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Abstract. Thermal cameras are used in various domains where the
vision of RGB cameras is limited. Thermographic imaging enables the
visualizations of objects beyond the visible range, which enables its use
in many applications like autonomous cars, nightly footage, military, or
surveillance. However, the high cost of manufacturing this type of cam-
era limits the spatial resolution that it can provide. Real-World Super-
Resolution (RWSR) is a topic that can be used to solve this problem by
using image processing techniques that enhance the quality of a real-
world image by reconstructing lost high-frequency information. This
work adapts an existing RWSR framework that is designed to super-
resolve real-world RGB images. This framework estimates the degrada-
tion parameters needed to generate realistic Low-resolution (LR) and
High-resolution (HR) image pairs, then the SR model learns the map-
ping between the LR and HR domains using the constructed image pairs
and applies this mapping to new LR thermal images. The experiments
results show a clear improvement in the perceptual quality in terms of
clarity and sharpness, which surpasses the performance of the current
SotA method for thermal image SR.
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1 Introduction

In recent years, thermal imaging has grown considerably and is being used in var-
ious domains where a typical RGB camera can not get the job done, like nightly
footage, surveillance, or in autonomous cars. However, thermal images generally
have some shortcomings like insufficient details and blurred edges, and most
importantly considerably low-resolution. This makes it too hard to observe the
structure and recognize objects in an image. However, having a thermal camera
that is capable of capturing high-resolution images is not as affordable as using
RGB cameras. Even the most expensive thermal cameras, which can vary from
US$200 to more than US$20,000 [20], still can not deliver sufficient resolutions.
To the best of our knowledge, the highest resolution that a thermal camera can
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provide as for today is 1920 × 1200 pixels for the Vayu HD [24], thus enhanc-
ing real images captured by thermal cameras is therefore important. However,
although increasing the resolution of a thermal image with an image processing
algorithm would not compensate for the true information that is not captured
by the camera’s sensor, having an enhanced and higher resolution image makes
it easier to recognize objects and structure in an image. The efficiency of this
process can be improved by taking advantage of computer vision techniques that
can assist in enhancing these images. Many methods were developed to perform
image super-resolution, however, most of these methods perform poorly when
used on real LR images. This is because they follow the approach of downsam-
pling HR images to construct LR and HR pairs and then they super-resolve the
LR image back to match the HR image quality. Such methods fail when given
a real-world image as the degradation process is not entirely known. Therefore
recent studies have been working on developing methods that would be more
robust to previously unseen real-world images that are acquired directly from
cameras with unknown degradation parameters. This RWSR issue also applies to
the thermal imaging domain, making it an interesting area to investigate since it
has not been widely explored. Hence, the goal of this project was to explore the
state-of-the-Art (SotA) SR algorithms that deal with RGB images and investi-
gate its usability in the thermal imaging domain, and explore the possibility of
tuning these methods to fit the thermal domain. The main contributions of this
work are:

– A comparison of the performance of existing RGB-based RWSR solutions in
the thermal imaging domain.

– SotA results within the real-world thermal SR domain are achieved.

2 Related Work

2.1 RGB Image Super-Resolution

Zero-Shot Methods. In 2017, ZSSR [23] was introduced as the first blind
SR algorithm (self-learning-based) that performed SR on LR real-world images
without relying on any prior image examples or prior training. Instead, ZSSR
trains an image-specific CNN using the recurrence of small patches across dif-
ferent scales within the same image at test time. This was done by downscaling
the test image to smaller versions of itself, then applying data-augmentation to
the smaller versions to fulfill the need of having multiple examples as a training
dataset. The image-specific CNN learns to reconstruct the original LR image
using the downscaled examples, then they finally apply the trained CNN to
the original test image to construct the desired HR output. ZSSR outperformed
external-based SotA methods in some regions when tested on images with salient
recurrence of information. A drawback of ZSSR is the fact that the learning pro-
cess fully depends on the internal information in the test image, which makes it
require thousands of back-propagation gradient updates. This yields slow testing
time as well as poor results in some regions compared to other external-based
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methods [26]. Inspired from ZSSR, Meta-Transfer Learning for Zero-Shot Super-
Resolution (MZSR) [26] was introduced, where the authors of MZSR utilize the
powerful parts of ZSSR and improve upon it by introducing the concept of
Meta-Transfer learning. The idea behind how meta-learning works is to make
the model adapt fast to new blur kernel scenarios by adding a meta-training
step, then utilize transfer-learning by pre-training the SR network using a large-
scale dataset DIV2K [1]. The combination of Meta-transfer learning and ZSSR
exploits both the internal (the test image) and external (the DIV2k) informa-
tion. The main advantage that was introduced in the MZSR work, was the
flexibility and fast running time compared to the ZSSR method, as well as out-
performing other supervised SotA algorithms such as CARN [2] and RCAN [28].
Different zero-shot methods were designed following the ZSSR principle, how-
ever the most recent study that was able to achieve competetive SotA results
was Dual Super-resolution (DualSR) [8]. DualSR addresses the RWSR problem
in a similar way to the way it was addressed in the ZSSR work, where they learn
the image-specific LR-HR relations by training their proposed network at the
test time using patches extracted from the test image. Their proposed network
is split into mainly two parts, the downsampler which learns the degradation
process using a generative adversarial network (GAN), and an upsampler that
learns to super-resolve the LR image. Both the up-sampler and down-sampler
are trained simultaneously by improving each other using the cycle-consistency
loss, the masked interpolation loss, and the adversarial loss.

