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Abstract. We present a variant of the classic in-place bit-flipping decoder, fre-
quently used with Low- and Moderate-Density Parity Check (LDPC/MDPC)
codes, which allows a statistical analysis of the achievable decoding failure rate
(DFR) in worst-case conditions. Such evaluation is of paramount importance in
code-based post-quantum cryptography (PQC) where the ability to achieve indis-
tinguishability under adaptive chosen ciphertext attacks strictly depends on being
able to ensure very low DFR values (e.g., in the order of 2−128 or lower) that, as
such, are practically impossible to validate via numerical simulation. We provide
theoretical evidence of the proposed approach and demonstrate its correctness
through numerical examples. Moreover, we investigate the effect of changing the
bit flipping decision threshold on the provided worst case analysis. Finally, we
give design parameters for code-based cryptosystems employing Quasi-Cyclic
LDPC/MDPC codes, able to achieve the security levels required in the NIST
PQC standardization initiative which is currently in progress.

Keywords: Bit-flipping decoding · Code-based cryptosystems · Decoding
failure rate · LDPC codes · MDPC codes · Quasi-cyclic codes · Post-quantum
cryptosystems

1 Introduction

Among the various options proposed for a new generation of asymmetric cryptosystems,
able to counter the advent of quantum computers, a prominent role is played by code-
based cryptosystems. McEliece [21] was the first to prove the computational hardness
of decoding error affected codewords from random linear codes, in particular showing
that determining the existence of such an error vector belongs to the NP-Complete class
[20]. The original McEliece cryptosystem builds a trapdoor from an obfuscation of the
generator matrix of a Goppa code, an algebraic code, and encodes the messages into
codewords of the obfuscated code, subsequently adding a number of errors which are
guaranteed to be correctable by the secret Goppa code. In a variant proposed byNiederre-
iter some years later [23], the generator matrix is replaced by the parity-checkmatrix and
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the message is encoded into syndrome vectors, thus achieving a significant reduction in
the number of operations for encryption, at the cost of a moderate increase in the number
of operations for decryption. After 40 years from its introduction, the original McEliece
cryptosystem is still unbroken and, while requiring a scaling of its parameters [1], from
its original proposal, it retains its security against quantum computing adversaries. How-
ever, cryptosystems adopting Goppa codes have some drawbacks. The most important
one is the large size of the public key, in the order of hundreds of kilobytes to a megabyte
range depending on the target security level.Wishing to reduce the key size, a valid alter-
native to Goppa codes is constituted by the adoption of Quasi-Cyclic (QC) codes. These
codes are characterized by generator and parity-check matrices that are quasi-cyclic,
i.e., composed by circulant square blocks, where all rows are obtained cyclically rotat-
ing the first one. Therefore, it is sufficient to store only the first row of such matrices to
preserve their whole representation. The adoption of QC codes with an underlying alge-
braic structure is the most convenient choice from an efficiency viewpoint; nonetheless,
it exposes the system to cryptanalytic attacks [15]. Such vulnerabilities disappear when
using random or pseudo-random codes (i.e., without any underlying algebraic struc-
ture); indeed, the use of Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes
[8] or Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [22] allows to
provide proper security guarantees from a mathematical and cryptanalytical perspective
as well as satisfactory key sizes from an engineering standpoint. Currently, these kinds
of codes are employed in the design of both the LEDAcrypt [7,9,10] and the BIKE [2]
cryptosystem, which were also evaluated in the framework of the initiative promoted by
the U.S.A. National Institute of Standards and Technology (NIST) for the standardiza-
tion of post-quantum cryptosystems [24].

LDPC and MDPC codes are usually decoded through iterative algorithms which,
in contrast with the bounded distance decoders typically used with algebraic codes,
are not characterized by a deterministic decoding radius. As a consequence, there is a
need to estimate the Decoding Failure Rate (DFR) performance of these codes through
numerical simulations. This is not an issue whenever relatively large failure rates are
satisfactory, as occurs, for example, in wireless communications, but it becomes an
issue in those applications which require extremely low failure rates, as it is the case of
code-based cryptographic applications.

In code-based cryptography, a non-null DFR implies that a decryption action may
fail even on a valid ciphertext and this exposes the cryptosystem to Chosen Ciphertext
Attacks (CCAs) such as those documented in [14,17,29], which exploit the availability
of a decryption oracle (queried with ciphertexts properly built employing the public key)
to derive information on the secret structure of the underlying QC-LDPC/QC-MDPC
code. The only way to avoid these kinds of attacks, thus attaining Indistinguishability
under Adaptively Chosen Ciphertext Attack is to apply state-of-the-art constructions
such as the ones introduced in [11,19], which in turn require the failure rate of the
underlying code to be negligible in the security parameter. As a consequence, it can
be shown that a cryptosystem with security parameter λ requires a DFR ≤ 2−λ, with
λ ≥ 128. Such values are clearly impossible to simulate, even with the most powerful
computer (or cluster of computers). This makes extremely important to assess models
which allow to estimate the behavior of decoders for QC-LDPC and QC-MDPC codes,
even though in conservative conditions. In this paper, we tackle such topic, focusing on
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the Bit-Flipping (BF) decoding technique [16] which is commonly used in this applica-
tion as it offers an excellent trade-off between error correction capability and computa-
tional complexity.

In short, a BF algorithm performs syndrome decoding through an iterative proce-
dure, in which the bit locations where the received message is erroneous are estimated
starting from the value of the received syndrome. More precisely, the decoder starts
from an estimate of the error vector with all bits set to zero and applies a sequence of
iteration functions, each of which evaluates whether or not to flip (i.e., change) the j-th
bit of the estimated error vector. The flipping action is made depending on the result of
a check on whether the number of unsatisfied parity-check equations involving the esti-
mated error vector bit exceeds a predefined threshold. If a flip is performed, the value
of the syndrome is updated to reflect the change in the estimate. The decoder stops
when the updated syndrome value is equal to zero (indicating a decoding success), or a
predefined maximum number of iterations is reached.

Depending on the strategy employed by the iteration function to update the syn-
drome, BF decoders are classified in two main groups: in-place algorithms and out-
of-place algorithms. The distinguishing point between an in-place and an out-of-place
iteration function lies on when the update of the syndrome value is executed. In the in-
place iteration function, the syndrome is updated just after each test establishing if the
j-th bit value in the estimated error vector should be flipped or not. In the out-of-place
iteration function, instead, the syndrome is updated after the tests over all the bits in the
estimated error vector are executed and the corresponding bit-flips are performed.

In this paper, we consider a simple variant of the in-place BF strategy, which
consists in randomizing the order in which the estimated error positions are pro-
cessed. This modification permits us to derive a worst-case analysis for the DFR of
syndrome-decoding based systems, which is employed to design code parameters for
QC-LDPC/QC-MDPC based cryptosystems matching the DFR figures of merit needed
to provide IND-CCA2 guarantees. A preliminary version of this paper appeared in [6],
where we showed that, employing well-established assumptions in coding theory, it is
possible to develop a closed-form statistical model of such a decoder, by studying the
worst-case execution at each iteration for the average QC-LDPC/QC-MDPC code per-
formance. In this work we revise and expand the theoretical tractation of the subject,
adding the demonstration of some core lemmas and propositions,that were omitted in
[6]. Moreover, we provide an extended experimental evaluation in which we analyze
the effect of changing the BF decoder thresholds in both a single iteration decoder and
a two iterations one.

