal up to a constant factor against k-replacing adversaries for all adversary budget k
(including the “few corruption regime”), and (2) when messages are uniformly random
bits, for any initial probability of Hamming balls Pr[b = 1] = Pr[

∑
bi ≥ t], the

corresponding threshold function is optimal, even up to exact constants.
4 Interestingly, the main result of [21] focuses on non-targeted attacks and shows that the output

of any single-turn protocol can be attacked (only information theoretically) by a (standard)
adaptive non-targeted adversary replacing k = Ω(

√
n) parties. The recent breakthrough of

Haitner and Karidi-Heller [15] generalized the main result of [21] to any general, perhaps
multi-turn, protocol. Our focus in this work, however, is on single-turn protocols.
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Theorem 1 (Main result 1 – arbitrary messages). Let Π be any single-turn polynomial-
time coin-tossing protocol between n parties to obtain an output bit b in which, origi-
nally (before any attack) it holds that Pr[b = 1] = μ. For any k = O(

√
n), there is a

k-replacing polynomial time attack that increases the probability of outputting b = 1
by a probability that can get arbitrarily close to:

(

1 −
(

1 − μ√
n

)k
)

· (
1 − e−2 − μ

)
.

To prove Theorem 1, we use ideas from the attack of [27] (see Sect. 1.1). See
Theorem 14 for a formalization of the information theoretic variant. For the polynomial-
time variant of this theorem see the full version.

It can be shown that, as long as k = O(
√

n), the biasing bound of Theorem 1 is
Ω(k · μ/

√
n). Therefore, Theorem 1 resolves our first main question above; i.e., the

majority protocol of [3] is optimal, up to a constant factor, for targeted attacks on any
single-turn protocol when μ = Θ(1).

Our next result solves the problem completely for protocols with uniform random
bits, as long as the probability of outputting 1 is that of a threshold function.

Theorem 2 (Main result 2 – uniformly random bits). Let Π be any single-turn
polynomial-time coin-tossing protocol between n parties to obtain an output bit b in
which the parties share uniformly random bits b1, . . . , bn. Suppose originally (before
any attack) it holds that Pr[b = 1] = Pr[

∑
bi ≥ t] = β

(t)
n for t ∈ [n]. Then, for any

k ∈ [n], there is a k-replacing attack that increases the probability of outputting b = 1
to β

(t−k)
n . Moreover, if it further holds that Pr[b = 1] ≥ 1/poly(n) is non-negligible,

then there will be polynomial-time k-replacing attacks that can get arbitrarily close to
the same bound of β(t−k)

n .

To prove Theorem 2, we also use ideas from the recent work of [23]. See Theo-
rem 18 for a formal version of the information theoretic variant of Theorem 2. See the
full version of the paper for how our specific information theoretic attack can be adapted
minimally to run in polynomial time.

Note that Theorem 2 shows something perhaps surprising about the power of online
attacks against coin tossing protocols. It shows that online attacks are as powerful as
offline attacks, when we consider the most robust functions with Pr[b = 1] = β

(t)
n being

that of a Hamming ball. In fact, we present such attacks that run in polynomial time,
and this implies a new computational variant for the celebrated vertex isoperimetry
inequality of Harper [19]. Indeed, the vertex isoperimetric inequality in the Boolean
hypercube states that for any set S ⊆ {0, 1}n of probability Pr[(b1 . . . , bn) ∈ S] =
β
(t)
n , the probability of the set of points (inside or outside S) with a neighbor in S of

distance at most k is at least β
(t−k)
n . Our Theorem 2 matches this bound exactly, and

even shows how to find such close neighbors (in S) in polynomial time and even in an
online manner for at least β

(t−k)
n fraction of {0, 1}n.

Applications. We can directly apply the attacks of Theorems 1 and 2 to obtain the
applications below (Table 1).
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Table 1. Summary of related attacks on single-turn coin tossing protocols.

Targeted Poly-time Corruption model Budget k Messages Rounds

[24] � – Adaptive Any Uniform bits Any

[21] � � Adaptive Ω(
√

n) Uniform bits Any

This work � � Replacing Any Uniform bits Any

[12,27] � � Replacing Ω(
√

n) Arbitrary Any

This work � � Replacing Any Arbitrary Any

[8] – – Replacing 1 Arbitrary Any

[13] – – Replacing Ω(
√

n) Arbitrary 1

[31,35] – – Replacing Any Arbitrary 1

[15,21] – – Adaptive Ω(
√

n) Arbitrary Any

[22] – – Replacing 1 Arbitrary Any

[23] – – Adaptive 1 Arbitrary Any

– Targeted data poisoning on learners. Theorem 1 can model any random process
(w1, . . . , wm) that generates an object h that might or might not belong to an (unde-
sirable) set B with some probability μ. In that case, we can define the output of the
process to be b = 1 if h ∈ B, and then an adversary can increase the probability
of falling into S through a k-replacing attack. Now, suppose wi is a batch of data
provided by the iþ party, and let h be a model that is deterministically trained on the
data set w1 ∪ · · · ∪ wn. Suppose there is an specific (efficiently testable) property
B defined over h that an adversary wants to increase its probability (e.g., h makes a
specific decision on a particular test instance). Theorem 14 shows that the adversary
can always increase the probability of B from μ to μ + Ω(k/

√
n) by changing only

k of the training batches. Previously, Etesami, Mahloujifar, and Mahmoody [12,27]
proved such results only for when k ≥ Ω(

√
n) and Diochnos, Mahloujifar, and

Mahmoody [25,26,28] proved a weaker bound of μ + Ω(k/n).
– Computational isoperimetry in product spaces. Let w≤n ≡ (w1 × · · · × wn)

be a product distribution of dimension n, and let HD be the Hamming distance
HD(w≤n, w′

≤n) = | {i | wi 	= w′
i} |. Then, a basic question in functional analysis is

how quickly noticeable events expand under Hamming distance. It is known, e.g.,
by results implicit in [1,32] and explicit in [31,35]5 that if a set S has measure μ,
the k-expansion of it (i.e., the set of points with a neighbor in S of distance at most
k) will have measure at least μ + Ω(k · μ/

√
n) for k = O(

√
n). The previous

works of [12,27] introduced an algorithmic variant of the measure concentration
phenomenon and showed how to obtain polynomial time algorithms that achieve the
following. Given a random point w≤n ∈ w, we can find a neighbor of distance at
most k in S with probability μ + Ω(k · μ/

√
n).

5 A weaker version for uniform bits is known as the blowing-up lemma [30].
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Their result above only apply to the setting where k ≥ Ω(
√

n), and it remained
open to obtain such computational concentration for any small k = o(

√
n). For

such small k, the problem is more suitable to be called an isoperimetric problem,
due to historic reasons. By applying our Theorem 1 we directly get computational
concentration/isoperimetry results for any k = o(

√
n) in any product space. For the

case of uniform random bits and probabilities corresponding to Hamming balls, our
Theorem 2 shows how to obtain results that match the corresponding lower bound
on the vertex isoperimetry [19], and we do so by using polynomial time algorithms.
See the full version for the details of the polynomial time extension.

1.1 Technical Overview

Here, we describe the key ideas behind our main results of Theorems 1 and 2 at a high
level. We prove Theorem 1 by giving a novel inductive analysis (over adversary’s bud-
get k) for a variant of the attack of [27]. Interestingly, even though the attack of [12]
improves [27] for many-replacing regime, we are not able to build our few-replacing
attacks on that of [12]! We also do a modification to the [27] (by always looking at
a message before changing or not changing it) that allows us to significantly improve
the exact bound. Our modification of the attack of [27] makes the attack’s description
simpler and allows for sharper analysis (even in the many-replacing regime of [27], but
that is not our focus here). In fact, that change is crucial to obtain our Theorem 2 which
gives an optimal bounds for uniform binary messages.

Our proof of Theorem 2 is inspired by the recent work of Khorasgani et al. [23]
who studied 1-replacing information-theoretic non-targeted attacks, but we still use
ideas from their work in our setting. In particular, we use a concave function as the
lower bound of the success probability of our attack and use induction over the number
of bits n. The exact attack and the details of our inductive proof, however, are quite
different from the work of Khorasgani et al. [23].

Outline. We first describe our ideas for Theorem 1 and then will do so for Theorem 2.
For Theorem 1, we will first sketch the proofs of [12,21,27]6 and explain why they
require k = Ω(k) replacements to give a meaningful bound. Then, we explain our new
ideas that allow bypassing the barrier of k = Ω(k).

In the following, we explain our new ideas behind the proof of Theorems 1 and 2.

Why the Attacks of [12,21,27] Need k = Ω(
√

n) Corruptions. The targeted attacks
of [12,21,27] have a similar core that make them rely on many k = Ω(

√
n) number

of corruptions to achieve bias towards 1. These attacks first show that certain specific
attacks with unlimited budget can significantly bias the output of the function towards 1.
Then, in the second step, they show that the number of corruptions of such ∞-replacing
attacks will not be more than O(

√
n). To contrast our approach, the analysis of our attack

for proving Theorem 1 starts from k = 1 and increases k, while those of [12,21,27] start
from k = ∞ and show that it does not have to be more than k = Θ(

√
n).

6 In case [21], here we refer to their proof for the case of bitwise messages. Their attack for the
long-message setting is (inherently) an non-targeted attack, and not a PPT one.
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Notation. Let wi be the i’th message sent by the i’th party, and let vi be the possible
modified version (vi 	= wi if the adversary corrupts the iþ party and changes its mes-
sage). We let w≤i = (w1, . . . , wi) and v≤i is defined similarly. Let f(v1, . . . , vn) = b
be the Boolean function that determines the final output bit b. Also μ = Pr[b = 1] holds
in the original (no-attack) protocol. (See Sect. 2 for all the definitions.)

The attacks of [12,21,27] all track the expected value f̄(v≤i−1) = Pr[b = 1 |
v≤i−1] of the final bit b conditioned on the current messages v≤i−1 (which forms a
Doob martingale). Let wi be the honestly prepared message of the i’th party that is
about to be sent in round i. If the number of corruptions has not reached k yet, with the
attack parameter λ ∈ [0, 1], do as follows.

1. Even before looking at wi, if there is some vi that increases the expected value of b
by λ (i.e., f̄(v≤i) > f̄(v≤i−1) + λ) then corrupt the i’th party and send vi instead.

2. Otherwise, look at wi. If, it is going to decrease the expected value of b by more than
λ (i.e., f̄(v≤i, wi) < f̄(v≤i−1) − λ), then again corrupt message wi to vi.

3. Otherwise, do not corrupt the i’th party, and let vi = wi remain unchanged.

Analysis of [27]. The main ideas in the analysis of [27] are as follows.

1. Ignoring the number of corruptions, the ∞-replacing attack achieves expected value
1 − err(λ, μ, n), where err(λ, μ, n) = e−Ω(μ2/(nλ2)) is an “Azuma error”.

2. For every corruption, the expected value of the output jumps up by at least λ.

Relying on the above two keys, [27] proved that the total expected number of cor-
ruptions cannot be larger than 1/λ, so by choosing λ ≈ μ/

√
n, they can achieve both

(1) high expected value 1 − err(λ, μ, n) and (2) few corruptions k ≤ 1/λ ≈ √
n/μ.

A Candidate One-Replacing Targeted PPT Attack. We now propose our new one-
replacing attack that we will analyze using new ideas. The first version of our attack
follows that of [27] and immediately stops as soon as the first corruption happens. Note
that, the analysis of [27] says nothing about the power of this 1-replacing attack, as this
attack is cut prematurely.
Idea 1: we gain as soon as the corruption happens. Our first key idea is that, the additive
attack of [27] (as opposed to the “multiplicative” attack of [12]) always gains by λ,
whenever a corruption happens. So, to analyze our 1-replacing attacks, all we need is
to lower bound the probability p1 of one corruption.
Idea 2: 1-replacing is as good as ∞-replacing if no corruptions happens. As long as
no corruption has happened, our one-replacing attacker is actually identical to an attack
with no limit on the number of corruptions. Also, note that the probability of outputting
1 in the ∞-replacing attack of [27] is 1 − err(λ, μ, n). Therefore, we conclude that
if we run the one-replacing attack, with probability 1 − err(λ, μ, n) we either output
1 (which is good enough) or do at least one corruption (which is also good for us!).
Since the probability of outputting 1 without any attacks is exactly μ, we can now lower
bound p1 and conclude that

p1 ≥ 1 − err(λ, μ, n) − μ.
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Having the above bound on p1, we lower bond output’s expected value μ1 under our
1-replacing attack is

μ1 ≥ μ + λ · (1 − err(λ, μ, n) − μ).

We can now choose λ = Θ(μ/
√

n) which leads to up bias Ω(μ/
√

n). This attack can
be made polynomial time by approximating output’s Doob martingale.