Learned Degradation Based Super-Resolution. Many supervised SR
approaches make the assumption that LR images are a bicubicly downscaled
version of their HR counterpart, and that Gaussian noise is usually used to
simulate the sensor noise. However, these approaches fail when tested on real
images because those images were not degraded using ideal degradation opera-
tion (bicubic kernel + Gaussian noise). For this reason, Fritsche et al. [9] intro-
duced DSGAN (the winner of AIM2019 RWSR challenge [17]), which is a GAN
network that learns to generate the appropriate LR images, which have the
same corruptions as the original HR images. Bell-Kligler et al. [3] introduced
another realistic degradation method KernelGAN, an image-specific Internal-
GAN, which trains solely on the LR test image at test time and learns its inter-
nal distribution of patches. The generator of the network is trained to produce a
lower resolution image such that the network’s discriminator can not distinguish
between the patch distribution of the generated image and the patch distribution
of the original LR image. Ji et al. [11] proposed their method RealSR, which is
divided into two stages. They first use KernelGAN to estimate the degradation
from the real data and use it to construct the LR images, and then they train
an SR model based on the constructed data. RealSR method was the winner
of the NTIRE 2020 challenge [17], and by the time of doing this work, RealSR
is considered to be the SotA in the real-world super-resolution field for RGB
images.
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2.2 Thermal Image Super-Resolution

All the methods mentioned in 2.1 are examples of super-resolution methods that
deal with images in the RGB spectrum. However, there are only a few studies
that developed methods for super-resolving LR thermal images. Cho et al. [4]
conducted a study where they tried to enhance thermal images by training a
CNN using different image spectrums aiming to find the best representation
that would fit the thermal domain. They found that a grayscale trained network
provided the best enhancement. Lee et al. [14] proposed a similar CNN-based on
enhancement for thermal images, where they evaluated four RGB-based domains
with a residual-learning technique. That improved the enhancement in compar-
ison to the previous work by [4]. Rivadeneira et al. [5] was motivated by the
two previously proposed methods, so he proposed the Thermal Enhancement
Network (TEN), which was the first CNN-based method to be trained specif-
ically using thermal dataset unlike the two previous proposals by [4,14]. TEN
was based on the SRCNN model [7], which utilizes the residual net and dense
connections technique. TEN was able to outperform the previously proposed
methods, which was due to training the network using thermal images instead of
RGB-based domains. Recently, Rivadeneira et al. [20] proposed another thermal
SR method that is based on the well-known CycleGAN [29] architecture. Two-
way Generative-Adversarial-network (CycleGAN) is a technique that is used to
map information from one domain to another. So the authors of [20] used the
CycleGAN network to map information from the LR domain to the HR domain.
They trained their proposed network to perform x2 scale SR following two sce-
narios, LR to medium-resolution (MR) and MR to HR. Chudasama et al. [6] pro-
posed TherISuRNet, which is another method to super-resolve thermal images
by progressively upscaling the LR test image to obtain the final SR image. They
achieve different upscaling factors (x2, x3, and x4) by applying residual learn-
ing. The TherISuRNet network consists of four main modules: low-frequency
feature extraction modules, high-frequency feature extraction modules, second
high-frequency feature extraction modules, and finally an image reconstruction
module that is responsible for reconstructing the final SR image. They mea-
sured the performance of their proposed method by comparing its performance
to the most common SotA methods [5,15,16,18,28] and bicubic interpolation,
and they were able to surpass all the other methods when testing on thermal
images. TherISuRNet was the winning method of the Thermal Image Super-
Resolution Challenge PBVS 2020 [19], which makes the TherISuRNet the SotA
method for the thermal image SR domain.

