
IVS3D: An Open Source Framework for
Intelligent Video Sampling and
Preprocessing to Facilitate 3D

Reconstruction

Max Hermann1,2(B), Thomas Pollok1, Daniel Brommer1, and Dominic Zahn1

1 Video Exploitation Systems, Fraunhofer Institute of Optronics, System
Technologies and Image Exploitation IOSB, Karlsruhe, Germany

{max.hermann,thomas.pollok,daniel.brommer,
dominic.zahn}@iosb.fraunhofer.de

2 Institute of Photogrammetry and Remote Sensing,
Karlsruhe Institute of Technology, Karlsruhe, Germany

max.hermann@kit.edu

Abstract. The creation of detailed 3D models is relevant for a wide
range of applications such as navigation in three-dimensional space, con-
struction planning or disaster assessment. However, the complex process-
ing and long execution time for detailed 3D reconstructions require the
original database to be reduced in order to obtain a result in reasonable
time. In this paper we therefore present our framework iVS3D for intel-
ligent pre-processing of image sequences. Our software is able to down
sample entire videos to a specific frame rate, as well as to resize and crop
the individual images. Furthermore, thanks to our modular architecture,
it is easy to develop and integrate plugins with additional algorithms.
We provide three plugins as baseline methods that enable an intelligent
selection of suitable images and can enrich them with additional informa-
tion. To filter out images affected by motion blur, we developed a plugin
that detects these frames and also searches the spatial neighbourhood
for suitable images as replacements. The second plugin uses optical flow
to detect redundant images caused by a temporarily stationary camera.
In our experiments, we show how this approach leads to a more bal-
anced image sampling if the camera speed varies, and that excluding
such redundant images leads to a time saving of 8.1 % for our sequences.
A third plugin makes it possible to exclude challenging image regions
from the 3D reconstruction by performing semantic segmentation. As
we think that the community can greatly benefit from such an approach,
we will publish our framework and the developed plugins open source
using the MIT licence to allow co-development and easy extension.

Keywords: 3D reconstruction · Preprocessing · Video sampling ·
Open source framework

D. Brommer and D. Zahn—Contributed equally to this work.

c© Springer Nature Switzerland AG 2021
G. Bebis et al. (Eds.): ISVC 2021, LNCS 13017, pp. 441–454, 2021.
https://doi.org/10.1007/978-3-030-90439-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90439-5_35&domain=pdf
https://doi.org/10.1007/978-3-030-90439-5_35


442 M. Hermann et al.

1 Introduction

Photogrammetric approaches like Structure-from-Motion require a set of images
in order to reconstruct a 3D scene. In the case of video sequences, not every
frame provides additional information that has not been already been available
through a previous frame. The manual preprocessing of image or video sequences
can require intensive manual labour, that can be easily automated. In the case
of recorded videos using an drone, there could be situations, where an operator
keeps the drone still at a location, before flying to the next location. This means
that the input video would contain a large set of redundant frames with very
similar image content, while the use of more frames slows down the reconstruc-
tion process drastically. Naive approaches, where the original frame rate is down
sampled to a lower frame rate, reduce the number of images in the data set
drastically, which in turn will have impact on the reconstruction speed as only a
subset of images has to be processed in the reconstruction pipeline. However, the
naive approach will not always result in a good selection of keyframes. Blurry
images impact the image matching and texturing process, where neighbouring
frames in the local neighbourhood of the sequence would provide a higher image
quality. Also images with a lot of dynamic objects like moving persons can impact
the reconstruction quality. Also situations in which the camera is not moving,
a selection of a frame with lower individually moving objects or low dynamic
static pixel ratio could also contribute to a higher quality. Popular reconstruc-
tion approaches like COLMAP [15] allow to provide an additional binary mask
per frame in order to prevent mismatches from regions with dynamic objects.
Our framework allows to create such masks automatically using a Mask R-CNN
[10] plugin. In this paper we present our framework iVS3D to tackle the task of
intelligent image preprocessing of videos or continuous image sequences for high
quality 3D reconstruction purpose. Our framework consists of a plugin based
architecture for extensibility. Our framework provides a COLMAP integration
and can be extended with further reconstruction tools. The code1 is released
using the MIT open source license. We hope that we can facilitate the task of
3D reconstruction from 2D images with this contribution and invite the commu-
nity for further contributions and improvements.