Induction on k to Obtain k -Replacing Targeted Attack. Having the 1-replacing attack
above, it is now tempting to apply them recursively to get k-replacing attacks. Note that
this is possible only because we have a targeted attack, and so we can recursively apply
such attack k times, each of which is a one-replacing attack, and increase the expected
value of the output bit gradually. This approach, however, remains polynomial time only
for k = O(1). Here, we take a different approach and directly analyze the k-replacing
attack of [27] using induction on k.

The idea is to allow the ∞-replacing attack of [27] run for k corruptions in total
rather than one, and then trying to analyze it by induction on k. Suppose pk is the
probability that the k-replacing attack reaches its k’th corruption. Also, let μi be the
expected value of the output b under the i-replacing targeted attack. A key idea is that
all we have to do is to lower bound the probability of the corruptions happening, and
by linearity of expectation we will indeed gain by at least λ · k in expected value of
the outcome. In fact, we go one step further and relate the gain in the k’th corruption
directly to the gain already obtained through k − 1 corruptions. I.e., by linearity of
expectation, we have:

μk ≥ μk−1 + λ · pk.

The intuition is that before reaching the k’th corruption, the two attack are the same, and
once the k’th corruption happens, the k-replacing attack gets a jump of λ up compared
to the (k − 1)-replacing attack. Again, all we need is to lower bound pk. To do so, we
again use a generalization of the idea that we described for the case of one-replacing
above. Namely, we note that as long as the k’th corruption does not happen in the k-
replacing attack, it is again indistinguishable from the ∞-replacing attack of [27]. Also,
the (k−1)-replacing attack reaches b = 1 with probability μk−1 already. Using a union
bound, we get:

pk ≥ 1 − err(λ, μ, n) − μk−1,

using which we can get that the expected value of b under the k-replacing attack is

μk ≥ μ + λ · (1 − err(λ, μ, n) − μk−1) .

Solving the recursive inequalities above, we lower bound μk as in Theorems 1 and 14.
We now describe some of the key ideas behind our proof of Theorem 2, which deals

with uniform binary messages. In this section, we mainly focus on showing the core
ideas that lead to the information theoretic optimal k-replacing attacks of Theorem 2,
which deals with online attacks. In the full version of this paper we show how to use
similar ideas (by approximating the Doob martingale of the final output bit) used for the
polynomial-time attacks for Theorem 1 to also extend our information theoretic attacks
for Theorem 2 to polynomial time variants.
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Notation. First, we define the key notations that are needed for our overview of the ideas
behind the proof of our Theorem 2. Here, all the original messages are independent and
uniform random bits, which we denote with (u1, . . . , un). Also, we let S be the set
of input sequences that lead to output 1, namely S = {x | f(x) = 1}. We know that
Pr[(u1, . . . , un) ∈ S] = Pr[

∑
ui ≥ t] = β

(t)
n is that of a Hamming ball. The goal of

the adversary is to maximize the probability of falling into S through k-replacements in
an online way. We now define the “online expansion” under optimal online k-replacing
attacks, both as a function of sets, or as a function of set probabilities. (See Definition 17
for more details.) Let A be an online k-replacing adversary over the uniform distribu-
tion over {0, 1}n. Let OnExp(A)(S) be the probability that A can map a random input
to S through its online k-replacing attack. Let OnExp(k)(S) be the maximum over
OnExp(A)(S) among all k-replacing attacks, and let the following be the minimum of
OnExp(k)(S) among all sets of measure μ.

OnExp(k)n (μ) = inf
S,Pr[S]≥μ

OnExp(k)(S).

Our key idea is to show that the following piecewise-linear function is a lower
bound on the power of k-replacing attacks. We prove this by induction on n. In com-
parison, [23] also used similar piecewise-linear functions, but their goal was to obtain
1-corrupting information theoretic non-targeted attacks. It is possible that using similar
techniques, one can make the attack of [23] also polynomial time, but the key differ-
ences are due to the fact that [23] aims for a non-targeted attack, and hence it ends up
with a completely different recursive relation and induction on n.

Definition 3 (The piecewise-linear lower bound – informal). For any non-negative
integers k, n, the function �

(k)
n : [0, 1] → [0, 1] is defined as follows.

– If μ = β
(t)
n for any t ∈ [n], it holds that �

(k)
n

(
β
(t)
n

)
= β

(t−k)
n . Namely, when the

input probability is that of an exact Hamming balls, �
(k)
n returns their probability

after expanding them to include anything within their k Hamming distance (which
is also a Hamming ball).

– Connect all the n + 2 points above to obtain a piecewise-linear function �
(k)
n .

See Definition 24 for a formal definition of the function above.

Recursive Relation for OnExp(k)n (μ). We then use a recursive relation that can be used
to exactly compute OnExp(k)n (μ) for all k, n, μ (see Definition 20). The idea of the
recursive relation is to model adversary’s decision based on optimal decisions. In fact,
if an adversary is given a bit ui = 0, and it holds that Pr[(0, u2, . . . , un) ∈ S] =
μ0,Pr[(1, u2, . . . , un) ∈ S] = μ1. Then, an optimal online adversary shall decide
between changing it to 1 or not, and if it knows the optimal solutions for OnExp

(k)
n−1(μ0)

(reflecting the “no change” decision) and OnExp
(k−1)
n−1 (reflecting the “change” deci-

sion) it can make the optimal decision.

Using Lower Bounds Lead to Lower Bounds. We prove by induction on n, that
if one uses lower bounds (e.g., �

(k)
n−1 and �

(k−1)
n−1 ) instead of OnExp

(k)
n−1(μ0) and
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OnExp
(k−1)
n−1 (μ1) in the recursive relation that computes OnExp(k)n , then one obtains

a lower bound on OnExp(k)n (μ). This part of the proof follows from the monotonicity
of the recursive relation for OnExp(k)n .

Function OnExp(k)n (μ) Remains a Lower Bound for �
(k)
n . We also show that when we

apply the recursive relation over �
(k)
n−1 and �

(k−1)
n−1 , the result will be an upper bound on

�
(k)
n . This, together with the step above implies that �

(k)
n remains a lower bound �

(k)
n .

This is the most technical step of the proof that goes through a careful case study and
heavily relies on the concavity and monotonicity of �

(k)
n .

Making the Attack Polynomial Time. In the actual polynomial time attack, the adver-
sary approximates μ, and it uses �

(k)
n (which is efficiently computable) instead of

OnExp(k)n (μ) in the recursive relation and decides to change or not change the bits.
See the full version of the paper for the details of making the attack polynomial time.

1.2 Further Related Work

Many of the related works were already discussed in previous sections. In this section,
we discuss other works related to ours, mostly in the context of coin tossing protocols.

Adaptive Corruption. As explained above, our results are proved in the strong adaptive
corruption model. However, many works study the power of standard adaptive corrup-
tion in coin tossing protocols. The main result in [21] indeed proves the existence of
such attacks that achieve non-targeted biasing that controls the output fully when the
number of corruptions is k ≥ √

n. Haitner and Karidi-Heller [15] further generalized
this result to multi-turn protocols, resolving a long-standing open problem of Ben-Or
and Linial [4]. Dodis [11] previously proved that certain black-box methods cannot
break this conjecture. The recent work of Khorasgani, Maji, and Wang [22,23] showed
that for the case of 1 replacing, (computationally unbounded) adaptive adversaries can
achieve non-targeted bias Ω(1/

√
n) in single-turn protocols.

Static Corruption. A static adversary chooses the corrupted parties independently of
the execution of the protocol, and hence can fix the corrupted set ahead of the execu-
tion. The previously mentioned works of [3,5,25,26,28] all fall into this framework and
prove that corrupting k parties can lead to bias Ω(μk/n) statically. These results hold
even if the statically corrupted set is chosen at random. For single-round protocols in
which each party sends a single bit, Kahn, Kalai and Linial [20] showed that any proto-
col is susceptible to Ω(n/ log n) corruptions. A long line of exciting works (see [34])
showed how to achieve robustness to (1 − δ) · n static corruption for any δ < 1.

Fair Coin Tossing. Another line of work in coin tossing protocols aims to study the
power of fair protocols in which the parties need to output a bit even if the other
party is caught cheating (e.g., by aborting in the middle of the protocol). The work
of Cleve [7] showed that in any such protocol with r rounds between two parties, there
is a PPT attacker that biases the output of the other party by at least Ω(1/r). The work
of Moran, Naor, and Segev [33] showed how to match this bound assuming oblivious
transfer, leading to an “optimally fair” protocol. A sequence of works [9,10,16,17]
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showed barriers for doing so from one-way functions, and finally, the beautiful work of
Maji and Wang [29] completely resolved this question for black-box constructions. For
works on fair coin tossing in the multiparty settings see [2,18].

2 Preliminaries

General Notation. We use calligraphic letters (e.g., X ) for sets. All distributions and
random variables in this work are discrete. We use bold letters (e.g., w) to denote
random variables that return a sample from a corresponding discrete distribution. By
w ← w we denote sampling w from the random variable w. By Supp(w) we denote
the support set of w. For an event S ⊆ Supp(w), the probability function of w for S
is denoted as Pr[w ∈ S] = Prw←w[w ∈ S] or simply as Pr[S] when w is clear from
the context. By u ≡ v we denote that the random variables u and v have the same
distributions. Unless stated otherwise, we denote vectors by using a bar over a variable.
By (w1,w2, . . . ,wn) we refer to a sequence of n jointly sampled random variables.
For a vector (w1 . . . wn), we use w≤i to denote the prefix (w1, . . . , wi), and we use the
same notation w≤i for jointly distributed random variables. For vector x = u≤i−1 and
y = ui, by, by xy we denote the vector u≤i−1 that appends ui as the last coordinate
of x. For a jointly distributed random variables (u,v), by (u | v = v) or we denote
the random variable u conditioned on v = v. When it is clear from the context, we
simply write (u | v) or u[v] instead. By u × v we refer to the product distribution in
which u and v are sampled independently. HD(u≤n, v≤n) = |{i | ui 	= vi}| denotes
the Hamming distance for vectors of n coordinates.

Random Processes. Let w≤n ≡ (w1, . . . ,wn) be a sequence of jointly distributed
random variables. We can interpret the distribution of w≤i as a random process in
which the iþ block wi is sampled from the marginal distribution (wi | w≤i−1) ≡ (wi |
w≤i−1 = w≤i−1) ≡ wi[w≤i−1]. We also use w≤n[·] to denote an oracle sampling
algorithm that given w≤i returns a sample from w≤n[w≤i].

Attack Model. Our adversaries replace a message/block in a random process. Namely,
they observe the blocks one by one and sometimes intervene to replace them with a new
value. (The new values will subsequently change the way the random process will pro-
ceed.) Hence, we refer to them as replacing adversaries. Such adversaries are equivalent
to strongly adaptive corrupting adversaries as defined in [13].

Definition 4 (Online replacing attacks on random processes). Let w≤n ≡
(w1, . . . ,wn) be a random process. Suppose A(x, σ) → (x′, σ′) is a (potentially ran-
domized) algorithm with the following syntax. It takes as input some (randomness,) x
and σ, where σ is interpreted as a “state”, and it outputs (x′, σ′). We call such algorithm
an online replacing adversary and define the following properties for it.

We define the following notions for w≤n.

– The generated and output random processes under replacing attacks. Suppose
A is an replacing algorithm. We now define two random processes that result from
running the replacing adversary A to influence the original random process w≤n. For
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i = 1, 2, . . . , n, we first sample ui ← (wi | w≤i−1 = v≤i−1), and then we obtain
(vi, σi) ← A(ui, σi−1). If at any point during this process Pr[w≤i = v≤i] = 0, we
will output ui+1 = · · · = un = vi+1 = · · · = vn = ⊥. We call (u≤n,v≤n) the
jointly generated random processes under the attack. We also refer to u≤n as the
original values and v≤n as the output of the random process under the attack A.

– Online replacing. We call A a valid (online replacing) attack on w≤n, if with prob-
ability 1 over the generation of u≤n, v≤n, it holds that none of the coordinates are ⊥
(i.e., Pr[w≤i = v≤i] 	= 0.) In this work we always work with valid online replacing
attacks, even if they are not called valid.

– Budget of replacing attacks. Replacing adversary A has budget k, if

Pr[HD(u≤n,v≤n) ≤ k] = 1,

where (u≤n,v≤n) are the jointly generated random processes that are also jointly
distributed.

– Algorithmic efficiency of attacks. If w≤n is indexed by n as a member of a family
of joint distributions defined for all n ∈ N, then we call an online or offline replacing
algorithm efficient, if its running time is at most poly(N) where N is the total bit-
length representation of any w≤n ∈ Supp(w≤n). We would also consider efficiency
where the replacing algorithm uses an oracle. In particular, we say an attack Aw≤n[·]

with oracle access to sampler w≤n[·] is efficient if it runs in time poly(N).

