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Abstract. Hand signs have long been a part of elementary music theory
education systems through the use of Kodály-Curwen Solfège hand signs.
This paper discusses a deep learning convolutional neural network model
that can identify 12 hand signs and the absences of a hand sign directly
from pixels both quickly and effectively. Such a model would be useful
for automated Solfège assessment in educational environments, as well
as, providing a novel human computer interface for musical expression. A
dataset was designed for this study containing 16,900 RGB images. Addi-
tional domain-specific image augmentation procedures were designed for
this application. The proposed CNN achieves a precision, recall, and F1
score of 94%. We demonstrate the model’s capabilities by simulating a
real-time environment.
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1 Introduction

Solfège is a musical education method that makes use of static hand signs to
represent musical notes. The hand signs correspond to the 12 tone equal tem-
perament system, common in Western Music, and act as a kinesthetic aid for
learning singing [10,17]. This elementary system’s popularity, history, and for-
malized mapping of hand signs make it a good candidate to automate the iden-
tification process so that it can be deployed in learning applications.

This paper identifies an effective convolutional neural network for classifying
Solfège hand signs. During each stage of development, careful consideration was
made to make this network useful in a wide variety of applications. Particular
emphasis was placed on ensuring real world performance was responsive, adapt-
able, and accurate. The target platform during experimentation was a mid-range
consumer PC using a single webcam. The two proposed use cases that would
benefit from the CNN identified in this paper are that of applications in the edu-
cational and artistic domains. Many education systems globally are increasing
their use of online resources and automated evaluations which facilitate larger
audiences as well as distance learning. These educational tools often require tai-
lored solutions to provide the most effective experience for the users. Using our
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CNN, an educational application could be built which teaches these signs to
students and validates that they are correctly learning the techniques. Any cur-
riculum that utilizes Solfège could deploy this application as a convenient way
to track a student’s progress.

Additionally, this CNN could provide a system to be used as an input device
to control an instrument. A common technical standard for controlling instru-
ments is MIDI. The predicted labels could be output as MIDI signals, allowing
for seamless integration into many synthesizers and digital audio workstations.
This would allow for live performances using only the Solfège hand signs as an
input.

In this paper, we propose a CNN for real-time Solfège hand sign classifications
which was trained on our augmented dataset. Our contributions include the
CNN architecture, dataset curation, augmentation methodology, and a real world
simulation. We evaluate our method extensively by analyzing and presenting the
precision, recall, F1 scores, and confusion matrix for our proposed architecture.
Our model is cross-validated and subject to an ablation study. We also compare
the effects that input resolution has on accuracy and computation time. Finally,
we simulate real world accuracy by feeding a video through the network to
validate usability in applications.

2 Related Work

Barehanded image recognition has a long history in human computer interac-
tion applications [19]. In recent years, Convolutional Neural Networks (CNN)
have been a boon for image classification, recognition, segmentation, but also
barehanded human computer interaction [5]. CNNs are capable of learning and
extracting features directly from pixels, recognizing patterns, classifying images,
and have been used to solve similar problems to the domain presented here [8].
Advances in that field which focused on human computer interaction have cre-
ated many educational and accessibility tools, such as sign language recogni-
tion [2]. Sign language recognition is an interdisciplinary topic combining ele-
ments of computer vision, natural language processing, and machine learning.
While some problems in this field require temporal information or linguistic
considerations, static image classification does not rely on context external to
the current frame. Some work has been done specifically to solve the temporal
aspect of recognizing hand gestures in sign language by implementing the use of
3D CNNs [4]. In this paper, we propose single frame predictions on static hand
signs which is similar to other static sign language detection research [20]. We
account for real-time use on video through careful dataset augmentation and
include a real-time video based analysis for evaluation. A comparison of CNN
models used for static image classification is found in Table 1.

Solfège as a whole encompasses several techniques and is often combined
with other methods to aid in learning musicianship skills. For example, there
are methods that use a set of syllables to help memorization and audiation of
pitches, or assigning words and phrases to different rhythms. Other works have
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Table 1. Related CNN models used for classification

Classification
domain

Input
dimensions

Convolution
layers

Fully connected
layers

Regularization Accuracy

Poultry
health [6]

150 × 300 3 1 Dropout 86%

Dentistry [3] 996 × 564 6 2 Dropout 87%

Sign
language [12]

128 × 128 4 1 None 92%

Age and
Gender [1]

227 × 227 4 2 Dropout and batch
normalization

96%

automated the assessing of accuracy for singing pitch or gestural tempo [13,14].
Another work uses pitches played back to visually impaired users to help detect
and analyze the position of objects in front of them [7]. While these works do use
Solfège elements in unique applications, they do not contribute to the specific
domain of hand sign classification.