The paper is structured as follows: first related work is presented. Afterwards,
our approach and architecture is presented in Sect. 3. Experiments using our
framework are discussed in Sect. 4 and finally a conclusion is presented.

2 Related Work

Pre-processing strategies of video and image sequences for the photogrammetric
application of 3D reconstruction can be mainly divided into two categories. The
first category tries to reduce the number of frames in favour of a lower computa-
tional run-time cost and the second category tries to improve the quality in terms
of total 3D point reprojection error and visual quality after texture mapping. The
1 https://github.com/iVS3D/iVS3D.

https://github.com/iVS3D/iVS3D


IVS3D: An Open Source Framework for Intelligent Video Sampling 443

first category is extensively used by and integrated in visual SLAM techniques
[4,7], in order to reduce the memory footprint and optimization cost of Bundle
Adjustment. New keyframes are sampled from the input sequence only if the
relative translation and rotation to the previous keyframe exceeds a manually
specified threshold. Additionally, keyframes are removed by these methods dur-
ing run-time, in case a loop has been detected and the occurrence of redundant
keyframes from very similar views. This can result in a better set of keyframes
compared to the naive approach, where the complete sequence is simply sampled
to a lower frame rate. Bellavia et al. [2] proposed an online method to detect
and discard bad frames, i.e. blurry frames, resulting in a better reconstruction
quality. Ballabeni et al. [1] propose an image enhancement preprocessing strat-
egy to improve the reconstruction quality. It consists of multiple stages like color
balancing, exposure equalization, image denoising, rgb to grayscale conversion
and finally an adaptive median filtering. In this paper we do not propose a new
preprocessing strategy. The main contribution of our paper is the contribution
of an extensible open source framework with a number of baseline plugins to
the community, for preprocessing of image and video sequences in the context
of photogrammetric applications.

3 Approach

Our framework has two main goals: One is to speed up the downstream 3D
reconstruction by filtering images without enough novel image content while
maintaining the reconstruction quality. Secondly, the enhancement of the source
material by removing challenging areas. In this context, we mainly focus on
masking regions with a high degree of movement, such as pedestrians, cars or
vegetation. For easy extensibility and quick addition of new algorithms, we have
decided to use a plugin-based architecture. All of our baseline methods presented
below are encapsulated as plugins and can thus be individually added to the
processing chain. In the following, we will first discuss the basic architecture of
our framework and then describe the individual plugins with regard to frame
filtering and image region masking. Finally, we outline our ability to define, save
and execute specific workflows for batch processing.

3.1 Architecture Overview

We have designed the application as a model-view-controller architecture that
can integrate algorithms via two distinct interfaces. iVS3D is implemented with
the Qt framework using the programming language C++ and is therefore cross
platform capable. To allow everyone to add algorithms to iVS3D and to easily
share them we are using a plugin-based approach for all the algorithms. Plugins
can either extract specific images from the provided image sequences or gen-
erate additional image information. These explicitly selected images are called
keyframes in the following. For this architecture we rely on the plug-in function-
ality in Qt. As baseline methods we implemented four plugins, which are the



444 M. Hermann et al.

Nth frame plugin for fixed frame subsampling, the camera movement detection
plugin, the blur detection plugin and the plugin for semantic segmentation.