2 Notation and Background

Throughout the paper, we will use uppercase (resp. lowercase) bold letters to denote
matrices (resp. vectors). Given a matrixA, its i-th row and j-th column will be denoted
as Ai,: and A:,j , respectively, while an entry on the i-th row and the j-th column will
be denoted as ai,j . A null vector of length n will be denoted as 0n. Given a vector a, its
length will be denoted as |a|, while its i-th element as ai, with 0 ≤ i ≤ |a| − 1. Finally,
the support (i.e., the set of positions/indexes of the asserted elements in a sequence) and
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the Hamming weight of a will be reported as Supp(a) and wH (a), respectively. We
will use Pn to denote the set of permutations of n elements, represented as bijections
on the set of integers {0, . . . , n − 1}. Given a permutation π ∈ Pn and an integer
i ∈ {0, . . . , n − 1}, we will write π(i) = j if the image of i, according to permutation
π, is j. Given a vector a ∈ F

n
2 , we will use π(a) to denote the vector that is obtained

by permuting each of the entries of a according to π. We will write π
$←− Pn to denote

a permutation π that is randomly and uniformly picked among the elements in Pn.
As far as the cryptosystems are concerned, in the following we will make use of

a QC-LDPC/QC-MDPC code C, with length n = n0p, dimension k = (n0 − 1)p,
n0 ≥ 2, and redundancy r = n − k = p to correct t intentional errors. The private-key
will coincide with the parity-check matrix H = [H0,H1, · · · ,Hn0−1] ∈ F

r×n
2 , where

eachHi, 0 ≤ i ≤ n0 − 1, is a binary circulant matrix of size p × p and fixed Hamming
weight v of each column/row.

In the case of a Niederreiter scheme, the public-key is defined as the system-
atic parity-check matrix of the code M ∈ F

r×n
2 and derived from the private-key as

M = H−1
n0−1H, while the plaintext message is mapped to an error vector e ∈ F

1×n
2

having wH (e) = t asserted bits. The encryption algorithm outputs as a ciphertext the
syndrome c = eM� ∈ F

1×r
2 . The decryption algorithm takes as input c and the

private-key H to compute a private-syndrome s ∈ F
1×r
2 such that s = cH�

n0−1 =
eM�H�

n0−1 = eH�(H�
n0−1)

−1H�
n0−1 = eH�. Subsequently, to derive the origi-

nal plaintext message e, the decryption algorithm feeds with the private-key and the
computed private-syndrome a BF syndrome decoding algorithm.

In the case of the McEliece scheme, the public-key is chosen as the systematic
generator matrix of the code:G ∈ F

k×n
2 . The ciphertext is in the form c = mG+ e ∈

F
1×n
2 , where m ∈ F

1×k
2 is a plaintext message encoded with k bits, and e ∈ F

1×n
2 is a

n-bit error vector with exactly wH (e) = t asserted bits. The decryption algorithm takes
as input the ciphertext c and the private-key H to compute the syndrome s = cH� =
eH� ∈ F

1×r
2 and feeds a syndrome decoding algorithm, which in turn yield the error

vector and allows to recover the original plaintext m employing the generation matrix
and the vector c − e.

The syndrome decoding procedure analyzed in this paper originated from the BF
decoding strategy that was originally proposed by Gallager in [16]. The original BF
algorithm takes as input a syndrome s = (c+ e)H� = eH� ∈ F

1×r
2 computed multi-

plying the codeword c ∈ F
1×n
2 corrupted by an unknown error vector e ∈ F

1×n
2 by the

matrix obtained transposing the parity-check matrix of the code. The algorithm yields
an estimate of the unknown error vector, that we denote as ê, which is initially assumed
to be a null vector. For each bit position in the error estimate (and correspondingly
also in the unknown error vector), a decision about flipping or not the bit value at hand
is taken on the ground of the number of unsatisfied parity-check (upc) equations in
which such a bit value/position participates. Considering a generic error bit in position
0 ≤ j ≤ n − 1, such a quantity is computed as follows [6].

upcj =
∑

i∈{Supp(H:,j)∩{0,...,r−1}}
si.
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Indeed, note that the constant term of the i-th parity-check equation (0 ≤ i ≤ r − 1)
corresponds to the i-th entry in s = eH�, and that the equations influenced by the j-th
bit of the error vector coincide with the ones having an asserted bit at the j-th column
ofH. As a consequence, the number of unsatisfied parity-check equations in which the
j-th bit participates can be obtained by summing the entries of the syndrome which are
indexed by the set of positions in Supp(H:,j). When upcj exceeds a given threshold
(e.g., when more than a half of the parity check equations in which the j-th error bit is
involved – as in the original proposal by Gallager), then the bit value in the considered
position of the estimated error vector is flipped and the syndrome is coherently updated
by replacing its current value with s⊕H:,j . In a single decoding iteration, all error bits
are evaluated following their positional order from 0 to n − 1. A syndrome decoder,
which applies an in-place decoding strategy, executes multiple iterations, each of which
repeats the steps previously described until either a null syndrome is obtained or a
prefixed maximum number of iterations is reached.

When an out-of-place strategy is employed, every error bit is assessed relying on
the same syndrome value provided (as input) at the beginning of the iteration, while the
updates of both the error vector estimate and the syndrome are postponed after all error
bits have been evaluated.

3 In-Place Randomized Bit-Flipping Decoder

In this section we describe a simple modification to the canonical in-place decoder
proposed by Gallager, for which we are able to provide a closed form estimate of the
DFR in a worst-case scenario.

3.1 An In-Place, Randomized Bit-Flipping Decoder

Algorithm 1 reports an in-place BF decoder where the estimates on the error vector
bits are computed in the order driven by a randomly picked permutation π. For this
reason, we denote this decoder as In-place Randomized Bit-Flipping (IR-BF) decoder.
Introducing this randomization of the bit estimate evaluation order allows us to derive
an effective worst case analysis for the DFR, as we describe in Sect. 3.2.

The inputs to the decoding algorithm are the binary parity-check matrix H, the
syndrome s, the maximum number of iterations imax and a vector b of length imax,
such that its k-th entry, bk, with 0 ≤ k ≤ imax−1, is employed during the k-th iteration
as a threshold on the value of the unsatisfied parity-check counters to trigger a flip of
the corresponding error bit estimates or not. For each outer loop iteration (beginning at
line 3), a permutation is randomly generated (line 4) to establish the evaluation order of
the bits in the estimated error vector, for the current iteration. The algorithm proceeds
applying the said permutation to each value taken by the counter j ∈ {0, 1, . . . , n−1} of
the inner loop iterations (line 5) to obtain the bit position � = π(j) of the estimated error
vector to be processed during the inner loop iteration at hand. The number of unsatisfied
parity-checks (upc) in which the �-th bit of the error estimate ê is involved is computed
by summing the syndrome bits having a position corresponding to the asserted elements
of the �-th column of the parity check matrixH (lines 7–9). If the number of unsatisfied
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Algorithm 1. In-place, Randomized Bit-flipping (IR-BF) decoder [6].

Input: s ∈ F
1×r
2 : syndrome

H ∈ F
r×n
2 : parity-check matrix with column-weight v

Output: ê ∈ F
1×n
2 : recovered error value

s ∈ F
1×r
2 : syndrome; if error ê = e then s is null

Data: imax ≥ 1: maximum number of (outer loop) iterations;
b = [b0, . . . , bk, . . . , bimax−1], with bk∈{� v

2
�, . . . , v}

: flip thresholds

1 iter ← 0
2 ê ← 0n // estimated error initialization
3 while (iter < imax) ∧ (wH (s) > 0) do

4 π
$←− Pn // random permut. of size n

5 for j ← 0 to n − 1 do
6 � ← π(j) // permuted bit index
7 upc ← 0 // integer value
8 for i ∈ Supp(H:,�) do
9 upc ← upc+ si

10 if upc ≥ biter then
11 ê� ← ê� ⊕ 1 // error update
12 s ← s ⊕ H:,� // syndrome update

13 iter ← iter+ 1 // counter update

14 return {ê, s}

parity-checks in which the �-th bit participates exceeds the threshold, biter, chosen
for the current outer loop iteration, then the value of the �-th position of the estimated
error vector, ê�, is changed (i.e., flipped, hence the name of the decoding technique)
and the value of the syndrome is updated to reflect this change, adding to it the �-th
column of H (lines 10–12). Once the inner loop at lines 5–12 terminates, the decoder
has completed the iteration, and thus proceeds to increment the iteration counter iter
and checks whether the syndrome is the null vector, or not, or if the maximum number of
iterations is reached. We note that this classical formulation of the IR-BF decoder does
not entail a constant iteration number. However, it is readily transformed into one with a
constant iteration number substituting the while loop at lines 3–13 with a countable for
loop executing exactly imax iterations. Indeed, executing extra iterations of the IR-BF
algorithm when the syndrome is already the null vector does not alter the correctness
of the results. Indeed, once the syndrome is the null vector, all the upc values will be
equal to zero, and, since the least functional threshold is strictly positive, the execution
path controlled by the estimate-changing if statement at lines 10–12 is never taken.