Solfège hand sign recognition is an under-researched area with only a single
work covering the topic. The only related work feeds an isolated hand silhouette
into a random forest classifier running on a Google Glass device to make near
real time predictions [15]. While the classification accuracy reported in this
paper is high at 95%, it uses only seven Solfège hand signs, which significantly
reduces the musical possibilities. The Google Glass device used captures images
in an egocentric perspective, which is an uncommon perspective in consumer
capture hardware like laptops, cell phones, and webcams.

3 Dataset

The dataset used in these experiments was built specifically for this applica-
tion. No other dataset for this kind of application is publicly available to the
best of the Authors’ knowledge. It contains 16,900 photos evenly split across
13 different label classifications and with images captured from several differ-
ent environments. All photos were captured in RGB format at a resolution of
640× 480 pixels using a readily available consumer webcam. Several consider-
ations went into the design of this dataset, most notably the label selection,
collection hardware, and background environments.

3.1 Labels

There are several Solfège hand signs and variations, so we must specify which
are included in the dataset. A subset of the possible Solfège signs were selected
by balancing functionality and complexity. To represent the 12 tones found in
the chromatic scale, at least 12 symbols are needed. Solfège includes several
enharmonically equivalent notes, meaning that there are multiple hand signs that
map to the same notes. To reduce the number of labels, we have not included any



42 D. Ferreira and B. Haworth
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Fig. 1. Dataset and subsets breakdown

enharmonically equivalent symbols in our dataset. The 12 selected symbols used
are the main seven Diatonic notes, as well as the five Flat notes, as seen in Fig. 2.
Some methods of teaching Solfège add the additional element of assigning each
symbol a location in vertical space. This potentially complicates the network
used for identification and thus was omitted. In return, this grants the user
freedom to show the sign anywhere within the frame and for the network to
be able to recognize it. We discuss this further in our Sect. 6. Another necessary
label in the dataset is a null symbol representing any frame that does not contain
one of the 12 selected Solfège signs. This would be useful in both educational
and artistic applications when a user does not want to play a note, as well as
real time applications for disambiguation of hand movement between notes. A
similar approach is used in the other work with their inclusion of a ‘no gesture’
class; however, they use another additional label for ‘noisy’ data, when no hand
sign is present [15]. We combine the content of those two separate labels into
a single one, which we call ‘no symbol’, since the functionality desired is the
same in either case. The data collected for our null symbol include images with
no hands visible, a hand that is visible but not showing any Solfège sign, and a
hand that is showing a Solfège sign but is blurred or obscured beyond human
recognition. The latter class of images was derived from empirical tests that
showed this improved the misclassification of hand movements between symbols
in the real-time case where motion blur may be extreme on consumer webcams.
This brings the total number of labels to 13.

3.2 Preprocessing

The first stage of processing the dataset is to break it into three different subsets;
training, validation, and test sets. Twenty percent of the dataset was reserved for
testing, T1 as seen in Fig. 1. The remaining set is broken into five even pieces, F1
through F5, which will be used for cross-validation during training. All inputs
into the network are scaled down to a resolution of 80× 60 pixels for network
input. This resolution allows our network to quickly process images, and we
found that, below this threshold, important features for classification were being
lost and accuracy significantly degraded.
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1. Do 2. Ra 3. Re 4. Me 5. Mi 6. Fa

7. Se 8. Sol 9. Le 10. La 11. Te 12. Ti

Fig. 2. Solfège hand signs samples from dataset, in ascending musical order. Typi-
cal samples from the dataset include noisy backgrounds, humans, and typical indoor
background elements, the samples shown here have been cropped for symbol clarity.

There were several different augmentations applied to the dataset during
training. The set of possible augmentations, S, correspond to seven unique para-
metric transformations, A1 through A7, such that Sn can be any combination
of A1 through A7 within their respective ranges given in Table 2.