The graphical user interface shown in Fig. 1 gives an impression of the indi-
vidual components of our framework, which we will discuss in more detail in
the following. Our processing pipeline consists of a defined input that receives
either a video or a collection of individual images. These are transformed by
one or more plugins and then exported to a new location. In addition, the soft-
ware COLMAP can be started directly from our application with automatically
generated project files. In the following, the individual steps of the pipeline are
explained in more detail, whereby the sections are structured according to the
components marked in Fig. 1.

1 Input. To start the process, you can either open a project that is already in
progress or begin importing new data. For this we accept a folder with single
images as well as videos in the common formats. The project file contains the
source of the imported data as well as the settings and sampled key frames. If a
video file was imported the graphical user interface will display additional infor-
mation in the input section like the frames per second, resolution and duration.

2 Plugins. To process the input data we offer two types of plugins. The first one
represents the possibility to select keyframes from the currently loaded image
sequence, while the second one generates additional information for each image.
In order to enable the user to set parameters for the plugin, every plugin has its
own user interface where all necessary settings can be applied, which gets embed-
ded in the main application. For more complex plugins with several parameters,
we offer an optional interface that allows the plugin to use heuristics to determine
suitable settings in advance based on a subset of the input data. This allows, for
example, algorithms whose parameters depend indirectly on the image resolu-
tion to set more suitable default parameters. In contrast to this there are some
functions that need to be implemented to ensure that the plugin will work cor-
rectly. The sampleImages function is the core of each plugin. It receives access
to the input data and returns a vector of indices of keyframes based on the given
image sequence. To start the sampling process a plugin has to be selected and
configured by the user. With the brackets in the timeline 5 the amount of images
which are sampled can be reduced by excluding images on the respective left or
right side. In this way, parts of videos can be removed that show, for example, a
starting or landing unmanned aerial vehicle (UAV). After the sampling is done
the timeline will show the sampled key frames as red bars. Using multiple sam-
pling processes in sequence is supported as well as manual selecting and removing
keyframes. The second type of plugin focuses on creating additional information
that belong to a specific input image. Like the plugins of the first type, these
plugins have their own user interface, which is embedded in the main window
when the plugin is selected. The core of these plugins is the transform function
where they are given a image and return a vector of images. It has the ability to
show the newly generated images on the graphical user interface and to export
the newly generated images among the sampled images. A deeper explanation
of the already implemented plugins is given in Sect. 3.2.



IVS3D: An Open Source Framework for Intelligent Video Sampling 445

Fig. 1. Graphical user interface which is split in five different sections. 1. Input, 2.
Plugins, 3. Export, 4. Batch processing and 5. Video player with the timeline for
keyframes

3 Export. The last step of the processing pipeline is to export the sampled
images to the desired location. In addition to the export of the sampled images,
the export step offers additional functionality. Images can be cropped to e.g.
remove unwanted timestamps visible in the images and the resolution can be
changed. Every export creates a project file containing the import source, the
indexes of the sampled keyframes. After an export is finished a 3D reconstruc-
tion tool can be started from iVS3D. So far, we have integrated the software
COLMAP and generate project file and database. If binary masks for the images
were created these will be included to the project file as well. COLMAP then
starts with these files already imported which allows the user to start the recon-
struction process without having to manually set the input data again. Further-
more, the direct start of a headless reconstruction with COLMAP is possible
with our application.

3.2 Baseline Plugins Already Developed

The time complexity of methods such as feature matching or structure from
motion often scale quadratic, which makes processing large image data sets very
difficult. Choosing the right images is therefore crucial to avoid unnecessary pro-
cessing time. We have implemented three filtering plugins as baseline methods.
Firstly, a simple down-sampling to a fixed fps value, then the detection of redun-
dant frames by determining the optical flow and thirdly the filtering of blurred
images. We have also developed a plugin that uses semantic segmentation to
exclude regions from the image that are unusable for 3D reconstruction.