3.2 Modeling of the Bit-Flipping Probabilities

In the following we describe a statistical approach to model the behaviour of the IR-BF
decoder [6]. From now on, we will employ the following notation:

– e denotes the actual error vector, with Hamming weight weight t;
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– ē denotes the error estimate at the beginning of the outer loop of Algorithm 1 (line 3),
while êwill denote the error estimate at the beginning of the inner loop of Algorithm
(line 5). In other words, ē is a snapshot of the error estimate made by the IR-BF
decoder before a sweep of n estimated error bit evaluations is made, while ê is the
value of the estimated error vector before each estimated error bit is evaluated;

– ē′ = e ⊕ ē denotes the vector such that its asserted positions are only those corre-
sponding to positions in which (the unknown) e and ē are different; the number of
such mismatches is denoted as t̄ = wH (ē′). In analogous way, we define ê′ = e⊕ ê
and t̂ = wH (ê′).

We remark that, for the first outer-loop iteration of the decoding algorithm, we
have ē = 0n, ē′ = e and t̄ = t. To avoid cumbersome notation, we will not intro-
duce analogous formalism for the syndrome and will always use s to denote it. At
the beginning of the outer loop iteration in Algorithm 1, the syndrome corresponds to
(e⊕ ē)H� = ē′H� while, inside the inner loop iteration, an estimate ê will be associ-
ated to the syndrome (e ⊕ ê)H� = ê′H�.

Assumption 1. The probability Pth
f |1 = Pr

[
upcj ≥ th | ej �= êj

]
, with j ∈ {0, 1,

. . . , n − 1}, that the number of the unsatisfied parity checks involving the j-th bit of
the error vector, i.e., upcj , is large enough to trigger a flip of êj , given that its current
value does not match the value of the j-th bit in the unknown error vector, i.e., ê′

j =
ej ⊕ êj = 1, is a function of only the total number t̂ = wH (ê ⊕ e) of positions over
which the estimated error vector ê and the unknown error vector e differ.

Analogously, the probability Pth
m|0 = Pr

[
upcj < th | ej = êj

]
that the number of

the unsatisfied parity checks involving the j-th bit of the error vector, i.e., upcj , is low
enough to maintain the current value êj of the j-th estimated error vector bit, given
that its current value matches the value of the j-th bit in the unknown error vector, i.e.,
ê′

j = ej ⊕ êj = 0, is a function of only the total number t̂ = wH (ê ⊕ e) of positions
over which the estimated error vector ê and the unknown error vector e differ.

Informally, we are stating that the statistical behaviour of the single given upcj does not
depend on its location j, but only on the number of discrepancies between the estimated
error vector and the actual one, and the fact that the j-th position of ê is in accordance
or not with e.

The following probabilities referred to flipping (f ) or maintaining (m) the value of each
bit of ê will be used to characterize the iteration behaviour [6]

Pth
f |1(t̂) = Pr

[
upcj ≥ th | ej �= êj , wH (e ⊕ ê) = t̂

]
,

Pth
m|1(t̂) = 1 − Pth

f |1(t̂) = Pr
[
upcj < th | ej �= êj , wH (e ⊕ ê) = t̂

]
,

Pth
m|0(t̂) = Pr

[
upcj < th | ej = êj , wH (e ⊕ ê) = t̂

]
,

Pth
f |0(t̂) = 1 − Pth

m|0(t̂) = Pr
[
upcj ≥ th | ej = êj , wH (e ⊕ ê) = t̂

]
.

To derive closed formulae for both Pf |1 and Pm|0, we focus on QC-LDPC/QC-MDPC
parity-check matrices, as described in Sect. 2, with column weight v and row weight



158 M. Baldi et al.

w = n0v. We observe that Algorithm 1 uses the columns of the parity-check matrix,
for each outer loop iteration, in an order chosen by the random permutation at line 4,
and that the computation accumulating the syndrome bits into the upc at lines 8–9 is
independent of the order in which they are added.

According to this, in the following we assume that each row of the parity-check
matrix H is independent of the others and modeled as a sample of a uniform random
variable, distributed over all possible sequences of n bits with weight w, and name
a parity-check matrix (v, w)-regular if all its columns have weight v and all its rows
have weight w. We share this assumption with a significant amount of literature on the
prediction of the DFR of QC-LDPC decoders, ranging from the original work by Gal-
lager on LDPCs [16, Section 4.2] to more recent ones, namely [32, Section 3] and [27,
Section 4].

Formally, the following statement is assumed to hold:

Assumption 2. Let H be a p × n0p quasi-cyclic block-circulant (v, w)-regular parity-
check matrix and let s be the 1 × p syndrome corresponding to a 1 × n0p error vector
ê′ = e⊕ ê that is modeled as a sample from a uniform random variable distributed over
the elements in F

1×n0p
2 with weight t̂.

We assume that each row hi,:, 0 ≤ i ≤ p − 1, of the parity-check matrix H is well
modeled as a sample from a uniform random variable distributed over the elements of
F
1×n0p
2 with weight w.

Note that the assumption on the fact that the syndrome at hand is obtained from a
vector ê′ = ê ⊕ e of weight t̂ is trivially true if the iteration of the decoder being
considered is the first one being computed, since the error estimate ê is null and the
error vector e is drawn at random with weight t = t̂. This in turn states that, when
employing Assumption 2 in estimating the correction capability of the first iteration
of a decoder, we are only relying on the fact that the rows of the matrix H can be
considered independent, neglecting the effects of the quasi-cyclic structure.

In the following Lemma we establish how, upon relying on the previous assumption,
the probabilities that characterize the choices on the bits of the estimated error vector,
made by a either an in-place or an out-of-place iteration function, can be expressed [6].

Lemma 1. Let H be a p×n0p quasi-cyclic block-circulant (v, w)-regular parity-check
matrix; let ê′ = ê⊕e be an unknown vector of length n and weight t̂ such thatH(ê′)T =
s.
From Assumption 1 and Assumption 2, the probabilities ρ0,u(t̂) = Pr [si = 1|ê′

z = 0]
and ρ1,u(t̂) = Pr [si = 1|ê′

z = 1] that the i-th parity-check equation having hi,z = 1,
for any 0 ≤ z ≤ n − 1, is unsatisfied (i.e., si = hi,:(ê′)T = 1) given the value of ê′

z ,
can be derived as follows

ρ0,u(t̂) = Pr
[
hi,:(ê′)T = 1 | ê′

z = 0
]
=

∑min{w−1,t̂}
l=1, l odd

(
w−1

l

)(n0p−w
t̂−l

)
(n0p−1

t̂

)

ρ1,u(t̂) = Pr
[
hi,:(ê′)T = 1 | ê′

z = 1
]
=

∑min{w−1,t̂−1}
l=0, l even

(
w−1

l

)(n0p−w
t̂−1−l

)
(n0p−1

t̂−1

)
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Consequently, the probability Pf |1(t̂) = Pr [upcz ≥ th | ê′
z = êz ⊕ ez = 1] of chang-

ing (flipping) the z-th bit of the estimated error vector êz assuming that ê′
z = 1, and the

probability Pm|0(t̂) = Pr [upcz < th | ê′
z = êz ⊕ ez = 0] of maintaining êz assuming

that ê′
z = 0, are computed as follows

Pth
f |1(t̂) =

v∑

σ=th

(
v

σ

)(
ρ1,u(t̂)

)σ(
1 − ρ1,u(t̂)

)v−σ
,

Pth
m|0(t̂) =

th−1∑

σ=0

(
v

σ

)(
ρ0,u(t̂)

)σ(
1 − ρ0,u(t̂)

)v−σ
.