Constraints Noted from Related Works. Having reviewed the relevant
literature on super-resolution applied to both RGB and thermal images, we
witness that, to the best of our knowledge:

– None of the studies try to investigate the performance of RGB-based SR
methods in the thermal domain.

– All the existing thermal SR methods were trained using synthetically con-
structed image pairs.
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3 Dataset

One of the challenges when working with RWSR methods is the lack of ground
truth data that could be used for supervised learning and to evaluate the per-
formance of the SR methods leading to unreliable performance when testing on
single real world images. For this work, the PBVS dataset [19,20] was used as
it offers three subsets called Domo, Axis and GT with different native resolu-
tions (160 × 120, 320 × 240, 640 × 512, respectivally), which were acquired using
three different cameras. For this work, the Domo and GT subsets are used as the
source and target domains respectively. Each of these subsets includes a total of
951 training images and 50 images for validation. The Axis subset was discarded
since the goal of this work was to super-resolve a given resolution with an upscal-
ing factor of s = 4 and later evaluate the performance by comparing it to the
ground-truth, which has a native resolution that matches the SR output images.
Therefore, it was decided to super-resolve the input images (Domo validation
subset) and compare the output with the ground truth (GT validation subset).
However, one of the problems with the PBVS dataset is the limited number of
images in each subset, which is considered too little to be used for training a
neural network. Therefore, we used the augmented version of the PBVS dataset,
which was provided by the authors of the TherISuRNet [6]. The augmentation
operations they apply on the original dataset are horizontal flipping, 180◦ rota-
tion, and two affine operations, resulting in a total of 4755 training images for
each subset.

4 Thermal RealSR

This section describes the two-step pipeline that T-RealSR uses to achieve the
final SR results. The first step aims to realistically degrade the HR from the
target domain Y , such that the degraded images have the same image charac-
teristics as the LR images in the source domain X. The second step is to use
the LR-HR image pairs to train a SR model that can be used to super-resolve
real-world thermal images.

4.1 Realistic Degradation Using KernelGAN and Noise Injection

To understand how we can construct a realistic LR image that does not have
ideal blurring and noise characteristics, let’s assume an LR image is obtained
following the degradation operation [11]:

ILR = (IHR ∗ k) ↓s +n (1)

Where k denotes the kernel used to blur the image, n denotes the noise added to
the image, and s denotes the downscaling factor. Instead of using ideal kernels
(e.g. Bicubic downscaling), T-RealSR explicitly utilizes KernelGAN to create a
pool of kernels, and it extract noise patches from a real LR images to create
a noise patches pool. Then both these pools are used to construct the realistic
LR-HR image pairs.
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Kernel Degradation. In general, KernelGAN is an image-specific Internal-
GAN [22] that trains solely on a given LR image at test time and learns its
internal distribution of patches. Its generator (G) is trained to generate a down-
scaled version of the given image, such that its discriminator (D) can not dis-
tinguish between the patch-distribution of the generated image and the patch
distribution of the original image. D is trained to output a heat map, referred
to as D-map, indicating for each pixel how likely is its surrounding patch to
be drawn from the original patch-distribution. The loss is the pixel-wise MSE
difference between the output D-map and the label map. Where the label map
is all the ones in the crops extracted from the original image, and all the zeros
in the crops extracted from the downscaled image [3].

Noise Extraction. In addition to creating the kernel pool, T-RealSR intro-
duces a simple filtering rule for extracting noise patches from source images. The
idea behind extracting these noise patches is to inject them into the degraded
images, so LR images from the two different domains (source LR and generated
LR images) will have similar noise distribution. The filtering rule used to choose
the relevant noise patch is as follows:

σ(ni) < v (2)

Where σ(·) denotes the function used to calculate the noise variance, and v is
the max value of variance.

Having created a series of kernels {k1, k2, . . . , kl} and a series of noise patches
{n1, n2 · · · nm}, the degradation process is performed as follows:

ILR = (IHR ∗ ki) ↓s +nj , i ∈ 1, 2, . . . , l, j ∈ 1, 2, . . . ,m (3)

Where s denotes the sampling stride.