446 M. Hermann et al.

Plugin to Exclude Redundant Images. If the images for the 3D reconstruc-
tion are extracted from a video, it can happen that the camera is stationary
for some time and therefore the following images are nearly identical. To detect
and filter these redundant images, we identify missing camera movement by cal-
culating the optical flow following the method of Farnebäck [8] and specify a
threshold for minimum camera movement. The total algorithm can be split in
three major steps: 1.) Calculate optical flow with the method of Farnebäck 2.)
Estimate movement of the camera 3.) Select keyframes. As mentioned before
the plugin calculates the optical flow between two frames using the OpenCV [3]
implementation of the Farnebäck algorithm. Because this step can take some
time we added the possibility to use a CUDA optimised variant. The first frame
is called the reference image because it will be the starting point to which every
following image will be compared to until a new keyframe is selected. From the
estimated values of the optical flow we calculate the trimmed mean to get a
score for the amount of movement between two images, which is compared to
the parameter movement threshold. This approach is methodologically difficult
if two images are compared that do not show sufficient similarity. To prevent
this from happening the plugin uses a second parameter named reset delta. It
determines how many frames are allowed to be between two compared images
until in each case a new reference frame is set and the process starts again from
the beginning. In contrast to approaches such as simultaneous localization and
mapping (SLAM), we do not need any further information in addition to the
images. This includes the fact that a calibrated camera is not required to use
this plugin.

Plugin to Exclude Images Affected by Motion Blur. Sudden movements
can lead to motion blur, which significantly reduces the quality of such images.
Using a sliding window approach, we search for images without motion blur and,
if motion blur is detected, for spatially close replacement images. We calculate
a sharpness score for each image and compare it with the values of surrounding
images to get a relative score for the sharpness of the image. To calculate this
score, we rely on established methods. Pertuz et al. state in their work that
depending on the image content, type of camera and level of noise, different
algorithms produce competitive results [14]. We therefore offer two options as
baseline methods. First, the Tenegrad algorithm using Sobel operators according
to the implementation described in [14] and second a technique utilising the
variance of the image Laplacian [13]. If the sharpness score of an image divided
by the average value of its window is bigger than a defined threshold, this image is
considered sharp and will be selected as keyframe. In case keyframes are already
sampled, we can try to obtain keyframes with a lower motion blur by taking the
neighbouring images into account. A window of a certain size is created around
each keyframe, in which the image with the highest sharpness value is selected
as the substitute keyframe.

Enrichment with Additional Information by Semantic Segmentation.
Objects such as pedestrians or cars that move dynamically in the scene hinder
3D reconstruction because it is more difficult to find correspondences between



IVS3D: An Open Source Framework for Intelligent Video Sampling 447

images. Instead of selecting keyframes as previously explained, this plugin gener-
ates additional information by masking the challenging areas in the input images
by incorporating semantic information. In this way we prevent not only unstable
matches of feature points between images but also that these regions have to be
processed at all. For this we use the ability of COLMAP to use binary masks
as input in addition to the images. We generate these masks through semantic
segmentation by transferring the included classes into the binary mask. For our
baseline plugin we use neural networks consisting of a DeepLabv3+ [5] model
with a ResNet101 [11] backbone. For a faster execution speed on weaker hard-
ware, we provide networks trained on different resolutions. All networks are
trained on the Cityscapes data set [6] and provide segmentations for 19 classes.
However, it is very easy to add additional neural networks with different archi-
tectures or which have been trained on other data sets. Our developed plugin is
able to display a live preview of the segmentations as well as the binary mask. In
this way, combinations of classes or different deep learning models can be tested
quickly. For broad compatibility we use OpenCV as inference framework which
allows a fallback to the CPU if no CUDA compatible graphics card is available.