Proof. For the sake of brevity, we consider the case of ê′
z = 1 deriving the expression

of Pth
f |1(t̂); the proof for P

th
m|0(t̂) can be carried out with similar arguments. Given a row

hi,: of the parity-check matrixH , such that z ∈ Supp(hi,:), the equation
⊕n0p−1

j=0 hi,j ê
′
j

(in the unknown ê′) yields a non-null value for the i-th bit of the syndrome, ŝi, (i.e., the
equation is unsatisfied) if and only if the support of ê′ is such that

⊕n0p−1
j=0 hi,j ê

′
j =

2a + 1, a ≥ 0, including the term having j = z, i.e., hi,z ê
′
z = 1. This implies that

the cardinality of the set obtained intersecting the support of hi,: with the one of ê′,
|(Supp(hi,:) \ {z}) ∩ (Supp(ê′) \ {z})|, must be an even number, which in turn cannot
be larger than the minimum between |Supp(hi,:) \ {i}| = w−1 and |Supp(ê′) \ {i}| =
t̂ − 1.

The probability ρ1,u(t̂) is obtained considering the fraction of the number of values
of ê′ having an even number of asserted bits matching the asserted bits ones in a row
of H (noting that, for the z-th bit position, both the error and the row of H are set) on
the number of ê′ values having t̂ − 1 asserted bits over n0p − 1 positions, i.e.,

(n0p−1
t̂−1

)
.

The numerator of the said fraction is easily computed as the sum of all ê′ configurations
having an even number 0 ≤ l ≤ min{w − 1, t̂ − 1} of asserted bits. Considering a
given value for l, the counting of ê′ values is derived as follows. Picking one vector
with l asserted bits over w possible positions, i.e., one vector over

(
w−1

l

)
possible ones,

there are
(n0p−w

t̂−1−l

)
possible values of the error vector exhibiting t̂ − 1 − l null bits in

the remaining n0p − w positions; therefore, the total number of vectors with weigh l is(
w−1

l

)(n0p−w
t̂−1−l

)
.

Repeating the same line of reasoning for each value of l allows to derive the numer-
ator of the formula defining ρ1,u(t̂).

From Assumption 2, the observation of any unsatisfied parity check involving the
z-th bit of the error vector ê′

z (i.e., hi,:(ê′)T = 1) given that ê′
z = êz ⊕ ez = 1,

is modeled as a random variable with a Bernoulli distribution having parameter (or
expected value) ρ1,u(t̂), and each of these random variables is independent of the others.
Consequentially, the probability that the decoder performs a bit-flip of an element of the
estimated error vector when the corresponding bit of the error vector is asserted and the
counter of the unsatisfied parity checks (upc) is above or equal to a given threshold
th, is derived as the binomial probability obtained adding the outcomes of v (column-
weight of H) i.i.d. Bernoulli trials. 	
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Worst-Case Iteration Scenario for the IR-BF Decoder. In the following we focus on
a single iteration of the outer loop of Algorithm 1 and derive a statistical model for the
IR-BF decoder, employing the probabilities Pf |1 and Pm|0 as previously derived [6].

In particular, we consider a worst-case evolution for the decoder, proving what is
the computation path which ends in a decoding success with the lowest probability. To
this end, we denote a decoding success the case when the decoder terminates the inner
loop iteration in the state where the estimate of the error ê matches the actual error e.
Indeed, in such a case, we have wH (e ⊕ ê) = 0.

Considering the error estimate at the beginning of the outer-loop iteration ē and
the corresponding number of residual mismatched bit estimations t̄ = wH (e ⊕ ē), we
will study, in statistical terms, the evolution of the number of mismatches between the
vectors e and ê, which we denote with t̂.

We denote as π the permutation picked in line 4 of Algorithm 1 and as π∗ an element
of the subset P∗

n of permutations (P∗
n ⊂ Pn) such that

Supp(π∗(e ⊕ ē)) = {n − t̄, n − t̄ + 1, · · · , n − 1}, ∀π∗ ∈ P∗
n.

Let Prob ( ê �= e| π ∈ Pn) be the probability that the estimated error vector ê at the
end of the current inner loop iteration is different from e, conditional on the fact that
the permutation π was applied before the inner loop execution started. Similarly, we
define Prob ( ê �= e| π∗ ∈ P∗

n), by considering π∗ in place of π.
It can be verified that Pf |1(t̂) ≥ Pf |1(t̂ + 1), and Pm|0(t̂) ≥ Pm|0(t̂ + 1), ∀t̂,

as increasing the number of current mis-estimated error bits, increases the likelihood
of a wrong decoder decision. By leveraging Assumptions 1 and 2, we now prove how
the decoder reaches a correct decoding at the end of the outer loop, with the lowest
probability.

Lemma 2. The execution path of the inner loop in Algorithm 1, yielding the worst
possible decoder success rate is the one taking place when π∗ ∈ P∗

n is applied at the
beginning of the outer loop. In other words, ∀π ∈ Pn, and ∀π∗ ∈ P∗

n, the following
inequality holds

Prob ( ê �= e| π ∈ Pn) ≤ Prob ( ê �= e| π∗ ∈ P∗
n) .

Proof. We consider one execution of the outer loop in Algorithm 1, and denote with t̄
the initial number of mismatches between the actual error (that is, e) and its estimate
(that is, ē). We can write Prob ( ê �= e| π ∈ Pn) = 1 − β(π), where β(π) is the prob-
ability that all bits, evaluated in the order specified by π, are correctly processed. To
visualize the effect of a permutation π∗ ∈ P∗

n, we can consider the following represen-
tation

π∗(e) ⊕ π∗(ē) = [0, 0, · · · , 0︸ ︷︷ ︸
length n − t̄

, 1, 1, · · · , 1︸ ︷︷ ︸
length t̄

], ∀π∗ ∈ P∗
n.

The decoder will hence analyze first a run of n − t̄ positions where the differences
between the permuted error π∗(e) vector and π∗(ē) contain only zeroes, followed by a
run of t̄ positions containing only ones. Thus, we have that

β(π∗) =
(
Pm|0(t̄)

)n−t̄ · Pf |1(t̄) · Pf |1(t̄ − 1) · · ·Pf |1(1).
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The former expression can be derived thanks to Assumption 1 as follows. Note that, the
first elements in the first n− t̄ positions of π∗(ē) and π∗(e)match, therefore the decoder
makes a correct evaluation if it does not change the corresponding entries in ê. This
implies that, in case a sequence of n − t̄ correct decisions are made in the correspond-
ing iterations of the inner loop, each iteration will have the same probability Pm|0(t̄)
of correctly evaluating the current estimated error bit. This leads to a probability of

performing the first n − t̄ iterations taking a correct decision equal to
(
Pm|0(t̄)

)n−t̄
.

Through an analogous line of reasoning, we observe that the decoder will need to
change the value of the current estimated error bit during the last t̄ iterations of the
inner loop. As a consequence, if all correct decisions are made, the number of residual
errors will decrease by one at each inner loop iteration, yielding the remaining part of
the expression.