4.2 Super-Resolution Model

As mentioned in Sect. 2.1, T-RealSR consists of two phases, the first is construct-
ing the realistic image pairs using KernelGAN and the second phase is training
the SR model, which is based on ESRGAN with some modification. To under-
stand the T-RealSR SR backbone, we need to first understand how ESRGAN
works and then understand how T-RealSR adjust the ESRGAN architecture to
make it more flexible to different image sizes. ESRGAN [27] stands for Enhanced
Super-Resolution Generative Adversarial Networks, which is a generative adver-
sarial network that is based on SRGAN [13]. SRGAN is a GAN network that
is capable of generating realistic textures during single-image SR, whose dis-
criminator aims to base its prediction on perceptual quality. However, ESRGAN
improves SRGAN by adjusting the SRGAN architecture where they introduce
their Residual-in-Residual Dense Block (RRDB) without batch normalization,
as well as improving the SRGAN discriminator by making it judge whether an
image is more realistic than another rather than judging whether an image is
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real or fake. ESRGAN improvement over SRGAN resulted in sharper and more
visually pleasing results [27].

From the name Enhanced Super-Resolution GAN, we can tell that the archi-
tecture should contain the two main modules, discriminator D and generator
G networks. The G network takes a low-resolution image (LR) as input, and
it passes it through a 2D convolutional layer (Conv1) with small 3 × 3 kernels
and 64 feature maps. It is then passed through 23 Residual in Residual Dense
Blocks (RRDB). The image is then passed through another convolutional layer
(Conv2) in which its output is summed with the output of the first (Conv1).
At this stage, the image gets upscaled with a factor of 4 by passing it through
an upsampling block that consists of two convolutional layers for reconstruction,
with LeakyReLU (LReLU) activation (α = 0.2) on each layer. After upsampling,
the image is passed through another convolutional layer (Conv3) with LReLU
activation (α = 0.2). Finally, the image is passed through the final convolutional
layer (Conv4) that final super-resolved image. The other part of the network is
the discriminator D, and to be more specific it is called the Relativistic Dis-
criminator [12]. Following [27] this specific discriminator was used rather than
using the standard discriminator used in SRGAN [13]. This is because the rela-
tivistic discriminator estimates the probability that a real image xr is relatively
more realistic than a fake one xf . Where a standard discriminator estimates only
whether an image x is natural enough to be real.

We adapted the ESRGAN structure and trained it using the constructed
paired data {ILR, IHR}. Several losses were used during the training including:

– Pixel loss L1: or so called Mean Absolute Error (MAE), which measures the
mean absolute pixel difference of all pixels in two given images.

– Perceptual loss Lper: proposed to enhance the visual quality by minimizing
the error in feature space instead of pixel space. It uses the inactive fea-
tures of VGG-19 [25] and aims to enhance the visual quality of low-frequency
information like edges.

– Adversarial loss Ladv This loss is used to enhance the texture details to
make the image look more realistic.

The final loss function was the weighted sum of all the above losses as follows:

Ltotal = λ1L1 + λperLper + λadvLadv (4)

where λ1, λper, and λadv are constants used to specify the weight of each of the
losses on the total loss.

PatchGAN Discriminator. The discriminator (VGG-128) used in the ESR-
GAN may introduce many artefacts, so PatchGAN [10] was used instead for two
reasons: First is that VGG-128 used by ESRGAN limits the size of the generated
image to 128, making multi-scaling training not as simple, Second is that the
VGG-128 fixed fully connected layer makes the discriminator pays more atten-
tion to the global features and ignore the local ones. Where the PatchGAN has a
fully convolutional structure that maintains a fixed receptive field that restricts
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the discriminator’s attention to the local image patches. The structure of Patch-
GAN only penalizes structure at the scale of patches, meaning that it tries to
classify if each N × N patch in an image is real or fake. The responses of all
patches get averaged afterward forming the final D output to guarantee global
consistency, then gets fed back to the generator.

5 Experiments and Results

5.1 Evaluation Metrics

Usually, the most challenging part when dealing with RWSR images is the lack of
GT reference images. However, despite having the GT images, which the PBVS
dataset provides, the SR and GT images are not perfectly aligned together.
Making it difficult to use reference-based IQA methods such as SSIM, PSNR,
or LPIPS, however we still use them for reference purposes. Additionally, it was
decided to take another evaluation approach by following the IQA evaluation
protocol from the NTIRE2020 challenge, where they used non-reference-based
IQA methods including PIQE, NIQE, and BRISQUE. In addition to that, the
Mean Opinion Score (MOS) method was used to support the previously men-
tioned non-reference-based methods, which correlate poorly with human opinion.
For the MOS, a total of 20 participants were given a set of 13 SR images that
were generated using different methods. Then the participants were asked to give
unique scores that range between 1 and 6 (best to worse respectively) to each
individual images based on the perceived clarity and sharpness of the images.
The results of 6 different SR methods were used, where the methods were shuf-
fled randomly when presented to the participants to avoid bias. The scores were
then averaged for the individual images for each method, and were then used to
calculate the final MOS scores.