We now recall the so-called Doob martingale of a (Boolean-output) random process.

Definition 5 (Doob martingale, partial averages, and their approximate variant). For
random process w≤n ≡ (w1, . . . ,wn), let f : Supp(w≤n) �→ R, i ∈ [n], and w≤i ∈
Supp(w≤i). Then we use the notation f̄(w≤i) = E

w≤n←(w≤n|w≤i)
[f(w≤n)] to define

the expected value of f for a sample from w≤n conditioned on the prefix w≤i and
refer to it as a partial-average of f . In particular, using notation w≤0 = ∅, we have
f̄(∅) = E[f(w≤n)]. The random process (f̄(w≤1), . . . , f̄(w≤n)) is called the Doob
martingale of the function f over the random process w≤n. For the same w≤n and f̄(·),
we call f̃(·) an (additive) ε-approximation of f̄(·), if for all w≤i ∈ Supp(w≤i), it holds
that f̃(w≤i) ∈ f̄(w≤i) ± ε.

If one is given oracle access to � samples from (wi | w≤i), then by averaging them,
one can obtain (due to the Hoeffding inequality) an ε-approximation of f̃(w≤i) for with
probability 1 − exp(−�/ε2).

2.1 Useful Facts

We use the following variant of the Azuma inequality which is proved in [14].

Lemma 6 (Azuma’s inequality for dynamic interval lengths (Theorem 2.5 in [14])).
Let t≤n ≡ (t1, . . . , tn) be a sequence of n jointly distributed random variables such
that for all i ∈ [n], and for all t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] = 0
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and E[ti | t≤i−1] ≥ 1. Then, we have

Pr

[
n∑

i=1

ti ≤ −s

]

≤ e
−s2

2
∑n

i=1 η2
i

Lemma 7 (Azuma’s inequality for dynamic interval lengths under approximate condi-
tions). Let t≤n ≡ (t1, . . . , tn) be a sequence of n jointly distributed random variables
such that for all i ∈ [n], and for all t≤i−1 ← t≤i−1, we have

∃t∗, Pr
ti←ti|t≤i−1

[|ti| ≥ 1] = 0

∃t∗, Pr
ti←ti|t≤i−1

[t∗ + ηi ≥ ti ≥ t∗ − ηi] ≥ 1 − γ

and E[ti | t≤i−1] ≥ −γ. Then, we have

Pr

[
n∑

i=1

ti ≤ −s

]

≤ e
−(s−2nγ)2

2
∑n

i=1 η2
i + n · γ

Proof. If we let γ = 0, Lemma 7 becomes equivalent to Lemma 6. Here we sketch
why Lemma 7 can also be reduced to the case that γ = 0 (i.e., Azuma inequality).
We build a sequence t′

i from ti as follows: Sample ti ← ti | t≤i−1, if |ti − t∗| ≤
ηi, output t′i = ti + 2γ otherwise output t∗ + 2γ. We have E[t′

i | t′≤i−1] ≥ 0 and
Pr[|t′i − t∗ − 2γ| > τi] = 0. Now we can use Lemma 7 for the basic case of γ = 0
for the sequence t′

i and use it to get a looser bound for sequence ti, using the fact that
∃i ∈ [n], |ti − t∗| ≥ ηi happens with probability at most n · γ. ��
Lemma 8 (Composition of concave functions). Suppose �1 and �2 are two non-
decreasing concave functions. Then �1(�2) is also non-decreasing and concave.

3 Attacking Protocols with Any Message Length

In this section, we design and analyze our k-replacing up-biasing attack on random
processes with arbitrary alphabet size. We first describe our attack in an idealized model
in which the partial-average oracle f̄(·) and “maximum child” of a prefix of the process
are available for free. In the full version of this paper, we show that our attack can be
made polynomial-time using an approximation of the partial-average oracle that can be
obtained in polynomial time.

Construction 9 (k-replacing attack using exact oracles). This attack uses the exact
partial-average oracle f̄(·) and another oracle that returns “the best choice” for the next
block (see u∗

i+1 defined below). The attack is also parameterized by a vector λ≤k =
(λ1, . . . , λk) ∈ [0, 1]k for some integer k ≤ n which is adversary’s budget. The attack
will keep state σi = (u≤i, v≤i) where u≤i are the original values and v≤i are the output
values under attack.7 Having state (u≤i, v≤i) and for given ui+1 the algorithm A will

7 Attack would need v≤i and the “used part of the budget” HD(u≤i, v≤i). Both of these can be
obtained from σi = (u≤i, v≤i).
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decide on whether to keep or replace ui+1, using u∗
i+1 = argmaxu′

i+1
f̄(v≤i, u

′
i+1),

f̄∗ = f̄(v≤i, u
∗
i+1), and d = HD(u≤i, v≤i) as follows.

– (Case 0) If d ≥ k, do not change ui+1 and output vi+1 = ui+1.
– (Case 1) if Case 0 does not happen and f̄(v≤i, ui+1) < f̄∗ − λd+1, then

A[λ≤k](ui+1) will return the output vi+1 = u∗
i+1 which is different from ui+1.

– (Case 2) If Cases 0, 1 do not happen, do not change ui+1 and output vi+1 = ui+1.

In all the cases above, A will also update the state as σi+1 = (u≤i+1, v≤i+1).

Notation. Suppose we run the attack A[λ≤k] on random process w≤n through the pro-
cess described in Definition 4. (In particular, ui+1 will be sampled from (wi+1 | w≤i =
v≤i).) We use (u(k)

≤n,v(k)
≤n) to denote the jointly generated random processes under the

attack A[λ≤k]. (This notation allows us to distinguish between the generated random

processes under attacks with different budget.) We sometimes use (u(∞)
≤n ,v(∞)

≤n ) to

denote (u(n)
≤n,v(n)

≤n) as they are the same distributions. Also, let

μk = E

(u≤n,v≤n)←(u(k)
≤n

,v
(k)
≤n

)
[f(v≤n)]

denotes the expected value of f over the sequence that is the output of k-replacing
attack of Construction 9. For k = 0 we have and μ0 = μ = E[f(w≤n)].

Lemma 10 below shows that the increase in μk compared with μk−1 can be related
to the “threshold parameter” λk and the probability that an attack with unlimited (or
equivalently just n) budget with threshold parameters λ1, . . . , λk, λ′

k+1, . . . , λ
′
n makes

at least k replacements.

Lemma 10. We have

μk ≥ μk−1 + λk · Pr
(u≤n,v≤n)←(u(∞)

≤n
,v

(∞)
≤n

)
[HD(u≤n, v≤n) ≥ k].

Proof. For any j ∈ {0, 1, 2}, let Ck
j be the Boolean random variable over (ui+1, σi)

that determines which case of the attack A with budget k happens on prefix (v≤i, ui+1)
where v≤i is the finalized output prefix, u≤i is the original prefix and ui+1 is the original
sampled block at round i+1. For all (v≤i, u≤i, ui+1) we have

∑2
j=0 Ck

j (ui+1, σi) = 1
because the cases complement each other.

In the rest of the proof, whenever u≤i and v≤i are clear from the context, we will
use Ck

j (ui+1) instead of Ck
j (ui+1, σi). In the following, when the threshold parameters

λ1, . . . , λk are clear from the context, we will use A instead of A[λ≤k].
For all u≤i, v≤i ∈ Supp(u≤i,v≤i) we have the following qualities for different

cases of the attack.

– Case 0:

E
(ui+1,vi+1)←(uk

i+1,vk
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1) − f̄(v≤i, ui+1)

) · Ck
0 (ui+1)

]
= 0.

(1)
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– Case 1:

Ck
1 (ui+1) = (C∞

1 (ui+1) ∧ HD(u≤i, v≤i) < k). (2)

This is because as long as the number of replacements is fewer than k, Case 1 of the
attack with budget k would go through whenever A with budget of n does so.

– Case 2:

E
(ui+1,vi+1)←(uk

i+1,vk
i+1)[u≤i,v≤i]

[(
f̄(v≤i, vi+1) − f̄(v≤i, ui+1)

) · Ck
2 (ui+1))

]
= 0.

(3)
This is correct because either Ck

2 (v≤i, ui+1) = 0 or ui+1 = vi+1.

We define a notation g(v≤i+1, u≤i+1) = f̄(v≤i+1) − f̄(v≤i, ui+1). In the fol-
lowing We use the shorten forms of E(u≤i,v≤i) and E(u≤n,v≤n)[u≤i,v≤i] to refer to
E(u≤i,v≤i)←(u≤i,v≤i) and E(u,v)←(u≤n,v≤n)[u≤i,v≤i]. We have

E

(u(k)
≤n

,v(k)
≤n

)

[f(v≤n)] − μ = E

(u(k)
≤n

,v(k)
≤n

)

[
n−1∑
i=0

(f̄(v≤i+1) − f̄(v≤i))

]

= E

(u(k)
≤n

,v(k)
≤n

)

[
n−1∑
i=0

(f̄(v≤i+1) − f̄(v≤i, ui+1))

]
(by the definition of f̄ ) (4)

=

n−1∑
i=0

E
(uk

≤i
,vk

≤i
)

E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

⎡
⎣g(v≤i+1, u≤i+1) ·

⎛
⎝ 2∑

j=0

Ck
j (ui+1)

⎞
⎠

⎤
⎦

=

n−1∑
i=0

E
(uk

≤i
,vk

≤i
)

E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · Ck

1 (ui+1)
]

(by (3) and (1)) (5)

=

n−1∑
i=0

E
(uk

≤i
,vk

≤i
)

E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · (C(∞)

1 (ui+1) ∧ (HD(u≤i, v≤i) < k)
]

=

n−1∑
i=0

E
(u∞

≤i
,v∞

≤i
)

E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · (C∞

1 (ui+1) ∧ (HD(u≤i, v≤i) < k))
]
.

(6)

The last equality above holds, because for all u≤i, v≤i where HD(u≤i, v≤i) < k,

Pr[(uk
≤i,v

k
≤i) = (u≤i, v≤i)] = Pr[(u(∞)

≤i ,v(∞)
≤i ) = (u≤i, v≤i)].

The reason for this is that as long as we have not used the full budget k, the k-replacing
attack will behave as if its budget is infinite.

Similarly, for the adversary A with budget k − 1 we have

E

(u(k−1)
≤n

,v(k−1)
≤n

)

[f(v≤n)] − μ =

n−1∑
i=0

E

(u(∞)
≤i

,v(∞)
≤i

)≤i

E

(u(k−1)
≤n

,v(k−1)
≤n

)[u≤i,v≤i]

[
η(u≤i+1, v≤i+1)

]
.

(7)
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where η(u≤i+1, v≤i+1) = g(v≤i+1, u≤i+1) · (C∞
1 (ui+1)∧ (HD(u≤i, v≤i) < k − 1)

)
.

Therefore, by combining Eqs. (6) and (7) we have

E

(u(k)
≤n

,v(k)
≤n

)

[f(v≤n)] − E

(u≤n,v≤n)←(u(k−1)
≤n

,v(k−1)
≤n

)

[f(v≤n)]

=

n−1∑
i=0

E

(u(∞)
≤i

,v(∞)
≤i

)

E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

[
g(v≤i+1, u≤i+1) · C∞

1 (ui+1) · (HD(u≤i, v≤i) = k − 1)
]

≥
n−1∑
i=0

E

(u(∞)
≤i

,v(∞)
≤i

)

⎡
⎣λk · E

(u(k)
≤n

,v(k)
≤n

)[u≤i,v≤i]

[
C∞

1 (ui+1) · (HD(u≤i, v≤i) = k − 1)
]⎤⎦

= λk · Pr
(u(∞)

≤n
,v(∞)

≤n
)

[HD(u≤n, v≤n) ≥ k].

The last equality above holds because whenever C
(∞)
1 holds, we know that A will

replace ui+1 with vi+1 	= ui+1 and this makes the hamming distance of u≤i+1 from
v≤i+1 equal to k. ��
Now we prove the following lemma about the power of attacks with infinite budget. The
work of [27] also prove a similar bound (see Claim 19 in [27]) for their attack but our
attack achieves a better bound because of the fact that our attack has only one step in
which the replacement might happen which allows us to make a better use of Azuma’s
inequality with dynamic interval (See Lemma 6).

Lemma 11. If μ∞ = E(u≤n,v≤n)←(u(∞)
≤n

,v
(∞)
≤n

)[f(v≤n)] and λ = maxi∈[n] λi, then

μ∞ ≥ 1 − e− 2μ2

nλ2 .