Considering a generic permutation π, such that the support of π(e) is
{u0, · · · , ut̄−1}; we have
β(π) =

[
Pm|0(t̄)

]u0 Pf|1(t̄)
[
Pm|0(t̄ − 1)

]u1−u0−1
Pf|1(t̄ − 1) · · ·Pf|1(1)

[
Pm|0(0)

]n−1−ut̄−1

=
[
Pm|0(t̄)

]u0
[
Pm|0(0)

]n−1−ut̄−1
t̄−1∏

j=1

[
Pm|0(t̄ − j)

]uj−uj−1−1
t̄−1∏

l=0

Pf|1(t̄ − l).

We now show that we always have β(π) ≥ β(π∗).
Indeed, since Pm|0(0) = 1, due to the monotonic trends of the probabilities Pm|0(t̂)

and Pf |1(t̂), the following chain of inequalities can be derived

β(π) =

=
[
Pm|0(0)

]n−1−ut̄−1
[
Pm|0(t̄)

]u0 ∏t̄−1
j=1

[
Pm|0(t̄ − j)

]uj−uj−1−1 ∏t̄−1
l=0 Pf |1(t̄ − l)

≥ [
Pm|0(0)

]n−1−ut̄−1
[
Pm|0(t̄)

]u0 ∏t̄−1
j=1

[
Pm|0(t̄)

]uj−uj−1−1 ∏t̄−1
l=0 Pf |1(t̄ − l)

=
[
Pm|0(0)

]n−1−ut̄−1
[
Pm|0(t̄)

]u0
[
Pm|0(t̄)

]ut̄−1−u0−(t̄−1) ∏t̄−1
l=0 Pf |1(t̄ − l))

=
[
Pm|0(0)

]n−1−ut̄−1
[
Pm|0(t̄)

]ut̄−1−(t̄−1) ∏t̄−1
l=0 Pf |1(t̄ − l)

≥ [
Pm|0(t̄)

]n−1−ut̄−1
[
Pm|0(t̄)

]ut̄−1−(t̄−1) ∏t̄−1
l=0 Pf |1(t̄ − l)

=
[
Pm|0(t̄)

]n−t̄ ∏t̄−1
l=0 Pf |1(t̄ − l) = β(π∗). 	


A Worst-Case DFR Estimate for the IR-BF Decoder. We consider one outer loop
iteration with ē being the error vector estimate before the beginning of the loop, exhibit-
ing t̄ = wH (e ⊕ ē)mismatches with the unknown error vector e. From now on we will
assume that, in each inner-loop iteration, a permutation from the set P∗

n is picked; in
other words, we are assuming that the decoder is always constrained to reach a decoding
success through the worst possible execution path [6].
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Let us consider the following two sets bit-positions/indexes in the error vector esti-
mate: E1=S(e ⊕ ē) and E0={0, . . . , n − 1} \ E1. Denote with t̂0 the number of
places/positions where the estimated error differs from the actual unknown e and the
positions are also included in E0. At the beginning of the outer loop iteration, we have

t̂0 = |Supp(e ⊕ ē) ∩ E0| = 0.

Analogously, denoting with t̂1 the number of positions in which the estimated error and
the actual one differ and the positions are also included in E1; at the beginning of the
outer loop iteration, we have

t̂1 = |Supp(e ⊕ ē) ∩ E1| = t̄.

i) Let ProbP∗
n

(
ω

E0−−→ x
)
denote the probability that the decoder in Algorithm 1,

starting from a state where wH (ē ⊕ e) = ω, and acting in the order specified by a
worst case permutation π∗ ∈ P∗

n, ends in a state with t̂0 = x residual errors among
the bits indexed by E0 after completing the inner loop at lines 5 – 12;

ii) Let ProbP∗
n

(
ω

E1−−→ x
)
denote the probability that the decoder in Algorithm 1,

starting from a state where wH (ē ⊕ e) = ω, and acting in the order specified by a
worst case permutation π∗ ∈ P∗

n ends in a state with t̂1 = x residual errors among
the bits indexed by E1 after completing the loop at lines 5–12;

iii) Let ProbP∗
n

(
ω −→

i
x
)

be the probability that, starting from a state such that

wH (ē ⊕ e) = ω, after i iterations of the outer loop at lines 5–12 of
Algorithm 1, each one operatingwith aworst case permutation, ends in a state where
wH (ê ⊕ e) = x.

The expressions of the probabilities i) and ii) describe the statistical distributions of
t̂0 and t̂1 after that all n iterations of the inner loop of Algorithm 1 have been exe-
cuted and all the bits in the estimated error vector have been processed in the order
pointed out by the permutation π∗ ∈ P∗

n, selected at the beginning of the outer loop. To
show how the said distributions are computed and that they only depend on Pf |1(t̂) and
Pm|0(t̂), respectively, we employ the framework of Probabilistic Finite State Automata
(PFSA) [26].

Informally, a PFSA is a Finite State Automaton (FSA) characterized by transition
probabilities for each of the transitions of the FSA. The state of a PFSA is a discrete
probability distribution over the set of FSA states and the probabilities of the transitions
starting from the same FSA state, reading the same symbol, must add up to one. A
transition from a PFSA state to its subsequent one in the computation is computed
taking, for each automaton state for which an admissible transition is present (i.e. the
read symbol matches the one on the input tape), the probability mass related to the
automaton state itself and, adding the product of the probability mass multiplied by the
transition probability to the destination automaton state probability mass.

We model the statistical distribution of t̂0 as the state of a PFSA having n − t FSA
states, each one mapped onto a specific value for t̂0, as depicted in Fig. 1. We consider
the underlying FSA to be accepting the input language constituted by binary strings
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Fig. 1. Structure of the probabilistic FSA modeling the evolution of the distribution of the t̂0
variable. Read characters are reported in black, transition probabilities in red. This figure also
appeared in the appendix of the conference version of this paper [6].

Fig. 2. Structure of the probabilistic FSA modeling the evolution of the distribution of the t̂1
variable. Read characters are reported in black, transition probabilities in red. This figure also
appeared in the appendix of the conference version of this paper [6].

obtained as the sequences of êj �= ej values, where j is the error estimate position
being processed by the IR-BF decoder at a given inner loop iteration. We therefore
have that, for the PFSA modeling the evolution of t̂0 while the IR-BF decoder acts on
the first n − t positions specified by π∗, all the read bits will be equal to 0, as π∗ sorts
the positions of ê so that the (n − t, at the first iteration) positions with no discrepancy
between ē and e come first. The transition probability for the PFSA transition from
a state t̂0 = i to t̂0 = i + 1 requires the IR-BF decoder to flip a bit of ê equal to
zero, and matching the one in the same position of e, causing a discrepancy. Because of
Assumption 1, the probability of such a transition is Pf |0(t + i), while the probability
of the self-loop transition from t̂0 = i to t̂0 = i itself is Pm|0(t + i).

Note that, during the inner loop iterations of the IR-BF decoder acting on positions
of ê which have no discrepancies, it is not possible to decrease the value t̂0, as no
reduction on the number of discrepancies between ê and e can be done changing values
of ê which are already equal to the ones in e. Hence, we have that the probability of
transitioning from t̂0 = i to t̂0 = i − 1 is zero.

The evolution of a PFSA can be efficiently computed simply taking the current state,
represented as the vector y of probabilities for each FSA state, and multiplying it by
an appropriate matrix which characterizes the transitions in the PFSA. Such a matrix
is derived as the adjacency matrix of the PFSA graph representation, keeping only the
edges for which the read character matches the edge label, and substituting the one-
values in the adjacency matrix with the probability labelling the corresponding edge.
We obtain the transition matrix modeling an iteration of the IR-BF decoder acting on
an êj = ej (i.e., reading a 0) as the (n − t + 1) × (n − t + 1) matrix
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K0 =

⎡

⎢⎢⎢⎢⎢⎣

Pm|0(t) Pf |0(t) 0 0 0 0
0 Pm|0(t + 1) Pf |0(t + 1) 0 0 0
...

...
...

...
...