3.3 Batch Processing

To prevent the user from having to perform all the steps described above for
every image sequence batch processing can be used. Every sampling plugin can be
added multiples times with any configuration wanted. Likewise, multiple export
steps with different settings can be added to the workflow. Multiple exports
can be useful to e.g. export images with different resolutions or with varying
frame rate to different locations. The currently selected workflow can be seen
and edited in 4 on the graphical user interface shown in Fig. 1. Starting the
batch processing will run every step in the workflow in the defined order. The
specified workflow can be saved and loaded into other projects, and also used
to start our software in headless mode. In this case, an input sequence must be
specified for which batch processing is then performed.

4 Experiments

To evaluate the advantage of our framework, we compare the output with the
widely used approach of sub-sampling the input image sequences to a fixed fps
rate. We will first focus on the evaluation of our plugins for frame selection
and to what extent they have an influence on the quality and duration of the
3D reconstruction. In addition, the following section examines if the quality
of the reconstructions can be further improved by removing challenging image
regions. For this, complete 3D reconstructions are created with COLMAP for the
sequences preprocessed by our framework and a corresponding 1 fps baseline. Our
video data sets for this come from two different sources. The first consists of aerial
imagery taken from oblique view by an UAV flying around a point of interest.
This scenario features a rural setting where buildings and objects were captured



448 M. Hermann et al.

at different altitudes and camera angles by a DJI Phantom 3 Pro. The flight
altitude varies across the sequences from 2 m to 18 m and cars as well as moving
people are visible in some scenes. They also include motion blur and scenes where
the UAV is stationary. Due to the lack of ground truth data, we can evaluate
the achieved results here mainly qualitatively and measure the speed increase
of the reconstruction by excluding redundant images. In order to quantitatively
evaluate the quality of the estimated camera trajectories and depth maps from
COLMAP, we therefore additionally recorded synthetic sequences. We use a
modification of the code from Johnson-Roberson et al. [12] to gather data from
the video game GTAV. This allows us to extract ground truth depth maps and
camera trajectories from the GPU. Unfortunately, there is no way to access the
underlying 3D models and simple back projection of the depth maps only works
if the scene does not contain moving objects, otherwise artefacts will occur. For
the evaluation, we recorded eight synthetic video sequences and their ground
truth, which contain areas with a lot of movement and sections where the flight
speed of the UAV varies. The synthetic sequences differ from the real-world data
set mainly by the urban setting and a partly higher flight altitude. Examples of
the two data sets are visible in Fig. 2.

Fig. 2. The first row shows examples of the rural real-world data set and the second
row from the urban synthetic data set. The sequences containing the last three images
of the second row are referred to as A, B and C in the following evaluation.

4.1 Experimental Setup for the Frame Selection

For our frame selection we rely on the following three plugins: 1) First we fil-
ter out redundant frames 2) Then we down sample the video to 1 fps 3) In the
last step we look for blurred images and try to replace them with better neigh-
bouring frames. To evaluate this, we perform dense COLMAP reconstructions
at both full frame rate as well as at 1 fps and using our approach described
above. All reconstructions were carried out on a Nvidia Tesla P40 with a Xeon
E5-2650 CPU. To assess the performance of our framework, we compare the
results achieved with COLMAP to the ground truth of our synthetic data set.
As a metric for evaluating the quality of our depth maps in this context, we use
the accuracy δθ, which is defined as follows:

δθ

(
d, d̂

)
=

1
m

m∑
i=1

max

(
di

d̂i

,
d̂i

di

)
< θ. (1)



IVS3D: An Open Source Framework for Intelligent Video Sampling 449

It classifies a pixel in the estimated depth map as correct if the estimate is
within a certain threshold θ to the corresponding measurement. δ1.25 for exam-
ple describes the proportion of pixels, relative to the number of pixels m, for
which an estimate exists and for which the difference between the estimate d
and the ground truth d̂ is not greater than 25 of d̂. For the evaluation of the
camera trajectory, we use the Root Mean Square Error (RMSE) to measure the
deviation of the estimated camera position from the ground truth pose. We use
the library evo [9] for the quantitative evaluation and visualisation of the camera
trajectories.