Proof. We define a sequence of random variables t≤n = (t1, . . . , tn), where ti+1 =
f̄(v≤i+1) − f̄(v≤i) is a random variable that is dependent on v≤i+1. Then we have

E

(u(∞)
≤n

,v
(∞)
≤n

)[u≤i,v≤i]
[f̄(v≤i+1) − f̄(v≤i)]

≥ E

(u(∞)
≤n

,v
(∞)
≤n

)[u≤i,v≤i]
[f̄(v≤i, ui+1) − f̄(v≤i)] = 0.

Therefore, t≤n defines a sub-martingale. Furthermore, we have

f̄∗ ≥ f̄(v≤i+1) ≥ f̄∗ − λ.

Therefore, ti always falls in an interval of size λ. Hence, applying the right variant of
Azuma’s Inequality (as stated in Lemma 6) over t≤n, we have

Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[f(v≤n) = 0] = Pr

(u(∞)
≤n

,v
(∞)
≤n

)

[ n∑

i=1

ti ≤ −μ
]

≤ e− 2μ2

nλ2 . (8)
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Now, leveraging the fact that f outputs in {0, 1} and relying on Inequality (8), we have

Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[f(v≤n) = 1] = 1 − Pr

(u(∞)
≤n

,v
(∞)
≤n

)
[f(v≤n) − μ ≤ −μ] ≥ 1 − e− 2μ2

nλ2 .

��
Lemma 12. If λ = maxi∈[k] λi, then

Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[HD(u≤n, v≤n) ≥ k] ≥ 1 − e− 2μ2

nλ2 − μk−1.

Proof. First we have

Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[
(
f(v≤n) = 1 ∧ HD(u≤n, v≤n) < k

) ∨ (HD(u≤n, v≤n) ≥ k)]

= Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[f(v≤n) = 1 ∨ HD(u≤n, v≤n) ≥ k]

≥ Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[f(v≤n) = 1]

= μ∞ ≥ 1 − e− 2μ2

nλ2 (by Lemma 11). (9)

On the other hand, by a union bound we have

Pr
(u(∞)

≤n
,v(∞)

≤n
)

[
(
f(v≤n) = 1 ∧ HD(u≤n, v≤n) < k

) ∨ (HD(u≤n, v≤n) ≥ k)]

≤ Pr
(u(∞)

≤n
,v(∞)

≤n
)

[f(v≤n) = 1 ∧ HD(u≤n, v≤n) < k] + Pr
(u(∞)

≤n
,v(∞)

≤n
)

[HD(u≤n, v≤n) ≥ k]. (10)

The generated process under k − 1 replacing attack is same as n-replacing attack as
long as the number of replacements is less than k. Therefore, it holds that

Pr
(u(∞)

≤n
,v(∞)

≤n
)

[
(
f(v≤n) = 1 ∧ HD(u≤n, v≤n) < k

)
] ≤ Pr

(u(k−1)
≤n

,v
(k−1)
≤n

)

[f(v≤n) = 1] = μk−1. (11)

Now, combining Inequalities (9), (10) and (11) we get

Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[HD(u≤n, v≤n) ≥ k] ≥ 1 − e− 2μ2

nλ2 − μk−1.

��
Corollary 13. If λ = maxi∈[k] λi, then we have

μk ≥ μk−1 + λk ·
(

1 − e
−2μ2

n·λ2 − μk−1

)

.
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Proof. Combining Lemmas 12 and 10 we have

μk ≥ μk−1 + λk · Pr
(u(∞)

≤n
,v

(∞)
≤n

)
[HD(u≤n, v≤n) ≥ k] (by Lemma 10)

≥ μk−1 + λk ·
(

1 − e
−2μ2

n·λ2 − μk−1

)

(by Lemma 12).

��
Theorem 14. If λ = maxi∈[k] λi, then we have

μk ≥ μ +
(
1 −

k∏

i=1

(1 − λi)
)

·
(
1 − e

−2μ2

n·λ2 − μ
)
.

In particular, by setting all λi = μ√
n
we get

μk ≥ μ +

(

1 −
(

1 − μ√
n

)k
)

·
(
1 − e−2 − μ

)
.

Note that the choice of λi = u/
√

n above is not optimal. The optimal choice does
not have a compact closed form and is actually by setting different λi’s for different
remaining budgets.

Proof. We prove this by induction on k. The case of k = 1 directly follows from
Corollary 13. For k > 1, by Corollary 13 we have

μk ≥ μk−1 + λk ·
(
1 − e

−2μ2

n·λ2 − μk−1

)
,

which implies that

μk ≥ (1 − λk) · μk−1 + λk ·
(
1 − e

−2μ2

n·λ2

)
.

Now we can use the induction’s hypothesis and replace μk−1 with μ+
(
1−∏k−1

i=1 (1−
λi)

)
·
(
1 − e−2μ2/(n·λ2) − μ

)
which implies that

μk ≥ μ +
(
1 −

k∏

i=1

(1 − λi)
)

·
(
1 − e

−2μ2

n·λ2 − μ
)
,

and that proves the claim. ��

4 Optimal Attacks for Uniform Binary Messages

In this section, we focus on the setting in which n parties each send a uniform random
bit and then a final bit is chosen based on the published messages. We will show how to
obtain optimal online k-replacing attacks that match the power of offline attacks.
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Notation. u≤n ≡ (u1 × · · · × un) denotes the uniform random variable over {0, 1}n,
where each ui is a uniform and independent random bit. In this section, for sim-
plicity we use notation Un for this distribution. We will study k-replacing attacks
on Un.8 HW(x) = HD(x, 0n) denotes Hamming weight of x ∈ {0, 1}n. We let
[n] = {1, . . . , n}, 〈n] = {0, . . . , n} and 〈n〉 = {0, . . . , n + 1}. For t ∈ 〈n〉, we
define the threshold function τt : {0, 1}n → {0, 1} as τt(x) = 1 iff HW(x) ≥ t.
(τ0 is the constant function 1 function and τn+1 is the constant 0 function.) We let
β
(t)
n = 2−n · ∑n

i=t

(
n
i

)
be the probability of the Hamming ball defined by τt, and when

n is clear from the context we write it as β(t). We also let s
(t)
n = 2n · β(t)

n be the size of
the same Hamming ball. For set S ⊂ R, r ∈ R, we use the notation rS = {rx | x ∈ S},
e.g., r〈n] = {0, r, 2r, . . . , nr}. We let

(
n
k

)
= 0 if k < 0 or k > n. For a set S ⊆ {0, 1}n

and r ∈ {0, 1}d for d ∈ [n], we let

S[r] = {
x′ | x ∈ S ∧ ∃x′ ∈ {0, 1}n−d such that x = (r, x′)

}

be the set of suffixes of strings in S of length n − d with r as their prefix.
We first define the isoperimetry function that capture the power of “offline” attacks.

Definition 15 (The offline expansion and isoperimetry functions). For k ∈ [n],S ⊆
{0, 1}n, the offline k-expansion (probability) of S is the probability of all points within
Hamming distance k of S

OffExp(k)(S) = | {y ∈ {0, 1}n | ∃x ∈ S,HD(x, y) ≤ k} |
2n

.

For a given probability μ, the k-expansion of μ is equal to:

OffExp(k)(μ) = inf
S,Pr[S]≥μ

OffExp(k)(S).

Finally, for a set S and probability μ, we define the (offline) k-isoperimetry function

OffIso(k)(S) = OffExp(k)(S) − Pr[S], OffIso(k)n (μ) = OffExp(k)n (μ) − μ.

Note that whenever the input is a set S ⊆ {0, 1}n, it already determines n on its own,
and hence we do not need to state it explicitly, but when the input is μ ∈ R, we explicitly
state n as the index of the function.

Theorem 16 (Implied by the vertex isoperimetric inequality in Boolean hyper-
cube [19]). For any t ∈ 〈n], it holds that OffExp(k)(β(t)) = β(t−k).

Online Attacks vs. Offline Attacks. Suppose an adversary wants to increase the prob-
ability of falling into a set S in an “offline” attack, in which the adversary gets a point
x ← Un and then can replace k of the bits of x. It is easy to see that the adversary can

8 In Sects. 2 and 3, we called the original random process w≤n and Un was one of the generated
random processes (modeling the original samples). However, since we are starting from a
product distribution, it would hold that Un ≡ w≤n, and thus we simply call the original
distribution u.
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increase the probability of falling into S exactly by OffIso(k)(S). Accordingly, we can
define the online variant of such attacks as defined in Sect. 4. In such online attacks, the
adversary gets to see the independent and uniformly sampled random bits (u1, . . . ,un)
one by one, and after seeing ui ← ui, it can decide to keep or change it.

Definition 17 (The online expansion OnExp and isoperimetry OnIso functions). Let A
be an online adversary of budget k over the uniform distribution Un over {0, 1}n. Let
v≤n be the generated output random process (distributed over {0, 1}n) under attack A

(as defined in Definition 4). We define OnExp(A)(S) = Pr[v≤n ∈ S]. Let Ak be the set
of all k-replacing attacks on Un. We define OnExp(k)(S) as the maximum probability
of points in {0, 1}n that any online adversary can map to S by up to k changes to a
stream of n uniformly random bits. Namely,

OnExp(k)(S) = max
A∈Ak

OnExp(A)(S).

Also, for any μ ∈ [0, 1], we define

OnExp(k)n (μ) = inf
S,Pr[S]≥μ

OnExp(k)(S)

as the minimum OnExp(k)(S) among all sets of probability at least μ. Finally, for any
set S and probability μ, we define the online k-isoperimetry functions as follows

OnIso(k)(S) = OnExp(k)(S) − Pr[S], OnIso(k)n (μ) = OnExp(k)n (μ) − μ

as the growth in probability of falling into sets (of probability μ) under optimal online
k-replacing attacks.

Since offline adversaries know as much as online adversaries when making decision
to change or not, it always holds that OffIso(S) ≥ OnIso(S), and hence OffIso(k)n (μ) ≥
OnIson(μ) for all n, S ⊆ {0, 1}n, and μ ∈ [0, 1]. The surprising phenomenon stated in
the next theorem is that when μ is the probability of a Hamming ball, online and offline
attacks have the same exact power as a function of the measure μ, and consequently the
online and offline k-isoperimetry functions would be equal.

Theorem 18 (Power of online vs. offline attacks for the uniform distribution over
{0, 1}n). For all n ∈ N, t ∈ [n], k ≤ t, if β(t) = Pr[HW(Un) ≥ t] be the proba-
bility of a Hamming ball. Then it holds that

OnExp(k)n (β(t)) = OffExp(k)n (β(t)) = β(t−k).

In words, if μ = β(t), then the power of online k-replacing adversaries to increase the
probability of falling into a set S, in the minimum over all sets of probability at least
β(t), is equal to that of offline attacks.

Reaching a Target Probability. Suppose Pr[S] = μ, and suppose we want to increase
the probability of falling into S to μ′ > μ. How much budget an adversary needs?
Theorem 18 shows that as long as μ is the probability of a Hamming ball (i.e., μ = β(t)),
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then in the worst case (among all possible sets S of probability μ) the power of online
and offline attacks are exactly the same. Therefore, this brings up the natural question of
what happens in general, when μ is not exactly the probability of a Hamming ball. As
stated in Corollary 19 below, Theorem 18 already shows that the power of offline and
online attacks is different by at most one. In fact, as we will see later, these quantities
are not equal in general. In particular, Fig. 1 compares OnIson(μ) and OffIso(k)n (μ) for
all μ when n = 10 (and k = 1).

Corollary 19 (Budget of online vs. offline attacks to reach a target probability). For
0 < μ < μ′ ≤ 1, let

OfBudn(μ → μ′) = min
k∈[n]

[OffExp(k)n (μ) ≥ μ′]

be the minimum budget k that an offline adversary needs to increase the probability of
falling into any set S of probability at least μ to μ′. Let

OnBudn(μ → μ′) = min
k∈[n]

[OnExp(k)n (μ) ≥ μ′]

be the similar quantity for online attacks. Then, it always holds that

OfBudn(μ → μ′) ≤ OnBudn(μ → μ′) ≤ OfBudn(μ → μ′) + 1

and OfBudn(β(t) → μ′) = OnBudn(β(t) → μ′) for all t ∈ [n + 1].