5.2 Comparison with the State of the Art

To the best of our knowledge, an evaluation of the adapted T-RealSR method as
well as the other mentioned SotA SR rgb-methods within the thermal domain, in
comparison to the SotA thermal SR method has not be done before. Therefore,
we compare the adapted method to bicubic upscaling, as well as with a number
of RWSR methods including two zero-shot SR methods (DualSR [8], Kernel-
GAN+ZSSR [3,23]) and the ESRGAN [27] RWSR method, and for the thermal
SotA SR method TherISuRNet [6]. To ensure a fair comparison, ESRGAN [27]
was retrained using the same dataset used to train the adapted T-RealSR, and
employing the settings suggested by the authors of the ESRGAN. For DualSR
[8] and KernelGAN+ZSSR [3,23], a training is not needed, as it is a part of
the inference phase; the settings suggested by the authors were used. For the
TherISuRNet [6], the retraining was needed as pretrained weights were not pro-
vided by the authors, and the same settings were adapted because the method
was designed specifically for the utilized PBVS dataset.
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ImageRegistration. We explained in Sect. 3 how the PBVS subsets (Domo and
GT) were acquired using different cameras. Despite the effort by the authors to
acquire two identical pictures of the same scene using different cameras, the pro-
cess was physically impossible. That introduced some challenges when having to
evaluate the performance of the different SR methods. Besides the different light
conditions and different sensors’ noise that resulted in brightness and contrast dif-
ferences, the images were not perfectly aligned together. The imperfect alignment
of the images meant that reference-based IQA methods in general and PSNR in
specific, will be inaccurate to be used on their own. Therefore, we decided to apply
image registration between the SR images and the GT reference images prior to
evaluating the images using the non-reference-based methods. To do so, the ORB
detector [21] with a target number of features N = 5000 was used to align the
images together as illustrated in Fig. 1. The central crop (50%) of both the SR
and GT images was used for evaluation. This was done to discard the black areas
around the registered images and to make the comparison as fair as possible, since
lens distortion is at its minimum in the central part of the image.

GT

SR

SR

LR

Register 
To GT

x4

50%

50%

Evaluate

Fig. 1. The evaluation pipeline used to evaluate the super-resolved LR image in com-
parison to the GT.

Quantitative and Qualitative Evaluation. We evaluate the performance of
the methods on the PBVS test dataset, where we show the quantitative results
in Table 1. For the qualitative results a number of patches taken from some
test images are shown in Fig. 2. The adapted T-RealSR method outperforms
the other thermal and rgb-based SR methods by a large margin. Where it is
possible to see that the traditional non-reference-based IQA methods (PIQE,
NIQE, BRISQUE) correlate well with the human-opinion based MOS method.
However, the reference-based IQA methods (SSIM and PSNR) correlate poorly
with the other IQA methods. This is due to brightness and contrast differences.
A method such as PSNR, will penalize the performance in case the registered
image is shifted one pixel in any direction, and we know for sure that this is
most likely the case with our test data.
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GT Bicubic DualSR ZSSR ESRGAN Therisurnet T-RealSR

Fig. 2. Qualitative comparison of SotA methods for x4 SR of real LR images from the
Domo validation subset.

Table 1. Comparison between the SotA methods that have been tested. The best
values are in bold text.

Method PSNR↑ SSIM↑ LPIPS↓ PIQE↓ NIQE↓ BRISQUE↓ MOS↓
Bicubic 20.11 0.70 0.46 67.39 5.55 57.20 4.10

DualSR [8] 18.77 0.59 0.43 56.48 4.18 43.03 4.74

ZSSR+KernelGAN [3] 19.01 0.57 0.44 60.79 5.71 46.14 4.15

ESRGAN [27] 18.37 0.65 0.43 76.77 5.72 53.74 2.98

TherISuRNet [6] 20.10 0.71 0.42 88.69 5.20 55.34 3.20

T-RealSR [11] 18.78 0.52 0.37 36.33 3.31 34.31 1.45

6 Conclusion

In this work we investigate the possibility of using rgb-based RWSR methods
to super-resolve real-world thermal images. The images used for evaluation were
upscaled with a factor of 4, and we found that tuning the T-RealSR by training
it using thermal images is able to achieve SotA performance that surpasses the
current SotA thermal-based SR method by a large margin in terms of perceived
quality. This was proven by the different IQA methods, which showed results that
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correlate with the human-based MOS evaluation method. This work is, up to
our knowledge, the first work that train on thermal images using realistically
degraded image pairs, making it robust to real images that contain some of the
most common degradation types (blurring and sensor noise).
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