Fig. 3. Exemplary comparison of the three trajectories sampled in the first row using
1 fps and in the second row using optical flow. The trajectories show the flight path
of a UAV in metres, projected onto the XY -plane, with the distance to the previous
image position colour-coded. Especially in regions with high flight speed it is visible
that our sampling using the optical flow is more balanced.

Both quantitatively and qualitatively from the colouring of the trajectories
in Fig. 3, it can be seen that for most cases the sampling through our framework
leads to a more balanced camera trajectory than sampling based on frame rate
alone. As shown in Table 1, the 10 % percentile of the distance to the previous
camera position is almost everywhere above and the 90 % percentile below the
baseline method of 1 fps sampling. In addition, the standard deviation of our
sampling approach through the optical flow is noticeably lower. This shows that
not only are fewer images sampled in regions with little camera movement, but



450 M. Hermann et al.

Table 1. Quantitative results for three sequences reconstructed with COLMAP, once
using 1 fps as well as using optical flow based sampling. In almost all cases, the 10%
percentile is higher and the 90% percentile is lower than the baseline of the 1 fps
sampling. Furthermore, all three sequences have a lower standard deviation with our
approach. The two columns on the right show that our approach does not lead to
inferior quality, as the errors for pose and depth estimation indicate.

Sequence Sampling method σ Q0.1 Q0.9 RMSE pose δ0.05 accuracy

A 1 fps 1.26m 0.70m 4.20m 0.0329m 0.9417%

Optical flow 0.95m 0.65m 3.60m 0.0296m 0.9420%

B 1 fps 0.90m 0.70m 2.80m 0.0066m 0.9596%

Optical flow 0.64m 0.90m 2.40m 0.0052m 0.9594%

C 1 fps 1.95m 0.80m 6.68m 0.0245m 0.8886%

Optical flow 1.62m 1.03m 6.00m 0.0311m 0.8894%

also that more frames are selected in sections with a lot of camera movement.
As visible in Fig. 3, not all images where the camera is stationary are excluded.
We suspect that this is due to some moving objects within the scene which may
prevent these images from being marked as redundant. In our experiments, our
approach has no negative impact on the quality of the camera trajectories and
depth maps. As shown in Table 1, the differences are small and can be explained
by run time variability. However, since the resulting point clouds contain on
average 5.76 % more points, we assume that the more spatially homogeneous
sampling provides better coverage of the 3D scene than selecting images with a
fixed frame rate. In order to verify this assumption, a comparison of the resulting
3D reconstructions with ground truth 3D models would have to be carried out.
Unfortunately, to our knowledge, there are no benchmark data sets with 3D
models for aerial imagery from an oblique view, which is probably due to the
difficult data acquisition.

In contrast to this approach, however, sampling through optical flow can also
be used to reduce the amount of data to be processed by excluding redundant
images. As before, sections in which the UAV is stationary are filtered out, but
in contrast, no more additional frames are placed elsewhere. Especially due to
the often quadratic run time complexity of global methods such as COLMAP,
the reduction of a few redundant images can make a significant difference with
large data sets. For a sequence with initially 1,056 images, our approach leads
to a reduction in images of approx. 5 % especially in regions with little camera
movement. This reduces the processing time from 1,510.24 min to 1,388.25 min
which corresponds to a decrease of 8.1 %. For this, we measured the individual
duration of all steps in COLMAP’s 3D reconstruction pipeline. Since the speedup
is divided into 10.52% for the sparse reconstruction and 4.95% for the dense
reconstruction, especially feature matching and sparse mapping seem to benefit
from our filtering in advance, as the savings are disproportionately high.