Fig. 1. Comparing the online isoperimetric function OnIso (blue) versus the offline isoperimetric
function OffIso (red) for n = 10. (Color figure online)

We first prove Corollary 19 using Theorem 18 and then will prove Theorem 18.
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Proof of Corollary 19. Let k = OfBudn(μ → μ′), we have OffExp(k)n (μ) ≥ μ′ and
OffExp(k−1)

n (μ) < μ′. Let t ∈ 〈n〉 be the minimum such t that β(t) ≥ μ, and so we
have β(t+1) ≤ μ ≤ β(t). By the monotonicity of OnExp(k)n function, we have

OnExp(k+1)
n (β(t+1)) ≤ OnExp(k+1)

n (μ). (12)

By Theorem 18 it holds that OnExp(k+1)
n (β(t+1)) = OffExp(k+1)

n (β(t+1)). Now,
because β(t+1) ≤ μ ≤ β(t), by the monotonicity of OffExp(k)n (μ) we have

OffExp(k)n (μ) ≤ OffExp(k)n (β(t)) = OffExp(k+1)
n (β(t+1)) = OnExp(k+1)

n (β(t+1)).
(13)

Combining (12) and (13), we have

OffExp(k)n (μ) ≤ OnExp(k+1)
n (β(t+1)) ≤ OnExp(k+1)

n (μ).

Therefore we have,

OfBudn(μ → μ′) + 1 = min
k∈[n]

[OffExp(k)n (μ) ≥ μ′] + 1

≥ min
k∈[n]

[OnExp(k+1)
n (μ) ≥ μ′] + 1

= min
k+1∈[n]

[OnExp(k+1)
n (μ) ≥ μ′]

= OnBudn(μ → μ′).

The inequality holds because let k′ = mink∈[n][OffExp(k)n (μ) ≥ μ′], we have

OnExp(k
′+1)

n (μ) ≥ μ′, and therefore mink∈[n][OnExp(k+1)
n (μ) ≥ μ′] ≤ k′. Since we

also have OffExp(k)n (μ) ≥ OnExp(k)n (μ) for any μ, OfBudn(μ → μ′) ≤ OnBudn(μ →
μ′) ≤ OfBudn(μ → μ′) + 1.

Finally, because OffExp(k)n (β(t)) ≥ OnExp(k)n (β(t)) holds for any k and t, we have
OfBudn(β(t) → μ′) = OnBudn(β(t) → μ′) for all t ∈ [n + 1].

In the rest of this section, we prove Theorem 18.

Proof of Theorem 18. In order to prove Theorem 18, we start by deriving a recursive
relation for OnExp(k)n (·). Before doing so, we define some mathematical notation.

Definition 20 (Definitions related to the recursive relation of online expansion). For
s ∈ 〈2n], let

Divn−1(s) =
{
(s0, s1) | s0, s1 ∈ 〈2n−1], 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1

}

be the set of ways in which a “set size” s ∈ 〈2n−1] can be divided into two sizes. For
(s0, s1) ∈ Divn−1(s) and a fixed pair of integers n, k let Rec(k)n (·, ·) be defined as

Rec(k)n (s0, s1) =
Rec

(k)
n−1

(
s1

2n−1

)
+max

{
Rec

(k)
n−1

(
s0

2n−1

)
,Rec

(k−1)
n−1

(
s1

2n−1

)}

2
(14)
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based on functions Rec
(k)
n−1,Rec

(k−1)
n−1 to be specified later. Finally, for μ ∈ 2−n〈2n] let

Rec(k)n (μ) = inf
(s0,s1)∈Divn(2n·μ)

Rec(k)n (s0, s1). (15)

Transformation Rec(k)n [p, q]. For functions p, q defined on input space 2−n〈2n]. Sup-
pose we use p instead of Rec

(k)
n−1 and q instead of Rec

(k−1)
n−1 in Eq. (14). Then by

Rec(k)n [p, q](·, ·) (resp. Rec(k)n [p, q](·)) we denote the function that one obtains in
Eq. (14) (resp. Eq. (15)).

Interpretation. Rec(k)n (s0, s1) represents the optimal choice that a tampering adver-
sary can make to increase the probability of falling into a set of size s, when S[0] =
S0,S[1] = S1 are adversarially chosen based on their sizes s0, s1 where s0 ≤ s1, and
when the optimal online expansions for s0, s1 can be applied by (appropriate use of)
functions Rec

(k)
n−1,Rec

(k−1)
n−1 .

Notation. Let f, g be defined over the same input domain D. We say f ≤ g, if ∀μ ∈
D, f(μ) ≤ g(μ).

We now show that the transformation of Definition 20 has some desired properties.

Claim 21 (Transformation of Definition 20 is monotone). Let u
(k)
n−1 ≤ v

(k)
n−1 and

u
(k−1)
n−1 ≤ v

(k−1)
n−1 , and let

u(k)n = Rec(k)n [u(k)n−1, u
(k−1)
n−1 ], v(k)n = Rec(k)n [v(k)n−1, v

(k−1)
n−1 ]

as defined in Definition 20. Then, it holds that u(k)n ≤ v
(k)
n .

Proof. We first show that for any s0, s1 ∈ Divn(2n · μ), we have u
(k)
n (s0, s1) ≤

v
(k)
n (s0, s1). Because u

(k)
n−1 ≤ v

(k)
n−1 and u

(k−1)
n−1 ≤ v

(k−1)
n−1 , we have u

(k)
n−1

(
s1/2n−1

) ≤
v
(k)
n−1

(
s1/2n−1

)
and

max{u
(k)
n−1

(
s0/2

n−1) , u
(k)
n−1

(
s1/2

n−1)} ≤ max{v
(k)
n−1

(
s0/2

n−1) , v
(k)
n−1

(
s1/2

n−1)}.

Therefore, u
(k)
n (s0, s1) ≤ v

(k)
n (s0, s1) holds for any s0, s1.

From Eq. (15), let (s′
0, s

′
1) = arg inf(s0,s1)∈Divn(2n·μ)v

(k)
n (s0, s1) be the parti-

tion where v
(k)
n (μ) achieves its minimum. Then we have u

(k)
n (μ) ≤ u

(k)
n (s′

0, s
′
1) ≤

v
(k)
n (s′

0, s
′
1) = v

(k)
n (μ). ��

Claim 22 (Recursive relation for online expansion). One can recursively compute
OnExp(k)n (μ) for all μ ∈ 2−n〈2n] as follows.

– If k = 0 and n ≥ 0, then OnExp(0)n (μ) = μ.
– If k ≥ 1 and k ≥ n, then: OnExp(k)n (0) = 0 and OnExp(k)n (μ) = 1 for μ > 0.
– If k ≥ 1 and k < n, then OnExp(k)n = Rec(k)n [OnExp

(k)
n−1,OnExp

(k−1)
n−1 ] as in

Definition 20.
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Proof Sketch. The extremal cases of the recursive relation stated in the first two bullets
hold trivially. Below we argue why the inductive step as stated in the third bullet holds
as well.

Suppose by fixing the first bit to b we get a subset of size sb, and s0 ≤ s1, and
suppose in both cases the residual subsets S[0],S[1] are chosen in the “worst” case
(against the adversary) based on their sizes s0, s1, minimizing the success probability
of an online adversary. Since OnExp(·) is a monotone function, then when the first bit
is selected to be 1, the adversary has no motivation to replace it with 0. When the first
bit is selected to be 0, the adversary has choose between maximum of the expansions
that arise from changing or not changing the bit to 1. Once we consider all ways that s
can be split into s = s0 + s1, this leads to the definition of the recursion of Eq. (15) and
the transformation of Definition 20.

Claim 23 Suppose p ≤ OnExp
(k)
n−1, q ≤ OnExp

(k−1)
n−1 for functions p, q. Then, it holds

that Rec(k)n [p, q] ≤ OnExp(k)n (see Definition 20).

Proof. The proof directly follows from Claims 22 and 21. ��

We now define a piecewise-linear function �
(k)
n to later prove to be a lower bound

for OnExp(k)n .

Definition 24 (The piecewise-linear (lower bound) function). For any non-negative
integers k, n, the function �

(k)
n : [0, 1] → [0, 1] is defined as follows.

– If μ = β
(t)
n for any t ∈ 〈n〉, it holds that �

(k)
n

(
β
(t)
n

)
= OffExp(k)n

(
β
(t)
n

)
. Namely,

�
(k)
n

(
β
(n+1)
n

)
= OffExp(k)n (0) = 0, and for any t ∈ 〈n], �

(k)
n

(
β
(t)
n

)
= β

(t−k)
n =

Pr [HW(Un) ≥ t − k].
– If μ = αβ

(t)
n + (1 − α)β(t−1)

n for 0 < α < 1 and any t ∈ 〈n〉, then �
(k)
n (μ) =

α · �
(k)
n

(
β
(t)
n

)
+ (1 − α) · �

(k)
n

(
β
(t−1)
n

)
.

Proposition 25 (Composition of the lower bound function). For any k1, k2, n ≥ 0 and
μ ∈ [2−n, 1], it hold that �(k1+k2)

n (μ) = �
(k1)
n

(
�
(k2)
n (μ)

)
.

Proof. Consider every case,

– If μ = β
(t)
n . By Definition 24 we have �

(k1)
n

(
�
(k2)
n (μ)

)
= �

(k1)
n

(
OffExp

(k2)
n

(
β
(t)
n

))
. As

μ ∈ [2−n, 1], we have t ≤ n. Therefore, OffExp(k2)
n

(
β
(t)
n

)
= β

(t−k2)
n . Therefore,

we have

�(k1)
n

(
�(k2)
n

(
β(t)

n

))
= �(k1)

n

(
β(t−k2)

n

)
= β(t−(k2+k1))

n = �(k1+k2)
n

(
β(t)

n

)
.

– If μ = αβ
(t)
n + (1− α)β(t−1)

n for 0 < α < 1, In this case, by Definition 24 we have

�
(k2)
n (μ) = α · �

(k2)
n

(
β
(t)
n

)
+ (1 − α) · �

(k2)
n

(
β
(t−1)
n

)
. As μ ∈ [2−n, 1], we have
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t ≤ n. Therefore, we have �
(k2)
n (μ) = α · β

(t−k2)
n + (1 − α) · β

(t−1−k2)
n . We then

have
�(k1)
n

(
�(k2)
n (μ)

)
= �(k1)

n

(
α · β(t−k2)

n + (1 − α) · β(t−1−k2)
n

)

= α · β(t−k2−k1)
n + (1 − α) · β(t−1−k2−k1)

n

= �(k1+k2)
n (μ).

��
Lemma 26. �

(k)
n is concave for all n, k ≥ 0.

Proof. �
(0)
n is linear, and hence concave, so suppose k ≥ 1. Let fix n, and define �̂(μ) =

�
(1)
n (μ)− μ for μ ∈ [0, 1]. To prove that �

(k)
n (μ) is concave over [2−n, 1], it is sufficient

to show that �̂(μ) is concave over [2−n, 1], because:

1. If �̂(μ) is concave, then �̂(μ) + μ = �
(1)
n (μ) is concave as well.

2. If �
(1)
n (μ) is concave, since it is non-decreasing, by repeated applications of Lemma 8

and Proposition 25, it follows that �
(k)
n is also concave for all k ≥ 1 as well, when

we limit the inputs to μ ≥ 2−n.

Therefore, in the following, we only aim to prove that (1) �̂(μ) is concave over [2−n, 1],
and (2) the left and right derivatives of �̂(μ) over μ = 2−n do not violate its concavity.

In the following, we will fix n and k = 1. Because n, k are both fixed, in the rest of
the proof of Lemma 26 we do not represent them explicitly as indexes anymore.

It holds that �̂(β(t)) = OffIso(β(t)) for all t ∈ 〈n〉. Also, for μ ∈ (β(t), β(t−1))
(recall that β(t) < β(t−1)) where μ = αβ(t) + (1 − α)β(t−1), we have

�̂(μ) = α�(β(t)) + (1 − α)�(β(t−1)) − αβ(t) − (1 − α)β(t−1)

= αOffIso(β(t)) + (1 − α)OffIso(β(t−1)).

Since the curve �̂ is linear over every interval μ ∈ [β(t), β(t−1)] for all t ∈ [n + 1],
to prove its concavity, we only have to compare its left and right derivatives at every
β(t), t ∈ [n], where it holds that �̂(β(t)) = OffIso(β(t)). Hence, for all t ∈ [n], we need
to prove the following.

OffIso(β(t)) − OffIso(β(t+1))
β(t) − β(t+1) ≥ OffIso(β(t−1)) − OffIso(β(t))

β(t−1) − β(t) (16)

Note that by letting t = n in Inequality (16), we have �̂ is still concave for point
2−n. We first verify Inequality (16) for extreme cases of t = 1, n. If t = 1, then Inequal-
ity (16) holds because

1 − n

n
=

OffIso(β(t)) − OffIso(β(t+1))
β(t) − β(t+1) ≥ OffIso(β(t−1)) − OffIso(β(t))

β(t−1) − β(t) =
0 − 1
1

.

If t = n, a generalization of Inequality 16 for any k holds because
∑k

i=0

(
n
i

) − 0
1 − 0

=
�(k)(β(t)) − �(k)(β(t+1))

β(t) − β(t+1) ≥ �(k)(β(t−1)) − �(k)(β(t))
β(t−1) − β(t) =

(
n

k+1

)

n
,
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which in turn is correct because
∑k

i=0

(
n
i

)
>

(
n
k

) ≥ (
n

k+1

)
/n.