Table 2. Transformations used for dataset augmentation

Index Transformation Range

A1 Rotation ±12◦

A2 Zoom out 10–30%

A3 Width shift ±15%

A4 Height shift ±15%

A5 Shear ±15%

A6 Brightness reduction 30%

A7 Horizontal flip Binary

We constrain the range for A1 such that it preserves the image’s orientation,
since some of the hand signs are rotationally variant, and we are designing for
a landscape input. A2 is used to ensure that after any combination of transfor-
mation, the hand sign is still within the input frame. After Sn is applied to an
image, any part of the transformed image that does not fill the entire CNN input
dimension is filled with black pixels.

4 Method

The proposed CNN architecture and variations were inspired by similar state-
of-the-art designs. This section outlines an effective CNN, discusses our training
procedures, and compares variations in an ablation study.
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4.1 CNN Architecture

Our architecture uses three convolutional layers, each followed by a batch nor-
malization layer, Maxpool layer, and then dropout layer, after which is flattened
and passed to a single fully connected layer before the output layer with the
final 13 neurons. Figure 3 provides a visual representation of our architecture.
Every convolutional and dense layer used a ReLU function for activation, with
the exception of the output layer, which used a Softmax function. Each convo-
lution uses a 3 × 3 kernel size, a stride of two, 64 filters, and is zero padded to
output the same height and width dimension as the input. The Maxpooling layer
uses a 2 × 2 window and is used to downsample the feature maps. Each dropout
layer randomly sets 30% of input units to zero. After being flattened, the input
is passed into a fully connected layer with 1024 neurons. The last layer uses a
Softmax activation to output a probability across our 13 classes. The input to
the system is a 80 × 60 RGB image array.

80 x 60 x 3 80 x 60 x 64 40 x 30 x 64 20 x 15 x 64 10 x 7 x 64 1 x 4480 1 x 1024 1 x 13

Convolution Batch Normalization Maxpool Dropout Flatten Dense
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Fig. 3. Model architecture, from the input image on the left to the output probability
on the right.

4.2 Training

Our proposed model, as well as all other models constructed for comparison,
use the same training methods and parameters outlined in this section. We used
Keras as our framework for all of our experiments, and trained the models using
an AMD Ryzen 9 5900X CPU. We used the Adam optimization algorithm, with
a learning rate of 0.001, beta 1 of 0.85, beta 2 of 0.999, and epsilon value of
1e−7. Each model was trained over 250 epochs with a batch size of 64. Each
image used during learning was passed through Sn for augmentation at run-time.
Checkpoints were saved as the model trains, and the checkpoint with the highest
validation accuracy was selected.
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4.3 Ablation Study

In this section we perform an ablation study on our proposed architecture. Four
elements of our architecture were tested in isolation to validate the design. The
components considered in this study are the pooling layer methods, normal-
ization techniques used, convolution layer configuration as well as number of
neurons in the fully connected layer.

We compare two different pooling methods in Table 3, where every pooling
layer in the model is replaced with the corresponding method. Both batch nor-
malization and dropout are techniques used to mitigate overfitting and reduce
training time [11,16], and as seen in Table 1, are commonly used in similar appli-
cations. We compare the effects that a variety of configurations has on our model
in Table 4. The batch normalization and dropout layers used in this experiment
have been used between every convolution layer in the network. Table 5 shows
the result of adding an additional duplicate convolution layer, as well as remov-
ing one. Table 6 compares a range of values for the number of neurons in the
fully connected layer of the network. Each component of our proposed network
utilizes the optimal solution within the range of tested configurations.

Table 3. Pooling method comparison

Pooling method Accuracy

MaxPooling2D 93.9%

AvgPooling2D 91.6%

Table 4. Regularization comparison

Regularization method Accuracy

None 89.9%

Dropout 88.6%

Batch normalization 90.4%

Both 93.9%

Table 5. Convolution layer comparison

Convolution layers Accuracy

2 86.6%

3 93.9%

4 84.3%

Table 6. Fully connected layer comparison

Layer width Accuracy

1024 93.9%

512 90.9%

256 90.5%

5 Evaluation

Our proposed model was five-fold cross-validated and achieved an average accu-
racy of 93.3%, with the best model having an F1 score of 93.9% on the T1
dataset. The best model was selected from the cross-validation and was used
for the metrics in Table 7 and Fig. 4. The precision, recall and F1 scores are
presented in Table 7. Figure 4 is a confusion matrix, which highlights a couple
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classes that perform poorly. The largest anomaly in the confusion matrix illus-
trates the class Le’s poor recall performance, in particular that it misclassifies it
as Te 5.4% of the time. This can be attributed to the nature of the hand symbols
sharing similar features, as seen in Fig. 2.