To further avoid processing images that do not provide novel content, we
have developed a plugin that can detect and replace images affected by motion



IVS3D: An Open Source Framework for Intelligent Video Sampling 451

I1 I2 I3 I4 I5

Fig. 4. As can be seen in the images I1 to I5, the camera rotates quickly within approx.
2 s by 180◦ and therefore causes significant motion blur. The timeline below shows the
entire sequence, with each red bar corresponding to an image that is considered sharp.
The blurred images shown above are located in the middle of the highlighted area and
are successfully detected and excluded. (Color figure online)

blur. The sequence we use for this shows usable images for most of the flight, but
it includes a section where the camera rotates 180◦ in about 2 s and the corre-
sponding images become unusable due high degrees of motion blur. In Fig. 4 the
corresponding section is shown, once by exemplary images and on the timeline
below as an area marked in blue. Each red bar corresponds to an image that
is considered sharp enough. As can be seen here, the area with motion blur is
reliably detected and no images are selected here. However, it is also visible that
key frames accumulate around this point. This occurs because although our plu-
gin searches for a spatially close replacements, the search for better neighbouring
images on this explicit sequence does not work optimally due to the fact that the
blurred section is too long and therefore no better images exist. When selecting
replacement images, the current image density should be taken into account in
the future or the replacement should be made optional.

4.2 Semantic Segmentation for Masking Potentially Moving
Objects

In addition to the reduction to the most significant images, our framework has
as a second type of plugins for the enrichment with additional information. Cur-
rently, we focus on masking challenging image areas through semantic segmen-
tation. For this purpose, we provide a plugin that allows deep learning models
with different depths and architectures to be imported and applied to the images.
Since there are currently hardly any data sets for semantic segmentation of aerial
images from oblique view, all neural networks for this purpose were trained on
the Cityscapes data set. Being an autonomous driving data set, the domain gap
with regard to the camera angle is in some cases large, which can also be seen in
the results. However, as visible in Fig. 5, reasonable results are achieved for rela-
tively flat camera angles. Vegetation is reliably detected from all camera angles,
but due to only one class available, a distinction between not problematic vege-
tation and trees moving in the wind is not possible. Since we filter out all objects
that could be moving, objects such as parked cars are also excluded, which may
be undesirable depending on the type of application.

In our experiments with aerial images, masking people and vehicles did not
lead to a quantitatively better quality of the 3D models. We attribute this to



452 M. Hermann et al.

Input image Semantic segmentation Binary mask

Fig. 5. Examples of our semantic segmentation plugin. From left to right: input image,
semantic segmentation and binary mask excluding the classes car and person.

sub-optimal segmentations, as the neural networks we use were not trained for
oblique-view aerial imagery and thus contain a high rate of errors when the cam-
era angle is very different from that of the training data. In addition, COLMAP
already has photometric and geometric consistency verification techniques that
can compensate for some artefacts induced by movement [16]. During our tests,
however, we noticed that especially scenarios with a large amount of move-
ment, e.g. next to a motorway, often did not yield a useful sparse reconstruc-
tion. Although in some cases a useful sparse reconstruction can be obtained by
starting the reconstruction several times, it is here in particular that we see
potential for semantic segmentation to ease 3D reconstruction. Once the sparse
reconstruction succeeds, the results for the dense reconstruction are quite good,
as can be seen from sequence C in Table 1. However, the drop in δ0.05 accuracy of
the depth maps compared to both sequences A and B with less movement within
the scene is worth noting. This is probably because moving objects are filtered
out in the reconstruction but are present in the ground truth depth maps.

5 Conclusion and Future Work

In this paper, we presented a new framework for pre-processing image sequences
to facilitate 3D reconstruction, which we publish open source using the MIT
licence. The modular architecture allows for easy customisation and integration
of already existing algorithms by encapsulating them in plugins using our simple
interfaces. This provides the opportunity to participate in the development of the
core application or individual plugins. So far, we have developed plugins that can
detect redundant frames, replace blurred images and also mask potentially mov-
ing objects. As shown in the previous section, these baseline methods are already
capable of accelerating a downstream 3D reconstruction by 8.1 % through reduc-
ing redundant images. By creating a dedicated workflow for batch processing,
large quantities of images can be edited with little effort, e.g. by specifying frame