For the intermediate cases, for all t ∈ {n − 1, . . . , 2}, we have to prove:
(

n
t−k

) − (
n
t

)

(
n
t

) =
OffIso(β(t)) − OffIso(β(t+1))

β(t) − β(t+1)

≥ OffIso(β(t−1)) − OffIso(β(t))
β(t−1) − β(t) =

(
n

t−2

) − (
n

t−1

)

(
n

t−1

)

which is equivalent to proving the following true statement

t

n − t + 1
=

t!(n − t)!
(t − 1)!(n − t + 1)!

=

(
n

t−1

)

(
n
t

) ≥
(

n
t−2

)

(
n

t−1

)

=
(t − 1)!(n − t + 1)!
(t − 2)!(n − t + 2)!

=
t − 1

n − t + 2
.

��
The main step of the proof of Theorem 18 is to show the following claim.

Claim 27. It holds that �(k)n ≤ Rec(k)n

[
�
(k)
n−1, �

(k−1)
n−1

]
.

Proof. In the following, for simplicity we let Rec = Rec(k)n

[
�
(k)
n−1, �

(k−1)
n−1

]
.

Case of Exact Hamming Ball Probabilities. We first prove

∀t ∈ 〈n〉, �(k)n (β(t)) ≤ Rec(β(t)) (17)

and then will extend the proof of this inequality to an arbitrary μ ∈ 2−n〈2n]. We only
need to prove Inequality 17 for t ∈ [n], because β

(n+1)
n = 0, β(0) = 1, and so

�(k)n (0) = Rec(0) = 0, �(k)n (1) = Rec(1) = 1.

Recall that �
(k)
n

(
β
(t)
n

)
= OffExp(k)n

(
β
(t)
n

)
= β

(t−k)
n . Hence, for s = s

(t)
n =

β(t) · 2n where t ∈ [n], our goal is to prove the following

β(t−k)
n ≤ inf

(s0,s1)∈Divn(s)
Rec(s0, s1). (18)

Case Studies. Note that β
(t)
n 2n = s

(t)
n = s

(t)
n−1 + s

(t−1)
n−1 because of the Pascal equality.

Also by the definition of Divn, we have s0 ≤ s1 and s0 + s1 = s
(t)
n for any choice

of (s0, s1) ∈ Divn(s) in the right hand side of Eq. 18. Then, one of the following
three cases must hold: (1) s0 = s

(t)
n−1, (2) s0 < s

(t)
n−1, or (3) s0 > s

(t)
n−1. Hence, we

divide our analysis to the same three cases, and then prove that β
(t−k)
n ≤ Rec(s0, s1)

holds in all of them. We will also use the Pascal equality in the form of β
(t−k)
n =

(β(t−k−1)
n−1 + β

(t−k)
n−1 )/2.
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1. s
(t)
n−1 = s0 < s1 = s

(t−1)
n−1 . In this case, we have

�
(k)
n−1

( s0
2n−1

)
= �

(k−1)
n−1

( s1
2n−1

)
= β

(t−k)
n−1

which, informally speaking means that, it does not matter if the adversary intervenes
to change 0 to 1 when the first bit is fixed to 0. Formally, we have

Rec(s0, s1) = Rec(s(t)n−1, s
(t−1)
n−1 )

=
�
(k)
n−1

(
s1

2n−1

)
+max

{
�
(k)
n−1

(
s0

2n−1

)
, �

(k−1)
n−1

(
s1

2n−1

)}

2

=
β
(t−k−1)
n−1 + β

(t−k)
n−1

2
= β(t−k)

n .

2. s
(t)
n−1 < s0 ≤ s1 < s

(t−1)
n−1 . Informally speaking, in this case the adversary does not

change the bit and we use the piece-wise linearity of the � function on [β(t)
n−1, β

(t−1)
n−1 ].

More formally,

Rec(s0, s1) =
�
(k)
n−1

(
s1

2n−1

)
+max

{
�
(k)
n−1

(
s0

2n−1

)
, �

(k−1)
n−1

(
s1

2n−1

)}

2

≥ �
(k)
n−1

(
s1

2n−1

)
+ �

(k)
n−1

(
s0

2n−1

)

2

=
�
(k)
n−1

(
s
(t−1)
n−1
2n−1

)

+ �
(k)
n−1

(
s
(t)
n−1

2n−1

)

2
(by piece-wise linearity of �

(k)
n−1)

= Rec
(
s
(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

3. s0 < s
(t)
n−1 < s

(t−1)
n−1 < s1. Informally speaking, in this case the adversary does

change the bit 0 into 1, and we also use the fact that �
(k)
n−1 is monotone. More for-

mally,

Rec(s0, s1) =
�
(k)
n−1

(
s1

2n−1

)
+max

{
�
(k)
n−1

(
s0

2n−1

)
, �

(k−1)
n−1

(
s1

2n−1

)}

2

≥ �
(k)
n−1

(
s1

2n−1

)
+ �

(k−1)
n−1

(
s1

2n−1

)

2

≥
�
(k)
n−1

(
s
(t−1)
n−1
2n−1

)

+ �
(k−1)
n−1

(
s
(t−1)
n−1
2n−1

)

2
(by monotonicity of �

(k)
n−1)

= Rec
(
s
(t)
n−1, s

(t−1)
n−1

)
= β(t−k)

n .

Case of Other Probabilities. Here we no longer assume that μ = β(t) for some t ∈ [n],
and assume μ = αβ

(t)
n +(1−α)β(t−1)

n for some t ∈ [n+1] and 0 < α < 1. Recall that
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β(t)2n = s
(t)
n = s

(t)
n−1 + s

(t−1)
n−1 and β(t−1)2n = s

(t−1)
n = s

(t−1)
n−1 + s

(t−2)
n−1 . We define

s′
0 = α · s

(t)
n−1 + (1 − α) · s

(t−1)
n−1 , s′

1 = α · s
(t−1)
n−1 + (1 − α) · s

(t−2)
n−1 .

By the definition of μ, it holds that μ · 2n = s = s′
0 + s′

1 because

s′
0+ s′

1 = α ·
(
s
(t)
n−1 + s

(t−1)
n−1

)
+(1−α) ·

(
s
(t−1)
n−1 + s

(t−2)
n−1

)
= α · s(t)n +(1−α) · s(t−1)

n = s.

In general, s′
0, s

′
1 are not integers, but intuitively, s′

0 + s′
1 gives the critical way of

splitting s into two numbers at which the replacing and no-replacing strategies give
the same bound and we can do the case studies. (In particular s′

0, s
′
1 take the role of

s
(t)
n−1, s

(t−1)
n−1 when we previously assumed that μ = β(t).)

Useful Observations. By the piecewise linearity of �
(k)
n−1, �

(k−1)
n−1 we have

�
(k)
n−1

(
s′
0

2n−1

)

= α�
(k)
n−1

(
s
(t)
n−1

2n−1

)

+ (1 − α)�(k)n−1

(
s
(t−1)
n−1

2n−1

)

,

�
(k)
n−1

(
s′
1

2n−1

)

= α�
(k)
n−1

(
s
(t−1)
n−1

2n−1

)

+ (1 − α)�(k)n−1

(
s
(t−2)
n−1

2n−1

)

,

�
(k−1)
n−1

(
s′
1

2n−1

)

= α�
(k−1)
n−1

(
s
(t−1)
n−1

2n−1

)

+ (1 − α)�(k−1)
n−1

(
s
(t−2)
n−1

2n−1

)

,

�
(k)
n−1

(
s
(t)
n−1

2n−1

)

= β
(t−k)
n−1 = �

(k−1)
n−1

(
s
(t−1)
n−1

2n−1

)

,

and �
(k)
n−1

(
s
(t−1)
n−1

2n−1

)

= β
(t−k−1)
n−1 = �

(k−1)
n−1

(
s
(t−2)
n−1

2n−1

)

.

Therefore, we get the following.

�
(k)
n−1

(
s′
0

2n−1

)

= �
(k−1)
n−1

(
s′
1

2n−1

)

= αβ
(t−k)
n−1 + (1 − α)β(t−k−1)

n−1 , (19)

�
(k)
n−1

(
s′
1

2n−1

)

= αβ
(t−k−1)
n−1 + (1 − α)β(t−k−2)

n−1 . (20)

Case Studies. We now again partition into three different categories and separately
prove that �

(k)
n (μ) ≤ Rec(s0, s1) holds for each category.
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1. s′
0 = s0 < s1 = s′

1. In this case, using Eqs. (19) and (20) we get

Rec(s′
0, s

′
1)

=
�
(k)
n−1

(
s′
1

2n−1

)

2
+

max
{

�
(k)
n−1

(
s′
0

2n−1

)
, �

(k−1)
n−1

(
s′
1

2n−1

)}

2

=
α · β

(t−k−1)
n−1 + (1 − α) · β

(t−k−2)
n−1

2
+

α · β
(t−k)
n−1 + (1 − α) · β

(t−k−1)
n−1

2
= α · β(t−k)

n + (1 − α) · β(t−k−1)
n

= α · �(k)n (β(t)) + (1 − α) · �(k)n (β(t−1)) = �(k)n (μ).

2. s′
0 < s0 ≤ s1 < s′

1. Informally speaking, in this case the adversary does not tamper
and leave the bit 0 unchanged. We will use the fact that �

(k)
n−1 is concave, which was

proved in Lemma 26. Note that in the corresponding Case 2 when the probability
μ was that of an exact ball (μ = β

(t)
n ) we could have also used the fact that �

(k)
n−1

is concave, but in that case we only used the concavity over a linear part of �
(k)
n−1.

However, in our current case, we could no longer only rely on the piecewise linearity
of �

(k)
n−1 and we would use its concavity. More formally,

Rec(s0, s1) =
�
(k)
n−1

(
s1

2n−1

)
+max

{
�
(k)
n−1

(
s0

2n−1

)
, �

(k−1)
n−1

(
s1

2n−1

)}

2

≥ �
(k)
n−1

(
s1

2n−1

)
+ �

(k)
n−1

(
s0

2n−1

)

2

≥
�
(k)
n−1

(
s′
1

2n−1

)
+ �

(k)
n−1

(
s′
0

2n−1

)

2
(by concavity of �

(k)
n−1)

= Rec(s′
0, s

′
1) = �(k)n (μ).

3. s0 < s′
0 < s′

1 < s1. Informally speaking, in this case the adversary does change the
bit 0 into 1, and we rely on the monotonicity of �

(k)
n−1. More formally,

Rec(s0, s1) =
�
(k)
n−1

(
s1

2n−1

)
+max

{
�
(k)
n−1

(
s0

2n−1

)
, �

(k−1)
n−1

(
s1

2n−1

)}

2

≥ �
(k)
n−1

(
s1

2n−1

)
+ �

(k−1)
n−1

(
s1

2n−1

)

2

≥
�
(k)
n−1

(
s′
1

2n−1

)
+ �

(k−1)
n−1

(
s′
1

2n−1

)

2
(by monotonicity of �

(k)
n−1)

= Rec(s′
0, s

′
1) = �(k)n (μ).

��
Claim 28. �

(k)
n ≤ OnExp(k)n .
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Proof. The proof is by induction on n. The claim hold for n = 0. Using Claims 23 and
27 and induction we get:

OnExp(k)n ≥ Rec(k)n

[
�
(k)
n−1, �

(k−1)
n−1

]
≥ �(k)n .

��
Now we can finish the proof of Theorem 18. If μ = β

(t)
n for some t ∈ 〈n〉, it then

always holds that �
(k)
n (μ) ≥ OnExp(k)n (μ) simply because �

(k)
n (μ) describes how much

one particular protocol (i.e., τt) can bound adversary’s power, while OnExp(k)n (μ) is
equal to the minimum of the same quantity among all protocols. Therefore, by Claim 28,

OnExp(k)n

(
β
(t)
n

)
= �

(k)
n

(
β
(t)
n

)
= β

(t−k)
n . ��

Relaxing the Last Message to Non-binary. Here we discuss an extension to The-
orem 18 that follows essentially from the same proof. Theorem 18 shows that online
attacks are as powerful as offline attacks when we focus on protocols with uniform
binary messages. Now, suppose we allow the last message of the protocol to be an
arbitrary long message, while every other message is supposed to be a uniform bit.
We refer to such protocols as binary-except-last-message (BELM) protocols. Note that
BELM protocols constitute a larger set of protocols, and hence they potentially could
include more robust protocols that further limits the power of (offline or online) attacks.
We observe that, essentially the same proof as that of Theorem 18 shows that we can
strengthen Theorem 18 as follows.