...
0 0 0 0 Pm|0(n − 1) Pf |0(n − 1)
0 0 0 0 0 Pm|0(n)

⎤

⎥⎥⎥⎥⎥⎦
.

Since we want to compute the effect on the distribution of t̂0 after n − t iterations
of the IR-BF decoder acting on positions j such that êj = ej , we can obtain it simply
as yKn−t

0 .
Note that the subsequent t iterations of the IR-BF decoder will not alter the value

of t̂0 as they act on positions j such that ej = 1. Since we know that, at the beginning
of the first iteration y = [Prob

(
t̂0 = 0

)
= 1, Prob

(
t̂0 = 1

)
= 0, Prob

(
t̂0 = 2

)
=

0, · · · , Prob
(
t̂0 = n − t

)
= 0], we compute ProbP∗

n

(
ω

E0−−→ x
)
as the (x+1)-th ele-

ment of yKn−t
0 .

We now model the distribution of t̂1, during the last t̂ rounds of the loop in the
randomized in-place iteration function. Note that, to this end, the first n − t iterations
of the inner loop have no effect on t̂1. Denote with t̃ the incorrectly estimated bits in
ê′ = e⊕ ê, that is, t̃ = wH (ê′), when the iteration function is about to evaluate the first
of the positions j where êj �= ej . Note that, at the beginning of this second phase of
the outer loop we have t̃ = t̃0 + t̂1, where t̃0 is the number of discrepancies in the first
n − t̂ positions when the iteration is about to analyze the first position of ê for which
wH (e+ ê).

Analogously to the PFSA describing the evolution for t̂0, we obtain the PFSA mod-
eling the evolution of t̂1, reported in Fig. 2. The initial distribution of the values of t̂1,
constituting the initial state of the PFSA in Fig. 2, is such that Prob

(
t̂1 = t

)
= 1, cor-

responding to the t̂1-element vector z = [0, 0, . . . , 0, 1]. The transition matrix of the
PFSA is

K1 =

⎡

⎢⎢⎢⎢⎢⎣

Pm|1(t̃ − t) 0 0 0 0 0
Pf |1(t̃ − t + 1) Pm|1(t̃ − t + 1) 0 0 0 0

...
...

...
...

...
...

0 0 0 Pf |1(t̃ − 1) Pm|1(t̃ − 1) 0
0 0 0 0 Pf |1(t̃) Pm|1(t̃)

⎤

⎥⎥⎥⎥⎥⎦
.

We are thus able to obtain the ProbP∗
n

(
ω

E1−−→ x
)
computing zKt

1 and taking its (x +
1)-th element.

Having shown how to compute ProbP∗
n

(
ω

E0−−→ x
)
, and ProbP∗

n

(
ω

E1−−→ x
)
, we

proceed to show how they can be used together to derive ProbP∗
n

(
ω −→

i
x
)
and express

the worst case DFR after imax iterations of the outer-loop of Algorithm 1, which we
denote as DFR∗

itermax.
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First of all, it is easy to observe have

ProbP∗
n

(
ω −→

1
x
)
=

ω∑

δ=max{0 ; x−(n−ω)}
ProbP∗

n

(
ω

E0−−→ x − δ
)
ProbP∗

n

(
ω

E1−−→ δ
)

.

From now on, we will denote with ê(iter) the error vector estimate after the iter + 1
outer loop iterations; coherently, we write t̂(i) = wH

(
e ⊕ ê(iter)

)
, that is: t̂(i) corre-

sponds to the number of residual errors after the i-th outer loop iteration.
As a consequence, by considering all possible configurations of such values, and taking
into account that the first iteration begins with t residual errors, we have

ProbP∗
n

(
t −−−−→

imax−1
t̂(imax−1)

)
=

n∑

t̂(0)=0

· · ·

· · ·
n∑

t̂(imax−2)=0

ProbP∗
n

(
t̂(imax−2) −→

1
t̂(imax−1)

) imax−2∏

j=0

ProbP∗
n

(
t̂(j−1) −→

1
t̂(j)

)

where, to have a consistent notation, we consider t̂(−1) = t. The above formula takes
into account all possible transitions starting from an initial number of residual errors
equal to t and ending in t̂(imax−1) residual errors. Taking this probability into account,
the DFR after imax iterations is

DFR∗
imax = 1 −

n∑

t̂(imax−1)=0

ProbP∗
n

(
t −−−−→

imax−1
t̂(imax−1)

)
ProbP∗

n

(
t̂(imax−1) −→

1
0
)

.

In the case of the decoder performing just one iteration, the expression of the DFR,
keeping into account Lemma 2, is

DFR∗
1 = 1 − ProbP∗

n

(
t −→

1
0
)
= 1 −

(
Pm|0(t)

)n−t t∏

j=1

Pf |1(j).

A bonus point of the analysis we propose is that it is easy to obtain also an estimate
for the average DFR of a single-iteration decoder, (i.e., corresponding to one outer
loop iteration, using a random permutation π). Indeed, let π(e) be the vector obtained
by applying the permutation π on e, with support Supp(π(e)). Let ai, ai+1 be two
consecutive elements of Supp(π(e)), with 0 ≤ i ≤ t − 2, and denote as d the average
zero-run length in e. It can be easily seen that, when π is randomly drawn from Pn

and e is uniformly distributed over all binary n-uples, then the average zero-run length
between two consecutive set entries in e corresponds to d = n−t

t+1 . Consequently, we
can obtain a simple estimate for the average DFR after one iteration as

DFR1 ≈ 1 −
⎛

⎝
t∏

j=1

(
Pm|0(j)

)d
⎞

⎠
t∏

�=1

Pf |1(�).
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4 Validation of DFR Models and Cryptosystem Design

In this section we perform a numerical validation of the proposed analysis of IR-
BF decoders and employ the our model to design practical sets of code parameters
for QC-LDPC/QC-MDPC code-based cryptosystems employing a two-iteration IR-BF
decoder. First, we consider the accuracy of the newmodel for a single decoding iteration
showing that it is fully accurate regardless of both the choice of the thresholds employed
to perform the bit-flipping evaluations and the code parameters. Subsequently, we con-
sider more than one decoding iteration and comment on the differences between the
modeled and the experimental DFRs of Algorithm 1. In particular, we observe that dif-
ferences between the proposed model and the experimental behavior arise only when
the threshold values selected to perform the bit-flipping evaluations in Algorithm 1
are significantly larger than v/2, and provide qualitative justifications for such a phe-
nomenon. Furthermore, we provide experimental evidence that when the values of the
bit-flipping thresholds adopted by Algorithm 1 are close to v/2, the worst case model
we developed for the IR-BF decoder well fits the behavior observed through numerical
simulations.

4.1 Experimental Validation of DFR Models

We consider a QC-MDPC code having the-parity check matrix H formed by a row
of n0 = 2 circulant blocks of size p = 4, 801 and column weight v = 45. The
error correction capability of this code via IR-BF decoding has been assessed through
Monte Carlo simulations. For this purpose, the IR-BF decoder has been implemented
in C99 while the whole simulation software has been compiled with the GCC 8.3.0
on a Debian GNU/Linux 10.2 (stable) operating system. Numerical simulations have
been performed on a machine equipped with an Intel Core i5-6500 CPU running at
3.20 GHz.

The DFR has been estimated by varying the error vector weight t from 10 to 100,
and generating and decoding 106 ≈ 220 randomly generated error vectors for each value
of the weight. The bit-flipping threshold has been considered equal for all iterations.
The DFR curves obtained through the said experimental simulations are compared with
one obtained applying the theoretical worst case DFR estimate computed according to
Sect. 3.2, which has been implemented employing the NTL library.1

Let us first consider a bit-flipping threshold b = 25 (≥ � v
2� = 23). In Fig. 3 we

report the results of numerical simulations of the DFR of the IR-BF decoder (Sim.
datasets in Fig. 3) running for either one or two iterations (seeDFR1 andDFR2, respec-
tively). The DFR curves corresponding to a permutation selected among the worst case
ones are also reported, for either one or two decoding iterations (see DFR∗

1 and DFR∗
2,

respectively). For the case of one iteration, also the simulated DFR without the ini-
tial permutation, noted as DFRid, is considered. Note that we are able to pick one of
the worst-case permutations in practice since the actual error vector e is known to us,
thus allowing the computation of the discrepancies between the current error estimate
and the actual error itself. The results are matched against the closed-form estimates as
derived in the previous section.