IVS3D: An Open Source Framework for Intelligent Video Sampling 453

rate, resolution, cropping and the utilised plugins only once and then process-
ing multiple videos with them. In the future, we focus on extending our current
plugins and the development of further ones. One possibility here would be to
perform a real-time SLAM algorithm such as ORB-SLAM3 [4] and extract the
key frames or incorporate metadata present in the input videos. Similarly, we
plan to further enhance the semantic segmentation plugin by incorporating addi-
tional models trained on other data sets, as it has been shown that the domain
gap can be very high for aerial imagery depending on the camera angle. We are
convinced that the framework we provide offers great added value, especially
when more plugins become available in the future.

References

1. Ballabeni, A., Apollonio, F., Gaiani, M., Remondino, F.: Advances in image pre-
processing to improve automated 3D reconstruction. In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XL-5/W4, pp. 315–323, February 2015. https://doi.org/10.5194/isprsarchives-XL-
5-W4-315-2015

2. Bellavia, F., Fanfani, M., Colombo, C.: Fast adaptive frame preprocessing for 3D
reconstruction, vol. 3, March 2015. https://doi.org/10.5220/0005272702600267

3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools 120, 122–125 (2000)
4. Campos, C., Elvira, R., Rodŕıguez, J.J.G., M. Montiel, J.M., D. Tardós, J.:

ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and mul-
timap slam. IEEE Trans. Robot. 1–17 (2021). https://doi.org/10.1109/TRO.2021.
3075644

5. Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. CoRR abs/1706.05587 (2017). http://arxiv.org/
abs/1706.05587

6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understand-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3213–3223 (2016)

7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular
SLAM. In: European Conference on Computer Vision (ECCV), September 2014

8. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion.
In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X 50

9. Grupp, M.: EVO: Python package for the evaluation of odometry and SLAM
(2017). https://github.com/MichaelGrupp/evo

10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE Inter-
national Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://
doi.org/10.1109/ICCV.2017.322

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasude-
van, R.: Driving in the matrix: can virtual worlds replace human-generated anno-
tations for real world tasks? In: IEEE International Conference on Robotics and
Automation, pp. 1–8 (2017)

https://doi.org/10.5194/isprsarchives-XL-5-W4-315-2015
https://doi.org/10.5194/isprsarchives-XL-5-W4-315-2015
https://doi.org/10.5220/0005272702600267
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TRO.2021.3075644
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587
https://doi.org/10.1007/3-540-45103-X_50
https://github.com/MichaelGrupp/evo
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322


454 M. Hermann et al.

13. Pech-Pacheco, J.L., Cristóbal, G., Chamorro-Martinez, J., Fernández-Valdivia, J.:
Diatom autofocusing in brightfield microscopy: a comparative study. In: Proceed-
ings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3, pp.
314–317. IEEE (2000)

14. Pertuz, S., Puig, D., Garćıa, M.: Analysis of focus measure operators in shape-
from-focus. Pattern Recogn. 46(5), 1415–1432 (11 2012). https://doi.org/10.1016/
j.patcog.2012.11.011

15. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113
(2016)

16. Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise view selection
for unstructured multi-view stereo. In: Proceedings of European Conference on
Computer Vision, pp. 501–518 (2016)

https://doi.org/10.1016/j.patcog.2012.11.011
https://doi.org/10.1016/j.patcog.2012.11.011

	IVS3D: An Open Source Framework for Intelligent Video Sampling and Preprocessing to Facilitate 3D Reconstruction
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Architecture Overview
	3.2 Baseline Plugins Already Developed
	3.3 Batch Processing

	4 Experiments
	4.1 Experimental Setup for the Frame Selection
	4.2 Semantic Segmentation for Masking Potentially Moving Objects

	5 Conclusion and Future Work
	References