Theorem 29 (Informally stated: extending Theorem 18 to BELM protocols). Suppose
a random processw≤n = (w1, . . . ,wn) has the property that all the first n − 1 blocks
are independent and uniform random bits, and suppose f is a Boolean function defined
over this random process. Suppose Pr[f(w≤n) = 1] = β

(t)
n for some t ∈ [n]. Then,

there is an online k-replacing adversary over u≤n that generates joint random process

(u≤n,v≤n) with v≤n being the output process, such that Pr[f(w≤n) = 1] ≥ β
(t−k)
n .

Note that this is optimal in a strong sense: there is a fully binary protocol (i.e., the
threshold function τt) for which even offline k-replacing adversaries are limited to
achieve offline expansion at most β(t−k)

n .

Proof Sketch. The proof of the above improved variant of Theorem 18 relies on two
observations. One of them is the basis of the induction, when n = 1, and the other one
is the improved induction step which follows from the improve variant of Claim 27 as
explained below.

Relaxing Transformation of Definition 20. Claim 27 was the heart of the proof of
Theorem 18. In this claim, we deal with the recursion of Eq. (15) which is defined by
splitting integer s into smaller integers, computing some recursive expansions and tak-
ing the minimum. It is easy to see that Claim 27 holds even if we relax the way we split
s into smaller quantities and pick such pairs as real values

D̃ivn−1(s) =
{
(s0, s1) | s0, s1 ∈ R, 0 ≤ s0 ≤ s1 ≤ 2n−1, s = s0 + s1

}
.
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In particular, let R̃ec
[k]
n be the similar transformation using this relaxed variant

D̃ivn−1(s) instead. First, note that by this relaxation instead, we might end up getting

smaller expansions; namely, R̃ec
(k)
n ≤ Rec(k)n . Yet, the same proof shows that Claim 27

holds even if we use R̃ec
(k)
n instead of Rec(k)n . Moreover, in (both variants of) Case 1,

it is now always possible to achieve the equality using some pair in D̃ivn−1(s). There-
fore, this time we obtain a slightly stronger statement than that of Claim 27 for BELM
protocols as follows.

Claim 30 (Variant of Claim 27 for BELM protocols). �(k)n = R̃ec
(k)
n [�(k)n−1, �

(k−1)
n−1 ].

The proof of the claim above is identical to that of Claim 27. ��
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Gałązka, Małgorzata II-397
Gao, Ji II-718
Garg, Sanjam III-94, III-126
Gentry, Craig III-32
Gilboa, Niv II-129
Goel, Aarushi I-717, II-97
Gong, Huijing II-658
González, Alonso I-529
Goyal, Rishab II-224
Goyal, Vipul I-654, II-162, II-518
Guan, Jiaxin II-365
Guo, Siyao I-177

Hajiabadi, Mohammad III-94, III-126
Halevi, Shai II-129, III-32
Hartmann, Dominik III-317
Hasson, Ben II-310
Hesse, Julia II-626, III-286
Hirt, Martin I-623, I-686, II-35
Hofheinz, Dennis III-286, III-317

Ishai, Yuval II-129

Jaeger, Joseph I-209
Jain, Abhishek II-97, II-518



752 Author Index

Jeffery, Stacey I-90
Jost, Daniel I-499

Kalai, Yael Tauman I-330
Kaleoglu, Fatih I-299
Kamath, Chethan II-486, II-550
Karanko, Pihla II-429
Karchmer, Ari III-1
Karthikeyan, Harish III-254
Katsumata, Shuichi I-466
Kellner, Michael I-62
Khurana, Dakshita I-654
Kiltz, Eike III-317
Kippen, Hunter II-658
Kitagawa, Fuyuki I-31
Kiyoshima, Susumu I-369
Klein, Karen II-486, II-550, III-222
Klooß, Michael I-558
Kohl, Lisa III-286
Komargodski, Ilan III-447

Langrehr, Roman III-286
Lanzenberger, David II-605
Lee, Jonathan II-1
Li, Jialin III-126
Li, Qian I-177
Liu, Feng-Hao III-157
Liu, Qipeng I-177
Liu, Tianren II-194
Liu-Zhang, Chen-Da I-623, I-686, II-35
Lizurej, Tomasz II-397
Lord, Sébastien I-90
Lysyanskaya, Anna III-188

Magri, Bernardo III-32
Mahloujifar, Saeed II-718
Mahmoody, Mohammad II-718
Malavolta, Giulio I-121, I-149, I-654
Masserova, Elisaweta II-162
Matt, Christian III-350
Maurer, Ueli I-499, I-686, II-605
Mazor, Noam II-457
Mechler, Jeremias I-750
Miao, Peihan III-126
Müller-Quade, Jörn I-750

Nielsen, Jesper Buus III-32
Nishimaki, Ryo I-31
Nof, Ariel II-129

Ohkubo, Miyako I-435
Ostrovsky, Rafail II-518

Parno, Bryan II-162
Pascual-Perez, Guillermo III-222
Pass, Rafael III-447
Peikert, Chris III-480
Pepin, Zachary III-480
Pietrzak, Krzysztof II-397, II-486, II-550,

III-222
Podder, Supartha I-90
Prabhakaran, Manoj II-97
Pu, Sihang III-94

Quach, Willy II-256

Raghunath, Rajeev II-97
Ravi, Divya I-591
Rohrbach, Felix II-429
Rosen, Alon I-435
Rotem, Lior III-382, III-415

Sadeghi, Elahe I-466
Schäge, Sven III-317
Segev, Gil III-415
Shahverdi, Aria II-658
Sharp, Chad III-480
Shmueli, Omri I-62
Sirkin, Naomi III-447
Song, Fang I-209
Song, Yifan II-162
Sundaram, Aarthi I-90

Tabia, Gelo Noel I-240
Tang, Qiang II-689
Tessaro, Stefano I-209
Tomida, Junichi II-224

Unruh, Dominique I-240
Ursu, Bogdan I-466, III-317

Vadhan, Salil II-582
Vaikuntanathan, Vinod I-330, II-256
Venturi, Daniele II-333

Waldner, Hendrik III-350
Walter, Michael II-550, III-222
Wang, Han III-157
Wang, Tianhao II-582



Author Index 753

Wang, Zhedong III-157
Wee, Hoeteck II-256, II-288
Wichs, Daniel II-256, III-254

Yakoubov, Sophia III-32
Yamakawa, Takashi I-31
Yanai, Avishay II-66
Yeo, Kevin III-62

Yeo, Michelle II-397
Yogev, Eylon I-401

Zacharakis, Alexandros I-529
Zhandry, Mark II-365
Zhang, Jiapeng I-177, II-457
Zhang, Rachel Yun I-330
Zikas, Vassilis II-626


	Preface
	Organization
	Contents – Part II
	Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial Commitments
	1 Introduction
	1.1 Limitations of Prior Approaches
	1.2 Review of LCC-DLOG Techniques
	1.3 Core Techniques Enabling a Logarithmic Verifier in Dory

	2 Preliminaries
	2.1 Notation
	2.2 Computationally Hard Problems in Type III Pairings
	2.3 Succinct Interactive Arguments of Knowledge
	2.4 Commitments
	2.5 Polynomial Commitments and Evaluation from Vector-Matrix-Vector Products

	3 An Inner-Product Argument with a Logarithmic Verifier
	3.1 Scalar-Product
	3.2 Dory-Reduce
	3.3 Dory-Innerproduct
	3.4 Batching Inner Products

	4 Inner Products with Public Vectors of Scalars
	4.1 General Reduction with O (n) cost
	4.2 Extending Dory-Reduce
	4.3 Extending Dory-Innerproduct
	4.4 Extending Batch-Innerproduct

	5 Vector-Matrix-Vector Products
	5.1 Batching
	5.2 Concrete Costs

	6 Dory-PC
	6.1 Concrete Costs of Dory-PC-RE
	6.2 Batching

	7 Implementation
	References

	On Communication-Efficient Asynchronous MPC with Adaptive Security
	1 Introduction
	1.1 Communication Complexity of Asynchronous MPC Protocols
	1.2 Contributions

	2 Preliminaries
	2.1 Communication and Adversary Model
	2.2 Zero-Knowledge Proofs of Knowledge
	2.3 Universally Composable Commitments
	2.4 Threshold Homomorphic Encryption

	3 Subprotocols
	3.1 Agreement Protocols
	3.2 Decryption Protocols
	3.3 Multiplication
	3.4 Triple Generation

	4 Asynchronous Adaptively Secure MPC Protocol
	4.1 Ideal Functionality
	4.2 Informal Explanation of the Protocol
	4.3 Main Theorem

	5 Near-Linear MPC in the Atomic Send Model
	5.1 Model
	5.2 VACS
	5.3 Triple Generation
	5.4 Main Theorem for the Atomic Send Model

	A  Details of the Subprotocols
	A.1  Decryption protocols
	A.2  Multiplication

	B  Protocol
	References

	Efficient Perfectly Secure Computation with Optimal Resilience
	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Open Problems

	2 Technical Overview
	2.1 Overview of the BGW Protocol
	2.2 Our Protocol
	2.3 Extensions
	2.4 Organization

	3 Preliminaries
	3.1 Definitions of Perfect Security in the Presence of Malicious Adversaries
	3.2 Robust Secret Sharing
	3.3 Bivariate Polynomial

	4 Weak Verifiable Secret Sharing and Extensions
	4.1 Verifying Shares of a (q,t)-Bivariate Polynomial
	4.2 Weak Verifiable Secret Sharing
	4.3 Evaluation with the Help of the Dealer
	4.4 Strong Verifiable Secret Sharing
	4.5 Extending Univariate Sharing to Bivariate Sharing with a Dealer

	5 Multiplication with a Constant Number of VSSs and WSSs
	5.1 Functionality – Multiplication with a Dealer
	5.2 The Protocol

	6 Extension: Arbitrary Gates with Multiplicative Depth-1
	References

	On Communication Models and Best-Achievable Security in Two-Round MPC
	1 Introduction
	1.1 Our Results in Detail
	1.2 Related Work

	2 Technical Overview
	2.1 Lower Bounds in the BC only Model
	2.2 BC+P2P Model
	2.3 BC+PKI Model

	3 Preliminaries
	3.1 Oblivious Transfer (OT)
	3.2 Multi-CRS Non-interactive Zero Knowledge (m-NIZK)

	4 Broadcast Model
	4.1 Lower Bound for t=1
	4.2 Impossibility of Two-Message mR-OT in the Plain Model

	5 BC+P2P Model
	5.1 Impossibility Result for Identifiable Result
	5.2 Fail-Stop Guaranteed Output Delivery

	6 BC+PKI Model: Guaranteed Output Delivery
	References

	Generalized Pseudorandom Secret Sharing and Efficient Straggler-Resilient Secure Computation
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Threshold Secret Sharing
	2.2 Computation Model: Layered Straight-Line Programs

	3 Generalized Pseudorandom Secret Sharing
	3.1 Overview
	3.2 The Gilboa-Ishai Framework
	3.3 Technical Tool: Covering Designs
	3.4 Generalized PRSS for Degree-d Polynomials
	3.5 Double Shamir Sharing
	3.6 Beyond Double Sharing

	4 Constructions for Semi-honest Security
	4.1 Baseline Protocol (with =1)
	4.2 Straggler Resilience
	4.3 Reducing Communication and Computation

	5 From Semi-honest to Malicious Security
	5.1 Privacy in the Presence of Malicious Adversaries
	5.2 Verifying Correctness of the Computation
	5.3 Putting It All Together - The Main Protocol

	References

	Blockchains Enable Non-interactive MPC
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries – CSaRs
	3 Our Non-interactive MPC Construction
	3.1 Construction Overview

	4 Optimizations
	5 Optimizing Communication and State Complexity in MPC
	5.1 Step. 1: MPC with Semi-malicious Security
	5.2 Step. 2: MPC with Fully Malicious Security
	5.3 Properties of the Resulting MPC Construction

	6 Guaranteed Output Delivery
	References

	Multi-party PSM, Revisited:
	1 Introduction
	1.1 Our Contributions
	1.2 Proof Overview
	1.3 Related Works

	2 Preliminaries
	2.1 Tensor
	2.2 Private Simultaneous Messages
	2.3 Randomized Encoding

	3 New Multi-party PSM Protocols
	3.1 A Framework for Multi-party PSM
	3.2 The Induced PSM Protocol
	3.3 When k is Small
	3.4 When k+1 is a Prime Power

	4 Unbalanced 2-Party PSM Protocols
	4.1 A Framework for 2-Party PSM
	4.2 The Induced PSM Protocol
	4.3 When  Has a Small Denominator

	5 Open Problems
	A  Proof of Eq. (9) and (10)
	B  Auxiliary PSM Protocols for "426830A x1 …xk, Y "526930B  + s
	B.1  The Multi-party Variant
	B.2  The 2-party Variant