1 NTL: A Library for doing Number Theory. https://www.shoup.net/ntl/.

https://www.shoup.net/ntl/
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Fig. 3. Numerical validation of the DFR estimates (Est.) through numerical simulations (Sim.),
appeared also as Fig. 1 in the conference version of this paper [6]. The QC-MDPC code param-
eters are n0 = 2, p = 4801 and v = 45. Figure (a) refers to the case of one decoding iteration
(i.e., imax = 1), figure (b) refers to a maximum number of decoding iterations equal to 2 (i.e.,
imax = 2). The chosen decoding threshold, for both cases, is b = 25. The results marked with
“Est.” are obtained via the computation of closed formulas as opposed to the ones marked “Sim.”
which are the result of a numerical simulation.

Fig. 4. Numerical validation of the DFR estimates (Est.) through numerical simulations (Sim.),
for one decoding iteration. The QC-MDPC code parameters are n0 = 2, p = 4801 and v = 45.
The results marked with “Est.” are obtained via the computation of closed formulas as opposed
to the ones marked “Sim.” which are the result of a numerical simulation.
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As it can be seen in Fig. 3 (a), our technique for the DFR estimate provides a perfect
match for the case of a single iteration. Indeed, our estimated worst-case DFR (dotted
cyan line) matches perfectly the simulated DFR picking a worst-case permutation π∗

(cyan × symbols), and dominates the actual simulated DFR (blue × symbols). Finally,
we also observe that omitting the permutation before the first iteration has no practical
impact on the DFR (black • symbols). Such a fact can be easily justified by the random
nature of the error vector. Indeed, the discrepancies between the error estimate at the
beginning of the decoding (when it is completely null) and the unknown error vector
itself are already completely random. This fact can be observed looking at the black
dots in Fig. 3 (a), which report the values of DFRid, and observing that they essentially
match the DFR of the decoder employing a random permutation (blue × symbols).

Finally, we note that our simple technique to estimate the average DFR of the IR-BF
decoder (depicted as a dotted blue line) also provides a good match for the actual DFR
itself. Considering the case of a two iterations IR-BF decoder, reported in Fig. 3 (b),
we note how our technique provides a conservative estimate for the worst case DFR of
the IR-BF decoder. The previous comparison shows that, for the range of values that
can be reached with numerical simulations, the presented theoretical analysis yields
conservative estimates for the DFR of the IR-BF decoder.

Let us now consider different choices for the bit-flipping threshold, namely, b ∈
{26, 27, 28, 29, 30}. We first focus on a single decoding iteration and, again, compare
the DFR values derived from the theoretical model with the ones obtained via numerical
simulations; the corresponding results are reported in Fig. 4. For every threshold value,
there is a tight match between the pair of DFR curves reporting theoretically estimated
values and simulated values, respectively, for each value of the bit-flipping threshold.
A noteworthy point is that, as the value of the employed threshold increases, the DFR
values provided by our worst case modeling tends to coincide with those provided by
an average case modeling.

A justification of this phenomenon can be provided analyzing the role of the thresh-
old value b when the bit-flipping evaluations are performed. In the IR-BF decoder with
a single iteration, a decoding failure can be caused either by i) flipping error estimate
values where no discrepancy with the actual error is present or by ii) not flipping error
estimate values which are in discrepancy with the actual error. The probability that
the IR-BF outer-loop iteration flips (either wrongly or correctly) a bit value rapidly
decreases as the value of the bit-flipping threshold b increases. As a consequence, in
the decoder behaviour it is extremely unlikely that a non discrepant error estimate bit
value is flipped (decoding failure cause i)), thus leading to the failures being caused pre-
eminently by missed flips on discrepant error estimate values (decoding failure cause
ii)). Since the non flipping actions on non discrepant error estimate values are taken
with increasing probability as the decoding threshold is risen, the inner loop iteration
of the decoder in which the said values are processed becomes less and less important.
Indeed, as more and more of such non-flip decisions are correctly made, their effect on
the number of residual discrepancies to be dealt by the decoder vanishes. Such a phe-
nomenon is well represented by both our model and the simulation results reported in
Fig. 4, where it can be seen that the worst-case and average-case behavior of the decoder
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Fig. 5. Comparison between the worst case theoretical model for the DFR of a two iterations
decoder, and the average simulated one. The QC-MDPC code parameters are n0 = 2, p = 4801
and v = 45. The results marked with “Est.” are obtained via the computation of closed formulas
as opposed to the ones marked “Sim.” which are the result of a numerical simulation.

for higher values of b becomes more and more similar, becoming substantially the same
for b = 30.

We also note that, whenever the threshold is risen, the likelihood of the BF decoding
missing a flip on discrepant location of the error estimate raises, therefore leading to an
increased number of decoding failures (assuming all the remaining code parameters and
the weight of the error are unchanged). This is also evident in Fig. 4. A phenomenon
analogous to the one observed in the single iteration case takes place in the case of a
multi-iteration decoder. Indeed, our proposed model yields a worst case estimate for
the DFR, as reported in Fig. 5(a) up to a threshold of b = 27. When considering higher
threshold values, as the ones depicted in Fig. 5(b) where larger threshold values starting
at b = 28 are employed, we have that the effect of decoding failures being determined
by a larger amount of missed flipping actions on discrepant error estimate locations is
amplified in a two iteration decoder. This in turn leads, for larger threshold values to
a predicted worst-case DFR value which is lower than the actual simulated one. We
note that this phenomenon can be practically counteracted picking low thresholds for
the IR-BF decoder iterations, thus having it work in the regime where our DFR analysis
provides conservative results.

4.2 Design of Code-Based Cryptosystems

We can employ the presented DFR model to design parameters for code-based cryp-
tosystems employing QC-LDPC/QC-MDPC codes, targeting a security level equivalent
to breaking an instance of the AES block cipher with a key size equal to 128, 192, or 256
bits. Focusing on the case of n0 = 2, we provide the resulting size and column weight
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of the circulant blocks in the parity-check matrixH, which we respectively denote with
p and v, in Table 1; the number of errors which need to be corrected (denoted with t
in the table) has been computed to guarantee security levels of 2λ [4]. In the case of
a Niederreiter-based key encapsulation mechanism (KEM), employing a quasi-cyclic
parity-check matrix with two circulant blocks, as it is the case in the reported parame-
ters, the public key of the cryptosystem will be p-bit long and the encapsulated session
key will also be p-bit long.

Table 1. Cryptosystem parameters; DFR=2−λ, λ={128, 192, 256} (this table also appeared as
Tab. 1 in the conference version of this paper [6]).

Security v t Two out-of-place 1st iter. IR-BF + Two iter.s IR-BF

Level iterations [27] 2nd out-of-place iter. [7]

p τ p τ p

2128 71 130 28, 277 10 26, 171 10 19, 813

2192 103 195 52, 667 15 50, 227 15 38, 069

2256 137 260 83, 579 18 80, 309 18 61, 211

Table 1 compares the parameter sets for the two-iterations out-of-place decoder pro-
posed in [27], a decoder obtained with one iteration of the IR-BF decoder, followed by
one iteration of the out-of-place LEDAcrypt decoder [7], computing the resulting DFR
on the base of the number of residual error distribution after the first iteration provided
by our technique, and a two-iterations IR-BF decoder. In the table, the values of τ refer
to the number of errors that can be corrected with certainty by an iteration of an out-of-
place BF decoder. As it can be seen from the reported results, even employing a hybrid
approach, where the first decoder iteration is performed in-place by the IR-BF decoder,
and the second one is performed out-of-place, allows a small reduction of the key size.
Moving to our in-place decoding strategy allows to reduce the public key and ciphertext
size by ≈ 25% with respect to the approach described in [27].