Table 7. Model classification report. Each class has 260 samples of support.

Precision Recall F1 score

Do 0.881 0.912 0.896

Fa 0.959 0.908 0.933

La 0.956 0.923 0.939

Le 0.940 0.896 0.917

Me 0.969 0.969 0.969

Mi 0.918 0.950 0.934

No symbol 0.936 0.954 0.945

Ra 0.961 0.958 0.960

Re 0.944 0.969 0.956

Se 0.946 0.942 0.944

Sol 0.945 0.985 0.964

Te 0.892 0.923 0.903

Ti 0.968 0.919 0.943

Average 0.940 0.939 0.939

5.1 Real World Application

Two experiments have been conducted to explore the real world performance of
the proposed CNN.

The resolution comparison in Table 8 explores the relationship between accu-
racy and computational cost. The model was retrained using different input res-
olutions. The computational cost is calculated by averaging the time it takes to
make a prediction using only a CPU, an Intel i7-6700HQ and an AMD Ryzen 9
5900X, in a Jupyter Notebook environment, across the 3380 samples in T1. To
contextualize the requirements for computation time of a single frame in terms
of music, a single 32nd note at 180 beats per minute lasts 42 ms. Another work
studied how sensitive humans are to latency when using a gesture controlled
instrument [9]. The work claims a 20 to 30 ms just noticeable difference, which
means our proposed model is just within the acceptable tolerance. Using only
the CPU for predictions increases accessibility since it does not rely on the user
possessing a capable, discrete GPU. A GPU implementation may be preferable
for optimal performance because of the classification speed benefits [18].
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Fig. 4. Confusion matrix

Table 8. Resolution performance comparison

Resolution Accuracy Computation time
i7-6700HQ

Computation time
Ryzen 9 5900X

160 × 120 90.9% 51.3 ms 25.1 ms

80 × 60 93.9% 42.5 ms 19.5 ms

40 × 30 88.0% 38.6 ms 17.0 ms

To evaluate the model’s accuracy on a real world incoming video feed, we cre-
ated a separate dataset, V 1, to simulate the environment. A continuous video
was captured at 30 frames per second where all 13 classes were performed in
sequential order with each appearing for approximately 10 s. The frames were
then annotated by a human, and then compared against the model’s offline pre-
dictions. The model achieved an accuracy of 89.3% over the 3918 frames. Another
experiment is necessary to identify the other computational costs not factored
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Fig. 5. The two most misclassified labels during real world experiment. Input images
have been cropped to focus on hand symbol for this diagram.

into these calculations. The latency for capturing webcam frames, processing
them into the network, outputting the class, creating the MIDI signal, and syn-
thesizing the corresponding sound were not included in our analysis. Figure 5
illustrates some of the worst performing classes during the real world experi-
ment, and highlights the similarity of visual features between certain symbols.
A three-dimensional CNN which uses a sequence of frames could be a possible
solution for low confidence predictions and the transitions interval between hand
signs.

6 Conclusion

This work builds a foundation for future Solfège applications that require hand
sign classification. Our proposed convolutional neural network achieves a 94%
accuracy and is capable of real-time predictions. Our evaluations motivate fur-
ther work into utilizing the model as a viable hand sign input method. In future
work, we hope to further improve handling low confidence classifications, as well
as, ensure the model’s robustness in a variety of environments. This also includes
the investigation of temporal methods and even sequence or Markov methods
for future sign prediction and correction. The video and static image datasets
are carefully varied to cross a broad range of environments and lighting condi-
tions, however they include the same participant. Similarly, a broader range of
camera sources and methodologies for normalizing sources for input should be
investigated for Solfège specific applications. Thus further dataset development
is needed to broaden the generalizability to arbitrary users. With the 13 classes
used in our dataset, we are limited to represent a single musical octave. By hav-
ing another input to represent octaves, one could combine such a method with
our model to map the entire chromatic scale. This is advantageous for designing
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a fully featured MIDI input method. In fact, with the success of this method
and the utility of Solfège, many human-computer interaction, usability, useful-
ness, education, and training opportunities arise. We look forward to expanding
the dataset, exploring usability and use cases, and optimizing the network for
specific applications.
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