	References

	Multi-Party Functional Encryption
	1 Introduction
	1.1 Unifying the View: Multi-Party Functional Encryption
	1.2 Comparison with Prior Work
	1.3 New Constructions
	1.4 Technical Overview
	1.5 Predicting New and Useful Primitives via MPFE

	2 Multi-Party Functional Encryption
	3 Multi-Authority ABE IPFE for LSSS Access Structures
	3.1 Specializing the MPFE Syntax
	3.2 Construction
	3.3 Correctness and Security

	4 Function-Hiding DDFE for Inner Products
	4.1 Specializing the MPFE Syntax
	4.2 Construction of Function-Hiding IP-MCFE
	4.3 Construction of Function-Hiding IP-DDFE

	References

	Succinct LWE Sampling, Random Polynomials, and Obfuscation
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview
	1.3 Discussion

	2 Preliminaries
	2.1 Notations
	2.2 Learning with Errors
	2.3 Lattice Tools
	2.4 Homomorphic Operations
	2.5 Succinct Randomized Encodings

	3 Succinct LWE Sampler: Definition and Amplification
	3.1 Definition and Discussion
	3.2 Weak Succinct LWE Samplers
	3.3 Amplification

	4 Candidate Succinct LWE Sampler
	4.1 A Basic Framework
	4.2 Correctness, Succinctness, and LWE with Respect to A*
	4.3 Instantiating the Parameters
	4.4 Alternate Candidate Construction
	4.5 Cryptanalysis
	4.6 Cryptanalytic Challenges

	5 Our Succinct Randomized Encoding Construction
	5.1 Security

	References

	ABE for DFA from LWE Against Bounded Collusions, Revisited*-8pt
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview I: T1/2
	1.3 Technical Overview II: ABE for DFA
	1.4 Prior Works
	1.5 Discussion

	2 Preliminaries
	2.1 Attribute-Based Encryption
	2.2 Lattices Background

	3 Trapdoor Sampling with T1/2 and a Computational Lemma
	3.1 LWE Implies T1/2-LWE
	3.2 Trapdoor Sampling with T1/2

	4 ABE for DFA Against Bounded Collusions
	4.1 Our Scheme
	4.2  sk-Selective Security

	5 Candidate ABE for DFA Against Unbounded Collusions
	References

	Distributed Merkle's Puzzles
	1 Introduction
	1.1 Distributed Key Agreement Based on Symmetric-Key Primitives
	1.2 Our Results
	1.3 Overview of the Protocol and Its Analysis
	1.4 Previous Work

	2 Preliminaries
	2.1 Graphs
	2.2 Random Functions and Encryption

	3 Distributed Key Agreement Protocols Based on Random Oracles
	4 The Setup Protocol
	4.1 Correctness
	4.2 Query and Communication Complexity
	4.3 Connectivity
	4.4 Security

	5 The Distributed Key Agreement Protocol
	5.1 Security Analysis
	5.2 Main Theorem

	6 Optimality of the Distributed Key Agreement Protocol
	7 Extensions
	7.1 The Semi-honest Model
	7.2 Communication-Security Tradeoff

	References

	Continuously Non-malleable Secret Sharing: Joint Tampering, Plain Model and Capacity
	1 Introduction
	1.1 Non-malleability Against Joint Tampering
	1.2 Our Results
	1.3 Overview of Techniques
	1.4 Related Work

	2 Standard Definitions
	2.1 Non-interactive Commitment Schemes
	2.2 Symmetric Encryption
	2.3 Information Dispersal

	3 Secret Sharing Schemes
	3.1 Tampering and Leakage Model
	3.2 Related Notions

	4 Rate-Zero Continuously Non-malleable Secret Sharing
	4.1 Induction Basis
	4.2 Inductive Step
	4.3 Putting It Together

	5 Rate Compilers and Capacity Upper Bounds
	5.1 Capacity Upper Bounds
	5.2 Rate Compiler (Plain Model)

	6 Instantiations
	6.1 Leakage-Resilient p-time Non-malleable Code
	6.2 Leakage-Resilient Continuously Non-malleable Secret Sharing
	6.3 Breaking the Rate-One Barrier

	References

	Disappearing Cryptography in the Bounded Storage Model
	1 Introduction
	1.1 Motivating Examples
	1.2 Our Results
	1.3 Defining Obfuscation in the Bounded Storage Model
	1.4 Applications
	1.5 Constructing Online Obfuscation
	1.6 Related Work, Discussion, and Future Directions

	2 Preliminaries
	3 Defining Obfuscation in the Bounded Storage Model
	4 Public Key Encryption with Disappearing Ciphertext Security
	4.1 Definition
	4.2 Lossy Function
	4.3 Construction
	4.4 Proof of Security

	5 Disappearing Signature Scheme
	5.1 Definition
	5.2 Prefix Puncturable Signature
	5.3 Construction

	6 Functional Encryption
	6.1 Definition
	6.2 Construction

	7 Candidate Construction 1
	7.1 Matrix Branching Programs
	7.2 The Basic Framework
	7.3 Instantiating Convert

	8 Candidate Construction 2
	References

	Trojan-Resilience Without Cryptography
	1 Hardware Trojans
	1.1 Detecting Digital Hardware Trojans

	2 Definition and Security of Simple Schemes
	2.1 Test and Deployment
	2.2 Completeness
	2.3 Security of Simple Schemes
	2.4 Lower Bounds
	2.5 Efficiency of Lower Bound vs. Constructions
	2.6 Our Results and Conjectures
	2.7 Comparison with VC and MPC
	2.8 Stateless Trojans
	2.9 History-Independent Trojans
	2.10 Proof Outline

	3 Conjectured Security of 2-Redundant Schemes
	3.1 A 2-Redundant Scheme 2

	4 A Scheme for History-Independent Trojans
	4.1 Notation
	4.2 Security of 2
	4.3 A Technical Lemma

	5 A 12-Redundant Scheme 12
	5.1 The 12 Scheme
	5.2 Security of 12
	5.3 Reapplying the Hybrid Argument

	6 Outlook and Open Problems
	References

	On Derandomizing Yao's Weak-to-Strong OWF Construction
	1 Introduction
	1.1 On Security-Preserving Amplification of Weak OWFs
	1.2 Our Contribution
	1.3 Relation to Correlated-Product and Correlated-Input Security
	1.4 Related Works
	1.5 Technical Overview
	1.6 Relation to Threshold Secret Sharing

	2 Preliminaries
	2.1 Entropy Toolbox

	3 Main Results
	3.1 Black-Box Constructions and Reductions
	3.2 Theorems

	4 Oracle Distributions
	5 Proof of Theorem 14
	5.1 RA is Not a Successful Weak OWF Inverter
	5.2 A is a Successful Strong OWF Inverter

	6 Constructions with Post-processing
	A Additional Lemmas and Proofs
	B  Proof of Theorem 18 (F is a weak OWF)
	References

	Simple Constructions from (Almost) Regular One-Way Functions
	1 Introduction
	1.1 Our Contribution
	1.2 Proof Overview
	1.3 Additional Related Work
	1.4 Paper Organisation

	2 Preliminaries
	2.1 Notations
	2.2 One-Way Functions
	2.3 Pseudorandom Generators
	2.4 Universal One Way Hash Function
	2.5 2-Universal Hash Families
	2.6 Useful Inequalities

	3 The PRG Construction
	3.1 Proving Lemma 3.2

	4 The UOWHF Construction
	4.1 Proving Claim 4.3
	4.2 Proving Lemma 4.2

	A  Missing Proofs
	A.1  Pseudorandom Generator
	A.2  Universal Hash Families

	References

	On Treewidth, Separators and Yao's Garbling
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Garbling
	2.3 Pebble Games
	2.4 Graph Theory

	3 Hybrid Argument and the BGR Pebble Game
	3.1 Pebble Configurations and Hybrids
	3.2 Indistinguishability of Neighbouring Hybrids
	3.3 Adaptive Indistinguishability via Piecewise Guessing

	4 BGR Pebbling Strategy
	4.1 BGR Pebbling via Separators
	4.2 Optimised Piecewise Guessing

	5 Conclusion and Open Problems
	References

	Oblivious Transfer from Trapdoor Permutations in Minimal Rounds
	1 Introduction
	1.1 Our Results

	2 Technical Overview
	2.1 Related Work
	2.2 Organization of the Paper

	3 Background
	3.1 Injective TDFs and TDPs
	3.2 Commit-and-Open Protocols
	3.3 Oblivious Transfer and 2-PC

	4 Dual Witness Encryption (DWE)
	4.1 DWE for the Languages of DH and QR Tuples

	5 Black-Box DWE for Trapdoor Permutations
	5.1 Our Constructions

	6 Almost Secure OT Protocol
	7 Secure OT from Almost Secure OT
	8 Black-Box Round Optimal 2PC
	References

	The Cost of Adaptivity in Security Games on Graphs
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Technical Overview
	2.1 Our Approach
	2.2 Step I: Combinatorial Upper Bounds
	2.3 Step II: From Combinatorial Upper Bounds to Cryptographic Lower Bounds

	3 Preliminaries
	3.1 Graph Theory
	3.2 Graph Pebbling

	4 The Builder-Pebbler Game
	4.1 Player Strategies

	5 Combinatorial Upper Bounds
	5.1 Unrestricted Pebblers

	6 Cryptographic Lower Bound I: Generalised Selective Decryption
	6.1 Lower Bounds for GSD

	7 Cryptographic Lower Bound II: Constrained PRF
	7.1 Definition, Construction and Security Assumption
	7.2 Lower Bound for the GGM CPRF

	References

	Concurrent Composition of Differential Privacy
	1 Introduction
	1.1 Differential Privacy
	1.2 Composition of Differential Privacy
	1.3 Interactive Differential Privacy
	1.4 Our Contributions

	2 Definitions and Basic Properties
	3 Concurrent Composition for Pure Interactive Differential Privacy
	4 Concurrent Composition for Approximate Interactive Differential Privacy
	5 Characterization of ConComp for Pure Interactive Differential Privacy
	6 Experimental Results
	References

	Direct Product Hardness Amplification
	1 Introduction
	1.1 Security Amplification
	1.2 Hardness of the Direct Product of Two Games
	1.3 Contributions and Outline
	1.4 Related Work

	2 Preliminaries
	3 The Amplification Theorem
	3.1 The Setting
	3.2 Amplification for Monotonic 
	3.3 Amplification for Monotonic and Concave 

	4 The Square Is Not (Always) Optimal
	5 Applying the Amplification Theorem
	6 Conclusions and Open Problems
	A  Proofs
	References

	On the (Ir)Replaceability of Global Setups, or How (Not) to Use a Global Ledger*-10pt
	1 Introduction
	2 Preliminaries: Global Subroutines in UC
	2.1 UC Basics
	2.2 UC with Global Subroutines

	3 Replacement Theorems for a Global Subroutine
	3.1 Common Preconditions of Our Theorems
	3.2 Warm-Up: Replacing Real-World Global Setups
	3.3 Full Replacement of the Global Subroutine
	3.4 Case Study: Comparable Constructions and Random Oracles

	4 Generalization to Many Global Subroutines
	References

	BKW Meets Fourier New Algorithms for LPN with Sparse Parities
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 Notations
	2.2 Fourier Analysis

	3 Constant Noise Setting
	3.1 BKWR
	3.2 Learning Secret Coordinates
	3.3 Combining the Results
	3.4 Parameter Settings

	4 Low Noise Setting
	4.1 Sample Partition
	4.2 Learning Secret Coordinates
	4.3 Combining the Results
	4.4 Parameter Settings

	5 Learning Other Classes of Functions
	A  Appendix
	A.1  Probability Bounds
	A.2  Learning Parities
	A.3  Miscellaneous
	A.4  Proof of Lemma 3.1
	A.5  Proof of Theorem 3.2
	A.6  Proof of Lemma 3.3
	A.7  Proof of Lemma 4.1
	A.8  Proof of Theorem 4.2
	A.9  Proof of Lemma 4.3

	References

	Computational Robust (Fuzzy) Extractors for CRS-Dependent Sources with Minimal Min-entropy
	1 Introduction
	2 Preliminaries
	3 CRS-Model Robust Extractor: Definitions
	4 A New Lower Bound for IT-Secure Robust Extractors
	5 Computational Robust Extractors
	6 Extension to Robust Fuzzy Extractors
	7 Conclusion and Open Problems
	References

	Polynomial-Time Targeted Attacks on Coin Tossing for Any Number of Corruptions
	1 Introduction
	1.1 Technical Overview
	1.2 Further Related Work

	2 Preliminaries
	2.1 Useful Facts

	3 Attacking Protocols with Any Message Length
	4 Optimal Attacks for Uniform Binary Messages
	References

	Author Index