5 Related Work and Discussion

A code-specific analysis to establish the total error correction capability (i.e., null DFR)
for a single BF iteration has first appeared in [32] and has then been improved in [27].
With similar arguments, an assumption-free, conservative upper bound for the DFR of
a single decoder iteration was derived in [28]. However, employing such approaches
to design the secret code parameters results in impractically large public-key sizes.
To obtain keys with smaller size, in [3,5,27,32] the DFR of a two-iterations out-of-
place decoder is analyzed, providing a closed-form method to derive an upper bound on
the average DFR over all the QC-LDPC/QC-MDPC codes with the same length, rate
and density, under reasonable assumptions. However, the second and final decoding
iteration is analyzed in a conservative way, thus designing code parameters which may
be further improved.
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In [31], the authors propose a characterization of a variant of the out-of-place
decoder based on the extrapolation of the DFR curve in the desired regime of low DFR
values, starting from higher DFR values estimated through numerical simulations. This
method assumes that the exponentially decreasing trend of the DFR curve is steady as
the code length increases, while all the other parameters are kept constant. This assump-
tion is made in the scenario where numerical simulations allow to examine a DFR in
the range of 2−27, assuming that the trend is still the same for DFR values of 2−128 and
lower. A qualitative justification is provided for this assumption in the appendix of [30].
In the said appendix, the authors rely on the so-called concavity assumption, according
to which the DFR curve remains concave for all values of practical interest. Such an
assumption implies that the so-called error floor region of the DFR curve, where the
said curve changes concavity, and that is present in all LDPC/MDPC codes, after the
so-called waterfall region, does not occur for DFR values of practical interest.

We find this assumption to be difficult to maintain, since predicting the beginning
of the error floor region is an extremely challenging task, which has currently no satis-
factory closed form solution. Indeed, phenomena such as the existence of the so-called
trapping sets (particular sets of error patterns which cause an iterative decoder to fail),
which are deemed to have a negligible impact in the assumption made in [30], are one
of the prime objects of study to determine the location of the error floor region [18,25].

We note that if either a concavity change, or simply the change in the rate of the
exponential decrease of the DFR curve before the concavity change, takes place before
the region of practical interest, the extrapolations made in [30] will provide cryptosys-
tem parameters which are not matching the DFR needed in IND-CCA2 constructions.
Thus, we believe that relying on DFR curve extrapolations may provide overly opti-
mistic cryptosystem parameter designs [12,13].

In [30], the authors also analyze an in-place decoding algorithm, called Step-by-step
decoder, modeling its DFR. The proposed analysis however, obtains a DFR estimate
which is lower than the actual DFR obtained via numerical simulation, and thus cannot
be employed when an upper bound on the DFR value is desired. Furthermore, the pro-
posed analysis considers the asymptotic behaviour of the Step-by-step decoder when an
infinite number of iterations is performed. Such an approach provides a practical hin-
drance in principle to the implementation of the decoding procedure as a constant time
one, as there is no fixed upper bound to the number of iterations a-priori.

In this work, we have obtained a characterization of a simple in-place decoder with
a finite number of iterations, allowing its constant-time implementation in practice. Our
characterization provides a statistical model which, by considering the worst case eval-
uation of the decoder, provides a conservative estimate of the decoder evolution. As a
result, we do not rely on any specific a-priori assumption on the behaviour of the DFR
curve but, on the contrary, completely derive it as a function of the scheme parameters
and the decoder setting.

6 Conclusion

In this work, we presented a closed form analysis of the error correction capabil-
ity of a randomized variant of the classic in-place bit flipping decoder. Considering
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this randomized variant allowed us to provide closed form worst case DFR estimates,
for the said bit-flipping decoder, allowing its evaluation even in regimes where the
actual DFR cannot be derived by numerical simulations. This in turn allowed us to
provide sound parameters for code-based cryptosystems relying on QC-LDPC/QC-
MDPC codes, where providing extremely low DFRs is a requirement to achieve IND-
CCA2 security guarantees. Our worst case analysis provides a perfect match of the
IR-BF decoder behaviour when considering single iteration decoders, and a conserva-
tive bounding of the DFR in case a two-iteration IR-BF decoder is employed with a
threshold close to the one of a canonical majority decoder. We foresee, as a interest-
ing future research direction, the analysis of the emerging phenomena in two-iteration
IR-BF decoders, whenever they are operating with thresholds far from the majority one.

References

1. Albrecht, M.R., et al.: Classic McEliece website. https://classic.mceliece.org (2020)
2. Aragon, N., et al.: BIKE website. https://bikesuite.org (2020)
3. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAkem: a post-quantum

Key encapsulation mechanism based on QC-LDPC codes. In: Lange, T., Steinwandt, R.
(eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 3–24. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-79063-3 1

4. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime analysis of
information set decoding algorithms. Algorithms 12, 209 (2019)

5. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt: QC-LDPC code-
based cryptosystems with bounded decryption failure rate. In: Baldi, M., Persichetti, E., San-
tini, P. (eds.) Code-Based Cryptography. CBC 2019. Lecture Notes in Computer Science, vol.
11666, pp. 11–43. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25922-8 2

6. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A failure rate model of bit-
flipping decoders for QC-LDPC and QC-MDPC code-based cryptosystems. In: Samarati, P.,
di Vimercati, S.D.C., Obaidat, M.S., Ben-Othman, J. (eds.) Proceedings of the 17th Inter-
national Joint Conference on e-Business and Telecommunications, ICETE 2020, vol. 2,
pp. 238–249 SECRYPT, Lieusaint, Paris, France, ScitePress (2020). https://doi.org/10.5220/
0009891702380249

7. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: LEDAcrypt website. https://
www.ledacrypt.org (2020)

8. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-check
codes in the McEliece cryptosystem. In: Proceedings of IEEE International Conference on
Communications, ICC 2007, Glasgow, Scotland, UK, pp. 951–956 (2007). https://doi.org/
10.1109/ICC.2007.161

9. Barenghi, A., Pelosi, G.: A comprehensive analysis of constant-time polynomial inversion
for post-quantum cryptosystems. In: Palesi, M., Palermo, G., Graves, C., Arima, E. (eds.)
Proceedings of the 17th ACM International Conference on Computing Frontiers, CF 2020,
pp. 269–276. Catania, Sicily, Italy, 2020. ACM (2020). https://doi.org/10.1145/3387902.
3397224

10. Barenghi, A., Pelosi, G.: Constant weight strings in constant time: a building block for
code-based post-quantum cryptosystems. In: Palesi, M., Palermo, G., Graves, C., Arima,
E. (eds.) Proceedings of the 17th ACM International Conference on Computing Frontiers,
CF 2020, pp. 132–141. Catania, Sicily, Italy 2020, ACM (2020). https://doi.org/10.1145/
3387902.3392630

https://classic.mceliece.org
https://bikesuite.org
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-319-79063-3_1
https://doi.org/10.1007/978-3-030-25922-8_2
https://doi.org/10.5220/0009891702380249
https://doi.org/10.5220/0009891702380249
https://www.ledacrypt.org
https://www.ledacrypt.org
https://doi.org/10.1109/ICC.2007.161
https://doi.org/10.1109/ICC.2007.161
https://doi.org/10.1145/3387902.3397224
https://doi.org/10.1145/3387902.3397224
https://doi.org/10.1145/3387902.3392630
https://doi.org/10.1145/3387902.3392630


Analysis of In-Place Randomized Bit-Flipping Decoders 173
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